

SCHAUM’S OUTLINE OF

THEORY AND PROBLEMS

of

PROGRAMMING

WITH JAVA

JOHN R. HUBBARD, Ph.D.
Professor of Mathematics and Computer Science

University of Richmond

SCHAUM’S OUTLINE SERIES
McGRAW-HILL

New York San Francisco Washington, D.C. Auckland Bogota’ Caracas
Lisbon London Madrid Mexico City Milan Montreal

New Delhi San Juan Singapore Sydney Tokyo Toronto

JOHN R. HUBBARD is Professor of Mathematics and Computer
Science at the University of Richmond. He received his Ph.D. from The
University of Michigan (1 973) and has been a member of the Richmond
faculty since 1983. His primary interests are in numerical algorithms and
database systems. Dr. Hubbard is the author of several other books,
including Schaumk Outline of Programming with C++ and Schaumk
Outline of Fundamentals of Computing with C+ +,

Schaum’s Outline of Theory and Problems of

PROGRAMMING WITH JAVA

Copyright 0 1999 by The McGraw-Hill Companies, Inc. All rights reserved. Printed in the United
States of Amcrica. Except as permitted under the Copyright Act of 1976, no part of this publication
may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval
system, without the prior written permission of the publisher.

Product or brand names used in this book may be trade names or trademarks. Where we belive that
there may be proprietary claims to such trade names or trademarks, the name has been used with an
lnitial capital or it has been capitalized in the style used by the name claimant. Regardless of the
capitalization used, all such names have been used in an editorial manner without any intent to
convey endorsement of or other affiliation with the name claimant. Neither the author nor the
publisher intends to express any judgment as to the validity or legal status of any such proprietary
claims.

Sun, the Sun logo, Java, and Sun Microsystems are trademarks or registered trademarks of Sun
Microsystems, Inc.

2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 PRS PRS 9 0 1 0 9

ISBN 0-07-134210-9

Sponsoring Editor: Mary Loebig Giles
Production Supervisor: Sherri Souffrance
Editing Supervisor: Maureen Walker

Library of Congress Cataloging-in-Publication Data

Hubbard, J. R. (John Rast), date
Schaum’s outline of theory and problems of programming with Java /

John R. Hubbard.
p. cm. -- (Schaum’s outline series)

Includes bibliographical references and index.
ISBN 0-07- 1342 10-9
1. Java (Computer program language) I . Title. 11. Series.

QA76.73.J38H83 1998
005.13’3-- dc21 98-29979

CIP

McGraw-Hill iz
A Division of TheMcGraw-HiUCompanies

Like all Schaum’s Outline Series books, this is intended to be used primarily for self study,
preferably in conjunction with a regular course in the fundamentals of computer science using
the Java programming language.

The book includes over 200 examples and problems. The author firmly believes that
programming is learned best by practice, following a well-constructed collection of examples
with complete explanations. This book is designed to provide that support.

Source code for all the examples, solved problems, and supplementary problems in this book
may be downloaded from the author’s Web page:

http://www.richmond.edu/-hubbard/

This site will also contain any corrections and addenda for the book.

I wish to thank all my friends, colleagues, students, and the McGraw-Hill staff who have
helped me with the critical review of this manuscript, including Eric Ciampa, Andrew Somers,
Michael Somers, and Maureen Walker. Special thanks to Anita Hubbard for her advice, encour-
agement, and supply of creative problems for this book.

JOHNR. HUBBARD
Richmond, Virginia

...
111

Dedicated to our next generation:

Sara, John, Andrew, and Michael

Contents

Chapter 1 Getting Started .. 1

1.1 THE JAVA PROGRAMMING LANGUAGE . 1

1.2 DOWNLOADING THE JAVA DEVELOPMENT KIT . 3

1.3 INSTALLING THE JDK . 5

1.4 CREATING AND RUNNING A PROGRAM IN MICROSOFT WINDOWS 6

1.5 TROUBLESHOOTING . 9

1.6 ANALYSIS OF THE HelloWorld PROGRAM . 11

1.7 COMMENTS . 12

1.8 PROGRAMS WITH INPUT . 14

1.9 NUMERICINPUT . 16

1.10 VARIABLES AND OBJECTS . 19

1.11 ARITHMETIC AND ASSIGNMENT OPERATORS . 21

Chapter2 Strings .. 27

2.1 THE String CLASS . 27

2.2 SUBSTRINGS . 28

2.3 CHANGINGCASE . 29

2.4 CONCATENATION . 29

2.5 LOCATING A CHARACTER WITHIN A STRING . 30

2.6 REPLACING CHARACTERS IN A STRING . 31

2.7 REPRESENTING A PRIMITIVE VALUE IN A STRING . 31

2.8 SUMMARY OF THE String CLASS METHODS . 33

2.9 THE StringBuffer CLASS. 34

2.10 SUMMARY OF THE StringBuf f er CL. ASS METHODS 39

Chapter 3 Selection .. 43

3.1 THE if STATEMENT . 43

3.2 THE if...else STATEMENT . 44

3.3 THE if...else if ... STATEMENT COMBINATION45

3.4 NESTED CONDITIONALS . 45

3.5 COMPOUNDSTATEMENTS .48

3.6 OPERATORS . 48

3.7 ORDER OF EVALUATION . 50

3.8 boolean VARIABLES . 51

3.9 THE CONDITIONAL OPERATOR . 54

3.10 ASSIGNMENT OPERATORS . 55

3.11 THE switch STATEMENT., . 55

Chapter 4 Iteration .. 65

4.1 THE for STATEMENT . 65

4.2 THE while STATEMENT . 68

4.3 SOME NUMBER CRUNCHING . 70

4.4 THE do...while STATEMENT . 73

4.5 MORE NUMBER CRUNCHING . 75

4.6 NESTEDLOOPS . 78

V

vi CONTENTS

Chapter5 Methods .. 89

5.1 SIMPLEEXAMPLES . 89

5.2 LOCAL VARIABLES . 90

5.3 METHODS OFTEN INVOKE OTHER METHODS . 92

5.4 METHODS THAT INVOKE THEMSELVES . 93

5.5 boolean METHODS . 95

5.6 void METHODS . 95

5.7 OVERLOADING . 96

Chapter6 Classes ... 110

6.1 CLASSES . 110

6.2 DECLARATIONS . 113

6.3 MODIFIERS . 116

6.4 CONSTRUCTORS . 118

6.5 COPY CONSTRUCTORS . 121

6.6 DEFAULT CONSTRUCTORS . 122

6.7 CLASSINVARIANTS . 124

6.8 IDENTITY, EQUALITY. AND EQUIVALENCE . 127

6.9 MORE CLASS INVARIANTS . 129

6.10 WRAPPER CLASSES . 133

Chapter 7 Composition and Inheritance .. 148

7.1 COMPOSITION . 148

7.2 RECURSIVE CLASSES . 152

7.3 INHERITANCE . 157

7.4 OVERRIDING FIELDS AND METHODS . 159

7.5 THE super KEYWORD . 161

7.6 INHERITANCE VERSUS COMPOSITION . 163

7.7 CLASS HIERARCHIES . 163

7.8 THE Object CLASS . 167

7.9 THE JAVA CLASS HIERARCHY . 168

7.10 THE clone() AND equals() METHODS . 168

Chapter 8 Arrays and Vectors .. 188

8.1 CHARACTERARRAYS . 188

8.2 PROPERTIES OF ARRAYS IN JAVA . 191

8.3 COPYINGANARRAY . 193

8.4 THE Vector CLASS . 195

8.5 THE SIZE AND CAPACITY OF A Vector OBJECT . 198

8.6 CHANGES TO THE Vector CLASS IN JAVA 1.2 . 200

8.7 TWO-DIMENSIONAL ARRAYS . 201

CONTENTS vii

Chapter9 Graphics ... 209

9.1 THEAWTLIBRARIES . 209

9.2 THE Frame CLASS . 209

9.3 THE Color CLASS . 212

9.4 COMPONENTS . 213

9.5 THE Button CLASS . 214

9.6 MANAGINGLAYOUTS . 215

9.7 EVENT-DRIVEN PROGRAMMING . 217

9.8 THE TextField CLASS . 220

Chapter 10 Applets. Threads. and Exceptions 224

10.1 APPLETS . 224

10.2 THE Agglet CLASS . 225

10.3 THE Thread CLASS . 227

10.4 EXCEPTIONS . 230

Appendix A Acronyms... 234

Appendix B The JBuilder IDE .. 235

Appendix C The Codewarrior IDE .. 238

Appendix D Computer Numbers 239

D.l THE FINITE AND THE INFINITE . 239

D.2 NUMBERTYPES . 239

D.3 RANGES OF INTEGER TYPES . 239

D.4 INTEGER OVERFLOW . 239

D.5 RANGES OF FLOATING-POINT TYPES . 241

D.6 THE INFINITY AND NaN CONSTANTS . 241

AppendixE Unicode .. U4

Appendix F References .. 246

Index .. ~8

This page intentionally left blank

Chapter 1

Getting Started

1.1 THE JAVA PROGRAMMING LANGUAGE

The Java programming language was developed by James Gosling at Sun Microsystems in
199I . Its name is a slang term for coffee. When the World Wide Web appeared on the Internet in
1993, the language was enhanced to facilitate programming on the web. Since then it has become
one of the most popular languages, especially for network programming.

To see why Java is the language of choice among network programmers, imagine a network
of different computers like this:

CyberMax PC Unicent PC SGI works tation
running Windows98 running Windows95 running IRIX on a
on a Cyrix 6x86 on an AMD K6 MIPS RlOOOO

These might be eight computers in the same room connected within a local area network, or they
could be in eight different cities on four continents connected by the Internet. The point is that
they are running different operating systems (AIX, WindowsNT, etc.) on different processors
(PowerPC, Pentium 11, etc.). Suppose that you want to write a program on the IBM workstation
that can be run on all eight computers.

Before a computer program can be run, it has to be translated into the machine language that
the computer’s processor understands. In programming languages such as Pascal and C++, this
translation is done by a compiler, and the resulting machine language version of the program is
called the executable image. But different processors have different machine languages. So, for
example, an executable image produced on the IBM workstation would not run on any of the
other computers in the network shown above. To have his or her program run on all the comput-
ers in the network, the programmer would have to compile it separately on each one!

1

2 GETTING STARTED [CHAP. 1

To solve this problem, Java provides both a compiler and a software system called the Java
Virtual Machine (JVM) for each computer system. The Java compiler, javac, translates Java
source code into an intermediate level language, called bytecodes. Like the source code itself,
bytecodes are independent of the type of computer system. The same bytecode file can be used
by any computer. When one computer wants to run a Java program written on another computer,
it downloads that program’s bytecode file and delivers it to its own JVM. The JVM then
translates the bytecodes into its own system’s machine language and runs the result.

This picture represents the same network as before. It shows three files on the IBM
computer: a Java source code file named Hi. java, the javac compiler, and the Java bytecode
file named Hi. class. That bytecode file was produced by the compiler when the programmer
executed the command

javac Hi. class

on the IBM computer. Later, a user at the Sony computer on the right clicked on a Web page that
includes instructions to run the Hi.class program. In response, the Sony computer
downloaded the Hi. class bytecode file from the IBM computer and ran its own local JVM on
it. The JVM on the Sony computer knows how to translate the bytecode into its own processor’s
machine language so it can be executed there. All the previous work done on the IBM computer
is completely independent of the Sony computer. In fact, the Hi. class bytecode file could
have been produced long before the Sony computer or its Intel Celeron processor were ever
invented !

Most Web browsers (Netscape’s Communicator, Microsoft’s Internet Explorer, etc.) come
bundled with the JVM. So when you load a web page that includes instructions to run a Java
program, the browser automatically downloads the bytecode file and runs the JVM on it. All you
see are the results on your web page: animated images, data entry forms, buttons, scroll panes,
check boxes, etc.

The JVM system is an interpreter. That means that it translates and runs each bytecode
instruction separately, whenever it is needed by the complete program. For some programs, this

3 CHAP. 13 GETTING STARTED

can be quite slow. As an alternative, Java also provides local compilers for each system that will
compile a bytecode file into an executable image for faster running. Java calls these compilers
“Just-In-Time” (JIT) compilers. They come bundled with some web browsers (e.g., Netscape).

1.2 DOWNLOADING THE JAVA DEVELOPMENT KIT

The process of designing, coding, testing, debugging, documenting, maintaining, and
upgrading computer programs is called software development. An Integrated Development
Environment (IDE) is a collection of integrated programs that facilitates software development.
If you have access to an IDE (e.g., Metrowerks’s Codewarrior, Enprise’s JBuilder, Microsoft’s
Visual J++, Symantec’s Visual Cafe, or IBM’s Visual Age) skip to Section 1.6 on page 11.

The Java Development Kit (JDK) is a collection of programs to help developers compile,
run, and debug Java programs. It is not as good as an IDE, but it is quite adequate for developing
Java programs. Sun Microsystems provides it free of charge. This section describes how to
download it from Sun’s j avasoft website.

To download the JDK to your computer, open your web browser (e.g., Netscape Navigator)
and enter the following URL in your browser’s Location or Address field:

http://www.javasoft.com

This brings up the Java home page which should look something like this:

Click on the link labeled Products & APls (the third item on the left side of the page shown
here). This brings up the PRODUCTS & APIs page. Use the pull-down menu labelled Product
Quick Pick to select the most recent version of the Java Development Kit. In the window shown
below, that was Java Development Kit 1.2 Platform -JDK.

4 GETTING STARTED [CHAP. 1

Then click on the Go! button and follow the directions given on the next page that comes up to
download the JDK. You may be asked to become a member of the Java Developer Connection,
requiring you to submit a User ID and Password that you select yourself.

Eventually, you should get to another pull-down menu labelled Download JDK:

Select your computer’s operating system and click on the continue button. You will then be asked
to accept Sun’s License & Export agreement.

When you finally get to the actual download button, it will probably be labelled with the
name of the executable file that will downloaded, something like j dkl2-beta3 -win3 2 .exe.
Click on that button to begin the download.

5 CHAP. 11 GETTING STARTED

If you are running Microsoft
Windows, the system will bring up a
panel like this:

Navigate up to the Desktop (as
shown here) so that the file will appear
there when it has finished downloading.
Then press the Save button.

The JDK download is a large file.
The one shown here (beta Release 1.2)
is over 15 megabytes. So it may take
well over an hour to download, depend-
ing upon the current traffic level at your
site on the web.

1.3 INSTALLING THE JDK

After you have downloaded the JDK you can install it simply by running the
executable program that you downloaded. To do that, double-click on the icon ,dk,2-bela3-

that was placed on your Desktop.
This only takes about a minute to install. Confirm all the suggested alternatives during the

installation. During the installation process, the 15 megabytes gets decompressed into about 25
megabytes. The normal installation (in Microsoft Windows) would be into a new folder on your
C: drive. When finished, it should look like this:

The Readme file is a text file that gives current information about the JDK and summarizes the
contents of your jdk directory. The index file is a hypertext (web browser) file that outlines
the JDK and provides browser-type access to its documentation, examples, and the JavaSoft web
site. The bin directory contains the executable programs (binary files) that make up the JDK.
The l i b directory contains the library files for the Java language. The include directory
contains the source code files that define the standard classes of the Java language. The demo

directory contains over 20 demonstration programs.

6 GETTING STARTED [CHAP. 1

Double-click on the index file. This launches your web browser, displaying a web page
entitled The Java Development Kit, as shown below.

To get an idea of what Java
programs can do, click on the
Demonstration ADplets link. That
opens a folder window that shows
the contents of your
C:\Jdkl.2beta3\demo\applets\

folder. Click on the folder labeled
Wire Frame and then click on the file
named examplel. This launches a
separate web page entitled “3D
Model: Cube,” which displays a wire
frame cube. Use your mouse to drag
a corner of the cube around within its
picture frame and watch it rotate.

1.4 CREATING AND RUNNING A PROGRAM IN MICROSOFT WINDOWS

To create a Java program, you need to use an editor. You can use a word processor, such as
Microsoft Word, but you have to be careful that the files you create are pure text files and that
their file type is “. java”.This section shows how to create a Java program using the simple
Windows editor Notepad.

7 CHAP.11 GETTING STARTED

Start up the Notepad editor by selecting Programs > Accessories > Notepad from the Windows Start
key. Then type the following four lines of Java code exactly as it is shown here:

public class HelloWorld

{ public static void main(String[] args)

{ System.out.println("Hello, World! ' I) ;

1
1

Type capital letters as capital letters and lowercase letters as lowercase letters. (Java is
case-sensitive.)Type the parentheses, brackets, and braces exactly as shown here, and don't miss
the semicolon at the end of the third line. Your Notepad window should look like this:

Save your file with the name
HelloWorld. java as shown here.

Select All Files in the Save as type: field
so that you can save the file with the
correct file type. Notebook's default file
type is .txt. But Java programs must
have the file type .java.

Open a DOS command window by
selecting Programs > Command Prompt from
the Windows Start key. Use the DOS cd
command to navigate to the folder that
contains your Java program and then use
the dir command to check that it is there and that it has the correct name.

(In this demonstration, we are storing our Java programs on a floppy disk on the A : \ drive.)
Execute the following DOS command to view the contents of your file:

type HelloWorld.java
It should appear exactly as you typed it in the Notepad editor.

8 GETTING STARTED [CHAP. 1

Now compile your program in the DOS window by executing the command

javac HelloWorld.java

If all goes well, the system should respond with another DOS prompt within a few seconds,
thereby indicating that your program compiled successfully. If it did, then check your directory
again to see that the compiler has produced a new file named HelloWorld. class.

This is the bytecode file that the JVM system uses to run your program. (Notice that it is more
than four times the size of your source code file.)

Finally, execute the following command to run your program:

java HelloWorld

The system should respond by displaying the “Hello, World!” message:

9 CHAP. 13 GETTING STARTED

1.5 TROUBLESHOOTING

If you were able to get your program to run, skip to Section 1.6.
If your HelloWorld. java file did not show up in your folder when you executed the dir

command, re-save it from the Notepad window.

If your HelloWorld. java file did show up in your folder but with the wrong name,
re-save it from the Notepad window.

If your HelloWorld. java file did show up in your folder with the right name but its
contents did not come out right when you executed the type HelloWorld.java command, go back
to your Notepad window, correct the errors, and then re-save the file.

If the javac HelloWorld. java compile command did not work, try it again. Be sure you
type “javac” (for “java compiler”).

If the system does not know what the javac command is, then either the JDK is not
installed correctly or the system does not know where it is installed. Use your Windows Explorer
browser to find the folder where the JDK is installed. It should have a name like jdkl . 2 and be
located on your c:\ disk. Find the correct name for this folder, and then try executing the
compile command with its path as a prefix, like this:

c:\jdkl.2\javac HelloWorld.java

If that works, then all you have to do is change the system PATH variable. If that does not work,
then the JDK is probably not installed correctly. In that case, run the installation program again.
If that doesn’t work, start over again with a new download.

To determine whether the problem is with your system PATH variable, execute the following
DOS command:

path

The system should respond like this:

The code that begins PATH=C:\WIN ... is a listing of all the paths that the operating system
checks to find the commands that you want to execute. The paths are separated by semicolons.
One of them should include the name “jdk”. If one does, then that is where the system is looking
for the instructions on how to execute the javac command. If none of the paths includes the
name “jdk”, then you’ll have to amend your system PATH variable.

10 GETTING STARTED [CHAP. 1

To amend your system PATH variable so that it includes the path to the JDK, execute the
following DOS command:

set path=c:\jdkl.2\bin;%path%

and then execute the plain

path

command again to see if the PATH variable was amended correctly:

If it was, then you should now be able to execute the javac command successfully without
using the prefix.

The instructions in the previous paragraph assume that the JDK is successfully installed in
the folder named j dkl .2. If your JDK folder has a different name, then use that instead.

If it was necessary to amend your PATH variable, then you should add the same set path
command to your c :\autoexec .bat file so that that system variable will be set correctly each
time to restart your computer.

If the compiler displays error messages when you execute the javac command, then you
have to go back into the editor and fix the errors. For example, if you omitted the semicolon at
the end of the third line, then the compiler would respond like this:

The Java compiler is pretty good about locating and describing syntax errors like this.
If you see an error message like this

11 CHAP. 13 GETTING STARTED

then the problem is that the file name of our source code program does not match the name that
follows the keyword class on the second line. These two names must be identical, even with
the same capital and lowercase letters. In this example, the programmer omitted the "d" at the
endofthe class name.

Another common compile-time error is omitting one of a pair of quotation marks:

Like parentheses () and braces { 1, quotation marks must always come in pairs.

1.6 ANALYSIS OF THE HelloWorld PROGRAM

Here is the text of the HelloWorld program again:
public class HelloWorld

{ public static void main(String[] args)

{ System.out .println("Hello, World! I t) ;

1
1

The first line declares a class named HelloWorld.Every Java program begins this way. You
can name your program whatever you want; any nonempty string of letters and digits can be used
for the class name as long as it begins with a letter and contains no blanks.

The name of the class must be the same as the name of the file. For example, if you name
your class PlayTicTacToe,like this:

public class PlayTicTacToe

{ public static void main(String[] args)

{ . . .
1

1
then it must be saved in a file name PlayTicTacToe. java.

The second line begins with the left brace character "{". This is required immediately after
the class name. Some programmers put it at the end of the first line instead of at the beginning of
the second line. The difference is only a matter of style; it doesn't matter to the compiler as long
as it appears immediately after the main class name. Note that the last symbol in the program is
the right brace ")" standing alone on the last line. These two braces form the program block,
enclosing the program's body. Vertically aligning matching left and right braces, as we do
consistently in this book, facilitates the reading of larger complex programs.

The second line contains the four words public, static, void, and main,followed by a
parenthesized phrase. The word public here means the same as on the first line: that the
contents of the following block are accessible from all other classes. The word static means
that the method being defined applies to the class itself rather than to objects of the class. These

12 GETTING STARTED [CHAP. 1

concepts are explained in Chapter 4.The word void means that the method being defined has
no return value. The word main is the name of the method being defined,just as HelloWorld
is the name of the class being defined.

The parenthesized string that follows the word main on the second line is the parameter list
for the main method. It declares the method’s parameters, which are local variables used to
transmit information to the method from the outside world. The parameter list for the main
method always has this form:

(String[3 args)
It states that this method has one parameter. Its name is args, and it is an array of String
objects. These concepts are explained in Chapters 5 and 8.

The third line of the program contains the single executable statement in the program:
System.out .println(“Hello, World! ”) ;

Note that this statement is contained within a block delimited by braces “ { ” and “I” . The
statement tells the system to print (i.e.,display in the DOS command line window) the message
“Hello, World!”. This message is a character string, so it must be enclosed in quotation
marks. You can put anything you want within the quotation marks; whatever is there will be
printed. The parentheses indicate that this character string is the object that the main () method
is sending to the println () method.

The word println is the name of the method that tells the system how to do the “printing.”
The suffix “In” stands for “line,” which means that after the message is printed, the cursor on
the screen should be positioned at the beginning of the next line, so that the next output (if any)
will appear on the next line.

The prefix “sys tem .out .” means that “system .out” is the name of an object that belongs
to the class where this method is defined. This object is the receiver of the print request made by
the program.

Note that the parentheses containing the “Hello, World!” and the semicolon at the end of
the statement are required.

1.7 COMMENTS

Computer programs are read by two kinds of entities: compilers and humans. The compiler
requires the source code text to conform exactly to its syntax rules. For example, the semicolon
must follow the right parenthesis on the third line of the HelloWorld program. Humans are not
so particular about how instructions are given, but they often do need more explanation about
what the instructions mean. Programming languages allow such explanations to be included with
source code. They are called comments, and are ignored by the compiler.

There are two ways to write comments in Java. A C style comment begins with the symbol
pair / * and ends with the symbol pair * /. A C++ style comment begins with the symbol pair
/ and ends with the end of the text line. The C style comments can be used between compilable
code on the same line, like this:

public / * access * / class / * declaration * / HelloWorld
but this is not recommended. More often, Java programmers use the C style for a multi-line
comment, like this:

/ * This program prints the single line of output:
Hello, World!

* /

13

1

CHAP. 13 GETTING STARTED

C++ style comments are often used to annotate declarations and statements, like this:
public class TestFrame / / tests the Frame class
{ public static void main(String[] args)

{ Frame frame = new Frame("Examp1e 9.1");
frame.setSize(250,lOO); / / 250 gixels wide and 100 gixels high
frame.setVisible(true); / / displays the frame on the screen

The text shown here in boldface is ignored by the compiler. Multi-line comments can also be
done in the C++ style:

/ / This program prints the single line of output:
/ / Hello, World!

Adding comments to your programs is called documenting your code. This should be done
whenever the purpose or meaning of the code might not be clear to human readers. It is also good
to include a header comment at the beginning of every program that identifies the programmer
and the program.

EXAMPLE 1.1 The HelloWorld Program

Here is our He1loWorId program again with a three-line header comment for identification:

14 GETTING STARTED [CHAP. 1

The DOS Command Prompt window shows the result of the following commands:
dir

type HelloWorld. lava

javac HelloWorld.java

dir

lava HelloWorld

The comments on the first three lines are ignored by the compiler.

1.8 PROGRAMS WITH INPUT

Input is more error-prone than output. If the wrong kind of input is received, the program can
crash (i.e., fail abruptly). Such a run-time error is called an exception. Java provides special
mechanisms for handling exceptions. The simplest version of this for inputloutput exceptions is
to append the clause “throws IOException”to the declaration of the main () method.

EXAMPLE 1.2 Interactive Input

15 CHAP. 11 GETTING STARTED

The DOS dialog here is similar
to that in Example 1.1: it displays
the contents of the current folder,
displays the contents of the
He1loAl .j ava file, compiles the
program in that file, displays the
contents of the current folder again
to confirm that the bytecode file
HelloAl. class was created, and
then runs the program.

The program prints the prompt
Enter your name:

and then waits for input. When the
user types

A1 Gore

and presses the Enter key, the system
respond immediately with

Hello, A1 Gore!

The picture here shows the flow

of the data through the five objects
in the program from its input from
the keyboard to its output at the
video display screen. The five
objects are named System. in,
reader, input, name, and
System. out. The System. in
and System. out: objects are
defined in the System class. The
other three objects are defined in the
program (on the third, fourth, and
sixth lines). All but the name
object are drawn as conduits, piping
the individual bytes and characters
through the system. These objects
are called stream objects because,
like a stream of water, they allow
the data to flow in a sequence.

The first line in the source code
file is

inport java.io.*;

This tells the javac compiler to
look in the j ava. i o library for
the definitions of the three i/o
classes that are used in the program:
IOExcept ion, Inputstream-

Reader,and BufferedReader.

The fourth line defines the object reader to be an instance of the InputStreamReader class,
binding it to the system input stream System. in. This means that the object reader will serve as a
conduit, conveying data from the keyboard into the program.

16 GETTING STARTED [CHAP. 1

The fifth line defines the object input to be an instance of the B u f f eredReader class, binding
it to the reader object. This means that the object input can be used to extract input in a convenient
way. In particular, it can use its readLine() method to read an entire line of characters from the
keyboard and deliver them in the form of a String object. It does just that on the seventh line of the
program:

String name = input.readLine();
This declares the String object name and initializes it with the string that is returned by the
input.readLine() method. The result is that the name object contains whatever the user typed at
the keyboard. That is then printed in the next statement:

Hello, A1 Gore!

If you had entered Tiger Woods instead of A1 Gore,this line would have printed

Hello, Tiger Woods!

The expression “~ello, + name + ! II means to concatenate (i.e.,string together) the three

(I ,strings llHello, name,and ! I I to form a single string to be sent to the screen. The first and third
of these are literal string constants. But name is the String variable that holds whatever string of
characters was input.

Note that the readLine () method is analogous to the println () method. The statement
name = input.readLine();

copies a line of characters from the keyboard to the string name,while the statement
System.out.println(name);

copies a line of characters from the string name to the computer display screen.
The reader object is an instance of the InputStreamReader class. It reads the bytes that

come in from the keyboard. Note that each of the 8 bytes read is an integer in the range 0 to 127.
These are values of the byte type. The input object is an instance of the B u f feredReader
class. It converts each byte in the reader object into a value of the char type. The name object
is an instance of the String class. Its readLine () method copies all the characters up to the
next newline character (\n) into its name string. Note that the newline character itself is not
copied into the name string. The System.out object is an instance of the Printstream
class. Its println () method sends all the characters that are passed to it to the screen and then
sends the newline character to end the output line.

The “throws IOException”clause allows the use of the readLine () method.
Note the use of parentheses, brackets, braces, and semicolons in these examples. This

punctuation is necessary, exactly as written. If you omit any of it, your program will not compile.
If you are using an IDE (e.g., Codewarrior or JBuilder), the editor will help you locate such
syntax errors. But if you are just using a simple editor like the Microsoft Notepad, you will have
to be more diligent about getting all this syntax correct. This is a common but unavoidable
annoyance to novice programmers.

Also remember that Java is case-sensitive: “system.out.println” is different from
“System. out .println”.

1.9 NUMERIC INPUT

The input in Example 1.2 was a string: a sequence of characters read as text. Computers
distinguish between strings and numbers. They are stored and processed differently. For
example, the + operator works on both types but with very different results: the expression
l l ~ l i i+ “Gore” is equal to the string “A1 Gore”,while the expression 2 2 + 4 4 is equal to
the number 6 6. This section shows how to input numeric data.

CHAP. 13 GETI’ING STARTED 17

Every object used in a Java program must be declared before it is used. This means, for
example, that a line like

String myName;

must precede any use of the myName object. The declaration tells the compiler the type and the
name of the object. The declaration may optionally include an initialization:

String myName = input.readLine();
Numeric variables are declared like this:
long m; / / m is a 64-bit integer
double x; / / x is a 64-bit floating-point (decimal) number
int n = 44; / / n is a 32-bit integer initialized to be 44

You could visualize these variables as shown here.
Note that every variable always has some value. f k q :kiq pnBut if you don’t initialize it, its value will be I
unpredictable.

long double i n t

EXAMPLE 1.3 Computing Your Year of Birth

This example inputs your current age (as of 1998)and then computes and prints your probable year of
birth. Its purpose is simply to illustrate integer input.

Like the program in Example 1.2 on page 14, this also
imports class files from the j ava.io library so it can use
the InputStreamReader and Buf feredReader
classes. It also includes the “throws IOExcept ion” -1 reader input
p7q

InputStreamReader BufferedReader
clause on the main() method so it can use the
readline() method. After it reads the input as a
String,it converts the text data into an integer by the text year
expression pF-1

new Integer (text) .intvalue()
String int i n t

18 GETTING STARTED [CHAP. 1

This integer value is used to initialize the int variable age.The program prints that value, computes
the user's year of birth from it, and then prints that year. Although not shown here, the flow of data
through the stream objects is the same as in Example 1.2.

EXAMPLE 1.4 Computing the Area of a Circle

This program inputs the radius of a circle and then prints its area. It illustrates the processing of
floating-point data.

The structure of this program is nearly the same as that in the last two examples. The main difference
here is the use of the object x and the variables r and area.

The object x is an instance of the Double
class. The variable r is a variable of type reader
double.They both represent the real number MI
100.0. The reason that we have these two
separate objects representing the same thing is InputStreamReader Buf feredReader

because of the different operations we have to
perform on the value. As an instance of the X r area

Double class, the object x can obtain its value I 100.0 1 I 100.0 I 131415.91
Double double double

from the text object, which holds the value
100 in the four characters 1 I , I 0 I , I 0 ', and

\ n (the newline character). These flowed in from the reader object, which held the value 100 in the
four bytes 49, 48, 48, and 13 (the ASCII codes for the four characters 1 I , 0 I , 0 I , and \ n I) .

So the x object has the ability to convert a numeric value fiom its character representation into its
numeric representation. But implementing the formula A = n 9 requires the use of the multiplication
operator * which only works on numeric variables, not objects. (The difference between variables and
objects is explained in Section 1.10 below.) So the object x had to be converted to the variable r,using
the doublevalue() method on x.

CHAP. 11 GETTING STARTED 19

Example 1.4 illustrates one of the fundamental principles of object-oriented programming:
the choice of objects used in a program is based upon the operations that have to be performed.
This program had to

1. input a floating-point number r;
2. apply the formula A = nr2 to it;
3. output the result A .

Step 1 required the use of an InputStreamReader object and a Buf feredReader object.
Step 2 required the use of a Double object and the two variables r and area.Step 3 required
the use of the System. out object.

1.10 VARIABLES AND OBJECTS

There are two kinds of entities that hold data in Java: variables and objects. A variable has a
type and holds a single value. An object is an instance of a class and may contain many variables,
the composite of whose values is called the state of the object. There are only nine possible types
that variables can have. But programmers can define their own classes, so objects may instanti-
ate an unlimited number of classes. Every variable has a unique name which is designated when
the variable is declared. Objects have references instead of names, and they need not be unique.
A variable is created when it is declared, and it remains alive until the method in which it is
declared terminates. An object is created by using the new operator to invoke a constructor, and
it dies when it has no references. If variables are the “nuts and bolts” of a program, then objects
are its doors and windows.

EXAMPLE 1.5 The Circle Program Again

Here is the code from Example 1.4 on page 18:
import java.io.*;

public class Area

{ public static void main(String[] args) throws Exception

{ InputStreamReader reader = new InputStreamReader(System.in);
BufferedReader input = new BufferedReader(reader);
System.out .print (“Enter the radius: ‘ I) ;

String text = input.readLine();
Double x = new Double(text);
double r = x.doubleValue();
System.out.println(“The area of a circle of radius ‘I + r);
double area = Math.PI*r*r;
System.out.println(“ is ” + area);

1
1

This program uses two variables (r and area) and five objects (reader, input, text, x,and
System.out). Both variables have type double. The objects are instances of the classes
InputStreamReader, Buff eredReader, String, Double, and Printstream,respectively.
Technically, reader, input, etc., are the names of references to the three objects; objects themselves
don’t have names. But Java programmers usually refer to objects by the names of their references. It’s
simpler to say “the object reader”than “the object referred to by the reference reader.’’

20 GETTING STARTED [CHAP. 1

A reference is a variable whose type is "reference to xxxx class," where xxxx is the name
of some class. For example, text is a reference of type "reference to String class" in Example
1.5. So like other variables, every reference has a type.

Besides reference types, there are eight other types in Java. These are called primitive types,
to distinguish them from reference types. Their names and values are:

boolean either false or true
char 16-bit Unicode characters
byte 8-bit whole numbers: integers ranging from -128 to 127
short 16-bit whole numbers: integers ranging from -32,768 to 32,767
int 32-bit whole numbers: integers ranging from -2,147,483,648 to 2,147,483,647
long 64-bit whole numbers: integers ranging from +9,223,372,036,854,775,807
float 32-bit decimal numbers: rationals ranging from k 1 . 4 ~ 10-381045to k 3 . 4 ~
double 64-bit decimal numbers: rationals ranging from i - 4 . 9 ~ to k1.8 x 10-30810-324
The syntax for declaring a variable of any type is
type-name variabl e-name;

where type-name is the name of the type and variable-name is the name of the variable.
For example, the declaration

int n;

declares the variable n with type int.All variables must be declared before they are used.

It is usually best to initialize a variable within its declaration. The syntax for that is
type-name variable-name = initial-value;

where ini tial -value is the value being given to the variable. For example, the declaration
char c = 'RI;

declares the variable c with type char and initial value RI.We could c171
then visualize the variable c as: This shows c as an object like a mailbox char

with contents R' and type char.

EXAMPLE 1.6 Primitive Data Types

This program simply declares and initializes eight variables, one for each of the eight primitive types,
and then prints them.

public class PrintTypes

{ public static void main(String[] args)

{ boolean b = false;
char c = 'RI;
byte j = 127;
short k = 32767;
int m = 2147483647;
long n = 9223372036854775807L; / / 'L' is for lllongll
float x = 3.14159265F; / / 'F' is for "float"
double y = 3.141592653589793238;
System.out.println("b= + b);I'

System.out.println("c= + c);'I

System.out.println("j= + j);
System.out .println("k = + k);I'

System.out.println("m= + m);
System.out .println('In = + n) ;
System.out.println("x= + x);'I

System.out.println("y= + y) ;I'

1
J

21 CHAP. 13 GETTING STARTED

Its output is

Note that the initial value for the long integer n ends with the letter L. This is necessary for literal
values of long type. Similarly, literal values of float type must end with the letter I?.

Also note that values of type char must be delimited with apostrophes:
char c = ' R ' ;

Without the apostrophes, the declaration
char c = R;

would mean that the variable c is being initialized with the value of a symbolic constant named R
whose actual value could be any character.

1.11 ARITHMETIC AND ASSIGNMENT OPERATORS

An operator is a function that has a special symbolic name and is invoked by using that
symbol within an expression. Here are some examples of expressions that include Java
operators:

n = 22 assignment operator
n += 22 assignment operator
++n increment operator
n / 22 quotient operator
n % 22 remainder operator

These are illustrated in the following programming examples.

EXAMPLE 1.7 Increment and Decrement Operators

This example illustrates how the values of integer variables can be changed with the increment and
the decrement operators: ++ and --. It also illustrates the use of the assignment operators += and -=.

public class IncrementDecrement

{ public static void main(String[] args)

{ char c = ' R I ;
byte j = 127;
short k = 32767;
System.out.println(llc= + c);I'

++c;

I'System.out.println("c = + c);

++c;

I'System.out .println(IIc = + c);

System.out.println("j = " + j);
_ _ j -
System.out.println("j = + j);

22 GETTING STARTED [CHAP. 1

++j;

I'System.out.println("j = + j);

++j;

'ISystem.out.println("j = + j);
I'System.out.println("k = + k);

k -= 4 ;
'ISystem.out.println("k = + k);

k += 5;
'ISystem.out.println("k = + k);

I
1

This uses the same declarations for c, j,and k as in Example 1.6.

The expression ++c means to increment the variable c to its next value. Since its current value was
'R ' ,this changes it to the next character S .After printing that, it gets incremented to T .Increment-
ing and decrementing ordinary integers works the same way.

This example also shows what happens when a variable gets incremented past its "last value": it
wraps around to the lowest negative value. For example, the range of values for variables of type byte is
-128 to 127, so when the variable j has the value 127 and gets incremented, its value becomes -128.
Since this defies the rules of ordinary arithmetic, it is considered an error when it happens. It is called
integer overj7ow.It is best avoided simply by using an integer type with a larger range.

The last part of this program uses the special assignment operators -= and +=. The statement
k -= 4

simply means "subtract 4 from k." That changes its value from 32767 to 32763. Note that the last assign-
ment causes integer ovefflow again.

EXAMPLE 1.8 Arithmetic

This example illustrates the use of the five integer arithmetic operators +, -, *, /, and %.
public class IntegerArithmetic

{ public static void main(String[] args)

{ int m = 25;
int n = 7;
System.out.println("rn = + m);I'

System.out.println("n = + n);I'

int sum = m + n;
ItSystem.out.println("m + n = + sum);

int difference = m - n;
System.out.println("m - n = + difference);'I

int product = m * n;
System.out .println(I'm * n = + product);'I

23 CHAP. 11 GETTING STARTED

int quotient = m / n;
I’System.out.println(”m / n = + quotient);

int remainder = m % n;
System.out .println(I’m % n = + remainder);

1
1

These operators work as you would expect. Note that the remainder operator gives the remainder
from division: 25 % 7 = 4 because 4 is the remainder when 25 is divided by 7.

Review Questions

1.1 How old is the Java programming language?
1.2 What company developed the Java programming language?
1.3 What is source code?
1.4 Where does the source code come from?
1.5 What kind of files contain Java source code?
1.6 What is bytecode?
1.7 Where does bytecode come from?
1.8 What kind of files contain Java bytecode?
1.9 What does “portable” mean in the context of computer programming?
1.10 How is Java bytecode different from other low-level computer languages?
1.11 What is the difference between a compiler and an interpreter?
1.12 What is a Java virtual machine?
1.13 What is an “application.”
1.14 What is a “developer.”
1.15 What is the Java API?
1.16 What is an IDE?
1.17 What is the JDK?
1.18 What is the JIT?
1.19 What is the JVM?
1.20 What is the difference between a C style comment and a C++ style comment?
1.21 What is a “stream” object?
1.22 What is an exception?
1.23 What does “case-sensitive” mean?
1.U What are the differences between a variable and an obiect?

24 GETTING STARTED [CHAP. 1

1.25 What are the eight Java primitive types?
1.26 What is a reference type?

1.27 What is integer overflow?

Programming Problems

1.1 Modify Example 1.1 on page 13 so that it prints the following object:
String message = "Hello, World! 'I;

1.2 Write and run a Java program that initializes a String object with your first name and then
prints it on three separate lines.

1.3 Write and run a Java program that initializes a String object with your first name and then
prints it three times on the same line, separated by spaces, like this:

John John John

1.4 Write and run a Java program that prompts the user for hidher last name and first name sep-

arately and then prints a greeting like this:
Enter your last name: O'Connor

Enter your first name: Sandra Day
Hello, Sandra Day O'Connor

(The boldface font here indicates the user input.)

1.5 Write and run a Java program that initializes an integer variable n with the value 5814 and
then uses the quotient and remainder operators to extract and print each digit of n.The out-
put should look like this:
n = 5814
The digits of n are 5, 8, 1, and 4

Hint: use n/1000 to extract the thousands digit from n,and use n % = 1000 to remove
the thousands digit from n.

1.6 Write and run a Java program that inputs an integer that represents a temperature on the Fahr-
enheit scale and then computes and prints its equivalent Celsius value in decimal form. Use
the conversion formula C = 5(F - 32)/9.

Supplemental Programming Problems

1.7 Write and run a Java program that inputs an integer that represents a temperature on the Cel-
sius scale and then computes and prints its equivalent Fahrenheit value in decimal form. Use
the conversion formula F = 1.8C + 32.

1.8 It has been observed that crickets tend to chirp in the summer at a rate that is related to the
temperature by the formula T = (c + 40)/10, where c the number of chirps per minute and T is
the temperature in Fahrenheit degrees. Write and run a Java program that inputs the number
of chirps per minute and outputs the temperature in decimal form.

Answers to Review Questions

1.1 As of 1998, Java is 7 years old.
1.2 Java was developed at Sun Microsystems, Inc.
1.3 Source code is the plain text that makes up part or all of a computer program.

CHAP. 11 GETTING STARTED 25

1.4 Source code is written by computer programmers, usually using an editor.
1.5 Java source code is saved in files with names that end with “ ,j ava”.
1.6 Bytecode is the low-level computer language translation of a Java source code program.
1.7 Bytecode is produced by the Java compiler when it compiles Java source code.
1.8 Java bytecode is saved in files with names that end with “ .c:Lass”.
1.9 A computer program is portable if it can be run on different kinds of computers.
1.10 Java bytecode programs are portable.
1.11 A compiler translates a source code program into machine language program that can then be run

many times on the same kind of computer. An interpreter translates and executes each statement of the
source code separately whenever it is needed.

1.12 A Java virtual machine is a software system that translates and executes Java bytecode.
1.13 In the context of computing, an application is a computer program that is intended to be used by

non-programmers.
1.14 In the context of computing, a developer is a programmer who creates useful applications.
1.15 The acronym API stands for “Application Programming Interface.” The Java API is the set of all the

libraries that define the standard Java classes and interfaces.
1.16 The acronym IDE stands for “Integrated Development Environment.” It describes a commercial soft-

ware system designed to facilitate the development of computer programs. (See Appendixes B and C .)
1.17 The acronym JDK stands for “Java Development Kit.” It describes the set of files that can be down-

loaded from Sun Microsystems for developing Java applications. It includes the Java compiler and the
Java API.

1.18 The acronym JIT stands for “Just-In-Time,” which is the name for the Java bytecode compiler that can
be used to compile Java .class files into machine-specific executable programs.

1.19 The acronym JVM stands for “Java Virtual Machine.” (See Question 1.12.)
1.20 A C style comment begins with / * and ends with * /, like this:

int size; / * the size of the object * /
A C++ style comment begins with / / and extends to the end of the line, like this:

int s ize ; / / the size of the object
1.21 A stream object is an object through which data flows from or to other objects. For example, the

System. in, reader, input, and System. out objects in Example 1.2 on page 14 are stream
objects.

1.22 An exception is a run-time error.
1.23 A software environment (e.g.,a programming language or operating system) is case-sensitive if it dis-

tinguishes uppercase letters from their lowercase versions. Java is case-sensitive; DOS isn’t.
1.24 A variable can have only one value at a time; an object can have many fields, each with its own value.

A variable has a unique name; an object has one or more reference variables instead of a name. A vari-
able has a type which is either one of the eight primitive types or a reference type; an object is an
instance of a class which may be one of the Java library classes or one defined by the programmer. A
variable is created by its declaration; an object has to be created by a constructor function that is
invoked with the new operator.

1.25 The eight Javaprimitive types are boolean, char, byte, short, int, long, float, and
double.

1.26 A reference lype is a type that refers to a specific class, so that any variable declared to have that refer-
ence type can refer only to instances (objects) of that class.

1.27 When a program tries to increase the value of an integer variable above its maximum possible value,
integer overflow occurs.

Solutions to Programming Problems

1.1 public class NamedConstant
{ public static void main (String [] args)

{ String message = “Hello, World! ‘ I ;

System. out .println (message) ;
1

1

GETTING STARTED [CHAP. 1

1.2 public class PrintName
{ public static void main(String[] args)

{ String name = "John";
System.out.println(name);
System.out.println(name);

System.out.println(name);

1
1.3 public class PrintNameOnOneLine

{ public static void main(String[] args)
{ String name = "John";

I' I' I'System.out.println(name+ + name + It + name);
1

1
1.4 public class PrintNames

{ public static void main(String[] args)
{ final int LEN = 20 ;
byte[] buffer1 = new byte[LEN];
System.out.print("Enter your last name: ") ;
try { System.in.read(buffer1,0, LEN) ; }
catch (Exception e) { }
String lname = new String(buffer1) ;
byte[] buffer2 = new byte[LEN];
System.out.print("Enter your first name: ") ;
try { System.in.read(buffer2,0, LEN) ; }
catch (Exception e) { }
String fname = new String(buffer2) ;
System.out.println("Hello, + fname.trim() + I' I'

+ lname.trim());
1

1
1.5 public class ExtractDigits

{ public static void main(String[] args)
{ int n = 5814;
Systern.out.println("n= + n);
System-out .print ("The digits of n are ' I) ;
System.out.print(n/lOOO);

n %= 1000;
System.out .print (' I , I' + n/100);
n %= 100;
System.out.print(", 'I + n/10);
n %= 10;
System.out.println(", and I' + n);

1

1

1.6 import java.io.*;
public class FarenheitToCelsius

{ public static void main(String[] args) throws IOException

{ InputStreamReader reader = new InputStreamReader(System.in);
BufferedReader input = new BufferedReader(reader);
System.out.print("Enter Farenheit temperature: ' I) ;

String text = input.readLine();
int farenheit = new Integer(text).intValue();
System.out.print(farenheit + I' degrees Farenheit = ") ;
double Celsius = 5.0*(farenheit - 32.0)/9.0;
System.out.println(ce1sius+ degrees Celsius."); I'

1

1

Chapter 2

Strings
A string is a sequence of characters. Words, sentences, a.nd names are strings. The message

“Hello, World!” is a string. This chapter describes the two fundamental string classes in Java:
String and StringBuffer.

2.1 THE String CLASS

The simplest type of string in Java is an object of the String class. These objects are
immutable; they cannot be changed.

EXAMPLE 2.1 A SIMPLE String OBJECT

This program prints some of the properties of a String object named alphabet.
public class Alphabet

{ public static void main(String[] args)

{ String alphabet = “ABCDEFGHIJKLMNOPQRSTUVWXYZ”;
System.out.println(a1phabet);

System.out.println(”Thisstring contains I‘ + alphabet.length()

I’+ characters.‘ I) ;
System.out.println(”The character at index 4 is

+ alphabet.charAt(4));
System.out.println(”The index of the character Z is ‘I

+ alphabet.indexOf(’Z‘));
System.out.println(”The hash code for this string is I’

+ alphabet.hashCode());
1

The object named alphabet is declared on the third line to be an instance of the String class
and is initialized with the string literal value “ABCDEFGHIJKLMNOPQRSTUWXYZ”. It looks like this:

0 1 2 3 1 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

alphabet / A I B ~ C (D (E (F I G I H I I (J I K I L I W I N (O I P I Q I R I S I T ~ U ~ V ~ W ~ X ~ Y ~ Z ~
String

The rest of the program consists of five output statements that generate the output:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
This string contains 26 characters.

The character at index 4 is E

The index of the character Z is 25

The hash code for this string is -1127252723

The first output statement simply prints the string represented by object alphabet.The second
output statement invokes the length() method to print the number of characters in the string.

The third output statement invokes the charAt () method to print the character at index position 4
in the string. Note that this (the letter “E”) is actually the fifth character in the string. The index number of
a character in a string is always the number of characters that precede it. The letter “E” has the index
number 4 in the string “ABCDEFGHIJKLMJSOPQRSTUWXYZ” because it is preceded by 4 characters.

21

28 STRINGS [CHAP. 2

The fourth output statement invokes the indexof() method to print the index number of the letter
"Z" in the alphabet string. That is the number 25 because the letter '2"is preceded by 25 characters
in the string.

The last output statement invokes the hashcode () method to print the hash value of the string.
In Java, every String object has a unique integer value, called its hush code. This is computed
from the Unicode values of the characters in the string. The hash value of the string
"ABCDEFGHI JKLMNOPQRSTUVWXYZ" is -1,127,252,723. This number has no meaning other than
serving as a numerical label for the object. Hash values are used as storage locators when the objects are
stored in tables. Although each String object has one and only one hash code, the same number may
be the hash code for more than one object.

2.2 SUBSTRINGS

A substring is a string whose characters form a contiguous part of another string. The
String class includes a substring() method for extracting substrings. This method is
illustrated in the next example.

EXAMPLE 2.2 Substrings

public class Substrings

{ public static void main(String[] args)

{ String alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
System.out.println(a1phabet);

System.out.println("The substring from index 4 to index 8 is I'

+ alphabet. substring (4 , 8)) ;
System.out.println("The substring from index 4 to index 4 is I'

+ alphabet.substring(4, 4));
System.out.println("The substring from index 4 to index 5 is I'

+ alphabet.substring(4,5));
System.out.println("The substring from index 0 to index 8 is '

+ alphabet.substring(0,8));
System.out.println("The substring from index 8 to the end is I'

+ alphabet.substring(8));
1

1
The output is

ABCDEFGHIJKLMNOPQRSTUVWXYZ
The substring from index 4 to index 8 is EFGH
The substring from index 4 to index 4 is

The substring from index 4 to index 5 is E
The substring from index 0 to index 8 is ABCDEFGH

The substring from index 8 to the end is IJKLMNOPQRSTUVWXYZ

This program uses the same object alphabet as in Example 2.1 on page 27. It has six output
statements. The first prints the entire string. The second output statement invokes the substring()

method to print the substring that begins with the character at index 4 (the letter "E") and ends with the
character at index 7 (the letter "H"). Note that the length of the substring is the difference between the two
index numbers: 8 - 4 = 4 characters.

The third output statement prints a substring of length zero (4 -4 = 0). This is called the empty string.
Note that since the empty string is unique, the call alphabet. subs tring (14, 14) would have the
same effect as alphabet. substring (4 , 4).But the call alphabet. substring (41 , 41)
would fail because there is no character in the alphabet object with index number 44.

CHAP. 21 STRINGS 29

The fourth output statement prints the substring of the first 8 characters, and the last output statement
prints the substring of all but the first 8 characters. Note that the last call uses only one parameter.

2.3 CHANGING CASE

Java distinguishes uppercase (capital letters) from lowercase. Its string class includes
methods for changing all the letters of a string to uppercase or to lowercase. These methods are
illustrated in the next example.

EXAMPLE 2.3 Uppercase and Lowercase

This program shows how to change all the characters in a string to lowercase or to uppercase:
public class ChangingCase

{ public static void main(String[] args)

{ String sbis = "StringBufferInputStream";
System.out.println(sbis);

String sbislc = sbis.toLowerCase();
System.out.println(sbis1c);

String sbisuc = sbis.toUpperCase();
System.out.println(sbisuc);

1

1
The output is
StringBufferInputStream

stringbufferinputstream

STRINGBUFFERINPUTSTREAM

The toLowerCase() method returns a new string with the same characters in lowercase. The
touppercase() method performs the obvious analogous task.

2.4 CONCATENATION

We have already used the concatenation operator "+" for. strings. (See Example 1.2 on page
14.)The next example shows how it can be used to form larger strings from smaller string.

EXAMPLE 2.4 Concatenation

public class Concatenation

{ public static void main(String[] args)

{ String first = "James";
String last = "Gosling";
System.out.println(first + last);
System.out.println(first + + last);

' I , 'ISystem.out.println(last + + first);
I'String name = first + + last;

System.out.println(name);
1

1

30 STRINGS [CHAP. 2

The output is
JamesGosling

James Gosling

Gosling, James

James Gosling

IINote that we can concatenate String objects such as first and last with literal strings such as I'

(the string containing one blank) and (the string containing a comma followed by a blank). I l1

2.5 LOCATING A CHARACTER WITHIN A STRING

The String class's indexof () and lastIndexOf() methods returns the index number
of a character in a string.

EXAMPLE 2.5 Searching for Characters in a String

public class SearchingForChars

{ public static void main(String[] args)

(String str = "This is the Mississippi River.";
System. out. println (str);
int i = str.indexOf('s');
System.out.println("The first index of ' s ' is I' + i);
int j = str.indexOf('s', i+l);
System.out.println("The next index of ' s ' is I' + j) ;
int k = str.indexOf('s', j + l) ;
System.out.println("The next index of ' s ' is I' + k);
k = str.lastIndexOf('s');
System.out.println("The last index of ' s ' is I' + k);'
System.out.println(str.substring(k));

1
1

The output is
This is the Mississippi River.

The first index of ' s ' is 3
The next index of ' s ' is 6
The next index of ' s ' is 14
The last index of ' s ' is 18
sippi River.

To see how this works, visualize the str object like this:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 11 18 1 9 20 21 22 23 24 2 5 26 27 28 29

str lTlhlils1]ilsl ltlhlel IMlils)slilslsli(p)plil ~ R ~ i ~ v ~ e ~ r ~ . ~

The call str .indexof (s) returns 3, the index of the first s in the str object. After that, the
value of i is 3,so the call str.indexof (s I i+l) searches the str string beginning at index
number i+l = 4. The first s from there forward is at index number 6, so that call assigns 6 to j .
The third call begins searching at index number j +1 = 7 and finds the next s at index number 14.
The call st r .l a s tIndexOf ('s) returns the value 18, which is the index of the last s in the
string.

CHAP. 21 STRINGS 31

Note that in Example 2.5, two different versions of the indexof () method are being used
here: one has a single parameter, and the other has two parameters. This is called overloading,
using the same name for different methods. It is quite common in Java. The compiler can tell
which method is being called by its distinctive parameter list: a single character parameter is
different from a list of a character parameter followed by an integer parameter.

2.6 REPLACING CHARACTERS IN A STRING

The String class includes a method named replace () which replaces every occurrence
of one character with another.

EXAMPLE 2.6 Replacing Characters in a String

public class Replacing

{ public static void main(String[] args)

{ String inventor = “Charles Babbage” ;
System.out.println(inventor);
System.out.println(inventor.replace(’B‘, ‘C‘));

System.out.println(inventor.replace(’a’,’0‘));

System.out.println(inventor);

1

1
The output is
Charles Babbage

Charles Cabbage

Chorles Bobboge

Charles Babbage

The call inventor. replace (a‘ , ’0’) replaces every occurrence of ’a’ in the string
with the letter o , thereby transforming “Charles Babbage” into “Chorles Bobboge”.

This example also illustrates composition of methods. The sixth line of the program
System.out.println(inventor.replace(’a‘, ’ c l ’)) ;

composes the replace () method with the println () method. That means that the object returned
by the replace () method is immediately passed to the println () method. In this case, that is the
String object that represents the string “Chorles Bobboge”. This is an anonymous object: it has no
name. It is not the same as the (immutable) String object named inventor which keeps its original
string “Charles Babbage” as the last output shows.

Composition is an efficient way to avoid proliferation of object names. To obtain the same results as
in the program in Example 2.6 without using composition would require the declaration of two extra
string objects.

2.7 REPRESEN.TING A PRIMITIVE VALUE IN A STRING

Primitive values such as 47 are made up of ordinary characters. The float value 3.14 is read
and printed as the string consisting of the four characters 3 I, . I , 1 I , and 4 I. So it is not
surprising that we might need to create a String object that represents a primitive value, or to
create a primitive variable whose value is taken from a Stri.ng object.

32 STRINGS [CHAP. 2

EXAMPLE 2.7 Converting Primitive Types to Strings

This program uses the String class's valueof () method to convert primitive values to strings.
public class TestValueOf

{ public static void main(String[] args)

{ boolean b = true;
char c = ' $ I ;

int n = 44;
double x = 3.1415926535897932;
System.out.println("b= + b);

'ISystem.out.println("c= + c);
I'System.out.println("n= + n);
I'System.out.println("x= + x);

String strb = String.valueOf(b);
String strc = String.valueOf(c);
String strn = String.valueOf(n);
String strx = String.valueOf(x);

'IS y s t e m . o u t . p r i n t l n (" s t r b = + strb);
'ISystem.out .println("strc = + s t r c) ;
'ISystem.out.println("strn= + strn);
I'System.out.println("strx= + strx);

1

The output is
b = true
c = $

n = 44
x = 3.141592653589793
strb = true
strc = $
strn = 44
strx = 3.141592653589793

EXAMPLE 2.8 Converting Strings into Primitive Types

This program shows how to do arithmetic on numerical values that are embedded within a string.
public class TestConversions

{ public static void main(String[] args)

{ String today = "May 18, 1998";
String todaysDayString = today.substring(4, 6);
int todaysDayInt = Integer.parseInt(todaysDayString);
int nextWeeksDayInt = todaysDayInt + 7;
String nextWeek = today.substring(0, 4) + nextWeeksDayInt

+ today. substring (6) ;
System.out .pr in t ln("Today ' s date is + today);
System.out.println("Today's day is 'I + todaysDayInt);
System.out.println("Next week's day is I' + nextWeeksDayInt);
System.out.println("Nextweek's date is I' + nextweek);

1
The output is
Today's date is May 18, 1998

Today's day is 18

CHAP. 21 STRINGS 33

Next week’s day is 25

Next week’s date is May 25, 1 9 9 8

This program defines three String objects (today, totlaysDayString, and nextWeek)
and two int variables (todaysDayInt and nextWeeksDayInt). They can be visualized like
this:

I I
String String

-
String

The execution of the statement
int todaysDayInt = Integer.parseInt(todaysDayString);

carries out the following tasks:

1. It declares the variable todaysDayInt with type int.
2. It invokes the parseInt () method that is defined in the Integer class, pass-

ing the String object named todaysDayString to it.
I3. The parseInt () method reads the two characters 1 I and 8 from the

todaysDayString string, converts them to their equivalent numerical values 1
and 8, combines them to form the integer 18, and then returns that int value.

4. The returned value 18 is used to initialize the int variable todaysDayInt.
As an integer, the value 18 is increased to 25 in the next statement simply by adding 7 to it. Then the
String class’s substr () method and concatenation operator can be used to build the nextWeek
string, containing the substring “ 2 5”.

Note that converting a String object to an int value requires the explicit invocation of the
parseInt () method defined in the Integer class, but converting an integer value into a string can
be done implicitly by concatenation.

The previous example used the Integer class. This is called a wrapper class in Java
because it encapsulates or “wraps up” the primitive type int.Each of the eight primitive types
has a corresponding wrapper class. Their names are Boolean, Character, Byte, Short,
Integer, Long, Float, and Double.The purpose of a wrapper class is to provide methods for
primitive types. For example, the Integer class provides the parseInt () method for i n t
variables. Wrapper classes are covered in Chapter 6.

2.8 SUMMARY OF THE String CLASS METHODS

These are the methods that are defined in the StringBuff er class in Java v. 1.1. They are
described by examples which assume that b and bl are boolean variables; c is a char
variable; i, j , and k are int variables; n is a long variable; x is a float variable; y is
a double variable; a is a char array; buf is a StringBuffer object; s, sl,and s2 are
S t r i n g objects; and o is any object:

34 STRINGS [CHAP. 2

String str = new String();
String str = new String(a);
String str = new String(buf);
String str = new String(s);
String str = new String(a, i, j) ;
String str = String.copyValue(a);
String str = String.copyValue(a, i, j);
String str = String.valueOf(b);
String str = String.valueOf(c);
String str = String.valueOf(i);
String str = String.valueOf(n);
String str = String.valueOf(x);
String str = String.valueOf(y);
String str = String.valueOf(a);
String str = String.valueOf(a, i, j);
String str = String.valueOf(o);
s = str.toString();
i = str.length();
c = str.charAt(i);
buf.getChars(i, j , a, k);
i = str. compareTo (s);
s = str.concat (sl) ;
b = str.endsWith(s1);
b = str.startsWith(s1);
b = str.startsWith(s1, i);
b = str.equals(s1);
b = str.equalsIgnoreCase(s1);
i = str.hashCode();
i = str.indexOf(c);
i = str.indexOf(c, i);
i = str.indexOf(s);
i = str.indexOf(s,i);
i = str.lastIndexOf(c);
i = str.lastIndexOf(c, i);
i = str.lastIndexOf(s);
i = str.lastIndexOf(s, i);
b = str.regionMatches (i, s, j , k);
b = str.regionMatches(b1, i, s, j , k);
s = str.substring(i);
s = str.substring(i, j);
a = str.toChar();
s = str.toLowerCase();
s = str.toLowerCase(i);
s = str. touppercase () ;
s = str.toUpperCase(i);
s = str. trim() ;

For more details and examples see the books [Chanl] and [Chan2] listed in Appendix F.

2.9 THE StringBuffer CLASS

The String class is one of the most useful classes in Java. But its instances (objects) suffer
the restriction of being immutable: they cannot be changed. In all the examples above, whenever
a string was modified, it had to be done by constructing a new String object, either explicitly

CHAP. 21 STRINGS 35

or implicitly. Java provides the separate StringBuffer class for string objects that need to be
changed. The reason for this dichotomy is that providing the flexibility for changing a string
requires substantial overhead (more space and complexity). In situations where you don't need to
change the string, the simpler string class is preferred.

EXAMPLE 2.9 Using StringBuf f er Objects

public class TestStringBuf

{ public static void main(String[] args)

{ StringBuffer buf = new StringBuffer(l0);
System.out .println("buf = + buf);It

I'System.out:println("buf.length() = + :buf.length());
ItSystem.out.println("buf.capacity() = + buf.capacity());

1

1

The output is
buf =
buf.length() = 0
buf.capacity() = 10

empty StringBuf fer object named buf with a capacity
buf

, O 1 1 , 2 1 1 1 4 I S , 6 , 8 I S ,for 10 characters: This illustrates an essential feature of

EXAMPLE 2.10 Modifying StringBuffer Objects

This program illustrates the flexibility of StringBuf fer objects. It creates only one object, buf,
which is then modified several times using the concatenation operator and the append() method.

public class TestAppending

{ public static void main(String[] args)

{ StringBuffer buf = new StringBuffer(l0);
buf .append("It was");

System.out .println("buf = + buf);

I'System.out.println("buf.length()= + buf.length());
I'System.out.println("buf.capacity() = + buf.capacity());

buf .append ('I the best I') ;
I'System.out.println("buf= + buf);

System.out.println("buf.length() = + buf.length());'I

System.out.println("buf.capacity() = + buf.capacity());
buf .append (of times. 'I) ;I'

System.out.println("buf= + buf);I'

I'System.out.println("buf.length()= + buf.length());
I'System.out.println("buf.capacity() = + buf.capacity());

1
1

The output is
buf = It was
buf. length() = 6
buf .capacity() = 10
buf = It was the best
buf.length() = 15

36 STRINGS [CHAP. 2

buf.capacity() = 22
buf = It was the best of times.
buf.length() = 25
buf.capacity() = 46

The StringBuf fer object buf is initialized to be empty with a capacity of 10 characters. After
the statement

buf .append("It was") ;
executes, 6 of its 10 characters are in use: After the next call to the append() method

buf .append (I' the best I') ;
the object is expanded to a

of which 15 are in use: buf IIltl lwlalsl 1 I I 1

0 1 2 3 4 5 6 7 8 9 10 11 12 1 3 1 4 15 16 17 18 19 20 21the capacity of the buf
object. The length buf [Iltl Iwlals] ltlhlel Iblelsltl I 1 I 1 1 1]

The capacity of a StringBuffer object is changed automatically by the operating system
whenever necessary. The only control that the programmer has is initializing it when the object is
created, as was done in Example 2.9 on page 35. When the capacity is changed, the entire object
has to be restructured and moved in the computer's memory. To avoid this overhead it is best to
initialize the object with a sufficient capacity.

The StringBuffer class is good for building a string by accumulating sequences of
characters as is done with input. But it is not very good for editing a string, as the next example
shows.

EXAMPLE 2.11 Replacing StringBuff er Objects

This program illustrates how to modify the contents of a buffer.
public class BufReplacing

{ public static void main(String[] args)

{ StringBuffer buf = new StringBuffero;
buf.append("It was the best of times.");

System.out.println("buf= + buf);I'

System.out.println("buf.length()= + buf.length());I'

System.out.println("buf.capacity() + buf.capacity());=
buf.setCharAt(l1, 'w');

System.out.println("buf= + buf);
buf.setCharAt(l2, ' 0 ') ;

System.out.println("buf= + buf);I'

buf.insert(l3, "r");

System. out .print111 ("buf = + buf);

1
1

The output is
buf = It was the best of times.
buf.length() = 25
buf.capacity() = 3 4

37 CHAP. 21 STRINGS

buf = It was the west of times.
buf = It was the wost of times.
buf = It was the worst of times.

-

To change the string from "It was the best of times." to "It was the worst of
times.", we'had to change two characters by invoking the setC'harAt() method twice, and then we
had to invoke the insert() method to insert a new character. This shows that the StringBuf fer
class is not very good at editing strings. It would have been easier to build the second string from scratch.

EXAMPLE 2.12 Converting StringBuf f er Objects to String Objects

public class TestToString

{ public static void main(String[] args)

{ StringBuffer buf = new StringBuffer("it was the age of wisdom,");
'ISystem.out.println("buf= + buf);

'ISystem.out.println("buf.length()= + buf.length());
'ISystem.out.println("buf.capacity()= + buf.capacity());

String str = buf.toString();
I'System.out.println("str= + str);

I'System.out.println("str.length()= + str.length());
I'buf .append(" + str.substring(0, 18) + "foolishness,");

I'System.out.println("buf= + buf);
System.out.println("buf.length()= + buf.length());

I'System.out.println("buf.capacity()= + buf.capacity());
'ISystem-out .println("str = + str);

1
1

The output is
buf = it was the age of wisdom,
buf.length() = 25
buf.capacity() = 4 1
str = it was the age of wisdom,
str.length()= 25
buf = it was the age of wisdom, it was the age of foolishness,
buf.length() = 56
buf.capacity() = 8 4
str = it was the age of wisdom,

The buf object is created with a length of 25 characters and a capacity of 41 characters by initializ-
ing it with the literal String object "it was the age of wisdom,". (Note that this literal has
25 characters.) This illustrates an alternative method for initializing StringBuffer objects: you can
specify its numerical capacity explicitly (making its length 0), as was done in Example 2.9 on page 35, or
you can specify its initial string contents explicitly, making its length equal to the number of characters in
that string and letting the operating system set its initial capacity.

The statement
String str = buf.toString();

creates the String object str to hold the 25-character string that is in the StringBuffer object
buf.The statement

+ str.substring(0, 18) + "foolishness,buf .append(" 'I ' I) ;

modifies the StringBuffer object buf by adding another clause to it. This has no effect on the inde-
pendent str object, as the last line of output shows.

Unlike its capacity, the length of a StringBuff er object can be reset explicitly by the
programmer. Decreasing it truncates the string. Increasing it pads the string with null characters.

38 STRINGS [CHAP. 2

(The null character is the unique character that cannot be detected when printed or displayed on
the screen.) The next example shows the effect of decreasing a buffer's length.

EXAMPLE 2.13 Resetting the Length and Reversing StringBuff er Objects

This program illustrates the setLength() method and the reverse () method.
public class TestSetLength

{ public static void main(String[] args)

{ StringBuffer buf
= new StringBuffer("1t is a far, far better thing that I do");

System.out.println("buf= + buf);
' ISystem.out.println("buf.length() = + buf.length());

ItSystem.out.println("buf.capacity() = + buf.capacity());
buf.setLength(60);

I'System.out.println("buf= + buf);
System.out.println("buf.length() = + buf.length());I'

System.out.println("buf.capacity()= + buf.capacity());'I

buf .setLength(30);
ItSystem.out.println("buf= + buf);

System. out .println ("buf.length () = + buf .length ()) ;

I'System.out.println("buf.capacity()= + buf.capacity());
buf .reverse () ;

I'System.out.println("buf= + buf);
I'System.out.println("buf .length() = + buf.length());

I'System.out.println("buf.capacity() = + buf.capacity());
1

1
The output is
buf = It is a far, far better thing that I do
buf.length() = 39
buf .capacity() = 55
buf = It is a far, far better thing that I do
buf .length() = 60
buf .capacity () = 112
buf = It is a far, far better thing
buf.length() = 30
buf .capacity() = 112
buf = gniht retteb raf , ra f a si tI
buf.length() = 30
buf.capacity() = 112

The statement
buf .setLength(60);

increases the buffer's length from 39 to 60 characters by appending 21 null characters to it. But this
change cannot be seen from the buffer's output. (Null characters are invisible.) The statement

buf.setLength(30);
decreases the buffer's length from 60 to 30 characters by removing its last 30 characters: the 9 characters
in the substring " that I do" and the 21 null characters that had been appended previously. Note that
the capacity is not decreased.

The statement
buf .reverse() ;

reverses the string in the buf object. This is not a very useful method, but it does illustrate the ability of
StringBuff er objects to modify themselves.

CHAP. 21 STRINGS 39

2.10 SUMMARY OF THE StringBuffer CLASS METHODS

These are the methods that are defined in the StringBuf f er class in Java v. 1.1. They are
described by examples which assume that b is a boolean variable; c is a char variable; i,
j,and k are int variables; n is a long variable; x is a float variable; y is a double
variable; a is a char array; s is a String object; and o is any object:

StringBuffer buf = new StringBufferO;
StringBuffer bufl = new StringBuffer(100);
StringBuffer buf2 = new StringBuffer(s);
s = buf .tostring() ;
i = buf.length();
i = buf .capacity() ;
c = buf.charAt(i);
buf.setCharAt(i, c);

buf.getChars(i, j , a, k);
buf .setLength (i) ;
buf.ensureCapacity(i);

buf .append (b) ;
buf .append(c);
buf .append (i) ;
buf .append (n) ;
buf .append(x);
buf .append (y);
buf .append (a) ;
buf .append(0);
buf .append (s) ;
buf .append(a, i, j) ;
buf .insert (i, b);
buf.insert(i, c);

buf.insert(i, i);

buf .insert (i, n);
buf .insert (i, x);
buf .insert (i, y) ;
buf .insert (i, a);
buf .insert (i, 0);
buf .insert (i, s) ;

0 buf .reverse () ;

For more details and examples see the books [Chanl] and [Chan2] listed in Appendix E

Review Questions

2.1 What substring is returned by the call alphabet. substring (6 , 10)?

2.2 How long is the substring returned by the call alphabet. substring (9 , 16)?

2.3 Why would the call alphabet. subs tring (14, 14) have the same effect as the call
alphabet.substring(4, 4)?

2.4 Why would the call alphabet. substring (41, 41) fail?
2.5 What is “overloading?”
2.6 What is “composition of methods?”
2.7 What is the main difference between the String class and the St r ingBu f f er class?
2.8 What is the difference between the length of a stringBuf f er object and its capacity?

40 STRINGS [CHAP. 2

Programming Problems

2.1 Modify Example 2.1 on page 27 so that it prints your name and its attributes.

2.2 Modify Example 2.2 on page 28 so that it prints your father’s name and its attributes.

2.3 Write and run a Java program that does the following:
1. Declare a string object named s containing the string ‘‘callm e Ishmael.”
2. Print the entire string.
3.Use the length () method to print the length of the string.
4.Use the charAt () method to print the first character in the string.
5. Use the charAt () and the length () methods to print the last character in the

string.
6. Use the indexof () and the substring () methods to print the first word in

the string.

2.4 Rewrite the program in Example 2.6 on page 31 so that it does not use composition.

2.5 Write and run a Java program that enters a 10-digit string as a typical U.S. telephone number,
extracts the 3-digit area code, the 3-digit “exchange,” and the remaining 4-digit number as
separate strings, prints them, and then prints the complete telephone number in the usual for-
matting. A sample run might look like this:

Enter 10-digit telephone number: 1234567890

You entered 1234567890

The area code is 123

The exchange is 456

The number is 7890

The complete telephone number is (123)456-7890

2.6 The Y2K Problem is that many thousands of old software systems around the world use only
two digits for the year in stored dates. On January 1,2000, those dates are likely to be misin-
terpreted by the software as January 1, 1900, causing unpredictable errors and system
crashes. (“Y2K” stands for “Year 2 Thousand”). Some experts predict that the total cost of
repairing the software and recovering from the problem will exceed $200,000,000,000!
Write a Java program that inputs a date in the form mm/dd/yy and outputs in the expanded
form mm/dd/l9yy.For example, the input 0 6 / 3 0/ 9 8 would be printed as 06 / 30 / 19 9 8.

Supplementary Programming Problems

2.7 Write and run a Java program that inputs a persons name in the form F i r s t ~i d d l e ast
and then prints it in the form Last, Firs t M.,where “M,” is the person’s middle initial.
For example, the input
William Jefferson Clinton

would produce the output
Clinton, William J.

2.8 Write and run a Java program that capitalizes a two-word name. For example, the input
noRtH CARolIna

would produce the output
North Carolina

41 CHAP. 21 STRINGS

Answers to Review Questions

2.1 The call alphabet .subs tr ing (6, 1 0) returns the substring "GHI J".
2.2 The substring returned by the call alphabet. substring (9 , 16) has length 16 - 9 = 7.
2.3 Thecalls alphabet.substring(l4, 14) and alphabet.substring(4,4) would

have the same effect because both return the unique empty string.
2.4 The call alphabet.substring (41I 4 1) fails because there is no character in the string

alphabet with index number 41. The last character ('Z') has index number 25.
2.5 The term overloading refers to the ability to declare different methods with the same name.
2.6 We say that two or more methods are composed when the return value of one is used directly as the

input to another, as in Example 2.6 on page 31.
2.7 Instances (objects) of the String class are immutable: they cannot be changed. Instances of the

StringBuff er class do not have that constraint.
2.8 The length of a StringBuff er object is the number of characters it contains. Its capacity is the

number of characters it can contain without being expanded.

Solutions to Programming Problems

2.1 Your solution will be slightly different unless you have the same name as the author of this book:
public class MyName

{ public static void main(String[J args)

{ String name = "John R. Hubbard";
System.out.println(name);

System. out .print111 ("This string contains I' + name. length ()

'I+ characters.") ;
System.out .println("The character at index 4 is ''

+ name. charAt (4)) ;
System.out .println("The index of the character Z is ''

+ name.indexOf('Z'));
System.out.println("The hash code for this string is 'I

+ name.hashCode());
1

1
Note that the character at index 4 is the blank character. Also note that since the character Z is not
in this string, the indexof () method returns the value -1.

2.2 Your solution will be slightly different unless you are one of the author's siblings:
public class MyFather

{ public static void main(String[] args)

{ String name = "Willard W. Hubbard 111";
System.out.println(name);
System.out.println("The substring from index 4 to index 8 is 'I

+ name.substring(4, 8));
System.out.println("The substring from index 4 to index 4 is

+ name.substring(4, 4));
System.out.println("The substring from index 4 to index 5 is It

+ name.substring(4, 5)) ;
System.out.println("The substring from index 0 to index 8 is "

+ name.substring(0, 8));
System.out.println("The substring from index 8 to the end is 'I

+ name.substring(8));
1

1

42 STRINGS [CHAP. 2

2.3 public class Ishmael

{ public static void main(String[] args)

{ String s = "Call me Ishmael.";
System.out .println(s) ;
System.out.println("The length of the string is

+ s.length());
System.out.println("The first character is + s.charAt(0));
System.out.println("The last character is

+ s.charAt (s.length() -1)) ;
System.out .println("The first word is 'I

+ s.substring(0, s.indexOf(' ') I) ;
1

1
2.4 public class Replacing

{ public static void main(String[l args)
{ String inventor = "Charles Babbage" ;
System.out.println(inventor);

String temp = inventor.replace('B', 'C');
System.out.println(temp);

temp = inventor.replace('a', '0');
System.out.println(temp);

System.out.println(inventor);

1
1

2.5 import java.io.*;
public class TelephoneNumbers

{ public static void main(String[] args) throws IOException

{ InputStreamReader reader = new InputStreamReader(System.in);
BufferedReader input = new BufferedReader(reader);
System.out.print("Enter 10-digit telephone number: ") ;
String telephone = input.readLine();
System.out.println("You entered I' + telephone);
String areacode = telephone.substring(Of3);
System.out .println("The area code is 'I + areacode);
String exchange = telephone.s~bstring(3~6);
System.out.println("The exchange is 'I + exchange);
String number = telephone.substring(6);
System.out.println("The number is " + number);
System.out.println("The complete telephone number is 'I

+ ('I + areacode + ") 'I + exchange + + number);' I - ' '

1
1

2.6 import java.io.*;
public class FixY2K

{ public static void rnain(String[] args) throws IOException

{ InputStreamReader reader = new InputStreamReader(System.in);
BufferedReader input = new BufferedReader(reader);
System.out.print("Enter 10-digit telephone number: ") ;
String date = input.readLine();
System-out .println("You entered " + date);
String firstpart = date.sub~tring(0~6);
String secondpart = date.substring(6);
date = firstpart + "19" + secondpart;
System.out.println("The expanded form is 'I + date);

1
1

Chapter 3

Selection

3.1 THE i f STATEMENT

The if statement allows for conditional execution. The statement that is included within it
will be executed only if its condition is true. The syntax for the if statement is

if (condition) statement;
where condition is a boolean expression. A boolean expression is an expression whose value
has type boolean.

EXAMPLE 3.1 Testing a Random Integer for Negativity

This program uses a random number generator to generate a random integer. It then reports whether
the integer is negative:

import java.util.Random;

public class Example0301

{ public static void main(String[] args)

{ Random random = new Random();
int n = random.nextInt();
System.out.println("n = " + n);
if (n < 0) System.out.println("**** n -c 0 ") ;
System. out .pr in t In (I' Goodbye . I') ;

1
1

The first line "imports" the Random class which is used on the fourth line to instantiate a random
number generator named random. It generates a random integer named n on the fifth line. The if
statement on the seventh line evaluates the condition (n < 0) .If it is true, the string lr**** n < 0"
is printed. If the condition is false (i.e., n is not negative) then that string is not printed and execution
proceeds immediately to the next line. The last executable statement is independent of the if statement,
so it executes regardless of the condition.

Here are the results of three consecutive runs of this program:
n = 720138778
Goodbye.

n = -101963997
* * * * n < 0
Goodbye.

n = 492857803
Goodbye.

~ ~ ~ ~~ ~ ~~~~ ~~

You can see that the values of n generated by the random are unpredictable. When they are negative
the extra println () statement executes.

The examples in this chapter use the Random class which is defined in the j ava .util
package. This is part of the standard Java class library which is in the JDK.It is located in the

43

44 SELECTION [CHAP. 3

jdk folder srcl java/util (C: \jdkl. l .G\src\java\util\Random.class on the
author's Windows PC). The import statement simply tells the Java compiler that it will need
the definitions in that file to compile this program. Without it, the compiler would not know what
Random is. You can generate random numbers in your programs by instantiating a Random
object (as done on the fourth line of the program in Example 3.1) and then invoking one of its
next.. . methods. The nextInt () method generates a random integer (as done on the fifth
line of the program in Example 3.1). The nextDouble () method generates a random real
number (see Example 3.3).

A random number is a variable whose value is produced by some method that makes it
unpredictable, or at least difficult to predict. Java's nextInt () method generates integers in
the range -2147483648 to 2147483647 in such a way that any large set of them will be
uniformly distributed in this range. Similarly, the nextFloat () and nextDouble () methods
generate rational numbers that are uniformly distributed in the range 0 to 1.

By defining Random to be a class, Java encapsulates the idea of a random number generator.
The object random in Example 3.1 is an instance of that class. We think of it as a "black box;'
i.e., a thing that contains some unknown mechanism for generating random numbers. Whenever
we "ask" it for a random integer by invoking its method random. next Int () , it provides us
with one. We don't need to know how it does that. Indeed, we're better off not having to think
about how it is done, just as we're better off not having to think about how the computer delivers
our email for us.

3.2 THE i f . . .else STATEMENT

The if. . .else statement is the if statement with an added else clause. It works the
same way as the i f statement except that, when the condition is false the statement within the
else clause executes. The syntax for the if. . . else statement is

if (condition) statementl;

else stetement2;

Either statement1 or statement2 executes, depending upon whether the condition is
true or false.

EXAMPLE 3.2 Testing Two Random Integers for Their Minimum

This program uses the random number object random to generate the two integers m and n.Then
it determines which is smaller and reports the results.

import java.uti1.Randor-n;

public class Example0302

{ public static void main(String[] args)

{ Random random = new Random();
int m = random.nextInt();

I'System.out.println("m= + m);
int n = random.nextInt();
System.out.println("n= + n);'I

if (m < n) System.out.println("The minimum is 'I + m);
else System-out .println("The minimum is I' + n);

1
1

45

1

CHAP. 31 SELECTION

This is similar to the program in Example 3.1. Here is the output from three consecutive runs:
m = 1589634066
n = -71691.9032
The minimum is -716919032

~~

m = -1439894098
n = -59632402
The minimum is -1439894098

m = -411845037
n = 567066459
The minimum is -411845037

3.3 THE i f . . .else i f . . . STATEMENT COMBINATION

The if. . .else statement allows for conditional execution based upon two alternatives. If
you have more than two possible alternatives, you can link together a sequence of if.. .else
statements.

EXAMPLE 3.3 Choosing among Four Alternatives

This program generates a random real number in the range 0 to 1 and then reports into which of four
disjoint intervals it f a h :

import java.util.Random;

public class Example0303

{ public static void main(String[] args)

{ Random random = new Random();
double t = random.nextDouble();

I'System.out.println("t= + t);
if (t < 0.25) System.out.println("0 <= t < 1/4");
else if (t < 0.5) System.out.println("1/4 <= t < 1/21');
else if (t < 0.75) System.out.println("1/2 <= t < 3/4");
else System.out.println("3/4 <= t < 1");

1

Here are the results of three consecutive runs of this program:
t = 0.5979526952214973
1/2 <= t < 3/4

t = 0.058669499596328056
0 <= t < 1/4

3.4 NESTED CONDITIONALS

The syntax of the if and if.. . else statements allows any statement to be used in either
its if clause or its else clause. That means that we can put other if or if.. .else
statements inside an i f or and i f . . .else statement. This is called nesting statements inside

46 SELECTION [CHAP. 3

other statements. Generally, such combinations should be used sparingly because they are
error-prone and their logic can be misunderstood.

The if. . .else if combination illustrated in Section 3.3 is actually a form of nested
conditionals. That can be seen by reformatting the code in Example 3.3 like this:

if (t < 0.25) System.out.println("0<= t < 1/4");
else

if (t < 0.5) System.out.println("l/4<= t < 1/2");
else

if (t < 0.75) System.out.println("1/2 <= t < 3 / 4 ") ;
else System.out.println("3/4 <= t < 1");

Although this formatting is structurally more consistent with the general indentation conventions
used for nested statements, most programmers prefer the unindented form for the if.. .else
if combination because its alternative statements are conceptually parallel.

EXAMPLE 3.4 Determining the Order of Three Numbers

This program uses pairwise comparisons to determine the increasing order of three randomly
generated real numbers:

import java.util.Random;

public class Example0304

{ public static void main(String[] args)

{ Random random = new Random();
float a = random.nextFloat();

'ISystem.out.println("a= + a);
float b = random.nextFloat();

'ISystem.out.println("b= + b);
float c = random.nextFloat();

I'System.out.println("c= + c);
if (a < b)
if (b < c) System.out.println("a < b < c");
else

if (a < c) System.out.println("a < c < b");
else System.out.println("c< a < b");

else

if (a < c) System.out.println("b< a < cl');
else

if (b < c) System.out.println("b < c < a");
else System.out.println("c< b < a");

1
1

Either a is less than b or it isn't. If it is, then three possibilities are left: a < b < c, a < c <
b, or c < a < b.The two conditionals inside the first sort out those possibilities. Similarly, the three
possibilities in the case that a is greater than b are sorted out in the else clause of the first i f

statement.
A diagram of the logic in this example is shown at the top of the next page.

Note the way that the interior if..else statements are indented in Example 3.4. Careful
formatting like this will help you (and others who read your Java code) to understand the logic in
conditionals structures like this. Such structures can produce the worst kind of bugs: logical
run-time errors that the system cannot help you find. For example, suppose you omit the second
else in Example 3.4, leaving this code instead:

47 CHAP. 31 SELECTION

(a < b) ? 4

I

if (a < b)
if (h < c) System.out.println("a < b c cl');
else

if (a < c) System.out.println("a< IZ < b");
else

if (a < c) System.out.println("b < a < c1');
else

if (b < c) System.out.println("b < (: < a l l) ;
else System.out.println("c< b < a");

The program compiles and runs without complaint. However, it gives perplexingly erroneous
results !

Here is a general rule that will help you debug such logical errors:
Rule: In nested if statements, each else is paired with the last previously unpaired if.

Using this rule, you can see how the compiler groups the ifs and el ses in the erroneous
code shown above:

if (a < b)
if (b < c) System.out.println("a < b <: c");
else

if (a < c) System.out.println("a < c: < b");
else

if (a < c) System.out.println("b<: a < c t t) ;
else

if (b < c) System.out.println("b < c < a");
else System.out.println("c < b <: a");

This is very different from what was intended. If b < a,nothing gets printed. And if c < a <
b,it prints c < b < a.

Note that these examples seem to exclude the possibility that any two randomly generated
numbers could be equal. Although not impossible, the chances are less than one in a four billion.

48 SELECTION [CHAP. 3

3.5 COMPOUND STATEMENTS

We saw in the previous section that nested conditionals are prone to error. Often they can be
avoided by using compound conditions instead.

EXAMPLE 3.5 Parallel i f Statements

This program produces the same results as that in Example 3.4. The only difference is that the nested
if. . .else statements have been replaced by parallel if statements.

import java.util.Random;

public class Example0305

{ public static void main(String[] args)

{ Random random = new Random();
float a = random.nextFloat();

'ISystem.out.println("a= + a);
float b = random.nextFloat();

'ISystem.out.println("b= + b);
float c = random.nextFloat();
System.out .println("c = " + c) ;
if (a < b && b < c) System.out.println("a < b < c");
if (a < c && c < b) System.out.println("a < c < b");
if (b < a && a < c) System.out.println("b < a < cl');
if (b < c && c < a) System.out.println("b < c < a");
if (c < a && a < b) System.out.println("c < a < b");
if (c < b && b < a) System.out.println("c < b < a");

1
1

The expression (a < b && b < c) is read "a is less than b and b is less than c." It is false unless
both conditions (a < b) and (b < c) are true. Since we know what the six possible orderings are,
we can test them all with these six independent statements.

Note that those six if statements are logically equivalent to the combination statement
if (a < b && b < c) System.out.println("a< b < cl');
else if (a < c && c < b) System.out.println("a < c < b");
else if (b < a && a < c) System.out.println("b < a < c");
else if (b < c && c < a) System.out.println("b < c < a");
else if (c < a && a < b) System.out.println("c < a < b");
else System.out.println("c < b < a");

This is more efficient, but a little less intuitive. Generally, it is better to sacrifice speed for simplicity,
especially when complex logic can lead to errors.
Warning: The expression (a < b < C) is not a valid boolean expression. You have to split it
up, either into the two separate conditions (a < b) and (b < C) as in Example 3.4, or use the
compound condition (a < b && b < C) as in Example 3.5.

3.6 OPERATORS

The symbol && is one of the logical operators used in Java programs. Two others are I I
for "or" and ! for "not." Logical operators combine boolean expressions to form compound
boolean expressions, just as the arithmetic operators +, -, *, /, and B combine arithmetic
expressions to form compound arithmetic expressions. In contrast, the relational operators <,

>, ==, ! =, <= and <= combine arithmetic expressions to form boolean expressions.

CHAP. 31 SELECTION 49

If ex1 and ex2 are boolean expressions, then
ex1 && ex2 is false unless both ex1 and ex2 are true
ex1 1 I ex2 is true unless both ex1 and ex2 are false
!ex1 is true if andonly if ex1 is false

The rules for the arithmetic and relational operators are more obvious. For example, if ex1 and
ex2 are arithmetic expressions, then ex1 <= ex2 is true unless the value of ex1 is greater
than the value of ex2:" 2 <= 6" is true, but "2 <= -6" is false.

EXAMPLE 3.6 Using the I I Operator

import java.util.Random;

public class Example0306

{ public static void main(String[] args)

{ Random random = new Random();
float t = random.nextFloat();
System.out.println("t= + t);
if (t < 0.25 1 1 t >= 0 . 7 5)

Sys tem.ou t .p r in t ln ("E i the r t < 0.25 or t >= 0.75");
else

S y s t e m . o u t . p r i n t l n (" 0 . 2 5 <= t < 0.75");
1

1

The condition (t < 0 . 2 5 1 I t >= 0 . 7 5) is true if and only if t is not in the interval from
0.25 to 0.75.

EXAMPLE 3.7 Combining Several Boolean Expressions

Like the arithmetic operators, the logical operators may be chained, combining more than two expres-
sions. The if condition in this program combines five boolean expressions.

public class Example0307

{ public static void main(String[] args)

{ final .int LEN = 255;
byte buffer[] = new byte[LEN];
System.out .print ("Enter your first name: ") ;
try { System.in.read(buffer,0, LEN); }
catch (Exception e) { I
String name = new String(buffer);
System.out.println("Hello, I' + name.trirn());
char c = name.charAt(0);
System.out.println("The first letter of your name is I' + c);
if (c == 'A' I I c == 'E' I I c == 'I' I (c == ' 0 ' 1 1 c = = 'U,)
System. out .println ("That is a vowel. 'I) ;

1
1

Here are two sample runs:
Enter your first name: Albert

Hello, Albert

The first letter of your name is A
That is a vowel.

Enter your first name: John

Hello, John

The first letter of your name is J

50 SELECTION [CHAP. 3

3.7 ORDER OF EVALUATION

When you use several different operators in a combined expression, it is important to know
in what order the compiler will evaluate the operators. The order for arithmetic operators is
familiar. For example, in the expression

9 - 4 * 2

the multiplication operator is evaluated before the subtraction operator, producing 9 - (4*2) = 1 ,
not (9 - 4)*2 = 10.

Here are the rules that Java uses for evaluating operators
In unary expressions op exp (pre f ix) and exp op (pos t f ix) , the expression exp
is evaluated first, and then the operation op is performed on that value.

In the binary expression expl && exp2, the expression expl is evaluated first.
If i t is false, the value of the entire expression is immediately determined to be
false without evaluating exp2.

In the binary expression expl I I exp2, the expression expl is evaluated first.
If it is true, the value of the entire expression is immediately determined to be true
without evaluating exp2.
In any other binary expressions expl op exp2, the expression expl is evaluated
first, the expression exp2 is evaluated second, and then the operation op is per-
formed on those values.

In acornpoundexpression expl opl exp2 0p2 exp3 where operator opl has
higher precedence or the same precedence as operator op2, the order is: evaluate
expl, evaluate exp2, apply opl to those two values, evaluate exp3, apply 0p2
to those two values.

In a compound expression expl opl exp2 op2 exp3 where operators opl has
lower precedence than operator op2, the order is: evaluate exp2, evaluate exp3,
apply op2 to those two values, evaluate expl, apply opl to those two values.
The precedence priorities for the logical, arithmetic, and relational operators are:

1. ++ (postfix increment), -- (postfix decrement)
2. ++ (prefix increment), -- (prefix decrement), !

3. *, /, %

4. +, -

5. <, >, <=, >=

6. ==, ! =

7. &&

8. I I
EXAMPLE 3.8 Evaluating a Complex Expression

Evaluate the expression
a * b - c ! = a / b + c && - - a > b ++ 1 1 b % - - c > 0

where the given values of a, b, and c are 5, 3, and 1, respectively.
The precedence levels for the are

0 @ @ 0 @ 0 0 0 @ @ 00 0
a * b - c ! = a / b + c & & - - a > b + +I I b % - - c > O

51 CHAP. 31 SELECTION

These levels affect the order of evaluation which can be indicated by the following parenthesization:
(((a*b - c) ! = (a/b + c)) && (--a > b++)) I I (b%(--c) > 0)

The last operation to be evaluated is the I I operator. According to the third rule given above, this
requires the evaluation of its left side

((a*b - c) ! = (a/b + c)) && (--a > b++)
first. In this expression, the last operation to be evaluated is the && operator. According to the second
rule given above, this requires the evaluation of its left side

(a*b - c) ! = (a/b + c)
which is

(5 * 3 - 1) ! = (5 / 3 + 1)
which is to true because 14 !=2. Then the right side

--a > b++
is evaluated. The expression b++ applies the postfix increment operator, evaluating to the same value as
b itself, but then adding 1 to b after that expression has been applied. So the value of b++ is 3. Next,
the expression --a applies the prefix decrement operator which subtracts 1 from a and then evaluates to
that reduced value. So the value of --a is 4. Then since 4 > 3, the expression

--a > b++
evaluates to true. That produces the value true for the compound condition

((a*b - c) ! = (a / b + c)) && (--a > b++)
Now, according to the third rule given above, the complete expression evaluates to true, without evaluat-
ing the right-hand expression

b%(--c) > 0
Note that if the right-hand expression had to be evaluated, i t could crash the program, because the

expression b% (--c) would attempt division by zero.

The second and third rules for evaluating expressions allow the complete expression to be
evaluated without evaluating the right-hand side in the cases where the value of the right-hand
side is irrelevant. This is called short circuiting. It allows statements like

if (d ! = 0 && c/d > 2) System.out.println("o.k.");
to execute without hazard.

3.8 boolean VARIABLES

The primitive type boolean is the simplest of all. The only two values that a boolean
variable can have are false and true. Although simple, boolean variables can help
simplify a program with complex logic.

EXAMPLE 3.9 Implementing the Quadratic Formula

The quadratic formula gives the solution(s) to a quadratic equation of the form ax2+ bx + c = 0. For
given values of the parameters a, b, and c, the formula solves the equation for x.

This is the general quadratic formula:

- b + . . / a
x =

2a

Its implementation requires the consideration of special cases. For example, if a = 0, the division cannot
be performed.

An analysis of the different possibilities is shown in a diagram at the top of the next page.

CHAP. 31 SELECTION 53

if (unique)

{ double x = -c/b;
double y = a*x*x + b*x + c;

'ISystem.out.println("withunique solution x = + -c/b);
System.out .println("Check: f (x) = + y);I'

1
if (quadratic) System.out.print("quadratic with I n) ;

if (complex)

{ double re = -b/(2*a);
double im = Math. sqrt (-a) / (2*a);

'ISystem.out.println("comp1ex solutions:\n\txl= + re
'I 'I+ + + im + "i\n\tx2= + re + I' - + im + rlill);

1
if (equal)

{ double x = -b/(2*a);
double y = a*x*x + b*x + c;
System.out .println("real solution x = + x);'I

System.out.println("Check: f(x) = + y) ;It

1
if (distinct)
{ double s = Math.sqrt(d);
double xl = (-b + s)/(2*a);
double x2 = (-b - s)/(2*a);
double yl = a*xl*xl + b*xl + c;
double y2 = a*x2*x2 + b*x2 + c;
System.out.println("rea1 solutions:\n\txl = + xlI'

+ "\n\tx2= + x2);
'ISystem.out.println("Check:\tf(xl) = + yl + "\n\tf (x2) =

+ Y2);
I

I
I

The program generates its own random coefficients for the quadratic equation, applies the analysis,
and prints the results. In the case (distinct) where the equation has two distinct real roots, their
values are checked by evaluating the original quadratic function&) = ux2+ bx + c . The value should be 0.

Here are two sample runs:
The coefficients of the function f(x) = a*x"2 + b*x + c are:

a = 0.21762687
b = 0.14400232
c = 0.36107045

The equation f(x) = 0 is quadratic with complex solutions:
xl = -0.3308468163013458+ 1.2448561059400642i
x2 = -0.3308468163013458- 1.2448561059400642i

~~~ ~~ ~ ~ ~ ~~~ ~- _ ~  _ _ _ _ ~~ ~ ~ 

The coefficients of the function f(x) = a*x"2 + b*x + c are: 
a = 0.17408675 
b = 0.6870155 
c = 0.1355514 

The equation f(x) = 0 is quadratic with real solutions: 
xl = -0.20829920536441746 
~2 = -3.738098068431407 

Check:f(xl) = -1.1046030534700435E-8 
f(x2) == -1.104603031265583E-8 

Note the values f(XI) and f ( ~ 2in the second run. Albegraically, they should be exactly ) 

0. The letter "E" in the value -1.104603 053470043 5E-8 stands for "exponent." It means that 



52 SELECTION [CHAP. 3 

c = o  
equation is trivial 

:1 C # O )  
no solution 

b#O -Cx = - 

b 

Here, d is the discriminant: d = b2- 4ac. 
In this implementation, we define 9 boolean variables, one for each of the branches in our 

analysis. This allows a clean separation of the various cases: 
import java.util.Random; 

import java.lang.Math; 

public class Example0309 

{ public static void main(String[] args) 

{ Random random = new Random(); 
float a = random.nextFloat(); 
float b = random.nextFloat(); 
float c = random.nextFloat(); 
double d = b*b - 4*a*c; 
boolean linear = (a == 0); 
boolean constant = (linear && b == 0); 
boolean trivial = (linear && constant && c == 0); 
boolean noSolution = (linear && constant && c ! =  0); 
boolean unique = (linear && b ! =  0); 
boolean quadratic = (!linear); 
boolean complex = (quadratic && d < 0); 
boolean equal = (quadratic && d == 0); 
boolean distinct = (quadratic && d > 0); 
System.out.println("The coefficients of 


+ "the function f(x) = a*xA2 + b*x + c are:") ; 
System.out.println("\ta= + a); 
System.out.println("\tb= + b);I' 

System.out.println("\tc = 'I + c); 
System.out .print ("The equation f (x) = 0 is " )  ; 

if (linear) System.out.print("linear' I ) ;  

if (trivial) System.out .print ("and trivial. ' I )  ; 

if (noSolution) Systern.out .println( "with no solution." )  ; 



54 SELECTION [CHAP. 3 

the value is the number in front of the “E” multiplied by 10 to the power after the “E”. So the 
value -1.10460305347004353-8 means about -1.1046~10-8 = -0.000000011046. That’s 
pretty close to 0. 

The exponential form -1.104 6 03 053 4 7004 35E-8 is calledfloating-point notation because 
it comes from letting the decimal point “float” to the left or right to normalize the number so that 
its decimal form can be expressed with one digit to the left of the decimal. The exponent (the 
integer that follows the “E”) is the number of places that the decimal point should be shifted to 
convert the normalized form back to the correct value. A negative exponent means move the 
point to the right; positive means move it to the left. In this example, it was moved 8 digits to the 
right. The normalized decimal form is called the rnantissa. The mantissa in this example is 
-1.1046030534700435. 

Why isn’t f i x , )  exactly equal to 0 in Example 3.9? The answer lies at the very heart of 
computing and is tied to one of the fundamental principles of mathematics. The fact is that there 
are two kinds of numbers in the real world: those that are used for counting and those that are 
used for measuring. The counting numbers are called integers and are always exact. (You can’t 
have approximately three books.) The measuring numbers are called rational numbers and are 
never exact. (The circumference of a tree cannot be exactly 22/7 feet.) Computers store integers 
as int types (short, int, and long)and are able to perform arithmetic on them exactly. They 
store rational numbers as float types (float and double) and make errors each time they 
perform arithmetic on them. These are called round-ofl errors. The more arithmetic performs, 
the more the error accumulates. Using type double (so-called because it doubles the number 
bytes used, yielding 16 significant digits instead of 7) helps alleviate the problem. But there is no 
escaping it: computer arithmetic with float types is erroneous. 

3.9 THE CONDITIONAL OPERATOR 

Java includes a special ternary operator, called the conditional operator, which is handy for 
abbreviating simple if..else statements. Its syntax is 

( condition ? exprl : expr2 ) 

The value of this operation is either the value of exprl or the value of expr2,according to 
whether the condition is true or false. 

EXAMPLE 3.10 Using the Conditional Operator 

This program gets two random floats and then uses the condition operator to determine which is the 
smaller and which is the larger of the two. 

import java.util.Random; 

public class Example0308 

{ public static void main(String[] args) 

{ Random random = n e w  Random(); 
float x = random.nextFloat(); 
System.out .println( ’lx = + x);’I 

float y = random.nextFloat(); 
System. out .println ( “ y  = + y);‘I 

float min = ( x < y ? x : y ) ;  
float max = ( x > y ? x : y ) ;  
System.out.println(”min= + min);‘I 



55 CHAP. 31 SELECTION 


System.out.println("max= + max);I' 

3.10 ASSIGNMENT OPERATORS 

The standard assignment operator is represented by the equals sign "=". Its syntax is 
var = expr; 

This operation evaluates the expression expr and then assigns that value to the variable var. 
For example, 

int m; 

m = 44; 

declares m to be an int and then assigns the value 44 to it. Note that an assignment is not the 
same as an initialization, such as 

int n = 44; 
If op is a binary operator, expr an expression, and var a variable, then 
var op= expr; 

has the same effect as the assignment 
var = v a r  op expr; 

provided that that assignment makes sense. For example, 
n += 7 ;  

has the same effect as 
n = n + 7 ;  


they both increase the value of n by 7. Combination assignment operators such as += and %= 

are handy abbreviations. They are more intuitive (algebraically, the "equation" n = n + 7 makes 
no sense) and sometimes even run a little faster. 

3.11 THE switch STATEMENT 

The switch statement is similar to the if. . .else if combination for processing one of 
a set of alternatives. It is more specialized because it requires that the conditions that determine 
the alternatives have the form (var == const),where var is an integer variable. The syntax 
is 

switch (var)  
{ case constl: 

strnt-seql 
case const2: 

stmt -seq2 
case const3: 

strnt-seq3 
e tc .  
default: 


stmt-seqN 
1 

where stmt-seql; is any sequence of zero or more statements, and etc. indicates that any 
number of case sections is possible. This is equivalent to 



56 SELECTION [CHAP. 3 

if (va r  == constl) { stmt-seql stmt-seq2 stmt-seq3 . . . } 

else if ( v a r  == const2) { stmt-seq2 stmt-seq3 . . . 1 
else if (var  == const3) { stmt-seq3 . . . } 

etc. 

else { stmt-seqN } 

The order of the case sections is critical because of the "fall-through" 
The default section is optional. 

EXAMPLE 3.11 Using the switch Statement with Fallthrough 

This program generates a random integer, uses the %= and += operators to restrict its range, and 
then uses a switch statement to print one or more lines to indicate which case(s) execute. 

import java.util.Random; 

public class Example0311 

{ public static void main(String[J args) 

{ Random random = new Random(); 
int n = random.nextInt(); 

I 'System.out.println("n= + n); 
n %= 3; 
n += 2; 

'ISystem.out.println("n= + n); 
switch (n) 

{ case 0: Sys tem.ou t .p r in t ln ( "Th i s  is case 0."); 
case 1: System.out.println("Thisis case 1."); 

case 2: System.out.println("Thisis case 2. ' I ) ;  

case 3: System.out .println( "This is case 3. ' I )  ; 

default: System.out.println("This is the default case."); 

1 

1 
1 

Originally, n could be any integer in the range -2147483648 to 2147483647. The statement 
n %= 3; 

changes its value to one in the range -2 to 2. Then the statement 
n += 2; 

changes its value to one in the range 0 to 4. Then the switch statement then causes execution to jump 
to the case that matches the value of n.The program continues, executing each statement from that line to 
the end. 

Here are two sample runs: 
n = -751325274 
n = 2  

This is case 2. 

This is case 3. 

This is the default case. 


n = -804020549 
n = O  

This is case 0. 

This is case 1. 

This is case 2. 

This is case 3. 

This is the default case. 


~~~~~~~~~~~~ ~~ 

Note that each case section is executed, one after the other, after the selected case section is
reached. This is called a fall through.

57 CHAP. 31 SELECTION

Usually the case statement is intended to implement a logical set of alternatives that are
mutually exclusive, the way that the if.. . else if combination is used. This requires the use
of the break statement to avoid the fall through from one case to the next, as illustrated in the
next example.

EXAMPLE 3.12 Using the break Statement to Prevent Fall Through

This program generates a random test score in the range 50 to 100 and then uses a case statement to
print exactly one grade report.

import java.util.Random;

public class Example0309

{ public static void main(String[] args)

{ Random random = new Random();
float x = random.nextFloat();
System.out .println(" x = + x);I'

int score = Math.round(50*x + 50);
'ISystem.out .println("Your test score was = + score);

switch (score/lO)

{ case 10:
case 9:

System.out.println("Thatis an A. Outstanding!");

break;

case 8:

System.out.println("Thatis a B . Nice work!");
break;

case 7:

System.out.println("Thatis a C. You can do better!");

break;

case 6:

System.out.println("That is a D. See me after class.");

break;

default:

System.out.println("Thatis an F. Get a job.");

1

1

1
Here is a sample run:
x = 0.75739926
Your test score was = 88
That is a B . Nice work!

The method nextFloat () delivers a float in the range 0 to 1. In this run, x gets the value
0.75739926. The round () method defined in the Math class rounds a float to the nearest int.In this
case, it rounds the number 87.869963 (SO"0.75739926 + 50) to 88. That yields 8 for the expression
score/ 10, so the switch statement causes execution to branch to the println () statement inside
the case 8 section. That prints the line about the grade B. Then the break statement right after it
causes execution to branch again, this time to the end of the entire switch block, which is at the end of
the program. Without the break statement, execution would "fall through,'' printing the following lines
about the C, D, and F grades.

Note that the switch statement uses four Java keywords: break, case, default, and
switch.The break statement is used in other contexts, but the other three keywords are used
only in switch statement.

58 SELECTION [CHAP. 3

Review Questions

3.1 Determine which of the following pairs of boolean expressions are equivalent. For those that
are not, give an example where one is true and the other is false. Assume that a, b, and c are
boolean variables.
a. !(a I I b) and !a I I b;
b. ! (a && b) and !a I I !b;
c. !(a 1 1 !b) and !a && b;
d. ! ! !a and !a;
e. a && (b 1 1 c) and a && b 1 1 c;
f. a && (b 1 I c) and (c 1 I b) && a;
g. a && (b 1 I c) and a && b I I a && c;
h. a I I (b && c) and a I I b && a 1 1 c;

3.2 What is “short circuiting?”

3.3 How is the i f . . .else if combination more general than a switch statement?

3.4 What is a “fall through?”

3.5 What’s wrong with this code:
switch (n)

{ case 1:

a = 11;
b = 2 2 ;
break;

case 2 :
c = 33;
break;

d = 44;

1

Programming Problems

3.1 Write and run a Java program that generates a random integer, tests whether it is positive,
and reports that it is if it is.

3.2 Write and run a Java program that generates two random integers, determines their mini-
mum, and prints it.

3.3 Write and run a Java program that generates four random integers, determines their mini-
mum, and prints it.

3.4 Write and run a Java program that generates a random double, determines which quintile of
the unit interval it is in, and reports it. A quintile is one of the five equal sized pieces of the
whole. The quintiles of the unit interval are 0 to 1/5, 1/5 to 2/5, 2/5 to 3/5, 3/5 to 4/5, and 4/5
to 1.

3.5 Write and run a Java program that generates three random floats and then prints them in their
increasing order.

3.6 Write and run a Java program that generates a random integer and reports whether it is divis-
ible by 2, by 3, or by 5. Hint: n is divisible by d if the remainder from dividing n by d is 0.

3.7 Write and run a Java program that inputs three names and then prints them in their increasing
alphabetical order. Use the String class method comparedTo () . For example, if SI is
the string ABACADABRA and s2 is the string ABLE, then s l .comparedTo (s 2) will be a
negative integer, s 2 . comparedTo (s 2) will be a 0, and s 2 . comparedTo(sl) will be a

CHAP. 31 SELECTION 59

positive integer. So the condition (sl.comparedTo (s2) <= 0) can be used to determine
whether s1 precedes s2 lexicographically (i.e., according to the dictionary ordering).

3.8 Write and run a Java program that generates a random year between 1800 and 2000 and then
reports whether it is a leap year. A leap year is is an integer greater than 1584 that is either
divisible by 400 or is divisible by 4 but not 100. To generate an integer in the range 1800 to
2000, use
int year = Math.round(200*x + 1800);

where x is a random float. The round () method of the Math class returns the integer
nearest the float passed to it. The transformation y = 200x + 1800 converts a number in the
range 0 5 x < 1 into a number in the range 1800 I y < 2000.

3.9 Write and run a Java program that generates a random integer and then uses nested
if. . .else statements to determine whether it is divisible by 2, 3, 5, 6, 10, 15, or 30.

3.10 Modify the program in Example 3.11 on page 56 so that it prints appropriate "+" or "-"mod-
ifiers to the letter grades. Scores that end in 0 or 1 get a "-",and those that end in 8 or 9 get a
"+". For example, 78 gets a "C+" and 90 gets an "A-".

3.11 Write and run a Java program that inputs a month name and then processes it by:
a. extract the first three letters;
b. capitalize them;
c. print that abbreviation;
d. extract each of the three letters as separate char variables;
e. use nested if . . .else statements to identify the number of the month from the char

variables;
f. print the number of the month.
Here is a sample run:
Enter the month: February

You entered: February

Its abbreviation is: FEB

This is month number 2

3.12 Modify the program for Problem 3.11, replacing the nested if . . . else statements with 12
parallel if statements. Use the startsWith() method in the String class. For exam-
ple,

i f (month.startsWith("FEB"))n = 2;

Supplementary Programming Problems

3.13 Write and run a Java program that generates a random integer, tests whether it is even, and
reports that it is if it is.

3.14 Write and run a Java program that generates two random integers, determines their maxi-
mum, and prints it.

3.15 Write and run a Java program that generates four random integers, determines their minimum
and their maximum, and prints them both.

3.16 Write and run a Java program that generates a random double, determines which decile of the
unit interval it is in, and reports it. A decile is one of the ten equal sized pieces of the whole.
The first decile of the unit interval is the subinterval from 0.0 to 0.1, the second decile is the
subinterval from 0.1 to 0.2, the third decile is the subinterval from 0.2 to 0.3, etc.

60 SELECTION [CHAP. 3

3.17 Extend the program for Problem 3.12 so that it also prints the number of days in the month.
Here is a sample run:
Enter the month: February
FEBRUARY is month number 2

It has 28 days.

Answers to Review Questions

3.1 a. These are not equivalent: if b is true, then ! (a I I b) is false, but !a I I b is true.
b. ! (a && b) and !a I I !b areequivalent.
c. ! (a I I !b) and !a && b are equivalent.
d. ! ! ! a and !a areequivalent.
e. These are not equivalent: if a is false and c is true, then a && (b I I c) false, but a &&
b I I c is true.

f. a && (b I I c) and (c I I b) && a areequivalent.
g. a && (b I I c) and a && b I I a && c areequivalent.
h. These are not equivalent: if a and b are false and c is true, then a I I (b && c) is false,

but a I I b && a I I c is true.
3.2 The term "short circuiting" refers to the feature of the && and I I operators that prevents the sec-

ond operand from being evaluated unless necessary. If the value of the first operand in an && expres-
sion if false, then the complete expression is immediately given the value false without evaluating the
second operand. Similarly, if the value of the first operand in an I 1 expression if true, then the com-
plete expression is immediately given the value true without evaluating the second operand.

3.3 The switch statement must be controlled by a single integer control variable, and each case
section must correspond to a single constant value for the variable. The if . . .else if combina-
tion allows any kind of condition after each if. For example, Example 3.3 uses inequalities in its con-
ditions.

3.4 The term "fall through" refers to the way the switch statement executes its various case sec-
tions. Every statement that follows the selected case section will be executed unless a break state-
ment is encountered.

3.5 The statement d = 4 4 ; is unreachable.

Solutions to Programming Problems

3.1 import java.util.Random;
public class Testpositive

{ public static void main(String[] args)

{ Random random = new Random();
int n = random.nextInt();
System.out.println("n= + n);I'

if (n > 0) System.out.println("n> 0 ") ;

1
3.2 import java.util.Random;

public class PrintMinimum

{ public static void main(String[] args)

{ Random random = new Random();
int m = random.nextInt();
System.out.println("m= + m);'I

int n = random.nextInt();
System.out.println("n= + n);I'

if (m < n) System.out.println("Theirminimum is + m);
else System.out.println("Their minimum is I' + n);

1

CHAP. 31 SELECTION 61

3.3 import java.util.Random;
public class MaxOfFour

{ public static void main (String [] args)

{ Random random = new Random();
int nl = random.nextInt();

I'System.out.println("n1= + nl);
int n2 = random.nextInt();
System-out .println("n2 = + n2);
int n3 = random. next Int () ;
System.out.println("n3= + n3);
int n4 = random.nextInt();

I'System-out .println("n4 = + n4);
int max = nl;
if (n2 > max) max = n2;
if (n3 > max) max = n3;
if (n4 > max) max = n4;
System-out .println("Their maximum is I' + max);

1

3.4 import java.util.Random;
public class Quintiles

{ public static void main(String[] args)

{ Random random = new Random();
double x = random.nextDouble();
System.out.print("x= + x + ' I , which is in the ") ;
if (x < 0.2) S y s t e m . o u t . p r i n t l n (" f i r s t quinti1e.I');
else if (x < 0.4) System.out.println("second quintile.");
else if (x < 0.6) System.out.println("thirdquintile.");
else if (x < 0.8) System.out.println("fourthquintile.' I) ;

else System.out.println("fifthquintile.");

1

1
3.5 import java.util.Random;

public class SortThreeFloats

{ public static void main(String[] args)

{ Random random = new Random();
float a = random.nextFloat();

'ISystem.out.println("a= + a);
float b = random.nextFloat() ;
System.out.println("b= + b);
float c = random.nextFloat();

I'System.out.println("c= + c);
if (a < b)

I'if (b < c) System.out.println(a + < 'I + b + < 'I + c);
else

'I l1if (a c c) System.out.println(a + < I' + c + l1 c + b);
I'else System.out.println(c+ I' c + a + < I' + b);

else

I' I'if (a < c) System.out.println(b + < I' + a + c + c);

else

I' I'if (b c c) System.out.println(b + < 'I + c + < + a);

4: 'Ielse System.out.println(c+ + b + < 'I + a);
1

1
3.6 import java.util.Random;

public class TestDivisibility

{ public static void main(String[] args)

{ Random random = new Random() ;
int n = random.nextInt();

'ISystem.out.println("n= + n);

62 SELECTION [CHAP. 3

if (n%2 == 0) System.out.println("n is divisible by 2") ;
if (n%3 == 0) System.out.println("n is divisible by 3 ") ;
if (n%5 == 0) System.out.println("n is divisible by 5");

1
1

3.7 import java.util.Random;

public class SortThreeStrings

{ public static void main(String[] args) throws IOException

{ final int LEN = 255;
byte buffer[] = new byte[LENl;
System.out.println("Enter three names, one per line:");

int n = 0;
try { n = System.in.read(buffer,0, L E N) ; }
catch (Exception e) { }
String sl = new String(buffer);
sl = sl.substring(0, n-2);
try { n = System.in.read(buffer,0, LEN); }
catch (Exception e) { }
String s2 = new String(buffer);
s2 = s2.substring(O, n-2);
n = System.in.read(buffer,0, LEN);
String s3 = new String(buffer);
s3 = s3.substring(Ot n-2);

' I , I' I f I I'System.out.println(s1+ + s2 + + s3);
if (sl.compareTo(s2) <= 0 && s2.compareTo(s3) <= 0)

I' I'System.out.println(s1 + <= 'I + s2 + <= 'I + s3);
if (sl.compareTo(s3) <= 0 && s3,compareTo(s2)<= 0)

I'System.out.println(s1 + <= I' + s3 + <= I' + s2);
if (s2.compareTo(sl) <= 0 && sl.compareTo(s3)<= 0)

I'System.out.println(s2 + <= 'I + sl + <= 'I + s 3) ;
if (s2. compareTo (s3) <= 0 && s 3 . compareTo (sl) <= 0)

I' I'System.out.println(s2+ <= I' + s3 + <= I' + sl);
if (s3.compareTo(s2) <= 0 && s2.compareTo(sl) <= 0)

I'System.out.println(s3+ <= I' + s2 + <= I' + sl);
if (s3.compareTo(sl) <= 0 && sl.compareTo(s2) <= 0)

' I ' ISystem.out.println(s3 + <= '' + sl + <= ' I + s 2) ;
1

k

3.8 import java.util.Random;

public class TestLeapYear

{ public static void main(String[] args)

{ Random random = new Random();
float x = random.nextFloat();
System.out .println(I'x = + x);'I

int year = Math.round(200*x + 1800);
System.out.println("The year is " + year);
if (year%400 == o I I year%IOO ! = o && year%4 == 0)
System.out.print ("That is a leap year. ' I) ;

else

System.out.print("Thatis not a leap year.");

1
1

3.9 import java.util.Random;
public class TestDivisibility

{ public static void main(String[] args)

{ Random random = new Random();
int n = random.nextInt();
System.out.println("n= + n);I'

CHAP. 31 SELECTION 63

if (n%2 == 0)
if (n%3 == 0)
if (n%5 == 0) System.out.println("n is divisible by 30");
else System.out.println("n is divisible by 6 but not 5");

else

if (n%5 == 0)
System.out.println("n is divisible by 10 but not 3");

else

System.out.println("n is divisible by 2 but not 3 or 5");

else

if (n%3 == 0)
if (n%5 == 0)
System.out .println("n is divisible by 15 but not 2 ") ;

else

System.out.println("n is divisible by 3 but not 2 or 5");

else

if (n%5 == 0)
System.out.println("n is divisible by 5 but not 6");

else

System.out.println("n is not divisible by 2, 3, or 5");

1
1

3.10 import java.util.Random;
public class LetterGrades

{ public static void main(String[] args)

{ Random random = new Random();
float x = random.nextFloat();
System.out.println("x= + x);l1

int score = Math.round(50*x + 50);
ItSystem.out .println("Your test score was = + score);

switch (score/lO)

{ case 10:

System.out.print("That is is an A + ") ;
break;

case 9 :

System.out .print ("That is is an A ") ;
break;

case 8:

System.out .print ("That is a B ") ;
break;

case 7:

System.out.print("That is a Cl');
break;

case 6 :

System.out .print ("That is a D");
break;

default:

System.out .print ("That is an F");

1
if (score >= 60 && score < 100)
if (score%lO > 7) System.out .print (' I + ' ') ;

else if (score810 < 2) System.out.print("-") ;

1
1

Chapter 4

Iteration

The first computer was designed by the English mathematician Charles Babbage

(1792- 1871) designed in the 1830s.Its purpose was “to do these calculations by steam.” He was
referring to the tabulation of trigonometric tables upon which safe navigation was dependent. At
the time all the tables had been computed by hand and were full of errors. Babbage recognized
that iteration, the repetition of elementary computations, was a natural task for automatic
computers. Because his colleague Ada Byron Lovelace (18I5-1852) described in 1843 how a
computer would do iteration, she has been dubbed the world’s first computer programmer.

Modern computers perform far more important tasks than tabulating functions. But most of
those tasks usually depend upon iteration at some level. This is because most useful programs
use data objects that contain sequences of numbered elements, as described in Chapter 8. These
sequences are easily processed by iteration statement blocks. Such programming statements are
called loops, because the flow of execution “loops back” to the beginning of the block. Like most
modern programming languages, Java has three loop statements: the f o r statement, the while
statement, and the do. . .while statement.

4.1 THE for STATEMENT

The syntax of the f o r statement is
f o r (e x p r l ; e x p r 2 ; e x p r 3)

s t m t ;
where e x p r l and e x p r 3 are any expressions, e x p r 2 is a boolean expression, and s t m t is
any statement or block of statements. The three expressions are used to control the iteration of
the statement or block in this order:

1. evaluate e x p r l ;

2. evaluate the condition expr2 ; if false, exit from the loop;
3. execute the complete block of statements;
4. evaluate exp-3 ;

5 . evaluate the condition expr2 ; if true, go back to step 3.
Steps 3-5 constitute one iteration of the loop. Step 1 is the initialization;step 4 is the update and
e x p r 2 is the continuation condition. Note that the continuation condition is checked only after
all the statements in the block are executed, not during or between them.

In most cases, the three control expressions are coordinated by means of a control variable,
called an index or counter, which counts each iteration of the loop. That common structure is

f o r (int i = begin; i < e n d ; i++)
{ s t m t l ;

s t m n t 2 ;
e t c .

1
where i is the index variable, begin is its first value, and end-1 is its last value. The loop
executes in this order:

65

66 ITERATION [CHAP. 4

1. declare i of type int and initialize it with the value begin;

2. if (i >= end),exit from the loop;
3. executes the complete block of statements;
4. increment i;
5. if (i -c end),go back to step 3.

Note that, in this form, the number of iterations is equal to the difference end - begin. The
most common control structure is

for (int i = 0; i < n; i++) . . .
In this case, the loop executes exactly n times.

EXAMPLE 4.1 The Babbage Function

In 1820, Charles Babbage requested financial support from the British government to build his
computer. (This was the first government grant proposal in history.) In describing how his computer
would tabulate functions, he gave the explicit example of the function f i x) =x2+x + 41. This is a curious
polynomial because it seems to generate only prime numbers. This is the program that Babbage's Differ-
ence Engine would have executed:

public class Example0401

{ public static void main(String[] args)

{ for (int x = 0; x < 10; x++)
{ int y = x*x + x + 41;
System.out.println("\t"+ x + "\tl'+ y);

1
1

1
The output is

0 41

1 43

2 47

3 53

4 61

5 71

6 a3
7 97

8 113

9 131

Note that the index is named x in this loop.

EXAMPLE 4.2 Accumulating a Sum

This program generates 5 random numbers in the range 0.0 to 1.O and accumulates their sum:
import java.util.Random;

public class Example0402

{ public static void main(String[] args)

{ Random random = new Random();
float sum = 0;
for (int i = 0; i < 5; i++)
{ float x = random.nextFloat();
sum += x;
System.out.println("\tx= 'I + x + "\t\tsum= '' + sum);

1
1

1

67 CHAP. 41 ITERATION

Here is a sample run:
x = 0.19246513 sum = 0.19246513
x = 0.20723224 sum = 0.39969736
x = 0.33193415 sum = 0.7316315
x = 0.42326802 sum = 1.1548996
x = 0.14011943 sum = 1.295019

EXAMPLE 4.3 Testing Primality

This program generates a random integer in the range 2 to 100 and then tests it for primality. (Recall
that aprime number is an integer greater than 2 whose only divisors are 1 and itself.)

import java.util.Random;

public class Example0403

{ public static void main(String[] args)

{ Random random = new Random();
float x = random.nextFloat();

I'System.out.println("x = + x) ;
int n = (int)Math.floor(99*~+2);
for (int d = 2; d < n; d++)

if (n%d == 0)
{ System.out.println(n + is not prime.") ;'I

return;

1

System.out.println(n + is prime."); I'

1
1

Here are two sample runs:
x = 0.28460586
28 is not prime.

x = 0.7978597
79 is prime.

The float x is a random number in the range 0.0 I x .= 1.0, so 0.05 99*x < 99.0, and
consequently 2.0 I 99*x+2 < 101.0.The floor () method of the Math class returns a double
whose value is the largest integer less than or equal to the number passed to it. So 2.0 5
Math.floor (9 9 * x + 2) I100.0. The (int) prefix converts that double value to an int value
so that it can be used to initialize the int variable n.So n is initialized with one of the 99 integers from
2, 3, ..., 100. For example, in the second run shown above, x is given the float value 0.7978597.
From that, the floor () method receives the value 79.78597 and returns the double value 79.0.
(Note that this truncates the fractional part, even if it is greater than 0.5.)That value is then converted to
the int value 79 before it is used to initialize n.Changing the type of a numerical value this way is
called type casting.

Inside the for loop, n is tested by d.The condition (n%d == 0) is true if and only if n is divisi-
ble by d.If it is, then n cannot be prime, so at that point the println () method reports that n is not
prime and the program terminates. The return statement terminates the main () method, which ends
the program abruptly, preventing the loop from finishing. On the other hand, if the condition (n%d ==
0) is false for every potential divisor d in the range from 2 to n-1,then n has no divisors and is
therefore a prime number. In that case the loop terminates normally and the println () that follows the
loop executes.

There are several ways to stop iteration. The normal way in a for loop is for its continuation
condition to become false. That happens when x increments to 10 in Example 4.1 and when i

68 ITERATION [CHAP. 4

increments to 5 in Example 4.2. It also happens when d increments to n in Example 4.3if it
gets that far. But the loop in Example 4.3 can also stop if the return statement inside the loop
gets to execute. That not only stops the loop, but it also stops the entire program. That is a rather
radical way to stop a loop. A better way is to use a break statement, as illustrated in the next
example.

EXAMPLE 4.4 Using a break Statement to Stop a Loop

This is a modification of the program in Example 4.3. It uses a boolean variable named
isNotPrime and a break statement to break out of the loop when a divisor is found.

import java.util.Random;

public class Example0404

{ public static void main(String[] args)

{ Random random = new Random();
float x = random.nextFloat();

I'System.out.println("x= + x);
int n = (int)Math.floor(lOl*x);
boolean isNotPrime = (n < 2);
for (int d = 2; d < n; d++)
{ isNotPrime = (n%d == 0);
if (isNotPrime) break;

1
if (isNotPrime) System.out.println(n + is not prime.") ;'I

else System.out.println(n + is prime.");'I

1
1

Here is a sample run:
x = 0.07461572
7 is prime.

In this version, n is initialized with an integer in the range 0 to 100.Then the boolean variable
isNotPrime is declared and initialized to either true or false according to whether n < 2 or not. (0
and 1 are, by definition, not primes.)

The for loop here is controlled the same way as the for loop in Example 4.3: the index d begins
with the value 2 and increments up through n-1 before stopping at n,unless some other event
interrupts the loop. In this case, that event would be the break statement. The isNotPrime variable
is reset to be true or false according to whether d divides n.If and when it does, the break statement
executes, transferring execution control to the first statement that follows the loop. That is the last if
statement, which prints that n either is not or is prime according to whether the isNot Prime variable
is true or false.

The break statement works the same way in loops as in switch statements: it causes
execution to jump to the first statement that follows the block within which it occurs.

4.2 THE while STATEMENT

The for loop is the best way to perform iteration when the repetitions are naturally tied to
an index such as X, i, and d in the previous examples. But if there is no natural counting
variable to control the iteration, then a more general while statement is usually the best choice.

69 CHAP. 41 ITERATION

The syntax for the while loop is
while (expr)

s t m t ;

where expr is a boolean expression, and s t m t is any statement or block of statements.

EXAMPLE 4.5 The Fibonacci Sequence

The Fibonacci sequence is defined recursively by the equations

F, = 0

F , = 1

Fn = Fn-1 + F n - 2

If we let n = 2 and then substitute the first two equations into the third, we get

F , = F , + F o = 1 + 0 = 1

Repeating this process with n = 3 yields

F , = F 2 + F 1 = 1 + 1 = 2

and n =4yields

F , = F 3 + F 2 = 2 + 1 = 3

The process is the same on each iteration: add the last two numbers. It is called a recursive process
because each computed number "recurs" again on the right side of the next two equations. It is very effi-
cient because it allows us to define an infinite sequence using only three equations. The down side is that
we cannot compute the nth number until after we have computed the n numbers that precede it.

This program uses a while loop to implement the definition of the Fibonacci sequence. It prints all
the Fibonacci numbers less than 1000:

public class Example0405

{ public static void main(String[] args)
{ System.out.print(0);
int fibO = 0;
int fibl = 1;
int fib2 = fibl + fib0;
while (fib2 < 1000)
{ fibO = fibl;
fibl = fib2;
fib2 = fib1 + fib0;
System.out.print(", " + fibl);

I
1

1
The output is

0, 1, 2, 3, 5, 8, 1 3 , 21, 34, 55, 89, 144, 233, 377, 610 , 987

Note that this sequence is exponential: the number of 3-digit numbers is the same as the number of
2-digit numbers.

70 ITERATION [CHAP. 4

EXAMPLE 4.6 Using a while Loop to Test Primality

This is a modification of the program in Example 4.4. Its boolean variable, named isprime,is
the opposite of that in Example 4.4. It partially controls the while loop that is used in place of the f o r
loop.

import java.util.Random;

public class Example0406

{ public static void main(String[] args)

{ Random random = new Random();
float x = random.nextFloat();
System.out.println("x= + x);
int n = (int)Math.floor(lOl*x);
boolean isprime = (n > 1);
int d = 2;
while (isprime && d c n)

isprime = (n % d++ ! = 0) ;
if (isprime) System.out.println(n + is prime.") ;
else System.out.println(n + is not prime."); 'I

}

1
The other control variable d must be initialized explicitly to 2 before the while loop begins. Then

we used the postfix increment operator in the expression (n%d++ == 0) to increment d from 2 to n.
This boolean expression has the value either true or false. That value is assigned to the variable is Pr ime
which will stop the loop if and when it is assigned the value false.

These two previous examples illustrate two different reasons for using a while loop in
place of a for loop. We had to use a while loop in Example 4.5 because we did not know in
advance how many iterations would be needed to compute all the Fibonacci numbers less than
1000.The primary reason for using a while loop in Example 4.6 was to simplify the f o r loop
from Example 4.4 by removing the break statement. In most cases a for loop can be
translated easily into a while loop, and vice versa. For example, the while loop in Example
4.5 could have been replaced by

for (int fib2 = 1; fib2 < 1000; fib2 = fib1 + fib0)
{ fib0 = fibl;
fibl = fib2;
System.out.print(", I' + fibl);

I
But many programmers consider this an abuse of the for statement, like pounding a nail with a
wrench; the for statement was designed to be controlled by an index variable that counts the
iterations. Others prefer to use the for loop whenever it works because it is more structured. In
general, the best strategy is to choose the statement that seems most natural and yields code that
is easy to understand. If your code is not clear, it should be reformulated.

4.3 SOME NUMBER CRUNCHING

Although Java is not the best programming language for scientific computation, it is
adequate. This section illustrates its use on some common algorithms.

71 CHAP. 41 ITERATION

EXAMPLE 4.7 The Discrete Binary Logarithm

The logarithm of a positive number x with base b is the power of b that equals x:

y = log,x e by= x

The binary logarithm of a positive number x is the power of 2 that equals x.The discrete binary logarithm
of a positive number x is the greatest integer power of 2 that is less than or equal to x.This is the same as
the number of times 1 can be doubled before it exceeds x.

This program computes the discrete binary logarithm of a random number between 2 and 1,000,000:
import java.util.Random;

public class Example0407

{ public static void main(String[] args)

{ Random random = new Random();
float x = random.nextFloat();
x = 999999*x+2;
int y = 0;
int n = 1;
while (n <= x)
{ n * = 2;
++y;

'ISystem.out.println("n= + n + \ty = + Y);
1
--Y;

System.out.println(" x: + x);

'ISystem-out .println(Discrete binary logarithm of x: I' + y);
float lgx = (float)(Math.log(x)/Math.log(2.0));
System.out.println("Continuousbinary logarithm of x: I I + lgx);

1
1

The while loop doubles n until it exceeds x.The variablr: y counts the number of iterations, so
it is the discrete binary logarithm of x.

Here is a sample run:
n = 2 y = l

n = 4 y = 2

n = 8 y = 3

n = 16 y = 4
n = 32 y = 5
n = 64 y = 6
n = 128 y = 7
n = 256 y = 8
n = 512 y = 9
n = 1024 y = 10
n = 2048 y = 11
n = 4096 y = 12
n = 8192 y = 13
n = 16384 y = 14
n = 32768 y = 15
n = 65536 y = 16
n = 131072 y = 17
n = 262144 y = 18
n = 524288 y = 19

x: 954202.9

Discrete binary logarithm of x: 19

Continuous binary logarithm of x: 19.863937

72 ITERATION [CHAP. 4

In this run, the number n had to be doubled 19 times before it exceeded 954,202.9.
The last line of output checks the result by comparing it to the continuous binary logarithm of x.The

method Math .log () returns the natural logarithm (base e), so we had to use the standard formula for
converting bases:

This confirms that the discrete binary logarithm is the floor of the (continuous) binary logarithm.

The next uses an if statement inside a while loop.

EXAMPLE 4.8 The Euclidean Algorithm

The Euclidean Algorithm computes the greatest common divisor (g.c.d.) of two given positive
integers. Its name comes from the fact that it is given in Euclid's Elements, the great mathematical
encyclopedia written about 2300 years ago.

The g.c.d. of two integers is the largest integer that divides both of them. For example, the g.c.d. of 66
and 84 is 6 because it is the largest in the set of their common divisors { 1, 2, 3, 6) .

A common use of the g.c.d. is to reduce fractions. For example, the fraction 66/84 is reduced to 11/14
simply by dividing both 66 and 84 by their g.c.d. 6.

This program generates two random integers in the range 2 to 1000 and then uses a while loop to
reduce them until one of them reaches 0; at that point, Euclid proved, the other must equal the greatest
common divisor of the two original numbers.

import java.util.Random;

public class Example0408

{ public static void main(String[] args)

{ Random random = new Random();
float x = random.nextFloat();
int m = Math.round(999*x + 2);
x = random.nextFloat();
int n = Math.round(999*x + 2);

I'System.out.println("m= + m + "\t\tn= + n);
while (m > 0)
{ if (m < n)

{ int temp = m;
m = n;
n = temp;

'ISystem.out.println("m= + m + "\t\tn= + n);
1
m -= n;

1
System.out.println("The g.c.d. of m and n is I' + n);

Here are two sample runs:
m = 832 n = 752
m = 752 n = 80
m = 80 n = 32
m = 32 n = 16
The g.c.d. of m and n is 16

73 CHAP. 41 ITERATION

m = 141 n = 488
m = 488 n = 141
m = 141 n = 65
m = 65 n = 11
m = 11 n = 10
m = 10 n = l
The g . c . d of m and n i s 1

In the first run, the randomly generated numbers are m = 832 and n = 752. Inside the while loop,
the condition (m < n) is false, so the next four statements are skipped and m -= n executes, subtract-
ing 752 from m reducing its value to 80. Now the continuation condition (m > 0) is still true so the
loop iterates again. This time, the condition (m < n) is true, so the next four statements execute. The
first three of these perform a swap; their effect is to interchange the values of m and n, giving m the
value 752 and n the value 80. This way, m will always be the larger number when the decrement m -=
n executes. On this iteration, that decrement reduces m to 752 - 80 = 672. The next eight iterations
continue reducing m to 592, 512,432, 352,272, 192, 112, and finally 32. After that, another swap occurs,
making m = 80 and n = 32. Then m gets reduced twice more, to 48 and 16. Another swap occurs,
making m = 32 and n = 16. Then m gets reduced to 16 and finally 0. That stops the loop, leaving n
with the value 16, which must be the g.c.d.

We saw in the analysis of the execution of the program in Example 4.8 that m will always be
the larger of the two numbers before the statement m -= n in the while loop. That fact is
essential to the success of the algorithm. It is an example of what software engineers call a loop
invariant: a condition at a particular point within a loop that must always be true. Loop invari-
ants are used to prove (mathematically) that a program is correct.

The proof that the Euclidean Algorithm is correct hinges on the fact that subtracting n from
m does not change their g.c.d. That is: gcd(m, n) = gcd(m-n, n). This is a fact from number
theory that is not difficult to verify. In the program, it is a loop invariant. And it proves that the
program is correct because it means that the g.c.d. of the original two numbers must be the same
as the g.c.d. of the last two numbers before rn becomes zero, and those last two numbers are both
equal to the final value of n.

4.4 THE do.. .while STATEMENT

The do. . .while statement is essentially the same as the while statement with its continuation
condition put at the end of the loop instead of the beginning. The only difference is that the do. . .while
loop executes once before the condition is evaluated.

The syntax for the do. . .while loop is
do
stmt

while (expr) ;

where expr is a boolean expression, and s t m t is any statement or block of statements.

EXAMPLE 4.9 The Factorial Function

The factorial function of a positive integer n is the product of all the integers from 1 to n. For
example, the factorial of 5 is 1 - 2 . 3 . 4 . 5 = 120. This is usually expressed as 5 ! = 120. The value of O! is
1, by definition.

74 ITERATION [CHAP. 4

This program generates a random integer in the range 0 to 20 and then computes and prints its
factori a1 :

import java.util.Random;

public class Example0409

{ public static void main(String[] args)

{ Random random = new Random();
float x = random.nextFloat();
int n = Math.round(21*x);
long f = 1;
int k = 1;
do

f *= k + + ;
while (k <= n);
System.out.println(n+ " ! = " + f) ;

1
1

After initializing n, f,and k,the do.. .while loop multiplies f by all the numbers from 1 to
n.This is done by means of the assignment statement

f *= k++;
which multiplies f by k and then increments k.

Here are three sample runs:
5 ! = 1 2 0

17! = 355687428096000

O ! = 1

In the first run, n is initialized to 5, f to 1, and k to 1. The first iteration changes f to 1 - 1 = 1
and k to 2. The second iteration changes f to 1 - 2 = 2 and k to 3. The third iteration changes f to 2
. 3 = 6 and k to 4. The fourth iteration changes f to 6 . 4 = 24 and k to 5. The fifth iteration changes
f to 24 5 = 120 and k to 6. That stops the loop and prints 120.

The second run reveals how large the factorial numbers are. This integer 355,687,428,096,000 is
much larger than the maximum int value (2,147,483,647). That's why we used type long for f .

The third run produces O! = 1, which is true by definition. In this case, the loop executes once,
multiplying 1 - 1 for f and incrementing k to 1.

The above analysis of the first run of the program in Example 4.9
illustrates an important debugging strategy that all successful programmers do.

f k

It is called tracing the execution by hand. Its main purpose is to check the logic 1 1

of a program to see if it will do what was intended. Although somewhat 1 2
tedious, tracing is often the best way to uncover logical errors in a program. 2 3

The table shown at right summarizes the trace made above: This tracing 3 6
table shows at a glance that the program logic is correct.

Tracing also helps the programmer find ways to improve hidher code. 24 4

There is almost always more than one way to solve a problem (i.e., write a 120 6

program). The first solution is usually not the best. Modifications can often be
found to make the program run faster, use less memory, or even be simpler to
understand. In our competitive world, efforts toward such improvements are
usually rewarded.

CHAP. 41 ITERATION 7s

EXAMPLE 4.10 Testing Primality Again

This program modifies that in Example 4.6 on page 70 by replacing its while loop with a
do. . .while loop:

import java.util.Random;

public class Example0410

{ public static void main(String[] args)

{ Random random = new Random();
float x = random.nextFloat();

ItSystem.out.println(”x= + x);
int n 1 Math.round(97*x + 2);
boolean isprime;

int d =I 2;

do

isprime = (n % d++ ! = 0);

while (isprime && d < n);
if (isprime) System.out.println(n + is prime.”);I‘

else System.out.println(n + is not prime. ;

1
1

The do.. .while loop executes the statement
isprime = (n%d++ ! = 0);

once before it evaluates the continuation condition (i sPrime && d < n). Consequently, if n has
the value 1, that statement will set the isprime variable to true on that automatic first iteration, and
that would produce an incorrect result (1 is not prime, by definition). This version of the program avoids
that difficulty by restricting random numbers that n can be given to the range 2 to 99. It’s an artificial fix,
but necessary to avoid erroneous results.

Example 4.10 shows that do. . .while loops are a little more prone to error than while
loops because they limit the control you have on the first iteration. So in general, it is better to
use a while loop unless there is a good reason to have the loop iterate once unconditionally. An
example of such a situation is given in Example 4.12 on page 76.

4.5 MORE NUMBER CRUNCHING

The next two examples implement classic numerical algorithms where the do.. .while
statement is typically used.

EXAMPLE 4.11 The Babylonian Algorithm for Computing Square Roots

Over 5000 years ago the ancient Babylonians discovered a method for computing the square root of 2.
They probably used that number (about 1.4) to construct right angles for the foundations of their
buildings. This iterative algorithm is still the simplest way to compute square roots.

If x is any number close to .$2, then x2will be close to 2, which makes x close to 2/x. But 2/x will be
on the other side of ,h from x. That is, if x less than A, then 2/x will be greater than & ,and vice versa.
For example, suppose that x = 1.6.Then 2/x = 1.25, which is on the other side of ,h. That “crossing over
the limit” is the key to the algorithm because it means that the average of x and 2/x must be between them
and therefore closer to the objective ,b. So the Babylonian Algorithm consists of choosing some number
x that is close to .$2, and then repeatedly replacing x by its average with 2/x. That’s what the statement

x = (x + 2.0/x)/2;

76 ITERATION [CHAP. 4

does in the following program:
import java.util.Random;

public class Example0411

{ public static void main(String[] args)

{ final double TOL = 0.5E-15;
Random random = new Random();
double x = random.nextDouble();

I'System.out.println("\tx= + x);
do

{ x = (x + 2.0/x)/2;

I'System.out.println("\tx = + x);
1
while (Math.abs(x*x - 2.0) > TOL*2*x);

'ISystem.out .println("sqrt (2 - 0) = + Math.sqrt (2.0)) ;
1

1
Here is a sample run:

x = 0.8211882540816451
x = 1.6283416959199273
x = 1.4282925660893104
x = 1.4142829523392502
x = 1.4142135640753595
x = 1.414213562373095

sqrt(2.0) = 1.4142135623730951

The program uses a constant named TOL (for "tolerance") to control its do. . .while loop. The
value of this constant is 0.5x lO-I5. The continuation condition

(Math.abs(x*x- 2.0) > TOL*2*x)
means that the absolute value of x2 - 2 is greater than 0 . 5 ~10-15(2x),which is algebraically
equivalent to the condition that the distance between x and (x + 2/x)/2 is greater than 0 . 5 ~10-'5.
By continuing the loop until that condition is false, we guarantee that our answer will be accurate to 15 decimal
places. That's the best we can expect with type double.

The variable x is initialized with a random value between 0 and 1. In the sample run, that value is
about 0.82. On each iteration, the current value of x is replaced by the average of x and 2/x.This
causes x to jump back and forth on either side of its limit, 1.4142135623730951 ...

Notice how fast the sequence converges to its limit. The first iterate (1.628 ...) is accurate to 1 digit,
the second to 2, the third to 5 , the fourth to 9, and the fifth to 16. Each iteration doubles the number of
accurate digits! This is called quadratic convergence.

It is also interesting to observe here that it doesn't much matter what number you begin with. No
matter where it starts, the sequence seeks the same limit .$2 and it takes only 5 iterations to get there with
16 digit accuracy.

EXAMPLE 4.12 The Bisection Algorithm for Solving Equations

Algebra is a good way to exercise your brain. But it really isn't very good for solving equations. Most
equations cannot be solved complete by any algebraic techniques. Instead, their solutions must be approx-
imated by numerical methods. The Bisection Method is a simple example.

This algorithm uses the classic divide and conquer strategy. Begin with an interval that contains the
unknown solution. Divide it in half, discard the half that does not contain the solution, and repeat.

This program implements the Bisection Algorithm to solve the equation

J5= cosx

It has the same solutions as the equation

77 CHAP. 41 ITERATION

h - c o s x = 0

Its solutions are the x-intercepts of the graph of the equation

y = $x-cosx

We know that there must be a solution within the interval from 0 to n/2 because at x = 0, y = A-COSO= 0
- 1 = -1 < 0, and at x = 7~12,y = H 2 - c o s . n / 2 = m 2 - 0 > 0. A continuous curve cannot be below the
x-axis at one point and above it at another without crossing it in between.

public class Example0412

{ public static void main(String[] args)

{ final double TOL = 0.5E-7;
double a = 0;
double b = Math.P1/2;
double x, y;

do

{ x = (a + b) / 2 ;
y = Math.sqrt(x) - Math.cos(x);

'I 'ISystem.out.println("a= + (f1oat)a + "\tx = + (f1oat)x
'I 'I+ Il\tb = + (f1oat)b + "\ty = + (f1oat)y);

if (y < 0) a = x;
else b = x;
y = Math.sqrt(x) - Math.cos(x);

} while (b - a > TOL);
S y s t e m . o u t . p r i n t l n (" s q r t (x) = I' + (float)Math.sqrt(x));

I'System.out.println(" cos(x) = + (float)Math.cos(x));
1

1

The do . . .while loop uses the same kind of continuation condition as in Example 4.11. The loop
continues iterating until the length of the interval is less than 0.5~10-'.This guarantees that our answer
will be correct to 7 decimal place. This use of a tolerance constant is the standard way to control conver-
gence loops.

Here is a sample run:
a = 0.0 x = 0.7853982 b = 1.5707964 y = 0.17912014
a = 0.0 x = 0.3926991 b = 0.7853982 y = -0.29722247
a = 0.3926991 x = 0.5890486 b = 0.7853982 y = -0.06397458
a = 0.5890486 x = 0.6872234 b = 0.7853982 y = 0.055978928
a = 0.5890486 x = 0.638136 b = 0.6872234 y = -0.0043733763
a = 0.638136 x = 0.6626797 b = 0.68722.34 y = 0.025704984
a = 0.638136 x = 0.65040785 b = 0.6626797 y = 0.010641771
a = 0.638136 x = 0.6442719 b = 0.65040'785 y = 0.003128247
a = 0.638136 x = 0.64120394 b = 0.64427119 y = -6.2404445E-4
a = 0.64120394 x = 0.6427379. b = 0.64427l9 y = 0.0012517304
a = 0.64120394 x = 0.64197093 b = 0.64273'79 y = 3.1375035E-4
a = 0.64120394 x = 0.64158744 b = 0.64197093 y = -1.5517019E-4
a = 0.64158744 x = 0.6417792 b = 0.64197093 y = 7.928429E-5
a = 0.64158744 x = 0.64168334 b = 0.64177132 y = -3.79444E-5
a = 0.64168334 x = 0.641.73126 b = 0.6417792 y = 2.0669584E-5
a = 0.64168334 x = 0.6417073 b = 0.64173ZL26 y = -8.637498E-6
a = 0.6417073 x = 0.6417193 b = 0.64173126 y = 6.0160205E-6
a = 0.6417073 x = 0.6417133 b = 0.6417193 y = -1.3107443E-6
a = 0.6417133 x = 0.6417163 b = 0.6417193 y = 2.35263663-6
a = 0.6417133 x = 0.6417148 b = 0.6417163 y = 5.2094583E-7
a = 0.6417133 x = 0.64171404 b = 0.6417148 y = -3.948993E-7
a = 0.64171404 x = 0.6417144 b = 0.6417148 y = 6.302324E-8

78 ITERATION [CHAP. 4

a = 0.64171404 x = 0.6417142 b = 0.6417144 y = -1.6593803E-7
a = 0.6417142 x = 0.64171433 b = 0.6417144 y = -5.14574E-8
a = 0.64171433 x = 0.6417144 b = 0.6417144 y = 5.7829213-9
sqrt(x) = 0.80107075
cos(x) = 0.80107075

Each iteration replaces either a or b with their average which is the number midway between them.
The choice of which endpoint to change depends upon whether the value of the function &-COSX is
negative or positive. If it is negative, then the target solution (which is the point where the function's
graph crosses the x-axis) must be between the midpoint (a+b)/2 and b, so we reset a to that value to make
the new interval the right half of the previous interval. If the function is positive, then we reset b to be the
midpoint, which makes the left half the new interval. On the first iteration, the midpoint x = 0.7853982
and y = 0.17912014, which is positive, so b is reset to x.

At the end of the program, the answer x = 0.6417144 is checked by evaluating both and cosx to
see that they agree there.

Note that this algorithm converges much more slowly than the Babylonian Algorithm. But it is much
more general. It can be used to solve almost any equation that uses known continuous functions.

4.6 NESTED LOOPS

The statement within a loop can be any kind of statement. Usually it is a block of statements,
and often some of those statements themselves are loops. In that case, they are called nested
loops.

EXAMPLE 4.13 Printing a Multiplication Table

This program uses two nested f o r loops to print a multiplication table:
public class Example0413

{ public static void main(String[] args)

{ final int SIZE = 15;
for (int x = 1; x <= SIZE; x++)
{ for (inty = 1; y <= SIZE; y++)

{ int z = x*y;
if (z < 10) System.out.print(" ' I) ;

if (z < 100) System.out.print(" ") ;

(' I I 'System.out.print + z) ;

1
System.out.println();

1
1

1
The output is shown at the top of the next page.
The outer loop iterates 15 times. On each iteration of the outer loop, the inner loop iterates 15 times.

On each iteration of the inner loop, the product z is computed and printed with a prefix of blanks. The
number of blanks in the prefix depends upon the number of digits in z so that the number in each column
of the resulting table are right-justified. For example, when x is 13 and y is 10, z is 130,which has 3
digits, so its prefix has only 1 blank. But when x is 3 and y is 2, z is 6, which has only 1 digit, so its
prefix has 3 blanks. This way, every product is printed in afield of 4 characters.

79 CHAP. 41 ITERATION

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
3 6 9 12 15 18 21 24 27 30 33 36 39 42 45
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
6 12 18 24 30 36 42 48 54 60 66 72 78 84 90
7 14 21 28 35 42 49 56 63 70 77 84 91 98 105
8 16 24 32 40 48 56 64 72 80 88 96 104 112 120
9 18 27 36 45 54 63 72 81 90 99 108 117 126 135
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
11 22 33 44 55 66 77 88 99 110 121 132 143 154 165
12 24 36 48 60 72 84 96 108 120 132 144 156 168 180
13 26 39 52 65 78 91 104 117 130 143 156 169 182 195
14 28 42 56 70 84 98 112 126 140 154 168 182 196 210

, 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225

EXAMPLE 4.14 Validating Identification Numbers

Validation checking is a common method in software that uses identification numbers. Such numbers
usually include one character that is used to check the internal consistency of the string to minimize
errors. For example, nearly every book published is given a 10-character ISBN (International Standard
Book Number) that identifies it and its publisher. The last character of each ISBN is a "check digit,''
computed from the other 9 digits by an algorithm that will give a different value if any of the other 9 digits
are transposed. Consequently, transposition errors or single digit errors are easily detected because their
check digit will be incorrect.

This program uses a for loop nested inside a do loop to check the digits of an 8-digit identifica-
tion number for its validity. It uses the same kind of algorithm that ISBNs use: the sum

d , + 2 4 + 3 4 + 4d, + 5d, + 6 4 + 7 d , + 8d,

should be a multiple of 9, where d, is the first digit, d2 is the first digit, etc. (With the ISBNs, the corre-
sponding 10 digit sum must be a multiple of 11 .) This uniquely determines the last digit.

public class Example0414

{ public static void main(String[] args)

{ final int LEN = 8;
byte buf[] = new byte[LEN+2];
boolean isvalid;

String id;

do

'I{ System.out.print("Enter your + LEN + ''-digit ID number: ") ;
try { System.in.read(buf, 0, LEN+2); 1
catch (Exception e) { I
id = new String(buf);
id = id.trim();
int check = 0;
for (int i = 0; i < LEN; i++)

check += (i+l)*buf [i];
isvalid = (check%(LEN+l) == 0);
if (isvalid) System.out.println("Thank you.");
else System.out.println(id + is not a valid ID number.");'I

} while (!isvalid);
System.out .println("Your ID number is I' + id);

1

80 ITERATION [CHAP. 4

Here is a sample run:
Please enter your 8-digit ID number: 97542300
97542300 is not a valid ID number.

Please enter your 8-digit ID number: 97543300
97543300 is not a valid ID number.

Please enter your 8-digit ID number: 97543200
Thank you.

Your ID number is 97543200

___________ ~~-~~~~~ ~ ~ ~~ ~ ~

In this run, the user's correct ID number is 97543200. Its check sum, d, + 2d2+ 3d3+ 4d4+ 5d5+ 6d,
+ 7d7 + 8ds, is divisible by 9: 9 + 2.7 + 3.5 + 4.4 + 5-3+ 6.2 + 7.0 + 8-0= 81. The first attempt entered
97542300, which transposed the 5th and 6th digits. That error was detected by the check-sum algorithm: 9
+ 2.7 + 3.5 + 4.4 + 5.2 + 6.3 + 7-0 + 8.0 = 82, which is not divisible by 9. The second attempt entered
97543300, which simply mistyped the 6th digit. That error was also detected by the check-sum algorithm:
9 + 2.7 + 3.5 + 4.4 + 5.3 + 6.3 + 7.0 + 8.0 = 87, which is not divisible by 9. The third attempt got it right.

The do loop iterates once each time the user enters an ID number. It repeats until the entered ID
number is correct. The for loop computes the check sum which is valid only if it is divisible by 9.

EXAMPLE 4.15 Finding Substrings

This program uses a for loop nested inside another for loop to search a string for a substring.
The indexof () method does the same thing, so it is used at the end of the program to confirm the
results. This program also illustrates the use of a labeled break statement.

public class Example0415

{ public static void main(String[] args)

{ final int LEN = 100;
System.out.print("Enter a string: ' I) ;

byte bufl [I = new byte[LEN] ;
try { System.in.read(buf1,0, LEN); }

catch (Exception e) { I
String sl = new String(buf1);
sl = sl. trim() ;
int nl = sl.length();
System.out.print("Entera substring: ' I) ;

byte buf2 [I = new byte [LEN] ;
try { System.in.read(buf2,0, LEN); }

catch (Exception e) { }
String s2 = new String(buf2);
s2 = s2 .trim();
int n2 = s2.lengtho;
System.out.println("n1= + nl + "\tn2 = + n2);I'

boolean found = false;
int k = 0;

stop:

for (int i = 0; n2 + i <= nl; i++)
for (int j = 0; j < n2; j + +)
{ System.out.println(i+ + j);I' 'I

if (sl.charAt(i+j) ! = s2.charAt(j)) break;
if (j+l == n2)
{ found = true;
k = i;
break stop;

1
1

81 CHAP. 41 ITERATION

System.out.print("Using this algorithm, the substring \ I t i i + s2);
if (found) System.out.println("\" was found at index I' + k);
else System.out.println("\" was not found. , I) ;

k = sl.indexOf(s2);
System.out.print("Using the indexof() method, this substring ") ;

if (found) System.out.println(" was found at index + k);
else System.out.println(" was not found. ' I) ;

1
1

The program reads two strings from standard input: the string sl to be searched, and the substring
s2.It prints their lengths and then runs the nested for loops to do the search. If sl is found to be a
substring of s2,it sets the value of the boolean variable found to true,saves the index k,and
then executes a labeled break statement to break out of both loops simultaneously. Then it reports the
results and uses the indexof() method to check them. The value of k is the index in sl of the first
character of the substring s2.

The inner for loop uses the charAt () method to compare consecutive characters in s1 with
those in s2,beginning at index i in sl and index 0 in s2. If it finds a mismatch, it breaks out of the
inner loop and resumes with the next iteration of the outer loop. If that doesn't happen, then when (j ==
n2-1),all n2 characters of s2 have been matched and the substring has been found. The
print In () inside the inner loop is included so we can trace the search as it executes.

Here is a sample run:
Enter a string: ABACADABRA
Enter a substring: ABR

nl = 10n2 = 3
0 0

0 1

0 2

1 0

2 0

2 1

3 0

4 0

4 1

5 0

6 0

6 1

6 2

Using this algorithm, the substring "ABR" was found at index 6

Using the indexof() method, this substring was found at index 6

~~ ~ ~ ~ ~ ~~ - ~ _ _

The string ABACADABRA has 10characters and the substring ABR has 3. The inner loop iterates 3 times
when i = 0, once when i = 1, twice when i = 2, once when i = 3, twice when i = 4, once when
i = 2, and three times when i = 6. That is where the substring is found.

A labeled break statement is a break statement that jumps to the next statement that follows
the labeled statement. Typically, the labeled statement is a loop containing another loop that
contains the break statement, thereby allowing execution to break out of both loops simulta-
neously. The compiler recognizes the line

stop:

as a label because it ends with a colon (:). The label itself can be any valid identifier. Note that
this line itself is not a Java statement; it serves only as a prefix to label the statement that follows.

82 ITERATION [CHAP. 4

EXAMPLE 4.16 Three Nested Loops

This program uses three nested for loops to illustrate that the labeled break statement need not
break out of the nest completely. Here, it terminates the current iterations of the middle and inner loops,
proceeding on to the next iteration of the outer loop.

public class Example0416

{ public static void main(String[] args)

{ for (int i = 0; i < 3; i++)
{ resume:

for (int j = 0; j < 3; j++)
{ f o r (int k = 0; k < 3; k++)

'I{ System.out.print("\n"+ i + 'I + j + I' + k);
if (i == 1 && j == 2 && k == 0) break resume;

1

System.out.print("\tEndof k loop; j = 'I + j);

1

System.out.print("\tEndof j loop; i = + i);'I

k
System.out.println("\tEndof i loop.");

1

1

The break occurs when i = 1, j = 2, and k =0. Since the label resume labels the j loop, the
print () statement that follows it is executed next. Since that is the last statement within the i loop,
that outer loop continues, starting its next iteration with i = 2.

Here is the output:
0 0 0
0 0 1

0 0 2 End of k loop; j = 0
0 1 0

0 1 1

0 1 2 End of k loop; j = 1

0 2 0

0 2 1

0 2 2 End of k loop; j = 2 End of j loop; i = 0
1 0 0

1 0 1

1 0 2 End of k loop; j = 0
1 1 0

1 1 1

1 1 2 End of k loop; j = 1

1 2 0 End of j loop; i = 1

2 0 0

2 0 1

2 0 2 End of k loop; j = 0
2 1 0

2 1 1

2 1 2 End of k loop; j = 1

2 2 0

2 2 1

2 2 2 End of k loop; j = 2 End of j loop; i = 2 End of i loop.

83 CHAP. 41 ITERATION

Review Questions

4.1 What is a continuation condition?
4.2 What does a break statement do?
4.3 What does a labeled break statement do?
4.4 When would you use a labeled break statement instead of an unlabeled one?
4.5 What is a loop invariant?
4.6 What's wrong with the following program?

public class Example0405

{ public static void main(String[] args)

{ System.out.print(0);
int fibO = 0;
int fibl = 1;
int fib2 = 1;
while (fib2 < 1000);
{ fib0 = fibl;
fibl = fib2;
fib2 = fibO + fibl;

I'System.out.print(", + fibl);
1
try { System.in.read(); }
catch (Exception e) { }

1
1

4.7 What is tracing, and why is it a worthwhile activity for programmers?

4.8 Predict the output from the following program. Then run it to confirm your prediction:
public class Question0408

{ public static void main(String[] args)

{ int count = 0;
f o r (int i = 0; i < 3; i++)
resume:

for (int j = 0; j < 4; j + +)
for (int k = 0; k < 5; k++)
{ ++count;
if (i == 1 && j == 2 && k == 3) break resume;

1
'ISystem.out .println("\tcount = + count);

1
1

4.9 Predict the output from the following modification of the program from Question 4.8. Then
run it to confirm your prediction:
public class Question0409

{ public static void main(String[] args)

{ int count = 0;
for (int i = 0; i < 3; i++)
{ resume:

for (int j = 0; j < 4; j + +)
for (int k = 0; k < 5; k++)
{ ++count;
if (i == 1 && j == 2 && k == 3) break resume;

1
IfSystem.out.println("\tcount= + count);

1
1

1

84 ITERATION [CHAP. 4

4.10 What does the definition
final double TOL = 0.5E-15;

do in the program in Example 4.11 on page 75?

Programming Problems

4.1 Write and run a program that tabulates the sine function for 17 equally spaced values of x in
the range 0 to n. Use the constant Math.PI and the Math. sin () method. Your output
should look like this:

0 . 0 0.0
0.19634954084936207 0.19509032201612825

0.39269908169872414 0.3826834323650898

0.5890486225480862 0.5555702330196022

0.7853981633974483 0.7071067811865475

0.9817477042468103 0.8314696123025452

1.1780972450961724 0.9238795325112867

1.3744467859455345 0.9807852804032304

1.5707963267948966 1.0

1.7671458676442586 0.9807852804032304

1.9634954084936207 0.9238795325112867

2.1598449493429825 0.8314696123025455

2.356194490192345 0.7071067811865476

2.552544031041707 0.5555702330196022

2.748893571891069 0.3826834323650899

2.945243112740431 0.1950903220161286

3.141592653589793 1.2246063538223773E-16

4.2 Write and run a program that prints the average of 5 random integers. Your output should
look like this:
average = 5.3376471682396796

4.3 Write and run a program that tests the summation formula

fl . n (n + 1)
2i = 1

Generate a random integer n in the range 0 to 100, sum the integers from 1 to n, compute the
value of the expression on the right, and then print both values to see that they agree. Your
output shodd look like this:
x = 0.12363869
n = 14
sum = 105
n*(n+1)/2 = 105

4.4 The Babbage function (Example 4.1 on page 66) generates more than 20 prime numbers.
Modify the program to find out how large x can be before the value of x2 + x + 41 is not
prime. You can use the code from Example 4.10 on page 75 to tell which numbers are prime.

4.5 Modify the Fibonacci program in Example 4.5 on page 69 by replacing the while loop
with the f o r loop shown on page 70, and then run it to see that it is correct.

4.6 Modify the program in Example 4.3 on page 67 so that: even numbers are processed before
the for loop begins and only odd values of d less than or equal to the square root of n are
used in the loop.

CHAP. 41 ITERATION 85

4.7 Write and run a program that tests the summation formula

2 i 2 -- n(n + 1)(2n + 1)
6i = l

Generate a random integer n in the range 0 to 100, sum the integers from 1 to n, compute the
value of the expression on the right, and then print both values to see that they agree.

4.8 Write and run a program that tests the summation formula

i 2 - n 2 (n +-
4
i = l

Generate a random integer n in the range 0 to 100, sum the integers from 1 to n, compute the
value of the expression on the right, and then print both values to see that they agree.

Supplementary Programming Problems

4.9 Write and run a program that tests the summation formula

Generate a random integer n in the range 0 to 20, sum the numbers lli! from 1 to n, and then
print the sum, the constant e, and their difference to see how closely they agree. (Recall that e
is the constant 2.718281828..., the base of the natural logarithm.) Use the constant Math.E.

Your output should look like this:
x = 0 .04224533
n = 6

sum = 91
n* (n+l)* (2*n+l)/ 6 = 91

4.10 Write and run a program that generates a random integer n in the range 0 to 10 and then tab-
ulates the sine function for n equally spaced values of x in the range 0 to 71. Use the constant
Math.P I and the Math.s i n () method.

4.11 Write and run a program that generates a random integer n in the range 0 to 10 and then tab-
ulates the tangent function for n equally spaced values of x in the range 0 to 71/2. Use the con-
stant Math.PI and the Math. tan () method.

4.12 Write and run a program that generates a random integer n in the range 0 to 10 and then tab-
ulates the natural logarithm function for n equally spaced values of x in the range 1 to e. Use
the constant Math.E and the Math. log () method.

4.13 Write and run a program that tests the summation formula
2pyz7c

i = l i

Generate a random integer n in the range 0 to 100, sum the numbers 1l i2from 1 to n, compute
value of the expression on the right, and then print both values and their difference to see
how closely they agree.

86 ITERATION [CHAP. 4

Answers to Review Questions

4.1 A continuation condition is a boolean expression that is used to control a loop. The loop repeats as
long as the value of the expression is true. For example, in the loop

for (int x = 0; x < 10; x++)
{ int y = x*x + x + 41;
System.out.println(”\t”+ x + “\t” + y);

1
in Example 4.1 on page 66, the express ion x < 1 0 is the continuation condition for that loop. It
continues iterating as long as it is true.

4.2 A break statement terminates the current loop and proceeds to the first statement that follows that
loop. For example in Example 4.4 on page 68, the break statement in the loop

for (int d = 2; d < n; d++)
{ isNotPrime = (n8d == 0);
if (isNotPrime) break;

1
stops the loop and executes the next statement that follows it.

4.3 A labeled break statement terminates the current loop and proceeds to the first statement that fol-
lows the loop that is labeled by the identifier that follows the keyword break.For example, in
Example 4.16 on page 82, the statement

if (i == 1 && j == 2 && k == 0) break resume;
contains a labeled break statement that terminates both the inner loop and the middle loop containing
it.

4.4 The semicolon at the end of the line containing the keyword while is wrong. It marks the end of the
loop, indicating to the compiler that the only statement within the loop is the empty statement, mean-
ing “do nothing.” That means nothing happens within the loop, so the control variable f i b 2 never
changes and the loop never stops. That’s called an infinite loop. It looks strange when it runs because
the cursor is missing and the system does not respond to keystrokes or mouse actions. When that hap-
pens, press Ctrl t C to abort the process.

4.5 You would use a labeled break statement instead of an unlabeled one when you want to break out
of two or more loops in a nested loop structure. For example, the labeled break statement in Exam-
ple 4.16 on page 82 breaks out of two of the three nested loops.

4.6 A loop invariant is an assertion about the state of the variables (i.e., their current values) at some point
in a loop that is intended to be true on every iteration of the loop. For example, in Problem 4.2 on page
87, the loop

for (int i = 0; i < 50; i++)
sum += random.nextDouble();

the assertion “sum equals the sum of all the random numbers generated so far” is a loop invariant; it
should be true on every iteration of the loop.

4.7 Tracing a program means pretending you are the computer and you carry out all the steps of your pro-
gram, keeping track of the values of each variable as it changes. For example, the table on page 74
shows a trace of the program in Example 4.9 on page 73. Tracing is one of the best ways to understand
the details of the logic of your program which is essential for correcting logical errors (“bugs”).

4.8 count = 20

4.9 count = 20
count = 34
count = 54

4.10 The definition
final double TOL = 0.5E-15;

in the program in Example 4.11 on page 75 defines the constant TOL to be 0 . 5 ~lO-I5. This tiny num-
ber is used to determine when the value of x approximates & to 15 decimal places.

87 CHAP. 41 ITERATION

Solutions to Programming Problems

4.1 public class Problem0401
{ public static void main(String[] args)

{ final int N = 16;
double x, y;

for (int n = 0; n <= N; n++)
{ x = n*Math.PI/N;
y = Math.sin(x);

+System.out.println("\t"+ x + ll\ti'Y);
1

1
1

4.2 import java.util.Random;
public class Problem0402

{ public static void main(String[] args)

{ Random random = new Random();
double sum = 0.0;
for (int i = 0; i < 50; i++)
sum += random.nextDouble();

I tSystem-out .println("average = + sum/5);
1

1
4.3 import java.util.Random;

public class Problem0403

{ public static void main(String[] args)

{ Random random = new Random();
float x = random.nextFloat();
System.out.println("x= + x);'I

int n = (int)Math.floor(99*~+2);
System.out.println("n= + n);
int sum = 0;
for (int i = 1; i <= n; i++)
sum += i;

int form = n*(n+l)/2;
'ISystem.out.println("sum= + sum);

System.out .println('In* (n+l) /2 = + form);
1

1
4.4 import java.util.Random;

import java.lang.Math;

public class Problem0410

{ public static void main(String[] args)

{ Random random = new Random();
float x = random.nextFloat();

I tSystem.out.println("x= + x);
int n = Math.round(99997*x + 2);
boolean isprime = (n%2 ! = 0);
int d = 3;
double sqrtn = Math.sqrt(n);
while (isprime && d <= sqrtn)
{ if (n%d++ == 0) isprime = false;
d += 2;

1
if (isprime) System.out.println(n + is prime.") ;
else System.out.println(n + is not. prime.");

1
1

88 ITERATION [CHAP. 4

4.5 As the following program shows, the Babbage function actually generates 40 prime numbers before
hitting the first composite (non-prime) number:
public class Problem0404

{ public static void main(String[] args)

{ boolean isprime;
for (int x = 0; x < 50; x++)
{ int y = X * X + x + 41;
System.out.print("\t"+ x + "\t" + y);
int d = 2;
do isprime = (y%d++ ! = 0);
while (isprime && d c y);
if (isprime) S y s t e m . o u t . p r i n t l n (" \ t i s prime.") ;
else System.out.println("\tis not prime.") ;

I
I

I

4.6 public class Problem0405

{ public static void main(String[] args)
{ System.out.print(0);
int fibO = 0;
int fibl = 1;
for (int fib2 = 1 ; fib2 < 1000; fib2 = fibl + fib0)
{ fibO = fibl;
fibl = fib2;
System.out.print(", I' + fibl);

I
I

I
4.7 import java.util.Random;

public class Problem0407

{ public static void main(String[] args)

{ Random random = new Random();
float x = random.nextFloat();
System.out.println("x= + x);
int n = (int)Math.floor(99*~+2);
System.out.println("n= + n);I '

int sum = 0;
for (int i = 1; i <= n; i++)
sum += i*i;

int form = n* (n+l) * (2*n+l)/6;
lrSystem.out.println("sum= + sum);

System.out.println("n*(n+l)*(2*n+l)/6
= I ' + form);
I

1
4.8 import java.util.Random;

public class Problem0408

{ public static void main(String[] args)

{ Random random = new Random();
float x = random.nextFloat();
System.out .println(I1x = + x);I'

int n = (int)Math.floor(99*~+2);
System.out.println("n= + n);
int sum = 0;
for (int i = 1; i <= n; i++)
sum += i*i*i;

int form = n*n* (n+l) * (n+l) /4;
System.out.println("sum = + sum);

I 'System.out .println("n*n* (n+l) * (n+l) /4 = + form);
1

1

Chapter 5

A method is a sequence of declarations and executable statements encapsulated together like
an independent mini-program. In other programming languages, methods are called jimctions,
procedures, subroutines, and subprograms.

In Java, every executable statement must be within some method. Consequently, the methods
are where the action is. Programmers design object-oriented programs by deciding first what
specific actions have to be performed and what kinds of objects should perform them.

5.1 SIMPLE EXAMPLES

EXAMPLE 5.1 The cube () Method

This program tests a method named cube () that returns the cube of the integer passed to it:
public class TestCube

{ public static void main(String[] args)

{ for (int i = 0; i < 6; i++)
I’System. out. println (i + \ t” + cube(i));

1

static int cube(int n)

{ return n*n*n;

1
Here is its output:

0 0
1 1

2 8
3 2 7
4 6 4
5 125

The main () method contains a for loop which invokes the println () method 6 times. That
method invokes the cube () method, passing the value of its argument i to its parameter n. So, for
example, on the third iteration, i = 2, so the variable n is initialized to 2 inside the cube () method.
It then computes the value 8 from the expression n*n*n and returns it to the println () method
which prints it.

EXAMPLE 5.2 The min() Method

This program tests a method named min () that returns the minimum of its two integer arguments:
import java.util.Random;

public class TestMin

{ public static void main(String[] args)

{ Random random = new Random();

89

90 METHODS [CHAP. 5

for (int i = 0; i < 5; i++)
{ float x = random.nextFloat();
int m = Math.round(lOO*x);
x = random.nextFloat();
int n = Math.round(lOO*x);
int y = min(m, n);

I ! , I!System.out.println("min("+ m + + n + ") = ' I + Y);
I

1
static int min(int x, int y)

{ if (x < y) return x;
else return y;

I
1

Here is a sample run:
min(l6, 18) = 16
min(83, 30) = 30
min(68, 96) = 68
min(17/ 73) = 17
min(72, 26) = 26

The random. nextFloat () method returns a float value in the range 0.0 to 1.0.The expres-
sion Math.round (lOO*x) expands that value to the range 0.0 to 100.0 and then invokes the
Math. round () method to produce an integer in the range 0 to 100. So the variables m and n are
initialized with random integers in that range. They are then passed to the min () method which returns
the smaller value, as the test run verifies.

5.2 LOCAL VARIABLES

A local variable is a variable that is declared in a method. They can be used only within that
method, and they cease to exist when the method finishes its execution.

In Example 5.1, the variable i is local to main () and the parameter n is local to cube () .
In Example 5.2, the variables random,i, x, m, n, and y are local to main () ,and the parame-
ters x and y are local to min () . Note that the localization of variables allows you to use the
same name for different variables in the same program. The variable y that is local to main ()

is different and completely independent of the variable y that is local to min () .

EXAMPLE 5.3 Implementing the Factorial Function

This program tests a method named f () that implements the factorial function (see Example 4.9 on
page 73). The method has one local variable: the variable f of type long.

public class TestFactorial

{ public static void main(String[] args)

{ for (int i = 0; i < 9; i++)
' I)System.out.println("f("+ i + = 'I + f(i));

1
static long f(int n)

{ long f = 1;
while (n > 1)

f * = n--;
return f;

1
1

CHAP. 51 METHODS 91

Here is the output:
f(0) = 1
f(1) = 1
f(2) = 2
f (3) = 6
f (4) = 2 4
f (5) = 120
f (6) = 7 2 0
f (7) = 5040
f(8) = 40320

~~

The for loop invokes the f () method 9 times. For example, when i = 5, the expression f (i)

invokes f () passing 5 to its parameter n.Inside the method, the local variable f is initialized to 1 and
then successively multiplied by 5,4, 3, and 2, changing its value to 5, 20, 60, and 120 before the while
loop stops. Then its current value (120) is returned to the println () method which prints it.

EXAMPLE 5.4 Implementing the Permutation Function

This program tests a method p (n, k) that returns the number of permutations of size k from a set
of size n.That number is defined to be

n

p h k) = n i = (n - k + l) (n - k + 2) * * * (n - 2) (n - I) (n)
i = n - k + 1

For example, p(8 ,6)would be p(n,k)with n = 8 and k = 6, which is

8

p (8 , 6) = n i = (3)(4)(5)(6)(7)(8) = 20160
i = 3

That means that if you have 8 different things (e.g. ,the letters A, B, C, D, E, F, G, and H), then there are
20,160 different sequences of 6 of those things (e .g . , the sequences BGEADH).

public class Testpermutation

{ public static void main(String[] args)

{ for (int i = 0; i < 9 ; i++)
{ for (int j = 0; j <= i; j + +)

System.out.print(p(i,j) + I'\t'I);
System.out.println();

1
1
static long p(int n, int k)

{ long p = 1;

for (int i = 0; i < k; i++)
p *= n--;

return p;
1

1
The output is shown at the top of the next page.
The main () method uses a pair of nested for loops to print the triangle of numbers. For example,

when i = 5 , the inner j loop iterates 6 times, with j = 0, 1, 2, 3, 4, and 5. For those arguments, the
p () method returns 1, 5, 20, 60, 120, and 120, which are printed on the sixth line of the triangle.

The p () method computes permutations the same way that the f () method computes factorials.
For example, when i = 5 and j = 3, the invocation p (i ,j) initializes the local variables n = 5, k
= 3, and p = 1. Then its for loop iterates k = 3 times, multiplying p by 5 , 4, and 3, changing its
value to 5 , 20, and 60 which is returned to the println () method.

92 METHODS [CHAP. 5

1

2 2
3 6 6
4 1 2 2 4 2 4
5 2 0 6 0 1 2 0 120
6 3 0 1 2 0 3 6 0 7 2 0 7 2 0
7 42 2 1 0 840 2520 5040 5040
8 56 336 1 6 8 0 6720 20160 40320 40320

5.3 METHODS OFTEN INVOKE OTHER METHODS

We have already seen examples of methods that invoke other methods. In Example 5.1 on
page 89, the main () method invokes the println () , which then invokes the cube ()

method.

EXAMPLE 5.5 Using the Factorial Method to Implement the Permutation Method

This example is nearly identical to Example 5.4. The only difference is that here the p () method
invokes the factorial method f () to compute permutations. This implementation is based upon the
identity

-- 2) (n- l) (n) = 1 . 2 . 3 * * * (nl) (n) - n!p (n , k) = (n- k + l) (n - k + 2) * * . (n -
1 . 2 . 3 . . . (n - k - l) (n - k) (n - k) !

For example,p(7,3) = 5 .6 -7= (1.2.3.4.5.6.7)/(1.2.3.4)= 7!/4!. This is not a very efficient algorithm
for computing permutations, but it is correct.

public class Testpermutation

{ public static void main(String[] args)

{ for (int i = 0; i < 9; i++)
{ for (int j = 0; j <= i; j + +)

System.out.print(p(i, j) + “\t”);
System.out.println();

1

static long p(int n, int k)

{ return f (n)/ f (n-k);
1
static long f (int n)

{ long f = 1;
while (n > 1)

f *= n--;
return f ;

1
1

The output is identical to that in Example 5.4.

EXAMPLE 5.6 Computing Combinations

The number of combinations of size k from a set of size n (often pronounced “n choose k”) is the
number is defined to be

93 CHAP. 51 METHODS

For example, c(8,3) would be c(n,k)with n = 8 and k = 3, which is

Note that, like the permutation function p(n,k) ,the combination function c(n,k)is a product of k factors.
This implementation of the combination function is based upon the identity

For example, c(8,3) =p(8,3)/3!= 336/6 = 56.
public class Testcombination

{ public static void main(String[] args)

{ for (int i = 0; i < 9 ; i++)
{ for (int j = 0; j <= i; j++)

System.out.print(c(i,j) + "\t");
System.out.println();

1
1
static long c(int n, int k)

{ return p (n , k) / f (k) ;
1
static long f(int n)

{ long f = 1;
while (n > 1)

f *= n--;
return f;

static long p(int n, int k)

{ long p = 1;

f o r (int i = 0; i .c k; i++)
p *= n--;

return p;

1

1
The output is
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 2 0 15 6 1
1 7 2 1 35 35 21 7 1
1 8 2 8 56 70 5 6 2 8 8 1

This triangle of numbers is known as Pascal's Triangle.

5.4 METHODS THAT INVOKE THEMSELVES

A method that invokes itself is called recursive and the resulting process is called recursion. Some
fundamental processes are naturally recursive.

94 METHODS [CHAP. 5

EXAMPLE 5.7 A Recursive Implementation of the Factorial Function

The factorial function can be defined recursively as

1 i f n = O
n! =

n . (n-l) ! i f n > 0

For example, 5 ! = 120 = 5.24 = 5.4!. This leads to the following implementation:
public class TestFactorial

{ public static void main(String[] args)

{ for (int i = 0; i < 9; i++)
' I)System.out.println 'If('' + i + = 'I + f(i));

try { System.in.read) ;)

catch (Exception e) }

1

static long f(int n)

{ if (n < 2) return 1;
return n*f (n-1) ;

1
1

The output is the same as in Example 5.3.

A recursive definition has two essential parts: its basis, which defines the function for the
first one or few values, and its recurrence relation, which defines the nth value in terms of
previous values. In Example 5.7, the basis is O! = 1 , and the recurrence relation is n! = n.(n-l)!.

Recursive methods generally should be used only when they are natural implementations of
recursive functions and are significantly simpler than the corresponding iterative implementa-
tion.

The French mathematician Blaise Pascal (1623-62) discovered that when the coefficients in the
polynomial expansions of the binomials (1 +x)" are tabulated, the resulting triangle of numbers enjoys
some surprising properties. The first 9 rows of that triangle are

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 1 0 1 0 5 1
1 6 15 2 0 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1

You can see from Example 5.6 on page 92 that these numbers are the values of the combination
function c(n,k).

One of the more obvious properties of Pascal's Triangle is that each interior number is the
sum of two in the previous row. For example, 56 = 21 + 35. This is a recurrence relation that can
be used to define all the binomial coefficients:

l i f k = O o r k = n
c (n , k) =

c (n - 1, k) + c (n - 1, k - 1) if 0 < k < n

We implement this in the next example.

CHAP. 51 METHODS 95

EXAMPLE 5.8 Pascal's Triangle

This program tests a method that implements the recurrence relation from Pascal's Triangle,
public class PrintPascalsTriangle

{ public static void main(String[] args)

{ for (int i = 0; i < 9 ; i++)
{ for (int j = 0; j <= i; j + +)

System.out.print(c(i,j) + "\t");
System. out .println () ;

1
1

static long c(int n, int k)

{ if (k <=O I I k >= n) return 1;
return c(n-1,k) + c(n-1,k-1);

1
1

The output is the triangle shown above.

5.5 boolean METHODS

A boolean method is simply a method that returns type boolean.These methods are usually
invoked as boolean expressions used to control loops and conditionals.

EXAMPLE 5.9 The isprime () Method

This program tests a boolean method named isprime() that tests its arguments for primality. The
main () method prints those integers for which the isprime() returns true:

public class Testprimes

{ public static void main(String[] args)

{ for (int i = 0; i < 80; i++)
if (isPrime(i)) System.out.print(i + 'I ' I) ;

1

static boolean isPrime(int n)

{ if (n < 2) return false;
if (n == 2) return true;
if (n82 == 0) return false;
for (int d = 3; d < Math.sqrt(n); d += 2)
if (n%d == 0) return false;

return true;

1

1
The output is

2 3 5 7 9 11 13 17 1 9 23 25 29 31 37 41 43 47 49 53 5 9 61 67 71 73 79

These are the first 25 prime numbers.

5.6 void METHODS

A void method is a method whose return type is void.That means that the method does not
return a value.

96 METHODS [CHAP. 5

EXAMPLE 5.10 The is~eapyear() Method

This program tests two methods: the boolean method isLeapYear () and the void method
test () :

public class TestLeapYear

{ public static void main(String[] args)

{ test (1492) ;
test (1592) ;
test (1600) ;
test (1700) ;
test (1776) ;
test (1992) ;
test (1999) ;
test (2 0 0 0) ;

1

static boolean isLeapYear(int n)

{ if (n < 1582) return false;
if (n%400 == 0) return true;
if (n%100 == 0) return false;
if (n%4 == 0) return true;
return false;

I

static void test(int n)

{ if (isLeapYear(n)) System.out.println(n + is a leap near."); I'

else System.out.println(n + is not a leap near."); ' I

I

1

The output is
1492 is not a leap near.

1592 is a leap near.

1600 is a leap near.

1700 is not a leap near.

1776 is a leap near.

1992 is a leap near.

1999 is not a leap near.

2 0 0 0 is a leap near.

Note that the main () method itself is a void method.
To make your code more readable, you should use verb phrases for name of void methods,

predicate phrases for name of boolean methods, and noun phrases for name of all other
methods.

5.7 OVERLOADING

You can use the same name for different methods as long as they have different parameter
type lists. This practice is called overloading.

97 CHAP. 51 METHODS

EXAMPLE 5.11 Using One max () Method to Implement Another

This program tests two methods, both named max () . They have the distinct pa ameter type lis 3

(int,int) and (int,int,int):
import java.util.Random;

public class TestMax

{ public static void main(String[] args)

{ Random random = new Random();
for (int i = 0; i < 5; i++)
{ float x = random.nextFloat();
int a = Math.round(lOO*x);
x = random.nextFloat();
int b = Math.round(lOO*x);
x = random.nextFloat();
int c = Math.round(lOO*x);
System.out.println("max("+ a + " , " + b + + c' I , "

+ ") = 'I + max(a, b, c));
1

static int max(int m, int n)

{ if (m :> n) return m;
return n;

1

static int max(int nl, int n2, int n3)

{ return max(max(n1, n2), n3);
1

1
Here is the output from a sample run:
max(34,43,19) = 43
max(11,36,65) = 65
max(8,40,4€1)
= 46
max(67,44,4)= 67
max(58,48,19) = 58

A method's name and parameter type list is called its signature. For example, the signatures
of the two methods in Example 5.11 are max (int,int) and max (int,int,int). It is the
method's signature that the compiler uses to locate its definition when it encounters its invoca-
tion. That is why overloaded methods must have different signatures.

Review Questions

5.1 What is a local variable?

5.2 What is a recursive method?

5.3 What are the two parts required of every recursive method?
5.4 What is a void method?
5.5 What is overloading?

98 METHODS [CHAP. 5

Programming Problems

5.1 Write and test a method that implement the Babbage functionf(x) = x2+ x + 41 (see Example
4.1 on page 66):
static int f(int x)

5.2 Write and test a method that returns the maximum of two given integers:
static int max(int x, int y)

5.3 Write and test a method that returns the maximum of three given integers:
static int max(int x, int y , int z)

5.4 Write and test in the same program a method that returns the minimum and another method
that returns the maximum of four given integers:
static int min(int xl, int x2, int x3, int x4)
static int max(int XI, int x2, int x3, int x4)

5.5 Modify the test program in Example 5.3 on page 90 so that it attempts to print the values of
the factorial function from 0 to 25. Use the resulting output to see how big n can before
integer overflow occurs.

5.6 Write and test a method that implements the permutation function p (n,k) (see Example
5.4 on page 91) using a while loop (like the one used to implement the factorial function in
Example 5.3 on page 90) in place of the for loop.

5.7 Write and test a method that implements the combination function c (n ,k) (see Example
5.6 on page 92) using the following equivalent definition

n!
k ! (n- k)!c (n , k) = -

Here n! means the value of the factorial functionf(n) (see Example 5.3 on page 90). Have
your program print PascaZS Triangle, like this:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 1 0 1 0 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1

5.8 Write and test a method that implements the combination function c (n ,k) (see Example
5.6 on page 92) using alternate multiplication and division. For example, c(n,k) would be
computed by dividing 8 by 1 and then multiplying by 7 and then dividing by 2 and then mul-
tiplying by 6 and then dividing by 3.

5.9 The largest value of c(n,k) for any n is where k = n/2. For example, c(8,4) = 70 while all the
other c(8,k)2 56. So by evaluating c (n,k/2) ,you can tell whether your implementation of
the combination function would compute the entire nth row of Pascal’s triangle correctly
without suffering from integer overflow. Do that for both implementations (Example 5.7 and
Example 5.8) to see which gives better results.

5.10 Write and test the following method that implements the power function:
static double pow(doub1e x, int n)

99 CHAP. 51 METHODS

This method returns the value of x raised to the power n.For example POW (2 .o , -3)
would return

For each value of pow(x, n) that you print, also print the value of Math.pow (x,n) to
check your results.

5.11 Write and test the following method that implements the gcd function:
static long gcd(1ong m, long n)

This returns the greatest common divisor of m and n.(See Example 4.8 on page 72.)

5.12 Write and test the following method that implements the lcm function:
static long lcm(1ong m, long n)

This returns the least common multiple of m and n.For example Icm (2 4 ,40) should
return 120 because it is the smallest number common to the set { 24, 48, 72, 96, 120, 144, ...}
of multiples of 24 and the set (40, 80, 120, 160, ...} of multiples of 40. Use your gcd ()
method from Problem 5.11 with the formula

5.13 Write and test the following method that returns largest short integer that is less than or
equal to the float passed to it:

static short floor(f1oat x)

For example, floor (2 .7 1 82 8 would return 2, and floor (-3 .3) would return -4. Use
the Math. f l o o r () method to check your test results.

5.14 Write and test the following method that returns digit number k of the positive integer n:
static int digit(1ong n, int k)

For example, digit (8 6 4 2 1,3) would return 6, and digit (8 6 4 2 1,7) would return 0.

5.15 Write and test the following method that implements the Fibonacci function recursively :
static long fib(int n)

(See Example 4.5 on page 69.)

5.16 Implement the gcd function (see Problem 5.11) recursively. Have your test program invoke
both the iterative and the recursive implementations so you can check your results.

5.17 Implement the power function (see Problem 5.10) recursively. Have your test program also
invoke the Math .POW () method to check your results.

5.18 Write and test the following recursive method that returns the nth triangular number:
static long t(int n)

The triangular numbers are 0, 1,3,6, 10, 15,21,28,Note that t(n) = t(n-1) + n for n > 1.

5.19 Write and test the following recursive method that returns the nth square number:
static long s(int n)

The square numbers are 0, 1, 4, 9, 16,25, 36, Note that s(n) = s(n-1) + 2n - 1 for n > 1.
5.20 Write and test the following recursive method that returns the nth Catalan number:

static long c(int n)

The Catalan numbers are 1, 1, 2, 5, 14,42, 132,429, Their recurrence relation is

n-1

c (n) = C c(i).c (n - 1 - i) = ~(0).c(n- 1) + c (1) . c (n - 2) + + c (n - 2) . c(1) + c (n - 1) a c(O)
i = O

100 METHODS [CHAP. 5

You can check your results by using the explicit formula
(2 n) !

c (n) =
n ! . (n + l) !

For example, 43) = 6!/(3!-4!)= 720/144 = 5. The Catalan numbers provide the solution to
several diverse counting problems. One of those problems is to determine the number of dif-
ferent valid nestings of a set of n pairs of parentheses. For example, a set of 3 pairs of paren-
theses can be nested in 43) = 5 ways: () ((1, ((()) , (()) () , (() ()) ,and ((() 1 .

5.21 Implement the Babbage function (see Problem 5.1) recursively. Have your test program
invoke both the explicit and the recursive implementations to check your results.

5.22 Write and test the following boolean method that determines whether the given number is a
triangular number (see Problem 5.18):

static boolean isTriangular(1ong n)

Test this method by using it to identify all the triangular numbers less than 100.

5.23 Write and test the following boolean method that determines whether the given number is a
square number (see Problem 5.19):

static boolean isTriangular(1ong n)

Test this method by using it to identify all the square numbers less than 100.

Answers to Review Questions

5.1 A local variable is a variable that is declared within a method, as opposed to a field which is declared
in a class. For example, the variable i is local to main () in Example 5.1 on page 89, and the ref-
erence random is a local variable to main () in Example 5.2.

5.2 A recursive method is a method that invokes itself. For example, the method c () in Example 5.8 on
page 95 is recursive. The statement
return c(n-1,k) + c(n-1,k-1);

is within the method c () and it invokes c () twice.

5.3 Every recursive method must have a basis and a recurrence relation. The basis specifies the method's
actions for one or more specific arguments. The recurrence specifies the method's actions by invoking
the same method on smaller arguments.

5.4 A void method is one that does not return a value. The keyword void is used in place of a type
for its return type.

5.5 Overloading refers to the occurrence of more than one method with the same name. This is legal pro-
vided that no two methods have the same name and the same parameter type lists.

Solutions to Programming Problems

5.1 public class Problem0501
{ public static void main(String[] args)

{ for (int i = 0 ; i < 10; i++)
System.out.println(i + "\t" + f (i));

1

static int f(int x)

{ return x*x + x + 41;
1

1

CHAP. 51 METHODS 101

5.2 import java.util.Random;
public class Example0502
{ public static void main(String[] args)

{ Random random = new Random();
for (int i = 0; i c 5; i++)
{ float x = random.nextFloat();
int m = Math.round(lOO*x);
x = random.nextFloat();
int n = Math.round(lOO*x);
int y = max(m, n);

1
System.out.println("max(" + m + ' I , I t + n + ") = II + Y);

1

static int max(int x, int y)
{ if (x c y) return x;
else return y;

1
1

5.3 import java.util.Random;
public class Problem0503
{ public static void main(String[] args)

{ Random random = new Random();
for (int i = 0; i c 5; i++)
{ float x = random.nextFloat();
int nl = Math.round(lOO*x);
x = random.nextFloat();
int n2 = Math.round(lOO*x);
x = random.nextFloat();
int n3 = Math.round(lOO*x);
int y = max(n1, n2, n3);
System.out.println("max(" + nl + ' I ,

+ ") = I t + y) ;
I t + n2 + ' I , I' + n3

1
1

static int max(int x, int y, int z)
{ int m = x;
if (y > m) m = y;
if (z > m) m = z;
return m;

k
1

5.4 import java.util.Random;
public class Problem0504
{ public static void main(String[] args)

{ Random random = new Random();
for (int i = 0; i < 5; i++)
{ float x = random.nextFloat();
int nl = Math.round(lOO*x);
x = random.nextFloat();
int n2 = Math.round(lOO*x);
x = random.nextFloat();
int n3 = Math.round(lOO*x);
x = random.nextFloat();
int n4 = Math.round(lOO*x);
System.out.println("min(" + nl + 1 1 , 'I + n2 + ' I ,

System.out.println("max("+ nl + @ I r I' + n2 + ' I ,

+ I I , + n4 + I f) = It + min(n1, n2, n3, n4));

+ [I , 'I + n4 + I f) = I t + max(n1, n2, n3, n4));

'I

I'

+ n3

+ n3

1
1

102 METHODS [CHAP. 5

static int min(int xl, int x2, int x3, int x4)

{ int m = xl;
if (x2 c m) m = x2;
if (x3 c m) m = x3;
if (x4 < m) m = x4;
return m;

I

static int max(int xl, int x2, int x3, int x4)

{ int m = xl;
if (x2 > m) m = x2;
if (x3 > m) m = x3;
if (x4 > m) m = x4;
return m;

I

5.5 By replacing 1 0 with 25 in the program in Example 5.3 on page 90, we get the output

f(0) = 1

f(1) = 1

f(2) = 2

f(3) = 6

f(4) = 24

f(5) = 120

f(6) = 720

f(7) = 5040

f (8) = 40320

f(9) = 362880

f (10) = 3628800

f(11) = 39916800

f (12) = 479001600

f(13) = 6227020800

f(14) = 87178291200

f (15) = 1307674368000
f(16) = 20922789888000
f(17) = 355687428096000
f(18) = 6402373705728000
f(19) = 121645100408832000
f(20) = 2432902008176640000
f(21) = -4249290049419214848
f(22) = -1250660718674968576
f(23) = 8128291617894825984
f(24) = -7835185981329244160

From this, we can see that integer ovefflow first occurs with f (2 1)
5.6 public class Problem0506

{ public static void main(String[] args)
{ for (int i = 0; i < 9; i++)

{ for (int j = 0; j <= i; j++)
System.out.print(p(i, j) + "\t");

System.out.println();

I

I

static long p(int n, int k)

{ long p = 1;
while (k--> 0)
p *= n--;

return p;

I

I

CHAP. 51 METHODS 103

5.7 public class Problem0507

{ public static void main(String[] args)

{ for (int i = 0; i < 9; i++)
{ for (int j = 0; j <= i; j++)

System.out.print(c(i,j) + "\t");
System.out.println();

1
1

static long c(int n, int k)

{ return f(n)/ (f(k) *f (n-k)) ;
1

static long f(int n)

{ long f = 1;
while (n > 1)

f *= n--;
return f;

1
1

5.8 public class Problem0508
{ public static void main(String[] args)

{ for (int i = 0; i < 9; i-t+)
{ for (int j = 0; j <= i Is j++)

System.out.print(c(i,j) + "\t");
System.out.println();

1
1

static long c(int n, int k)

{ long c = 1;
for (int j = 1; j <= k; j++)

c / = j;
1
return c;

1
1

5.9 This test driver shows that the implementation c2 () from Example 5.8 is much better than the
implementation cl () from Example 5.7. The cl () version computes c(n,n/2)correctly only for
0 Irz I20; the c2 () version computes c(rz,rz/2)correctly for 0 In I61.
public class Problem0509

{ public static void main(String[] args)

{ for (int i = 0; i < 64; i++)
System.out.println("\t" + i + " \ t . " + cl(i, i/2) + "\t"

+ c2(i, i/2));
1

static long cl(int n, int k)

{ return f(n)/ (f (k)*f(n-k)) ;
1

static long f(int n)

{ long f = 1;
while (n > 1)

f *= n--;
return f;

1

104 METHODS [CHAP. 5

static long c2(int n, int k)
{ long c = 1;
for (int j =
{ c *= n--;

1; j <= k; j + +)

c / = j;
1
return c;

1
1

5.10 public class Problem0510
{ public static void main(String[J args)

{ for (int n = -3; n < 7; n++)
System.out.println(pow(2.0,n));

3

static double pow(doub1e x, int n)
{ double p = 1.0;
for (int i = 0; i < n; i++)

p *= x;
for (int i = 0; i < -n; i++)
p / = x;

return p;
3

3
5.11 public class Problem0511

{ public static void main(String[] args)
{ Random random = new Random();
for (int i = 0 ; i < 9; i++)
{ float x = random.nextFloat();
int m = Math.round(lOO*x);
x = random.nextFloat();
int n = Math.round(lOO*x);
int g = gcd(m, n);
Systern.out.println("gcd("+ m + I f , " + n +

+ \t" + m + " / ' I + g + = I I + m/g
' I) = 'I + g

+ I' \t" + n + " / I 1 + g + I' = + n/g);
1

J

static int gcd(int m, int n)
f while (m > 0)

{ if (m < n)
{ int temp = m;
m = n;
n = temp;

1
m -= n;

3
return n;

3
1

CHAP. 51 METHODS 105

5.12 import java.util.Random;
public class Problem0512

{ public static void main(String[] args)

{ Random random = new Random();
for (int i = 0; i < 9; i++)
{ float x = random.nextFloat();
int m = Math.round(lOO*x);
x = random.nextFloat();
int n = Math.:round(lOO*x);
int y = lcm(m, n);

'ISystem.out.println("gcd("+ m + ' I , + n + ") = + Y
+ \t" + y + " / I 1 + m + = I1 + y/m

' I / ' '+ \t" + y + + n + = + y/n);
1
try { System.in.read(); }

catch (Exception e) { }

1

static int lcm(int m, int n)

{ return m*n/gcd(m,n) ;
1

static int gcd(int m, int n)

{ while (m > 0)

{ .if (m < n)
{ int temp = m;
m = n;
n = temp;

1
m -= n;

1
return n;

1
1

5.13 import java.uti1 .Random;
public class Problem0513

{ public static void main(String[] args)

{ Random random = new Random() ;

float x = random.nextFloat() ;

System.out.println("x= " + x);
x =I ((float)6.5536E4)*(x- 0.5);

'I
I'System.out.println("x= + x + "\tfloor(x) =

+ floor(x));
I'System.out.println("x= + x + "\tMath.floor(x) = I'

+ Math. floor (x)) ;
try { System.in.read(); 1
catch (Exception e) {I

1

106 METHODS [CHAP. 5

static short floor (float x)

{ short min = Short.MIN-VALUE;
short max = Short.MAX-VALUE;
if (x c min) return min;

if (x >= max) return max;
short mid = 0;
int width = 0;
short i = 0;
do

{ mid = (short) ((rnin + (int)max)/2);
width = max - min;
System.out.println(i+++ "\tl'+ min + "\t" + mid

It I'+ \t" + max + \t" + width);
if (mid c= x && x c mid + 1) return mid;
if (x c mid) max = mid;
else min = mid;

} while (width > 1);
return mid;

1
1

5.14 public class Problem0514
{ public static void main(String[] args)

{ Random random = new Random();
float x = random.nextFloat();
long n = Math.round(100000000OOL*x);

'ISystem.out.println("digit9 of 'I + n + is I' + digit(n,9));
'ISystem.out.println("digit8 of " + n + is ' I + digit(n,8));
'ISystem.out.println("digit7 of 'I + n + is 'I + digit(n,7));
'ISystem.out.println("digit2 of 'I + n + is I ' + digit(n,2));

I'System.out.println("digit1 of + n + I' is 'I + digit(n,l));
I' 'IS y s t e m . o u t . p r i n t l n (" d i g i t 0 of + n + is 'I + digit(n,O)) ;

1

static int digit(1ong n, int k)

{ for (int i = 0; i c k; i++)

n / = 10;
return (int)n%lO;

1
1

5.15 This prints the first 17 Fibonacci numbers, like Example 4.5 on page 69:
public class Problem0515

{ public static void main(String[] args)

{ f o r (int i = 0; i c 17; i++)
System.out.print(fib(i)+ 'I ") ;
try { System.in.read();}
catch (Exception e) { }

1

static long fib(int n)

{ if (n < 2) return n;
return fib(n-1) + fib(n-2);

1
1

5.16 import java. util .Random;
public class Problem0516

{ public static void main(String[] args)

{ Random random = new Random();

CHAP. 51 METHODS 107

for (int i = 0; i < 9; i++)
{ float x = random.nextFloat();
long m = Math.round(lOO*x);
.x = random.nextFloat() ;
long n = Math.round(lOO*x);
long g = gcdl(m, n);
System.out.println("gcd("+ m + ' I , I' + n + ' I)

+ \t" + m + " / I 1 + g + = l1 + m/g
+ I1 \t" + + 1 1 / 1 1 + + 11 = II

+ n/g);
g = gcd2(m, n);

= I' + g

1

System.out.println("gcd("+ m + ' I , I' + n +
+ I ' \t" + m + " / I 1 + g + I I = + m/g

+ n/g);+ I 1 \t" + + " / " + + I 1 = 11

") = 'I + g

1

static long gcdl(1ong m, long n)
{ while (m > 0)

{ if (m < n)
{ long temp = m;
m = n;
n = temp;

1
m -= n;

1
return n;

1

static long gcd2 (long m, long n)
{ if (m < 1) return n;
if (m < n) return gcd2 (n, m);
return gcd2 (m-n, n);

1
1

5.17
{ public static void main (String [3 args)
public class Problem0517

{ for (int n = -3; n < 7; n++)
System.out.println("\t" + n + "\t"+ pow(2.0, n)

+ "\t" + Math.pow(2.0,n));
1

static double pow(doub1e x, int n)
{ if (n == 0) return 1.0;
if (n .c 0) return pow(l.O/x, - n) ;
return x*pow(x, n-1);

1
5.18

(public static void main(String[] args)
public class Problem0518

(f o r (int i = 0; i < 10; i++)

try (System.in.read();)
catch (Exception e) {)

System.out.println(i + ''\tl' + t(i));

1

static long t(int n)
(if (n < 2) return n;
return t(n-1) + n;

108 METHODS [CHAP. 5

5.19 public class Problem0519
{ public static void main(String[] args)

{ for (int i = 0; i < 200; i++)
if (issquare(i)) System.out.println(i + is a square.");

1

static Soolean isSquare(1ong n)

{ long sum = 0;
long i = 1;
while (sum < n)
{ sum += i;
1 += 2 ;

1
return (sum == n);

1
1

5.20 public class Problem0520
{ public static void main(String[] args)

{ for (int i = 0 ; i < 10; i++)
' I)System.out.println("\tc("+ i + = I' + c(i)

+ 11 = I 1 + f(i-1);
1

static long c(int n)

{ if (n < 2) return 1;
long c = 0;
f o r (int i=O; i < n; i++)
c += c(i) *c(n-i-1) ;

return c;

1

static long f(int n)

{ return c(2*n,n) / (n+l);
1

static long c(int n, int k)

{ long c = 1;
for (int j = 1; j <= k; j + +)
{ c *= n--;
c / = j;

1
return c;

1
1

5.21 public class Problem0521
{ public static void main(String[] args)

{ for (int i = 0; i < 10; i++)
' I) = I'System.out.println("\tb(" + i + + b(i)

+ I1 = I1 + f(i));
1

static long b(int n)

{ if (n < 1) return 41;
return b(n-1) + 2*n;

1

static long f(int n)

{ return n*n + n + 41;
1

1

CHAP. 51 METHODS 109

5.22 public class Problem0522
{ public static void main(String[] args)

{ for (int i = 0; i < 100; i++)
if (isTriangular (i))

'ISystem.out.println(i+ is triangular. ' I) ;

1

static boolean isTriangular(1ong n)

{ long sum = 0;
long i = 1;
while (sum < n)
{ sum += i;
++i ;

>
return (sum == n);

1
1

5.23 public class Problem0523
{ public static void main(String[] args)

{ for (int i = 0; i < 200; i++)
if (isSquare(i)) System.out.print:ln(i + is square I'

try { System.in.read();}
ca.tch (Exception e) { >

1

static boolean isSquare(1ong n)

{ long sum = 0;
long i = 1;
while (sum < n)
{ sum += i;

i += 2;
1
return (sum == n);

1
1

Chapter 6

Classes

6.1 CLASSES

A Java program is a collection of one or more text files that contains Java classes, at least
one of which is public and contains a method named main () that has this form:

public static void main(String[] args)

{ / / program statements go here
1

The program is compiled and run at the command line by executing the commands
j avac Xxxx.j ava

j ava Xxxx

where xxxx is the name of the class that contains the main () method to be executed, and
XXXX.java is the name of the file that contains that class. For example, the following two
commands would compile and run the program shown in Example 4.13 on page 78:

javac Example0413.java

java Example0413

A Java class is a specific category of objects, similar to a Java type (e.g., short), which is a
specific category of variables. Just as a Java type specifies the range of values (e.g., -32768 to
32767 for sho r t) that variables of that type can have, a Java class specifies the range of data
that objects of that class can have. The data that an object has is called it state.

There are three essential features that distinguish classes from types in Java:
1. classes can be defined by the programmer;

2. class objects can contain variables, including references to other objects;

3. classes can contain methods which give their objects the ability to act.

There are also other important features of classes, such as inheritance and packages, that make
the Java language so powerful.

Object-oriented programming means writing programs that define classes whose methods
carry out the program’s instructions. The programs are designed by deciding what objects will be
used and what actions they will perform. The classes for the program are then defined to satisfy
those decisions. Object-oriented programs are designed by deciding first what classes will be
needed and then defining methods for those classes that solve the problem.

Suppose you need to write a program about plane geometry. In that case, the objects are
pretty obvious: points, lines, triangles, circles, etc. We can “abstract” these geometric elements
by defining classes whose objects will represent them. Example 6.1 abstracts the idea of a point
in the cartesian plane and Example 6.2 on page 114 abstracts the idea of a line. We know that
points are used to define lines, so we use the Point class to define our Line class. This
“reusing” of software is an essential feature of object-oriented programming.

110

CHAP. 61 CLASSES 111

EXAMPLE6.1 A Point Class

This class uses its main () method as a test driver:
public class Point

{ / / Objects represent points in the cartesian plane

private double x, y; / / the point's coordinates

public Point(doub1e a, double b)

{ x = a ;

y = b;

1

public double x()

{ return x;
1

public double y()

{ return y;
1

public boolean equals(Point p)

{ return. (x == p.x && y == p.y);
1

public String tostring()

{ return new String("(" + x + + y +.

1

public static void main(String[] args)

{ Point p = new Point(2,3);
System.out.println("p.x()= + p.x() +I'

System.out .println("p = + p);I 1

Point q = new Point(7,4);
System.out.println("q= + 9) ;I'

if (q.equals(p)) System.out.println("qequals p") ;
else System.out.println("q does not eqi a1 p");

q = new Point(2,3);
System.out.println("q= + 9);I'

if (q.equals(p)) System.out.println("qequals p") ;
else System.out.println("q does not eqi a1 p") ;

1
1

The output is
p.xo = 2.0, p.y() = 3.0
p = (2.0, 3.0)
q = (7.0,4.0)
q does not equal p

q = (2.0,3.0)
U euuals P

The class has two fields, x and y,whose values are the coordinates of the point that the object
represents. The first line in the main () method is

Point p = new Point(2,3);

112 CLASSES [CHAP. 6

This does three things. First, it declares p to be a reference to Point
objects. Then it applies the new operator to create a Point object with P@-----b

values 2 and 3 for the fields x and y.Then it initializes the reference p Y13.01
.rj-.I
with this new object. You can visualize the result like the picture here. The Poin t

result is two things: the reference p and the object to which it refers. The
actual value of the variable is whatever information the operating system needs to access the object. Note
that, technically, objects do not have names. Instead, they have references. Nevertheless, it is common and
convenient to refer to the object as if the reference were its name, as in “the Point object p,” or more
simply, “the point p.”

The second line in main () invokes the two methods x () and y () to obtain the values of p’s
fields so that the print In () method can print the first line of output, confirming that the values of p s
fields really are 2.0 and 3.0. Note that three methods are invoked in this statement: x () , y () , and
println () .The first two are members of the Point class and are bound to the Point object p. The
println () method is a member of the System class and is bound to the System object out.
Every action in a Java program is performed by some method that is defined in some class.

The third line invokes the tostring () method. This is a special method in Java. In any class
XXXX,if this method’s definition conforms to the syntax

public String tostring()

then the method will be invoked whenever a reference to an object of that class is passed to the
println () method, as in

System.out.println(”p = + p);‘I

In other words, this statement is equivalent to
System.out.println(”p = + p.toString());I’

This is a nice shorthand feature that makes the code more readable, so it is usually a good idea to include
the tostring () method in each class you define.

The next two lines repeat the

representing the for the(7,4). q P B - q x I q - - - - q ~ ~previous steps point objectAfter
they execute, the situation looks Y p q
like this: Poin t Poin t

Next, the i f statement
invokes the equals () method
to determine whether the two objects are equal. Obviously, they are not equal. But the following statement

q = new Point(2,3);
does make them equal. After it p5-7zlexecutes, the situation looks like q - - - ~ ~

Poin t

lthe picture here. However, some-
thing subtle has occurred. The Poin t

new operator invoked the Point
class constructor which created a new object, and now q refers to that object. The fact is that this is a dif-
ferent object. It didn’t just change the fields of the other object; it created a new one. The old one is gone.
The bytes that it was occupying in memory have been returned to thefree store (also called the heap).
That means that those bytes can be used for another purpose; e.g., storage for another variable or object.

The last if statement confirms that these two objects are equal.
Note that equality does not imply identity. The two objects are still distinct: separate, but equal.

Java is different from some other modern programming languages (e.g., C and C++) because
of the way it disposes of “dead” objects:

Rule: an object exists only as long as it has a reference.

113 CHAP. 61 CLASSES

We saw this happen in Example 6.1. When the reference q was assigned to a new object, the old
object died. Unlike other programming languages, Java requires the operating system to take
responsibility for disposing of the old object properly and returning its memory storage to the
free store. This process has the technical name “garbage collection.” Programming languages
that do not require the operating system to do this leave the responsibility to the programmer.
The Java advantage is obvious: it leaves the programmer with less to worry about. There is no
risk of a “memory leak.” The disadvantage is that Java programs tend to run more slowly.

6.2 DECLARATIONS

The purpose of a declaration is to introduce an identifier to the compiler. It provides all the
information that the compiler needs in order to compile statements which use the identifier that is
being declared. In Java, all classes, fields, local variables, constructors, and methods must be
declared. (Afield is a variable that is declared as a member of a class; a local variable is declared
as a variable that is local to a constructor or method.)

The syntax for a simple class declaration is
modifiers class class-name

{ body
1

where the optional modifiers may be one or more of the three keywords {public,
abstract, final}, class-name is any valid identifier, and body is a sequence of declara-
tions of variables, constructors, and methods. For example, the Point class declared in
Example 6.1 contains two variable declarations (X and y), one constructor declaration
(Point ()), and six method declarations (x(1, y () , equals () , tostring () , translate (1 ,
and main ()).

The syntax for a simplefield is
modifiers type-name variable-name;

where the optional modifiers may be one or more of the seven keywords {static, final,
transient, volatile, public, protected, private), type-name is one of the eight
keywords {boolean, byte, char, short, i n t , long, float, double}, and
variable-name is any valid identifier. Several variables can be declared together, as x and y

are in Example 6.1.
The syntax for a simple local variable declaration is the same as that for a field declarations,

except that final is the only allowable modifier.
The syntax for a simple constructor declaration is
modifier c.1ass-name (parameter-1 is t)
{ body
1

where the optional modifier may be one of the three keywords {public, protected,
private}, class-name is the name of the class in which the constructor is declared, parame-
ter-list is a sequence of parameter declarations, and body is a sequence of declarations and
statements to be executed by the constructor after it creates the object. For example, the declara-
tion

public Point(doub1e a, double b)

{ x = a ;

y = b;

1

114 CLASSES [CHAP. 6

declares a constructor for the Point class in Example 6.1. The modifier is “public”,the
class-name is “Point”,the parameter-list is “double a, double b”, and the body is
“X = a; y = b;”. When the constructor is invoked, it creates a Point object and then assigns
the values 2 and 3 to its fields.

The syntax for a simple method declaration is
modifiers return -type method-name (parameter-1 ist)
{ body
1

where the optional modifiers may be one or more of the eight keywords {static,
abstract, final, native, synchronized, public, protected, private},

return-type is any class name or one of the nine keywords {void, boolean, byte, char,
short, int, long, float, double}, method-name is any valid identifier, parameter-list
is a sequence of parameter declarations, and body is a sequence of declarations and statements
to be executed by the method. For example, every Java program must include at least one class
that has a main () method, declared as

public static void main (String [3 args)
{
3

Here, the modifiers are “public static”, the class-or- type-name is “void”, the
method-name is “main”,and the parameter-list is “String args [I”.

Note that unlike methods, constructors have no return type.

EXAMPLE6.2 A Line Class

public class Line

{ / / Objects represent lines in the cartesian plane

private Point PO; / / a point on the line
private double m; / / the slope of the line

public Line(Point p, double s)

{ PO = p;
m = s;

3

public double slope()

{ return m;
3

public double yIntercept()

{ return (pO.y() - m*pO.x());
1

public boolean equals(Line line)

{ return (slope() == line.slope()

&& yIntercept() == line.yIntercept());
1

public String tostring()

I’ It{ return new String(”y = + (f1oat)m + “x +

+ (float) yIntercept ()) ;

1

115 CHAP. 61 CLASSES

public static void main (String [] args)
{ Point p = new Point (5,-4);
Line :Line1 = new Line(p, -2) ;
System.out.println("\nTheequation of the line 1 is I' + linel);
System.out.println("1ts slope is 'I + linel.slope()

+ and its y-intercept is + linel.yIntercept());
Line line2 = new Line(p,-1);
System.out .pr in t ln(" \nThe equation of the line 2 is I' + line2);
System.out.println("Itss lope is 'I + line2.slope()

+ I' and its y-intercept is I t + line2.yIntercept());
if (line2.equals(linel)) System.out.println("They are equal.");

else System.out.println("They are not equal.");

Point q = new Point(2,2);
line2 = new Line(q,-2) ;
System.out.println("\nTheequation of the line 2 is I' + line2);
System.out.println("Its slope is I' + line2.slopeO

'I+ and its y-intercept is 'I + line2.yIntercept());
if (line2.equals(linel))System.out.println("Theyare equal.");

else System.out.println("Theyare not equal.");

1
1

The output is
The equat.ion of the line 1 is y = - 2 . 0 ~ + 6.0
Its slope is -2.0 and its y-intercept is 6.0

The equation of the line 2 is y = - 1 . 0 ~+ 1.0
Its slope is -1.0 and its y-intercept is 1.0

They are not equal.

The equation of the line 2 is y = - 2 . 0 ~+ 6.0
Its slope is -2.0 and its y-intercept is 6.0

They are equal.

This program begins by creating two
objects: the Point object p and Line
object linel.The Point object has - I
two fields: x and y,both with type
double,with values 5 and -4. The Line
object also has two fields: PO which
references the Point object p,and m

L i n e
which has type double and value -2.

double

These represent a point po on the line and
the slope m of the line. After creating the line2 +--b

P o i n t

objects p and linel,the program tests
the tostring () , slope () , and
yIntercept() methods, similar to L i n e

Example 6.1 on page 111. (The y-intercept
b of a line is given by the formula

b = yo-m.xo,
where (xo,yo) is a point on the line and m is its slope.)

Then the program creates another Line object, line2,which refers to the same Point object
but has slope value -1.The tostring () method is invoked to print that line, and then the
equals () method is invoked to see that the two lines are not equal.

I16 CLASSES [CHAP. 6

The last part of the program creates
a second Point object and a third
Line object. It declares the new
reference variable q to refer to the new
Point object. and i t assigns the

I I
L

existing reference variable 1ine2 to
refer to the new Line object. ‘This
dereferences the previous Line object I yj-4.01

double 1
to which line2 referred, which kills
it. Now there are four objects, as shown
in this picture.

The last if statemen; invokes the
equals () method to discover that

line2 +

I?I[-1.01

P O W

double

b X r - - T T - !

y z t i] I
double 1

double 1

these two lines are equal. Note that this
equals () method tests whether the
two objects represent the same line, not
whether the objects themselves are the
same. This Line class allows differcnt
objects to represent the same line. That
design flaw is corrected in Example 6.8
on page 131.

The x () and y () methods in Example 6.1 and the slope () method in Example 6.2 are
called accessor methods because they simply provide public access to the objects’ private
fields. They are read-orzlv methods because they only allow the outside world to read what’s
inside. In contrast, read-write methods that allow the public to change the internal state of the
object are called mutator methods.

6.3 MODIFIERS

The following tables summarize the modifiers that can appear in the declarations of classes,
fields, local variables, constructors, and methods.

Class Modifiers

Meaning

final No subclasses can be declared. I
Constructor Modifiers

I Modifier 1 Meaning I
public It is accessible from all classes.

protected It is accessible only from within its own class and its subclasses.

private It is accessible only from within its own class.

117 CHAP. 61 CLASSES

Field Modifiers

I Modifier Meaning

pub1 ic It is accessible from all classes.

protected It is accessible only from within its own class and its subclasses.

private It is accessible only from within its own class.

static Only one value of the field exists for all instances of the class.

trans ient It is not part of the persistent state of an object.

volati1e It may be modified by asychronous threads.

final It must be initialized and cannot be changed.

Local Variable Modifiers

I Modifier I Meaning I
final I It must be initialized and cannot be changed. I

Method Modifiers

Modifier Meaning
~~

public It is accessible from all classes.

protected It is accessible only from within its own class and its subclasses.

private It is accessible only from within its own class.

abstract It has no body and belongs to an abstract class.

final No subclasses can override it.

static It is bound to the class itself instead of an instance of the class.

native Its body is implemented in another programming language.

synchronized It must be locked before a thread can invoke it.

The three access modifiers, public, protected, and private, are used to specify where
the declared entity (class, field, constructor, or method) can be used. If none of these is specified,
then the entity has package access, which means that it can be accessed from any class in the
same package.

The modifier static is used to specify that a method is a class method. Without it, the
method is an instance method. An instance method is a method that can be invoked only when
bound to an object of the class. That object is called the implicit argument of the method. For
example, the method x () in Example 6.1 on page 111 is an instance method. It is invoked in the
second statement in main () as p .x (1 . In that invocation, the method x () is bound to the
object p, so p is the implicit argument. A class method is a method that is invoked without being
bound to any specific object of the class. For example, the print () method in Example 6.1 is a
class method because it is declared to be static. It is invoked in the fourth statement in
main (as print (p, ql). Its two arguments, p and ql,are both explicit arguments.

The modifier final has three different meanings, depending upon which kind of entity it
modifies. If it modifies a class, it means that the class cannot have subclasses. (See Chapter 7.) If

118 CLASSES [CHAP. 6

it modifies a field or a local variable, it means that the variable must be initialized and cannot be
changed (i.e., it is a constant). If it modifies a method, it means that the method cannot be
overridden in any subclass.

6.4 CONSTRUCTORS

Classes can have three kinds of members: fields, methods, and constructors. Afield is a
variable that is declared as a member of a class. Its type may be any of the eight primitive types
(boolean, char, byte, short, int, long, float, double) or a reference to an object. A
method is a function that is used to perform some action for instances of the class. A constructor
is a special kind of function whose only purpose is to create the class’s objects. This is called
instantiating the class, and the objects are called instances of the class.

Class constructors are different from class methods in three distinct ways:
1. Constructors have the same name as the class itself.
2. Constructors have no return type.
3. Constructors are invoked by the new operator.

Every variable has a name and a type which are specified when the variable is declared. For
example, the declaration

int n;

declares a variable named n with type int.Similarly, the declaration

Point p;

declares the variable named p with type “reference to objects of the Point class.”

An object cannot live without a reference to it. So the reference must be declared before the
object can be created. The reference may be declared separately, as P is above. Then the objects
can be created, like this:

p = new Point(2,3);
Here, the new operator invokes the Point class constructor, passing the arguments 2 and 3 to
it, allowing it to create the Point object that represents the geometric point (2,3).

Alternatively, we can declare the reference and initialize it by invoking the class constructor
to create the new object at the same time, as we did in Example 6.1 on page 11 1:

Point p = new Point(2,3);
Every class has at least one constructor to instantiate it. If you do not declare any construc-

tors in your class, the compiler will automatically declare one with no arguments. This is called
the default constructor. (See Section 6.6 on page 122.) But you will usually want to declare your
own class constructors so that you can control how its objects are initialized.

In Example 6.1 on page 11 1, we declared the following constructor for the Point class:
public Point(doub1e a, double b)

{ x = a ;
y = b;

1
This simply initializes the two Point class fields x and y with the two values passed to it.

In Example 6.2 on page 114, we declared the following constructor for the Line class:
public Line(Point p, double s)
{ PO = p;
m = s;

1
This initializes the two Line class fields PO and m with the two values passed to it.

119 CHAP. 61 CLASSES

The next example adds two more constructors to the Line class. Since all constructors in
the same class must have the same name (viz., the name of the class itself), there must be some
other way for the compiler to be able to distinguish them. The only other way is for them to have
distin c t parameter 1ists.

Rule: The sequence of parameter types must be different .for each overloaded constructor or
method.

Recall (page 31) that “overloading” refers to having different constructors or different methods
with the same signature.

EXAMPLE 6.3 A L i n e Class with Three Constructors

public class Line

{ / / Objects represent lines in the cartesi.an plane

private Point PO; / / a point on the line
private double m; / / the slope of the line

public Line(Point pI double s)

{ PO = p;
m = s;

1

public Line(doub1e a, double b)

{ PO = new Point(0,b);
m = -b/a;

1

public double slope()

{ return m;
1

public double yIntercept0

{ return (~ 0 . ~ 0 - pO.xO*m);
I

public boolean equals(Line line)

{ return (slope() == line.slope()

&& yIntercept() == line.yIntercept());
I

public String tostring()

{ return new String(”y = + (f1oat)m + I I X +

+ (float) yIntercept ()) ;

I

120 CLASSES [CHAP. 6

public static void main(String[] args)

{ Point pl = new Point(5,-4);
Line linel = new Line(pl,-2);
System.out.println("The equation of the line 1 is + linel);
Point p2 = new Point(-l,2);
Line line2 = new Line(pl,p2);
System.out.println("The equation of the line 2 is I' + line2);
if (line2 .equals (linel)) System. out. println ("They are equal. 'I) ;
else System.out.println("Theyare not equal.");

Line line3 = new Line(3,6);
System.out.println("The equation of the line 3 is I' + line3);
if (line3.equals(linel)) System.out .pr in t ln("They are equal.");
else System.out.println("They are not equal.");

1
1

The output is
The equation of the line 1 is y = - 2 . 0 ~+ 6.0
The equation of the line 2 is y = - 1 . 0 ~ 1.0+
They are not equal.

+The equation of the line 3 is y = - 2 . 0 ~ 6.0
They are equal.

This program creates the five objects
shown here: the two points p l and p2,
and the three lines linel, line2, and
line3. It uses their classes' linel
tostring () methods to print their
identifying features, and then uses the

double
Line class's equals () methods to test
I I

Line
the Line objects for equality. That test
confirms that line1 and line3 are
equal, since they have the same equation y
= -2x + 6. (But note that the two objects do
have different data: their p0 fields refer to p2Tdifferent objects.). I

Line

The first constructor has the parameter

type list (Point, double). This is the
same constructor as in Example 6.2 on
page 114. It simply initializes the object's
two fields, p0 and m,with the arguments doublel m U I
passed to it. These represent a point on the L

Line
I

line and the slope of the line. So the line
represented by line1 contains the point
p 1= (5 , -4) and has the slope rn = 2.

The second constructor has the parameter type list (Point, Point) . Its two arguments represent
two points on the line. So the line represented by line2 contains the points p , = (5,-4) and p 2= (-1,2).
This constructor then has to compute the slope rn for these two points from the formula

It initializes m with the value of this difference quotient, and it initializes PO with the first point passed.

CHAP. 61 CLASSES 121

The third constructor has the parameter type list (double, double). Its two arguments represent
the line's x-intercept a and y-intercept b. That means that the line contains the two points (a,O)and (0,b).It
then computes the slope rn from the formula

= & = 0-b -- 2
Ax a - 0 a

It initializes m with the value of this difference quotient, and it initializes PO to refer to a new point that
represents (0,b).

6.5 COPY CONSTRUCTORS

The simplest kind of constructor that a class can have is the one that has no parameters. This
is called the default constructor or the no-arg constructor (needs no arguments).

Another simple kind is the constructor whose only parameter is a reference to an object of
the same class to which the constructor belongs. This form is usually used to duplicate an
existing object of the class, so it is called the copy constructor.

EXAMPLE 6.4 Duplicating a Point Object

public class Point

{ / / Objects represent points in the cartesian plane

private double x, y;

public E'oint (double a, double b)

{ x = a;
y = b;

1

public E'oint (Point p) / / copy constructor
{ x = p.x;
Y = p.y;

1

public double x()

{ return x;

public double y ()
{ return y ;
I

public boolean equals (Point p)

{ return (x == p.x && y == p.y);
1

public String tostring()

{ return new String (' I (I 1 + x + , + y -t ") ;

122 CLASSES [CHAP. 6

public static void main(String[] args)

{ Point p = new Point(2,3);
System.out.println("p= + p);
Point q = new Point(p);
System.out.println("q= + q);'I

if (q.equals(p)) System.out.print("q equals p");

else System-out .print ("q does not equal p") ;
if (q == p) System.out.println(", and q == p");
else System.out.println(", but q ! = p");

1
1

The output is
p = (2.0,3.0)
q = (2.0, 3.0)
q equals p, but q ! = p

The line
Point p = new Point(2,3);

uses the constructor
public Point(doub1e a, double b)

{ x = a ;

y = b;

1
to create the point p,just as it did in Example 6.1 on page 111.

The line
Point q = new Point (p) ;

uses the copy constructor
public Point(Point p) / / copy constructor
{ x = p . x ;
Y = p.y;

1
to create the point q.This makes the object q a duplicate of the object p.They are distinct objects but
they have the same data. The equals () method confirms that they are equal. But the condition (q ==

p) is false because q and p refer to distinct objects.

6.6 DEFAULT CONSTRUCTORS

Type Initial Value

boolean false

char ' \u0000'

integer 0

floating point 0 .0
reference null

123 CHAP. 61 CLASSES

The char value \UOOOO is the character whose Unicode is 0. This character, called the NUL
character, is not detectable when printed. The reference value null is the special value that
every reference has to indicate that it has not yet been assigned to an object.

If your class has no explicitly declared constructors, then objects can be created only by
means of the class's (implicit) default constructor. It automatically initializes all the objects'
fields with their default initial values, as listed in the table above. That is what happens in
Example 6.5 below with the declaration

Purse purse = new Purse();
This creates a Purse object and initializes all four of its fields to 0.0.

If your class does have some explicitly declared constructors, as do the Point and Line
classes defined in the previous examples, then the compiler will not automatically declare a
default constructor. So, for example, the analogous declaration

Point p = new Point();
would not compile.

EXAMPLE 6.5 A Class to Represent Coin Purses

This class illustrates the use of the implicitly declared default constructor.
public class Purse

{ / / An object represents a coin purse

private int pennies;

private int nickels;

private int dimes;

private int quarters;

public float dollars ()
{ int p = pennies + 5*nickels + 10*dimes + 25*quarters;
return (float)p/100;

1

public void insert(int p, int n, int d, int q)

{ pennies += p;
nickels += n;
dimes += d;
quarters += q;

1

public void remove(int p, int n, int d, int q)

{ pennies -= p;
nickels -= n;
dimes -= d;
quarters -= q;

1

public String tostring()

{ return new String(quarters + quarters +'I 'I

+ dimes + dimes +'I 'I

+ nickels + nickels +I' 'I

+ pennies + pennies = $ ' I

+ dollars ()) ;

1

124 CLASSES [CHAP. 6

public static void main(String[l args)

{ Purse purse = new Purse(); / / invokes the default constructor
System.out.println(purse);
purse.insert(3,0r2,1);

System.out.println(purse);
purse.insert(3,1,1,3);

System.out.println(purse);
purse.remove(3,1,0,2);

System.out.println(purse);

purse,remove(0,0,0,4);

System.out.println(purse);

1
1

The output is
0 quarters + 0 dimes + 0 nickels + 0 pennies = $0.0
1 quarters + 2 dimes + 0 nickels + 3 pennies = $0.48
4 quarters + 3 dimes + 1 nickels + 6 pennies = $1.41
2 quarters + 3 dimes + 0 nickels + 3 pennies = $0.83
-2 quarters + 3 dimes + 0 nickels + 3 pennies = $-0.17

The first line declares the reference purse and
then calls the default constructor to create an empty IPurse object to which it refers. The output from the purse pj---- p e n n i e s n

1i n t

second line confirms that the object has been initial-
ized to the zero state: all fields are zero. The third line nickelsm i n t I
invokes the insert () method to insert 48 cents d i m e s m 1
into the purse: 3 pennies 2 dimes and a quarter, as i n t *
confirmed by the next println () statement. The
picture illustrates the state of the purse object after this

Poin tfirst insertion. Another test is made to the insert ()

method, and the remove () method is tested twice.
This class obviously has some design faults. They are remedied in Example 6.7 on page 129.

6.7 CLASS INVARIANTS

The design faults recognized in the Line class in Example 6.3 on page 119 and the Purse
class in Example 6.5 above are due to the propensity of their objects to obtain inconsistent states.
Different Line objects could represent the same line, and different purse states could total the
same dollar amount. These anomalies cannot occur with primitive types. Variables of type int
that have different values represent different integers. To make classes behave more like
primitive types, it is important to ensure that their objects’ representations are unique. This can
be achieved by specifying and enforcing class invariants.

A class invariant is a condition imposed on the fields of the all instances of the class. The
most cow’mon objective of a class invariant is to guarantee uniqueness of representation.

EXAMPLE 6.6 A Class to Represent Days of the Week

This class illustrates the use of a class invariant to guarantee that each object represents a unique day
of the week.

125 CHAP. 61 CLASSES

public class Day

{ / / An instance represents a unique day of the week

/ / Class invariant: 0 <= dayNumber < 7

private final String DAYS = "SUMOTUWETHFEISA";
private int dayNumber;

public Day() / / default constructor
{ dayNumber = 0;
1

public Day(Day d) / / copy constructor
{ dayNumber = d.dayNumber;
1

public Day(String s)

{ String ab = s.substring(0,2).toUpperCase(); / / 2-char abbrev.
dayNumber = DAYS.indexOf(ab)/2;

1

public String tostring()

{ switch (dayNumber)

{ case 0: return "Sunday";
case 1: return "Monday";

case 2 : return "Tuesday" ;
case 3 : return "Wednesday" ;
case 4 : return "Thursday" ;
case 5: return "Friday";

defa.ult: return "Saturday" ;

public void advance (int n)

{ dayNumber = (dayNumber + n)%7;
1

public Day prev()

{ int n = (dayNumber+G)%7; / / day number for previous day
String'ab = DAYS.substring(2*nt 2*n+2); / / 2-char abbrev.
return new Day (ab) ;

1

public static void main(String[] args)

{ Day today = new Day ("Wed");
System.out .println("Today is I t + today

+ I' , and yesterday was 'I + today.prev()) ;

Day heute = new Day(today) ;
today.advance(4);

System.out.println("In 4 days, today will be + today

+ " , and yesterday will have been -I- today.prev()) ;
System.out.println("But today is still + heute

' I ,+ and yesterday was + heute.prev());
1

126 CLASSES [CHAP. 6

The output is
Today is Wednesday, and yesterday was Tuesday

In 4 days, today will be Sunday, and yesterday will have been Saturday

But today is still Wednesday, and yesterday was Tuesday

The String literal DAYS contains the first two letters of each of the seven days of the week. It is used
as a device for computing the dayNumber for a given day name.

The first line of main () uses the third constructor to create the today object to represent
Wednesday. Here's how it works. The argument "Wed" is passed to the parameter s. The invocation
s.substring (0 , 2 returns the anonymous temporary String object " W e " . The first argument 0
means to begin with character number 0 (the 'W '). The second argument 2 means to end with the charac-
ter (the ' e ') that precedes character number 2 (the ' d '). The invocation touppercase () that is
bound to that temporary String object returns the anonymous temporary String object 'I WE ' I . That
then is used to initialize the String object ab.The second line then passes this argument to the
indexof () method bound to the String object DAYS,which returns the number 6 because the
substring "WE" begins at character number 6 in the string "SUMOTUWETHFRSA".This number is
divided by 2 (because the abbreviations here have 2 characters), resulting in the number 3 being assigned
to the dayNumber field.

The second line invokes the tostring () method which prints the literal string "Wednesday" for
the day. The second part of that println () statement invokes the prev () method bound to the
today object which returns the Day object representing Tuesday. That invokes the tostring ()

method again which prints the literal string "Tuesday".
Here's how the prev () method works. First it evaluates the expression (dayNumber+6) 87 as

(3+6)%7 = 9%7 = 2, and initializes the variable n with that value which represents Tuesday. Then it
passes the arguments 2*n = 4 and 2*n + 2 = 6 to the tostring () method bound to the string
"SUMOTUWETHFRSA". That returns the substring "TU" which initializes the ab object. That is then
passed to the third constructor which creates an anonymous String object representing Tuesday. The
prev () method returns that object.

The String object heute is created by the copy constructor. It is a copy of the today object.
On the fifth line, the advance (method bound to the today object is invoked with the argument

4.This changes dayNumber field in the today object to (3+4)%7 = 7%7 = 0 so that it represents
Sunday. The next println () statement confirms that and that its previous day is Saturday.

The last println () statement shows that the duplicate object heute was not changed. It is an
independent object.

The picture here shows how the
1 4 5 6 7 0 9 0 > 1 , 1three objects look at the end of the Day. DAYS B-4 1 h[bIhI0 I TIU1WIE IT IH I b I RI<IA I 1

program. final String
The class invariant is the condition

that the field dayNumber always be
one of the seven integers 0 through 6. today dayNumberm

(Note that this means there are only 7 Day

different possible objects for the class.)
The invariant is enforced by means of

heute
 dayNumber
the remainder operator %: the int

reduction %7 is always performed Day

before an integer is assigned to
dayNumber.

Note that this class has no accessor function. There is no need for the public to know that the days are
being represented by an integer or that the specific integer for Wednesday is 3.

127 CHAP. 61 CLASSES

6.8 IDENTITY, EQUALITY, AND EQUIVALENCE

“You are sad,” the Knight said in an anxious tone: “let me sing you a song to comfort you.”

“Is it very long?” Alice asked, for she had heard a good deal of poetry that day.

“It’s long,” said the Knight, “but it’s very, very beautiful.
Everybody that hears me sing it-either i t brings the tears into their eyes, or else-”

“Or else what?” said Alice, for the Knight had made a sudden pause.

“Or else it doesn’t, you know. The name of the song is called ‘Haddocks’ Eyes.’ ”
“Oh, that’s the name of the song, is it?” Alice said, trying to feel interested.

“No, you don’t understand,” the Kinght said, looking a little vexed.

“That’s what the name is called. The name really is ‘The Aged Aged Man.’”
“Then I ought to have said, ‘That’s what the song is called’?” Alice corrected herself.

“No, you oughtn’t: that’s another thing.
The song is called ‘Ways and Means’: but that’s only what it’s called, you know!”

“Well, what is the song, then?” said Alice, who was by this time completely bewildered.

“I was coming to that,” the Knight said.
“The song really is ‘A sitting on a Gate’: and the tune’s my own invention.”

-Through the Looking Glass,Chapter VII, by Lewis Carroll

Most people don’t give much thought to the distinctions between the name of an object, the
object itself, and the thing that the object represents. But in object-oriented programming, those
distinctions are important. We saw in Example 6.2 on page 114 that the same object could have
different references, and that two distinct objects could represent the same line. In Example 6.3
on page 119, we saw that two different objects could represent the same line. Under what
circumstances should we consider two objects equal, and how can we avoid this representation
problem?

First consider the distinction between identity and equality. In algebra, we distinguish
between an identity such as x2- 1 = (x - l)(x + 1) which is always true, and an equation such as y
= x2- 1 which is sometimes true. “Identically equal” means “different in name only.” You can
replace one with the other at any time. “President Jefferson”’ and “Thomas Jefferson” are identi-
cally equal because they are only different names for the same person.

In Java, the equality operator “==” is used to determine whether two objects are identically
equal. That happens when you assign one reference to another:

Point p = new Point(2,3);
Point q = p; / / q is identically equal to p
boolean ideq = (p2 == pl); / / true: there is only one Point object

This is illustrated in the picture on the right: x

The point g constructed in Example 6.4 on page 121 was

created by the class’s copy constructor. This makes a duplicate
copy of the object, separate but equal: Point

Point p = new Point(2,3);
Point q = new Point(p); / / q is equal to p
boolean ideq = (q == p); / / false: there are two distinct Point objects

This is illustrated in the picture
on the right: p-$RlYou can see that there are two
distinct Point objects in this Point

128 CLASSES [CHAP. 6

second block of code by the fact that “new Point” appears twice. It only appears once in the
first block of code.

These two examples show that the equality operator is not very useful for comparing objects.
It only determines whether their references are different. So instead of using the equality
operator, we defined our own equals () method to test the contents of the objects themselves:

public boolean equals(Point p)

{ return (x == p.x && y == p.y);
1

In both cases above, the expression q. equals (p) will be true.
We can define the equalso

method any way we want. (The
preferred definition is given in Example linel rg + POB

double

7.11 on page 169.) It would seem yj-4.01
~ -1natural to define it to return true only double

I I

Line
when all the fields of the two objects
are equal. But that can lead to incorrect
results if any of the fields are I - I I double 1
references. For example, in the Line I m W double 1 I

double
class, the field PO is a reference to I

Line

Point objects. We have just seen that
the equality operator to references will
be false unless they refer to the same object. So in a situation like that illustrated here, the
condition (line1 .PO == line2 .PO will be false, even though both fields are equal. That
problem can be avoided by using the Point. equals () method instead:

public boolean equals(Line line)

{ return (pO.equals(1ine.pO)) && (m == 1ine.m));
1

This version would be quite
satisfactory if it weren’t for the design linel rg + POB + X r n 5 . 6 ;
flaw in our Line class. As it is, this double

version of the equals () method will
give incorrect results when we have I

Line

P o i n ttwo different objects that represent the

same line, as in Example 6.3 on page
119. Here are two Line objects, linel line3
and line3,that represent the same line: y double

= -2x + 6. But the equals () method
shown here will find them not equal because
their PO fields are different. That is why we
defined the equals () method differently.

In both Example 6.2 and Example 6.3, we used the declaration
public boolean equals(Line line)

{ return (slope() == line.slope()

&& yIntercept() == line.yIntercept());
1

This is based upon the more familiar geometric definition: two lines are equal if they have the
same slope and the same y-intercept.

129 CHAP. 61 CLASSES

That solves the problem of defining equality for the Line class. But the source of the
problem remains: two objects with different data can represent the same line. That uniqueness
problem can be solved by imposing a class invariant, as described in the next section.
Warning: If your class does not declare its own equals () method, it will inherit a default
version that is equivalent to the equality operator.

6.9 MORE CLASS INVARIANTS

The next two examples show how we can use class invariants to eliminate the possibility that
two different objects represent the same thing.

EXAMPLE 6.7 An Unambiguous Purse Class

This is a modification of the class defined in Example 6.5 on page 123. It assumes that a purse always
exchanges coins to minimize the total number of coins for a given dollar amount. The reduce ()

method enforces this constraint. That method is called by the other methods that can change the contents
of the purse: the insert () and remove () methods. The only information that they need is the total
dollar amount inserted or removed, so that is the only parameter that each has.

public class Purse

{ / / An object represents a coin purse

/ / Class invariant: the sum of the field values is minimal and >= 0;
/ / enforced by the reduce () method

private int pennies;

private int nickels;

private int dimes;

private int quarters;

private i-nt cents (1
{ return pennies + 5*nickels + 10*dimes + 25*quarters;
1

public float dollars ()
{ return (float)cents()/lOO;
1

public void clear (1
{ pennies = nickels = dimes = quarters = 0;
1

private void reduce()

{ pennies = cents0 ;
if (pennies -= 0)
{ clear () ;
return;

1
quarters = pennies/25;
pennies %= 25;
dimes = pennies/lO;
pennies %= 10;
nickels = pennies/5;
pennies %= 5;

1

130 CLASSES [CHAP. 6

public void insert(doub1e dollars)

{ pennies += 100*dollars;
reduce() ;

1

public void remove(doub1e dollars)

{ int p = cents() - (int)Math.round(lOO.O*dollars);
clear () ;

pennies = p;
reduce() ;

1

public String tostring()

{ return new String(quarters + quarters +I' 'I

+ dimes + dimes +I' I'

+ nickels + nickels +I' I'

I'+ pennies + pennies = $ "
+ dollars ()) ;

1

public static void main(String[J args)

{ Purse purse = new Purse();
System.out.println(purse);

purse.insert(0.48);

System.out.println(purse);

purse. insert (0.93);
System.out.println(purse);

purse.remove(0.57);

System.out.println(purse);

purse.remove(1.00);

System.out.println(purse);

1
1

The output is
0 quarters + 0 dimes + 0 nickels + 0 pennies = $0.0
1 quarters + 2 dimes + 0 nickels + 3 pennies = $0.48
5 quarters + 1 dimes + 1 nickels + 1 pennies = $1.41
3 quarters + 0 dimes + 1 nickels + 4 pennies = $0.84
0 quarters + 0 dimes + 0 nickels + 0 pennies = $0.0

The private cents () method is a utility method, used only by other methods in the Purse class.
It simply returns the value of money in the purse as an equivalent number of pennies.

The insert() method converts the dollar value 0.48 into the integer 48 which is used to initialize
the local variable pennies.Then it invokes the reduce() method which computes and assigns the
correct numbers to the object's four fields.

The reduce() method enforces the class invariant requirement that the purse always contains the
minimal number of coins for its given dollar value. It first computes the equivalent number of pennies,
assigning that integer value to the pennies field. If that numerical value is negative, then the purse is
emptied by invoking the clear () method and then aborting the reduce() method with the
return statement. Otherwise, it computes the correct numbers for the four fields by dividing by 25, 10,
and 5. The assignment quarters = pennies/25 changes quarters to 1 and the assignment
pennies %= 25 changes pennies to 23. Similarly, the assignment dimes = pennies/lO
changes dimes to 2 and the assignment pennies %= 1 0 changes pennies to 3. When

131 CHAP. 61 CLASSES

reduce () returns to insert() , the purse fields have the correct values, as shown in the picture
above.

The remove() method is called to remove the dollar value 0.57. It first computes the integer
number of pennies that would result from subtracting that dollar value from the dollar value of the purse’s
current contents. It initializes the local variable p with that integer and then calls the reduce ()

method to compute the correct minimal number of coins.

The reduce () method is our first example of a method with the modifier private instead of
public.It is declared to be private because it is a utility method, used only by other methods in the
Purse class.

EXAMPLE 6.8 An Unambiguous Line Class

This example modifies the class defined in Example 6.3 on page 119. The most significant improve-
ment is the class invariant that guarantees that each line has a unique object to represent it. Other improve-
ments include the methods that return the x- and y-intercepts and the boolean methods that determine
whether the line is horizontal or vertical. It also includes the private print () method for debugging
purposes.

public class Line

{ / / Objects represent lines in the cartesian plane

/ / Class invariant: either pO.x() == 0 or pO.y() == 0
/ / enforced by the normalize() method

private Point PO; / / a point on the line
private double m; / / the slope of the line

public Line(Point p, double s)

{ PO = p;
m = s;
normalize () ;

1

public Line(Point p, Point q)
{ PO = p;

m = (p.yO - q.yO)/(p.xO - q.xO);
normalize () ;

1

public Line(doub1e a, double b)

{ p0 = new Point(0,b);
m = -b/a;
normalize () ;

1

public double slope ()

{ return m;

132 CLASSES [CHAP. 6

public double xIntercept()

{ return (~ 0 . ~ 0 - pO.y()/m);
1

public double yIntercept ()
{ return (pO.y() - pO.x()*m);
1

public boolean equals(Line line)

{ return (m == 1ine.m && yIntercept() == line.yIntercept());
I

public boolean isHorizontal()

{ return (m == 0.0);
1

public boolean isvertical()
{ return (m == Double.POSITIVE-INFINITY

/ I m = = Double.NEGATIVE-INFINITY);
J

public String tostring()

{ float a = (f1oat)xIntercept() ;
float b = (float)yIntercept();
float fm = (f1oat)m;
if (isHorizontal()) return new String("y = + b);I'

if (isvertical()) return new String("x = + a);'I

I'if (yIntercept () == 0) return new String("y = + fm + 'lx");
I'return new String("y = '' + fm + ''x+ + yIntercept ()) ;

1

private void normalize()

{ / / enforces class invariant

if (isHorizontal())PO = new Point(O,yIntercept());
else if (isvertical()) PO = new Point(xIntercept(),O);
else.if (yIntercept0 == 0) PO = new Point(1,m);
else PO = new Point(O,yIntercept());

1

public static void main(String[] args)

{ Point pl = new Point(5,-4);
Point p2 = new Point(l,4);
Line linel = new Line(pl,-2);
Line line2 = new Line(pl,p2);
Line line3 = new Line(3,6);
print(line1, line2);

print(line1, line3);

print (line2 , line2);

I

private static void print(Line linel, Line line2)

(I ' ' I){ System.out.print("Lines + linel + and (" + line2);

if (linel .equals (line2)) System. out. println (I') are equal. I') ;
else System.out.println(") are not equal.") ;

133 CHAP. 61 CLASSES

The output is
Lines (y = - 2 . 0 ~+ 6.0) and (y = - 2 . 0 ~ + 6.0) are equal.
Lines (y = - 2 . 0 ~ + 6.0) and (y = - 2 . 0 ~+ 6.0) are equal.
Lines (y = - 2 . 0 ~+ 6.0) and (y = - 2 . 0 ~+ 6.0) are equal.

~~ ~

Three lines are created each using a different constructor. Then they are compared pairwise to test the
equals () method.

The equals () method invokes the yhtercept () method which computes the y-intercept b
from the formula b = (yo- x0).rn,where (xo,yo) =po ,which is the Point field.

The slope of a vertical line is infinity (00). Fortunately, this value and --are represented in Java.
They are constants POSITIVE-INFINITY and NEGATIVE--INFINITYdefined in the Double
class. (See Section 6.10 below.) Java allows ordinary arithmetic and comparisons on these two fields. (See
Appendix D.) For example, 2 . 0 / 0 .0 evaluates to POSITIVE-INFINITY, and 4 . 4 /
POSITIVE-INFINITY evaluates to 0.0.So the expressions involving m in these methods will work
correctly for vertical lines.

6.10 WRAPPER CLASSES

Each of Java’s eight primitive types (boolean, byte, char, short, int, long, float,
and double) has a corresponding class, called a wrapper class, that generalizes the type. These
wrapper classes are defined in the java. lang package, so you can use them without an
import statement. The eight wrapper classes are named Boolean, Byte, Character, Short,
Integer, Long, Float, and Double.(Note that the class names Character and Integer
are not abbreviated like the types char and int). They are called wrapper classes because each
encapsulates a primitive type so that a variable can be represented by an object when necessary.
They also provide the minimum and maximum values of the type, and the two floating-point
classes define the constants POSITIVE-INFINITY, NEGATIVE-INFINITY, and NaN.

This diagram shows the Short x;
six conversion methods that
you can use to convert
between the type short
and the classes Short and
string. Similar methods
exist for the other seven
wrapper classes.

String s ; short m;

\Short. toStrin#

134 CLASSES [CHAP. 6

EXAMPLE 6.9 Testing the Short Class

This program illustrates the conversion between a variable of short type, an instance of the
Short class, and an instance of the String class. It also prints the values of the constants values
MIN-VALUE and =-VALUE that are defined in the Short class.

public class Testshort

{ public static void main(String[] args)

{ short m = 22;
System.out.println(”shortm = + m);I’

Short x = new Short(m); / / converts short to Short
System.out.println(”Shortx = + x);I’

String s = x.toString(); / / converts Short to String
System.out.println(”Strings = + s);I’

m = Short.parseShort(s); / / converts String to short
System.out.println(”shortm = + m);‘I

s = Short.toString(m); / / converts short to String
System.out.println(”String s = + s) ;I’

x = Short. decode (s) ; / / converts String to Short
System.out.println(”Shortx = + x);‘I

m = x.shortValue(); / / converts Short to short
System.out.println(”shortm = + m);
System.out.println(”Short.MIN-VALUE = + Short-MIN-VALUE);‘I

System.out.println(”Short.MAX-VALUE = I’ + Short.=-VALUE);
1

1
The output is
short m = 22
Short x = 22
String s = 22
short m = 22
String s = 22
Short x = 22
short m = 22
Short.MIN-VALUE = - 3 2 7 6 8
Sh0rt.W-VALUE = 3 2 7 6 7

Note that we have here three different ways to represent the
number 22: a short,a Short,and a String. m p]

short

Like the String class (see Chapter 2), wrapper classes
are declared to be final.That means that their instances are
read-only : their values cannot be changed.

The Integer wrapper classes include useful methods for bmS E i
converting between various numeral bases. The base of a
numeral is the positive integer whose powers are counted by
the numeral’s symbols. For example, the symbols “5”, “0”,
and “4” in the decimal numeral “504” represent counts of
loos, lOs, and 1s (5.100 + 0.10 + 4.1). These are powers of 10, so the base of a decimal numeral
is 10 (hence the name “decimal”). Similarly, the symbols “d”, “7”, and “b” in the hexadecimal
numeral “d7b” represent counts of 162s, 16ls, and 16Os (13 -256 + 7.16 + 11. l = 3451). These are
powers of 16, so the base of a hexadecimal numeral is 16. The word radix is a synonym for
“numeral base.”

CHAP. 61 CLASSES 135

EXAMPLE 6.10 Using the Integer Class for Radix Conversion

public class TestRadix

{ public static void main(String[] args)

{ int n = 59;
System.out.println("Decimal:\t" + Integer.toString(n));
System.out.println("Binary: \t" + Integer.toBinaryString(n));
Sys tem.ou t .p r in t ln ("Oc ta1 : \t" + Integer.toOctalString(n));
System.out.println("Hexadecimal:\t" + Integer.toHexString(n));
System.out.println("Ternary:\t" + Integer.toString(n13));
System.out.println("Dodecimal:\t" + Integer.toString(n112));
Systern.out.println("Bigesimal:\t"+ Integer.toString(n120));
System.out .println("Character.MIN-RADIX: = 'I

+ Character.MIN-RADIX);
System.out.println("Character.MAX-RADIX = It

+ Character.MAX-RADIX);
I
n = Integer .parseInt ("d7b" 16);

I'System.out.println("d7b (base 16) = + n);
1

1
The output is
Decimal: 59
Binary: 111011

Octal: 73

Hexadecimal: 3b

Ternary: 2012
Dodecimal: 4b

Bigesimal: 2j

Character.MIN-RADIX = 2
Character.MAX-RADIX = 36
d7b (base 16) = 3451

This program prints the integer 59 in seven different radixes: 10,2, 8, 16,3, 12, and 20. The radixes 2,
8, and 16 have the special conversion methods toBinaryString () , tooctalstring () , and
toHexadecimalString () . The general tostring () method can be used to convert a decimal
numeral to any radix in the range 2 to 36.

The last two statements convert the hexadecimal numeral "d7b" into its equivalent decimal value
3451. Note that the Integer. parseInt () method takes two arguments, the String object that
represents the hexadecimal numeral and an int which is the radix of the numeral, and returns the
equivalent decimal value as an int.

Note that all of the methods invoked in this example are class methods (declared static),not
instance methods. They are bound to the class itself, not one of its instances.

Review Questions

6.1 What is a class's state?

6.2 What is the difference between a field and a local variable?
6.3 What advantage is there in including a tostring () method that has zero parameters and

returns a String object?

6.4 How is the Point. equals () method in Example 6.1 on page 111 fundamentally different
from the Line. equals () method in Example 6.2 on page 114?

6.5 What is the difference between a constructor and a method?

136 CLASSES [CHAP. 6

6.6 What is the difference between a class method and an instance method?
6.7 What is an implicit argument?
6.8 Why is it illegal for a static method to invoke a non-static method?
6.9 What is the difference between equality of objects and equality of the references that refer to

them?
6.10 What is the difference between a public member and a private member of a class?

6.11 Would it be better to make the clear () method private in the Purse class (Example
6.5 on page 123)? Why, or why not?

6.12 Why does the compiler automatically create a default constructor for the Purse class
(Example 6.5 on page 123) but not for the Point class (Example 6.1 on page 111) or the
Line class (Example 6.2 on page 114)?

6.13 What is the difference between an accessor method and a mutator method?
6.14 What is a class invariant?
6.15 What is a default constructor?
6.16 How many constructors can a class have?
6.17 How many default constructors can a class have?
6.18 What is a copy constructor?
6.19 What is the difference between invoking a copy constructor and using an assignment?
6.20 Why wouldn't the following declaration compile if included in Example 6.1 on page 11 1?

Point p = new Point();
6.21 Explain the difference between the output from

String s ;
System.out.println("s= + s) ;It

and
String s = new String();
System.out.println("s= + s);

6.22 What is the purpose of declaring a field private and declaring a mutator method that
allows the public to change it. Wouldn't it be just as good to just make it public?

Programming Problems

6.1 Add and test the following method to the Point class defined in Example 6.1 on page 111:
public void translate(doub1e dx, double dy)

/ / shifts the point dx units to the right and dy units up

For example, p .translate(5,1) would change the point p in Example 6.1 to (7,4).

6.2 Add and test the following method to the Point class defined in Example 6.1 on page 111:
public void rotate(doub1e theta)

/ / rotates the point theta radians counter-clockwise

For example, p .rotate (Math. p1/2) would change the point p to (-3,2) in Example
6.1. Use the following trigonometric transformation equations:

x2 = xlcosO-ylsinO

y 2 = xlsinO+ylcosO

6.3 Modify the Point class defined in Example 6.1 on page 11 1 so that it represents 3-dimen-
sional points in space.

CHAP. 61 CLASSES 137

6.4 Add and test the following method to the Line class defined in Example 6.2 on page 114:
public boolean isParallelTo(Line line)

/ / returns true iff this is parallel to line

6.5 Add and test the following method to the Line class defined in Example 6.2 on page 114:
public boolean isPerpendicularTo(Line line)

/ / returns true iff this is parallel to line

6.6 Add and test the following method to the Line class defined in Example 6.2 on page 114:
public void translate(doub1e dx, double dy)

/ / shifts every point in the line by (ctx,dy)

6.7 Add and test the following method to the Line class defined in Example 6.2 on page 114:
public void rotate(theta)

/ / rotates the line counter-clockwise theta radians

For example, p. rotate (Math. PI/^) would change the object line to y = 0 . 5 ~+ 3 in
Example 6.2. Use the following trigonometric identity and the fact that the slope of a curve is
equal to tana ,where a is the acute angle between the line and the x-axis:

t ana + tan8t a n (a + e) =
1 - t ana tan8

6.8 Modify and test the Purse class defined in Example 6.5 on page 123 so that Purse
objects can also contain half dollar coins.

6.9 Convert and test the Purse class defined in Example 6.5 on page 123 into a Wallet class
whose objects represent wallets that contain the lower denomination U.S. dollar bills: $1, $2,
$5, $10, $20, and $50.

6.10 Add and test the following method to the Day class defined in Example 6.6 on page 124:
public Day next();

/ / returns a Day object that represents the next day

6.11 Add and test the following method to the Day class defined in Example 6.6 on page 124:
public boolean isweekday();

/ / returns true iff this is a weekday (Monday through Friday)

6.12 Add and test a copy () method to the Line class defined in Example 6.2 on page 114.

6.13 Add and test a copy constructor to the Line class defined in Example 6.2 on page 114.

6.14 Test the Line class (Example 6.8 on page 131) on various horizontal and vertical lines.
Check that the correct equations are produced.

6.15 You don’t have to create Point objects explicitly in order to use the Line class construc-
tors (Example 6.8 on page 131). You can create an implicit anonymous Point object and
pass it as an argument to the constructor like this
Line line4 = new Line(new Point(2,2), new Point(-1,8))

Try this on both constructors that have Point parameters.

6.16 Modify the program in Example 6.9 on page 134 so that it tests the Integer class the same
way.

6.17 Implement a class that is similar to the Day class in Example 6.6 on page 124 whose objects
represent months.

6.18 Implement a class whose objects represent circles in the cartesian plane.

6.19 Implement the Point class using the radial magnitude Y and the angular amplitude 9 as the
class fields instead of the rectangular coordinates x arid y. Enforce the class invariant that
either Y = 8 = 0, or Y > 0 and 0 I 0 < 2n.

138 CLASSES [CHAP. 6

Supplementary Programming Problems

6.20 Add and test the following method to the Point class defined in Example 6.1 on page 111:
static double distance(Point pl, Point p2);

/ / returns the distance between the two points

Use the following formula for the distance between two points P , = (xl, yl) and P, = (x,, y,):

2 2
(XI 4 2) + (Y1 - Y 2)

6.21 Add and test the following method to the Line class defined in Example 6.2 on page 114:
boolean contains(Point p);

/ / returns true iff the point p is on this line

6.22 Implement the Line class using the coefficients a, b, and c of the equation ax + by + c = 0
that represents the line as the class fields. Enforce the class invariant that either a or b is non-
zero and c is either 0 or 1.

6.23 Implement the Line class using two points on the line as the class fields. Enforce the class
invariant that either x1= 0 and x2= 1 or x I=x2and y1= 0 and y2 = 1, where (xl,yl) and (x2,y 2)
are the two points.

6.24 Implement a class whose objects represent ratios of integers. Enforce the class invariant that
the two integers are relatively prime (i.e., they have no common factors other than 1) and that
the denominator is positive. Use the Euclidean Algorithm (Example 4.8 on page 72) to
reduce the ratios.

Answers to Review Questions

6.1 A class’s state is the set of values that is fields have at the current moment.

6.2 Afield is a variable that is a data member of a class. A local variable is a variable that is declared local
in a method. For example, in Example 6.1 on page 11 1, x is a field of the Point class, and p is
a local variable in the main () method. Note that, as a variable, p has type reference. We may say
“the Point object p,” but we really mean “the reference p that refers to the Point object.”
Technically, objects themselves do not have names (or types); their references are their handles.

6.3 When declared as
String tostring()

the tostring() method is given special treatment by the println () method, allowing you to
abbreviate the syntax + x .tostring () with the simpler + x as part of the argument passed to
println () . (See Example 6.1 on page 111.)

6.4 The Point. equals () method in Example 6.1 returns true only if the two objects have the same
data, The Line. equals () method in Example 6.2 returns true even if the two objects have differ-
ent data, if they represent the same line. This ambiguity, resolved in Example 6.8 on page 131, is due
to the fact the a line is determined by its slope and any point on it, but not uniquely.

6.5 A constructor is a member function of a class that is used to create objects of that class. It has the
same name as the class itself, has no return type, and is invoked using the new operator. A method is
an ordinary member function of a class. It has its own name, a return type (which may be void),and
is invoked using the dot operator.

6.6 A class method is declared static and is invoked using the class name; for example,
double y = Math.abs(x);

invokes the class method abs () that is defined in the Math class. An instance method is declared
without the static modifier and is invoked using the name of the object to which it is bound. For
example,
double x = random.nextDouble();

139 CHAP. 61 CLASSES

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15
6.16
6.17
6.18

6.19

6.20

6.21

invokes the class method nextDouble () that is defined in the Random class and is bound to the
object random which is an instance of that class.

An implicit argument of the invocation of a class instance method is an object to which the method is
bound. For example, in the invocation q. equals (p) , c[is the implicit argument and p is an
explicit argument.
A static method is not bound to any specific object; it has no implicit argument. So within a
static method, there is no implicit object to which a non-s tat ic method would be bound.
Two objects are equal if they have the same data values. Two references are equal if the refer to the
same object. The condition (p == q) tests equality of the references p and q,not the equality of
the objects to which they refer. You can declare a method equals () to test equality of objects, as
in Example 6.1 on page 11 1.
A public class member can be accessed from methods of other classes. A private class mem-
ber can only be accessed from methods of the same class.
The c1ear () method in the Purse class (Example 6.5 on page 123) should not be made pri-
vate,because if it were it could not be invoked from outside the class. It should be accessible outside
the class because it allows others to empty the purse.
The compiler automatically creates a default constructor for the Purse class because it has no con-
structors declared explicitly. The Point class and the Line class constructors are declared explic-
itly.
An accessor method returns the current value of one of the class's fields; it is read-only. A mututor
method allows the method's invoker to change the class's state; it is read-write.
A class invLzriant is a condition on the fields of the class. For example, the condition that dayNum-
ber be between 0and 6 inclusive is a class invariant on the Day class in Example 6.6 on page 124.
A default constructor is a constructor that has no parameters.
There is no limit (imposed by the language) to the number of constructors a class may have.
A class can have only one default constructor.
A copy constructor is a constructor that replicates an existing object. It has the signature

X (X x) ;
where x is the name of the class. For example, the method

public Day(Day d) ;
is the copy constructor for the Day class in Example 6.6 on page 124.

Invoking a copy constructor, like this
X y = new X(x);

creates a new object that is a duplicate of the object passed to it. Using an assignment, like this
x z = x ;

merely declares another reference (i.e.,a synonym) for the existing object.

The declaration Point p = new Point () ; would not compile in Example 6.1 because no
default constructor exists for the Point class. If the constructor that is declared had been omitted,
then a default constructor would exist and the declaration would compile.
The output from the code

String s ;
System.out .println(I ts = + s) ;'I

1s

s = null
The output from the code

String s = new String();
System.out.println("s = + s) ;I'

1s
s =

In the first case, the reference s is initialized by default to be null;there is no String object. In
the second case, s is initialized to refer to the empty String object.

The advantage of forcing the public to use a mutator method to change a field is that you can control
how the field is changed.

6.22

140 CLASSES [CHAP. 6

Solutions to Programming Problems

6.1 public void translate(doub1e a, double b)
{ x += a;
y += b;

1
6.2 public void rotate(doub1e theta)

{ double temp = x*Math.cos(theta) - y*Math.sin(theta);
y = x*Math.sin(theta) + y*Math.cos(theta);
x = temp;

1
6.3 public class Point

{ / / Objects represent points in space

private double x, y , z ;

public Point(doub1e a, double b, double c)
{ x = a ;

y = b;
z = c;

1

public double x()

{ return x;
1

public double y()

{ return y;

public double z ()
{ return z;
I

public boolean equals(Point p)

{ return (x == p.x && y == p.y && z == p.z);
1

public String tostring()

I ! ,{ return new String((I 1 + x + + y + 11 , 11 + z + 1 1) 1 1) ;

1

public void translate(doub1e a, double b, double c)

{ x += a;
y += b;
z += c;

1
public static void main(String[] args)

{ Point p = new ~oint(2,3,-1);

1 1 ,
System.out.println("p.x()= + p.x() + p.y() = + p.y()
+ I t , p.zo = + p.z());

System.out .println('Ip = + p) ;'I

p.translate(-3,1,2); / / now p = (-1,4/1)
System.out .println(I1p = + p);'I

Point q = new Point (7,4,1);
'ISystem.out.println("q= + 9) ;

if (p.equals(q)) System.out.println("p equals q");

else System.out.println("p does not equal q") ;
q.translate(-8,0r0); / / now q = (-1,4,1)
System.out.println("q= + 9) ;I'

141 CHAP. 61 CLASSES

if (p.equals(q)) System.out.println("p equals q");
else System.out.println("p does not equal q") ;

I
I

6.4
{ return (m == 1ine.m);
public boolean isParallelTo(Line line)

I
6.5

{ return (m == -l.O/line.m);
public boolean isPerpendicularTo(Line line)

I
6.6 public void translate(doub1e dx, double dy)

{ pO.translate(dx,dy);
I

6.7
{ pO.rotate(theta);
public void rotate(doub1e theta)

m = (m + Math.tan(theta))/(l - m*Math.tan(theta));
I

6.8
{ / / A n object represents a coin purse
public class Purse

/ / Class invariant: the sum of field values is minimal and >= 0;
/ / enforced by the reduce() method

private int pennies;
private int nickels;
private int dimes;
private int quarters;
private int halves;

public float dollars ()
{ int p = pennies + 5*nickels +

+ 50*halves;
10*dimes + 25*quarters

return (float)p/100;
1

public void clear()
{ pennies = nickels = dimes = quarters = halves = 0;
I

private void reduce()
{ pennies += 5*nickels + 10*dimes +
if (pennies .c 0)
{ clear () ;

25"quarters + 50*halves;

return;
I
halves = pennies/50;
pennies %= 50;
quarters = pennies/25;
pennies %= 25;
dimes = pennies/lO;
pennies %= 10;
nickels = pennies/5;
pennies %= 5;

I

public void insert(doub1e dollars)
{ pennies += 100*dollars;
reduce() ;

1

142 CLASSES [CHAP. 6

public void remove(doub1e dollars)

{ int p = (int)(1 0 0 . 0 * (dollars() - dollars)) ;
clear () ;
pennies = p;
reduce() ;

1

public String tostring()

{ return new String(ha1ves -I- halves +'I I'

+ quarters + quarters +I' I'

+ dimes + dimes +'I I'

+ nickels + nickels +' I I'

+ pennies + pennies = $ I 1

+ dollars ()) ;
1

public static void main(String[] args)

{ Purse purse = new Purse();
System.out .println(purse) ;
purse.insert(0.48);

System.out .println(purse) ;
purse. insert (0.93);
System.out .println(purse) ;
purse.remove(0.57);

System.out.println(purse);

purse.remove(1.00);

System.out.println(purse);

I
I

6.9 public class Wallet
{ / / An object represents a coin purse

/ / Class invariant: the sum of field values is minimal and >= 0;
/ / enforced by the reduce() method

private int ones, twos, fives, tens, twenties, fifties;

public int dollars ()
{ return ones + 2*twos + 5*fives + 10*tens + 20"twenties

+ 50*fifties;
I

public void clear()

{ ones = twos = fives = tens = twenties = fifties = 0;
I

private void reduce ()
{ ones += 2*twos + 5*fives + 10*tens + 20*twenties + 50*fifties;
if (ones -c 0)
{ clear () ;
return;

1
fifties = ones/50;
ones %= 50;
twenties = ones/20;
ones %= 20;
tens = ones/lO;
ones %= 10;
fives = ones/5;
ones %= 5;
twos = ones/%;
ones %= 2;

1

CHAP. 61 CLASSES 143

public void insert (int dollars)

{ ones += dollars;
reduce() ;

1

public void remove (int dollars)

{ int n = dollars() - dollars;
clear () ;
ones = n;
reduce() ;

public String tostring()

{ return new String(fifties + fifties +'I 'I

+ twenties + twenties + + tens + tens +'I 'I 'I II

+ fives + fives + + twos + twos +I' I' I' 'I

I' $ ' I+ ones + ones = + dollars());
1

public static void main(String[] args)

{ Wallet wallet = new Wallet();
System.out.println(wallet);

wallet. insert (48) ;
System.out.println(wal1et);
wallet. insert (93);
System.out.println(wal1et);

wallet.remove(57);

System.out.println(wallet);

wallet.remove(100);

System.out.println(wal1et);

1
1

6.10 public Day next()
{ return new Day((dayNumber + 1)%7);
1

6.11 public boolean isweekday ()
{ return (dayNumber > 0 && dayNumber .c 6);
1

6.12 public Line copy()
{ Line temp = new Line(p0,m);
return temp;

1
6.13 public Line(Line line) / / copy constructor

{ PO = 1ine.pO;
m = 1ine.m;

1
6.14 public class Line

{ / / include here code from Example 6.8

public static void main(String[] args)

{ Point PO = new Point(0,O);
Point px = new Point(0,l);
Point py = new Point(1,O);
Point pl = new Point(1,l);
Line linex = new Line(p0,px);
Line liney = new Line(p0,py);
Line line0 = new Line(p0,pl);
Line line1 = new Line(px,pl);
Line line2 = new Line(py,pl);
Line line3 = new Line(px,py);

144 CLASSES [CHAP. 6

print (linex) ;
print (liney) ;
print (line0) ;
print (linel) ;
print (line2) ;
print(line3);

1

private static void print(Line line)

{ System.out.print("Line + line + is ") ;(' I ' I)

if (line.isHorizontal()) Sys tem.ou t .p r in t ln ("hor i zon ta1 . ") ;
else if (line.isVertical()) Sys tem.ou t .p r in t ln ("ve r t i ca1 . ") ;
else System.out.println("neither horizontal nor vertical.");

I
1

6.15 public class Line
{ / / include here code from Example 6.8

public static void main(String[] args)

{ Line line = new Line(new Point(3,0), new Point(5,l));
System.out.println(1ine);

line = new Line(new Point(l,-l), new ~oint(2,I));
System.out.println(1ine);
System.out.println(new Line(new Point(0,4), new ~oint(3,l)));

I
1

6.16 public class TestInteger
{ public static void main(String[] args)

{ int n = 66;
System.out.println("int n = + n);'I

Integer x = new Integer(n); / / convert int to Integer
System.out .println("Integer x = " + x);
String s = x.toString(); / / convert Integer to String
System.out .println("String s = + s);
n = Integer.parseInt(s); / / convert String to int
System.out.println("int n = + n);I'

s = Integer.toString(n); / / convert int to String
Sys tem.ou t .p r in t ln ("S t r ing s = + s);
x = Integer.decode(s); / / convert String to Integer
System.out .println("Integer x = + x);
n = x.intValue(); / / convert Integer to int
System.out .println("int n = + n);I'

System.out.println("Integer.MIN-VALUE= "

+ 1nteger.MIN-VALUE);
System.out.println("Integer.MAX-VALUE= I'

+ 1nteger.M-VALUE);
I

1
6.17 public class Month

{ / / An instance represents a unique month of the year
/ / Class invariant: 0 <= dayNumber < 12

private final String MONTHS = "JANFEBMARAPRMAYJUN"
+ IIJULAUGSEPOCTNOVDEC" ;

private int monthNumber;

public Month() / / default constructor
{ monthNumber = 0;
I

CHAP. 61 CLASSES 145

public Month(Month m) / / copy constructor
{ monthNumber = m.monthNumber;
1

public Month(String s)

{ String ab = ~.substring(0,3).toUpperCase();/ / 3-char abbrev.
monthNumber = MONTHS.indexOf(ab)/3;

1

public String tostring()

{ switch (monthNumber)

{ case 0: return "January";
case 1: return "February" ;
case 2: return "March";

case 3: return "April";

case 4: return "May";

case 5: return "June";

case 6: return "July";

case 7: return "August";

case 8: return "September" ;
case 9: return "October" ;
case 10 : return "November" ;
default: return "December" ;

public void advance(int n)

{ monthNumber = (monthNumber + n)%12;
1

public Month prev()

{ int n = (monthNumber+ll)%l2;
String ab = MONTHS.substring(3*n, 3*n+3); / / 3-char abbrev.
return new Month(ab);

1

public static void main(String[] args)

{ Month now = new Month("June") ;
System.out .println("This month is + now

I' I'+ , and last month was + now .prev ()) ;
Month summer = new Month(now);
now. advance (7) ;
System.out.println("In 7 months, now will be + now'I

+ ' I I and last month will have been I' + now.prev());
System.out.println("But this month is still + summer

I'+ 'I I and last month was + summer .prev ()) ;
I

I
6.18 public class Circle

{ / / Objects represent circles in the cartesian plane
/ / Class invariant: r > 0

private Point PO; / / the center of the circle
private double r; / / the radius of the circle

public Circle(Point pI double radius)

{ PO = p;
r = radius;
normalize () ;

1

146 CLASSES [CHAP. 6

public Circle(Circ1e c) / / copy constructor
{ PO = c.po;
r = c.r;

public Point center()

{ return PO;
1

public double radius ()
{ return r;
1

public double area()

{ return Math.PI*r*r;
1

public boolean equals(Circ1e c)

{ return (pO.equals(c.pO) && r == c.r);
1

public Circle copy ()
{ Circle temp = new Circle(p0,r);
return temp;

1

public void translate(doub1e dx, double dy)

{ pO.translate(dx,dy);
1

public void rotate(doub1e theta)

{ p 0 . rotate (theta) ;
1

public String tostring()

{ return new String("(x - + pO.x() + ") " 2 = (y -

+ pO.y() + ' I) "2 = 'I + r*r);
1

private void normalize()

{ / / enforces class invariant
if (r <= 0) r = 1.0;

1

public static void main(String[] args)

Point p = new Point(5,-4);
Circle circle = new Circle(p,2);
System.out .println("The circle is: I' + circle);
System.out.println("Its area is I' + circle.area());
circle = new Circle(p,-1) ;
System.out.println("The circle is: 'I + circle);
System.out.println("Its area is I' + circle.area());

6.19 public class Point
{ / / An instance represents a point in the cartesian plane

/ / Implementation: polar coordinates
/ / Invariant: either r = 0 and theta = 0,
/ / or r > 0 and 0 < theta < 2*pi

private double r; / / radial distance from origin
private double theta; / / radian measure of amplitude

147 CHAP. 61 CLASSES

private void normalize()

{ / / enforces the class invariant
if (r == 0.0) theta = 0.0;
if (r < 0)
{ r = -r;
theta += Math.PI;

1
theta %= 2*Math.PI;
if (theta == 0) r = 0;

1

public Point(doub1e a, double b)

{ r = Math.sqrt(a*a + b*b);
theta = Math. atan2 (a, b) ;
normalize() ;

1

public double x()

{ return r*Math.cos(theta);
1

public double y()

{ return r*Math.sin(theta);
1

public void move(doub1e a, double b)

{ r = Math.sqrt(a*a + b*b);
theta = Math. atan2 (a, b) ;
normalize () ;

1

public void shift(doub1e h, double k)

{ double x = h + x();
double y = k + y();
r = Math.sqrt(x*x + y*y);
theta = Math.atan2(x,y);
normalize() ;

1

public String str()

' I , I'{ return new String("(" + (float)x() .t + (float)y()+ if>tt>;

1

public static void main(String[] args)

{ Point p = new Point(4,4);
System.out.println("The point p is at I' + p.str());
p.shift(6,6);

System.out.println("The point p is now at I' + p.str());
p .move (2 , -2) ;
System.out.println("The point p is now at I' + p.str());

1
1

Chapter 7

Composition and Inheritance
One of the features of object-oriented programming that makes it so powerful is the ease

with which you can "re-use" implementations for different purposes. This is done through
composition and inheritance.

7.1 COMPOSITION

Composition is the creation of one class using another class for its component data. We used
composition in the definition of the Line class in Example 6.2 on page 114. It was composed of
the Point class.

The most widely used component class is the String class, as the first example illustrates.

EXAMPLE7.1 A Name Class

class Name

{ / / Objects represent names of people

private String first; / / e.g., Itwilliam"
private String middle; / / e.g., "Jefferson"
private String last; / / e.g., "Clinton"

Name() / / default constructor
{
1

Name(String first, String last)

{ this.first = first;
this.last = last;

1

Name(String first, String middle, String last)

{ this (first, last) ;
this.middle = middle;

1

String first ()
{ return first;
1

String middle ()
{ return middle;

String last ()
{ return last;

148

CHAP. 71 COMPOSITION AND INHERITANCE 149

void setFirst(String first)

{ this-first= first;
1

void setMiddle(String middle)

{ this.m.iddle= middle;
I

void setLast(String last)

{ this.last = last;
I

public String tostring()

{ String s = new String();
if (first ! = null) s += first + 'I ' I ;

if (middle ! = null) s += middle + I' ' I ;

if (last ! = null) s += last + ' I ;

return s.trim();

1

1
Here is a test driver:
class TestName

{ / / Test driver for Name class
public static void main(String[] args)

{ Name tr = new Name("Theodore" , "Roosevelt");

IName fc = new Name ("Francis" "Harry Compton" I "Crick");
System.out.println(fc + won the 1962 Nobel in Physiology."); I'

System.out.println("His first name was I' + fc.first());
System.out.println(tr + won the 1906 Nobel Peace Prize."); I'

System.out.println("His middle name was I' + tr.middle());
1

1
Its output is
Francis Harry Compton Crick won the 1962 Nobel in Physiology.

His first name was Francis

Theodore Roosevelt won the 1906 Nobel Peace Prize.

His middle name was null

The five objects in this program can be
visualized as shown here. The Name object
referenced by tr is created explicitly when String

the new operator invokes the two-argument middle p~Name () constructor on the first h e of
main (1 . Its two arguments, first and 1

I 1last,are references to String objects, so L
last

I
Roosevelt

String
1

that constructor implicitly invokes the Name

String constructor twice to create the
objects tr. first and tr. last. The
keyword this stands for the implicit
argument tr. Note that the reference fcrlmiddle

tr .middle has no referent, so that field
remains nu1 1. 4 CrickThe second line of main () has a String

similar effect on the reference tc.But it Name

150 COMPOSITION AND INHERITANCE [CHAP. 7

invokes the three-argument constructor, so in addition to another Name object, three more String
objects are created.

The Name class is defined to have three fields, three constructors, and eight methods. The first three
methods are accessor methods: each simply returns one of the fields. The next three methods are mutator
methods: they allow other methods outside the class to modify the fields. The last two methods are the
usual tostring () for displaying the object as a string, and the main () method which serves as a
test driver for the class.

The keyword this can be used inside an instance method to refer to the implicit argument;
that is, the object to which the method is bound when it is invoked. It was used in the construc-
tors in the Name class in Example 7.1 as a prefix to the class field names so that they could be
distinguished from the constructor’s parameters. The two-argument constructor could have been
declared as

public Name(String stringl, String string2)

{ first = stringl;
last = string2;

I
But this version is not as clear as the other.

EXAMPLE7.2 A Person Class

This class uses the Name class from Example 7.1.
class Person

{ / / Objects represent people

protected Name name;

protected char sex; / / ’M’ or ’ F ’
protected String id; / / e.g., Social Security number

Person(Name name, char sex)

{ this.name = name;
this.sex = sex;

I

Person(Name name, char sex, String id)

{ this.name = name;
this-sex= sex;
this.id = id;

1

Name name()

{ return name;
1

char sex ()
{ return sex;
I

String id()

{ return id;
I
void setId(String id)

{ this.id = id;
1

151 CHAP. 71 COMPOSITION AND INHERITANCE

public String tostring0

{ String s = new String(name + " (sex: " + sex);

if (id ! = null) s += " ; id: " + id;
s += ") " ;

return s;

I

1
The test driver is
class TestPerson

{ / / Test driver for the Person class:
public static void main(String[] args)

{ Name bobsName = new Name ("Robert", "Lee");
Person bob = new Person(bobsName, 'M');
System.out.println("bob: " + bob);
bob. name. setMiddle ("Edward") ;
System.out.println("bob:" + bob);

Person ann = new Person(new Name("Ann", "Baker"), 'F');
System.out.println("ann:" + ann);

ann .set Id (" 053 0117 3 6 ") ;
System.out.println("ann:" + ann);

J
1

Its output is
bob: Robert Lee (sex: M)

bob: Robert Edward Lee (sex: M)

ann: Ann Baker (sex: F)

ann: Ann Baker (sex: F; id: 053011736)

The 10 objects created in
this program are illustrated bobsNameM--O
here. Note that the four
composite objects (the two bob name ---+ middle
Person objects and the two
Name objects) are created
explicitly with the new sex

char
operator, while the six String
objects are created implicitly. id

PerscThe Person class has
three fields: a Name reference,
a char, and a String
reference. Note that, in general, arm El-------?
 name~t-q middle 1
reference fields can be null.
But in this case, the name sex IF] last Baker I
field cannot be nu11 because

152 COMPOSITION AND INHERITANCE [CHAP. 7

constructor. Notice that leaves the id reference null in that object. (We don't know Robert E. Lee's
I.D. number.)

The third line passes the bob reference to the print In () method. This automatically invokes the
Person class's tostring () method which prints the output in the form shown here.

The fourth line invokes the setMiddle() mutator method which creates a duplicate of the string
"Edward" and assigns it to the String reference bob. name .middle. Then the println ()

method prints the second line of output shown above.
Two objects are created when the sixth line executes. The anonymous Name object with fields

I' I'Ann and Baker I' is created by the two-argument constructor declared in the Name class
(Example 7.1on page 148). This constructor is activated by the new operator as the first argument
passed to the two-argument Person constructor. So that Name object is created "on the fly." It is
passed, along with the char F ' to the two-argument Person constructor which creates the ann
object.

On the second line, the println () method invokes the Person. tostring () method to print
the ann object. That method invokes one of the String constructors to create the string s:

I' 'IString s = new String(name + (sex: + sex);
The String class actually has four one-argument constructors. This one has a String parameter.
The String object passed to it is

I'name + (sex: + sex
I' I 'which is formed by concatenating an anonymous String object with the string literal (sex:

and the char 'F ' (which is converted into a 1-character string). The anonymous String object is
produced by the Name. tostring () method when the object name is detected in this concatenation.
So the first line of output is the result of both the Person. tostring () and the Name. tostring ()

methods.
After the object ann is created, the setId () method is invoked to change its id field from

null to the string passed. Thence this object represents a female person named "Ann Baker" with identi-
fication number 053011736. (The Name object that represents Ann's name is anonymous.)

7.2 RECURSIVE CLASSES

A recursive method is one which invokes itself. These are described in Section 5.4. A
recursive class is one which is composed with itself; i.e., it has a reference field that refers to
objects of the class to which it belongs. Recursive classes provide a powerful technique for
building linked structures that can represent complex relationships very efficiently.

EXAMPLE 7.3 Family Trees

This version of the Person class defined in Example 7.2 on page 150 adds the four fields mother,
father, twoBlanks, and tab,and it modifies the tostring () method:

class Person

{ / / Objects represent people
protected Name name;

protected char sex; / / 'M' or 'F'
protected String id; / / e.g., Social Security number
protected Person mother;

protected Person father;

private static final String twoBlanks = '' ' I ;

private static String tab = " ' I ;

153

1

CHAP. 71 COMPOSITION AND INHERITANCE

Person(Name name, char sex)

{ this.name = name;
this.sex = sex;

Person(Name name, char sex, String id)

{ this.name = name;
this.sex = sex;
this.id = id;

Name name()

{ return name;
1

/ / The sex() and id() accessor methods are the same as in Example 7.2

void setId(String id)

{ this.id = id;
1

void setMother(Person mother)

{ this.mother = mother;
1

void setFather(Person father)

{ this.father = father;
1

public String tostring()

{ String s = new String(name + + sex + ") ") ;I' (I '

' I ;if (id ! = null) s += id: + id;
s += "\n";
if (mother ! = null)
{ tab += twoBlanks; / / adds two blanks
s += tab + "mother: + mother;'I

tab '= tab.substring(2); / / removes two blanks
1
if (father ! = null)
{ tab += twoBlanks; / / adds two blanks
s += tab + "father: + father;'I

tab := tab.substring(2); / / removes two blanks
1
return s;

1
1

The test driver is
class TestPerson

{ / / Test driver for the Person class:
public static void main(String[] args)

{ Person ww = new Person(new Name ("William" , "Windsor"), 'M') ;
Person cw = new Person(new Name("Charles", "Windsor") , 'M');
Person ds = new Person(new Name("Diana", "Spencer") , IF') ;
Person es = new Person(new Name("Edward", "Spencer"), 'M');
Person ew = new Person(new Name("Elizabeth", "Windsor") , 'F');
Person pm = new Person(new Name ("Philip", "Mountbatten"), 'M') ;

154 COMPOSITION AND INHERITANCE [CHAP. 7

I IPerson eb = new Person(new Name("Elizabeth" "Bowes-Lyon") IF');
IPerson gw = new Person (new Name ("George" "Windsor") I 'M') ;

ww. setFather (cw) ;
ww.setMother(ds);

ds .setFather (es) ;
cw. setMother (ew) ;
cw. setFather (pm) ;
ew. setMother (eb) ;
ew. setFather (gw) ;
System.out.println(ww);

1

1
The output is
William Windsor (M)

mother: Diana Spencer (F)

father: Edward Spencer (M)

father: Charles Windsor (M)

mother: Elizabeth Windsor (F)

mother: Elizabeth Bowes-Lyon (F)

father: George Windsor (M)

father: Philip Mountbatten (M)

The program creates the eight Person objects shown here. (Some of the details of the objects are
omitted. Each of the 16 name fields is actually a reference to a distinct Name object.)

This version of the Person class is recursive because its mother and father fields are
references to Person objects.

The main () method first creates the eight objects. Then it invokes the setMother() and
setFather() methods to link them. The result is the linked tree structure shown below.

The two static fields blanks and tab are used only in the tostring () method. They
produce the tabbed formatting in the output shown above. Each time the tostring () method prints a
line with "mother:" or "father:," it appends two blanks to the tab string, prints that first, and then
removes the two blanks. Since that field is declared to be static, it remains unchanged throughout the life
of the program except when changed by the tostring () method. So the effect is to tab over 2n blanks,
where n is the current level of recursion. For example, the string "father: George Windsor (M) "
is tabbed over 6 blanks because it is printed in a level 3 recursive call: ww .tostring () invokes
cw. tostring () which invokes ew. tostring () which invokes gw. tostring () . This
mechanism makes it easy to see from the output who is who's parents.

EXAMPLE 7.4 A Telephone List

This class maintains a list of friends' telephone numbers:
class Friend

{ / / Objects represent my friends

protected String name; / / e.g., "Bill Ross"
protected String telephone; / / e.g., " 2 8 3 - 9 1 0 4 "

protected Friend next; / / next object in list
static Friend list; / / linked list of friends

sex /Ml
mother H
father @.,

sex sex I#I
b mother@ mother

father). father 8

sex
mother

\ w w
\

sex /TJ
). motherg b

\

father @,,

I I

father @,,

[Mountbatten I
sex

mother
father

sex (FI
mother @

father B
Person

FT

sex
mother
father B

Person Person

CHAP. 71 COMPOSITION AND INHERITANCE 155

ww ds es

name (Edward]
I I Spencer 1

sex sex sex I#I=I 1mother M- mother
father father father

by Person Person

name IElizabeth I
[Bowes-Lyon]

sex sex LF_I sex
.

mother m- ------m mother mother
father @, father @,, . .

\ Person

\ ww FT

name George
 1
sex iTJ

I

mother p~mother

father father

I

Person Person

father

156 COMPOSITION AND INHERITANCE [CHAP. 7

static void print()

{ Friend friend = list;
if (friend == null) System.out.println("The list is empty.");
else do

{ System.out.println(friend);
friend = friend.next;

} while (friend ! = null);
1

Friend(String name, String telephone)

{ this-name = name;
this.telephone = telephone;
this.next = list;
list = this;

1

public String tostring()

I'{ return new String(name + :\tl'+ telephone);

1
}

The test driver is
class TestFriend

{ / / Test driver for the Friend class:
public static void main(String args[])

{ Friend.print();
new Friend("Martin Ryle", "388-1095") ;
new Friend("Bill Ross" I ''283-9104");
new Friend("Nat Withers" I n217-5912");
Friend.print();

1
1

The output is
The list is empty.

Nat Withers: 217-5912

Bill ROSS: 283-9104

Martin Ryle: 380-1095

The list consists of a sequence of linked Friend objects. Each object has three data fields: name,
telephone,and next.The next field is a reference to the next object in the list.

The static modifier in the declaration of the variable list identifies it as a class variable (as
opposed to an instance variable). That means that there is only one of these variables for the entire class
(as opposed to one for each object of the class). This class variable is a reference to the first object in the
list. (See the picture below.)

The static modifier in the declaration of the method print () identifies it as a class method. It
prints the entire list, or reports that it is empty. It works by following the next links in the objects.

The main () method first invokes the print () method while the list is still empty. Then it
creates three objects and invokes print () again. The list looks like the picture below.

The objects are inserted into the list when the constructor creates them. That is achieved by the two
lines

this.next = list;
list = this;

The first line assigns the new object's next field to refer to the first object in the existing list, which is
what the class variable 1i st refers to. The second line reassigns that class variable to refer to the new
object, thereby placing it at the beginning of the list. Note that before any objects are created, the 1ist

157 CHAP. 71 COMPOSITION AND INHERITANCE

variable is null,which means that the list is empty. So when the first object is inserted into the list, the
first of the two lines above assigns null to that first object's next field. Then since all other objects
are inserted at the beginning of the list, that first object remains the last in the list. Thus the end of the list
is identified by the fact that its last object's next field is null.

The print () method traverses the list, invoking the Friend.list
println () method (which invokes the tostring ()

method) on each object. Each time the do. . .while loop
iterates, the statement

friend = friend.next;
advances the local reference variable friend to the next name/Nat Withers]
object in the list. When it is referring to the last object, this

telephone
-1 statement assigns nu11 to it, thereby stopping the loop.
next @I

Linked structures like the tree created in Example Friend

7.3 and the list created in Example 7.4 are powerful data

But the incautious use of links can lead to confusion and
run-time errors that are difficult to track down. These name1 Bill Ross 1
are usually due to assigning references or testing their telephone
equality. Java helps avoid these problems by providing next 111
the special clone () and equals () methods Friend

described in Section 7.10 on page 168.

7.3 INHERITANCE
name [Martin Ryle 1

[-I
Inheritance is the creation of one class by extending telephone

another class so that instances of the new class automat- next

EXAMPLE 7.5 Subclass Classy Inherits the protected Field m from Class ClassX

This defines a trivial class with one field and one method:
class ClassX

{ / / A trivial class:
protected int m;

public String tostring()

{ return new String((I 1 + m + I t) ") ;

1
1

Note that the field m is declared to have protected instead of private access.
Here is a second class, defined to extend the first class:
public class Classy extends ClassX

{ / / A trivial subclass of ClassX:
private .int n;

public String tostring()

{ return new String((I1 + m + ' I , II + n + , I) 1 1) ;

1
1

158 COMPOSITION AND INHERITANCE [CHAP. 7

Note that its tostring() method has the same signature as the tostring() method declared in
ClassX.

Here is the test driver program:
class TestClassY

{ / / Test driver for Classy:
public static void main(String[] args)

{ ClassX x = new ClassX();
System.out .println(I1x = + x);I'

Classy y = new Classy();
System.out.println("y= + y) ;

1
1

Its output is
x = (0)
Y = (0 ,O)

Class ClassX declares the single int field m and the single
method tostring() . Since ClassX has no explicit constructor, the
compiler produces a default constructor for it. That default constructor
initializes the field m to 0 for every instances of c 1assx.So the object x c1assx
created in the first line of main () looks like the picture shown here.

The line
public class Classy extends ClassX

defines Classy to be a subclass of Classx.The keyword extends is used to specify that the class
being defined is a subclass of the other class.

Class Classy declares the single int field n and the single
method tostring () . Its default constructor is also produced implicitly
by the compiler. So the object y created in the third line of main ()

looks like the picture shown here. yM--lZ-Since Classy is a subclass of Classx,every instance of Classy
has two fields: the int field m that it inherits from Classx,and the Class

field n that it declared explicitly.
The field m in ClassX is declared to be protected instead of

private.Recall (page 116) that the protected field modifier means that the field is accessible from
any subclass, whereas private means that i t is accessible only from within the class itself.

Here is an equivalent definition of Classy without using inheritance:
public class Classy

{ / / A trivial class:
private int m, n;

public String tostring()

{ return new String('I (II + m + II , II + n + l 1);

1
1

EXAMPLE 7.6 Subclasses Do Not Inherit private Fields

These definitions are identical to those in Example 7.5 except that the field m in ClassX is declared
to have private access instead of protected:

class ClassX

{ / / A trivial class:
private int m;

CHAP. 71 COMPOSITION AND INHERITANCE 159

public String tostring()

{ return new String ('I ('I + m +) ;

1
1

public class Classy extends ClassX

{ / / A trivial subclass of ClassX:
private int n;

public String tostring()

(I 1{ return new String('I + m + + n + I!) ; / / ERROR: no field m

1
1

class TestClassY

{ / / Test driver for Classy:
public static void main (String [3 args)
{ ClassX x = new ClassX();
System.out.println("x= + x);I'

Classy y = new Classy();
System.out.println("y= + y);I'

1
1

This program will not compile because the Classy . tostring () method is attempting to access
the field ClassX.m which is declared private.

When a second class inherits from another class, we call the first class the superclass or
parent class of the second, and the second class a subclass or child class of the first. For
example, in Example 7.5, ClassX is the superclass and C:tassY is the subclass. A subclass
extends the definition of its superclass by adding fields and methods. This makes instances of the
subclass more specialized than instances of its parent class. Every instance of the subclass has all
the characteristics of instances of the superclass. So the set of all instances of the subclass is
essentially a subset of the set of all instances of the superclass:

{ y : object y is an instance of Classy} c { x : object x is an instance of ClassX}
That is why Classy is called a "subclass" of ClassX.

7.4 OVERRIDING FIELDS AND METHODS

An instance y of Classy is "essentially" the same as being an instance of ClassX with
more data and functionality. But not exactly. If both classes declare a method g () with the same
signature, the method y .g () will invoke the method declared in Classy,not the one declared
in ClassX.In this case, the method y.g () is said to override the method x .g () . Overriding is
similar to overloading: different methods have the same name. Overriding is different because
the methods have the same signature (same name, same parameter type list) and they are
declared in different classes. They must also have the same return types, and the overriding
method must has access that is as wide as the overridden method. So a public method can be
overridden only by another pub1 ic method.

Overriding fields is similar to overriding methods: they have the same declarations but in
different classes.

160 COMPOSITION AND INHERITANCE [CHAP. 7

EXAMPLE 7.7 Overriding Fields and Methods

This example is similar to Example 7.6 on page 158. It illustrates how a subclass's fields and methods
override those of its superclass. Here is a trivial class with two protected fields and three methods:

class ClassX

{ / / A trivial class:
protected int m;

protected int n;

void f ()

{ System.out.println('"ow in C1assX.f () . I 1) ;

m = 2 2 ;
1
void g()

{ System.out.println('"ow in ClassX.g() . I 1) ;

n = 44;
1

public String tostring()

{ return new String(" { m=" + m + ' I I n=" + n + } I ') ;

1
1

Here is a subclass:
public class Classy extends ClassX

{ / / A trivial subclass of ClassX:
private double n; / / overrides the field C1assX.n

void g() / / overrides the method ClassX.g()
{ System.out.println("Now in ClassY.g() . ' I) ;
n = 3.1415926535897932;

1

public String tostring0 / / overrides the method ClassX.toString()
{ return new String(" { m=" + m + n=l' + n +) ;I t I

1
1

Its field n and methods g () override the members of ClassX with the same name.
Here is a test driver:

c lass TestClassY
{ / / Test driver for Classy:
public static void main(String[] args)

{ ClassX x =, new ClassX() ;
x.fO;

x.go;

System.out.println("x= + x);
Classy y = new Classy(); / / y "is a" Classy
y.fO; / / polymorphism: y also "is a" Classx
Y - g O ;

System.out.println("y= + y);

1
1

Its output is
Now in ClassX.f().

Now in ClassX.g().

x = { m=22, n=44 }

161 CHAP. 71 COMPOSITION AND INHERITANCE

Now in C1assX.f () .
Now in Classy. g () .
y = { m=22,,n=3.141592653589793 }

The ClassX object x has fields x.m and x.n and methods X.f () , x.g(),and
x.tostring () .The Classy object y has fields y . m and y .n and methods y .f () , y .y () , and
y .tostring () .The field y .m and method y .f () are declared in its superclass Classx.The field
y .n and methods y .g () and y .tostring () are declared in its own class Classy,overriding the
declarations of n, g () , and tostring () in Classx.

You can tell which declarations were used for the field y . n and method y.g () by the output of
the test driver. The field y .n has type double, assigned to be 3.141592653589793 in the method y .g ()

that is declared in (3lassY.
The statement
y - f O ; / / polymorphism: y also “is a” ClassX

in main () is an example of polymorphism (“capable of many forms”). Although the implicit argument
y is a Classy object, it can take the form of a ClassX object in order to invoke the method
ClassX.f () . This works for both implicit and explicit arguments to methods of superclasses.

7.5 THE super KEYWORD

Java uses the keyword super to refer to members of the parent class. When used in the
form super () , it invokes the superclass’s constructor. When used in the form super.f () , it
invokes the function f () declared in the superclass. This allows you to override the override.

EXAMPLE 7.8 A Student Subclass of the Person Class

Here is a subclass of the Person class (Example 7.2 on page, 150):
class Student extends’ Person

{ / / Objects represent students
protected int credits; / / credit hours earned
protected double gpa; / / grade-point average

Student(Name name, char sex, int credits, double gpa)

{ suger(name, sex); / / invokes the Person class constructor
this.credits = credits;
this.gpa = gpa;

1

int credits (1
{ return credits;
1

double gpa()

{ return gpa;
1

162 COMPOSITION AND INHERITANCE [CHAP. 7

public String tostring()

{ String s;
s = new String(suger.toString()) ; / / invokes Person.toString()
s += "\n\tcredits: + credits;

'Is += " \n\ tgpa: + gpa;
return s;

1
1

Here is a test driver:
class Teststudent

{ public static void main(String[] args)

{ Name annsName = new Name("Ann" , "Baker");
Student ann = new Student(annsName, IF', 16, 3.5);

'ISys tem.ou t .p r in t ln ("ann : + ann);
1

1
Its output is
ann: Ann Baker (sex: F)

credits: 16

gpa : 3.5

The first line in the test driver creates the Name object annsName.The second line creates the
Student object ann,just as in Example 7.2 on page 150,except here it is an instance of the Student
class instead of the Person class. But the first line of the Student constructor is

suger(name, sex); / / invokes the constructor in the Person class
The keyword super refers to the superclass of the current class. Since that is the Person class, the
arguments name and sex are passed to the Person class constructor which executes its code on the
Student object ann.This has the same effect as if the Student class constructor had been declared
as

Student(Name name, char sex, int credits, double gpa)

{ this.name = name;
this.sex = sex;
this-credits = credits;
this.gpa = gpa;

1
We used the indirect method instead here just to illustrate the use of the super keyword.

The objects in this program can be visualized as shown in the following picture.

sex
char I middle p~I

I c r e d i t s 1 1 6 1

lastp~ 4 Baker 1

int

double

Student

CHAP. 71 COMPOSITION AND INHERITANCE 163

7.6 INHERITANCE VERSUS COMPOSITION

Inheritance means specialization. A subclass specializes by inheriting all the fields and
methods of its superclass and adding more. The extra fields and methods make the subclass more
restrictive, more special. The set of all subclass objects is a subset of the set of all its superclass
objects. The set of all students is a subset of the set of all persons. Students are specialized
per sons.

Note that the essential criterion for class Y to be a subclass of class x is that class Y

include all fields of class X. That means that the set of fields of a subclass is a superset of the set
of fields of its superclass! That seems contradictory until you realize that specialization to a
smaller group results from a larger set of criteria, because criteria are restrictions and more
restrictions lead to smaller groups.

Inheritance means specialization, while composition means aggregation. The student
class is a specialization of the Person class, while it is an aggregate of the Name and String
classes (and the char, int, and double types). Programmers often use the phrases “is a” and
“has a” to distinguish inheritance from composition. A student “is a” person, while a student
“has a” name.

The clear distinction between the “is a” and “has a” relationships can help you avoid making
the mistake of defining a subclass when it should not be a subclass. That design error sometimes
occurs when one assumes that inheritance simply means adding fields. For example, we could
define a general Circle class with a single field for the radius of a circle. Then recognizing that
cylinders are also geometric objects with radii, we might think that a general Cylinder class
should be defined as a subclass of the Circle class, adding a second field for the height of a
cylinder. But cylinders are not specialized circles. They don’t even have the same dimension.
Extending a Circle class to a Cylinder class is a misuse of inheritance.

7.7 CLASS HIERARCHIES

A class can have more than one subclass. For example, in addition to the Student class, we
could also define the following subclasses of the Person class: Tailor, Butcher, Baker,
CandleSt ickMaker, Lawyer, Judge, etc. Also, subclasses can have subclasses. For example,
the subclass Student could have the subclass Col 1egeS tudent (see Problem 7.12 on page
172), and that subclass could have the subclass GradS tudent (see Problem 7.13). These
relationships lead to a natural tree hierarchy of classes, as shown in the diagram at the top of the
next page.

In a class hierarchy like this, we say that class Y is a descendant of class X if there is a
sequence of classes beginning with Y and ending with X within which each class is the superclass
of the one before it. For example, in the hierarchy shown above, the UnderGrad class is a
descendant of the Person class because of the sequence UnderGrad -+Collegestudent -+
Student -+ Person.Also, if class Y is a descendant of class X , then we also say that class X is
a ancestor of class Y So, in the example above, the Person class is an ancestor of the
UnderGrad class. The words “subclass” and “extension” are used transitively in Java, so they
are also synonyms for the word “descendant:” the Person class is a subclass of the UnderGrad
class.

164 COMPOSITION AND INHERITANCE [CHAP. 7

UnderGrad

-Student SecondaryStudent

GradStudent

-CollegeStudent

Lawstudent

Butcher

Person Tradesman MedStudent

Baker

------E
Judge

Prosecutor

-Professional Philosopher

Within a class hierarchy, there are two special kinds of classes: abstract classes and final
classes. These are identified by the abstract and final modifiers.

An abstract class is a class that has at least one abstract method. An abstract method is a
method that is declared with only its signature; it has no implementation. Since it has at least one
abstract method, an abstract class cannot be instantiated. Classes and methods are declared to be
abstract by means of the abstract modifier.

EXAMPLE 7.9 An abstract Class

This example defines three classes: the abstract class Shape, Circle
and the two (concrete) classes Circle and Square,The latter are Shape-€Squareboth subclasses of the former.

abstract class Shape

{ / / Objects represent geometric shapes in the cartesian plane

abstract Point center();

abstract double diameter();

abstract double area();

The abstract class Shape has three abstract methods: center () , diameter () , and area () .
As abstract methods, they are declared with only their prototypes.

class Circle extends Shape

{ / / Objects represent circles in the cartesian plane

private Point center;

private double radius;

Circle(Point center, double radius)

{ this.center = center;
this.radius = radius;

1

1

165 CHAP. 71 COMPOSITION AND INHERITANCE

Point center ()

{ return center;
1

double diameter ()

{ return 2"radius;
1

double area ()

{ return Math.PI*radius*radius;
1

public String tostring()

{ return new String(''{ center = + center'I

+ ' I , radius = " + radius + " } ' I) ;

1
1

The Circle class has two fields, one constructor, and four methods. The fields specify the circle's
center and radius. The three (concrete) methods center () , diameter () , and area () implement
the corresponding abstract methods declared in the superclass.

class Square extends Shape

{ / / Objects represent squares in the cartesian plane

private Point northwestcorner;

private double side;

Square(Point northwestcorner, double side)

{ this.northWestCorner = northwestcorner;
this.side = side;

1

Point center ()
{ Point c = new Point(northWestCorner);
c.translate(side/2, -side/2);

return c;

1

double diameter ()

{ return side"Math.sqrt(2.0);
1

double area ()
{ return side*side;

public String tostring()

{ return new String("{northWestCorner = + northwestcornerI'

+ I I , side = + side + " } ") ;I'

1
1

The Square class also has two fields, one constructor, and four methods. The fields specify the
square's location and size. The three (concrete) methods center () , diameter () , and area ()

implement the corresponding abstract methods declared in the superclass.

166 COMPOSITION AND INHERITANCE [CHAP. 7

Here is a test driver for the Circle class:
class Testcircle

{ / / Test driver for the Circle class
public static void main(String[] args)

{ Circle circle = new Circle(new Point(3,1),2.0);
System.out.println("The circle is + circle);
System.out.println("Its center is + circle.center());
System.out.println("1ts diameter is I' + circle.diameter());
System.out .println("Its area is If + circle.area()) ;

1
1

Its output is
The circle is: { center = (3.0, l.O), radius = 2.0)
Its center is (3.0, 1.0)

Its diameter is 4.0

Its area is 12.566370614359172

Here is a test driver for the Square class:
class Testsquare

{ / / Test driver for the Square class
public static void main(String[] args)

{ Square square = new Square(new Point(1,5),3.0);
System.out .println(''The square is: " + square);
System.out.println("1ts center is I' + square-center());
System.out.println("1ts diameter is I' + square-diameter());
System.out.println("Its area is 'I + square.area());

I
1

Its output is
The square is {northWestCorner = (1.0, 5.0), side = 3.0)
Its center is (2.5, 3.5)

Its diameter is 4.242640687119286

Its area is 9.0

Note that the diameter of a geometric shape is
defined to be the length of the longest line segment VI

inside the shape. In the case of the circle, that is its
diagonal length.

The circle and square objects and their
reference location points look like the picture here
in the cartesian plane.

An abstract method can be regarded as
an outline or a specification contract. It
specifies what its subclasses have to
implement, but leaves the actual implementa-
tions up to them. For example, the abstract
area() method is declared in the Shape
class above, because we want every subclass to

-
have a complete method that returns the areas
of its instances, and we want all those methods
to have the same signature:

double area ()

167 CHAP. 71 COMPOSITION AND INHERITANCE

The abstract method in the
abstract superclass enforces that
specification.

An abstract. method is one
that is intended to be overridden in
each of a whole family of
subclasses. A final method is
just the opposite: a method that
cannot be overridden in any
subclass. The main reason for
declaring a method to be final
is to guarantee that it cannot be
changed.

An abstract class is one
that has at least one abstract
method. Similarly, a final class
is one that has at least one final
method.

7.8 THE Object CLASS

Java defines one special class,
the Object class, which is the
ancestor of every other class. It
declares twelve members: a
constructor and eleven methods.
Since every class is a subclass of
the objec t class, every object
can invoke these methods. Four of
them, clone () , hashcode () ,

equals (1 , and tostring () , are
intended to be overridden. (See
Section 7.10 on page 168.)

If you do not use the extends
keyword explicitly to make your
new class a subclass of another
class, then it is automatically
made a subclass of the Object

03: iect
-Abs trac tCo:L lec t ion

I A b s trac t Lis t

LAb:;tractSequentialLis t

L-LinkedList

-Boo 1ean

-Character

--Class

--Component

L
Con t a i ne r
)Window

L-Frame

Text Cornponen t

-Date

-Math

-Number

tByte
Double

Float

In t ege 1:

Long

Short

-Random

-String

-StringBuf fer

-Sys tem
-Thread

-Throwable

-Exception

-RuntimeException
r-ArithmeticException -1llegalArgumentException

-1ndexOutOfBoundsException

-NullPointerException

-1nterrup tedExcep t i on

-1OE:xcep t ion

-FileNotFoundException
t-EOFExcep t i on

-Error

-Vector

Istack

class. So for example, the following two definitions are equivalent:
class Point:

{ double x, y;
1

class Point: extends Object

{ double x, y;
1

168 COMPOSITION AND INHERITANCE [CHAP. 7

7.9 THE JAVA CLASS HIERARCHY

This diagram above shows a very small part (less than 3%) of the class hierarchy in the Java
class libraries (JDK 1.2 Beta). It shows, for example, that the LinkedList class is the
great-great-grandchild of the Obj ect class in the class genealogy. It also shows that most of the
classes that we have been using so far (e.g., the Math class, the Random class, the String
class, the systern class) are first-generation subclasses of the Object class. Note that the six
wrapper classes for the numeric types (see Section 6.10 on page 132) are subclasses of the
Number class, which is an abstract class (see page 167).

The subclasses of the Throwable class are the classes used for handling run-time errors in
Java. They are described in Chapter 10.

The Vector class encapsulates the features of arrays, described in Chapter 8.
The subclasses of the Component class are the classes used for building graphical user

interfaces. They are described in Chapter 9.

7.10 THE clone() AND equals() METHODS

The clone (1 and equals () methods are two of the twelve methods declared in the
Object class. They are declared there to encourage you to override them in your own classes,
thereby providing clean and consistent facilities for duplicating objects and determining when
they are the same.

EXAMPLE 7.10 An equals () Method for the Point Class

Here is the Point class from Section 6.1:
class Point

{ / / Objects represent points in the cartesian plane

double x, y ; / / the point's coordinates

Point(doub1e a, double b)

{ x = a ;

y = b;

1

boolean eguals(Point p)
{ return (x == p.x && y == p.y);
1

public String tostring()

{ return new String(II (I ' + x + ' I , + y + l i) l 1) ;

1

This local version of the equal () method to guarantee that q. equals (p) would not be false
unless the two Point objects really did represent different points. Without this local version, this
expression would invoke the Object. equals () method which would return false if the P o i n t

objects were distinct but equal.

CHAP. 71 COMPOSITION AND INHERITANCE 169

The equals () method defined above does not override the Object. equals () method because
their signatures are not quite the same. The signature of the former is equals (Point) ; the signature of
the former is equals (Obj ect) .So, here is the correct way to override the equals () method:

public boolean equals (Object p)

{ return (x == p.x && y == p.y);
1

The test driver in Example 6.1 works the same way with this corrected version.

EXAMPLE 7.11 The Preferred Overrides of the clone () and Point Methods

At last, here is the preferred version of our Point cIass:
class Point

{ / / Objects represent points in the cartesian plane

double x, y; / / the point's coordinates

Point (double a, double b)

{ x = a ;

y = b;

1

public Object clone ()

{ return new Point(x,y);
1

public boolean equals (Object p)
{ if (p instanceof Point)

return (x == ((Point)p).x && y == ((Point)p) .y);
else return false;

1

public String tostring ()
' I I{ return new String(" (I ' + x + + y + ") I !) ;

1
1

The test driver
class Testpoint

{ public static void main(String args[])

{ Point p = new Point(2,3);
System.out.println("p= + p);I'

Point g = (Point)p.clone();
System.out.println("q= + q);l1

=I=
if (q p) System.out.println("q== p ") ;
else System.out.println("q ! = p");
if (q.equals(p)) Systern.out.println("q equals p ");
else System.out .println("q does not equal p ");

1
1

has output
p = (2.0, 3.0)
q = (2.0, 3 . 0)
q ! = p
q equals p

170 COMPOSITION AND INHERITANCE [CHAP. 7

The Point. clone () method creates a Point object with the same coordinates as its implicit
argument, and then returns it. But, to override the Object.clone () method, the Point. clone ()
method must return an instance of the Object class. So the Point object being returned is recast as
an Ob j ect object as it is returned. Then the statement

Point q = (Point)p.clone () ;
recasts it back to a Point object and then initializes q with it.

To override the Object. equals () method, the Point. equals () method must have a single
parameter of the Object class. But that means that p .equals (x) could be invoked on an object x
of anv class since all classes are subclasses of the Object class. So it is the responsibility of the method
itself to determine first whether its argument really is an instance of the Point class. That is done by the
ins tanceo f operator.

The condition (x == ((Point)p) .x && y == ((Point) p) .y) looks a little strange because
of the (Point) cast. This is necessary because p is an instance of the Object class. So even though
p has the proper x and y fields, they cannot be accessed from p directly. Java is a strongly typed
language, so the dot operator (.) requires that the operand on its left be an instance of the class to which
the member on the right belongs: p is an instance of the Ob j ec t class, but (Point) p is an instance
of the Point class.

Now we have two distinct Point objects that have the same data, one produced by cloning the
other. So the equality operator == finds them unequal, while the equals () method finds them equal,
just as before in the example on page 127. These overrides of the clone () and equals () methods
are consistent with those in all the Java standard library classes.

Review Questions

7.1 What is the difference between composition and inheritance?

7.2 In Example 7.2 on page 150, how many objects will die if the statement
ann = new Person(new Name ("Ann" ,"Landers") , 'F') ;

executes after the others?

7.3 In Example 7.2 on page 150, how many objects will die if the statement
bob = new Person (new Name ("Robert","Bruce") , ' M ') ;

executes after the others?

7.4 Why wouldn't the tab field work properly in Example 7.3 on page 152 if it were not
declared to be static?

7.5 What would go wrong in Example 7.4 on page 154 if the two lines
this.next = list;
list = this;

in the constructor were reversed?

7.6 In the print () method in Example 7.4 on page 154, why is it necessary to use the local
variable friend,instead of using the 1ist field directly?

7.7 Delete the tostring () method from Classy in Example on page 160 and then rerun it.
The output is
Now in ClassX.f().

Now in ClassX.g () .
x = { m=22, n=44 }
Now in ClassX. f () .
Now in ClassY.g().

y = { m=22, n=O }

CHAP. 71 COMPOSITION AND INHERITANCE 171

Explain this different result.

7.8 What is the difference between overriding and overloading a method?

7.9 What is polymorphism?

Programming Problems

7.1 Modify the Name class defined in Example 7.1 on page 148 by adding the following three
fields:

protected String prefix; / / e.g., "Dr."
protected String suffix; / / e.g., "Jr."
protected String nick; / / e.g., "Bill"

7.2 Implement an Address class for representing postal mailing addresses.

7.3 Implement a Phone class for representing telephone numbers.

7.4 Implement an Emai1 class for representing email addresses.

7.5 Implement a Ur1 class for representing Internet Uniform Resource Locator addresses.

7.6 Modify the Person class defined in Example 7.2 on page 150 by adding the following six
fields:

protected Phone phone; / / home telephone number
protected Email email; / / Internet email address
protected Url url; / / Internet home page URL

7.7 Implement a class for celestial bodies (the sun, the planets, their moons, etc.). Include the fol-
lowing fields:

private String name;

private double mass; / / in grams
private double diameter; / / in kilometers
private double period; / / in earth days
private CelestialBody orbits;

private CelestialBody next;

static CelestialBody list;

The list field maintains a linked list of all the objects created, similar to that in Example 7.4
on page 154.

7.8 Modify the Person class defined in Example 7.3 on page 152 by adding these fields:
protected int number; / / the number of the object
protected static int count; / / numbe:r of Person objects in tree

Add to each constructor a statement that increments the counter, and modify the
tostring i:) method so that it prints the current count. Then test your modified class. If run
on the same data as in Example 7.3, the output should look like this:
William Windsor (M) #1

mother: Diana Spencer (F) #2

father: Edward Spencer (M) #4
father: Charles Windsor (M) # 3
mother: Elizabeth Windsor (F) # 5
mother: Elizabeth Bowes-Lyon (F) #7
father: George Windsor (M) # 8

father: Philip Mountbatten (M) # 6

This shows, for example, that the Charles object was created third.

172 COMPOSITION AND INHERITANCE [CHAP. 7

7.9 Modify insert () method of the Friend class defined in Example 7.4 on page 154 so
that the objects are inserted into the list in alphabetical order. Use the compareTo()
method that is defined in the String class to determine the alphabetical ordering of two
strings p and q like this::

(p.name.compareTo(q.name)< 0) / / means that p precedes q
(p.name.compareTo(q.name)== 0) / / means that p equals q
(p.name.compareTo(q.name) > 0) / / means that p follows q

7.10 Modify the Friend class in Example 7.4 on page 154 so that it is a subclass of the Person
class.

7.11 Add the following method to the Student class defined in Example 7.8 on page 161:
void update(int credit, char grade);

/ / Updates the student‘s credits and gpa by adding the new credit
/ / and recomputing the gpa based upon the new grade

For example, if ann has the data shown in Example 7.8, then the action
ann.update (4I ’ B ’) ;

would change ann. credit to 20 and ann. gpa to 3.4. Use the formula

credits x gpa + credit x pointsnewgpa =
credits + credit

where points is the numerical equivalent (4, 3,2, or 1) of the letter grade (A, B, C, or D).
7.12 Extend the Student class (Example 7.8 on page 161) to a subclass named Collegestu-

dent with a field named year for the year of the student’s college graduation.
7.13 Extend the Collegestudent class (Problem 7.12)to a subclass named GradStudent

with a field named degree for the student’s undergraduate degree.
7.14 Extend the abstract Shape class (Example 7.9 on page 164) to a concrete subclass

named Triangle whose instances represent triangles in the cartesian plane. For the area()
method, use the formula +(xi y2 + ~ 2 + ~ 3 ~ 1 -~ 3 y1x2-~2x3-y3x1)/2 for the area of the triangle
with vertices at (xl,yl), (x2,y2), and (xj, y3). You may also want to use a private static
utility method that implements the following formula for the distance between two points

2 2
-x2> + (Y 1 - Y 2)

page 136.)

Answers to Review Questions

7.1 Composition is where one class is a component of another class. For example, the Name class is a
component of the Person class in. Inheritance is where one class extends another class. For exam-
ple, the Student class extends the Person class in. Composition is a “has a” relationship, while
inheritance is an “is a” relationship. A person “has a” name, while a student “is a” person.

7.2 This statement removes the reference ann from its current referent, thereby killing that Person
object. Since it itself has two non-null references, their referents (a Name object and a String
object) are also killed. Also, the two String objects that are referenced by fields in that Name
object die. So the net carnage is five dead objects.

7.3 This dereferences only the single Person object. The Name object (and its three affiliated
String objects) survives because it retains its independent reference bobsName.

7.4 If it were not declared to be static in Example 7.3 on page 152, there would be a separate tab
field in each Person object instead of just one for the entire class. Declaring it static makes i t
a classfield instead of an instancefield.

CHAP. 71 COMPOSITION AND INHERITANCE 173

7.5 If the two lines
this.next = list;
list = this;

in the constructor were reversed in Example 7.4 on page 154, then the class variable list would
be reassigned before its existing value is saved. But that value refers to the first object in the list. When
all references to an object are removed, the objects dies. So in this case, the whole list would be lost.
Also, if the first line above follows the second, it will make the object refer to itself.

7.6 If we used the list field directly in Example 7.4 instead of the local variable friend,it would
empty the list! Each time the assignment

list = 1ist.next;
executes, the object to which friend refers would be dereferenced, killing that object.

7.7 With the Classy. tostring () method deleted, the statement
System.out.println("y= + y) ;I'

invokes the Classx. tostring () method instead.

7.8 A method is overloaded when another method with the same name but different parameter type list is
declared in the same class. A method is overridden when another method with the same signature is
declared in a subclass. For example, in Example 7.1 on page 148, the constructor Name () is over-
loaded twice in the Name class, and in Example 7.7 on page 160 the method g () declared in
C l a s s y overrides the method g () declared in ClassX.

7.9 In object-oriented programming, the term "polymorphism" re.fers to the ability of objects to take the
form objects of different classes. For example, in Example 7.7 on page 160, the object y is an
instance of Classy but is able to take the form of a ClassX object when it invokes the method
ClassX.f () .

Solutions to Programming Problems

7.1 class Name
{ / / Objects represent names of people

private String prefix; / / e.g., "Mr."
private String first; / / e . g . , "William"
private String middle; / / e .g . , "Jef fierson"
priva.te String last; / / e .g. "Cliriton"

I'private String suffix; / / e.g., "Jr.
priva.teString nick; / / e.g., "Bill.."

Name() / / default constructor
{
1

Name (String nick)

{ this.nick = nick;
1

Name(String first, String last)

{ this.first = first;
this.last = last;

1
Name(String first, String middle, String last)

{ this(first,last);
this.middle = middle;

1
Name(String first, String middle, Stri-ng last,

String nick)

{ this (first,middle, last);
this.nick = nick;

1

174 COMPOSITION AND INHERITANCE [CHAP.7

Name(String prefix, String first, String middle,

String last, String suffix)

{ this (first,middle, last);
this.prefix = prefix;
this.suffix = suffix;

1

Name(String prefix, String first, String middle,

String last, String suffix, String nick)

{ this(prefix,first,middle,last,suffix);
this-nick= nick;

1

String prefix ()
{ return prefix;
1

String first ()
{ return first;
1

String middle ()
{ return middle;
1

String last ()
{ return last;
1

String suffix ()
{ return suffix;
1

String nick ()
{ return nick;

void setPrefix(String prefix)

{ this.prefix = prefix;
1

void setFirst(String first)

{ this.first = first;
1

void setMiddle(String middle)

{ this.middle = middle;
1

void setLast(String last)

{ this.last = last;

void setSuffix(String suffix)

{ this-suffix= suffix;
1

void setNick(String nick)

{ this.nick = nick;
1

175

1

CHAP. 71 COMPOSITION AND INHERITANCE

public String tostring()

{ String s = new String();
if (prefix ! = null) s += prefix + I' ' I ;

if (first ! = null) s += first + 'I I ' ;

if (middle ! = null) s += middle + I' ' I ;

if (last ! = null) s += last + II ' I ;

if (suffix ! = null) s += suffix + It I I ;

if (nick ! = null) s += " (\ l ' l l + nick + l l \ l l) l l ;
return s.trim();

1

class TestName

{ public static void main(String[] args)

{ Name mlk = new Name("Dr. I' , "Martin", "Luther" , "King", "Jr. ' I) ;
System.out.println(m1k + won the 1964 Nobel Peace Prize.");

1
1

7.2 class Address
{ / / Objects represent mailing addresses

private String street;

private String city;

private String state;

private String zip;

private String country;

Address ()
{
1

Address(String city)

{ this.city = city;
1
Address(String street, String city)

{ this (city) ;
this.street = street;

I

Address(String street, String city, String state)

{ this (street ,city);
this.state = state;

1

Address(String street, String city, String state,

String zip)

{ this(street,city,state);
th.is.zip= zip;

1

Addrcss(String street, String city, String state,

String zip, String country)

{ this(street,city,state,zip);
this.country = country;

1

void setStreet(String street)

{ this.street = street;
I

116 COMPOSITION AND INHERITANCE [CHAP. 7

void setCity(String city)

{ this.city = city;
1

void setState(String state)

{ this.state = state;
1

void setZip(String zip)

{ this.zip = zip;
1

void setCountry(String country)

{ this.country = country;
1
public String tostring()

{ String s = new String();
if (street ! = null) s += street + "\nll;
if (city ! = null) s += city + I I , I I ;

if (state ! = null) s += state + ' I ;

if (zip ! = null) s += zip + "\n";
if (country ! = null) s += country + # I ;

return s.trim();

1

1

class TestAddress

{ public static void main(String[] args)

' I{ Name bg = new Name("William" , "H. , "Gates", "Bill");
Address bga = new Address ("One Microsoft Way" , "Redmond"I

I"WA" "98052");
System.out.println("The world's richest person is ' I + bg

+ \nHis address is:\n" + bga);

1
1

7.3 class Phone
{ / / Objects represent telephone numbers in the United States

private String area;

private String number;

Phone ()

{
1

Phone (String s)

{ if (s.length() == 13)

{ area = s.substring(l'4);
s = s.substring(5'13);

1
if (s.length()== 10) / / e.g., s = "0123456789"
{ area = s.substring(Or3); / / e.g.I 11012T1
s = s.substring(3'10); / / e.g.I "3456789"

1
setNumber(s);

1

void setArea(String area)

{ this.area = area;
1

CHAP. 71 COMPOSITION AND INHERITANCE 177

void setNumber(String s)

{ if (s.length()== 8) / / e.g., s = "345-6789"

number = s.substring(0,3)+ s.substring(4,8);
if (s.length()== 7) / / e.g., s = "3456789"
number = s;

1

public String tostring()

{ String s = new String();
if (area ! = null) s += + area + ") " ;

if (number ! = null)
$5 += number.substring(0,3)+ ' ' - I 1

+ number.s~bstring(3~7);
return s;

1
1
class TestPhone

{ public static void main (String [] args)

{ Name bg = new Name("William" , "H.' I , "Gates", "Bill");
Address bga = new Address ("One Microsof t Way", "Redmond",

I'WA 'I , "98052");
Phone bgp = new Phone((425) 882-808O") ;
Phone bgf = new Phone("4259367329") ;
System.out.println("The world's richest person is I' + bg

I ! . 'I+- \nHis address is: \n" + bga + "\nPhone: + bgp
t "\nFax: + bgf);'I

1
1

7.4 class Email
{ / / Objects represent Internet email addresses
private String username;

private String hostname;

Email (String s)

{ int i = s.indexOf('@');
if (i > -1) / / e .g., s = " j hubbard@richmond. edu"
{ username = s.substring(0,i); / / e.g., "jhubbard"
hostname = s.substring(i+l); / / e.g., "richmond.edu"

1
1

void setUsername(String username)

{ thissusername= username;
1

public String tostring()

{ String s = new String();
if (username ! = null && hostname ! = null)
s += username + ' I @ ' ' + hostname;

return s;

1

178

7.5

COMPOSITION AND INHERITANCE [CHAP. 7

class TestEmail

{ public static void main(String[] args)

{ Name bg = new Name("William", I ' H . " , "Gates", "Bill");
Address bga = new Address ("One Microsoft Way" , "Redmond",

WA , ''98052")I' ;
Phone bgp = new Phone(I' (425)882-8080");
Phone bgf = new Phone("4259367329") ;
Email bge = new Email("bgates@microsost.com");
System.out.println("The world's richest person is I' + bg

+ ' I . \nHis address is: \n" + bga + "\nPhone: + bgp' I

+ "\nFax: + bgf + "\nEmail: + bge);I' I'

1
1
class Url

{ / / Objects represent Internet web page addresses

/ / e.g., "http://www.dell.com/products/dim/xpsr/index.htm1'
private String service; / / e.g., "http"
private String host; / / e.g., "www.dell.com"
private String path; / / e.g., "products/dim/xpsr"
private String file; / / e.g., s = "index.htm1"

Url (String url)

{ setUrl (url) ;
1

String service ()
{ return service;
1

String host ()
{ return host;
1

String path ()
{ return path;
1

String file ()
{ return file;
I

void setUrl(String s)

{ / / e.g., "http://www.dell.corn/products/dim/xpsr/index.htrn"
int i = s . indexof(: / / I') ; / / e.g., i = 4
if (i < 0) service = llhttplt; / / not found
else service = s.substring(0,i); / / e.g., "http"
s = s.substring(i+3);
/ / e.g., s = "www.dell.com/products/dim/xpsr/index.htmll
i = s.indexOf('/'); / / e.g., i = 13
if (i < 0) return; / / not found
host = s.substring(0,i); / / e.g., "www.dell.corn"
s = s.substring(i+l);
/ / e.g.,s = "products/dim/xpsr/index.htm"
i = s.lastIndexOf('/'); / / e.g., i = 17
if (i < 0) return; / / not found
path = s.substring(0,i); / / e.g., "products/dim/xpsr"
file = s.substring(i+l); / / e.g., s = "index.htm1"

I

CHAP. 71 COMPOSITION AND INHERITANCE 179

public String tostring()

(String s = new String();
if (host ! = null)
{ i f (service == null) s += "http://Il+ host + l l / l l ;

else s += service + I' :/ / + host + " / ";I'

if (path ! = null) s += path + " / " ;
if (file ! = null) s += file;

1
return s;

1
1
class TestUrl

{ public static void main(String[] args)

{ String s = "http://www.dell.com/products/dim/xpsr/index.htm11;
Url url = new Url(s);
System.out.println("service = + url.service());I'

System.out.println("host = + url.host());
'ISystem.out.println("path = + u r l . : p a t h ()) ;

System.out.println("file = + url.file());
System.out .println("url = + url);II

s = "http://gum.richmond.edu/-hubbard/books/pwj.html11;
url = new Url(s) ;
System.out.println("service = + url.service());'I

System-out .println("host = + url .host ()) ;

System.out.println("path = + url.path());I'

System.out.println("file = + url.file());
System.out .println("url = + url);I'

1
1

7.6 class Person
{ / / Objects represent people

protected Name name;

protected char sex; / / 'M' or IF'
protected String id; / / e.g., Social Security number
protected Phone phone; / / home te:lephone number
protected Email email; / / Internet email address
protected Url url; / / Internet home page URL,

Person (Name name, char sex)

{ this.name = name;
this.sex = sex;

1

Person(Name name, char sex, String id)

{ this.name = name;
this.sex = sex;
this.id = id;

1

180 COMPOSITION AND INHERITANCE [CHAP. 7

Name name()

{ return name;
I

char sex ()
{ return sex;
I

String id()

{ return id;
I

Phone phone ()
{ return phone;
I

Email email ()
{ return email;
1

Url url()

{ return url;
1

void setId(String id)

{ this.id = id;
I

void setPhone(Phone phone)

{ this.phone = phone;
1

void setEmail(Emai1 email)

{ this.emai1 = email;
1

void setUrl(Ur1 url)

{ this.ur1 = url;
I

public String tostring()

{ String s = new String("\n\t name: 'I + name

+ "\n\t sex: + sex);
if (id ! = null) s += "\n\t id: I' + id;
if (phone ! = null) s += "\n\t phone: I' + phone;
if (email ! = null) s += "\n\t email: + email;
if (url ! = null) s += "\n\t url: + url;
return s;

I
1

class TestPerson

{ / / Test driver for the Person class:
public static void main(String args[])

{ Person ann = new Person(new Name("Ann", "Baker") IF');I

Systern.out.println("ann: + ann);'I

ann.set Id (053011736 'I) ;
I'System.out.println("ann: + ann);

ann.setPhone(new Phone("8043790610")
) ;
'ISystem.out.println("ann: + ann);

)ann. setEmail (new Email ("abaker@richmond.com");
'ISystem.out.println("ann: + ann);

CHAP. 71 COMPOSITION AND INHERITANCE 181

ann.setUrl(new Url("www.richmond.edu/-abaker/index.htmli'));

System.out.println("ann: + ann);

1
7.7 class CelestialBody

{ / / Objects represent celestial bodies.: planets, moons, etc.

private String name;

private double mass; / / in grams
private double diameter; / / in kilometers
private double period; / / in earth days
private CelestialBody orbits;

private CelestialBody next;

static CelestialBody list;

static void print ()
{ CelestialBody cb = list;
int count = 0;
while (cb ! = null)
{ System.out.println("\n"+ ++count + + cb);I'

cb = cb-next;
1

1

CelestialBody(String name)

{ this.name = name;
next = list;
list = this;

1

CelestialBody(String name, double mass, double diameter,

double period)

{ th.is.name= name;
th.is.mass= mass;
this. diameter = diameter;
this-period = period;
next = list;
list = this;

1

CelestialBody(String name, double mass, double diameter,

double period, CelestialBody orbits)

{ this (name, mass , diameter, period) ;
th.is.orbits = orbits;

1

public String tostring()

I I{ String s = new String(\t name: 'I + name);

if (diameter > 0.0) s += "\n\t mass: 'I + mass + grams";
if (diameter > 0.0)

s += "\n\t diameter: 'I + diameter + kilometers";' I

if (period > 0.0) s += "\n\t period: I' + period + " days";
if (orbits ! = null) s += "\n\t orbits: I' + orbits.name;
return s;

1
1

class TestCelestialBody

{ / / Test driver for the CelestialBody class:
public static void main(String args[])

{ CelestialBody sun

:= new CelestialBody("Sol", 1,99333, 1.39236, 8.218E10);

182 COMPOSITION AND INHERITANCE [CHAP. 7

CelestialBody mars

= new CelestialBody("Mars", 6.418E28, 6.7938E3, 686.98, sun);

CelestialBody marsMOon1

= new CelestialBody("Deimos", 2E18, 15, 1.26244, mars) ;

CelestialBody.print() ;
1

1
7.8 class Person

{ / / Objects represent names of people

private Name name;

private char sex; / / 'M' or IF'
private String id; / / e.g., Social Security number
private Person mother;

private Person father;

private int number; / / the number of the object

private static final String blanks = ' I ;

private static String tab = I I f l ;

private static int count; / / number of person objects in tree

Person(Name name, char sex)

{ this.name = name;
this.sex = sex;
number = ++count;

1

Person(Name name, char sex, String id)

{ this.name = name;
this.sex = sex;
this.id = id;
number = ++count;

1

public String tostring()

'I # I '{ String s = new String(name + + sex + ' I) + number);

' I ;if (id ! = null) s += id: + id;
s += "\n";
if (mother ! = null)
{ tab += blanks;
s += tab + "mother: + mother;I'

tab = tab.substring(0, tab.length() - 2);
I
if (father ! = null)
{ tab += blanks;
s += tab + "father: + father;I'

tab = tab.substring(0, tab.length() - 2);
I
return s;

I

/ / other methods are the same as in Example 7.3 on page 152
1

7.9 class Friend
{ / / Objects represent my friends

private String name; / / e.g., "Bill R o s s "
private String telephone; / / e.g., "283-9104"
private Friend next; / / next object in list
static Friend list;

CHAP. 71 COMPOSITION AND INHERITANCE 183

static void print()

{ Friend friend = list;
if (friend == null) System.out.println("The list is empty.");
else do

{ System.out.println(friend);
Eriend = friend.next;

} while (friend ! = null);
1

Friend(String name, String telephone)

{ this.name = name;
this.telephone = telephone;
if (list == null) list = this;
else if (list.name.compareTo(name) > 0)
{ next = list;
:list = this;

1
else

{ Friend p = list;
Friend q = p.next;
while (q ! = null && q.name.compareTo(name) i 0)
{ p = q ;

g = q.next;
j

11. next = this;
next = q;

1
1

public String tostring()

{ return new String (name + " :\t" + telephone);
1

class TestFriend

{ / / Test driver for the Friend class:
public static void main(String args[l)

{ Fr:.end.print (1 ;
new Friend("Ryle, Martin", "388-1095") ;
new Friend("Ross, Bill", "283-9104") ;
new Friend("Withers, Nat", "217-5912") ;
new Friend("Anderson, Gene", "283-4490") ;
new Friend("Tarver, Jerry", "379-0226") ;
new Friend("Martin, Erika" , "217-84151") ;
Fri.end.print(1 ;
try { System.in.read(); }
catch (Exception e) { I

1
1

7.10 class Friend extends Person
1: / / Objects represent my friends
protected String telephone; / / e.g., "283-9104"
protected Friend next; / I next object in list
static Friend list;

statj.c void print ()
{ Friend friend = list;

if (friend == null) System.out.println("The list is empty.");
else do

{ System.out .println(friend) ;
firiend = friend.next;

} while (friend ! = null);
I

184 COMPOSITION AND INHERITANCE [CHAP. 7

static void insert(Friend f)

{ f.next = list;
list = f;

1

Friend(String name, char sex, String telephone)

{ super(nul1,sex);
int i = name.indexOf(' ') ;
String firstName = name.substring(0,i);
String lastName = name.substring(i+l);
this.name = new Name(firstName,lastName);
this.telephone = telephone;

1

public String tostring()

{ return new String(name + ":\t"+ telephone);
1

1

class TestFriend

{ / / Test driver for the Friend class:
public static void main(String args[l)

{ Friend.print();

)Friend. insert (new Friend("Clarence Jung" , 'M', "388-1905");

Friend.insert(new Friend("Rob James", 'M', 1 1 2 1 7 - 6 1 4 3 1 1));
)Friend. insert (new Friend("Dick Dunsing" , 'M' , "217-5192");

Friend.print();

1

1
7.11 class Student extends Person

{ / / Objects represent students

protected int credits; / / credit hours earned
protected double gpa; / / grade-point average

Student(Name name, char sex)

{ super (name, sex) ;
1

int credits ()
{ return credits;
1

double gpa()

{ return gpa;
1

void setCredits(int credits)

{ if (credits < 0 1 1 credits > 2 0 0) this.credits = 0;
else this.credits = credits;

1

void setGpa(doub1e gpa)

{ if (gpa < 0.0 1 1 gpa > 4.0) this.gpa = 0.0;
else this.gpa = gpa;

1

CHAP. 71 COMPOSITION AND INHERITANCE 185

void update(int credit, char grade)

/ / Updates the studentis credits and gpa by adding the
/ / new credit and recomputing the gpa
{ int points = 0;
switch (grade)

{ case 'A': ++points;
case 'B':++points;

case IC': ++points;

case ID':++points;

1
double num = credits*gpa + credit*points;
credits += credit;
gpa = num/credits;

1

pub1:ic String tostring() / / overrides Person.toString()
{ String s = new S t r i n g (s u p e r . t o S t r i n g 0) ;

if (credits > 0) s += "\n\tcredits: + credits;I'

if (gpa > 0.0) s += "\n\tgpa: " + gpa;
return s;

1
1

class Teststudent

{ public static void main(String args[])

{ Narne annsName = new Name ("Ann", "Ba:ker) ;"

Student ann = new Student(annsName, IF');
anri. setcredits (16);
anri. setGpa (3.5);
System.out.println("ann: + ann);'I

anri.update(4, 'A');

System.out.println("ann: + ann) ;

1
1

7.12 class CollegeStudent extends Student
{ / / Objects represent college students

protected String year; / / year of graduation

CollegeStudent (Name name, char sex, irit credits, double gpa,

String year)

{ super (name, sex, credits, gpa) ;
this. year = year;

1

String year ()
{ return year;
1

public String tostring ()

{ Str-ings = new String(super.toStriny());
s += " \n\tyear: + year;I'

ret.urn s;

1

1

186 COMPOSITION AND INHERITANCE [CHAP. 7

class Testcollegestudent

{ public static void main(String args[])

{ Name annsName = new Name ("Ann", "Baker") ;
Collegestudent ann

= new CollegeStudent(annsName, 'F', 16, 3.5, "2002");
System.out.println("ann: I' + ann);

1
1

7.13 class GradStudent extends Collegestudent
{ / / Objects represent college students

protected String degree; / / undergraduate degree

GradStudent(Name name, char sex, int credits, double gpa,

String year, String degree)

{ super(name, sex, credits, gpa, year) ;
this.degree = degree;

1

String degree ()
{ return degree;
1

public String tostring()

{ String s = new String(super.toString());
s += "\n\tdegree: + degree;'I

return s;

1

1

class TestGradStudent

{ public static void main(String args[])

{ Name annsName = new Name ("Ann", "Baker") ;
GradStudent ann

= new GradStudent(annsName, 'F', 16, 3.5, "2002", "A.B.");
System.out.println("ann: + ann);I'

1
1

7.14 class Triangle extends Shape
{ / / Objects represent triangle in the cartesian plane

private Point a, b, c ;

Triangle(Point a, Point b, Point c)

{ this.a = a;
this.b = b;
this.c = c;

1

Point center ()
{ double x = (a.x + b.x + c.x)/3;
double y = (a.y + b.y + c.y)/3;
return new Point(x,y);

private static double d(Point p , Point q)
{ double dx = p.x - q.x;
double dy = p.y - q.y;
return Math.sqrt(dx*dx + dy*dy);

1

187

1

CHAP. 71 COMPOSITION AND INHERITANCE

double diameter ()
{ double diam = d(a,b);'
if (d(b,c) > diam) diam = d(b,c);
if (d(c,a) > diam) diam = d(c,a);
return diam;

double area ()
{ double d = a.x*b.y + b.x*c.y + c.x*a.y

- a.y*b.x - b.y*c.x - c.y*a.x;
return 0.5*(d>O ? d : -d) ;

1

public String tostring()

It I t I I'{ return new String("{a= = + a + b = + b

+ c = + c + " } ") ;I t

class TestTriangle

{ / / Test driver for the Triangle class
public static void main(String[] args)

{ Point a = new Point(2,l);
Point b = new Point(4,-1);
Point c = new Point(5,4);
Triangle triangle = new Triangle(a,b,c);
System.out.println("The triangle is: I' + triangle);
System.out.println("Its center is + triangle.center());
System.out.println("1ts diameter is + triangle.diameter());
System.out.println("Its area is + triangle.area()) ;

1
1

Chapter 8

Arrays and Vectors
An array is an object that consists of a sequence of numbered elements that have the same

type. The elements are numbered beginning with 0 and can be referenced by their number using
the subscript operator [1.Arrays arewidely used because of their efficiency.

8.1 CHARACTER ARRAYS

One of the simplest kinds of arrays are those whose element type is char. We saw in
Chapter 2 that strings are nearly the same as character arrays. Here is part of the program fiom
Example 2.1 on page 20 again:

EXAMPLE 8.1 A Simple String Object

This program prints some of the properties of a String object named alphabet.
public class TestStringProperties

{ / / tests String properties
public static void main(String[l args)

{ String alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
System.out.println(a1phabet);

System.out.println("This string contains *' + alphabet.length()

+ characters.") i
System.out.println("The character at index 4 is 'I

+ alphabet.charAt(4) 1;
System.out.println("The index of the character Z is

+ alphabet.indexOf('Z') 1;
1

1
The output is
ABCDEFGHIJKLMNOPQRSTUVWXYZ

This string contains 26 characters.
The character at index 4 is E

The index of the character Z is 25

~ ~ ~ ~ ~

The object named alphabet is declared on the third line to be an instance of the String class
and is initialized with the string literal value "ABCDEFGHIJKLMNOPQRSTUVWXYZ".It looks like this:

String

Technically, alphabet is not the name of the object; it is the name of a reference variable that refers to
instances of the String class, and currently refers to one that represents the string
"ABCDEFGHIJKLMNOPQRSTUVWXYZ". That is a result of the third line of code which does both the
declarationof the reference and its initialization. They could also have been done separately, like this:

String alphabet; / / declares alphabet to be a String reference
alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"; / / initializes the reference

But the single line of code works just is well and so is preferred.

188

1

CHAP. 81 ARRAYS AND VECTORS 189

A String object is an instance of the String class. -4 character array is an array object
whose elements have type char.The next example illustrates the differences between String
objects and char arrays.

EXAMPLE 8.2 Comparing a String Object with a char Array

class TestCharArrays

{ / / Tests the String.toCharArray0 method and array access
public static void main(String args[])

{ String s = new String ("ABCDEFG") ;
char[] a = s.toCharArray();
System.out.println("s = \"" + s + "\"\t\ta = \ l r f l + a + l l \ q l r I) ;

System.out.println("s.length0 = 'I + s.length0
+ "\t\ta.length = + a.length);I'

for (int i=O; i<s.length(); i++)

'I)System.out.println("s.charAt(" + i + = It + s.charAt(i)

1 1] =+ "\t\ta[" + i + + a[il);
1

1
The output is
s = "ABCDEFG" a = "ABCDEFG"
s.length() = 7 a.length = 7
s.charAt(0) = A a[Ol = A
s.charAt(1) = B a[ll = B
s.charAt(2) = C a[21 = C
s.charAt (3) = D a[3] = D
s.charAt (4) = E a[41 = E
s.charAt(5) = F a[5] = F
s.charAt(6)= G a[61 = G

. IEach line of output compares the way the two objects
s and a handle their respective operations. Both objects S D [A I B I c I D I E I F I G I
object s is created by the new operator invoking the
String constructor that takes a single char array
argument. It is passed the argument "ABCDEFG" and
creates the object s shown here. The array object a is '"7
created by invoking the String. toCharArray () i D ,
method bound to the String object s. Note that, like FE-,
s, a is actually a reference variable; s refers to a
String object, while a refers to a char [3 object. E3Array objects have a public field named length
which stores the number of elements in the array. So the length

char Iexpression a. length is analogous to the invocation
s . length () ;each evaluates to 7 in this example.

The subscript operator [] provides access to the individual elements of the array. The expression
a [i] is analogous to the invocation s . charAt (i) ;each returns the character at index number i.

Arrays are almost always processed using for loops. The index of the for loop matches the
array index, both ranging from 0 to a. length-1. So the form

for (int i==O; i<a.length; i++)

/ / ...

is the preferred control mechanism.

190 ARRAYS AND VECTORS [CHAP. 8

Warning: Like strings, arrays use zero-based indexing. The means the first element has index 0,
the second element has index 1, the third element has index 2, etc. In general, the 2% element has
index i-1. Consequently, an array of length n has index numbers from 0 to n-1 . There is no
element with index number n. For example, the array a in Example 8.2 has length 7, which
means that it contains 7 elements. But any attempt to access a [7] will fail, throwing an
exception.

EXAMPLE 8.3 A Method for Removing All Occurrences of a Character from a String

This example tests a method that removes all occurrences of a given character in a given string. It
illustrates the use of a character array for string processing.

class TestStripMethod

{ / / Test driver for the strip0 method

static String strip(String s , char c)
{ int n = s.length();
char[] a = new char[n];
int i=O;

int j-0;

while (i+j < n)
{ char sc = s.charAt(i+j);// i+j is the current index in s
if (sc == c) j++; / / j is the number of characters removed
else a[i++] = sc; / / i characters have been copied into a

1
return new String(a,O,i); / / duplicates a as a String object

1

public static void main(String args[])

{ String s = new String("ABCAAADEAFA");
System.out.println(s1;

s = strip(s, 'A');
System.out.println(s);

1
1

The output is
ABCAAADEAFA

BC DE F

The table at the top of the next page shows a complete trace of
the method executing on the string s. a @

The while loop iterates 11 times, once for each character in s.
The index i always locates the current position in the character
array a.The counter j always equals the number of occurrences of
the character A that have been removed. These two conditions,
together with the fact that i+j always locates the current character
in the string s , are loop invariants:they are true on every iteration of
the loop. They guarantee that the method works.

On each iteration of the while loop, the next character in s is
compared with the target character c. If they are equal, j is
incremented so that i+j will locate the next character in s for the
next iteration. This counts that occurrence of c but does not copy it l e n g t h
into a.Only when cs is not equal to c will it becopied into a.In char1

CHAP. 81 ARRAYS AND VECTORS 191

that case, i is post-incremented (i .e. , it is incremented after its current value has been used), thereby
counting the number of characters copied into a.

When the loop terminates, the array a
-. 2looks like this: Then the last line in the s +dH@?F]A;ATD;E.n'F>-

method invokes one of the String
constructors to reproduce the array as a
String object to be returned. i+j sc

The symbol 0 is used here to stand for
0 Athe null character. That is the invisible charac-

ter that produces no discernible effect when 1 B
displayed or printed. Unlike an ordinary 2 C
blank, the null character is undetectable. Its 3 A
Unicode is 0, so it can be expressed in Java
source code as \uOOOO I . In general, any 4 A

one of the 65,536 16-bit Unicode characters 5 A
can be expressed in the form \ u n n n n ' , 6 D
where each n is one of the 16 hexadecimal
numerals. (See Appendixes D and E.) For

7 E

example, the question mark character I ? ' is 8 A
expressed as I \uOO3F', and the infinity 9 F
symbol 'CO' is expressed as ' \u221E'. 10 A

11

8.2 PROPERTIES OF ARRAYS IN JAVA

In Java you can create an array whose element type is any one of the eight primitive types or
any reference type. The syntax is

element-type [] name; / / declares the array
name = new element-type[nl; / / allocates storage for n elements

As with single objects, both the declaration and allocation can be combined in a single declara-
tion with initialization:

element-type[] name = new element-type[n];
Here are some examples:

float[] x; / / declares x to be a reference to an array of floats
x = new float[81; / / allocates an array of 8 floats, referenced by x
boolean [3 flags = new boolean [10241;
String[] names = new String[321 ;
Point [I ideal = new Point [10001;

Note that when the element type is a reference, e.g.,to such as String objects, the allocation is
made only to references to objects of that class.

EXAMPLE 8.4 When Are the Elements of an Array Allocated?

class Testkllocation

{ / / tests the allocation of an array of objects
public static void main(String args[])

{ String[] name; / / allocates 1 reference
name = new Stringt41; / / allocates 4 references

l ' \ l ' l l) ;System.out.println["name[O] = \ "" t name[O] +
name[O] = new String("ABC") ; / / allocates 1 3-char string

192 ARRAYS AND VECTORS [CHAP. 8

for (int i=l; i<name.length; i++)

name[il = new String(); / / allocates 3 0-char strings

name[3] = "OK"; / / allocates 1 8-char string
for !int i=O; i<name.length; i++)

System.out.println("name[ff+ i + I f] = \ ' ' f f + nameli] + l ' \ l l l ') ;
1

1
The output is
name[O] = "null"
nameto] = "ABC"
name 11] = " "

name[2] = ' I"

narne[3] = " O K . "

The first line of main () declares
name to be a reference to arrays of nameE+----+
string objects. It allocates storage
only for the reference itself. No objects
have been created yet. (The new
operator has not been used yet.) The
reference name looks like the top
picture here.

The second line of main()
initializes the reference name by
creating an array object of 4 elements.
At this point, the elements are null
references. The array object looks like
the second picture here.

The third line prints the value of
the first element, name { 01. It is still
null.

The fourth line creates the
s t r i n g object that represents"'ABC"
and assigns name [0 1 to refer to it.
Now there exist two objects in the
program: the String [1 object
referenced by name,and the String
object referenced by name [O] . The
third picture here depicts that result. nameD-

The for loop creates three more
String objects, and assigns them to
the three references name [11,
name[%], and name[3]. Each of
these objects is an empty string. Then
the next line replaces the empty string
name [3] with the String object
that represents "OK". That result is shown here in the fourth picture. The null string that name [31 had
been referencing is now dead because it lost its reference to the "OK" string.

Note that there are five objects at the end of the program: one String [) object and four String
objects. They have the references name, name [01 , name [1) , nameI2I , and name [31, respec-
tively.

CHAP. 81 ARRAYS AND VECTORS 193

Whenever an array object is allocated (as on the second line of Example 8.4 on page 191), its
elements are automatically initialized with their default initial field values. (See page 122.) That
is 0 for integer fields (byte, short, int, and long), 0.0 for floating-point fields (float and
double), false for boolean, ' \uOOOO for char,and null for any reference type.

You can initialize an array explicitly with an initialization list, like this:
int[] c = (44, 88, 55, 33);

This single line is equivalent to the following six lines:
int[] c;

c = new int[4];
c[O] = 44;
c[l] = 88;
c[2] = 55;
c[3] = 33;

Explicit array initializations are a very nice feature in Java. They should be used regularly.

8.3 COPYING AN ARRAY

EXAMPLE 8.5 Arrays Cannot be Copied by Using the Assignment Operator

This example shows what happens if you try to use the assignment operator to copy an array:
{ / / tests the effect of assigning an array
public static void main(String args[])

{ double[] x = (2.2, 4.4);
print (x, ' 'x") ;
double[] y = t l .1, 3.3, 5 . 5 } ;
print (y , "y");
y = x; / / attempts to copy x i n t o y
print (I(, "y");
x [O] = 8.8;
print (x, ' 'x") ;
print (y, "y");

1
static void print (double [I U, String id)
{ for (int i=O; i<u.length; i++)

System.out.println(id + " [" + i + "1 -= 'I + u[i]);
System.out.println();

1
1

The output is
x [O] = 2.2
x[l] = 4.4

Y[Ol = 1.1
Y P I = 3.3
Y[21 = 5 . 5

y [O] = 2 . 2
y[l] = 4.4

x[O] = 8.8
x[l] = 4.4

194 ARRAYS AND VECTORS [CHAP. 8

y[O] = 8.8
y [l] = 4.4

The array x is initialized to be a two-element array of -- 1
doubles and y is initialized to be a different, three-element x +--4--s.h-l
array of doubles. Then the assignment operator is used to I 4 . 4 -

attempt to copy x into y. But, as the output shows, it doesn't
work.

The picture on the right here shows what the problem is. double')

When the assignment statement
y = x;

executed, the three-element array to which y had been referring died because it lost its reference. But the
assignment changes only the value of the reference itself, simply reassigning it to refer to the other exist-
ing array object. So the result is that now both x and y refer to the same single array. Thus, when the
assignment

x [O] = 8 . 8 ;
changes the first element of x , it also changes the first element of y,because they are the same element.

Java provides a special universal method for copying arrays. It is a member of the System
class, declared as

public static void arraycopy(0bject src, int srcPos,

Object dst, int dstPos, int count)

It copies elements from the source array src into the destination array dst.The number of
elements to be copied is passed to the parameter count.The index position of the first element
in the source array to be copied is passed to the parameter srcpos, and the location to where it
is to be copied in the destination array is passed to the parameter ds t Pos.

Example 8.5 illustrates how to declare an array parameter in a method and how to pass an
array argument to a method. Array parameters are declared the same way that array fields are
declared, using the subscript operator as a suffix to the element type:

static void print(double[] U, String id)

And array arguments are passed to methods the same way that ordinary variables are passed, by
name:

print (x, r r ~ ");

EXAMPLE 8.6 Using the System. arraycopy () Method to Copy an Array

This is the same program as in Example 8.5 except that the array assignment statement has been
replaced by the invocation of the system. arraycopy () method.

class TestArraycopy

{ / / tests the System.arraycopy() method
public static void main(String args[])

{ double[] x = (2.2, 4.4);
print (x, "x") ;
double[] y = (1.1, 3.3, 5.5);
print (y, "y");
System.arraycopy(x, 0, y, 0, x.length); / / copies x i n t o y
print (y, "y") ;
x[O] = 8.8;
print (x, r r ~ ");
print (y, "yrl) ;

}

CHAP. 81 ARRAYS AND VECTORS 195

static void print (double[] U , String id)
{ for (int i=O; i<u.length; i++)

System.out.println(id + " [" + i + "1 = I' + u[i]);
System.out.println();

}
The output is
x[O] = 2.2
x[l] = 4.4

YE01 = 1.1
y[ll = 3.3
y[21 = 5.5

y[O] = 2.2
y[ll = 4.4
y[2] = 5.5

x [O] = 8.8
x[1] = 4.4

y[OI = 2.2
y[l] = 4.4
Y[21 = 5.5

The invocation
System.arraycopy(x, 0, y, 0, x.length);

copies the values of the two elements x [0 1 and x [13 into y [03 and y [1], respectively. The two
arrays remain distinct, as can be seen from the last two blocks of output. They show that the assignment

x[O] = 8.8;
changes the first element of x but has no effect upon the independent array y.

8.4 THE V e c t o r CLASS

The element type of an array can be any one of the eight primitive types or a reference type.
For primitive types, you declare the array by using the name of the type, like this:

double[] x; / / an array of floating-point numbers
For reference types, you declare the array by using the name of the class to which the references
refer, like this:

Person[] list; / / a list of people
Here, each element of the array is then a reference to objects of that class. But then, by the rules
of inheritance, each element can also refer to any object of any subclass of that class. For
example:

list = new Person[4];
list [01 = E'erson ("John Adams") ;
list [13 = GradStudent ("Ann Baker") ;
list [21 = Dentist ("Willy Lewis") ;
list [31 = Cudge ("John Marshall") ;

Although each of these elements is, by inheritance, a Person. object, we really obtain a hetero-
geneous list this way. This is an example of object-oriented programming feature called
polymorphism, allowing the array elements to have "many forms."

196 ARRAYS AND VECTORS [CHAP. 8

The most liberal use of the polymorphism described above results when you use the Object
class, the ultimate superclass, as the array's reference type.

EXAMPLE 8.7 An Array of Object Objects

class TestObjectArray

(/ / tests the Vector class
public static void main(String args[])

{ Object [] a = new Object [6];
a[O] = new Point(2,3);
a [11 = new String ("Hello, World! ") ;
a[2] = new Long(44);
a [33 = new Name ("James", "Gosling") ;
a[4] = new CelestialBody("Jupiter",18.99E29,142800,4331.7);
for (int i=O; i<a.length; it+)

System.out.println("a[" + i + "1 = " + a[i]);

1
}

The output is
a[O] = (2.0, 3 . 0)
a[l] = Hello, World!
a[2] = 44
a[3] = James Gosling
a[4] = name: Jupiter

mass: 1.899E30 grams

diameter: 142800.0 kilometers

period: 4331.7 days

a[5] = null

Each element of the array a is a reference
to an Object object. But by inheritance,

object is an Object object. So this
array can store anything! It is truly a universal

7- I

array.

As you should expect by now, every
good idea in Java is eventually encapsu-
lated into a class. The idea of a universal
array, illustrated in Example 8.7, is
encapsulated into the Vector class. A
Vector object is essentially a realizable
universal array that is "smart" in the sense
that it automatically increases its size when
needed. Ordinary arrays can't do that: the
length field of an array object is final
(constant).

The Vector class is defined in the java .util package, so you need to include the
import statement

import java.util.Vector;

to use the Vector class.

CHAP. 81 ARRAYS AND VECTORS 197

EXAMPLE 8.8 The Telephone List of Friends Again

Here is the program from Example 7.4 on page 156, done using a Vector object:
import java.uti1 .Vector;

class TestFriends

{ / / Tests a telephone list of friends
public static void main(String args[])

{ Vector friends = new Vector();
friends. addElement (new Friend ("Martin", "388-1095")) ;
friends.addElement (new Friend("Bill", 1'283-910411)
) ;
friends.addElement (new Friend("Nat", "217-5912")) ;
System.out.println(friends);

1
1

The output is
[Martin: 388-1095, Bill: 283-9104, Nat: 217-5912]

The default constructor for the Vector class creates the Vector object friends.We then
invoke its addElement () method three times to add the Friend objects to the list. Then its
tostring () method is invoked implicitly by the System.out.println () method to print the
entire list.

A Vector object in Java is really a dynamic list. Elements can be added or removed from
any location in the list. This is achieved using the following methods:

void addElement (Object 0)

/ / adds the object o to the end of the list

boolean contains (Object 0)

/ / returns true iff the object o is in the list

Object elementAt (int i)

/ / returns the object at position i in the list

Object firstElement ()
/ / returns a reference to the first object in the list

int indexof (Object 0)

/ / returns the index (or -1) of the first occurrence of the object o

int indexOf(0bject 0, int i)

/ / returns the index (or -1) of the first occurrence of the object 0,
/ / searching the list beginning at position i

void insertElementAt(0bject o f int i)
/ / inserts the object o at position i in the list

boolean isEmpty ()
/ / returns true iff the list is empty

Object lastElement ()
/ / returns a reference to the last object in the list

int lastIndexOf (Object 0)

/ / returns the index of the last occurrence of the object o

198 ARRAYS AND VECTORS [CHAP. 8

int lastIndexOf(0bject 0 , int i)
/ / returns the index of the last occurrence of the object 0 ,

/ / searching the list backwards beginning at position i

void removeAllElements()

/ / removes all the objects in the list;

boolean removeElement (object 0)

/ / removes the first occurrence of the object o in the list;
/ / returns true iff it was found

void removeElementAt(int i)

/ / removes the object at position i in the list;

int size()

/ / returns the number of elements in the list

The addElement () method was used in Example 8.8.

EXAMPLE 8.9 Rearranging Elements of a Vector

This example expands the program in Example 8.8.
import java.util.Vector;

class TestFriends

{ / / Tests a telephone list of friends
public static void main(String args[])

{ Vector friends = new Vector();
friends .addElement (new Friend("Martin", 11388-109511)
) ;
friends .addElement (new Friend("Bill", "283-9104")) ;
friends.addElement (new Friend("Nat", "217-5912")) ;
System.out.println(friends);
friends. insertElementAt (friends. elementAt(2), 0);
System.out.println(friends);

friends. removeElementAt (3);
System.out.println(friends);

1
1

The output is
[Martin: 388-1095, Bill: 283-9104, Nat: 217-5912]

"at: 217-5912, Martin: 388-1095, Bill: 283-9104, Nat: 217-5912]

"at: 217-5912, Martin: 388-1095, Bill: 283-9104]

After creating the same list as in Example 8.8, this program uses the insertElementAt () and
removeElementAt () methods to move the third Friend object to the front of the list.

8.5 THE SIZE AND CAPACITY OF A Vector OBJECT

The length of an array is the number of elements that it has. If the element type is a reference
type, then some of those elements may be null. So the number of objects referenced by the
array may be less than its length. For example, the allocated array in Example 8.4 on page 191
has length 4, even though the number of objects referenced changes from 0 to 1 to 4. The
length of an allocated array is constant.

199 CHAP. 81 ARRAYS AND VECTORS

The situation is different for Vector objects. Instead of a length, a vector has a size, which
is the number of Object references it contains. This number is dynamic; it changes each time
an object is added to or removed from the vector.

In addition to its size, a vector also has a capacity, which is the number of spaces it has
allocated to hold Object references. This number is always greater than or equal to its size. If
they are equal when the addElement () method is invoked., the capacity is increased automati-
cally to accommodate the new element. This is illustrated in the next example.

EXAMPLE 8.10 The Size and Capacity of a Vector Object

This program processes a list of strings. It prints the current contents, size, and capacity of the list
after elements are added.

import java.util.Vector;

class TestSize

{ public static void main(String args[])

{ Vector v = new Vector () ;
print (v) ;
v.addElement ("A");
print (v) ;
v.addE,lement("B");
print (v) ;
f o r (int i=O; i<8; i+t) / / insert 8 more elements
v.addElement ("C") ;

print (v);
v.addE,lement("D");
print (v) ;

1

static void print (Vector v)

{ System. out .print111 ("v = t v);
System.out.print("v.size() = t v.size());I'

I'Systern.out.println(",\tv.capacity() = + v.capacity());
System.out.println();

1
J

1
The output is
v = [I
v.size() == O,v.capacity() = 10

v = [A]
v.size() == l,v.capacity() = 10

v = [A, B]
v.size() == 2,v.capacity() = 10

v = [A, B, C, C, C, C, C, C, C, C]
v.size() == lO,v.capacity() = 10

v = [A, B, C, C, C, C, C, C, C, C, D]
v.size() == ll,v.capacity() = 20

Initially, the vector is empty, so its size is 0. But its capacity is initialized automatically to 10, which
means we can insert up to 10 elements before it will have to be re-allocated, as the output shows. Note that
when the vector is re-allocated, its capacity is doubled.

200 ARRAYS AND VECTORS [CHAP. 8

When the capacity of a vector changes, the vector has to be rebuilt. This means that a
separate larger block of memory has to be allocated, the complete vector (including all its
references, but not the objects to which they refer) is moved to that new location, and then the
previously occupied space is de-allocated. This rebuilding process takes time, so it is better to try
to minimize the frequency with which it occurs. One way to do that is to allocate enough space
by specifying its capacity explicitly. This can be done by passing a capacity number to the
constructor when the vector is created or to the ensurecapacity () method later.

EXAMPLE 8.11 Setting a Vector's Capacity Explicitly

This program illustrates two ways to set the capacity of a vector: through its constructor, and through
the ensurecapacity () method. (The actual capacity numbers used here are unrealistically small.)

import java.util.Vector;

class Testcapacity

{ public static void main(String args[])

{ Vector v = new Vector(3); / / set capacity at 3
for (int i=O; i<7; i++) / / insert 7 elements
{ v.addElement(new Long(9));
print (v) ;

v.ensureCapacity(100); / / reset capacity to 100
print (v) ;

1
static void print (Vector v)

{ System.out.print("v.size()= " + v.size());
System.out.printIn(",\tv.capacity()= + v.capacity());I'

1
1

The output is
v.size() = l,v.capacity() = 3
v.size() = 2,v.capacityo = 3
v.size() = 3,v.capacityo = 3
v.size() = 4,v.capacityo = 6
v.size() = 5,v.capacity() = 6
v.size() = 6,v.capacityO = 6
v.size() = 7,v.capacityo = 12
v.size() = 7,v.capacityo = 100

The constructor is passed the argument 3 which it uses to set the initial capacity of the vector V. It
then gets reset twice, to 6, and then to 12, as more elements are added to the vector. Finally, we reset the
capacity to 100.

8.6 CHANGES TO THE Vector CLASS IN JAVA 1.2

In Java 1.1, the Vector class is a direct subclass of Version 1 . 1 of Java:
the Object class. In Java 1.2 (released in 1998), the Object
Vector class has been moved to a subclass of the new L--Vec t or

AbstractList class, which is a subclass of the new
Abst ractcollect ion class. From those new classes, Version 1.2 of Java:

Object

the Vector class inherits 9 new methods and a new I A b s t ract Collection
field. Java 1.2 has also added 9 other new methods and a 'LAbstractList

Vector

CHAP. 81 ARRAYS AND VECTORS 20 1

new constructor to the Vec to r class itself, raising its total number of members to 52. Included
among these are

boo lean add (O b j e c t 0)
/ / adds t h e o b j e c t o t o t h e end of t h e l ist .

boo lean a d d (i n t i, Objec t 0)
/ / adds t h e o b j e c t o a t p o s i t i o n i i n t h e l i s t

vo id c l e a r ()
/ / removes a l l t h e e l emen t s from t h e l i s t

Ob jec t g e t (i n t i)
/ / r e t u r n s t h e o b j e c t a t p o s i t i o n i i n t h e l i s t

Ob jec t remove (i n t i)
/ / removes t h e o b j e c t a t p o s i t i o n i i n t h e l i s t and r e t u r n s i t

boo lean remove (o b j e c t 0)
/ / removes t h e f i r s t o c c u r r e n c e of t h e o b j e c t o i n t h e l i s t ;
/ / r e t u r n s t r u e iff i t was found

vo id removeRange (i n t i, i n t j)
/ / removes a l l of t h e o b j e c t o from p o s i t i o n i t o p o s i t i o n j-1

Objec t set (i n t i, Objec t 0)
/ / r e a s s i g n s t h e r e f e r e n c e a t p o s i t i o n i t o o b j e c t 0 ;

/ / r e t u r n s a r e f e r e n c e t o t h e d e r e f e r e n c e d o b j e c t
Some of these will likely replace existing methods from Java 1.1. After that, newer compilers
will report that the obsolete methods have be “deprecated” when you try to use them. For
example, the new c l e a r () method will “deprecate” the old removeAll () method.

See Problems 8.1 1-8.18 on page 205 for local implementations of these methods.

8.7 TWO-DIMENSIONAL ARRAYS

A two-dimensional array is one that
uses two subscripts instead of one. We
imagine the array as forming a
two-dimensional grid of rows and
columns, with the first subscript
locating the row and the second
subscript locating the column. For
example,

i n t [] [I a = new i n t [7] [9];
a [5] [Z] = 8 8 ;

would assign the value 88 to the element in row number 5 and column number 2. (Note that this
element is actually in the sixth row and third column, due to zero-based indexing.)

202 ARRAYS AND VECTORS [CHAP. 8

A two-dimensional array is actually
an array of arrays. Think of each row
as a separate array; then the two
dimensional array is the same as a one
dimensional array of rows, as shown
here.

I .
IThe next example shows that this is (I1 I I

I
I

I

how Java regards a two-dimensional
array.

EXAMPLE 8.12 An Array of Arrays

This program declares a to be a
two-dimensional array of ints with 7 rows
and 9 columns:

c l a s s T e s t
{ p u b l i c s t a t i c void main(String a r g s [])

{ i n t [] [I a = new int[7] [9] ;
System.out.println("a.length = " + a.length);
System.out.println("a[O].length = '' t a [0] . l e n g t h) ;

}
1

The output is
a.length = 7
a [O] .length = 9

As an array, the object a has length 7. That's because it is really an array of 7 row arrays. The first of
those row arrays is a [0]. Its length is 9. Each row has 9 elements.

A two-dimensional array can be initialized like a one-dimensional array. The only difference
is that since it is an array of arrays, its initialization list has to be a list of initialization lists.

EXAMPLE 8.13 Initializing a Ragged Two-Dimensional Array

The array here is called a raggedarray because the lengths of its rows vary.
c l a s s T e s t
{ public static v o i d main(String a r g s [])

{ int[] [I a = ({ 7 7 , 3 3 , 88 } ,
{ 11, 55, 22, 99 } ,
I 6 6 , 44 1 1 ;

f o r (int i=O; i<a.length; i++)
{ f o r (int j = O ; j<a[i].length; j + +)

System.out.print("\t" + a[il [j l h
System.out.println();

I
1

}
The output is

77 3 3 88
11 5 5 22 99
6 6 4 4

CHAP. 81 ARRAYS AND VECTORS 203

The initialization list could have been expressed as
int[] [I i> = { { 77, 33, 8 8 } , { 11, 55, 2 2 , 99 } , { 6 6 , 44 } } ;

(The compiler ignores all white space.) Arranging it as we did simply makes it more readable.
Note the use of nested for loops here. The outside loop is controlled by the row index i,and the

inside loop is controlled by the column index j. The row index i increments until it reaches
a . length,which is 3 in this example. For each value of i,the column index j increments until it
reaches a [i].length,which in this example is 3 when i is 0 , 4 when i is 1, and 2 when i is 2.

The control mechanism used above on the nested f o r loops is the standard way to process
two-dimensional arrays. Processing three-dimensional arrays is similar:

for (int i:=O; i < a . length; i++)
for (int j = O ; j<a[i].length; j++)
for (int k=O; k<a[i] [j] .length; j++)

/ / process a[i] [j] [k] . . .
Here we can imagine the element a [i] [j] [k] lying in plane i,row j,and column k. The
element is analogous to a single letter on a line on a page in a book: a [i] [j3 [k] would
represent character number k on line number j on page number i., a [i] [j1 would
represent line number j on page number i.,and a [i] would represent page number i.The
number of characters on line j on page i would be a [:L][j1 .length,and the number of
lines on page i would be a [i].length.So iteration i of the first loop would process page
a [i 3 , iteration j of the second loop would process line a [i] [j],and iteration k of the third
loop would process character a [i 1 [j1 [k] .

Similarly, a four-dimensional array would be analogous to an encyclopedia consisting of a
sequence of books. Element a [91 [28 11[361 [5 4 1 would represent a character number 54 on
line number 36 on page number 2 8 1 in book number 9.

Review Questions

8.1 Trace by hand the execution of the invocation strip (00 0 1 2 103001 2 'I, I 0) of the
strip () method in Example 8.3 on page 190.

8.2 How does determining the length of a character array differ from determining the length of a
String object?

8.3 How does accessing an individual element of a character array differ from accessing the ele-
ments of a String object?

8.4 What happens if you use w [8] in an expression after idlocating 8 elements to the array W?

8.5 What is the difference between a null array and an array of length zero?
8.6 What is the difference between an array of length zero i3nd an array of four null references?
8.7 Why are arrays usually processed with for loops?
8.8 Why is an Object [] array called a universal array?
8.9 What is the difference between the size and the capacity of a Vector object?
8.10 What is the difference between a Vector object and an array of objects?
8.11 What is the difference between a String object and i2n array of char values?
8.12 What is the difference between a StringBuffer object and a Vector object of char

values?

8.13 What does int r,.-1 remesent?
1

204 ARRAYS AND VECTORS [CHAP. 8

8.14 What does int [81 represent?

8.15 What's wrong with this:
char[] name = "Boris Yeltsin";

8.16 Can an array store elements of different types?

Programming Problems

8.1 Implement the following method:
static double sum(double[] x)

{ / / returns the sum of the elements in the array x

8.2 Implement the following method:
static double max (double [I x)

{ / / returns the maximum of the elements in the array x

8.3 Implement the following method:
static double range (double [I x)
{ / / returns the difference between the maximum and the minimum

/ / of the elements in the array x
8.4 Implement the following modification of the strip () method defined in Example 8.3 on

page 190:
static String strip(String s, char c, int p, int q)
{ / / removes all occurrences c from the substring s[p:q-l]

Here, the notation s [p :q- 11 means the substring of s that begins with s [p 1 and ends
with s [q-11.For example, if s is "ABCDEFGHI J", then s [5:8 } would be ' 'FGH'~.

Supplementary Programming Problems

8.5 Modify the strip () method defined in Example 8.3 on page 190, using the following
application of the System. arraycopy () method to shift all the remaining characters of
s [1 one position to the left each time the target character c is found in S:

System.arraycopy(s, i+l, s, i, n-i-1);

8.6 Modify the strip () method defined in Example 8.3 on page 190, using the following

application of the System. arraycopy () method to shift all the remaining characters of
s [] to the left k positions, where k is the number of consecutive occurrences of target
character c found in s:

System.arraycopy(s, i+k, s , i, n-i-k);
8.7 Implement the following method:

static boolean areEqual (double [I x, double [I y)

{ / / returns true iff each of the corresponding elements

/ / of the two arrays match
8.8 Implement the following method:

static boolean areEqual(double[] [I x, double[] [I y)

{ / / returns true iff each of the corresponding elements

/ / of the two arrays match
8.9 Implement the following method for vectors:

static void swap(Vector v, int i, int j)

/ / Swaps the elements of v at positions i and j
/ / For example, if v represents the list {22,33,44,55,66,77},
/ / then swap(v,4,1) would change it to {22,66,44,55,33,77}

CHAP. 81 ARRAYS AND VECTORS 205

8.10 Implement the following method for vectors:
static void move(Vector v, int i, int j)

/ / Moves the element at position i to position j
/ / For example, if v represents the list {22,33,44,55,66,77},
/ / then swap(v,4,1) would change it to {22,66,33,44,55,77}

8.11 Define the subclass
class Vectorl.2 extends Vector { }

and implement within it the following method:
boolean add (Object 0)

/ / adds the object o to the end of the list
8.12 Define the subclass

class Vectorl.2 extends Vector { }

and implement within it the following method:
boolean add(int i, Object 0)

/ / adds the object o at position i in the list
8.13 Define the subclass

class Vectorl.2 extends Vector { }

and implement within it the following method:
void clear()

/ / removes all the elements from the list

8.14 Define the subclass
class Vectorl.2 extends Vector { }

and implement within it the following method:
Object get(int i)

/ / returns the object at position i in the list

8.15 Define the subclass
class Vectorl.2 extends Vector { }

and implement within it the following method:
Object. remove (int i)

/ / removes the object at position i in the list and returns it

8.16 Define the subclass
class Vectorl.2 extends Vector { }

and implement within it the following method:
boolean remove (object 0)

/ / removes the first occurrence of the object o in the list;
/ / returns true iff it was found

8.17 Define the subclass
class Vectorl.2 extends Vector { }

and implement within it the following method:
void removeRange(int i, int j)

/ / removes all of the object o from position i to position j-1

8.18 Define the subclass
class Vectorl.2 extends Vector { }

and implement within it the following method:
Object set(int i, Object 0)

/ / reassigns the reference at position i to object 0;
/ / returns a reference to the dereferenced object

8.19 Implement the following method for vectors:
int countDistinct ()
/ / returns the number of objects referenced in the list

206 ARRAYS AND VECTORS [CHAP. 8

For example, the output from the code
Vector v = new Vector();
Point p = new Point (2,3);
Point q = new Point (2 , 3);
v.addElement (p) ;
v.addElement (p) ;
v.addElement (9) ;
System.out.println(v.size() + + v.countDistinct());'I, 'I

would be
3, 2

because the list has three elements but they refer to two distinct objects.
8.20 Implement the following method for vectors:

int countunique ()
/ / returns the number of unique objects referenced in the list

For example, the output from the code
Vector v = new Vector();
Point p = new Point (8,5) ;
Point q = new Point(8,5);
v.addElement (p) ;
v.addElement (p);
v.addElement (9) ;

'I, 'ISystem. out. println (v. size () + + v. countunique ()) ;

would be
3 , 1

because the list has three elements but they all represent the same point (8,5).
8.21 Implement the following method:

static double innerproduct (double [I x, double [I y)
{ / / returns the inner product of x and y,

/ / defined to be the sum of all x[i]*y[i]
8.22 Implement the following method:

static double[] [I outerProduct (double[] x, double[] y)

{ / / returns the outer product p of x and y,

/ / defined by p[i] [j]] = x[i]*y[j]
8.23 Implement the following method:

static void transpose(double[] [I x)

{ / / transposes the array x swapping each x[i] [j] with x[j] [i]

8.24 Implement the following method:
static int [] [] pascalsTriangle (int n)
{ / / returns Pascal's triangle with n+l rows

8.25 Implement the following method:
static int [3 fibonacci (int n)
{ / / returns the first n+l fibonacci numbers

8.26 Implement the following method:
static int[] prime(int n)

{ / / returns the first n+l prime numbers

Answers to Review Questions

8.1 The trace is shown at the top of the next page. The result of the invocation is the string 121312I f .

8.2 The length of a character array (or any array type) is obtained from its public length field,
whereas the length of a String object is obtained from its length () method. For example, in
Example 8.2 on page 189, a. length produces the length of the array a,while s . length ()
produces the length of the string s.

207 CHAP. 81 ARRAYS AND VECTORS

8.3 The individual elements of a character
array (or of any array type) are
accessed by means of the subscript
operator [1 , whereas those of - a
S r r i n g object are accessed from its
cha rAt (i method. For example, in
Example 8.2 on page 189, a [i] pro-
duces the element at index i in the
array a , while s . c h a r A t (ij does
the same for the string s.

8.4 If w has only 5 elements, then the
expression w[5] will cause the pro-
gram to fail because there is no such
element. The 5 elements are w [01 ,
wL:], w [2] , w [3 l , a n d w [4 1 .

8.5 A null array is a naked array reference
with no array object to which to refer.
An array of length zero is an array
object with zero element. For example:

i n t [l 3;
i n t [] b = new i n t [O] ;

Here, a is a null array, and h is an
array of length zero. One way that they
differ is that a . l e n g t h does not
exist, while b.l e n g t h exists and
has the value 0. Of the two statements

i n t aLen = a . l e n g t h ;
i n t b L e n = b . l e n g t h ;

-- - - _ _ -~ I

s s-+!l-om-i iA.IT . - -I 6!TEZ -1 1 2 I

i + j sc

0 0
1 0
2 0
3 1
4 2

5 1

6 0

7 3

8 0

9 0

10 0

11 1
12 2

the first will not compile, while the second will initialize bLen to 0.
8.6 An array of length zero has length 0. An array of 4 references has length 4.
8.7 The real power of arrays comes from their facility of using an index variable to traverse the array,

accessing each element with the same expression a [i]. All that is needed to make this work is a iter-
ated statement in which the variable i serves as a counter, incrementing from 0 to a .l e n g t h - 1.
That is exactly what a f o r loop does.

8.8 An array declared as Object [J is universal in the sense that its elements can refer to objects of any
class.

8.9 The size of a V e c t o r object is the actual number of O b j e c t references that it contains. The
capacity is the number of spaces it has allocated for Object references.

8.10 A V e c t o r object is an instance of the V e c t o r class, so it can invoke its methods. An array of
(references to) objects is quite similar, but it cannot use the methods defined in the V e c t o r class.

8.11 A S t r i n q ob.ject is an instance of the S t r i n g class, so it can invoke its methods. An array of
c h a r also stores strings, but it has much less functionality.

8.12 Actually, you cannot really have a V e c t o r objects of c h a r values. The elements of a V e c t o r
ob.ject are references to instances of the O bj ect class. But polymorphism allows those references to
refer to instances of any class, including the C h a r a c t e r class, whose objects encapsulate c h a r
values. In that case, the resulting vectors behave much like instances of the S t r i ngBuf f e r class.
The major difference then is, of course, the difference in functionality of the two classes: the set of
available methods.

8.13 The form t n t [] represents the type “array of i n t .” It is used to declare array objects and array
parameters. like this:

i n t [] a ;
s t a t i c : surn(in t [] a)

8.14 The form i n t [8] is used with the new operator to allocate an array of i n t s , like this:
i n t [] a = new i n t [8] ;

8.15 The reason that
c h a r [. name = “ B o r i s Y e l t s i n ” ;

won’t compile is that the expression “ B o r i s Y e l t s i n ” is a S t r i n g literal, but c h a r []
does not declare a S t r i n g object.

208 ARRAYS AND VECTORS [CHAP. 8

8.16 An array cannot store elements of different types. However, it can store references which can refer to
instances of different classes, provided that it is declared as

ClassX[] a;

where C1assx is an ancestor to all the classes involved.

Solutions to Programming Problems

8.1 static double sum(double[] x)
{ / / returns the sum of the elements in the array x
double s=O.O;

for (int i=O; i<x.length; it+)

s t= x[i];

return s;

J

8.2 static double max (double [3 x)
{ / / returns the maximum of the elements in the array x
double m = x[O] ;
for (int i=l; i<x.length; it+)

if (x[i] > m) m = x[i];

return m;

1

8.3 static double range (double [I x)
{ / / returns the difference between the maximum and the minimum

/ / of the elements in the array x
double max = x[O];
double min = x [O] ;
for (int i=l; i<x.length; it+)

if (x[i] < min) min = x[i];
else if (x[i] > max) max = x[i];

return (max - min);
}

8.4 class TestStripMethod
{ / / Test driver for the strip() method
static String strip(String s, char c, int p, int q)
{ / / removes all occurrences c from s[p:q-l]
int n = s.length();
n = (q<n? q : n) ; / / n = min{ q, s.length() }
char[] a = new char[n];
int i=O;

int j = O ;
while (p+i+j < n) / / begin with s[p]
{ char sc = s.charAt(p+i+j); / / p+i+j is the current index in s
if (sc == c) j++; / / j is the number of characters removed
else a[i+t] = sc; / / i characters have been copied into a

1
return new String(a,O,i); / / duplicates a as a String object

1
public static void main(String args[])

{ String s = new String ("ABCAAADEAFA") ;
System.out.println(s);

String ss = strip(s, 'A', 0 , 5) ;
System.out.println(ss);

ss = strip(s, 'A', 5, 8);
System.out.println(ss);

ss = strip(s, 'A', 5, 100);
System.out .println(ss) ;

1

Chapter 9

Graphics
A picture is worth 1024 words.

-Anonymous

9.1 THE AWT LIBRARIES

One of the main reasons that Java is such a popular programming language is that it makes it
fairly easy to create programs with impressive graphics. This is managed by Java’s vast graphics
library, officially called the Abstract Window Toolkit (AWT).

The AWT (in Java 1.2) consists of
over 25 packages which define hundreds Ob ect

-Border L ayou t
of classes. The class hierarchy shown -Chec kboxGroup
here lists some of most important -Color

graphics classes. The AWT packages are -CO ponent
named j ava. awt, j ava. awt .event, Butt on
j ava .awt . font, java.awt.swing, Canvas
java. awt .swing. event., etc. For Chec kbox
example, the j ava .awt .image package Choice

defines a class named PixelGrabber. Container
Panel
All of the classes listed in the hierarchy Scrollpane

shown here are defined in the j ava. awt LWindow

package. I tDialog

Frame

Label

9.2 THE Frame CLASS List
Scrollbar

Most graphics are displayed within C-TextComponenttText Ar e a
frames on a computer screen. As the class -TextField

hierarchy shows here, a frame is a special- -Cursor

ized window, which is a specialized -FlowLayout
container, which is a specialized -Font
component, which is a specialized object. --Graphics

A component is an object that can be -G ridLayout
displayed on the screen and can interact -Image

with the user. For example, the close -Insets

button in the upper right corner of a
-MenuComponent

MenuBar

window (in Microsoft Windows) is a t
MenuItem

component. So are the scroll bar along the k;’m;kBoxMenuItea

iPopupMenu

--PO 1ygon

209

210 GRAPHICS [CHAP. 9

right edge of the window and the window itself. Components have special properties, including
background color, cursor image, and font.

A container is a component that can contain other components. Windows are containers;
buttons are not. Containers have special properties, including layout managers and insets.

A window is a container with some special properties, including a locale for managing
various human languages, a toolkit for creating components, and a warning message for security
purposes.

Afiume is a window that has a title bar, a menu bar, a border, a cursor, and an icon image.
Frame windows are the standard objects used for drawing graphics.

EXAMPLE 9.1 Creating a Simple Frame Window

This little program will be gradually enhanced in the examples that follow this one:
import java.awt.Frame; / / defines the Frame class

class TestFrame

{ public static void main(String[] args)

{ System.out.println("Creating a 250x100-pixel frame"
+ " with title \"Example 9.1\".");

Frame frame = new Frame ("Example 9.1") ;
frame. setSize(250,lOO) ; / / 250 pixels wide and 100 pixels high
frame.setvisible (true) ; / / displays the frame on the screen
System.out.println("To quit, click on this window"

+ 'I and then press Ctrl+C. 'I) ;
1

1
The command line output is
Creating a 250x100-pixel frame with title "Example 9.1".

To quit, click on this window and then press CtrltC.

This program invokes the println ()
method twice to print the command line output
shown above. Between those two actions, it creates
and displays the frame window shown here. This is
done by the frame object that is created in the
second statement of main () . The new operator
invokes the Frame class constructor, passing the
string argument "Example 9 . 1" to it. The
constructor copies that string to the title bar of the
frame window. After the frame object is created,
it invokes its setsize () method to set the size of the frame window to be 250 pixels wide and 100
pixels high. Then it invokes its setvisible () method to display the frame window.

This frame window is not very responsive. If you click on the Java coffee cup icon, it will display its
default menu. But it will not respond to any of the menu commands. Nor will it respond to a click on any
of its standard buttons (Minimize, Maximize, and Close) in its upper right corner of the window. But it
will allow you to resize and move the window. We won't be able to activate all the standard functionality
of the frame window until we add event-handling code. This minimally functional frame is just the first
step.

To terminate the program, click on the window that has the output message, and then press C W C .
(This assumes you are running Microsoft Windows. In Unix, you have to ki11 the process.)

CHAP. 91 GRAPHICS 21 1

The Frame class is defined in the j ava .awt package. Besides the 11 methods that every
class inherits from the Object class (hashcode () , tostring () , etc.), the Frame class also
inherits 125 members (fields and methods) from the Component class, 47 members from the
Container class, and 16 members from the Window class. The setsize () and setvisi-
ble () methods used in Example 9.1 are both inherited from the Component class. The
setBackground () method used in Example 9.2 is also inherited from the Component class.

EXAMPLE 9.2 Subclassing the Frame Class

This version of the program from Example 9.1 defines a subclass of the Frame class:
import java.awt.Color;

import java.awt.Frame;

class MyFrame extends Frame

{ MyFrame (String s)

{ super(s); / / passes s up to the Frame constructor
setBackground(Co1or.blue); / / colors the frame bright blue
setsize (250,100) ; / / 250 pixels wide and 100 pixels high
setvisible (true) ; / / displays the frame on the screen

1
1

class TestMyFrame

(public static void main(String[] args)

(System.out.println("Creating a 250x100-pixel frame"
+ 'I with title \"Example 9.2\".");

new MyFrame(vlExample 9.2"); / / creates the frame window
System.out.println("To quit, click on this window"

+ and then press Ctrl+C.") ;'I

1
1

The println () methods have the same effect as in Example 9.1. In between them, the frame
shown here is created. It appears bright blue on the screen.

The MyFrame class is defined as a
subclass of the Frame class. In addition
to the nearly 200 members that it inherits,
it adds one more: the constructor:

MyFrame(String s)

The first statement in this constructor is

super(s);
This invokes the constructor of the parent
superclass, which is the constructor

Frame (String s)

This creates the frame window and cop-
ies the string s onto its title bar.

The remaining three lines in the
MyFrame constructor set the attributes
inherited from the Frame class: its background color, its size, and it visibility. These are standard
mutator methods for the object's fields. Note that the color blue is a constant defined in the
java .awt .Color class.

212 GRAPHICS [CHAP. 9

9.3 THE Color CLASS

Objects of the Color class are used to specify colors in graphics operations. One way to
speciQ a color is to use the three-component RGB code. For example, the RGB code for the
color orange is (255, 200, 0). The three numbers identify how much red, green, and blue is used
to form the color. (“RGB” stands for “Red-Green-Blue.”) Each number can range from 0 to 255.
So the RGB code (255, 200, 0) for orange means that it has as much red as it can, it has about
80% of the green that it could have, and no blue. The Color class defines constants for the 13
special colors shown in the table below. But you can specify any one of the 16,777,2 16 different
possible RGB codes. For example, (255, 215, 0) is gold, (127, 255, 212) is aquamarine, and
(1 60, 32, 240) is purple.

Object RGB Code

Color.black (090, 0)
Color.blue (0,09255)

Color.cyan (0,255,255)

Color.darkGray (64, 64, 64)

Color.gray (128, 128, 128)

Color.green (0,25590)

Color.lightGray (192, 192, 192)

Color.magenta (255,0,255)

Color.orange (255,200, 0)

Color.pink (255, 175, 175)

Color. red (255,0701

Color.white (255,255,255)

Color.yellow (255,255, 0)

EXAMPLE 9.3 Different Colored Frames in Different Locations

This program modifies the one in Example 9.2. I t defines another subclass of the Frame class to
display two different colored frames in different locations:

import java.awt.Color;

import java.awt.Frame;

class ColoredFrame extends Frame

{ ColoredFrame(String s, Color color, int x, int y)

{ super(s + color.tostring ()) ;

setBackground(co1or);

setsize (350,100);
setLocation(x,y); / / puts upper left corner at (x,y)
setvisible (true) ;

}

1

213 CHAP. 91 GRAPHICS

class TestColoredFrame

{ public static void main(String[] args)

{ new ColoredFrame ("Red: Color. red, 0, 0);
new ColoredFrame (I'Green : Color. green, 0, 100);

1
1

The constructor for the new ColoredFrame () subclass takes four arguments: a String object,
a Color object, and two ints.The string is concatenated with the string representation of the Color
object (produced by its tostring () method) and passed along to the Frame constructor which
creates the frame and copies that concatenated string to its title bar. The two integers are used as x and y
coordinates to locate the position of the frame on the screen.

The main () method creates
two ColoredFrame objects. The
first is colored red and located at
position (O,O), which is the upper
left corner of the screen. The second
is colored green and located at
position (0,100). Since the heights
of the frames are 100 pixels, the
second frame is placed precisely at
the bottom edge of the first, also at
the left edge of the screen. They
look like the picture here (except
more colorful).

Notice the title bars. Each title
was produced from the code

s + color.toString()
where s was the string passed to
the Co1or edFr ame constructor,
and color is the Color object
passed. You can see how the
Color class overrides the
tostring () method. It returns a string in the form Color [r=rrr, g=ggg, b=bbb] where (rrr,
ggg,bbb) is the RGB code for the color.

9.4 COMPONENTS

Graphics programs get their functionality from the interactive components that are placed in
the windows on the screen. These include buttons, scroll bars, text fields, menus, etc. These
objects are instances of subclasses of the two abstract classes: Component and MenuCompo-
nent.In any user interface, the components are related by their containment hierarchy.

EXAMPLE 9.4 A Component Hierarchy

This user interface consists of 11 objects: three instances of the Frame class, two of the
TextField class, one of the Panel class, one of the Label class, three of the Button class, and
one of the Scrollbar class. The containers are framel, panel, frame2, and frame3.The
diagram at the top of the next page shows the containment hierarchy for these components. But the picture
below gives a better visual description of the actual containment relationships among them.

214 GRAPHICS [CHAP. 9

frame1

panel

f rhmel

I
textField1 panel textField2 frame2

label frame3 butt on 1 button2

I I
scrollbarl button3

9.5 THE Button CLASS

A button is a component that has a label and can respond when pressed. We will see how
buttons and other components respond to user actions in Section 9.7.

EXAMPLE 9.5 Adding a Button Component

This program creates a frame that contains a Butt on component.
import java.awt.Button; defines the Button class

import java.awt.Color;

import java.awt.Frame;

class ButtonFrame extends Frame

{ Button button; / / declares button

ButtonFrame (String s)

{ super(s);
setBackground(Color.blue);

setsize (200,100) ;
setLocation (400,50);
button = new Button(llC1ick me!I1) ; / / creates button
add (button) ; / / makes button a component
setvisible (true) ;

1
}

class TestButtonFrame

{ public static void main(String[] args)

{ ButtonFrame buttonFrame = new ButtonFrame("Examp1e 9.5");
1

215 CHAP. 91 GRAPHICS

This program creates two component objects:
buttonFrame and ButtonFrame.button.The latter
is a component of the former, as indicated here.

The statement in main () creates the object named
buttonFrame as an instance of the ButtonFrame
class. It passes the string literal "Example 9 . 5" to its
constructor, which passes it on to the Frame constructor.

The ButtonFrame class declares one field: a
Button object named button. (It inherits other fields
from its ancestor classes, including those for color, size, and
location.) It invokes the methods setBackground () ,
setsize () , and setLocation () , as in Example 9.3 on
page 212. Then it instantiates its button component,
passing the string literal I I C l i c k me ! It.

Every button has its own label, which is a String object that appears on the face of the button
when it is displayed. You can set this label by invoking the button's setLabe1 () method, or you can
pass the string to its constructor as was done here.

After the button is created, the ButtonFrame constructor must invoke the add () method to
make the Button object a component ofthe ButtonFrame object. Then it invokes the setvisi-
ble () method to make the frame appear on the screen. Note that the button fills the entire frame.

Click on the button to see that it reacts visibly as you would expect.

9.6 MANAGING LAYOUTS

The arrangement of several components within a container is called their layout. Java defines
the five layout classes FlowLayout, GridLayout, BorderLayout, CardLayout, and
GridBagLayout. These are all subclasses of the LayoutManager class. You can set a
container's layout by passing one of these LayoutManager objects to the container's setlay-
out () method.

The F1 owLayout manager arranges the container's components in a left-to-right,
top-to-bottom pattern, in the same flow that English words follow on a printed page.

EXAMPLE 9.6 Using the FlowLayout Manager

This program creates a ButtonFrame object named buttonFrame and six anonymous
Button objects which are added to the frame as components. It passes an anonymous FlowLayout
object to the frame's setLayout () method to arrange the buttons in a flow layout:

import java.awt.Button;

import java.awt.Frame;

import java.awt.FlowLayout;

class ButtonFrame extends Frame

{ ButtonFrame (String s)

I super(s);
setsize(200,100);
setLayout (new FlowLayout ()) ;
for (i n t i = O ; i < 6 ; i++)
add(new Button ("Button + i)) ;

setvisible (true) ;
1

\

216 GRAPHICS [CHAP. 9

class TestButtonFrame

{ public static void main(String[] args)

{ ButtonFrame buttonFrame = new ButtonFrame("Examp1e 9.6");

j

The displayed frame looks like the picture here. The
f o r loop creates the six buttons and makes them
components of the frame.

Drag on the edge of the frame window to resize it,
making it taller and narrower. See how the buttons flow
within the frame, rearranging themselves but still
maintaining their "words-on-a-page" arrangement.

Note that the size of each button is set by default
according to the size of its label.

EXAMPLE 9.7 Using the GridLayout Manager

This programs uses a GridLayout object to arrange 12 buttons in a 4-by-3 grid:
import j ava . awt .* ;
class ButtonFrame extends Frame

{ ButtonFrame(String s)

{ super(s);
setsize (300,200);
setLayout (new GridLayout (4,3)) ;
for (int i = O ; i<12; i++)
add(new Button("Button 'I + i));

setvisible (true) ;

class TestButtonFrame

{ public static void main(String[] args)

{ new ButtonFrame ("Example 9 . 7 ") ;
}

1
The arguments 4 and 3 are passed to the GridLayout constructor, telling it to use 4 rows and 3

columns in the grid.
Note that we have switched to using the wild card character * in the import statement
import java.awt.*;

to avoid listing the AWT classes separately.

EXAMPLE 9.8 Using the BorderLayout Manager

This programs uses a BorderLayout object to arrange five buttons:
import java.awt.*;

class ButtonFrame extends Frame

{ ButtonFrame(Strin9 s)

I super(s);
setsize (150,100);
setLayout (new BorderLayout ()) ;
add (new Button (l lSuperiorll), BorderLayout .NORTH);
add (new Button (l lOntarioll), BorderLayout .EAST) ;
add (new Button (I1Er i e1 l) , BorderLayout. SOUTH);
add (new Button (llMichiganll), BorderLayout .WEST);

CHAP. 91 GRAPHICS 217

add (new Button (llHuronll), BorderLayout.CENTER) ;
setvisible (true) ;

1
1

class TestButtonFrame

{ public static void main(String[] args)

{ new ButtonFrame (“Example 9.8’ l) ;
1

1

The add () method declared in the Container class has
five versions. The one used in Example 9.8 is declared as

public void add(Component component, Object constraint)

When the container’s layout is a BorderLayout object, the add () method expects the con-
straint argument to be one of the five objects defined in the BorderLayout class: NORTH, EAST,
SOUTH, WEST,or CENTER.These determine which of the five possible positions the component will be
given.

9.7 EVENT-DRIVEN PROGRAMMING

To make components such as buttons and text fields functional, we have to implement the
listener interface that gives their containers the power to “hear” them. This empowers the
components to generate event objects in response to user actions upon them and provides the
instructions for their containers to execute in response.

EXAMPLE 9.9 Handling the Button Click Event

The picture on the right shows how
the Button and ButtonFrame
objects would look without the code
printed in boldface below. The butt on button
object has a label field containing the label-[4 IHcomponent
I v C l i c k me! string, and the I ButtonI But ton Frame

II

buttonFrame object has a field that
refers to its Button component. By
adding the code shown in boldface, we
activate the button, allowing the frame to
“hear” it and respond whenever it gets
clicked.

import java.awt.*;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

class ButtonFrame extends Frame implements ActionListener

{ Button button;

ButtonFrame (String s)

{ superb);
setBackground(Co1or.blue);

setsize(200,100);

218 GRAPHICS [CHAP. 9

setLayout(new FlowLayoutO 1;
button = new Button ("Click me ! ' I) ;
add (button) ;
button. addActionListener (this);
setvisible (true) ;

}

public void actionPerfomed(ActionEvent event)
{ if (event. getActionCommand () .equals (Tlick me !I t))

System. out .println ("Thank you!) I) ;
1

1

class TestButtonFrame

{ public static void main(String[] args)

{ ButtonFrame buttonFrame = new ButtonFrame("Examp1e 9.9");
1

I
To make instances of the ButtonFrame class responsive to actions on its components, we have to

make it an action listener. That is done by (1) adding the "implements ActionListener" clause to
its declaration, (2) implementing the actionPerf ormed () method, and (3) invoking the components'
addActionListener () methods in its constructor. When this is done, the components to which it
listens are called source objects, because this enables them to generate ActionEvent objects in
response to the user actions upon them. In this example, the frame's butt on object is the source object.

By making the frame an action listener, it will automatically invoke its actionperformed ()

method on any ActionEvent object that the button generates. The picture here shows how this is

clicked, it generates an Act ionEvent object label-] --E component
assigning the string in its label field to the actionListenerE!-
Act ionEvent object's actionCommand
field. Then the run-time system invokes the
actionperformed() method on the listener

1
event

1object that is identified by button. action-
Listener,passing that event object to it. In -1actionCommand

I Ithis case, that listener is the frame object, which ActionEvent

finds that the event.actionCommand field does
indeed equal the l l C l i c k me !I' string, so it
executes the println () statement.

An event-driven program is simply a program that runs a main loop, called the event loop, that
waits for input and then responds accordingly. This differs from our previous examples in that the
input can come in a variety of forms, including mouse events (clicking and dragging). Such user
actions are usually performed in a graphical context: clicking on a button, dragging an icon, etc. So
the interactive context is called a graphical user interface (GUI). The objects that appear on the
screen to prompt the user (windows, buttons, text fields, etc.) are called components. In Java, these
objects are all instances of subclasses of the Component class.

CHAP. 91 GRAPHICS 219

EXAMPLE 9.10 Handling the WindowClosing Event

To handle the WindowClosing event, the frame must implement the WindowListener
interface. This actually requires the implementation of seven more methods. But for this example, only
the windowClosing () method needs to do anything. It would terminate the program when it "hears"
the event:

import java .awt . * ;
import java .awt .event.* ;

class ButtDnFrame extends Frame

implements ActionListener, WindowListener

{ Button button;

ButtonFrame (String s)

t super(s);
setBackground(Co1or.blue);

setsize (200,100);
setLayout (new FlowLayout ()) ;

addWindowListener (this) ;
button = new Button ("Click me! ") ;

add(button);
button.addActionListener(this);

setvisible (true) ;

1

public void windowClosed (WindowEvent event) { }

public void windowDeiconified(WindowEvent event) { }

public void windowIconified(WindowEvent event) { }

public void windowActivated(WindowEvent event) {)

public void windowDeactivated(WindowEvent event) { }

public void windowOpened(WindowEvent event) { }

public void windowClosing(WindowEvent event)

{ System.exit(0);

1

public YJoid actionPerformed(ActionEvent event)

{ if (event. getActionCommand () .equals("Click me ! 'I))

S y s t e m . o u t . p r i n t l n (" T h a n k you!");

1

1

220 GRAPHICS [CHAP. 9

class TestButtonFrame

{ public static void main(String[] args)

{ ButtonFrame buttonFrame = new ButtonFrame("Examp1e 9.10");
1

1 button
Note that as an ActionListener,

the frame listens for events generated by its
button field. But as a WindowListener,
it listens for events generated by itself.
When you click on the close button, the Uwindow actually tells itself to close.

The picture here shows two event
objects: an ActionEvent generated by
button when the user clicked on the

1-actionCommand
ActionEvent WindowEvent

button, and a WindowEvent generated by buttonFrame when the user clicked on the window's
close button (or selected the close command from the window's menu or pressed Alt + F4). Both of these
event objects are handled by buttonFrame because it has been registered asboth the actionlis-
tener for button and the windowListener for itself.

9.8 THE TextField CLASS

A textJieZd is a text component that displays editable text. It provides a standard mechanism
for input into graphics based applications.

EXAMPLE 9.11 A Temperature Conversion Object

import java.awt.*;

import java.awt.event.*;

class ConvertTemperatures extends Frame

implements ActionListener, WindowListener

{ Label directions;
TextField fahrenhei t ;
Label Celsius;

ConvertTemperatures(String s)
{ super(s);
setsize(250,100);
setLayout(new FlowLayout());

addWindowListener(this);

directions = new Label ("Enter temperature in Fahrenheit: (I) ;
add (directions) ;
fahrenheit = new TextField(2);
add (f ahrenhei t) ;
fahrenheit.addActionListener(this);

Celsius = new Label(" ;
Celsius. setFont (new Font ("TimesRoman 12 point bold. 20, 20)) ;
add (Celsius) ;
setVisible(true);

1

public void windowClosed(WindowEvent event) { }
public void windowDeiconified(WindowEvent event) 1 1

CHAP. 91 GRAPHICS 22 1

public void windowIconified(WindowEvent event) I }
public void windowActivated(WindowEvent event) { }
public void windowDeactivated(WindowEvent event) { }
public void windowOpened(WindowEvent event) { }
public void windowClosing(WindowEvent event) { System.exit(0); }

public void actionPerformed(ActionEventevent)

{ int f = Integer.parseInt(fahrenheit.getText0);
long c = Math.round(5.O*(f - 32)/9.0);
fahrenheit. setText (1 1 1 1) ;
celsius.setText(f + l l \~OOBOF= + c + rf\uOOBOC1l);

1
}

class TestConvertTemperatures

I public static void main(String[] a r g s)

{ new ConvertTemperatures (“Example 9.11”);

Review Questions

9.1 What is the AWT?
9.2 What is the difference between a component and a container?
9.3 What is the purpose of the add () method?

Programming Problems

9.1 ModifL Example 9.1 on page 2 10 so that it creates a fiame 400 pixels wide and 200 pixels
high and has the title “Problem 9.1 ”.

9.2 Modify Example 9.2 on page 21 1 so that it paints the frame red instead of blue and has the
title “Problem 9.2”.

9.3 Modify Example 9.2 on page 211 so that it does the same without subclassing the Frame
class and has the title “Problem 9.3”.

9.4 Modify Example 9.3 on page 212 so that it displays 13 frame windows, one for each of the
13 predefined colors in the Color class. Arrange the frames in a tiled pattern using the
setLocat ion () method as in Example 9.3.

9.5 Write a program similar to that in Example 9.3 on page 212 that prints an 8-by-8 grid of 64
tiled frames, each with a different background color. Use a pair of nested for loops.

Supplementary Programming Problems

9.6 Modify the program in Example 9.11 on page 220 so that it converts Fahrenheit to Kelvin.
Use the fact that Kelvin = Celsius - 273.

9.7 Modify the program in Example 9.11 on page 220 so that it converts Celsius to Fahrenheit.
9.8 Write a program that draws six concentric circles, spaced 12 pixels apart.

9.9 Write a program that draws a spiral. Use the drawArc:() method.

222 GRAPHICS [CHAP. 9

9.10 Write a program that draws characters of random size and random color at random locations.

9.11 Write a program that draws filled circles of random size and color at random locations.

9.12 Write a program that draws the two-coordinate position of the mouse when it is clicked.

9.13 Write a program that amortizes a loan. For a given loan amount, interest rate, and monthly
payment, the display should list the schedule of monthly payments.

9.14 Write a program that implements a simple calculator with buttons for addition, subtraction,
multiplication, and division.

Answers to Review Questions

9.1 The AWT is a library of Java packages that forms part of the Java API. It includes over 25 packages
that define hundreds of classes used for graphical user interfaces (GUIs).

9.2 A component is an object, like a button or a scroll bar, that has a visual representation in a screen win-
dow. A container is a window-like component that can contain other components. Every component
has a unique container that directly contains it.

9.3 The add () method makes a field a component. For example, in Example 9.5 on page 214, the
Button object button is a field ofthe ButtonFrame object buttonFrame.But it doesn't
become a component of that object until the line

add(button);
executes.

Solutions to Programming Problems

9.1 import java.awt.Frame;
public class TestFrame extends Frame

{ public static void main(String[] args)

{ System.out.println("Creating a 400x200-pixel frame"
+ with title \"Problem 9.1\".' I) ;'I

Frame frame = new Frame("Prob1em 9.1");
frame.setSize(400,200) ;
frame.setVisible(true);

System.out.println("To quit, click in this window"

+ and then press Ctrl+C.") ;'I

1
}

9.2 import java.awt.Color;
import java.awt.Frame;

class MyFrame extends Frame

{ MyFrame(String s)

t super (s);
setBackground(Color.red);
setsize (250,100);
setvisible (true) ;

I
}

CHAP. 91 GRAPHICS 223

class TestMyFrame

{ public static void main(String[] args)

{ System.out .println("Creating a 250xlOO-pixel frame"
+ ' I with title \"Problem 9.2\".");

new MyFrame (flProblem9.2) ;
System.out.grintln(nmTo quit, click on this windowl!

3- I' and then press Ctrl+C. I t) ;

1
1

9.3 import java.awt.Color;
import java.awt.Frame;

class TestFrame

{ public static void main (String [3 args)

{ Frame frame = new Frame ("Problem 9.3");
setBackground(Co1or.blue);

setsize (250 ,100);
setVisible(true);

System.out.println("To quit, click on this window"

-t I t and then press Ctrl+C. ") ;

1
1

9.4 Add the following lines to main () :
new ColoredFrame("B1ue: Color.blue, 700, 0);
new ColoredFrame ("Yellow: " , Color .yellow, 0, 100);
neid ColoredFrame ("Magenta: I' , Color .magenta, 350, 100) ;
new ColoredFrame("Cyan: Color.cyan, 700, 100);
' I ,

new ColoredFrame("0range: Color.orange, 0, 200);' I ,

new ColoredFrame("Pink: Color.pink, 350, 200);' I ,

new ColoredFrame("White: Color.white, 700, 200);' I ,

new ColoredFrame ("Light Gray: I' , Corlor .lightGray, 0, 300);
' I ,new ColoredFrame("Gray: Color.gray, 3 5 0 , 3 0 0) ;

new ColoredFrame("Dark Gray: ' I , Color.darkGray, 700, 3 0 0) ;
new ColoredFrame("Black: Color.black, 0, 4 0 0) ;' I ,

9.5 import java.awt.Color;
import java.awt.Frame;

class ColoredFrame extends Frame

{ ColoredFrame(Co1or color, int x, int y)

{ super0 ;
setBackground(co1or);

setSize(100,lOO);
setLocation(x,y);

setvisible (true) ;

1
1

class TestColoredFrame

{ public static void main(String[l args)

{ for (int i=O; i<8; i++)
for (int j=O; J<8; I++)
{ Color color = new Color(32*i+3:Lr32*j+31,4*i*j+3);
new ColoredFrame(color,ll2*~,lOO*~);

1
1

1

Chapter 10

Applets, Threads, and Exceptions

10.1 APPLETS

An applet is a Java program tat must be run from another program, called its host program.
Applets are usually run from Web browsers such as Netscape's Communicator or Microsoft's
lnternet Explorer. The word "applet" derives from the word "application," which means
computer program.

EXAMPLE 10.1 The HelloWorld Applet

Here is our HelloWorld program from Chapter 1, written as an applet:
import java.applet.App1et;

import java.awt.Graphics;

public class Hello extends Applet

{ public void paint(Graphics g)

! g.drawstring ("Hello, World! ' I , 100, 50);

Note that the applet has no main () method. Instead, it defines the Hello class as a subclass of
the Applet class and overrides its paint () method.

To run your applet from a web page, you first have to create an HTML program. The acronym
"HTML" stands for Hypertext Markup Language, which is the programming language used for web
pages. Here is a minimal HTML program from which you can run your applet:

<applet code="Hello.class" width=300 height=100>

</applet>

Type this code, exactly as it appears here, into
a separate text file named "Hello. html".
Then execute the following two JDK com-
mands at the DOS prompt:

javac Hello.java

appletviewer Hello.htm1

The javac command compiles your applet
just like a regular Java application program,
producing the class file Hello. class. The
appletviewer command launches a spe-
cial program provided in the JDK that runs
HTML programs just like a Web browser. In
this case, the applet viewer runs the two-line HTML program that you created in the Hello. html file.
The result is the panel shown here.

This HTML program simply tells the applet viewer to run the Java code contained in the
Hel 10. ciass file, using a panel 100 pixels wide and 50 pixels high. Note the title bar on the panel lists
the Java class.

224

225 CHAP. 101 APPLETS, THREADS, AND EXCEPTIONS

An HTML program (also called an HTML script) is a sequence of three kinds of tokens:
ordinary text characters, tags, and special symbols. The ordinary text is displayed as text. The
tags (also called elements) are special instructions, like Java methods or C++ functions. Tags are
identified by their names enclosed in angle brackets, like this: <center>.The special symbols
(also called entities) are code punctuation marks such as the ampersand (&) and the quotation
mark('I).

The HTML program in Example 10.1 consists of a single applet tag. This tag has three
attributes: code="Hello. class", width=300, and height=100. These are like arguments
passed to a method or function, providing essential information about what is to be done. In this
case, the action to be performed is the execution of a Java applet. To do that, the applet viewer
needs to know the name of the applet (code="Hello.class") and the size of the panel
(width=300 height=100) to use. The code </applet> simple signals the end of the tag. For
example, the tag <img src="http: //www.paris. org/Musees/Louvre/Treasures/gifs/
Mona Lisa. jpg"> would download and include a (186 KB) digital image of the Mona Lisa
from the Louvre in Paris.

You can use your Web browser instead of the applet viewer to run your Java applet. Simply
Open the .html file in your browser. For example, in Netscape's Navigator, select the File >
Open Page. . . command from the menu and then select the file. The result looks like this:

Similarly, in Microsoft's Internet Explorer, select the File > Open command from the menu
and then select the file:

10.2 THE Applet CLASS

The Applet class is defined in the java.applet package. In fact, it is the only class
defined in that package. It is a subclass of the Panel class, so applets are containers, similar to
frames. In particular, events are handled by applets the same way they are handled by frames.
(See Chapter 9.)

226 APPLETS, THREADS, AND EXCEPTIONS [CHAP. 10

As an instance of a user-defined subclass of the Object
Applet class, an applet normally overrides one or -Cornpone n t
more of the following methods: Lcontainer

Applet.destroy() Panel

Applet. init () 1 iApplet
Applet. start () iWindow
Applet. stop () L-Frarne
Component. paint () -Thread
Component. repaint ()
Component. update ()

Of these, usually none of these except the paint () and repaint () methods are invoked
explicitly by the applet.

The init () method is invoked automatically by the AWT run-time system when the applet
is launched. Similar to a constructor, it is used for initializations.

The start () method is invoked automatically by the AWT whenever the HTML program
is reloaded into the Web browser. That happens when you click on the Reload button in
Netscape's Communicator or when you select View > Refresh from the menu (or press the ~5 key)
in Microsoft's Netscape Navigator.

The stop () method is invoked when the HTML page that contains the applet is left.
The destroy () method is automatically invoked by the AWT when the browser quits.
The paint (method is automatically invoked by the AWT run-time system whenever it

detects that any part of the applet needs to be redrawn. It is similar to the update () method.
The repaint () method asks the AWT to redraw the frame. It calls update () which calls

paint () to clear the panel by filling it with its background color and then to repaint it. This
causes flickering in animation. To overcome flickering, override the update () method, as
shown in Example 10.4.

The repaint () method has four forms:
public void repaint ()
public void repaint(1ong ms)

public void repaint (int x, int y, int width, int height)

public void repaint (long ms, int x, int y, int width, int height)

EXAMPLE 10.2 The Life Cycle of an Applet

Run the following HTML script in Netscape's Communicator Web browser:
<applet code="LifeCycle.class" width=400 height=400>

</applet>

where LifeCycle .class is the compiled bytecode for the following Java source code:
import java.applet.Applet;

import java.awt.*;

public class Lifecycle extends Applet

{ int initCount=O;
int startCount=O;

int stopCount=O;

int destroyCount=O;

public void init ()
{ ++initcount;

I'System.out .println ("init () : + initcount);

CHAP. 101 APPLETS, THREADS, AND EXCEPTIONS 227

public void start ()
{ ++startcount;

I'S y s t e m . o u t . p r i n t l n (" s t a r t () + startcount);
1

public void stop()

{ ++stopcount;
System. out .print111 ("stop () -+ stopcount);

1

public void destroy()

{ ++destroycount;

S y s t e m . o u t . p r i n t l n (" d e s t r o y () + destroycount);
1

1
In Netscape, open the

Java console window (use
the menu item Communicator
> Java Console in Netscape 4,
-Options > Show Java Console in
Netscape 3). Load the
HTML script to run the Java
applet. Then click on the
Reload button several times.
The console looks like this.

Each time any of the
four explicit methods is
invoked, the invocation is
counted and that count is
displayed. This example
here shows that init ()

has been invoked once,
start () has been invoked
four times, stop () has
been invoked three times,
and destroy() has not
yet been invoked.

10.3 THE Thread CLASS

A thread is an independent sequential flow of control within a process. Threads run within
programs. A single application or applet can have many threads doing different things indepen-
dently.

The Thread class is defined in java.lang as a subclass of the O b j ect class. To use threads
in your program, you need to define your own local subclass of the Thread class and therein
override its run () method. Put the code that you want the threads of that subclass to execute in
that run () method.

228 APPLETS, THREADS, AND EXCEPTIONS [CHAP. 10

EXAMPLE 10.3 A Multithreaded Program

class MyThread extends Thread

{ int sleepTime;

public MyThread(String s)

I super(s);
sleepTime = (int) (500*Math.random()) ;
System.out.println("Name: t getName()
I'

+ "\t Sleep: 'I t sleepTime);

public void run()

{ try { sleep(s1eepTime); }
catch (Exception e) { }
System. out .println ("Thread 'I t getName ()) ;

1

public class TestThreads

{ public static void main(String[] args)

{ MyThread thread0, threadl, thread2, thread3;
thread0 = new MyThread (1 1 0 1 1);
threadl = new MyThread ("1");
thread2 = new MyThread (1 1 2 1 1);
thread3 = new MyThread (" 3 ");
thread0. start () ;
threadl. start () ;
thread2. start () ;
thread3. start () ;
try { System.in.read(); }
catch (Exception e) { }

1

The output on the first run was
Name: 0 Sleep: 442

Name: 1 Sleep: 242

Name: 2 Sleep: 188

Name: 3 Sleep: 146

Thread 3

Thread 2

Thread 1

Thread 0

The output on the second run was
Name: 0 Sleep: 157

Name: 1 Sleep: 89

Name: 2 Sleep: 437

Name: 3 Sleep: 120

Thread 1

Thread 3

Thread 0

Thread 2

229 CHAP. 101 APPLETS, THREADS, AND EXCEPTIONS

EXAMPLE 10.4 A Digital Clock Applet

Run the following HTML script in Netscape's Communicator Web browser:
<appler code=llClock.classll
width=400 height=400>

</applet>

where C 1oc k .c 1as s is the compiled bytecode for the following Java source code:
import java.applet.App1et;

import java.awt.*;

import java.util.Ca1endar;

public class Clock extends Applet implements Runnable

{ Thread thread;
Font font = new Font ("Monospaced", Font .BOLD, 64);
int hour, minute, second;

public void init ()

{ if (thread == null)
{ thread = new Thread(this);
thread. start () ;

1
1

public void run()

{ for (; ;) / / forever

{ Calendar time=Calendar.getInstance();
hour = time.get(Ca1endar.HOUR);
minute = time.get(Calendar.MINUTE);
second = time.get(Calendar.SEC0ND);
repaint(5); / / requests re-drawing every 5 milliseconds

1
1

public void destroy()

{ if (thread ! = null)

{ thread. stop () ;

thread = null;
1

1

public void paint(Graphics g)

{ g,setFont(font);
String time = String.valueOf(hour)

+ 11 .. 11 + String.valueOf(minute)
+ 11 .. 11 + String.valueOf(second);

g.drawString(time, 50, 50) ;
1

230 APPLETS, THREADS, AND EXCEPTIONS [CHAP. 10

10.4 EXCEPTIONS

If anything can g o wrong, it will.

-Murphy's Law

An exception is a Object
run-time event that indicates bThrowable

:eption

wrong. Exceptions are -10,Exception

represented in Java by ArithmeticException

instances of the Except ion -ArrayStoreException
IllegalArgumentException

class. IndexOutOfBoundsException
An exception is an -NullPointerException

event, like a mouse click on ---RuntimeException

a window button. Except FileNot Found
that, instead of being created /--Erd'ii.ileEx-npt ion

are created by the system to alert the user of an event that might otherwise have gone undetected,
or at least unrecognized. The inheritance hierarchy here suggests the variety of exceptions that
can occur. The classes FileNot Found and IndexOutOfBoundsExcept ion are common
examples.

In Java, methods that can fail are declared with a throws clause. For example, the read ()

method in the Reader class is declared like this:
int read(char buf[], int offset, int count) throws IOException

The throws IOException clause means that this method can be invoked only within a try
clause. That is what we did back in Example 1.2 on page 12, reproduced here:

EXAMPLE 10.5 The "HellAl" Program from Chapter 1

public class HelloAl

{ public static void main(String[] args)

{ final int LEN = 255;
byte buffer[] = new byte[LEN];
System.out .print ("Enter your name: ' I) ;
try { System.in.read(buffer, 0, LEN); }
catch (Exception e) { }
String name = new String(buffer);
S y s t e m . o u t . p r i n t l n (" H e l l o , t name.tri.m()t " ! ") ;I'

The reason such methods must be used within try blocks is to guarantee that some
provision is made to handle the exception; i .e., the need for some alternative action is made
explicit and easy for the programmer to use. The alternative action is written in the catch
clause. No such alternative action was written in Example 10.5. But we could have done this
instead:

try { System.in.read(buffer,0, LEN); }
catch (Exception e) { System. out .println ("ERROR: read () failed.1 1) ; }

CHAP. 101 APPLETS, THREADS, AND EXCEPTIONS 23 1

Like events, exceptions must be handled by specific software constructs. In Java, exception
handling is managed by try blocks.

EXAMPLE 10.6 Testing Exceptions

import java.io.*;

public class TestExceptions

{ static int getInt() throws IOException

{ BufferedReader input =

new BufferedReader(new InputStreamReader(System.in));

System. out .print ("Enter an integer: ' I) ;
String s = input.readLine();
return Integer.parseInt(s);

1

public static void main (String [] args)
{ int nl=O, n2=1, n3=0;
try

{ nl = getInt () ;
n2 = getInt () ;
n3 = nl/n2;

}
fcatch (Exception e) { System.out.printl.n(ll[lle + 1 1] ; }

System.out.println(n1 t 1 1 / 1 1 t n2 t = + n3);
1

}
The first sample run was
Enter an integer: 22

Enter an integer: 3
22/7 = 3

Everything worked normally here; no exceptions were thrown.
The second sample run was
Enter an integer: 22

Enter an integer: 0

[java.lang.ArithmeticException: / by zero]
22/0 = 0

~~~~ ~ ~ ~ ~ ~~ ~~ ~ ~ 

Here, we intentionally tried to divide by zero to see what would happen. When the division nl /n2 was 
attempted, an ArithmeticException object was thrown. It was caught by the exception handler 

catch (Exception e) { System.out.println("[" t e t " 1 " ) ;  } 
and processed by the print In ( ) method, which then invoked the method 

ArithmeticException. tostring ( )  
to printthe s t r ing"java.  1ang.ArithmeticException: / by zero". 

The third sample run was 
Enter an j-nteger: 22 

Enter an j-nteger: w 

[ java. lanq. NumberFormatException: w] 
22/1 = 0 

Here, we intentionally entered the letter w to see what would happen. In this case, the exception is 
thrown by the readLine ( ) method within the getInt ( ) method. But it is caught by the same 
exception handler 

catch (Exception e) { System.out.println(l'[llt e t ' r ] r r ) ;  } 



232 APPLETS, THREADS, AND EXCEPTIONS [CHAP. 10 

It invokes the NumberFormatException. tostring ( ) method to print the string 
“java.1ang.NumberFormatException: w”. 


Review Questions 

10.1 What is an applet? 

10.2 What is the AppletViewer? 

10.3 What is an HTML tag? 

10.4 What is an applet tag? 

10.5 How does the Applet .init ( ) method get invoked? 

10.6 How does the Applet .destroy ( ) method get invoked? 

10.7 How does the Applet .start ( ) method get invoked? 

10.8 How does the Apple t .stop ( ) method get invoked? 

Programming Problems 

10.1 Predict how the output from the program in Example 10.6 on page 23 1 will differ by moving 
the last line 

System.out.println(n1 + ” / ”  + n2 + = I1  + n3); 
up into the try clause, like this: 

try 

{ nl = getInt ( )  ; 
n2 = getInt ( )  ; 

n3 = nl/n2; 
System.out.println(n1 + + n2 + = ‘I + n3); 

1 

Then make the modification and see if your prediction was right. Explain the difference. 

Supplementary Programming Problems 

10.2 Re-write the “Click me !” program in Example 9.9 on page 21 7 as an applet. 

10.3 Re-write the temperature conversion program in Example 9.11 on page 220 as an applet. 

10.4 Write an applet that displays Pascal’s Triangle (see Problem 5.7 on page 98), where the user 
selects the number of rows to be displayed. 

10.5 Re-write the concentric circles program in Problem 9.8 on page 221 as an applet, where the 
user selects the distance between the circles. 

10.6 Re-write the filled circles program in Problem 9.11 on page 221 as an applet, where the user 
selects the size the circles. 

10.7 Re-write the amortization program in Problem 9.13 on page 221 as an applet. 

10.8 Re-write the calculator program in Problem 9.14 on page 221 as an applet. 



233 CHAP. 101 APPLETS, THREADS, AND EXCEPTIONS 


Answers to Review Questions 

10.1 An applet is a Java program that has to be embedded in another program to be run. Applets are usually 
embedded in HTML scripts (Web pages). 

10.2 The AppletViewer is a special program that comes with the Java Developer’s Kit that allows you to 
run applets. 

10.3 An HTML tag is a syntactical construct in the HTML language that abbreviates specific instructions to 
be executed when the HTML script is loaded into a Web browser. It is like a method in Java, a func- 
tion in C++, a procedure in Pascal, or a subroutine in FORTRAN. 

10.4 An app1e t  tag is an HTML tag that runs a Java applet. 
10.5 The Applet . i n i t  ( ) method is invoked automatically by the Java run-time system when when 

the Web page in which it is embedded is loaded. 
10.6 The Applet . destroy ( ) method is invoked automatically by the Java run-time system when the 

Web page in which it is embedded is unloaded. 
10.7 The App1et . start ( ) method is invoked automatically by the Java run-time system when the 

Web page in which it is embedded is loaded or reloaded. 
10.8 The ApplE! t . stop ( ) method is invoked automatically by the Java run-time system when the Web 

page in which it is embedded is reloaded. 

Solutions to Programming Problems 

10.1 The results are the same except that no erroneous ouput is printed; i.e. the ouput 
22/0 = 0 
22/1 = 0 

does not occur. The reason is that the t r y  block is exited as soon as an exception is thrown, in which 
case, the rest of the statements within the t r y  block are never executed. 



Appendix A 


Acronyms 

API Application Programming Interface 
AWT Abstract Window Toolkit, or Abstract Windowing Toolkit 
CGI Common Gateway Interface 
DLL Dynamic Link Library 
DOS Disk Operating System 
FTP File Transfer Protocol 
GIF Graphics Interchange Format 
GUI Graphical User Interface 

HTML Hypertext Markup Language 
HTTP Hypertext Transfer Protocol 
IDE Integrated Development Environment, or Integrated Developer Environment 
ISP Internet Service Provider 
JDK Java Development Kit, or Java Developers’ Kit 
JIT Just-In-Time (Java bytecode compiler) 
JPEG Joint Photography Engineering Group 
JVM Java Virtual Machine 
MIME Multipurpose Internet Mail Extension 
POP Post Office Protocol 
SMTP Simple Mail Transfer Protocol 
TCP/IP Transmission Control Protocolflnternet Protocol 
URL Uniform Resource Locator 
WWW World- Wide Web 
Y2K Year 2 Thousand 

234 




Appendix B 


The JBuilder IDE 

JBuilder is an integrated development environment (IDE) for programming in Java, 
produced by Borland International, now called “Inprise.” It is popular among professional Java 
programmers. This appendix describes some of its features. For more information, check the 
following Web page : 

http://www.inprise.com/jbuilder/ 

Its brief description of their product is 

JBuilder 2 is the most comprehensive set of visual development tools for 
creating Pure Java business and database applications. Simplify develop- 
ment with JDK Switching, CodeInsight, Beans Express, and BeanInsight, 
plus: Pure Java DataExpress components, complete JDBC connectivity, 
200+ JBCL and JFC/Swing beans with source, and more! 

Like other IDE, JBuilder includes the usual features: 
1 .  a powerful built-in editor; 
2. an automatic means for managing multi-file projects; 
3. a debugger; 
4.a compiler; 
5. an on-line reference library. 

It also comes with two manuals that are easy to use. 
JBuilder2, released in May 1998, uses Java 1.1.5. It’s on-line reference includes the Java 

API: 

235 




236 THE JBUILDER IDE [APP. B 

JBuilder's main window looks like this: 

This shows the main window on top and the AppBrowser below it. The main window 
contains three horizontal "bars": the Menu bar, the Tool bar, and the Status bar. The Menu bar 
contains the usual menu items: Eile, Edit, Search, etc. The Tool bar contains a large number of 
buttons and icons. The buttons are for quick compiling, searching, debugging, etc. The icons 
allow drag-and-drop access to common Java classes. The status bar in this picture shows the path 
and name of the file currently displayed in the AppBrowser 

E:\book\pwj\src\chlO\exO6\TestExceptions.java. 




237 APP. B] THE JBUILDER IDE 

The AppBrowser includes a number of very useful and well-engineered features: a powerful 
editor, directory browsers, class browsers, etc. For example, in the picture here, the lower left 
window gives a hierarchical listing of all the parts of the displayed class file: the class heading, 
each class member, the packages, the imports, etc. If you click on any of these listings, the 
corresponding part in the source code file is immediately located in the editor. 

The editor itself uses color-coding for the various syntactical parts of the Java language. For 
example, comments are shown in blue, string literals are in rled, etc. This feature is very helpful 
in locating syntax errors such as a misplaced quotation mark. 

One particularly nice feature of the editor is its provisiori of pop-up lists of the Java library 
class methods and their parameter lists. For example, the screen capture here shows what 
happened immediately after the programmer typed the dot on the line 

String s = input. 
The pop-up scroll list shows all the methods of the string class. When the programmer typed 
r next, the system immediately highlighted the listing 

read : int 
in the scroll list. Then all the programmer needed to do was to press the down arrow key once to 
select the listing 

readLine : String 
and then press Return to have that method name inserted into the edited file at the cursor. 

A similar feature is provided for method parameters. For example, when the programmer 
typed the left parenthesis on the next line 

return Integer.parseInt( 

another pop-up scroll list appeared, like this, showing the possible parameter lists for this 
method. This shows immediately that there are two versions of the Integer .parseInt ( ) 

method: one that takes a single String argument, and one that takes a String argument 
followed by an int argument. It also indicates that the int represents the radix of the string 
being converted. 

This kind of instantaneous information is invaluable, especially with the Java language with 
over 1500 classes and over 10,000 methods. No programmer can remember even a small part of 
that information. JBuilder saves the programmer from the time-consuming task of searching the 
reference manuals. 



Appendix C 


The Codewarrior IDE 

Codewarrior is an integrated development environment (IDE) for programming in Java, 
C++, C, and Pascal. Produced by Metrowerks, it is popular among students. This appendix 
describes some of its features. For more information, check the web page 

http://www.metrowerks.com/ 


Like other IDE, Codewarrior includes the usual features: 
1. a powerful built-in editor; 
2. an automatic means for managing multi-file projects; 
3. a debugger; 
4. a compiler; 
5 .  an on-line reference library. 

Although Codewarrior does not come with any printed manuals, the book by [Trudeau) (see 
Appendix F) is of some help. 

A special version of the IDE, called Codewarrior Lite, can be downloaded for free from their 
website. 

CodeWarrior3 was released in March 1998. Its main window looks like this: 

238 




-Appendix D 


Computer Numbers 

The numbers that computers use are similar to the numbers of theoretical mathematics. But 
there are some important differences. This appendix summarizes them. 

D.1 THE FINITE AND THE INFINITE 

The biggest differences between computer numbers and mathematical num bers are the direct 
result of the inescapable fact that computer storage is finite. ThLe consequences are: 

1 .  The range of possible values for any number type is finite. 
2. The precision of any floating-point number is limited. 

D.2 NUMBER TYPES 

Mathematical number types: integer, rational, real, complex, hypercomplex, and transfinite. 
Computer number types: integer, floating-point. 
Java number types: byte, short, int, long, float, double, BigInteger, BigDecimal 

D.3 RANGES OF INTEGER TYPES 

byte:-128 to 127 
s h o r t  : -32,768 to 32,767 
in t  : -2,146,473,648 to 2,147,483,647 
long:-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 (See Example D.2 below.) 
BigInteger:unlimited by the Java language 

D.4 INTEGER OVERFLOW 

Integer values "wraparound" when they overflow. 

EXAMPLE D. l  Overflow of byte Integers 

class Test 

{ / /  Tests i-nteger overflow 
public static void main (String args [ 3 ) 

{ byte n=l; 

239 



240 COMPUTER NUMBERS [APP. D 

for (int i=l; i < = 8 ;  i++) 
{ n *= 2; 
System.out.println("2^" + i + = + n); 

) 
) 

} 
The output is 

2 " 1  = 2 
2"2 = 4 
2"3  = 8 
2"4 = 1 6  
2"5 = 3 2  
2"6  = 64 
2"7 = - 1 2 8  
2"8 = 0 

The product 2 - 64 was computed to be -1 28, and the product 2 - (-1 28) was computed to be O! 
Similar errors occur for the other three primitive integer types. 

EXAMPLE D.2 Overflow of B i g I n t e g e r  Integers 

The BigInteger class is defined in the j ava .math package. It provides integers of "arbitrary 
precision." 

import java.math.*; 

class Test 

{ / /  Tests integer overflow for BigInteger objects 
public static void main(String args[]) 

{ long p = Integer.parseInt(args[O]); / /  from the command line 
final BigInteger two = BigInteger.valueOf(2); 
BigInteger n = BigInteger.valueOf(1); 
for (int i=O; i<p; i++) 

n = n.multiply(two); 

System.out.println("2^" + p + = -k n); 

1 
This program assumes an integer is typed on the command line. The first line of main ( ) extracts 

that integer value (received by main ( ) through the string args [ 0] ) and initializes p with it. 
The first sample run was 
E:\books\pw~\src\appD\exO2~java
T e s t  7 
2"7 = 1 2 8  

The power 27was computed to be 128. 
The second sample run was 
E:\books\pwj\src\appD\exO2~~ava
T e s t  63 
2"63  = 9 2 2 3 3 7 2 0 3 6 8 5 4 7 7 5 8 0 8  

~ ~ ~~ 

The power 27was computed to be 128. 
The third sample run was 
E:\books\pwj\src\appD\exO2~JavaT e s t  1000 
2"lOOO = 1071508607186267320948425049060001810561404811705533607 
4437503883703510511249361224931983788156958581275946729175531468 

2 5 1 8 7 1 4 5 2 8 5 6 9 2 3 1 4 0 4 3 5 9 8 4 5 7 7 5 7 4 6 9 8 5 7 4 8 0 3 9 3 4 5 6 7 7 7 4 8 2 4 2 3 0 9 8 5 4 2 1 0 7 4 6  
0506237114187795418215304647498358194126739876755916554394607706 

2914571196477686542167660429831652624386837205668069376 




APP. D] COMPUTER NUMBERS 24 1 

D.5RANGES OF FLOATING-POINT TYPES 

float:*1.40129846432481707~10-45to k3.40282346638528860 x 10-38 

double:k4.94065645841246544~ 10-324 to k1.79769313486231570~1 O P 3 O 8  

BigDecimal:unlimited by the Java language 

D.6THE INFINITY AND NaN CONSTANTS 

Recall (Section 6.10 on page 132) that the constants POSITIVE INFINITY and 
NEGATIVE INFINITY are defined in the Double wrapper dass. They represent the mathemat- 
ical symbols CO and -013, which have the property that -CO < x <: m for all real numbers x. 

The name NaN means "not a number." That is a bit misleading because infinity and minus 
infinity are also not numbers. In mathematics, NaN is called an indeterminate form. 

EXAMPLE D.3 Testing Transfinite Arithmetic 

public class C1 


{ / /  Tests transfinite arithmetic 

public static void main(String a r g s [ ] )  

{ final double PInf = Double.POSITIVE-INFINITY; 
final double NInf = Double.NEGATIVE-INFINITY; 
System. out .println ( I 1 1 . O / 0 . O  = 'I + 1.0/0.0); 
System.out .println ( l l - l . O / O . O  = " + -1.O/O.O) ; 

'ISystem. out .print111 ("O.O/O. 0 = + O.O/O. 0); 
System.out.println("O.O*Infinity = + O.O*PInf ) ;  

System.out.println("Infinity*Infinity = + PInf*PInf ) ;  

I'System.out .println("Infinity* (-Infinity) = + PInf*NInf ) ; 

System.out.println("O.O*Infinity= " + O.O*PInf ) ; 

System.out.println("O.O*NaN= + O.O*Double.NaN); 
1 

The output is 
1.0/0.0 = Infinity 
-1.O/O.O = -Infinity 
O.O/O.O = NaN 
O.O*Infinity = NaN 
Infinity*Infinity = Infinity 
Infinity*(-Infinity) = -Infinity 
O.O*Infini:y = NaN 
O.O*NaN = NaN 

1 



242 COMPUTER NUMBERS [APP. D 


The following tables summarize transfinite arithmetic. They assume that c > 0. 

Addition 

I + 

N a N  N a N  

1 N a N  N a N  l N a N  ( N a N  l N a N  l N a N  I N a N  I 

Subtraction 

0 0 C -C CO --CO N a N  

-C -C 0 -2c Go 4 N a N  

C C 2c 0 Go 4 N a N  

-CO -CO 4 -CO N a N  --a N a N  

CO CO CO CO CO N a N  N a N  

N a N  N a N  N a N  N a N  N a N  N a N  N a N  

Multiplication 

0 0 0 N a N  N a N  N a N  

0 -c2 CO -x N a N  

0 -c2 c2 -x CO N a N  

~ N a N  CO -03 03 CO N a N  

N a N  -CO CO -x Go N a N  

N a N  N a N  N a N  N a N  N a N  N a N  N a N  

Division 

I I I I I 

-C -0 ( 1  1-1 10 10 N a N  

C 

-CO 

CO -Go 

N a N  N a N  N a N  N a N  N a N  N a N  



243 APP. D] COMPUTER NUMBERS 


EXAMPLE D.4 Testing Transfinite Comparisons 

p u b l i c  c l a s s  C2 
I. / /  T e s t s  t r a n s f i n i t e  c o m p a r i s o n s  

p u b l i c  s t a t i c  v o i d  ma in  ( S t r i n g  a r g s  [ 3 ) 
{ f i n a l  d o u b l e  P I N  = Double.POSITIVE INFINITY; 

f i n a l  d o u b l e  N I N  = Double .  NEGATIVEIINFIl!JITY; 
f i n a l  d o u b l e  NAN = Double.NaN; 
System.out.println("(4.0 < I n f i n i t y )  = + ( 4 . 0  < P I N ) ) ;  
System.out.println("(4.0 < - I n f i n i t y )  = 'I + ( 4 . 0  < N I N ) ) ;  
System.out.println("(4.0 < N a N )  = I' + ( 4 . 0  < N A N ) ) ;  

I'Sys tem.  o u t  . p r i n t l n  ( ' I  ( I n f i n i t y  == I n f i n i - t y )  = + ( P I N  == P I N )  ) ; 
S y s t e m . o u t . p r i n t l n ( " ( - I n f i n i t y  == - I n f i n i t y )  = + ( N I N  == N I N ) ) ;  
S y s t e m . o u t . p r i n t l n ( " ( N a N  == NaN) = 'I + (NAN == N A N ) ) ;  

1 

} 

The output is 
( 4 . 0  < I n f i n i t y )  = t r u e  
( 4 . 0  < - I n f i n i t y )  = f a l s e  
( 4 . 0  < N a N )  = f a l s e  
( I n f i n i t y  === I n f i n i t y )  = t r u e  
( - I n f i n i t y  == - I n f i n i t y )  = t r u e  
(NaN == N a N )  = f a l s e  

The following tables summarize transfinite comparisons. 

Less Than 

< 0 -C C 4 00 N a N  

0 false false true false true false 

I -c Itrue I false I true I false I true I false 

I c Ifalse I false I false I false I true I false 

I I I I I 

00 false false false false false 

N a N  false false false false 

< 0 -C C ~~~ 

0 true false false false 

C false true false false 

~~~ 

N a N false false false false false false

Appendix E

Unicode

Unicode is the international standardized character set that Java uses for its String and
S t r i n g B u f f e r classes. Each code is a 16-bit integer with unique value in the range 0 to 65,535.
These values are usually expressed in hexadecimal form. For example, the infinity symbol GO has
the Unicode value 8734, which is 22 1E in hexadecimal.

In Java, the character whose Unicode is hhhh in hexadecimal is expressed as \uhhhh.For
example, the infinity symbol is expressed as \ u 2 2 1 E .

The first 127 values are the same as the ASCII Code (American Standard Code for Informa-
tion Interchange).The following table summarizes the various alphabets and their Unicodes.

You can obtain more information from the Unicode Consortium website
http://www.unicode.org/

Also, see the book [Unicode] listed in Appendix F.

Unicode Alphabet

\uOOOO - \ ~ 0 2 4 F Latin Alphabets

\ ~ 0 3 7 0 - \uO3FF Greek

\~0400- \ u 0 4 F F Cyri11ic

\ ~ 0 5 3 0 - \ ~ 0 5 8 F Armen ian

\ ~ 0 5 9 0 - \uO5FF Hebrew

\~0600- \uO6FF Arabic

\U0900 - \ ~ 0 9 7 F Devanagari

\ ~ 0 9 8 0 - \ u 0 9 F F Bengali

\uOAOO - \uOA7F Gurmukhi

\ U O A ~ O - \UOAFF Guj arat i

\uOBOO - \uOB7F Oriya

\uOB80 - \uOBFF Tamil

\uOCOO - \uOC7F Teluga

\uOC80 - \uOCFF Kannada

\uODOO - \uOD7F Malayam

\uOEOO - \uOE7F Thai

\uOE80 - \uOEFF Lao

\UOFOO - \uOFBF Tibetan

\ U l O A O - \ u l O F F Georgian

\U1100 - \ u l l F F Hangul Jam0

\~2000- \ ~ 2 0 6 F Punctuation

\ ~ 2 0 7 0 - \ ~ 2 0 9 F Superscripts and subscripts

244

245 APP. E] UNICODE

Unicode Alphabet

\uZOAO - \u~OCF Currency symbols

\U20DO - \u~OFF Diacritical marks

\~210O- \~214F Letterlike symbols

\~2150- \~218F Numeral forms

\~2190- \u21FF Arrows

\u2200 - \U~ZFF Mathematical symbols

\~2300- \u23FF Miscellaneous technical symbols

\~2400- \~243F Control pictures

\~2440- \~245F Optical Character Recognition symbols

\~2460- \u24FF Enclosed alphanumerics

\~2500- \~257F Box drawing

\~2580- \~259F Block elements

\u25AO - \u25FF Geometric shapes

\~2700- \u27BF Dingbats

\~3040- \~309F Hiragana

\u30AO - \u30FF Katakana

\~3100- \~312F Bopomofo

\~3130- \~318F Jam0

\~3190- \3319F Kanbun

\~3200- \u32FF Enclosed CJK letters and months

\u4E00 - \U~FFF CJK Ideographs

Appendix F

References

[Arnold]
The Java Programming Language, by Ken Arnold and James Gosling.
Addison-Wesley, Reading, MA (ht tp: //www2. awl. com/corp/), 1996, 0-201-63455-4.

[Bell]
Javafor Students, by Douglas Bell and Mike Parr.
Prentice Hall, Englewood Cliffs, NJ, 1998 (http: //www.prent icehall. corn/), 0-13-858440-0.

[Boone]
Java Essentials for C and C++ Programmers, by Bany Boone.
Addison-Wesley, Reading, MA (http://www. aw. com/devpress/), 1998,O-201-47946-X.

[Campione]
The Java Tutorial, by Mary Campione and Kathy Walrath.
Addison-Wesley, Reading, MA (http:/ /www2. awl. com/corp/), 1998,O-201-63454-6.

[Chanl]
The Java Class Libraries, Second Edition, Volume 1, by Patrick Chan, Rosanna Lee, and D. Kramer.
Addison-Wesley, Reading, MA (http://www2. awl. com/corp/), 1998,O-201-31002-3.

[Chan2]
The Java Class Libraries, Second Edition, Volume 2, by Patrick Chan and Rosanna Lee.
Addison-Wesley, Reading, MA (http://wwwil. awl. com/corp/), 1998, 0-201-31003-1.

(Chan31
The Java Developers ALMANAC, by Patrick Chan.
Addison-Wesley, Reading, MA, 1998 (http://www2. awl. com/corp/), 0-201-37967-8.

[Daconta]
Javafor C/C++ Programmers, by Michael C. Daconta.
John Wiley & Sons, New York, NY (http://www. wiley. corn/), 1996,O-471-15324-9.

[Deitel]
Java How to Program, by H. M. Deitel and P. J. Deitel.
Prentice Hall, Englewood Cliffs, NJ, 1997 (h t t p : //www.p r e n t i c e h a l l .corn/), 0-13-263401-5.

[Grandl]
Java Language Reference, by Mark Grand.
O’Reilly & Associates, Sebastopol, CA (h t t p : / /www.o r e i l l y .corn/), 1997, 1-56592-326-X.

[Grand21
Java Fundamental Classes Reference, by Mark Grand and Jonathan Knudsen.
O’Reilly & Associates, Sebastopol, CA (h t t p : / /www.oreilly.corn/), 1997, 1-56592-241-7.

[Heller]
Java 1.I Developer h Handbook, by Philip Heller and Simon Roberts.
SYBEX, Alameda, CA (http://www.sybex.corn/), 1997,O-7821-1919-0.

246

247 APP. F] REFERENCES

[Holmes]
Programming with Java, by Barry Holmes.
Jones and Bartlett, Sudbury, MA 01776 (h t t p : / /www .jbpub .corn), 0-7637-0707-4.

[Holzner]
Java I . I , No Experience Required, by Steven Holzner.
SYBEX, Alameda, CA (h t t p : / / w w w . s y b e x . corn/), 1997,O-7821-2083-0.

[Horstmann 11
Core Java I . I , VolumeI - Fundamentals, by Cay S. Horstmann and Gary Cornell.
Prentice Hall, Englewood Cliffs, NJ (h t t p : / / w w w . p r e n t i c e h a l l .corn/), 0-13-766957-7.

[Horstmann21
Computing Concepts with Java Essentials, by Cay S. Horstmann.
John Wiley & Sons, New York, NY (h t t p : / / w w w . w i l e y . corn/), 1998, 0-471-17223-5.

[Kamin]
An Introduction to Computer Science Using Java, by S . N. Kamin, M. D. Mickunas, and E. M. Reingold.
WCB/McGraw-Hill, New York, NY (h t t p : / / w w w . p b g .r n c g r a w - h i l l .corn/), 1998,
0-07-034224-5.

[Lewis]
Java Software Solutions, Foundations of Program Design, by John Lewis and William Loftus.
Addison-Wesley, Reading, MA, 1998 (h t t p : //www2. a w l . corn/corp/) , 0-57164-1.

[Liang]
An Introduction to Java Programming, by Y.Daniel Liang.
Que Education & Training (h t t p :/ /www .rncp .c o r n / r e s o u r c e s / e d u c a t i o n / q u e e t /),
Indianapolis, IN, 1998, 1-57576-548-9.

[Trudeau]
Mastering Code Warrior for Windows 95/NT, The Official Guide,, by Jim Trudeau.
SYBEX, Alameda, CA (h t t p : / / w w w . s y b e x . corn/), 1997, 1-7821-2057-1.

[Unicode]
The Unicode Slandard, Version 2.0, by The Unicode Consortiumi.
Addison-Wesley, Reading, MA (h t t p : //www2. a w l . corn/corp/) , 1996,O-201-48345-9.

[Vanhelsuwe]
Mastering Javu 1. I , Second Edition, by Laurence Vanhelsuwe.
SYBEX, Alameda, CA (h t t p :/ /www .s y b e x . corn/), 1997,O-7821-2070-9

[Zukowski]
Java A WT Reference, by John Zukowski.
O’Reilly & Associates, Sebastopol, CA (h t t p : / / w w w . o r e i l - l y.corn/), 1997, 1-56592-240-9.

abs () method, 76

Abstract class, 164

Abstract method, 164, 166

Abstract modifier, 1 16, 164

Abstract Window Toolkit, 209

Abstract Collect ion Class, 200

AbstractList Class, 200

Access:
package,117

private,117, 131,139, 158

protected,117, 158

public,117, 139

Accessor method, 1 16, 139

Accumulating a sum, 66

Act ionEvent class, 21 8

actionPerformed() method, 218

add () method, 201,215,217
addActionListener () method, 218

addElement () method, 197

Address class, 175

addWindowListener () method, 219

Algorithm:

Babylonian, 75

bisection, 76

Euclidean, 72, 138

Ancestor, 163

And operator, 48

Anonymous object, 2 15

API, 25, 222,234
append () method, 35

Applet, 224, 233

Applet class, 225

APPLET tag, 225,233
AppletViewer, 233

apple t v i ewe r command, 224

Arabic alphabet, 244

Arbitrary precision numbers, 240

Argument:

array, 194

implicit, 117, 139, 150

Arithmetic:
transfinite, 24 1

Arithmetic operator, 48

Arithme t icExcept ion Class, 23 1

Armenian alphabet, 244

Array, 188, 191

Index

Array (cont.):
argument, 194

of char,189

copying, 193

length, 189, 198,206
parameter, 194

ragged, 202

two-dimensional, 20 1

universal, 196, 207

arraycopy () method, 194

Assignment operator, 2 1, 5 5

AWT, 209,221,222,234

Babbage function, 98

Babbage, Charles, 65

Babylonian Algorithm, 75

Base:

numeral, 134

Basis of recursion, 94, 100

Bengali alphabet, 244

BigInteger Class, 240

Binary logarithm, 71

Bisection Algorithm, 76

Blaise Pascal, 94

Boolean class, 133

Boolean expression, 43

Boolean method, 95

boolean type, 20

Boolean variable, 68

Bopomofo codes, 245

BorderLayout class, 215,216
Borland, 235, 238

break statement, 57, 60, 68, 80, 8 1, 86

Button, 2 14

label, 2 15

Button class, 213, 217

ButtonFrame class, 218

Byte Class, 133

byte type, 20,239
Bytecodes, 2, 25

C style comment, 12,25
C++ programming language, 233, 238

C++ style comment, 12,25
Capacity, 36

Capacity of a Vector,199,207

CardLayout class, 21 5
Carroll, Lewis, 127
case keyword, 56
Case-sensitive, 25
Catalan number, 99
catch clause, 230
CGI, 234
char array, 189
char type, 20
Character:

newline, 16
NUL, 123
null, 38, 191

Character array, 189
Character class, 133
charAt () method, 27,207
Circle class, 145, 164
CJK ideograph codes, 245
Class, 110

abstract, 164
Abstract Collect ion, 200
AbstractList,200
ActionEvent,218
Address,175
Applet,225
BigInteger,240
Boolean,133
BorderLayout,216
Button,213
ButtonFrame,218
Byte,133
Character,133
child, 159
Circle,145, 164
Color,21 1
Component,168,218
Day,125, 137, 139
Double,133
Email,177
Exception,230
FileNot Found, 230
Float,133
Frame,21 1
Friend,154, 182, 183
GridLayout,216
Hierarchy, 168
IndexOutOfRange,230
Integer,33, 133

INDEX 249

Class (cont.):
Line,114,119, 124, 128, 131, 137
LinkedList,168
Long,133, 137
Mat h, 67,, 168
Month,144
Name,148, 171, 172, 173
Number,168
Object,167, 168, 196
Panel,213,225
Person,150,152, 161, 172, 179, 181, 182
Phone,176
Point,111, 121, 136, 140, 146, 168
Purse,1123, 124, 129, 137, 139, 141
Random,43, 168
Reader,230
recursive, 152
Scrollbar,213
Shape,164
Short,1:33, 134
Square,165
String,27, 134, 168, 188,244
StringBuffer,27, 35,244
Student.,161, 172
System,168
text field, 220
TextFiled,213
Thread,1227
Throwable,168
Triangle,186
Url,178
Vector,168, 195, 196
Wallet,142
wrapper, 33, 133

Class declaration, 1 13
Class field, 872
Class hierarchy, 163
Class invariant, 124, 129, 138, 139
Class method, 117
Class modifier, 116
Class variable, 156
clear () method, 201
clone() method, 167, 168
Codewarrior, 16, 238
Codewarrior IDE, 3
Color class, 21 1
color. tostring () method, 213
ColoredFrarne () subclass, 213

250

Combination, 98
Command:

appletviewer,224
javac,2, 10, 110,224

Command line input, 240
Comment, 12

C style, 25
C++ style, 25
header, 13

compareTo () method, 172
Comparisons:

transfinite, 243
Compiler, 1

Java, 2
Complex number, 239
Component, 209,222
Component class, 168, 2 18
Component Hierarchy, 2 13
Composition, 148, 163, 172
Composition of methods, 3 1, 4 1
Computer numbers, 239
Concatenation operator, 29, 33
Conditional, 43
Conditional operator, 54
Constructor, 1 18, 138

copy, 121, 127, 137, 139
default, 121, 122, 139
no-arg, 121
overloading, 173

Constructor declaration, 113
Constructor modifier, 1 16
Container, 210, 222
Containment hierarchy, 2 13
contains () method, 197
Continuation condition, 86

for loop, 65
Convergence loops, 77
Copy constructor, 12 1, 127, 137, 139
copy () method, 137
Counter, 65
Cyrillic alphabet, 244

Day class, 125, 137, 139
Decimal numeral, 134
Declaration:

class, 113
constructor, 113
local variable, 113

INDEX

Declaration (cont .):
method, 114
variable, 113

Decrement operator, 2 1
Default constructor, 118, 121 , 122, 139
Default initial field value, 193
Default initial values, 122
default keyword, 56
Deprecated features, 20 1
Descendant, 163
destroy () method, 226
Devanagari alphabet, 244
Developer, 25
Discrete binary logarithm, 7 1
Discriminant, 52
Divide and conquer, 76
DLL, 234
do. . . while statement, 73
Docurnention, 13
DOS, 234
DOS prompt, 224
Dot operator, 170
Double class, 133
double type, 20,239
Dynamic list, 197

elementAt () method, 197
else keyword, 44
Email class, I77
Empty statement, 86
Empty string, 28
Encapsulation, 196
ensurecapacity () method, 200
Equality, 127
Equality operator, 127
equals () method, 128, 167, 168
Equivalence, 127
Euclid’s Elements, 72
Euclidean Algorithm, 72, 138
Event:

WindowClosing, 2 19
Event-driven program, 2 I 8
Event loop, 2 18
Exception, 14, 25, 190, 230
Except ion class, 230
Exponent, 54
extends keyword, 158, 161, 167, 172

Factorial function, 73, 98

Fall through, 56, 60

Fibonacci sequence, 69

Field, 1 13, 118, 122, 138

class, 172

instance, 172

modifier, 117

FileNotFound class, 230

f i n a l modifier, 116, 134, 164

Finite numbers, 239

f i r s t E l e m e n t () method, 197

F l o a t Chss, 133

float type, 20,239
Floating-point notation, 54

Floating-point number, 239

floor () method, 67

F l o w L a y o u t class, 21 5

for statement, 65

FORTRAN programming language, 233

Frame, 2 10

F rame Class, 21 1, 212

Free store, 112

F r i e n d Class, 182, 183

FTP, 234

Georgian alphabet, 244

g e t () method, 201

GIF, 234

Gosling, James, I , 246

Graphical user interface, 2 18, 222

Greatest common divisor, 72, 99

Greek alphabet, 244

GridLayout class, 215, 216

GUI, 2 18,222,234
Gujarati alphabet, 244

Gurmukhi alphabet, 244

Has a, 163, 172

Hash code, 28

hashcode () method, 28, 167,211
Header comment, 13

Heap, 1 12

Hebrew alphabet, 244

Hexadecimal numeral, 134

Hi erarc h y :

class, 163

Hiragana codes, 245

HTML, 224,234

INDEX 25 1

HTML attribute, 225

HTML program, 225

HTML script, 225, 233

HTTP, 234

Hypercomplex number, 239

Hypertext h4arkup Language, 224

IDE, 3, 16, 234, 235, 238

CodeWarrior, 3

JBuilder, 3

Visual J-t-+, 3

Identification numbers, 79

Identity, 127

i f statement, 43

i f . . .e lse statement, 44

Immutable objects, 27

Implicit argument, 1 17, 139, 150

import statement, 44

Inconsistent states, 124

Increment operator, 2 1

Indeterminant form, 24 1

Index, 65

Index numbler, 27

i ndexof () method, 28, 30,41, 80, 197

IndexOutOfBoundsExcept ion class, 230

Infinite loop, 86

Infinite numbers, 239

Infinity, 1313

Inheritance, 157, 163, 172

i n i t () method, 226,232,233
Initial values, 122

In it ial izat ioin, 55

list, 193

f o r loop, 65

Inprise, 235

i n s e r t E l e m e n t A t () method, 197

Inset, 210

Instance, 1I8
Instance field, 172

Instance method, 117

Instance variable, I56
Instantiate, 1 18

i n t type, 20 ,239
integer, 54 ,239

overflow, 22 ,25 ,98 ,239
Integer class, 33,133
Integrated Development Environment, 3

International Standard Book Number, 79

252

Internet, 1
Internet Explorer, 2, 224
Interpreter, 2
Invariant, 129

class, 124, 139
Is a, 163, 172
ISBN, 79
isEmpty () method, 197
ISP, 234
Iteration, 65

Jam0 codes, 245
Java, 1
Java 1.2, 200
Java API, 25
Java compiler, 2
Java console, 227
Java Developer Connection, 4
Java Developer’s Kit, 233
Java Development Kit, 3, 233
Java program, 1 10
Java Virtual Machine, 2
j ava. applet package, 225
java. awt package, 209
java .math package, 240
java. util package, 43, 196
j avac command, 2, 10, 1 10,224
Javasoft, 3
JBuilder, 16, 235
JBuilder IDE, 3
JDK, 3, 5 ,9 ,234
JIT, 234
JPEG, 24,234
J V M , 2,234

Kannada alphabet, 244
Katakana codes, 245
Keyword:
break,57
case,56
default,56
else,44
extends,158, 161,167, 172
if,43
import,44
public,11
static,11, 172
super,161, 162

INDEX

Keyword (cont.):
switch,55
this,150
throws,14

Label, 2 15
Labeled break statement, 80, 8 I , 86
Lao alphabet, 244
1astElement () method, 197
1astIndexOf () method, 30, 197
Latin alphabet, 244
Layout, 2 15
Layout manager, 2 10
LayoutManager class, 21 5
Least common multiple, 99
Length of an array, 189, 198,206
length () method, 27
Lexicographic ordering, 59
Line class, 114, 119, 124, 128, 131, 137
Linked list, 154
Linked structure, 157
LinkedList class, 168
Listener interface, 2 17
Literal string, 30
Local variable, 100, 113, 138
Local variable modifier, 1 17
log () method, 72
Logarithm, 71
Logical operator, 48
Long class, 133
long type, 20,239
Loop, 65
Loop invariant, 73, 86, 190
Lovelace, Augusta Ada, Countess of, 65

main () method, 12, 1 10
Malayam alphabet, 244
Mantissa, 54
Math class, 67, 168
Mathematical number, 239
Method, 1 18, 138

abs () , 7 6
abstract, 164, 166
accessor, 1 16, 139
actionperformed () , 218
add () , 2 0 1 , 2 15 , 217
addActionListener () , 218
addElement () , 197

INDEX 253

Method (cont.): Method (cont.):
append () ,35 removeElementAt () , 198
arraycopy (1 , 194 removeR.ange(1,201
boolean, 95 repaint (1,226
charAt () ,27,207 replace (),31
class, 117 reverse (),38
clear (1,201 round () , 57
clone () , 167,168 run (1,226
color. tostring (1,213 set () , 201
compareTo () ,172 setBackground(),211,215
composition, 31, 41 setLabe1 () , 215
contains (1 , 197 setLayout () , 215
copy (1 ,137 setLength () , 38
declaration, 114 setLocation () , 215
destroy () , 226 setsize (),210,211,215
elementAt () , 197 setvisible () , 210,211,215
ensurecapacity (1,200 signature, 97
equals (1 , 128,167,168 size () , 198
firstElement () , 197 start (1,226
floor (),67 stop (1,226

get (1,201 substring () , 28
hashcode () , 28,167,211 toBinaryString () , 135

197 toHexadecimalString () , 135indexof () , 28,30,41,80,
init () , 226 toLowerCase (),29
insertElementAt () , 197 toOctalString(),135
instance, 117 tostring () , 37,112,126,138,167,211
isEmpty () , 197 touppercase () , 2 9
lastElement (1 , 197 update () ,226

197 utility, 130, 131lastIndexOf (),30,

length () , 27 void,95,100
log (1 , 72 windowClosing () , 219
main (1 , 12,110 Microsoft Windows, 5
modifier, 117 MIME, 234
mutator, 139 Modifier, 113
nextDouble () , 44 abstract, 116,164
nextFloat () , 44,57 class, 116
nextInt () ,44 constructor, 116
overloading, 173 field, 117
overriding, 159,173 final,116,134,164
paint () , 224,226 local variable, 117
parseInt () , 33 method, I17
POW () ,99 native,117
println () , 12,138,210,211 private,117,158
read () ,16,230 protected,117,158
recursive, 100 public, 11, 116
remove (1,201 static,11, 117,138
removeAllElements (1 , 198 synchronized,117
removeElement () , 198 transient,117

254

Modifier (cont.):
va r i ab le , 117

v o l a t i l e , 117

Month class, 144

Mouse event, 2 18

Murphy’s Law, 230

Mutator method, 139

Name, 1 18, 127

N a m e class, 148, 171, 172, 173

NaN,241

n a t i v e modifier, 117

NEGATIVE INFINITY, 133,241
Nested loops, 78

Nesting statements, 45

Netscape, 2, 224

new operator., 118

Newline character, 16

nextDouble () method, 44

nextFloa t () method, 44, 57

n e x t I n t () method, 44

No-arg constructor, 12 1

Not a number, 241

Not operator, 48

Notepad, 6, 16

NUL character, 123

Null character, 38, 191

Null element, 198

Null value, 123

Number, 239

arbitrary precision, 240

Catalan, 99

complex, 239

computer, 239

finite, 239

floating-point, 239

infinite, 239

integer, 239

mathematical, 239

rational, 239

real, 239

square, 99

transfinite, 239

triangular, 99

Number class, 168

Numeral:

decimal, 134

hexadecimal, 134

INDEX

Numeral base, 134

Object:

state, 19

stream, 15, 25

Object class, 167, 168, 196

Object-oriented programming, 1 10, 148, 173

Operator, 21

and, 48

arithmetic, 48

assignment, 2 1

concatenation, 29, 33

conditional, 54

decrement, 2 1

dot, 170

equality, 127

increment, 2 1, 5 1

logical, 48

new,118

not, 48

operator, 55

or, 48

precedence, 50

prefix, 51

quotient, 21

relational, 48

subscript, 188, 207

ternary, 54

Oriya alphabet, 244

Overflow, 98

integer, 22, 25, 239

Overloaded constructor, 1 19

Overloading, 3 I , 4 1, 96, 100, 1 19

Overloading a method or constructor, 173

Overriding a method, 159

Overriding a method or constructor, 173

Package:
access, 117

j ava . app le t , 225

j ava .awt, 209

java.math, 240

j a v a . u t i l , 4 3 , 196

p a i n t () method, 224,226
Pane l class, 213, 225

Parameter:

array, 194

list, 12, 114

Parent class, 159

INDEX 255

parseInt () method, 33
Pascal programming language, 233,238
Pascal’s Triangle, 93, 94, 98
PATH variable, 10
Permutation, 98
Person class, 150, 152, 161, 172, 179, 182
Phone class, 176
Point class, 111, 121, 136, 140, 146, 168, 169
Polymorphism, 16 1, 173, 195
POP, 234
Portable, 25
POSITIVE I N F I N I T Y , ~ ~ ~
Postfix increment operator, 5 1
POW () method, 99
Power, 98
Precedence of operators, 50
Prefix decrement operator, 5 1
Prime number, 67, 70, 75
Primitive types, 25
println () method, 12, 138,210,211
private access, 117, 131, 139, 158
private modifier, 117
protected access, 117
protected modifjer, 117, 158
public access, 1 17, 139
public modifier, 1 1, 116
Purse class, 123, 124, 129, 137, 139, 141

Quadratic convergence, 76
Quadratic formula, 5 1
Quintile, 58
Quotient operator, 2 1

Radix, 134
Ragged array, 202
Random class, 43, 168
Random number, 44
Ratio class, 138
Rational number, 54, 239
read () method, 16, 230
Reader Class, 230
Real number, 239
Receiver, 12
Recurrence, 100
Recurrence relation, 94
Recursion, 93
Recursive, 93
Recursive class, 152

Recursive method, 100
Recursive process, 69
Reference, 118, 123, 188
Reference type, 25
Reference variable, 20
Relational Operator, 48
remove (1 method, 201
removeAllElements () method, 198
removeElement () method, 198
removeElementAt () method, 198
removeRange () method, 201
repaint () method, 226
replace (1 method, 31
return statement, 67
reverse () method, 38
RGB code, 2 12
round () method, 57
Round-off error, 54
run () method, 226

Scrollbar class, 213
set () method, 201
setBackground0 method, 211,215
setLabe1 () method, 215
setLayout (1 method, 215
setLength () method, 38
setLocation () method, 215
setsize () method, 210,211,215
setvisible () method, 210,211,215
Shape class, 164
Short circuiting, 5 1, 60
Short class, 133, 134
short type, 20, 110,239
Signature, 97, 1 19, 159
Size of a Vector,199,207
size (1 method, 198
SMTP, 234
Software developement, 3
Source code, 24
Source objects, 2 18
Square class, 165
Square number, 99
start () method, 226
State, 1 10, 1 38
State of an object, 19
Statement:
break,57, 68, 80, 81, 86
do. . .while,73

256

Statement (cont.):
for,65
if,43
if.. .else,44

Q
 import,44
labeled break,80, 81, 86
return,67
switch,55,60
while,68

static keyword, 11, 172
static modifier, 11, 117, 138
stop () method, 226
Stream object, 15, 25
String, 27

literal, 30
String class, 27, 134, 168, 188, 244
StringBuffer class, 27, 35, 244
Structure:

linked, 157
Student class, 161, 172
Subclass, 159, 163
Subscript operator, 188, 207
substring () method, 28
Sun Microsystems, 1, 3, 24
super keyword, 161, 162
Superclass, 159, 163
switch statement, 55 , 60
Synchronized modifier, 117
system class, 168
System. arraycopy () method, 194

Tag, 225
Tamil alphabet, 244
TCP/IP, 234
Teluga alphabet, 244
Ternary operator, 54
Text field class, 220
TextField class, 213
Thai alphabet, 244
this keyword, 150
'Thread, 227
Thread class, 227
Throwable Class, 168
throws clause, 230
throws keyword, 14
Tibetan alphabet, 244
toBinaryString () method, 135
toHexadecimalString () method, 135

INDEX

Tolerance constant, 77
toLowerCase () method, 29
tooctalstring () method, 135
tostring0 method, 37, 112, 126, 138, 167,

21 1
touppercase () method, 29
Transfinite arithmetic, 24 1
Transfinite comparisons, 243
Transfinite number, 239
transient modifier, 117
Tree structure, 152
Triangle Class, 186
Triangular number, 99
try block, 230
Two-dimensional array, 20 1
type, 110, 118

boolean,20
byte,20,239
char,20
double,20
float,20,239
int,20,239
long,20,239
primitive,25
reference,25
short,20, 110,239

Type casting, 67

Unicode, 123, 191, 244
Universal array, 196, 207
Update:

for loop, 65
update () method, 226
URL, 234
Url class, 178
Utility method, 130, 13 1

Variable, 113, 138
local, 100
reference, 20

Variable modifier, 117
Vector:

capacity, 199, 207
size, 199, 207

Vector class, 168, 195, 196
Virtual machine, 25
Visual J++ IDE, 3
void method, 95, 100

INDEX 257

volatile modifier, 117

Wallet class, 142

Web browser, 224

Web page, 233

while statement, 68

Wildcard, 2 16

Window, 2 10

WindowClosing event, 2 19

windowClosing () method, 219

WindowL i stener interface, 2 1 9

World Wide Web, 1

Wraparound, 239

Wrapper class, 33, 133

WWW, 234

Y2K Problem, 40

Zero-based indexing, 190

