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A simple time-series market microstructure
model is constructed within which existing mod-
els of spread components are reconciled. We
show that existing models fail to decompose the
spread into all its components. Two alternative
extensions of the simple model are developed to
identify all the components of the spread and to
estimate the spread at which trades occur. The
empirical results support the presence of a large
order processing component and smaller, albeit
significant, adverse selection and inventory com-
ponents. The spread components differ signifi-
cantly according to trade size and are also sen-
sitive to assumptions about the relation between
orders and trades.

The difference between the ask and the bid quotes —
the spread — has long been of interest to traders, reg-
ulators, and researchers. While acknowledging that
the bid-ask spread must cover the order processing
costs incurred by the providers of market liquidity,
researchers have focused on two additional costs of
market making that must also be reflected in the spread.
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Amihud and Mendelson (1980), Demsetz (1968), Ho and Stoll (1981,
1983), and Stoll (1978) emphasize the inventory holding costs of liq-
uidity suppliers. Copeland and Galai (1983), Easley and O’Hara (1987),
and Glosten and Milgrom (1985) concentrate on the adverse selection
costs faced by liquidity suppliers when some traders are informed.

Several statistical models empirically measure the components of
the bid-ask spread. In one class of models pioneered by Roll (1984),
inferences about the bid-ask spread are made from the serial covari-
ance properties of observed transaction prices. Following Roll, other
covariance spread models include Choi, Salandro, and Shastri (1988),
George, Kaul, and Nimalendran (1991), and Stoll (1989). In another
category of models, inferences about the spread are made on the basis
of a trade indicator regression model. Glosten and Harris (1988) were
the first to model the problem in this form, but they did not have the
quote data to estimate the model directly. A recent article by Mad-
havan, Richardson, and Roomans (1996) also falls into this category.
Other related articles include Huang and Stoll (1994), who show that
short-run price changes of stocks can be predicted on the basis of mi-
crostructure factors and certain other variables, Lin, Sanger, and Booth
(1995b), who estimate the effect of trade size on the adverse infor-
mation component of the spread, and Hasbrouck (1988, 1991), who
models the time series of quotes and trades in a vector autoregressive
framework to make inferences about the sources of the spread.

Statistical models of spread components have been applied in a
number of ways: to compare dealer and auction markets [Affleck-
Graves, Hegde, and Miller (1994), Jones and Lipson (1995), Lin, Sanger,
and Booth (1995a), Porter and Weaver (1995)], to analyze the source
of short-run return reversals [Jegadeesh and Titman (1995)], to de-
termine the sources of spread variations during the day [Madhavan,
Richardson and Roomans (1996)], to test the importance of adverse
selection for spreads of closed-end funds [Neal and Wheatley (1994)],
and to assess the effect of takeover announcements on the spread
components [Jennings (1994)]. Other applications, no doubt, will be
found.

Most of the existing research provides neither a model nor empir-
ical estimates of a three-way decomposition of the spread into order
processing, inventory, and adverse information components. Further,
much of the current research unknowingly uses closely related mod-
els to examine the issue. We show the underlying similarity of various
models and we provide two approaches to a three-way decomposi-
tion of the spread.

This study’s first objective is to construct and estimate a basic trade
indicator model of spread components within which the various exist-
ing models may be reconciled. A distinguishing characteristic of trade
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indicator models is that they are driven solely by the direction of trade
— whether incoming orders are purchases or sales. Covariance mod-
els also depend on the probabilities of changes in trade direction. We
show that the existing trade indicator and covariance models fail to
decompose the spread fully, for they typically lump order processing
and inventory costs into one category even though these components
are different.

The second objective is to provide a method for identifying the
spread’s three components — order processing, adverse information,
and inventory holding cost. Inventory and adverse information com-
ponents are difficult to distinguish because quotes react to trades in
the same manner under both. We propose and test two extensions of
the basic trade indicator models to separate the two effects. The first
extension relies on the serial correlation in trade flows. Quote adjust-
ments for inventory reasons tend to be reversed over time, while quote
adjustments for adverse information are not. Trade prices also reverse
(even if quotes do not), which is a measure of the order processing
component. We use the behavior of quotes and trade prices after a
trade to infer inventory and order processing effects that are distinct
from adverse information effects. The second extension relies on the
contemporaneous cross-correlation in trade flows across stocks. Be-
cause liquidity suppliers, such as market makers, hold portfolios of
stocks, they adjust quotes in a stock in response to trades in other
stocks in order to hedge inventory [Ho and Stoll (1983)]. We use the
reaction to trades in other stocks to infer the inventory component as
distinct from the adverse selection and order processing components.
The empirical results yield separate inventory and adverse informa-
tion components that are sensitive to clustering of transactions and to
trade size as measured by share volume.

The basic and extended trade indicator models proposed and tested
in this study have the advantage of simplicity. The essential features
of trading are captured without complicated lag structures or other
information.1 Despite its simplicity, our approach is general enough
to accommodate the many previous formulations while making no
additional demands on the data. A second benefit is that the mod-
els can be implemented easily with a one-step regression proce-
dure that provides added flexibility in addressing myriad statistical
issues such as measurement errors, heteroskedasticity, and serial cor-
relation.

1 More involved econometric models of market mictorstucture require additional determinants. For
example, Hasbrouck (1988) based inferences about the spread on longer lag structures. Huang
and Stoll (1994) consider the simultaneous restrictions imposed on quotes and transaction prices
by lagged variables such as prices of index futures. See also Hausman, Lo, and MacKinlay (1992).
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A third benefit is that the trade indicator models provide a flexible
framework for examining a variety of microstructure issues. One issue
is the importance of trade size for the components of the spread. We
adapt our trade indicator model to estimate the components of the
bid-ask spread for three categories of trade size. We find that the
components of the spread are a function of the trade size.

Another issue easily examined in our framework is time variation of
spreads and spread components during the day. The trade indicator
model can readily be modified to study this issue by using indicator
variables for times of the day. Madhavan, Richardson, and Roomans
(1996), in a model similar to ours, examine intraday variations in price
volatility due to trading costs and public information shocks. They
conclude that adverse information costs decline throughout the day
and other components of the spread increase. However, they do not
separate inventory and order processing components of the spread.

An issue that could also be examined within our framework is the
observed asymmetry in the price effect of block trades. Holthausen,
Leftwich, and Mayers (1987) and Kraus and Stoll (1972), for example,
find that price behavior of block trades at the bid differ from those
at the ask. In this article we focus on the spread midpoint, but the
model can easily be modified to include indicator variables for the
spread locations where a trade can occur. A covariance approach to
estimating spread components, as in Stoll (1989), cannot be used to
determine spread components for trades at the bid versus trades at
the ask.

The remainder of the article is organized as follows. Section 1 con-
structs a basic trade indicator model and shows how one may derive
from this model existing covariance models of the spread and existing
trade indicator models. A variant of the basic model that incorporates
different trade size categories is also presented. While the basic model
(and the existing models implied by it) provides important insights
into the sources of short-term price variability, we show that it is not
rich enough to separately identify adverse information from inventory
effects. Section 2 describes the dataset which consists of all trades
and quotes for 20 large NYSE stocks in 1992. Section 3 describes the
econometric methodology. In Section 4 the results of estimating the
basic model are presented, including the effect of trade size. Section 5
introduces the first extended model in which the three components
of the spread are decomposed on the basis of reversals in quotes.
We also show how the components are affected by the observed se-
quence of trade sizes. Section 6 decomposes the spread on the basis
of information on marketwide inventory pressures. Conclusions are
in Section 7.
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1. A Basic Model

In this section we develop a simple model of transaction prices,
quotes, and the spread within which other models are reconciled. We
adopt the convention that the time subscript (t) encompasses three
separate and sequential events. The unobservable fundamental value
of the stock in the absence of transaction costs, Vt , is determined just
prior to the posting of the bid and ask quotes at time t . The quote
midpoint, Mt , is calculated from the bid-ask quotes that prevail just
before a transaction. We denote the price of the transaction at time t
as Pt . Also define Qt to be the buy-sell trade indicator variable for the
transaction price, Pt . It equals +1 if the transaction is buyer initiated
and occurs above the midpoint, −1 if the transaction is seller initiated
and occurs below the midpoint, and 0 if the transaction occurs at the
midpoint.

We model the unobservable Vt as follows:

Vt = Vt−1 + α S

2
Qt−1 + εt , (1)

where S is the constant spread, α is the percentage of the half-spread
attributable to adverse selection, and εt is the serially uncorrelated
public information shock. Equation (1) decomposes the change in
Vt into two components. First, the change in Vt reflects the private
information revealed by the last trade, α(S/2)Qt−1, as in Copeland
and Galai (1983) and Glosten and Milgrom (1985). Second, the public
information component is captured by εt .

While Vt is a hypothetical construct, we do observe the midpoint,
Mt , of the bid-ask spread. According to inventory theories of the
spread, liquidity suppliers adjust the quote midpoint relative to the
fundamental value on the basis of accumulated inventory in order to
induce inventory equilibrating trades [Ho and Stoll (1981) and Stoll
(1978)]. Assuming that past trades are of a normal size of one, the
midpoint is, under these models, related to the fundamental stock
value according to

Mt = Vt + β S

2

t−1∑
i=1

Qi, (2)

where β is the proportion of the half-spread attributable to inventory
holding costs, where

∑t−1
i=1 Qi is the cumulated inventory from the

market open until time t − 1, and Q1 is the initial inventory for the
day. In the absence of any inventory holding costs, there would be
a one-to-one mapping between Vt and Mt . Because we assume that
the spread is constant, Equation (2) is valid for ask or bid quotes as
well as for the midpoint.
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The first difference of Equation (2) combined with Equation (1)
implies that quotes are adjusted to reflect the information revealed by
the last trade and the inventory cost of the last trade:

1Mt = (α + β)S
2

Qt−1 + εt , (3)

where 1 is the first difference operator.
The final equation specifies the constant spread assumption:

Pt = Mt + S

2
Qt + ηt , (4)

where the error term ηt captures the deviation of the observed half-
spread, Pt − Mt , from the constant half-spread, S/2, and includes
rounding errors associated with price discreteness.

The spread, S , is estimated from the data and we refer to it as the
traded spread. It differs from the observed posted spread, St , in that
it reflects trades inside the spread but outside the midpoint. Trades
inside the spread and above the midpoint are coded as ask trades,
and those inside the spread and below the midpoint are coded as bid
trades. If trades occur between the midpoint and the quote, S is less
than the posted spread, which is the case in the data we analyze. If
trades occur only at the posted bid or the posted ask, S is the posted
spread. The estimated S is greater than the observed effective spread
defined as |Pt − Mt | because midpoint trades coded as Qt = 0 are
ignored in the estimation.2

Combining Equations (3) and (4) yields the basic regression model

1Pt = S

2
(Qt − Qt−1)+ λS

2
Qt−1 + et , (5)

where λ = α + β and et = εt + 1ηt . Equation (5) is a nonlinear
equation with within-equation constraints. The only determinant is
an indicator of whether trades at t and t − 1 occur at the ask, bid,
or midpoint. This indicator variable model provides estimates of the
traded spread, S , and the total adjustment of quotes to trades, λ(S/2).
On the basis of Equation (5) alone, we cannot separately identify the
adverse selection (α) and the inventory holding (β) components of
the half-spread. However, we can estimate the portion of the half-
spread not due to adverse information or inventory as 1 − λ. This

2 By contrast, estimates of S derived from the serial covariance of trade prices, as in Roll (1984), are
influenced by the number of trades at the midpoint. Harris (1990) shows using simulations that
the Roll (1984) estimator can be seriously biased. For estimates of the effective spread, |Pt −Mt |,
see Huang and Stoll (1996a, 1996b).
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remaining portion is an estimate of order processing costs, such as
labor and equipment costs.

1.1 Comparison with covariance spread models
Serial covariance in the trade flow, Qt , plays an important role in ear-
lier covariance models of the spread. Specifically the covariance is a
function of the probability of a trade flow reversal, π , or a continua-
tion, 1− π . A reversal is said to occur if after a trade at the bid (ask),
the next trade is at the ask (bid). Equation (5) accounts for reversals
but does not assume a specific probability of reversal. Instead it relies
on the direction of individual trades and the magnitude of price and
quote changes.

Roll (1984) proposes a model of the bid-ask spread that relies ex-
clusively on transaction price data and assumes π = 1/2:

S = 2
√
− cov(1Pt ,1Pt−1), (6)

His model assumes the existence of only the order processing cost,
for the stock’s value is independent of the trade flow and there are
no inventory adjustments. To derive Roll’s model from Equation (5),
set α = β = 0 in Equation (5) to obtain

1Pt = S

2
1Qt + et , (7)

Calculate the serial covariances of both sides of Equation (7), using
the fact that cov(1Qt ,1Qt−1) equals −1 when π = 1/2, to produce
Roll’s estimator of Equation (6).3

Choi, Salandro, and Shastri (CSS) (1988) extend Roll’s (1984) model
to permit serial dependence in transaction type. Serial covariance in
trade flows can occur if large orders are broken up or if “stale” limit
orders are in the book. When π is not constrained to be one-half,
Equation (7) implies the CSS’s estimator

cov(1Pt ,1Pt−1) = −π2S2, (8)

which is the Roll model if π = 1/2. It is important to emphasize that
in the CSS’s model, the deviation of π from one-half is not due to
inventory adjustment behavior of liquidity suppliers.

More generally, the probability of a trade flow reversal (continu-
ation) is greater (less) than 0.5 when liquidity suppliers adjust bid-
ask spreads to equilibrate inventory. Stoll (1989) models this aspect
of market making and allows for the presence of adverse selection

3 The covariance in trade changes is cov(1Qt ,1Qt−1) = −4π2, which is −1 when π = 1/2. The
covariance in trades is cov(Qt ,Qt−1) = (1− 2π), which is zero when π = 1/2.
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costs, inventory holding costs, and order processing costs. Buy and
sell transactions are no longer serially independent and their serial
covariance provides information on the components of the spread.
The model consists of two equations:

cov(1Pt ,1Pt−1) = S2[δ2(1− 2π)− π2(1− 2δ)], (9)

cov(1Mt ,1Mt−1) = δ2S2(1− 2π), (10)

where δ = 1Pt+1|Pt=At ,Pt+1=At+1

S = −1Pt+1|Pt=Bt ,Pt+1=Bt+1

S is the magnitude
of a price continuation as a percentage of the spread.4 The two equa-
tions are used to estimate the two unknowns δ and π . Stoll’s co-
variance estimators, Equations (9) and (10), result directly from the
covariances of Equations (5) and (3), respectively, when one uses the
transformation δ = λ/2. Stoll shows that the expected revenue earned
by a supplier of immediacy on a round-trip trade is 2(π − δ)S . This
amount is compensation for order processing and inventory costs. The
remainder of the spread, [1− 2(π − δ)]S , is the portion of the spread
not earned by the supplier of immediacy, and this amount reflects the
adverse information component of the spread.5

George, Kaul, and Nimalendran (GKN) (1991) ignore the inventory
component of the bid-ask spread and assume no serial dependence
in transaction type so that π = 1/2.6 Their model in our notation
is Equation (5) with β = 0. Under GKN’s assumptions, Equation (5)
implies the GKN’s covariance estimator:

cov(1Pt ,1Pt−1) = −(1− α)S
2

4
, (11)

where 1−α is the order processing component of the bid-ask spread.
Equation (11) is observationally equivalent to Stoll’s, Equations (9)
and (10), under GKN’s assumptions that π = 1/2, β = 0.

4 Under the assumption of a constant spread, writing the covariance in terms of quote midpoints
as in Equation (10) is equivalent to writing it in terms of the bid or ask as Stoll does.

5 Stoll further decomposes the revenue component, 2(π − δ)S into order processing and inventory
components by arguing that π = 0.5 and δ = 0.0 for order processing and π > 0.5 and δ = 0.5
for inventory holding, but this decomposition is ad hoc.

6 George, Kaul, and Nimalendran (1991) use daily data and consider changing expectations in
their model. Their formulation of time-varying expectations may be incorporated into our setup
by expressing the trade price and the fundamental stock value in natural logarithms and by
including a linearly additive term for an expected return over the period t − 1 to t in Equation
(1). Since our analysis focuses on microstructure effects at the level of transactions data where
changing expectations are likely to be unimportant, we ignore this complication in the article.
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1.2 Comparison with trade indicator spread models
The basic model, Equation (5), also generalizes some existing trade
indicator spread models. We provide two examples.

Glosten and Harris (GH) (1988) develop a trade indicator variable
approach to model the components of the bid-ask spread. Their basic
model under our timing convention is7

1Pt = Zt Qt + Ct1Qt + et , (12)

where Zt is the adverse selection spread component, Ct is the tran-
sitory spread component reflecting order processing and inventory
costs, and et is defined as in Equation (5). GH use Fitch transaction
data, which contains transaction prices and volumes but no infor-
mation on quotes. Consequently, they are unable to observe Qt and
cannot estimate Equation (12) directly. Instead, they estimate Zt and
Ct by conditioning them on the observed volume at time t . We are
able to observe Qt and can estimate Equation (12) directly. Under
GH’s assumption that there are two components to the spread and
making our assumption of a constant spread, GH’s adverse selection
component is Zt = α(S/2) and their order processing component is
Ct = (1−α)(S/2). They assume that β = 0. Making these substitutions
in Equation (12) and rearranging terms yields a restricted version of
Equation (5). They do not provide estimates of the spread. We detail
the derivation of the GH model in Appendix A.

Madhavan, Richardson, and Roomans (MRR) (1996) also provide a
trade indicator spread model along the lines of GH. Using our tim-
ing convention and assuming serially uncorrelated trade flows, their
model is8

1Pt = (φ + θ)Qt − φQt−1 + et , (13)

where θ is the adverse selection component, φ is the order processing
and inventory component, and et is as defined in Equation (5). Upon
rearranging, Equation (13) becomes

1Pt = θQt + φ1Qt + et , (14)

which has the same form as the GH model [Equation (12)]. As in GH,
MRR assume that β = 0. As we do later in this article, with respect to
our basic model [Equation (5)], MRR extend their model to allow the
surprise in trade flow to affect estimated values.9

7 Equation 2 in Glosten and Harris (1988, p. 128).
8 Equation 3 in Madhavan, Richardson, and Roomans (1996, p. 7).
9 MRR also provide estimates of the unconditional probability of a trade that occurs within the

quoted spreads.
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1.3 Trade size
Equation (5) generalizes existing spread models as described in Sec-
tions 1.1 and 1.2. We show below in Section 3 that the regression
setup implied by Equation (5) makes it easier to account for a variety
of econometric issues. Equation (5) can also easily be generalized to
numerous new applications merely by introducing indicator variables
that are 1 under certain conditions and 0 otherwise. For example,
the model can be used to estimate S and λ for different times of the
trading day by the introduction of time indicator variables. This is the
principal objective of Madhavan, Richardson, and Roomans (1996). It
can also be used to estimate S and λ at different spread locations to
determine issues such as whether spread components for trades at
the ask differ from those for trades at the bid.

In this article we generalize Equation (5) to allow different coef-
ficient estimates by trade size category. We choose three trade size
categories, although any number of categories is possible. The model
is then developed by writing Equations (1) and (2) with indicator vari-
ables for each size category as shown in detail in Appendix B. The
result is

1Pt = Ss

2
Ds

t + (λs − 1)
Ss

2
Ds

t−1 +
sm

2
Dm

t + (λm − 1)
Sm

2
Dm

t−1

+ S l

2
Dl

t + (λl − 1)
S l

2
Dl

t−1 + et , (15)

where

Ds
t = Qt if share volume at t ≤ 1000 shares
= 0 otherwise

Dm
t = Qt 1000 shares < if share volume at t < 10, 000 shares
= 0 otherwise

Dl
t = Qt if share volume at t ≥ 10, 000 shares
= 0 otherwise.

Equation (15) allows the coefficient estimates for small (s), medium
(m), and large (l) trades to differ. The estimate of λ depends on the
trade size at time t − 1, which determines the quote reaction, and
the estimate of S depends primarily on the trade size at t , which
determines where the trade is relative to the midpoint. The parameter
estimates do not depend on the sequence of trades. In extensions of
the basic model provided later, the sequence of trades does matter.

1.4 Summary
We have integrated existing spread models driven solely by a trade
indicator variable. Most models simply seek to identify the adverse
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selection component and assume the remainder of the spread reflects
inventory and order processing. In fact, estimates of adverse infor-
mation probably include inventory effects as well since existing pro-
cedures cannot distinguish the two. Our basic model [Equation (5)],
which we have used as a framework to integrate existing work, also
cannot make that distinction. It can only identify the order processing
component and the sum of inventory and adverse information. We
now describe the data and the econometric procedures, and we esti-
mate Equation (5) and the generalization [Equation (15)] that accounts
for trade size categories. In later sections of the article we propose
and test two alternative extensions that provide a full three-way de-
composition of the spread.

2. Data Description

Trade and quote data are taken from the data files compiled by the
Institute for the Study of Security Markets (ISSM). We use a ready-
made sample of the largest and the most actively traded stocks by
examining the 20 stocks in the Major Market Index for all trading days
in the calendar year 1992. The securities are listed in Appendix C.

To ensure the integrity of the dataset, the analysis is confined to
transactions coded as regular trades and quotes that are best bid or
offer (BBO) eligible. All prices and quotes must be divisible by 16, be
positive, and asks must exceed bids. We restrict the dataset to NYSE
trades and quotes. Each trade is paired with the last quote posted at
least 5 seconds earlier but within the same trading day.

The NYSE often opens with a call market and operates as a continu-
ous market the remainder of the trading day. To avoid mixing different
trading structures, we ignore overnight price and quote changes. We
also exclude the first transaction price of the day if it is not preceded
by a quote, which will be the case if the opening is a call auction
based on accumulated overnight orders.

Table 1 presents the summary statistics for the 20 firms in the sam-
ple. The number of observations range from a low of 15,682 (62 trades
per day) for USX (X) to a high of 181,663 (715 trades a day) for Philip
Morris (MO). The next lowest number of observations belong to 3M
(MMM) which averages about 165 trades a day. Given the wide dispar-
ity in trading activity in USX relative to the other firms in the sample,
we exclude it from further analysis.

Table 1 also contains statistics on share price and posted spread.
These statistics are provided for all trades, for trade sizes less than or
equal to 1000 shares (small), for trade sizes between 1000 and 10,000
shares (medium), and for trade sizes greater than or equal to 10,000
shares (large). The share price varies considerably across stocks and
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within the year for certain stocks. The mean posted spread, which is a
trade-weighted mean, always exceeds 12.5 cents but is generally less
than 20 cents. The mean posted spread also tends to increase with
trade size; IBM and MRK being notable exceptions.

3. Estimation Procedure

Equation (5) may be estimated by procedures that impose strong dis-
tributional assumptions such as maximum-likelihood (ML) or least-
squares (LS) methods. For example, the ML approach taken by Glosten
and Harris (1988) illustrates the practical difficulties of using an ML
technique when the model is predicated on the specification of price
discreteness. We opt for a generalized method of moments (GMM)
procedure which imposes very weak distributional assumptions. This
is especially important since the error term, et , includes rounding er-
rors. The GMM procedure also easily accounts for the presence of
conditional heteroskedasticity of an unknown form.

Define f (xt , ω) to be a vector function such that for estimating the
basic model [Equation (5)], it is

f (xt , ω) =
[

et Qt

et Qt−1

]
(16)

where ω = (Sλ)′ is the vector of parameters of interest, and for esti-
mating the basic model with size categories [Equation (15)], it is

f (xt , ω) = [et D
s
t et D

s
t−1 et D

m
t et D

m
t−1 et D

l
t et D

l
t−1]
′ (17)

where ω = (Ss λs Sm λm Sl λl )′. The basic models imply the or-
thogonality conditions E [ f (xt , ω)] = 0. Under the GMM procedure,
the parameter estimates chosen are those that minimize the criterion
function

JT (ω) = gT (ω)
′ST gT (ω), (18)

where gT (ω) is the sample mean of f (xt , ω), and ST is a sample
symmetric weighting matrix. Hansen (1982) proves that, under weak
regularity conditions, the GMM estimator ω̂T is consistent and

√
T (ω̂T − ω0)→ N (0, Ä) (19)

where

Ä = (D ′0S−1
0 D0)

−1

D0 = E
[
∂f (xt ,ω)

∂ω

]
S0 = E [ f (xt , ω) f (xt , ω)

′].

The basic models [Equations (5) and (15)] are exactly identified.
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We also test overidentified models where the number of orthogonal-
ity conditions exceed the number of parameters that need to be esti-
mated. An attractive feature of the GMM procedure is that it provides
a test for overidentifying restrictions. Specifically, Hansen proves that
T times the minimized value of Equation (18) is asymptotically dis-
tributed as chi-square, with the number of degrees of freedom equal
to the number of orthogonality conditions minus the number of esti-
mated parameters.

It is worth noting the differences between the proposed procedure
and Stoll’s (1989) estimation of his covariance model. Our procedure
yields estimates of the spreads whereas Stoll relies on posted spreads.
In addition, we avoid the criticism raised by George, Kaul, and Ni-
malendran (1991) that Stoll’s estimates may be biased since they are
nonlinear transformations of the linear parameters obtained from re-
gressing covariances of price changes and quote revisions on mean
spreads. Our GMM estimation procedure provides consistent estimates
of the nonlinear parameters directly. Finally, the GMM procedure eas-
ily accommodates conditional heteroskedasticity of an unknown form
and serial correlation in the residuals.

4. Two-Way Decomposition of the Spread

Table 2 presents the GMM estimates of our indicator variable model
[Equation (5)]. Although it is not possible to separate out the adverse
selection and inventory holding costs, the model separates order pro-
cessing costs, 1− λ, from other sources of the spread, and it provide
estimates of the traded spread, S . Moreover, estimation of Equation (5)
makes no assumption about the conditional probability of trades, π .

The estimates of the traded spread given in Table 2 range from a
low of 9.9 cents for IBM to a high of 13.5 cents for Procter and Gamble.
A comparison to the average posted spread in Table 1 shows that the
estimated traded spread is less for each stock than the posted spread,
as expected.

The proportion of the traded spread that is due to adverse informa-
tion and inventory effects, λ, ranges from a low of 1.9% of the traded
spread for ATT to a high of 22.3% of the traded spread for 3M. The
remaining part of the traded spread, 98.1% and 77.7%, respectively,
is the order processing component. The order processing component
averages 88.6% across all stocks. Given the presumption in numerous
models that adverse information is a large component of the spread,
the relatively small fraction of the spread estimated for both adverse
information and inventory is surprising. The estimates are in line with
those of George, Kaul, and Nimalendran (1991). They are smaller
than those of Lin, Sanger, and Booth (1995b), and Stoll (1989). The
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Table 2
Traded spread and order processing component

Traded Spread, Adverse Selection and
S Inventory Holding, λ

Company Coefficient Standard Error Coefficient Standard Error

AXP 0.1178 0.0002 0.0272 0.0016
CHV 0.1177 0.0006 0.1546 0.0039
DD 0.1254 0.0003 0.1663 0.0026

DOW 0.1348 0.0004 0.1992 0.0031
EK 0.1252 0.0003 0.0782 0.0020
GE 0.1167 0.0003 0.1060 0.0016
GM 0.1174 0.0002 0.0402 0.0014
IBM 0.0993 0.0003 0.1562 0.0019
IP 0.1350 0.0008 0.2127 0.0050
JNJ 0.1236 0.0003 0.0892 0.0019
KO 0.1202 0.0002 0.0604 0.0014

MMM 0.1239 0.0009 0.2229 0.0051
MO 0.1237 0.0002 0.0560 0.0015
MOB 0.1298 0.0004 0.1240 0.0033
MRK 0.1271 0.0004 0.1224 0.0018
PG 0.1352 0.0005 0.1689 0.0031
S 0.1160 0.0004 0.0916 0.0025
T 0.1214 0.0001 0.0186 0.0008

XON 0.1111 0.0003 0.0613 0.0021

AVG. 0.1222 0.0004 0.1135 0.0024

The table presents the results of estimating Equation (5). The estimated
dollar traded spread and the proportion of traded spread due to adverse
selection and inventory holding cost are shown. The order processing
proportion is 1 minus the proportion due to adverse selection and inventory
holding cost. The last row reports the average statistics for all stocks.

low adverse information component is also consistent with the result
of Easley et al. (1996) that the risk of information-based trading is
lower for active securities than for infrequently traded securities. This
is because the presence of relatively more uninformed traders in an
active stock reduces the probability that a market maker would end
up trading with an informed trader.

The source of the estimate of α + β is the change in quotes in
response to trades as specified in Equation (3). If many trades occur
at the same quotes, the estimated adverse information and inventory
effects will be small. The low estimates of α+β may be partly spurious
if trades bunch at the bid or offer because large trades are broken
up or because buying or selling programs cause several transactions
to be at an unchanged bid or ask. In the next section, in addition
to modifying our basic model to provide a decomposition of adverse
information and inventory effects, we also provide estimates with and
without trade bunching.

Before decomposing the adverse selection and the inventory hold-
ing costs in the next section, we consider the basic model with size
categories [Equation (15)]. The results of the estimations are presented
in Table 3. The differences in traded spreads between the small and
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medium-size trades are generally economically insignificant, but large
trades experienced traded spreads that are almost 1.5 cents higher on
average. The variation in the λ component across trade sizes is much
more dramatic. Adverse selection and inventory holding components
account for 3.3% of the traded spread on average for small trades.
This increases to 21.7% for medium-size trades and further doubles
to almost 43% for large trades. The small λ coefficients reported in
Table 2 suggest that the estimates are heavily influenced by the more
frequent occurrences of small trades.

To examine formally the variation in the estimates across trade size
categories, we consider two constraints that impose overidentifying
restrictions on Equation (15). The first constraint (Constraint 1) re-
quires the traded spreads but not the order processing costs to be the
same across size categories:

1Pt = S

2
(Ds

t + Dm
t + Dl

t )+ (λs − 1)
S

2
Ds

t−1 + (λm − 1)
S

2
Dm

t−1

+ (λl − 1)
S

2
Dl

t−1 + et . (20)

The second constraint (Constraint 2) requires both the traded spread
and the order processing costs to be the same across size categories,
which is the basic model [Equation (5)].

The results of overidentifying tests are presented in panel A of Ta-
ble 4. The chi-square statistics reject both Constraints 1 and 2 at the
usual significance levels. However, the magnitude of the chi-square
statistics are much bigger for Constraint 2 than for Constraint 1, reflect-
ing the small differences in traded spreads reported in Table 3. The
results highlight the importance of considering the composition of the
spread by trade size. Panel B of Table 4 presents the average across
companies of the constrained parameter estimates for the two con-
straints. Under Constraint 1, average estimates of λ differ substantially
across trade size categories and are comparable to average estimates
in Table 3. Under Constraint 2, λ is 8.4%, reflecting the dominance
of small trades in the sample. This estimate of adverse selection and
inventory holding costs is somewhat smaller than the average esti-
mate (11.4%) reported for the basic model without size categories in
Table 2.

5. Three-Way Decomposition of the Spread Based on Induced
Serial Correlation in Trade Flows

To distinguish the adverse selection (α) and inventory (β) compo-
nents of the traded spread, we first make use of the fact that, under
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Table 3
Traded spread and order processing component by trade size

Traded Spread, Adverse Selection and
S Inventory Holding, λ

Company Estimate Small Medium Large Small Medium Large

AXP Coeff. 0.1194 0.1138 0.1141 −0.0133 0.0368 0.2524
Std. Error 0.0002 0.0004 0.0009 0.0022 0.0037 0.0102

CHV Coeff. 0.1148 0.1192 0.1526 0.0372 0.3068 0.5682
Std. Error 0.0006 0.0010 0.0041 0.0049 0.0086 0.0229

DD Coeff. 0.1261 0.1207 0.1297 0.0620 0.2736 0.4471
Std. Error 0.0004 0.0006 0.0015 0.0035 0.0051 0.0135

DOW Coeff. 0.1329 0.1358 0.1511 0.0727 0.4238 0.6366
Std. Error 0.0004 0.0008 0.0029 0.0035 0.0068 0.0194

EK Coeff. 0.1245 0.1237 0.1265 0.0075 0.1524 0.3936
Std. Error 0.0003 0.0005 0.0013 0.0023 0.0048 0.0124

GE Coeff. 0.1176 0.1102 0.1301 0.0407 0.2273 0.4002
Std. Error 0.0003 0.0005 0.0017 0.0020 0.0042 0.0131

GM Coeff. 0.1177 0.1153 0.1192 −0.0189 0.0748 0.2530
Std. Error 0.0003 0.0004 0.0008 0.0019 0.0035 0.0076

IBM Coeff. 0.0995 0.0975 0.1077 0.0185 0.2646 0.4590
Std. Error 0.0004 0.0004 0.0012 0.0029 0.0039 0.0104

IP Coeff. 0.1337 0.1342 0.1602 0.1320 0.2916 0.5648
Std. Error 0.0009 0.0013 0.0042 0.0070 0.0095 0.0239

JNJ Coeff. 0.1236 0.1216 0.1377 0.0475 0.1948 0.3888
Std. Error 0.0003 0.0006 0.0024 0.0021 0.0055 0.0182

KO Coeff. 0.1199 0.1186 0.1256 0.0035 0.1631 0.3554
Std. Error 0.0002 0.0005 0.0012 0.0016 0.0041 0.0110

MMM Coeff. 0.1181 0.1334 0.1886 0.1065 0.4133 0.5953
Std. Error 0.0009 0.0015 0.0083 0.0066 0.0107 0.0349

MO Coeff. 0.1252 0.1176 0.1205 0.0149 0.1210 0.2698
Std. Error 0.0002 0.0004 0.0011 0.0018 0.0039 0.0105

MOB Coeff. 0.1288 0.1291 0.1454 0.0347 0.2621 0.5398
Std. Error 0.0005 0.0009 0.0028 0.0039 0.0077 0.0206

MRK Coeff. 0.1236 0.1317 0.1396 0.0408 0.2388 0.3712
Std. Error 0.0004 0.0006 0.0022 0.0024 0.0042 0.0117

PG Coeff. 0.1342 0.1346 0.1556 0.1013 0.2773 0.5604
Std. Error 0.0005 0.0009 0.0041 0.0039 0.0071 0.0218

S Coeff. 0.1132 0.1160 0.1319 −0.0247 0.1783 0.4629
Std. Error 0.0004 0.0006 0.0017 0.0032 0.0053 0.0136

T Coeff. 0.1217 0.1187 0.1186 −0.0104 0.0633 0.2398
Std. Error 0.0001 0.0003 0.0005 0.0008 0.0027 0.0072

XON Coeff. 0.1100 0.1088 0.1229 −0.0348 0.1664 0.3906
Std. Error 0.0003 0.0005 0.0014 0.0029 0.0050 0.0128

AVG. Coeff. 0.1213 0.1211 0.1357 0.0325 0.2174 0.4289
Std. Error 0.0004 0.0007 0.0023 0.0031 0.0056 0.0156

The table presents the results of estimating Equation (15). The estimated dollar traded spread
and the proportion of traded spread due to adverse selection and inventory holding cost
by trade size are shown. The order processing proportion is 1 minus the proportion due to
adverse selection and inventory holding cost. A small trade has 1000 shares or less, a medium
trade has greater than 1000 but less than 10,000 shares, and a large trade has 10,000 or more
shares. The last two rows report the average statistics for all stocks.

inventory models, changes in quotes affect the subsequent arrival rate
of trades. After a public sale (purchase) at the bid (ask), the dealer
lowers (raises) the bid (ask) relative to the fundamental stock price
in order to increase the probability of a subsequent public purchase
(sale) [see, e.g., Ho and Stoll (1981)]. The dealer is then compensated
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Table 4
Restricted models of traded spread and order processing component by trade size

Panel A
Constraint 1: Traded spread is the Constraint 2: Traded spread and
same but order processing costs are order processing costs are
allowed to vary across trade sizes. constrained to be the same across

trade sizes.

Company χ2(2) P -value χ 2(4) P -value

AXP 171.12 0.0000 1347.00 0.0000
CHV 91.96 0.0000 917.39 0.0000
DD 78.18 0.0000 2395.00 0.0000

DOW 46.63 0.0000 2428.00 0.0000
EK 4.96 0.0839 1697.00 0.0000
GE 300.12 0.0000 3004.00 0.0000
GM 43.07 0.0000 1973.00 0.0000
IBM 77.98 0.0000 4305.00 0.0000
IP 38.08 0.0000 369.62 0.0000
JNJ 44.49 0.0000 1166.00 0.0000
KO 31.77 0.0000 2378.00 0.0000

MMM 147.66 0.0000 535.86 0.0000
MO 319.51 0.0000 2475.00 0.0000
MOB 33.92 0.0000 1144.00 0.0000
MRK 215.56 0.0000 1998.00 0.0000
PG 27.24 0.0000 795.29 0.0000
S 124.95 0.0000 1794.00 0.0000
T 137.53 0.0000 2466.00 0.0000

XON 94.37 0.0000 2203.00 0.0000

Panel B
Traded Spread Adverse Selection and Inventory Holding

All Sizes Small Medium Large

Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

Constraint 1 0.1215 0.0004 0.0327 0.0028 0.2207 0.0051 0.3809 0.0162
All Sizes All Sizes

Constraint 2 0.1237 0.0004 0.0838 0.0023

Panel A presents tests of overidentifying constraints on the basic model [Equation (15)] of traded
spread and order processing component estimated in Table 3. The reported chi-square statistics
have the number of degrees of freedom equal to the number of orthogonality conditions minus
the number of parameters to be estimated.
Panel B presents the averages of the constrained estimates across companies for the constraints
defined in panel A.

for inventory risk because the expected midquote change is positive
after a dealer sale and negative after a dealer purchase. The probabil-
ity of a purchase (sale) is greater than 0.5 just after a sale (purchase).
In other words, under an inventory model, negative serial covariance
in trades (Qt ) is induced. As trades reverse, quotes reverse. Conse-
quently, under inventory models negative serial correlation in quote
changes (as well as in trades) is induced, and this implication can be
used, at least in principle, to identify the inventory component. The
negative serial correlation in trades, Qt , and quote changes, 1Mt is
separate from, and in addition to, the negative serial correlation in
transaction price changes, 1Pt resulting from the bid-ask bounce (as
in the Roll model, for example).
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5.1 The extended model with induced serial correlation in
trade flows

Equations (1)–(5) make no assumption about the probability of trades
and therefore cannot distinguish inventory and adverse information
effects. We modify the model to reflect the serial correlation in trade
flows. The conditional expectation of the trade indicator at time t −1,
given Qt−2 is easily shown to be10

E (Qt−1|Qt−2) = (1− 2π)Qt−2, (21)

where π is the probability that the trade at t is opposite in sign to the
trade at t − 1. Once we allow π to differ from one-half, Equation (1)
must be modified to account for the predictable information contained
in the trade at time t − 2. On the assumption that the market knows
Equation (21), the change in the fundamental value will be given by

1Vt = α S

2
Qt−1 − α S

2
(1− 2π)Qt−2 + εt , (22)

where the second term on the right-hand side subtracts the informa-
tion in Qt−1 that is not a surprise. When π = 0.5, the sign of the trade
is totally unpredictable and Equation (22) reduces to Equation (1).
Notice that changes in the fundamental value, 1Vt , are serially un-
correlated and unpredictable since the changes are induced by trade
innovations (the first two terms) and unexpected public information
releases (the last term). Consider, for example, the expectation of 1Vt

conditional on the information after Qt−2 is observed but before Qt−1

is observed:

E (1Vt |Vt−1,Qt−2) = 0.

One cannot predict the change in underlying value from past public
or past trade information.

By combining Equations (22) and (2) we obtain

1Mt = (α + β)S
2

Qt−1 − α S

2
(1− 2π)Qt−2 + εt . (23)

Note that in arriving at Equation (23) we used Equation (2) directly
without modification for the expected sign of the trade. What matters
for inventory costs is the actual inventory effect, not the unexpected
portion. There is inventory risk only when inventory is acquired (even
if the inventory change was expected), and there is no inventory risk
if inventory is not acquired (even if the lack of inventory change was

10 The conditional expectation may be readily calculated from the fact that Qt−1 = Qt−2 with prob-
ability (1− π), and Qt−1 = −Qt−2 with probability π .
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unexpected). Consequently quote adjustments for inventory reasons
depend on actual trades, not trade surprises. This distinction is what
allows us to estimate separately the inventory and adverse information
components.

Unlike the expected change in underlying value, the expected
change in the quote midpoint can be predicted on the basis of past
trades. Consider the expectation of 1Mt conditional on the informa-
tion available after Mt−1 (and therefore Qt−2) is observed, but before
Qt−1 and Mt are observed:

E (1Mt |Mt−1,Qt−2) = β S

2
(1− 2π)Qt−2. (24)

First, the expected quote midpoint change does not depend on the
adverse information component. Although the observed quote mid-
point change does depend on the adverse information component,
the expected change does not because the change in the true value
Vt is serially uncorrelated. Second, the conditional expectation high-
lights the important result that the expected change in quotes is very
much smaller than and of opposite sign from the immediate change in
quotes following a trade. In the absence of any change in the funda-
mental value of the stock, the immediate inventory response of quotes
to a trade is β(S/2)Qt−2, while the expected change in quotes is the
right-hand side of Equation (24), which is much smaller. Equation (24)
reflects the fact, noted by several authors, that inventory adjustments
are long lived and difficult to observe [see, e.g., Hasbrouck (1988)
and Hasbrouck and Sofianos (1993)]. When inventories are slow to
revert to their desired levels, π is close to one-half, which lowers the
expected reversal in Equation (24). The equation indicates that what
is being measured by the expected quote change is how much of
the inventory-induced quote adjustment is expected to be reversed
in the subsequent trade, not the amount of the spread that is due
to inventory. For example, if β = 0.25, S/2 = 10 cents, π = 0.7,
the immediate inventory response of quotes to a trade at the bid is
β(S/2)Qt−2 = −2.5 cents, but the expected change in quotes in the
subsequent trade is β(S/2)(1− 2π)Qt−2 = +1 cent.

Combining Equations (23) and (4) yields

1Pt = S

2
Qt + (α + β − 1)

S

2
Qt−1 − α S

2
(1− 2π)Qt−2 + et , (25)

which is the analog of Equation (5).11 Estimation of the traded spread
S , the three components of the spread α, β, and 1 − α − β, and

11 The expected price change per share to the supplier of immediacy who buys or sells at time t −1
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the probability of a trade reversal π can then be accomplished by
estimating Equations (21) and (25) simultaneously.

It is possible to estimate the components of the spread directly
from the quote-change equation if estimates of traded spread are not
needed. Specifically, do not combine Equation (23) with the specifi-
cation of a traded spread in Equation (4) as derived in Equation (25),
but instead consider the following variant of Equation (23):

1Mt = (α + β)St−1

2
Qt−1 − α(1− 2π)

St−2

2
Qt−2 + et , (26)

where the constant traded spreads in Equation (23) are replaced with
observed posted spreads.12 We estimate the extended model consist-
ing of Equations (21) and (26). The parameter space is reduced by not
estimating the traded spread, something that simplifies the empirical
implementation, particularly for the model with trade size categories.

We now incorporate size categories into the extended model. When
trade size categories are considered, the π estimate will differ accord-
ing to the trade size categories at time t − 2 and t − 1. For example,
when a small trade is observed at t − 1, the probability of a reversal
that is expected will depend on whether the previous trade at t − 2
was a small, medium, or large trade. We denote the reversal proba-
bilities as π ij , where the superscript i refers to the trade size category
at t − 2 and j refers to the trade size category at t − 1. The extended
model with size categories is

Q j
t = (1− 2π ij )Qi

t−1 + ζ ij
t (27)

1M ij
t = (αij + β ij )

S j
t−1

2
Q j

t−1 − αij (1− 2π ij )
Si

t−2

2
Qi

t−2 + eij
t , (28)

is from Equation (25):

E (1Pt |Qt−1) = S

2
(1− 2π)Qt−1 − S

2
Qt−1 + β S

2
Qt−1 + α S

2
Q∗t−1

where Q∗t−1 = Qt−1− (1−2π)Qt−2 is the unexpected trade sign. The first term is the trade reversal
induced if π > 0.5. The second term is the usual reversal. The third term is an attenuation of
the reversal due to the adjustment of quotes in response to inventory effects. The fourth term
is the attenuation of the reversal due to permanent changes in quotes to reflect the information
contained in the trade at t − 1. The expected reversal can be shown to be the same as Stoll’s
(1989) expected reversal of (π − δ)S (where δ = (α + β)/2) except for the difference between
Q∗t−1 and Qt−1. Stoll assumes that the trade is totally unanticipated so that Q∗t−1 = Qt−1.

12 Since the posted spreads are coupled with trade indicator variables that code midpoint trades as
zeroes, midpoint trades are still ignored as in a traded spread.

1016



The Components of the Bid-Ask Spread

where

Qs
t = Qt if share volume at t ≤ 1000 shares

is censored otherwise
Qm

t = Qt 1000 shares < if share volume at t < 10, 000 shares
is censored otherwise

Ql
t = Qt is share volume at t ≥ 10, 000 shares

is censored otherwise.

The model, Equations (27) and (28), is fairly complex for it requires
the estimation of nine different values of α and β for each of the nine
trade size transitions between t − 2 and t − 1. We use data points for
each possible transition and censor the data otherwise.

5.2 Empirical results based on serial correlation in trade flows
The GMM procedure is easily modified to estimate the extended
model by considering an expanded set of orthogonality conditions.
The empirical results are in panel A of Table 5 for the extended model
without size categories, that is, Equations (21) and (26). The order pro-
cessing component (1−α−β) is surprisingly large, averaging 84% of
the traded spread across all stocks, slightly higher than the results of
the basic model in Table 2. Most striking in panel A is the negative
value of the adverse selection component. This result may be traced to
estimates of π that are less than 0.5. When π is less than 0.5, changes
in1Vt are attenuated, which can be seen by examining Equation (22).
If the change in the stock’s underlying value in reaction to a trade is
reduced (because the sign of the trade is anticipated), the change in
the stock’s quote midpoint ascribed to inventory effects is increased.
Consequently the net effect is to reduce α and raise β. However, a
negative value of α seems unreasonable.

The estimation results for the extended model with size categories
are in panel B. The results reported are the averages across companies
for each ij size transition. As in panel A, the adverse selection com-
ponents are negative, with the exception of large-to-large category,
and the π estimates are all less than 0.5.

While a negative value of α and a value of π less than 0.5 are
empirically possible, such values are theoretically impermissible under
the class of spread models we consider. Adverse information cannot
be negative so long as at least one investor can be better informed than
those investors or dealers setting quotes. Spread models also specify
the lower bound for π as 0.5 when there are no inventory holding
costs. Since a market maker recovers inventory holding costs from
trade and quote reversals, negative serial covariance in trade flows is
required. However, estimates of π less than 0.5 indicate positive serial
covariance in trade flows.
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Table 5
Components of the spread: Estimates based on serial correlation in trade flows

Panel A
α β π

No.
Company of Obs. Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

AXP 68,583 −0.0526 0.0024 0.1209 0.0029 0.2080 0.0018
CHV 47,753 −0.0298 0.0043 0.2388 0.0045 0.1466 0.0019
DD 71,913 −0.0732 0.0030 0.2669 0.0034 0.1732 0.0016
DOW 62,298 −0.0508 0.0040 0.2886 0.0044 0.2181 0.0018
EK 71,290 −0.0415 0.0026 0.1499 0.0029 0.1986 0.0017
GE 122,930 −0.0314 0.0018 0.1861 0.0020 0.0896 0.0011
GM 103,817 −0.0247 0.0017 0.1114 0.0019 0.0939 0.0012
IBM 144,362 −0.0222 0.0020 0.2627 0.0022 0.0711 0.0009
IP 43,746 −0.0216 0.0061 0.2611 0.0064 0.2094 0.0022
JNJ 128,960 −0.0233 0.0027 0.1674 0.0028 0.1878 0.0013
KO 123,450 −0.0130 0.0017 0.1207 0.0019 0.1198 0.0012
MMM 41,154 −0.0109 0.0055 0.2502 0.0054 0.1667 0.0021
MO 180,840 −0.0463 0.0015 0.1404 0.0017 0.1476 0.0010
MOB 57,981 −0.0177 0.0052 0.1915 0.0053 0.2401 0.0020
MRK 145,952 0.0170 0.0022 0.1524 0.0019 0.0838 0.0010
PG 70,356 −0.0334 0.0043 0.2166 0.0043 0.2211 0.0018
S 55,960 −0.0222 0.0031 0.1641 0.0033 0.1284 0.0018
T 144,646 −0.0311 0.0009 0.0684 0.0012 0.1540 0.0012
XON 72,649 −0.0673 0.0031 0.1920 0.0036 0.1910 0.0017
AVG. 92,560 −0.0314 0.0031 0.1868 0.0033 0.1605 0.0015

Panel B
α β π

Trade Size Avg.
Category No. of Obs. Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

Large to large 649 0.0512 0.0815 0.3803 0.0497 0.0843 0.0152
Large to medium 1790 −0.0676 0.0280 0.3430 0.0295 0.1373 0.0104
Large to small 2039 −0.0525 0.0341 0.2297 0.0371 0.2565 0.0110
Medium to large 1555 −0.0513 0.0387 0.4476 0.0377 0.1464 0.0126
Medium to medium 11,036 −0.0410 0.0092 0.3015 0.0093 0.0879 0.0035
Medium to small 15,386 −0.0480 0.0076 0.1674 0.0082 0.1894 0.0038
Small to large 2298 −0.0311 0.0438 0.4442 0.0446 0.2597 0.0114
Small to medium 15,176 −0.0299 0.0087 0.2677 0.0091 0.1703 0.0038
Small to small 42,631 −0.0157 0.0037 0.0928 0.0039 0.1717 0.0024

The table presents the results of using the serial correlation in trade flows to estimate the
components of the spread. α is the estimated adverse selection component of the spread, β
is the estimated inventory holding component of the spread, and π is the estimated probability
of a trade reversal.
In Panel A, the model consists of Equations (21) and (26) and does not distinguish between trade
size categories. AVG denotes the average statistics for all stocks.
In Panel B, the model consists of Equations (27) and (28) and is estimated for each trade size
category separately and averages across companies are reported. Trade size categories refer to
trade sizes at time t − 2 and t − 1 when changes in midpoint quotes occur over t − 1 to t . A small
trade size has 1000 shares or less, a medium trade size has greater than 1000 but less than 10,000
shares, and a large trade size has 10,000 or more shares.

A source of positive serial correlation is that orders are broken up
as they are executed. A large order may, for example, be negotiated
at a single price but be reported in a series of smaller trades. Alter-
natively, a single large limit order may be executed at a single price
against various incoming market orders. In other words, orders could
be negatively serially correlated as theory suggests, but the trades we
observe are positively serially correlated. The empirical effect is to
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lower both π and α. One approach to dealing with this problem is to
collapse a sequence of related trade reports to just one order, that is,
to bunch related data. To align trades and orders, we define compo-
nent trades of a broken-up order to be sequential trades at the same
price on the same side of the market without any change in bid or ask
quotes. Under this definition there is a one-to-one relation between
an order and a trade. In effect, our approach is to treat a cluster of
trades at the same price and unchanged quotes as a single order. This
procedure overcorrects for the problem because it aggregates some
independent orders, and consequently the empirical results from this
dataset provide an upper bound on the adverse information compo-
nent and the probability of price reversal.

Alternatively we could propose a model of order submission by
investors which could be used to separate demand side serial correla-
tion in order flow from microstructure-induced serial correlation. Our
extreme assumption assigns all clustering to microstructure factors and
consequently bunches together trades that are independent. Another
approach would be to impose additional filters for bunching trades.
For example, all sequential trades at the same price with no change
in quotes within a 2-minute window may be deleted. Unfortunately,
the effectiveness of such a procedure to identify broken-up trades is
likely to be time varying and stock specific and is not implemented. In
the end we rely on our simple procedure, recognizing that it provides
an upper bound on α and π .

Table 6 presents the results based on the bunched dataset that
collapses all sequential trades at the same price with no quote adjust-
ments to just one trade. Panel A provides estimates for the extended
model without size categories. The reversal probabilities are all greater
than 0.5, averaging 0.87. The adverse information component is now
positive, averaging 9.6% of the spread over all stocks, and is smaller
than the inventory component, which averages 28.7% of the spread.
The order processing component remains the largest single compo-
nent, averaging 61.7% across all stocks.

We now turn to the question of how trade size in the extended
model affects estimates of the components of the spread. The results
are in panel B of Table 6. For this purpose, the bunching procedure
used in panel A is retained, and the size category is determined by
the sum of all the share volumes of trades bunched together. We
present average values across the stocks in our sample.13 The π co-
efficients exceed 0.5 and are of similar magnitude to those in panel

13 The average is across 19 companies except for the large-to-large category for which one company
is dropped due to a paucity of observations.
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Table 6
Components of the spread: Estimates based on serial correlation in trade flows with
bunching

Panel A
α β π

No.
Company of Obs. Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

AXP 27,562 0.1647 0.0075 0.1386 0.0036 0.9740 0.0011
CHV 20,662 0.0384 0.0091 0.3771 0.0096 0.8111 0.0027
DD 32,871 0.0650 0.0051 0.3712 0.0051 0.8774 0.0019
DOW 32,360 0.0460 0.0056 0.3830 0.0058 0.8463 0.0021
EK 29,425 0.1039 0.0051 0.2010 0.0040 0.9282 0.0015
GE 44,496 0.1009 0.0050 0.3533 0.0047 0.8748 0.0015
GM 32,592 0.1727 0.0065 0.1751 0.0046 0.9087 0.0015
IBM 51,756 0.1101 0.0061 0.5802 0.0057 0.8367 0.0016
IP 23,658 −0.0160 0.0121 0.3800 0.0126 0.7213 0.0028
JNJ 55,996 0.1225 0.0052 0.2343 0.0045 0.8907 0.0013
KO 44,297 0.1231 0.0051 0.2091 0.0037 0.9298 0.0012
MMM 20,326 −0.0136 0.0121 0.4280 0.0132 0.7321 0.0030
MO 73,037 0.0798 0.0038 0.2046 0.0030 0.9168 0.0011
MOB 28,122 0.0645 0.0082 0.2772 0.0078 0.8178 0.0022
MRK 47,060 0.1036 0.0053 0.2894 0.0055 0.8012 0.0018
PG 35,039 0.0254 0.0060 0.3009 0.0064 0.8290 0.0020
S 20,272 0.1475 0.0088 0.2547 0.0070 0.8806 0.0021
T 50,721 0.2094 0.0053 0.0744 0.0019 0.9804 0.0007
XON 30,668 0.1737 0.0082 0.2111 0.0050 0.9248 0.0014
AVG 36,891 0.0959 0.0068 0.2865 0.0060 0.8675 0.0018

Panel B
α β π

Trade Size Avg
Category No. of Obs. Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

Large to large 1364 0.0514 0.1091 0.6645 0.1087 0.6759 0.0125
Large to medium 2469 0.2199 0.0529 0.2310 0.0515 0.7004 0.0088
Large to small 1668 0.1055 0.0430 0.1076 0.0399 0.7936 0.0098
Medium to large 2293 0.0144 0.0394 0.7143 0.0386 0.8208 0.0085
Medium to medium 7359 0.1011 0.0189 0.3468 0.0175 0.8018 0.0043
Medium to small 6485 0.1141 0.0146 0.0919 0.0112 0.8807 0.0038
Small to large 1807 0.0210 0.0355 0.7371 0.0298 0.9114 0.0073
Small to medium 6314 0.0654 0.0155 0.3773 0.0128 0.9128 0.0036
Small to small 7199 0.1049 0.0128 0.0980 0.0082 0.9406 0.0029

The table presents the results of using the serial correlation in trade flows to estimate the
components of the spread when trades are bunched. α is the estimated adverse selection
component of the spread, β is the estimated inventory holding component of the spread, and
π is the estimated probability of a trade reversal. Bunching collapses all sequential trades at the
same price and the same quotes to one bunched trade. The trade size for the bunched trade is
the sum of all the trades bunched together.
In Panel A, the model consists of Equations (21) and (26) and does not distinguish between trade
size categories. AVG denotes the average statistics for all stocks.
In Panel B, the model consists of Equations (27) and (28) and is estimated for each trade size
category separately and averages across companies are reported. Trade size categories refer to
trade sizes at time t − 2 and t − 1 when changes in midpoint quotes occur over t − 1 to t . A small
trade size has 1000 shares or less, a medium trade size has greater than 1000 but less than 10,000
shares, and a large trade size has 10,000 or more shares.

A, but there is now variability across trade size sequences. For ex-
ample, the probability of reversal, π , is clearly larger for a sequence
of two small trades than for a sequence of two large trades. The ad-
verse information component continues to be small, consistent with
the findings in panel A. It varies from 1.44 to 21.99% depending on the
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sequence of trade sizes used in the estimation. The inventory compo-
nents vary considerably by trade size sequence, ranging from a low
of 9.19% for sequences of a medium trade followed by a small trade
to a high of 73.71% for sequences of a small trade followed by a large
trade.

Estimates of the basic model with trade size (Table 3) showed that
quote adjustments depend on trade size, but that model could not
determine how much of the effect was due to adverse information
and how much was due to inventory. The results from the extended
model with trade size in panel B of Table 6 indicate that a substantial
portion of the trade size effect is due to inventory effects. For ex-
ample, the estimate based on sequences of two large trades implies
that the adverse information associated with the second trade in the
sequence is 0.0514 of the spread, and the inventory effect is 0.6645.
The order processing effect is therefore 0.2841. The estimate based
on sequences of two small trades implies that the adverse informa-
tion associated with the second trade in the sequence is 0.1049, and
the inventory effect is 0.0980. The order processing effect is therefore
0.7971. While the estimate of adverse information is again small, the
differences between these two cases (large-large versus small-small)
in the inventory and order processing cost components are quite rea-
sonable. Since there is a large fixed order processing cost component
to a trade, a small trade will have larger order processing cost per
share than a large trade. On the other hand, inventory costs rise with
trade size.

The estimates of α are smaller for sequences of two trades that end
in a large trade than for sequences that end in a medium or small
trade. In other words, not only is the adverse information effect small
overall, it tends to be smaller as a fraction of the spread for large trades
than for small or medium trades. There are three possible explanations
for this result. First, a large trade is often prenegotiated upstairs and
may be preceded by transactions that convey information about the
block. The fact that the quoted spread prior to a large trade is large, as
shown in Table 7, suggests that this is the case. In other words, a large
trade itself may not convey much information and may not have much
subsequent impact on quotes beyond that contained in the existing
spreads.14 Second, large trades may be facilitated through the upstairs
market where brokers can reputationally “certify” the trade. Third, a
small adverse information cost component is still a large dollar amount
in the case of a large trade.

14 The causality could easily go the other way and wider spreads may attract large trades. For
example, Madhavan and Cheng (1996) find that the probability of an upstairs trade is greater
when spreads are wide because upstairs intermediation offers potentially lower costs.
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Table 7
Average quoted half-spreads for alternative
sequences of trade size

Trade size at t − 1
Trade size
at t − 2 Large Medium Small

Large St−1 0.0978 0.0971 0.0952
St−2 0.0901 0.0904 0.0891

Medium St−1 0.0909 0.0929 0.0896
St−2 0.0886 0.0918 0.0890

Small St−1 0.0832 0.0838 0.0825
St−2 0.0830 0.0880 0.0874

The table presents averages of quoted half-
spreads, St , at times t − 2 and t − 1 for alternative
sequences of trade size. Trade size categories refer
to trade sizes at time t−2 and t−1 when changes in
midpoint quotes occur over t−1 to t . A small trade
size has 1000 shares or less, a medium trade size
has greater than 1000 but less than 10,000 shares,
and a large trade size has 10,000 or more shares.

To facilitate interpretation of the estimates in Table 6, we simulate
in Table 8 quote midpoint changes on the basis of the estimates in
panel B of Table 6. The quote changes are stated as a fraction of the
average half-spread at time t − 1 and are calculated according to the
estimated Equation (28), a notationally simplified version of which is

1Mt
1
2 S̄t−1

= α̂Qt−1 − α̂(1− 2π̂)
S̄t−2

S̄t−1
Qt−2 + β̂Qt−1, (29)

where α̂, β̂, and π̂ are the estimated parameters of Equation (28) that
are understood to be for a particular trade size sequence, where Qt−1

and Qt−2, are the signs of the sequence of trades, and where S̄t−1

and S̄t−2 are the average quoted spreads for a particular trade size
sequence. Table 7 provides the average values of S̄t−1 and S̄t−2 for
the nine possible size sequences. In panel A of Table 8, we present
the midpoint price changes over the period t − 1 to t as a fraction
of the average half-spread at time t − 1 for the trade sign sequences,
Qt−2 = −1, Qt−1 = +1 (bid to ask), Qt−2 = +1, Qt−1 = +1 (ask to
ask), Qt−2 = 0, Qt−1 = +1 (mid to ask), and Qt−2 = −1, Qt−1 = 0 (bid
to mid), and for all possible size sequences. In panel B of Table 8,
we present the amount of the midpoint change that is due to adverse
information, the first two terms on the right-hand side of Equation
(29), and the amount due to inventory, the last term on the right-
hand side of Equation (29).

Consider, for example, a large trade that occurs at the ask at time
t − 1. What is the reaction of the quote midpoint to this trade? If
the prior trade at t − 2 was large and was at the bid, the midpoint
adjusts upward by 0.6992 of the half-spread (see the first case in panel
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A). If the prior trade at the bid was medium, the upward adjustment
is 0.7197, and if the prior trade at the bid was small, the upward
adjustment is 0.7409. In other words, the quote adjustment depends
primarily on the size of the observed trade, and less so on the size of
the prior trade. According to the estimates of α and β in Table 6, the
adverse information component of the upward adjustment of 0.6992
is 0.0347 and the inventory component is 0.6645 as shown in panel
B. The adverse information component is less than the estimate of α
in Table 6 of 0.0514 because a trade at the ask following a trade at the
bid is not a big surprise. Such a sequence reflects the normal bid-ask
bounce and consequently does not reflect a great deal of information.
The pattern is similar, albeit the adverse information component is
smaller, for a large trade preceded by a small trade at the bid. In
that case, the upward adjustment of the midpoint, which is 0.7409,
is composed of an adverse information component of 0.0038 and an
inventory component of 0.7371. Again, the adverse information effect
is small because the sequence of bid to ask is to be expected.

Consider now a medium trade at the ask preceded by a trade at
the bid. The midpoint adjustment for a medium trade is about 0.37 to
0.39, considerably less than if the trade is large. However, the portion
of the change ascribable to adverse information is substantially larger.
For a medium trade at the ask preceded by a large trade at the bid, the
adverse information component accounts for 0.1378 of the midpoint
change and the inventory effect accounts for 0.2310 of the midpoint
change.

A more pronounced adverse information effect is evident for a se-
quence of two trades at the ask, which is the second case in Table 8.
This is evident in all size categories of trades at t − 1 but is partic-
ularly evident for medium trades. The estimated adverse information
effect is larger in a sequence of two trades at the ask because this
sequence is a surprise, and consequently the trade conveys adverse
information. The probability that the trader at time t − 1 is informed
is greater if the trade is counter to the usual bid-ask bounce as given
by the probability π . The medium size trade may have the larger ad-
verse information component because it is not prenegotiated and may
therefore reflect the presence of an informed trader on the floor. The
inventory component is independent of the prior trade.

The third case in Table 8 depicts midpoint adjustments after the
trade sequence mid to ask. The midpoint adjustment following such a
sequence is typically less than for the ask to ask sequence and greater
than the bid to ask sequence. This difference reflects differences in
the information content of the trades. A trade at the ask after a trade
at the midpoint conveys more adverse information than a trade at the
ask after a trade at the bid because the second sequence is more likely
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than the first. The values in Table 8 for this case are the same as the
estimates of α and β in Table 6, since Qt−2 = 0.

The fourth case in Table 8 depicts midpoint adjustments after the
trade sequence of bid to mid. There is little quote adjustment after a
trade at the midpoint since such a trade has no identifiable inventory
effect and has only a small adverse information effect. The small ad-
verse information effect arises from the fact that after a trade at the
bid, a trade at the midpoint is not expected. The fact that the trade
was not at the ask conveys some information.

Summarizing, our purpose has been to develop a model that sep-
arates inventory and adverse information effects on the basis of the
time-series characteristics of trades and quotes. We have shown that
this is possible. We have also shown that the size of these two effects
is a function of the sequence of trade sizes and trade signs. Our es-
timates imply that for our sample of large, actively traded stocks, the
adverse information effect is small.

6. Three-Way Decomposition of the Spread Based on Buying and
Selling Pressure

A second approach to distinguishing the adverse selection and inven-
tory components of the spread makes use of the fact that inventory-
induced quote changes result not only from inventory changes in
the stock being examined but also from inventory changes in other
stocks. This approach assumes that adverse information is specific to
the stock but that inventory effects relate to the entire portfolios held
by the suppliers of liquidity. Specifically, we model liquidity suppliers
as taking a portfolio perspective in adjusting inventories of specific
stocks.15 A liquidity supplier who buys stock j at the bid will not only
lower the bid and ask prices of stock j , but will also lower the bid
and ask prices of other correlated stocks, the sale of which would
hedge his position in stock j . Conversely, if other stocks are subject
to buying pressure, the liquidity supplier may decide not to lower the
bid and ask prices of stock j , for he wishes to encourage additional
sales of stock j to hedge his purchases of other stocks. The portfolio
approach allows for the possibility that the quotes in stock j are ad-
justed by a different amount than implied by the information content
or inventory effect in stock j alone. In particular, selling (buying) pres-
sure in other stocks will produce quote changes in the stock j as the
liquidity suppliers attempt to keep their overall portfolios in balance.

15 Ho and Stoll (1983) model the relation between quote changes in a specific stock and inventory
changes in other stocks. They show that the quote adjustment in stock k in response to a trade
in asset ∗ depends on cov(Rk ,R∗)/σ 2(R∗).
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These kinds of adjustments were perhaps most obvious during the
market crash of October 19, 1987, when relentless selling pressure in
the absence of any specific news produced inventory-induced quote
changes in specific stocks.

6.1 The extended model based on portfolio trading pressure
The basic model [Equation (5)] ignores the impact of general trading
pressure since inventory adjustment modeled in Equation (2) is deter-
mined solely by own stock inventory. We now distinguish between
transaction types of different stocks. Let superscript k designates se-
curity k, and replace Equation (2) with

M k
t = V k

t + βk Sk

2

t−1∑
i=1

Q∗i , (30)

where Q∗t is the aggregate buy-sell indicator variable. The aggregate
buy-sell indicator variable is measured as

Q∗t = 1 for
n∑

k=1

Qk
t > 0

= −1
n∑

k=1

Qk
t < 0

= 0
n∑

k=1

Qk
t = 0,

where n is the number of securities that liquidity suppliers span to
get a feel for the market direction.

With Equation (30), the model becomes

1Pk
t =

Sk

2
1Qk

t + αk Sk

2
Qk

t−1 + βk Sk

2
Q∗t−1 + ek

t . (31)

Equation (31) still confines the determinants of prices and quotes to
trade indicator variables and produces Equation (5) as a special case
when there are no spillover effects from other stocks. However, unlike
Equation (5), all the components of the bid-ask spreads are separately
identifiable.

6.2 Empirical results based on portfolio trading pressure
The extended model [Equation (31)] can be estimated using the GMM
procedure described above with appropriate modifications to the or-
thogonality conditions. We illustrate the results of estimating Equation
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(31) using our sample of 19 MMI securities.16 For each stock in our
sample, the aggregate trade indicator variable is calculated from the
trade data using all the stocks in the sample. To estimate Equation
(31), an alignment of trading time across securities is needed. We
specify a 5-minute interval on our transactions data for the temporal
alignment. The underlying data are unchanged except for the addi-
tion of a filter that confines all data to 9:30 A.M. to 4:00 P.M. EST. To
obtain the 5-minute interval, we retain the latest transaction price and
pair it with the latest quotes that are more than 5 seconds prior to the
trade for each 5-minute interval. If security k does not trade within
the 5-minute interval, Qk

t is set to missing in Equation (31), but is set
to zero in constructing our aggregate buy-sell indicator variable.

The results of estimating Equation (31) are displayed in Table 9,
panel A. The results yield an order processing component that aver-
ages 68.9%. The adverse information component averages 21.5% and
the inventory component averages 9.6%. The time alignment neces-
sary to estimate Equation (31) in part solves the trade clustering prob-
lems that concerned us earlier. That is because we take only one trade
from each 5-minute interval and eliminate clustered trades within the
5-minute interval. Nevertheless, our 5-minute sample contains some
clustered trades that extend across 5-minute intervals. In panel B of Ta-
ble 9, we provide for completeness, estimates of Equation (31) where
all sequential 5-minute observations at the same price and the same
quotes are collapsed to one observation. This is an overcorrection for
clustering since we may collapse 5-minute observations where there
were intervening price or quote changes.17 Panel B of Table 9 shows,
as in Table 6, that the clustering adjustment reduces the order pro-
cessing component and increases the adverse selection component. In
panel B, the order processing component averages 41.7%, the adverse
selection component averages 46.2%, and the inventory component
averages 12.1%.

The order processing component estimated by the cross-section
approach and reported in panel A of Table 9 is of the same magnitude
as the estimate from the time-series approach in Table 6, panel A
(68.9% versus 61.8%). With regard to the other spread components,
the cross-section approach yields a smaller inventory component and
a larger adverse information component than the time-series approach
in Table 6. This reflects the fact that we identify the inventory effect
on the basis of a reaction to trades in a portfolio that is probably
measured with error and consequently leads to an underestimate of

16 We do not estimate the model with size categories because of the increased complexity in imple-
menting it.

17 The average number of observations per stock is over 16,000 for the estimates in panel A of
Table 9 and over 11,000 for the estimates in panel B of Table 9.
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Table 9
Traded spread and its components: Estimates based on market trading pressure

Panel A Panel B

Company Estimate α β S α β S

AXP Coeff. 0.0581 0.0613 0.1120 0.3370 0.0904 0.1316
Std. Error 0.0078 0.0069 0.0008 0.0305 0.0105 0.0025

CHV Coeff. 0.2418 0.1043 0.1192 0.4991 0.1282 0.1408
Std. Error 0.0157 0.0129 0.0017 0.0257 0.0162 0.0027

DD Coeff. 0.3141 0.0733 0.1302 0.6349 0.0793 0.1615
Std. Error 0.0117 0.0096 0.0013 0.0174 0.0113 0.0022

DOW Coeff. 0.2935 0.0843 0.1371 0.5631 0.0971 0.1636
Std. Error 0.0131 0.0111 0.0015 0.0195 0.0128 0.0024

EK Coeff. 0.1266 0.0602 0.1227 0.4272 0.0788 0.1469
Std. Error 0.0095 0.0077 0.0010 0.0239 0.0109 0.0023

GE Coeff. 0.2835 0.0940 0.1185 0.5516 0.1074 0.1413
Std. Error 0.0145 0.0119 0.0015 0.0221 0.0141 0.0023

GM Coeff. 0.1143 0.1217 0.1048 0.3992 0.1723 0.1246
Std. Error 0.0110 0.0099 0.0011 0.0279 0.0146 0.0023

IBM Coeff. 0.5242 0.0715 0.1057 0.8001 0.0732 0.1305
Std. Error 0.0197 0.0165 0.0019 0.0234 0.0174 0.0027

IP Coeff. 0.3136 0.0731 0.1465 0.4860 0.0851 0.1639
Std. Error 0.0184 0.0148 0.0024 0.0246 0.0173 0.0031

JNJ Coeff. 0.1976 0.1170 0.1235 0.4123 0.1382 0.1409
Std. Error 0.0171 0.0140 0.0017 0.0289 0.0171 0.0028

KO Coeff. 0.0945 0.1010 0.1091 0.3068 0.1400 0.1236
Std. Error 0.0132 0.0113 0.0012 0.0320 0.0156 0.0024

MMM Coeff. 0.3081 0.1271 0.1361 0.5136 0.1527 0.1562
Std. Error 0.0197 0.0163 0.0025 0.0270 0.0194 0.0034

MO Coeff. 0.0985 0.1291 0.1094 0.2253 0.1659 0.1178
Std. Error 0.0169 0.0136 0.0015 0.0321 0.0179 0.0024

MOB Coeff. 0.1923 0.1057 0.1342 0.4013 0.1325 0.1528
Std. Error 0.0131 0.0105 0.0015 0.0222 0.0134 0.0023

MRK Coeff. 0.3113 0.1769 0.1254 0.5538 0.2146 0.1480
Std. Error 0.0197 0.0157 0.0022 0.0280 0.0191 0.0032

PG Coeff. 0.3113 0.0688 0.1505 0.5661 0.0784 0.1779
Std. Error 0.0148 0.0122 0.0019 0.0212 0.0140 0.0029

S Coeff. 0.1550 0.0824 0.1126 0.4945 0.1167 0.1394
Std. Error 0.0109 0.0097 0.0012 0.0250 0.0139 0.0024

T Coeff. 0.0332 0.0719 0.1084 0.2085 0.1145 0.1198
Std. Error 0.0077 0.0068 0.0007 0.0340 0.0112 0.0023

XON Coeff. 0.1154 0.1047 0.1039 0.3907 0.1379 0.1227
Std. Error 0.0121 0.0104 0.0011 0.0303 0.0141 0.0024

AVG Coeff. 0.2151 0.0962 0.1216 0.4616 0.1212 0.1423
Std. Error 0.0140 0.0117 0.0015 0.0261 0.0148 0.0026

The model estimated is Equation (31). An index of market buying and selling pressure is used
to estimate the traded spread and its components. S is the estimated traded spread, α is the
estimated advserse selection component of the traded spread, and β is the estimated inventory
holding component of the traded spread. The sample consists of 5-minute data. Panel A results
are based on all the observations, whereas Panel B estimates are based on a data set that collasps
all sequential trades observed at the same price and the same quotes to one bunched trade. The
last category denoted as AVG presents the average statistics for all stocks.

the inventory effect. Undoubtedly our cross-section approach can be
refined by choosing particular portfolios, such as that of a specialist,
and by other methods.18

18 For recent articles on the behavior of specialist inventories see Hasbrouck and Sofianos (1993),
Madhavan and Smidt (1991, 1993), Madhavan and Sofianos (1994), and Sofianos (1995).
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We also employed an econometric refinement that accounts for cor-
relations across securities. Because all stocks respond to marketwide
public information, the public information shocks embedded in ek

t
could be contemporaneously correlated across securities. Thus esti-
mation of Equation (31) is more efficient with a simultaneous model-
ing of n securities. A joint model of Equation (31) can be expressed
as

rt = Sqt + Aqt−1 + BQ∗t−1 + υt , (32)

where rt is an (n×1) vector with typical element 1Pk
t , S is an (n×n)

diagonal matrix with typical diagonal element Sk/2, qt is an (n × 1)
vector with typical element Qk

t , A is an (n × n) diagonal matrix with
typical element (αk − 1)(Sk/2), B is an (n × n) diagonal matrix with
typical element βk(Sk/2), and υt is an (n × 1) vector with typical
element ek

t . Joint estimation of the 19 equations reduces the number
of observations to 2532 when no exclusion for clustering is made.
Despite the big reduction in sample size, these results support the
same inferences made for panel A in Table 9 and are not reported.
When data are reduced to account for clustering, joint estimation is
not possible due to an inadequate number of observations.

7. Conclusions

A basic trade indicator model is constructed to unify existing spread
models, which typically decompose the spread into just two com-
ponents. Empirical estimates of the basic model for 19 large actively
traded stocks in 1992 yield estimates of the sum of adverse informa-
tion and inventory effects that are relatively small proportions of the
spread. However, these proportions increase dramatically when the
indicator model is modified to account for medium and large trades.

The basic model is extended in two ways to estimate three compo-
nents of the spread — order processing, adverse information, and
inventory — something not successfully accomplished heretofore.
Earlier models have usually lumped inventory and order processing
together. The models can also be used to provide estimates of the
spread at which trades occur. The first extension relies on the fact
that inventory effects induce negative serial correlation in orders and
in quotes in addition to the serial correlation from the bid-ask bounce
of prices. The second extension takes a cross-section approach and
uses information on trading pressures in other stocks to infer the in-
ventory component of the spread in a particular stock. We show that
this approach can also be used to separate the three components of
the spread. The basis for this approach is that quotes are adjusted in
stock A in response to trades in other stocks in order to hedge in-
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ventory risk, but trades in other stocks convey little information about
stock A.

Most of our empirical evidence is for the first extension. We esti-
mate this extended model with 1992 trade and quote data for 19 large
and actively traded stocks. Because trades are not matched one-for-
one with orders, we estimate the model with and without adjusting
for clustering of trades. The adjustment groups all trade at the same
price and in the absence of quote changes into a single order. The
adjustment yields an upper bound on the adverse information com-
ponent of the spread because it increases the frequency with which
quotes respond to trades. Under the adjusted results, the average or-
der processing component of the traded spread is 61.8%, the average
adverse information component is 9.6%, and the average inventory
cost component is 28.7%.

The extended model is also estimated for different sequences of
trade size that yield interesting new results. First, the quote adjustment
to a trade is larger the larger the trade. Second, the quoted spread
tends to be larger when large trades take place. This suggests that
the large trade is anticipated through leakage in the upstairs market.
Third, the adverse information component of the spread is smaller for
large trades than it is for medium and small trades. It appears that
large trades are prenegotiated in such a way that the trade price fully
reflects the information conveyed by the trade. Fourth, the midpoint
reaction and the spread components vary on the basis of prior trades.
For example, the adverse information effect is larger for a medium
trade at the ask if the prior trade was at the ask and if the prior trade
was large.

Appendix A: The Glosten and Harris (1988) Model

Using our timing convention, Glosten and Harris (GH) model the
“true” price as

Vt+1 = Vt + α S

2
Qt + et (A1)

where Vt+1, the true price immediately after the trade at t , contains the
public information et plus the information conveyed by the trade at t .
In our corresponding Equation (1), the true price includes public in-
formation up to the point at which the true price is evaluated. Because
the timing is immediate, the two timing conventions are equivalent.
They model the price process in relation to the true price as

Pt = Vt+1 + (1− α)S
2

Qt (A2)
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which corresponds to our Equation (4). Our equation contains an error
term because we impose a constant spread assumption, whereas they
do not.

Take first differences of Equation (A2) and combine it with Equation
(A1) to obtain

1Pt = α S

2
Qt + (1− α)S

2
1Qt + et , (A3)

which is analogous to GH’s model [Equation (12)] given in the text.
This can be rearranged to give

1Pt = S

2
1Qt + α S

2
Qt−1 + et , (A4)

which is the same as Equation (5) under the assumption that β = 0.

Appendix B: Basic Model with Trade Size Categories

Denote a small trade as s, a medium trade as m, and a large trade as
l . Next define

Ds
t = Qt if share volume at t ≤ 1000 shares
= 0 otherwise

Dm
t = Qt 1000 shares < if share volume at t < 10, 000 shares
= 0 otherwise

Dl
t = Qt if share volume at t ≥ 10, 000 shares
= 0 otherwise.

The corresponding equations to Equations (1) and (2) in the text are
then, respectively,

Vt = Vt−1 + αs S s

2
Ds

t−1 + αm Sm

2
Dm

t−1 + αl S l

2
Dl

t−1 + εt , (B1)

Mt = Vt +
∑

j

[
β j S j

2

t−1∑
i=1

D j
i

]
, (B2)

for j ∈ {s,m, l} for the three size categories. The first difference of
Equation (B2) is

1Mt = 1Vt + βs S s

2
Ds

t−1 + βm Sm

2
Dm

t−1 + β l S l

2
Dl

t−1. (B3)

1031



The Review of Financial Studies / v 10 n 4 1997

Combining Equations (B1) and (B3) yields the counterpart to Equation
(3),

1Mt = (αs + βs)
Ss

2
Ds

t−1 + (αm + βm)
Sm

2
Dm

t−1 + (αl + β l )
S l

2
Dl

t−1 + εt .

(B4)
The counterpart to Equation (4) is

Pt = Mt + Ss

2
Ds

t +
Sm

2
Dm

t +
S l

2
Dl

t + ηt . (B5)

Combining Equations (B4) and (B5) then yields our basic model with
different trade size categories:

1Pt = Ss

2
Ds

t + (λs − 1)
Ss

2
Ds

t−1 +
Sm

2
Dm

t + (λm − 1)
Sm

2
Dm

t−1

+ S l

2
Dl

t + (λl − 1)
S l

2
Dl

t−1 + et , (B6)

where λ j = α j + β j for j = s,m, l .

Appendix C: Sample of Securities

Company Name Symbol

American Express AXP
Chevron CHV
Du Pont DD
Dow Chemical DOW
Eastman Kodak EK
General Electric GE
General Motors GM
IBM IBM
International Paper IP
Johnson & Johnson JNJ
Coca Cola KO
3M MMM
Philip Morris MO
Mobil MOB
Merck MRK
Procter & Gamble PG
Sears Roebuck S
AT&T T
USX X
Exxon XON
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