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Preface

One of the most important contributions to modern mathematical analysis is the theory
of measure and integration developed by Henri Lebesgue during the early years of the 20th
century. Lebesgue measure and integration has many advantages over ordinary Riemann
integration from the point of view of application as well as theory. It is an indispensable
part of the foundations of various fields as, for example, the theory of probability and
statistics and Fourier series.

In recent years Lebesgue theory has become an essential part of the traditional course
in the theory of functions of a real variable, also called, for brevity, real variables or real
analysis. It is the purpose of this book to present the fundamentals of Lebesgue measure
and integration together with those important aspects of real variable theory needed for
its understanding.

The book has been designed as a supplement to all current standard textbooks or as a
textbook for a formal course in real variables. It should also prove useful in other courses
in mathematics which require a knowledge of Lebesgue theory. In addition it should be of
value to those readers in science and engineering, as well as mathematics, who desire an
introduction to this important theory.

Each chapter begins with a clear statement of pertinent definitions, principles and
theorems together with illustrative and other descriptive material. This is followed by
graded sets of solved and supplementary problems. The solved problems serve to illustrate
and amplify the theory, bring into sharp focus those fine points without which the student
continually feels himself on unsafe ground, and provide the repetition of basic principles so
vital to effective learning. Numerous proofs of theorems and derivations of basic results
are included among the solved problems. The large number of supplementary problems
serve as a review and possible extension of the material of each chapter.

Topics covered include the Lebesgue theory of measure, measurable functions, the
Lebesgue integral and its properties, differentiation and integration. Added features are
the chapters on mean convergence and applications to Fourier series including the important
Riesz-Fischer theorem, as well as three appendices on the Riemann integral, summability
of Fourier series, and double Lebesgue integrals and Fubini’s theorem. The first chapter
gives the fundamental concepts of real variable theory involving sets, functions, continuity,
etc., and may either be read at the beginning or referred to as needed, according to the
background of the student.

Considerably more material has been included here than can be covered in most courses.
This has been done to make the book more flexible, to provide a more useful book of
reference and to stimulate further interest in the topics.

I wish to take this opportunity to thank Daniel Schaum, Nicola Monti and Henry Hayden

for their splendid editorial cooperation.
M. R. SPIEGEL

Rensselaer Polytechnic Institute
October 1969
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Chapter 1

SETS

Fundamental in mathematics is the concept of a set which can be thought of as a col-
lection of objects called members or elements of the set. In general, unless otherwise
specified, we denote a set by a capital letter such as A, B, X, S, etc., and an element by a
lower case letter such as a, b, z, etc. If an element a belongs to a set S we write a € S. If
@ does not belong to S we wrlte a &S. If a and b belong to S we write ¢,b € S. Synonyms
for set are class, aggregate and collection.

A set can be described by actually listing its elements in braces separated by commas
or, if this is not possible, by describing some property held by all elements. The first is
sometimes called the roster method while the second is called the property method.

Example 1. The set of all vowels in the English alphabet can be described by the roster method

as {a,e,t,0,u} or by the property method as {x : x is a vowel} read “the set of all
elements « such that x is a vowel”. Note that the colon : is read “such that”.

Example 2. The set {#: « is a triangle in a plane} is the set of all triangles in a plane. Note
that the roster method cannot be used here.

SUBSETS

If each element of a set A also belongs to a set B we call A a subset of B, written ACB
or BDOA, and read “A is contained in B” or “B containg A” respectlvely It ACB and
BCA we call A and B equal and write A =B.

If A is not equal to B we write A = B.

If ACB but A+B, we call A a proper subset of B.

It is clear that for all sets A we have ACA.
Example 3. {a,4,u} is a proper subset of {a,e, i, 0,u}.

Example 4. {i,0,a,¢e,u} is a subset but not a proper subset of {a,e¢,1, 0,4} and in fact the two
sets are equal. Note that a mere rearrangement of elements does not change the
set. : .

The following theorem is true for any sets A4, B, C.

Theorem 1-1. If ACB and BCC, then ACC.

UNIVERSAL SET AND EMPTY SET

For many purposes we restrlct our discussion to subsets ‘of some particular set called
the universe of discourse [or briefly universe], universal set or space denoted by U. The
elements of a space are often called points of the space. :

1t is useful to consider a set having no elements at all. This is called the empty set or
null set and is denoted by 3. It is a subset of any set. ‘
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REAL NUMBERS

One of the most important sets for the purposes of this book is the set R of real
numbers. It is assumed that the student is already acquainted with many properties of real
numbers from the calculus. Geometric intuition is often provided by using the fact that
every real number can be represented by a point on a line called the real line and conversely
[see Fig. 1-1]. This enables us to speak of sets of points or point sets rather than sets of real
numbers and conversely.

For example {z: a < x < b) is an open interval in B and is often denoted briefly by
a<x<bor(ab) {x: a=x=0b}is a closed interval in R denoted briefly by a =x =) or
la,b]; {x: a<x =b} or {x: a=x <Db} are half open [or half closed] intervals in R.

ys;/s i—\/é 13/2 e l y
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Fig. 1-1

We often find it convenient to extend the set of real numbers to include —= and 4+ or «,
Thus {x: —» <x < =} denoted briefly by —« <x < % or (—=», «x) is R.

The following are important subsets of E familiar to the student.

1. The Natural Numbers {1,2,3, ...} used in counting. This set is often called the set of
positive integers and is denoted by N.

2. The Integers consisting of elements 0,x1,=2,=+3, ... and denoted by Z. This set is
composed of the positive integers {1,2,3, ...}, the negative integers {—1,-2,-3,...}
and zero {0}. Note that NCZ.

3. The Rational Numbers consisting of elements such as 2/3, —5/2, ete., representing the
quotient p/q of integers p and ¢, excluding division by zero. This set is denoted by Q.
Note that ZC Q.

4, The Irrational Numbers such as \/5, T \3/5, ¢ are those real numbers which are not
rational numbers.

While geometric intuition does have a place in providing ideas concerning point sets
on the real line, such intuition as we shall see may not always be reliable.

COMPLETENESS OR LEAST UPPER BOUND AXIOM

A real number u is called an upper bound of a set S of real numbers if for all z € S
we have x = . If an upper bound » can be found such that for all upper bounds « we have
p = u, then p is called the least upper bound or supremum of S, abbreviated L.u.b. S or sup S.

The following axiom distinguishes the real numbers from any of its proper subsets
[e.g. the rationals].

Completeness or Least Upper Bound Axiom. If a non-empty set of real numbers
has an upper bound it has a least upper bound.

We can define lower bound and greatest lower bound or infimum of S, abbreviated g.l.b. S
or inf S, in a similar manner and can prove that if a non-empty set of real numbers has
a lower bound it has a greatest lower bound.

If a set has both an upper and lower bound it is said to be bounded.
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VENN DIAGRAMS

A universe U can be represented geometri-
cally by the set of points inside a rectangle.
In such case subsets of U [such as A and B
shown shaded in Fig. 1-2] are represented by
sets of points inside circles. Such diagrams,
called Venn diagrams, often serve to provide
geometric intuition regarding possible relation-
ships between sets. Fig. 1-2

SET OPERATIONS

1. Union. The set of all elements [or points] which belong to either A or B or both A and
B is called the unton of A and B and is denoted by AUB [shaded in Fig. 1-3).

Fig. 1-3 Fig. 1-4 ' Fig. 1-5
2. Intersection. The set of all elements which belong to both A and B is called the
intersection of A and B and is denoted by AN B [shaded in Fig. 1-4].

Two sets A and B such that ANB =@ i.e. which have no elements in common,
are called disjoint sets. In Fig. 1-2, A and B are disjoint.

3. Difference. The set consisting of all elements of A which do not belong to B is called
the difference of A and B denoted by A — B [shaded in Fig. 1-5].

4. Complement. If BCA, then A— B is called the complement of B relative to A and is
denoted by Ba [shaded in Fig. 1-6]. If A =7U, the universal set, we refer to U—B as
simply the complement of B and denote it by B [shaded in Fig. 1-7].

The complement of AUB is denoted by (AUB)~.

Fig. 1-6 : Fig. 1-7

SOME THEOREMS INVOLVING SETS

Theorem 1-2. AUB = BUA Commutative law for unions
Theorem 1-3. A U (BUC) = (AUB)UC = AUBUC Associative law for unions
Theorem 1-4. ANB = BNA Commutative law for

‘ intersections
Theorem 1-5. AN (BNC) = (ANB)NC = ANBNC Associative law for intersections
Theorem 1-6. A N (BUC) = (ANB)U (ANC) First distributive law

Theorem 1-7. AU (BNC) = (AUB)N(AUC) Second distributive law
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Theorem 18. A—B = ANB

Theorem 1-9. If AC B,then A > Bor B C A.

Theorem 1-10. AUQ = A, ANY =Q

Theorem 1-11. AUU =U, ANU = A

Theorem 1-12a. (AUB)~ = AnB DeMorgan’s first law
Theorem 1-12b. (ANB)~ = AUB DeMorgan’s second law
Theorem 1-13. A = (ANB)U (4 HE) for any sets 4 and B.

Theorems 1-12a, 1-12b and 1-13 can be generalized [see Problems 1.71 and 1.76].

It is of interest to note that if we use the notation A + B instead of AUB and AB
instead of ANB, many of the above results for an algebra of sets are reminiscent of the
usual algebra of real numbers. Thus, for example, Theorems 1-3 and 1-6 become
A+ (B+C)=(A+B)+C and A(B+C) = AB + AC respectively. However, the analogy
cannot be relied upon always. For example, Theorem 1-7 becomes A + BC = (A + B){(A+ ).

PRINCIPLE OF DUALITY

Any true result involving sets is also true if we replace unions by intersections, inter-
sections by unions, sets by their complements and if we reverse the inclusion symbols
C and D.

CARTESIAN PRODUCTS

The set of all ordered pairs of elements (x,y) where x € A and y € B is called the
Cartesian product of A and B and is denoted by A X B. The Cartesian product R X R is the
usual xy plane familiar from analytic geometry. In general, A X B = B X A.

Similarly the set of all ordered triplets (x,y,2) where x €A, yE€ B, 2 €C is the
Cartesian product of A, B and C denoted by 4 X B X C.

FUNCTIONS

A function or mapping f from a set X to a set Y, often written f: X—> 7Y, is a rule
which assigns to each # € X a unique element ¥y € Y. The element y is called the image
of x under f and is denoted by f(x). If ACX, then f(A) is the set of all elements f(z) where
z € A and is called the image of A under f. Symbols x,y are often called real variables.

The set X is called the domain of f and f(X) is called the range of f. If Y = f(X) we
say that f is from X onto Y and refer to f as an onto function.

If an element a € ACX maps into an element b € BCY, then a is called the inverse
image of b under f and is denoted by f~!(b). The set of all x € X for which f(x) € B is
called the inverse image of B under f and is denoted by f~(B). :

If X is a class of sets [i.e. a set whose elements are sets] then a function f: X->Y
is called a set function.

If X and Y are sets of real numbers, f or f(x) is often called a real function.

A function f: X—Y can also be defined as a subset of the Cartesian product X XY
such that if (x1, ¥1) and (2, ¥2) are in this subset and x: = x», then 1= ya.

ONE TO ONE FUNCTION. ONE TO ONE CORRESPONDENCE
If f(ai) = f(az) only when ai= as, we say that f is a one to one, i.e. 1-1, function.

If there exists a 1-1 function from a set X to a set Y which is both 1-1 and onto, we
say that there is a one to one, i.e. 1-1, correspondence between X and Y.
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If a function f: X > Y is one to one and onto then given any element y € Y, there
will be only one element f~'(y) in X. In such case f~! will define a function from Y to X
called the inverse function.

COUNTABILITY

Two sets A and B are called equivalent and we write A ~ B if there exists a 1-1 cor-
respondence between A and B.

Example 5. The sets A = {1,2,8} and B = {2,4,6} are equivalent because of the 1-1 corres-
pondence shown below

A: 1 2 3
I T 3
B: 2 4 6
If A~B, then B~A. Alsoif A~B and B~C, then A~C.
A set which is equivalent to the set {1,2,3, ...,n} for some natural number = is called

finite; otherwise it is called infinite.

An infinite set which is equivalent to the set of natural numbers is called denumerable;
otherwise it is called non-denumerable.

A set which is either empty, finite or denumerable is called countable; otherwise it is
called non-countable.

Example 6. The set @ of rational numbers is countable [see Problems 1.16 and 1.18].

Example 7.  The set of real numbers between 0 and 1 [and thus the set R} is non-countable or
non-denumerable {see Problem 1.20].

The following theorems are important.
Theorem 1-14. A countable union of countable sets is countable.
Theorem 1-15 [Schroeder-Bernstein]. If ACBCC and A~C, then A~ B.

CARDINAL NUMBER

The cardinal number of the set {1,2,8,...,n} as well as any set equivalent to it is
defined to be n. The cardinal number of any denumerable set is defined as 8o [aleph null).
The cardinal number of R, which is often called the real continuum, or any set equivalent to
it, is defined as ¢ or ¥ [aleph one]. The cardinal number of the empty set @ is defined as
zero (0).

Operations with infinite cardinal numbers, sometimes called transfinite numbers, can
be defined [see Problems 1.94-1.97].

The continuum hypothesis, which conjectures that there is no transfinite [or cardinal]
number between ¥o and ¢, has never been proved or disproved. If it is proven true, then
we would be justified in writing ¢ = ¥:.

THE CANTOR SET

Consider the closed interval [0,1]. Trisect the interval at points 1/3, 2/3 and remove the
open interval (1/8, 2/3) called the middle third. We thus obtain the set K; = [0,1/3] U [2/3,1].
By trisecting the intervals [0, 1/3] and [2/3,1] and again removing the open middle thirds,
we obtain K. = [0,1/9] U [2/9,1/3] U [2/3,7/9] U [8/9,1]. Continuing in this manner we
obtain the sets Ki, K», .... The Cantor set denoted by K is the intersection of K;, Ko, . ...



6 FUNDAMENTAL CONCEPTS [CHAP. 1

It would seem that there is practically nothing left to the set K. However, it turns out
[see Problem 1.22] that the set has cardinal number ¢, i.e. is equivalent to [0,1]. It also
has many other remarkable properties [see Problem 1.109 for example].

EUCLIDEAN SPACES OF n DIMENSIONS

The space defined by the Cartesian product R* =R X R X --- X R [n times] is called n
dimensional Euclidean space and a point in this space is an ordered n-tuplet (xy, 2, . .., Zn)
of real numbers. If = (x, 2, ...,%:), ¥ = (U, ¥2 ..., Ys), the Euclidean distance between
x and y is defined as

d(x,y) = V(@i — )l + (@— 1) + - (@ Yy

For n=1, d(x,y) =lx—y| where |a| denotes the absolute value of a [equal to a if =0
and —a if a <0].

The set of points {z : d(x,y) <r} is called an open sphere of radius r with center at
y and is sometimes called a spherical neighborhood of y. If we replace the < by =it is a
closed sphere of radius r with center at y. For n =1 the open or closed sphere reduces
to an open or closed interval respectively.

METRIC SPACES

A metric space is a generalization of a Euclidean space in which there is a distance
function d(z,y) defined for any two elements [indicated by x,y,2] of the space satisfying
the following properties.

1. diz,y) = 0 Non-negative property
2. d(z,y) = d(y,x) Symmetric property
3. d(z,y) = 0 ifandonlyif x =y Zero property

4. d(x,z) = d(z,y) + d(y,?) Triangle inequality

SOME IMPORTANT DEFINITIONS ON POINT SETS

In this book we shall be mainly concerned with sets in the Euclidean space R of one
dimension, i.e. sets of real numbers. However, although we shall adopt a language
appropriate for R [e.g. distance between z and y is |# —y|, etc.], it should be emphasized
that many of the concepts can be easily generalized to R" or other metric spaces [by using,
for example, open or closed spheres rather than intervals].

1. Neighborhoods. A delta, or §, neighborhood of a point @ is the set of all points x such
that |z —a| <8 where § is any given positive number. A deleted § netghborhood of a
is the set of all points x such that 0 < |z —a| <§, i.e. where a itself is excluded. '

It is possible to avoid the concept of neighborhood by replacing it by an open
interval [or open sphere in higher spaces].

2. Interior Points. A point ¢ €S is called an interior point of S if there exists a 8
neighborhood of @ all of whose points belong to S. Alternatively, a is an interior point
of S if there exists an open interval ICS such that a €1.

The set of interior points of S is called the interior of S.

Open Sets. A set is said to be open if each of its points is an interior point.

4. Exterior and Boundary Points. If there exists a § neighborhood of a all of whose points
belong to S, then a is called an exterior point. If every 8 neighborhood of & contains at
least one point belonging to S and at least one point belonging to S, then a is a boundary
point.



CHAP. 1] FUNDAMENTAL CONCEPTS 7

The set of exterior points of S is called the exterior of S and the set of boundary
points of S is called the boundary of S.

Clearly any point of a set is either an interior, exterior or boundary point.

5. Accumulation or Limit Points. A point a €S is called an accumulation point or limit
point of S if every deleted § neighborhood of ¢ contains points of S.

6. Derived Set. The set of all accumulation or limit points of a set S is called the derived
set and is denoted by S’.

7. Closure of a Set. The set consisting of S together with its limit points, i.e. SUS’, is
called the closure of S and is denoted by S.

8. Closed Sets. A set.is called closed if it contains all its limit points.

9. Open Covering of a Set. A class ( of open intervals is said to be an open covering of
a set S if every point of S belongs to some member of . If a set JC( is an open
covering of S, then we call J an open subcovering of S.

SOME IMPORTANT THEOREMS ON POINT SETS

Theorem 1-16. The complement of an open set is closed and the complement of a closed
set is open.

Theorem 1-17. The union of any number of open sets is open and the intersection of a
finite number of open sets is open.

Theorem 1-18. The union of a finite number of closed sets is closed and the intersection
of any number of closed sets is closed.

Theorem 1-19. Every open set on the real line can be expressed as a countable union of
disjoint open intervals [called component intervals] unique except as to the
order of the intervals.

Theorem 1-20 [Weierstrass-Bolzano]. Every bounded infinite set in R has at least one
limit point or accumulation point.

Theorem 1-21 [Heine-Borel]. Every open covering of a closed and bounded set S contains a
finite open subcovering [i.e. S is covered by a finite number of open inter-
vals]. For Euclidean spaces R" this theorem is equivalent to the
Weierstrass-Bolzano theorem [Theorem 1-20]. If the set is not closed
and bounded the theorem is not true [see Problems 1.107 and 1.108].

COMPACT SETS

A set S is called compact if every open covering of S has a finite subcovering. For E*,
compact is equivalent to closed and bounded.

LIMITS OF FUNCTIONS

A number I is said to be the limit of f(x) as x approaches a if for every «> 0 there exists
a 8> 0 such that |f(x) —I| <e whenever 0 < |r—a| <8§. In such case we write lim f(x) =L

T=—a

Theorem 1-22. If a limit exists it is unique.
Theorem 1-23. If lim fi(x) =1, lim fo(x) =L, then

(@) lim [fi(x) +fo(x)] = L+ 1L
(b) lim fl(x)fz(x) = Ll
(¢) lim [fo(x)/f2(2)] = W/l if L+ 0.



8 FUNDAMENTAL CONCEPTS [CHAP. 1

In the above definition of limit, if 0 < |t —a| <8 is replaced by 0 <z —a <38 then I is
called the right hand limit and is written lim f(x) = I. An analogous definition for the

T=a+

left hand limit, lim f(x), can be given. A limit will exist if and only if the left and right

r—=a—

hand limits are equal.

CONTINUOUS FUNCTIONS

Definition: A function f : R > R is said to be continuous at a point a if given any ¢>0
there exists § > 0 such that |f(x) — f(a)| < « whenever |z —a| < 8. Equivalently we can say that
f [or f(x)] is continuous at a if (1) lim f(z) exists, (2) f(a) exists and (8) lim f(x) = f(a).

We call f a continuous function on a set S if f is continuous at every point of S.

The following alternative definition of continuity [see Problem 1.41] is sometimes useful.

Definition: A function f: R— R is continuous at a if given any open set A con-
taining f(a), there exists an open set B containing a such that f(B)CA.

THEOREMS ON CONTINUOUS FUNCTIONS

Theorem 1-24. The sum, difference, product and quotient of continuous functions is con-
tinuous so long as division by zero is excluded.

Theorem 1-25 [Intermediate-value]. If f is continuous in [a, b], then it takes on every
value between f(a) and f(b). In particular it takes on its maximum and
minimum values in [a, b].

Theorem 1-26. If f is continuous on a closed set S then f is bounded, i.e. there exists a real
number M such that |f(z)| <M for all z€S.

Theorem 1-27. A function f is continuous if and only if the inverse image of any open
i set is also open.

UNIFORM CONTINUITY

A function f: R~ R is said to be uniformly continuous on S if given any >0 there
exists a number § >0 such that |f(x)—f(y)| <e whenever |x—y| <8 where z €S, y €S.

Theorem 1-28. If f is continuous on a closed bounded set, it is uniformly continuous on S.

SEQUENCES

A sequence is a function whose domain is the set of natural numbers. It is denoted by
a1, dz, a3, . .. or briefly (a,).

A sequence of real numbers (a,) is said to converge to a or to have limit a if given any
¢> 0 there exists a positive integer no such that |a.—a| <e whenever n>no. If a limit
exists it is unique and the sequence is said to be convergent to this limit, denoted by
lim a, = @ or briefly lim a,=a.

Theorem 1-29. If lima, =a, limb, = b, then lim (a.+bs.) = a+b, lima.b, = ab,
lim a./b, = a/b if b+ 0.
Theorem 1-30. If (a.) is bounded [i.e. there is a constant M such that |a.| =M] and if
(a.) is monotonic increasing or monotonic decreasing [i.e. @n+1 = an or
On+1 = Qa], then (a.) is convergent.
Theorem 1-31. A convergent sequence is bounded.
If a sequence is not convergent it is called divergent.
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LIMIT SUPERIOR AND LIMIT INFERIOR

A number [ is called the limit superior, greatest limit_or upper limit of a sequence (@)
if infinitely many terms of the sequence are greater than [ —e while only a finite number of
terms are greater than I+ ¢ for any ¢>0. We denote the limit superior of (a.) by lim sup a»
or lim a,.

A number [ is called the limit inferior, least limit or lower limit of a sequence (a,) if
infinitely many terms of the sequence are less than [+ ¢ while only a finite number of terms
are less than [ — ¢ for any «¢>0. We denote the limit inferior of (a.) by lim inf ¢, or lim a,.

If infinitely many terms of (a.) exceed any positive number M, we write lim @ = .
If infinitely many terms are less than —M where M is any positive number, we write
lim a, = —,
Theorem 1-32. Every bounded sequence always has a finite lim sup [or lim] and lim inf
[or lim] and the sequence converges if the two are equal.

NESTED INTERVALS

Theorem 1-33. Let I,=[ai, bi], I.= [ag, bs), .. .,In = [an, ba], ... be a sequence of inter-
vals such that I, DI, D--- DI, D---., Then if hm (an—ba) = 0 there is

one and only one point common to all the 1nterva1s The intervals in
such cases are called nested intervals.

CAUCHY SEQUENCES

The sequence (a,) of real numbers is said to be a Cauchy sequence if given any >0
there exists a positive integer no such that |a, — a4 < ¢ whenever p >n,, ¢>ne.

Theorem 1-34. Every convergent sequence is a Cauchy sequence.

COMPLETENESS

A set S of real numbers is said to be complete if every Cauchy sequence has a limit
belonging to S.

Theorem 1-35. Every Cauchy sequence of real numbers is convergent.

Example 8. The set @ of rational numbers is not complete, but by Theorem 1-35 the set B of
real numbers is complete.

SEQUENCES OF FUNCTIONS. UNIFORM CONVERGENCE

Let £y, f2, . . . denoted by (f.) be a sequence of functions from A to B where A,B € B. We
say that (f») converges uniformly to some function f in A if given ¢ > 0 there exists a positive
integer mo such that |fa(x)— f(x)| <e for all >n, and all z € A.

Theorem 1-36. If (f.) is a sequence of functions which are continuous in A and uniformly
convergent to f in A, then f is continuous in A.

We shall sometimes write the sequence as (f.(x)) instead of (f.).

SERIES
Let (a.) be a given sequence and consider a new sequence (s.) where
$1 = a1, S22 = Q1+Qa, S = @1+ az+ as,

We shall call the sequence (s») an infinite series and denote it by 2 Qn = 01+ az + - or

briefly by > @.. The sums si,82, ... are called the partial sums of the series and (s,) is
called the sequence of partial sums.
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The infinite series is called convergent or divergent according as the sequence of partial
sums (sx) is convergent or divergent. If (s,) converges to s then s is called the sum of the
infinite series.

A series X a, is called absolutely convergent if 2 |aa| converges. In such series the
terms can be rearranged without altering the sum of the series. We have

Theorem 1-37. If a series is absolutely convergent it is convergent.

Uniformly convergent series of functions can be defined in terms of uniformly con-
vergent sequences of partial sums [see Problem 1.53].

Theorem 1-38 [Weierstrass M test]. If |fa(2)| =M, n=1,2,8,... where M, are positive

constants such that X M, converges, then I fa(z) is uniformly and
absolutely convergent.

Solved Problems

SETS AND REAL NUMBERS

1.1. Let S be the set of all real numbers whose squares are equal to 25. Show how to
describe S by (a) the property method and (b) the roster method.

(@) S = {x: 2? =25} which is read “the set of all elements z such that 2 = 25”,
(b) Since #2=125 for x =5 and xz = —5, we can write S = {6,—5}, i.e. S is described by
actually giving its elements.

1.2. Let A = {x:xisanoddinteger}, B = {x: 22—8z+15= 0}. Show that BC A.

Since #2—8x+15=0 or (x—38)(x—5) =0 if and only if =3 or x =15, we have
B = {3,5}. Then since the elements 3 and 5 are both odd integers, they belong to A. Thus every
element of B belongs to A and so BC A, i.e. B is a subset of A.

13. Is it true that {2) =27

No, 2 is a real number while {2} is a set which consists of the real number 2. A set such as
{2} consisting of only one element is sometimes called a singleton set and must be distinguished
from the element which it contains.

14. Determine which of the following statements are true and correct any which are false.
(@) {z:z>2} = (@}, B)If A ={x:2°=4,2>9} and B = {z: z =1}, then
BDOA.

(a) The statement is false. Any particular object is assumed to be the same as, i.e. equal to,
itself. Thus there is no object which is not equal to itself. Then {x: x = x} = (@, the
empty set.

The error lies in writing {@} rather than @, since {Q} is a non-empty set which consists
of the empty set.

(b) Note that this is read “A is the set of all # such that 2 =4 and x > 9”.
Since there is no number x such that z2=4 [or x =2,—2] and x> 9, it follows that
A = @. Also since the empty set is a subset of every set, it follows that A CB or BO A and
the statement is true.
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1.5.

1.6.

Prove that if A CB and BCC, then A CC.

Let x be any element of A, i.e. t€A. Then since A CB, ie. every element of 4 is in B, we
have x €B. Also since BC C, we have £ €C. Thus every .element of A is an element of C and so
AcC.

Let S = {},%2,%,4 ...}. Find (a) an upper bound, (b) a least upper bound, (c) a
lower bound and (d) a greatest lower bound for S.

(@) Since all elements of S are less than 2 [for example] we can say that 2 is an upper bound.
Actually any number larger than 2 is also an upper bound and there are some numbers less
than 2 [e.g. 1}, 14, 1] which are upper bounds.

(b) The number 1 is an upper bound of the set S and in addition it is the least of all upper bounds.
It follows that 1 is the least upper bound (Lu.b.), or supremum (sup), of S. Note that 1 is not
an element of S.

(¢) Since all elements of S are greater than 0 [for example] we can say that 0 is a lower bound.
Actually any number less than 0 is also a lower bound [e.g. —1, —3] and there are some
numbers greater than 0 [e.g. %, 1] which are lower bounds.

(d) The number } is a lower bound of the set S and in addition it is the greatest of all lower
bounds. It follows that { is the greatest lower bound (g.Lb.), or infimum (inf), of S. Note that
1 is an element of S.

SET OPERATIONS, VENN DIAGRAMS AND THEOREMS ON SETS

1.7.

1.8.

If the universe U = {{,0,n,5, —/2,—4} and subsets of U are given by A = {— -2, =, 0},
B=(51-V2,—4} and C={}—4), find () ANB, (b)) AUB, (¢c) (AUB)NC,

(d) BuU 5, () A—B, (fy (BNC)~, (9) (ANC)Nn (BUC).

@ ANB = {270 n {51 -Ve -4 = {(—V2}

) AUB = {—V2,7,0} U {5,1,—V2,—4} = {-V2,7,0,5,},—4}

(¢) AuB)nC = {—V/2,,0,5, L4 n{d 4 = 1,—4} using the result of part (a).

~

(d) B = set of all elements in U which are notin B = {0, r}.
C = set of all elements in U which are not in C = {0,r,5, —/21.
Then BUC = {0,7)U{0,7,5,—V2} = {0,7,5—V2).

(¢¢ A — B = set of elements in A which are not in B = {0, 7}.
Another method. By Theorem 1-8, page 4, we have

A—B =ANnEB = {1,0,7,5, —V2, -4} n {0,7} = {0,=}

(Hh BnC = {5,4,—V2,—4n{f—4 = {§—4.
Then (BNC)~ = {0,7,5,—V2}.

Note that this result together with that of part (d) illustrates De Morgan’s second law,
Theorem 1-12b, page 4.

(g0 AnC = {— —V2,7,0} N {},—4} = O, the empty set.
BnC = {i,—4} [see part (]
Then (AnC) U (BNC) = Qu{}—4 = {34

(¢) Prove De Morgan’s first law, Theorem 1-12a, page 4: (AUB)™ = ANB. (b) Illus-

strate the result of part (a) by using a Venn diagram.

(@) We have .
(AUB)™ = {x: x€AUB} = {z: 2 €A, x& B}y = {x: er, xGE} = ANnB

The result can be extended to any finite number of sets [see Problem 1.71].
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(b) In the Venn diagram of Fig, 1-8 the shaded part represents (A UB)~.
In Fig. 1-9, A is indicated by parallel lines constructed from- upper right to lower left
while B is indicated by parallel lines constructed from upper left to lower right. Then the

region AnE is represented by the region where both sets of lines are present, and it is seen
that this is the same as the shaded region of Fig. 1-8.
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Fig.1-8 . . Fig.1-9
Note that a Venn diagram does not provide a proof such as is given in part (a¢). However,
it does serve to provide possible relationships among sets which can then be proved by methods
similar to that given in (a).

1.9. Prove the first distributive law, Theorem 1-6, page 3: AN(BUC) = (ANB)U (ANC).
We have ANBUC) = {: x€A, x€BUC}

{x: x €A, xEB or x €C)

{x: x€A,2€B or x €A, x€C}

{#: t€AnNB or x € ANC}

= (AnB)U(ANC)

1.10. - Prove that for any sets A and B we have 4 = (ANB)U (4 ﬂﬁ).
Method 1.

A = {g:2€A} = {x: a€AnBor x€EANB} = (AnB)u@AnB)
Method 2. ‘
Let C = E in Problem 1.9. Then :
An((BnB) = (AnB) U (AnB)
ANU = (AnB)U (AnB)

A = (AnB)U (ANBE)

The result can be generalized [see Problem 1.76].

1.11. If A, B, C are the sets of Problem 1.7, find the Cartesian products (a) A X C, (b) C X A.
(@ AXC = {(x,9): v€EA,¥yECY = {(—VZ,}), =}, 0, %), (—=V2,—4), (z,—4), (0, —4)}
() CxA = {(,y): €C,y€A} = {(},—V2), (~4,—V2), &), (—4,7), (£, 0), (—4,00}
Note that A X C# C X A in this case. k

FUNCTIONS
1.12. Determine whether a function is defined from the set X to the set Y for each diagram
in (a) Fig. 1-10, (b) Fig. 1-11.

Fig.1-11
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1.13.

1.14.

1.15.

(@) A function is not defined from X to Y, since to the element x, of X there is assigned two
distinct elements y; and y3 of Y.

(b) A function is not defined from X to Y, since no element of Y is assigned to the element
X3 of X.

(a) Show that the diagram of Fig. 1-12 de-
fines a function f from the set X to the set Y,
le. f: X->Y. (b) Find f(¢). (¢) If a subset
of X is given by A = {a,d, b}, find f(A).
(d) Find f(X). (e) Find the domain of f.
(f) Find the range of f. (g) Is f an onto func-
tion? Explain. (k) If B = {1,2}, find f~(B). Fig.1-12

(@) A function f is defined from X to Y since to each element of X there is a unique element of Y.

The fact that no element of X happens to be assigned to the element 3 of Y or that both
elements a¢ and d of X are assigned to the same element 4 of Y, does not alter this.

QRO o
o DO

(b) Since the element assigned to ¢ is 2 we have f(¢) = 2. Another way of saying this is that
the tmage of ¢ under f is 2.

(¢) f(A) is the set of all elements f(x) where x €A and is given by the set .{f(a), f(d), f(b)} =
{4,4,1} = {4,1}.

(@) f(X) = the set of all elements f(x) where x €X = {f(a), f(b), f(c), f(d)} = {4,1,2,4} = {4,1,2}.
(¢) Domainof f = X = {a,b,ec,d}.
(f) Rangeof f = f(X) = {4,1,2} by part (d).

(9) Since Y ={1,2,3,4} and f(X)= {4,1,2}, we see that Y # f(X). Thus f is not an onto
function.

(h) f~1(B) = set of all x €X for which f(x) €EB = {b,c¢}. Note that b and ¢ are inverse images
of 1 and 2 respectively, i.e. f~1(b) =1 and f~1(c) = 2.

Let f be a function whose value at any point z is given by f(x) =322—4x+2 where
—1=2=2. Find (a) the domain of f, (b) the range of f, (¢) f(1), (d) f(3).

(@) Domain of fis X = {x: —1 = 2 = 2} which we agree to write briefly as —1 = z = 2.

(b) Rangeof fis Y = {f(x): —1 = x = 2}, i.e. the set of all values f(x) where —1 = x = 2.

(¢) f(1) = 3(1)2—41)+2 =1

(d) f(3) is not defined, since x = 8 is not in the domain of f.

Determine whether the function of Problem 1.13 is a one to one function.

A function will be one to one, or 1-1, if it assigns different images to different elements of the
domain. Since this is true for the function of Problem 1.13 it is a one to one function. Note,
however, that it is not an onto function [see Problem 1.13(g)].

COUNTABILITY AND CARDINAL NUMBERS

1.16.

Prove that the set of rational numbers in the interval [0, 1] is countably infinite or
denumerable.

We must show that there is a 1-1 correspondence between the rational numbers and the
natural numbers or, in other words, that the set of rational numbers in [0,1] is equivalent to the
set of natural numbers.

The 1-1 correspondence is indicated as follows.

01 3 4 § % B FEFH D
R
1 2 3 4 5 6 7 8 9 10 11 12

Note that the rational numbers are ordered according to increasing denominators. A rational
number such as 2, which is the same as 4, is omitted since it has clearly already been counted.
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1.17.

1.18.

1.19.

1.20.
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Prove Theorem 1-14: A countable union of countable sets is countable.

Consider the sets

Sy = {aj, a9, a3, ...}, Sy = {4,009, a3, ...},

There is a countable number of sets S;,S,, ... and each set itself is countable. Now we can write

the elements in the following form

a11—>a21/(a317a41
a / a22/a37a42
ay3 aza/ 33 43
Q14 /“24 A34 Qqq
a5

If we proceed along the directions shown we arrive at the set

{a11, Ga1, Q135 G135, Qog, U3y, gy, Ay, ...}

where it is seen that the first element has the sum of its subscripts equal to 2, the next two have
the sum of subscripts equal to 3, the next three have sum of subscripts 4, ete. Since this establishes
a 1-1 correspondence with the natural numbers, the required theorem is proved.

If Q denotes the set of rational numbers, prove that the following sets are countable:
(@ {z:2€Q,2=1}, (b) {x: 2€Q,x=0}, (c) the set Q.
(a) Let x be any rational number such that x = 1. Then to each such x there corresponds one and

only one rational number y = 1/« such that 0 <y = 1. Butsincetheset {y: y€Q, 0 <y = 1}
is countable, so also is the equivalent set {x: x € Q, = = 1}.

(b) We have
{w:2€Q, 220} = {x:2€Q 0=x=1}Uu{z:2€Q, x> 1}

and the result follows by Problem 1.17 since each of the sets on the right is countable.

() Theset {x: x €@, x> 0} is countable as a consequence of part (b). Then by letting ¥y = —«
we see that the equivalent set {x: x € @, x < 0} is countable. Thus from Problem 1.17 and

the fact that
Q ={r:0v€Q, 2>0U{r: ¢€Q, 2<0}U{x: x=0}

we see that @ is countable.

Find the cardinal number of the sets in Problem 1.18.

Each of the sets is countably infinite, i.e. denumerable, and thus has the cardinal number of
the set of natural numbers denoted by §,.

Prove that the set of all real numbers in [0, 1] is non-denumerable.

Every real number in [0,1] has a decimal expansion 0.a,a,a5. .. are any of the

digits 0,1,2,...,9.

We assume that numbers whose decimal expansions terminate, such as 0.7324, are written
0.73240000. .. and that this is the same as 0.73239999. ..

If all real numbers in [0,1] are countable, then we can place them in 1-1 correspondence with
the natural numbers as in the following list.

where a4, a,, ...
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1.21.

1.22.

1 e 0.a11a12a13a14. ..
2 © 0.a3103505304. . .

3 © 0.a310390033034. . .

We now form a number 0.b3bybsb,

where b; =6 if a;; =5 and b; =5 if a;;, 55, by =6 if ay, =5 and by, =5 if ayy #* 5, ete.
[The choice 5 and 6 can of course be replaced by two other numbers]. It is then clear that the
number 0.b;byb3b,. .. is different from each number in the above list and so cannot be in the list,
contradicting the assumption that all numbers in {0,1] were included.

Because of this contradiction it follows that the real numbers in [0,1] cannot be placed in 1-1
correspondence with the natural numbers, i.e. the set of real numbers in [0,1] is non-denumerable.
This set has cardinal number c.

Similarly we can prove that the set of all real numbers is non-denumerable and has cardinal
number c.

Prove that the sets of points on each of two line seg-
ments have the same cardinal number.

Let the two line segments be L; and L, as indicated in
Fig. 1-13. By constructing the dashed line from O inter-
secting L; in point P; and L, in point P,, we see that to each
point on L, there corresponds one and only one point on L,
and conversely. Thus the sets of points on L; and L, are
equivalent and have the same cardinal number.

It should be noted that the ideas presented would tend to
contradict the intuition of the uninitiated, since one might
expect a line segment to have “more points” than another line
segment which has a shorter length.

Prove that the Cantor set [page 5] is non-denumerable.

Every number in the Cantor set has a ternary expansion (i.e. expansion in the scale of 8) of
the form © oy

25 @

where each g is either 0 or 2 [see Problem 1.98]. Also each number in [0,1] has a binary expan-
sion (i.e. expansion in the scale of 2) of the form
© bk

kgl 5% (@)

where each b is either 0 or 1 and where we assume that not all b, after a certain term are 0
(i.e. the series is non-terminating).

We now set up a 1-1 correspondence between (1) and (2) such that b, =0 when @, =0 and
by =1 when a; = 2. Then since the set of all real numbers in [0,1] is non-denumerable [i.e. has
cardinal number ¢] so also is the Cantor set.

DEFINITIONS INVOLVING POINT SETS

1.23.

Given the point set S= {1,4,%,%,...} in B. (a) What are the interior, exterior and

boundary points of S? (b) What are the accumulation or limit points of S, if any?

(c) Is S open? (d) Is S closed? (e) What is the derived set S’ of S? (f) Is S closed?

(9) Are the limit points of S interior, exterior or boundary points of S?

(a) Every & neighborhood of any point 1/n, » = 1,2,8,... contains points which belong to S and
points which do not belong to S [i.e. points of §] Thus every point of S is a boundary point.

There are no interior points of S and the exterior points of S are the points of §, i.e. all points
of R which do not belong to S.
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1.24.
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(b) Since every deleted § neighborhood of 0 contains points of S, 0 is a limit point. It is the only
limit point of S. Note that since S is bounded and infinite, the Weierstrass-Bolzano theorem
[Theorem 1-20, page 7] predicts at least one limit point.

(¢) Since no point of S is an interior point, S is not open.
(d) S is not closed since the limit point 0 does not belong to S.
(e) S’ = set of all limit points of S = {0}.

(f) §=8us = 1,344, .. 3u {0} = {0,1,4,}, %, ...}, Note that S is closed since it con-
tains all its limit points.

(g) Since S’ = {0} has no limit points, it contains all of its limit points [in a vacuous sense]. Thus
S’ is closed.

(k) The only limit point of S is 0. Since every & neighborhood of 0 contains points which belong
to S and points which do not belong to S, it follows that 0 is a boundary point of S.

Let S be the set of irrational numbers in [0,1]. (a) What are the limit points of S

if any? (b) Is S open? (c) Is S compact?

(a) If @ is any rational number in [0,1], then every & neighborhood of a contains points of S.
Thus every rational number in [0,1] is a limit point.

Similarly if a is any irrational number in [0, 1], then every § neighborhood of @ contains
points of S. Thus every irrational number in [0,1] is a limit point.

(b) Every 8§ neighborhood of any point @ € S contains points which belong to S and points which
do not belong to S. Thus every point of S is a boundary point. Then since there are no interior
points, S cannot be open.

(¢) In Euclidean space R®, compact is the same as closed and bounded. Then since S is bounded
but not closed [since it does not contain its limit points], S is not compact.

THEOREMS ON POINT SETS

1.25.

1.26.

1.27.

1.28.

Prove that if S is an open set, then the complement S is closed.
Let a be a limit point of S and suppose that a € S. Then there exists an open interval (or &
neighborhood) I such that a €I C S, and so @ cannot be a limit point of S.

This contradiction shows that a € S, i.e. a € § Since a can be any limit point of §, it follows
that S contains all its limit points and is therefore closed.

Prove that if S is a closed set, then the complement S is open.

Let a € S. Then a €S so that it is not a limit point of S. Thus there exists an open interval
(or 8 neighborhood) I such that ¢« € IC S, and so S must be open.

Prove that the union of any number of open sets is open.

Suppose that the sets S, are open and let S = US, [i.e. the union of the sets S,] so that
Sy CS. Then if a point a € S, it belongs to S, for some a = a;. Since S, is open, there exists an
open interval [or § neighborhood] I containing a such that I C S“; cS.

It follows that every point @ € S is an interior point and so S is open.

Prove that the intersection of a finite number of open sets is open.

Let S| and S, be open sets and consider S = S;NS,. If a €S, then a €S, and a € S,. Since
Sy and S; are open, there exist open intervals (or 8 neighborhoods) I;,I, such that a €1,CS,
and a €I1,CS,. Then a €I,nI,CS; NS, Thus there exists an open interval I,NI, contained in
S and containing a, so that S is open.

The result can be extended to any finite number of open sets Sy, S,, ..., S, by induction. The
fact that it cannot be extended to any non-finite number of sets is indicated by Problem 1.103.
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1.29.

1.30.

1.31.

1.32.

1.33.

1.34.

Prove that the union of a finite number of closed sets is closed.

Let S4,8,, ...,S, be closed sets so that by Theorem 1-16, page 7, §1,§2, .. .,§n are open. By
De Morgan’s first law generalized to any finite number of sets [see Problem 1.71],

n S -~ n oo
<kL‘—41 k> - kQI Sk

n o n ~ n
Then since N S, is open by Problem 1.28, it follows that < U Sk> is open so that U S is
closed. k=1 k=1 k=1

Prove that the intersection of any number of closed sets is closed.

If S, are closed sets, then §a are open sets. By De Morgan’s second law generalized to any
number of sets [see Problem 1.71],

(N8~ = u§,

Then since U S’; is open by Problem 1.27, it follows that N S, is closed.

Let S be an open set and suppose that point p €S. Prove that (a) there exists a
largest open interval I, C S such that p €I, and (b) S = UIL,.

(a) Since S is open, then by definition there exist open intervals in S, say (a,, b,), which contain
p. Let a =glb.a, and b =1lub.b, [it may happen that & = —«, b = »], Then the interval
I, = (a,b) is the largest open interval belonging to S and containing p.

(b) Every point p €S also belongs to U I, and every point p € UI, also belongs to S. Thus
S=ul,

Referring to Problem 1.31, let I, I; be the largest open intervals of S containing
points p and ¢ respectively. (a) Prove that either I, =1, or I,NI; = @. (b) Thus
prove that S = UI, where the I, called component intervals, are disjoint.

(a) Since p€1I, we also have p€I[,Ul; and if we assume that neither I,=1;, nor
I,nI, =@, it follows that I, Ul is an open interval containing p which is larger than I,
contradicting the fact that I, is the largest such interval. Thus the required result follows.

(b) This follows at once from part (a) and Problem 1.31.

Prove that the component intervals I, of Problem 1.32(b) are countable.

Each interval I, contains a rational number. Then since the intervals are disjoint, they contain
different rational numbers, i.e. to each interval I, there corresponds a rational number. Since the
rational numbers are countable, so also are the component intervals.

Prove that the representation of S as a countable union of disjoint open intervals,
i.e. S = U, is unique except insofar as the order of the intervals is concerned.

Assume that there are two different representations; say U [ ;1) and U 11(,2), so that point
pEIPand p € I{? where I D= I, Then IV and T ¥ would have to overlap or have only the
point p in common, and so an endpoint of one of the intervals would belong to the other interval and
thus belong to S. This, however, would contradict the fact that the intervals are open, and thus
the endpoints do not belong to S.
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n
1.35. Let A1, A, ..., A, be n point sets on the real line. Show how to represent kUI Ay as
. =
kL=J1 By where the B; are suitably defined so as to be mutually disjoint.
Let B, = A, By = Ay — A;, By = A3— (4,VUAy), By = A, — (4;UAU4y), ..., B, =
A, — (AjUA,U---UA,). Then we see that B, is the same as A,, B, is the set A, without points of

A, and so is disjoint to B;, B; is the set A5 without points of either 4; or A, and so is disjoint to
B, and B,, and so on. Thus By, B,, ..., B, are disjoint.

Further it is clear that B,UB, = A;UA,, BjUuB,UB3=A;UA;UA; and so on, so that
n n
Ay = B,.
kL=Jl k kL——"Jl k

The result can be extended to a countable infinity of sets using mathematical induction.

LIMITS AND CONTINUITY
2, x#2

1.36. If (a) f(x) = =%, (b) f(&) = T) 9’ prove that lin; f(x) = 4.
, T = T

(¢) We must show that given any ¢ > 0, there exists § > 0 (depending on e in general) such that
|2 —4} < e when 0 < |x—2|<38.

Choose § =1 sothat 0 < |x—2{ < §=1. Then

@2—4] = [(z—2x+2) = |r—2/[z+2] < sle+2
8|(x—2) + 4
= §z—2/+4)
< bs

Take 5 as 1 or ¢/5, whichever is smaller. Then we have |22 — 4| < ¢ whenever 0 < |z —2| < 8
and the required result is proved.

(b) There is no difference between the proof for this case and the proof in (a), since in both cases
we exclude z = 2.

1.37. Prove that lim x sin(1/x) = 0.

=0
We must show that given any ¢ > 0, we can find § > 0 such that [ sin(1/x) —0| < e when
0<|x—0|<s.
If 0<|x]<8§, then |« sin(l/x)] = |x||sin (1/x)|
x 7 0.

A

Jx] < § since |{sin(1/x)] =1 for all

Making the choice § = ¢, we see that |x sin (1/x)] < ¢ when 0 < |z| < §, completing the proof.

1.38. Let f(x) = <2 —3’ . (@) Graph the function. (b) Find lim f(z). (c) Find
-3+
0, r=3 :
lim f(z). (d) Find lim f().
=3 =3
le—38 _ x—38 _ y = f(=)
(a) For = > 3, v—8 — s_3 1.
le—8l _ —(x—38) _ _
For z < 3, c—3 - x—3 1. r—y
Then the graph, shown in the adjoining Fig. 1
1-14, consists of the lines y=1, x>3; y=-1, . x
2 < 3 and the point (3,0). 1 (8,0)
(b) As x — 3 from the right, f(x) = 1, i.e.
Iim fz) = 1
=3+

as seems clear from the graph. To prove this we
must show that given any ¢> 0, we can find § >0
such that |f(x) —1| < e whenever 0 <2x—1<3. Fig.1-14
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1.39.

1.40.

1.41.

1.42.

Now since x> 1, f(x) =1 and so the proof consists in the triviality that [1—1] <e
whenever 0 <2 —1 < §.

(¢) As x— 3 from the left, f(x) > —1, ie. lirgl fl@) = —1. A proof can be formulated as in (b).
xe+3—

(d) Since lim f(x) ¥ lim f(x), lim f(x) does not exist.
=3+ x~3— -3

x? x+2

Investigate the continuity of () f(z) =22, (b) f(z) = {0 o2 at x=2.

(¢) Method 1. By Problem 1.36, lim2 f(x) =4 = f(2), i.e. the limit of f(x) as # > 2 equals the value
X -

of f(») at x =2, and so f [or f(x)] is continuous at z = 2.

Method 2. We have f(2) = 4. Then given ¢« > 0 there exists § > 0 such that |22 — 4] < ¢ when
|z — 2] < 8, by a proof similar to that in Problem 1.36. Thus f(x) is continuous at = = 2.

(b) Method 1. By Problem 1.36, Ii1112 f(x) =4+ f(2) [since f(2) = 0]. Thus the limit of f(x) as
T+
x = 2 is not equal to the value of f(x) at # = 2, and so f(x) is not continuous at x = 2.

Method 2. Given ¢ > 0, we can show that there is no § > 0 such that [flx) — 0] = |22 < ¢ for
l¢ —2| < 8. Then f(z) is not continuous [or is discontinuous] at x = 2.

zsin(l/z), +#0

Investigate the continuity of (a) f(z) = z sin (1/x), (b) f(x) = { 5 =0’

© f zsin(l/z), x+#0
c xr) =

) f(z) 0, £ =0
(a) Since f(z) is not defined for « = 0, f(x) cannot be continuous at z = 0.

(b) By Problem 1.37, limof(x) = 0 # f(0) so that f(x) is not continuous at x = 0.
T

at x=20.

(¢) By Problem 1.37, Iimof(x) = 0 = f(0) so that f(x) is continuous at 2z = 0.
=

Note that the function f(z) defined in (¢} is continuous in every finite interval, while the
functions of (a) and (b) are continuous in every finite interval which does not include = = 0.

Prove that the two definitions given on page & for continuity at a point a are
equivalent,
The result follows as a consequence of the following equivalent statements.

(1) f(x) is continuous at a if given ¢ > 0 there exists a & > 0 such that |f(x) — f(a)] < ¢ whenever
|# —a] < 8.

(2) f(x) is continuous at a if given ¢ > 0 there exists a § > 0 such that fla) —e < f(x) < f(a) + ¢
whenever a —8 < x < a + 3.

(8) f(z) is continuous at a if given ¢ > 0 there exists a § > 0 such that f(x) € (f(a) — ¢, fla)+¢)
whenever z € (¢ — 8, a + 3). ’

(4) f(x) is continuous at a if f[(a— 3, @+ 8)] is contained in (f(a) —e, f(a) + ).

(5) f(=x) is continuous at a if given any open set A containing f(a) there exists an open set B con-
taining @ such that f(B) CA. [Note that A = (fl@) —¢ fla)+e¢), B = (a—8, a+3).]

Prove that f(x) = 2? is uniformly continuous in 0 < < 1.
Method 1, using definition.

We must show that given any ¢ > 0 we can find § > 0 such that |42 — 22| < e when |&—a <3,
where & depends only on ¢ and not on x, where 0 < 2y < 1.

If x and x, are any points in 0 <z < 1, then

@ —af] = |ztalle—m] < [1+1|o— = 2|e—
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Thus if [x — x| < & it follows that |2 —«2] <25. Choosing & = ¢/2, we see that |x2—a2| <e
when | — 2, < 8, when & depends only on ¢ and not on x,. Hence f(x) = 22 is uniformly con-
tinuous in 0 <z < 1.

The above can also be used to prove that f(x) = «2 is uniformly continuous in 0 =z = 1.

Method 2:

The function f(x) = 22 is continuous in the closed interval 0 =z = 1. Hence by Theorem
1-28, page 8, it is uniformly continuous in 0 =z =1 and thus in 0 <2 <1.

Prove that f(x) = 1/¢ is not uniformly continuous in 0 <z < 1.

Method 1:

Suppose that f(x) is uniformly continuous in the given interval. Then for any ¢ > 0 we should
be able to find 8, say between 0 and 1, such that |f(x) — f(xg)] < e when |x—xg <8 for all x and
%y in the interval.

___ 8 _ _ __ 8 — €
Let x =8 and Yo =11 Then |x x0|—|8 T ——1+€8<8.
1 1 146l _ ¢ :
However, P, 5 5 =3 > e (since 0 <8 <1).

Thus we have a contradiction and it follows that f(x) = 1/# cannot be uniformly continuous in
0<x <l

Method 2:
Let 5 and ¢+ 8 be any two points in (0,1). Then
11 _ )
[f(og) ~ f(xo+8)] = % %o+ 8‘ T @t

can be made larger than any positive number by choosing x, sufficiently close to 0. Hence the
function cannot be uniformly continuous.

SEQUENCES AND SERIES

1.4.

1.45.

Prove that if lim a,. exists, it must be unique.

n=—+co

We must show that if lim a, = I, and lim a, = l,, then I; =1,

n=—t o n=—+ o
By hypothesis, given any ¢ > 0 we can find a positive integer ny such that
lan— L] < e when n > ng |a,— I < ie when n > ng
Then =l = |i—a,ta,—L] = [i—a,) tla,—l] < le+de = ¢

ie, |l; — 1| is less than any positive ¢ (however small) and so must be zero. Thus [; = L.

If lima, = a and lim b, = b prove that lim (a.+bs) = a +b.

net o 7+ ne—r oo

We must show that for any ¢> 0, we can find ny > 0 such that |(a,+b,) —(a+b)] < e
for all m > n,. We have

Ha,+b) —(@+B)] = [@p—a)+ (b, — )| = Ja,—a| + [b,— | 6]

By hypothesis, given ¢ > 0 we can find n; and ny such that
lay—a] < }e forall n>mn @)
[bp—b] < le forall n>mny €))

Then from (1), (2) and (3),
e, +8,) —(@+d)] < Je+ 3e = ¢ forall n>n

where %, is chosen as the larger of n; and n,. Thus the required result follows.
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1.46.

1.47.

1.48.

1.49.

Prove that a convergent sequence is bounded.

Given lim @, = @, we must show that there exists a positive number M such that |a,| <M

n=—o0
for all n. Now
]a'nl = ]an_a‘+a’l = Ian—'al'l_la"

But by hypothesis we can find ny such that |a,—a| <e for all n > n,, ie,
lay] < e4]a] forall n>n,

It follows that |a,| < M for all n if we choose M as the largest one of the numbers a,,a,, ..., L2
e+ lal.

Find the (a) Lu.b., (b) g.Lb., (c) lim sup (Iim), and (d) lim inf (lim) for the sequence
2,-2,1,-1,1,-1,1,-1, ...

(@) lLu.b. = 2, since all terms are less than or equal to 2 while at least one term (the 1st) is greater
than 2 — ¢ for any ¢ > 0.

(b) g..b. = —2, since all terms are greater than or equal to —2 while at least one term (the 2nd)
is less than —2 4 ¢ for any ¢ > 0.

{¢) lim sup or lim = 1, since infinitely many terms of the sequence are greater than 1 — e for any
e > 0 (namely all 1’s in the sequence) while only a finite number of terms are greater than 1+ ¢
for any ¢ > 0 (namely the 1st term).

(d) lim inf or lim = —1, since infinitely many terms of the sequence are less than —1 4 ¢ for any
e > 0 (namely all —1’s in the sequence) while only a finite number of terms are less than —1 — ¢
for any e > 0 (namely the 2nd term).

Prove that to every set of nested intervals [a., bsx], n=1,2,3, ..., there corresponds

one and only one real number.
By definition of nested intervals, a,.; = a,, b,;;=b,, n=1,2,3,... and lim (a,—b,) = 0.
n=—+0
Then a; =a,=b, =b,, and the sequences {a,} and {b,} are bounded and respectively mono-
tonic increasing and decreasing sequences and so converge to a and b.

To show that @« = b and thus prove the required result, we note that
b—a = (b—b,) + (by—a,) + (a,—0a) 169]
[b—af = |b—b,| + by~ ay| + |a, —a @
Now given any ¢ > 0, we can find ny such that for all n > n,
[b—by < e/3, [bp—an < ¢/3, lap—al < ¢/3 ®)

so that from (2), {b —a| < e Since ¢ is any positive number, we must have b—a =0 or a =b.

Prove Theorem 1-20 [Weierstrass-Bolzano]: Every bounded infinite set in K has at
least one limit point.

Suppose the given bounded infinite set is contained in the finite interval [e,b]. Divide this
interval into two equal intervals. Then at least one of these, denoted by [a,, b;] contains infinitely
many points. Dividing [a,, b;] into two equal intervals we obtain another interval, say [a,, by], con-
taining infinitely many points. Continuing this process we obtain a set of intervals [a,,b,],
n =123, ..., each interval contained in the preceding one and such that

by —ay = (b—va)/2, by —ay = (by—ay)/2 = (b—a)/22, ..., b,—a, = (b—a)/2n

from which we see that lim (b, —a,) = 0.
n=+oc

This set of nested intervals, by Problem 1.48 corresponds to a real number which represents a
limit point and so proves the theorem.
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Prove Theorem 1-21 [Heine-Borel]: Every open covering of a closed and bounded set
S contains a finite subcovering.

Since S is closed and bounded, we can suppose that it is contained in I = [a, b]. Let us assume
now that S does not have a finite subcovering and arrive at a contradiction.

If we bisect I =]a, b], then at least one of the closed intervals [a,a; b:l, [a—;- b, b:l

has a subset of S which does not have a finite subcovering. Denote by I, = [a,,b;] one of these
intervals which does not have a finite subcovering.

By bisecting again and continuing in this manner, we obtain a sequence of nested closed

intervals
I>I;D>I;D ---

which have the property that none of the sets SN I, has a finite subcovering. Now the length of
I, ie. L(I) = (b— a)/2%, approaches zero as k —> « so that by the nested intervals property
there is one and only one point p belonging to all the closed intervals I,.

We now show that p € S. To do this let z, be a point taken from SN I;. Then take x, +* x,
from S NI, etc. We thus obtain a sequence xy, %y, &3, ... of distinct points belonging to S where

x, € I,. Since L(I,)> 0 as n - =, it is clear that 31319° %, = p which means that p is a limit

point of S. But since S is closed, it follows that p € S.

Now since S is covered by the set of open intervals, there will be one of these open intervals
J such that p €J. If k is large enough, I, = [a,b]CJ and so (SNI,) CJ which shows that
Sn1I, is in fact covered by J, contradicting the statement that S NI, does not have a finite sub-
covering. This proves the theorem.

(a) Prove Theorem 1-34, page 9: Every convergent sequence is a Cauchy sequence.

(b) Prove Theorem 1-35, page 9: Every Cauchy sequence of real numbers is conver-
gent, i.e. the set R is complete.

(a) Suppose the sequence (a,) converges to I. Then given any ¢ > 0, we can find ng such that
la, =1 < ¢/2 forall p>mn, and |a,—1 <e/2 forall q>n,
Then for both p > n, and ¢ > n, we have
lap—agl = Hap—D+I—a)l = la,—Il+|l—a) < /2+ &2 = ¢

(b) Suppose |a,—a,] <e for all p,g>n, and any e> 0. Then all the numbers Gy Qg 415 -+ -

lie in a finite interval, i.e. the set is bounded and infinite. Hence by the Weierstrass-Bolzano
theorem there is at least one limit point, say a.

If a is the only limit point, we have the desired proof and lim a, = a.

n—+w0
Suppose there are two distinet limit points, say a and b,
and suppose b > a (see Fig. 1-15). By definition of limit
points, we have
la, —a| < (b—a)/3 for infinitely many values of p (2)
-ia, <ty
|aq — b] < (b — @)/8 for infinitely many values of ¢ (2) ) 8 X , 8 )
+ —
Then since b—a = (b—ay) + (¢q—a,) + (2, — @), we have *
b—al = b—a = |b—ay| +la,—ay| + |a,—a] (3 Fig.1-15

Using (2) and (2) in (3), we see that |a, —a,| > (b—a)/3 for infinitely many values of p
and ¢, thus contradicting the hypothesis that |a,—ay <e for p,¢g>n, and any >0.
Hence there is only one limit point and the theorem is proved.

Note that Theorems 1-34 and 1-35 can be stated in one theorem:

A sequence of real numbers converges if and only if it is a Cauchy sequence.
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1.52. Let fa(x)=nwe ", n=1,2,8,..., 0=2=1. Investigate the uniform conver-
gence of the sequence (f,(x)).
We have lim f,(¢) =0 for 0=x=1. To determine whether the sequence converges
n—+
uniformly to 0 in this interval, we must show that given ¢ > 0 there exists g > 0 such that
|fo(@) ~0] <e ie |fp(x)] <e for all n> ny, Wwhere n, depends only on ¢ and not on z.
Now |f,(x)] = nze~n® has a maximum at # = 1/y/2z (by the usual rules of elementary

calculus), the value of this maximum being Vn/2¢. Hence as n— «, fn(x) cannot be made
arbitrarily small for all  and so the sequence does not converge uniformly to 0.

1.53. (a) Give a definition of uniformly convergent series of functions.

(b) State and prove a theorem corresponding to Theorem 1-36, page 9, for series of
functions.

(@) Let kil fr(x) be a series of functions and
sp(@) = fr(@) + folx) + - + folx)

be the nth partial sum of the series. Suppose that in some set A, for example [a, b], the series
converges to the sum s(x). We say that the series converges uniformly to s(x) in [a, b} if given
e > 0 there exists a positive integer n, such that |s,(x) —s(x)] <e for all n>n, and all
x € [a, b].

(b) The theorem which we shall prove is the following: If the functions fn(x) are continuous in
a set A and if 3 f,(x) converges uniformly to s(x) in A4, then s(x) is continuous in A. We prove
the theorem for the case where A = [a,b].

First we observe that if s,(x) is the nth partial sum of the series and r.(2) is the remainder

of the series after n terms, then
s(x) = sp(x) + ryp(x)

so that s(w+h) = s (x+h)+ r(x+h)
and s(x+h) — s(x) = sulex+h) — su(x) + r(x+ k) — ry(x) 65)]

where we choose & so that both x and « -+ % are in [a,b] (if « =b, for example, this will
require h < 0).

Since s,(x) is a sum of a finite number of continuous functions, it must also be continuous.
Then given ¢ > 0, we can find § so that

[$n(x + k) — s,(x)] < ¢/3 whenever |h| <35 (@
Since the series, by hypothesis, is uniformly convergent, we can choose ny depending on e
but not on % so that
lra@)] < /8 and [r{x+R)| < &3 for m>mn, (€)]
Then from (1), (2) and (3),
[s(x+h) —s(x)] = [s(x+h)—s(x)] + [rlx+h)| + |rfa)] < e
for |h| < 8, and so the continuity is established.

1.54. Prove the Weierstrass M test, [Theorem 1-38, page 10]: If |fu(x)| = M., n=1,2,8, ...,
where M, are positive constants such that 2 M, converges, then 2 fa(z) is (@) uni-
formly and (b) absolutely convergent.

() The remainder of the series 3 f, () after n terms is 7,(%) = fo41(@) + froi2(@)+ -+ . Now
[rn(x)[ = |fn+1(x)+fn+2(70)+ | = [for1@)| + |fpse@+ - = My + Myt -

But M, + M,.5+ -+ can be made less than ¢ by choosing = > n, since 3 M, converges.
Since n, is clearly independent of z, we have |r,(z)] <e for m >m, and the series is

uniformly convergent.
o0 o0

(b) The absolute convergence follows from the fact that k—2+l [fr@)]| < k—2+l M, <e for
n > ng = "
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cCosS nx

o is uniformly convergent for all x.

We have for all =,
Ml < 1

n2 n2

o0
Then since 3 Lz converges, the series is uniformly convergent by the Weierstrass M test of
=1 N

Problem 1.54, =»=1

Supplementary Problems

SETS AND REAL NUMBERS

1.56.

1.57.

1.58.

1.59.

1.60.

1.61.

1.62.

1.63.

1.65.

1.66.

Let S be the set of all natural numbers between 5 and 15 which are even. Describe S according to
(a) the roster method, (b) the property method.

Ans. (a) S=1{6,8,10,12,14}, (b) S = {x: xis even, 5 <z < 15}
Let A = {x: 22—3x+2 =0}, B = {x: x2=16}. Determine whether or not A CB.
Prove that for any set A we have A C A.

Discuss the truth or falsity of the following statements. (a) If A and B are any two sets then
either ACB, ADB,or A =B. (b) If x and y are any two real numbers then either z < y, = > y,
or x = y.

Prove that any subset of the empty set must be the empty set.
Let A ={1,-4,4,-1,%,...}. Find (e) Lub. 4, (b) g.lb. A. Ans. (a) 1, (b) —3.

Give an example of a set S for which (a) the lL.u.b. belongs to S but the g.Lb. does not, (b) the Lu.b,
does not belong to S but the g.l.b. does, (¢) both the Lub. and g.l.b. belong to S, (d) neither the
lLu.b. nor the g.l.b. belong to S.

Give an example to show that a non-empty set of rational numbers can have an upper bound but
not a least upper bound. Reconcile this with the completeness axiom on page 2.

Show that between any two different rational numbers ¢ and b there is (a) at least one rational
number, (b) at least one irrational number. How many rational numbers and irrational numbers
would you expect to have between a and b? Explain.

Work Problem 1.64 when a and b are irrational numbers.

Let of be the set or class of all sets which are not elements of themselves. (a) Prove that if of € f,
then of € of. (b) Prove that if of € of, then of € of. The paradox described is called Russell’s
paradox and shows that sets should not be “too large”. (¢) Illustrate the paradox by discussing the
situation of the barber in a small town who shaves all those men and only those men who do not
shave themselves. In particular attempt to answer the question “Who shaves the barber?”

SET OPERATIONS, VENN DIAGRAMS, AND THEOREMS ON SETS

1.67.

1.68.

Let a universe be given by U = {1,2,3,4,5} and suppose that subsets of U are A = {1,5},
B :‘52, 5,~3}, C =1{4,2}). Find (a) 4 U (BUC), (b) (AUB) U C, (¢) é ﬂ~(BUC), (d) (AnB) U (ANC),
(e) An (BnC), (f) (AUB) — (AUC), (9) (ANC)~ U B, (h) A — (BUO).

Ans. (a) {1,2,3,4,5}, (b) {1,2,3,4,5}, (c) {6}, (d) {5}, () @, (f) {8}, (9) {2,5,8}, () {5}.

Let U be the set of all non-negative integers and consider the subsets A = {x: « is an even integer,
1=2<6}, B= {x:xisaprimenumber, 0 <x=4}. Find (¢) AUB, (b)) AnB, (¢) AnB,
(d) A—B, (¢ B—A, (fy (A—B)u (B—A).

Ans. (a) {2,3,4}, (b) {2}, (o) {=: 2 =0, »+2,3,4}, (d) {4}, (o) {3}, () {3,4}
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1.69. Prove (a) Theorem 1-2, page 3, (b) Theorem 1-3, page 3, (c) Theorem 1-4, page 3.
1.70. Prove De Morgan’s second law, Theorem 1-12b, page 4, and (b) illustrate by using a Venn diagram.
1.71.  Generalize De Morgan’s first and second laws to any number of sets.
1.72.  Illustrate the principle of duality by referring to the theorems on pages 3 and 4.
1.73. Prove that (A —B) UB = A if and only if BC A, and illustrate by using a Venn diagram.
1.74. Prove or disprove: If A—B =, then A = B.
1.75. Prove that AUB = (A —ANB)U (B — AnB) and illustrate by a Venn diagram.
1.76.  Generalize the result of Problem 1.10.
1.77.  Referring to Problem 1.67, find (a) A X B, (b) BX A, (¢) AXBXC.
1.78.  Prove or disprove: A X (BXC) = (AXB)XC.
1.79.  Prove or disprove: A X(BUC) = (AXB)uU (4 X C).
FUNCTIONS
1.80. Determine whether a function is defined from the set X to the set Y for the diagram of Fig. 1-16.
1 —>0
DA' x 2 1 v
. 3 -] 2
4
Fig. 1-16 Fig.1-17
1.81. (a) Show that the diagram of Fig. 1-17 defines a function from the set X to the set Y. (b) Find f(2).
(¢) Find f(0). (d) Find the domain of f. (e¢) Find the range of f. (f) If A is the subset {2,3} of X,
find f(A). (g9) Find f(X). (k) Is f an onto function? Explain. (i) Find the image of 1 under f.
() Find f~12). (k) If B = {0,1}, find f—1(B). (!) Find the inverse image of 1 under f. (m) Is an
inverse function f—1 defined from B to A where B = {0,1} and A = {2,3}?
Ans. (b)) 1 d) {1,2,3,4} (H {0,1} (h) Yes (j) 4 0 {2}
(¢) not defined (e) {0,1,2} (9 {0,1,2} (@) 0 (k) {1,2,8} (m) No
22, 0<zx=1 . . .
1.82. Let f(x) = 2 »>1 define a function f from X to Y. Find (a) the domain of f, (b) the
range of f, (¢) f(%), (d) f(8), (e} f(0), (f) f(—1), (9) f(A) where A = {x: L <z <3}
Ans. (@) £>0, (b) {x: 0<x=1,2=2}, () &, (d) 2, (¢) not defined, (f) not defined,
(@) {g:1<x=1, =2} :
1.83. Let a function f: R —> R be defired by
1 if x is rational
fl) = e e e
0 if « is irrational
Find (a) f(3), (b) F=V2), © f(), (d) f(1.252525...). Ans. (@)1 ()0 (¢)0 (d) 1
1.84. If fis a function from X to Y, is it possible that f(X) > ¥Y? Explain.
1.85. Given functions f: A->B and ¢g: B->C. Then if a €A, fla) € B and g(f(a)) € C. Thus

to each a € A we have g(f(a)) € C and we have a function from A to C called the product function
or composition funection denoted by geof or gf. If for each real number x we have f(x) =22+1
and g(x) = 22, find (a) g(f(1)), (b) f(g(—2)), (¢) g(f(x)). How would you define f(g(x))? Is this
the same as g(f(x))? Explain. Ans. (a) 4 (b) 17 (¢) 2(x2 + 1)
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1.86.

1.88.

1.89.

FUNDAMENTAL CONCEPTS [CHAP. 1

Determine whether the function of Problem 1.81 is one to one.

Define a function f:R >R by f(x) =3x—5. (a) Show that the function is one to one and onto.
(b) Show that the inverse function is defined by f~1!(x) = {{x + 5).

Define the functions f{:E—>R and fo:R—>R by fi(x) =22+1 and fy(x) =23+ 1. (a¢) Explain
why f is 1-1 and onto while f, is onto but not 1-1, and (b) show that we can define an inverse

function f2—1 :R>R by f2—1(x) = V3 x—1 but cannot define an inverse function f !:R - R.

(@) If A ={a,b,c,d} and B = {1,0}, determine how many functions there are from A to B.
(b) Show these diagrammatically. Ans. (a) 42 =16

COUNTABILITY AND CARDINAL NUMBERS

1.90.

1.91.

1.92.

1.93.

1.94.

1.95.

1.96.

1.98.

Prove that there is a one to one correspondence between the points of the interval 0 =« =1 and
(a) 4 =x2=86, (b)) —4 <2< 6. What is the cardinal number of each set?

(¢) Prove that the set of all irrational numbers in [0,1] is non-denumerable and (b) find the
cardinal number.

(a) Prove that the cardinal number of points inside a square is equal to the cardinal number of
the set of points on one side. (b) Generalize the result to higher dimensions.

An algebraic number is a number which is a root of a polynomial equation agx®+ ax"=1+--- +a,
= 0 where @ @y, ..., a, are integers. A transcendental nmumber is a number which is not
algebraic. (o) Prove that V2 + V/3 is algebraic but not rational. (b) Prove that the cardinal number
of the set of algebraic numbers is ¥, i.e. the set is countably infinite. (¢) Prove that the set of
transcendental numbers has cardinal number ¢ = 8.

Let « and B be cardinal numbers of the disjoint sets 4 and B respectively. Then we define « + 8
and «+ B or aB to be the cardinal numbers of the sets 4 U B and A X B respectively. Prove that
(@) g+ Ry =Ry, (b) g9 =8y, (¢) Bo+ec=¢, (d) crc=c.

If « and B are the cardinal numbers of Problem 1.94, we define o8 as the cardinal number of the
set of all functions on B with values in A. For example if 4 = (0,1) and B = (a,b,c), then the
set of functions on B with values in A is the set of ordered triplets (0,0, 0), (1,0, 0), (0,1,0), (0,0,1),
1,1,0), (1,0,1), (0,1,1), (1, 1,1). Since this set has cardinal number 8, we see that 23 =8. Use
this definition to find (a) 32, (b) xg. Prove that if «, 8,y are cardinal numbers, then (af)Y = afv.

(a) Prove that every real number in [0,1] can be expressed in the scale of 2, called a binary
expansion, as % b,/2k where the b, are either 0 or 1.
k=1
(b) Prove that the set of all binary expansions in (a) has cardinal number 2%.

(¢) Prove that 2% —=ec.

The cardinal number « of a set A is said to be greater than the cardinal number B of a set B if B
is equivalent to a subset of A but A and B are not equivalent. Prove that (a) ¢ > 8y, (b) 2¢ > a.
Deduce from (b) that there are infinitely many transfinite numbers.

Prove that each number of the Cantor set can be expressed as a series {called a ternary expansion]

of the form ¥ a,/3% where the g, are either 0 or 2.
k=1

DEFINITIONS AND THEOREMS INVOLVING POINT SETS

1.99.

1.100.

1.101.

Let S be the set of rational numbers in [0,1]. (a) What are the interior, exterior and boundary
points of S? (b) What are the accumulation or limit points of S if any? (¢) Is S open? (d) Is S
closed? (¢) What is the derived set S’? (f) What is the closure S? (g) Is S’ closed? (h) Are the
limit points of S interior, exterior or boundary points of S?

Work Problem 1.99 if S is (a) the set of irrational numbers in [0,1] and (b) the set of all real
numbers in [0, 1].

Show that the set of real numbers R is both open and closed.
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1.102.

1.103.

1.104.

1.105.

1.106.

1.107.

1.108.

1.109.

(@) If a limit point of a set does not belong to the set, prove that it must be a boundary point of
the set.

(b) Give a definition of limit point using open intervals instead of 8 neighborhoods and use this
definition to give a proof of the result in (a).

_1

k ’
prove that the intersection of a denumerable number of open sets need not be open and compare
with the theorem of Problem 1.28.

Let I, = < 1+%> where k£ =1,23,.... (a) Show that NI, =[0,1]. (b) Use (a) to
k

Give an example showing that the union of a denumerable number of closed sets need not be closed.

Prove that (a,b) = G [a + 1%, b —%} and thus show that every open interval can be expressed
k=1

as a countable union of closed intervals.

Prove that every countable set can be expressed as a countable union of closed sets.

Let I, = (k—4,k+ %), k=1,2,8,... be a set of open intervals which cover the set N of
natural numbers 1,2, 3, ... which is a closed set. (a) Is there a finite subcovering of N? (b) Does
your answer to (a) contradict the Heine-Borel theorem? Explain.

Let S = {1, %,%, ...} and let I, be an interval so small that it contains only the point 1/k.
(a) Is there a finite subcovering of S by I,,? (b) Does your answer to (a) contradict the Heine-Borel
theorem? Explain.

A set S is called perfect if every point of S is a limit point, i.e. S* = S. Prove that the Cantor set
is perfect. Is the Cantor set a closed set? Explain.

LIMITS AND CONTINUITY

1.110.

1.111.

1.112.

1.118.

1.114.

1.115.

1.116.

1.117.

1.118.

1.119.

1.120.

1.121.

1.122.

If f(x) =22+ 3x+ 5, find lim2 f(x) using the definition.
XL

. x2— 16 . Vx —2
=2 = lim Y= 2 = 1,

Prove that (a) il_rg w4 8, (b) x‘_’fi po— 1

3x—1, <0
Let f(x) = 0, 2=0. Find (a) lim f(x), (b) lim f(z), (¢) lim f(z), (d) lim f(x),

=2 x=—3 =0+ = 0—

2¢ +5, x>0

(e) lirr}) f(x). Ans. (a) 9, (b) —10, (¢) 5, (d) —1, (e) does not exist.
x—

Prove (a) Theorem 1-22, page 7, (b) Theorem 1-23, page 7, (¢) Theorem 1-24, page 8.

Prove that lim f(x) exists at = a if and only if lim f(x) = lim f(z), ie. the right and
r=—a T—a+ T=ra—

left hand limits are equal.

Prove that f(x) = 22 — 4x + 3 is continuous at x = 2 by using the definition.

A
=3

Prove that f(x) = x/(x + 2) is continuous at all points of the interval (a) 1 <2z <3, (b)) -2<<x
Prove that the sum of two or more continuous functions is continuous.

Prove that the (a) product and (b) quotient of two continuous functions is continuous provided
that division by zero is excluded.

Prove that a polynomial is continuous in every finite interval.
Prove (a) Theorem 1-25, page 8, (b) Theorem 1-26, page 8.
Prove Theorem 1-27, page 8.

Prove that f(z) = 22— 4x + 3 is uniformly continuous in the interval 2 = x = 4.
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1.123.

1.124.

1.125.

1.126.

FUNDAMENTAL CONCEPTS [CHAP. 1

Prove that f(x) =1/x2 is (a) continuous for x > a where @ 20, (b) uniformly continuous
for x > a if a> 0, {(c) not uniformly continuous in 0 < x < 1.

Let f(x) and g(x) be uniformly continuous in « =« = b. Prove that (a) f(x) + g(x), (b) f(x)g(x),
(¢) f(x)/g(x), g(x) #* 0 are uniformly continuous in a = x = b.

If f(x) is continuous at xy, and f(xy) > 0, prove that there exists an interval (xy—k, xq+ h),
h >0 in which f(z) > 0.

Prove Theorem 1-28, page 8.

SEQUENCES AND SERIES

1.127.

1.128.

1.129.

1.130.

1.131.

1.132.

1.133.

1.134.

1.135.

1.136.

1.137.

1.138.

1.139.

1.140.

.. 3n+2
Use the definition of limit of a sequence to prove that lim 4n__ B = —%.
n=+ oo

If lim b, = b # 0, prove that there exists a number n, such that [b,| > 1|b] for all = > .

1~

a
If lim ¢, = a, lim b, = b, prove that (a) lim a,b, = ab and (b) lim b—n = %
n=— o n—+wo n=-o0 n—>w Yn

if b+#0.

Find lim sup (Iim) and lim inf (lim) for the sequences (a) (—1)»*t1l/nm), (b) {(—1)»+1(n+ 1)/(n+ 2)),
(€) (=1)n=12n—1)), (d) (@1TDN2y Ans. (@) 0,0 (b) 1,—1 (¢) », —= (d) =,1.

(a) Prove that the limit of a sequence exists if and only if the limit inferior and limit superior of the

sequence are equal. (b) Prove that if ¢, Z0 and lim a, =0 then lim @, = 0.
ne=+o n—ow

Prove that the sequence (¢~ "*?) converges uniformly to 0 in any interval not including 2« = 0.
Test for uniform convergence in [0, 1] the sequence (x").

(a) Prove Theorem 1-37, page 10. (b) Give an example of a convergent series which is not
absolutely convergent.

o0
Test for uniform convergence the series - zn in its interval of convergence.
n=0

Ans. Uniformly convergent for |x| < p where 0 < p < 1.

[ee]

If ¥ a,x" converges for x = x, prove that it converges uniformly and absolutely in the interval
n=0

|x] < |24 where || < |2l

. i xn ked 1
Test for uniform convergence: (a) n§1 L1 (b) nél pranpwy

Ans. (a) Uniformly convergent in —1 =z = 1. (b) Uniformly convergent for all .

) ] .'172
Test for uniform convergence: ngl A+ zn

Ans. Uniformly convergent in any interval not including « = 0.

1 1

1+t 234 + R is uniformly convergent but not absolutely

Prove that the series
convergent for all x.

Give an example of a series which is absolutely convergent but not uniformly convergent.
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LENGTH OF AN INTERVAL

We define the length of all the intervals a <z <b,a=zrx=b,a=zx<b,a<2=b as
b—a. The length of an infinite interval such as z >a or £ =0 is defined to be «». In case
a =D, the interval ¢ = x = b degenerates to a point and has length zero. Thus length is
a non-negative real number.

Since an interval I is a set of points, we see that its length is a set function of I having
value L(I) = 0.

AREA AND VOLUME

The idea of length is easily generalized to two, three and higher dimensional Euclidean
spaces. For example, if we consider two dimensions, we can think of a rectangle as a
generalized interval a <x <b, ¢ <y <d [or some variation obtained on replacing < by =]
and the area of the rectangle as a generalized length given by (b —a)(d —c¢).- Similarly in
three dimensions we can consider volume as a generalized length.

Although in the following we shall restrict ourselves to intervals and lengths of intervals
in one dimensional Euclidean space, i.e. the real line, it should be emphasized that gen-
eralizations to the higher dimensional spaces can be made.

LENGTH OF UNION OF DISJOINT INTERVALS. LENGTH OF EMPTY SET

We shall be interested in generalizing the notion of length to sets on the real line
besides intervals. The following definitions provide some obvious extensions.

Definition 2.1. If I, I;, ... are mutually disjoint intervals, then
LI,VI;U --+) = L)+ L(I) + - -~

Definition 2.2. L(Q) =0, ie. the length of the empty set is zero.

LENGTH OF AN OPEN SET

Since any open set O can be expressed as a countable union of mutually disjoint open
intervals I, I, . .. unique except insofar as order is concerned [see Theorem 1-19, page 7],
we are led to the following

Definition 2.3. The length of an open set O = kQI I, where the I are mutually disjoint
open intervals, is
LO)y = L) + L) + -+ = EIL(IR) ()
k=

If O is restricted to lie in some fundamental interval I = [a,b], then the series in (1) con-
verges to a non-negative number less than or equal to b —ga, i.e.

0=LO) =b-a (@)

29
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LENGTH OF A CLOSED SET

Since a closed set C contained in [, b] is the complement of an open set, we are led to
the following

Definition 24. The length of a closed set C C [a,b] is
L(C) = b—a— L(C) (3)

THE CONCEPT OF MEASURE

A generalization of the concept of length to arbitrary sets on the real line leads to the
concept of measure of a set. By analogy with length it would seem desirable to have the
measure of a set E, denoted by m(E), satisfy the following ideal requirements.

A-1. m(F) is defined for each set E.

A2, m(E)=0.
A-3 [Finite additivity]. If £ = kLiJl E. where the Ei are mutually disjoint, then
mE) = Y m(E
k=1
A-4 [Denumerable additivity]. If E = RQI E\ where the E\ are mutually disjoint, then
m(E) = kz m(Ex)
=1

A-5 [Monotonicity]. If E; CE», then m(E,) = m(E>).

A-6 [Translation invariance]. If each point of a set E is translated equal distances in the
same direction on the real line, the measure of the translated set is the same as m(E).

A-7. If E is an interval then m(E) = L(E), the length of the interval.

Note that if requirement A-4 holds, then A-3 also holds. However, the converse need
not be true. The two requirements A-3 and A-4 are sometimes together called the require-
ment of countadble additivity. We can show that requirement A-5 follows from the other
requirements [see Problem 2.31].

It is possible to show that for general point sets on the real line we cannot satisfy all
of these requirements. Thus if we wish to keep all the requirements A-2 through A-7 we
must conclude that not all sets have a measure. Similarly if we want all sets to have a
measure, then we must sacrifice one or more of the requirements A-2 through A-7.

EXTERIOR OR OUTER MEASURE OF A SET

The exterior or outer measure of a set E, written m.(E), has the following properties
which can be considered as axioms.

B-1. m.(E) is defined for each set E.

B-2. m.(E) = 0.

B-3. m(ELUE;U--:) = m(E)) + me(Es) + - - -
for all sets K\, E,, ... disjoint or not.

B-4. Exterior measure is translation invariant.

Note that the requirements A-3 and A-4 for ideal measure, i.e. the additivity require-
ments, have been dropped and replaced by B-3.
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MEASURABLE SETS

The exterior measure, although defined for all sets, does not satisfy in general the
additivity requirements A-3 and A-4, as we have noted. Now we know that every set T’
can be written in the form [see Problem 1.10, page 12]

T = (TNE)U(TNE) (4)

Thus if there is to be any chance at all of satisfying the additivity requirements, we ought
to have ~

me(T) = Mme(TNE) + m(TNE) (5)

forall sets T, since TN E and TN E are disjoint. The result (5) will hold [if at all] only for
a restrictive class of sets E. This leads to the following

Definition 2.5. A set E is said to be measurable, or more precisely measurable with
respect to an exterior measure, if for all sets T

Mmo(T) = Mm(TNE) + mTNE) (6)
In such case m.(E) = m(E) is called the measure of E.

We can show that if we restrict ourselves to measurable sets, then the above ideal require-
ments for measure are satisfied.

Since it is true that for all T [see Problem 2.8, page 36]
me(T) = mATNE) + me(TNE)

the Definition 2.5 can be replaced by the following equivalent one.

Definition 2.6. A set E is measurable if for all sets T
me(T) = mlTNE) + m(TNE) ?)
This is often used in practice to show that a set is measurable.

The sets T in the above definitions are often called fest sets since they are used to test
measurability.

LEBESGUE EXTERIOR OR OUTER MEASURE
Thus far we have not actually demonstrated the existence of an exterior or outer
measure although there are in fact several which satisfy the axioms given above. The one
which is most famous and useful is attributed to Lebesgue who investigated it in the early
part of the 20th century.
Definition 2.7. 'The Lebesgue exterior or outer measure of a set E is
me(E) = g.lb. L(O) forallopensets ODE

i.e. the greatest lower bound of the lengths of all open sets O which
contain E.

We can show that this does indeed satisfy the axioms for exterior measure [see Problem 2.4].

We can prove that if F is any interval I, then m.(I) = L(I). Also if S is any open set,
then m.(S) = L(S). See Problems 2.2, 2.26 and 2.27.

The following theorem is important.

Theorem 2-1. If E is any given set, then given ¢ > 0 there exists an open set O D E such
that Mme(E) < me(0) + ¢ and m.(0) = m.(E).
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LEBESGUE MEASURE

Definition 2.8. If a set E is measurable with respect to the Lebesgue exterior measure of
Definition 2.7, then we say that E is Lebesgue measurable and define the
Lebesgue measure of E as m(E) = m(E).

In this book we shall, unless otherwise specified, be concerned only with Lebesgue exterior
measure or Lebesgue measure of sets. Consequently we shall often refer only to exterior
measure or measure without mentioning the name Lebesgue explicitly.

In his investigations, Lebesgue did not actually use Definition 2.5 given above to define
measurable sets. Instead he considered sets E in the bounded interval [a,b] and first
defined the interior or inner measure of a set E as

m(E) = b—a — m(E) (8)
He then called E measurable if the interior and exterior measures are equal, i.e. if
m(E) = b — a — m(E) (9)
Now if we let I =[a,b], (9) can be written
me(l) = m(INE) + m(INE) (10)

which is a special case of (6) with T =1I. Thus the actual definition which Lebesque used
is a special case of (6). Since Lebesgue started with sets contained in [a, ], i.e. bounded
sets, appropriate modifications had to be made for unbounded sets. Such modifications,
however, are not needed if Definition 2.5 is used. Furthermore Definition 2.5 has the
advantage that it can be used in more general theories of measure. Consequently we shall
use Definition 2.5 in various proofs. It is of interest that if (10) is satisfied then (6) will
also be satisfied [see Problem 2.18].

It should be mentioned that a modification of the Lebesgue procedure is sometimes used.
According to this the interior measure of a set E is defined as

my(E) = lLu.b. L(C) for all closed sets CCE (11)

i.e. the least upper bound of the lengths of all closed sets C contained in E. Then E is
called measurable if mi(E) = m.(E) where m.(E) is given by Definition 2.7. Other pro-
cedures are also possible [see Problems 2.42-2.44]. All of these procedures can in fact be
shown equivalent.

It should also be noted that for any set E, mi(E) and m.(E) always exist and
m(E) = me(E) (12)
This result is equivalent to (7) with T =1.

THEOREMS ON MEASURE
Theorem 2-2. If E is measurable, then E is measurable and conversely.

Theorem 2-3. If E has exterior measure zero, then E is measurable and m(E) = 0.
Theorem 2-4. Any countable set has measure zero.

Theorem 2-5. 1f E,; and E: are measurable, then their union E, U E. is measurable. The
result can be extended to any countable union of sets [see Problems 2.10
and 2.12].

Theorem 2-6. If E, and E: are measurable disjoint sets, then
m(EIUEg) = m(El) +m(E2)

This result can be generalized [see Problem 2.13].
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Theorem 2-7. If E, and E; are measurable, then their intersection E; N E; is measurable.
The result can be extended to any finite intersection of sets.

Theorem 2-8. 1f E, and E; are measurable and E, C E, then m(E;) = m(E>).

Theorem 2-9. 1If E, and E. are measurable, £, C K, and E, has finite measure, then
E;— E: is measurable and m(E;— E;) = m(E2) — m(E)).

Theorem 2-10. If E, and E. are any measurable sets, then
m(E1UE:) = m(Er) + m(E:) — m(EiNEy)

This reduces to Theorem 2-6 if E, and E. are disjoint. The result can be
generalized [see Problem 2.41].

Theorem 2-11. 1f E E,, ... are measurable, then E = kgl E is measurable.

Theorem 2-12. If E\, Es, ... are mutually disjoint measurable sets, then
m(EWUEU -+ = m(Er) + mEs) + - -

Theorem 2-13. 1If E. E, E; ... are measurable sets such that E;CE,CE;C ---, then

E = kQ} E) is measurable.

Theorem 2-14. 1f E. E, E; ... are measurable sets such that E;CE,CE;C ---, then

E= kL=J1 E\ is measurable and

m<,§1 Ek> = lim m(E.)

n=+w

Theorem 2-15. If E\, E, Es, ... are measurable sets such that E;DE;DFE;D -+ and at
least one of the E; has finite measure, then E = kél E, is measurable and

m(kalEk> = lim m(E)

n- w0

Theorem 2-16. If I is any interval, m(Il) = L(I).
Theorem 2-17. If O is any open set, m(0) = L(0).
Theorem 2-18. 1f C is any closed set, m(C) = L(C).

ALMOST EVERYWHERE

A property which is true except for a set of measure zero is said to hold almost
everywhere.

BOREL SETS

The class of sets which can be obtained by taking countable unions or intersections of
open or closed sets is called the class of Borel sets. We have the following

Theorem 2-19. Any Borel set is measurable.

VITALI'S COVERING THEOREM

The following theorem due to Vitali is an important and interesting one which is
reminiscent of the Heine-Borel theorem [see page 7].
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Theorem 2-20 [Vitali]. Suppose that each point of a bounded, measurable set E is covered
by a class J of intervals having arbitrarily small length [called a Vitali
covering]. Then there exists a denumerable set of disjoint intervals I L1s, ...

such that kL_Jl I, covers E except for a set of measure zero.

NON-MEASURABLE SETS
It would seem from the above results that all sets in R are measurable. This however
is not true, i.e. there are sets in R which are not measurable. For an example of a non-

measurable set see Problem 2.21.

Solved Problems

LENGTHS OF SETS
. o 1 1
2.1. Find the length of the set kLle{x I < %}

- L1 1
Let Ik—{x.k+1=x<ﬁ}. Then

so that L) = 1-4, LUy = -4, . L) = %_ - i .
Then since the I, are mutually disjoint,
L[G IkJ = S L) = U-PFG-p+ - +<1——1—> - 11
k21 = n n+1 n+1
© ] n . 1
Thus L [kgl ij = lm L Lgl Ik:l = lim <1 - 1> = 1

EXTERIOR OR OUTER MEASURE
2.2. Prove that if S is any open set, then m.(S) = L(S).

Suppose that O is any open set containing S, i.e. 0 D S. Then each of the component intervals
of S is contained in some component interval of O. Now S is the smallest open set which contains

itself, i.e. SO S. Then by definition of exterior measure we have
me(S) = glb.L(0O) where ODS = L(S)

23. Prove Theorem 2-1, page 31: If E is any given set, then given ¢ > 0 there exists
an open set O D E such that (a) m.(E) < m.(O) +¢ and (b) m{O) = me(E).
(a) By definition of Lebesgue exterior measure,
m E) = glb. L(O) for all open sets OD F
Since the greatest lower bound exists, it follows that m (E) exists and by definition of greatest
lower bound we will have for any ¢ > 0
my(E) < L(O)+ ¢

However, since L(0O) = m,(0) by Problem 2.2, the required result follows.

(b) This follows from Problem 2.25.
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2.6.
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Prove that the Lebesgue definition of exterior measure satisfies axiom B-3, page 30,

for exterior measure.

We must show that for any sets E{,E,, ...

me<UEk> = Zm(Ey)
3 k

The inequality is trivial in case one of the sets has infinite exterior measure, so that we can restrict

ourselves to the case where all sets have finite exterior measure.

In such case given ¢ > 0 there are open sets O,DE), where k=1,2,... such that [see

Problem 2.3] L(0)) = my(0)) < m (Ey) + /2K

L{Oy) = m(0y) = mEy)
Then

me<U Ek> = me<U Ok> = Eme(ok) = Eme(Ek)+ 25/2’5
k k k k k

A

Thus since ¢ can be taken arbitrarily small,
me<LkJ Ek> = g me(Ek)

We can also show that the other axioms on page 30 are satisfied.

Prove that if E is any countable set of real numbers, then m.(E) = 0.

%me(Ek) + e

Let the points (real numbers) of the set be a4, @y, a3,.... Then we can enclose ay,a,, ag, ...
in open intervals of lengths less than or equal to /2, ¢/22,¢/23, ... respectively. Thus
€ € € .
m (E) §§+—2—2-+~2§+~-- = ¢

Since ¢ can be taken arbitrarily small, it follows that m (E) = 0.

Prove that for each set 7 and any finite collection of mutually disjoint sets £\, ..

e <T n {kglEk}> = k; me(T N Ex)

. Bn

We use mathematical induction. For n =1 the result is certainly true. Assuming it to be

true for n — 1 sets, we would have

n—1 n—1
me <T ﬂ{ U Ek}> = 3 m(TnEy)
k=1 k=1
Adding m (TNE,) to both sides yields

m TOE,) + m, <Tn{:L:J1Ek}> = é my(TOEy)

k=1

This can be written [see Problem 2.30]

me <Tn{ U Ek} n E,,> + m, (T n{ ¥ Ek} n En> mo(TNEy)
k=1 k=1 k=1

Now since E, is measurable, we have for each set T
me(T) = me(TnEn) + me(‘TnEn)

Il
M=

n
Then letting T = Tn {kL_JIEk}, (3) becomes

me (Tn { U Ek}> = 3 m(TnE))
k=1 k=1

@

(@)

®

“#)

(5)

Hence the result is true for n sets if it is true for » — 1 sets. But since it is true for 1 set it follows

that it is true for 2 sets, 3 sets and so on.
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MEASURABLE SETS AND THEOREMS ON MEASURE

2.7.

2.8.

2.9.

2.10.

Prove that if E is measurable, then the complement E is also measurable.
Since E is measurable, we have for each set T
m(T) = m(TNE) + m(TnE) (1)
In order that E be measurable we must show that for each set T
m(T) = m(TNE) + mfT(E)Y~} = mTnE) + m(TnE) (2)

But (2) is identical with (1). Thus Eis measurable.

Prove that Definitions 2.5 and 2.6, page 31, are equivalent.

For any sets T and E we have -
T = (TNE) U (Tnk) (1)

Thus by Problem 2.4, Mme(T) = m(TNE) + me(TﬂE) (2)
Now according to Definition 2.5 a set E is measurable if

m(T) = m(TNE) + my(TNE) (8)
Thus we can conclude that a set E is measurable if for any set T

m(T) = m (TNE) + m(TNE) )
which together with (2) yields (3).

Conversely if we adopt Definition 2.6, then in view of (2) we see that F is measurable according
to Definition 2.5.

Prove that E is measurable if m.(E) = 0.
For any set T we have TNE C E, so that
MmATNE) = m(E) = 0
Then since m (TNE) = 0, we have Mm(TNE) = 0 (1)
For any set T we have T D Tnﬁ, so that using (1),
m(T) = myTNE) = myTNE) + m(TnE) (@

from which we see that E is measurable and m(E) = m.(E) = 0.

Prove that if E, and E: are measurable, then E; U E, is measurable.
We would like to show that for any set T
me(T) Z m(T 0 [EyUE,]) + my(T 0 [E;UE,]™)
Since E, and E, are measurable, we have for any set T

me(T) my(TNE) + m(TEy)

Il

mATNEy) + m[(TnEy) 0 By + m,(TnEy) n By

Il

= mJTNE,) + m(TNE,nE,) + m(TnE,nE,)
= mJTNE,) + m(TnE,NE,) + my(T 0 [E,UE,]™)

v

me(T N [ELUE,]) + m(T N [B,UE,]™)

Thus E, U E, is measurable.
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2.11.

2.12,

2.13.

2.14.

2.15.

2.16.

Prove that if E: and E- are measurable, then E; N E; is measurable.

By Theorem 1-12, page 4, we have E;NE, = (51U52)~. Since E; and E, are measurable, it
follows from Problems 2.7 and 2.10 that E; N E, is measurable.

Prove that a countable union of measurable sets is measurable.

We can always choose the sets in a countable union to be mutually disjoint [see Problem 1.35,
page 18]. We must thus show that if E, E, ... are mutually disjoint measurable sets, then
o0

E = kL;J1 E, is measurable.

Now since any finite union of measurable sets is measurable, we have for any set T

m, <T n {kQ1 Ek}> + m, <T n {kLZJ1 Ek}~ >
w(eofg ) e m(ro{2n])

n
S m(TNnE,) + m(TnE)
E=1

me(T)

v

v

Since m,(T) is independent of n, we have on taking the limit as n > =

o0

m(T) = kgl mTNEy) + mo(TnE) = m (TnE) + m(TnE)

Thus E = Cl E) is measurable.
k=1

Prove that if Ei, Es, . .. are mutually disjoint measurable sets, then
m<G Ek> = S m(Ey)
k=1 k=1

This follows at once from Problem 2.12 by letting 7 = R, the set of real numbers.

Prove that the measure of any countable set E is zero.
By Problem 2.5, m,(E) = 0. Thus by Problem 2.9, the measure of E is given by m(E) = m(E) = 0.

Prove that a countable union of countable sets has measure zero.

Since a countable union of countable sets is a countable set, the measure of this set is zero
by Problem 2.14. :

Given the measurable sets E;D E;D E3D --- where m(E\) is finite. Prove that
m< N Ek> = lim m(Ey)
k=1 n=— 0
-
Let E = kﬁ E,. Then we have
=1
E,—E = (B;,—Ey) U (Ey—E3) U -~ (1)
Since E,— E,, E, —E,, ... are mutually disjoint and all the sets are measurable, we have by

Problem 2.13
mE,—E) = m(E,—E,) + m(Ey—E3) + - @)
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2.17.

2.18.
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Then since EyDE, E;DE,, E,>E, ..., (2) can be written

m(Ey) — m(E) = 1}3& [m(Ey—Ey) + m(Ey—Eg) + -+ + m(E,_, — E,)]
= [lim [m(Ey) — m(E3) + m(Ey) — m(Ey) + «-+ + m(E,_;) — m(E,)]
= lim [m(E;) —m(E,)] = m(E;) — lim m(E,)
Thus since m(E,) is finite, o o o
mE) = m(kgl Ek> = 1}1_{:; m(E,)

Prove that the Cantor set is measurable and find its measure.

In obtaining the Cantor set, the interval [0,1] is subdivided into 3 parts and the middle third
is removed. Then the remaining intervals are in turn divided into 3 parts and the middle thirds of
each are removed. The process is repeated indefinitely and what is left is the Cantor set.

Now at the first step 1 interval of length 1/3 is removed. At the second step 2 intervals of
lengths 1/3%2 are removed. In general after n steps, 27—1 intervals of lengths 1/37 are removed.
It follows that the total measure of the Cantor set K is

o, &gt 18
mE) = 1 ngl g = 1—7255 = 0
One of the interesting properties of the Cantor set is that although it is non-countable [see Problem
1.22, page 15] it has measure zero.

Let I be the interval [a,b]. Prove that a necessary and sufficient condition for a set
E in I to be measurable is that
me(I) = mo(E) + me(E)
Necessity. By definition a set E is measurable if for all sets T
m(T) = m(TNE) + m(TnE)
Then if ix’l particular we let T =1, the required result follows since in this case TnE = FE

and TnE = E.

Sufficiency. Let T be any set and suppose that G is a measurable set containing T such that
me(T) = m(G) [see Problem 2.45]. Since G is measurable, we have

my(E) = myENG) + my(ENG)
mo(B) = m(EnG) + m(EnG)

mo(E) + my(E)
= m(ENG) + mBENG) + m(EnG) + m(EnG)
MAENG) + m(ENG)] + mENG) + m(EnG))

It follows that m(I)

Z mG) + m(B) = m@G) + mG) = m(l)
We thus see that - - - o~ -
MmAENG) + my(ENG) + m(ENG) + m(EnG) = m(G) + m(@G) @
Now we know that MENG) + mBENG) Z me(G) = m(G) (@)
Subtracting (2) from (1), mAENG) + m(EnG) = m(G)

Now since T7C G, we have ENTCENG and EHTCEDG, so that
MAENT) + mfENT) = myENG) + me(EnG) = m(G) = my(T)

Then by Problem 2.8 it follows that E is measurable.
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It should be noted that the theorem proved here is proved under the assumption that for any
set T there is a measurable set G such that m,(T) = m(G). This is true for Lebesgue exterior
measure as defined in Definition 2.7, page 31 [see Problem 2.45]. An exterior measure for which
this is true is often called a regular exterior measure.

VITALT'S COVERING THEOREM
2.19. Prove Theorem 2-20 [Vitali’s covering theorem].

Let O be an open set of finite measure containing E. Then we can assume that each interval
of g belongs to O. Suppose that h, is the least upper bound of the lengths of all these intervals of
. Choose an interval I; € J whose length is greater than 1h; ie. L(Iy) > 1h,.

Now if m. (E —1I;) =0, the required result is established. If not, let h, be the least upper
bound of the lengths of all those intervals of § which are disjoint from I;. Denote by I, an interval
of ¢ which is disjoint from I; and whose length is greater than 1h,, i.e. L(Iy) > fh,.

If my(E —I;ul,) = 0, the required result follows. If not we continue the process to find
an interval I3, ete. Clearly the process will either terminate, in which case the result is established,
or it will not terminate.

We must thus investigate the case where the process does not terminate. In such case we will
have a sequence Iy, I,, ... of mutually disjoint intervals with the property that
m(ly) = L{I;) > Lh, k=12 ... (1)

0
Then since each I, C O so that kL_Jl I, c 0, we have by Problem 2.13

m< 511k> = I mly = 3 LU = mo) ®

Thus the series in (2) converges and as a consequence of this and (1),

klim L(I,) = 0 and lim by = 0

k=roo
n
Consider now the set S = E — (U I, which is not empty. If 2 € S, then it belongs to ¥
k=1
and does not belong to I,,1I,, ...,I,. By the definition of Vitali covering there will be some interval
I € g containing «. Also I is disjoint from Iy, ..., I,.

The interval I must have at least one point in common with some interval I, where k > n.
For if I were disjoint from I,,,4, I, 49, ... for £k = n4+1, n+ 2, ..., it would follow on noting
that L(I) = h, for ¥k = n+1,n+2, ... and lim h, = 0 that L) = 0 so that I would not
be an interval. koo

We can assume that the first interval in the sequence (I,) with which I has common points
is I,,; ;. We see that in such case

L) = hypyy < 2L(I1,4y) 3
Since x € I, we see from Fig. 2-1 that the I
distance from z to the midpoint of I, cannot PG
exceed L(I) + {L(I,4,) or 3L(I,4;) using (3). .~ : o z '
If therefore we consider an interval J,.; with N —~— /
the same midpoint as I, +; but five times as long, I
we see that x € J,, ;. Fig. 2-1

n
From this it follows that all points « belonging to E — kU1 I, also belong to G . Jys 1.e.
= k=n+
E- U1 O J '
- C
kL—Jl k k=L14;+1 k “)

Then by Problem 2.25,

A

me <E~ N 1k> S LUy =5 3 Ly
k=1 +1 k=n+1

k=n
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o0

But since 3 L(I,) converges, it follows that given ¢ > 0 there is a number ny such that the
k=1

last sum can be made less than ¢/5 for n > ng, ie.

m, <E —kL:JIIk> < e for n>mn )

2.20. Prove that the conclusion of Problem 2.19 is the same as the statement

m (E - kQ11k> = 0
or that the mutually disjoint intervals I, I, ... cover E almost everywhere.

The result (5) of Problem 2.19 can be written equivalently as

m, <E-—kL=)11k> =0

Thus from Problem 2.9 we have "

NON-MEASURABLE SETS
2.21. Demonstrate the existence of a non-measurable set.

We shall show that there is a non-measurable set in the interval {0,1]. For convenience in
arriving at this set we shall map this interval on to the circumference C of a circle so that to
each point in [0,1] there will be one and only one point on C and conversely.

Let x and y denote any two points on C. We define z and ¥ to be equivalent points if the arc
joining them has rational length and in such case write x ~ y.

We now consider subsets of C, denoted by A,, having the property that two points x and y
are in the same 4, if « ~ y. The sets A, are often called equivalence classes. Since the rational
numbers are countable, it is then clear that each A, contains a countably infinite set of points, i.e.
is countable.

The sets A, are also mutually disjoint. For if the same point z belongs to different sets A
and Aa , then all points of A,, and Aa are the same so that Aa is identical with A

Since the sets A, are mutually disjoint, it follows that there is a non-countable number of such
sets. To see this we simply have to observe that each set must contain a distinct irrational
number and that the set of irrational numbers is non-countable.

We now construct a set S which consists of one and only one point xz, from each of the sets
A, so that any two distinct points of S are not equivalent. To do this we must use the axiom
of choice. The set S is the required non-measurable set.

To show that S is non-measurable let us first consider the set of rational numbers between
0 and 1, denoted by 7y, 79, 73, ... . For simplicity let »; = 0. For any positive integer k let Sk
be the set of points of C which we obtain by a counterclockwise rotation of S through an arc of
length 7. It is clear that S =S, and all the Sy are congruent, so that they are either all meas-
urable or all non-measurable.

The sets S, do not have any points in common, i.e. they are mutually disjoint. To see this
let us consider any two Sy, for the sake of argument S; and S;. If S, and S; are not disjoint
there is a point in common, say p. Since p € S, there is an element y € § for which the are
length from p to y is r4. Also, since p € S; there is an element z € S for which the arc length
from p to z is r;. Thus the arc length from y to z is rational, i.e. ¥y ~2. This however contra-
dicts the fact that no two distincet points of S can be equivalent, and thus we must have y =z
so that we must have 7, =1r; which is impossible, This contradiction shows that the S, are
mutually disjoint.

Now if we take any point x € C, then we have x € A, for some a. Since z, € 4,, it follows
that the arc length from x to x, equals 7, for some positive integer k so that « € S,. Thus each
point of C belongs to some Sj.
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We thus conclude that C = kC_OJl S where the S are mutually disjoint. Then if the Sy are
measurable we have m(S) = m(S;) = m(Sy) = ++- and
m(C) = m(S) +m(Sy) + -+ = m(S) + m(S) + ---

Now if m(S) > 0 we would have m(C) = », and if m{(S) =0 we would have m(C) = 0. Since
m(C) =1, we cannot have m(C) = «» or 0. This contradiction shows that S cannot be measurable
as we were required to show.

Supplementary Problems

LENGTHS OF SETS

2.22. Find the lengths of each of the following sets.
(@ {£: 2<x<6} B {x:8=2x=5}uU{—4=2x<-2} (¢) {w: 3<ax<4}U{l=x=6}
Ans. ()8 (b)4 (o) 9

o0

2.23. Find the length of the set kU {x : §1E =z < 2k1_ 1}, Ans. 1
=1

2.24. Find the length of the set l:) {x << élg . Ans. 1/3

EXTERIOR OR OUTER MEASURE
2.25. If E{C E,, prove that m,(E;) = m,(E,).

2.26. Prove that if I is a closed interval [a, b], then m () = L(I) = b —a.
2.27. Extend the result of Problem 2.26 to any interval.

2.28. Prove that if C is any closed set, then m,(C) = L(C).

2.29. If m,(E) =0, prove that m(E,U E,) = m(E,).

2.30. Verify equation (3) of Problem 2.6.

MEASURABLE SETS AND THEOREMS ON MEASURE

2.31. Prove that requirement A-5 for measure follows from the other requirements.
2.32. Prove that any subset of the rational numbers @ is measurable and find its measure.

2.33. Prove that the set of all irrational numbers in [0,1] is measurable and find its measure. Is any
subset of the irrational numbers measurable? Justify your answer.

234. Prove that every interval I is measurable and has a measure equal to its length, i.e. m(I) = L(I).
2.35. Prove that if O is any open set, then O is measurable and m(0) = L(0O).

2.36. Prove that if C is any closed set, then C is measurable and m(C) = L(C).

2.37. Prove Theorem 2-8, page 33.

2.38. Prove Theorem 2-10, page 33.
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2.39.

2.40.

2.41.

242,

2.43.

2.44.

2.45.

2.46.

247,

2.48.

2.49.

2.50.
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Prove or disprove: Any subset of a measurable set is measurable.
Use Problem 2.5 to prove that the set of points in [0,1] is not countable.

If E|, E,, E;3 are any measurable sets, prove that
m(E\VE,UE,) = m(E;) + m(E,) + m(E,) — mE NE,) — m(E;NEy) — m(E,nE,) + m(E NE,NE,)

which is a generalization of Theorem 2-10, page 33. Obtain further generalizations.

Prove that a set E is measurable if and only if for any e > 0 there exists an open set ODE
such that m, (0O —E) <e.

Prove that a set E is measurable if and only if for any e > 0 there exists a closed set CCE
such that m (F —C) <.

Prove that a set E is measurable if and only if for any e > 0 there exist an open set O D E and
a closed set C C E such that m, (0 —C) <e.

If A is any set, prove that there is a measurable set BO A such that m(A) = m(B). See Prob-
lem 2.18.

Suppose that all the numbers between 0 and 1 are expressed as non-terminating expansions in the
scale of 10, i.e. as infinite decimals. Prove that the measure of the set of all such numbers in

which one particular digit [say 5] is omitted is zero.
Prove Theorem 2-19, page 33.

Use Lebesgue’s definition of a measurable set [see (8) or (9), page 32] to prove (a¢) Theorem 2-6,
(b) Theorem 2-11.

Show how to prove some of the theorems on pages 32 and 33 if we start with the definition that
E is measurable if there is an open set O O E such that me(O —E) < ¢ [compare Problem 2.42].

Work Problem 2.49 if we use the definition that E is measurable if there is an open set ODF
and a closed set CCE such that m,(0 —C) < ¢ [compare Problem 2.44].
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DEFINITION OF A MEASURABLE FUNCTION

Let E be a measurable set and f(z) a real function defined on E. We say that f(x) is
Lebesgue measurable or, briefly, measurable on E if for each real number « the set of values
xz € E for which f(z) > « is measurable. The set of values x €K for which f(z) >« can
be written {x € E: f(z) > «} or briefly E[f(x) > «].

If f(x) is measurable we call it a measurable function.

THEOREMS ON MEASURABLE FUNCTIONS

Theorem 3-1. The function f(z) is measurable on F if and only if for each real number
« one of the following sets is measurable

(@) E[f(z) <«], () E[f(x)=+«], (¢) E[f(®)Z«]

and if one of these sets is measurable then all the sets are measurable.

Because of this theorem a function f(x) can be defined as measurable on E if any one of the
sets E[f(x) > «], F[f(x) <«], E[f(x) =«], E[f(x) = «] is measurable for each «.

Theorem 3-2. If f(x) is measurable on E, then E[f(x) =«] is measurable for each . The
converse of this is not true [see Problem 3.6].

Theorem 3-3. The function f(x) is measurable on E if and only if for each pair of distinct
real numbers « and B, Ela < f(x) <pB] is measurable. The result is also
true if either one or both of the inequality symbols is replaced by =.

Theorem 3-4. A function f(x) is measurable on E if E[f(x) > «] is measurable for each
rational number «. ~

Theorem 3-5. If f(x) is measurable on a set E: and if E: C E4, then f(x) is measurable on
E,.

Theorem 3-6. If f(x) is measurable on a countable class of disjoint sets Ey, Es, ..., then
it is measurable on their union k§1 E..

Theorem 3-7. If fi(x) and f2(z) are measurable on E, then E[fi(x) > f2(x)] is measurable.
Theorem 3-8. A constant function is measurable. |

Theorem 3-9. If f(x) is measurable on E, then for any constant ¢, f(x) + ¢ and cf(x) are
' also measurable on E.

43
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Theorem 3-10.
Theorem 3-11.

Theorem 3-12.

Theorem 3-13.
Theorem 3-14.
Theorem 3-15.

Theorem 3-16.

Theorem 3-17.

Theorem 3-18.

Theorem 3-19.

Theorem 3-20.
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If f(x) is measurable on E, then [f(x)]? is measurable on E.

If fi(x) and f:(x) are measurable on E, then f1(z)+ fz(z), fi(x) — f2(x),
f1(2) f2(x) and fi(x)/f2(x) where f2(x)> 0 are measurable on E.

If fi(x) and f:(x) are measurable on E, then the maximum and minimum
of f1(x) and f2(%), i.e. max {f1(x), f2(x)} and min {f:(z), f2(2)}, are measurable.

If f(») is measurable on E, then |f(z)| is measurable on E.
If f(x) is continuous on E, it is measurable on E.

If fi(u) is continuous and u = fo(x) is measurable, then fi(fz(x)) is meas-
urable. In other words a continuous function of a measurable function is
measurable. However, a measurable function of a measurable function
need not be measurable.

Let (fu(x)) be a sequence of functions measurable on E. Then F(x) =
Lu.b. fa(x), called the upper boundary function, and G(x) = g.Lb. fa(2),
called the lower boundary function, are also measurable on E.

If (fn(x)) is a monotonic sequence of functions measurable on E such that
lim f.(x) = f(x), then f(x) is measurable on E. [Note: The sequence
(fa(x)) is said to be monotonic increasing if fi(x) = fa(x) = -- -, monotonic
decreasing if fi(x) = fa(x) Z - -+, and monotonic if the sequence is mono-
tonic increasing or monotonic decreasing.]

Let (f(x)) be a sequence of functions measurable on E. Then lim f.(2) and
lim f.(x) are measurable on E. e

n—+w

Let (fu(x)) be a sequence of functions measurable on E such that
lim fo(z) = f(x). Then f(x) is measurable on E. The result is also valid

in case lim f.{x) = f(x) almost everywhere.

If fi(x) is measurable on a set E and fi(x) = f2(x) almost everywhere on
E, then f:(x) is measurable on E.

BAIRE CLASSES
From the above theorems we see that all continuous functions are measurable and all

limits of sequences of measurable functions are measurable. It follows that limits of
sequences of continuous functions, which may be discontinuous, are measurable and that
limits of these discontinuous functions are measurable, etc. Thus we obtain a hierarchy
of measurable functions.

This has led Baire to give a classification of functions. A function is said to belong to
the Baire class of order zero [or briefly Baire class 0] if it is continuous. A function
which is the limit of a sequence of continuous functions [i.e. functions belonging to Baire
class 0] but which is itself not continuous, belongs to the Baire class of order one [or briefly
Baire class 1]. In general a function is said to belong to Baire class p if it is the limit of a
sequence of functions of Baire class p — 1 but does not itself belong to any of the Baire
classes 0,1, ...,p—1.

It follows that every function which belongs to some Baire class is measurable.



CHAP. 3] MEASURABLE FUNCTIONS 45

EGOROV’S THEOREM

Theorem 3-21 [Egorov]. Let (f.(x)) be a sequence of measurable functions which converges
to a finite limit f(x) almost everywhere on a set E of finite measure. Then
given any number & > 0, there exists a set F' of measure greater than
m(E) — 8§ on which f.(x) converges to f(x) uniformly.

Solved Problems

3.1. Prove that f(r) is measurable on F if and only if for each real number « the set
E[f(x) = «] is measurable.

If f(x) is measurable on E, then for each real number « the set E[f(x) > «] is measurable. Then
by Theorem 2-2, page 32, its complement with respect to E given by E[f(x) = «] is measurable.

Conversely if E[f(x) = «] is measurable, so also is E[f(z) > «], i.e. f(x) is measurable on E.

3.2. Prove that f(x) is measurable on E if and only if for each real number « the set
E[f(x) = «] is measurable.

If f(x) is measurable on E, then for each real number « the set E[f(x) > «] is measurable.

Then FE [f(x) >k —%:l is measurable for  =1,2,3,... and so

nFjl E [f(x) > ﬂ = E[f(®) = «]
is measurable.

Conversely if E[f(x) Z ] is measurable, then E [ flx) = « +-?12:l is measurable for n = 1,2,3, ...
and so

O E [f(x) = +ﬂ = E[f@) > ]

is measurable, i.e. f(x) is measurable on E.

3.3. Prove that f(x) is measurable on E if and only if for each real number « the set
E[f(x) <«] is measurable.

If f(x) is measurable on E, then E[f(x) > «] is measurable for each real number . Then by
Problem 3.2, E[f(x) Z«] is measurable and so its complement with respect to E given by
E[f(x) < k] is measurable.

Conversely if E[f(x) < x] is measurable, then its complement with respect to E given by
E[f(x) = x] is measurable and so by Problem 8.2 f(x) is measurable on E.

34. Prove that if f(x) is measurable on E, then E[f(x) =«] is measurable for each real
number «.

‘We have E[f(x) —_ x] = E[f(x) = x] N E[f(x) = x]

Since the sets on the right are measurable, their intersection is also measurable and so the
result follows.
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3.5.

3.6.

3.7.

3.8.

3.9.

MEASURABLE FUNCTIONS [CHAP. 3

Prove that if f(x) is measurable on E, then () E[f(z) = =] and (b) E[f(zx) = —]
are measurable.

(@) We have E[fw) = =] = { Blfx) >«

and since a countable intersection of measurable sets is measurable the required result follows.
0
(b) We have Eff(x) = —] = ﬂl E[f(x) < —«]
K=

and the required result follows as in part (a).

Give an example to show that even if E[f(x) =«] is measurable for each real number
x, it may be true that f(x) is not measurable on E. Compare Problem 8.4.

Suppose that S is a set which is non-measurable [see Problem 2.21, page 40, for example] and
let this set be made to correspond in a 1-1 manner with some subset of the set of points for which

xz > 0. Suppose further that the complement of S, i.e. §, corresponds in a 1-1 manner with some
subset of the set of points for which z = 0.

Now let us suppose that a function f(x) is defined by these 1-1 correspondences. Then if « is
any real number, the set E[f(x) = x] contains not more than one point and is thus measurable.
However, E[f(x) > 0] which is the same as S is non-measurable, i.e. f(x) is not measurable,

Prove Theorem 3-4, page 43: A function f(z) is measurable on E if (a) E[f(x) > «]
is measurable for each rational number « or (b) E[f(z) = «] is measurable for each
rational number «.

(a) Let « be the limit of a sequence of rational numbers (x,) where x; > ky > k3 > -+-. We have
o .
E[f(x) >« = U1 E[f(x) > x,)
n=

Then since each of the sets on the right is measurable, their countable union is also measurable
and so f(z) is measurable on E.

(b) This follows as in part (a), since we can write

E[fx) =« =

2
nc s

) E[f(x) = «,)

Prove Theorem 3-7, page 43: If f:(x) and f»(x) are measurable on E, then E[f;(x) > f2 (x)]
is measurable.

For every x € E we can always find a rational number r such that fi(®) > r > fo(x). Since
Elfi(x) > 7> fo(x)] = E[fy(x) > 7] 0 Efy(x) <] (1)

it follows that the set on the left is measurable since the sets on the right are measurable.

Now we have
Elfi(x) > fo(x)] = U Effi(x) > r > fo(x)] (2)

where the union on the right is taken over all rational numbers = such that f1(x) > r > fo(z).
Since the set of rational numbers is countable, the right side of (2) is a countable union of measurable
sets which is measurable,.

Prove that if f(x) is measurable on E, then for any real constant ¢, f(x) + ¢ is meas-
urable on E.

Since f(x) is measurable on E, we have E[f(x) > x —e¢] is measurable. Thus E[f(x)+ ¢ > «]
is measurable and so f(x) 4 ¢ is measurable on E.
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3.10.

3.11.

3.12.

3.13.

3.14.

3.15.

Prove that if f(x) is measurable on E, then for any real constant ¢, ¢ f(x) is measurable
on E.

If ¢ >0, Elcf(x)> x|
If ¢<0, Elcf(x) >«

E[f(x) > «/¢] which is measurable.

il

E[f(x) < x/¢] which is measurable.
If ¢ =0, ¢f(x) =0 which is measurable.

Thus ¢ f(x) is measurable on E for any real constant c.

Prove that if f1(x) and f2(x) are measurable on E, then f;(x) + f2(x) is measurable on E.
Method 1.
‘We have for each real number &,
E[fi(@) + fo@) > ] = E[fi(x) > x — fo(x)] @

By Problem 8.9 and 3.10, x — fy(x) is measurable. Thus by Problem 3.8 the right side of (1) is
measurable, so that f,(x) + f5(x) is measurable on E.

Method 2.
‘We have for each real number &,

Elfy@ + fal) >« = U Elfil) > 7] 0 E[fo(@) >k —1] @

where the union on the right is taken over all rational numbers » and is thus a countable union.
Since f,(x) and f5(x) are measurable on E, so also are the sets on the right of (2) and a countable
union of these sets. Thus the left side of (2) is measurable and so f,(x) + f5(x) is measurable on E.

Prove Theorem 3-10, page 44: If f(x) is measurable on E, then {f(x)}? is measurable
on E.

We have
E[{f@}2 >« = E[f) > Vr] U E[f@) < —Vx]

and the required result follows since the union of measurable sets is measurable.

Prove that if fi(z) and f:(x) are measurable on E, then fi(x) f2(x) is measurable on E.

We have
fi@) fa(x) = L) + fol@)}? — {filx) — f2(2)}F]

Thus by Problems 3.10 and 3.11, f;(x) f»(x) is measurable on E.

Prove Theorem 3-14, page 44: If f(x) is continuous on E, it is measurable on E.

Consider the set E[f(2) = «]. If xy is any limit point of this set, then every neighborhood of
x, contains points such that f(z) = «. By the continuity of f(x) at z,, it follows that f(xy) = «.
We thus see that the limit point x, belongs to the set E[f(x) = «]. Then this set is closed since it
contains all its limit points. It follows that E[f(x) = «] is measurable since any closed set is
measurable. Thus the complement E[f(x) > «x] is measurable and so f(x) is measurable on E.

Let f(z) be measurable on E and let O be an open set. Prove that the set E[f(z) € O]
is measurable.

o
Let O = U I, where I, = (a,b,) are the component open disjoint intervals [see Theorem
k=1

1-19, page 7]. It follows that
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3.16.

3.17.

3.18.

3.19.
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Elf(z) €0] = k(:JlE[f(x) €L = kQI(E[f(x) > a,] N Elf(x) < by])

Since the sets E[f(x) > o] and E[f(x) < b] are measurable, it follows that E[f(x) € O] is
measurable.

Prove Theorem 3-15, page 44: If fi(u) is continuous and u = fa(x) is measurable on
E, prove that f,(f:(x)) is measurable on E.

We must show that E[f,(f;(x)) > «] is measurable. Now
E[f1(f2(=x)) > «] = E[fs(x) € 0] &)

where O = {u: fi(u) >«}

is open since f is continuous [see Problem 1.41]. Then since the right side of (1) is measurable,
the required result follows.

Prove Theorem 3-16, page 44: Let (f.(x)) be a sequence of functions measurable on
E. Then F(z) = lub. {fa(x)} = Lub. {fi(z),f2(z),...} and G(z) = g.lb. {f.(2)} =
g.Lb. {f1(®), f2(x), ...} are also measurable on E.

We have ©
E[F(x) = «] = U1 E[f,(x) Z «]
n=
Then since a countable union of measurable sets is also measurable, the required result follows.

A similar argument shows that G(x) = glb. f,(x) is measurable on E [see Problem 3.45].

If fi(x) and f.(x) are measurable on E, prove that (a) max {fi(z),f2(x)} and
(b) min {fi(x), f2(x)}, where max and min denote maximum and minimum, are also
measurable on E.

(a) We have
max {f(x), fo(®)} = Lub. {f {2),fs(x)}

so that the required result follows from Problem 8.17.

(b) We have
min {fi(x), fo(x)} = g.Lb. {fi(x), f2(2)}

so that the required result follows from Problem 3.17.

Prove Theorem 3-17, page 44: If (f.(x)) is a monotonic sequence of functions meas-
urable on E such that lim f.(x) = f(x), then f(x) is measurable on E.

Consider the case where for all x € E,

filx) = fo@) = falx) = ---

We have for each real number «

w0
£t 0 25| = 0 ElG) >

n=+oo =
and the required result follows since a countable union of measurable sets is measurable.

A similar proof can be given for the case where f,(x) = fy(x) = f3(x) = --+ or cases where
the equality is omitted.
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3.20. Prove Theorem 3-18, page 44: Let (f»(x)) be a sequence of functions measurable on
E. Then lim f,(x) and lim f.(x) are measurable on E.

Call Fi(z) = Lub.{f, (), fa(x),...}
Fo(x) = Lub. {fo(x), f3(x), ...}
Fg(z) = lub. {f3x), fy(x), ...}
and so on. It follows that F,(x) = Fa(x) = Fg(x) = --+ and
Dim fo@) = lim Fy(2)

Now by Problem 3.19, the right side is measurable and so the required result follows.

A similar argument shows that lim f,(x) is measurable [see Problem 3.46].
7n=r 0

3.21. Prove Theorem 3-19, page 44: Let (f.(x)) be a sequence of functions measurable on
E such that lim f.(2) = f(z). Then f(z) is measurable on E.

By Problem 3.20, lim f,(x) and lim f,(x) are measurable on E. If lim f,(x) = f(x), then
n = n— 0 n=— 0

f@) = Iim fu(@ = lim fu()

and so is measurable on E.

3.22. Prove that there are functions which are non-measurable.

Let S be a non-measurable set [see Problem 2.21] and consider the characteristic function

_ 1 if €S8
@ = Y0 if ees
Then x(z) is non-measurable.
BAIRE CLASSES
3.23. Let fa(x) = 1 for any real number z. (a) To what Baire class does each f.(x)

1+ a2
belong? (b) To what Baire class does lim f.(x) belong?
n=—+co
(a) Since each f,(x) is continuous, it belongs to the Baire class of order zero, ie. Baire class 0.
(b) For |z[<1, lim f,(x) =1. For |#{>1, lim f,(x) = 0. For o =1, ie a2 =1,
n=—+ o n=+x
lim f,(x) = 4. Thus if lim f,(») = F(x), then
=+ 0 n=—+ 0

1 |zl<1
F@ = <3 le=1
0 x| >1

Since F(x) is the limit of a sequence of functions in Baire class zero but does not itself belong
to Baire class zero, it belongs to Baire class 1.

3.24. Prove that the sum of two functions of Baire class p is also of Baire class p.
The result is true if p = 0, since the sum of two continuous functions is also continuous.

To prove that the result is true for p = 1, we observe that by definition if f(x) and g(x) belong
to Baire class 1 then there are sequences of functions {f, (x)) and (g,(x)) such that lim f,(x) = f(x)
ne=—r 0
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and 7}1_{1:0 gx(x) = g{x) where each f,(x) and g,(x) belongs to Baire class 0. Now since f, (x) + g,(x)

belongs to Baire class 0 it follows that f(x)+ g(x) = lim {f,(%)+ g,(x)] belongs to Baire class 1.
n=—r o

The same argument can be used to prove the result for any value of p.

EGOROV’S THEOREM

3.25.

Prove Theorem 3-21 [Egorov’s theorem], page 45: Let (f.(z)) be a sequence of
measurable functions which converges to a finite limit f(x) almost everywhere on a
set £ of finite measure. Then given any number § > 0, there exists a set F of
measure greater than m(E) — § on which f.(x) converges to f(x) uniformly.

Suppose that the set of all « € E for which f,(x) converges to f(x) is denoted by H. Then
we have
m(H) = m(E) or mE-—-—H) = 0 (1)

Let H,; = {x: x € H, ]fn——f[<:—’for nzj}

Now if we fix p it follows that
H,,CH,,cH,3C -

and H =0 H,,
i=1

Then by Theorem 2-14, page 33, we have
lim m(H, ;) = m(H)
X

so that there must be a natural number j(p) for which

8
mH — H, o)) < %5 (2)
-]
If we call F = n1 Hy, i
p=
we see that on F fn—17 < % for all »n = j(p)

i.e. fu(x) converges to f(x) uniformly on F.

We now have only to show that m(F) > m(E)— 38 or equivalently m(E —F) < 8. To do this
note that

H~F cC Y (H—H,,jp)

so that by (1), (2) and Theorem 2-8, we have

mE—~F) = mH—-F) = 3 mH—H,,,) < LI
p=1

p=1 2P

ie. m(E—F) < § as required.
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3.26.

3.27.

3.28.

3.29.

3.30.

3.31.

3.32.

3.33.

3.34.

3.35.

3.36.

3.37.

3.38.

3.39.

3.40.

3.41.

3.42.

3.43.

3.44.

3.45.

3.46.

3.47.

Supplementary Problems
Prove Theorem 3-3, page 43.

Prove a theorem analogous to that of Theorem 3-3, page 43, where either one or both of the
inequality symbols < is replaced by =.

Prove that a constant function is measurable.

Investigate the measurability of the function

1 if x is a rational number in (0, 1)
0 if x is an irrational number in (0, 1)

f(x)

Prove that if f,(x) and f,(x) are measurable, then ¢, f;(x) + ¢, f5(x), where ¢, and ¢, are any
constants, is also measurable.

Prove that f(x) is measurable on E if and only if E[f(x) < «] is measurable for each rational
number «.

Prove that any function defined on a set of measure zero is measurable.

Prove that the sum and product of any finite number of measurable functions is also measurable.
Is the result of Problem 3.33 true for an infinite number of measurable functions? Explain.
Prove Theorem 3-5, page 43.

Prove Theorem 3-6, page 43.

Prove that if f,(x) and fy(x) are measurable on E, then f,(x)/f,(x) is measurable on E if f,(x) + 0.
[Hint: First prove that 1/f,(x) is measurable].

If f(x) is measurable, prove that any positive integral power of f(x) is also measurable.
Prove Theorem 3-12, page 44.

Prove Theorem 3-13, page 44.

Prove Theorem 3-19, page 44, for the case where nh_{r:o fo(®) = f(x) almost everywhere in E.
Prove Theorem 3-20, page 44.

Prove that the function f(x) defined in the interval [a, b] by
c a=x<gq
f@) = { b

¢, q=x=Db
where ¢; and ¢, are constants, is measurable in [a, b]. This function is an example of a step function.
Suppose that [a, b] is the union of a countable number of disjoint sets Ey, E,, ... so that f(x) = ¢,
on E; where ¢, is a given constant. Prove that f(x) is measurable in [a,b]. Note that if
E,, E,, ... are intervals, then f(x) is a step function [Problem 3.43].
Complete Problem 3.17.
Complete Problem 3.20.

Let f(x) be measurable and g(x) be monotonic increasing [i.e. g(z) is such that g(z,) = g(x,) for
2y > xy]. Prove that g(f(x)) is measurable.
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3.48.

3.49.

3.50.

3.51.

3.52.

3.53.

3.54.

3.55.

3.56.

3.57.

3.58.

3.59.

3.60.
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Prove the result of Problem 3.47 if g(x) is monotonic decreasing [i.e. g(x,) = g(x,) for =z, > =,].
Thus prove the result if g(x) is monotonic [i.e. monotonic increasing or monotonic decreasing].

Show that 1lim lim (cosp! #2)29 is measurable.

p— 0 =0
To what Baire class does the function of Problem 3.49 belong?

Let f,(x) =e~n2* for 0=x=1 and let F(x) = lim f,(x). To what Baire classes do the
funections (a) f,(x) and (b) F(x) belong? nre

Let S be a non-measurable set. Suppose that for each p €S we define a function fol@) =

1 ifzxeS

(a) Show that F(x) = Lub. [f,(x) where p€ S] = {0 otherwise and that

fl T=0p

10 otherwise
(b) F(x) is non-measurable.

Does the result of Problem 3.52 contradict Theorem 3-16, page 447

Prove the result of Problem 3.24 for the case where p = 2.

Prove that if f(x) is of Baire class p, then so also are (a) |f(x)], (b) [f(=)]2

Prove that the product of two functions of Baire class p is also of Baire class p.

Prove that if f;(x) and f,(x) are of Baire class p, then so also are (a) max {f;(x), fo(x)} and
(b) min {f,(2), fy(x)}. [Hint: max {f1(z),f2(#)} = §[f1(®) + folx)] + 1|f1(2) — fo(x)|, min {f,(2), f5(x)} =
$/1(x) + fo(2)] — §f1(x) — fal®)].]

Use Problem 3.57 to work Problem 3.18.

Let (f,(x)) be a sequence of functions of Baire class p which converges uniformly to f(z). Prove
that f(x) is also of Baire class p.

Is the result of Problem 3.59 true in case the convergence is not uniform? Explain.



Chapter 4

THE RIEMANN INTEGRAL

The integral usually treated in introductory courses in the calculus is called the
Riemann integral after the mathematician who contributed largely to its development. A
discussion of this integral and its properties is given in Appendix A, pages 154-174, for the
benefit of those who wish a review of it.

The Riemann integral has certain defects which can be remedied by use of the
Lebesgue integral, as we shall see in this and later chapters. Although it is possible to
- define the Lebesgue integral in many ways, we shall adopt a procedure which parallels as
closely as possible the definition given in Appendix A for the Riemann integral. The main
difference between the Riemann and Lebesgue integrals is that the former uses intervals
and their lengths while the latter uses more general point sets and their measures. Thus
it is not surprising that the Lebesgue integral is more general than the Riemann integral.

DEFINITION OF LEBESGUE INTEGRAL FOR
BOUNDED MEASURABLE FUNCTIONS

Let f(x) be bounded and measurable on the interval [e,b]. Suppose that « and g are
any two real numbers such that « < f(z) < 8. Divide the range « to 8 into n subintervals
by choosing values #1,¥s, ..., ¥n—1 80 that

= Yo<hn<Yp<- - <Yi-i<Yn = B (1)

Note that these values are represented geometrically by points on the y axis as indicated
in Fig. 4-1. A particular set of subdivision points is often referred to as a partition, net
or mode of subdivision.

Let Ei, k =1,2,...,n, be the set of all « in [a,b] such that yi-1 = F(x) <ws, ie.
Ex = {x:y-1 = f(x) < ¥}y E=12...,n
Since f(x) is measurable, these sets are measurable and, as eagsily verified, disjoint.
Consider the upper and lower sums S and s respectively defined by

S = ZpmE) @
s = 3 ueam(By) @)

By varying the partition, i.e. choosing different points of subdivision as well as the number
of points, we obtain sets of values for S and s. Let

I = g.lb. of the values of S for all possible partitions
J

I

Lu.b. of the values of s for all possible partitions

53
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These values, which always exist, are called upper and lower Lebesgue integrals of f(x) on
[@, b] respectively and are denoted by

~b b
I= f f@)ds, J = f f(@) da %)
If I=J, we say that f(x) is Lebesgue integrable on [a,b] and denote the common value by
b
Sty | )

called the Lebesgue definite integral of f(x) on [a, b].
We have the following important

Theorem 4-1. If f(x) is bounded and measurable on [e,b], then the Lebesgue integral (5)

exists and we say that f(x) is Lebesgue integrable or simply integrable on
[a, b].

If (5) exists, we sometimes write

fbf(w) de < " (6)

GEOMETRIC INTERPRETATION OF THE LEBESGUE INTEGRAL

As seen in Fig. 4-1 below, yx m(Ex) and yx—1 m(Ex) can be interpreted geometrically as
areas of rectangles when the Ei are intervals on the x axis. In such case the Lebesgue
integral gives the area bounded by the curve y = f(x), the x axis and the ordinates at
z=a and 2 =>b. For more general sets the Lebesgue integral may exist but a geometric
interpretation may be impossible.

Ynip————— e —— l
Befp-———————-——-- - ————— —{
] iy - b
|
-
g |
||
Mo apo b b
| 0
| Ll

a b x

Fig. 4-1

NOTATION FOR RIEMANN AND LEBESGUE INTEGRALS

It should be observed that (5) has the same appearance as the Riemann integral of
elementary calculus. Since the main purpose of this book is a treatment of the Lebesgue
integral, we shall use the notation (5) for this integral. When it is necessary to distinguish
between this integral and the Riemann integral, we shall use the notation

@ f " H(x) da @)

for the Riemann integral. [An exception to this is Appendix A.]
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THE LEBESGUE INTEGRAL DEFINED ON A BOUNDED MEASURABLE SET
If E is a measurable set contained in [a, b], then the Lebesgue integral of f(x) on E is

defined as .
f feyae = [ g@aa ®)
where g(xy = {f(x) for v € & 9)
0 for x<FE

This can also be defined directly through use of the upper and lower sums (2) and
(8) where
E. = {x: 2€FE, yo—1 = f(x) <y} (10)

If this is done, then the results already obtained become a special case where E = [a,b].

THE LEBESGUE INTEGRAL AS A LIMIT OF A SUM

We can also define the Lebesgue integral as the common limit of the sums S and s
given by (2) and (3) respectively as the number of subdivision points becomes infinite in
such a manner that the largest value of yx — ¥x-1 approaches zero. See Problems 4.11 and
4.39.

THEOREMS INVOLVING THE LEBESGUE INTEGRAL

In the following we assume, unless otherwise stated, that f(z) is bounded and measurable
and thus Lebesgue integrable and that all sets indicated are measurable.

Theorem 4-2. f cfx)dz = f f(x)da for any constant ¢
E E

Theorem 4-3. f cdx = c¢m(E) for any constant c
E

Theorem 4-4. If E has measure zero, then

f fx)de = 0
E
Theorem 4-5. 1If A = f(x) = B, then

Am(E) = f f(x)de = Bm(E) (11)
E
This is sometimes called the mean-value theorem for Lebesgue integrals.

Theorem 4-6. If E = E,UE, where E; and E; are disjoint, then

j; f@)de = j; J@da + L f(z) dz

The result is easily generalized to finite unions of sets.

Theorem £-7. If E = E,UE,U:-- where E,, FEs, ... are mutually disjoint, then

Lf(oc)dx = Llf(x)dac + j;zf(x)dx Lo,

This generalizes Theorem 4-6 to a countably infinite union of sets.
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Theorem 4¢-8. L [f(x) + g(z)] dx f f(x)dx + f g(x) dx
The result is easily generalized to any finite number of functions.

Theorem 4-9. If f(x) and g(x) are bounded and measurable on E, then f(x) g(x) is Lebesgue
integrable on FE, i.e.

{ r@9@ar < =
Theorem 4-10. If f(x) = g(x) on E, then

L flx)dz = L g(x) dx

The result is also true if f(z) = g(x) almost everywhere on E.

Theorem 4.11. 1f f(x) is bounded and measurable on E, then |f(x)| is Lebesgue integrable on
E. Conversely if |[f(x)| is bounded and measurable on E, then f(z) is
Lebesgue integrable on E.
= { fw)a
E

under the conditions of Theorem 4-11.

Theorem 4-12. l L f(x)dx

Theorem 4-13. If f(x) = g(x) almost everywhere on E, then

fE f@)de = fE (@) do

Theorem 4-14. If f(x)= 0 and f f(x)de =0, then f(x) =0 almost everywhere on E.
E
The result is also true if f(x) = 0 almost everywhere on E.

LEBESGUE’S THEOREM ON BOUNDED CONVERGENCE

Theorem 4-15. [Bounded convergence]. Let (f.(z)) be a sequence of functions measurable
on E such that lim f.(x) = f(x). Then if the sequence is uniformly bounded,

i.e. if there is a constant M such that |f.(x)] =M for all n, we have

lim fn(x) de = lim fa.(z)d j‘ f(x)dx

n=— e g n®

Because sets of measure zero can be omitted in the integrals, the conditions of the theorem
can be relaxed so that they hold almost everywhere.

This important theorem, which is not true for Riemann integrals [see Problem 4.24),
indicates the superiority of the Lebesgue integral.

THE BOUNDED CONVERGENCE THEOREM FOR INFINITE SERIES

The Lebesgue theorem on bounded convergence stated above can be restated in terms
of series rather than sequences as follows.

Theorem 4-16. 1f w(zx),k = 1,2,... are measurable on E and the partial sums
su(x) = D ux(x) are uniformly bounded on E [i.e. > u(x)| = M for all
k=1 k=1

x € EJ and lim s.(x) = s(x), then

j; {él u"(x)} dv = 21 L wi(x) dz
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RELATIONSHIP OF RIEMANN AND LEBESGUE INTEGRALS

Theorem 4-17. If f(x) is Riemann integrable in [a, b], then it is also Lebesgue integrable in
[a,b] and the two integrals are equal, i.e.

bf(x)dx = (R) bf(ac)dac
S. )

Note, however, that the converse is not true, i.e. if f(z) is Lebesgue integrable in [a, b] then
it need not be Riemann integrable in [a,b]. See Problem 4.9 and also Problem A.2,
page 159.

Theorem ¢-18. A function f(z) is Riemann integrable in [a,b] if and only if the set of
discontinuities of f(x) in [a,b] has measure zero, i.e. if f(x) is continuous
almost everywhere.

Theorem 4-19. If f(x) is continuous almost everywhere in [e,b], then it is Lebesgue
integrable in [a, b].

Solved Problems

DEFINITION OF THE LEBESGUE INTEGRAL FOR
BOUNDED MEASURABLE FUNCTIONS

4.1. Prove that for the same mode of subdivision or partition, a lower sum s is not
greater than an upper sum §, ie. s =S.

Using the notation on page 53, we have

Yie—1 < Yk
Then since m(E,) Z 0, Ye—1MEy) =y m(Ey)
Summing from k=1 to n, we have
n n
s = kgl Y1 ME),) = k§1 ypem(Ey) = S

4.2. Prove that for the same mode of subdivision or partition (a) an upper sum has a
lower bound and (b) a lower sum has an upper bound.

(@) For k=1,...,n we have ¥, = a so that
yr M(E) = am(Ey)

Summing from k =1 to n yields
n n
S = kgl ymEy) ZT a kgl mE,) = am(E)
where E = C) E, = {z: a < f(x) < 8}.
k=1

Then a lower bound of S is a m(E).
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4.3.

44.
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() For k=1,...,n we have y,_y = 8 so that
Yr—1m(Ey) = Bm(Ey)

Summing from k =1 to n yields

[

Il
&
I =
A

Y1 ME) = Bkglm(Ek) = Bm(E)

Then an upper bound of s is 8 m(E).

Prove that for all possible modes of subdivision or partitions (a) the upper sums
have a greatest lower bound I and (b) the lower sums have a least upper bound J.

(a) By Problem 4.2(a), the upper sums for all possible modes of subdivision have a lower bound
am(E) and must thus have a greatest lower bound which we can denote by I.

(b) By Problem 2(b), the lower sums for all possible modes of subdivision have an upper bound
Bm(E) and thus must have a least upper bound which we can denote by J.

A refinement of a given partition or mode of subdivision is obtained by using addi-
tional points of subdivision. If S is the upper sum corresponding to a given partition
while S; is the upper sum corresponding to a refinement of this partition, prove that
S; = 8. Thus prove that in a refinement of a partition, upper sums cannot increase.
Similarly we can show that s;=s, ie. the lower sums cannot decrease [see
Problem 4.32].

The result will be proved if we can prove it when one point of subdivision is added to the
given partition. To do this let the given subdivision points be
a = Yy <y < o0 < Yp = B
Suppose that the additional point of subdivision occurs in the interval (y,_i,¥%;) and is denoted
by u so that y,_; <u <y,

Now the contribution to the upper sum corresponding to the subdivision points of the interval
(yp—ly yp) is
Yp M{E ) (1)

The contribution to the upper sum when the additional point of subdivision % is taken into
account is

um(BEL) + y, mED) @)
where EY = {x:yp 1 =Sf@)<u}, EP = {z:ux=flz)<uy,} ()
and it is clear that
E, = B’ UE®, mE) = mE])+mE) *
Because of (4) we can write (I) as
ypm(E;,”) + ypm(Ei,Z)) (5)

The change in the original upper sum caused by the additional subdivision point is given by
the difference between (2) and (5), i.e.

(w—y,) mE) (6)

Since this is negative or zero [because y, > u and m(Ei,l)) z 0], it follows that the upper
sum cannot increase by adding a point of subdivision and the required result is proved.
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4.5.

4.6.

4.7.

4.8.

Prove that an upper sum for any partition is not less than a lower sum corresponding
to the same or any other partition.

The required resuit has already been proved when the partitions are the same [Problem 4.1].

To prove the result for different partitions, suppose that the upper and lower sums correspond-
ing to one partition are given by S,,s, while the upper and lower sums corresponding to the other
partition are given by S, s;.

Consider the partition obtained by superimposing the two above partitions [i.e. the partition
obtained by taking the union of all the subdivision points] and denote the corresponding upper and
lower sums by S, s4. Since this new partition is a refinement of each of the given partitions, we
have by Problem 4.4,

Sy = Sy 84 = 53 63
But we also have by Problem 4.1,
S, = sy (2)
Thus from (Z) and (2) we have
S, Z s5 (3

[or S3 = s, on interchanging subscripts 2 and 3], i.e. an upper sum for any partition is not less
than a lower sum for any other partition.

Using the notation of Problem 4.3, prove that I = J.

Assume the contrary, ie. I <J. Now I is the
greatest lower bound of all upper sums. Thus there must
be some partition or mode of subdivision giving an upper S 8
sum S to the left of the midpoint of the interval IJ // /‘/ N
[Fig. 4-2]. M ¢

I J

Also since J is the least upper bound of all lower
sums, there must be some partition giving a sum s to
the right of the midpoint of interval IJ. Fig. 4-2

This, however, is impossible because S cannot be less than s. Thus we have arrived at a
contradiction on assuming I < J, and it follows that I = J.

Note that although we have used a geometric argument the proof can be easily formulated
analytically [see Problem 4.33].

If S is an upper sum corresponding to any partition and s is a lower sum correspond-
ing to the same or different partition, prove that
S=zlIz=zJ z=s

Since I is the greatest lower bound of all upper sums, we must have S = I. Since J is the
least upper bound of all lower sums, we must have J = s. Also from Problem 4.6 we have I = J.
Thus S=zIz=zJ=zs.

Prove that f(x) is Lebesgue integrable if and only if for any > 0 there exists a
partition with upper and lower sums S,s such that S—s < «.

If for any e > 0 there is a partition such that S—s <, then by Problem 4.1,
0 =I—-J =8S~5s5 < ¢
so that I =J [since e can be arbitrarily small]. Then f(x) is Lebesgue integrable.

Conversely suppose I =J. Then if ¢ > 0 there exists a partition such that S < I+ ¢/2 [since
I is the greatest lower bound of all upper sums] and s > J—¢/2 [since J is the least upper bound
of all lower sums]. Then
S—s < (I4+¢/2) —(J—¢/2) = ¢
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4.9. (a) Show directly from the definition that the function
flz) =

{1 x is a rational number in [0, 1]

0 =z isanirrational number in [0, 1]

is Lebesgue integrable in [0,1] and (b) find the value of the Lebesgue integral of
f(z) in [0, 1].
(@) In the definition of the Lebesgue integral [see page 53] we choose subdivision points such that

a = Y < Y1 < Yy < 0 < Yy < Y, = B
and consider sets E, = {2: ¥y = f(x) <y}

Now let us consider Fig. 4-3, where the heavy lines are intended to indicate the graph of
f(x) in [0, 1], and the dashed lines are intended to show the subdivision points taken on the y
axis [compare Fig. 4-1, page 54]. Although it is certainly not necessary to appeal to a diagram,
the use of one helps to clarify the ideas involved.

f(=x)
yn:B ________________________ -
Yn1pbpm-— —— — — ————
.
Yt — — — — —— ——
hp—————— .
B ————— ————

Fig. 4-3

It is clear from this diagram that the only non-empty sets are [assuming «=0,3>1,
y1>0, ¥,y <1]
E, = {x: yy = flx) <y}

and E, = {2: ypy = fl&) <y}

The set E| is the set of irrational numbers in [0,1] while the set E, is the set of rational
numbers in [0,1]. It follows therefore that m(E,) =1 and m(E,) =0 while m(E,) =0 for
k=238,...,n—1.

Then since an upper sum and lower sum are defined respectively by

n n
S = kgl Y m(E), s = k§1 Yi—1 M(E)
we see that these reduce to
S =y, s=y .
Now by varying the partition it is then clear that since y, is any number > 0 while ¥, = a

is any number = 0,
I = lub.S

Il

lub.y; = 0
J = glb.s = glb.yy, = 0
Thus since I =J =0 we see that f(x) is Lebesgue integrable in [0,1].

(b) Since the common value of the upper and lower integrals I and J is 0, it follows that the
Lebesgue integral of f(x) in [0,1] is 0, i.e.

1
f fleyde = 0
0
Note that the function is not Riemann integrable [see Problem A.2, page 159].
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4.10.

THE
4.11.

Prove that if f(x) is bounded and measurable on [a, b], then it is Lebesgue integrable
on [a,b].

Using the notation on page 53, we have

S—s = kgl (Y — Yi—1) M(E,)

Now we can certainly arrange to have a partition or mode of subdivision so that y, —y,._; < TG—

Thus we can say that e

€

b—a

mE) = 7=, 3 mE) =

n
S—5 < I
k=1

so that from Problem 4.8, f(x) is Lebesgue integrable.

LEBESGUE INTEGRAL AS THE LIMIT OF A SUM
Prove that the definition of the Lebesgue integral as a limit of a sum [see page 55]
follows from the definition given on page 53.

For the case where the number of subdivision points is 7, let S, and s, be the corresponding
upper and lower sums. Then if I is the g.1.b. of all upper sums and J is the L.ub. of all lower sums,
we must have

s, =J =125 8, (1)
n n
Now S, = kEI Y m(Ey), s = S Yk-1m(Ey)
= k=1
so that 0 = S,—s8, = k§1 (Y — Yr—1) M(EY) @)
Then given ¢ > 0 we can choose n > n, so that y, —yx—y <e/(b—a) for k=1,2,...,n Thus

for n > n,,

n
S, — 8 = kglbiam(E’k) = .

ie. lim (S,-—s,) = 0. Thus from (1) we see that

n—w

b
imS, = lims, = I = J = ff(x)dx
a

n=—+c n =~

We can also show the converse [see Problem 4.39].

THEOREMS INVOLVING THE LEBESGUE INTEGRAL

4.12.

Prove Theorem 4-5, page 55: If A = f(x) = B, then
Am(E) = f f(xyde = Bm(E)
E
From Problems 4.2 and 4.7,
Am@E) = s =1=J =8 = Bm(E)

Since we are assuming that f(x) is Lebesgue integrable so that I = J, it follows that

Am(E) = Lf(m)dac = Bm(E)
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4.13.

4.14.

4.15.

THE LEBESGUE INTEGRAL FOR BOUNDED FUNCTIONS [CHAP. 4

Prove Theorem 4-6, page 55: If E = E\UE. where E; and E. are disjoint, then
L fx)de = Ll f(x)dx +L2 f(x) dz

by using the Lebesgue integral as a limit of a sum.
Choosing subdivision points y; such that
a =y <y < - <y, =8

the set E is divided into subsets E) while E; and E, are divided into disjoint subsets E.’, B>
such that E, = E{’ UE{® and

m(Ey) = mEL) + mEL)
Then
n n n
f@yde = lim 3 ymE) = lim S ymEL) + lim 2 ¥ m(E )
E k=1 k=1 =1

le f(z) de + fE 2 f(x) do

1l

For another method see Problem 4.14.

Prove Theorem 4-6, page 55 without using the Lebesgue integral as the limit of a
sum [see Problem 4.13].
Suppose that for x € E, a < f(x) < 8 while for E; and E,, a; < f(z) < 8; and ay < f(z) < By
respectively. We can take « as the smaller of «;,a, and g as the larger of 8, 8.
Let us choose as mode of subdivision of (a, 8) the points e =y <y; < -+ <y,=p8 Two
cases can arise.
(1) Some of these are points of subdivision for (e, 8;) and the remaining ones are points of sub-
division for (as, 85).
(2) Two of the subdivision points do not happen to be the same as the larger of «;, ¢y or the
smaller of By, B,.

If the second case arises we revise the points of subdivision so as to include the two extra
points of subdivision. The refinement does not increase upper sums nor decrease lower sums
[Problem 4.4].

Then if we denote upper sums corresponding to E, E,, E, by S,S,, S, respectively, we have

S =z 8 +8,
or using the fact that f(x) is integrable on E, E, and E,,
f fle)de = f f(z) dx + f f(zx) da (1)
E E, B,

Similarly if we denote lower sums corresponding to E, E,, E, by s, s, 85, we find

8 = 8+ 8y

or Lf(x) de = Ll flx)dx + Lz f(x) dx . 2

From (1) and (2) we see that

fE f@)dw = L 1f(ac) dz + J; z f(x) dw

Prove Theorem 4-7, page 55: If f(x) is bounded and measurable on E = k(:Jl E;
where the sets Ex are measurable and disjoint, then

Lf(x) de = J;l f(x)dx + Lz f(x)dx +

n o0
Let E = S,UR, where S, = U E,, R, = . U E,. Then since f(x) is integrable on
k=1 =

=n+l1
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4.16.

4.17.

S, and R, we have

f fx) dx
E

Lf(x) dx + f fx) dx
Lf(x)dx + e+ f flx)dx + f f(x) do

Now by Theorem 4-5 [the mean-value theorem] since |f(x)] =

J;nf(x) dex

But since m(E) = m(S,) + m(R,) = m(E) + -+ + m(E,) + m(R,) and since m(E) = m(E, +
m(E,y) + -+ is finite, the infinite series converges so that lim m(R,) = 0. Thus taking the limit
as n— « in (1), we find that nore

A

M m(R,) @

i de = 0 2
"12130 fRnf(x) % (2)
Then f flx)dx = f f(x) dx + f flx)ydxe + -~
E E, E,

Prove that if f(x) is bounded and measurable on E, and ¢ is any constant, then

L[f(x)+c] de = Lf(x) dr + cm(E)

Suppose that the mode of subdivision of o < f(x) < 8 1is made by the points a =1y <
Yy < -+ <y, = B. Then the upper sum corresponding to f(x) is

S = 3 yem(Ey) 03]
k=1

where E, = {&x: 2€E, y_; = flx) <y} 2)

Similarly the upper sum corresponding to f(x) + ¢ is

S, = S tomE) = 3 ymE) + e S mEy
k=1 k=1 k=1
ie. S; = S+ em(E)

Taking the limit as n > ©, we have

f [flx) +¢] d f f(x)dx + em(E)

Prove Theorem 4-8, page 56: If f(x) and g(x) are bounded and measurable on E, then

S i@ +oen = ( fwd + f o@a

n
Let E = U E; where the E}, are given by (2) of Problem 4.16. Then
k=1

Il

[ vo+owias = 3 | U@ +ow)]d
E k=1vg,

v

p3 [Wg—1+ g(x)] da
k=1v"g,

S yg—1mEBy) + 3 f g(x) dx
k=1 k=1

Ey,

= s+ fg(x)dx
E



64

4.18.

4.19.

4.20.
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Thus we h f(x) + dx = flx)dx + Y d 1
s we have L[ (x) + g(x)] dx L x) dx ng(x x (1)
Similarly L [fx)+g(z)]de = 2y, [f(x) + g(x)] d
= 3 [y + g(®)] dx
k=1 Ey
= 3 ymE) + 3 f g(x)
k=1 k=1YEg,
= S+ () d
L g(x) dz
Thus we have fx) + gx)]de = flx) doe + g(x) d 2
ACEYOLIE S o as @

From (7) and (2) we must have

f(x) tg(x)]dx = flx) dx + (%) d
L[xgx]x Lxm Lgxx

The result is easily extended to any finite number of functions [see Problem 4.48].

Prove Theorem 4-10, page 56: If f(x) = g(x) on E, then

L flxydz = J; g(z)dx

Since g(x) — f(x) is non-negative on E, ie. g(x)— f(x) =0, we have

fE [9(x) — f(x)]dx = O

ie. Lf(x)dx = fg(x)dx

E

Prove Theorem 4-11, page 56: If f(x) is bounded and measurable on E, then [f(x)) is
Lebesgue integrable on E. Conversely if |f(x)| is bounded and measurable on E,
then f(z) is Lebesgue integrable on E.

If f(x) is bounded and measurable on E, then so also is |[f(z)| [see Theorem 3-13, page 44]. Thus
If(x)| is Lebesgue integrable on E.

Similarly if [f(z)| is bounded and measurable on E, then so also is f(x). Thus f(») is Lebesgue
integrable on E.

= f |f(x)|dx under the conditions of
E

Prove Theorem 4-12, page 56: 'f f(x) dx
Theorem 4-11. E

Method 1.
We have —lfl@)} = flx) = |f(x)]

Then by Problem 4,18 we have on integrating over the set E,

_Llf(x)ldx = Lf(n:)dx = Llf(x)ldx

fEf(x) d

= [ @l
E
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4.21.

Method 2.
If Et = E[f(x)Z0] and E- = E[f(x) <0], then

Lf(x)dx = L+f(x) dx + fE_f(x) de = L+|f(x)|dx - L_!f(x)l dx

and L If@)| dxe = j;ﬂ |f(x)} dae + L_ |f(z)| d=

Lf(x) de f [f(x)| de — L_ |f(x)| dx

E+

do + dw = ) d
J vnas+ f wies = f irola

Then

IIA

Prove Theorem 4-14, page 56: If f(x) =0 is bounded and measurable on E and
f f(x)dx =0, then f(z)=0 almost everywhere on E.
E
Method 1.
Since f(x) is bounded, there is a constant M such that 0 = f(x) = M. Consider the sets

E, = {z: fx) =0}, FE, = {x:%l<f(x)§M}, E; = {x:%<f(x)§—]g}

and in general E, = {x : %l < f(x) gl%l}’ k=23,...

Since the sets are measurable and disjoint,
mE) = m(E;)) + m(E,) + ---
where E = kCl E,. Now by the mean-value theorem,
=1
M
Im(Ek) = f flxydxe = k—%m(Ek), k=238, ...
Ej

From the inequality on the left and the fact that the integral over E, cannot exceed the integral

over E, we have
) rwa = £ f@a = o
Ey E

Then m(E;) =0 for k=2,3,.... It follows that
M(E,UEU-++) = m(Ey) + m(Eg) + -+ = 0

m(Ey)

IIA

i.e. the measure of the set for which f(x) = 0 is zero, so that f(x) = 0 almost everywhere.

Method 2.
Suppose that contained in E there is a set A of positive measure for which f(x) > 0. Then
we can express A as the union of mutually disjoint measurable sets

A=z f@>1), Ay = {o: @ > Ay = (o f@) >4

Since m(4A) = m(4,) + m(Ay) + -+ and m(A) > 0, it follows that there is some set 4, such that
m(A,) is a positive number, say p.

Then by the mean-value theorem and the fact that the integral over A, cannot exceed the integral
over E, we have
m(Ay) P
f(z) dx flx)dx = % = % > 0
E Ay

which contradicts the hypothesis that the integral over E is zero. Thus the set A cannot be of
positive measure and it follows that f(x) = 0 almost everywhere.

%
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LEBESGUE’S THEOREM ON BOUNDED CONVERGENCE
4.22. Prove Lebesgue’s theorem on bounded convergence [Theorem 4-15, page 56]: Let

4.23.

(fn(x)) be a sequence of functions measurable on E such that hm fa(x) = f(x). Then
lim fn(a f flx
n=—co E

From the fact that |7, (@)l =M and lim f.(z) = f(»), it follows that |f(x)] = M. Then f(z)

is bounded and measurable and thus integrable. The result to be proved is equivalent to proving
that

lim fE [f@) = fo@)] de = 0 )

or since

S v - fima| = e i
E E

it will follow if we can prove that

lim f @) = fo(x)|de = 0 (2)
n =0 E

Let E be represented as the union of the disjoint measurable sets
Ey, = {x:[f—fl<elf—fol <e ...}

f—filze lf—=fol <e ...}

Ey = {x:[f—folZe|f—f5 <e¢ ...}

E, = {x: |f—fn_1| Ze f—fol <e ...}

by
™

-
&

-]
etc., i.e. E = U E;
k=1

n
Then if S, = kU E, and R, = . G E,, we have
=1

=n+1

- dr = - dw + - d
S 170 = fu@) o f i = fulde + 17~ 10 a @

Now on S, we have [f(x)—f,(z)] <e. Also since |f,(®)] =M and |f(x)) =M, we have on R,,
|f(2) — fn(x)| = [f(w)] + |f,(x)] = 2M. Thus (3) becomes on using the mean-value theorem,

L [f@) = fr(@)de = em(S,) + 2Mm(R,) )

Since lim m(S,) = m(E) and lim m(R,) =0, we have from (4)
N =+ 0

n= w0

Tim f (@) — fol@) dz = em(E)
n =+ E

or letting ¢ = 0, lim f If(x) = fo(x)|de = 0
=0 E

1i - ) de = 0

ie nmL |f(x) — fa(@)] de

which proves the required result.

Prove that the conditions in Problem 4.22 can be relaxed so that they hold almost
everywhere.

This follows at once since sets of measure zero do not affect the values of the integrals of f(x)
and f,(z) on E.
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424, Give an example of a sequence of functions (f.(z)) such that lim f.(z) = f(x) and
having the property that nee

b b
lim j fa(x)dx = lim f.(x)dx
b b
lim@®) [ f@de # ®) | lim fu(e)ds

Let (r,) denote a sequence representing all the rational numbers in [0,1]. [This is possible
since the set of rational numbers in [0, 1] is denumerable]. Define a sequence of functions (f,(x)) in
[0, 1] such that

1 x=7r,79...,7,
@ =
fn (@) {0 X T T oe s Ty
Then lm f,@) = fl) = 1 = is a rz?.txonél number in [.0, 1]
ne>o0 0  is an irrational number in [0, 1]

Now from the definition of f,(x) we have

1
f fol@)de = 0 and so  lim f fa@)de =
0

n =+ 0

Also using Problem 4.9,

1 1
lim fp(e) = de = 0
J; Jim x) J; flx) du
1
Thus 1lim f fol@)de = f lim f,(x)dz

We would expect this of course in view of Problem 4.22.

However, if we use the Riemann integral we have
1 1
(R) f fo@®)de = 0 so that  lim (R) f fo®)de = 0
0 ne=— C 0

but from Problem A.2, page 159,
1 1
@ tim @ = @ [ @
0 n =~ 0 0

does not exist. Thus

1 1
im @ [ fa@de o+ @ [ lm @ d

RELATIONSHIP OF RIEMANN AND LEBESGUE INTEGRALS
4.25. Prove that if f(z) is Riemann integrable in [a, b], then f(x) must be measurable.
Suppose that the interval [a, b] is subdivided into » parts by the subdivision points
a = %y < @y <y < -0 < zp = b (1)
Consider the functions
Ual@) = m{,  ¥ulx) = M, T <X = Ty @
where mk ’ and M(") are the g.l.b. and Lub. of f(x) in the interval =z, < % = 2y, We have used

the superscript n to emphasize the fact that there are n subdivisions.

Integrating the functions in (2) from a to b, we have
b n
pa@ de = 3 m® (v — w5—1) (3)

S M (e — 21 4)
K=1

&
3
P

8
<

&

8

I
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4.26.

4.27.

4.28.

THE LEBESGUE INTEGRAL FOR BOUNDED FUNCTIONS [CHAP. 4

These integrals are respectively the lower and upper Riemann sums of f(x). It follows since f(x)

is Riemann integrable, that
b

b b
lim f Yo(®)de = lim Y (x)de = (‘R)f fx) dx %)

n=—> 0 a n -+ 0 a a
Now as n — = the functions y,(x) and ¥,(x) converge to the functions ¥(x) and ¥(x) respectively
where y(x) represents the greatest lower bound of f(x) in a & neighborhood of x as § — 0 while
¥(x) represents the least upper bound of f(x) in a § neighborhood of x as § — 0.

Since y,(¥) and ¥,(x) are measurable functions, the limits of these are also measurable
[Theorem 3-19, page 44] so that y(x) and ¥(x) are measurable. By Lebesgue’s convergence theorem

and (5) we have b b b
1}{_{1:0 f Yul@)de = f v(x)de = (‘R)f f(x) dx (6)
b b b
lim f Y (x)dx = f ¥(x)de = (R) f f(x) dx ?)
b
so that on subtraction, f [#(x) —y(x)]dz = 0 (8)

a

But since ¥(x) = ¢(x), it follows from Problem 4.21 that ¥(x) = y(x) almost everywhere in
[@,b]. Now it is clear that y(x) = f(x) = ¥(x), from which we see that f(x) = ¢y(x) almost every-
where and that f(x) is measurable since y(x) is.

Prove Theorem 4-17, page 57: If f(x) is Riemann integrable in [a, ], then (a) it is
Lebesgue integrable in [a,b] and (b) the Riemann and Lebesgue integrals of f(x) in
[a, b] are equal.
Using the notation of Problem 4.25, we have
wz) = fle) = ¥(x)

so that by (6) and (7) of that problem,
b b b b b
® [ i@ = [ aa = [ f@a s [vwe = @ [ @

b b
Thus [iwa = ® [ /wa

IIA

and the required results are proved.

Prove Theorem 4-18, page 57: A function f(z) is Riemann integrable in [a, b] if and
only if the set of discontinuities of f(x) has measure zero, i.e. f(z) is continuous
almost everywhere.

If f(x) is continuous at a point z, then using the notation of Problem 4.25 we must have
¥(x) = ¥(x). Conversely if y¢(x) = ¥(x) at x, then f(x) is continuous at #. In other words f(x) is
continuous at « if and only if y(x) = ¥(x) at =.

Now from the results of Problem 4.26 we see that f(x) is Riemann integrable in [a, d] if and
only if [see equations (5), (6) and (7) of Problem 4.25].

b b b b
f v@)de = lim f Va@de = lim f V() ds = f ¥(x) dax
a n=—+ 0 a n =~ 0 a a

or y(x) = ¥(x) almost everywhere, i.e. f(x) is continuous almost everywhere.

Prove Theorem 4-19, page 57: If f(x) is continuous almost everywhere in [a, b],
then it is Lebesgue integrable in [a, b].
This follows at once from Problems 4.26 and 4.27.
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Supplementary Problems

DEFINITION OF THE LEBESGUE INTEGRAL FOR BOUNDED MEASURABLE FUNCTIONS
4.29. Use the definition of the Lebesgue integral to show that if ¢ is any constant

b
f cdx = ¢(b—a)

a

5 -1 0<x<38
430. Evaluate fo f@) de if fz) = { 4 3o z ~, Dby using the definition.
0=a2<1
4.31. Work Problem 4.30 if f(x) = 3 2<x=4.
1 4<z=5

4.32. Prove that in any refinement of a partition or mode of subdivision the lower sums cannot decrease
[see Problem 4.4].

433. Give a proof of the theorem in Problem 4.6 without referring to a diagram.

4.34. Show how to work Problem 4.9 by not referring to a diagram.

1 if z is an irrational number in (—4, 4)

4
4.35. Let f(x) = { Evaluatef f(z) dx.
-4

—2 if z is a rational number in (—4, 4)

436. If Q is the set of all rational numbers and f(x) = 3, find J‘ f(x) dx.
Q

4.37. If K is the Cantor set [page 5] and f(x) =2 on this set, evaluate f f(x) de.
K

4.38. Prove that the definition of the Lebesgue integral on page 53 is independent of the choice of « and g8
so long as o < f(x) < B.

4.39. Prove the converse of the result in Problem 4.11.

THEOREMS INVOLVING THE LEBESGUE INTEGRAL
4.40. Prove Theorem 4-2, page 55.

441. Prove Theorem 4-3, page 55.

¢, xE€E,

442. Prove that if E, and E, are measurable disjoint sets and E = E,UE,, thenif f(x) = {c JRp
2y 2

where ¢; and ¢, are given constants,

f fx)yde = c;m(Ey) + eam(Ey)
E

4.43. Generalize the result of Problem 4.42.

444. Use Problems 4.42 or 4.43 to work (a) Problem 4.9, (b) Problem 4.30, (c¢) Problem 4.31,
(d) Problem 4.35.

4.45. Prove Theorem 4-4, page 55.

4.46. Prove or disprove: If f(x) is continuous on a measurable set E, then there exists a number ¢
such that

[ rwas = romm
E
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4.47.

4.48.

4.49.

4.50.

4.51.

4.52.

4.53.

4.54.

4.55.

4.56.

4.57.

4.58.

4.59.

4.60.

4.61.

4.62.

THE LEBESGUE INTEGRAL FOR BOUNDED FUNCTIONS [CHAP. 4

Extend the proof of Theorem 4-6, page 55, [see Problem 4.13] to any finite union of sets
E,E, .. . ,E,.

Extend the proof of Theorem 4-8, page 56, [see Problem 4.17] to any finite number of functions.

Prove that the functions (a) x, (b) 2, (¢) 32+ 44 — 2 are Lebesgue integrable in [0,1]. Can you
find the value of the integrals? Explain.

Verify that the sets E, of Problem 4.16 are measurable and disjoint and that if E = UE,, then
mE) = 3 m(Ey).

Prove the result of Problem 4.16 without using the Lebesgue integrals as a limit of a sum.

If f(x) =0 is bounded and measurable on E, prove that f f(x)dx = 0. Can the equality sign
be removed if f(x) > 0? Explain. E

Prove that if f(x) and g(x) are bounded and measurable on E, then

- d = de — d
L[f(x) 9(#)] da fE f) do Lg(x) x

Prove that f
EjUE,

flx)de = f f(z) dxe + f f(x) de — f fx) da
Eq E,

EiNE,
Generalize the result of Problem 4.54 to three or more sets E,E,E,,....

If (fr(®)), k=1,2,...,n are bounded and measurable on E and ¢, k=1,2,...,n, are any

constants, prove that n n
13 anm]a = 3 af e
E Lk=1 k=1 E

Prove Theorem 4-9, page 56.

Prove that

1[ J
dr| = 3 2 24
S @] = 4 S e + J lowpas

if f(x) and g(x) are bounded and measurable on E.

Prove Theorem 4-13, page 56.

If fy(x) and fy(x) are bounded and measurable in (a, b) and

b
f [f1(@) = fo(@)]2dx = 0

a
prove that f;(z) = fy(x) almost everywhere in (g, b).

State and prove a theorem analogous to that of Problem 4.28 if the interval [a, ®] is replaced by
a set E.

m
Evaluate f sin « dx. Ans. 2
0
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dx

x—z‘_ﬁ . Ans. 7r/2

1
4.63. Evaluate f
-1

4.64. Let f(x) be bounded and integrable on E. Prove that given e > 0, there exists § > 0 such that if
A is any measurable set contained in E then

f |[f(x)]de < ¢ whenever m(4) < §
A

LEBESGUE’S THEOREM ON BOUNDED CONVERGENCE

1
4.65. Evaluate lim e—nz’ dx. Ans. 0

n—wo ¢,

1
R T S,
466. Evaluate (o) lim (1+ Aranr O M) GTFainr

4.67. Prove Theorem 4-16, page 56.

4.68. INustrate Theorem 4-16 by means of an example.

4.69. Prove that if f,(x) =0 and 2 f fi(x) de converges, then 2 fi(x) converges almost
everywhere.

470. Prove Lebesgue’s theorem on bounded convergence by using Egorov’s theorem, page 45.



Chapter 5

THE LEBESGUE INTEGRAL FOR NON-NEGATIVE UNBOUNDED FUNCTIONS

In Chapter 4 we defined the Lebesgue integral and obtained its properties for bounded
measurable functions. In this chapter we extend these results to unbounded measurable
functions.

Consider first the case where f(x) = 0 is unbounded and measurable. If p is a natural
number we shall use the notation ; '
f(x) forall x € E suchthat f(x) <p
[f@)] = (2)
| » forall x € E suchthat f(x)>p

Then for each p, [f(2)], is bounded and measurable and thus Lebesgue integrable. We define
the Lebesgue integral of f(z) on E as

J, @@ = 1m @) a @

The limit is either a non-negative number or is infinite. If the limit is a non-negative
number, then the Lebesgue integral of f(x) exists and is equal to this number and we say
that f(z) is Lebesgue integradble or briefly integrable on E. If the limit is infinite we say
that f(x) is not Lebesgue integrable on E or that the integral does not exist.

THE LEBESGUE INTEGRAL FOR ARBITRARY UNBOUNDED FUNCTIONS
If f(x) =0 we can define the Lebesgue integral of f(x) as '

S, 0z = —f y@)ae (3
where the integral on the right is obtained as above since [f(z)| = 0.
In the general case where f(x) may have arbitrary sign, we let

f+ _ |f(®) forall x € E suchthat f(x)=0 '
@ = 10 forall s €& such that f2) <0 )
= _ 0 for all € E' such that f(x)= 0 5
) = —f(x) forall x € E such that f(z) <0 ®)

where it is to be noted that f* (x) and f~(x) are both non-negative. Then it follows that
fle) = f*(@@) — f~ (@) (6)

This leads us to define the integral of f(x) over E as the difference of the integrals of non-
negative functions, i.e. '

L f@)de = j; f+(2)de — j; (%) do @)

72
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The integral on the left of (7) will certainly exist when the two integrals on the right exist
and in such case we will say that f(x) is Lebesgue integrable or briefly integrable on E.

It should be mentioned that in case f(x) is bounded the definition given by (?) reduces
to that given in Chapter 4. [See Problem 5.43.]

THEOREMS INVOLVING LEBESGUE INTEGRALS OF UNBOUNDED FUNCTIONS

Most of the theorems of Chapter 4 involving Lebesgue integrals of bounded measurable
functions can be extended to the case of unbounded measurable functions. In general,
proofs of such extended theorems are achieved by first using a limiting procedure as in (2),
page 72, for the case where the functions are non-negative and then using the definition
(7), page 72, to obtain the case where the functions are arbitrary in sign.

In the following we list some important theorems many of which are related to those
in Chapter 4. Unless otherwise stated we assume that all sets and functions are measurable
and that the functions may have arbitrary sign and may be unbounded.

Theorem 5-1. If f(x) =0, then f f(x) dx exists if and only if f [f(2)]p dx is uniformly
bounded. £ £

Theorem 5-2. 1If |f(x)| = g(x) where g(x) is integrable on E, then f(z) is also integrable
on E and
f [f(x)| dx = f g(x)dx
E E
The result is also true if |f(x)| = g(x) almost everywhere on E.

Theorem 5-3. A function f(x) is integrable on E if and only if |f(x)| is integrable on E

and in such case
f feyaz| = f V@)

Because of this we say that f(x) is integrable on E if and only if it is absolutely
integrable on E.

Theorem 5-4. 1If f f(x) dx exists, then f(x) is finite almost everywhere in E.
E

Theorem 5-5. 1If E has measure zero, then
f f@)de = 0
E

Theorem 5-6. If f f(x) dx exists and if A is a measurable subset of E, then f f(z) dz also
E A

exists. In such case we have
f if(x)|de = f If (z)| de
A E

Theorem 5-7. 1If E =FE,UE, where E: and E, are disjoint, then

j; f@)dz = fE flm)de + fE f(z) do

The result is easily generalized to finite unions of sets.
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Theorem 5-8. 1If E=FE,UE,U--- where E, F, ... are mutually disjoint, then if
f f(x) dx exists

f flzydx = Ll fx)dz + Lz fleyde + ---

The result is not necessarily true if f(z) is integrable on E,, Es, ... without specific
mention of its integrability on E [see Problem 5.16].

Theorem 5-9. L [f(zx) + g(2)]d f flx)dz + f g(x)dx

The result is easily generalized to any finite number of functions.

Theorem 5-10. f cflx)dx = cf f(x)dx for any constant c.
E E
The result is easily generalized to any finite number of functions.

Theorem 5-11. If f(x) is integrable on E and g(x) is bounded, then f(x)g(x) is integrable
on E.

Theorem 5-12. 1If f(x) = g(x) almost everywhere on E, then

[ teyas = f owas
E
and the existence of one integral implies the existence of the other.
Theorem 5-13. If f(x)= 0 and f f(xydx = 0, then f(z) =0 almost everywhere on E.
E

The result is also true if f(x) = 0 almost everywhere on E.

Theorem 5-14. If f(x) is integrable on E, then given ¢ > 0 there exist a § > 0 and a set
ACE such that if m(A) <3

l j; f(z)dx

Theorem 5-15. Let f(x) be integrable in E. If (Ey) is a sequence of sets contained in E
such that lim m(Ey) = 0, then

ko0
1mfﬂmm:0
k=~ 0 Ey

< 8

LEBESGUE’S DOMINATED CONVERGENCE THEOREM
The following theorem is a generalization of the Lebesgue bounded convergence theorem

[Theorem 4-15] on page 56.

Theorem 5-16 (Dominated convergence). Let (f.(x)) be a sequence of functions measur-
able on E such that lim f.(x) = f(x). Then if there exists a function M(x)
integrable on E such that |f.(x)] = M(x) for all n, we have

im | fa@)dz = § limfuGe fﬂx )
n—+w E E n—wx

Because sets of measure zero can be omitted in the integrals, the conditions of the
theorem can be relaxed so that they hold almost everywhere.
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THE DOMINATED CONVERGENCE THEOREM FOR INFINITE SERIES

The Lebesgue theorem on dominated convergence stated above can be restated in terms
of series as follows.

Theorem 5-17. If w(z),k=1,2,..., are measurable on E and if there exists an integrable

function M(z) on E such that [s.(x)| = M(x) where sa(x) = 2 ur(x) and if
lim s.(x) = s(x), then

f {2 uk(x)} dz = Y f we(z) dz (8)
E k=1 k=1 E
We also have the following theorem which is often useful.

Theorem 5-18. If i () is such that [s.(z)| = | ux(z)
= E=1
on

=1
if v(z) is bounded and measurable on E, then

{ {w { 2) 3 }dx = 3 f vy w@ s 9

=M for some constant M and

FATOU’S THEOREM

Theorem 5-19 [Fatou]. Let (fn(z)) be a sequence of non-negative measurable functions
defined on E and suppose that lim fn(x) = f(x). Then

lim [ fuw)dz = § f)d (10)

n-»oo

Note that the theorem is also true if lim f.(z) = f(x) almost everywhere.

If f(z) is not integrable, the left hand side of (10) is infinite.

THE MONOTONE CONVERGENCE THEOREM

Theorem 5-20. Let (f.(x)) be a sequence of non-negative monotonic increasing functions on
a set E' and suppose that the sequence converges to f(x). Then

ll_{t}oj; fa(z)dr = J; f(x) dz (11)

provided that either side is finite.
The theorem can also be stated as a theorem on series as follows
Theorem 5-21. Let ux(x)=0. Then

j; {;:2 uk(a:)} dx = él j; ue(x) da | (12)

provided that either side converges.

APPROXIMATION OF INTEGRABLE FUNCTIONS BY CONTINUOUS FUNCTIONS

Although every continuous function in [a, b] is integrable, an integrable function need
not be continuous. However, an integrable function can be approximated by continuous
functions. A fundamental theorem in this connection is

Theorem 5-22. Let f(x) be integrable in [a,b]. Then given any ¢ > 0, there exists a con-
tinuous function g(x) in [a, b] such that

£ 1) - s@ldz < < 19)
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An important theorem which is related to Theorem 5-22 is the following.

Theorem 5-23. Let f(x) be integrable in [@,b]. Then

limj; f(@+h) - f(@)lde = 0 (14)

h=+0

THE LEBESGUE INTEGRAL ON UNBOUNDED SETS OR INTERVALS

Up to now we have considered the Lebesgue integral on bounded sets. In order to extend
the definition to unbounded sets such as the intervals (a, ), (—=, b) or (—«=,»), we need
only adopt a suitable limiting case of bounded sets.

Let us illustrate by defining the Lebesgue integrable on an unbounded set such as (a, «©).
Suppose first that f(z) is non-negative, i.e. f(x) = 0, and that f(x) is Lebesgue integrable in
(a, b) for all finite values of b. Then we define

f "ty = lim f " f(w) dao (15)

and say that f(x) is Lebesgue integrable, or briefly integrable, on (a, ) if the limit in (15)
exists.

If f(x) has arbitrary sign, then we define

j;wf(x)dx = J;war(x)dx — J;wf_(x)dx (16)

where f*(x), f~ () are non-negative and say that f(z) is integrable on (@, ) if each of the
integrals on the right of (16) exist in accordance with the definition (15).

Obvious extensions can be made for the intervals (—=,b) and (—«, ). In the last one,
for example, we consider (a, b) and then let a > —«, b—> . If the set E is not an infinite
interval but is nevertheless unbounded, we can define

‘J; fx)yde = 11111 j}; - f(x)dx (17)

b=

THEOREMS FOR LEBESGUE INTEGRALS ON UNBOUNDED SETS

Most of the theorems which have been proved involving Lebesgue integrals on bounded
sets are also valid for unbounded sets. For example, we have [compare Theorem 5-3,
page 73]. '

Theorem 5-24. A function f(x) is integrable on FE if and only if If(x)| is integrable on E
regardless of whether E is bounded or unbounded and in such case we have

J fayda| = L f(@)| dz (18)

Thus f(x) is integrable on E if and only if f(x) is absolutely integrable on E.

Similarly we can show that the other theorems proved for bounded sets, such as the
Lebesgue dominated convergence theorem and Fatou’s theorem, are also valid in case the
sets are unbounded.
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COMPARISON WITH THE RIEMANN INTEGRAL FOR UNBOUNDED SETS

Unlike the Lebesgue integral, the Riemann integral of f(x) on an unbounded set E can
exist even though the Riemann integral of |f(x)| does not exist on E. For example, although

0w . b .
sinzx . sinx
f de = lim po dx
1]

x b=+ 0

exists as an (improper) Riemann integral, the integral

J,
does not exist [see Problems A.32, page 170, and A.33, page 171]. Thus the Riemann integral

may exist when the Lebesgue integral does not exist. However, we have the following
important theorem.

sinx
x

dx

Theorem 5-25. 1f |f(x)| is measurable and |f(z)| is Riemann integrable on E, then f(x) is both
Riemann and Lebesgue integrable on E and the two integrals are equal.

Solved Problems

DEFINITION OF THE LEBESGUE INTEGRAL FOR NON-NEGATIVE
UNBOUNDED FUNCTIONS

5.1. Show that the function [f(x)], defined on page 72 can be written as min {f(x),p} where
min denotes minimum.
We have
f(z) for all x € E such that flx) =0p
@), = { P for all « € E such that f(x) > »

Then if f(x) is less than or equal to p, [f(x)], = f(*x) = min {f(x), p} while if f(x) is greater than
p, [f(®)], = p = min {f(x), p}.

In either case [f(z)], = min {f(x), p}.

52. Show that lim [f(x)]s = f(2).

P

This follows at once from Problem 5.1 since min {f(z), »} = f(x).

53. Show that [f(x)], is bounded and measurable, and thus integrable for each p if f()
is measurable.
From Problem 5.1 we see that [f(x)], =p and is thus bounded for each p.
Also since [f(x)], = min {f(x), p} where f(x) and p are measurable, it follows from Problem
3.18, page 48, that [f(x)], is measurable.
The last result can also be shown directly from the definition of a measurable function [see
Problem 5.39].
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8
54. Prove that f g?— exists and find its value.
o Vi

Define the function 5 3
1Vz for Ve =p or x = 1/p®
), =

= 3
P for 1/Vz>p or x < 1/p8

™ (' = 1 i,
en ‘ = = m x)|p dx
0 © Dt 0 o

/p3 8
= lim U"«p pda + f—”]
ey 1 VE

e 1/p38 3 8
= 1}1_{20 |: Pz, + §x2/3‘1/p3]
N Y
= 1;11_130 |:p2 + 6 2p2i|
= 6

Thus the integral exists and has the value 6. Note that the above Lebesgue integrals can be
~ evaluated as for Riemann integrals because of Theorem 4-17, page 57.

. 8 . . :
Note also that the Riemann integral, (R) f g\/—ai, exists as an improper integral defined as.
x

€= 0 =0

lim(R) dr _ lim -3—062/ s| | = lim | 6 — §e2/ 31 = 6, ie.it has the same value as the Lebesgue
.'3/_ 2 € 2 g
€=+0 € 2 Lo

integral above [see Appendix A, page 158]. The Lebesgue integral given above is not an “improper
integral”, however, even though the integrand is unbounded.

5.5. Graph the functions f(z)= 1/\/50' and | x)],,, 0<2x=8 of Problem 5.4 and thus
illustrate geometrlcally the results of that problem.

The graphs of f(») and [f(x)], are indicated in Fig. 5-1 and 5-2 respectively. The function
[f(®)], is often called a truncated function since [f(x)l, =p if f(x) > p.

Fig. 5-1 Fig. 5-2

8
The value lim f [f(@)],de = 6.

represents the limit of the area shown shaded in Fig. 5-2 as. p — =,

DEFINITION OF THE LEBESGUE INTEGRAL FOR ARBITRARY FUNCTIONS
56. Show that the functions f*(x) and f~(x), page 72, can be defined by f*(x) =
max {f(z),0}, £~ (z) = max {0, —f()}. ‘
f(x) for all x € E such that f(x) =0
frx = {

We have 0 forall x €E such that f(x) <0
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5.7.

Then if f(x) =0, we have ft(x) = f(x) = max {f(x),0} while if f(x) <0, ft(x) = 0 =
max {f(x), 0}. In either case f* (x) = max {f(z),0}.

By similar reasoning we show that f— (x) = max {0, —f(z)}.

Prove that (a) f(z) = f*(x) — f~(z), (b) [f(x)] = f*(x) + (%)

(¢) We have f*(x)=f(x) if flx) Z0 and f~(x)=0 if f()=0. Then f(x)=f*(x)—f~ (x)
if f(x) = 0.

Similarly we have f+(x) = 0 if f(x) <0 and f~(») = —f(x) if f(x) <0. Then
fl@) = f+@)—Ff(x) if f(z) <O.

Thus in all cases f(x) = f+(x) —f~ (x).

(b) If f(x)=0, then |f(z)] = f(x) = fr(@)+f(x). If f(x) <0, then f@)] = —flx) =
ft () + f~(x). Thus in all cases [f(x)] = f* (%) + f~ ().

THEOREMS ON LEBESGUE INTEGRALS FOR UNBOUNDED FUNCTIONS

5.8.

5.9.

Prove Theorem 5-1, page 73: If f(x) =0, then f f(x)dx exists if and only if
f [f(#)]p dz is uniformly bounded. g
E

From the definition of [f(x)], it is seen that

[f@), = [f@] = --- 1

that dx = de = --- 2

s0 tha fE [F(e), da fE [F(a))s de ®
Thus the sequence whose pth term is

[ e, 9

YE

is a monotonic increasing sequence. It follows that if this sequence is uniformly bounded, i.e. if
there is a constant M such that for all p

f [f@)]pde < M

E

lim fE @], de = fE (@) do

Conversely if f f(x) dx exists, then since [f(x)], = f(x) we have

L[f(x)]pdx = Lf(x)dx < M

so that f [f(x)], dz is uniformly bounded [see Problem 5.41].
E

then

exists.

Prove Theorem 5-2, page 73, for the case where (a) f(x) =0, (b) f(x) has arbitrary
sign.

(@) If 0= f(x) =g(x), then [f(x)], = [g9(x)],. Thus

J v = f e, )
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5.10.

5.11.

5.12.

5.13.
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Then taking the limit as p - «©, we obtain

fE @) ds = fE 9(x) da (@)

which follows since f g(x) dx exists and since the integral on the left of (2) exists as a result
of Problem 5.8, E

(b) This follows at once from part (a) on replacing f(x) by |f(x)| which is non-negative.

Prove Theorem 5-4, page 73, for the case where f(x) = 0.

Let S = E[f(x) = =], ie. the set of all # for which f(x) is infinite. Then using the definition
of [f(x)],, we have

V@ ds = fs @), de = fs pdz = pm(S) (1)
Taking the limit as p - =, we have

f flx)de = lim pm(S) 2)
E P

Now if m(S) > 0, (2) will yield a contradiction since by hypothesis f f(x) dz is finite. Thus we
must have m(S) =0, i.e. f(x) is finite almost everywhere. E

For a proof of the theorem where f(x) has arbitrary sign see Problem 5.47.

Prove Theorem 5-6, page 73, for the case where f(z)= 0.
We have f(x)],dx = f(x)], dx 1)
S v, S ve,
Then taking the limit as p = =, it follows that

[ rwe s f rmas @
A E
i.e. the integral on the left of (2) exists since the integral on the right of (2) exists.

Prove Theorem 5-7, page 73, if f(x) = 0.

We shall prove the theorem for any finite union of disjoint sets, i.e. where E = E,VUE,u---UE,
and E,,E,, ..., E, are mutually disjoint. Since the theorem is true for bounded functions [see
Problem 4.14, page 62] we have

IR J, Vel as+ - +Ln @), do

Then taking the limit as p - «, we have as required

fE flx)dz = Ll fxyds + -+ + L,. f(x) dx

since f(x) is supposed to be Lebesgue integrable on E and thus on the measurable subsets
E,E, ...,E,.

Prove Theorem 5-7, page 73, if f(x) has arbitrary sign.
The result of Problem 5.12 is true for f+ (x) and f— (x), so that we have

Lf“"(ac)d:c = J;, ft(x)de + - +Lnf+(x)dx

fEl f-@dz + - +fEn f- (@) de

\-—3
=
&
IS
8]
Il
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Then by subtracting and noting that f f)dx = f ft(x)de —f f~(x)dx, we obtain the

required result
fx)yde = fx)de + -+ + d
j‘E ? Ll (x * Lﬂ f(x) ’

5.14. Prove Theorem 5-8, page 74 for the case where f(z)= 0.

We have by Problem 4.15, page 62,
L [f(x)], dw Ll [f(x)], dae + f [f@)]p,de + ---

= de + - +
fn, (@), da f @),
Then by letting p - », we have
dx = de + -+ + d 1
S roa fE 7(@) i S RCL @)
Letting » —> » in (1), we find
flx)de = f(x) de + fxyde + - 2)
L (x) doe J;l x) do sz (x) de

Now for £k =1,2,... we also have

S vl

k

A

so that on summing over k,

fE f(e) de
S

" f(x)] dac+f pde + -+ = f flx) dx +f fl)yds + -

ie. J;: [f(x)] » 4% f f(x)de + f fx)dx + -

Letting p —» », we thus obtain

fE f(x) dz

From (2) and (3) it follows that

fE flx) da

A

f f(x) dx + f f(x)yde + -+ (6]
Ey

Ey

Ll flz) dx +L2 flx)dx + -

5.15. Prove Theorem 5-8, page 74, for the case where f(x) has arbitrary sign.

From Problem 5.14 we have

J; frxyde = Ll ft(x)de +L2 fr@)de + -

Lf‘(x)dx J;l f—(x)dx+fE f~@de + -+

Then by subtracting and using the fact that f flx)dx = f ft(x)dx —f f~ (x) dx, we obtain
Es

the required result
d dx + de + -
L f(=z) dx f f(x) dx f f(x) dx

Il
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5.16. Give an example to show that Theorem 5-8, page 74, need not be true if no mention is
made of the integrability of f(x) on E.

Let 2n = 1
™ 4n2—1<x=2n—1
flw) = for n=1,2,...
—n 1 <x= 2n
’ 2n+1 T 4n2 —1

Then for each n we have

1/(2n—1> 1/(2n—1) 2n/(4n2—1)
f flx)yde = f ndx + f —ndx

1/2n+1) 2n/(4n2—1) 1/@2n+1)
— 1 __2n —n 2n 1
- 2n—1 4n2—1 m2—1 2n+1
= 0
1 . 1/2n—1)
Now f f)de = 3 [f(x)| de
0 n=1v"y/(2n+1)
o 1/(2n~1)
= 3 n dx
n=1q9/¢en+1)
0
= _n
- ,,§1 4n2 — 1
= § "
B ngl 471.2
- 131
T4 ,21 n

1 1
But since the last series diverges, it follows that f If(x)| dz is infinite and so f f(z) dz does
not exist. 0 0

5.17. Prove Theorem 5-9, page 74, for the case where f(x) =0 and g(x) = 0.
Let A(x) = f(x) + g(x). Then if we let

_ f(x) for all x € E such that f(z) = p
F@ly = { p forall x€E such that f(z) > p

with similar definitions for [g(x)], and [h(x)]p, we have

[(k@)]p = [[@)]p + 9@, = [=)]zp

Thus we have

f (R(@)],dx = J;: [f(2)], dx +L [g@)]p,de = L [A(x)]5p dox

E

Letting p — «, we find

h(zx)de = f(x) de + glx)de = h(x) dx
which shows that f(x)d (x)dx = h(x)d
ich shows tha f x x-i-f g(x) dx f x) dx

ie. L [flz) + g(x)] dx = j); flx)dx + fE g(z) dx

The result is easily extended to any finite number of funections.
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5.18. Prove Theorem 5-9, page 74, for the case where f(x) and g(x) have arbitrary sign.

In case f(x) and g(«) have arbitrary sign and h(x) = f(x) + g(x), the following six cases arise:

1) flx)z=0, gx) =0, h(z) =0 4) fle) =0, g(x) <0, h(x) <0
(2) flx) <0, g{x) <0, h(x) <0 (5) f(x) <0, g(x) =0, hix) =0
3) fleyz= 0, gx) <0, h{x) =0 (6) flx) <0, gx) =0, h(z) <0
Let E, By, ..., Eg denote the respective sets in which each of these cases arises. It is then clear

6
that E= | E,.
k=1

Now if we can show that

f [f(2) +g(@)] de = f [f(2)] dac +fE [9(2)] da @)

Ep E
for k=1,2,...,6 the required result will follow by addition and use of Problem 5.15.

We have already established () for the case %k = 1, i.e. the set E; in Problem 5.17. The result
can also be established in a similar manner for any of the other values of k. As an example let us
illustrate the case where k = 4. In such case we can write hz) = f(x) + g(x) as

[—9(=)] = [f(@)] + [~h(@)]

Then since f(x) 20, —g(x) Z0, —h(x)=0 on the set E,, we obtain as a consequence of

Problem 5.1 I,
f g( ) fE4 f( ) f&l ( )

E4
Using Theorem 5-10 this becomes

—L4 g(x)de = L4 f(x) da —L4 h(x) dx
or L4 h(x)dz = L4 flx) dx + L4 g(x) dx

ie. + dx = dx + d:
Le fm [f(=) + g(2)] dw fm flx) dw fm 9(x) dw
5.19. Prove Theorem 5-3, page 73: (@) f(z) is Lebesgue integrable on E if and only if
If(z)] is Lebesgue integrable on E and (b) ’f f(x) dx’ = j lf ()| C.
E E

() From Problem 5.18 we have

L flx)dx = L f* (%) dx —j{; = (x) da

e = f rrwas s f e

Then if f(x) is Lebesgue integrable on E, so also is [f(x)]; and conversely if |f(x)| is Lebésgue
integrable on E, so also is f(x).

(b) From part (a) we have

L f(x) de

fE ftix)de — fE f=(x) dx
IL ft)de| + IL f~(x)dx
L fr{z)dx + Lf—(x)dx
S el as

IIA

I
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5.20. Prove Theorem 5-11, page 74.
Since g(x) is bounded, we have |g(x)] =M so that
[flx) g@)] = M I|f()]

Then we have

IA

f @) g@)de = M f ()] dz
E E

and the required result follows since f(z), and thus |f(x)|, is integrable on E.

5.21. Prove Theorem 5-14, page 74: If f(x) is integrable on E, then given ¢ > 0 there exist
a 8> 0 and a set ACFE such that

‘j; f(x)dx' < 8

From Problem 5.19 it follows that |f(x)| is integrable on E. Thus given ¢ > 0 there exists a
natural number p, such that

if m(A4) <.

fE @) = @) dz <« )
where the integrand in (1) is non-negative.

Now if A is a measurable subset of E, we have by Theorem 5-6,
S vei-vel)a = § ool - e, )
Then from (1) and (2) we obtain

f f@) de < el+f 7@y, de @)
A

A
But from the fact that [|f(x)],, =Py we have

S U@, de = pomia

so that (8) can be written

[ V@l < o+ pomid) “

A

Now let ¢ = ¢/2 and choose m(A) < § = ¢/2p,. Then we have from (4),

fA f(x) dx

= f |fe) de <
4

if m(4) < 8, as required.

LEBESGUE’S DOMINATED CONVERGENCE THEOREM

5.22. Prove Lebesgue’s dominated convergence theorem [Theorem 5-16, page 74]: Let
{f.(x)) be a sequence of functions measurable on E such that lim f.(x) = f(x). Then

if there exists a function M(z) integrable on E such that |f.(x)| = M(x), we have

lim L fa(@)dx = J; f(x)dx

n=rw

From the fact that |f,(x)] = M(x), we have |f(x)| = M(x) so that f(x) is integrable. Now since
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IA

f vo-tuanaz| = § V@ - fu@)an
E E

the required result will follow if we can prove that
lim f [f@) — fo(z)de = 0 ) (1)
n=—x v g

To do this we use the sets of Problem 4.22, page 66, and write

— d = —_ d f — Jals d
j; [f(@) — fol@) dz Ln (@) — fu(x)] do + j};n [f(®) = fal2)| de @

On S, we have |f(x)— fo(x)] <e Also since |fy(x)] = M(x) and |f(x) = M(x), we have
(@) = ful2)] = |f(®)] + |[fo(x)] = 2M(2). Then on using the mean-value theorem, (2) becomes

f V@ -f@la = oms) + 2 Mo ®)
E Ry,

As n — = the last integral goes to zero since the infinite series defined by

LM(x)dx = le M(x)dx+fE2M(x)dx+

= f M@)de + -+ + f M(x)dx—f-f M(x) dx
Ey “E, R

£

converges, Thus since lim m(S,) = m(E), we find from (3)
n =~

Iim fE f@) ~fal@)|de = em(E)

Then letting ¢— 0 we obtain (1) as required.

FATOU’S THEOREM

5.23. Prove Fatou’s theorem [Theorem 5-19, page 75]: Let (f»(x)) be a sequence of non-
negative measurable functions defined on E and suppose that lim f.(z) = f(x). Then

h__mj; fa(x)yde = JE‘ f(x) dx

n=+ 0

Define as usual

{f(x) for all x € E such that f(x) = p

@)y P for all x € E such that f(z) <p

[fn(®)]p

fu(x) forall x € E suchthat f,(x) =p
p for all * € E such that f,(x) > p

Since lim f,(x) = f(x), we have
n=—x

n]lfrolo fu®]p, = U@,

Thus by Lebesgue’s theorem of bounded convergence,

Jim fE o))y do = fE[ﬂxnpdx 1)

Now since [f,(«)], = fa(x) we have

L Fa(x) dx

Then taking lim of both sides of (2), we have
ne—r w0

lim f falx) de
n =~ co E

v

f [fale)]p dee (2)
E

v

tim | U@l de ®
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But since the limit as n = « of the right hand side of (3) exists as in (Z), we have

lim f fol@)de =
n=roc E

fE (7@, da

(4)
Taking the limit as p = < in (4), we thus have as required

li n d = d.
lim f fue)as fEf(x) »

5.24. Prove Theorem 5-20, page 75.

Suppose that lim f f,(x) de is finite. Then by Fatou’s theorem we have
ne=—rxo E

J; fl)de =

lim fn(x) dx

n—0Jp

1)
so that the left side of (7) exists. Then since f,(x) = f(x), we have

L folx)de = Lf(x)dx

so that on taking the limit as » = «» in (2) we have

@

|Hn fn x dx = X da: 3
Thus from (1) and (3) we have

Iim fE fal@)do = fE F(a) do

Similarly if f f(x) dx is finite then since f,(x) = f(x) we have by Lebesgue’s dominated
E
convergence theorem,

lim f fo@)de =
ne=—x E

Thus the required result is proved.

fE lim fu()de = fE f@) do

APPROXIMATION OF INTEGRABLE FUNCTIONS
BY CONTINUOUS FUNCTIONS

1, z€l
5.25. Let I, = [ai,bi] be an interval contained in I = [a,d]. Define f(x) = { '

0, z1I,
Prove that given ¢> 0 there is a continuous function g(x) defined on I such that

j: If(x) —g(x)| de < e

Choose points P;:a;— 8 and Q,: b+ & in the intervals (o, a;) and (b,,b) respectively where

0 < 8§ < ¢/2 as indicated in Fig. 5-3. Let A; and B, denote the points where x =a;, f(x) =1 and
x = by, f(z) =1 respectively. Construct lines P;A; and B;Q,.

A B
14 —
/ \\
/// \\
‘/i1 Pll// } 1 \\.l 1 |B
T L) T T T T
0 a a; =38 a b, b+ b
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Let g(x) be the function whose graph is represented by AP,A,B,Q,B in Fig. 5-3, i.e.

0 e =x=a,—38§

1+ (x—ay)/s @ —8 = = q

g(®) = 1 a = x £ by
1—(x—0by)/s by=owv=b+5s

0 h+s=2x=1b

It is clear that g(x) is continuous in [a, b]. Furthermore we have

b ay _ b;+8 _
f f(x) —g(x) dx = f <1+x 8a1>dac +J; <1—“ 6b1>dx' = 25 <
a a;—38 1

and the required result follows.

5.26. Let I.=[ax, b, k=1,2,...,n, be n disjoint intervals contained in I = la, b].

1, z€e Ul .
Let f(x) = ‘. Prove that given ¢ > 0 there is a continuous function g(x)
O, * & UIk

defined on I such that
b
f [f(@) —g(x)|de < e

1, z€1I,

0 L’ Then by Problem 5.25 there is a continuous function gr(x) such
y X k

Let fi(x) = {
that for e > 0

b
f (@) — gp(@)| de < fL, k=1,...,n

n
Thus letting g(x) = F g,(x), we have
k=1

[ o -s@a = ("

a a

f@) = 2 gi(@)| de
k=1

A

n b
k§1 _fa | () — gi(®)| da

< €

1, x€F
5.27. Let E be a measurable set contained in I = [q, b] and suppose f(z) = {0 ¢
, T
Prove that given ¢ > 0 there is a continuous function 9(x) such that .
b
{ 1) - 9@ ds <
Since E is measurable, there is an open set O D E such that if e >0,
m(E) = m0) < m(E) + ¢ (1)

Now by Theorem 1-19, page 7, the set O can be expressed as a countable union of disjoint intervals
I, so that

m©0) = kil m(l,) @

From (1) and (2) we see that
o 2]
mE) = Zml)+ 3T ml) < mE) + ¢
k=1 E=ny+1
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Since the series converges we can choose n, sufficiently large so that

o0

I < 3
k=n20+1 m(Iy) €1 %
Ty
and mE) = kgl ml) < mE) + ¢ 4)
Now consider the intervals I;, 1, ..., I"o and let
"o
1, z€ y I
k=1
frg@) = "
0, =& y I

Then by Problem 5.26 there is a continuous function g(x) such that
b
[ @ —s@ld < o ®
a

o0
Let E, =Enl, k=1,2,..., so that £ = U E,. Now if k=1,2,...,n, we have since
I, = I, — E)UEy, =t

V@) = fay @)l o
I

S, = oo de + J, = tryto a

f_

Iy—Eg

[0 —1] da +Jl 11 —1|de
Ep

= f de = mL,—E,) = wml) — m(E)

I, —Ey
If k=ny+1, ny+2, ..., then since fno(x) =0 for 2z € k-G+11k’
=1,
— [ de = flx) de = de = I)
flk 1£(@) = Fug ()] d flkux)] . fI s = md
Thus we have on using (3) and (4),
b o 0 J‘
fa )~ fr iz = 3 f; e = y@lde + 3 V=]
o 0
= 3 [m) —mEY] + X mly)
k=1 k=n0+1
"o "o 0
= [E m(lk)—m(E)} + [m(E) -3 m(Ek)] + 3 m)
k=1 k=1 k=Tny+1
) 0 o0
= [E m(Iy) — m(E)] + 3 mEY+ S ml)
k=1 k=n0+1 k=n0+1
i) 0 0
= Sml) —m@E + I ml)+ S ml)
k=1 =n0+l k=n0+1
= g tegt g
= 351

Thus on using (5) we find,

b b b
(" -s@iar = [ @ —fry@lds + [ 1)o@ de
< 361 + €]
= 4g

Choosing ¢; = ¢/4, the required result follows.
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528. Let Ex, £k=1,2,...,n, be n disjoint measurable sets contained in I=[a,b].
1, x € FEx

Define x) =
=1y e
that given ¢ > 0, there is a continuous function g(z) defined on I such that

and f(z) = kzlakfk(x) where «, are constants. Prove

fab]f(x)—g(x)ldx < e

By Problem 5.27 given ¢; > 0 we can find a continuous function g(x) such that

b
f ey —grle)lde < ¢, k=12,...,n
Define glx®) = k§1 ay gi(x)
Th szf() )\ d fbﬁ f (@) |d
n x)—g(x = ay{fi (@) — gx(x)] | do
e ' . ()| de e relfic (@ kxll

1A

n )
k§1 o] f [fi (%) — gx(w)] d
- a
n
< e D e
K=1
n
Letting ¢ = e/E lax| we have as required,
k=1

b
f @) —g(@) de < e

5.29. Let f(x) be bounded and measurable and thus integrable in I =[a,b]. Prove that
given ¢ > 0 there is a continuous function g(x) defined on I such that

b
f If(#) — g(x)|dx < e
a
Choose subdivision points
a:y0<yx< e <yn-1<yn:A8
Suppose that the largest of the values %, — ¥, is denoted by § and let
Ek = {m:yk——1§f(x)<yk}, k:‘l,Z,...,'n

These sets are measurable since f(x) is measurable.

1, x€E,
Let bRy (x) = and define
0, € E}
n
) = 3 Yu—y @)
k=1
so that h(x) = yr—y for x €K,

Now by Problem 5.28, given ¢; > 0, there is a continuous function g(x) such that
b
[ e —o@las < o
a

Letting § be the largest of the quantities Ay, = ¥, — yr—1, we find



90 THE LEBESGUE INTEGRAL FOR UNBOUNDED FUNCTIONS [CHAP. b

IA

b b b
[ o -geia = [ - rwla + [ e - o)

A

k§1 L,‘ [f(x) — h(z)| de + &

iA

n
2 Sdx + ¢
k=1 Eg

= S(b—a) + e < e

if we choose ¢ = ¢/2 and § < ¢/2(b — a). Thus the required result is proved.

5.30. Let f(x) be unbounded and integrable in [a,b]. Prove that given ¢ > 0, there is a
continuous function g(x) such that

[ 1f@) —~ g(@) do <

Let
- {f(x), @) 20 - {o, f) = 0
1@ = 10, jw=o 2@ = i), =0

so that f(x) = fi(x) — fo(x) and

fabf(w)dx = J;bfl(x)dx—j;bfz(x)dx

. _ [h@®, fi@=n - _ [f@), fr@=n
i@ = n,  frl@)>n’ 2@ = n,  fa@)>m

Define

Then F,;(x) and Fy(x) are bounded and measurable in [a, b]. Thus by Problem 5.29, given ¢ > 0,
there are continuous functions g,(x) and g,(x) such that

b b
f |Fy(x) —g,@)|de < ¢, f |Fo(2) — golac) dz < ¢
a a
Also we can choose n so large that

b b
f fi@) —Fy@)de < ¢, f [fe(@) — Fo(x)| de < ¢

If we call g(x) = g,(x) — go(x), then
|f(x) — g(a)] If1 (@) — fa () — g1(@) + gaa)]|
[f1(2) = F1(2) + Fy (%) — g1(%)] + [f3(x) — Fp(x) + Fa(x) — go(x)]
[f1 (@) — Fy(@)] + [Fy(x) — g1 (@)] + |fol@) — Fa()] + |Fo(2) — go()|

A WIA I

b b b
Ths [ Ifw-s@ld = [ h@-Fi@lde+ [ 1FE-n0de
a a b a b .
+ @ -F@lds + [ 1@ — 0o do

< €t e+ e+ e = 4¢

and the required result follows on choosing e; = ¢/4.

531. Prove Theorem 5-23, page 76: If f(x) is integrable [and not necessarily bounded] in
[, b], then b
lim f(x+h)— flx)|de = O

h=+0+qa

Let the interval [a, b] be enclosed in an interval [¢,d] as indicated in Fig. 5-4 below and assume
that f(x) is suitably extended so as to be integrable in [c, a] and [b, d].
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By Problem 5.30 there exists a continuous fune-
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X i 1
T T T

tion g(x) in [¢,d] so that given ¢ > 0 ¢ @ b

d
f [f(@) —g(@)|de < ¢ Fig.5-4

Also since g(x) is continuous in [e,d], it follows that for every ¢; > 0 there is a 8§ > 0 such

that for all « in [a, b], .
lg(x+ k) — g(z)] < ﬁ whenever |h| < §

where we can suppose that |h| is less than the minimum of ¢ — ¢ and d — b. Thus

b b .
fern—g@a = [ =

b—a

Now

flxt+h) — fle) = [fl@e+h)—gl@+h)]+ [glx+h) — 9)] + [g(x) — f(x)]

from which we have

[fe+h) = f@@)] = Iflx+h) = gl@+h)|+ |9+ h) — g@)| + |f(x) — g(=)]

so that for |h| < g,

b b b
f [flx+h) — f(z)|de = f [flx +h) — g(xz+ R)| dx + f [gx+ h) — g(x)| dx
a a b a
+ V@) - o) da
b+h ¢ b .
= {7 1w - o) + [ o+ 1) — g am
ath b a
+ 17w ~ gta) do
d ¢ b
= [ Ve -o@lds + f lotatn) - o) az
[ 4 a
+ 11w - ota) dx
< ¢+ e + ¢
= 361

Choosing ¢; = ¢/3, we see that

fb [fle+h) — fl@)de < e for |k <s

b
ie. lim J; f@+h) — f(=)|dx = 0

LEBESGUE INTEGRALS ON UNBOUNDED SETS
5.32. Prove that if f(x) is measurable on an unbounded set E, then

UE fa)de| = L]f(x)]dx

d = flx)| d
fmw faae| = ()

E N [a,b]
Then taking the limit as a = —« and b —> » the required result follows.

By Problem 5.19 we have
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Supplementary Problems

DEFINITION OF THE LEBESGUE INTEGRAL FOR UNBOUNDED FUNCTIONS

5.33.

5.34.

5.35.

5.36.

5.37.

5.38.

5.39.

5.40.

5.41.

5.42.

5.43.

5.44.

5.45.

5.46.

Determine {f(2)], if (a) f(x) = 1/x, (b) f(z) = e for x> 0.

4
Prove thatf ii\/% exists as a Lebesgue integral and find its value. Ans. 4
0 X

2
Prove that f % does not exist.

Investigate the existence of (a) f d , (b) f (x— 4)3 73

Prove that f(z) = x—4¢ is Lebesgue integrable in (0,1) or not according as q <1 or not.

Show that if f(x) is bounded, measurable and non-negative, then the definition (2) on page 72 for
the Lebesgue integral reduces to that given in Chapter 4.

Work Problem 5.3, page 77 by direct use of the definition of a measurable function, i.e. without
relying on Problem 3.18, page 48.

Prove that (a) [f(2)]; = [f(x)]s = ---, (b) f [flx)]  de = f [f(x)]gde = ---. Thus verify equa-
tions (1) and (2) of Problem 5.8. E YE

Prove that if f(x) = 0 then (a) [f(2)], = f(x) and (b)f [f(@)], dx éf f(x) dx if f(x) is integrable
on E. E E

Find (a) f*(x) and (b) f—(x) for the function f(x) = 3+ e* —e~ %, —3 =g =3,
(a) Prove that if f(z) is bounded and measurable, then so also are f*(x) and f—(x). (b) Use the
result of part (a) to show that the definition of the Lebesgue integral given by (?), page 72, reduces

to that given in Chapter 4 in case f(x) is bounded and measurable.

Show that if f(z) is unbounded and non-negative, then the definition of the Lebesgue integral
given by (7), page 72, reduces to that given by (2), page 72.

Let E be the interval (—8,8) and f(x) = (x1/3 — 1)/22/3, Use the definition to determine whether or
not f f(x) dz exists. If it exists find its value.
E

Give a geometric interpretation to the result of Problem 5.45.

THEOREMS INVOLVING LEBESGUE INTEGRALS OF UNBOUNDED FUNCTIONS

5.47.

5.48.

5.49.

5.50.

5.51.

5.52.

5.53.

Prove Theorem 5-4, page 73, if f(x) has arbitrary sign [compare Problem 5.10].

Prove Theorem 5-5, page 73, if (a) f(x) =0, (b) f(x) has arbitrary sign.

Prove Theorem 5-6, page 73, if f(x) has arbitrary sign [compare Problem 5.11].

Prove Theorem 5-9, page 74, for the cases (a) f(x) <0, g(x) <0, (b) f(x) =0, g(x) <0, h(x)

f@) + g(x) 20, (o) f(x) <0, glx) =0, hix) = f(x) + g(x) Z 0, (d) f(x) <0, g(x) = 0, h(x)
f(x) + g(x) < 0.

Generalize Theorem 5-9 to any finite number of functions.
Prove Theorem 5-10, page 74.

Prove Theorem 5-12, page 74, for the cases (a) f(x) = 0, g(x) = 0, (b) f(x), g(x) have arbitrary sign.
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5.54. Prove Theorem 5-13, page 74.

5.55. If ¢y, ¢y are any constants and f,(x), fo(x) are integrable on E, prove that

S n@+an@la = of n@d+ o Lo
E E E
5.56.  Generalize Problem 5.55 to any finite number of functions.
557. If f |f(x) — g(x)} dx = 0, prove that f(x) = g(x) almost everywhere on E.
E
5.58. Prove Theorem 5-15, page 74.

LEBESGUE’S DOMINATED CONVERGENCE THEOREM

5.59. Discuss conditions under which Lebesgue’s dominated convergence theorem reduces to Lebesgue’s
theorem on bounded convergence.

n, 1/m8 =2 = 8/n3

.60. L =
5.60 et fal) {0, 0sx<1/m® or 8/m3< =1

(a) Prove that lim f,(x) =0 in [0,1] but that the convergence is not uniform.
ne=k o0

{2/3/5, 0<z=1

(b) Prove that [f,(v)| = M(x) where M(x) = 0 €=0

n=- o

1 1
(¢) Is it true that lim f fn(x) de :f lim f,(z)dx? Explain.
Yo 0 no®

5.61. Suppose that lim f,(x) = f(x) almost everywhere in E and that |[f,(x)| = M(x) almost every-
n=—+ oo

where in E where M(x) is integrable on E. If v(x) is bounded and measurable on E, prove that

lim f falzx)v(x)dx = f flx) v(x) dx
n—oJp E

5.62. Prove Theorem 5-17, page 75.

5.63. Prove Theorem 5-18, page 75.

5.64.  Are the results of Problem 5.61 and Theorem 5-18 still valid if »(x) is integrable on E? Explain.

5.65. Work Problem A.60, page 173, if the integrals are Lebesgue integrals.

FATOU’S THEOREM

5.66. Prove that lim folx)de = f lim f,(x)dx where (f,(x)) is a sequence of non-negative
n=r 0 E E n=» o

functions defined on E. Discuss the relationship with Fatou’s theorem.

5.67. Prove that if the conditions of Problem 5.66 are satisfied, then

Tim f folx)de = f Iim £, (x)dx
E E n -+

N = 0 v

Discuss the relationship with Fatou’s theorem and with Problem 5.66.
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5.68. Let
n3, 1/n3 =x = 8/n3
fal®e) = {

0, 0=x<1/n3 or 8/ME<2x =1

1 1
(@) Isit true that lim f folx)de = f lim f,(x) de?
=0 0

0 n—e

1 ‘1
(b) Is it true that lim f fol)dx = j lim f,(x)dz? Explain the relationship between parts
(@) and (b). 77 7° o "7

LEBESGUE INTEGRALS ON UNBOUNDED SETS

5.69. Prove that f % exists as a Lebesgue integral and find its value. Ans. 1
1

o0 302
5.70.  Prove that f su;zx dx exists as both a Lebesgue and a Riemann integral.

-0

5.71. Prove Lebesgue’s dominated convergence theorem for the case where the set E is unbounded.
5.72. Prove Fatou’s theorem for the case where the set E is unbounded.
5.73. Is the result of Problem 5.61 still true if E is unbounded? Explain.

x/n?, 0<x<m

574, Let f.(x) = { (a) Evaluate lim f fo@ dx. (b) Is the result in (a) the
n=—+ 0

0, otherwise )

same asf lim f,(x)dz? Explain.
0

n—+0
5.75. Can we define a Cauchy principal value for Lebesgue integrals? Explain.

5.76. Prove Theorem 5-25, page 7.



Chapter 6

INDEFINITE INTEGRALS
If f(x) is integrable, we call

Fa@) = [ fwdu (1)
an indefinite integral or briefly an integral of f(zx). Note that the dummy symbol « is \uSed
to avoid confusion with « in the upper limit of integration. If any constant is added to the
right side of () the result is also called an indefinite integral.

SOME THEOREMS ON‘ INDEFINITE RIEMANN INTEGRALS
If (2) is a Riemann integral, we have the following theorems [see Appendix A, page 157].

Theorem 6-1. If f(x) is bounded and Riemann integrable on [a, b], then
F@) = | e
is continuous in [a, b]. ¢ _
Theorem 6-2. 1If f(x) is bounded and Riemann integrable on [a, b], then

F@) = g:F@) = & fwa = fo @

at each point of continuity of f(x).

Theorem 6-3 [Fundamental theorem of calculus]. Let f(z) be Riemann integrable on
[@, b] and suppose that there exists a function F(z) continuous on [a, b] such
that f(z) = F’(x). Then

S rwaz = Fo) - Fo - ®)

or Lx fwydu = F(x) — F(a) (4

It is the purpose of this chapter to investigate the relationship of differentiation and
integration corresponding to the above theorems for the case of indefinite Lebesgue integrals.

MONOTONIC FUNCTIONS

A function f(:)c) in [d, b] is said to be monotonic increasing if f(xs) = f(xl) for T2 > X1,
and monotonic decreasing if f(x2) = f(x1) for x>z If f(x) is either monotonic increasing
or monotonic decreasing, it is called monotonic.

95
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The jump of f(x) at xo is defined as f(xo + 0) — f(xo — 0) where f(xo+0) = hliron+ f(xo+ h),
f(®o—0) = hliron_ f(wo+h). If f(x) is monotonic increasing, the jump at any point is non-

negative. If f(x) is monotonic decreasing, the jump is non-positive. If f(x) is continuous
at xo, then the jump at x, is equal to zero.

If f(x) is monotonic increasing, then —f(x) is monotonic decreasing and conversely.
Because of this result many properties proved for monotonic increasing functions are also
true for monotonic decreasing functions.

SOME THEOREMS ON MONOTONIC FUNCTIONS

Theorem 6-4. If f(x) is monotonic increasing in [a, b], then there can be at most a finite
number of discontinuities with jump greater than some given ¢>0. A
similar result is true for monotonic decreasing functions.

Theorem 6-5. If f(x) is monotonic increasing [or monotonic decreasing] in [a, b], then the
set of discontinuities of f(x) can at most be denumerable.

FUNCTIONS OF BOUNDED VARIATION

Suppose that the interval [a, b] is divided into n parts by use of the points of subdivision
a=2o<z:1<---<x» = b. Then we say that f(x) is of bounded variation in [a,b] if

121 if(xk) — f(xk—1)| (5)
is bounded for all possible partitions or modes of subdivision.

The least upper bound of all the sums (5) for all possible modes of subdivision is called
the total variation of f(x) in [a, b] and will be denoted by <V%(f) or briefly V2.

SOME THEOREMS ON FUNCTIONS OF BOUNDED VARIATION

Theorem 6-6. A monotonic increasing [or monotonic decreasing] function in [a, b] is of
bounded variation in [a, b].

Theorem 6-7. If f(x) is of bounded variation in [a, b], then it is bounded in [a, b].

Theorem 6-8. If f(x) and g(x) are of bounded variation in [a, b], so also are f(zx) + g(),
f(z) — g{=), f(x)g(x) and f(z)/g(x) where in the last case g(x)+* 0.

Theorem 6-9 [Jordan decompeosition theorem]. A function f(x) is of bounded variation if
and only if it can be expressed as the difference G(x) — H(x) of two bounded
monotonic increasing functions G(x) and H(x).

Theorem 6-10. 1If f(z) is of bounded variation in [a, b], then it can have at most a denumer-
able set of discontinuities in [a, b], and at every point ¢ in (a, b) the right and
left hand limits lim f(x) = f(¢+0) and lim f(x) = f(c—0) exist.

r—c+ T=c—

Theorem 6-11. If f(x) has a bounded derivative in [a, b], then f(x) is of bounded variation
in [a,b]. However, if f(x) is continuous in [a, b] it need not be of bounded
variation [see Problem 6.5].
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DERIVATES OF A FUNCTION
The derivative of f(x) is defined as

Dfx) = fl(z) = ]imw (6)

h=0 h

and may or may not exist. Let us define four quantities

D) = Tm [EEH-TE) (7)
p-jr) = Tm [2EM-I@) (8)
D.f(x) = hli_raw 9)
D_f@) = hl_l__'}_gl_f(x—i_—h;fﬂ (10)

called derivates of f(x), which are either finite, positively infinite or negatively infinite.
In case Dtf(x) = D+f(x)

then f(x) has a right hand derivative denoted by f+ ().
In case D f(x) = D-f(x)

then f(z) has a left hand derivative denoted by f. ().
In case D*f(x) = D+f(x) = D flx) = D-f(z)

then f(x) has a derivative f’(x). Conversely if f(z) has a derivative, then all of the four
derivates are equal.

DERIVATIVES OF FUNCTIONS OF BOUNDED VARIATION
The following theorems are of great importance.
Theorem 6-12. If a function is monotonie, then it has a derivative almost everywhere.

Theorem 6-13. If a function is of bounded variation, then it has a derivative almost
everywhere.

The following theorem is often useful.

Theorem 6-14. If i fx(x) is a series of functions of bounded variation which converges to
k=1 .

s(x) in [a, b], then almost everywhere in [a, ],

#@) = @

ABSOLUTE CONTINUITY

A function f(x) is said to be absolutely continuous in [a,b] if given ¢ > 0 there exists
8 > 0 such that

z F(+ h) — F@)| < e (11)

for every finite set of intervals (x«, zx + ki) such that
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g b < 8 (22)

The definition is sometimes used with xx + ke = @x+1, i.€. Ar = Ti+1— k.

SOME THEOREMS ON ABSOLUTE CONTINUITY

Theorem 6-15. An absolutely continuous function is continuous but the converse need not
be true.

Theorem 6-16. 1f f(x) and g(x) are absolutely continuous in [a,b], so also are f(z) + g(x),
f(x) — g(x), f(%) g(x) and f(x)/g(x) where in the last case g(x) + 0.

Theorem 6-17. An absolutely continuous function is of bounded variation but the converse
need not be true.

Theorem 6-18. An absolutely continuous function has a derivative almost everywhere.

Theorem 6-19. 1f f(x) is absolutely continuous in [a,b] and f’(x) =0 almost everywhere
in [a, b}, then f(x) is a constant in [a, b].

Theorem 6-20. Let f(x) be absolutely continuous and strictly increasing in [a, b] [i.e. f(zx) >
f(zx—1) for x> wk-1]. Then if g(u) is absolutely continuous in [f(a), f(b)],
9(f(x)) is absolutely continuous in [a, b].

In connection with Theorems 6-15 and 6-17 it is of interest to note that even a continuous
function of bounded variation may not be absolutely continuous.

THEOREMS ON INDEFINITE LEBESGUE INTEGRALS
Theorem 6-21. If f(x) is (Lebesgue) integrable on [a, b], then

F(x) = j;xf(u) du
is éontinuous and of bounded variation in [a, b].
Theorem 6-22. 1f g(x) is integrable on [¢,b] and
f “gwdu = 0
for all « in [a,b], then g(x) =0 almost everywhere in [a, b].

Theorem 6-23. If g(x) is continuous and monotonic increasing in [a,b], then ¢’(x) is
integrable on [a, b] and

b
{To@ar = o) - 0@
or on replacing b by z,

frwan = g)- g

Theorem 6-24. A function F(x) is an indefinite integral if and only if it is absolutely
continuous.
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Theorem 6-25. If F(x) is absolutely continuous, then

f Fiz)ydz = F(b) — F(a)

or replacing b by =z,
f Fuydu = F() — F(a)
Theorem 6-26. If F'(x) exists everywhere in [a, ] and is bounded, then

f ‘Pz = FO) — F(a)

or fo"(u)du = F(z) — F(a)

INTEGRATION BY PARTS

Theorem 6-27. Let F(z) and G(x) be indefinite integrals of the integrable functions f(x) and
g(x) respectively. Then

f "Fe)gw)de = F)G@)|! f f(@) G(x) de
F(b)G(b) — F(a)G(a) — f f(z) G(x) do

A related theorem is the following.

Theorem 6-28. If F(x) and G(x) are absolutely continuous, then

{ F@)@@dr = F@e@[ - | " F(%) Gla) da

CHANGE OF VARIABLES

Theorem 6-29. If f(x) is integrable in [a, b] and = = ®(u) is an indefinite integral of a non-
negative integrable function ¢(u), then

(i@ = [reewdn = [ few) s du

where « and B are such that ®(c) =a, @®(8) =b.
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Solved Problems

MONOTONIC FUNCTIONS

6.1. Let f(x) be monotonic increasing in [@,b] and suppose that subdivision points are
chosen such that a <21 < --- <x,-1<b. Prove that

f(a + 0) — f(a) + :21 [f(xk+o) - f(xk—o)] + f(b) — f(b - 0) = f(b) - f(a)
Choose points ¢, ...,¢,_; such that

a < ¢ < 2; < ¢ < gy < < @y < €y < b
Then we have

A

fla+0) — f(a) flep) — fla)

fleg +0) ~ flxy—0) = fley) — fleg)

fleg +0) — flwg—0) = flep) — fley)
f@y1+0) = fl@n1—0) = flen—y) ~ fleg—2)
F®) =6 —0) = f(b) — fleg—y)

Adding, we obtain the required result.

An analogous result can be proved for the case where f(x) is monotonic decreasing [see
Problem 6.32].

6.2. Prove Theorem 6-4, page 96: If f(z) is monotonic increasing in [@, b], then there can

be at most a finite number of discontinuities with jump greater than some given
e> 0.

Suppose that the number of discontinuities with jump greater than ¢ is p. Then by Problem
6.1 we have

pe = f(b) — f(a)

from which we see that p must be finite.

For the case where f(x) is monotonic decreasing, see Problem 6.33.

6.3. Prove Theorem 6-5, page 96: If f(x) is monotonic increasing [or monotonic decreasing]

in [a, b], then the set of discontinuities of f(z) can at most be denumerable.

Let A be the set of all discontinuities of f(x) in [a, b] and let A, be the set of all discontinuities
of f(x) for which the jump is greater than 1/k. Then we have

But since each of the sets A can have at most a finite number of discontinuities by Problem 6.2,
it follows that A can have at most a denumerable set of discontinuities.

For the proof in case f(x) is monotonic decreasing see Problem 6.34.

FUNCTIONS OF BOUNDED VARIATION
6.4. Prove that (a) a monotonic increasing function and (b) a monotonic decreasing
function in [a, b] are of bounded variation.

(a) Suppose that a partition of [a,b] is @ = x5 < 2; < --+ <z, = b. Then if the function is mono-
tonic increasing we have f(z)) Z f(x,_,). Thus

n

2 [ — fl@x-)] = £(b) — f(a)

k=1

2 |fx) — flg_)l =
K=1
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6.5.

6.6.

6.7.

Then the sums n

S e — Floe—y)|

k=1

are bounded for all possible partitions of [a, b] so that f(x) is of bounded variation in [a, b].

(b) In this case we have f(x;) = f(xr—q) so that

n

S o) — flae—)] = kgl [flex—1) — flz)] = fl@) — f(b)

k=1
and the required result follows as in part (a).

Give an example to show that a continuous function is not necessarily of bounded
variation.

2 sin(l/x), 0 <z = 2/»
Consider f(x) = 0 and choose as partition of [0, 2/7] the points
’ x =
o 2 2 2 2 2
P24 Dr’ Cu)r’ Cn—17’ 77 277 &
which we can denote respectively by zg, %y, ..., %s,+;. Then
2n
- 2,2 ,2 . 2
kgl [fw) — flaege—y)] = . + o + 3 + + @2n+ )7
_ 2 1.1 1
= w[1+2+3+ +2n+1]

and these sums become infinite as n —> = so that f(x) cannot be of bounded variation in [0,2/x].
However f(z) is continuous [see Problem 1.40, page 19].

Prove Theorem 6-7, page 96: If f(x) is of bounded variation in [a,b], then it is
bounded in [a, b].

Choose as subdivision points of [a, b] the points a,%,b where a =« = b. Then since f(x) is of
bounded variation, there exists a constant M such that

If(@) — fl@)] + [f(®) —f(=)| = M

and so [flx)—fla)) = M

Then lf@)] = [f@)—fla) + fa)] = Ifl@)—fl@) +1f(@)] = M+ [f(a)l

i.e. f(z) is bounded.

Prove that the sum of two functions of bounded variation is also of bounded variation.

Let f(x) and g(x) be the functions and h(x) = f(x)+ g(x). Then since f(x) and g(x) are of
bounded variation, there exist constants M, and M, such that for all possible partitions

kgl [Flay) — Flop—1)] = My, kgl () — g(xe—1)] = M,
Then since () — hlwe—1)| = |Flg) — Flee—1)| + |g(xy) — g(@e_y)|
we have
k§1 h(zy) — hlwe—p)] = kgl [F(x) — flaee— )| + k§1 lg(@e) —g(@e_| = M, + M,

so that h(z) = f(x) + g(x) is of bounded variation.
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6.8.

6.9.

6.10.
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Prove that the product of two functions of bounded variation is also of bounded
variation.

We have

[f(oy) glay) — Flaoe—1) 92— 1) If (i) g(an) — Flmp—y) 9l + Flag_y) glag) — Florg—y) glag—y)]
lg ()] [f(z) — flae—1)| + |floer— ) g () — gl 1)
Plfla) — flex—1] + Qlolay) — g(x_y)|

where P and @ are upper bounds of g(x) and f(x) which exist by Problem 6.6. Then summing

from k=1 to n we have
n

2 ]f(xk) g(xy) — flwg—y) 9(%—1)[

k=1

I

IIA

A

Pkgl [f(2y) — flag—) + ngl lg(xy) — 9(%—1)!
= PM; + QM,

since f(x) and g(x) are of bounded variation. Thus f(x) g(x) is of bounded variation.

Let f(z) = G(x) — H(x) where G(x) and H(x) are bounded and monotonic increasing
in [a,b]. Prove that f(x) is of bounded variation in [a, b].

We have
[Flaw) — flee_ )l = [[Glae) — H(ay)] — [Glarg—p) — H(wy 1)l

= [G(=y) — Glag~y)] — [H(wy) — H(2,_y)]]

= |Glay) — Glwg—y)| + [H(2) — H(wg—y)]|

= Glay) — Glowg—1) + Hlor) — H(w—y)
since G(xy) = Glox_y), H(x,) = H(x;_,). Then

2 If(xk)_f(wk—l)l = 2 [G(xk)_G(xk—-l)] + 2 [H(xk)—H(xk—l)]
k=1 k=1 k=1

G(b) — G(a) + H(b) — H(a)

from which the required result follows.

We can also prove the result if G(z) and H(x) are bounded and monotonic decreasing.

Prove that if f(x) is of bounded variation in [a,b], then f(x) can be written as the
difference of two monotonic increasing functions G(z) and H(x), i.e. f(x) = G(zx) — H ().

n

Let VvV = kEl o) — Flowg—1)] ()

and let us denote the differences f(x)) — f(x,,_,) briefly by Af. We can decompose the sum (1) into
terms where Af > 0 and those where Af < 0. Then we can write (1) as

V. = 3 [afl + 3 |af|
AF>0 Af<0
= 3 A~ 3 Af
Af>0 Af<0
and so we have V = P+ N (2)
where P = 3 Af, N = — 3 af (3)
Af>0 Af <0
Now n
P—-N = 3 af+ 3 af = 2 [flw) — flax—y)] = F(B) — fla) (4)
Af>0 Af<o k=1

From (2) and (4) we find
V = 2P + f(a) — f(b), V = 2N + f(b) — f(a) : 5
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Let U8, P, N denote the least upper bounds of V,P,N in [a,b] respectively. Then from (5)
we have
Vp = 2P + f(a) — f(b), VY = 2N+ f(b) — f(a) (6)

These results hold for the interval [a,b]. Now if we consider the interval [a,2] we have similarly

xz

Vg = 2Pa + fla) — f@),  Va = NG+ flz) — fla) )
Then solving for f(x) in (7) we find
f®) = fla) + P3— NG
Since °Pﬁ and ‘Nz are monotonic increasing functions of ® we can write
G@) = fla)+ P;, H@) = Ng
so that as required flx) = G(x) — H(x)

where G(z) and H(z) are monotonic increasing.

We call U5 the total variation of f(x) in [a, %], P the positive variation of f(z) in [a,2] and
N 5 the negative variation of f(x) in [a, z].

DERIVATIVES OF MONOTONIC FUNCTIONS
6.11. Let f(x) be a monotonic increasing function in [a,b]. Prove that

E = {z:D*f(x) > D:f(x)}
has measure zero.

Consider the sets
Eys = {=: D, f(x) <r <s <D+ f(x)}

where » and s are any rational numbers. It is clear that E = UE,, where the union is taken over
all pairs of rational numbers r,s. Since the rational numbers are countable, we have by Problem 2.4

m(E) = Eme(Ers)

where the sum is taken over all pairs of rational numbers 7, s.

The required result will be proved if we can show that for each fixed pair of rational numbers
r,s we have m,(E.) = 0.

Let m.(E,;) = «x. Then given ¢ > 0 there is an open set ODE,, such that m,(E,.) > m(0)—e,
j.e. m(O) < k+e

Now since D, f(x) < r, it follows that corresponding to every point of E,; there is an interval
[,z + ] in O whose length is arbitrarily small such that

M_f%ﬂ <r or flath)—fl@) < rh

By the Vitali covering theorem we can choose a set of n disjoint intervals I, = [a, % + Ry,

n
k=1,...,n, such that if A=kU L,
=1

m(E,s—A) < ¢ (1)
Summing over these intervals we find
n n
k§1 [flae + Ry) — fla)] < rkgl e = ™(0) = r(x+e (2)

n
Let us now consider the set B consisting of all points of A = {J I except for the end points.
Since m,(E,, — B) = m,(E,;— A), it follows from (1) that k=1

me(Ers_B) < e ®
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Denote by C the set of all points common to E,; and B, i.e. C = E,,NB. There will be a set of
intervals [y,y + 1] contained in B whose lengths are arbitrarily small. In view of the fact that
D+ f(x) > s, we have for this set of intervals

f__w“)l-f(y) >s  or  fly+d-—fly) > sl “)

Now since this set of intervals is a Vitali covering of C we can choose a set of disjoint intervals
Jo = ¥pyp+ 1), p=1,...,q, for which (4) holds, i.e.

flyp + 1) — fly,) > si, p=1...,q (5)

and such that if G =
14

J

’
1 D

HC a

m(C—G) < « (6)

Summing both sides of (5) from p =1 to ¢ we have

q

q
2 [f(yp + lp) - f(yp)] > s g

l 7

p=1 P L ( )

Now since f(x) is monotonic increasing and each interval Jp is contained in some interval I,, we have
q n

S Fuptl) —fly)] = 3 [flan+ k) — f(zy)] (8)

p=1 k=1

Then from (2) and (8),

q q n
s 2 b < I+l —fa)] = 3 [ecth) — @) = rto €
q
Now since 21 I, = m(G), we see from (9) that
—
< rlk+e
m(G) = S
Then we have x = myE,) = myE,nB) + m,E,nBE)

= my(C) + m(E,,— B)

= mC) + ¢
= m(CNG) + m(CNG) + ¢
= m(G) + m(C—G) + ¢
< ’r(x:- €) + 2
Solving the inequality for «, we find
0 = « < (r + 2s)e
s—r

Since ¢ can be made arbitrarily small, it follows that « = m,(E,) = 0 as required.

Let f(x) be a monotonic increasing function in [a, b]. Prove that S = {x: D* f(z) = o}
has measure zero.

Suppose the contrary, i.e. m,(S) =x>0. Then if K is any positive number, we can find for
each x € S a set of intervals [z, z + h] such that

feth) —f@) o
h

Now by Vitali’s covering theorem there exists a disjoint set of intervals I, = [y, 2 + Ry,
n
k=1,...,n such that if A = kL_Jl I,
m(S —A) < ¢ 1)
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6.13.

6.14.

For this set of intervals we have
flaee + hy) — flg)
i

flaye + hy) — flay)
K

> K

or hy

Then summing from k=1 to » we have

M=

my(4) = h, < Il?kgl [flae + k) — flw)] = f(b) — fla)

K

k=1
where we have used the fact that f(z) is monotonic increasing in [a, b].

Thus we can choose K so large that

me(A) < e (2)
and from (Z) and (2) we have
Mme(S) = m,(S—A)+ m(4) < 2e

Since e can be made arbitrarily small, we have m,(S) =0 or m(S) = 0.

Prove that a monotonic increasing function has a derivative almost everywhere.

In Problem 6.11 it was shown that the measure of the set {x: D, f(x) < D¥ f(x)} is zero.
In the same manner we can show [see Problems 6.55, 6.56, 6.57] that the measures of other sets
such as

{o: D, fw) = D* (@)}, {&: D_f@) <D~ f(@)}, {x: D_f(@) <D*f@)}, {@: Dy f() <D~ f(x)}

and so on are also zero.

It follows from these results that
D,f = D_f = D*f = D—f

almost everywhere, so that the derivative exists [ie. is finite] almost everywhere.

Prove that a monotonic decreasing function has a derivative almost everywhere.

If #(x) is monotonic increasing, then —f(x) is monotonic decreasing. Then since D f(x) exists
almost everywhere, so also does D[—f(x)] = —D f(x) exist almost everywhere.

6.15. Prove that a function of bounded variation has a derivative almost everywhere.

This follows at once from the fact that a function of bounded variation can be written as
the difference between two monotonic increasing functions which by Problem 6.13 have derivatives
almost everywhere.

ABSOLUTE CONTINUITY

6.16.

Prove Theorem 6-15, page 98: An absolutely continuous function is continuous.

If f(x) is absolutely continuous, then given ¢ > 0 we can find 8 > 0 such that
n n
S |f(ee + hy) — Fleg)] < e whenever k21 |yl < 8
k=1 =
By taking = =1 as a special case we have
[fle+ h) — flx)] < e whenever |h| < §

so that f(x) is continuous.
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6.17.

6.18.

6.19.

6.20.

6.21.
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If f(x) and g(x) are absolutely continuous, prove that f(x) + g(x) is absolutely
continuous.

Since f(x) and g(x) are absolutely continuous, given ¢ > 0 there exists § > 0 such that

n n
2 [flor + k) — fla)| < % whenever 3 |h| < &
k=1 K=1

n E n
k§1 lg (@ + hy) — glag)] < 5  Whenever k§1 hel < 8

Then since
l[f(xk + k) + gl + he)] — [f(xk) + g(xk)]l = o+ hy) — Fl)l + gl + hy) — 2678

we have for 3 k| < 5,

n

2 I[f(mk + hy) + g(x + hk)] - [f(xk) + g(xk)]l

k=1
= kgl 1f(@y + Ry) — fle)| + kgl lg g + By) — y(xk)l
< 2 + 3 = e

which proves the required result.

Prove Theorem 6-17, page 98: An absolutely continuous function is of bounded
variation.
If f(x) is absolutely continuous, then given ¢ > 0 there exists & > 0 such that

n

k§1 [floog + hy) — flawy)] < e whenever [k <

But this implies that the total variation over any interval of length § does not exceed . Thus the
total variation over the interval [a, b], which is of length b —a, does not exceed (b —a)e/s. It
follows that the total variation of f(x) in [a, b] is bounded, i.e. f(x) is of bounded variation.

Prove Theorem 6-18, page 98: An absolutely continuous function has a derivative
almost everywhere,

This follows at once from Theorem 6-17 and Theorem 6-13.

Prove that there are continuous functions which are not absolutely continuous.

If a continuous function were absolutely continuous, then by Theorem 6-18, page 98, it would
have a derivative almost everywhere. However, there exist continuous functions which have
derivatives nowhere. See for example Problem 6.66.

It is true that even continuous functions which are of bounded variation need not be absolutely
continuous.

Prove Theorem 6-19, page 98: If f(z) is absolutely continuous in [@,b] and f'(x)=0
almost everywhere in [a, b}, then f(x) is a constant in [a, b].
Denote by E the set where f'(x) = 0. For each x € E there exists an arbitrarily small interval
[#, ¢+ h] for which
‘f(—”—h}{ﬂ' < e ie |flzth)—f@)| < <h )
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Then by Vitali’s covering theorem [see page 33] there exists a finite set of disjoint intervals
I, =[xy, % + k], k=1, ... n, which cover E, and thus [a, b] except for a set of measure less than
8. We have

2 = a = 23 < @+ hy E 2y < 29t hy =E -0 = o2, < 2yt hy E 2y = b

Then fd) — fla)

f@ns1) — fleg+hy) + flon+hy) — fl2g)
+ o+ flegthy) — fle) (@) — Fl)

= 3 Uled = fot )] + 3 [t ) = )

n

so that [£(b) — f(a)] k§0 [F@p 4 1) — Flag + By + k§1 [f(eer + hye) — Flovr)] 2)

fiA

Now by the absolute continuity of f(x) we have

n

kgo [Foer ) — Floe + )l < o for |wpeg — @t hy)| < 8

Also from (1) we have
n

kgl lf(xk + hy) — f(xk)l

lIA

n
€ 2 hk = e(b—a)
k=1

Thus (2) becomes f®) —fl@)] = eb—a)+ ¢

and since ¢ and ¢; can be made arbitrarily small we have f(b) = f(a). Similarly we can show that
for any =, f(x) = f(a), i.e. f(x) is constant in [a, b].

THEOREMS ON INDEFINITE LEBESGUE INTEGRALS

6.22. Let f(x) be Lebesgue integrable in [a,b]. If F(x) = f f(u) du, prove that F(x) is

6.23.

continuous in [a, b].

We have z+h z
Flx+h) — Fx) = f f(u) du — f flu) du
a a
z+h
or Fx+h) — Fx) = f f(u) du
x
Then using Theorem 5-15, page 74,
hm [F(x+h) — = 11m f fw)du = 0
so that ;lLirr}) Fx+h)y = F(x)

and F(x) is continuous.

If f(x) is Lebesgue integrable in [a, b], prove that

x
S ity du
a
Subdivide [a, b] using the points of subdivision ¢ =2y <%, < -+ <, =05b. Then

ka flw) du fx" 1F(w)| du

Te-1 Tpe—1

is of bounded variation in [a, b].

|F () = Flo—y)| =

IIA
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Then summing from % =1 to n, we have
n n Ik b
S P -Feel 5 3 wla = el
k=1 k=1 a

But since f(x) is integrable, it is absolutely integrable, i.e. the last integral is finite and so F(x)
is of bounded variation.

For an alternative proof see Problem 6.67.

6.24. Prove Theorem 6-22, page 98: If g(x) is integrable on [@, b] and

j;x gwydu = 0

for all z in [a, b], then g(x) = 0 almost everywhere in [a, b].

Suppose that g(«x) * 0 almost everywhere in [a,b]. Then we must have either g(x) >0 or
g(x) < 0 on some set of measure greater than zero.

Consider first the case where g(x) > 0 on some set of measure greater than zero. From the

fact that .
f guydu = 0

a

we see that the integral of g(x) on any open interval is zero. Now any open set E can be expressed

as a countable union of disjoint open intervals E{,E,, ... . Since
f glx)yde = 0
g
o0
we have f gx)de = f glxyde = 0
E k=1 Ek

Thus if we assume g(x) > 0 on E, we arrive at a contradiction in view of Theorem 5-13, page 74.

Similarly if g(x) < 0 we arrive at a contradiction. Thus g(x) = 0 almost everywhere.

6.25. Prove Theorem 6-23, page 98: If g(x) is continuous and monotonic increasing in

[@, b], then g¢’(x) is integrable and

[Towar = b - 9@

Since g(x) is monotonic increasing we have by Problem 6.13,

lig &+ H) — g(x)

h g'(x) exists almost everywhere
h=0

Then by Fatou’s theorem it follows that
b b
H_mf oeth) =g g, = f /() da

h=0"a a

But the left side is equal to

b b b+h b
illljmo{%\!; gl +h)de — %j; g(x) dx} ’%{%f g(x)dx — %J; g(zx) dx}

vV

at+h
1 a 1 b+h

= lim {ﬁ (° oswar+ 17 g dx}

h~+0 Yath b

. {1 fb-l-h 1 otk }
= lim 4= xdac———f g(x) dz

), g(x) v )
= g — g(a)

and so the required result follows.
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6.26.

6.27.

Prove Theorem 6-24, page 98, for the case where f(x) is bounded.
If f(x) is bounded, i.e. |f(x)] = M, then

Fath =F@) _ |%£”"f(u)du| = M

Letting A = 0 we find, since the left side approaches F’(x) almost everywhere, that
F'@)] = M

Then by the theorem of bounded convergence we have

’lli_{r:)‘j; wdu — J:l F’(u)du (1)

Now

Lxﬂu_ﬂ%"_ﬂ_u_)du - .IIZJ;IF(u—%-h)d —%J;xp(u)du

lfx+h 1 T )
= = F(u) du — —f F(u) du
h ath h a
1 a 1 x 1 xzt+h 1 x
= zf F(u) du + if F(u)du + Ef F(u) du — ﬁ-j‘ F(u) du
ath a x a

1 j‘x+h 1 (ot
= - Fuydu — + F(u) du
h x h a

. (7 Futh) — Fu - 1[“" . 1}‘“”
Thus hmf h du = ’lll_r’r}) i ) F(u) du 11;13}) 7 ) F(u) du

=0,
= F(z) — F(a)

Then using (1) we have
F'(u) du

a

Fo) - F@ = | fwau

so that for all z, fx [F'(w) — f(w)]du = 0

a

Then by Theorem 5-13, page 74, we have F'(x) = f(x) almost everywhere.

Prove Theorem 6-24, page 98, for the case where f(x) is integrable but unbounded.

It is sufficient to prove the result for f(x) = 0 since it will then be true for f* (x) and f— (x)
and can be extended to the case where f(x) has arbitrary sign as in Chapter 5 by using the fact

that f(z) = f*(x) — f~ ().

{f(x), for fx} = p
We have @), =

P, for f(x)>p
Then since [f(x)], = f(x) so that f(x)— [f(x)], =0,

we have f {fw) — [fw)]p}du = 0

Thus L fa T - Fwlyde = 0
x d x

or 4 fa fwydu = &;J; [F@)],, du

ie. ad;F(x) = Flix) z [fx)], almost everywhere
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6.29.
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Taking the limit as p—> <, we see that F'(z) = f(x) almost everywhere so that on integrating
we have

b b
f Flixyde = f flxyde = F(b) — F(a) (1)
However by Problem 6.25,

b
f F'lx)de = F(b) — F(a) (2)
It follows from () and (2) that

b b
f F'(x)de = F(@Ob) — F(a) = f f(x) dx

b
i.e. f [F'(x) — f(x)]dx = 0

a
or replacing b by x we have
x
f (F'(u) — f(w)]du = 0
a

for all # in [a, b]. Then since the integrand is non-negative it follows from Theorem 5-13, page 74,
that F'(x) = f(2) almost everywhere.

Prove that if F(x) is an integral, then it is absolutely continuous.

We have Fl@) = wa(u) du
T, +h, £ zthy
Then Floy+hy) — Flzy) = f M du — f fwdu = f f(w) duc
: x(:+hk Ik
Thus \F(wy, + hy) — F(x)| = f 1f(w)| du

T

Summing from k=1 ton,

n n xk+h,c
) — du = d
3 Fecth—Fel = 3wl = [ 17)du

k=1 k=1 ,

HA

where E is the union of the intervals E), = [#, 2, + k], k=1,2,...,n. Then using Theorem 5-15
we have for any given ¢ > 0,

n n
kE [Py + ) — Fxy)| < e whenever m(E) = 3 |k < &

i.e. F(x) is absolutely continuous.

Prove that a function F(z) is an integral if it is absolutely continuous.

Since F(x) is absolutely continuous, it is continuous and of bounded variation by Problems
6.16 and 6.18. Thus there are continuous monotonic increasing functions G(x) and H(x) such that

F(z) = G(x) — H(z)
[see Problem 6.51] and we have almost everywhere
F'(x) = G'(x) — H'(x)
Now from Problem 6.25, G'(x) and H'(x) are integrable and thus F'(x) is integrable, i.e.

fx F'(u) du (1)

exists. But the integral (1) is absolutely continuous [Problem 6.28] and thus
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x
o0 = [ Fwa - Fe @
a
is absolutely continuous. Then we have almost everywhere
d x
g'(x) = (—i;f Fiwydu — F(x) = F'(z) — F'(z) = 0
a
Thus from Problem 6.21, g(x) = ¢, a constant, and from (2) it follows that ¢ = —F(a) so that
(2) can be written

Fz) = J‘xl"”(u)du + F(a)

i.e. F(x) is an integral.

6.30. Prove Theorem 6-25, page 99: If F(x) is absolutely continuous, then
b
(F@de = FE) - F@
This follows at once from Equation (2) of Problem 6.29, i.e.

fo"(u) du = F(z) — F(a)
b b
so that if x = b, f Fl(x)ydx = f F'lu)du = F(b) — F(a)

INTEGRATION BY PARTS

6.31. Prove Theorem 6-27, page 99: Let F(x) and G(x) be indefinite integrals of the
integrable functions f(x) and g(x) respectively. Then

L~ f i eeas

[ Feyo@ds = F@ 6w

Since an integral is absolutely continuous [Problem 6.28], it follows that F(x) G(x) is absolutely
continuous [Problem 6.61]. Then by Problem 6.19

d

iz F@ G@)] = F'(@)G@ + F@)G@) = fl)Gl) + Flz)g)
exists almost everywhere and, by Problem 6.30,
j; b L P Gl de = F@) 6,
so that fb /@) G@) + F@) g@)] dz = F(a) Glx)|.

a

b

b
o ) G

b
Thus f F@)gx)dx = F(x)G(x)
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Supplementary Problems

MONOTONIC FUNCTIONS AND FUNCTIONS OF BOUNDED VARIATION

6.32.

6.33.

6.34.

6.35.

6.36.

6.37.

6.38.

6.39.

6.40.

6.41.

6.42.

6.43.

6.44.

6.45.

6.46.

6.47.

6.48.

6.49.

6.50.

6.51.

6.52.

Prove a result analogous to that of Problem 6.1 if f(x) is monotonic decreasing in [a, b].

Prove Theorem 6-4, page 96, for the case where f(x) is monotonic decreasing in [a, 3].

Prove Theorem 6-5, page 96, for the case where f(x) is monotonic decreasing.

If f(x) and g(x) are monotonic increasing functions in [a, b], determine which of the following func-
tions are also monotonic increasing in {a, b]: (a) f(z) + g(z), () f(x) —g(x), (¢} f(x) g(=), (d) f(z)/g(x),

g(x) #= 0.

Work Problem 6.35 if (a) f(x) and g(x) are monotonic decreasing, (b) f(x) is monotonic increasing
but g(x) is monotonic decreasing.

Prove that the difference of two functions of bounded variation is also of bounded variation.

Prove that the quotient of two functions of bounded variation is also of bounded variation provided
that there is no division by zero.

Work Problem 6.9, page 102, if G(z) and H(x) are bounded and monotonic decreasing in [a, b].
Are the results of Problems 6.9 and 6.39 valid if the word bounded is not included? Explain.

Is the converse of Theorem 6-7 true? Explain.

If f(x) and g(x) are of bounded variation, prove that (a) f(x) —g(x) and (b) f(x)/g(x), g(x) # 0
are also of bounded variation. [Hint: For (b) first show that 1/g(x), g(x) # 0 is of bounded

variation.)

Prove that f(x) = #%— 323+ 202 — 52 — 6 is of bounded variation in (a) the interval [1,2], (b) the
interval [—3,3], (¢) any finite interval.

Prove that a polynomial is of bounded variation in any finite interval.

Prove that f(x) is of bounded variation in [0, 27].

cosx, 0=a<np
sinz, =2 =27

Prove that f(x)

22 sin (1/x), =0
is of bounded variation in [0,2/x].

0, =0
Prove Theorem 6-10.

Let f(x) defined in [a, b] satisfy the condition |f(x;) — f(x,)| = K|z;— ;| where K is a constant.
Prove that f(x) is of bounded variation in [a, b].

Prove Theorem 6-11. [Hint: Use the law of the mean.]

If f(x) is of bounded variation and continuous at x = x, prove that the total variation U, is also
continuous at x,.

Prove that a function is continuous and of bounded variation if and only if it can be expressed
as the difference of two monotonic increasing (or monotonic decreasing) continuous functions.

Prove that U2 = Vg + VY where ¢ is a point in {a, b].
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DERIVATES AND DERIVATIVES OF A FUNCTION
zsin(1/x), 0
6.53. Let f(x) = 0 Prove that at « = 0 (a) D* f(z) = 1, (b) D~ f(x) = 1,

0, x =

(¢) Dy f(x) = =1, (d) D_ flz) = —1.

6.54. Show that if D+ f(x) is continuous at x = a, then the derivative of f(x) exists at x = a. Is the
result still true if one of the other derivates is used? Explain.

6.55. Let f(x) be a monotonic increasing function in [a, b]. Prove that the sets (a) {x : D, f(x) < D~ f(=)},
() {x: D_flx) < D~ f(x)} and (c) {x: D_ f(x) < D* f(x)} all have measure zero.

6.56. Let f(x) be a monotonic increasing function in [a, b]. Prove that the sets (a) {z: D, f(x) = D+t f(x)},
(®) {x: D_f(x) =D f(x)} and (c) {x: D, f(x) = D_ f(x)} all have measure zero.

6.57. Prove that {x: D_ f(x) = —=} has measure zero if f(z) is monotonic increasing in [a, b}.

6.58. Are the results of Problems 6.55, 6.56 and 6.57 still true if f(x) is (a) monotonic decreasing
(b) strictly increasing? Explain.

659. Prove Theorem 6-14. [Hint: First prove the theorem for monotonic increasing functions.]

ABSOLUTE CONTINUITY

6.60. Prove that (a) f(x) = «2 is absolutely continuous in [0,1] and (b) any polynomial is absolutely
continuous in any finite interval.

6.61. If f(x) and g(x) are absolutely continuous in [a, b], prove that (a) f(x) — g(x), (b) f(z)g(x) and
(¢) f(x)/g(x), g(x) = 0 are absolutely continuous in [a, b].

6.62. If f(x) and g(x) are absolutely continuous in [a,d] and f'(x) = ¢’(x) almost everywhere in {a, b],
prove that if f(x) and g(x) are equal at one point of [a, b] then they are identically equal.

6.63. If f(z) is absolutely continuous in [a, b], prove that |f(z)[?, p > 0 is absolutely continuous in [a, b].

6.64. If f(x) has a derivative (a) everywhere, (b) almost everywhere in [, b], is it absolutely continuous?
Justify your statements. Compare Theorem 6-18.

6.65. Prove Theorem 6-20.

6.66. Consider the Weierstrass function defined by
o0
flz) = 3 akcos(brx) where 0<a<1 and b>0 isodd
k=0

(a) Prove that f(x) is continuous everywhere. (b) Write the series for [f(x+ k) — f(x)]/h as
A, + B, where A, represents the sum of the first » terms of the series and B, is the remainder
after n terms and prove that
x+ h) — f(x)!

K ZL K )I Z an| - lAn‘
Tanbn
ab— 1’
(c) Use the result in (b) to show that if ab > 1+ 37/2 then f'(x) does not exist, thus showing that
f(x) is continuous everywhere but has a derivative nowhere.

where Al < |B,| > Zanbn

[Hint: To prove the inequality for A, in (), use the mean-value theorem on cos [bkz(x + k)] — cos [brrz].
To prove the inequality for B,, first let brz = p,+ g, where p, is an integer and -1/2 = q, < 1/2
and prove that if h = (1 — g,)/b» then 2b%/3 = 1/h = 2b". Then prove that for k = =,

cos [bkz(x + k)] = (—1)P=F1,  cos[bkzx] = (—1)P»*! cos [bk "rq,]

and estimate B, using the first term of its corresponding series.]



114

DIFFERENTIATION AND INTEGRATION [CHAP. 6

THEOREMS ON INDEFINITE INTEGRALS

6.67.

6.68.

6.69.

6.70.

6.71.

6.72.

6.73.

6.74.

6.75.

6.76.

6.77.

6.78.

6.79.

6.80.

Work Problem 6.23 by showing directly that
x
F(x) = f f(u) du
a

is the difference between two monotonic increasing functions.

If f(x) and g(x) are continuous in [a,b] and

f aydu = [ g du

a

prove that f(x) = g(x) at all points of [a, b].

Prove (a) Theorem 6-26, page 99, (b) Theorem 6-28, page 99,

Prove that f'(x) is integrable in [a, b] if f(x) is of bounded variation.

If f'(x) is integrable in {a, b] and f(x) is of bounded variation, is it true that

b
[ rwar = o) - f@
Explain, Ya

Is there a result corresponding to that of Theorem 6-23 for monotonic decreasing functions?
Explain.

22 sin (1/22), 0 < x = /2/
Let f(z) = { (1/2%) i
0, =0
but (b) f'(x) is not integrable in [0,\/2/—7;-]. Discuss the relationship with Theorem 6-26, page 99.

[Hint: For part (b) use the fact that f/(x) is Lebesgue integrable if and only if |f'(x)] is Lebesgue
integrable.]

Prove that (a) f'(x) exists everywhere in [0, V2/r]

x
If F(x) :f f(w) du where f(x) is integrable on [a, b], prove that the total variation of F(x) in
b a
[a, b] is f 1 (a0)] .
a

Prove Theorem 6-29 on change of variables, page 99. [Hint: Use Problem 6.61(b).]

State sufficient conditions under which we can write

b
: - f g(x) f'(x) dx

a

b
[ @i = @ o

Let f'(x) exist everywhere in [a,b] and suppose that f(x) = g(x) almost everywhere in [a, b].
Prove that f'(x) = g(x) everywhere in [a, b] if g(x) is continuous almost everywhere in [a, b].

Let f(x) be integrable in [a,b] and g(x) = 0 be monotonic increasing in la, b]. Prove that there
is a number 7 in [a, b] such that

b b
J r@omar = o060 e as
a n

This is often called the second mean-value theorem. A generalization of this is given in Problem 6.80.
If in Problem 6.78 g(x) > 0 is monotonic decreasing, prove that

b n
[ teowar = g+ IR

If in Problem 6.79 g(x) > 0 is any monotonic function, prove that

b n b
fx)gx)de = g(a+0) | fl@)dz+g(d—0) } flx)dx
j‘; x) g(x j; x j; x



Chapter 7

L” SPACES
The space of all functions f(x) for which [f(x)}, =1, is Lebesgue integrable on

[a,b], ie. .
§ vepda < «

is denoted by L”[a, b], or briefly L” if the particular interval is not required. In such case
we say that f(z) belongs to L” or briefly f(z) €L”. If p=1 we denote L® by L.

Although we shall use the interval [@,b] in this chapter, all results obtained can be
restated using any measurable set E instead of [a, B].

HILBERT SPACE
The space L? consisting of all functions f(z) for which

[ tapa < =

is called Hilbert space. Funetions belonging to Hilbert space are often said to be square
integrable. ‘ '

IMPORTANT INEQUALITIES
1. Schwarz’s inequality

j; f(x) 9(x) dx

where f(z) € L2, g(x) € L.

A

{ f @ dx}w { f " l9(@)p dx}w

Equality holds if and only if f(x)/g(x) is constént almost everywhere.

= {j;b () dx}l/p {j;blg(x)l‘? dx}llq

2. Holder’s inequality

j;bf(x) g(x) dx

where
and f(x) € L*, g(x) € La.
Equality occurs if and only if |f(x)[?/ |g(x)|* is constant almost everywhere.

Note that if p =2, ¢ =2 this inequality reduces to Schwarz’s inequality.

115
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3. Minkowski’s inequality

INCET G

where p = 1.

A

{fab |f(x)]"dx}“p 4 { f b]g(ac)|”dx}l/p

Equality occurs if f(x)/g(x) is constant almost everywhere.

Analogous inequalities exist where sums of real numbers are used in place of integrals
[see Problems 7.26, 7.32, 7.45].

THE L®” SPACES AS METRIC SPACES

If we define a distance between two functions f(x) and g(z) in L”, also called a norm
in L%, as b 1/p
Do) = l-ol = {f 1@ - o@pra}

then we can show that L” is a metric space [see Problem 7.12]. For example the triangle
inequality involving elements f(x), g(x) and h(x) in L” can be written

If—oll = [f Al + [r—dl
and is a consequence of Minkowski’s inequality.

The functions are often called points of the space. Since two functions which are equal
almost everywhere have the distance between them equal to zero, we shall assume that
they represent the same point in the space.

When it is necessary to specify the space, we shall write ||f — g}|» rather than [If — gll.

THEOREMS INVOLVING FUNCTIONS IN L” SPACES

Theorem 7-1. 1f f(x) € L”, p=1, it also belongs to L, i.e. L’cL. More generally if
p>n=1, then L"CL".

Theorem 7-2. If g(z) € L and |f(z)| = |g(x)|, then f(z) € L’

Theorem 7-3. 1If f(x) € L and g(x) € L*, then f(x)g(x) € L*? In particular if f(x) € L®
and g(z) € L?, then f(z)g(x) € L.

Theorem 7-4. 1f f(z) € L® and g(x) € L' where —+—- =1, p>1, then f(x) g(x) € L.

k<A1
E=R

Theorem 7-5. If f(x) €L and g(x) € L®, then f(z)=g(x) € L".

MEAN CONVERGENCE

Let (f+(x)) be a sequence of functions which belong to L”(a, b). If there exists a function
f(x) € L” such that

b
lim [fn(x) — f(x)|Pdxe = O (1)
we say that the sequence (f.(z)) converges in the mean or is mean convergent to f(z) in the
space L°.
In such case we often write (1) as

Lim. fo(x) = f(x)

n= 0

which is read “the limit in mean of f.(x) as n > = is f(2)”.
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Equivalently we can say that f.(x) approaches f(x) in the mean if for every ¢ > 0 there
exists a number no > 0 such that

Ifn(x) — f(x)|] < ¢ whenever n > mo

Theorem 7-6. If lim. f.(x) exists, then it is unique [see Problem 7.13].

CAUCHY SEQUENCES IN L®” SPACES
The sequence of functions (f»(x)) belonging to L? is said to be a Cauchy sequence if

tim (i) ~ fupdz = 0 (5)

ner 0

or, in other words, if given ¢ > 0, there exists a number 7, > 0 such that
b
l|fm = fal] = f |fm(x) — fa(@)Pde < ¢ whenever m > mny, 1> no

Note the analogy with Cauchy sequences of real numbers. We have the following

Theorem 7-7. If (f.(x)) converges in mean to f(x) in L’, then (f.(x)) is a Cauchy sequence.

COMPLETENESS OF L°. THE RIESZ-FISCHER THEOREM

The space L’ is said to be complete if every Cauchy sequence in the space converges
in the mean to a function in the space. The following theorem, known as the Riesz-Fischer
theorem, is of fundamental importance.

Theorem 7-8 |[Riesz-Fischer]. Any L? space is complete. In other words if (f.(x)) is a
sequence of functions belonging to L® and

lim lfm(x) — fa(@)Pde = 0

T => 0

i.e. if (fa(x)) is a Cauchy sequence, then there is a function f(x) € L” to
which f.(x) converges in the mean. This function is unique apart from a
set of measure zero.

CONVERGENCE IN MEASURE

Let (fo(x)) be a sequence of measurable functions defined almost everywhere. Then
(fo(x)) is said to converge in measure to f(x) if '

limm{zx: |fo(x)—f(x)| =0} = 0

for all ¢ > 0. ne
The following theorems hold.

Theorem 7-9. If (f.(x)) converges almost everywhere to f(x), then it converges in measure

to f(x). However, the converse is not valid but see Theorem 7-11.

Theorem 7-10. 1If (f,(x)) converges in the mean to f(x), then it converges in measure to f(z).

Theorem 7-11. If (f.(x)) converges in measure to f(z) on a set E, then there exists a sub-
sequence (fa, (¢)) which converges almost everywhere to f(x).
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Theorem 7-12. If (f.(x)) converges in the mean to f(x) on a set E, then there exists a sub-
sequence (fn, (¢)) which converges almost everywhere to f(z).

It is of interest that if (f.(x)) converges to f(x) everywhere, it does not necessarily
converge in the mean to f(x). Conversely if (f.(x)) converges in the mean to f(x), it does
not necessarily converge almost everywhere to f(z). See Problem 7.16.

Solved Problems

L” SPACES
7.1.  Prove that f(x) = 1/\3/5 (@) belongs to L[0,8] but (b) does not belong to L*[0, 8].
(@) The fact that f(x) belongs to L[0, 8] follows from Problem 5.4, page 78.

8
1 |3 dx
— | de = I —
\3/90 0o ¥

Since 1/x is unbounded in [0, 8], we proceed as in Chapter 5. Define

(b) We must investigate the existence of

&

0

(1/¢ for l/x =p or == 1/p

1 =
(/=] i p for 1/x>p or £<1/p
8 8
Then f 9 = tim [1/x], dx
0 X P+ oo

1/p 8
= lim [f pdx + f i"f:l
>0 0 x

1/p

1/
= lim \:px,op + 1nx}f/p:|

P>

= lim [1 + In8 + Inp)

P~

which does not exist. Thus f(x) = 1/% does not belong to L3[0, 8].

7.2. If f(x) € L2 and g(x) € L? prove that f(x)g(x) € L.

We have (f@)| — |g@))2 0 ' @
so that [f(=)2 — 2if(x)] {g(x)] + lg(x)2 = 0O
or @) o) = 3(f()2 + lg(=)|?)
ie. f@)g) = 3(f(@)2 + lg(x)) 2
b b b
Then f |f(z) g(x)| dx = %—f lf(x)2de + 4 f lg(2)]2 d= €))

Since f(z) € L2 and g(x) € L2, the two integrals on the right of (8) exist so that the integral on
the left of (3) exists, i.e. f(z)g(x) € L.
Note that the result is a special case of Theorem 7-3 page 116, where p = 2.
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73. If f(x) € L% prove that f(z) €L, ie. L2CL.

This follows at once from Problem 7.2 by noting that g(x) =1 € L2 Note, however, that the
result is not valid if the interval [a, b] is infinite.

INEQUALITIES

74. Prove Schwarz's inequality

I f " ) o) da

where f(x) € L?, g(x) € L2

A

(e ]

For all real numbers A we have, using the fact that f(x) € L2, g(x) € L? and f(x)g(x) €L,

b
f A fl@) + g(x)]2de = 0

a

ie. AN+ 2BA+C = 0 (1)

b b b

where a={ yera B={ joma o= [ lo@)2 de (2)
a a a

Now since 4 > 0, (1) can be written

2
- B2
e+ 2By 1 C o2 g o <>\+§> + AC=B -

A A A A2 -
But this last inequality can be true for all real A if and only if AC— B2 = 0, i.e. B2= AC. Thus

using (2) we find
b 2 b b
{f f(x)y(w)dx} = { 1] lf(x)lzdx}{f |y(x>|2dx}
from which we obtain as required,
b 1/2 b 1/2
= {f [f(x)]? dw} {f ly(x)l2dx}

75. Prove that if f(z) € L2, g(x) € L?,

S v@owiar = {reraal™{ " g asf”

This follows at once from Problem 7.4 on replacing f(x) by [7(x)] and g(x) by |g(x)|.

f ’ f(a) o(x) du

76. (a) If v and v are non-negative real numbers, then their arithmetic mean is defined

as 3(u +v) while their geometric mean is defined as the Vuv. Prove that the
geometric mean is less than or equal to the arithmetic mean.

(b) If we consider n; non-negative numbers all equal to # and n, non-negative numbers

all equal to », show that the geometric mean will be less than or equal to the
arithmetic mean if and only if

Ml + N
7 + Ne
(c) Show that the inequality in (b) is equivalent to

(u”l vﬂz)l/(ﬂl +ny) =<

uvd = ouw + Bv

where «, 8 are such that «+ 8 =1.
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(@) We must show that
Vuv = L(u+v) or utv—2Vuw = 0
ie. Vu—Vv)2 2 0
But since this last statement is clearly true, we can reverse the steps to obtain the required
inequality.
(b) The geometric mean of n positive numbers x,, %3, ... %, is defined as

n
Vagzg. . .2, = (2125 ..2)""
while the arithmetic mean is defined as

g +xyt+ 0+,
n

Then the geometric mean of n; numbers equal to # and n, numbers equal to v is
(u"x vnz)l/(n1+n2)
while their arithmetic mean is
nu + ngv
ny + ng

s0 that the geometric mean is less than or equal to the arithmetic mean if and only if

nu + npv
(uﬂl vnz)l/(n,+n2) = _n_-—l-'n_—
1 2

(¢) The inequality in (b) can be written

ny Ng

yn/ (ng+ny) pna/ngtny) = ow v
ny + no ng + ne

. . m _ 7 _ . .
Then letting a = oty B = o so that a+ 8 =1 we obtain as required,

utvP = au + Bv

The validity of the inequality in (b) showing that the geometric mean is actually less than or
equal to the arithmetic mean, is shown in Problem 7.17.

Prove that for any non-negative real numbers «,v and positive numbers «, 8 such

that «+8=1,
u? = ou + B

thus demonstrating the truth of the inequality in Problem 7.6(b).

If =0 the inequality is trivial so that we can assume u > 0. Then letting v = ux and
a+ g =1, the required inequality can be written

1+Bx—2f—B8 = 0 1)
Denoting the left side by Fi(z), it follows that the derivative is F'(z) = g(1 —xz#-1).

Now F(x) =0 for xz=1. Thus since F'iz) <0 for 0<az <1, it follows that F(z) =0
for 0 < x < 1, ie. the inequality (Z) is true for 0 <z <1.

Similarly since F’/(x) > 0 for z > 1, it follows that F(z) >0 for x> 1, ie. the inequality
(1) is true for « > 1. Also equality holds for = =1.

Thus (1) is true for all = >0 and so the required inequality is proved.
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7.8.

7.9.

Prove Holder’s inequality

l j;b f o) de {j«:b @ dx}”p { J;b |9(z)| dx}uq

where p>0, ¢>0, 1/p+1/g=1 and f(x) €L’, g(x) € L".
In the inequality of Problem 7.7 let

_ f@)r — ly(x)l" _ l _1
- F > "Tg@ P Ty
b
where F = f f(z)|? de, f lg(®)|e dx 1)
I@EL” [lg@ia)" @)l | lg@)l
Then { F } el = F 4G 2)

Thus by integrating from @ to b and using the definition (Z) of F and G, we have from (2)

{lf(x)l"} {ly(x)l"} do = 113+% - 1 @)

Since F' and G are independent of «, we can multiply both sides of (3) by F1/rGl/a tp obtain

b b 1/p b 1/q
S relwia = {f If(w)l"dx} {f Ig(x)lqdw}

The required inequality follows on noting that

b
= | 1@l de

Prove Minkowski’s inequality

{f“waHg (x)'pd”}m = {f lf(x)l"dx}l/p T U lg(x)!pdx}up

where p = 1.
If p =1, the inequality is trivial. For p > 1, we have using Holder’s inequality

b b
S rtoras = ol +op-tas

a

HA

b b
S mirarias + [ lollr+gptas

b 1/p b (p—1)/p
{ Ifl"dw} { f |f+g1vdx}
a a
b 1/p b (p—1)/p
¥ { ] |y|pdx} {f zf+givdx}
a a !

b (p—1)/p
Then dividing both sides by {f if +gl? dx} [which is assumed to be different from zero
a

since otherwise the inequality is trivial], the required result follows.

A

THEOREMS INVOLVING FUNCTIONS IN L” SPACES

7.10. Prove Theorem 7-2, page 116: If g(x) € L” and [f(x)| = |g(x)|, then f(x) €L

P

If |f(#)| < |g(x)l, then |f(z)[" = |g(z)>. Thus

b b
f f(@)pdxe = f |g(x)[P d

so that if the right side exists, i.e. if g(x) € L, then the left side also exists, i.e. f(z) € L”.
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Prove Theorem 7-3, page 116: If f(x) €L’ and g(z) € L’, then f(x)g(x) € L"”
Since f(x) € L¥ and g(x) € L, we have

b b
f f@)pde < o, f lg)pde < =

a a

i.e. the integrals exist. Then by Schwarz's inequality on replacing f(x) by |f(x)|’2 and g(x) by

lg(x)|?/2, we have
b b 1/2 b 1/2
f [f(x) g(x)|p/2dax = {f [f(z)|? doc} {f lg(x)|? dx}

a

Since the integrals on the right exist, the integral on the left exists, i.e. f(x)g(») € L™

L” SPACES AS METRIC SPACES
Prove that an L” space is a metric space.

The distance between two elements (functions) of L” is defined as

b 1/p
D(f,9) = {f If(x)~y(x)\”dx}

In order to prove that L” is a metric space, we must satisfy the requirements 1-4 on page 6, i.e.
1. D(f,g) = ©
2. D(f,9) = D(g,))
3. D(f, ¢
4. D(f,9) = D(f,k) + D(h,9)

0 ifandonlyif f=g

Now requirements 1 and 2 are obviously satisfied from the definition of D(f,g). Requirement 3 is
satisfied if we consider the distance between f and g as zero, i.e. if and only if the functions have
the same values almost everywhere and we shall henceforth use this interpretation.

Finally requirement 4 follows as a consequence of Minkowski’s inequality.

MEAN CONVERGENCE, CAUCHY SEQUENCES AND THE
RIESZ-FISCHER THEOREM

7.13.

Prove that if a sequence (f.(x)) converges in the mean to two different functions f(x)
and g(x), then f(z) = g(x) almost everywhere. Thus if lL.i.m. fn(x) exists, it is unique.

n=—+c0
If (f,(x)) converges in mean to f(x), then

b
lim |fr(x) = flx)Pde = 0 @)

a

Similarly if (f,(x)) converges in mean to g(x), then

b
lim f [fulx) — g@)pde = 0 (2)
n=+ a

But by Minkowski’s inequality,

b 1/p b 1/p b 1/p
{f [f(x) — g(x)}? dx} {f f(z) — fr(®)|P dx} + {f {fulz) — g(x)? dx}

Thus letting # = «» and using (I) and (2), we have

liA

b
§ @ —g@pas = o

or f(x) = g(x) almost everywhere.
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7.14. Prove Theorem 7-7, page 117: If a sequence (fn(x)) converges in the mean to f(x)

7.15.

7.16.

in the space L”, then it is a Cauchy sequence.
By Minkowski’s inequality we have

b 1/p

1/p

b
{ § @ —f(x)l"dx}

a

b 1/p
+ {f \F(a) = (m){vdx}

or fm=Fall = = Fll + [Ifa—fll

But since (f,,(x)) and (f,(x)) both converge in the mean to f(x), it follows that given € > 0 there
exists ny > 0 such that for m > ng, 7 > n,,

fIA

€

m=fll < 5o W fll < 3

Then Wm—Ffal < %-}—% = e for m>mny n>n

and the required result follows.
If Lim. f.(x) = f(z), prove that
n—+o0 b b
lim f fa@rde = f If ()P dae
or equivalently, lim ||f.]| = ||f||.

We have from Minkowski’s inequality,
Wfall = NFa=D+A = = Il + 1A

or taking the limit as n > =,

Lim |Ifl = ) @
Similarly AL = llIf =fat full = NIf = Fall + Ifal)
or taking the limit as n - ~,

Al = dim A Q
Then from (Z) and (2) we have

Jim {Ifll = I

The result is often interpreted by saying that the norm of the metric space L” is continuous.

Let n, 0<x<1/n
fn(x) = n=12,...

0, IIn<zxz<1

Show that in the space L? (@) lim f.(z) = 0 while (b) Lim. f.(x) + 0, and (c) interpret

the results. nee noe

(a) Let x, be any point of the interval 0 < x < 1. Since 1/n < 29 <1 for n>1l/xy=mn, we
have |f (%)) —0]=0<e for n>mny ie lim f,(x) =0 for all z, in [0, 1].
n-—+ 0

(b) If lim. f,(x) = 0, then we would have
n—+ 0

Jm fl fu@)2dz = 0
0



124 MEAN CONVERGENCE [CHAP. 7

‘1 1/n 1
However, f fp(@)2de = f n2dx + f 02de = n
0 [} 1/n
1
and so lim f [fo@)2de = », ie Lim. f,(x) # 0
n=+oJg n=-o

(¢) The result shows that a sequence (f,(x)) may converge to f(x) at all points of an interval
without converging in the mean to f(z) on the interval. The example can be extended to the
case L” where p > 1 [see Problem 7.51].

Conversely we can show that a sequence (f,(x)) may converge in the mean to f(x) on an
interval without converging to f(x) in the usual (pointwise) sense [see Problem 7.54].

7.17. Prove the Riesz-Fischer theorem [Theorem 7-8, page 117].
Since the sequence of functions (f,(x)) in L” is a Cauchy sequence, i.e.

b
lim [fm@) — fo@)|Pde = 0

n=—+oc

it follows that to each natural number » there is a smallest natural number =, such that

3
f [fm(@) = fr(@)Pde < 51’7 for mZmn, nzmn,
a

We can choose in particular m =n,,;, n=mn, so that

b
1 _
j; [fnwl(x) - fnv(x)lpdac < % for »=1,2,... (1)
Let us define E, = {x Py y (@) = fr, @) > zv/p} @
= {1\ |
Then |fnv+1(x) — fn,, @)pde = oolp de = g'm(E’,,) 3)
EV EV
Combining this with (1),
1 1
mmE,) < 35 or m(E) < (3
Consider now
cer = . _ 1 _ 1
ENUEN+1U - {x [an+1 anl > 9N/p? [an+2 an+1| > m’ "‘} (4)

If x does not belong to this set, it is clear that

1 1
— = - — = __*
]f"N+1 an[ = 2N/p’ ]f"N+2 f”N+1| T o(N+D/p’

so that the series vél | Fayer — fn,, | (5)
converges.
But the measure of the set (4) is less than or equal to
mEy) + mEyy) + 00 = @V A+ @FNHL+ - = 3@V
which approaches zero as N = «,

This shows that the set of all x for which (5) does not converge is of measure zero or, in other
words, the series (5) converges almost everywhere.
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Now since the series (5) converges almost everywhere, so also does the series

V§1 Fryir = Fn))

since an absolutely convergent series is convergent. Writing
k—1

f"k = f"1+V§1 (f"v+l _f"v)

it follows that Jim fo = fa + El (Fopsy —Fa)

v

exists. Denoting this limit by f(x) we thus see that

klim fnk(x) = f(x) almost everywhere

We must now show that (f,(x)) does in fact converge in mean to f(x). We first prove that
f,,k(x) converges in mean to f(x). To do this we observe that by Fatou’s theorem,

b b
lim f |foy@) = f, @)Pdz = f |f o, (®) — F(@)P ds ©
- 0O a a
But from the fact that (f,(x)) is a Cauchy sequence we see that for every ¢ > 0 there is a number
K such that
b
f ]fnk(x) —fnv(ac)lp dr < e for k>K, v>K
a
S b
Thus from (6), f Ifnk(x) —f(x)|pde = ¢ for k> K
a

which shows that fnk(x) converges in mean to f(x) or equivalently
b
lim f [fnk(ac) —flx)lpde = 0
Ng —+ © a
To show that f, (x) converges in mean to f(x) we note that by Minkowski’s inequality

b 1/p b 1/p b 1/p
{§ o= repacl” = i o) = o del 4 ) gt = e s

b
so that lim f [fo@) ~f@)Pde = 0

IA

i.e. f,(x) converges in mean to f(x).

The limit function f(x) is unique apart from a set of measure zero or, in other words, if there
are two limit functions f(x) and g(x) then f(x) = g(x) almost everywhere.

CONVERGENCE IN MEASURE

7.18. Prove Theorem 7-10, page 117: If (f.(x)) converges in the mean to f(z), then it con-
verges in measure to f(x).

Let o >0and E, = {x: |f,— fl Z¢}. Then

fole) — f@)Pdx = orde = oPm(E,)
Lnl (x x)|P dx I

E,

Since the left side approaches zero as n - =, we see that lim m(E,) =0, ie. (f,(#)) converges
in measure to f(x). nore
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7.19. Prove Theorem 7-11, page 117: If (f.(x)) converges in measure to f(x) on a set E,
then there is a subsequence fn, (%), f, (), ..., 71 <Mz < - -+, ie. (fa (%)), Which con-
verges almost everywhere to f(x).

Consider a sequence of positive numbers o; > 05 > 63> -+ such that lim ¢, =0 and let
Ky + k5 + ++- be a convergent series in which each term is positive. ke

Choose the natural number n, such that for all x € E,
m{x : |f1l1_f[ = 0’1} < Ky
This number must exist because by hypothesis

lim m{z: |f,—f|Ze,} = 0
7 = 0

Similarly let n, > n, be a natural number such that

m{x : ]fnz—f[ Z gy < Ky
and in general n, > m_, > --- > n; such that

m{z: |fo, —fl 2o} < &
This procedure defines the sequence (n,).

We now prove that klim fnk(x) = f(x). To do this suppose that

p, =

Arilf—flZa) Q@ = N P

b
ics

Then since P;D Py, DP3> -+, it follows from Theorem 2-15, page 33, that
m(@) = lim m(P) (1)
J=>o0

o0
Now since m(P;) = S kit follows that jlim m(P;) =0 and so from (1)
k=j - o0

m@Q = 0

If we can now show that klim I @) = f(@)

for all x € E — @, the required result will follow. To do this suppose that xz,€ E— Q. Then
there is some natural number j, such that x, & P;, so that from the definition of P;

xy & {x: |fp, —fl Z o}
for all k = j,. It follows that
Ifnk(xo) — flzg)| < oy (2)

But since 0, >0 as k- «©, we see from (2) that

lim £ (@) = flxo)

ie. forall x€ E—Q kl_l_zt; In @) = f(x)
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Supplementary Problems

L? SPACES
7.20.  Prove that the function f(x) of Problem 7.1 (a) belongs to L”[0,8] if 1 =p <3 but (b) does not

belong to Lp[O, 8] if » = 3. (¢) For what values of p does f(z) = 1/\/x belong to L?[0,1]?
7.21. Prove that if f(x) €L®, p =1, then cf(x) € L® for any constant c.

7.22. If f(x) € L2 and g(x) € L?, prove that (a) [f(x)+ g(x)] € L2, (b) [f(x) —g(x)] € L2

7.23. If fi(»), fa(), ..., fa(x) all belong to L2 and ¢y, ¢,, ...,c, are any constants, prove that ¢, f,(x)+
cyfox) + -+ + e, folx) € L2,

7.24. If a function belongs to L, does it also belong to L2? Explain.

INEQUALITIES AND THEOREMS INVOLVING FUNCTIONS IN L° SPACES

7.25. Prove that the equality holds in Schwarz’s inequality if and only if f(x)/g(x) is constant almost
everywhere.

7.26.  Prove the following analog of Schwarz’s inequality for real numbers ay, by, k=1,...,n,
[albl + e+ a«nb’nl2 = (|al|2 +oeee + ‘a’n|2)(lbl|2 + -t lbn!2)
and show that the equality holds if and only if a,/b, is constant.

7.27.  Obtain Schwarz’s inequality for integrals by using Problem 7.26 and the definition of an integral
as a limit of a sum.

7.28. Prove that if f(x) € L2, then

b
f ()] dae

a

A

b 1/2
Vvb—a \ij |f(x)|2 dacjl

Thus show that L2C L.
7.29. Prove that f(x) = e~2/\/x € L[0, =].
7.30. Prove Minkowski’s inequality for p = 2 by direct use of Schwarz’s inequality.

7.31.  Prove that the equality in Minkowski’s inequality holds if and only if f(x)/g(x) is constant almost
everywhere.

732, If a,b, k=1,...,n, are real numbers and p > 1, prove that
{lag +bp 4+« + |a, + b, |P}1/P = {lagp+ - -« + |a,|P}V/P + {|by|P + - - - + |b,|P}1/P
where the equality holds if and only if «,/b, is constant. Discuss the relationship with Minkowski’s
inequality.
7.33. Prove that ||[f+g|| = [Ifl|+]lg]] and interpret geometrically.

7.34. Discuss the significance of ||f||, in case p = 1. In this case what is ||f —g|[,?

7.35. Is L” a metric space? Explain.
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7.36.

7.37.

7.38.

7.39.

7.40.

7.41.
7.42.

7.43.

7.4,
7.45.

7.46.

MEAN CONVERGENCE [CHAP. 7

Prove that if f(x) € L*, p > 1, then
b b 1/p
f [f@)de = (b—a)p/tp—D [f |f(x)|P dx]

Thus show that L°C L for p Z 1, generalizing the result of Problem 7.3 and proving the first part
of Theorem 7-1, page 116.

Prove the second part of Theorem 7-1, page 116, i.e. L°cL"™ if p>n = 1.

Discuss Holder’s inequality in case p = 1.

Prove that = g tan—124

f R
0 Vax2+1
Prove that the equality in Holder’s inequality holds if and only if f(x)/g{(x) is constant almost

everywhere.
Prove Theorem 7-4, page 116.

Prove Theorem 7-5, page 116.

Prove that if f,(x) € L® and folw) € LT, then ¢ fi(x) + cafo(x) € L* where ¢; and ¢, are any
constants.

Generalize the result of Problem 7.43 to n functions f,(x),...,f,(x).
State and prove an inequality for real numbers corresponding to Holder’s inequality.

Prove that the geometric mean of any set of non-negative numbers is less than or equal to their
arithmetic mean. Is there a corresponding result involving integrals?

MEAN CONVERGENCE, CAUCHY SEQUENCES AND THE RIESZ-FISCHER THEOREM

747,

7.48.

7.49.

7.50.

7.51.

7.52.

7.53.

If (f,(x)) converges in mean to f(x), prove that |{f,|| is bounded.

If lim. f,(x) = f(x) and lim. g,(x) = g(xr) where all functions are in L, is it true that
@ Lim [f,@) + @] = f@)+0@) ®) Lim fo@ 0ua) = f@) 9@ (0 lim [[fa@) +oa@I| =
l|f(2) + g(x)]|? Explain.

Explain the relationship between Theorems 7-7 and 7-8, page 117.

Prove that a sequence of functions in Hilbert space converges in the mean to a function in Hilbert
space if and only if the sequence is a Cauchy sequence.

Obtain a generalization of the remarks of Problem 7.16 for L” space, p > 1.

Prove that if (f,(x)) converges in mean to f(x) in L” and g(x) € LY, then

b b
JTLJ‘ fal®) g(x) dae = _f f(2) g(x) dx

A sequence (f,(2)) in L” is said to converge weakly to f(x) in L® if for every function w(x) € LY,
where 1/p+1/¢q =1, b b
lim w(x) fp(x)de = f w(x) f(x) dx

a a

n =+ oo

Prove that if (f,(x)) converges in the mean to f(x) in L?, then it also converges weakly to f(x).
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7.54.

7.55.

7.56.

Give an example to illustrate that if (f,(x)) converges in the mean to f(x), it does not necessarily
converge almost everywhere to f(x).

00
Under what conditions will ¥ ¢.fi(x) EL” if f(x) €EL?, k=1,2,..., and ¢, are constants?
Justify your conclusions. k=1

Let f,(x) = for 0=2=1 where »n=1,2,.... (a) Is (f,(x)) a Cauchy sequence?

"

1+ n/z

(b) Does fu(x) € L2 for n=1,2,...7 (c¢) Does lim f,(x) € L2? (d) Does Lim. f,(x) € L2? Dis-
n—+ w0 Nn—+0

cuss your results in connection with the Riesz-Fischer theorem.

CONVERGENCE IN MEASURE

7.57.

7.58.

7.59.

7.60.

7.61.

Prove that if a sequence of functions (f,(x)) converges in measure to two different functions

f(x) and g(x), then f(x) = g(x) almost everywhere. Can you say that convergence in measure is
unique? Explain.

Prove Fatou’s theorem [see page 75] if the sequence (f,(x)) converges in measure to f(x).

Suppose that (f,(»)) converges in measure to f(x) in Hilbert space. Prove that if ||f,|| is uniformly
bounded, then (f,(x)) converges weakly to f(x) [see Problem 7.53].

Is the result of Problem 7.59 true for L” spaces in general? Explain.

Prove Theorem 7-9, page 117.



Chapter 8

DEFINITION OF A FOURIER SERIES
Let f(x) be Lebesgue integrable in (—,=). Suppose that f(x) is defined to be periodic

with period 2= outside of this interval, i.e. f(x =2kx) = f(x), k=1,2,.... The trigonomet-
ric series a © ’
Eo + > (@ cosnx + by sin nx) (1)
n=1
is called the Fourier series corresponding to f(z) if
% f_ f(x) cosnxzdx, b, = }r f_ f(x) sinnzx dx @)

We call a, and b, the Fourier coefficients corresponding to f(x).

Since f(z) is periodic with period 2z, any other interval of length 2= can be used instead
of (—w, ) such as for example (0,2x) or in general (c, ¢+ 2r) where ¢ is any constant. In
such case the integration limits —= and = in (2) are changed to ¢ and ¢ + 2= respectively.

Extension to the case where f(x) has period 2! where I > 0, is easily made [see Problem
8.36].

THE RIEMANN-LEBESGUE THEOREM
If f(x) is integrable in (a, ), then
b i b
lim Jf(x) cosexdx = 0, lim § f(z)sinezdz = 0 &)

In particular the Fourier coefficients (2) approach zero as n - «,

CONVERGENCE OF FOURIER SERIES

An important question which naturally arises is whether a Fourier series corresponding
to an integrable function f(x) will converge and, if it does, whether it will converge to
f(x) To answer this question we need to consider the partial sums of the series (#))]
given by

M
Su(z) = %o + X (@n cos nx + b, sin nx) (4)
n=1
Using the coefficients (2) we can show [Problem 8.7] that
1 (" sin (M + Y)u
Su(z) = 'z;f_,, f(x +u)%—2—)—du , (5)
r [Problem 8.8] ’ .
: 1 (7 ' in (M + )t
Sulz) = o j; [f@+1t) + f(z—1)] ﬂ‘é(-mT—t%);dt | 6)

130
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Subtracting S(zx) from both sides of (6), we then find [Problem 8.9] that

Sul@) = S@) = o | [fw+0) + flz 1) — 25()] %ﬁ—@—t

kis

dt (7)

We thus arrive at the following important

Theorem 8-1. The Fourier series converges to S(x) if and only if the integral in (7)
approaches zero as M - ». In such case Allim Su(x) = S(x).

Other important related theorems are the following.

Theorem 8-2. The Fourier series converges to S(z) if and only if for some fixed number
8 such that 0 < 8 = 7,
] 3 1
im ( [f(z+1) + f(z — ) — 28(a)) SR E D1

dt = 0
M= 0 %t
Theorem 8-3. The Fourier series converges to S(x) if and only if for some fixed number &
such that 0 < 8§ = =,

> sin (M + 1)t
SR gy

lim ( [fx+1t) + flz—t) — 2S(2)] =0

Mer e 0

SUFFICIENT CONDITIONS FOR CONVERGENCE OF FOURIER SERIES

Various sufficient conditions exist under which a Fourier series will converge to S(z).
The following are two such conditions or fests as they are often called.

Theorem 8-4 [Dini’s condition]. The Fourier series converges to S(x) if for some fixed
number § such that 0 <§ = =,

f5 flx+1t) + flx —1t) — 2S(x) dt exists
0 t

Theorem 8-5 [Jordan’s condition]. The Fourier series converges to

flx+0) + f(x—0)
2

if f(?) is of bounded variation in a neighborhood of ¢{=2x. If furthermore
f(?) is continuous at ¢ =z, then the Fourier series converges to f(x).

For other sufficient conditions see Problems 8.49, 8.50 and 8.55.

S(z) =

INTEGRATION OF FOURIER SERIES
Theorem 8-6. Let the Fourier series corresponding to the integrable function f(x) be given
by o
(;—0 + > (an cosnz + b, sinnzx) (8)
n=1
Then if we integrate the series term by term from « to g, the resulting series

8
converges to f f(x) d.

The remarkable thing about this theorem is that the series (8) need not be convergent.

For a generalization of this theorem see Problem 8.60.
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FOURIER SERIES IN L? SPACES

Thus far we have been concerned with pointwise convergence of Fourier series. Two
other important types of convergence can also be considered. The first involves mean con-
vergence in L? spaces which is considered in this chapter and the second involves the
concept of summability which is considered in Appendix B, page 175.

It turns out that the theory of mean convergence of Fourier series in L2 spaces is
closely related to the theory of orthogonal (or orthonormal) series, since a Fourier series
is a special case of an orthogonal series. For this reason we shall treat this more general
theory.

ORTHOGONAL FUNCTIONS
Two functions fi(x) and f:(x) are said to be orthogonal in (a, b) if

j;bfx(x)fz(x) dz = 0 (9)
A set of functions fi(z), f2(x), ... is said to be an orthogonal set in (e, b) if
j;bfm(x)fn(x)dx = 0 m # n (10)
and the functions are said to be mutually orthogonal or simply orthogonal in (a, b).
Example: The functions {sinmx}, m =1,2,..., are mutually orthogonal in (~—r,x) since
fﬂ sinmx sinnxdx = 0 mFEn

ORTHONORMAL FUNCTIONS

If the set of functions fi(x),fs(x), ... is orthogonal in (a,b), then if f.(zx) €L* we
will have

b
f [fa(x))2dx = An n=12...
where A >0 is finite. Then if we let ¢ (z) = f,(x)/\/A,, we have

j; [p,(x)]2dx = 1 (11)

j‘b¢m(x)qsn(x)dx = 0 m F* n (12)

The set of functions {¢_(2)} is said to be orthogonal and normalized in (@, b) and is referred
to as an orthonormal set of functions in (a, b) and the functions are said to be orthonormal
in (a, b).

Example: The functions {M} ,m=1,2,..., are orthonormal in (==, 7). See Problem 8.23.
ORTHONORMAL SERIES

A series c,d(x) + c,h,(x) + -+ = ,Zl ¢, b,.(%) (1%)

where c,c,, ... are constants and ¢,(x), $,(z), ... are orthonormal functions in (a,b) is

called an orthonormal series. If

e = )o@ (14)
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then the series (13) is called the orthonormal series corresponding to f(x). Because of the
analogy with Fourier series, (13) is sometimes called a generalized Fourier series and (14)
are the generalized Fourier coefficients.

If f(z) and ¢, (x) belong to L?, the coefficients (14) exist [see Problem 8.69].

PARSEVAL’S IDENTITY i
Let S (z) = 2 ¢, 6, (%) (15)

k=1

be the partial sums of the series (13) with coefficients (14). Then by Problem 8.27,

18, (2) — LRGN § irwpa - 3

Now if it is true that
lim [IS,(2) — f@I| = 0

i.e. if S (x) converges in the mean to f(x), it follows that
b 0
§ opds = So (16)

which is called Parseval’s identity. Conversely if Parseval’s identity holds, then S (x) con-
verges in the mean to f(x). The results can be summarized in the following

Theorem 8-7. The generalized Fourier series corresponding to f(x) converges in the mean
to f(z) if and only if Parseval’s identity is satisfied.

BESSEL’S INEQUALITY
Regardless of whether lim ||S, — f|| is or is not zero, it will certainly be true that

é‘a ¢ = f F(@)P dz (17)

See Problem 8.28. This inequality is called Bessel’s inequality. The case of equality cor-
responds to Parseval’s identity.

APPROXIMATIONS IN THE LEAST SQUARE SENSE
If f(x) € L?, then we can think of the quantity

~ f (@) — gaquk(x)]zdx T

as the mean square error of f(x) from an approximating sum E a,¢,(2). The following
theorem is of interest.

Theorem 8-8. The mean square error (18) is a minimum when the constants «, are the
generalized Fourier coefficients, i.e. when

= f i@z (19)

Because of this theorem we say that 2 ¢, ¢, (v) approximates f(x) in the least square
k=1

sense. Note that Parseval’s identity is satisfied if and only if the mean square error
approaches zero as n—~> «. See Problems 8.30 and 8.76.
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COMPLETENESS OF ORTHONORMAL SETS .
If in approximating a function f(x) € L? by an orthonormal series > ¢, ¢, (x) we fail
k=1

to include one or more of the functions ¢,(x), Parseval’s identity will not be satisfied.
Because of this we adopt the following

Definition. An orthonormal set {¢,(x)} is said to be complete if for all functions f(x) € L?
Parseval’s identity is satisfied.

We have the following

Theorem 8-9. The set {¢,(x)} is complete if and only if there is no function other than
zero which is orthogonal to all the functions ¢, ().

RIESZ-FISCHER THEOREM FOR GENERALIZED FOURIER SERIES

Theorem 8-10 |Riesz-Fischer]. Given an orthonormal set {¢, ()} in (a,b) and a set of
constants ¢, such that 121 ¢} converges, there exists a function f(x) € L?
such that the ¢, are Fourier coefﬁgients corresponding to f(x), Parseval’s
identity is satisfied and the series kzl ¢, ¢,.(x) converges in the mean to f(z).

For Fourier series this theorem takes the following form

Theorem 8-11. Let a, b, be such that the series

k? “k
2 0
a
5 T 2 (@) (20)
converges. Then the trigonometric series
923 + 2 (a, cos kx + b, sin kx) (21)
k=1

is the Fourier series of some function f(x) € L2. Furthermore the partial
sums of the series (21) converge in the mean to f(x) and Parseval’s identity
(16) is satisfied.

Solved Problems

DEFINITION OF FOURIER SERIES
8.1. Show that if m and n are positive integers,

j‘” de = 0, m#=n
(2) . cosmx cosnxdx = . m=n
. . 0, m=*n
(b) f,,f sinmz sinnxdxr = {m m=n
™ .
(¢ f sinmx cosnxde = 0
-
(@) If m+#n,
kid 1 T
f cosmx cosnx de = 3 [cos (m — n)x + cos (m 4+ n)x] dx
J_. .

ks

1]|sin(m—mn)x , sin(m+ n)x
5 +
2 m—n m+n

-7
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If m=mn,

kg k'8
f cos mx cosnx de = f cos? mx dx
— -
1 ("
= 3 J (1 + cos 2mzx) dx
—mT
1 sin 2ma \|”
= §<x + %m > o - 7
(b) If m*mn,
T 1 T
sinme sinnx de = 3 [cos (m — n)x — cos (m + n)x] dx
-
_ 1[sin (m—n)x sin(m+n)e || _ 0
- 2 m+n - -
If m=mn, T
f sinmx sinnx dx = r sin2 mz dx
—1r . —1T
1 T
= = f (1 — cos 2mz) dx
2 _T
_ 1 v — sin 2ma \|"
- 2 2m - -
(¢) If m +#* n,
T 1 ko
sin mzx cos nx de = D) f [sin (m + n)x + sin (m — n)x] de
—r .
_ l[—cos(m+n):c_cos(m—n)ac]7T = 0
2 m+n m—mn -
If m=mn, . T
J sin mx cosnx dxr = f sin mx cos mx dx
- _T
sin2 mx |”
2m - - 0

82. If the series A + 2, (@, cosnx + b, sinnx) converges uniformly to f(x) in (—=, ), show

n=1

that for n=1,2,3,..., (a) arn = 1 f f(x) cosnz dx, (b) bn = 1 f f(z) sin nx dx,
(¢) A = ao/2. YT Yo

(a) Multiplying w
f®) = A+ 3 (a,cosnz + b, sinnx) . (1)
n=1

by cos mx and integrating from —r to =, using Problem 8.1, we have
ks ks
f fx) cosme dx = A f cos mx dx
- -7
o0 T T
+ 21 {an f cos mx cosnx de + b, f cos mx sin nx dx}
n= -7

-7

= apr i m=123,...

Thus a, = %f f(x) cos mx dx m=1,2,3,... (2)
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8.3.

(b)

(o)
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Multiplying (1) by sin mz and integrating from -z to =, using Problem 8.1, we have

T kg
f f(x)sinmede = A f sin mx dx
-7 i

+ él {“nfv

-7

T
sin mx cosnxdx + b, f sin ma sin nx dx}
= bpr T

m
Thus b, = %f f@)sinmede m=1,23,...
—1

Integration of (1) from —« to », yields
f flx)de = A f dr + 3 {an f
— - n=1

-
1 (7 a,
h = de = =2
Thus 2n_f_ﬂ f(x) dx 2
as seen by formally putting m = 0 in equation (2) of part (a).

Note that in all parts above, interchange of summation and integration is valid because
the series is assumed to converge uniformly to f(®) in (—x,7). Even when this assumption is
not warranted, the coefficients a, and b, as obtained above are called the Fourier coefficients
corresponding to f(x), and the corresponding trigonometric series with these values of a, and
b, is then called the Fourier series corresponding to f(=).

An important problem is to investigate conditions under which the series converges and
if so whether it converges to f(z).

cosnexde + b, f sin nz dx} = 2r7A

A =

Find the Fourier series corresponding to the function f(®) =22 0 <z <2r, where
f(«) has period 2= outside of the interval (0, 2x).

series, it is sometimes useful to do so.

Although it is of course not necessary to graph the function in order to determine the Fourier
The graph of f(x) showing the periodicity is given in

Fig. 8-1. Since f(x) has period 27, we can use (0, 27) in Problem 8.2 instead of (==, ).

f(=)
/ / /"‘*’ Period / 7/
/ / / / /
/ / / / /
/ / / 472 / /
/ / / 7/ P /
_7 _ e P s l _ - < - x
| [ I 0 I T T
—6n —4r -2 2r 4 67
Fig. 8-1

The Fourier coefficients corresponding to f(x) are given by the following.

2w 1 2
a, = = f(x) cos nxde = —f x2 cos nx dx
T 0 T ¢
= 1] (g2 (sinnz — (@) —cosne) | o[ _sinna 4 =123
- T n n2 n3 0 - 2 T 44y 0y 0.
27 2
0
1 27 1 o
b, = —f f(z) sinnxde = —f %2 sin nx dx
TJ, TJ,
1 cos nx sin nx cos nx 2 4
= = 2) ([ —COSMX ) — €os nx = _27
o (5) - -2 () - -
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Then the required Fourier series is

a 2
2+ 2 a, cosnx + b, sinnx
n=

472

. st 47
ie. 3 + g 2 cosmx — = sin nx

RIEMANN-LEBESGUE THEOREM
84. Prove the Riemann-Lebesgue theorem: If f(x) is integrable in (—=, =), then

(@) hm f(x) sinnedr = 0, (D) hm f(x) cosnedxr = 0

-1 -

(@) Let = =wu +r/n so that

T T+win T
f f(z) sinnxdx = —f f<u+ > sinnudu = —f f(u+-:—> sin nu du
-7

—7+w/n -7

since we assume f(x) has period 27.

Thus J‘_’; f(x) sinnegde = -— f:f f <x + %) sin nx dx
w2 f @t = 7 - (a42)|smncas

From this we find
\ f f(x) < >:| sin nx de
%f f<x+%>—f(ac) dx

—_T
But by Problem 5.31, page 90, we have, since f(x) is integrable,
T
lim f f<x+1> — f(x) | d=
n=—s0 _ o n

™
Thus lim f f(x) sinnezde = 0
n=—< -

fﬂ f(x) sin nx dz

lIA

=0

(b) This can be proved in a manner similar to the method of part (¢). See Problem 8.43.

CONVERGENCE OF FOURIER SERIES

1 i _ sin(M+3)6
85. Prove that 3 + nzl cosnf = ~Ssmii
We have cosng singe = Jsin(n+ L)¢ — sin (n— 3)4]
Then summing from n =1 to M,
M M
S cosnosinde = sinde 3 cosme
n=1 n=1

137

= Lsingo—sine) + L(sin §o —sin $6) + --- + L(sin (M + )¢ — sin (M — })o)

= 4sin(M+4)e — 4 sinde

M sin (M + 3)¢
+ X cosng = ( %)

Thus n=1 2 sin %9

DO | bt
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1f sin(M+4)9 , 1 1(" sin(M+36 , _ 1
8.6. Prove that a 2s1n10 df = 2’ (b) J . mdg 3"

(¢) From Problem 8.5 we have on integrating from 0 to =,

lf” 51112(:1411‘:;)0 = lf [ +E cosno:l de
1o, < sinng ||”
;[5“521 ; ]o
= 1
2

(b) From Problem 8.5 we have on integrating from —r to 0,
M

0 M+ 1)e 0
1f sin ( {7) do = lf |:l+ S cos ne} de
T 2 n=1

T 2sinle 36 _#

1[3+§ sinno]o
7|2 n=1 n

-

8.7. Show that the partial sums of a Fourier series are given by

sin (M + Hu

" 2siniu du

M
Su(z) = 929+"§1(ancosnx+bnsinnx = f flo +u) 21

Using the formulas for the Fourier coefficients, we have
1" 10"
a, cosnx + b, sinnx = <;f f(t) cos nt dt> cos nx + <;f f(t) sinnt dt> sin nx
—m -

m
= %f f(t)(cos nt cos nx + sin nt sin nx) dt
-

- %fﬂ £(t) cos n(t — a) dt

Al @ _ 17
so0, 2 = & f(t)dt
-

M
+ = (a, cosnx + b, sin nx)

Then Sylx) = ?"
n=1

™ M T
= él;f_ﬂ, f() dt + %nglf_ f(t) cos n(t — x) dt

= 1f f(t)[ +Ecosn(t—x):|dt

T

_ sin (M + %)(t
- f AU v e sin %(t

using Problem 8.5. Letting t— x = u, we then find

Su@ = L7 fot D,

1
—v—z sin 1u

Since the integrand has period 27, we can replace the interval (—7 —®, 7 —x) by any other
interval of length 27, in particular (=7, 7). Thus we obtain the required result.
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8.8. Prove that

Sul . lf (@+8) + flo— )]sm(M:;z)tdt
From Problem 8.7,
Su@) = élv-f_ﬂ" f(x+t)s'iLs(iI‘Z—;—%”dt
B élf;[f#f(”“) Sins(?:;t%)tdt + fo fa+9) Sins(?r{;t%)t dt]
= zl[ R chut LY f fla— s“m;ﬁ;f)“du}
= %[ flx +t)———; LUPY + f fle— ——Slns(ﬁ;%)tdt}
= 5 J Uero+sa- 0 =

8.9. Prove that
Sulw) = 8@) = g f, [fa+0) + flz—0) ~ 25(0)

From Problem 8.6(a),

sin (M + 3yt

- dt
sin 4t

1 (™ sin (M + 1)t
0 2

Then using Problem 8.8,

+ t +
Su@ = 5@ = = [fett + fla— o) Tt D %) dt — “f 25(w )Sm(ngt%)t
0
M+1t
= él;fo [fe+ ) + fz— t) — 25(a >]%%t—)dt

8.10. Prove that convergence or divergence of a Fourier series corresponding to an
integrable function f(x) at any particular point 2 depends only on the values of f(x)
in a neighborhood of the point.

From Problem 8.8 we have for some fixed number & such that 0 < § = T,

1 sin (M + L)t
Sul@) = 2—”f0 et 0 + o — o) 2R
sin (M + 1)t

sin §¢ dt

+ él;fﬁ [ie+ 1) + fa— 1)

flett) + flx—1t)
sin 4¢

that the last integral approaches zero as M — «, This shows that convergence or divergence of the

Fourier series depends only on the integral over the interval (0, 8), i.e. on the values of f(x) in a

neighborhood of the point .

Now since is integrable in (8, #), it follows from the Riemann-Lebesgue theorem

8.11. Prove Theorem 8-1, page 131: The Fourier series corresponding to f(x) converges
to S(z) if and only if

lim ( [f(@+8) + f(o—t) — 28()] SLAL+HE

Mow Jo sin 4t at =0

This follows at once from Problem 8.9 since in such case Mlim Sulz) = S(x).
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8.12. Prove Theorem 8-2, page 181: The Fourier series corresponding to f(z) converges
to S(x) if and only if for some fixed number § such that 0 < § = =,

11mf[fx+t ) + f(z—t) — 2z )]“ng—;tﬁdt - 0

If welet F({) = f(x+¢t) + f(x —t) — 2S(x), then by Problem 8.11 the Fourier series converges

to S(x) if and only if
I f Fit sin (M + -%)t —
Mo ) —smit sin 4t -
i.e. for some fixed number § such that 0 < § = =,
sin M+ sin (M + L)t
lim [f F(t) ————=— ( %) dt+f F()—L———idt] = 0
Moo s sin 4¢

Now since the limit of the second integral is zero by the Riemann-Lebesgue theorem, the required
result follows.

8.13. Prove Theorem 8-3, page 1831: The Fourier series corresponding to f(x) converges
to S(z) if and only if for some fixed number § such that 0 < & = =,
sin (Zli +Ht dt 0

M=

lim ’ [fx+1t) + f(x—t) — 2S(x)]

Using Problem 8.12 we see that the Fourier series converges to S(x) if and only if for some
fixed number § such that 0 < § = r,

lim féF( )——sm( ik L a
M~ Jy n%t - )
. 1 1 _ 1 _2
Now the function sin 3¢ 3t = i 3t :

is integrable in the interval (0, §) [see Problem 8.45]. Thus from the Riemann-Lebesgue theorem,

5
. 1 2] . _
Iél_rpwfo F(t)[sin%t—- t] sin(M+3)tdt = 0 (@)
Then from (1) and (2) we see that

5 sin(M+ )t
limf F@t) —————=—dt = 0
Morw t

which proves the required result.

SUFFICIENT CONDITIONS FOR CONVERGENCE OF FOURIER SERIES

8.14. Prove Theorem 8-4, page 131 and thus establish Dini’s condition for convergence of
Fourier series: The Fourier series converges to S(x) if for some fixed number §

such that 0 < § = =, 5
J; %t) dt exists

where F(t) = f(x+1t) + f(x —t) — 2S(x).
By the Riemann-Lebesgue theorem if F(t)/t is integrable in (0, 8), i.e. if
j‘“ F(t) .
—_ exists
o t
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8.15.

s sin (M + )t
then lim f F(t) -t—dt = 0
0

M=

But this is exactly the condition [Problem 8.13] that the Fourier series converges to S(z) and so
the required result follows.

Let y(t) be a monotonic increasing function and suppose that lim ¢(t) = 0. Prove

that if 0<8=rn, t o+
s .
lim f lp(t)ﬁll‘ﬂ"‘_%)tdt = 0
Maw J, t
By the second mean-value theorem [see Problems 6.78-80, page 114] we have for 0 < §, =«
5 sin (M + )t % sin (M + 1)t
S o = gy O, (1)
0

for some value 7 such that 0 < 5 < &,.
Letting (M + 1)t = u in the integral on the right of (1),
L sin (M + 1)t (M +14)8;
o 2 = g | S gy ®
0 (M+%)n

Now the integral on the right of (2) is bounded, i.e. less than some positive number B, for all
M, 8, and n [see Problem 8.47). Then given ¢« > 0, we can choose §; small enough so that (5 D < €¢/2B.

Thus s
1 in (M
{f ¢(t)sm(*t+ﬁdt' < % ®
0

Also by the Riemann-Lebesgue theorem,
8 sin (M + 1)t

11m w(t) 7 dt = 0
M=« 5y
i.e. we can choose M large enough so that
5 sin(M+ L)t
f w(®) —t—%dtl < % %)
51

Then from (3) and (4) it follows that if M is sufficiently large,

5
J‘ () sin (M + %)t
0

which proves the required result.

8.16. Prove the result of Problem 8.15 if y(t) is of bounded variation and lim y(t) =

t=0+4
If y(¢) is of bounded variation, then it can be expressed as the difference y,(f) — y5(t) of two
monotonic increasing functions y, (£) and y,(t). Since tlilgl+ ¥(t) = 0, we have 1i1[}1+ () = tlir(;a+ wo(t)
- t~— -

and there is no loss of generality in assuming that this common limit is zero. Then by Problem 8.15,
sm M+ t 5 sin (M + 1)t
im f ( sn M+t o, lim f oty AP
M~ 0 t

and so by taking the difference of these two limits we obtain as required

8 0y
lim o0 sin (M + 1)¢

dt = 0
M—»wo t
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8.17. Prove Theorem 8-5, page 131, and thus establish Jordan’s condition for convergence
of Fourier series: The Fourier series converges to S(x) = 4[f(x +0) + fx—0)] if

f(?) is of bounded variation in a neighborhood of t = z.
If f(t) is of bounded variation, so also is
F(t) = fett) + fla—1) —2S(x) = flx+t)+ flx—1t) — f(x +0) — f(x — 0)
Furthermore it is clear that tlirl;)1+ F(t) = 0. Thus by Problem 8.16,
8 sin (M + 1)t

lim F(t)
M=o 0 t

dt = 0

which shows that the Fourier series converges to S(z) = (@ +0) + & — 0)].

(a) Referring to Problem 8.3, page 136, prove that for 0 < z < 2,

8.18.
4r2 | <4 4r .
2 = = + — COS X — — Sin nx
3 ,1:21 n? n
(b) To what value does the series converge for # =0 and z = 2x?
Since f(x) = #2 is of bounded variation, the series converges to
x4+ 0) + f(x—0)]
(a) Since any point of the interval 0 < x < 2r is a point of continuity, the series converges to
f(x) = 2. Thus for 0 < x < 27,
2 =]
z?2 = dr? + 3 <i2cosmc - 4—Trsinnx>
3 a=1 \n n
(b) The point « =0 is a point of discontinuity and we have from the graph of Fig. 8-1 or from
direct analytical considerations the fact that at x = 0,
i +0) + fle—0)] = L(O0+4rs2) = 22
Thus at = = 0 the series converges to 272,
Similarly at the point x = 27 the series converges to
Hfw+0) + flw—0)] = 3(0+4s2) = 2,2
1 1 1 1 w2
.19, hat o +osFagt gt = .
8.19. Prove that Eietatet 6
From the fact that the series of Problem 8.18 converges to 272 at z = 0, we have
472 < 4 < 4 272
2 = =7 =2 2 - g7
2 3 + ngl Wz or R 3
S 1 1 1 1 1 _ =2
Thus n§1n2“ﬁ+22+?§+12+ = 5

INTEGRATION OF FOURIER SERIES
8.20. Prove Theorem 8-6, page 131.

We shall prove the result for «a =0, g = x. Consider
x a()
o0 = |- 5]
0

where ay, b, are the Fourier coefficients corresponding to f(x), i.e.

1 2T 1 27
= f f(x) cos kx dx, b, = - f f(z) sin kx dx
0 0

a, = —
T

@
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8.21.

Since g(z) is continuous and of bounded variation [Theorem 6-21, page 98], it has a Fourier series
which converges to g(x), so that

¢
glx) = 50 g (cx cos kx + d sin kx) (2)

1 2 1 2
where ¢, = ;f g(x) cos kx dx, d, = ;f g(x) sin kx dx
0 Y

Now using integration by parts with g(x) given by (1), we have for £k =1,2,3,....

[ (@ )smkx:| 1

N -
27 ag
= - [f(.r) - -—-J sin kx dx
0 2

1 2T
G = ;J‘ g(x) cos kx dx ¢'(x) sin kx dux
0

_ 1 7 . . by
= - »jo flz) sinkx de = — %

2 1

1 . 1 cos kx’ 2w
& = - f g(x) sinkx de = = 17“9(90) % e T B 9'(x) cos kx du
0 . “ 0

2 a
= ’;1— f [f(x) - ?o:l cos kx dx
T

0

ay

1 2T
= Efo f@) coskr de =

where we have used the fact that g¢(0) =0, as is evident from (7), and g¢g(27) =0 from the fact
that g(x) has period 2r.

Substituting the values of ¢, and d, in (2),

c = ay sinkx — b, cos kx
o) = 5+ 3 : )
. _ _C 2 bx o _ &b
Letting « = 0, 0 = 3 kgl A or = g A (4)
» q. sinke + b.(l — coskx
so that glx) = 2 L k"< ) (5)

From (1) and (5),
& ay sinkx + b (1 — cos k)

z ox < x
J; fluydu = —2-—+ 2 A

]

k=
But this is exactly what would be obtained if the Fourier series corresponding to f(x), i.e.

a 3 .
2 + 3 (a, coskx + by sinkx)
Py

is integrated term by term from 0 to z, and so the required result is proved.

1 1 1 1 7t
Show that Etatstat - = g
By Theorem 8-6 we can integrate with respect to x the series of Problem 8.3 to obtain
3 2
% = 4” LA 2 < — sinnx + 42 cosnx> + ¢ (1)

where ¢; is the constant of integration. Then letting x = 0 we have, using Problem 8.19,

& dw . _ <1l _ 28
ngl p e = 0 er e = 47n§1 n2 3
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Thus (1) becomes
2 _drta w34y 4a

3 + =2 = n=21 <n3 sinnz + — cosnx> (2)

Integrating both sides of (2) with respect to x,
&)

2m2x2 -]
73x 27;% - g 4cosnac + %sin‘nx) + e

/\

x4
12

) § 4 1
Putting = =0, c, = - = 4 —
2 =1t 'ngl nt

which is four times the value of the series to be summed
To do this we note that for n =1,2,8, ...,

Another way must now be found to evaluate ¢,

27
0, f cosnx der = 0

27
f sinnx de =
0 0
. We then obtain

and are thus led to integrate both sides of (3) from 0 to 2r

2T [ o4 20,2 2w
xt  27% 2732 _ f
j; <—12 3 + e >dx = 0+ , ¢ dx

, so that as required,
4
2 T w

This last method can also be used to determine ¢; in (7) without using the result of Problem 8.19

or, on carrying out the integration, ¢, = 474/90
o0
1 77

Prove that the series
sin 2x sin 3z "

sinz

8.22.
In2 In3 In4
cannot be a Fourier series.
b,
From Problem 8.20 we see that if the given series is a Fourier series, then 3 —k— must con-
verge. In the given series, however, b, = 1/In(k+ 1) and thus k=1
2 by _ 1 1 1
2% = 2 kln(k+1) = mezt2ms " 3ma "

k=1
Thus the given series cannot be a Fourier series

which diverges.

ORTHONORMAL FUNCTIONS AND SERIES
are orthonormal in (—x,=).

8.23. Prove that the functions ¢ (z) = §11‘\/—Z‘_—x n=123,
™

The required result follows at once since

ks 1 T
f m(®) pp(a) dx = ;f sinme sinne de =
-7 —

by Problem 8.1(b).

0 if m#n
1 if m=mn

, be a set of orthonormal functions in (a, b).

J. 1@ 4,0 do

824. Let {¢ (%)}, n=1,2,3,
converges uniformly to f(x), prove that
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8.25.

1t @) = 3 o

then multiplying by ¢,(x),
<]

,.gl Cn P () dp2c)

f(x) pm(x)

Integrating from a to b, we have

b 0 b
J @@ = 3 e | oue) su@da
a n=1 a

145

(1)

where the integration of the series can be performed term by term since the series is supposed to

be uniformly convergent in (a, b).

Since the set of functions {¢,(x)} is orthonormal in (a, b), we have

{O if m#*n

1 if m=mn

b
[ @ oncrar =

a

so that (1) becomes as required,

b
on = | 16 pu@) da

The Hermite polynomials H.(x), n=0,1,2,3,..., are defined as polynomial solu-

tions of degree n of the differential equation
H, — 2zH, + 2nH, = 0
Prove that the set of functions {e~+*/2H,(z)} is orthogonal in (—o, =).
The differential equations satisfied by H,,(x) and H,(x) are respectively
H, — 2zH,, + 2mH, = 0
H, — 2xH) + 2nH, = 0
Multiplying the first equation by H,, the second by H,, and subtracting, we find

H Hi — H,HY — 20(H,H, — H H.) + 2m—2n)H, H, = 0

n

so that (2m —2n)H,_ H, = H,H) — HH, — 2¢(H, H, — HH.)
or @m—2n)H, H, = (% (H H'— H,H') — 2a(H,H' ~ H,H.)

Multiplying by e—**, we can write this as
d

(2m —2n)e—=H, H, = o [e==* (H,H} — H,H;)]
Then integrating from —= to «,
(2m — 2n) f e—=*H, H, de = e (H,H,—HH,)) =
Thus if m # n, f e—H, H,de = 0

-0

which is the same as saying that the set {e—2*/2H (x)} is orthogonal in (—=, =),

1)
(@)

8
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8.26. If 2 ¢nHy(x), where Ha(x) are the Hermite polynomials of Problem 8.25, converges
umformly to f(x), prove that

f_w e~=f(x) Hu(x)
cn = o0
f- e~ [Hu(2))2 dx

We have fle)y = E nH (%)
e
so that by equation (3) of Problem 8.25,
f e~ f(z) Hy(x) de = E Cn e~2* H, (x) H,(x) do
= e | e FH R B

-—0
where the term by term integration is justified by the uniform convergence of the series. Solving
for ¢,,, we arrive at the required result.

FOURIER SERIES IN L? SPACES
8.27. Let {¢,(x)} be an orthonormal set of functions € L? [a, b] and let S, 2 ¢, $,(x)

where ¢, = f f(z) ¢, (x) dx. Prove that for any function f(x) € L? [a b]

1Su(@) — fl@)l| = fa [S(@) - f()P de = fa fepdr - 3 d

We have,
b b
J e - su@par =

[1Sa(®) — f()]]
b n n n
f {]f(w)P —2 3 af@o@ + 3 3 e ay) ¢k(w)} dv

a k

n

2
flx) — kgl o pilw)| dw

f

b n b n n b
S @pra -2 3o f @@+ 33 oo [ s e

b n n
f f@)2de — 2 3 & + 3 e
« K=1 K=1

M

b n
N X
a k=1

where we have used the results

b
| 1@ ni@)

b .
0, j>k
S smawa = {1, o

8.28. From Problem 8.27, prove that
) b
Sa = | ok
k=1 a
We have from the result of Problem 8.27,

® 2 - fb 2d. S 2
S v -se@ra = [ ropa - 3 q &
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8.29.

8.30.

Then since the left side is non-negative, it follows that
n b
3= | lwpa @
k=1 o
Taking the limit as #n —» «» and noting that the right side of (2) is independent of », we see that

b
G = f |f(x)|2 dz

A8

k

This inequality is called Bessel’s inequality.

Prove that if
lim [[Sa(x) — f(x)]] = ©

where S.(z) and f(x) are as defined in Problem 8.27, then
o0 b
kzl ¢ = f If(x)2 dx

This follows at once from Problem 8.27, since if

Jim [IS,@) — @l = o
b n
n _ 2 —
[ e 2 4] <o
b ]
ie. J; @) de = kgl %

The result is called Parseval’s identity. If Parseval’'s identity is satisfied for all functions
f(z) € L2, we call the set of orthonormal functions {g(x)} complete.

n
The mean square error of f(x) from an approximating sum > a, ¢, () is given by
k=1

1 b
b—aj;

Prove that (a) the mean square error is a minimum when the constants a, are given
by the generalized Fourier coefficients

q = ¢ = J; f(x) ¢ (x) dx

and that (b) Parseval’s identity is satisfied if and only if the mean square error
approaches zero as n - o,

n

f@) — 3 ad,(@)

=1

2
dx

(a) We have as in Problem 8.27,

b n
f Ifx) — 3 a (@) |2 doe
a k=1

b n

b n n b
fa [f(x)|2 de — 2k§1 a ) f(x) ¢p(x) de + kgl 5§1 ajoy J; #5(%) o () do

b n n
f f@)2de — 2 3 are, + 3 a?
e k=1 k=1

b n
j lf(x)2dx + kgl (a2 — 2axcy)

b n n
fv@ra - 3 a+ 3 o
k=1 k=1

a
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From this it is clear that a minimum is obtained when
b
w = o = | f@aEd
a
For another method of obtaining the minimum, see Problem 8.76.

(b) This follows from part (¢) and the result of Problem 8.29.

RIESZ-FISCHER THEOREM FOR GENERALIZED FOURIER SERIES

8.31. Let {¢,(2)} be an orthonormal set in (a,b) and let ¢, be a set of constants such that
i c2 converges. Prove that there exists a function f(z) € L* such that (a) the
kp=alrtial sums kil ¢, ¢, () converge in the mean to f(x) and that (b) the ¢, are Fourier

coefficients corresponding to f(z).
L )
(@) Let S, = 3 ¢ ¢x(x) denote the nth partial sum of the series ¥ cror(x). We have for m > n,
k=1 k=1

b
ISn— Sz = f 1Su@ — Sy@i2dz

b m n 2
= f p} k pr(x) — p o oi(®)| da
a k=1 k=1
bl m 2
= f S o pr(x)| da
o In+1

b m m
- J; {k =§+ 1 j=§+ L i #1() ¢k(x)} dx

m b
S 3 oo f $;(%) ¢x(®) dz

k=n+l1j=n+l

m
= S o
k=n+1

o0
Now since 3 c¢Z converges, it follows that
K=1

m
lim ¢z = 0
m"°°k=2n+1 *
n=—c0
ie. lim [|S,, — S, = 0
N - R0
n=~— o0

Thus by the Riesz-Fischer theorem there exists a function f(x) € L2 such that S,(x) =
n

kE ¢pdr(x) converges in the mean to f(x) as n— =,
=1

(b) By part (a), since S, () converges in the mean to f(x) as n - «, it follows from  Problem

7.52, page 128, that b

b
lim [ S@e@de = [ 1) e )

b n
f {kgl ey #1(x) ¢p(x)} de

n b
= k§1 ckj; #x(®) pp(x) dx = ¢,

b
But f S, (x) ¢,(x) dx

b
Thus (1) yields cp = J. f() ¢p(2) da (2)

i.e. the ¢, are Fourier coefficients corresponding to f(x).
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8.32. Prove that under the conditions specified in Problem 8.31 Parseval’s identity holds, i.e.

S e = 3

By Problem 8.31 the partial sums S, (x) converge in the mean to f(x) as n - «. Thus by
Problem 7.15, page 123,

b b
tim [ 1s,@pa = [ jepa &)

b b
But f [S,(x)2de = f
b n n
= f { P ;e () ¢k(l‘)} dx

n b
= 2 3o [ e nmd

2

n
2 e pp(@)| do
=

K¥=1;i=1
n
= 2
N kgl %k
n b
Thus by (1), lim ¥ e2 = |f()|2 dx
n= o T a
w b
or el = |f(x)|2 de @
K=1 a

Supplementary Problems
DEFINITION OF FOURIER SERIES
x, I<zx<g~x
833 Let f(x) = {_x, < m<0

and draw the graph of f(x). Ans. 2 <s"; z_ sm22x + sm33x - 5"2495 + .. >

where f(x) has period 2r. Obtain the Fourier series for f(x)

8.34. Show that the Fourier series for f(x) = cospx, —r = x =7, where the period is 27 and where
p#0,%1,*2, ... is given by

sinpr (1 _ _2p _2p _ —_2
- <p p2_12c05x+p2_22c052x p2_32cos3x+

8.35. Extend the results of (a) Problem 8.1 and (b) Problem 8.2 to the interval (c, ¢+ 27) where ¢ is
any real number.

8.36. Let f(x) be Lebesgue integrable in (—1, 1) or more generally in (c, ¢+ 2]) where I > 0 and ¢ is any

real number. Suppose that f(z) is periodic with period 2! outside of this interval. Show that the
Fourier series corresponding to f(x) is

a, o
24 S ancosw-{—bnsinm
2 n=1 l l

where the Fourier coefficients are given by

c+2l c+21
e, = %—f f(x) cos 'n_1lr£ dz, b, = %f f(x) sin 1% dx
[+ [



150 APPLICATIONS TO FOURIER SERIES [CHAP. 8

8.37. Prove that if f(z) is an odd function in (=l 1) [i.e. f(—x) = —f(x)], then the Fourier series cor-
responding to f(x) is

1
S b,sin™% where b, = 2 f F() sin 2% du
n=1 l l 0 l

The series is often called a Fourier sine series.

8.38. Prove that if f(x) is an cven function in (—I,1) [i.e. f(—x) = f(x)], then the Fourier series corre-
sponding to f(x) is

o0 . 1
2+ 3 a,co8 Y where a, = gf f(x) cos 2 g
2 n=1 l l o I

The series is often called a Fourier cosine series.

2zx, 0=2x<3
8.39. Show that the Fourier series corresponding to f(z) = 0 3 < where the period is 6
is given by , <z <0
3 < | B(cosnr —1) ngx _ B cosng . Mk
3 + ngl [—n%z cos ~o . Sin—gT ]
8 < nsin2nx

8.40. Find a Fourier sine series corresponding to f(x) =cosz, 0 <z <. Ans. T — 1
T p=1 -

8.41. If the trigonometric series (1), page 130, converges almost everywhere to f(x) in (—w,7) and if the
partial sums of the series are uniformly bounded, prove that (@) f(x) is integrable in (—=,») and
(b) @, and b, are given by the formulas (2), page 130. [Hint: Use Lebesgue’s dominated convergence
theorem).

THE RIEMANN-LEBESGUE THEOREM AND CONVERGENCE OF FOURIER SERIES

m .
8.42. Prove that lim Sin nx

am PO 1d:c = 0 in two different ways.
0

T
8.43. Prove that limf flx) cosne de = 0 where f(z) is integrable in (—z,7) and thus complete
n=-—x —

the proof in Problem 8.4.

844, In the proof of the Riemann-Lebesgue theorem in Problem 8.4, does = have to be an integer?
Explain.

2 is integrable in (0,8) and thus complete the proof in

. 1
8.45. Prove that the function 51—11(5/42_) :

Problem 8.13.

8.46. Prove that if f(x) is integrable in (—x,7) and f'(x) exists in (—=,7), then the Fourier series corre-
sponding to f(x) converges to f(x) at each point x in (—r,7).

(M+1)8, .
SMU 1y is bounded for all positive values of M, §, and 7 and thus complete

8.47. Prove that f
(M+1%)n

the proof in Problem 8.15.

8.48. Prove that a Fourier series corresponding to f(x) will converge to f(x) if f(x) satisfies the condition
iflw+u) — flx)) < Klu? for ju| <r where K,p and r are given positive constants. Discuss
the relationship with Probem 8.46.

8.49. Prove that if f(z) and f'(x) are both piecewise continuous in (—=,n), then the Fourier series for
f(x) converges to L{f(x +0) + fx — 0)].
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8.50. Prove that if f(x) has only a finite number of discontinuities in (—=,) and if it has only a finite
number of maxima and minima in (~#,7), then the Fourier series for f(x) converges to
3[f(e+0) + f(x —0)]. The conditions indicated are often called Dirichlet conditions.

8.51. Is continuity of a function sufficient to assure the convergence of a Fourier series for f(x) to f(x)?
Can you justify your conclusion?

8.52. (@) To what value does the series of Problem 8.33 converge at = = 0, /2, =, —7? (b) Does the
series converge to f(x)? Explain. (¢) Using Fourier series methods, prove that
1 1

1 _
=3ty -7+ =

'SE

8.53. Use Problem 8.34 to prove that if » # 0, =1, =2, ...,

1
cot = =+ 2 ——
corpm p AP

8.54. Prove that for 0 =z = »,

2
@ wolr—z) = 7r___<cos2x+cos4x +cosGac 4 >

6 12 22 32

_ 8{sing  sin3x , sinbx
(wawx>—7<p-+33+ 1o >
8.55. Prove that if the function 1t
G(t) = Zf [flx +u) + fle—u) — 2S(x)] du
0

is of bounded variation for ¢ > 0, then the Fourier series corresponding to f(x) is convergent and
that it converges to S(x) if lin% G(t) = 0. This test is called de la Vallée Poussin’s test.
t~—

8.56. Show that the test of Problem 8.55 is satisfied if either Dini’s or Jordan’s test is satisfied.

INTEGRATION OF FOURIER SERIES

1,1 ,1 1 b
8.57. Prove that F + EE + §§ + E 4+ = 945 °

858. Prove that 3,

1 . .
n=1m diverges and thus complete the proof in Problem 8.22.

g sin nx

8.59. Prove that =, ()2’

0 <a=1, cannot be a Fourier series.

8.60. Prove that if the Fourier series corresponding to f(x) is
a o0
—22 4+ 3 (a, cosnx + b, sin nx)
n=1

and ¢(x) is of bounded variation, then in any interval (a, 8)

B 0 8
j;B f(x) p(x)dxe = l;_oj; o(x) dx + ngl [an£3¢(x) cosnzde + b, J; #(x) sin nx dx]

8.61. Discuss the result of Problem 8.60 if « = —#, 8 =# in terms of a Fourier series corresponding
to ¢(x).

8.62, Can the argument of Problem 8.22 be used to show that

cos cos 2x cos 3x
In2 + In3 + In 4 +

is not a Fourier series? Explain.
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ORTHONORMAL FUNCTIONS AND SERIES

sin kx cos kx

8.63. Let ¢g(x) =1/V2r, ¢op—1(x) = , ¢or(x) = —=— where k=1,2,3,.... Prove that the
Vr Vr
set {¢,(®)},n=0,1,2,8, ..., is orthonormal (a) in (—=, =), (b) in (¢, ¢ + 27) where ¢ is any constant.

8.64. Use the method of Problem 8.25 to prove the orthogonality of the functions {sinnxz}, n =1,2,...
in (—=, 7). [Hint: If y,(x) =sinnx, show that y, +n2y, =0, y,(—7) = y(r) =0.]

8.65. The Legendre polynomials P,(x), n =10,1,2,8,..., of degree n are solutions of the differential

equation
A—22y”" —2xy’ +nin+1)y = 0

Prove that the functions are orthogonal in (—-1,1).

8.66. The Laguerre polynomials L,(x), n=10,1,2,3,..., of degree n are solutions of the differential
equation "
xy”" +1—x)y +ny =0

Prove that {e—*/2L, (x)} is orthogonal in (0, ).

8.67. Show how to expand a function f(x) into a series of (a) Legendre polynomials and (b) Laguerre
polynomials.

8.68. The function sgn (x) [read “signum z”] is defined as 1 if >0, 0 if =0 and —1 if z<0.
Show that the functions {sgn (sin2"zz)}, n = 0,1,2, ..., called Rademacher functions, are ortho-
normal in (0, 1).

8.69. Prove that if f(x) and ¢,(x) belong to L2, then the coefficients (14), page 132, exist.

8.70. A set of complex functions {¢,(x)} is called orthonormal in (a, b) if
b .
- 0 if m#*n
d. =
fa Pm(%) pn(x) doe {1 I
where the bar over a function denotes complex conjugate.
(a) Show that this definition reduces to the ordinary one in case the functions are real.

einx

Ver

o0
(¢) If X egeir= is the Fourier series for f(x), prove that
k=—x

e = zl—vf f() e=ike dar

This is called the complex form of Fourier series.

(b) Show that the set of functions { } where n is any integer is orthonormal in (—=, 7).

8.71. Consider the set of functions 1, x,22, 23, .... From these form a new set of functions
ay, ap + az®, ay + asx + agx?, ... where the nth function in the new set is obtained by multiplying
each of the first n members of the first set by a constant and then adding. (a) Determine the con-
stants ay,as, ... so that the functions will be orthonormal in (—1,1) and (b) show that these
polynomials satisfy Legendre’s differential equation [the actual Legendre polynomials have the
property that P,(1) = 1]. See Problem 8.65.

FOURIER SERIES IN L2 SPACES AND THE RIESZ-FISCHER THEOREM
8.72. Let f(x) € L2 [—#,»] have the Fourier series

% < X
5 21 (@, cos nx + b, sin nx)
—

Prove that Parseval’s identity is

a2

?" + ngl (@2+b2) = f_" £ ()2 doe

and thus prove that the series on the left converges.
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8.73.

8.74.

8.75.

8.76.

8.77.

8.78.

8.79.

8.80.

If f(x) € L2 [—n, 7], use Problem 8.72 to prove that
m ks

lim f(x) cosnxzdx = 0, lim f(x) sinnzdxe = 0
ne=—+co - ne=+wo T

Do these results prove the Riemann-Lebesgue theorem of page 130? Explain.
Verify Parseval’s identity corresponding to the function of Problem 8.18.

Use Parseval’s identity corresponding to the function of Problem 8.34 to find the sum of the series
s __ 1
ey (m2— p2)2

Work Problem 8.30 by using partial differentiation to determine the minimum value of the least
square error.

Determine which if any of the following series are Fourier series corresponding to a function in
L2 [—77', 77']1

sin nx () * oS nNx

(@) % sin nx ®) §
a y y *
n=1 Vn n=1n—1 ngl Valn(n+1)

Prove that if f(x) € L2 and g(x) € L2 have the same Fourier coefficients, then f(z) = g(x)
almost everywhere.

Is it possible for a given trigonometric series to be a Fourier series corresponding to (a) a function
in L2 but not in L, (b) a function in L but not in L2? Explain.

Prove Theorem 8-9, page 134.



Appendix A

DEFINITION OF THE RIEMANN INTEGRAL

Let f(x) be defined and bounded in [a,b]. Divide this interval into n subintervals by
points @o, &1, ..., %, Where @ = o< &1 < :-- <@, = b. This is called a partition, net, or
mode of subdivision of the interval. The largest of the values xx — xx—1 = Azr Wwhere
k=1,2,...,n is called the norm of the partition and is denoted by 8&.

Let Mi=1lub.f(x) and mi = glb.f(x) in [#x-1, 2x] and form the sums

S = Ml(a}'l_xo) + e-- Mn(xn—xn—-l) = EleAxk (1)
. k=

8 = Mu&i—Xo) + - + Ma(Tn— 1) = Z M Ay @)
We call S and s the upper and lower sums respectlvely corresponding to the given partition.
We can -show that s =S [Problem A.3].

By varying the partition, i.e. choosing different points of subdivision as well as the
number of points, we obtain sets of values for S and s. Let

I = g.lLb. of the values of S for all possible partitions
-J = lLu.b. of the values of s for all possible partitions

These values, which always exist, are called upper and lower Riemann integrals of f(x)
on [a, b] respectively and are denoted by

fbf(x) dz, J = j;bf(x) de 9

If I=J we say that f(x) is Riemann integrable in [a,b] and denote the common value by

f f(@) da

called the Riemann definite integral of f(x) in [a, D].
If I+J, then f(z) is not Riemann integrable in [a, b].
For a geometric interpretation see Problem A.l.

In this appendix [Appendix A], unlike the other parts of this book, all integrals will
be Riemann integrals unless otherwise specified.

SOME THEOREMS ON UPPER AND LOWER SUMS AND INTEGRALS

Theorem A-1. If S,s are the upper and lower sums corresponding to a partition P and
M, m are upper and lower bounds of f(x) in [a, b], then

mb—a) = s = S = Mb-a)

154
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Theorem A-2. If Si,s: are upper and lower sums corresponding to a new partition P,
obtained by addition of points to the old partition P of Theorem 5-1
[often called a refinement of P], then

8§81§S1§S

i.e. upper sums do not increase and lower sums do not decrease by addition
of points.

Theorem A-3. If S, s»and Ss, ss are upper and lower sums corresponding to any partitions
P, and Ps respectively, then

83 = S, or 2 = 8,

i.e. any lower sum is never greater than any upper sum regardless of the
partition used.

Theorem A<4. An upper integral I is never less than a lower integral J and we have
SzlzJ=zs,

NECESSARY AND SUFFICIENT CONDITION FOR RIEMANN INTEGRABILITY

Theorem A-5. A necessary and sufficient condition for a bounded function f(x) to be
Riemann integrable in [a, b] is that given any ¢ > 0 there exists a partition
with upper and lower sums S, s such that S—s <e.

THE RIEMANN INTEGRAL AS A LIMIT OF A SUM
The Riemann integral can also be defined as a limit of a sum. To do this choose 7

points of subdivision ¢ = @ <z <2:<--- <2, = b and also points £,, ..., such
that »,_, =¢ =@, where £k=1,2,...,n. Form the sum
)@, =) + flg) @, — ) + -+ e, ~ 2, ) = X flg) oz,

where AZr = xx— k-1 and let the maximum of the Az be equal to 5, i.e. maxaz. =S5.
Then we define the Riemann integral of f(z) in [a, b], as

{feyar = 1m 3 fe)as, *)

n—ow k=1
&0

provided that the limit exists independent of the manner of choosing the points of
subdivision.

It can be shown [see Problems A.8 and A.49] that this definition is equivalent to that -
given above.

SPECIAL TYPES OF RIEMANN INTEGRABLE FUNCTIONS
Theorem A-6. A continuous function f(z) in [a, b] is Riemann integrable in [a, b].

Theorem A-7. A monotonic function f(x) in [e, b] is Riemann integrable in [a, b].

Theorem A-8. A function f(x) of bounded variation in [, b] is Riemann integrable in [a, b].
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MEASURE ZERO

A set E of real numbers is said to have Lebesgue measure zero, or briefly measure
zero, if given ¢ > 0 there exists a countable set of open intervals I, k= 1,2, ..., such that

E C U and such that the sum of the lengths of I is less than ¢, i.e. X L(Ii) <e.
A fundamental theorem on the Riemann integral is the following.

Theorem A-9. A necessary and sufficient condition that a bounded function f(z) be
Riemann integrable in [a, b] is that the set of discontinuities of f(x) in
[a, b] have measure zero.

For a proof of this theorem see Problem 4.27, page 68 [compare Theorem 4-18, page 57].

THEOREMS ON RIEMANN INTEGRABLE FUNCTIONS

Theorem A-10. 1If fi(r) and f»(x) are Riemann integrable in [a,b], then fi(x)+ f2(x) is
Riemann integrable in [a, b] and

f [f1(z) + fo( f fi(x)dx + f fa(z

Theorem A-11. 1If f(x) is Riemann integrable in [a, b] and c¢ is any constant, then ¢ f(x) is
Riemann integrable in [a, b] and

J;bcf(x)dx = cj;bf(x)dx

Theorem A-12. 1If f(x) and g(x) are Riemann integrable in [a, b], then f(x) g(x) is Riemann
integrable in [a, b].

Theorem A-13. If f(x) is Riemann integrable in [a, b], then

J;bf(x)dx = —j;af(x)dx, J;af(x)dx - 0

Theorem A-14. 1If f(x) is bounded and Riemann integrable in [a,b] and ¢ is any point of

[@, b], then b . b
f f)dze = f f(z)dz + f f(z) dz

Theorem A-15. 1If f(x) and g(x) are Riemann integrable in [a, b] and f(x) = g(x), then

J;bf(x)dx = J;bg(x)dx

Theorem A-16. If f(x) is Riemann integrable in [a,b] and has upper and lower bounds
M and m in [a, D] respectively, then

(b—a) ffx)dx = M(b—a)

and if x is a number such that m = = M, then
[ iz = wo-o

Theorem A-17 [Mean-value theorem]. If f(x) is continuous in [a, b], then there exists a
number c¢ € [a, b] such that

f 0 = o-aie
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Theorem A-18. 1If f(») is Riemann integrable in [a,b] and If(x)) =M for some constant
M, then

1£bf(x)dx‘ = Mb-a)

Theorem A-19. If f(x)is Riemann integrable in [a, b], then [f(x)] is Riemann integrable in

[a, b] and . ,
‘ f f(x) dz f ()| d

DIFFERENTIATION AND INTEGRATION
The indefinite Riemann integral is defined as

Fz) = f " f(w) du (5)

where the variable of integration has been changed to % to avoid confusion with the limit
of integration . The following theorems are important.

Theorem A-20. If f(x) is bounded and Riemann integrable in [a,b], then

S rwyau
is continuous in [a, b]. ¢
Theorem A-21. 1If f(x) is Riemann integrable in [@,b] and F(x f f(u) du, then
, d
Frx) = =F = f flu = f(x)

at each point of continuity of f(x).

Theorem A-22 [Fundamental theorem of calculus]. Let f(x) be Riemann integrable in
[a,b] and suppose that there exists a function F(z) continuous on [a,b]
such that F’(x) = f(x). Then

bef(x)dx - f “t@)de = F(b) — Fa)

or f ’ F’'(u) du

Theorem A-23 [Integration by parts]. Let f(x) and 9(x) be Riemann integrable in [a, b]
and suppose that F(z) and G(x) are such that F'(x) = f(z) and G’(x) = g()
n [a,b]. Then

f F@)gx)yde = FOB)G(b) — F(a)G(a) — f bf(x)G(x)dx

f f(x) G(x) d

Theorem A-24 [Change of variables|]. Let f(x) be continuous in [a,b]. Let z = g(u)
have a continuous derivative in [e, 8] where a = g(a), b = g(8). Then

j;bf(x)dx f Flo(w)] ¢ () duc

I}

ST iwa = Fa - F@

f

F'(x) G( x)
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THEOREMS ON SEQUENCES AND SERIES

Theorem A-25. Let (f.(x)) be a sequence of continuous functions which converges uni-
formly in [a, b] to a function f(z). Then

lim fn f fxydz = ’ lim fa(x) dz

n—+o a nUr®

Theorem A-26. Let E un(x) be a uniformly convergent series of continuous functions in

[a, b] and let s(z) be the sum of the series. Then

j;bs(x) dr = j:b [glun(x)} dx = gl j;b Un(x) dz

This is a reformulation of Theorem A-25 using series.

Theorem A-27. Let 2 un() converge to s(z) in [a, b]. Suppose that the derivatives u:(x)

ex1st and are continuous in [a, b] and that 2 s (x) is uniformly convergent
in [a,b]. Then
d < <
8'(x) = dz Z = X ui(®)

n=1

IMPROPER RIEMANN INTEGRALS

If the interval [a, D] is infinite or if f(x) becomes infinite at one or more points of [a, b],
then the Riemann integral of f(x) is often referred to as an improper integral. Such integrals
are defined by appropriate limiting procedures and are said to exist if the corresponding
limits exist. The following are examples of such definition.

fwf(x)dx = glm bf(x)dx (6)
_b flxyde = llm f f(x ()
"t = lim. f f(#) da (8)

If f(x) becomes unbounded when = = ¢, then we define

j;bf(x)dx = zll_rflo[j: f(z) dzx +f x)dac] (9)

€x=+0

If the limit in (9) does not exist for ¢, +¢, but does exist when ¢ =¢, we say that the

b
corresponding value of the limit is the Cauchy principal value of f f(x)dz. Also in such

case we say that the Riemann integral of f(x) exists in the Cauchy principal value sense.
A similar remark can be made for (8) for which the Cauchy principal value, if it exists,
is obtained by taking a = —b and letting b —> .
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Solved Problems

DEFINITION OF THE RIEMANN INTEGRAL

Al

A2,

Interpret geometrically the case where f(z) is Riemann integrable in [a, b].

Refer to Fig. A-1 which shows the curve C representing y = f(x). The lower sum s corre-

sponding to the partition shown represents the sum of areas of the shaded rectangles while the
upper sum S represents the sum of areas of the larger rectangles. Clearly s =S, from the figure.

@ oz Tg—-1 Pk b

Fig. A-1

. ,
The value f f(x) dz in this case represents the area of the region bounded by the curve, the
a

« axis and the ordinates x =a and x =b.

*

Prove that the function f(z) = defined in the interval [a,b] is

not Riemann integrable.

In any subinterval [z, y, %] of [@, b] we have M, =1, m, = 0 since the rational and irrational
numbers are dense in any subinterval. Then if S,s are the upper and loweF sums corresponding
to any partition, we have

1, =« rational
0, «irrational

. n n :
S = I M, = I leae, = b—a
k=1 k=1

n n
s = X mAry, = X 0cAw, = 0
k=1 k=1

Thus I =b—a,J =0 sothat I+#J and f(x) is not Riemann integrable.

THEOREMS ON UPPER AND LOWER SUMS AND INTEGRALS

A3.

Prove Theorem A-1, page 154: If S,s are the upper and lower sums corresponding
to a partition P and M, m are upper and lower bounds of f(x) in [a, b], then

mb—a) =8 =8 = Mb—a)

’

From equations (1) and (2), page 154, we have

n n
S = kEleAxk, 8 = N mAm,
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Then since m = m,, = M, = M we have on multiplying by Az, and summing over k& from 1 to =,

n n n n
S mar, = 3 mpar, = X MyAxr, = 3 Mag,
k=1 k=1 k=1 k=1

1A
@

IIA
1]

n
ie. m  Axy = M3 Az
k=1

liA

or mb—a) = s = S M(b—a)

Prove Theorem A-2, page 155: If Si,s; are upper and lower sums corresponding to
a new partition P; obtained by addition of points to the old partition P of Problem A.3,

then
s = S1 = S1 = S
i.e. upper sums do not increase and lower sums do not decrease by addition of points.

The result will be proved if we can prove it when one point of subdivision is added to the

given partition. To do this let the given subdivision points be
e = <oy <apy < -or <x, = b

Suppose that the additional point of subdivision occurs in the interval (x,_;, ;) and is denoted by
u so that x,_; <u <z,

Now the contribution to the upper sum corresponding to the subdivision points of the interval
(xp—l’xp) is
My(xy — xp—1) (1

If we denote the least upper bounds of f(x) in (x,_,,u) and (u,%;) by Mz(,l) and Mf,z) respectively,
then the contribution to the upper sum when the additional point of subdivision is taken into account

15 Y (2)
My, (u—2x,_1) + M, (2, —u) (2)

The change in the original upper sum caused by the additional subdivision point is given by
the difference between (1) and (2), i.e.
MP =M u—z,_y) + (M7 — M)z, —w)
Since this is negative or zero [because M;,l) =M, M,(,Z) =M, and u>wx, 5, x,>u], it

follows that the upper sum cannot increase by adding a point of subdivision and the required
result is proved.

Similarly we can prove that the lower sums cannot decrease by adding points of subdivision
[see Problem A.38].

Prove Theorem A-3, page 155: If S, 82 and Ss, s3 are upper and lower sums corre-
sponding to any partitions P, and P respectively, then ’

83§S2 or Sz_S_Ss

i.e. any lower sum is never greater than any upper sum regardless of the partition
used.

The proof is identical with that given in Problem 4.5, page 59.

Prove Theorem A-4, page 155: An upper integral I is never less than a lower integral
J and we have S=1=J =s.

The proof is identical with that given in Problem 4.6, page 59.
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A.7. Prove Theorem A-5, page 155: A necessary and sufficient condition for a bounded
function f(x) to be Riemann integrable in [a, b] is that given any ¢ > 0, there exists
a partition with upper and lower sums S,s such that S—s <e.

The proof is identical with that of Problem 4.8, page 59, except that the words “Riemann
integrable” replace “Lebesgue integrable”.

THE RIEMANN INTEGRAL AS THE LIMIT OF A SUM

A.8. Prove that the definition of a Riemann integral as a limit of a sum [page 155] follows
from the definition on page 154.

We must show that if ¢ > 0, then we can choose § > 0 such that if x,_; = ¢ = x,,

< €

n b
2 Fl&) Ay — f f(x) dz

whenever Ax, = 8

Let S,s be the upper and lower sums corresponding to the given partition. Then since
my = fg) = M, where My, my are the L.ub. and g.l.b. of f(x) in (%;_,, #;), we have

s = k§1 flg) b, = 8 (1)
b
Also we have S = fx)de = s (2)
b
or -8 = - fx)de = -—s (3)

Adding (1) and (3),
—(S —s)

iA

n b
Ef(ik)Axk_f fleyde = S—s
k=1 e

= S-—s

n b
kgl fl&g) Amy — J; flw) da

or since S—s > 0,

Now since we can choose the largest values of Ax;, [i.e. the norm] so small that S—s <e¢ the
required result follows.

We can also prove that the definition of the Riemann integral given on page 154 follows from
the definition as a limit of a sum [see Problem A.49]. Thus the two definitions are equivalent.

THEOREMS INVOLVING THE RIEMANN INTEGRAL

A9. Prove Theorem A-6, page 155: A continuous function f(z) in [a,b] is Riemann
integrable in [a, b].

Since f(«) is continuous in the closed interval [a, b], it is uniformly continuous. Let x(1? and
be any two points of an interval (x,_;,%,). Then given ¢ > 0, there exists § > 0 such that

[flaD) — flz®)] < b—e——a whenever |z — 2| < §

Thus we can choose points of subdivision so that
€

Mk — My < bT(;
If the upper and lower sums corresponding to this partition are given by
n n
S = I M Az, s = X myAx,



162

THE RIEMANN INTEGRAL [APPENDIX A

then we have n n .
S—s = E M —my) Ay, < 3 -b—:—‘;Axk = e
k=1 k=1

Thus S —s < e and it follows by Problem A.7 that f(x) is Riemann integrable.

A.10. Prove Theorem A-7, page 155: A monotonic function f(x) in [a,b] is Riemann

integrable in [a, b].

We shall assume that f(x) is monotonic increasing. The case where f(x) is monotonic decreasing
can be proved similarly [or by considering —f(z) instead of f(x)].

By definition we have for the given partition ¢ = gy < a; < -+- <2, = b,
fla) = flwg) = flap = -+ = flm)) = fb)
Then it is clear that my = f(x,,—;), M, = f(x,) so that

M=

) flay — 1) Az

S = 3 f@w)am, s =
k=1

or S—-—8 =

M=

[flo) — flowp—y)] Ay, (1)

1

If we choose the partition so that assuming f(b) # f(a)

(2)

Axy

S o —F@
we have from (2), since f(x;) Z f(xx—1),

S—s < m kgl [f(xk) - f(xk—l)]

ORI [fd) — fl@)] = e

Thus by Problem A.7 the required result follows.

A.1l. Prove Theorem A-8, page 155: A function f(x) of bounded variation in [a,b] is

Riemann integrable in [a, b].

This follows at once from Problem A.10 and the fact that a function of bounded variation can
be expressed as the difference of two monotonic increasing functions.

A.12. Prove Theorem A-10, page 156: If fi(x), and f2(x), are Riemann integrable in. [a, b],

then fi(x) + f2(x) is Riemann integrable in [a, b] and
b b b
f @ +h@ii = (h@d + § hed

Let M, m{’; M¥,m¥; M, m, be the least upper bounds and greatest lower bounds in

(2 —1, ) of fy(x); fa(x); fi{x) + fa(x) respectively., Then we have
M, = MP + MP, me = miP + mP (1)

Let us call S, s); S 523, S g the upper and lower sums corresponding to fy(x); fs(x);
f1(x) + fo(x) respectively. Then using (1), we find

S = SO 4 S®, g = g 4 g@ @)
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Al3.

A.l4.

Using the symbols I(1; I@; I for the corresponding upper integrals and J; J2): J for lower
integrals, we have from (2)

I = I 4 @, J = JO 4 J@» (2)
But since f;(x) and f,(x) are Riemann integrable, we have I(1) = J(I), J( = J2) Thus
I = JO 4 Jgo J =z JO 4 Jg@ %)

so that 7 = J. But from Problem A.6, I = J and so it follows that I = J = J(I) 4+ J(®) = J 4 J(@,
Thus f,(x) + fo(x) is Riemann integrable and

f [fi(x) + fao ()] d= f fi(x)dx + f fo(x) dx
Another Method, using limit of a sum definition.
If maxAx, =8 we have, using the notation of page 155,

b n
J @+ n@ia = in 3 e + A,
a noro g

=0

= Im:o Efl(fk) Axy + 11m 2f2(£k) Awy,

k=1 a-»o k=1

8=0
b
[ hwa+ [ hw

Give an example to show that |[f(z)| can be Riemann integrable even though f(x) is
not Riemann integrable.

1 if x € [a,b] is rational

Consider f(x) = {_1 if x€[a,b] is irrational” Then as in Problem A.2 we can show

that f(x) is not Riemann integrable in [a, b].
However |f(x)] =1 is Riemann integrable in [@, b] as shown in Problem A.34.

Prove Theorem A-14, page 156: If f(x) is bounded and Riemann integrable in [a, ]
and c is any point of [a, b], then

J;bf(x)dx = facf(x)dx + j;bf(x)dx

Suppose that ¢ is not a point of subdivision in defining upper and lower sums. By Problem
A.4 if we add the point ¢ to the partition, the upper sum S is not increased.

Denoting the upper sums for the intervals (g, ¢) and (¢, b) by S; and S,, we have
S z §;+8, = fcf(x)dx + fbf(ac)dx (1)
a c
In a similar way we find for the corresponding lower sums
s§ = 8 t+s8 = fcf(x)dx + fbf(av)dx (2)
a c
Thus if I and J are the upper and lower integrals corresponding to f(x), we have

c b
f f(x)dw—f—f flxYde =2 J = s 3

Now since f(«x) is Riemann integrable in [, b], we have

b
I = J = f f(x) dx 4)
and thus from (3) and (4), ‘

fbf(x) dx fc f(x)dz + fbf(x) dx

Il
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A.15. Prove Theorem A-15, page 156: If f(x) and g(z) are Riemann integrable in [a, b]
and f(x) = g(x), then b b
f fxyde = f g(x) dx

Let M",m"” and MP,m® be the least upper bounds and greatest lower bounds in
(% —1, %) corresponding to f(x) and g(x) respectively. Also let S, s(1) and S, 82 be the corre-
sponding upper and lower sums. Then we have, since f(x) = g(x),

(1 (2) ¢9) @
M, = M., my o = my (1)
so that S = S@, s = 5@ 2

If we now let the upper and lower integrals be IV, J() and I, J( corresponding to f(zx) and
g(x) respectively, we have

I = @ J = J@ 6))
b b
Then since I = Ju = f f(x) d=, 2 = Jj@& = f g{z) dx 4)
a a
b b
we have f flx)dx = f g(x) dx
a a

A.16. Prove Theorem A-16, page 156: If f(x) is Riemann integrable in [@,b] and has
upper and lower bounds M and m in [a, b] respectively, then

mp—a) = j;bf(x)dx = M®-aq
and if p is a number such that m =< . = M, then
f f@)ds = wb-a)
m

We have
Then by integrating from a to b using Problem A.15, we obtain

b b b
f mdx = f M dx
a a

= M(b—a) ()

IA
=
&
I
8
IA

or m(b — a)

A
-
—

)
-

I

]

From this it follows that there is a2 number u between m and M such that m(b —a) = (b —a) =
M(b—a) and

b
[ twae = wo-a ()

A.17. Prove Theorem A-17 [Mean-value theorem), page 156: If f(x) is continuous in [a, b],
then there exists a number ¢ € [a, b] such that

[ twyar = (-oyf(e)

Since f(x) is continuous in [, b], it is Riemann integrable in [a,b] by Problem A.9. Thus by
Problem A.16 there is a number . between the minimum and maximum values m and M of f(z)
such that

b
[ fayam = wo-a 1)

But a continuous function takes on all values between its minimum and maximum values and so
there is a number ¢ such that f(¢) = x [see Theorem 1-25, page 8]. Using this in (1) yields the
required result.
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A.18. Prove Theorem A-19, page 157: If f(z) is Riemann integrable in [a, b], then (a) |f(x

S @] = i) i

is Riemann integrable in [a,b] and (b)

(a) Let
. _ f(x), flx)z0 P _ —flx), flx)y=0
17) = 0, otherwise ’ 2(@) = 0, otherwise
Then we have
flx) = Fy(x) — Fy(x), f@) = Fi(x) + Fy(x) (1)

Now since f(x) is Riemann integrable, so also are F,(x) and Fy(x). Thus by Problem A.12,
Fi(z) + Fy(x) = |f(x)| is Riemann integrable.

fbf(x) dx = be’l(x) de — bez(x) dee
fab |f(x) de = fabFl(:c) dz + fabFz(x) de
b [ b

(b) From (1) we have

fIA

Then

bel(x)dx + bez(x)dx = fb[f(x)ldx

DIFFERENTIATION AND INTEGRATION
A.19. Prove Theorem A-20, page 157: If f(x) is bounded and Riemann integrable in [a, ],

then «
Fo) = f fwdu

is continuous in [a, b].
Let h be chosen so that z+ & € [a,b]. Then

x+h T
Fx+h) — F(x) = f fw)du — f flu) du

z+h
= f fwydu = ph

x

by Problem A.16.
Thus if |h| < 8, we have
|[F@+h) = F@)| = [uh] = k] < |us = e

ie. |[Flx+h) — F(z)] < ¢ for |hj<s

and so F(x) is continuous in [a, b].

A.20. Prove Theorem A-21, page 157: If f(x) is Riemann integrable in [a,b] and
F(z) = f f(u) du, then

P = 2r@ = L fwa = f@

at each point of continuity of f(x).

Suppose that x, is a point of continuity of f. Then given ¢ > 0, there exists § > 0 such that

|7(#) — f(xg)] < ¢  whenever |x—x) < & 1)



166 THE RIEMANN INTEGRAL [APPENDIX A
zo+h xp Tot+h
Now F(xy+h) — Flzg) = f ’ f(u)du — f flwydu = f flu) du
F(zy+h) — F zo+h zo+h
Thus —LT—‘@ — f(zg) = %J; fw) du — }%j; flag) du

zo+h
= L™ - o) an

and it follows from (1) that if 0 < || < §,

F(xy+ h) — F(xg) ’ 1 zo+h
TR e | = A 100 few) du
h [R]]. 2o
1 xoth .
= I § 10 — o) du
To
< €

F(xy+h) — F

Thus lim ﬂ_____)____(x_o) = f(xg)

h=0 h

or F'(xg) = f(xo)

i.e. F'(x) = f(x) at each point of continuity of f(x).

A21. (a) Prove Rolle’s theorem: Let f(x) be continuous in [a,d] and suppose that f(a) =
f(b) = 0. Then if f’(x) exists in (a,b), there is a point ¢ in (a,b) such that
f'(c) = 0.

(b) Prove the law of the mean or mean-value theorem for derivatives: Let f(x) be
continuous in [a, b] and suppose that f’(x) exists in (a,b). Then there is a point
¢ in (a, b) such that

, = 1) = fla)

f (c) - b—a

(@) The theorem is trivial if f(x) = 0 throughout [a, b]. Suppose then that f(x) > 0 at one point
of (a,b). Then there is a point ¢ in (a, b) at which f(x) attains a maximum value [see Theorem
1-25, page 8]. Now if jf'(¢) > 0, i.. if

. fle+h) — f(e)

lim === —2= > 0 )
then f_(c_t’%_ic_) > 0 for |k <5 @
Thus if k> 0, it follows from (2) that f(c+ k) > f(c) so that f(z) does not have a maximum
at ¢ and we have a contradiction., Thus f’(c) cannot be greater than zero. Similarly we can
show that f/(c) cannot be less than zero and so we must have f'(¢) = 0.

The same result follows if we assume that f(x) < 0 at some point of (a, b).

(b) Consider the function

o = 1@ - f@ - L= g ®)

Then if f(x) is continuous in [, b], so is G{x). Also if f’(x) exists in (a,b), then G’(x) exists in
(e, b). Furthermore we have G(a) = G(b) = 0. Thus G(x) satisfies Rolle’s theorem of part (a)
and so there exists a point ¢ in (a, b) such that G’(¢) = 0. But this means that

¢ = o - [B=19] o *

and the required result follows.
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A.22,

A.23.

A24,

Prove Theorem A-22 [Fundamental theorem of calculus], page 157: Let f(x) be
Riemann integrable in [a, b] and suppose that there exists a function F(z) continuous
on |a, b] such that F’(x) = f(x). Then

fbf(x) dx = F(b) — F(a) or fz fwydu = F(x) — F(a)

Suppose that we form any partition e =2y <x; < --- <wx, =b of the interval [a,b]. By
the mean-value theorem of Problem A.21, we have [since F(z) is continuous in [a,b] and has a
derivative in a < x < b]

F(og) — Flag_y) = (2 — %) F"{ck) Tp—1 < 0 < T
ie. F(ay) — Flxg_y) = (2 — 2p—1) flck)
Summing over k from k =1 to n, we have
2 [Fa)=F@ey] = FO) — F@ = 3 (a—azc—1)fle)

Then taking the limit as n—> « and max (x, — %) = 0, it follows that

b z
f fl@yde = F(b) — F(a) or f fwydu = F(x) — Fla)

x?gin(1/x), *#0

(a) Prove that the derivative of F(x) = { 0 % =0 is given by
, 2z sin (1/x) — cos (1/z), = +0
F(z) { 0, z=0
2/7 8
(b) Show that f Playdz = 5
=2/

(@) If x50, we can use the usual rules of differential calculus to obtain

4 {2 sin (1/x)} = a2 {cos l}(— 1—> + 2z sin L 2% sin1 - cos-l—
dx z x

x %2 @
If « =0, the derivative is given by

— 2 o —
lim FW —F©O) _ o BsinUh)—0 _ popanl = o
h=+0 h R0 h e h

(b) By part (a), F'(x) exists at all values of x in (—2/r, 2/7). Thus by Problem A.22,

2/7 8
f F)ds = F@lr) — F-2/n) = —

—2/m

Prove Theorem A-23 [Integration by parts], page 157: Let f(z) and g(«) be Riemann
integrable in [a,b] and suppose that F(x) and G(x) are such that F’(zx) = f(x) - and
G'(x) = g(x) in [a,b]. Then

j; "F@)gwyds = F(b)G®) — Fa)Gla) f " H) G(2) da
= F@)G@)| - j;b #(@) G() de

Since F(x) and G(z) have derivatives in [a, b], they are continuous and thus Riemann integrable
in [a, b]. Then since F'(x) and G’(x) are also Riemann integrable in [a, b], it follows that F'(x) G'(z)
and F'(x) G(x) and thus their sum F(z) G'(z) + F'(x) G(ac) d(i: [F(x) G(x)] is integrable in [a, b].
Then from Problem A.22, )
b

L = F@) G@)lde = Fx)G=)|,

= F(b)G(®) — F(a) G(a)
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b
or f [F(x) G'(z) + F'(x) G(x)] de = F(b) G(b) — F(a) G(a)

a

b b
ie. f F(x)gx)de = F(b)G(b) — F(a)Gla) — f f(x) G(x) dx

since F'(x) = f(x), G'(z) = g(=).

THEOREMS ON SEQUENCES AND SERIES
A.25. Prove Theorem A-26, page 158. Let un(x) be a uniformly convergent series of
=1

continuous functions in [a, b] and let s( ) be the sum of the series. Then

j;b s(z)de = j;b [glun(x)] de = ,21 j;bun(x) dx

If a function is continuous in [, b], its integral exists [see Problem A.9]. Then since s(x), 8 (%)
and 7,(x) are continuous [see Problem 1.53, page 23], we have

fbs(w) dx = fbsn(x) dx + fbrn(x) dx

a a

where sn(x) = ul(x) + et un(x), ’rn(x) = Up+ l(x) + Uy 2(37) +oeee
To prove the theorem we must show that

‘ f ’ s(x) dx — f ’ 8,(x) dux | f ’ 7 (%) do

can be made arbitrarily small by choosing = large enough. This however follows at once, since by
the uniform convergence of the series, given any ¢ > 0 there exists n, such that [7a(2)] < —
for n > ny independent of  in [a, b] and so

fbr,,(x)dx J;b(rn(m)l de < j;bbj_adx = e

a

IIA

This is equivalent to the statements
b

b b b
f s(x)de = nh_?:o s (x)dx or lim f s (x)de = f {lim sn(x)} de
a n = oo a a M=+ 0

a

A.26. Prove Theorem A-27, page 158: Let Eun ) converge to s(x) in [a,b]. Suppose

that the derivatives wi(r) exist and are continuous in [a,b] and that Z un(x) is
uniformly convergent in [a, b]. Then

$@) = L@ = 3w

o
Let g(x) = 3 u/(x). By hypothesis this series converges uniformly in [a, b] so that by Problem
n=1 .

A.25 we can integrate term by term from a to z, where x € [a, b], to obtain

fTowa = 3 (Tuoa = 3 e - o)

a

i

él Un(%) — él u,(@) = s(x) — s(a)

Differentiating both sides of f g(tydt = s(z) — s(a) then shows that g(x) = s’(x), which
proves the theorem.
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A27. Let sa(z) = nwe ", n=1,2,8,..., 0=z =1.

1 1
(@) Determine whether lim so(x)dx = lim sq(x) dzx.

N~ 1] 0 nN—=x
(b) Explain the result in (a).

1

1 1
(a) f s,(x)dx = f nwe =’ dy = —Le—ni?
0 0 0

= 31—en)

Il

1
Then lim f s,(x) dx lim (1 —e-m) = 3

Also, s(z) = lim s,(r) = lim nwxe—n2* = 0 whether  — 0 or 0<x=1. Then
7 =+ 0

7= 00
1
f s()de = 0

0

1 1

It follows that lim s,(z)dx # f lim s,(x) dx, 1ie. the limit cannot be taken under
the integral sign. "~ * 0 0 mee

(b) Although the sequence s,(x) converges to 0 in [0,1] it does not converge uniformly to 0 [see
Problem 1.52, page 23]. If the convergence were uniform the results would have been equal.
The fact that it is not uniform allows for the possibility [but not a certainty| that the results
are not equal.

For a case where the sequence is not uniformly convergent but the integrals are nevertheless
equal, see Problem A.59.

< sinnx " & 1
A28. Let s(x) =Y = Prove that s(z)yde =2y ~.
n=1 n 0 n=1 (zn - 1)
. 0
We have sm3nac = la Then since la converges, the series for s(x) is uniformly con-
n n n=1 N

vergent for all x and in particular for 0 = 2 = », by the Weierstrass M test [page 10]. Thus by
Problem A.25 the series can be integrated term by term and we have

T T © . P T .
slx) de = f sin nx dx — sSm nx dx
f () <n§1 3 ngl ,

0 0
_ <« l—cosnr _ 1 1 1
e 2<F+3_4+5“4+"'>
o0
_ 1
= BT

A.29. Give an example of a sequence of uniformly bounded functions f.(x) such that

b
lim fn(z) dx

.
exists but lim f.(z) dz

g n"—®

does not exist.

Let @ =0, b=1 and consider the rational numbers in the interval [0,1]. Since the rational
numbers in [0,1] are denumerable [Problem 1.16, page 13], we can write them in the form of a
sequence 7,7y, 7y, ...

Defi 1 for z=r;,ry...,7r,
[ =
ne fn(®) 0 otherwise

1
Then f faol@)de = 0
0

and so exists. However, since
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. 1 if x is rational
1}2’; fal@) = {0 if  is irrational
we see by Problem A.2 that X
f lim f,(x)dx

. 0 n—+o
does not exist.

IMPROPER RIEMANN INTEGRALS

A.30. Prove that J; @+2p +2)3 exists and find its value.
We have by definition,
® dx ® dx .. (z+2)-2?
.£ Grzr ~ am) GrmE oo =2l

(1 1
= 1 - —
b <18 20+ 2)2>

A.31. Prove that f ————57§ exists as an improper Riemann integral provided that it

1)

is taken in the Cauchy principal value sense.

The integrand 1/(x — 1)%/3 is unbounded at x =1 so that the integral is improper. In the
Cauchy principal value sense we define

2 dx . 1—€
L(x—l)m - IH’(‘,U EE R f (x—nsw]

7

3 1—e
= lim [— ) (x—1)—2/3

— %(x——l)‘i’/‘*

2
1+e]

Note that if we define

fz dx -y 1-&1 dg " J'z dx J
s (x —1)5/8 — 511210 [f—7 (x — 1)5/3 e (x — 1)5/3

€~ 0 +
where e # e; the integral does not exist.

A.32. Prove that f sin dx exists.

1.
The Riemann integral f s—":;—xdx
0
exists. Also, on integrating by parts we have
¥ sinx cos & cos L) cos b b cos 2
f —dxr = - +f = cosl — +f 5 dx
x b x
1 1
b b b
Now f _cos2x de| = f COST gy = -d—: = 1- 1
PR . x2 L ® b
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Then taking the limit as b - ©, we see that

b w0
A CoOS & cCOosS X
lim ) de = f dx
x 1

b= 1

exists as a Riemann integral. Now since

b sinax ! sin o
der = x
x 0 x

0

© . b . 1 . @ s
sin . sin x sin x sin x
we see that f de = lim —de = f —dx + f ——dzx
0 x b x 0 x 1 x

exists.

A.33. Prove that f

T | de diverges, i.e. f %dw is not absolutely convergent.
0

If n is any positive integer, we have

nw

nrlo T| . 2w | . :
f sinz | . _ f sing | 0 o f sinz | 44 sing | o
0 x 0 T =Dy | *
s fﬂ sin f _sinu_
_ sinu u .
= L T ‘du+ N P du + + 2F (m=TDr du

T . T .
SIHudu+f __s.l_r_l_lidu_*_..._;_f &du
o u o U+ o u+ (n—Dr

2
(n— 1)

- 1,... 1
_;<1+2+ +n—1>

But since the limit of the last series as n— = is infinite, the required result follows.

3 |0

2
oot

[N

Supplementary Problems

DEFINITION OF THE RIEMANN INTEGRAL

A34. Use the definition to show that f(x) =1 is Riemann integrable in [a, b] and find its value.

1
A35. Use the definition of the . Riemann integral to obtain the value of f f(x)dx where
-1

-2, —-1=x¢<0
@) =15 o<z=1

THEOREMS ON RIEMANN INTEGRATION
A36. Prove Theorem A-11, page 156.



172

A37.

A.38.

A39.

A40.

Al

A.42,

A43.

A4,

A45.

A.46.

AdT.

A48,

A.49.

THE RIEMANN INTEGRAL [APPENDIX A

Prove that if f(x) is Riemann integrable in [a, b], then it is also Riemann integrable in any sub-
interval [¢,d] of [a,b].

Prove that the lower sums cannot decrease by adding points of subdivision [see remark at the end
of Problem A.4].

Prove Theorem A-13, page 156.

Prove that f(x) is Riemann integrable in [a, b] if f(z) is bounded and has (@) one point of discon-
tinuity in [e, b], (b) any finite number of points of discontinuity in [a, b].

Prove that the Riemann integral of f(x) does not change in value if the values of f(x) in [a, b] are
changed at a finite number of points.

Prove Theorem A-18, page 157.

If f(x) is continuous in [e,b] and f(x) = M, then if
b
f @) de = M(b—a)
a

prove that f(x) = M identically in [a,b].

Obtain the following generalization of Theorem A-16, page 156: If f(x) and g(x) are Riemann
integrable in [a,d], g(x) Z0 and m = f(x) = M, then

fIA

b b b
m f g)de = f (@) g(x) dz M f o(z) dae

Use Problem A.44 to prove that if f(x) is continuous in [a, b] in addition to the other assumptions,
then there is a number ¢ such that

b b
S r@o@ae = 10 [ o as

This is called the generalized mean-value theorem [see Theorem A-17, page 156].

If f(x) is non-negative and continuous in [a,b] and if f(¢) > 0 for some value ¢ in [a,b], prove
that

fbf(:c) de > 0

If f(x) is continuous in [a, b] and

b
f f@)|2de = 0

prove that f(x) =0 in [a,b].

Prove Theorem A-12, page 156. [Hint: First assume that f(x) and g(x) are both positive and have
upper and lower bounds M, m{’ and M¥,m> respectively in [x;_y, %;]. Then prove that if
My, my, are upper and lower bounds of f(x) g(x) in [x)_,, ], then M, —my = M (MP —mi?) +
mP (M —m) and thus show that S—s < e If f(x) and g(x) are not both positive, add

suitable constants so as to make them positive.]

Prove that the definition of the Riemann integral given on page 154 follows from the definition
as a limit of a sum.
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DIFFERENTIATION AND INTEGRATION

A50.

A5l

A52.

A53.

A54,

x, 0=2zx<2 z
Let f(x) = 4, 2<z=5" (a) Evaluate F(x) = f f(u)du, 0 =z =5. (b) Show that F(x)
’ = 0 .

5
is continuousin 0 = » = 5. (¢) Does F'(zx) = f(x)? Explain. (d) Does f F'(x)de = F(5) — F(0)?
Explain. 0

Consider the functions (a) f(z) = 3 cos (1/x), 0 = 2 = 1/r, (b) fx) =
Determine whether .
[ rwa
0

Prove the second mean-value theorem: If f(x) and g(x) are Riemann integrable in [a, b] and f(x)
is monotonic in [a, b], then for some value n such that ¢ =5 < b

2 cosl/e, 0<x=1/r
0, x=0 ’

exists and if it does find its value.

b n b
S o = s [ owaz + 10 o) da

x b b
[Hint: Let G(x) = f g(t)dt. Write f f(x) g(x) dx = f f(x) G’(x) dx and then use integration
by parts.] a a a

Prove Theorem A-24, page 157.

Use the definition of the Riemann integral as a limit of a sum to show that

. n n n .
,}‘.{’L<12+n2+22+n2+ '+n2+n2> -

'SE

THEOREMS ON SEQUENCES AND SERIES

A55.

A.56.

A5T7.

A58,

A59.

A.60.

A.6l.

Prove Theorem A-25, page 158.

i
e

" [ cos 2% cos 4x cos 6x
Provethatj; <1.3 + 35 + 5.7 + >dx

Suppose that the sequence of functions (f,(x)) converges to f(x) in [a, b]. State and prove a theorem
giving sufficient conditions under which the sequence of derivatives (f+(x)) converges to f'(x).

0
Prove that F(x) = 3
all values of =. n=1i

sin nx

sinh is continuous and has continuous derivatives of all orders for
v

Let s,(x) = ﬁ for 0 =z =1. (a) Prove that (s,(%)) is not uniformly convergent. k (b) Show

that 1 1
lim f s,(x)dx = f lim s,(x) dx
and explain. et orn

Use Problem A.59 to give an example of a series which can be integrated term by term but which
is not uniformly convergent.

ne, 0=x=1/n

1, In<zx=1

1 ’ 1
lim f sp(x)dxe = f lim s,(x)dz
0 0

Nne+x e~ 0

Determine whether

Let s,(x) = {

and explain.
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IMPROPER RIEMANN INTEGRALS . .
A.62. Investigate the existence of the Riemann integrals (a) f —ﬂ—, (b) f _dx_2 and find
-1z +1 (x—1)

A.63.

A.64.

A.65.

A.66.

their values if they exist. Ans. (a) 22, (b) does not exist

Evaluate the following integrals if they exist. (a) f (x:l_—xl)‘l, (b) f Péf—l’ (¢) f L‘lﬁ_
Ans. {(a) 4, (b) =, (c) does not exist -

Prove that if 0 = f(x) = g(¥) and g(x) has an improper Riemann integral in [a,b] which exists,
then so also does f(x).

Use the result of Problem A.64 to show that exists.

j" dx
o Vz + sinZz

EY 2
Show that the integrals (a) f (xi—xz)s’ (b) f x—zd—f—I exist only in the Cauchy principal value
Cw o

sense and find these values. Ans. (a) 0, (b) —1In3



Appendix B

CONVERGENCE IN THE CESARO SENSE

Let sn = 41 +u2+ - - + u, be the nth partial sum [i.e. the sum of the first n terms]
of the series u1 + 42 + - --. If the sequence of partial sums sy, 83,8, ... converges to the
limit I, then by deﬁmtlon the series converges to 1 or has sum L

Suppose however that the series does not converge. Then congider a new sequence

81+ 8 81+8+s :
81, 12 2, 32 3, » (1)

.

where the nth terfn is ‘the arithmetic mean of the first » partial sums. If this sequence

converges to p, we say that the series us +u2+ - -+ or 3, u is summable in the Cesaro
sense, or is C-1 summable, to p.

In case the series >, . does converge to I, then the series is also C-1 summable to I
[see Problem B.3]. :

The process can be repeated if necessary and we speak of C-2 summability, C-3 sum-
mability, ete.

CESARO SUMMABILITY OF FOURIER SERIES. FEJER’S THEOREM

The Cesaro summability of Fourier series was investigated by Fejer. Since the partial
sums of a Fourier series are given by '

w@ = o f [f@tu)+ fe—u) (@)

where »=10,1,2,... [see Problem 8.8, page 139] we obtain the nth term of the arithmetic
means [see Problem B.4],

sin (n + 3w
sin fu

b = SEEEEa® o LTy s e-u) D )

We can then show that for some function #(x),

i) — te) = — Ow'[f(x +u) + f(z—u) ~ 26(2)] % du 4)

and can prové the following theorems.
Theorem B-1 [Fejer]. If f(x+0)and f(a:— 0) exist, then the Fourier series for f(x) con-
- verges in the Cesaro sense to [f(x +0) + f(z — 0)], i.e. the Fourier series for

f(x) is C-1 summable to 4{f(x + 0) + f(x — 0)].

Theorem B-2. The Fourier series for f(x) is C-1 summable to f(x) almost everywhere.

175
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Solved Problems

CONVERGENCE IN THE CESARO SENSE
B.1. Prove that the series 1 —1+1—1+ .- does not converge.

If s, is the sum of the first n terms, we have s, =1, s, =0, s3=1, 8,=0,
which does not converge.

Thus the

sequence of partial sums is 1,0,1,0, ...

B.2. Prove that the series of Problem B.1 is C-1 summable to 3.

From Problem B.1 we see that the sequence of arithmetic means of the partial sums is

Sl+82 81+82+S3 31+82+S3+S4

S T 3 ’ 1 ’
1+0 14+0+1 1+0+1+4+0
or 1, 5 3 , n g e
i'e' 1, %’ %’ %’ %’ %’

If we let t, be the nth term of the last sequence, we see that

{”Jrl n=1,35,...

t, = 2n

1 n=2,4,6,...

Then since lim ¢, = %, it follows that the series 1—1+1—1 4 :-- is C-1 summable to 1.
n=+ 0

. Ut U+ F U . ..

B3. (a) If limu.=1 prove that lim = = " =1 and (b) discuss the signifi-
11 =) o =0

cance of this in connection with Cesaro summability.

(@) Let u, =v,+1l Then we must show that

vyt vt e+
L =0 if limwv, =0

lim
ne->w n Nt
Now if n > p,
vytvgt st v1+v2+-~-+v,,+vp+1+’vp+2+“-+'vn
n - n n
so that
vit gt et | Ivl+v2+---+vp|+ [pt1l + {vpsal + o0 + |y )
n = n n
Since lim 2, =0, we can choose p so that given any >0, |v,| <¢/2 for n > p. Then
n=—rwo
[vp 1l + [vpgol + o0 + |y f2 A /24 - 4 e/2 _ (n—p)e/2 e
< = )
n n n 2

After choosing p we can choose ny so that for n > 7y > p,

vitvgt+ st
[1 Zn pl < % (3)

Then using (2) and (3), (I) becomes

vy tvgt oo+,

€
= = for n>n
n 2 € 0

thus proving the required result.

(b) The result shows that if the sequence of partial sums of a series does converge to [, i.e. if the
series converges to [, then the series is C-1 summable to I.
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CESARO SUMMABILITY OF FOURIER SERIES. FEJER’S THEOREM
B.4. Using Problem 8.8, page 139, for the partial sums sa(x) of a Fourier series, prove that

T

So(@) +81(x) + -+ -+ Sama(x) _ 1 . \18in?inu
@ - = g, Vs + o) S g,
From Problem 8.8, we have
1 7 sin (n + Lyu
sp(x) = 2—7—!; [fle +u) + f(x—u)] W%f— u

for n=0,1,2,... so that

So(x) + sy(x) + -+ + 54 (x)

tyx) =
n
_ 1 (T sin%u-f—sin%u-i—‘--+sin(n—%)u
= ZMJ; [f(z+ ) + fz — )] [ i ] d
Now consider f, = sin fu+sinfu+ -+ +sin(m— L
Multiplying by sin du,
fasindu = sin?du + sindusinfu + - + sin(n— 1)u sin Ju
= (1 —cosu) + I{cosu — cos2u) + --- + A(cos (n — 1)u — cos nu)
= 3(1 —cosnu) = sin2inu
sin2 Lnu
Thus fﬂ sin %u’ (1)
and we obtain as required,
1 T sin? {nu
B.5. (a) Prove that e
Lf 2 s1n2?}nudu - 1
2nr <o sinZiu -
and (b) thus show that if ¢(x) is some function of z
1 (T o sin? inu
@) - H2) = 5= [fE W)+ —w) - 2t()] it 4u,

(@) If f(x) =1, then t,(x) =1 also. Thus from (2) of Problem B.4 we obtain as required,

7 2 sin2 lny
1 = L (RS ine o)
2nr o  Sin? tu

(b) Multiplying both sides of (1) by ¢(x