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Series Editors’ Preface

Nearly six years ago, a special volume of Advances in Parasitology

(vol. 47) dealt with the uses of remote sensing and geographical in-

formation systems in the study of disease epidemiology. In a sense,

this volume is a follow-on to that publication, dealing as it does with

some practical applications of those techniques to the study of par-

asitic and infectious diseases.

We are once again fortunate in having Simon Hay, David Rogers

and—a newcomer this time—Alastair Graham, of the University of

Oxford in the United Kingdom, as guest editors. They have assem-

bled a formidable array of talented research workers from the UK

and the USA as contributors to what we are sure will be a valuable

source of both technical and epidemiological data in this rapidly

growing field.

We are sincerely grateful to the guest editors, authors and all those

who have contributed to the production of this volume.

John Baker

Ralph Muller

David Rollinson
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Guest Editors’ Preface

It has been five years since an earlier special issue of Advances in

Parasitology, Volume 47, outlined the advances that remote sensing

(RS) and geographical information systems (GIS) could bring to epi-

demiology. During this interval a vast amount of work has been

undertaken in this area and these RS data and GIS tools have moved

from the novel to part of the mainstream of spatial epidemiology.

Data availability has continued to limit the engagement of many

potential users, however. This has been most obvious in continental

and global scale public-health applications, and predictably these

limitations have been particularly acute in regions with low band-

width internet connections, often where the public health need is

greatest. The primary reason for compiling this new volume was to

enable a wider range of epidemiologists to have access to the global

environmental data (satellite and demographic), which we have been

collectively working with for over a decade. The second reason for

devising this special issue was to demonstrate that RS and GIS do not

simply create pretty maps, but biologically informative information

and ultimately pragmatic control tools. That being said, we also hope

you like the front cover!

This special issue of Advances in Parasitology, Volume 62, ‘‘Global

mapping of infectious diseases: methods, examples and emerging ap-

plications’’ comprises 10 reviews and a DVD of global environmental

and population data. There are four introductory reviews: one on the

various methods used to predict disease distributions (Rogers, this

volume, pp. 1–35); another on the global environmental datasets that

can be used for disease mapping (Hey et al., this volume, pp. 37–77);

a further one exploring the concepts of spatial resolution, accuracy

and uncertainty measures in disease mapping based on remote sens-

ix



ing (Atkinson and Graham, this volume, pp. 79–118) and a final one

on predicting the global distribution of human population (Balk

et al., this volume, pp. 119–156). Three reviews follow dealing with

defining the global distribution limits of Plasmodium falciparum and

P. vivax malaria (Guerra et al., this volume, pp. 157–179), first at-

tempts to map the environmental limits of dengue and yellow fever at

the global scale (Rogers et al., this volume, pp. 181–220) and con-

tinued efforts to map the geo-helminths for the targeting of control

activities (Brooker et al., this volume, pp. 221–262). Finally, three

application reviews discuss current research topics that have emerged

from our ability to consider epidemiological phenomena at the global

scale. Tick-borne diseases are used as an example of how to coin-

cidentally map geographic and phylogenetic space (Randolph and

Rogers, this volume, pp. 263–291). The penultimate review investi-

gates the spread of disease vectors and the pathogens they transmit

via global transport networks (Tatem et al., this volume, pp.

293–343). The final review discusses methods and evidence required

to evaluate the impacts of climate change on vector-borne disease

(Rogers and Randolph, this volume, pp. 345–381).

The public health environment, as well as our research, has evolved

significantly in the last five years. The millennium development goals

(http://www.un.org/millenniumgoals/) have been signed and largely

drive the global development agenda. More recently these have been

emphasized and augmented by the commission for Africa (http://

www.commissionforafrica.org/), which helped to highlight the in-

creasing importance of public health interventions in achieving in-

ternational development goals. Our ability to document the

‘‘epidemiological state of the Earth’’ is therefore a crucial underpin-

ning to measuring, planning, costing and ultimately delivering on

these promises. We hope that the information and methods outlined

in these reviews will in some small way contribute.

Furthermore, global environmental change has continued apace

throughout the past five years. These changes for example to climate,

transport networks, disease pathogens and their vectors do not re-

spect administrative boundaries and their influences and impacts are

best addressed at the global scale. With increasing computing power

and ever cheaper data storage capacity, a wider variety of researchers

GUEST EDITORS’ PREFACEx
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can start to evaluate changes using the baseline data provided here.

Our final reviews aim to convey some of the research opportunity

that, we believe, these data facilitate.

Finally, we would like to note the passing of Byron Woods and

Louisa Beck. Both participated in the previous special issue and were

valued colleagues, whose contributions will be missed. We would also

like to thank the series editors and development editors at Academic

Press for their continued support and their help in making this col-

lection of reviews, a book.

S.I. Hay

A.J. Graham

D.J. Rogers
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ABSTRACT

The development of models for species’ distributions is briefly re-

viewed, concentrating on logistic regression and discriminant analyt-

ical methods. Improvements in each type of modelling approach have

led to increasingly accurate model predictions. This review addresses

several key issues that now confront those wishing to choose the

‘‘right’’ sort of model for their own application. One major issue is

the number of predictor variables to retain in the final model.

r 2007 Elsevier Ltd.
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Another is the problem of sparse datasets, or of data reported to

administrative levels only, not to points. A third is the incorporation

of spatial co-variance and auto-covariance in the modelling process.

It is suggested that many of these problems can be resolved by

adopting an information-theoretic approach whereby a group of

reasonable potential models is specified in advance, and the ‘‘best’’

candidate model is selected among them. This approach of model

selection and multi-model inference, using various derivatives of the

Kullback–Leibler information or distance statistic, puts the biologist,

with her or his insight, back in charge of the modelling process that is

usually the domain of statisticians. Models are penalized when they

contain too many variables; careful specification of the right set of

candidate models may also be used to identify the importance of each

predictor variable individually; and finally the degree to which the

current ‘‘best’’ model improves on all the other models in the can-

didate set may be quantified. The ability definitely to exclude some

models from the realm of all possible models appropriate for any

particular distribution problem may be as important as the ability to

identify the best current model.

1. A BRIEF HISTORY OF DISTRIBUTION MODELLING

Human beings, first as hunter-gatherers and later as scientists, have

always appreciated the value of spatial information. Simple obser-

vations and collections of museum specimens reinforce the notion

that no single species occurs everywhere. Maps of plant and animal

distributions that were made for a variety of purposes record the

known distribution of these living organisms as points or within poly-

gons specifying some local region, either ecological (e.g. within a

forest) or political (e.g. within a country or region). It is clear that the

development of some of these polygon boundaries also benefited

from the increasing knowledge of climatic constraints to species’ dis-

tributions. For example, the historical map of the distribution

of tsetse flies (Glossina spp.) in Zimbabwe is based on very few

point records (tsetse were collected at known points by farmers, mis-

sionaries, District Officers and others) supplemented with the
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entomologists’ increasing understanding that to complete develop-

ment successfully tsetse require certain minimum temperatures that

are found only at lower altitudes. In many places, therefore, the his-

torical tsetse map follows elevation contours.

This example suggests that, as was said of models by Box, ‘‘All

maps are wrong, but some are useful’’ (Box, 1979). The real question

is, how useful are such maps, and can we improve upon them with

current technology? This technology comes in four guises. The first is

simply the increased information that we now have for many species

that is available both digitally and online; the second is the increas-

ingly powerful computers that we have, not just to hold but also to

process the data; the third is the new generations of satellites that are

providing us with information about our natural environments at

unprecedented spectral, spatial and temporal resolutions; and finally

the fourth is the increasingly sophisticated mathematical models that

can be applied to distribution data. This combination of information,

knowledge and understanding is available at a critical moment in

human history, when the distributions of many other animals, plants

and diseases are being affected, directly and indirectly, by the most

ubiquitous of all species—our own. It seems we are beginning to

understand the distributions of plants and animals only at the point

when we are about to change them dramatically.

Biologists require maps for many different purposes. Here we

concentrate on the use of maps to increase our understanding of the

biological and other processes that determine the distribution and

abundance of species in space and time. Which are the important

variables; how do they act; and how do they differ in places of disease

presence and absence, or in places of different disease abundance? We

therefore eschew mapping methods that simply reproduce the distri-

bution map, or points drawn from the distribution map (the ‘‘training

set’’ data), through one or other pure ‘‘pattern-matching’’ approach.

Thus both neural network models and k-nearest neighbour tech-

niques will be ignored (Williams et al., 1992), as will be tree-based

classification methods (Green, 1978) and those hybrids, such as

GARP, that use genetic algorithms to improve on initial approaches

using more traditional methods (Stockwell and Peters, 1999). Each of

these appears to make the assumption that what is required is a
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description, as accurate as possible, of the training set data in terms of

the available suite of predictor variables, from which a distribution

prediction is made. While the end results of these alternative

approaches can be maps with high levels of statistical accuracy, the

biological insight they provide is minimal.

2. FAMILIES OF DISTRIBUTION MODELS

In a recent review of predictive mapping of species’ distribution,

Rushton et al. (2004) show that logistic regression methods are by far

the most commonly used approach. In fact, none of the examples

reviewed used discriminant analysis, which is curious given the

pervasive assumption of some or other form of normality (the key

assumption of discriminant analysis) throughout the ecological liter-

ature (see below). This section shows that, despite the great accuracy

of many logistic regression models, biologically their assumptions are

essentially unrealistic. If we are to use statistics to increase our

biological understanding we should start with a model type that

potentially allows us to do so.

2.1. Logistic Models: The Theory

Logistic regression models are often applied to the relatively simple

problem of the distribution of an organism or disease and whether or

not it is absent or present in any area. The heart of logistic regression

is a relationship between a response variable y and sets of predictor

variables x1, x2 etc. as follows:

y ¼ b0 þ b1x1 þ b2x2 þ � � � þ � (1)

where b0 is the intercept, b1, b2 etc. are partial coefficients and e is a
residual error term (Dobson, 1990; Cramer, 2003).

Equation (1) is not used directly for the simple reason that the

response variable y may take any value, and could certainly be well

outside the theoretical limits (for binary presence/absence modelling)

of 0 to 1.0. Even if the range of observed values of x on which the

equation is based limits y to this range, there is no a priori reason why

D. J. ROGERS4



the model should not be extrapolated using a wider range of values of

x, giving ‘‘impossible’’ values of y. Instead, the variable y from Eq. (1)

is used in the following logistic equation that predicts the probability

of presence or absence of a species:

Prpresence ¼
expðyÞ

ð1þ expðyÞÞ

and therefore

Prabsence ¼ 1�
expðnÞ

ð1þ expðnÞÞ
(2)

Equation (2) has the convenient property that 0pPrpresencep1,

i.e. the response variable Prpresence is bounded within the only logical

possible range of 0 to 1. Equation (2) is simply one of a number of

alternatives that has this desirable property of confining an

unbounded prediction (Eq. (1)) to a fixed range, but there seems to

have been little investigation in the literature of these alternatives

to date.

One of the ‘‘problems’’ with Eqs (1) and (2) is illustrated in

Figure 1, where the simplest form of Eq. (1) has been used:

y ¼ b0 þ b1x1 (3)

(i.e. also dropping the error term for illustration purposes). Figure 1

shows that logistic regression allows only a single transition from 0

(absence, or ‘‘off ’’) to 1.0 (presence, or ‘‘on’’) across the entire range

of any single predictor variable x1, in the situation where y is an

increasing function of x1 (i.e. positive b1, Figure 1a), or a single

transition from 1.0 (presence) to 0 (absence) when y is a decreasing

function of x1 (i.e. negative b1, Figure 1b). Many biological responses

are non-linear with respect to increases in critical driving variables;

for example, as temperature increases from very low levels, where

species are absent, to intermediate levels (species present) to very high

levels (species absent again) we clearly have two transitions

(effectively ‘‘off ’’ to ‘‘on’’, and then back to ‘‘off ’’ again) on a single

environmental variable. Without specifying the form of this biolog-

ical relationship it is clear that a simple logistic model using this single

environmental variable could not capture the entire species’
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Figure 1 Examples of logistic curves where the dependent variable (y in
text Eq. (3)) (a) increases and (b) decreases with the independent variable, x.
There can be only one ‘‘on’’–‘‘off ’’ or ‘‘off ’’–‘‘on’’ transition with any single
variable when y is linearly related to x, so that two independent variables are
required to define an ‘‘off ’’–‘‘on’’–‘‘off ’’ response (e.g. c).
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distribution, although it may be satisfactory for some parts of this

distribution.

To capture the ‘‘off ’’–‘‘on’’–‘‘off ’’ nature of species’ distributions,

simple logistic regression requires two variables, one capturing the ‘‘off ’’

to ‘‘on’’ transition and the other the ‘‘on’’ to ‘‘off ’’ transition. Put to-

gether, these can give a reasonable semblance of what is happening on

the ground (Figure 1c), but biologically, in a rather unrealistic way.

It may be deduced from the above that a non-linear form of Eq. (3)

may in fact be the solution to the ‘‘off ’’–‘‘on’’–‘‘off ’’ problem if it can

be arranged that y is an increasing function of x1 over part of the

range of x1 and a decreasing function over other parts of the range of

x1. This may be achieved by the following quadratic expression for y

in Eq. (1) (again omitting the error term):

y ¼ b0 þ b1x1 þ b2x
2
1 (4)

Incorporating Eq. (4) into Eq. (2) gives the so-called Gaussian

logistic equation, which has rarely been used in distribution studies,

despite its apparent applicability.

While the various forms of Eq. (2) will produce numbers that range

between zero and one the distribution of these outcomes is usually

non-normal. This helps to explain why the optimal cut-off threshold

in logistic models (i.e. the level of the output variable that is taken to

separate ‘‘presence’’ from ‘‘absence’’ in any predictive distribution

map) is rarely exactly 0.5. Sometimes authors take an arbitrary cut-

off value that gives the best-looking output map. At other times more

objective criteria are used (such as ROC or area-under-the-curve

methods—see Table 1 and later) that essentially maximize the dis-

criminatory ability of the logistic model (i.e. as judged by its ability

correctly to describe the input data).

While logistic regressions are usually applied to simple binary sit-

uations they can be extended to situations with more than two cat-

egories or outcomes, when they are known as multinomial logistic

regressions (Cramer, 2003). This extension of logistic regression

models is rarely used in distribution studies, even when obvious cat-

egorical variables, or continuous variables made into categories (such

as various levels of the abundance of vectors or the prevalence of a

disease), are to be modelled.
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Table 1 Various accuracy metrics applicable to distribution modelling

Accuracy

metric

Range of

values

Description Advantages Disadvantages

Correct (%) 0–100% Overall percentage

accuracy, all

categories

combined

Simple and easy to

calculate

Presence and absence

sites given equal

weight. Metric

usually affected by

prevalence

False positives

(%)

0–100% % of total training

set sample

wrongly predicted

as ‘presence’

Simple and easy to

calculate

Should be considered

with its

complement—

false negatives

False negatives

(%)

0–100% % of total training

set sample

wrongly predicted

as ‘absence’

Simple and easy to

calculate

Should be considered

with its

complement—

false positives

Sensitivity 0–1 Ability to identify

positives correctly

Derived from

diagnostics.

Useful measure of

positive test

accuracy

Concentrates on

positives only.

Should be

considered with its

complement—

specificity

Specificity 0–1 Ability to identify

negatives correctly

Derived from

diagnostics.

Useful measure of

negative test

accuracy

Concentrates on

negatives only.

Should be

considered with its

complement—

sensitivity

Producer’s

accuracy

0–100% Ability to predict the

training set data

correctly

A guide to the

modeller to

identify where

current models are

wrong

Not particularly

useful to users

Consumer’s

accuracy

0–100% Accuracy of model

predictions

A guide to the user

to indicate the

probability with

which each model

prediction is

correct

An important metric

for operational

use, but not

particularly useful

to the modeller in

identifying model

errors

k (kappa) �1 to 1 Index of agreement

for positive and

negative samples

combined

Adjusts for chance

model agreement

with training set

data (for which

k ¼ 0). Applicable

to multiple

categories of

presence/absence

or abundance

Sensitive to overall

prevalence at high

and low

prevalence levels

AUC 0–1 AUC is the area

under the curve of

Effectively combines

sensitivity and

Rather more time

consuming to
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A little thought will show that the intercept term in the basic

logistic Eq. (1) determines the position of the logistic curve on the

predictor-variable axis, while the coefficients determine how quickly

the curve rises or falls as the predictor variables change. In other

words they reflect the sensitivity of the organism’s distribution to

changes in the associated environmental variables. Small values of the

coefficients result in a slow transition from ‘‘off ’’ to ‘‘on’’ or ‘‘on’’ to

‘‘off ’’; large values produce a rapid transition. In practice, of course,

the coefficients are estimated by least squares and other methods

applied to real datasets, and their inspection can reveal the likely

sensitivity of the species to variations of the predictor variables.

Needless to say, the greater the number of predictor variables, the less

Table 1 (continued )

Accuracy

metric

Range of

values

Description Advantages Disadvantages

a plot of

sensitivity (y-axis)

against (1-

specificity) (x-

axis), sometimes

called the receiver

operating

characteristics

(ROC) plot

specificity to assess

model accuracy.

Commonly used in

logistic regression

analyses where

probability

thresholds to

achieve best fit

(for presence/

absence) are often

NOT 0.5. Less

affected than k by

high/low overall

prevalence

calculate than

other methods,

and more difficult

to interpret.

Works only for

binary (presence/

absence) situations

AIC 0–N AIC is Akaike’s

Information

Criterion used in

information-

theoretic models

Estimates the

difference between

a model’s

performance and

some unknown,

ultimate truth.

Models with lower

AICs are better

than those with

higher AICs

AIC is used to

compare models

on an arbitrary

scale. Absolute

and relative

differences

between models

are more

informative, and

can determine

which models to

drop from a

candidate set of

‘possible’ models
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easy it is to draw conclusions about either the contribution of any

single one of them to describing distributions, or the sensitivity of the

species concerned to small variations in their values.

2.2. Discriminant Analysis Models: The Theory

Details of the discriminant analytical approach to distribution models

have been given elsewhere (Rogers, 2000). Initially these models used

linear discriminant functions with equal co-variance matrices

(Rogers, 1993; Rogers and Randolph, 1993); the use of non-linear

discriminant functions and unequal covariance matrices later allowed

the description of more complex distributions over larger areas

(Robinson et al., 1997; Rogers, 1998). Here we highlight the impor-

tant differences between discriminant analytical and logistic regres-

sion model concepts and conclusions.

Discriminant analysis is one of the techniques that assume a

multivariate normal distribution both of predictor datasets and also of

the response variable, which is an estimate of the probability of species

presence or absence. Briefly, the areas of presence of a species are

assumed to experience a range of conditions described by a multivari-

ate normal distribution, and the areas of absence are assumed to be

described also by a multivariate normal distribution with a different

multivariate mean or ‘‘centroid’’ and (usually) different co-variances of

the same set of predictor variables. These two distributions therefore

exist in multivariate environmental space and together define a mul-

tivariate surface on which it is possible to locate the environmental

conditions of any point on a map, and to calculate the probability with

which this point ‘‘belongs’’ to the cluster defining presence or, alter-

natively, to the cluster defining absence. These probabilities are more

correctly described as such than is the case for logistic regression

probabilities, since they assume some underlying normal frequency

distribution, although a normalization step is usually required to cal-

culate them (thus they are linear functions of the exact probabilities

rather than the exact probabilities themselves). The use of observed or

other more appropriate prior probabilities produces (Bayesian) max-

imum likelihood output predictions in such discriminant analysis

models (Swain, 1978).
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This brief description highlights the difference between logistic and

discriminant analytical methods and identifies the critical assumption

of an underlying uni- or multivariate normal frequency distribution

of the predictor variables (and response variable) in the latter, but not

the former method. Univariate and multivariate assumptions pervade

many branches of ecology in different guises. For example, much

competition theory assumes a univariate response of competing spe-

cies on a continuous environmental variable (Macarthur, 1972); ideas

of species packing (hence competitive exclusion etc.) along the same

environmental variables were first derived assuming identical and

essentially univariate normal responses of species to variation in the

resource—the species’ exploitation curves (Macarthur, 1972).

Canonical and other correspondence analyses, widely used in com-

munity ecology, also assume underlying univariate normal responses

of individual species within the community to whole sets of environ-

mental variables that are explicitly specified in canonical analyses, but

implied in the other sorts of correspondence analyses (Jongman et al.,

1995). And so on. While one might legitimately question whether or

not the actual responses are precisely uni- or multivariate normal,

most uni- and multivariate analytical methods are fairly robust to

small departures from normality, and these distribution-based ap-

proaches appear to have worked well for these ecological applica-

tions. One might even argue that an ecological ‘‘model’’ that does not

make some underlying assumption of multivariate normality is the

exception rather than the rule. If this is the case why, then, do most

biologists use logistic regression to model species distributions? The

answer appears to be a mistaken assumption that a frequency dis-

tribution of environmental conditions (of either presence or absence

points) that is clearly non-normal renders any multivariate method

inapplicable. However, rather than change the model to one that does

not assume any underlying distribution at all (e.g. the logistic regres-

sion model), an alternative option is first to pre-process the environ-

mental data in some way or other to make them more nearly normal,

and thus suitable for discriminant analysis or other methods. This

can usually be achieved by clustering the environmental data

(Rogers, 2000). When this is done, a single distribution (e.g. of

environmental conditions in areas of a species’ presence) is broken
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into a series of distributions, each of which is much more likely to be

multivariate normal than is the original distribution (in fact, cluster-

ing algorithms tend to ensure this outcome).

While the early forms of discriminant analysis, which assumed

common and equal multivariate normal co-variances of sets of data

points around their respective centroids, performed well for certain

datasets (generally involving classifications of flowers or skulls), other

methods, such as logistic regression, performed better on species’

distribution data. Discriminant analytical methods were, in general,

ignored for such applications. This situation was not improved by the

relative paucity of software for maximum likelihood discriminant

analysis that newcomers to the field could use. Nevertheless, the

biological insight provided by discriminant analysis admits this ap-

proach to the existing family of informative ecological models that

make analogous assumptions about species’ responses to environ-

mental conditions. Discriminant analysis easily handles multiple

categories of the dependent variables (whether of absence and pres-

ence clusters, or multiple categories of continuous variables such as

vector abundance or disease prevalence) and thus also copes well with

a variety of non-linear biological responses (when the categories or

clusters are not collectively linearly dependent on any combination of

environmental variables). In addition, the maximum likelihood out-

puts of discriminant analysis lend themselves to the information-

theoretic and multi-model selection methods outlined below.

3. PREDICTOR VARIABLE SELECTION IN
DISTRIBUTION MODELS

For both logistic and discriminant analysis approaches to species’

distribution modelling, most workers select variables from a suite of

candidate descriptors in step-wise inclusion or step-wise exclusion

fashion (Rushton et al., 2004). Two decisions have to be taken here.

The first is to select a criterion on which to base variable selection; the

second is to decide when enough variables have been selected because

additional variables no longer improve the model in some way

or other.
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Criteria for variable selection are based either upon some strictly

statistical measure such as the change in Mahalanobis Distance,

residual sum of squares, odds- or variance-ratio, or else upon the

improved fit of the model to the data with and without the variable in

question, in comparison with all other candidate variables in the

dataset. These methods will not necessarily, and usually do not, select

the same variables. Step-wise inclusion methods will tend to select

variables that are un-correlated with each other (because variables

that are correlated with those already in the model do not improve

model fit), but it follows from this that the first selected variable

strongly influences the selection of all later variables. A different first

variable very often results in a completely different set of selected

variables in alternative models of the same distribution. These differ-

ent sets of predictor variables often confuse the novice modeller, but

they arise ultimately from the correlation structure of the entire pre-

dictor dataset, embedded in which are various ‘‘subsets’’ of predictor

variables sharing the common characteristic of being least correlated

with other variables in the same subset (and therefore by definition

more correlated with other variables in other subsets).

Knowing when to stop adding (or subtracting) additional variables

in step-wise inclusion (or exclusion) methods for distribution mod-

elling is somewhat problematic. Strict statistical criteria are difficult

to define (e.g. what absolute or relative value should be chosen for

reduction in the sums of squares?), but easy to apply, once selected.

Criteria based on model fits to the data are easier to define, but more

difficult to apply in practice (e.g. a 5% improvement in overall model

fit is easily obtained with a small change to a large patch of the

species’ distribution, but a larger change to a smaller patch—giving

the same overall 5% improvement—might result in a better-looking

or more useful predictive map).

Table 1 lists a variety of accuracy metrics as used in the remote-

sensing literature, and many of these can be used for variable selection

at model-building time. That is to say, whatever metric is preferred by

the user is calculated for each candidate variable’s inclusion into the

existing model, and the variable that maximizes the metric is the one

selected for inclusion next. Clearly those metrics that need to be paired

to achieve the best overall accuracy (such as sensitivity and specificity)
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may be weighted equally when used together, or differentially if the

‘‘cost’’ of incorrect predictions is greater for a false absence than for a

false presence prediction (Congalton, 1991; Fielding and Bell, 1997).

Kappa varies from �1 (model entirely opposite to observations)

through 0 (model fit no better than random) to 1 (perfect fit). Landis

and Koch (1977) suggest the following ranges of agreement for

the k statistic: poor, k o0.4; good, 0.4o k o0.75 and excellent,

k 40.75.

With a burgeoning number of potential predictor variables, derived

from a variety of ground-based or satellite systems, the danger is that

some of these layers, by chance alone, will have some skill in de-

scribing the observed distribution, and will therefore be selected in the

final model. The greater the number of predictor variables available

for modelling, the higher is the probability that this will happen. Step-

wise inclusion methods will continue to select variables as long as

they meet the threshold criterion for inclusion. There is no particular

penalty for selecting a model with many variables over one with fewer

variables other than that imposed by the residual degrees of freedom,

which are usually large enough not to affect the level of significance

of a final model with many or with few variables.

The practice of using as many descriptor layers as possible

and selecting them in some fashion or other that improves the ‘‘fit’’

of the model is called ‘‘data-mining’’ by its proponents, and ‘‘data-

dredging’’ by its detractors. The latter suggest that this practice leads

to final models that are neither parsimonious nor informative bio-

logically and suggest instead an information-theoretic approach that

overcomes many of these problems. These methods are described

later.

4. WHAT TO DO WITH SPARSE DATASETS?

Distribution models are designed to draw inferences from sparse da-

tasets to make predictions about distributions over much larger areas.

In this section, we discuss the nature of sparse datasets, and what may

be done to ensure that the resulting maps use as much of the infor-

mation they contain as is possible.
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The training set data are a subset of the total distribution of any

species and thus contain partial but not full information about the

species’ distribution, hereafter referred to as ‘‘reality’’ or ‘‘truth’’. A

different training set, of the same sample size, would contain different

points and therefore would present different partial information about

the same reality. A modelling approach applied rigorously to each

training set would produce two different predictions of reality. Which

is correct? In fact it is very likely that neither model is correct, although

one is going to be more correct than the other. The problem for the

modeller is that she or he does not know which is the more correct,

because she or he does not know what reality—the true distribution—

actually is. All that we can know is that modelling using different

training sets will give different predictions of reality, among which it is

apparently impossible to choose the ‘‘best’’. Nevertheless, we should

try to estimate from the training set how variable are our modelling

estimates of reality, because users of predictive maps can rightly expect

of the modeller some statement about the uncertainty of any model’s

predictions.

A second problem arises when we know a sparse dataset does not

sample the entire geographic range of a species’ distribution. When

observations come from only part of a species’ range, is it possible to

infer from them the wider geographical distribution of which they are

only a part? Thus the first problem above is one of sparse but

geographically unbiased training set data while the second is one of

sparse and geographically biased training sets. Two methods help us

to draw as much information as possible from sparse training sets of

different degrees of geographical bias: bootstrap sampling and

environmental envelope expansion.

4.1. Bootstrap Sampling

Bootstrap sampling is one of the methods normally used for testing

the accuracy of predictive models (Davison and Hinkley, 2003). A

bootstrap sample is simply a sub-sample of a set of training data that

is used to make one prediction of a species’ distribution. Multiple

bootstrap samples are taken, a prediction is made for each and the
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entire set of predictions is then combined to produce a single, average

prediction. This prediction reflects the uncertainty we should have of

a species’ real distribution ‘‘on the ground’’, on the basis of any

particular set of training data.

Bootstrap samples should be taken from the training set with

replacement because we assume that the training set itself is a sample

of reality, and the occurrence of any one observation within it is

essentially random. A different training set could contain that

observation more than once, or not at all. Only bootstrap sampling

with replacement reflects this.

One advantage of bootstrap sampling is that within any one model

the samples can be arranged to have equal numbers of presence and

absence observations. Recent work suggests that this situation pro-

duces model outputs with the greatest accuracy (McPherson

et al., 2004).

Figure 2 (Figure 2 is Plate 1.2 in the Separate Color Plate Section)

shows an example of the bootstrap approach applied to a very sparse

dataset for Rift Valley Fever (RVF) in Africa and the near Middle

East. Figure 2a shows the fit of a discriminant analytical model

applied to the entire training set of presence (n ¼ 62) and absence

(n ¼ 2000) points (the latter selected to be within 0.5 and 10.00 de-

grees of any presence point). The accuracy metrics for this model are

high (overall % correct ¼ 97.0; false positives ¼ 2.3%, false nega-

tives ¼ 0.7%; k ¼ 0.813), although this is more due to an accurate

description of absence than of presence points (sensitivity ¼ 0.774,

specificity ¼ 0.976). Overall, the map underestimates the distribution

of this disease within Africa. Figure 2b shows the mean predictions of

100 bootstrap models using the same dataset (each model with 200

presence and 200 absence points, randomly selected with replacement

from the training set). The bootstrap approach extends the areas

predicted to be suitable for this disease, but there is considerable

uncertainty about the status of many of the additional high-risk areas

of Figure 2b compared with Figure 2a. Nevertheless, the average

accuracy statistics for the 100 models that contributed to Figure 2b

are impressive. The mean k value for the top 10 models was 0.895

(S.D. ¼ 0.017) and for the bottom 10 models was 0.851 (S.D. ¼ 0.020).
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4.2. Environmental Envelope Expansion

When it is suspected that the training set is geographically biased, a

different approach may be adopted. In this approach, only the pres-

ence data points are used and a selection of absence points is gen-

erated within the GIS (as in the bootstrap example above) that are

within a specified geographical distance of the presence points. There

should be many more absence than presence points. The approach

assumes that some of these absence points are in reality presence

points that have simply not yet been identified as such, and the chal-

lenge is to establish which these are. Again multiple models are run.

In each model, all of the observed presence points (or bootstrap

samples of them) are taken, together with an equal number

(i.e. a subset) of the absence points. In the various runs of the

model, any particular absence point appears with a different sample

of other absence points and they collectively define the environmental

envelope of absence; the presence points obviously define the envi-

ronmental envelope of presence. Clearly in any one run of the model,

a particular point of absence may be assigned to the category of

presence with a certain probability. If this same point is always as-

signed a high probability of presence in all the models in which it is

included, and regardless of the other absence points with which it is

associated, then it seems reasonable to re-assign it to the category of

presence points. The output of each model run is therefore stored in

terms of the predicted probability of membership of the presence and

absence categories of each point in the dataset used. When all the

model runs are completed the average probabilities are calculated

from the stored data. Data points for presence that are consistently

predicted to belong to the presence category with very low probability

are re-assigned to the absence category (there are usually very few of

these) and data points for absence that are consistently predicted to

belong to the presence category are re-assigned to this category. Thus

the environmental envelope for presence is expanded along the en-

vironmental dimensions defined by the sparse training set. The new

training set with the re-assigned data points is then used to make map

predictions in the usual way (or by bootstrap sampling, previous
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section). Further rounds of envelope expansion can be carried out,

each one starting with the output of the previous round.

This approach has been very successful in expanding predictions of

the geographical distributions of diseases within the same broad

climatological/vegetation type as the training set data, but it obvi-

ously cannot identify other areas of vector or disease presence that

are quite different from the training set regions. An example using the

Rift Valley dataset (previous section) is shown in Figure 2c. The

figure shows the results after the first round of environmental enve-

lope expansion applied to the training set data, and using exactly the

same bootstrap samples as were used to produce Figure 2b. In this

case, the presence/absence status of the training set data was adjusted

on the basis of the mean probabilities of presence/absence determined

for them in the 100 bootstrap samples; training set ‘‘positives’’ that

were predicted to belong to the presence category with a mean prob-

ability of o0.25 were re-assigned to the absence class, while training

set ‘‘negatives’’ with a mean probability of presence of 0.50 or greater

were re-assigned to the presence class. A single model was then pro-

duced, in the same way as Figure 2a, but using this corrected training

set (overall % correct ¼ 94.4, false positives ¼ 4.3%, false nega-

tives ¼ 1.4%, k ¼ 0.757, sensitivity ¼ 0.767, specificity ¼ 0. 955). In

comparison with the predictions in Figure 2b, Figure 2c indicates a

greater degree of model certainty of disease presence throughout the

savannah zones of West Africa but is more cautious in its predictions

for the Arabian Peninsula and in East Africa (Ethiopia, Somalia,

Kenya, Tanzania, Zambia and Zimbabwe). RVF certainly occurs in

the latter five countries, but has not yet been reported from Ethiopia

(Gideon, 2005). Figure 2 shows that the two modelling approaches

are making rather different predictions using the same sparse dataset.

The bootstrap approach seeks to extract the maximum information

from the training set as given, and without necessarily questioning the

status of each data point. Environmental envelope expansion begins

with the assumption that some of the training set data are wrongly

assigned to the absence category, and seeks to identify these, to re-

assign them to the presence category. More experience with both

methods is required before we can decide which is better for handling

sparse datasets.
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5. INCORPORATING SPATIAL INFORMATION
INTO MODELS

So far the models discussed do not explicitly take into account the

spatial arrangement of the training set observations, nor are any

spatial variables explicitly used in model predictions. These predic-

tions are generally spatially coherent for the simple reason that the

environmental data on which they are based exhibit spatial co-var-

iation, as discussed by Atkinson and Graham (this volume, pp.

79–118). Many sets of training data consist simply of point records

from which it is difficult to infer the spatial relationships of the un-

derlying distribution (e.g. the RVF dataset of the previous section). In

other cases, however, and certainly when the training data are in

polygon form (where the polygons represent the natural boundaries

of the species’ distribution, not political or administrative level units),

these data do contain some information on the spatial pattern of the

species’ distribution, and this information can be, and probably

should be, included in the model. Individuals of a species occur in a

spatially coherent pattern for two different reasons: firstly the indi-

viduals may be independently responding to the same set of envi-

ronmental conditions. Since the individuals are likely to share

environmental preferences, they are likely to co-occur regardless of

any biological interaction between them. Secondly animals and plants

occur in patches through the processes of natural reproduction and

limited dispersal away from the parental area. Whatever the under-

lying causes, the pattern can be included as a predictor variable in the

model by defining, for each observation of species’ presence, the

occurrence of the species in adjacent habitat squares (or pixels).

Unfortunately, of course, the number of occupied adjacent pixels is

unknown for each of the training set observations and so must be

estimated. The modelling therefore proceeds in stages. Initially an

ordinary (i.e. non-spatial) model is fitted to a set of training data and

applied to all the pixels in the region, thus generating a first ‘‘guess’’

of the species’ distribution, from which the pattern of adjacent

occupation (i.e. the auto-covariance) can be estimated for the training

set data. Next a new model is constructed, this time using the auto-

covariances (plus the other predictor variables) and the training set
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data. This model is applied to all the pixels in the image using the

current model to estimate the auto-covariances. Predicted values for

the unsurveyed squares are combined with observed values of the

surveyed squares to generate a new distribution prediction.

This new prediction is the starting point for further rounds of

prediction, constituting what is known as the Gibbs’ sampler. During

these rounds, a model is made of the training set data and taking

account of their auto-covariances as judged by the current map. A

random starting point in the map is selected and predictions are then

made only for the unsurveyed squares, again using each square’s

auto-covariance. This process is repeated until the predicted map

does not change significantly between iterations.

In the above modelling approach, the predictions are generally

probabilities but the interim and final maps record simply presence/

absence, and the auto-covariances are calculated from these. Initial

implementation of the Gibbs’ sampler recommended probabilities be

turned into presence/absence predictions stochastically (i.e. rather

than by thresholding the probabilities at a certain level to ensure, for

example, the same number of predicted as observed occupied

squares).

When this approach was applied to describe the distribution of red

deer in the Grampian Region of Scotland, Augustin et al. (1996)

showed that this stochastic rule does not rapidly lead to convergence

of parameter estimates, whereas leaving the probabilities as predicted

by the models did so. In this case, the auto-covariances are calculated

as a weighted function of the probabilities rather than of the 0/1

stochastic realizations of these probabilities. This alternative ap-

proach is called the ‘‘modified Gibbs’ sampler’’ and was found by the

authors to lead to rapid convergence of parameter estimates and also

to give the best results of the four methods tried, which were a simple

logistic model, an auto-logistic model (that stopped before the Gibbs’

sampler stage), a Gibbs’ sampler and a modified Gibbs’ sampler

model.

As pointed out at the start of this section, models which do not

explicitly take account of the spatial coherence of species’ occur-

rences, nevertheless, usually give predictions that are spatially coher-

ent for the simple reason that the predictor environmental variables
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change gradually through space, not abruptly. The relative contri-

butions of environmental variable and species’ auto-covariances to

species’ occurrence in any area can be gauged by running models

without and with the auto-logistic, Gibbs’ sampler or other explicit

measures of the species’ distribution as predictor variables. If, for

example, the Gibbs’ sampler adds nothing to the descriptive power of

a distribution model, it may be concluded that direct or indirect in-

dividual interactions are unimportant in determining the species’

presence in any area and that any spatial coherence seen is due to

environmental variables alone.

6. MODEL SELECTION AND MULTI-MODEL INFERENCE

A significant departure from the modelling approach described above

is provided by the work of Burnham, Anderson and others who

promote what is called an information-theoretic approach that

appears to tackle a number of problems that arise with the more

traditional ways of modelling species’ distributions (Burnham and

Anderson, 2002).

In this approach, it is assumed that there exists an n-dimensional

and unknowable truth (the real distribution of organisms in the

present case) that models can only attempt to approximate rather

than describe completely. There exists, therefore, a certain distance

(I(f,g)) between model (g) and reality (f) that is captured by the

Kullback–Leibler (K–L) information or distance measure which is

defined as:

Iðf ; gÞ ¼

Z
f ðxÞ log

f ðxÞ

gðxjyÞ

� �
dx (5)

for continuous functions and

Iðf ; gÞ ¼
Xk

i¼1

pi � log
pi

pi

� �
(6)

for discrete distributions such as the Poisson, binomial etc. In Eq. (5),

full reality f is considered fixed while g varies over a range of models

indexed by y. In Eq. (6), there are k possible outcomes of the
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underlying random variable. The true probability of outcome i is pi,

while the modelled outcome is pi, with
P

pi ¼
P

pi ¼ 1.

These rather fearsome looking equations are really quite simple. It

is obvious from both, for example, that in the unlikely event that the

models perfectly describe reality, g(x|y) ¼ f(x) in Eq. (5) and pi ¼ pi

in Eq. (6). The logarithmic terms will therefore be 0 (because

log(1) ¼ 0) and the Kullback–Leibler distance, I(f,g), will thus also be

0 in each case. The greater the discrepancy between model and reality,

the larger will I(f,g) become. Thus the K–L distance is a guide to

model accuracy and may be used to select the best from a set of

candidate models for any particular situation.

There is one obvious problem, however, and that is that we do not

know in each case what the truth (f(x) or pi) actually is. Taking the

continuous case as an example, Eq. (5) can be re-arranged as follows:

Iðf ; gÞ ¼

Z
f ðxÞ logðf ðxÞÞ dx�

Z
f ðxÞ logðgðxjyÞÞ dx (7)

with the following statistical expectations:

Iðf ; gÞ ¼ Ef ½logðf ðxÞÞ� � Ef ½logðgðxjyÞÞ� (8)

each with respect to the distribution f. The first expectation on the

right-hand side of Eq. (8) will be unknown (because it is the expec-

tation of reality) but constant (reality does not change!). The second

expectation on the right-hand side of Eq. (8) will vary, depending

both upon the model and its current parameters. This means that

although I(f,g) cannot be evaluated exactly, it can be estimated up to

a constant C (viz Ef[log(f(x))])

Iðf ; gÞ ¼ C � Ef ½logðgðxjyÞÞ�

or

Iðf ; gÞ � C ¼ �Ef ½logðgðxjyÞÞ� (9)

The left-hand side is a relative directed distance between f and g and

thus the value of the right-hand side can be used to select between

different candidate models. A model with a lower value of this quan-

tity is better than one with a higher value. Because we do not know C

we can never know just how good our ‘‘best’’ model really is, but the
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difference between models is a guide to how much better is our best

model than any others in the candidate set.

In the discussion so far, it is assumed that the parameters of the

candidate models are already known. In reality they must be

estimated from a set of data. Akaike showed that in practice the

K–L distance could be estimated from the empirical log-likelihood

function evaluated at its maximum point (Akaike, 1973). The prac-

tical equivalent of Eq. (9) is what has since become known as the

‘‘Akaike Information Criterion’’ or AIC, defined as follows:

AIC ¼ �2 logð‘ðŷjyÞÞ þ 2K (10)

where logð‘ðy yÞÞ
�� is the value of the log-likelihood at its maximum

point (i.e. the maximum likelihood estimate) and K is the number of

estimated parameters in the model. It is clear from Eq. (10) that the

first term on the right-hand side will tend to decrease as the number

of parameters in the model increases (because a model with more

parameters is almost bound to fit a dataset better than one with fewer

parameters) while the second term (2K) will obviously increase. This

achieves a neat balance between over-fitting a model (too many

parameters, AIC penalized with a large value of 2K) and under-fitting

a model (too few parameters, AIC large because the first term is

large).

A modification of the AIC was suggested by Hurvich and Tsai

(1989) for the situation where the sample size is small in relation to

the number of fitted parameters. This modification, the corrected AIC

or AICc, is calculated as follows:

AICc ¼ �2 logð‘ðŷjyÞÞ þ 2K
n

n� K � 1

� �
(11)

where n is the sample size and all other terms are as in Eq. (10). In

general, unless the sample size is large in relation to the number of

estimated parameters, Eq. (11) is to be preferred over Eq. (10).

The modelling approach recommended by Burnham and Anderson

(2002) involves proposing a set of candidate models for the biological

situation involved, then fitting these models to the data and calcu-

lating the AIC or AICc values. As mentioned before, the absolute

values of these quantities are usually of little interest, but differences
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between them are very informative. The AIC difference (Di) is defined

as follows:

Di ¼ AICi � AICmin (12)

where AICmin is the minimum AIC for any candidate model in the set

of models, and the model with this minimum value is the current best

one. Despite the very wide possible range of absolute values of AIC,

AIC differences of approximately410 indicate models that have very

little support and therefore can be omitted from further considera-

tion, while AIC differences of o2 are indicative of strong support.

Given any particular set of models, the likelihood of one of the

models within the set (gi), given the data, is proportionately related to

the AIC difference by the following:

‘ðgijxÞ / exp �
1

2
Di

� �
(13)

These likelihoods are usually normalized across the entire set, R, of

candidate models to determine a set of Akaike weights, wi that sum

to 1.0:

wi ¼
exp � 1

2
Di

� �
PR
r¼1

exp � 1
2
Dr

� � (14)

These weights are thus an effective way to scale and interpret the AIC

difference values.

Equations (12)–(14) involve comparisons between models, and Eq.

(14) refers to a particular set of models. Thus one can only conclude

that a particular model has a Di, likelihood or Akaike weight relative

to some one (Di) or all other models (wi) in a particular set of models.

Choice of a candidate set of models therefore becomes crucial. If a

candidate model is dropped from the set, or a new model is added, the

various quantities should be recalculated. However, a quantity called

the evidence ratio wi/wj, where i and j are just two of the candidate

models, is not affected by any other model in the candidate set, but

just by the two models being compared. Evidence ratios may be used

to judge how much better one model is compared with another,

regardless of any other models in the candidate set.
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For some biological systems where the mechanisms are fairly well

understood, the set of candidate models may be easy to define.

For example if we seek a model for plant growth, we might generate a

series of potential models that involve the quantity of available sun-

light, water or soil nutrients in various combinations. The informa-

tion-theoretic approach is ideal in this situation because what we

really seek is some idea of the relative importance of variables we

know, or suspect, to be of importance. In the case of animal and plant

distributions, however, it is much more difficult to identify in advance

a set of ‘‘reasonable’’ environmental variables and so we tend to fall

back upon the step-wise or data-mining methods described earlier in

this review. Nevertheless, it seems that even here this alternative

approach may be able to help. For example, we could generate a set

of candidate models which described distributions using different

sorts of variables (temperature, humidity, vegetation indices) and

select between them. Burnham and Anderson are sympathetic to this

approach, if only because it is, in their view, the lesser of two

evils:

‘‘While we do not condone the use of information theoretic approaches to

blatant data dredging, we suggest it might be a more useful tool than hy-

pothesis testing in exploratory data analysis where little a priori knowledge is

available. Data dredging has enough problems and risks without using a test-

ing-based approach that carries its own set of substantial problems and limi-

tations’’ (Burnham and Anderson, 2002).

The information-theoretic approach provides a completely differ-

ent paradigm from the traditional statistical approach to model

building. There are no formal levels of any test statistic that deter-

mine ‘‘significance’’ of one result over another, and therefore no for-

mal hypothesis testing either. As Burnham and Anderson point out,

there are many areas of life and science that involve numbers that do

not readily fall within the realm of traditional statistical testing. For

example, one does not ask for a formal test of significance if a soccer

match is won by 3 goals to 1 or by 10 goals to 1. One infers that the

winners in the second match were considerably better than their op-

ponents, in comparison with the winners of the first match. How large

should be the differences in goals scored for them to be judged

‘‘significant’’ is irrelevant in this case. The match results simply give
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us evidence for the greater superiority of the winners (compared with

the losers) of the second match compared with the first, and allow us

to rank the teams in a tournament situation. Model selection and

multi-model inference is in many ways more like a tournament. We

seek the best possible candidate from a whole suite of models to do

the job we have in hand. We are able to say how much better is this

model compared to all the other models we have constructed, and we

are able to discard at least some models because some or other

information metric (the Akaike weight, or the evidence ratio) puts

them so much lower than the current best model. There are, however,

no threshold values for any of these metrics, signifying ‘‘significant’’

in one case or ‘‘not significant’’ in another, because such formal

statistics are inappropriate in this situation. Burnham and Anderson

go so far as to say that the use of null hypothesis testing for model

selection must be considered ad hoc (albeit a rather refined set of ad

hoc procedures), whereas there is a sound theoretical basis to the

information-theoretic approach to model selection criteria. (There

remains a role for formal hypothesis testing in more experimental

situations where the experimenter can define treatment and control

groups that differ only in a single or limited number of variables,

although even here it is not so much the significance of the effect that

is of interest, but the size of the effect.)

Needless to say, the issue of the type of models we should use for

distribution mapping is still debated. A recent review of distribution

modelling strongly favours the information-theoretic approach

(Rushton et al., 2004). A later article in the same journal redresses

the balance with a plea for pluralism (Stephens et al., 2005).

6.1. Application to Vector and Disease Mapping

Since the output of discriminant analysis can be expressed as a prob-

ability (strictly a Bayesian posterior probability), the likelihood ‘ is

simply

‘ ¼
Y

i

PrðY iÞ (15)

D. J. ROGERS26



where Pr(Yi) is the probability of the observed outcome, defined as

PrðY iÞ ¼ PY i

i Q1�Y i

i (16)

where Pi is the predicted probability of presence for a presence point

(Yi ¼ 1), and Qi is the complement of Pi.

The most convenient form of the log likelihood function of Eqs.

(15) and (16) is the following:

logð‘ðŷjyÞÞ ¼
X
i2A1

logPðxi; yÞ þ
X
i2A0

logQðxi; yÞ (17)

where A1 and A0 denote the sets of observations with Y ¼ 1 and 0,

respectively (Cramer, 2003). Thus it is possible to calculate the

corrected AICc, from Eqs. (17) and (11). One could therefore use the

AICc to select between models and, equally importantly, to decide

how much better the best model is compared with the others.

The Akaike weights are also useful in helping to determine the

relative importance of the predictor variables. If the current best

model contains variable x1, say, but has only a modest Akaike

weight, then it is clear that there is considerable model uncertainty

and therefore only weak evidence for the importance of x1 as a

predictor variable. However, the Akaike weights can be summed for

all models across the set that contains x1, or x2, or x3, etc. and these

summed weights reflect the relative importance of these variables

across all models (Burnham and Anderson, 2002). It will generally

happen that the sum of the Akaike weights for a variable will exceed

the Akaike weight of the best model (in which the variable may or

may not occur) and it can also happen that a variable not in the

‘‘best’’ model can have a summed Akaike weight that exceeds that of

any other variable, even those included in the ‘‘best’’ model. These

summed Akaike weights therefore highlight the relative importance

of each variable regardless of which models the variable occurs in.

This procedure can also be extended to pairs of variables, or to in-

teraction effects between variables (if interaction terms are included

in the candidate models). For the correct conclusions to be drawn

about any particular variable, it is advisable to use a set of candidate

models in which the variables being compared occur about the same
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number of times. Obviously this is more likely to be the case for

important variables than for unimportant ones.

In all the models shown in Figure 2 the variables were selected for

sequential step-wise inclusion using the AICc as the selection crite-

rion; thus during each round the variable was selected that gave the

smallest value of the AICc, indicating a closer approach to the

‘‘truth’’ or ‘‘reality’’ than with any other candidate variable. Virtually

always the reduction in AICc exceeded 10 for every included variable,

indicating that each additional variable made a substantial contribu-

tion to improving the fit of the model. The models always included

only 10 variables, although on the criterion of AICc reduction it

appears that many more could have been included. There were no

signs of an increase in the AICc due to the penalty imposed by in-

creasing numbers of predictor variables K (Eq. (11)), which is not

surprising given the large total number of data points in each model

(400 in the bootstrap models; 42000 in the others). When the boot-

strap models were ranked from lowest AICc (i.e. best fit) to highest

AICc, the mean values of the alternative kappa statistic for model

accuracy correlated sensibly with them, although there was consid-

erable scatter of individual results (k ¼ 0.895, S.D. ¼ 0.017 for the top

10 models; k ¼ 0.851, S.D. ¼ 0.020 for the bottom 10 models). Figure

3 (Figure 3 is Plate 1.3 in the Separate Color Plate Section) shows the

sets of variables selected by each of the bootstrapped models, which

are arranged in AICc order from lowest (at the top of the image) to

highest (bottom of the image). In Figure 3 each row of the image

refers to one model, the variables selected for it are shown as coloured

squares, and their order of selection is indicated by the rainbow col-

our scale, red orange, yellow green etc. (see figure legend). The red

line down the middle of the image indicates that variable 14, the

annual amplitude of the Land Surface Temperature, was not only

consistently selected in all of the models but was often selected as the

most (or second most) important variable. No other variable had

such a consistent performance or such a high rank, although the very

last one, the variance of the Normalized Difference Vegetation Index,

was fairly often selected second in the lower-ranking models. Within

this ranked series of models the Akaike weights (Eq. (14)) indicated

that the very few top models were so much better than all the others
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that the rest could be discarded (the weights for the top five models

were 0.8074, 0.0799, 0.0710, 0.0413 and 0.0003, respectively). Table 2

shows the summed Akaike weights for each of the top 20 variables

across all models in which they appeared. This allows the assessment

Table 2 Rift Valley Fever model predictor variables

Variable Summed Akaike weight Mean rank N/100

wd1007a1 1.00000 1.26 100

wd1014p3 1.00000 6.28 81

wd1014a1 0.99993 7.74 69

wd1007mn 0.99951 10.33 23

DEM 0.95830 7.46 54

wd1003a1 0.92011 8.41 51

wd1007p2 0.88755 8.51 43

wd1007vr 0.84904 6.45 65

wd1003a2 0.80750 10.03 27

wd1007p3 0.80750 9.99 22

wd1007a3 0.19211 9.77 34

wd1003a0 0.15076 10.62 11

wd1014p2 0.11242 8.98 44

wd1003vr 0.07989 9.35 40

wd1014a2 0.07985 10.5 17

wd1014p1 0.07106 10.26 25

wd1003a3 0.04170 9.8 31

wd1014mn 0.04131 9.48 22

wd1014vr 0.00046 6.72 62

wd1007mx 0.00042 10.44 20

Summed Akaike weights (second column) for the top predictor variables (first
column) of the 100 RVF bootstrap models used to produce Figure 2b (see text for
details). The mean ranks (i.e. the order in which the variables were selected, where
rank 1 ¼ the first selected variable, rank 10 ¼ the tenth selected variable and all non-
selected variables are given a rank of 11) are given in the third column, and the
number of times (out of 100 models) each variable was selected is given in the final
column.

Notes: Key to variable names: wd10 refers to NOAA-AVHRR data at 0.10 degrees
resolution in the latitude/longitude format, 03 refers to the AVHRR channel 3
(MIR), 07 to Land Surface Temperature and 14 to Normalized Difference Vege-
tation Index (NDVI) data; a0 is the (Fourier and arithmetic) mean, a1, a2 and a3
refer to the amplitudes of the annual, bi-annual and tri-annual cycles, respectively of
temporal Fourier processed imagery and p1, p2 and p3 to their corresponding phases
(timing of the first peak); mn and mx refer to the minimum and maximum and vr to
the variance. DEM is a digital elevation layer (see Hay et al., this volume, pp. 37–77
for more details).
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of the importance of each variable independently of both the other

variables, and of the particular models in which the variable appears.

Given the very high weights of the very few top models in this series,

these summed weights reflect whether or not the variables concerned

were included in these top models. The summed Akaike weights

(Table 2, second column) do not necessarily scale with the mean

rank (i.e. mean order of step-wise inclusion into the models) of each

predictor variable (Table 2, third column). Perhaps not surprisingly,

given its occurrence in all models and often as the first variable, the

annual amplitude of the Land Surface Temperature has the highest

summed Akaike weight. The next variable (phase of the tri-annual

NDVI cycle) had an equal summed weight, but appeared in fewer

models (Table 2, last column), although in all of the top 25 models.

The next three variables appeared in 20 (NDVI annual amplitude), 6

(LST minimum) and 14 (DEM) of the top 25 models, respectively.

The ‘‘best’’ model had a combination of variables not found in any

other of the 100 models. Whether or not this indicates that this

unique combination of variables describes the disease better than

any other, or simply the bootstrap sample that happened to have

been selected during that run of the model, is a moot point. By its

very nature bootstrap sampling is bound to produce, simply by

chance, one set of randomly selected data that gives rise to a model

that is ‘‘better’’ than all the rest. Only if this subset of data is an

unbiased sample of the real disease situation on the ground (some-

thing that cannot be assessed; this is the unknown ‘‘truth’’ we are

trying to model) will this best model also be the best model for the

disease.

7. CONCLUSION

Despite a plethora of models available to describe vector and disease

distributions, practitioners tend to favour only a few approaches.

Logistic regression methods appear to have the largest number of

followers (Rushton et al., 2004), especially within Europe, while the

GARP approach has a strong following in North America (Stockwell

and Peters, 1999). Part of the reason for this dominance is the
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availability of logistic-regression routines within many standard

statistical packages, or of the GARP program from dedicated

websites. This review seeks to redress the balance, to make distribu-

tion mapping yet another branch of ecology, with underlying as-

sumptions of normally or multivariate normally distributed predictor

variables. In so doing its aim is not only to point out the numerous

advantages of such assumptions (for example, their biological realism

coupled with statistical tractability) but also to provide a route map

towards a more unified theory combining population and community

ecology. Population dynamics and the distribution of individual spe-

cies are the basic ingredients of ecological communities but, to date,

these subjects have been studied in isolation because, it seems, of an

incompatibility between the under-pinning theoretical models.

Briefly, methods that made no assumptions about underlying fre-

quency distributions of predictor variables, or that allowed only sin-

gle ‘‘off ’’–‘‘on’’ transitions on single variables (as does simple logistic

regression) were hardly compatible with the Macarthurian tradition

of quantitative community ecology in which the normal distribution

is an all-pervading assumption, regarded by many even as an axiom.

It might indeed be a delusion that the response of any species to

gradual changes in each key predictor variable is shaped like a nor-

mal, or apparently normal, curve; but it is certainly not shaped like

the underlying sigmoid curve of the logistic regression model.

Biological processes occur within bounds, and therefore the sum to-

tal of biological processes that ultimately determine a species’ distri-

bution is also likely to occur within bounds. The future holds many

uncertainties for biological communities such as how they will re-

spond to gradual habitat destruction, or to climate change? By uni-

fying individual and community analysis we might be able to discover

if communities are no more than the ‘‘sum of their parts’’, in which

case we might expect communities to re-arrange themselves under the

forces of global change, or if indeed they are greater that the sum of

their parts, in which case environmental change may result in com-

munity disintegration, and a significant loss of ecosystem services to

human-kind.

Vectors and vector-borne diseases are one component of ecosys-

tems, and they too may show gradual or catastrophic changes as
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environments change. Rogers and Randolph (this volume, pp.

345–381) show that we are presently far from understanding which

type of change to expect. Their great sensitivity to environmental

conditions suggests that these diseases may be among the first of all

diseases to show distribution and intensity changes as climates change

but, as Rogers and Randolph (this volume, pp. 345–381) points out,

we must not let this sensitivity lead us to conclude that any change in

a vector-borne disease is due to climate. By modelling species’ dis-

tributions in the ways outlined in the present review, it should be

possible to estimate the sensitivity of any disease to climate change by

examining the limits of its environmental envelope in multivariate

space. When this is matched to the predicted changes in climate, also

in multivariate space, it is possible to map the areas on the ground,

which will fall within the environmental envelope in the future. It is

these areas that are at risk of disease invasion and spread.

A common feature of many vector-borne and other diseases is the

paucity of hard data we have for their precise geographic distribu-

tions. This did not particularly matter in the days of equally sparse

climatic data (also from point sources) or of fairly coarse spatial

‘‘climate surfaces’’ that were produced from such data. One set of

coarse data could be related to another set of coarse data to produce

a risk map of such poor spatial resolution as to be almost useless.

Today, however, environmental data from satellites are available at

unprecedented spatial resolutions, and these reveal the inadequacies

both of past maps and of the data on which they are based (see Hay

et al., this volume, pp. 37–77). This therefore presents us with a new

problem of how to deal with sparse distribution data. While it is

possible to produce risk maps from such data using the techniques

outlined in this review, one must nevertheless ask whether the current

best model is describing simply the data or, more importantly, the

disease. Bootstrap sampling does not resolve this problem, since a

bootstrap sample of a biased training set is itself likely to be biased. If

all maps are wrong, and only some of them are useful, we must be

able to distinguish the useful from the useless. It is likely that only

additional, independent data collected during ground-truthing of risk

map predictions will enable us to do this. It is, perhaps, time to return

to the field.
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ABSTRACT

This contribution documents the satellite data archives, data process-

ing methods and temporal Fourier analysis (TFA) techniques used to

create the remotely sensed datasets on the DVD distributed with this

volume. The aim is to provide a detailed reference guide to the genesis

of the data, rather than a standard review. These remotely sensed

data cover the entire globe at either 1� 1 or 8� 8 km spatial reso-

lution. We briefly evaluate the relationships between the 1� 1 and

8� 8 km global TFA products to explore their inter-compatibility.

The 8� 8 km TFA surfaces are used in the mapping procedures de-

tailed in the subsequent disease mapping reviews, since the 1� 1 km

products have been validated less widely. Details are also provided on

additional, current and planned sensors that should be able to pro-

vide continuity with these environmental variable surfaces, as well as

other sources of global data that may be used for mapping infectious

disease.

1. INTRODUCTION

The growth in the use of remote sensing (RS) and geographic infor-

mation systems (GIS) has been fuelled, in part, by scientific demands to

address many environmental issues at the global scale. The focus of RS

and GIS in public health has been on infectious disease mapping (Hay

et al., 1997, 2000; Rogers et al., 2002; Tatem et al., 2004; Rogers, this

volume, pp. 1–35). This has rarely been attempted at global scales

primarily due to a lack of readily available environmental data for

epidemiologists (Hay et al., 1996, 1997; Hay, 2000). The RS data pro-

vided with this volume, and described in this review, go some way

towards resolving this problem. These wide-area RS and other envi-

ronmental data will be of utility to a variety of applications, but our

emphasis here is entirely on infectious disease mapping.

Infectious diseases that have poikilothermic arthropod intermedi-

ate hosts are very sensitive to environmental conditions (Rogers and

Packer, 1993). This is often highlighted by explaining sensitivities

to temperature, rainfall and humidity of components of the basic
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reproductive number (R0) of vector-borne diseases (Hay et al., 1997;

Rogers et al., 2002; Rogers and Randolph, this volume, pp. 345–381),

which mathematically describes the potential for parasite/pathogen

persistence through time (Anderson, 1993). The RS-based data re-

viewed here have been developed to obtain information or ‘‘surro-

gates’’ of the more traditional climatic variables of relevance to the

transmission of vector-borne diseases and thus infectious disease

mapping (Hay and Lennon, 1999; Goetz et al., 2000; Hay, 2000;

Green and Hay, 2002). We focus primarily on the Advanced Very

High Resolution Radiometer (AVHRR) which, more than any other

satellite sensor, has found considerable application in large area ep-

idemiology (Hay, 2000; Rogers, this volume, pp. 1–35). We do not

describe the various applications of these data as this is done else-

where (Hay et al., 2000; Rogers et al., 2002) and is amply illustrated

throughout this volume.

2. THE AVHRR SENSOR

The basic principles of RS and satellite sensor systems have been

reviewed previously (Hay et al., 1997; Hay, 2000; Tatem et al., 2004).

Here we provide a brief overview of the AVHRR sensor, a series of

which have collected the RS data distributed on the accompanying

DVD. It is beyond the scope of this review to extend this treatment to

other sensors.

2.1. History and Overview

The National Oceanographic and Atmospheric Administration’s

(NOAA) series of polar-orbiting Television Infrared Observation

Satellites (TIROS) has been operational since 1978 (Cracknell, 1997).

TIROS-N (later renamed NOAA-6) was the first satellite to carry the

AVHRR, originally for meteorological purposes, and has been followed

by eleven satellites, each with an operational lifetime of 2–4 years. The

definitive description of the NOAA polar-orbiting satellites, their radi-

ometer payloads and the data they generate are given in Cracknell
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(1997) and Kidwell (1998). Information on the NOAA-AVHRR satellite

series is updated regularly by the NOAA Satellite and Information

Services (NOAASIS) [http://noaasis.noaa.gov/].

The NOAA-AVHRR satellites complete 14.1 near-polar, Sun-

synchronous orbits every 24 hours at an altitude of 833–870 km. The

NOAA-AVHRR can view a 2800 km swath of the Earth and so, at

this orbital frequency, daily data are recorded for the entire Earth

surface. Radiation is currently measured in six wavebands (channels)

of the electromagnetic spectrum (five on platforms prior to NOAA-

15) so that six images are recorded for each area sensed. The visible

(channel 1) and near infrared (channel 2) measure reflected solar

radiation, whereas the thermal channels (4 and 5) measure emitted

thermal infrared. Channel 3 (split into 3A and 3B on the latest plat-

forms) senses the middle-infrared (MIR) and is sensitive to a com-

bination of both reflected and emitted radiances.

The nominal 1.1� 1.1 km spatial resolution data are transmitted

continuously and may be received by stations near to the satellite’s

path, where they are referred to as High Resolution Picture Trans-

mission (HRPT) data (Cracknell, 1997). On request to NOAA, these

data may also be recorded on an on-board tape storage system and

later transmitted to Earth as the satellites pass over a network of

receiving stations. The data are then referred to as Local Area Cov-

erage (LAC). These data have found application in a very wide range

of disciplines that have been reviewed by Ehrlich et al. (1994) and

Cracknell (1997).

Two processing steps reduce the spatial resolution of most of the

NOAA-AVHRR data available to the research community. Since the

on-board tape system is incapable of holding global coverage data at

1:1� 1:1km spatial resolution, the information from each area of five

(across-track) by three (along-track) pixels is stored as a single value

corresponding to the average of the first four pixels only, of the first

row of the 5� 3 block. The resulting imagery is referred to as Global

Area Coverage (GAC) data. GAC data, with a stated nominal spatial

resolution of 4� 4 km; are far from ideal representations of the raw

data (Justice et al., 1989; Robinson, 1996). Nevertheless, the GAC

data are the only form in which the NOAA-AVHRR archive was and

continues to be collected. Reasonable quality global datasets are
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available at a variety of spatial resolutions (4� 4 km and coarser)

starting in the early 1980s (James et al., 1994). When further proc-

essed, these data are often re-sampled to an 8� 8 km spatial reso-

lution before distribution (James et al., 1994).

2.2. AVHRR Archives

A series of 1� 1 km spatial resolution NOAA-AVHRR data are

available at the ‘‘Global Land 1-KM AVHRR Project’’ homepage on

the United States Geological Survey (USGS), EROS Data Center,

website [URL: http://edcdaac.usgs.gov]. The dataset was generated to

obtain a standard year of observations for the global land cover

mapping project by the International Geosphere Biosphere Pro-

gramme – Data and Information System (IGBP-DIS) (Eidenshink

and Faundeen, 1994; Townshend et al., 1994; Teillet et al., 2000).

The 8� 8 km spatial resolution NOAA-AVHRR data are available

at the Global Land Biosphere Data and Information Web Site at the

Goddard Space Flight Center’s Distributed Active Archive Center

[http://daac.gsfc.nasa.gov/]. The data were archived with the purpose

of providing a long-term database for Earth observation, with a

particular emphasis on tropical deforestation (Townshend, 1994).

These images are referred to as the Pathfinder AVHRR Land (PAL)

dataset (James et al., 1994).

2.3. From Digital to Environmental Data

2.3.1. Temporal Range

The 1� 1 km NOAA-AVHRR data are available by decad (10 day

unit) from April to December 1992 (9 months, 27 decads, 162 files);

January–September 1993 (9 months, 27 decads, 162 files); February–

December 1995 (11 months, 33 decads, 198 files) and January–April

1996 (2 months, 6 decads, 36 files) (see Table 1).

The 8� 8 km NOAA-AVHRR data are available from August 1981

to September 2001 inclusive; a 20-year time series. While the 1� 1 km

data are obviously more detailed spatially, the longer time series of the
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8� 8 km imagery provides opportunities for examining changing land-

surface patterns over a critical period of the Earth’s history. These

issues are explored in detail in Sections 3.2 and 3.3 respectively.

2.3.2. Data Obtained and File Sizes

For each decad of the 1� 1 km NOAA-AVHRR the following param-

eters were downloaded: channels 3, 4, 5, the normalized difference veg-

etation index (NDVI), satellite and solar zenith angles (see Hay, 2000 for

definitions). This amounts to �680gigabytes (Gb) of compressed data.

When each global image is uncompressed it is 17 347 lines/rows by

40031 samples/columns. For 8-bit imagery the file size is therefore

(17 347� 40 031 ¼ 694 417 757 bytes) or �678Mb. For 16-bit data the

file size is �1.36Gb.

The global 8� 8 km data, in contrast, are considerably smaller, at

2168 lines/rows by 5004 samples/columns, and so for 8-bit data the

files (2168� 5004 ¼ 10 848 672 bytes) are �10.6Mb and double that

for 16-bit files. The 20-year duration of the 8� 8km data archive

makes the total multitemporal database close to 3.5Gb when com-

pressed. The spatial resolution of the 1� 1 km NOAA-AVHRR data

and the temporal duration of the 8� 8km NOAA-AVHRR data

result in such large volumes of data, that distribution on DVD in

their original form is not possible, an issue addressed in Section 3.

Table 1 Dates of the NOAA-AVHRR 1� 1 km data acquisition ar-
chived for IGBP-DIS. A dot indicates acquisition of all decads

Month 1992 1993 1995 1996

January � �
February � �
March � �
April � � � �
May � � �
June � � �
July � � �
August � � �
September � � �
October � �
November � �
December � �
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2.3.3. Geo-Registration and Projection

All RS data represent conditions on a spherical Earth as a regular,

gridded raster array of picture elements (pixels). Capturing features of a

3-dimensional object (the globe) on a 2-dimensional map involves some

compromise in accurately representing direction, distance, shape and

area (Snyder and Voxland, 1994; Snyder, 1997) and different map pro-

jections are used for applications that need to show one or other of these

map features as accurately as possible. The projection chosen for both

the 1� 1km and 8� 8 km NOAA-AVHRR data at source is the In-

terrupted Goode’s Homolosine, which is a combination of a Sinusoidal

projection covering the tropical regions of the Earth (to latitudes of

401440 North and South) and the Mollweide projection elsewhere. This

combination of projections was considered to be the best at maintaining

the shape and area of the continents (Steinwand, 1994). Despite the

geographical superiorities of the Goode’s projection the majority of po-

tential non-specialist RS or GIS users, and the software with which they

are familiar, use latitude and longitude data in an equi-rectangular grid

technically known as the Plate-Carrée projection. After temporal Four-

ier processing (see Section 3) of the data in their original projection we

resampled the resulting files using a bilinear interpolation algorithm

(Mather, 1999) that ignored sea pixels along coastlines (i.e. sea pixels

were given weights of zero in the interpolation algorithm), and distribute

both 1� 1 and 8� 8 km NOAA-AVHRR products in the Plate-Carrée

projection, at nominal resolutions of 0.011 and 0.11, respectively. The

resulting images are therefore 36000 columns� 18000 rows or 3600

columns� 1800 rows, respectively. Table 2 gives the full details that are

required for manipulating these data in RS and GIS software packages.

2.3.4. Rescaling

Values of geophysical variables are usually rescaled before storage

as image files, and represented as either 8-bit (i.e. byte) or 16-bit

(i.e. integer) binary numbers. This saves on hard disk storage space

(a limiting component in earlier computers) and facilitates image com-

pression, which further saves storage space. Eight-bit numbers are al-

ways positive, and span the range from 0 to 255. Sixteen-bit numbers
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may be stored either in signed 16-bit format (range between �32 767

and +32767) or unsigned 16-bit format (range between 0 and 65535).

Much confusion arises when unsigned 16-bit integers (exceeding

+32767) are regarded as signed integers, and vice versa, and users

must take care to specify to their software the correct format (i.e.

‘signed’ or ‘unsigned’) of 16-bit integer image data. Parts of the full

digital range of stored data are often ‘reserved’ for mask values (in-

dicating the sea, image quality, or some detail of the map projection

used) and these should be specified by the providers of the imagery.

The original images were stored at source in either 8-bit or 16-bit

format, with certain values reserved to indicate masks, sea or pro-

jection interruptions. Full details of this conversion process for the

1� 1 km imagery are given as examples. The satellite zenith angle

(SaZA) data have units of degrees and were stored in 8-bit files. In the

original files, the binary min/max=10/190 were used to represent the

geophysical min/max=�90/90 and mask values were 0=missing

data over land; 1=ocean; 2=Goode’s interrupted area. The satellite

zenith angle was calculated from SaZA=(DN�100) where DN is the

original stored 8-bit number. The solar zenith angle (SoZA) also has

units of degrees and was originally stored as 8-bit files. The binary

min/max were 10/190 and the geophysical min/max were 0/180. The

mask and other values were exactly the same as for the SaZA

imagery, so SoZA=(DN�10). The NDVI is a ratio and has no units.

Table 2 Geo-referencing information for the TALA RS data

Details 1� 1 km imagery 8� 8 km imagery

Projection Geographic Geographic

(latitude/longitude) (latitude/longitude)

Image size, columns 36 000 3600

Image size, rows 18 000 1800

Upper-left coordinate, pixel centre �179.995 �179.95

Upper-left coordinate, pixel centre 89.995 89.95

Units decimal degrees decimal degrees

Pixel size: x 0.01 0.1

Pixel size: y 0.01 0.1

Spheroid WGS84 WGS84

Datum WGS84 WGS84
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It was archived as 8-bit files, the binary min/max of which were 10/

210 with the geophysical min/max=�1/1 and mask and other values

as before; so NDVI=(DN�110)� 0.01. Finally, the radiance data

(channels 3, 4 and 5) had units of degrees Kelvin and were originally

stored as unsigned 16-bit data with binary min/max=10/1018 and the

geophysical min/max=160/340. Mask and other values were as be-

fore, so channel 3, channel 4 or channel 5=(DN+886.32)/5.602.

In general, before the processing steps outlined below, the imagery

was stored in signed 16-bit format with the mask and other values (0,

1, 2) being stored as �999, �998 and �997, respectively. The 8�

8km NOAA-AVHRR data were archived similarly with further de-

tails and (different) rescaling values given by James et al. (1994).

2.3.5. Quality Control and Data Pre-Processing

Ancillary data provided with the original imagery were used to ex-

clude unreliable pixels in both the 1� 1 and 8� 8 km datasets. Qual-

ity control removed pixels taken at satellite zenith angles (SaZA)

greater than 401, to reduce bi-directional effects and parallax errors

due to image pixels acquired at viewing angles far from nadir (Hay

and Lennon, 1999; Hay, 2000). Pixels with solar zenith angles (SoZA)

exceeding 801 were also excluded, to eliminate data retrieved at low

sun elevations (i.e. at dusk and dawn) that result in shadows that

affect image quality and therefore interpretation (Hay and Lennon,

1999; Hay, 2000). In addition, the 8� 8km NOAA-AVHRR data

included a data layer that could be used to mask those pixels deter-

mined as cloudy by the ‘Clouds from AVHRR’ (CLAVR) algorithm

(Stowe et al., 1991; Hay and Lennon, 1999).

The NDVI data were then maximum-value composited (Holben,

1986) into monthly files. The (incomplete) set of monthly 1� 1 km

NOAA-AVHRR data for 1992–1996 were further subjected to max-

imum value composition to generate a single set of 12 monthly images

representing the average (i.e. synoptic) year using all the available

data. The particular files contributing to each synoptic month are

shown in Table 1. These data were then rescaled conditionally (if

p�996 ¼ 0; else ¼ ððNDVIþ 1Þ � 1000ÞÞ and stored as signed 16-bit

integers ready for temporal Fourier analyses (TFA).
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MIR (channel 3) data were also maximum-value composited in the

same way (Lambin and Ehrlich, 1996). The subsequent processing

procedure was identical to that applied to the NDVI. Data values

indicating a temperature estimate of 350K or greater were screened

out at this stage, as they were clearly in error. These data were then

conditionally rescaled (if p� 999 ¼ 0; else ¼ ðMIR� 10ÞÞ for stor-

age as signed 16-bit integers.

Land surface temperature (LST) data were derived using a split

window algorithm (Price, 1983), using quality-controlled channel 4

and 5 data and maximum-value composited (Lambin and Ehrlich,

1996). Subsequent processing was identical to that of the channel 3

data. These data were conditionally rescaled (ifp�999=0, else=

(LST� 10)) for storage as signed 16-bit integers.

The 1� 1 and 8� 8km datasets were not corrected system-

atically for the effects of satellite orbit drift over the lifespan of each

satellite, which can affect the inter-comparability of these multi-

temporal data (Gutman, 1999). This can be particularly problematic

in the thermal channels because satellite orbit decays progressively

delay the timing of the daily measurement, which is obviously critical

for a variable such as temperature that shows strong diurnal var-

iation (Gleason et al., 2002). For these and other reasons, the AV-

HRR data for 1981 and all data after 1999 were excluded from the

8� 8 km NOAA-AVHRR time series before TFA (Nemani et al.,

2003). Many small artefacts in satellite data are smoothed by TFA

(see Section 3) but we emphasize that these uncorrected data are not

appropriate for the analyses of temporal change. Datasets that sys-

tematically deal with such artefacts for monitoring temporal change

are becoming available (Tucker et al., 2005). Finally, only NDVI,

MIR and LST data products are processed and distributed here.

Although it is possible to derive air temperature and vapour pressure

deficit (Goetz et al., 2000), we have avoided these indices as they

have been tested less widely, can require further geophysical data

inputs and show co-linearity with these existing products, a number

of which are used in their generation. Data provided on the accom-

panying DVD are in the format and with the new scaling as outlined

above, with further details in Table 3 and the DVD README

file.
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Table 3 DVD imagery contents with details of scaling factors to be applied to the data, the data units and expected values

File name Imagery type (1) Image Scaling Units Geophysical min. Geophysical max.

wd1003a0 TFA 0.1 mean MIR (x/10) �273 oC �7.8 48.9

wd1003a1 TFA 0.1 MIR annual amplitude (x/10) oC 0 30.8

3.1wd1003a2 TFA 0.1 MIR bi-annual amplitude (x/10) oC 0 1.0

wd1003a3 TFA 0.1 MIR tri-annual amplitude (x/10) oC 0 0.6

wd1003d1 TFA 0.1 MIR pvs described by annual cycle No scaling % 0 94

wd1003d2 TFA 0.1 MIR pvs described by bi-annual cycle No scaling % 0 45

wd1003d3 TFA 0.1 MIR pvs described by tri-annual cycle No scaling % 0 13

wd1003mn TFA 0.1 Minimum MIR (x/10) �273 oC �26 32.4

wd1003mx TFA 0.1 Maximum MIR (x/10) �273 oC �3.6 50.9

wd1003p1 TFA 0.1 MIR phase of annual cycle (x/10) Months 0 12

wd1003p2 TFA 0.1 MIR phase of bi-annual cycle (x/10) Months 0 6

wd1003p3 TFA 0.1 MIR phase of tri-annual cycle (x/10) Months 0 4

wd1003vr TFA 0.1 MIR variance (x/10) % 0 563

wd1007a0 TFA 0.1 Mean LST (x/10) �273 oC �30.7 55.4

wd1007a1 TFA 0.1 LST annual amplitude (x/10) oC 0 3.7

wd1007a2 TFA 0.1 LST bi-annual amplitude (x/10) oC 0 1.0

wd1007a3 TFA 0.1 LST tri-annual amplitude (x/10) oC 0 0.5

wd1007d1 TFA 0.1 LST pvs described by annual cycle No scaling % 0 96

wd1007d2 TFA 0.1 LST pvs described by bi-annual cycle No scaling % 0 48

wd1007d3 TFA 0.1 LST pvs described by tri-annual cycle No scaling % 0 11

wd1007mn TFA 0.1 Minimum LST (x/10) �273 oC �43.5 54.3

wd1007mx TFA 0.1 Maximum LST (x/10) �273 oC �26.5 58.9

wd1007p1 TFA 0.1 LST phase of annual cycle (x/10) Months 0 12

wd1007p2 TFA 0.1 LST phase of bi-annual cycle (x/10) Months 0 6

wd1007p3 TFA 0.1 LST phase of tri-annual cycle (x/10) Months 0 4

wd1007vr TFA 0.1 LST variance (x/10) % 0 758

wd1014a0 TFA 0.1 Mean NDVI (x/1000) �1 No unitsa �0.086 0.803

wd1014a1 TFA 0.1 NDVI annual amplitude (x/1000) No unitsa 0 0.445

(Continued )
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Table 3 (continued )

File name Imagery type (1) Image Scaling Units Geophysical min. Geophysical max.

wd1014a2 TFA 0.1 NDVI bi-annual amplitude (x/1000) No unitsa 0 0.251

wd1014a3 TFA 0.1 NDVI tri-annual amplitude (x/1000) No unitsa 0 0.131

wd1014d1 TFA 0.1 NDVI pvs described by annual cycle No scaling % 0 94

wd1014d2 TFA 0.1 NDVI pvs described by bi-annual cycle No scaling % 0 80

wd1014d3 TFA 0.1 NDVI pvs described by tri-annual cycle No scaling % 0 39

wd1014mn TFA 0.1 Minimum NDVI (x/1000) �1 No unitsa �0.12 0.764

wd1014mx TFA 0.1 Maximum NDVI (x/1000) �1 No unitsa �0.066 0.865

wd1014p1 TFA 0.1 NDVI phase of annual cycle (x/10) Months 0 12

wd1014p2 TFA 0.1 NDVI phase of bi-annual cycle (x/10) Months 0 6

wd1014p3 TFA 0.1 NDVI phase of tri-annual cycle (x/10) Months 0 4

wd1014vr TFA 0.1 NDVI variance (x/100)00 0 0.116

wd1030dm Globe D.E.M. Globe DEM No scaling Meters �295 6815

afpop00 Pop. surf. UNEP-GRID Population for Africa No scaling Persons 0 1 580 304

afpopd00 Pop. d. surf. UNEP-GRID Population for Africa No scaling Persons/km2 0 84 923

gpw00 Pop. surf. SEDAC Gridded population of the World No scaling Persons 0 1 467 471

gpw00d Pop. d. surf. SEDAC Gridded population of the World No scaling Persons/km2 0 122 755

grump-2000 M. pop. surf. SEDAC Gridded population of the World No scaling Persons 0 1 346 722

TFA=Temporal Fourier analysis; pvs=proportion of variance in original signal;
ano units because it is a ratio. Geophysical minimum and geophysical maximum values do not include masks. Globe DEM—digital

elevation model. Pop. surf.=population surface, Pop. d. surf.=population density surface, M. pop. surf.=modelled population surface.
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3. TEMPORAL FOURIER ANALYSIS (TFA)

3.1. History and Application

Monthly composite imagery usually shows strong serial correlations

(i.e. seasons wax and wane in a relatively predictable manner) and this

data redundancy may be eliminated in two different ways. Tradition-

ally, the data are subjected to principal components analysis (PCA),

and the resultant significant principal components are used in analyses

(Eastman and Falk, 1993; Lillesand and Kiefer, 2000). Alternatively,

the data may be subjected to TFA, which describes natural environ-

mental cycles such as temperature and vegetation growth in terms of

annual, bi-annual, tri-annual and other cycles with shorter or longer

wavelengths (periods) (Rogers, 2000). The great attraction of TFA is

that it produces a set of orthogonal (i.e. uncorrelated) outputs while

retaining a description of seasonality (lost in PCA) that is of vital

interest in vector and disease mapping (Rogers et al., 1996; Rogers,

2000; Rogers and Robinson, 2004). One disadvantage of both PCA

and TFA is that they both assume stationarity (i.e. constant mean and

variance) of the data over time. Trends in data can first be removed by

differencing the time series from a moving average spanning a number

of annual cycles, and then analysing the de-trended time series. Al-

ternatively, if the trend itself is of interest, a windowing approach can

be applied, whereby the data are analysed in a series of (usually over-

lapping) windows in time. Within each window the data are assumed

to be mathematically stationary, and the windowed TFA results can be

compared to look for changes in the Fourier components (means,

amplitudes, phases etc.) through time.

The origins, mathematical basis and arguments for the biological

appropriateness of TFA are developed in detail elsewhere (Rogers,

2000; Rogers et al., 2002; Rogers and Robinson, 2004). In brief, the

trajectory through the year (the sequence of 12 monthly images) of

every picture element (pixel) in the environmental time series is de-

scribed by a series of orthogonal sine curves (cycles/harmonics) with

different frequencies. Each cycle is described by its amplitude (the

maximum variation of the cycle around the mean) and phase (its

timing). A total of six cycles is required to describe a dataset of 12
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months perfectly (with cycle periods of 12, 6, 4, 3, 2.4 and 2 months).

We find that around 90% or more of the variation in the original

images is usually captured by the first three (i.e. annual, bi-annual

and tri-annual) cycles, and much of the remainder is often simply

‘noise’, so we normally use only these to capture important features

of the seasonal variation at each site.

During TFA the raw time series of data were first examined for

obvious drop-out values, that arise either from absent imagery or else

from pixels masked out in the quality control algorithm of image

processing. Data for such months were linearly interpolated from

data for the months before and after the dropout months (with data

wrap-around when dropout months occurred right at the start or

right at the end of the sequence). The resulting time series were sub-

jected to TFA and the raw data were then compared with the re-

composed result (i.e. the sum of the Fourier-fitted annual, bi-annual

and tri-annual cycles only). Months where the absolute difference

between the raw and recomposed data exceeded user-determined

threshold values were also regarded as incorrect (these threshold

values were generously set so that only obvious outliers would be

trapped at this stage). These months were therefore linearly interpo-

lated as before, using data from adjacent months, and TFA carried

out again on the corrected data. This process was repeated until no

further outliers were identified (generally requiring no more than one

or two rounds of interpolation of a few data points). Finally, no

8� 8 km imagery was available for the months of September–

December 1994. Images for these months were first created using the

averages of the same months from the 1993 and 1995 images, and

these were used in TFA.

3.2. Fourier Data Products

The TFA algorithm developed by the TALA group produces 14

different products for each input satellite channel; the overall mean

(a0); the amplitude of the annual (a1), bi-annual (a2) and tri-annual

(a3) cycles; the phase (i.e. peak timing) of the annual (p1), bi-annual

(ph2) and tri-annual (p3) cycles in months (starting at zero in January);
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the proportion of the variance in the original time series that is de-

scribed by the annual (d1), bi-annual (d2), tri-annual (d3) and all three

cycles combined (da); the maximum (mx) and minimum (mn) of the

seasonal cycle recomposed from the first three harmonics only; and

finally the variance (vr) of the original (i.e. not the fitted) time series.

These products are made available in full for the 8� 8 km imagery but

only a subset is given for the 1� 1km products due to space con-

straints (see DVD README file). Specifications for each 8� 8km

NOAA-AVHRR TFA file are given in Table 3 and examples for each

band given in Figure 1a–n. Note that equivalent details for the

1� 1 km NOAA-AVHRR TFA data are only in the DVD README

file. Figure 2a and b provides a vignette of the processed 1� 1 and

8� 8 km imagery for the lower reaches of the Nile river in Egypt,

Africa. The following section briefly discusses the inter-comparability

of these data.

3.3. Inter-Comparison of TFA Surfaces

We have not assumed that 1� 1 and 8� 8km TFA surfaces can be

used interchangeably, because of the rather different origins, time pe-

riods and processing chains to which the data were subjected. Regres-

sion tests between 1� 1 and 8� 8km surfaces were therefore

performed at different latitudes to examine whether the overpass times

of the various satellites, and varying solar and viewing illumination

levels produced regional effects. The global area represented by the

NOAA-AVHRR imagery was divided into eight latitude bands:

90–701N, 70–501N, 50–301N, 30–101N, 101N–101S, 10–301S, 30–501S,

50–901S (see Figure 3). The 1� 1km NOAA-AVHRR images were

resampled using a mean filter to match the spatial resolution of the

8� 8 km imagery. A stratified random sample of 10000 points within

each region was created and values of the pixels representing these

points extracted from the mean, maximum and minimum MIR, LST

and NDVI. Figure 4a–f shows a sample of these scatter plots of mean

MIR, LST and NDVI 8� 8km pixel values against mean MIR, LST

and NDVI 1� 1 km pixel values for the 501N–301N and 101N–101S

latitudinal segment. Regression analysis was carried out between the
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two sets of extracted pixel values. No significant differences were ob-

served between the fit of a linear model (see Table 4) and various non-

linear alternatives.

Figure 4 highlights scatterplots for two of the most epidemiolog-

ically important latitudinal segments; the 50–301N segment encom-

passing the US, Southern Europe and much of Asia, and the

101N–101S segment encompassing the equatorial tropical regions of

Figure 1a–n Panel of the fourteen 8� 8 km NOAA-AVHRR NDVI
TFA images (a) a0, mean, (b) mn, minimum and (c) mx, maximum signal
recomposed from the first three Fourier cycles. The amplitude of the (d) a1,
annual cycle, (e) a2, bi-annual and (f) a3, tri-annual are also shown, in
addition to the (g) p1, phase of annual, (h) p2, bi-annual, (i) and p3, tri-
annual cycle in months. The proportion of the variance in the original time
series described by the (j) d1, the annual, (k) d2, the bi-annual, (l) d3, the tri-
annual and (m) da, all three cycles combined is also shown with (n) vr, the
variance of the original data time series. Data are histogram equalized
stretched from the minimum data value (black, also water mask) to max-
imum (white) for display.

Figure 2a,b The lower reaches of the Nile river in Egypt illustrate the
difference between the 8� 8 km spatial resolution imagery (on the left) and
the 1� 1 km imagery (right). Images are of the mean NOAA-AVHRR
NDVI TFA a0 product (Table 3). Data are histogram equalized stretched
from the minimum data value (black, also water mask) to maximum (white)
for display.
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Figure 3 Latitudinal sample regions, (a) 90–701N, (b) 70–501N, (c) 50–301N, (d) 30–101N, (e) 10N–101S, (f) 10–301S,
(g) 30–501S, (h) 50–901S.
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Figure 4a–f Scatterplots for latitudinal segments shown in Figure 3 of 8� 8 km imagery sample points against
1� 1 km imagery sample points for 501N–301N for MIR (a), LST (b) and NDVI (c) and for 101N–101S for MIR (d), LST
(e) and NDVI (f). One-to-one lines (dashed) are added for ease of interpretation. Solid lines (and equations) are least
squares linear fits to the data.
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the World. Figure 4a shows that there is correspondence between the

1� 1 and 8� 8 km imagery for all three environmental variables at

50–301N, with the vast majority of sample pixels clustered along the

one-to-one lines (i.e. indicating little bias). These results are reflected

in Table 4, showing r2 values above 0.69 for all three variables. An

area of concern is the clusters of rogue NDVI pixels which exhibit

very low values in the 1� 1km NOAA-AVHRR imagery. These

represent small water-bodies and coast pixels not distinguishable at

the 8� 8km scale (but certainly affecting the values of the pixels at

this scale). Figure 4b shows that, for MIR and NDVI, little bias

between the 1� 1 km and 8� 8 km imagery exists at tropical lati-

tudes, and that large differences again exist in a small handful of

NDVI pixels. A more significant concern is that the 8� 8km NOAA-

AVHRR LST data are showing apparently higher temperature than

the corresponding 1� 1km imagery. This may be an artefact of the

difference in time periods over which each TFA product was pro-

duced, with the 8� 8 km imagery providing a more reliable synoptic

estimate given the much greater numbers of contributing years. Table

4 shows that, despite this bias, at tropical latitudes all three mean

environmental variables exhibit relatively strong correlations (all

r240.58). We have focused on the 8� 8 km imagery in our studies,

but we have included a smaller subset of the 1� 1 km imagery for

wider experimentation which should, nevertheless, bear these com-

parisons in mind.

Table 4 Values of r2 produced through linear regression analysis be-
tween 8� 8 and 1� 1 km imagery by latitudinal segment (latitudinal seg-
ments shown in Fig. 3)

Latitude Mean MIR Mean LST Mean NDVI

70–901N 0.368 0.778 0.135

50–701N 0.705 0.755 0.523

30–501N 0.903 0.809 0.692

10–301N 0.950 0.510 0.822

10S–101N 0.902 0.608 0.587

10–301S 0.869 0.434 0.860

30–501S 0.931 0.858 0.651

50–901S 0.737 0.819 0.546
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4. FUTURE GLOBAL ENVIRONMENTAL DATA

4.1. Terra, Aqua and Modis

The Terra (EOS AM-1) and Aqua (EOS PM-2) satellites, launched in

December 1999 and May 2002 respectively, are a part of (NASA)

Earth Observing System (Parkinson, 2003). A range of onboard sen-

sors capture a variety of image types, but most relevant in this context

are the MODerate Resolution Imaging Spectroradiometer (MODIS)

and, exclusively for Terra, the Advanced Spaceborne Thermal Emis-

sion and Reflection (ASTER) radiometer.

MODIS is particularly attractive for epidemiological applications

due to; (i) a better spectral resolution than AVHRR, with 36 spectral

channels with smaller waveband ranges and significantly improved

signal-to-noise ratios (Justice et al., 2002), (ii) a one to two-day repeat

time temporal resolution at significantly higher spatial resolution

(250� 250 to 1000� 1000m depending on the channel) than AV-

HRR (Townshend and Justice, 2002) and (iii) fully processed and

quality assessed data products, giving unparalleled, rapid access to

contemporary and reliable data on large-area ecosystem processes.

MODIS is also potentially attractive to the public health community

thanks to the availability of its products at no charge to users, and its

longer mission lifespan (Tatem et al., 2004). A drawback of MODIS

data, when compared to AVHRR, is the considerably greater com-

puting resources needed to cope with the larger data volumes of some

of its products. These constraints are likely to diminish rapidly with

the exponential increases in computer power and storage capacities,

but these spatial resolutions at the global scale will still present a

significant challenge to the majority of users.

ASTER is an alternative data source for studies that have tradi-

tionally used SPOT-HRV or Landsat TM sensors (see below). The

spatial resolution of ASTER varies with wavelength, yielding 15, 30

and 90m resolutions at visible–near infrared (VNIR), short wave in-

frared (SWIR) and thermal infrared (TIR), respectively (Yamaguchi

et al., 1998), and the images may prove a powerful tool for studying

local disease processes (Tatem et al., 2004).
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Spectral bands within the MODIS 36 band array are broadly sim-

ilar to those of AVHRR, which may permit temporal continuity of

datasets and thus the potential for extending the AVHRR time series

(Friedl et al., 2002), providing funding for the Terra and Aqua sat-

ellites continues (a significant consideration given the uncertainty of

most USA-based Earth observation systems (Lawler, 2005)). Like-

wise, ASTER uses spectral channels similar in characteristics to those

of Landsat TM. Significant ongoing efforts in RS are seeking to

overcome issues that arise from differences in radiometric and spatial

resolutions between old and new sensors (NOAA – NPOESS, 2003).

We develop these issues further in Section 4.3.

4.2. Other Satellite Sensors

This section focuses on those sensors that can provide information at

the global scale. Many sensors that have not proven useful in epide-

miological studies and those with evident constraints, such as difficul-

ties of image costs or data access, are not considered. A more complete

account of satellite sensors is available in Campbell (2002) and Verger

et al. (2003). There are many planned enhancements to the existing

sensors which, due to the frequency of modification, are best reviewed

at their relevant web sites. These, and the basic technical specifications

of the sensors reviewed here, are detailed in Table 5.

4.2.1. Geostationary Satellites

The principal payload of Meteosat is the Meteosat Visible and Infra-

Red Imager (MVIRI) (EUMETSAT, 2000). The radiometer operates

in a broad visible waveband, a water vapour absorption infrared

waveband and a thermal infrared waveband. The Meteosat satellites

were designed for meteorological applications, so part of their spec-

tral range is located in the thermal infrared area of maximal water

vapour absorption, making it ideal for monitoring clouds. At nadir

the spatial resolution is 2:5� 2:5km for the visible images and 5�

5km for the thermal infrared and water vapour images. Further from

the equator, the spatial resolution decreases so that over northern
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Table 5 Technical specifications of satellite sensors that have been used in epidemiology or that show significant
potential for epidemiological applications

Satellitea Sensor Bandsb Bandwith (mm) Spatial res. (m) Temporal res. Swath (km) URL

Landsat-5 MSSc 1 0.500–0.600 80 16 days 185 http://landsat.gsfc.nasa.gov

2 0.600–0.700 80

3 0.700–0.800 80

4 0.800–1.100 80

TM 1 0.450–0.520 30 16 days 185

2 0.520–0.600 30

3 0.630–0.690 30

4 0.760–0.900 30

5 1.550–1.750 30

6 10.40–12.50 120

7 2.080–2.350 30

Landsat-7 ETM+ 1 0.450–0.520 30 16 days 185

2 0.530–0.610 30

3 0.630–0.690 30

4 0.780–0.900 30

5 1.550–1.750 30

6 10.40–12.50 60

7 2.090–2.350 30

8 (P) 0.520–0.900 15

NOAA-16 &

17

AVHRR 1 0.580–0.680 1090 12 hours 2800 http://edc.usgs.gov/products/

satellite/avhrr.html

2 0.725–1.000 1090

3A 1.580–1.640 1090

3B 3.550–3.930 1090

4 10.300–11.300 1090

5 11.500–12.500 1090

SPOT-4 HRVIR 1 0.500–0.590 20 1–4 days 60 http://www.spotimage.fr/

2 0.610–0.680 20

(Continued )
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3 0.780–0.890 20

4 1.580–1.750 20

VGT-1 0 0.450–0.520 1000 1 day 2250

2 0.610–0.680 1000

3 0.780–0.890 1000

4 1.580–1.750 1000

SPOT-5 HRG P 0.480–0.710 5 1–4 days 60

1 0.500–0.590 10

2 0.610–0.680 10

3 0.780–0.890 10

4 1.580–1.750 20

VGT-2 Same as VGT-1 Same as VGT-1

Terra MODIS 1–2 0.620–0.876 250 1–2 days 2330 http://terra.nasa.gov/

3–7 0.459–2.155 500

8–36 0.405–14.385 1000

ASTER VNIR (3 bands) 0.500–0.900 15 4–16 days 60

SWIR (6 bands) 1.600–2.500 30

TIR (5 bands) 8.000–12.000 90

GOES-12 Imager 1 0.550–0.750 1000 26minutes 3000 http://www.goes.noaa.gov/

2 3.800–4.000 4000

3 6.500–7.000 8000

4 10.200–11.200 4000

5 11.500–12.500 4000

Meteosat-7 MVIRI 1 0.450–1.000 2500 30minutes http://www.eumetsat.de/

2 5.700–7.100 5000

3 10.500–12.500 5000

MSG-1 SEVIRI 1 0.560–0.710 4800 15minutes http://www.esa.int/msg/

Table 5 (Continued )

Satellitea Sensor Bandsb Bandwith (mm) Spatial res. (m) Temporal res. Swath (km) URL
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(Meteosat-8) 2 0.740–0.880 4800

3 1.500–1.780 4800

4 3.480–4.360 4800

5 5.350–7.150 4800

6 6.850–7.850 4800

7 8.300–9.100 4800

8 9.380–9.940 4800

9 9.800–11.800 4800

10 11.000–13.000 4800

11 12.400–14.400 4800

12 (HRV) 0.400–1.100 1670

aOperational and/or latest satellite of the series in orbit.
bP=Panchromatic.
cAlso onboard Landsat-1, -2, -3 and -4. For all acronyms refer to text. Res.=Resolution.
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Europe, for example, it is 4� 4 km in the visible wavebands and

8� 8 km in the thermal infrared and water vapour wavebands. Each

image is transmitted to the Earth in real time as each scan line is

completed, and new images are generated at 30-min intervals.

Meteosat Second Generation (MSG) satellites are designed to give

continuity to Meteosat missions with improved spatial, spectral and

temporal resolutions (EUMETSAT-ESA, 1998; EUMETSAT, 2001;

Schmetz et al., 2002). MSG-1 was launched in August 2002 and, after

a period of commissioning and validation, routine operations started

in January 2004 (EUMETSAT, 2004). Of particular potential on

board this satellite is the Spinning Enhanced Visible and Infrared

Imager (SEVIRI) sensor, designed to acquire images every 15min

from 12 different bands at a spatial resolution of 1:4� 1:4 km for the

visible, and 3� 3km for all other bands. MSG high-quality datasets

have raised expectations as powerful tools for studying temporal and

spatial tropical disease patterns in Africa (Hay, 2000). These have

largely not been realized due to data archival and distribution re-

strictions in Europe.

It is important to stress that despite the fact that Meteosat products

have found wide application in malaria studies in Africa (Hay et al.,

1998, 2003b; Rogers et al., 2002), they cannot be used in the Amer-

icas, Oceania or much of Asia as the satellite’s sensors capture only

that part of the Earth’s disc visible from a stationary orbit positioned

over the equator at the Greenwich meridian (i.e. longitude 01). This

area includes Africa, Europe and the Middle East. The satellites with

equivalent capabilities for the American and Pacific region are

NOAA’s Geostationary Operational Environmental Satellite (GOES)

(NASA, 1999). The satellite stationed at 751 W is known as GOES-E

while that at 1351W is called GOES-W. GOES has been used mainly

for weather observations and forecasts for the last 25 years (NASA,

1999), and its products offer great potential for epidemiological ap-

plications. The general properties of GOES-12 imagery are included

in Table 5 for reference.

Two other satellite systems complete the constellation of five sat-

ellites that provide geostationary sensor coverage for the entire globe.

Indian Ocean Data Coverage (IODC) is provided by Meteosat 5,

which has found continued use in a different geostationary orbit
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position. The sensor details have already been discussed in this sec-

tion. The final satellite and sensor to mention is the Geostationary

Meteorological Satellite (GMS) series which sits in orbit above 1401E.

GMS-1 was launched in 1977, the first in a series of satellites cul-

minating in GMS-5 which completed its observational mission in

May 2003. GOES-9 has been used as a backup to GMS-5 that had to

shut down its imager due to a technical fault. The replacement for the

GMS series (and GOES-9) is a new Japanese satellite called the

Multi-Functional Transport Satellite (MTSAT-1R), which became

operational in 2005 and is to be followed by MTSAT-2. These sat-

ellites carry sensors that image in 5 wavebands: visible, near-infrared,

two infrared channels and a water vapour channel. The visible images

have a spatial resolution of 1� 1 km while all other channels are

sensed at 4� 4km spatial resolution at nadir.

4.2.2. Landsat

The launch of Landsat-1 in 1972 heralded a new era of high reso-

lution RS (Lauer et al., 1997; Markham et al., 2004). Since then, the

Landsat programme has generated a continuous supply of high res-

olution imagery for the entire globe, from the first Multispectral

Scanner (MSS) aboard Landsat-1 to the latest Enhanced Thematic

Mapper (ETM+) on board Landsat-7 (Mika, 1997). During this

time, there has been a substantial evolution in the quality of the

radiometers (Mika, 1997), their calibration (Chander et al., 2004;

Thome et al., 2004) and the development of multi-spectral data anal-

ysis techniques developed to process captured data (Landgrebe,

1997). The novelty and conspicuous success of the Landsat pro-

gramme forced issues regarding data distribution and cost (Draeger

et al., 1997) and the feasibility of commercial RS (Williamson, 1997)

to be considered seriously for the first time. Many countries have

emulated and extended features of the Landsat programme, and

other high-resolution RS data sources are becoming increasingly

available (Campbell, 2002).

On May 2003, the scan line corrector (SLC) subsystem on board

Landsat-7 developed an anomaly (Markham et al., 2004). Later that

year the problem was identified as a permanent mechanical failure and
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Landsat-7 resumed its mission with the SLC turned off. The device was

designed to compensate for the forward motion of the satellite. This

malfunction causes data loss at the edges of images, with an effective

30% loss of information (Markham et al., 2004). Simple interpolation

techniques have been applied to the datasets with promising results,

but further validation is needed. Since the remaining pixels, comprising

30km2 in the center, are unaffected, Landsat-7 is still able to yield

useful imagery in the middle of each scene (USGS, 2003).

4.2.3. SPOT

The French Satellite Pour l’Observation de la Terre (SPOT) programme

began in 1986 with the launch of SPOT-1, carrying the High Resolution

Visible (HRV) payload. There were many similarities to Landsat-TM

imagery, but, essentially, the SPOT-HRV achieved a slightly higher

spatial resolution with fewer spectral channels. Data collection has con-

tinued with SPOT-4, which carries the High Resolution Visible and

Infrared (HRVIR) sensor and the multi-spectral VEGETATION

(VGT-1) instrument. The more recent SPOT-5 has a VGT-2, similar

to its predecessor, and a High Resolution Geometric (HRG) camera

that achieves spatial resolutions of up to 5m (Campbell, 2002). Of par-

ticular relevance from an epidemiological perspective is the VGT in-

strument, due to the high-quality vegetation index it offers, the

availability of fully corrected imagery at a constant 1� 1 km spatial

resolution, and an almost daily global coverage in four spectral bands

(0.45–1.75mm) (Campbell, 2002; Maisongrande et al., 2004). The VGT

sensor data can be provided as a number of different products: VGT-P

products (the physical values); VGT-S1 products (daily maximum value

composited syntheses), VGT-S10 products (10-day maximum value

composited syntheses) and VGT–D10 products (10-day BiDirectional

Composite syntheses). The VGT-S10 and VGT-D10 products are also

available in degraded resolutions of 4� 4 and 8� 8 km:

4.2.4. ADEOS

The Japanese polar orbiting Advanced Earth Observation Satellite

(ADEOS) program provides global observation datasets, albeit with
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limited temporal coverage due to instrument problems. The ADEOS-

1 satellite, launched in August 1996, went out of service in June 1997

due to structural damage to its solar array. The ADEOS-II platform,

launched in December 2002 went out of service in late October 2003,

also due to loss of power and subsequent sensor failure. Both plat-

forms carried a Global Imager (GLI) with a spectral range spanning

the visible to thermal infrared portion of the spectrum. The 36 GLI

spectral bands acquired data at 10:30 local time from an altitude of

800 km in a Sun-synchronous polar orbit. The additional spectral

information provided by GLI data has potential for improving es-

timates of land surface variables, including fire disturbance mapping

and ‘‘hot spot’’ monitoring, as well as more visible channels useful for

monitoring surface waters. A swath width of 1600 km provided ob-

servational data suitable for global land surface monitoring with a

repeat interval of four days. The GLI data have a spatial resolution of

250� 250m in six channels, comparable to MODIS, and 1� 1km in

other spectral bands. Improved atmospheric water vapour absorption

bands aided estimation of vertical humidity profiles and near-surface

water content, which were being used for improved weather fore-

casting and have utility in disease vector mapping (Goetz et al., 2000).

ADEOS science teams have provided higher order datasets of envi-

ronmental variables derived from the raw GLI data. Production of

vegetation cover type, density, productivity and change have expe-

rienced severe set-backs from instrument failures, but refined datasets

of potential utility to disease applications exist for most of 2003.

4.3. Data Continuity and NPOESS

Continuity between NOAA-AVHRR and MODIS, the current

‘‘work horses’’ of global RS observing systems, requires both com-

parability assessments between sensors and the development of future

new technology sensors. The latter will have improved radiometric

and spectral properties, often provided at finer spatial resolution.

Inter-sensor comparability requires assessments of the ability to re-

trieve consistent surface environmental information from instruments

with different spectral, spatial, geometric, radiometric and orbital
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acquisition properties. NASA has recently funded several studies to

address these issues in order to ensure continuity of the primary sur-

face reflectance, as well as spectral vegetation indices and other data

products that are used to derive many of the environmental variables

relevant to epidemiological research. These efforts include empirical

comparisons with sensor cross calibrations and associated transfor-

mation statistics, similar to what has been done with higher resolu-

tion sensors (Goetz, 1997). More analytical assessments are planned

based on modelling radiative transfer and incorporating relative sen-

sor responses across the energy spectrum within the sensor band

passes. Both approaches will lead, either separately or in combina-

tion, to releases of improved datasets compared to those distributed

on the accompanying DVD, in addition to providing an extended

observational record.

The primary satellite platforms that will provide data continuity

with AVHRR, Terra and Aqua over the next two decades of Earth

observation are the National Polar-orbiting Operational Environ-

mental Satellite Systems (NPOESS). An NPOESS Preparatory

Project (NPP) satellite is scheduled for launch in May 2006 [URL:

http://jointmission.gsfc.nasa.gov/]. It will carry four primary sensors

including the Visible Infrared Imager Radiometer Suite (VIIRS), the

Cross-Track Infrared Sounder, the Advanced Technology Micro-

wave Sounder, and the Ozone Mapping and Profiler Suite. The sensor

of primary interest to epidemiological research is the VIIRS, which is

intended to provide global observations of land, ocean and atmos-

phere parameters on a near-daily basis. VIIRS is a 22-band instru-

ment, with a spectral range from the visible through the thermal

infrared wavelengths (0.4–12mm). Each image swath will extend

3000 km, from a satellite orbit of 833 km, by scanning fore and aft

7561 of nadir. Image data will be acquired at two spatial resolutions,

370 and 740m. A unique feature of VIIRS is that it will reduce pixel

size across track (along scan), which will therefore compensate for the

pixel size expansion that typically accompanies off-nadir viewing. The

ground track of NPP will mimic that of Terra, with a 16-day repeat

interval consistently acquiring data at 10:30 local time in its descend-

ing node (the ascending node data are acquired at night). On the

planned series of NPOESS satellites that follow NPP, data will be

S.I. HAY ET AL.66

http://jointmission.gsfc.nasa.gov/


acquired at 09:30, 13:30 and 17:30, respectively, in order to provide

measures of diurnal variability and continuity with Aqua. These sat-

ellites are currently planned for launch after 2010. Although delays

are expected, the life expectancy of the instruments will ensure there

are periods of overlap between VIIRS sensors. A broad range of

environmental variables will be provided from VIIRS observational

data by NPP and NPOESS project science teams, including vegeta-

tion indices, surface temperature, land cover type classifications, en-

ergy and heat fluxes, atmospheric water vapour and soil moisture

dynamics. Much of this work will be based on algorithms already

developed by the MODIS science teams. The production of VIIRS

continuity datasets will also make use of a wide range of geometric,

radiometric and atmospheric corrections of the raw image data.

4.4. Other Data Sources

This brief section is not intended to be a comprehensive list of the

digital data available to the epidemiological community but simply

selected highlights that we have found to be particularly useful. A

more comprehensive listing can be found at [http://www.eden-

fp6project.net/].

4.4.1. Digital Elevation

Elevation influences temperature, rainfall and humidity and has been

used widely in the mapping of infectious disease (Guerra et al., this

volume, pp. 157–179). The 1 km Global Land One-kilometre Base

Elevation (GLOBE) Digital Elevation Model (DEM) is provided on

the accompanying DVD. Full documentation is provided elsewhere

[URL: http://www.ngdc.noaa.gov/seg/topo/report/]. We have resam-

pled these data to be compatible with the 1� 1 km and 8� 8km RS

datasets. Table 6 summarizes the important features of the data.

The Shuttle Radar Topography Mission (SRTM) obtained elevation

data on a near-global scale to generate the most complete high-

resolution digital topographic database of Earth. The SRTM consisted

of a specially modified radar system that flew on board the space
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shuttle Endeavour during an 11-day mission in February of 2000

(Rabus et al., 2003; Smith and Sandwell, 2003; Sun et al., 2003). The

SRTM is an international project led by the National Geospatial-

Intelligence Agency (NGA) and NASA. Elevation data at 1, 3 and 30

arc-second spatial resolution (USGS, 2004) are freely available from

Global Land Cover Facility [http://www.landcover.org/data/srtm/].

4.4.2. Gridded Climatologies

The Climate Research Unit at the University of East Anglia, UK,

produces a range of global gridded climatologies (New et al., 1999,

2000, 2002; Mitchell and Jones, 2005) derived from interpolated me-

teorological station data [http://www.cru.uea.ac.uk/cru/data/

hrg.htm]. These include 0:5� 0:51 time series from 1901 to 2000

(New et al., 1999, 2000) and 10� 10 arc-second climatology of syn-

optic months (1961–1990) (New et al., 2002). They include useful

comparative information on precipitation, wet day frequency, daily

mean temperature, diurnal temperature range, cloud cover, frost day

frequency, vapour pressure, wind speed, relative humidity and sun-

shine hours. These data have found extensive use in epidemiological

studies (Rogers and Randolph, 2000; Hay et al., 2002; Shanks et al.,

2002; Small et al., 2003).

Table 6 Geo-referencing information for the GLOBE DEM data

Details 30 arc second imagery

Projection Geographic latitude/longitude)

Image size, columns 43200

Image size, rows 21600

Upper-left coordinate, pixel edge �180

Upper-left coordinate, pixel edge 90

Units Decimal degrees

Pixel size: x 0.00833333

Pixel size: y 0.00833333

Spheroid WGS84

Datum WGS84

Vertical (z) units Metres above mean sea level

S.I. HAY ET AL.68

http://www.landcover.org/data/srtm/
http://www.cru.uea.ac.uk/cru/data/hrg.htm
http://www.cru.uea.ac.uk/cru/data/hrg.htm


4.4.3. The Africa Data Dissemination Service (ADDS)

The ADDS is operated by the US Agency for International Devel-

opment (USAID) as part of its Famine Early Warning System Net-

work (FEWS NET) [http://igskmncnwb015.cr.usgs.gov/adds/]. It

provides a regularly updated archive of AVHRR-derived NDVI for

Africa, as well as a suite of climatic products, including rainfall es-

timate data related to disease risk and food insecurity. The advantage

of these data is that they are available in near real-time and hence

useful for malaria epidemic monitoring (Hay et al., 2003a,b).

4.4.4. Gridded Human Population Data

Demographic data are crucial if visually striking maps are to be

turned into useful operational tools. The ‘‘state-of-the-art’’ in pop-

ulation mapping is detailed extensively elsewhere in this volume (Balk

et al., this volume, pp. 119–156) and the data can also be found on the

accompanying DVD (see Table 3 and Balk et al., this volume).

4.4.5. Administrative Boundary Data

One frequent difficulty in interpreting disease and other data that are

mapped to local administrative boundaries, and given local adminis-

trative names, is that there is no agreed global dataset of administrative

boundaries beyond admin level 1 (the major division below country

level zero). Although currently incomplete, the best current prospects

for a global documented standard seems to be the United Nations

funded Second Level Administrative Boundaries project [http://

www3.who.int/whosis/gis/salb/salb_home.htm]. Data for many coun-

tries are already available and the site is frequently updated.

4.4.6. Global Landcover Facility (GLCF)

The GLCF at the University of Maryland, USA holds a vast array of

freely downloadable satellite imagery and other data sources [http://

www.glcf.umiacs.umd.edu/index.shtml]. Satellite imagery available
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includes global coverage of MODIS and Landsat MSS, TM and

ETM+, with ASTER data made available recently. A variety of

vegetation, land cover, forest and burned area products, all derived

from satellite imagery, are available globally. We include it here be-

cause it is an unparalleled resource.

5. CONCLUSIONS

The 8� 8km TALA TFA RS dataset provides the most stable syn-

optic surfaces our group has used for monitoring global scale envi-

ronmental conditions of relevance to infectious disease mapping. The

data represent a significant spatial resolution advance on synoptic

climatologies and complement the suite of data these surfaces pro-

vide. The 1� 1km TALA TFA data streams are less comprehensive

temporally, show some latitudinally dependent differences with the

8� 8 km TFA data and are hence more experimental. They should

therefore be used with greater caution. Ancillary DEM, population

and human settlement data are also distributed on the DVD. These

collective data represent a contemporary snapshot of environmental

conditions of use to those engaged in infectious disease mapping and

wider environmental studies. It is difficult to predict their useful life-

span but we hope the continuity missions outlined will make their

regular updating a necessity.
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ABSTRACT

Scale and uncertainty are important issues for the global prediction of

disease. Disease mapping over the entire surface of the Earth usually

involves the use of remotely sensed imagery to provide environmental

covariates of disease risk or disease vector density. It further implies

that the spatial resolution of such imagery is relatively coarse (e.g.,

8 or 1 km). Use of a coarse spatial resolution limits the information

that can be extracted from imagery and has important effects on the

results of epidemiological analyses. This paper discusses geostatistical

models for (i) characterizing the scale(s) of spatial variation in data

and (ii) changing the scale of measurement of both the data and the

geostatistical model. Uncertainty is introduced, highlighting the fact

that most epidemiologists are interested in accuracy, aspects of which

can be estimated with measurable quantities. This paper emphasizes

the distinction between data- and model-based methods of accuracy

assessment and gives examples of both. The key problem of validat-

ing global maps is considered.

1. INTRODUCTION

Global epidemiology has been a focus of spatial epidemiological re-

search for many years (Vonreyn and Mann, 1987; Elliott, 1993). A

range of diseases has been studied, usually based on extensive liter-

ature searches, including asthma and related conditions (Beasley

et al., 1998), lymphatic filariasis (Michael and Bundy, 1997), influenza

and avian influenza (Cox and Subbarao, 2000), hepatitis B virus

(Custer et al., 2004), and HIV/AIDS (De Cock and Weiss, 2000;

Ippolito et al., 2000; Morison, 2001).

Today, epidemiologists have available a growing range of increas-

ingly large spatial datasets potentially covering very large areas of the

Earth’s surface. Spatial data are characterized by an attribute value z

and a location (x, y), usually expressed in a two-dimensional Cartesian

coordinate system (such as latitude and longitude). The widespread

availability of large spatial datasets has been facilitated by rapid in-

creases in the power of affordable personal computer hardware, the
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dissemination and uptake of increasingly sophisticated geographical

information system (GIS) software (Nicholson and Mather, 1996;

Staubach et al., 2001; Kirby, 2003; Elliott and Wartenberg, 2004; Jarup,

2004) and the sudden success of the internet, supporting web-based

dissemination and sharing of data (LaPorte et al., 1996; Gotway and

Young, 2002). Prime among the sources of large spatial datasets is

remote sensing, defined as the use of electromagnetic radiation (EMR)

sensors to record images of the environment, which can be interpreted

to yield useful information (Curran, 1985). Remote sensing has the

potential to provide complete cover, in the form of one or more images,

synoptically at a range of spatial and temporal scales (Hay, 2000;

Graham et al., 2004). No other source of environmental data can pro-

vide such spatially rich information. This is especially true at the global

scale.

1.1. Indirect Relations

Remotely sensed imagery and other forms of spatial data can be used

to support a wide range of epidemiological analyses, although remote

sensing rarely leads to direct measurement of the property of interest.

Rather, the property that is remotely sensed (for our purposes EMR

in optical or microwave wavelengths) is usually related indirectly to

the property of interest (Lillesand and Kiefer, 2004). Curran et al.

(2000) described this situation in the context of disease mapping using

land cover as the indirect link between radiation and vector or par-

asite prevalence. The amount of EMR reflected or emitted in a spe-

cific waveband from the Earth’s surface is a direct function of the

land cover or, more generally, Earth surface properties. Radiation

may also be reflected by the atmosphere.

Reflected or emitted EMR is only indirectly related to disease vec-

tors (Rogers and Randolph, 1991; Cross et al., 1996; Hay et al., 1997;

Crombie et al., 1999). For example, the distribution of malaria-

carrying Anopheles mosquitoes is related to the signal recorded by a

sensor through properties such as mosquito habitat, proximity to

water and land surface temperature (LST) (all of which are functions

of land cover). It is also related to proxies for rainfall lagged by one
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or two months [such as the normalized difference vegetation index

(NDVI) and cold cloud duration (CCD)] (Hay et al., 1996; Rogers

et al., 1996; Thomson et al., 1996, 1999). Such information has been

used to predict the seasonality of malaria transmission (Hay et al.,

1998a, b). Further, reflected radiation is indirectly related to parasite

prevalence (Linthicum et al., 1999). For example, the malaria para-

site is related to the signal recorded by a sensor through climate and

land surface properties, as well as the malaria vector and human

settlement distributions (Curran et al., 2000). This means that if

remotely sensed images are to be useful in epidemiological studies

then it is necessary to model the indirect relations between reflected

(or emitted) radiation and vector or parasite prevalence through (of-

ten non-linear) functions of land surface and atmospheric properties.

1.2. Sensor Characteristics

Remotely sensed images may be acquired in a range of different

wavelengths of the electromagnetic spectrum (EMS). Most remotely

sensed imagery used commonly in the study of disease is recorded in

visible to thermal-infrared wavelengths. For example, the National

Aeronautics and Space Administration (NASA) Landsat Enhanced

Thematic Mapper (ETM+) satellite sensor acquires images in seven

discrete wavebands or portions of the EMS, while the National Oce-

anographic and Atmospheric Administration (NOAA) Advanced

Very High Resolution Radiometer (AVHRR) satellite sensor ac-

quires imagery in five wavebands (Cracknell, 1997) (Hay et al., this

volume, pp. 37–77). Such multi-band optical imagery can be inval-

uable for mapping classes of land cover and continua such as veg-

etation biophysical (Goel et al., 2003) and biochemical properties

(Curran et al., 1998). Many modern imaging sensors record radiation

in several hundred spectral wavebands, referred to as hyperspectral

sensing (Curran, 1994).

Microwave remote sensing measures radiation in microwave wave-

lengths either emitted (passive sensing) or backscattered (active sens-

ing) from the Earth’s surface. Most active microwave remote sensing

is achieved using synthetic aperture radar (SAR) imagery, which can
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be useful for predicting a range of structural properties (e.g., of veg-

etation) and has been used to predict the flooding status of Kenyan

Rift Valley fever vector habitats (Pope et al., 1992). Interferometric

SAR (e.g., from the highly successful Shuttle Radar Topography

Mission; Kellndorfer et al., 2004; Eineder and Adam, 2005) is a

comparatively recent technique that uses SAR to predict height, often

with very high accuracy. Many other parts of the EMS and methods

of remote sensing (e.g., LiDAR to sense surface height directly;

Naesset et al., 2005) may be useful in an epidemiological context.

The number, size and position of wavebands are just three of the

several sensor characteristics that are important in determining the

suitability of sensor imagery for a given epidemiological purpose and

the quality of the resulting predictions (e.g., disease map). A further

important sensor characteristic in the context of global disease pre-

diction is the spatial resolution. While the number, size and position

of each waveband in the EMS determines the spectral (attribute)

information in an image, the spatial resolution of the imagery has

equally important and predictable effects on the resulting information

and its utility for particular applications. The spatial resolution of

satellite sensors can vary from several kilometres (e.g., NOAA

AVHRR imagery has two spatial resolutions of 1.1 and 8 km) to less

than 1m (e.g., Quickbird panchromatic imagery has a spatial reso-

lution of 0.6m, although the multiband imagery has a spatial res-

olution of 2.4m) (Danson et al., 2003).

For the global mapping of disease it is impractical to cover the

entire surface of the Earth with fine spatial resolution (e.g., 1–100m)

imagery. This is partly because of the enormous numbers of data

involved at fine spatial resolutions and the amount of effort involved

in ‘‘stitching’’ together large numbers of images. An early example of

a global remote sensing product is provided by the DISCover project

which used NOAA AVHRR imagery to map land cover over the

entire globe with a spatial resolution of 1 km (Loveland et al., 2000).

This has been superseded by the Global Land Cover (GLC) 2000

project (Latifovic et al., 2004; Giri et al., 2005), components of which

were produced using Moderate Resolution Imaging Spectrometer

(MODIS) imagery (Friedl et al., 2002). The requirement to adopt

relatively coarse spatial resolution data (e.g., 500m–8 km) when
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mapping over large areas such as continents (e.g., Africa) or the entire

globe has important implications for subsequent analyses, which are

explored further in this paper.

As already described, remotely sensed imagery is rarely the object

of scientific interest itself. To be useful, the imagery must usually be

combined, via a model, with primary data acquired on the ground of

the property of interest. Such ‘‘ground data’’ may represent areas

(e.g., ground surveys of tsetse flies, Hendrickx et al., 2001; number of

clinical cases of a disease per health facility, each of which serves an

unknown, but definable catchment population, Gething et al., 2004)

or points (e.g., individuals in an intensive community-based survey).

Even in the former case, the geographical catchments are likely to be

smaller than, or at least of different geometry to, the image pixels,

such that both cases present a serious problem for modelling: spe-

cifically, the problem of incompatible spatial units (Hay et al., 2001;

Dungan et al., 2002; Gotway and Young, 2002). This problem is

discussed in Section 2.

1.3. Choice of Modelling Framework

In remote sensing, it is common to use the multivariate (multi-band)

information to predict some property of interest (e.g., land cover,

NDVI, LST) using one of several classes of model (e.g., physical

model, statistical model). Physical models are usually analytical and

are fitted to empirical data in the forward sense (Strahler et al., 1986).

The fitted model is then inverted to predict the property of interest.

Statistical models, also referred to as empirical models, are usually

fitted to empirical data directly and rarely require inversion

(Schowengerdt, 1997). Semi-empirical models (Graham and Harris,

2003) lie between these two.

In a statistical sense, remotely sensed imagery are most commonly

associated with the random field or random function (RF) model in

which each point in space is treated as being characterized by a ran-

dom variable (RV) and the relation between RVs at different loca-

tions is modelled using a spatial covariance or equivalent ‘‘structure’’

function (Atkinson, 1999). Several different models are applicable to
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such data including geostatistical models (Matheron, 1965, 1971;

Chilès and Delfiner, 1999) and spatially autoregressive models (e.g.,

Augustin et al., 1996, developed the autologistic model which is

popular in ecology). An alternative to the RF model is the object-

based model or view (Hay et al., 2003), as might be applicable

to point data on health facilities in a given country (Gething

et al., 2004). Statistical techniques such as point pattern analysis and

cluster modelling (Diggle and Rowlingson, 1994; Cockings et al.,

2004; Dragicevic, 2003a; Kulldorff et al., 2003) may aid epidemio-

logical investigation of such data.

Although not the primary interest of this paper, process models

should be considered alongside the static RF and object-based views

of the world. Dynamic models of disease processes are becoming ever

more common based on increased availability of suitable data and

high-performance computer power. Such models are being fitted at

the local or even individual level, replacing previous population-

based models (Anderson et al., 1991) and introducing new insights

into the factors influencing the space–time dynamics of disease (Bian,

2004; Cisternas et al., 2004; Eubank et al., 2004). Such models

ultimately rely on high-quality data both on the disease and the

environment in which it is transmitted, and the latter can often be

provided by remote sensing. Where this is the case, the efficacy of the

model at representing real processes will depend on the characteristics

of the model and the input data (such as spatial resolution).

1.4. The Image Processing Chain

Whichever modelling approach is chosen, fitting a model can be seen

as one of several components in what is known as the processing

chain (Schott, 1987). Common components in the processing chain

are image acquisition, radiometric calibration (e.g., Guyot and Gu,

1994), atmospheric correction (e.g., Chavez, 1996), geometric correc-

tion, model fitting, prediction and accuracy assessment. Each of these

components can have an effect on the information content and

accuracy of the final output.
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The purpose of this paper is to evaluate the effect of two compo-

nents of the processing chain, scale and uncertainty, on epidemio-

logical predictions made based on remotely sensed imagery. Issues of

spatial scale and spatial resolution are considered in Section 2, and

issues of uncertainty are considered in Section 3. Section 4 provides a

conclusion.

2. ISSUES OF SCALE AND SPATIAL RESOLUTION

2.1. Preliminaries

Scale and the scaling of data are central subjects in remote sensing

and GIS (Woodcock and Strahler, 1987; Quattrochi and Goodchild,

1997). A fundamental concept that underpins the understanding of

scale and scaling is that data zv(x) on property z defined on a support

v (the size, geometry and orientation of the space on which each

measurement is made) at locations x are a function of both reality

(i.e., the underlying property of interest z(y), where y denotes any

point location within the target space) and the sampling framework

s(xs, w) with parameters w fixed at location xs:

zv xð Þ ¼ f z yð Þ; s xs;wð Þð Þ (1)

Equation (1) ignores the temporal dimension, and the uncertainty

in measurement which is developed in Section 3. The key point is that

mathematical operations are applied to the data, not reality, and so

the outcome of any operation is partially a function of the sampling

framework. Only by understanding and modelling the effects of the

sampling framework is it possible to characterize adequately and

predict optimally the underlying property of interest.

The sampling framework comprises both spatial and temporal pa-

rameters with the spatial set of parameters comprised of the sample

size n (e.g., 30), sampling scheme f (e.g., random, stratified random),

sampling density d (e.g., 30 observations per km2) and support v (e.g.,

a point, a pixel). The support itself is defined by a further set of

parameters: geometry rv (e.g., square wave response over a square

pixel, 2-D Gaussian function), orientation yv (e.g., north-to-south)
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and size |v| (e.g., 1 km on a side). These six parameters wx define the

spatial sampling framework completely:

s wx

� �
¼ f n;f; d;rv; yv; vj j

� �
(2)

The temporal sampling framework s(wt) is defined by an equivalent

five parameters wt (support orientation is meaningless in 1-D).

Together, these 11 generic parameters wx,t define the sampling frame-

work s(wx,t). Once defined, the sampling framework can be applied to

any region of interest to obtain data by fixing location x and time t;

conceptually involving definition of a further three parameters.

Equation (1) can now be updated to include the temporal dimension:

zv x; tð Þ ¼ f z yð Þ; s xs; t;wx;t

� �� �
(3)

The sampling framework has an important influence on the meas-

ured data. From this point onwards, the sampling framework

s xs; t;wx;t

� �
is represented by s x; tð Þ; where t represents time.

The word scale has numerous different meanings (Curran and

Atkinson, 1998; Dungan et al., 2002). The most common meaning in

the present context is the cartographic definition of scale: the ratio

between a distance in a representation, model or map of reality to the

actual distance in reality (e.g., 1:10 000). This definition can be

confusing for many reasons that have been explained previously

(Atkinson and Tate, 2000; Dungan et al., 2002) and so, in this paper,

the everyday usage is adopted in which scale simply means size

(e.g., large-scale investigation or process simply means large inves-

tigation or process). This is the definition commonly adopted in

ecology and physics. This definition is required because it is necessary

to define the scale(s) of measurement in the sampling framework and

the scale(s) of spatial variation in the data, neither of which are ratios.

One of the most important effects of s x; tð Þ on observed data is to

determine the scales of spatial variation present in the data. More

fully, the scales of spatial variation present in spatial data are a

function of the scales of spatial variation present in reality and the

sampling framework. Certain parameters of s x; tð Þ defined above, for

example the support, have a greater effect than others. Knowledge of

which scale(s) of spatial variation are revealed (and which are omit-

ted) is important. The filter on reality induced by s x; tð Þ determines,
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fundamentally, the information content of data, and the outcome

of subsequent analyses on those data. For example, Belward and

Lambin (1990) describe limits to characterizing spatial structure using

NOAA AVHRR imagery. It is common in remote sensing that pixels

are compared directly to ground data and the correlation coefficient

and predictive power of a fitted regression model will depend on the

image and ground supports, both in relative and absolute terms. The

choice of spatial resolution for remote sensing investigations has been

the subject of extensive research (e.g., Woodcock and Strahler, 1987;

Atkinson and Curran, 1995, 1997; Curran and Atkinson, 1999).

The advantages of modelling scale in the above context are that (i)

the scale(s) of spatial variation in data may be characterized and (ii) by

combining such information with a model of the convolution process

implicit in sampling it is possible to change the scales of variation in

data as a function of hypothetical changes in s x; tð Þ: This provides a

very powerful means for addressing directly some of the most impor-

tant issues of scale inherent in the global prediction of disease.

2.2. Measurement Scales

2.2.1. The Support

Of all the parameters of s x; tð Þ; the support is the most important in

that it provides a fundamental limit on the scales of spatial variation

that can be exhibited in data. The size of support vj j has the greatest

influence, but geometry rv also has an effect and orientation yv can be

important where variation is anisotropic. These support effects are best

modelled as a convolution of the underlying signal by the support:

Zv xð Þ ¼

Z
v�

Z yð Þhv yð Þ dy (4)

where v is the support, y a point and hv yð Þ represents the support.

Thus, the support changes the basic character of the dataset, obscuring

certain fine scales of spatial variation from the investigator.

Further effects are induced where the supports of individual data

vary, for example, with census data. Such variation leads to the
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modifiable areal unit problem (MAUP) (Openshaw, 1984; Unwin,

1996). Then, the so-called aggregation effect of vj j is intermingled

with a zonation effect. Wakefield (2003, 2004) provides methods for

assessing the effects of area-based (i.e., cell-based) data used in ep-

idemiology by comparing the predictions to point statistics using a

random effects model. Krieger et al. (2002) provide an example in

which the relation between socioeconomic status and cancer inci-

dence depends on support size.

2.2.2. Spatial Resolution

In remote sensing, the terms support and spatial resolution are often

used interchangeably. Whereas the support is defined above as a first-

order parameter of s x; tð Þ (because it relates to a single observation),

the spatial resolution is a second-order property (because it is a

function of more than one observation). Spatial resolution provides

an important lower limit to the scales of spatial variation that can be

captured in a given dataset. Spatial resolution is a function of the set

of smallest distances between observations as well as the support. In

remote sensing the spatial resolution is equal to the pixel size, which is

an approximate representation of the support. In ecology, the term

‘‘grain’’ is often used interchangeably to mean spatial resolution

(Dungan et al., 2002).

2.2.3. Spatial Extent

The spatial extent is defined here as a second-order property that

provides an upper limit on the scales of spatial variation present in

data. It is a function of the set of largest distances between obser-

vations.

Although it is helpful conceptually to distinguish between the

spatial resolution and spatial extent as lower and upper limits im-

posed by s x; tð Þ; in reality, the set of all possible pairs of observations

implicit in s x; tð Þ determines the full sampling of the scales of spatial

variation existing in the convolved variable of interest Zv xð Þ (i.e., the

property of interest measured on the given support).
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2.3. Scale(s) of Spatial Variation

2.3.1. Characterizing Spatial Variation

There exist many different methods for characterizing spatial variation.

These can be organized according to the basic data model adopted.

For the RF model, various forms of regression analysis (e.g., Kelsall

and Diggle, 1998) and geostatistical approaches (Chilès and Delfiner,

1999) are popular. For geostatistics, basic structure functions such as

the spatial covariance, autocorrelation function and variogram are

used for characterization (Curran and Atkinson, 1998; Atkinson,

1999). Geostatistics has been applied to non-communicable disease

(e.g., Oliver et al., 1992, 1998; Webster et al., 1994; Minozzo and

Fruttini, 2004), and, less commonly, to communicable disease (e.g.,

Diggle et al., 2002).

For the object-based model, point-pattern analysis provides a wide

range of functions (e.g., the K-, L- and D-function) where the objects

are points (Cressie, 1991). Point pattern analysis and cluster analysis

have been applied widely in exploring spatial variation in disease risk

(Diggle and Rowlingson, 1994; Gatrell et al., 1996; Lawson, 2000;

Dragicevic, 2003b). Hand and Bolton (2004) provide a review of

pattern discovery techniques from a statistical perspective. For other

types of object (i.e., non-point objects) the tools are not as well

founded statistically, mostly relying on technical developments in

GIS and landscape ecology (e.g., Hay et al., 2003).

Much spatial variation in disease vector distributions and predic-

tors of disease (e.g., environmental controls on vector distribution) at

the global scale may be modelled appropriately using RF. Therefore,

the geostatistical approach provides the focus in this section. Of the

available functions, the variogram is usually preferred because it

exists in circumstances where the covariance and autocorrelation

function do not. Specifically, the variogram relies on a weaker model

of stationarity (referred to as intrinsic stationarity) than the covar-

iance and autocorrelation (second-order stationarity) (Myers, 1989)

and consequently this discussion is restricted to variography.

For continuous variables, such as NDVI, LST and CCD, the sam-

ple semivariance is defined as half the average squared difference
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between values separated by a given lag h. The sample variogram ĝðhÞ
may be estimated using

ĝðhÞ ¼
1

2PðhÞ

XPðhÞ
a¼1

½zðxaÞ � zðxa þ hÞ�2 (5)

where P(h) is the number of paired comparisons at a specific lag h and

ZðxaÞ an observation (treated as a realization of ZðxÞ at location xa).

The sample variogram may be estimated for all directions lumped

together (omnidirectional) or for several orientations where variation

is thought to be anisotropic.

The sample variogram is a set of semivariances at a set of discrete

lags. To allow statistical inference, it is usually necessary to fit a

continuous mathematical model to the estimated variogram. To en-

sure that all linear combinations of the RF result in non-negative

variances, the variogram model must be conditional negative semi-

definite (CNSD). It is common practice to select from a pre-defined

set of CNSD models (McBratney and Webster, 1986; Webster and

Oliver, 1990). Two commonly selected models are given below.

(i) the nugget effect model:

gðhÞ ¼ c0
0 if h ¼ 0

1 otherwise

�
(6)

where c0 is the nugget variance parameter; and

(ii) the spherical model:

gðhÞ ¼ c1
1:5 h

a
� 0:5 h

a

� �3
ifh � a

1 otherwise

(
(7)

where c1 is the sill variance parameter and a the range parameter.

Webster and Oliver (1990) provide further examples. The model is

usually fitted to the sample variogram by some automatic process such

as weighted least squares (e.g., Cressie, 1985, 1991; Goovaerts, 1997).

It is important to understand the meaning of the information that

the variogram conveys. For example, the sill c1 of the spherical model

provides information on the amount of variation present in V. More

precisely, the sill estimates the a priori variance D2(v,N) of Z (that is

the variance obtained on a support v within an infinitely sized region).
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The model form and the range a provide information on the scale(s)

of spatial variation. The variogram models described may be used

singly or in a positive linear combination, in which case the resolved

variation is said to be ‘nested’ (see Webster and Oliver, 1990). The

nugget model is often fitted together with a structured component

(such as a spherical model) to represent a discontinuity at the origin.

The nugget variance c0 represents unresolved variation that exists on

a micro-scale and measurement error, but it can also arise from un-

certainty both in estimating the variogram and in fitting the model at

short lags (Atkinson, 1997). Where observations are abutting or

overlapping, as for remotely sensed imagery, then the amount of

micro-scale variation can be assumed to be small and the nugget

variance can be assumed to be due primarily to measurement error

(e.g., Curran and Dungan, 1989). While fractals are an important

mathematical model of scaling in the natural world because they are

scale-invariant, they are beyond the scope of this discussion. How-

ever, it is interesting to note that fractal dimension can be estimated

from the modelled variogram (Klinkenberg and Goodchild, 1992).

The modelled variogram provides a basis for statistical inference

via geostatistical spatial prediction, known as kriging. Geostatistical

kriging has been applied to a variety of disease prediction problems.

For example, Oliver et al. (1992) and Webster et al. (1994) were one

amongst the first to apply geostatistics to characterize and map dis-

ease pattern. Kelsall and Wakefield (2002) used kriging to map colo-

rectal cancer in Birmingham, UK. Geostatistical cokriging has been

applied to map the risk of childhood cancer (Oliver et al., 1998) and

tick habitats from NOAA AVHRR imagery (Estrada-Pena, 1998).

Bayesian statistical approaches have become popular in epidemiology

(e.g., Wakefield and Morris, 2001). Model-based geostatistics, in

which a Bayesian framework is used to incorporate the uncertainty in

variogram estimation into spatial predictions, has been applied to

mapping malaria in the Gambia (Diggle et al., 2002).

Generally, the focus of interest in disease mapping is in charac-

terizing and mapping spatial variation at a particular point in time,

but recent advances have been made in space–time modelling of dis-

ease processes (e.g., Baker, 2004; Grenfell et al., 2001; Mugglin

et al., 2002).
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2.3.2. Upscaling and Downscaling the Data

Whereas several papers have appeared in which geostatistical and

related spatial statistical methods are applied to epidemiological

problems, including characterizing the scales of spatial variation in

disease, little research has considered the potential for scaling offered

by the geostatistical framework. Since data are often acquired or

assembled with different supports, and varying sampling strategies

more generally, researchers should give serious consideration to the

potential solutions provided for handling such diverse datasets

(Gotway and Young, 2002).

Upscaling refers to an increase and downscaling to a decrease, in the

size of support. Upscaling and downscaling are recognized as impor-

tant operations in ecology and related subjects (Bierkens et al., 2000).

The importance of these operations is now being realized by epide-

miologists who have shifted their focus to national, continental and

now global scales, through increased utilization of remotely sensed

imagery. Upscaling is usually relatively easy to achieve. For example,

where sufficient data exist at the finer spatial scale (e.g., an image), data

upscaling is achieved readily by averaging over a kernel defined by the

new larger support. The averaging is usually through a linear com-

bination of the smaller cells, but can be non-linear (Bierkens et al.,

2000). Where data are sparse spatially and interpolation is required,

data upscaling may be achieved by geostatistical block kriging (Burgess

and Webster, 1980) or block cokriging (Atkinson et al., 1992)

(although care is needed to distinguish desirable regularization over

the support from unwanted convolution due to smoothing; Atkinson

and Kelly, 1997; Atkinson and Tate, 2000). Further, upscaling can be

achieved using block conditional simulation, which removes the

smoothing of kriging, but retains the uncertainty of prediction

(Deutsch and Journel, 1992; Journel, 1996).

Downscaling is more difficult to achieve because it implies an in-

crease in information content above that provided by the original

data. For continua, a solution may be achieved using the geostatis-

tical methods of area-to-point kriging for the univariate case

(Kyriakidis, 2004) and downscaling cokriging for the multivariate

case (Pardo-Iguzquiza et al., 2005). For classification, a solution may

SCALE AND UNCERTAINTY ISSUES 93



be achieved using super-resolution mapping (Tatem et al., 2001, 2002;

Atkinson, 2005). The latter has already been applied in an epidemi-

ological context to map settlement distribution in Kenya (Tatem

et al., 2004). These techniques for downscaling allow an increase in

the spatial resolution of the predicted map.

There are many different situations in epidemiology and remote

sensing in which it may be desirable to manipulate one or more

variables to provide data on matching supports. As the pixel is

usually larger than the support of the ground data, the mis-match

may mean that certain (fine) scales of variation expected to be present

in the ground data will automatically be missing from the imagery. By

default, this reduces the correlation between image and ground data.

The appropriate action depends on whether the fine-scale variation is

of interest or not. If of interest, the imagery should be downscaled to

match the support of the ground data through linear methods (area-

to-point kriging and cokriging) or non-linear constrained optimiza-

tion (super-resolution mapping). If this is not done, the fine-scale

variation will be missed in predictions based on the imagery. The fine-

scale variation may be of interest where other datasets are defined on

the smaller support (i.e., resolving the problem of incompatible sup-

ports between variables). Further, downscaling may provide a means

by which to conduct validation at the scale of ground observation. If

the fine scale of spatial variation is not of interest, correlation and

regression analyses may be applied directly, with the caveat that the

additional fine-scale variation at the ground will increase the uncer-

tainty of the prediction.

More complicated scenarios exist. For example, several different

variables to be used in an epidemiological study may have been cap-

tured at fundamentally different measurement scales. Such scales may

include different levels of cartographic generalization in digitized

lines and choropleth maps, different spatial resolutions in scanned

aerial photographs and digital sensor imagery, and different enu-

meration areas in population censuses. The same basic principles of

convolution and scaling apply to all of these datasets. The fitting of

appropriate models and application of proper scaling relations is

non-trivial given such a diversity of datasets. Nevertheless, the

scenario is realistic, and in many ways typical of epidemiological
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analysis at the global scale where data are rarely collected for the

purpose and investigators must use that which is available. While

dealing with such incompatible spatial measurement scales is difficult,

researchers should be aware of the problems, the effects of such scales

on the data and results of analyses, and where possible take action to

model such effects as part of their analyses.

2.3.3. Upscaling and Downscaling the Model

Upscaling (downscaling) can refer to the variable of interest, but it can

also refer to the model (e.g., the variogram). Journel and Huijbregts

(1978) give a series of equations for the geostatistical operation of

regularization that are helpful in understanding the effect of the sup-

port on the variogram. The relation between the punctual or ‘point’

semivariance and the regularized (or convolved) semivariance at a lag h

is given by (Journel and Huijbregts, 1978):

gvðhÞ ¼ ḡðv; vhÞ � ḡðv; vÞ (8)

where ḡðv; vhÞ is the integral punctual semivariance between two sup-

ports of size v whose centroids are separated by h, given formally by

ḡðv; vhÞ ¼
1

v2

Z
v

Z
vðhÞ

gðy; y0Þ dy dy0 (9)

where y describes an observation of size v and y0 describes independ-

ently another observation of equal size and shape at a lag h away. The

quantity ḡðv; vÞ is the integral punctual semivariance within an

observation of size v:

ḡðv; vÞ ¼
1

v2

ZZ
gðy; y0Þ dy dy0 (10)

where y and y0 now cover the same pixel independently.

The fact that observed data are always a function of s x; tð Þ; and
particularly the support, means that in order to convolve the vario-

gram model, it is first necessary to deconvolve. Downscaling can be

applied to the model (e.g., variogram) representing the character of

spatial variation (Pardo-Iguzquiza et al., 2005). Such a deconvolved

or deregularized model must be estimated for area-to-point kriging

and cokriging above, and it must be estimated empirically from data
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for super-resolution mapping of fine-scale spatial pattern (Tatem

et al., 2002).

3. ISSUES OF UNCERTAINTY

3.1. Preliminaries

Observed spatial data z�v ðxÞ (e.g., of spectral response z on support v

at location x) can be viewed as being comprised of the true values

zvðxÞ plus some variable evðxÞ representing measurement error:

z�v ðxÞ ¼ zvðxÞ þ evðxÞ (11)

It has been demonstrated above that the ‘‘true’’ value zvðxÞ is a

convolved version of the unobservable point property of interest zðxÞ

[Equation (3)]. Thus, combining Eqs. (3) and (11):

z�v x; tð Þ ¼ f z yð Þ; s xs; t;wx;t

� �
; ev xð Þ

� �
(12)

The effect of evðxÞ is to add uncertainty to the already convolved

observable variable.

Uncertainty is defined here as a general concept, with meaning

similar to that in its everyday usage (Atkinson and Foody, 2002).

There are many forms of uncertainty, including ambiguity (expressed

using a probabilistic model) and vagueness (expressed using fuzzy set

theory; Klir, 2001). Here we are concerned primarily with ambiguity.

Fundamentally, whether the interest is in measurement uncertainty or

prediction uncertainty, the focus of attention in most epidemiological

studies is accuracy. Accuracy is defined as the combination of un-

biasedness and precision. Bias arises from systematic error esðxÞ and

imprecision from random error erðxÞ:

evðxÞ ¼ esðxÞ þ erðxÞ (13)

Accuracy, bias and precision can be estimated via measurable

quantities. Such estimates of bias and (im)precision amount to esti-

mates of the expectation of the systematic E esðxÞ
�� ��� �

and random

E erðxÞ
�� ��� �

components of the error in Eq. (13).

It is rarely possible to estimate the actual error evðx0Þ: If the actual
error were known, the observed value could be adjusted to the true
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value and the uncertainty would disappear. Rather, it is common to

estimate the expected error. To provide an expectation, a statistical

model (no matter how trivial) is required, and the model is fitted to an

ensemble of data (no matter how small). The statistical model is

usually stationary in the parameter being estimated.

3.2. Uncertainty in Data and Methods

Uncertainty manifests itself in all stages of the processing chain

(Schott, 1987). Measurement error can have deleterious effects on

modelling and prediction based on the data, and prediction inaccu-

racy can, in turn, lead to inappropriate public health decisions.

The remotely sensed data used in this volume have inherent meas-

urement errors (Nemani et al., 2003), in addition to those related to

georectification and atmospheric correction. Problems such as strip-

ing and missing pixels introduce serious, albeit obvious and detect-

able, errors into the remotely sensed data (Figure 1). Clearly, it is

important to identify such errors in imagery so that they can be

handled appropriately.

In addition to the satellite sensor data, the epidemiological data used

in the modelling process can be, and often are, replete with errors. Such

errors can include incorrect georeferencing of a location, usually as a

result of user error; confusion regarding which location reference in a

gazetteer is correct; incorrect diagnosis of a specific disease leading to

presence or absence records where the opposite is correct; issues over

the reliability of the record source, especially for historical sources or

less often recorded diseases; confusion over the aggregation methods

applied to the data, which may have implications for the final location

and data values used; and the use of randomized input points (for

presence and/or absence) taken from within areal records.

Further sources of error and uncertainty are introduced by the

modelling methods themselves. Generally, no method or model is

perfect and prediction always involves uncertainty, usually expressed

through the predictive error distribution.

If the investigator processes the satellite sensor data, collects the field

epidemiological data and codes the computer programs then much of
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the uncertainty and error can be controlled, or at least accounted for.

When using data or programs from other sources it is important that

the investigator is aware of the quality of the data, and the methods

employed to produce them, via appropriate metadata. A lack of meta-

data creates uncertainty about (data and model) uncertainty.

Given the above discussion, it should be clear that information on

uncertainty, in the form of estimates of accuracy (precision, and

where possible bias) is important in epidemiological analysis. Infor-

mation on uncertainty should be provided as an average globally

(e.g., precision for an entire map), but should, where possible, also be

provided at the local level (e.g., per-country, -region, -local area or

even per-pixel). No map of disease, or vector distribution, is complete

without some assessment of uncertainty.

Accuracy assessment can be achieved in two fundamentally differ-

ent ways. One approach is to use unseen data (e.g., jack-knifing) or in

some cases the data used in prediction (e.g., cross-validation) to

evaluate the predictions through direct comparison of known and

predicted values. This approach is data based. Another approach is to

use the fitted model, together with assumptions or knowledge of the

Figure 1 A subset image of the 1� 1 km data demonstrating the types of
error in the 1 km spatial resolution imagery. Notice the gap in the coverage
(black area to the left of the image) due to masking out of cloud, the offset
river (black line in the centre of the image) due to misregistration and the
striping (dark grey feature running diagonally across the image) linked to
data collection problems with the sensor.
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predictive error distribution to estimate uncertainty in the predic-

tions. This approach is model based.

3.3. Data-Based Accuracy Assessment

Data-based assessment of accuracy involves comparison of model-

based predictions with data that have not been used in prediction

and, depending on the method, may not have been used in fitting the

model. Such a comparison results in direct estimation of the actual

error. Although an extremely valuable spatially located source of

information, the data are rarely used directly. Usually, a spatially

stationary statistical model is adopted and the errors lumped to pro-

vide a global estimate of accuracy.

3.3.1. Categorical Variables

Accuracy assessment for categorical variables usually centres on the

confusion matrix or contingency table (Foody, 2002). Many statistics

can be derived from the confusion matrix, including the overall accuracy

(the number of correct predictions divided by the total number of pre-

dictions), the users’ and producers’ accuracies, and sensitivity and

specificity (Cohen, 1960; Rosenfield and Fitzpatrick-Lins, 1986; Story

and Congalton, 1986; Congalton, 1991; Foody, 2002). Since several of

these statistics are adopted in this volume they are given brief attention

in this section (also see Table 1 in Rogers, this volume, pp. 1–35).

An example of a contingency table for a binary classification is

given in Table 1. A contingency table requires two or more variables

from which the frequency of agreement can be calculated. This is

undertaken by listing all categories of the classification (e.g., presence/

absence or class) in rows and the concomitant reference class in col-

umns. The cell frequency is computed for each cell and summed (for

rows and columns). Dividing a correctly modelled class cell value by

the row total results in a value known as the ‘user’s accuracy’. Di-

viding the same cell value by the column total results in the ‘pro-

ducer’s accuracy’. The user’s accuracy is a measure of commission

error, indicating the probability of a correct prediction, while the
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producer’s accuracy indicates how well the training data have been

predicted (Lillesand and Kiefer, 2004). The overall accuracy of the

prediction is calculated by dividing the sum of the diagonal (true

positive values) by the sum of all values in the table (Table 1).

Kappa (k) is a widely used statistic for estimating the accuracy of

prediction of a categorical variable. The k statistic is a ‘‘discrete

multivariate techniquey for determining statistically if one error

matrix is significantly different from another’’ (Zhan et al., 2002)

while accounting for chance. k is calculated from the contingency

table using the following conceptual equation:

k ¼
observed accuracy� chance agreement

1� chance agreement
(14)

The full equation requires the number of rows in the contingency

table (r), the total observations in a row (xi+), the total observations in a

column (x+i), the number of observations in row i and column i (the

diagonal) (xii) and the total number of observations in the matrix (N):

k ¼
N
Pr
i¼1

xii �
Pr
i¼1

xiþ � xþið Þ

N2 �
Pr
i¼1

xiþ � xþið Þ

(15)

Table 1 Example of a contingency table for a hypothetical presence/
absence system denoting the true-/false-positive values, true-/false-negative
values, users/producers and total accuracies and k

Actual presence Actual absence Row total Users accuracy

Predicted 15 3 18 83%

Presence True positive (TP) False positive (FP)

Predicted 1 12 13 92%

absence False negative (FN) True negative (TN)

Column total 16 15 31

Producers 93% 80% 87%

Accuracy Total accuracy

k ¼ 0.741

95% confidence interval: 0.503– 0.978
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Despite the utility of k in the context of disease distribution mod-

elling, as a summary of the contingency table, some caveats do exist. A

major criticism is that k does not distinguish between types or causes of

disagreement and that the statistic may be sensitive to sample size

(Fielding and Bell, 1997; Forbes, 1995), failing when one class is sub-

stantially larger than the other. Another concern is that comparison

between k values for classifications based on the same input data may be

statistically flawed (Foody, 2004). The Tau coefficient may also be de-

rived from the confusion matrix (Foody, 2002). Kendall’s Tau is a dis-

tribution-free correlation coefficient, which can be applied to ordinal

(rank) data (Shaw and Wheeler, 1994) and can be applied readily to

abundance distribution mapping. This statistic is linked closely to k but

relies on a priori probabilities (as opposed to the a posteriori probabilities

used when calculating k) (Fielding and Bell, 1997).

The percentage of pixels correctly assigned to either presence or

absence classes are summary statistics, providing initial indications of

the accuracy of a classification (although unlike k these do not account

for chance occurrence). Two further tests linked to the contingency

table are useful for assessing slightly different aspects of accuracy.

These are sensitivity, which identifies true positives as a proportion of

all positive predictions; and specificity which identifies true negatives as

a proportion of all negative predictions. Table 2 shows the links be-

tween sensitivity and specificity and the contingency table.

Receiver operating characteristic (ROC) curves were devised to

define thresholds in early radar backscatter returns from equipment

operated by different technicians, but the method has now been

directed at epidemiological studies (Goddard and Hinberg, 1990;

Thompson and Zucchini, 1989) to define cut-off points in diagnostic

tests. The ROC curve (Brooker et al., this volume, pp. 221–262) is

created by plotting sensitivity against 1-specificity, and the area under

the curve (AUC) is frequently used to discriminate between different

curves. A completely non-effective model would produce a flat line,

indicating that for every true positive, the procedure also generated a

false positive resulting in an AUC value of 50% (i.e., half the plot is

under the line).

Where it is available, the ‘‘true’’ image subtracted from the ob-

served image provides a more basic primitive than the confusion

SCALE AND UNCERTAINTY ISSUES 101



matrix because it retains important spatial information in the error-

per-pixel. Given such an error or difference image, the spatial char-

acter of the error may be explored as well as its magnitude.

3.3.2. Continuous Variables

For continua, several common statistics may be used to describe the

different aspects of accuracy of interest. The scatterplot of the pre-

dicted against the observed variable may provide a useful visual de-

scription, in some ways equivalent to the confusion matrix. Given an

appropriate (i.e., Gaussian) error distribution, the correlation coeffi-

cient provides a measure of precision, while the mean error provides a

measure of bias. The root-mean-squared error provides information

on overall accuracy, as does the mean absolute error. Many similar

and related statistics exist. Such statistics are well known and so are

not described further here.

As for categorical variables, a difference image, if available, pro-

vides a useful tool for exploring the spatial character of the error. For

continua, variography of the error is a useful approach that can re-

veal scales of variation in the autocorrelated error.

3.3.3. Cross-Validation

Cross-validation is a method for assessing accuracy based on the data

that were used to fit the model (Chilès and Delfiner, 1999). The basic

principle is that a datum is omitted, and all other data are used to

predict at that location. The observed value is subtracted from the

Table 2 The inter-relationships between sensitivity and specificity. A test
with high values of specificity and sensitivity has few false positives or false
negatives and demonstrates that the predicted output is reasonably accurate

Result Name

True-positive result Sensitivity

True-negative result Specificity

False-negative result 1-Sensitivity

False-positive result 1-Specificity
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predicted value to estimate the actual error. The datum is replaced.

The process is repeated until all observed data have been predicted,

allowing construction of a full error distribution. Cross-validation

provides an important check on accuracy where external data are not

available for accuracy assessment.

3.4. Model-Based Accuracy Assessment

3.4.1. Continuous Variables

Model-based assessment of accuracy refers to the use of the model to

generate estimates of precision (it is often not possible to estimate

bias without external data and moreover, if it were estimated the

model should be adjusted to remove it). At the most basic level, the

model might be used to estimate the error variance, per-prediction.

Regression-type predictors can be used to provide such an estimate,

based on the linear model involved and the assumption of a Gaussian

error distribution. For example, the estimation of confidence intervals

around predictions made using a regression model has been standard

practice for many years (De Groot and Schervish, 2001; Jarner et al.,

2002).

A good example of a regression-based estimate of prediction var-

iance is the popular kriging variance. The kriging variance is provided

for every spatial prediction made. The distinction between actual error

variance and expectation of error variance (i.e., kriging variance) is

important: the kriging variance has many, well-documented short-

comings (Goovaerts, 1997). An estimate of the expected error variance

is only as good as the statistical model used to provide it. Nevertheless,

where it is possible to make model-based estimates of precision, they

should be given. They cost little in terms of additional effort and are

sometimes the only information on uncertainty available.

The error variance is only one parameter of an assumed Gaussian

error distribution, and so is of limited value, particularly where

interest is in some non-linear function of the data (e.g., the probability

p z x0ð Þ4k z xð Þ
��� �

of exceeding some threshold k). Researchers have

recently turned their attention to the problem of estimating the entire

conditional cumulative distribution function (ccdf). The predicted
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value is then seen as the mean of the ccdf, with alternatives less likely,

but nevertheless possible. Given the entire ccdf, it is possible to con-

sider non-linear functions of the data (e.g., p z x0ð Þ4k z xð Þ
��� �

). It should

again be remembered that an estimate of the ccdf depends on the

goodness of the model.

Proper treatment of uncertainty is the core concern of statistics.

Several researchers have developed Bayesian approaches that are

applicable to disease data (e.g., Cressie, 1995; Stern and Cressie, 2000;

Diggle et al., 2002). Markov chain Monte Carlo (MCMC) has gained

popularity in statistics in recent years as a method for solving

integration problems that are analytically intractable (Lawson, 2000).

It allows fitting of statistical models, while estimating the predictive

error distribution as well as the distributions for each of the param-

eters in the model. MCMC is likely to appear as an important tool in

the epidemiologists’ toolkit in time.

3.4.2. Categorical Variables

Many classification algorithms can be used to provide information on

the uncertainty of prediction, although this is sadly rarely the case. For

example, the Mahalanobis distances used in discriminant analysis and

maximum likelihood classification can be used to provide information

on the discriminatory power of individual input variables. Various

measures such as the sum of the Mahalanobis distances between all

classes and the sum of the distances between non-zero classes (i.e.,

classes of prevalence) can be useful in determining the variables that

are selected for inclusion in a stepwise discriminant analysis.

Similarly, the maximum likelihood classifier predicts the most

likely class for a given case by selecting from the set of posterior

probabilities for all classes. Although rarely used, this set of prob-

abilities provides information on the degree of uncertainty of each

individual allocation. For example, from a set of six classes, a max-

imum likelihood of only 0.4 indicates an uncertain allocation (Foody

et al., 1992). Entropy estimated for all six probabilities encapsulates

the uncertainty in allocation more completely (Maselli et al., 1994).

Similar measures can be estimated for other classifiers including, for

example, artificial neural networks where the strength of activation of
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output neurons indicates much the same information as for the max-

imum likelihood classifier.

3.5. Validation of Global Disease Maps: Some
Considerations

A key problem in the prediction of disease globally is validation. Pre-

dictions are often made on the support of the remotely sensed covariates

(e.g., 8� 8km) and it may be very difficult to find suitable methods of

acquiring ‘‘known’’ or high-accuracy data on the property of interest

with which to assess the accuracy of such predictions. A major problem

is in matching the supports of the remotely sensed and ground variables.

Suppose that the image pixel size is nominally 8 km on a side and

complete coverage of several variables (e.g., NDVI, LST, CCD) for

Africa has been used to predict malaria parasite rate (PR) by month.

Let us suppose that PR data are available for 50 health facilities in

Kenya and that these data have been suggested as a possible source

for checking the accuracy of the map. There are multiple problems

with the use of such data including:

(i) Sometimes imperfect data are the only source of information

available for validation: the PR data may represent certain

age groups or be conditioned in other ways. The accuracy

assessment will depend on the suitability of PR as a measure of

what has actually been predicted.

(ii) Only the area of Kenya is covered and this limits the range of

values that will be included in the correlation analysis used for

accuracy assessment. Strictly the accuracy assessment applies

to Kenya only: extrapolation of the accuracy estimate to the

rest of Africa requires assumptions of stationarity.

(iii) If the PR data are averages per facility then the support is

unknown. It may be approximated by the catchment of the

facility, but that also is most likely unknown.

(iv) The sample size at the ground will influence the precision of the

resulting accuracy assessment. The sampling scheme used will

have an influence: it may be necessary to deal with autocor-

relation in the residuals of a regression.
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(v) It may be extremely difficult to match the PR data with the

correct pixel from the imagery, particularly if the imagery are

not geometrically corrected, but also because the large pixel

makes geometric correction and identification of precise loca-

tion within the image difficult.

(vi) The support of the imagery is not a square pixel but a centre-

weighted function due to the point spread function (PSF) of

the sensor.

(vii) Where the support of the PR data is smaller than the pixel, the

PR data will include variance that is not included in the pre-

dicted values leading to a smaller correlation.

The frequency of spatial variation in disease risk (or PR in the

example) can be very fine relative to a support of 8 km. For example,

while malaria risk is often demarcated into spatially homogeneous

zones based on seasonality, in reality malaria risk can vary over dis-

tances of a few hundred metres, particularly in a country such as

Kenya which encompasses a diverse range of habitats, changes in

elevation and local climates. Where the frequency of spatial variation

in disease risk is fine relative to the support, researchers need to be

especially careful to construct their ground data on the same support

as that of the imagery (predictions). This implies the use of geosta-

tistical methods to predict the ground variable on the same support as

the imagery. Potential methods include kriging and cokriging, but

researchers need to be aware that such linear regression-based meth-

ods involve smoothing (conditional bias), and that such smoothing

may affect the correlation coefficient (Atkinson and Tate, 2000).

Geostatistical conditional simulation provides a potential partial so-

lution (Journel, 1996; Chilès and Delfiner, 1999).

3.6. Satellite Sensor Datasets Used in this Volume

Two satellite sensor-derived data sets are provided on the DVD with

this volume, each with a different spatial resolution. Both datasets are

temporal Fourier processed, the first having an original spatial res-

olution of �8 � 8 km and the second having a finer spatial resolution

of 1� 1 km (Hay et al., this volume, pp. 37–77). Modelled predictions
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of disease and vector distributions presented in subsequent reviews

are based on the reprojected (to 0.10 degree spatial resolution)

8� 8 km data due to issues of computing performance, data storage

and effective viewing at the global scale. Almost 20 years of monthly

composites of 10-day averaged AVHRR data were used as input to

the �8 � 8 km Fourier dataset, the methods of creation of which are

detailed in Chapter 2 (Hay et al., this volume, pp. 37–77). The

�8� 8 km data files are of a manageable size for analysis and dis-

tribution and have an acceptable spatial resolution for the global

scale studies discussed in this volume. These are important consid-

erations, as the spatial prediction models need to be adaptable to a

variety of computer specifications and the output interpretable at the

scale of the entire globe. A balance needs to be achieved between the

desire for high-spatial resolution data and the increasing file size or

data volume associated with increasing spatial resolution. For ex-

ample, the spatial resolution of the 1 km data is arguably more useful

to the field epidemiologist than the 8 km data, but the data volume is

in excess of 1.4GB per variable (compared to 10.8MB for 8 km data).

Such data volumes not only create storage and backup problems but

also severely affect both the initial processing time and the compu-

tational speed when modelling disease distributions. Moving such a

large data volume also creates logistical problems.

4. SUMMARY

Scale and uncertainty are important issues in the prediction of global

disease distributions. Disease mapping over the entire surface of the

Earth increasingly involves the use of remotely sensed imagery. Such

data often provide complete coverage of the entire surface of the

Earth and can be used to predict environmental covariates of disease

risk or disease vector density. Global coverage implies a relatively

coarse spatial resolution (e.g., 8 or 1 km) and this will impose limits

on the information content of the imagery and the information that

can be extracted on disease risk or disease vector distribution. This

paper introduced geostatistical models for (i) characterizing the

scale(s) of spatial variation in data (i.e., variogram) and (ii) changing
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the scale of measurement of both the data (i.e., upscaling and down-

scaling) and the geostatistical model (i.e., convolution and deconvo-

lution). Such models provide a means of handling the effects of scale

in epidemiological analyses. A discussion of uncertainty highlighted

the fact that uncertainty is a vague concept and that most epidemi-

ologists are interested in measurable quantities that estimate accu-

racy, or components of accuracy such as bias and precision. The

distinction between data- and model-based methods of accuracy as-

sessment was emphasized and examples of both were given. The key

problem of validating global maps was discussed briefly.

This paper has highlighted some of the problems involved with the

use of coarse spatial resolution data and uncertain methods of pre-

diction in the global mapping of disease. The epidemiological com-

munity is encouraged to pay close attention to the effects of scale and

uncertainty as discussed in this paper and adopt appropriate methods

to handle such effects.
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ABSTRACT

Evaluating the total numbers of people at risk from infectious disease

in the world requires not just tabular population data, but data that

are spatially explicit and global in extent at a moderate resolution.

This review describes the basic methods for constructing estimates of

global population distribution with attention to recent advances in

improving both spatial and temporal resolution. To evaluate the op-

timal resolution for the study of disease, the native resolution of the

data inputs as well as that of the resulting outputs are discussed.

Assumptions used to produce different population data sets are also

described, with their implications for the study of infectious disease.

Lastly, the application of these population data sets in studies to

assess disease distribution and health impacts is reviewed. The data

described in this review are distributed in the accompanying DVD.

1. INTRODUCTION

Deriving population at risk estimates as a basis for evaluation of

disease burdens requires spatially explicit, moderate-resolution pop-

ulation data at the global scale. In this contribution, methods for

constructing estimates of global population distribution that are

suitable for geographic analysis are described. Though the basic ap-

proach has been used widely for more than a decade, particular at-

tention is given to recent advances to increase both spatial and
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temporal resolution. As global data products are dependent on a

diverse set of inputs, issues related to input and output data reso-

lution have an immediate bearing on the suitability of the resulting

datasets for a given task. This paper also reviews applications of these

population databases in the health sector, in particular, for the study

of infectious disease. Finally, the population and associated data files

that accompany this volume are briefly described.

1.1. Rendering Population on a Global Grid

Global or broad-scale inquiry on the relationship between population

and environmental factors such as disease vectors or habitats is in-

trinsically spatial. While notable exceptions exist, especially at the lo-

cal scale, two key barriers have contributed to the paucity of spatially

oriented analysis: (1) the methods of analysis require some knowledge

of geographic data and tools for analysis; and (2) population data, at

regional and global scales, have tended to be recorded in national

units that do not permit cross-national, subnational, or cross-habitat

analysis. These barriers have been slowly eroding. One trend that has

contributed to this is that the collectors and custodians of demo-

graphic data—the national census and statistics offices—increasingly

compile and distribute data for small administrative or statistical

units. While data from population censuses conducted before the 1990

round of population censuses were often published only for the coun-

try and major divisions such as provinces or states, more recent census

output often includes digital census databases with detailed demo-

graphic data for districts, subdistricts, or even ‘‘enumeration’’ areas

(EAs), the smallest geographical unit in most census operations.

Great progress has been made in harmonizing subnational data

released for different dates so that they are comparable across inter-

national borders. First, since census years are not synchronized

across the world, this involves interpolation or extrapolation of pop-

ulation estimates to a common base year. Second, subnational ref-

erence units can be vastly different in size and shape across countries.

For spatial analysis, it is often preferable to instead record population

estimates on a set of standardized reporting units, such as regular grid

cells. Grids are more commonly used to collect or compile data
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describing natural phenomena. In interdisciplinary work, conversion

to a regular grid imposes consistency that would be more difficult to

achieve with irregularly shaped census or administrative units. Meth-

ods that transform population data from native census units (which

correspond to vector format) to a regular raster grid are the main

focus of this paper. A third harmonization issue arises for other de-

mographic variables where, despite efforts by the United Nations and

others to promote common definitions, indicators are often not en-

tirely comparable. This is a major reason why global, georeferenced

demographic databases have so far focused on the simplest of all

demographic variables: total population.

Efforts to estimate population distribution for a regular raster grid

predate the computerization of geography that started in the 1980s.

Early examples such as the map by Adams (1968) for West Africa

served largely cartographic purposes. Census offices, most notably

those of Japan and Sweden, also produced national population grids

for inclusion in national atlases (e.g., Tufte, 1990, on Japan). Com-

puterized population maps for individual countries were produced by

the US Census Bureau using rectangular grid cells superimposed with

circles for major urban areas (Leddy, 1994). Deichmann and Eklundh

(1991) presented a continental, gridded population database for Af-

rica used to investigate interactions between population and land

degradation. Others, such as Martin and Bracken (1991), developed

techniques for producing local-level population grids (see Clark &

Rhind, 1992; Deichmann 1996a, for reviews).

1.2. Institutional Stewardship

While national statistical offices produce population estimates that

are sometimes linked to spatial data, few agencies render their pop-

ulation estimates on a common grid. The first efforts to place pop-

ulation data on a global-scale latitude–longitude grid were completed

in the mid-1990s at the National Center for Geographic Information

and Analysis at the University of California, Santa Barbara (Tobler

et al., 1997). This initial dataset was itself an outgrowth of prior work

on regional and continental databases. The Global Demography

Workshop held in 1994 at CIESIN (the Center for International
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Earth Science Information Network, now part of the Earth Institute

at Columbia University) brought together experts in the field and

helped advance methodological development and database creation

for the first global grid. CIESIN is the locus of current global efforts,

though it works closely with partnering institutions. Like many com-

plex global data products, the Gridded Population of the World

(GPW) database has evolved with numerous partners. Subsequent

versions have included different collaborators, inputs, and outputs,

but the guiding principle is to achieve the best possible suite of data

products representing the distribution of human population, some-

times heuristically (i.e., without modeling) and sometimes with light

modeling (Deichmann, 1996a). The fewer the assumptions and inputs

that are used in the construction of the databases, the fewer the

restrictions that have to be imposed on the appropriateness of use in a

wide variety of applications. For example, if land cover were used to

predict population densities, one could not predict expected changes

in land cover from a resulting population distribution(s) that included

land cover as a reallocation factor, as it would be endogenous.

Since the first version of GPW, several key advances have been made:

the spatial resolution of administrative boundary data is improving;

national statistical offices and spatial data providers and related insti-

tutions are adopting more open-data policies; population and spatial

data providers are increasingly aware of, and increasingly collaborate

with one another; and the computing capacity to manage, manipulate,

and process increasingly large datasets is continually expanding (Balk

and Yetman, 2005). As a result of these advances, some countries now

produce and disseminate high-resolution spatially explicit population

data. In local studies, nationally produced data are typically superior

(i.e., of higher resolution, with more variables, and so on) to globally

rendered data. Researchers asking highly place-based questions should

begin with locally available data, if possible. Nevertheless, many ques-

tions are regional in scale, or at least span across more than one coun-

try, or require data that have been transformed to a common grid. For

those problems, the data in this paper are highly suitable.

The basic global database to arise out of these efforts is the GPW,

now in its third revision, with large gains to resolution having been

made with each revision. In addition to the key advances described
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above, advances in ancillary data to allow for light modeling, espe-

cially valuable where input data are of suboptimal spatial resolution,

have allowed for more sophisticated but still simple modeling. Thus,

GPW and related population data products are the main focus of this

review. The resulting datasets are also included in the accompanying

DVD. Details on the variations in these databases, their methods,

assumptions, and limitations follow.

2. DATA

The georeferenced population data sets that are the focus of this

paper share as a critical common characteristic: the fact that they are

constructed with an emphasis on the highest-resolution input data,

rather than focusing on statistical or heuristic prediction of popula-

tion distribution from coarse input data. That is, they attempt to

measure the distribution of the population of the world, as measured

at one’s usual place of residence. The basic premise is that no amount

of further processing or modeling can substitute for obtaining pop-

ulation counts for the smallest geographic reporting units available.

Censuses in many countries are far from perfect and reliable civil

registration systems exist only in a small number of countries. These

sources provide the only complete enumeration of a country’s pop-

ulation and by definition, provide the only geographically complete

count of residents. By making additional assumptions about regu-

larities in population distribution, it is possible to further disaggre-

gate the reported district or subdistrict totals, but usually one cannot

then reliably assess how accurate the resulting distributions are be-

cause there is no basis for sound validation. Population distribution

modeling should therefore be considered a last resort in the absence

of EA population maps, rather than as a goal in itself. When mode-

ling is undertaken, the inputs of that model and the means for the

redistribution should be made as transparent as possible.

The differences in these evolving data products are reviewed in

Table 1 and are discussed in subsequent sections. Fundamental mod-

ifications include an increase in input resolution by over 20 times

from the first to the current version of GPW (Balk and Yetman,
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Table 1 Comparison of GPW versions and related databases

Data set GPW Accessibility model GRUMP v1

GPW v1 GPW v2 GPW v3 GPW 2015

Publication year 1995 2000 2004 2004 2004 2004

Years of estimation 1994 1990, 1995 1990, 1995, 2000 2015 1960–2000 1990, 1995, 2000

Number of input units 19 000 127 000 376 500 376 500 Varies by continent c. 1 000 000

Modeled inputs None None None None Infrastructure,

urban areas

Urban areas

Spatial extent Global Global Global Global Africa, Asia, Latin

America

Global

Authors Tobler et al. CIESIN, IFPRI,

and WRI

CIESIN & CIAT CIESIN, FAO, and

CIAT

Deichmann; WRI;

CIAT, UNEP

and CIESIN

CIESIN, IFPRI,

World Bank, and

CIAT

Gridded surface

resolutiona
50 2.50 2.50 2.50 2.50 300 0

Population density � � � � � �
Population counts � � � � � �
Land area � � � � � �
Population-weighted

admin. units

� � �

Urban extent mask �
Settlement points (xls,

csv, shp formats)

�

Note: A dot indicates the data set is publicly available. 0 and 0 0 represent arc-minutes and arc-seconds, respectively.
aGridded surfaces are available in these formats: 00, bil, ascii.
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2005), and nearly a tripling again for the modeled data products of

the Global Rural Urban Mapping Project (GRUMP) (Balk et al.,

2005a). Increases in the input data enabled a corresponding increase

in output resolution from 5 arc-minutes of GPW version 1–2.5 arc-

minutes for later versions of GPW and related products. The data

products from the GRUMP effort utilize higher resolution inputs,

and thus outputs have been rendered at a 30 arc-second resolution.

The basic method by which population counts are transformed

from census units to a grid, developed for the first version of GPW

(Tobler et al., 1997) and modified slightly for GPW v2 (Deichmann

et al., 2001), remain the same in the third version; related databases

with light modeling use additional methods, but the basic method

underlies all of these databases. Population data are transformed

from their native spatial units that are usually administrative division

of irregular shape and resolutions (see Figure 1) to a global grid of

square latitude–longitude cells at a resolution of 2.5 arc minutes (i.e.,

approximately 4.6 km at the equator). The main inputs consist of

geographically referenced boundaries of administrative or statistical

reporting units at the highest available resolution—ideally the EA,

but more typically at district or subdistrict level. The methods used to

distribute the reporting unit total population numbers across the

raster grid cells that fall into that unit differ slightly between the

different versions of GPW and closely related data. These will be

discussed below. Temporal adjustments are discussed in Section 3.

Figure 1 Administrative level used per country.
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2.1. Gridded Population of the World

The GPW database uses two basic inputs: non-spatial population es-

timates (i.e., tables of population counts listed by administrative area

names) and spatially explicit administrative boundary data. These are

collected from hundreds of different data providers (often differing for

the population and boundary data). The first part of the process is to

match the population estimates with the administrative boundaries into

what is known as polygon (or vector) format, ensure that the resulting

data are geospatially consistent (e.g., that all internal boundaries

match, leaving no unaccounted polygons or that island chains which

might share a single population figure should they belong to the same

administrative unit), and sum to the national-level population, as es-

timated by the data provider. These basic consistency checks mirror

census principles of not leaving any resident out and not counting

anyone more than once. To construct the GPW database, the admin-

istrative unit data in polygon format are converted to raster grids. In

version 1, built-in geographic information systems (GIS) software

functions were used to accomplish this conversion: grid cells that fall

onto the boundary of two or more units were assigned to only one

reporting unit based on a simple majority rule. The total unit popu-

lation was then proportionally allocated over all grid cells assigned to

that unit. A second product from this effort used these grids as a

starting point for a re-distribution algorithm called smooth pycnophy-

lactic (mass-preserving) interpolation (Tobler, 1979). The assumption

underlying this approach is that those areas within a given adminis-

trative unit that neighbor regions with higher population densities are

likely to house more people than areas that neighbor low-population

density regions. The previously homogeneous population figures in grid

cells within each administrative unit are thus re-distributed taking grid

cells in neighboring units into account. By iteratively adjusting grid cell

populations on this basis, the method results in a maximally smooth

surface while preserving total population within each reporting unit.

The second and third versions of GPW retained most of the char-

acteristics of the ‘‘unsmoothed’’ version of GPW v1, while significantly

increasing the number of reporting units that served as input to the

gridding routine. While version 1 relied on about 19 000 administrative
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units, version 2 used 120 000, and version 3 used 375 000 units with

much of the increased precision achieved in developing countries (see

Table 1). The main difference in processing in these newer versions lies

in the way boundary areas between administrative units are treated.

While version 1 allocated grid cells to only one unit even if it was

shared by two or more (i.e., majority rule), GPW v2 and v3 use a

proportional allocation so grid cells are assigned population in pro-

portion to the area of overlap of grid cell and administrative units.

Figure 2 (detail) and Table 2 illustrate this for a grid cell in the

Dominican Republic. Proportional allocation is often referred to as an

areal weighting scheme (e.g., Goodchild et al., 1993).

2.2. Global Rural Urban Mapping Project

The allocation mechanism for the GRUMP (Balk et al., 2005a) builds

on the GPW approach but explicitly considers population of urban

areas. In addition to data for statistical reporting units, the project

Figure 2 Grid cell size in relationship to administrative boundaries,
Dominican Republic.
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collected population estimates, point location, and the approximate

footprint for urban centers in each country. The objective is to dis-

aggregate the urban area populations from the total population of the

administrative unit into which the urban area falls. This allows us to

allocate urban and rural population separately, which effectively in-

creases the number of input units and thus the effective resolution of

the population grid.

In contrast to GPW, estimates of population for urban centers

were needed in addition to population estimates associated with their

census boundaries. Much less investment has been required from

national statistical agencies to collect and publish population esti-

mates for urban areas, unless these are entirely consistent with the

census information for administrative units (which is rarely the case).

Nevertheless, city population figures are published in a variety of

sources. These data were collected and then matched with the urban

footprint. That matching also occurs through a series of steps starting

with simply a name-match of the populated places with geographic

locations (i.e., latitude and longitude of the presumed center of the

urban area). The geographic coordinates were found in national or

international gazetteers, such as that of the US National Geospatial

Intelligence Agency (see Balk et al., 2005a, for details).

A more challenging problem was to determine the footprint of

major city areas. The most important source are nighttime satellite

images that show areas lit by streetlights and other permanent light

sources that are concentrated in urban settlements (Elvidge et al.,

1999). In cases where statistical sources indicated a city that could not

be detected on nighttime satellite images—a common occurrence in

Table 2 Areal weighting scheme to allocation of population whose
boundaries cross grid cells

Administrative unit

name

Administrative unit

density (persons/sq

km)

Area of overlap (sq

km)

Population estimate

for grid cell

Santiago Rodriguez 64.2 5.3 340

Santiago 246.5 2.2 542

San Juan 75.9 12.8 972

Total for cell 91.3 20.3 1854
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Africa—urban areas were delineated from other sources (e.g., Tac-

tical Pilotage Charts) or approximated by circles whose sizes were

given by population–area relationships calibrated (through a regres-

sion analysis) on existing data. It is acknowledged that a circle is not

an accurate form for any city, but this assumption was the most

practical one to implement and the basic shape from lights for small

extents tends toward circular. Circle-generated extents in each coun-

try were cross validated with other locations of near population size

to confirm that the sizes were on the same order of magnitude. Con-

versely, footprints that could not be matched with populated place

information were not assumed to have population and were discarded

from the data. The population estimates, matched with geographic

point locations were summarized for each footprint, producing an

urban extent data set with population estimates.

The final step was to use these many pieces of information—which are

summarized as administrative regions with population estimates and

urban extents with population estimates (shown as panels 1A and 1B, re-

spectively, in Figure 3)—and generate a population grid (panel 2B,

Figure 3). (Figure 3 is Plate 4.3 in the Separate Color Plate Section.).

Because these come from different sources, it is important to make

sure that the urban area population totals do not exceed those of the

administrative areas in which the urban areas are located. Thus, a

model is used to re-allocate population of the administrative areas

given the population of the urban areas, the total population of the

administrative area, and minimum and maximum criteria about each

country’s urbanization trends (details are given in Balk et al., 2005a).

The output resolution for this grid is 30 arc-seconds, similar to that of

the nighttime lights’ data. The GRUMP population grid also uses a

proportional allocation rule in gridding.

2.3. Accessibility Modeling

The final set of gridded population datasets reviewed here are based

on an additional set of assumptions about population distribution:

the basic premise is that people tend to live in or close to cities and

tend to move toward areas that are well connected with urban

centers. Even in rural areas, it is expected that densely populated
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areas are closer to transport links than more isolated areas, and

higher densities are nearer cities than the hinterland. These stylized

facts concerning the distribution of people across space are imple-

mented using the concept of accessibility—a measure of the ease by

which destinations such as markets or service centers can be reached

from a given location. In practice, these measures are adapted from

the well-known gravity model of spatial interaction (Haynes &

Fotheringham, 1984). They represent the sum of an indicator of size

or mass at destinations (such as population of surrounding cities)

inversely weighted for some function of distance. The ideal measure

here is an estimate of travel time using the shortest route on a ge-

ographically referenced transportation network of roads, rivers, rails,

and so forth. The resulting access estimates for each grid cell are then

used to proportionally distribute each administrative unit population

total across the grid cells that fall into it. This approach has been

implemented for continental-scale databases for Africa, Asia, and

Latin America, with support from the United Nations Environment

Programme, the International Center for Tropical Agriculture

(CIAT), and others. Nelson and Deichmann (2004) describe the lat-

est version for Africa and document the modeling approach in detail.

The most important input into the model is information about the

transportation network consisting of roads, railroads, and navigable

rivers and their associated speeds of travel (i.e. 60 km per hour for 2-

lane paved roads, 30 km per hour for railroads, etc.). The second

main component is information on the location and population of

urban centers, which are then linked to the transport network. These

inputs are used to compute a measure of accessibility (Vi) for each

node (intersection) in the network, which is based on the sum of the

population of towns (Pk) in the vicinity of the current node weighted

by a function of travel time across the network between the node and

the towns f(dik). Figure 4 illustrates the computation of the accessi-

bility index for a single node based on the weighted sum of the pop-

ulation of four towns that are within a given travel time threshold.

The accessibility values at each node were interpolated into a raster

surface to create an accessibility index for each grid cell. Raster data

on inland water bodies (lakes and glaciers), protected areas, and

altitude were then used heuristically to reduce the accessibility
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potential in areas where there is little or no population. Accessibility

values in water bodies and areas of extremely high altitude were set to

zero. Accessibility values in protected areas and forest reserves were

reduced by 80% and 50%, respectively. Both adjustments were heu-

ristically chosen in the absence of empirical data.

The accessibility values estimated for each grid cell serve as weights

to distribute population proportionately. The grid cells in the acces-

sibility index were summed within each administrative unit. Each value

was then divided by the corresponding administrative unit sum such

that the resulting weights sum to one within each administrative unit.

Multiplying each cell value by the total population yields the estimated

number of people residing in each grid cell. The standardization of the

accessibility index implies that the absolute magnitudes of the pre-

dicted access values are unimportant—only the variation within the

administrative unit determines population densities within each district

(Deichmann, 1997; Nelson & Deichmann, 2004)—but that, similar to

GRUMP, the sum of grid cell population values for each unit cannot

exceed the value for the administrative unit in which they fall.

2.4. Highly Modeled Surfaces

Another recently developed dataset, LandScan, takes a highly mode-

led approach, whereby much less investment is made in using the

Figure 4 The computation of accessibility potential for a single node on
the transport network where four towns are within the chosen travel time
threshold.

D. L. BALK ET AL.132



highest possible resolution population data (ORNL, 2003). This data

set is categorically different from those described above, in that it

does not attempt to represent nighttime, census residence, or usual

population but rather it aims to measure an ‘‘ambient’’ population—

i.e., the average location of an individual across seasons, days of the

week, and times of day. Instead, effort is spent on getting annual

updates to relatively coarse-level population inputs, and to ancillary

data (including roads, nighttime lights, elevation, slope, and land

cover) to be fitted to a complex model (Dobson et al., 2000). The

specific model parameters or their calibration are not published and,

thus, it is difficult to assess the appropriateness or accuracy of this

approach. LandScan receives less attention here, but is briefly dis-

cussed where it has been applied in the studies below.

3. METHODOLOGY

Though the basic method for re-distributing population from census

and other units to a grid has been discussed, there are additional

methodological requirements. For each reporting unit, a consistent

population estimate for a baseline year is obtained. Where no census

data or official estimates are available for the target year, a popu-

lation figure is estimated using census year population and inter-

censal growth rates.

3.1. Adjusting Population Estimates to Target Years

Key inputs in all population databases reviewed in the previous sec-

tion are subnational population totals typically available for small

administrative or statistical reporting units. The standard source for

such data is a national population and housing census, or, in some

instances, a large demographic survey. Population censuses are un-

dertaken periodically in many countries, once a decade. Exceptions

are countries in which well-functioning civil registration systems

make periodic census-taking unnecessary. Many countries take their

censuses on the decadal year (1980, 1990, 2000), others take them

on the first year thereafter (1991, 2001). (The US Census Bureau
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maintains an inventory of past and future census dates for each

country at www.census.gov/ipc/www/cendates/.) Some countries pro-

duce inter-censal estimates. Other countries, particularly those expe-

riencing civil unrest, with few resources, or where census information

may be deemed to be politically threatening, tend to have less regular

censuses taken at intervals wider than once per decade.

Given that the population data are collected in different years, the

small area population totals need to be reconciled by estimating

population for the target years of interest. In GPW v3, these are 1990,

1995, and 2000 as well as a projection for 2015. GRUMP is similarly

produced for 1990, 1995, and 2000. The regional Africa and Latin

America data sets that are based on the accessibility model include

population estimates for 1960, 1970, 1980, 1990, and 2000. For most

countries, where two native population estimates were available from

the national statistical offices, an average annual population growth

rate was computed, as follows:

r ¼
ln P2

P1

� �

t
(1)

where r is the average rate of growth, P1 and P2 the population totals

for the first and second reference years, respectively, and t the number

of years between the two census enumerations. This rate was then

applied to the census figures to interpolate or extrapolate population

totals to the target years. For example, the 1995 estimate is calculated

(where t is now the difference between P1 and 1995):

P1995 ¼ P1e
rt (2)

Some countries had only one population estimate. This includes

newly formed states (e.g., Croatia) as well as countries that for either

economic or political reasons have not conducted a census or released

census results since 1990 (e.g., Angola). Others have conducted a

recent census (e.g., Afghanistan) but administrative areas have

changed to an extent that it cannot be matched with prior censuses.

Additionally, many small islands have infrequent censuses and do not

have subnational data. In these instances, national-level growth rates

from the United Nations were used in lieu of intrinsically calculated

growth rates (United Nations, 2001).
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3.1.1. Boundary Matching Over Time

The GPW population surfaces use only population and boundary

information and the other datasets use these data in combination

with other sources. These pieces of information are linked. Where

boundaries have changed over time, as they often do, considerable

effort is made to reconcile the differences. For example, if a district in

1990 were split into two districts in 2000, the population for the two

districts in 2000 would be summed so as to represent the same areal

distribution as given in 1990. (It is usually impossible to adequately

divide the population for the given district of 1990 in the absence of

information provided by the census office to this effect.) As higher

resolution data are collected, the need for reconciling boundary

changes becomes greater, because lower level units such as districts

are modified more frequently than provinces or states. Fitrani et al.

(2005) describe how decentralization in Indonesia led to a sharp in-

crease in the number of local governments and associated boundaries

(from 292 in 1998 to 434 in 2004). In many countries, changes are less

dramatic, but reconciling boundaries and reporting unit identifiers

nevertheless poses one of the most challenging problems in compiling

detailed, cross-national population databases. Interpolating or ex-

trapolating population figures to a common base year often requires

the use of a hybrid method, whereby growth rates are calculated at a

level where boundaries have not changed (e.g., provinces), and ap-

plied to higher resolution subunits such as districts.

3.1.2. Temporal Aspects of Ancillary Data for Modeled Population
Grids

Unlike the GPW databases, GRUMP and the Accessibility Model

also use other datasets, which represent phenomena that change over

time: changes in urbanization and infrastructure. Unfortunately, the

current versions of these databases are limited to a single snapshot.

The urban extents are derived primarily from a stable city-lights’

database from a 1994–1995 composite and the roads’ data are ap-

proximately as of the year 2004. Users of these databases, interested

in changes over time, should be well aware of this limitation.
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Future versions of this database will be able to incorporate im-

proved temporal coverage, since the nighttime lights’ data are being

processed for additional time periods. Additional research will be

required to confirm that changes in nighttime satellite-derived urban

extents truly reflect land-use changes surrounding major urban areas

rather than changes in sensor characteristics or processing. Should

time series of road networks become available, they too could be

incorporated. Alternatively, historical transport networks can be ap-

proximated by altering the speed of travel over particular surfaces to

represent the poorer condition of the transport network in the past

and envisaged better conditions in the future.

3.2. Limitations of the Ancillary Data

GRUMP and the Accessibility Model rely on ancillary data because

in all instances the best possible data are not available. For this

reason, it is important to understand the strengths and weaknesses of

those data sources before applying them. While some of the issues

associated with the temporal shortcomings have been mentioned,

there are other caveats unrelated to temporal concerns.

There have been many uses of the nighttime lights’ data as a proxy

for urban areas (Elvidge et al., 1997; Sutton et al., 2001; Pozzi et al.,

2003; Schneider et al., 2003) and these data are the only globally

consistent and repeated sources of likely urban areas. Nevertheless,

they have a few key limitations: they are known to over-represent

built-up area, an effect called ‘‘blooming.’’ The blooming effect de-

pends on intrinsic characteristics of the sensor and on geolocation

errors in the compositing process (Elvidge et al., 2004). Studies have

shown that it is not possible to find a unique threshold to reduce the

blooming effect that would work globally (Small et al., 2005). In fact,

a 10% threshold could reduce the blooming effect without signif-

icantly affecting many individual small settlements for the 1994/1995

dataset. But this threshold does not provide a globally consistent

basis for relating lighted areas to urban extent, since the character-

istics of the blooming effect are, to some extent, city and country

specific. Thus, heuristic or ad hoc adjustments of this nature would

make data analysis questionable. A second shortcoming of these data
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is that they under-represent small settlements that are either poorly or

infrequently lit due to insufficient detection by the sensor. This is a

particular problem in Africa or rural Asia, where population data are

also often sparse.

Given the limitations with the nighttime lights’ data, GRUMP

protects against overestimation of urban extents that are false pos-

itives—i.e., lights at industrial sites which may not be (or are sparsely)

populated—by requiring additional information for validation (i.e., a

name, location, and population estimate corresponding to the light).

GRUMP also uses additional sources and indirect techniques to es-

timate extents for known populations that fall below the sensor’s

detection threshold as discussed above (see Balk et al., 2005a).

For small-scale or even regional applications, the urban mask as-

sociated with the GRUMP data may produce areal extents that are

larger than expected. In these instances, use of the urban extent mask

if used with the GRUMP population grid may provide sub-urban

population detail that might assist in further delineating the more-

and less-densely populated areas within these enlarged—or agglom-

erated—urban areas and thus indicating features (density) that are

associated with urban gradients. Reliance on the extent mask in and

of itself may lead to overestimation of urban areas. For example,

Tatem et al. (2005) found that the GRUMP urban mask overesti-

mates urban extents for Kenya when compared with data derived

from higher-resolution satellite imagery.

Future versions may be able to use improved night-lights products,

both in their ability to reduce the blooming (though that work is just

underway) and to make use of lights detected at more than a single

time point. As mentioned, GRUMP was developed when only the

1994–1995 product was available, but subsequent to that, 1992–1993

and 2000 releases have become available. These are not fully anal-

ogous datasets, so additional work to determine their utility for urban

detection would first be required.

Similarly, for use in the Accessibility Model, there are few data

sources that provide consistent, geographically referenced transpor-

tation network data for large areas such as an entire continent. The

combination of the Vector Map Level 0 (VMap0) spatial data

(NIMA, 1997) with the improved attribute data and the transport
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data used for the African Accessibility Model should be viewed as

currently the best available for the given constraints. The spatial data

for the African transport network is derived from the Vector Map th

VMap layers for roads, rivers, and railroads (NIMA, 1997). VMap0

is an updated version of the Digital Chart of the World (DCW) and is

suitable for applications at a scale of 1:1 million. While this provides

a consistent level of spatial detail for Africa, the transport links in the

database do not contain sufficient information about their charac-

teristics (road quality, road type), which is essential for computing the

travel times in the accessibility model. For most of Africa, roads are

the most important means of transport, and so the attributes of the

road links were substantially improved through the use of continen-

tal-scale paper maps of Africa at a scale of 1:4 million (Michelin

Travel Publications, 2004). These maps were used to identify

132 000 km of major roads and 282 000 km of secondary roads

(11% and 22% of all roads in the VMap0 layer, respectively).

There are many uncertainties in the spatial and attribute data for

the transportation network. There is often no easy way to determine

the original data source. It is also likely that the original scale of the

data varies from country to country. It is often hard to determine

how current the data are and how data from different sources were

reconciled at country boundaries. Indeed, it is quite possible that the

final transportation network does not represent consistently the state

of the road network for any one year and it needs to be used with

great caution in applications that require data at scales greater than

1:1 million or that require data for the state of the transport network

for Africa pre-1990 or post-2005. Future improvements in the quality

of continental-scale transport networks will most likely depend on the

public release of VMap Level 1 data at 1:250 000 or concerted re-

gional efforts to publish consistent key data layers (such as SERVIR

for Central America http://servir.nsstc.nasa.gov/home.html).

4. HEALTH APPLICATIONS

Since the earliest version of GPW and the Accessibility Models in the

mid-1990s, health researchers have been using the data to better
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understand population exposure, vector-habitat, disease distribution,

mortality, and related factors (from habitat change to livestock dis-

tribution to the distribution of underweight children). These data

have been used effectively at the regional and global scale, and in

some instance (large areas or countries), in fairly specific local areas.

Gridded population data have been used to assist in sampling for a

health survey in Chad (Brooker et al., 2002; Beasley et al., 2002) to

estimate the geographic distribution of underweight children (Balk

et al., 2005b), to determine changing habitat (for example, Reid et al.,

2000), and to estimate population at risk of a specific infectious dis-

ease. Measures of population counts and density distributions have

broad-scale health applications. Although the bulk of this section

addresses the latter, a brief review of the former is also included, in

part, because gridded population data act as a proxy for a host of

other health-related data.

4.1. General Health Studies

Regional studies of mortality and malnutrition have focused largely

on understanding biological and socioeconomic factors associated

with those outcomes. Spatially explicit data on those outcomes is

typically not available. When survey or clinic data are georeferenced,

as is increasingly the case, it becomes possible to consider a range of

spatially explicit factors, including population density. Density relates

to disease transmission—and ultimately health status—in a variety of

ways. For example, person-to-person transmission is likely to be high

in densely populated urban areas, though such areas may reduce the

potential for particular vector habitats. Population density estimates

also provide continuous measures of the degree of urbanness (such as

high-density core urban areas or less dense semi-urban areas). In the

absence of explicit data on the mode of disease transmission, or the

vector habitat, and with careful use, population density may be a

useful proxy for an urban continuum.

In a study of West African mortality, Balk and colleagues (2004)

confirm the complexities associated with measuring and interpreting

population density: in urban areas, increases in population density

reduced the risk of infant deaths, and the further away from an urban
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area, the greater the likelihood of infant death. In this study, density

(GPW v3) and the GRUMP urban extent mask (alpha version) are

used as proxy variables for clinic or health services density (which

were not directly measured). In a study of underweight status in

African children, Balk and colleagues (2005b) find that population

density (GPW v3, CIESIN and CIAT, 2004)—again acting as an

urban proxy—decreases the likelihood of children being underweight.

Similarly, Sachs and colleagues (2001) and Gallup and Sachs (2001)

use GPW v2 to explain differences in the spatial pattern of poverty

and disease burden in Africa. These studies find that coastal dwell-

ers—in large part due to their access to ports, urban areas, and in-

frastructure—experience less poverty and a lower economic burden

associated with malaria than inland populations.

4.2. Specific Diseases

Population grids have become a key tool to understanding the pop-

ulations at risk of contracting various infectious diseases. Infectious

diseases have vectors or other transmission routes that are generally

highly location based or geographic in nature. The means to under-

standing the impact of specific disease burdens depends in part on the

ability to identify spatially the areas at risk as well as understanding

the population in those places. Matching these spatial units—disease

numerators with population denominators—is a large part of the

contribution that gridded population data make toward understand-

ing specific infectious diseases.

In many low-income countries, lack of resources and capacity

in the health system prevent the development of reliable records of

malaria morbidity and mortality. A large body of work has attempted

to triangulate malaria risk and human population distribution to

define population at risk. This work was pioneered in Africa with the

development of the MARA/ARMA model of climate suitability for

Plasmodium falciparum transmission (Craig et al., 1999). Combina-

tions of this map and the African population database (Deichmann,

1996b) were used to define age-specific populations at risk in 1995.

These estimates were derived using national-level age distribution

data from the UN Population Division applied to subnational
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population totals. In combination with empirical epidemiological

data from local studies, Snow and colleagues (1999a, b) produced

estimates of morbidity and mortality for the total and under five-

year-old populations of Africa (see also Hay et al., 2000). This work

was updated and augmented (Snow et al., 2003) to the year 2000

using the African population database (Deichmann, 1996b) to deter-

mine the proportion of the population in transmission risk categories

and applying these to year 2000 national population estimates from

the United Nations (2001). The most accurate revision of these mor-

tality and morbidity figures for Africa has been done by using new

extractions for the year 2000 using GPWv3 (CIESIN and CIAT,

2004) and the MARA model (Hay et al., 2005a). This work is also

incorporating the location of urban populations in Africa to discount

morbidity and mortality estimates for the significantly lower malaria

transmission rates in these urban areas.

Recently, these ‘‘population at risk’’ assessments have been con-

ducted using historical maps of malaria endemicity and its transmis-

sion extent to evaluate the changing population at risk between 1900

and modern times at the global scale (Hay et al., 2004). Using a

similar approach to MARA/ARMA morbidity, estimates for P.

falciparum have now been conducted globally (Snow et al., 2005). In

addition, some (Rogers and Randolph, 2000; Van Leishout et al.,

2004) have used GPWv2.0 (CIESIN et al., 2000) to estimate popula-

tion at risk under coupled scenarios of population and climate change.

There are many issues involved with the choice of population surfaces

and their derivation and these have been evaluated with respect to

population at risk of malaria in Kenya (Hay et al., 2005b). Hay and

colleagues show the paramount importance of the average spatial

resolution of the input census data by comparing five population

surfaces including GRUMP v1, GPW v2, and v3; the Accessibility

Model (version 3 not the most current); and LandScan. Figure 5

compares the error associated with each dataset at varying levels of

spatial aggregation: they all estimate about the same population at the

most aggregated level (the first administrative level) but two stand

apart, GPW v3 and GRUMP v1, providing notably superior estimates

at the highest spatial resolution. (Note that this publication was not

undertaken on the most recent versions of the Accessibility Model, in
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which the underlying inputs have been improved, or of LandScan.)

The results also highlight the issues involved and accuracy that can be

obtained using simple interpolation techniques at different adminis-

trative levels, where these might be locally available. Although the

interpolation methods differ, the best-fit datasets are those with inputs

of the highest mean spatial resolution (MSR).

Given the absence of reliable data on the total number of parasitic

infections in a country, estimates have often been based on prevalence

data from a few limited studies and extrapolated to the country as a

whole. In order to make these extrapolations more accurate, global

georeferenced population datasets have been used increasingly. In

particular, population totals and distribution from the Africa Pop-

ulation database (Deichmann, 1996b) and the first version of GPW

(Tobler et al., 1995), along with district-level census data when avail-

able, have been used to estimate population at risk of parasitic dis-

eases or to estimate the number of people infected. For example,

different statistical models have been developed to estimate the

number of individuals to be treated based on the prevalence of in-

fection of a given disease and population structure and distribution

(Brooker et al., 2000; Lindsay & Thomas, 2000; Noma et al., 2002).

Lindsay and Thomas (2000) use climate data to predict the

Figure 5 Cumulative percent of the African population represented by
mean spatial resolution (MSR) (i.e., for version 4, 60% of the population is
represented by an MSR of 50 or better).
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distribution of lymphatic filariasis and overlay the resulting risk maps

with a continental population grid (Deichmann, 1994) to estimate the

number of people potentially exposed to the infection in Africa.

The issue of identifying population at risk and priority areas for

treatment has been addressed by combining gridded population data

with remotely sensed data. For instance, a recent methodology was

developed to combine ecological zones defined using satellite-derived

data (land-surface temperature and photosynthetic activity averages)

with population density and prevalence data to map population at

risk of parasitic infections in different countries in Africa (Brooker

et al., 2001a, 2002; Kabatereine et al., 2004) and Asia (Brooker et al.,

2003). The results provide a targeted sampling frame of schools to

guide valid epidemiological surveys and the identification of priority

areas for national school initiatives and mass treatment. Noma et al.

(2002) use GIS to identify bioclimatic zones of potential for oncho-

cerciasis and to select which communities should be surveyed. The

results were used to define areas of varying transmission risk to guide

the implementation of control strategies. Similarly, Brooker and col-

leagues (2001b) used an early version of the African Population grid

(Deichmann, 1996b) to determine populations at risk in particular

locations resulting in observation of a significant relationship between

the prevalence of Schistosoma mansoni and the distance of the schools

from the lakeshore; as a matter of health policy, ‘‘distance to lake-

shore’’ can now be used as a means to screen schools in East Africa.

A related application is one where global population data were used

to study the relationship between population distribution changes and

associated habitat changes. For example, Reid and colleagues (2000)

predict that population distributional changes will, in effect, reduce

the cattle population habitat leading to the reduction of the tsetse fly

population and sleeping sickness prevalence in the human population.

Several uses of gridded population surfaces have demonstrated

patterns in the distribution of human population vis-à-vis physio-

graphic, climatic, and other environmental parameters that may be

closely linked to health and disease burdens. For example, Small and

Cohen (2004) use GPW v2 to show that people tend to live at low

altitude (with Mexico City being an important exception) and near

permanent water sources (rivers and coasts), but that population is
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not nearly as localized with respect to climatic variables such as pre-

cipitation or temperature. Disease vectors may be influenced by all of

these factors, thus demonstrating the need for moderate-resolution

population surfaces that allow for these factors to be disentangled in

any given region of interest. In another study, Astrom and colleagues

(2003), using GPW v2, find that populations residing above a certain

altitude—due to the relationship with the physiological processing of

oxygen at high altitude—experience lower tumor incidence.

In the wake of the Indian Ocean tsunami of December 26, 2004, the

GRUMP population grid was used in combination with coastal

buffer distances and elevation to estimate the population exposed to

the great wave (Balk et al., 2005c): roughly four million persons were

estimated to live within a 2 km buffer in the most-affected regions.

These estimates were then used to calculate death rates in some of the

affected regions. National and moderate-resolution subnational pop-

ulation estimates could not be used rapidly, and without considerable

assumptions, to generate estimates of exposure to natural hazards.

(Even if some countries had high-resolution subnational data, they

would need to be gridded to make such calculations.) Further, since

this tragedy occurred across many national borders, it highlighted the

utility of having a global population grid that is agnostic about in-

dependent of country boundaries. A global study of natural disaster

hotspots has used GPW to estimate the risk of mortality and eco-

nomic loss from six major natural hazards (Dilley et al., 2005).

Lastly, an exploratory study considers the relationship of popula-

tion density to the location of newly emerging or re-emerging infec-

tious disease (Patel et al., 2006). While the evidence is preliminary and

complex, it suggests that disease emergence may be causally related to

population dynamics, travel and trade routes.

5. DISCUSSION

Population input data are inevitably highly variable in terms of

quality, resolution, and accuracy, in ways that are not quantifiable. In

part, that is the nature of demographic data, which represent social

processes, but treating them as if they were an easily measurable

D. L. BALK ET AL.144



physical variable (on a grid). Administrative units will always be

larger in sparsely populated areas, and perhaps will have more detail

than may be needed for some applications in high-density places.

Users should bear this constraint in mind when using these data.

5.1. Ideal Spatial Resolution

The ideal resolution for the study of infectious diseases and health

will vary. Localized disease outbreaks might require information on

village location, boundaries, and associated population characteris-

tics. Emergency response studies, such as the recent tsunami in the

Indian Ocean (Balk et al., 2005c) require high-resolution adminis-

trative boundaries, population, and other demographic data associ-

ated with those boundaries as well as infrastructure (e.g., health

clinics) at risk. Where the emergency is brought on by a geophysical

phenomenon that is best estimated with physical data (such as coastal

distance or elevation) gridded data are a prerequisite for establishing

baseline population exposure. For broad synoptic analysis of

health–environment issues, medium-resolution data would likely be

sufficient.

The databases discussed herein have been constructed with enough

information to incorporate uncertainty into the analysis. A simple

measure for each pixel is the resolution—in this case, the size of

geographic area—of the administrative unit from which the pixel

population was derived or modeled. A grid of this indicator is avail-

able for version 3 of GPW. In practice, few people take the trouble to

do serious uncertainty or sensitivity analyses. The responsibility of

data producers is to provide all relevant information about input

data, document modeling, and processing and leave it to the user to

take this information into account.

In the development of the aforementioned data products, it has

been useful to construct a measure of effective resolution. Measured

as the country-specific average resolution, it can be thought of as the

‘‘cell size’’ if all units in a country were square and of equal size,

which of course they are not. It is calculated as follows:

Mean resolutionðkmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcountry areaÞ=ðnumber of unitsÞ

p
(3)
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A closer look at the varying resolution (or area) of the administrative

units reveals other key improvements in the database in the GPW

efforts. The average resolution of all countries went from 60 to 46,

with improvements of 10 times or more for particular countries.

Figure 6 shows the resolution improvements in Africa, for four ver-

sions of the Accessibility Model, by cumulative population. In the

current version of the accessibility model, as with GPW v3, more than

60% of Africa’s population is represented by a mean resolution of

50 km or better. This represents a significant improvement over pre-

vious models, including version 2 of the Accessibility Model and

GPW v1, where 60% of the population was represented by much

coarser resolution, more than three times coarser than the current

resolution (about 170 km).

Though GPW has always sought to be based on inputs of the best-

available resolution at the time, efforts to improve version 3 of GPW

included acquisition of even higher resolution data for countries with
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United Nations Environment Program 99

Gridded Population of the World 299
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Global Rural Urban Mapping Project 99

Land Surface 99

United Nations Environment Program 99-2

Figure 6 Graph of error structure by administrative level for the five
large area public-domain human population distribution surfaces (see Hay
et al., 2005b). Left axis is the root mean square error expressed as a per-
centage of the mean population size of the administrative level.
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coarse-resolution inputs and islands some of which required labor

inputs to compile the basic data (such as digitizing). Earlier versions

of GPW had less motivation (and resources) to do this, because the

output resolution of 2.5 arc-minutes rendered finer input resolution

redundant. The inputs for the third version of GPW were also used

as an input to the GRUMP population surface that includes re-

allocations toward urban areas and whose output resolution is 30

arc-seconds. Given the small footprint of many urban areas, the

considerable investments in obtaining the highest available resolution

population data were necessary to achieve the best-possible match

between input and output resolution for each country. Often, these

new inputs had to be digitized from imperfect source materials, since

digital versions of these data were not available. For countries that

are island chains, the improvements consisted of collecting island-

level population data, and then assigning population to existing

spatial inputs. GPW v2 had 41 countries with country-level (admin-

istrative level 0) data only, 31 of which were islands, which had an

average resolution of 46. In version 3, fewer than half of these coun-

tries remain (with a slightly smaller share of them being islands) with

an average resolution of 22.

5.2. Conclusion

As capabilities in refining the estimates of population distribution,

urban areas, and associated infrastructure networks have increased,

the more evident the localized nature of the distribution of human

population has become. Improved estimates show that less, not more,

land area tends to be occupied by moderate and densely populated

settlements, as shown in Figure 7 (Figure 7 is Plate 4.7 in the Separate

Color Plate Section), for the case of Ecuador. These spatial Lorenz

curves show the cumulative fraction of the population as a function

of cumulative fraction of land area, where units are ordered by in-

creasing population density. Forty percent of Ecuador’s population

lives on 15% of its land area according to GPW v2. The improved

resolution of GRUMP revise estimates substantially, reducing it by

more than half, to only 6% of the land area in this example. People
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live locally, are burdened by disease locally, and receive their health

services locally. Gains in the improved resolution of human popu-

lation distribution will continue to lead to a better understanding of

disease and health, but these gains must also be matched with im-

provements in information on health clinics, health catchments, and

infrastructure.

In the future, more high-resolution data should become available

so that modeling will be less and less necessary for most health anal-

yses. While there may still be a need for modeled population data—

for example, to understand seasonal flows—the basic improvement

would be to the baseline population distribution. Hence what is im-

portant is to ensure long-term funding for maintaining and updating

these data, and to ensure open-data dissemination policies so that

data are made easily available for science and policy. For health

studies, priority next steps, apart from continuing to increase reso-

lution, would be more consistent global time series (e.g., going back

several decades to assess recent trends), and further demographic

variables such as age distribution and other variables required to

make rigorous spatial projections.

6. DATA DISSEMINATION

The following data are available in the accompanying DVD: the

Gridded Population of the World version 3 (beta) at 2.5 arc-minutes:

population counts, land area, and population density; version 1

(alpha) of the GRUMP 30’ population surface; and the Accessibility

Model for Africa. All grids are available in GeoTIFF format. Users

are strongly encouraged to visit the respective websites for updates

and final versions. For GPW and GRUMP, see http://sedac.cie-

sin.columbia.edu/gpw, where users can also download the grids for

2015, the GRUMP settlement points (alpha), and the urban extent

mask (alpha) as well as ancillary data products associated with GPW

(e.g., national coastlines to match the population grid and a grid of

national identifiers). The website for Accessibility Model for Africa is

http://na.unep.net/globalpop/africa/Africa_index.html. An updated

version of the Accessibility Model for Latin America and the
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Caribbean is underway and users should visit CIAT’s website http://

gisweb.ciat.cgiar.org/population/ for updates. Users are strongly en-

couraged to supply feedback, and their publications that make use of

these data, to gpw@ciesin.columbia.edu.

6.1. Data Selection

Before using the population surfaces in the companion DVD for

analysis, a population model and spatial resolution must be chosen

and the data evaluated to ensure that its precision meets the study

requirements. Population surface and accessibility models should not

be used as ‘independent’ tests of the reliability of nighttime light im-

agery or transportation network data (nor should they be used to

modify such data in attempts to eliminate errors) when they have been

derived from these original datasets in the first place. It is essential to

avoid circularity in ‘improvements’ of both original and derived da-

tasets. The choice of appropriate resolution—a 30 arc-second or

2.5 arc-minutes—depends on the scale of the study. In general, the

2.5 arc-minute data are most appropriate for continental and large-

region studies; the 30 arc-second data are most appropriate for smaller

regions and national studies. In some cases, subnational studies are

possible with the 30 arc-second data, but it is not possible to derive

meaningful results for small-area studies such as those for a single city.

For the GPW and GRUMP data, the administrative unit area grid

(available from the GPW web site) may be used to determine the

approximate locational precision of the population surfaces on a cell-

by-cell basis. The administrative unit area grid indicates the area of

the administrative unit from which the population value was derived.

Where multiple units contributed to a cell, the value is the weighted

mean of the input administrative unit sizes. A cutoff mean admin-

istrative unit area value can be approximated by calculating the area

based on a given radius. For example, to identify the cells with a

locational accuracy of approximately 10 km or greater, a cutoff value

of 314 would be used, because cells with a value greater than this are

derived from an administrative unit that cannot be enclosed by a

circle with a radius of 10 km. In reality, a larger value should be used,

as very few administrative units are circular in shape.
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6.2. Methods and Issues in Analysis

Using the population data surfaces requires a software package ca-

pable of dealing with raster data, such as ArcGIS
TM

(with the Spatial

Analyst extension), Erdas Imagines, Idrisi, GRASS, MatLabs, or

any number of others. GeoTIFF is a well-known format supported in

most packages that handle raster data. If translation is necessary, the

open source Geospatial Data Abstraction Library (GDAL), available

at: http://www.remotesensing.org/gdal/, can be used to convert files

to a number of other formats.

The most common form of analysis is to aggregate population

totals in the surfaces by some other unit of analysis (such as ecolog-

ical regions or habitats, buffers around points of interest such as

health clinics, and so on) using a zonal statistics function. Population

density grids may be used in a similar manner to characterize the

variability of population within different zones; the minimum, max-

imum, mean, and standard deviation of density values within a given

zone are often more useful for inter-zone comparison than just for the

total populations of the zones.

Regression analysis with population counts or density as an ex-

planatory variable or as a per capita denominator for explanatory

variables other than population is another tool used commonly with

these data. While there are many legitimate uses of these raster pop-

ulation surfaces in quantitative analysis of this type, care must be

taken as raster data can invalidate the assumptions in classic regres-

sion. This occurs simply as a function of the self-replicating feature of

the gridded nature of the data. A raster layer comparison is useful for

explanation but cannot be relied on for rejecting the null hypothesis

at a given probability level (Openshaw, 1991) because these data may

be biased. That is, the original administrative area data would have

had a single value that was distributed across far more grid cells.

While the approximate value of each grid cell would be accurate, each

observed grid cell is not independent of (i.e., they are spatially de-

pendent, being from the same original administrative area polygon;

and they inflate the number of observations). Geostatistical ap-

proaches based on point observations (GPW and GRUMP make

centroids of the units used in gridding available for this purpose), or
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using the data to first construct variables based on zonal statistics,

may be better. The examples given herein have paid attention to this

caveat. These approaches can be accomplished with geostatistical

extensions to any other GIS software or stand-alone software pack-

ages for working with spatial data (e.g., the ArcGISs Geostatistical

Analyst extension or the free GeoDa software package).
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ABSTRACT

There is no accurate contemporary global map of the distribution of

malaria. We show how guidelines formulated to advise travellers on

appropriate chemoprophylaxis for areas of reported Plasmodium

falciparum and Plasmodium vivax malaria risk can be used to generate
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crude spatial limits. We first review and amalgamate information on

these guidelines to define malaria risk at national and sub-national

administrative boundary levels globally. We then adopt an iterative

approach to reduce these extents by applying a series of biological

limits imposed by altitude, climate and population density to malaria

transmission, specific to the local dominant vector species. Global

areas of, and population at risk from, P. falciparum and often-

neglected P. vivax malaria are presented for 2005 for all malaria

endemic countries. These results reveal that more than 3 billion

people were at risk of malaria in 2005.

1. INTRODUCTION

During the halcyon days of global malaria eradication, mapping the

precise spatial extent of the disease was central to the control efforts

of the World Health Organization (WHO). Between the 1940s and

1970s, a huge investment was made in synthesising available infor-

mation on the distribution of risk using various combinations of

expert opinion, elevation, climate, presence/absence records of the

disease and vectors, spleen rates, parasite rates, sporozoite rates, bit-

ing rates and haemoglobinopathy prevalence (Boyd, 1949; Pampana

and Russell, 1955; WHO, 1966; Lysenko and Semashko, 1968; Dutta

and Dutt, 1978). Since the 1970s, as the world’s public health focus

shifted from malaria eradication, an interest in mapping global ma-

laria risk waned (Carter and Mendis, 2002; Hay et al., 2004a).

Following a renewed commitment to financing comprehensive ma-

laria control at a global scale, the significance of defining the disease

burden has re-emerged as a priority (Hay et al., 2004a; Snow et al.,

2005). This will allow regional and national requirements for drugs,

insecticides, bed nets and other commodities to be assessed more

accurately, and so malaria to be rolled back more effectively (Snow,

2004; Sachs, 2005). Despite an obvious need to map risk (Snow et al.,

1996), there remains no comprehensive definition of the spatial limits

of malaria. Previous studies (Rogers and Randolph, 2000; Hay et al.,

2004b) have used information provided by the WHO on the extent of

risks due to P. falciparum and P. vivax from advice to travellers
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(WHO, 2003a, b). Precise details of how the WHO constructed these

limits are difficult to obtain and there are several other public-domain

sources of travel advice (CDC, 2003; IAMAT, 2004), which have not

been harmonised with the WHO data (WHO, 2003b). Here we use

geographic information systems (GIS) to triangulate and standardise

international travel health guideline (ITHG) information and refine

these limits with country-specific altitudinal exclusions, climate suit-

ability criteria and population density, to make a new map of global

malaria risk. The result is a species-specific estimate of the limits of

malaria transmission in 2005.

2. THE DISTRIBUTION OF MALARIA RISK FROM
TRAVEL GUIDELINES

ITHGs have been developed to advise travellers on appropriate ma-

laria chemoprophylaxis. These guidelines are the only contemporary,

global source of information on national and sub-national malaria

risk. Three primary sources are available in the public-domain: the

WHO’s International Travel and Health guidelines (WHO-ITH)

(WHO, 2005), the World Malaria Risk Chart of the International

Association for Medical Assistance to Travellers (IAMAT-WMRC)

(IAMAT, 2004) and the Health Information for International Travel

(‘‘Yellow Book’’) of the Centres for Disease Control and Prevention

(CDC-YB) (CDC, 2003). These guidelines provide country-specific

information that variously include (i) sub-national risk distribution;

(ii) altitude-based transmission limits; (iii) risk definitions in specific

urban and rural areas; (iv) P. falciparum to P. vivax ratios; (v) dom-

inant vector species; (vi) anti-malarial drug resistance status; and (vii)

prophylaxis regimens recommended. An example entry for Ecuador

is as follows: ‘‘Malaria risk—P. falciparum (34%), P. vivax (66%)—

exists throughout the year below 1500m, with some risk in Cotopaxi,

Loja and Los Rı́os. Higher transmission risk is found in El Oro,

Esmeraldas and Manabı́. There is no risk in Guayaquil or Quito.’’

(WHO, 2005). Despite sometimes being incomplete, as in this exam-

ple, it should be acknowledged that ITHGs are inclusive, rather than

exclusive of geographic areas of malaria risk, so that information
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given to potentially non-immune travellers is risk-averse. The empir-

ical data used as input to these national entries are rarely detailed.

To map these data we focussed on the three main criteria: admin-

istrative boundaries, altitudinal limits and urban centres (Table 1).

We combined the sub-national description of malaria with databases

of administrative areas within countries to define crude spatial limits.

We obtained first- and, occasionally, second-level sub-national ad-

ministrative boundaries for all malarious countries from the Food

and Agriculture Organization’s GeoNetwork portal (http://

www.fao.org/geonetwork/) (n ¼ 94), the International Centre for

Tropical Agriculture (CIAT) (http://www.ciat.cgiar.org/) (n ¼ 6),

and the Environmental Systems Research Institute (ArcView Data

& Maps CD, ESRI, Redlands, California, USA) (n ¼ 4).

We defined all classifications of malaria risk in the ITHG entries as

malaria presence, except those of ‘‘no risk’’, ‘‘negligible risk’’ and

‘‘sporadic cases’’, which we classified as absent. Descriptions of sub-

national malaria risk that were not geographically specific were im-

possible to map and were ignored. An exception was made if malaria

risk was described as present in X50% of the administrative area, in

which case transmission was considered possible throughout that

administrative unit. Where data were available from more than one

source (Table 1), we used the finest spatial resolution and most com-

prehensive information. A digital elevation model (DEM) at approx-

imately 1 � 1 km spatial resolution (Hastings and Dunbar, 1998) was

Table 1 Comprehensiveness of the information provided by interna-
tional travel and health guidelines. Figures indicate the number of entries
per category that prove useful for mapping.

Source Administrative Altitude Urban All

WHO-ITHa 27 20 14 61

IAMAT-WMRCb 30 41 31 102

CDC-YBc 30 14 26 70

Uniqued 42 42 37 121

aInternational Travel and Health Guidelines of the WHO (WHO, 2005).
bInternational Association for Medical Assistance to Travellers’ World Malaria

Risk Chart (IAMAT, 2004).
cCentres for Disease Control and Prevention’s Yellow Book (CDC, 2003).
dThe maximum number of entries per criteria regardless of source.
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used to implement national altitudinal transmission limits, reported

in the ITHGs in metres above sea level. We could not map non-

specific ‘‘highland’’ or ‘‘lowland’’ descriptions. If the ITHG sources

provided conflicting limits, we used the higher altitude threshold.

Finally, the ITHGs reported 70 cities as malaria free. These were geo-

referenced using electronic geographic databases (Microsoft Corpo-

ration, 2005; The Getty Research Institute, 2005; University of Cal-

ifornia, 2005), co-located to their urban extents as defined by the

Global Rural-Urban Mapping Project (GRUMP) (CIESIN/IFPRI/

WB/CIAT, 2004) and then excluded.

Of the 107 countries reporting some degree of malaria risk, we

mapped 104 according to our ITHG exclusion criteria (Table 2).

Uzbekistan reported only ‘‘sporadic cases’’ and was not mapped as a

malaria endemic country (MEC) in this paper. For Algeria, no corre-

sponding administrative data could be obtained, and for North Korea

there was insufficient detail in the sub-national description of risk. De-

spite the ITHGs being independent documents, there was relatively little

complementary information: of a potential 318 entries (106 MECs� 3,

i.e. risk information defined by administrative boundaries, altitude or

urbanisation), there were only 121 unique reports, with IAMAT-

WMRC the most comprehensive and WHO-ITH the least (Table 1).

3. THE BIOLOGICAL LIMITS OF TRANSMISSION

3.1. Altitudinal Mask

Temperature is inversely related to altitude, dropping by approxi-

mately 0.981C for every 100-metre increase above absolute sea level

(Henderson-Sellers and Robinson, 1991). Mosquitoes and malaria

transmission are thus sensitive to altitude (Cox et al., 1999). Al-

titudinal limits from the ITHGs were available for 42 countries. The

majority of the countries (44/62) for which no information was avail-

able were in Africa and we assumed no altitudinal limits for most of

these (see Section 3.2). For the 18 remaining non-African MECs, we

defined limits by those of neighbouring countries with similar dom-

inant vector species. To identify the latter, we used a global map
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Table 2 Country summary data of area and population at risk (PAR) extractions

Countrya ITHGs criteriab Pfrc Ad1d Areae Populationf

Ad Alt Urb Total WHO

2002

ITHG ALT-

MASK

POP-

MASK

Pf Pv Pf+Pv

AFRO

Algeria Yes No No 0.610 48 2.32 0.02 n/a 0.01 0.00 0.00 0.00 0.00

Angola No No No 1.000 18 1.25 1.25 1.25 1.24 0.93 12.92 0.00 0.00

Benin No No No 1.000 12 0.12 0.12 0.12 0.12 0.11 6.29 0.00 0.00

Botswana Yes No No 1.000 10 0.58 0.17 0.18 0.18 0.04 0.16 0.00 0.00

Burkina Faso No No No 1.000 45 0.27 0.27 0.27 0.27 0.27 13.49 0.00 0.00

Burundi No No No 1.000 17 0.02 0.02 0.02 0.02 0.02 6.03 0.00 0.00

Cameroon No No No 1.000 10 0.47 0.47 0.47 0.46 0.44 12.56 0.00 0.00

Cape Verde Yes No No 1.000 17 0.00 0.00 0.00 0.00 0.00 0.25 0.00 0.00

Central Af. Republic No No No 1.000 17 0.62 0.62 0.62 0.62 0.27 3.22 0.00 0.00

Chad No No No 1.000 14 1.26 0.81 1.26 0.89 0.52 9.05 0.00 0.00

Comoros No No No 0.950 3 0.00 0.00 0.00 0.00 0.00 0.61 0.00 0.00

Congo No No No 1.000 10 0.34 0.34 0.34 0.34 0.24 3.43 0.00 0.00

Côte d’Ivoire No No No 1.000 16 0.32 0.32 0.32 0.32 0.32 14.10 0.00 0.00

Dem. Rep. Congo No No No 1.000 11 2.34 2.33 2.34 2.31 2.06 46.88 0.00 0.00

Equatorial Guinea No No No 1.000 7 0.03 0.03 0.03 0.03 0.02 0.50 0.00 0.00

Eritrea No Yes Yes 0.644 9 0.12 0.12 0.12 0.12 0.12 0.00 0.00 4.21

Ethiopia No Yes Yes 0.622 11 1.13 0.94 0.94 0.89 0.79 0.00 0.62 44.09

Gabon No No No 1.000 9 0.27 0.27 0.27 0.27 0.06 1.30 0.00 0.00

Gambia No No No 1.000 7 0.01 0.01 0.01 0.01 0.01 1.08 0.00 0.00

Ghana No No No 1.000 10 0.24 0.24 0.24 0.24 0.24 18.38 0.00 0.00

Guinea No No No 1.000 8 0.25 0.25 0.25 0.25 0.23 8.02 0.00 0.00

Guinea-Bissau No No No 1.000 9 0.03 0.03 0.03 0.03 0.03 1.39 0.00 0.00

Kenya No Yes Yes 1.000 8 0.57 0.53 0.52 0.51 0.42 23.67 0.00 0.00

Liberia No No No 1.000 9 0.10 0.10 0.10 0.10 0.09 2.39 0.00 0.00
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Madagascar No No No 1.000 6 0.59 0.59 0.59 0.59 0.59 15.75 0.00 0.00

Malawi No No No 1.000 3 0.11 0.11 0.11 0.11 0.10 11.78 0.00 0.00

Mali No No No 1.000 9 1.26 0.66 1.26 0.99 0.60 11.82 0.00 0.00

Mauritania Yes No No 1.000 13 1.04 0.28 0.76 0.59 0.23 1.08 0.00 0.00

Mauritius Yes No No 0.000 9 0.00 0.00 0.00 0.00 0.00 0.00 0.57 0.00

Mayotte No No No 1.000 2 0.00 0.00 0.00 0.00 0.00 0.31 0.00 0.00

Mozambique No No No 1.000 11 0.78 0.78 0.78 0.78 0.71 17.97 0.00 0.00

Namibia Yes No No 1.000 13 0.83 0.15 0.45 0.34 0.17 1.14 0.00 0.00

Niger No No No 1.000 8 1.19 0.57 1.19 0.85 0.36 12.20 0.00 0.00

Nigeria No No No 1.000 37 0.91 0.91 0.91 0.91 0.89 108.52 0.00 0.00

Rwanda No No No 1.000 12 0.03 0.03 0.03 0.02 0.02 5.50 0.00 0.00

S. Tome & Principe No No No 0.950 2 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.00

Senegal No No No 1.000 10 0.20 0.20 0.20 0.20 0.17 8.24 0.00 0.00

Sierra Leone No No No 1.000 4 0.07 0.07 0.07 0.07 0.07 4.41 0.00 0.00

South Africa Yes No No 1.000 9 1.22 0.08 0.30 0.17 0.10 11.12 0.00 0.00

Swaziland No No No 1.000 4 0.02 0.00 0.02 0.02 0.02 0.92 0.00 0.00

Togo No No No 1.000 5 0.06 0.06 0.06 0.06 0.06 5.17 0.00 0.00

Uganda No No Yes 1.000 56 0.21 0.21 0.21 0.20 0.19 24.44 0.00 0.00

U. Rep. of Tanzania No Yes No 1.000 25 0.88 0.88 0.86 0.86 0.56 28.97 0.00 0.00

Zambia No No No 1.000 9 0.75 0.75 0.75 0.75 0.75 11.25 0.00 0.00

Zimbabwe No Yes Yes 1.000 10 0.39 0.39 0.30 0.39 0.35 10.68 0.00 0.00

23.19 16.01 18.54 17.13 13.17 477.15 1.19 48.31

AMRO

Argentina Yes Yes No 0.000 23 2.78 0.01 0.14 0.14 0.10 0.00 2.19 0.00

Belize No Yes Yes 0.000 6 0.02 0.02 0.02 0.02 0.02 0.00 0.23 0.00

Bolivia Yes Yes Yes 0.046 9 1.08 0.27 0.76 0.76 0.38 0.00 1.71 0.53

Brazil Yes Yes Yes 0.214 27 8.52 4.82 5.08 5.08 1.61 0.00 2.40 14.94

Colombia Yes Yes Yes 0.384 32 1.14 0.95 0.90 0.90 0.48 0.00 0.87 12.37

Costa Rica Yes Yes Yes 0.002 7 0.05 0.05 0.03 0.03 0.03 0.00 0.70 0.00

Dominican Republic Yes Yes No 0.997 31 0.05 0.05 0.01 0.01 0.01 0.68 0.00 0.00

Ecuador Yes Yes Yes 0.212 22 0.26 0.11 0.12 0.12 0.09 0.00 0.00 3.35

El Salvador Yes Yes No 0.000 14 0.02 0.02 0.00 0.00 0.00 0.00 1.09 0.00
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French Guiana No No No 0.696 2 0.08 0.02 0.04 0.04 0.00 0.00 0.00 0.05

Guatemala Yes Yes Yes 0.051 22 0.11 0.04 0.07 0.07 0.06 0.00 0.00 3.80

Guyana No No Yes 0.470 10 0.21 0.20 0.21 0.20 0.08 0.00 0.00 0.64

Haiti Yes Yes No 1.000 9 0.03 0.03 0.01 0.01 0.01 3.15 0.00 0.00

Honduras No Yes Yes 0.035 18 0.11 0.11 0.09 0.09 0.08 0.00 4.10 0.00

Mexico Yes Yes No 0.004 32 1.96 0.82 0.41 0.41 0.40 0.00 15.79 0.00

Nicaragua No Yes Yes 0.133 16 0.12 0.13 0.09 0.09 0.06 0.00 0.00 1.83

Panama Yes Yes Yes 0.150 10 0.08 0.03 0.02 0.02 0.02 0.00 0.00 0.19

Paraguay Yes No No 0.000 18 0.40 0.02 0.05 0.05 0.05 0.00 1.26 0.00

Peru Yes Yes Yes 0.171 25 1.29 0.54 0.76 0.76 0.38 0.00 0.40 5.23

Suriname Yes Yes Yes 0.787 10 0.15 0.11 0.13 0.13 0.02 0.01 0.00 0.02

Venezuela Yes Yes Yes 0.088 23 0.92 0.20 0.38 0.38 0.15 0.00 1.04 3.02

19.39 8.56 9.33 9.32 4.03 3.83 31.78 45.98

EMRO

Afghanistan No Yes No 0.385 32 0.64 0.51 0.38 0.38 0.37 1.77 0.14 12.44

Djibouti No No No 0.980 5 0.02 0.02 0.02 0.02 0.02 0.22 0.00 0.00

Egypt Yes No No 4 0.98 0.01 0.01 n/a n/a n/a n/a n/a

Iran No Yes No 0.200 24 1.61 0.56 1.02 1.02 0.98 0.00 0.00 38.83

Iraq Yes Yes Yes 0.000 19 0.44 0.29 0.10 0.10 0.10 0.00 7.95 0.00

Morocco Yes No Yes 0.000 15 0.41 0.01 0.01 0.00 0.00 0.00 0.06 0.00

Oman Yes Yes No 0.000 8 0.31 0.02 0.00 0.00 0.00 0.00 0.03 0.00

Pakistan No Yes No 0.365 5 0.88 0.85 0.74 0.74 0.68 0.00 0.00 122.99

Saudi Arabia Yes No Yes 0.471 14 1.93 0.18 0.86 0.85 0.31 1.20 0.13 12.21

Somalia No No No 0.722 18 0.64 0.64 0.64 0.58 0.54 0.00 0.00 7.52

Sudan No No No 0.851 18 2.49 1.86 2.49 2.13 1.57 26.31 0.00 2.83
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Syrian Arab Rep. No Yes No 0.540 12 0.19 0.03 0.04 0.04 0.04 0.00 0.00 4.02

Yemen No Yes Yes 0.956 21 0.46 0.34 0.43 0.43 0.25 13.20 0.00 1.78

10.99 5.30 6.75 6.29 4.86 42.71 8.32 202.62

EURO

Armenia Yes No No 0.000 11 0.03 0.01 0.00 0.00 0.00 0.00 0.27 0.00

Azerbaijan No No No 0.000 63 0.08 0.02 0.00 0.00 0.00 0.00 0.17 0.00

Georgia Yes No Yes 0.000 14 0.07 0.01 0.01 0.01 0.01 0.00 0.53 0.00

Kyrgyzstan Yes No No 0.000 7 0.19 n/a 0.08 0.03 0.03 0.00 1.25 0.00

Tajikistan Yes No No 0.003 6 0.14 0.01 0.11 0.04 0.04 0.00 3.23 0.00

Turkey Yes No No 0.000 81 0.78 0.13 0.19 0.13 0.13 0.00 13.64 0.00

Turkmenistan Yes No No 0.000 6 0.46 0.02 0.09 0.09 0.09 0.00 1.16 0.00

Uzbekistan No No No n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

1.76 0.19 0.48 0.29 0.30 0.00 20.26 0.00

SEARO

Bangladesh No No Yes 0.407 6 0.14 0.14 0.14 0.14 0.13 0.00 0.00 124.61

Bhutan Yes Yes No 0.387 18 0.04 0.02 0.01 0.01 0.01 0.00 0.00 0.91

India Yes Yes Yes 0.278 34 3.09 2.93 2.94 2.94 2.86 0.00 88.26 857.93

Indonesia No Yes Yes 0.385 27 1.90 1.71 1.75 1.75 1.44 0.00 0.00 151.08

Korea, D. P. R. No No No 12 0.12 0.00 n/a n/a n/a n/a n/a n/a

Myanmar Yes Yes Yes 0.788 16 0.67 0.66 0.53 0.53 0.47 0.00 0.00 38.36

Nepal Yes Yes Yes 0.090 5 0.15 0.08 0.06 0.06 0.06 0.00 7.66 9.64

Sri Lanka Yes Yes Yes 0.222 9 0.07 0.06 0.06 0.06 0.06 0.00 0.00 10.32

Thailand No No Yes 0.469 76 0.52 0.35 0.51 0.49 0.50 0.00 0.00 58.08

Timor-Leste No No No 0.534 14 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.62

6.70 5.97 6.01 5.99 5.54 0.00 95.93 1 251.55

WPRO

Cambodia No No Yes 0.870 24 0.18 0.18 0.18 0.18 0.16 2.03 0.00 10.79

China Yes Yes Yes 0.100 32 9.44 1.24 2.36 2.36 2.32 0.00 453.90 287.79

Lao P. D. R. No No Yes 0.960 18 0.23 0.23 0.23 0.23 0.22 3.56 0.00 2.30

Malaysia No Yes No 0.565 14 0.33 0.33 0.27 0.27 0.26 0.00 0.00 9.69

Papua New Guinea No Yes No 0.727 20 0.46 0.38 0.41 0.41 0.41 0.47 0.00 3.69

Philippines Yes Yes Yes 0.605 16 0.30 0.30 0.21 0.21 0.21 0.00 0.00 46.95
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Republic of Korea No No No 0.000 15 0.10 0.00 0.03 0.03 0.02 0.00 4.86 0.00

Solomon Islands Yes Yes No 0.646 9 0.03 0.03 0.02 0.02 0.02 0.00 0.00 0.31

Vanuatu No No Yes 0.525 6 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.18

Viet Nam No Yes Yes 0.590 61 0.33 0.33 0.32 0.32 0.32 0.00 0.00 69.76

11.42 3.03 4.05 4.04 3.95 6.06 458.76 431.47

Global 73.44 39.06 45.15 43.06 31.85 529.75 616.25 1 979.93

aThe data are presented alphabetically by WHO regional office and country name with totals shown in bold at the end of each
section and at the end of the table for the World.

bRefers to presence or absence of any of the main three mapping criteria used (Ad, administrative, Alt, altitude and Urb, urban).
cThe mean P. falciparum ratio as used in Figures 1 and 2A–R (see colour plate section).
dThe number of administrative one level divisions per country.
eArea totals are presented for each country as per the WHO 2002 boundaries, the ITHGs and the ITHGs with the altitudinal mask

(ALT-MASK) and the population mask (POP-MASK) exclusions in millions of km2.
fPopulations in 2005 living predominantly under P. falciparum (Pf) and P. vivax (Pv) and mixed (Pf+Pv) risk are also presented in

millions. Populations were projected to 2005 from GRUMP at �1� 1 km2 spatial resolution (CIESIN/IFPRI/WB/CIAT, 2004).
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developed by Kiszewski et al. (2004) and mapped the altitudinal lim-

its using the same 1� 1 km spatial resolution DEM (Hastings and

Dunbar, 1998).

3.2. Climate Suitability Mask

Since the information in ITHG reports for African countries was so

sparse (Table 2), we used the MARA/ARMA climate suitability

model to further adjust the malaria transmission limits on this con-

tinent (Craig et al., 1999). The MARA model describes climatic con-

ditions (or fuzzy climate suitability, FCS) that range from unsuitable

(0) to completely suitable (1) for stable P. falciparum transmission.

Since the MARA model includes climatology-derived temperature

limits, this can also be used as a surrogate altitudinal mask. To do

this we have assumed that FCS values of zero are incompatible with

malaria risk, as supported by a recent analysis of parasite prevalence

and FCS values in East Africa (Omumbo et al., 2004). The spatial

resolution of the MARA model was too coarse to apply exclusions to

the territories of Cape Verde, Comoros, Mauritius, Mayotte and Sao

Tome and Principe. For Comoros, we assumed the same altitudinal

limit as that of Ethiopia (2000m), based on their similar dominant

vectors. Altitude masks were unnecessary for the remaining low-lying

island states as they have no areas above 1800m, which is at or below

the lowest altitude threshold reported elsewhere in Africa for the

same dominant vector species compositions (Kiszewski et al., 2004).

3.3. Population Density Mask

Two population density extremes were applied to refine the spatial

limits of transmission further. First masked, are those areas where

environmental conditions may support malaria, but where there are

too few people, so the human malaria parasites cannot complete their

life-cycle and do not pose any public health concern; these include,

for example, dense forests and true deserts. We therefore used the

1� 1 km resolution GRUMP population density surface, which al-

lows for equal area corrections (CIESIN/IFPRI/WB/CIAT, 2004)
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(see below), to exclude all areas in the remaining distribution with a

population density of o1 person per km2.

Second are those areas where population density is so high that

conditions become unsuitable for transmission through the process of

urbanisation (Hay et al., 2000; Robert et al., 2003; Omumbo et al.,

2005). Urbanisation has been shown to reduce malaria transmission

on average by an order of magnitude across Africa (Hay et al., 2005).

There is no reason to think that the same fundamental processes of

reduced (i) Anopheline diversity; (ii) biting rates; (iii) sporozoite rates;

(iv) transmission; and thus (v) human malaria infections in urban

versus rural areas do not apply globally. This is certainly true for the

70 cities cited as malaria free in ITHGs. Moreover, the 24 cities that

report urban malaria often refer to infection risk on their peripheries.

A potential confounder to this global trend could be the presence of

the urban malaria vector Anopheles stephensi in the Indian sub-

continent (Rowland et al., 2002). A detailed look at the evidence

indicates that vector densities and sporozoite rates show similar de-

clines from rural, through peri-urban, to urban localities in Delhi

(Sharma et al., 1993), Gurgaon (Sharma, 1995) and Karachi (Nalin

et al., 1985) to those in Africa.

We projected population counts for the year 2000 (CIESIN/IFPRI/

WB/CIAT, 2004) to 2005 by applying national, medium variant, in-

tercensal growth rates by country (UNPD, 2004) before deriving

contemporary population densities using an area-by-pixel surface

(CIESIN/IFPRI/WB/CIAT, 2004). We geo-referenced (Microsoft

Corporation, 2005; The Getty Research Institute, 2005; University of

California, 2005) cities with populations equal to or greater than one

million people (UNSD, 2001) in MECs and identified their urban

extents in GRUMP (n ¼ 204). We then investigated population den-

sity frequency statistics within each of these urban extents. Significant

regional differences in population density were apparent, so a con-

servative threshold of intensity of urbanisation was used, corre-

sponding to the median of population density means associated with

the urban extents by region. The medians were 4218, 1533 and 2513

persons per km2 for Africa, the Americas and Asia-Europe, respec-

tively. The same median as Asia-Europe was used in Oceania MECs,

where no cities of X1 million people currently exist. We thus masked
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as no malaria risk all those areas that could be unambiguously clas-

sified as intensely urban relative to their corresponding region.

The resulting map, after applying the three masks described here, is

shown in Figure 1 (Figure 1 is Plate 5.1 in the Separate Color Plate

Section).

4. DISTINGUISHING P. FALCIPARUM AND P. VIVAX RISK

Global information of the distribution of P. falciparum and P. vivax

is not comprehensively detailed in the ITHGs. Sub-national statistics

are available from other sources (FDRE, 2002; PAHO, 2003; Hay

et al., 2004a; Sintasath, 2004; Kolaczinski et al., 2005). For countries

or areas within countries where no sub-national data were available,

national average data were used from ITHGs or other sources

(PAHO, 2003; Korenromp, 2005) (Table 2). Specific data for Mayotte

were not available, so we assumed 100% P. falciparum risk based on

ITHG descriptions. We defined areas reporting X95% P. falciparum

cases as predominantly P. falciparum and those p5% P. falciparum

as predominantly P. vivax endemic. The remainder of the distribution

is of mixed (P. falciparum and P. vivax) endemicity. P. ovale and

P. malariae were not considered here, as these are relatively rare

malaria parasites and infrequently reported in national statistics.

These divisions are shown globally (Figure 1) and in greater detail by

WHO geographic region (Figures 2A–R) (Figures 2A–R are Plate

5.2A–R in the Separate Color Plate section). We now discuss the

implications of the biological limits to transmission and the parasite

species distributions by region and highlight some known anomalies.

5. REGIONAL ANALYSIS

Before the biological exclusions were applied, the global malaria area at

risk of malaria was 45.15 million km2, considerably higher than the

39.06 million km2 derived from the WHO 2002 boundaries (Figure 3A,

Table 2). The altitude and climate mask reduced this slightly to 43.06

million km2. The largest percentage reductions were in countries of the
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European Regional Office (EURO) (39.9%) and African Regional

Office (AFRO) (7.5%) due to the mountainous areas and large ex-

panses of zero climate suitability in the northern Sahel, respectively

(Figure 3B; Table 2). The population mask had a very considerable

effect in reducing the global area at risk further, to 31.85 million km2

(43.4% of the MECs total land area) (Figures 1 and 3A, Table 2). This

incremental reduction was most noticeable in countries of the American

Regional Office (AMRO) (56.8%), AFRO (23.1%) and the Eastern

A B

C D

Figure 3 A–D Bar charts showing area (A and B) and population at risk
(PAR) (C and D) of malaria according to the WHO 2002 limits (white),
ITHGs (grey), and the progressive implementation of our altitudinal (dark
grey) population (black) masks, globally and stratified by WHO regional
office. The scales of area (km2) and population are in millions. Figures were
calculated using ArcView 3.2 (ESRI, Redlands, California, USA). Area ex-
tractions were undertaken on an equal area projection.
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Mediterranean Regional Office (EMRO) (22.8%), mainly due to the

exclusion of large, relatively unpopulated areas of forest and desert

land. In the final coverage, the rank of regions by area at risk was

AFRO (13.17 million km2, 56.8% of the regional office MEC land

area), the South East Asian Regional Office (SEARO) (5.54 million

km2, 82.7% of the regional office MEC land area), EMRO (4.86 million

km2, 44.2% of the regional office MEC land area), AMRO (4.03 mil-

lion km2, 20.8% of the regional office MEC land area), the Western

Pacific Regional Office (WPRO) (3.95km2, 34.6% of the region’s land

area) and EURO (0.30 million km2, 17.0% of the regional office MEC

land area) (Figure 3B, Table 2). The global malarious area was thus

progressively reduced by iterations of biological exclusions with our

final distribution model 18.5% smaller (7.21 million km2) in area than

that which would be derived from using the WHO 2002 limits (WHO,

2003b) (Figure 3A).

The global heterogeneity in the distribution of human population

(Cohen and Small, 1998) generated some rather striking contrasts in

population at risk (PAR) extractions. Global PAR derived from the

WHO 2002 boundaries is 3.133 billion persons, much less than the 3.616

billion suggested by the crude ITHG limits (Figure 3C). Our altitude and

climate mask marginally reduced this figure further to 3.596 billion

people. After implementing the population mask, the final global PAR is

estimated at 3.126 billion. This was almost entirely due to the removal of

the highly populous urban areas of low to zero malarial risk. This final

PAR estimate is very similar to that extracted from the WHO 2002

boundaries (only 0.22% lower) but critically different in regional dis-

tribution of PAR estimates (Figure 3D, Table 2). Extractions from the

final coverage show the malarious regions by rank PAR were SEARO

(1.347 billion persons), WPRO (0.896 billion persons), AFRO (0.527

billion persons), EMRO (0.254 billion persons), AMRO (0.082 billion

persons) and EURO (0.020 billion persons). These changes in rank show

the important contribution that the very large population concentrations

in SEARO and WPRO make to the PAR estimates. It is essential to

note at this stage that all risk is not equal, and a more detailed discussion

of the P. falciparum and P. vivax partitioning by region follows.

In AFRO (Figures 2A–C), we can see how the various iterations

have refined the transmission limits for malaria infection particularly
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to the arid north and south of the continent, although significant

areas have been excised from the mid-latitude tropical forest range. A

small focus of malaria risk emerged in Illizi department, Algeria, after

our climate masking, which we assumed to correspond to the focus

reported by ITHGs in Ihrir (CDC, 2003). Hence, our final map allows

for a small area of malaria risk in Algeria. The distribution of almost

exclusively P. falciparum on the African continent is remarkable, and

fits with received wisdom about the evolution to fixation of the Duffy

negativity blood group allele, making these populations refractory to

P. vivax infection (Livingstone, 1984; Zimmerman, 2004). Informa-

tion on parasite species ratio is poor in AFRO, however, and the

stark transitions between southern Ethiopia and neighbouring coun-

tries (as well as Sudan and Somalia from EMRO (Figures 2G–I)),

suggest that a more detailed investigation of the distribution of P.

vivax is warranted in these areas on the latitidudinal margins of risk.

In AMRO (Figures 2D–F), by contrast, P. vivax is by far the

dominant parasite (Roberts et al., 2002). The most obvious exclusions

are those of the low-populated tropical forests. The regional distri-

bution of risk compares favourably with other sources (Roberts et al.,

2002; PAHO, 2003), but the biological exclusions failed to capture

completely the situation in Argentina and Paraguay, where incidence

of malaria is reportedly low (PAHO, 2003), yet our map indicates

non-negligible areas and PARs for these countries (Table 2).

EMRO (Figures 2G–I) is a truly heterogeneous region encompass-

ing Morocco, Somalia and Sudan, as well as the Middle Eastern

block through to Pakistan (Beljaev, 2002). Summary is therefore

difficult but P. falciparum is highest in the south-west with risk de-

clining as one travels north and east. Areas of ‘‘very limited risk’’

reported by ITHGs in Egypt (CDC, 2003; WHO, 2005) are not cap-

tured by our climate mask and were excluded. Our final map, there-

fore, does not allow for malaria risk in Egypt, where no cases have

been reported since 1998 (WHO, 2005) despite high malaria risk be-

ing documented in Fayoum governorate (Hassan et al., 2003).

The EURO MECs (Figures 2J–L) are essentially Turkey and the

southern states newly independent from the former Soviet Union

(Sabitinelli, 2002). Their small global fraction of malaria PAR is

largely due to P. vivax infections.
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SEARO (Figures 2M–O) is best characterised as endemic for pre-

dominantly P. vivax, but with significant foci of P. falciparum trans-

mission (Sharma, 2002). A known anomaly in our coverage is evident

from the fact that malaria has long been endemic in the Korean

peninsula (Feighner et al., 1998). After a period of decline following

the Korean War, malaria re-emerged in the Demilitarised Zone,

probably due to an epidemic in North Korea since 1993 (Lee et al.,

2002). ITHGs, however, are ambiguous about the areas of risk in this

country, making them impossible to map.

In WPRO (Figures 2P–R), P. vivax dominance gives way to P.

falciparum as one moves south and east (Schapira, 2002). China

dominates the PAR extractions for this region and introduces a

warming. An overestimation in area, and hence PAR, by our map is

possible in this country, where the average spatial resolution of

heavily populated first administrative units is poor and ITHG sub-

national descriptions fail to capture lower-level administrative detail.

6. DISCUSSION

The most widely cited map of the current global malaria distribution

is WHO 2002 (WHO, 2003b). The information source is cited as

(WHO, 2003a) but there are important discrepancies between the

map (WHO, 2003b) and suggested source data. For example, the

spatial limits according to ITHGs are 6.09 million km2 larger than

the WHO 2002 boundary (Table 2). These geographical inconsisten-

cies and a lack of detailed information of their origins make them of

unknown fidelity in risk mapping. In contrast, the methods presented

here are implemented with public-domain data and are hence easily

reproducible, the maps used to generate individual country data are

presented in detail, and the PAR numbers are made available for

scrutiny. In addition, and for the first time, parasite species’ distri-

butions are defined globally (including the often neglected P. vivax)

and are suggested as a more comprehensive map against which to

measure PAR of malaria in 2005.

Our map comes with obvious caveats, since we have implemented

crude rules at the global scale. Noticeable anomalies (e.g. Argentina,
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Egypt, Morocco, North Korea, Paraguay, and possibly China) have

been highlighted and it is clear that, at a sub-national level, discrep-

ancies will be found as, because risk is not a static phenomenon, and

global information is incomplete. We therefore propose these maps as

a working template for future refinement.

Reconnaissance of global malaria data is required to refine distri-

butions at the margins and this can only be done with malaria-risk

data at higher spatial resolution. These data probably exist at the

country level and need to be collated at the global scale within a GIS

framework. In terms of PAR, the top ten countries globally are India,

China, Indonesia, Bangladesh, Pakistan, Nigeria, Vietnam, Thailand,

Democratic Republic of the Congo and the Philippines (Table 2).

Pragmatically, Error in PAR estimates globally would be reduced

most substantially by focussing on improving distribution limits and

P. falciparum ratios for these territories.

Modelling risks within these margins is also critical and is the

subject of planned future work. Local endemicity within these trans-

mission limits will be substantially mediated by the influences of

land-use changes such as deforestation (Walsh et al., 1993) and

urbanisation (Hay et al., 2005), prevalence of other conditions such as

HIV/AIDS, tuberculosis and malnutrition (Bates et al., 2004), as well

as local control and intervention efforts (Korenromp, 2005). Our

immediate goal is to validate historical malaria endemicity maps

(Lysenko and Semashko, 1968) using empirical data and to generate

plausible scenarios of some of the above-mentioned confounding in-

fluences to satisfactorily adjust endemicity to modern day risk. This

will fill pressing needs to estimate global incidence of malaria and

commodity burdens. Our longer-term goal is to construct an inde-

pendent global map of modern day endemicity within the boundaries

we have defined and will continue to refine.

7. CONCLUSIONS

While there will remain uncertainties about the precise global extent

of malaria, we have reduced these as far as possible without system-

atic country-specific surveys and information. Urgent attention is
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required to reduce the uncertainty surrounding factors that affect the

spatial extent of malaria on a global scale and these would sensibly

target the most populous malarious nations. This will allow the in-

ternational community to better define the needs for therapeutic and

disease prevention commodities so that well-intentioned governments

and UN agencies can make requests for sufficient financial resources.
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ABSTRACT

Yellow fever has been subjected to partial control for decades, but

there are signs that case numbers are now increasing globally, with the

risk of local epidemic outbreaks. Dengue case numbers have also

increased dramatically during the past 40 years and different serotypes

have invaded new geographical areas. Despite the temporal changes in

these closely related diseases, and their enormous public health im-

pact, few attempts have been made to collect a comprehensive dataset

of their spatial and temporal distributions. For this review, records of

the occurrence of both diseases during the 20th century have been

collected together and are used to define their climatic limits using

remotely sensed satellite data within a discriminant analytical model

framework. The resulting risk maps for these two diseases identify

their different environmental requirements, and throw some light on

their potential for co-occurrence in Africa and South East Asia.

1. INTRODUCTION

Yellow fever virus is the type virus of the family Flaviviridae (from the

Latin flavus, meaning yellow), and is thought to have originated in

West Africa (Cliff et al., 2004). It was one of the earliest viruses to be

identified and linked to human disease. Although substantial varia-

tion exists among strains, they can be grouped into monophyletic

geographical variants, called topotypes. African isolates are usually

grouped into two topotypes, associated with East and West Africa

(Deubel et al., 1986; WHO, 2001), although some studies have argued

for up to five (Mutebi et al., 2001). Two more have been identified

from South America, although one has not been recovered since 1974,

suggesting that it may be extinct in the wild. There is no evidence for

a difference in virulence between the topotypes (WHO, 2001).

Dengue virus is also a member of the family Flaviviridae, and is

closely related to yellow fever virus. There are four serotypically distinct

types of dengue virus (DEN-1, DEN-2, DEN-3 and DEN-4). Although

recombination occurs between strains of the same serotype, no inter-

serotype recombination has been observed (Gubler and Kuno, 1997).
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2. THE PATHOGENS

2.1. Yellow Fever

2.1.1. History

Yellow fever virus was probably introduced into the New World via

ships carrying slaves from West Africa. The first recorded epidemics

of yellow fever occurred in Mexico and Guadeloupe in 1648.

Throughout the 18th and 19th centuries, regular and devastating ep-

idemics of yellow fever occurred across the Caribbean, Central and

South America, the southern United States and Europe. The impact

of yellow fever prompted some American colonies to refuse entry to

ships from infected areas (Pearson and Miles, 1980), and later led to

the establishment of formal quarantine arrangements (of the sort al-

ready in place in Europe as a consequence of the plague). Despite

these measures, urban epidemics continued, and in 1793, approxi-

mately one in ten of the inhabitants of Philadelphia, USA (then home

of the federal government) died during an epidemic of yellow fever.

Mortality from yellow fever and malaria caused the failure of the

French Panama Canal project in the 1880s and 1890s (McCullough,

1977; Gallup and Sachs, 2000). The Yellow Fever Commission,

founded as a consequence of excessive disease mortality during the

Spanish–American War (1898), concluded that the best way to control

the disease was to control the mosquito. William Gorgas successfully

eradicated yellow fever from Havana by destroying larval breeding

sites and this strategy of source reduction was then successfully used

to reduce disease problems and thus finally permit the construction of

the Panama Canal in 1904. Success was due largely to a top-down,

military approach involving strict supervision and discipline (Gorgas,

1915). In 1946, an intensive Aedes aegypti eradication campaign

was initiated in the Americas, which succeeded in reducing vector

populations to undetectable levels throughout most of its range.

The production of an effective vaccine in the 1930s led to a change of

emphasis from vector control to vaccination for the control of yellow

fever. Vaccination campaigns almost eliminated urban yellow fever but

incomplete coverage, as with incomplete anti-vectorial measures
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previously, meant the disease persisted, and outbreaks in remote forest

areas continued (Barros and Boecken, 1996; Vasconcelos et al.,

2001).

2.1.2. Symptoms

The symptoms of yellow fever are very variable and depend on the

severity of infection. Although a small proportion of infections are

asymptomatic, victims typically develop a number of influenza-like

symptoms including fever, joint pains and headache between three

and six days after infection. Three or four days after the appearance

of these symptoms they may disappear, and in most cases convales-

cence begins (Monath, 2001). In other cases, after a remission of

6–12 hours, febrile symptoms return accompanied by nausea, vom-

iting, epigastric pain, renal failure, jaundice (hence the common name

for the disease) and haemorrhaging (Monath, 2001; WHO, 2001).

Half of patients at this stage die within 10–14 days, but the remainder

recover without significant organ damage. Immunity is lifelong fol-

lowing infection.

2.1.3. Epidemiology

Yellow fever virus circulates in both urban and sylvatic settings

(Figure 1), involving several mosquito and vertebrate species. In

the sylvatic cycle, mosquitoes such as Aedes africanus (in Africa) or

Haemagogus species (in the Americas) act as the main vectors and

monkeys as the primary host. Vertical transmission also occurs

within the mosquito population, and may have an important role in

maintaining the sylvatic cycle (Aitken et al., 1979; Fontenille et al.,

1997). Infected mosquitoes occasionally bite unvaccinated forest

workers such as hunters and loggers. This route of transmission of

yellow fever is viewed as an occupational disease in parts of South

America, and seldom causes epidemics.

Peridomestic mosquitoes biting both humans and monkeys are

capable of sustaining small-scale epidemics of yellow fever in rural

human populations. This role is played by a number of species in

Africa (e.g. Aedes simpsoni), resulting in the epidemic form of yellow
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fever most commonly seen in recent decades. It is thought that Aedes

albopictus, the Asian tiger mosquito, is capable of adopting a similar

role (Gratz, 2004). From its natural distribution in south-east Asia,

this species has been introduced and has become established in much

of Central and South America, the Pacific, Australasia, Africa and

areas of Europe during the 1980s and 1990s (CDC, 2001). When ant-

hropophilic mosquitoes such as Aedes aegypti become infected, rapid

human–human transmission may begin. In these circumstances, an

epidemic of yellow fever may spread quickly in dense urban areas.

Urban epidemics are the form most feared by public health authorities,
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Figure 1 Yellow fever transmission cycles for (a) South America and
(b) Africa. Simian host species in South America include Alouatta sp., Ateles
sp., Callithrix sp., Cebus sp. and Saimiri sp. while those in Africa include
Colobus abyssinicus, C. polycomos, C. badius, Cercopithicus sp., Cercocebus
sp., Erythrocebus sp., Papio papio, P. anubis and Pan troglodytes.
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and may incapacitate significant proportions of the population of

a city.

2.1.4. Distribution and Impacts

It was acknowledged by the Health Organization of the League of

Nations (the forerunner to the World Health Organization (WHO))

that yellow fever was a severe burden on endemic countries. The work

of Soper and the Brazilian Cooperative Yellow Fever Service (Soper,

1934, 1935a, b) began to determine the geographical extent of the

disease, specifically in Brazil. Regional maps of disease outbreaks

were published by Sawyer (1934), but it was not until after the for-

mation of the WHO that a global map of yellow fever endemicity was

first constructed (van Rooyen and Rhodes, 1948). This map was

based on expert opinion (United Nations Relief and Rehabilitation

Administration/Expert Commission on Quarantine) and serological

surveys. The present-day distribution map for yellow fever is still

essentially a modified version of this map.

At the beginning of the 21st century yellow fever has been esti-

mated to affect as many as 200 000 people annually in the tropics of

Africa and South America (Vainio and Cutts, 1998), and causes an

estimated 30 000 deaths each year (Division of Epidemiological Sur-

veillance and Health Situation and Trend Assessment, 1992). Ap-

proximately 2.5 billion people live within the current range of Aedes

aegypti (Gubler, 1998), and must be considered at risk of either or

both yellow fever and dengue. The rapid spread of Aedes albopictus in

recent years has also increased the risk of epidemics (Knudsen, 1995;

Tatem et al., this volume, pp. 293–343). Figure 2 presents the known

global distribution of these two important vector species. In the past,

the mortality rate arising from infection with yellow fever was much

higher than it is today, due to inappropriate health care, or a lack of it

altogether, but such death rates are now avoidable, although they are

not always avoided. Urban health services may be overwhelmed by

large numbers of patients, and this is likely to occur when levels of

human immunity are low.

Yellow fever is conspicuously absent from Asia, despite multiple

opportunities for introduction. This absence does not seem to be

D.J. ROGERS ET AL.186



attributable to differences in the susceptibility of vectors, and all

components of a suitable transmission cycle appear to be present

(Vainio and Cutts, 1998). Race appears to affect susceptibility to

dengue (Guzman et al., 1990), but there are no adequate comparable

epidemiological studies of yellow fever susceptibility (Vainio and

Cutts, 1998). Although there is some evidence that other flaviviruses

may offer cross-protection against yellow fever (Gordon-Smith et al.,

1962), why yellow fever does not occur in Asia is still unexplained.

Figure 2 Global distribution of Aedes aegypti (top) and Aedes albopictus
(bottom), two important vector species of yellow fever and dengue. Aedes
albopictus distributions are provided at national scale. Australia, New Zea-
land and South Africa have all reported mosquito interception at ports (see
Tatem et al., this volume, pp. 293–343). Source: Center for International
Earth Science Information Network (CIESIN) [http://www.ciesin.org/docs/
001-613/map15.gif], supplemented with information from Gratz (2004);
Gubler (2003); Lounibos (2002); Medlock et al. (2005); Moore (1999); and
Moore and Mitchell (1997).
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2.1.5. Control

The first live-attenuated vaccine for yellow fever was developed bet-

ween 1934 and 1935 in French West Africa (Durieux, 1956), and its

use achieved a dramatic reduction in incidence within about five years

of its introduction (Figure 3). Unfortunately, it was associated with a

high risk of encephalitic reaction in children (3–4/1000, with a fatality

rate of 38%), and its production was discontinued in 1980. The 17D

live-attenuated vaccine still in use today was developed in 1936, and a

single dose confers immunity for at least ten years in 95% of the

cases. In a bid to contain the spread of the disease, travellers to

countries within endemic areas or those thought to be ‘at risk’ require

a certificate of vaccination; these countries are shown in Figure 4. The

yellow fever certificate is the only internationally regulated certifica-

tion supported by the WHO. The effectiveness of the vaccine reduces

the need for anti-vectorial campaigns directed specifically against

yellow fever. As the same major vector is involved, control of Aedes

aegypti for dengue reduction will also reduce yellow fever transmis-

sion where both diseases co-occur, especially within urban settings.
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and Cutts (1998).
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2.2. Dengue

2.2.1. History

Probable epidemics of dengue fever have been recognised since at least

1779 (Rush, 1789), and have been recorded from Africa, Asia, Europe

and the Americas since the early 19th century (Armstrong, 1923). Al-

though it is rarely fatal, up to 90% of the population of an infected area

can be incapacitated during the course of an epidemic (Armstrong, 1923;

Figure 4 Yellow fever vaccination certificate requirements by country.
&E1 requirements, E2 requirements E3 requirements E4 requirements
’E5 requirements. There are five levels of certification: E1––immunisation
is an essential requirement for entry to the country concerned and a cer-
tificate is required, except for infants under one year, E2—immunisation is
an essential requirement for entry to the country concerned and a certificate
is required (except for infants under one year) unless arriving from non-
infected areas and staying for less than two weeks, E3—immunisation is an
essential requirement for entry to the country concerned and a certificate is
required if the traveller arrives from an infected country or area, E4—
immunisation is an essential requirement for entry to the country concerned
and a certificate is required if arriving within six days of having visited an
infected country, E5—immunisation is an essential requirement for entry to
the country concerned and a certificate is required for entry to the country
from endemic areas, travelling to Easter island. Source: From data obtained
at [http://www.dh.gov.uk/PolicyAndGuidance/HealthAdviceForTravellers/
GeneralHealthAdvice/Diseases/DiseasesArticle/fs/en?].
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Siler et al., 1926). Widespread movements of troops and refugees during

and after World War II introduced vectors and viruses into many new

areas, and this trend has continued (Calisher, 2005) with the growth of

global transport networks (Tatem et al., this volume, pp. 293–343). By

the end of the 20th century, annual epidemics of dengue were occurring

in many parts of Central and South America (Pinheiro, 1989; Rod-

riguez-Roche et al., 2005), throughout the Pacific Islands (Effler et al.,

2005) and South East Asia and with occasional outbreaks in North

Australia (Doherty et al., 1967) and Africa.

2.2.2. Symptoms

Infection with any of the four dengue serotypes may result in a spec-

trum of clinical manifestations. After an incubation period of around

five to six days (Siler et al., 1926; Innis et al., 1988), patients develop

symptoms including joint pain, fever and headaches (Halstead, 1997;

Nisalak et al., 2002). Dengue fever has unsurprisingly been mistaken

for yellow fever as well as other diseases including influenza, measles,

typhoid and malaria (Hare, 1898; Siler et al., 1926; Lopez-Correa

et al., 1979; Holmes et al., 1998). Although highly uncomfortable,

dengue fever is rarely fatal and survivors appear to have lifelong

immunity to the homologous serotype.

Far more serious is dengue haemorrhagic fever (DHF), where addi-

tional symptoms develop, including haemorrhaging and shock. The

mortality from DHF can exceed 30% if appropriate care is unavailable.

The most significant risk factor for DHF is when secondary infection

with a different serotype occurs in people who have already had, and

recovered from, a primary dengue infection. It is suggested that virus

infection is enhanced by the presence of pre-existing heterotypic anti-

bodies (Halstead, 1970, 1988; Halstead et al., 1980). Under this ‘anti-

body-dependent enhancement’ hypothesis, pre-existing antibodies bind

to the heterotypic dengue virus particles but fail to neutralise them once

cross-reactive antibodies have decayed below a certain level. These in-

fectious antibody–virus complexes bind to receptors on macrophages

more easily, resulting in a higher level of viral uptake. The presence of

antibodies to a heterotypic serotype has been demonstrated to increase

the ability of dengue virus particles to infect monocytes in both in vitro
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(Halstead and O’Rourke, 1977) and in vivo (Halstead, 1979) primate

models, and enhancement appears in the sera of recently infected pa-

tients—i.e. those with neutralising levels of antibodies—if the sera are

diluted (Kliks et al., 1989). As yet, a link has not been firmly established

between increased viraemia and the pathophysiological changes seen in

DHF (Halstead, 1979) and others have suggested that these may be

related to T-cell activation (Rothman and Ennis, 1999; Zivna et al.,

2002; Mongkolsapaya et al., 2003).

2.2.3. Epidemiology

As with yellow fever, dengue is thought to have originally been a

sylvatic virus, and a complex sylvatic cycle involving multiple mos-

quito and vertebrate species still exists in the forests of South-East

Asia (Knudsen, 1977) and West Africa (Diallo et al., 2003). Dengue

has adapted to changes in human demography very effectively. The

main vector of dengue is the anthropophilic Aedes aegypti, which is

found in close association with human settlements throughout the

tropics, breeding mainly in containers in and around buildings

(Christophers, 1960; Sheppard et al., 1969; Southwood et al., 1972;

Trpis and Hausermann, 1986), and feeding almost exclusively on

humans (Christophers, 1960; Scott et al., 1993). As a result, dengue is

essentially a disease of tropical urban areas, although occasional

sylvatic outbreaks do still occur in areas of West Africa (Diallo et al.,

2003). Both vertical (Rosen et al., 1985) and sexual (Rosen, 1987)

transmissions of dengue are possible in Aedes aegypti, but they occur

at extremely low rates and are not thought to be epidemiologically

significant. Aedes albopictus also transmits dengue in parts of Asia

but is not as important, at present, as is Aedes aegypti.

DHF first came to attention in the 1950s and has since spread

rapidly throughout the tropical world (Halstead, 2005). The first

DHF epidemic was reported in Manila in 1953–1954, but cases of

probable DHF can be found in the literature stretching back to 1779

(Rush, 1789; Halstead, 1997). Before 1970, only nine countries had

experienced DHF epidemics, but by 1995 this number had increased

fourfold (WHO, 2001). The appearance of DHF stimulated large

amounts of dengue research, which established the existence of the
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four serotypes and the range of competent vectors, and led to the

adoption of Aedes aegypti control programmes in some areas (par-

ticularly South-East Asia) (Kilpatrick et al., 1970).

There is currently some debate over the taxonomy and nomenclature

of Aedine mosquitoes (Diptera: Culicidae). A recent phylogenetic anal-

ysis suggested elevating the subgenus Stegomyia to full generic status,

and Aedes to a supergenus (Reinert et al., 2004), in which case Aedes

aegypti would become Stegomyia aegypti. This proposal has attracted

criticisms of both a theoretical and a practical nature, and the Walter

Reed Biosystematics Unit has established a Mosquito Taxonomy Re-

view Committee to help resolve the issue [http://wrbu.si.edu/forums/].

In this review, and others in this volume, the more familiar name,

Aedes, is retained to avoid confusion until the situation is resolved.

2.2.4. Distribution and Impacts

Dengue case numbers have increased considerably since the 1960s; by

the end of the 20th century an estimated 50 million cases of dengue

fever and 500 000 cases of DHF were occurring every year (WHO,

2001). There have been several attempts to estimate the economic

impact of dengue: the 1977 epidemic in Puerto Rico was thought to

have cost between $6.1 and $15.6 million ($26–$31 per clinical case)

(Von Allmen et al., 1979), while the 1981 Cuban epidemic (with a

total of 344 203 reported cases) cost about $103 million (around $299

per case) (Kouri et al., 1989). Costs of non-epidemic dengue, includ-

ing dengue fever, are difficult to estimate (Clark et al., 2005; Meltzer

et al., 1998). Dengue is essentially an urban problem in the tropics,

and urban populations are projected to increase from three to five

billion by 2030, with much of this increase occurring in less-developed

countries (United Nations, 2004; Hay et al., 2005).

Large numbers of asymptomatic dengue infections have been con-

firmed in South-East Asia (Sangkawibha et al., 1984; Burke et al.,

1988; Chen et al., 1996; Porter et al., 2005), the South Pacific (Maguire

et al., 1974) and South America (Kochel et al., 2002; Teixeira et al.,

2002), and are suspected in areas of Africa (Saluzzo et al., 1986). These

asymptomatic cases may conceal the true extent of infection incidence

and virus diversity in a population.
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2.2.5. Control

There is no cure for dengue fever or for DHF. Currently, the only

treatment is symptomatic, but this can reduce mortality from DHF to

less than 1% (WHO, 2002). Unfortunately, the extent of dengue ep-

idemics means that local public health services are often overwhelmed

by the demands for treatment.

Vaccine development has been complicated by the potential risk of

vaccination resulting in antibody-dependent enhancement of future

heterotypic infection (Vaughn, 2000; Halstead and Deen, 2002), al-

though a tetravalent vaccine is presently undergoing clinical trials

(Bhamarapravati et al., 2003).

The most common historical approach to limiting dengue was

source control of Aedes aegypti. Although such programmes are ca-

pable of achieving significant reductions in the house index (the per-

centage of buildings positive for immature vectors) (Mendes Luz et al.,

2003), they are labour-intensive, expensive to sustain and appear to be

less effective than expected at preventing dengue transmission. An

informative review of the pitfalls and progress experienced by Aedes

aegypti control programmes is presented in Reiter and Gubler (1997).

Modern Aedes aegypti control programmes such as those in Singa-

pore (Goh, 1995, 1997; Wilder-Smith et al., 2004) and Cuba (Spiegel

et al., 2002) are also based on locating and eliminating domestic breed-

ing sites, but growing prosperity in many areas has led communities to

resent the invasion of their homes by control officials. Furthermore,

short-term success generally lowers public perceptions of disease risk,

and generates increased hostility to continued control attempts.

3. MATERIALS AND METHODS

3.1. Existing Maps

No serious attempts to update the yellow fever distribution map have

been made since the first global map was produced in 1948, although

part of the map for Africa was slightly amended in 1986 (WHO,

1986). The most recent global map, for the situation in 2003, was
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released in 2004 [http://www.who.int/ith/en]. Despite the implemen-

tation of vaccination programmes, attempts to eradicate the mosquito

vectors and a substantially altered human population distribution and

socio-economic status over the last 50 years, this map is still based on

the earlier maps with relatively few significant changes. Endemicity is

reported mostly at country level, and some countries are included that

have not had reported outbreaks for at least two or three decades.

While it is obviously wise to avoid underestimating the extent of a

zoonosis such as yellow fever, overestimation of the current situation

may lead to a dilution of control efforts through their application in

places where they are not really required.

The latest distribution map for ‘all cause dengue’ (dengue risk ir-

respective of serotype) reports the global situation in 2003 [http://

www.who.int/ith/en], but it is not clear how this map was derived. As

with the yellow fever map, the dengue map provides an indication of

the historical occurrence of this disease and again includes large areas

(especially in Africa) that may indeed have the disease, but have never

reported any cases of it. Thus, both the yellow fever and dengue maps

could be improved upon, most efficiently through the use of modern

mapping and modelling techniques. Attempts using climate data and

logistic regression have been made for dengue with some success

(Hales et al., 2002), but the global climate datasets used for this

modelling have relatively coarse spatial resolution, as do the resultant

maps. This paper applies discriminant analytical methods within an

information theoretic approach (Rogers, this volume, pp. 1–35) to

point records gleaned from archived reports and literature surveys,

and high spatial resolution environmental information derived from

satellites to create risk maps of environmental suitability for both

diseases.

3.2. Archive and Literature Searches

A detailed search of the WHO library archives identified point records

for yellow fever outbreaks between 1900 and 1959 (Boyce, 1906; Great

Britain Colonial Office Yellow Fever Commission, 1915a,b and c;

Noguchi et al., 1924; General Government of French West Africa, 1929;
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Sawyer, 1934; Soper, 1934, 1935a, b, 1955; Jorge, 1938; Bustamante,

1958; WHO, 1971). Serological data were not included because they

confuse populations infected naturally with those protected by vaccina-

tion coverage. The location data were either digitised using ESRI

ArcView 3.2 or geo-located using an online gazetteer [http://www.

traveljournals.net/explore/index.html]. Between 1900 and 1959, a total

of 450 locations of yellow fever outbreaks in Africa were identified, with

a further 707 locations in the Americas.

Point records for yellow fever and dengue infections between 1960

and 2005 were gathered by querying the PubMed archives [http://

www.ncbi.nlm.nih.gov/entrez/query.fcgi] in conjunction with country

names obtained from the GEOnet Names Server (GNS) [http://earth-

info.nga.mil/gns/html/cntry_files.html]. This query was initially re-

stricted to articles in English and with abstracts. The references were

loaded into RefViz [http://www.adeptscience.co.uk/products/refman/

refviz/info.html], which automatically groups them into clusters de-

pending upon their key words. Clusters judged to be unlikely to

contain spatial information were deleted. The abstracts of papers

surviving this initial cull were then checked and references discarded

that did not contain data that could be geo-referenced. A second

reference search was later undertaken for both diseases, with no lan-

guage restrictions and only in those countries that looked promising

after the first search round. RefViz was again applied to filter the

results. For yellow fever, a total of 663 references were initially

downloaded from PubMed, reduced by 395 when unpromising key-

word groups were deleted and a further 96 when the abstracts were

read. The remaining 172 references provided 281 geo-referenced

points of yellow fever occurrence. For dengue, a total of 1735 ref-

erences were downloaded from PubMed, reduced by 781 when un-

promising keyword groups were considered and by a further 77 after

reading their abstracts. The remaining 877 references provided 897

geo-referenced dengue points.

The geo-referenced data points are shown in Figure 5 (yellow fever)

and 6 (dengue). It is convenient to split the yellow fever map into two,

for the periods 1900–1959 and 1960–2005, but the records for dengue

are more sparse in the early years of the last century and so only a

single map is shown, covering the period 1960–2005.
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3.3. Yellow Fever Data

At the beginning of the 20th century, a large number of yellow fever

epidemics were recorded in both African and American cities, and

these occurred against a background of annual cases. Documentation

for this period is relatively complete because there was a concerted

effort at the time to eradicate the disease.

In Africa yellow fever was mainly a problem of the sub-Saharan

countries of West Africa, but reached as far east as central Sudan and

Kenya (Soper, 1955; Haddow, 1965; Reiter et al., 1998; Bell, 1999).

There is little reason to think that the recorded distribution is an

artefact of colonial data reporting. In the NewWorld, a large number

of outbreaks were reported in eastern Mexico and other Central

American countries. At this time, yellow fever was an epidemic

disease mainly of port cities, although a large number of inland re-

ports came from south-eastern Brazil. These cases, and those from

Figure 5 Yellow fever outbreak distribution for 1900–1959 (top) and
1960–2005 (bottom). The maps are displayed between 401N and 401S as
these latitudes encompass all known areas of the disease.
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Columbia, were recorded at very high spatial densities with many

fewer reports from the Amazon Basin.

The period between about 1950 and the 1970s was one of com-

placency about the control of yellow fever, probably arising from the

feeling that yellow fever vaccination had solved the problem. Aedes

aegypti control was reduced and overall disease record keeping ap-

pears to have diminished.

For the period 1960–2005, only 110 yellow fever points were re-

corded in Africa and 171 in South America. In both regions, these

records more or less fall within the same areas of risk shown for the

first half of the last century (Figure 5b compared with Figure 5a),

although there is a noticeable lack of new records in Central America

and proportionately more cases within the Amazon basin.

3.4. Dengue Fever Data

For the first half of the last century and up until 1960, there was little

control directed specifically at dengue, although some control was

achieved through the collateral impacts of yellow fever vector erad-

ication programmes (most notably in the Americas). Information for

this period is difficult to obtain, although known outbreaks are re-

corded predominantly in coastal ports. Large movements of suscep-

tible populations during the Second World War led to a rise in

recorded dengue cases (Gubler, 1997), especially, for countries in

South-East Asia (Gubler, 2004). Dengue point records since 1960 are

shown in Figure 6 (n ¼ 897). Dengue has now firmly established itself

in three geographical areas; South-East Asia, Latin America and

throughout the Pacific islands, and seems to be consolidating itself in

Figure 6 All-sera dengue outbreak distribution for 1960–2005. The map
is displayed between 401N and 401S as these latitudes encompass all known
areas of the disease.
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these areas, benefiting from local, large human populations. Reported

outbreaks are clustered around the Caribbean, in southern Brazil,

western India and Bangladesh and in countries surrounding the

South China Sea. Dengue has long been thought to be widespread in

Africa but case reporting remains very poor. In the absence of lab-

oratory test facilities, it is likely that dengue fever, as opposed to

DHF, would often be mistaken for other diseases such as malaria.

For both yellow fever and dengue, all presence records from 1960 to

2005 were used to construct the risk maps. For each disease, it was also

necessary to identify areas of absence and this was done by sampling

at random regions no closer than 0.51 and no farther than 101 from

any recorded presence site. A total of 3500 absence points for yellow

fever and 9000 absence points for dengue were selected in this way.

3.5. Environmental Data from Satellites

The environmental data used to describe the distributions of yellow

fever and dengue were derived from the Advanced Very High Reso-

lution Radiometer (AVHRR) on board the National Oceanographic

and Atmospheric Administration (NOAA) satellites and cover the pe-

riod from 1982 to 1999. These data are described in detail in Hay et al.

(this volume, pp. 37–77) and are provided on the DVD accompanying

this volume. Briefly, monthly maximum value composited AVHRR

Channel 3, the derived Land Surface Temperature (LST) and the Nor-

malized Difference Vegetation Index (NDVI) data were temporal

Fourier processed to extract annual, bi-annual and tri-annual seasonal

signals, which were captured as separate images showing the amplitudes

and phases or timing of the first peak of each of the three signals

(Rogers, 2000). In addition, the signal means, maxima, minima and var-

iances were also available, as was a single digital elevation surface

(DEM) derived from the GTOPO30 coverage [http://edcdaac.usgs.gov/

gtopo30/gtopo30.asp]. All AVHRR data were originally produced and

made available at a spatial resolution of 8� 8km in the Goode’s In-

terrupted Homolosine projection (James and Kalluri, 1994) and after

Fourier processing were projected by bi-linear interpolation to latitude/

longitude format at 0.101 spatial resolution. The DEM data at an

original 30 arc second resolution (1/120th of a degree) were re-sampled
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to 0.11 resolution by averaging. Satellite and DEM data were later

extracted for each of the disease presence and absence points and these

data formed the training sets for model construction.

3.6. The Modelling Approach

The modelling approach followed that described by Rogers (this

volume, pp. 1–35) and Rogers (2000). Briefly, non-linear discriminant

analysis captured the covariance characteristics of sites of disease

presence and absence and these were used to define the location

within multivariate space of any point within the risk-mapped area.

On this basis, the probability with which the point belonged to the

category of disease presence or absence was calculated and this

probability was entered into the final risk map. Disease presence and

absence data were separately clustered before analysis into between

one and eight clusters, but the final results presented here used only

three clusters each in all the models. Clustering splits data that may

be non-multivariate normal in their overall characteristics into groups

that are more nearly multivariate normal, and thus make the data

comply with the assumptions of the discriminant methods used. It is

often the case that the resulting clusters occupy separate geographical

regions or areas where different vector species are important, so that

what is initially a mathematical requirement of the methods used can

also be justified on ecological and biological grounds.

During discriminant analysis ten variables were selected for each

model in a step-wise inclusion fashion, using the corrected Akaike

Information Criterion (AICc) as the basis for choosing the next var-

iable to add to the model (Rogers, this volume, pp. 1–35). The AICc

is one of a number of criteria that might be used for variable selec-

tion, and is a measure of the Kullback–Leibler information or dis-

tance statistic that measures how well the current model fits the data

(Burnham and Anderson, 2002); the smaller the value of the AICc,

the more accurate the model.

As was the case with a set of Rift Valley Fever data (Rogers, this

volume, pp. 1–35) derived using the same literature search criteria as

were used here, the point records for yellow fever and dengue are

likely to be incomplete to a lesser or greater degree. Rogers (this
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volume, pp. 1–35) describes two ways of extracting maximum infor-

mation from such sparse datasets—bootstrap sampling and environ-

mental envelope expansion—and the former was used here. For each

disease, 100 bootstrap samples were taken, with replacement, from

the training set (300 presence and 300 absence points for Yellow

Fever and 900 of each for dengue) and a separate model was con-

structed for each bootstrap sample, producing one output risk map.

The 100 risk maps were then averaged to produce the results given

here. Each risk map shows the average predicted maximum likelihood

posterior probabilities of environmental suitability for the disease in

question, i.e. the probability with which each pixel belongs to the

category of disease presence. Areas of high probability of disease

presence are more likely to harbour the disease than are areas of

lower probability, or are at greater risk of invasion by the disease if it

is not already present. Conventionally, risk maps of this sort are

thresholded at a probability of 0.5 to produce a binary presence/

absence map, but the continuous scale more appropriately captures

the variable risk of disease occurrence. Diseases may occur in areas of

low predicted risk, but they should do so only infrequently, and they

should not persist. The thresholded versions of the maps were used to

calculate the kappa index (k) of model fit (Congalton, 1991; Ma and

Redmond, 1995), which is based on the matrix of observed and pre-

dicted presences and absences of each model’s bootstrap sample of

the training set data. Kappa varies from �1 (predictions completely

opposite to observations) through 0 (model fit no better than ran-

dom) to 1 (perfect fit) and Landis and Koch (1977) suggest the fol-

lowing ranges of agreement for the kappa statistic: poor, ko0.4;

good, 0.4oko0.75 and excellent, k40.75.

4. RESULTS

4.1. Risk Maps for Yellow Fever and Dengue

The predicted distribution maps are shown in Figure 7 (yellow fever)

and 8 (dengue). Figure 7 (Figure 7 is Plate 6.7 in the Separate Colour

Plate Section) for yellow fever shows that the predicted high-risk
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areas are quite localised within the broad boundaries of the 2003

WHO map for this disease, and that there are predicted areas of high

risk outside these boundaries, most notably in parts of the Minas

Gerais region, south east of Brasilia in Brazil, the common border

region between the Democratic Republic of Congo and western

Zambia, the eastern border region of Zimbabwe and in Swaziland.

Regions of high risk well outside these boundaries are also predicted

in Malagasy, Thailand and parts of Malaysia and Indonesia.

Figure 8 (Figure 8 is Plate 6.8 in the Separate Colour Plate Section)

for dengue shows a similar patchy distribution of high-risk areas

within WHO’s 2003 map for this disease, and high-risk areas outside

these boundaries in the New World, most notably in southern Mex-

ico. Given that some of the database points fall in these areas, it is

clear that the WHO map should be extended to include more of this

country. As expected, the predicted high-risk areas of Africa are

much more extensive than the WHO map indicates, and are well

outside any of the database records for this disease. This suggests an

underreporting of dengue in Africa, for the reasons already men-

tioned. In India and South-East Asia the predictions more or less fill

in the gaps between the database records. In Pakistan and India the

predicted high-risk areas are well within the north-western boundary

of the WHOmap. Much of the northern part of the South-East Asian

limits on the WHO map also seems to be at very low risk.

4.2. Overall Model Accuracy

The 100 bootstrap models for each disease were ranked in order of

their AICc values, lowest (best fit) to highest (worst fit). Although

there is no exact correspondence between the AICc values and the

kappa index of agreement (since the former are based on probabilities

and the latter on categorical assignment of those probabilities), there

was, nevertheless, overall agreement between the figures. Thus, the

mean kappa value for the top ten yellow fever models was 0.742

(s.d. ¼ 0.023) and for the bottom ten was 0.644 (s.d. ¼ 0.049). The

equivalent figures for the dengue models were 0.700 (s.d. ¼ 0.017)

and 0.680 (s.d. ¼ 0.011), respectively. These values indicate a good to

excellent fit of the models to the point data.
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4.3. Importance of Individual Variables

The summed Akaike weights of the models in which each variable

occurred are given in Table 1 (yellow fever) and 2 (dengue). These

sums are an indication of the importance of the individual variables

regardless of the particular models in which, and other variables with

which, they occurred (Rogers, this volume, pp. 1–35). Due to the

‘best’ model in each case being so much better than the second best,

Table 1 Yellow fever model predictor variables

Variable Summed Akaike weight Mean rank n/100

wd1014vr 1.00000 3.64 77

wd1014p3 1.00000 5.81 76

wd1003p2 1.00000 9.90 31

wd1014a1 0.99906 6.09 61

wd1014p1 0.99906 7.16 51

wd1007p3 0.99906 9.58 45

wd1003a0 0.99906 10.03 14

wd1003mn 0.99906 10.06 20

wd1007mx 0.99906 10.21 22

wd1007mn 0.99906 10.40 15

wd1014a3 0.00094 7.14 81

wd1014a2 0.00094 7.47 69

wd1007a2 0.00094 7.68 55

wd1003a2 0.00094 8.90 45

wd1007p2 0.00094 8.90 44

wd1007a1 0.00094 9.61 21

wd1003vr 0.00094 10.23 17

wd1014mn 0.00000 10.39 13

wd1007a0 0.00000 10.61 13

wd1014a0 0.00000 10.79 5

Note: Summed Akaike weights (second column) for the top predictor variables
(first column) of the 100 yellow fever bootstrap models used to produce Figure 7 (see
text for details). The mean ranks (i.e. the order in which the variables were selected,
where rank 1 ¼ the first selected variable, rank 10 ¼ the tenth selected variable and
all non-selected variables are given a rank of 11) are given in the third column, and
the number of times (out of 100 models) each variable was selected is given in the
final column.
Key to variable names: wd10 refers to AVHRR data at 0.101 resolution in the

latitude/longitude format, 03 refers to the AVHRR channel 3 (MIR), 07 to LST and
14 to Normalized Difference Vegetation Index (NDVI) data; a1, a2 and a3 refer to
the amplitudes of the annual, bi-annual and tri-annual cycles, respectively, of tem-
poral Fourier processed imagery and p1, p2 and p3 to their corresponding phases
(timing of the first peak); mn and mx refer to the minimum and maximum and vr to
the variance.
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these summed weights depend a great deal on whether the variables

were chosen in the best model. For example, the third variable in the

list for yellow fever is the phase of the bi-annual cycle of the AVHRR

channel 3 (MIR) variable (Table 1). This was selected in only 9 of the

top 25 models, while the two variables above it in the list were selected

19 and 18 times in the same models. The summed Akaike weights for

all 3 variables are the same (1.0) because they were all selected for the

top two models. The seven variables following these three all have the

same Akaike weight (0.99906); they too were selected by the top

model but not by the second- and third-best models. Vegetation index

variables occupy four of the top five positions in Table 1, suggesting

that yellow fever is particularly sensitive to the greenness or humidity

of the environment. The fact that the NDVI variance is the most

important variable also suggests that the variability of greenness or

humidity is key to the distribution of this disease.

For dengue the situation with regard to the importance of the top

few variables is the same (Table 2), but in this case LST variables

occupy three of the top five slots. Once again, the most important

variable appears to be the variance of this variable. In the case of

dengue, the variability of environmental temperature rather than of

moisture appears to be key to its distribution.

4.4. Variability of Bootstrap Results

Some ideas of the different sets of variables selected during boot-

strapping, and also of differences between the two diseases, are given

in Figure 9a (yellow fever) and b (dengue). Each row in each image in

Figure 9 (Figure 9 is Plate 1.3 (middle and right) in the Separate

Colour Plate Section) refers to one of the bootstrap models that are

arranged in rank order, with 1 (lowest AICc value) at the top and 100

(highest AICc value) at the bottom. Each of the 31 columns on the

right of the image indicates one of the satellite predictor variables

available to describe the disease. The first column of these 31 columns

is for the digital elevation layer (DEM), followed by three sets of 10

columns referring to the Fourier-processed AVHRR MIR, LST and

NDVI imagery, respectively. Within each set, the Fourier layers are in
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the following order, from left to right; mean, phase of annual cycle,

amplitude of annual cycle; phase of bi-annual cycle, amplitude of bi-

annual cycle; phase of tri-annual cycle, amplitude of tri-annual cycle;

maximum of fitted Fourier cycles (summed annual to tri-annual),

minimum of fitted Fourier cycles and variance of the original signal.

In any single model (row) the predictor variable selected first is col-

oured red, the second selected variable is coloured orange and so

on according to the rainbow colour scale to the right of the image.

Table 2 Dengue model predictor variables

Variable Summed Akaike weight Mean rank n/100

wd1007vr 1.00000 3.64 81

wd1007p1 1.00000 4.01 88

wd1014p3 1.00000 5.02 100

wd1014a0 1.00000 6.10 78

wd1007p3 1.00000 6.32 99

wd1003p3 1.00000 7.05 99

wd1014p2 1.00000 9.18 63

wd1003mx 0.99872 10.61 6

wd1007a2 0.99872 10.75 9

wd1007a0 0.99872 10.89 2

wd1003mn 0.00128 2.82 87

wd1003a0 0.00128 9.11 52

wd1014a1 0.00128 10.64 16

wd1014p1 0.00000 8.41 68

wd1003vr 0.00000 9.90 14

wd1003p2 0.00000 10.07 43

wd1007p2 0.00000 10.30 27

wd1003a1 0.00000 10.58 9

wd1014a3 0.00000 10.80 10

wd1014mn 0.00000 10.86 9

Note: Summed Akaike weights (second column) for the top predictor variables
(first column) of the 100 dengue bootstrap models used to produce Figure 8 (see text
for details). The mean ranks (i.e. the order in which the variables were selected, where
rank 1 ¼ the first selected variable, rank 10 ¼ the tenth selected variable and all non-
selected variables are given a rank of 11) are given in the third column, and the
number of times (out of 100 models) each variable was selected is given in the final
column.
Key to variable names: wd10 refers to AVHRR data at 0.101 resolution in the

latitude/longitude format, 03 refers to the AVHRR channel 3 (MIR), 07 to LST and
14 to Normalized Difference Vegetation Index (NDVI) data; a1, a2 and a3 refer to
the amplitudes of the annual, bi-annual and tri-annual cycles, respectively, of tem-
poral Fourier-processed imagery and p1, p2 and p3 to their corresponding phases
(timing of the first peak); mn and mx refer to the minimum and maximum and vr to
the variance.
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Variables not chosen in any model are not coloured at all in that row.

Images like these are able to show visually both any consistent

changes (if they occurred) in the suites of variables chosen by models

of increasing overall accuracy and whether or not individual variables

were consistently selected within those suites. For yellow fever and

dengue (as was also the case with Rift Valley fever—Rogers, this

volume, pp. 1–35), there do not appear to be any gradual changes in

the suites of chosen variables, but (different) individual variables are

consistently chosen.

In the case of yellow fever (Plate 1.3 (middle)), the predominantly

red line down the right-most column of the image indicates variable

31 in the variable list, which is the NDVI variance. Not only is this

variable overall the most important in the 100 models, it is also often

selected first in the step-wise selection process; the annual amplitude

of NDVI (variable 24 in the list) sometimes replaces it as the first-

selected variable.

In the case of dengue (Plate 1.3 (right)) the predominantly red line

down the middle of the image indicates variable 10 in the variable list,

which is the minimum of AVHRR channel 3 (MIR). This variable is

often selected first, but LST variance (number 21 in the sequence) is

also often selected first, second or third. Crucially, LST variance was

selected first in the best model; hence its highest overall summed

Akaike weight (see above).

4.5. Populations at Risk

To be at all useful, risk maps must also contribute to initiatives aimed

at public health intervention. To do this it is first necessary to relate the

risk maps to the human populations in the ‘at risk’ regions. The

GRUMP human population surface (Balk et al., this volume, pp.

119–156) was aggregated to the same 0.11 resolution as the risk maps

and the populations within each category of risk were read off from the

resulting image. Figure 10 shows both the total human populations

living within each risk category (Figure 10a) and the mean human

population density per 0.101 grid square related to the same risk cat-

egories (Figure 10b). The total number of grid squares globally that fall
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within each category of risk is indicated by the dashed lines in Figure

10a. The first point to be noted is that large portions of the globe—the

colder, temperate regions—are free of any risk from either disease

(note that the graph does not show the total human population at zero
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Figure 10 (a) Total numbers of humans within each category of yellow
fever or dengue risk as shown in Figures 8 and 9 (thick lines, millions scale)
and numbers of 0.101 grid squares within each risk category (dashed lines,
thousands scale). (b) Mean human population density per 0.101 grid square
for each category of yellow fever and dengue risk.
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risk of either disease, because it is so large). Taking the 0.50 probability

of risk as the cut-off between disease absence (po0.5) and presence

(pX0.5) reveals that approximately 33.3% of the Earth’s 6.05 billion

people are at risk of dengue infection and 7.01% at risk of yellow fever

infection (Figure 10a). Figure 10b shows that areas with the highest

human population densities are associated with the higher risk cate-

gories for dengue and the lower risk categories for yellow fever. It

seems that dengue is a disease associated with populous places of the

globe, whereas yellow fever is associated with places where humans are

relatively scarce. Curiously, the very highest risk categories of all are

associated with low human population densities in the case of dengue

(possible rural dengue in South-East Asia?), but high population den-

sities in the case of yellow fever (possible urban yellow fever in South

America?) (Figure 10b).

These results allow further interpretations of Figures 7 and 8.

These figures were produced using only the environmental condi-

tions associated with yellow fever or dengue infections in the past; the

human population map was not an input data layer to the models.

Figure 7 shows parts of Asia that are climatically suitable for yellow

fever (which does not occur there); these include populous areas,

and it is possible that the pressures of the human population exclude

this disease. This could be for a number of reasons, including the

exclusion by high population densities of humans of critical sylvatic

maintenance hosts of yellow fever and the bridge mosquito vectors

that transfer infections to the urban transmission cycle. Conversely,

Figure 8 shows that many areas of Africa are climatically suitable

for dengue, which is seldom reported from the continent. It was

suggested previously in this review that this may be because of

underdiagnosis of dengue in Africa, but a further possibility is that

the low human population density across much of Africa (compared

with India and South-East Asia) in some way precludes the occur-

rence of dengue. The essentially domestic vector, Aedes aegypti, may

not exist at the levels required to transmit dengue, except in heavily

populated places that provide just the right sorts of conditions

for this vector species. If this is the case, any future increase of

human populations in Africa, and their increasing urbanisation, may

be associated with an increase in dengue across the continent,
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which is clearly already climatically suitable for this disease

(Figure 8).

5. DISCUSSION

The models presented here are based purely on outbreak data. A

large number of protection test surveys were undertaken as part of

the yellow fever monitoring programmes (Beeuwkes et al., 1930,

1934; Beeuwkes and Mahaffy, 1934; Sawyer and Whitman, 1936), but

these data were not included in the models since some of them refer to

immunity following vaccination rather than naturally acquired in-

fection.

Future models of both diseases could be improved by incorporat-

ing information about the distributions of vector (Kumm, 1931;

Whitman, 1951) and reservoir species (Balfour, 1915; Findlay et al.,

1936; de Thoisy et al., 2004), either from point records or from

models (Hopp and Foley, 2001) and the distribution of the human

host populations (Balk et al., this volume, pp. 119–156).

The restriction of yellow fever to Africa and South America has

long been a puzzle (Bell, 1999; Monath, 2001). The present models

indicate an area of high suitability for yellow fever in eastern Thai-

land and other areas of lower suitability for this disease in parts of

Malaysia and Indonesia. Dengue occurs in all of these places, but the

two diseases do not appear to co-occur. Explanations for this lack of

co-existence include failed introduction prior to the modern trans-

portation era (Gubler, 2002), the restriction of yellow fever outbreaks

to communities which do not undertake international travel (Mon-

ath, 2001), cross protection by hyperendemic dengue (Theiler and

Anderson, 1975) and low vector competence (Beaty and Aitken,

1979). The very different human population densities under which

each disease appears to thrive (Figure 10) will tend to prevent their

co-existence. Africa at the present time provides a test for some of

these hypotheses. Parts of West Africa are predicted to be highly

suitable for both diseases, while central parts of the Democratic Re-

public of the Congo (aka Zaire) are predicted suitable only for den-

gue (Figures 7 and 8). Does dengue occur only or mostly in the latter?
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If dengue really only thrives in populous areas, will dengue increase

as Africa’s population increases?

6. CONCLUSION

Eradication attempts, when they fail, become merely temporary con-

trol measures and when these in turn end, or are underfunded, the

controlled diseases can return. Devastating outbreaks of yellow fever

in the 1970s and 1980s (Gubler, 2004), an expanding distribution of

Aedes aegypti from their post-control levels (Gubler, 1998), the ap-

pearance of DHF and a resurgence of dengue from the 1970s, all

demonstrate the resilience of yellow fever and dengue in the face of

our attempts to control them globally. Figure 11 shows the annual

occurrences of yellow fever outbreaks in South America and Africa

since 1960. It suggests a period of relative quiescence in South Amer-

ica in the last 20 years, but a trend to increasing frequency of out-

breaks in Africa over the same period of time. In the two decades

before this period, the situation was, if anything, reversed. It is un-

likely that any static risk map will capture this dynamic situation, and

it is suggested that the risk-mapping approach presented here not
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only delivers maps which more accurately reflect current disease sit-

uations, but can also become part of disease early warning systems, if

the models are driven by new disease records and contemporary sat-

ellite data which are now freely available from a variety of sources

(Hay et al., this volume, pp. 37–77).

A major concern is that the rise of international sea and air traffic

connects infected with suitable but presently uninfected regions of the

globe and also connects remote infected regions in which different

disease serotypes occur (Tatem et al., this volume, pp. 293–343). Vector

and disease spread to new regions seems almost inevitable, as are the

consequences of co-circulation of different serotypes. These concerns

have been in the minds of health officials for some time (Mhatre, 1934;

Massad et al., 2001), but have never been satisfactorily addressed.

Given that we now have a semi-quantitative way of dealing with

transportation network risks (Tatem et al, this volume, pp. 293–343)

and with habitat suitability for each disease (this review), these con-

cerns can now be quantified and perhaps prioritised.

The maps presented in this review are based solely on a pixel’s

environmental suitability for yellow fever and dengue, as judged by

the locations of past cases of these diseases recorded in the literature,

and the satellite measures of environmental conditions in these places.

If, as Rogers points out (this volume, pp. 1–35), ‘‘All maps are wrong;

but some are useful’’, it is now timely to see just how useful are

satellite-informed, dynamic risk maps of vector-borne diseases for use

in reconnaissance, surveillance and control. The relatively large dis-

crepancies between the present ‘standard’ WHO maps for these two

diseases on the one hand, and both the databases gleaned from the

literature of the past 45 years and the predicted risk maps arising

from them on the other, suggest that any effort put into improving

existing maps should rapidly result in improvements in the maps, the

data and therefore future generations of risk maps.
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ABSTRACT

Soil-transmitted helminth (STH) infections are among the most prev-

alent of chronic human infections worldwide. Based on the demon-

strable impact on child development, there is a global commitment to

finance and implement control strategies with a focus on school-based
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chemotherapy programmes. The major obstacle to the implementation

of cost-effective control is the lack of accurate descriptions of the ge-

ographical distribution of infection. In recent years, considerable

progress has been made in the use of geographical information systems

(GIS) and remote sensing (RS) to better understand helminth ecology

and epidemiology, and to develop low-cost ways to identify target

populations for treatment. This review explores how this information

has been used practically to guide large-scale control programmes. The

use of satellite-derived environmental data has yielded new insights

into the ecology of infection at a geographical scale that has proven

impossible to address using more traditional approaches, and has in

turn allowed spatial distributions of infection prevalence to be pre-

dicted robustly by statistical approaches. GIS/RS have increasingly

been used in the context of large-scale helminth control programmes,

including not only STH infections but also those focusing on schist-

osomiasis, filariasis and onchocerciasis. The experience indicates that

GIS/RS provides a cost-effective approach to designing and monitor-

ing programmes at realistic scales. Importantly, the use of this ap-

proach has begun to transition from being a specialist approach of

international vertical programmes to becoming a routine tool in de-

veloping public sector control programmes. GIS/RS is used here to

describe the global distribution of STH infections and to estimate the

number of infections in school-age children in sub-Saharan Africa

(89.9 million) and the annual cost of providing a single anthelmintic

treatment using a school-based approach (US$5.0–7.6 million). These

are the first estimates at a continental scale to explicitly include the fine

spatial distribution of infection prevalence and population, and suggest

that traditional methods have overestimated the situation. The results

suggest that continent-wide control of parasites is, from a financial

perspective, an attainable goal.

1. INTRODUCTION

There are four main nematode species of human soil-transmitted

helminth (STH) infections, also known as geohelminths: Ascaris lumb-

ricoides (roundworm), Trichuris trichiura (whipworm), Ancylostoma
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duodenale and Necator americanus (hookworms). These infections are

most prevalent in tropical and sub-tropical regions of the developing

world where adequate water and sanitation are lacking, with recent

estimates suggesting that A. lumbricoides infects 1221 million people, T.

trichiura 795 million and hookworms 740 million (de Silva et al., 2003).

The greatest numbers of STH infections occur in sub-Saharan Africa

(SSA), East Asia, China, India and South America.

Chronic and intense STH infections can contribute to malnutrition

and iron-deficiency anaemia, and also can adversely affect physical and

mental growth in childhood (Drake et al., 2000; Stephenson et al.,

2000; Hotez et al., 2004). In recognition of the global health impor-

tance of STH infections, there is a renewed global commitment to

finance and implement control strategies to reduce the disease burden

of STH and other helminths, including schistosomiasis (Fenwick et al.,

2003), filariasis and onchocerciasis (Molyneux et al., 2003). The de-

velopment of effective helminth control is possible because of the

availability of proven, cost-effective and logistically feasible interven-

tion strategies. In the case of STH infections, regular periodic chem-

otherapy, using benzimidazole anthlemintics (BZAs), of school-aged

children delivered through the school system is the main intervention

strategy (Aswashi et al., 2003; Hotez et al., 2006; Bundy et al., 2006).

Understanding where at-risk populations live is fundamental for ap-

propriate resource allocation and cost-effective control. In particular, it

allows for reliable estimation of the overall drug needs of programmes

and efficient geographical targeting of control efforts (Brooker and

Michael, 2000). The precise global distribution of STH infection and

how many people are infected and at risk of morbidity however re-

mains poorly defined. This limits how national governments and in-

ternational organizations define and target resources to combat the

disease burden due to STH infection.

A previous review in this series highlighted the potential use of ge-

ographical information systems (GIS) and remote sensing (RS) to

better understand helminth distributions and their ecological corre-

lates, but also to serve as geographic decision-making tools for iden-

tifying areas of particular risk as well as for the design, implementation

and monitoring of control programmes (Brooker and Michael, 2000).

As an increasing number of large-scale control efforts are underway, it
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is timely to assess how the potential of GIS and RS to guide control

has been realized in practice. This article begins by describing the sci-

entific basis of how environmental factors affect the biology and

transmission dynamics of STH infection. We then show how satellite

data can be used to establish and predict species-specific distributions,

and how these tools can help shed additional light on the ecology and

epidemiology of infection. Next, we describe how these tools have been

effectively used within the context of large-scale control programmes.

Finally, we adopt a data-driven approach to map the contemporary

global distributions of STH infection, and relate these to global human

population-distribution data to derive regional and national estimates

of population at risk by parasite species. Although focusing on STH

infections, examples will also be presented for other helminthiases,

including schistosomiasis, filariasis and onchocerciasis.

2. TRANSMISSION DYNAMICS AND THE ENVIRONMENT

To understand and ultimately predict the global distribution of STH

infections, it is essential to appreciate their biology, ecology and

transmission dynamics. The life cycles of STH infection follow a

general pattern. The adult parasite stages inhabit some part of the

host intestine (A. lumbricoides and hookworm in the small intestine;

T. trichiura in the colon), reproduce sexually and produce eggs,

which are passed in human faeces and deposited in the external

environment. Adult worms survive for several years and produce

large numbers of eggs after 4–6 weeks (Table 1). Eggs can remain

viable in the soil for several months (A. lumbricoides and T. trichiura)

and larvae several weeks (hookworms), dependent on prevailing en-

vironmental conditions. A. duodenale larvae can undergo hypobiosis

(arrested development at a specific point in the nematode life cycle)

in the human body under certain environmental conditions for sev-

eral months. Infection occurs through accidental ingestion of eggs

(A. lumbricoides and T. trichiura) or penetration of the skin (by

hookworm larvae).

As is common for infectious diseases, the transmission of STH

infections can be summarized by the basic reproductive number (R0).
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This is defined as the average number of female offspring produced

by one adult female parasite that attain reproductive maturity, in the

absence of density dependent constraints (Anderson and May, 1991).

R0 values of between 1 and 6 are estimated, with rates intrinsically

highest for T. trichiura and lowest for hookworm. In practice, ep-

idemiological studies fail to differentiate between the main hook-

worm species, A. duodenale and N. americanus, which will have

different epidemiological and ecological characteristics.

Increases in R0 give rise to increases in infection prevalence (per-

centage of individuals infected) and infection intensity (number of

worms per human host). The dynamic processes involved in STH

transmission, such as free-living infective stage development and sur-

vival, depend on the prevailing environmental conditions (Pavlovsky,

1966; Anderson, 1982). For example, as indicated in Figure 1, free-

living infective stages present in the environment develop and die at

temperature-dependent rates. Maximum survival rates of hookworm

larvae, as indicated by proportion of larvae surviving, occur at 20–30 1C

(Figure 1a). Experimental studies suggest that maximum development

Table 1 Population parameters, development rates and life expectancies
of parasites and free-living STH infective stages

A. lumbricoides T. trichiura Hookworm

Infective stage Ova Ova Larvae

Egg production (eggs/female

worm/day)a
10 000–200 000 2000–20 000 3000–20 000

Life expectancy of free-living in-

fective stagesa
28–84 days 10–30 days 3–10 days

Adult life spanb 1–2 years 1–2 years 3–4 years

Pre-patency (adult development

to sexual maturity)b
50–80 days 50–84 days 28–50 days

Larvae development time to in-

fective stagec
8–37 days 20–100 days 2–14 days

Max. temp. of viable develop-

mentc
35–391C 37–391C 401C

Basic reproductive numberb 1–5 4–6 2–3

aData taken from Anderson (1982), Bundy and Cooper (1989) and Crompton
(2001).

bData taken from Anderson and May (1991).
cData on A. lumbricoides (Seamster (1950); T. suis (Beer, 1976); hookworm

(Nwosu, 1978; Smith and Schad, 1989)).

GLOBAL HELMINTH ECOLOGY 225



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50

Temperature (°C) 

Temperature (°C) 

P
ro

po
rt

io
n 

su
rv

iv
in

g 

(a)

(b)

0

20

40

60

80

100

120

140

0 10 20 30 40 50

D
ev

el
op

m
en

t 
ti

m
e 

(d
ay

s)

Model fit T. trichiura 
Model fit A. lumbricoides
Model fit hookworm
Observed T. trichiura
Observed A. lumbricoides
Observed hookworm

Figure 1 Relationship between temperature and (a) hookworm
survival and (b) development duration. Points indicate experimental data
(Seamster, 1950; Beer, 1973; Nwosu, 1978; Udonsi and Atata, 1987)
and lines are fits derived from fractional polynomials analyses. Regres-
sion details: parasite survival y ¼ 0.884+(�22.88x�0.5)+(�7.73ln(x)); A.
lumbricoides duration y ¼ 8.601+(�63.718x�2)+2.526x�3; T. trichiura
duration y ¼ 26.079+41209.68x�2+(�1715.02x�2); hookworm duration
y ¼ 3.701+40.88x�2+(�46.18x�2).
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rates of free-living infective stages occur at temperatures between 28

and 321C, with development of A. lumbricoides and T. trichiura arrest-

ing below 5 and above 381C (Beer, 1976; Seamster, 1950), and devel-

opment of hookworm larvae ceasing at 401C (Udonsi and Atata, 1987;

Smith and Schad, 1989) (Figure 1b). It is suggested that A. lumbricoides

eggs are more resistant to extreme temperatures than T. trichiura eggs

(Bundy and Cooper, 1989).

Soil moisture and relative atmospheric humidity are also known to

influence the development and survival of ova and larvae: higher

humidity is associated with faster development of ova; and at low

humidity (o50%) the ova of A. lumbricoides and T. trichiura do not

embryonate (Otto, 1929; Spindler, 1929). Field studies show that the

abundance of hookworm larvae is related to atmospheric humidity

(Nwosu and Anya, 1980; Udonsi et al., 1980).

These differing rates of development and survival will influence

parasite establishment in the human host and hence the infection lev-

els. Thus, a climate-induced increase in the rate of establishment, while

holding parasite mortality constant, causes the parasite equilibrium to

rise (Bundy and Medley, 1992). Although seasonal dynamics in trans-

mission may occur, such fluctuations may be of little significance to the

overall parasite equilibrium within communities. This is because the

life span of adult worms is typically much longer (1–10 years) than the

periods in the year during which R0 is less than unity, and R0

on average will be greater than 1, maintaining overall endemicity

(Anderson, 1982). For all these reasons, spatial variability in long-term

synoptic environmental factors will have a greater influence on trans-

mission success and patterns of STH infection than seasonal variability

in a location.

3. ECOLOGICAL CORRELATES

Given the importance of environmental factors on transmission proc-

esses, it is unsurprising that statistical relationships between envi-

ronmental factors and spatial patterns of infection can be observed.

Several studies, some dating back to the early twentieth century, report

ecological associations between STH distributions and temperature,
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rainfall and altitude (reviewed in Brooker and Michael, 2000). As

outlined in Hay et al., (this volume, pp. 37–77), the ability to inves-

tigate ecological correlates of infection has been enhanced by satellite

imagery, which can provide data from which information about tem-

perature, humidity and vegetation conditions can be derived, and by

the use of GIS to overlay multiple layers of data. These tools have been

used successfully to describe the environmental factors associated with

patterns of STH infection in selected geographical locations, and

helped identify the relative importance of different environmental fac-

tors in determining geographic distributions (Appleton and Gouws,

1996; Appleton et al., 1999; Brooker et al., 2002a,b, 2003, 2004b;

Saathoff et al., 2005).

Here we extend these analyses and investigate the spatial ecology of

STH infection across SSA, where surprisingly little is still known

about the distributions of STH infection and their underlying envi-

ronmental determinants. Although intensity of STH infection is a key

determinant of transmission dynamics and morbidity (Anderson and

May, 1991), prevalence of infection, based on microscopic examina-

tion of STH eggs in stool samples, remains the most widely used

indicator of infection status and the need for control. We derive es-

timates of STH prevalence from dedicated surveys, conducted among

schoolchildren after 1985 and geo-referenced using global positioning

systems. Detailed data are available for Cameroon, Chad, Eritrea,

Guinea, South Africa, Tanzania, Uganda, and Zambia, which show

that prevalence of A. lumbricoides and T. trichiura is greatest in

equatorial, central and west Africa and southeast South Africa,

whereas hookworm has a wider distribution across the continent

(Figure 2 is Plate 7.2 in the Separate Color Plate Section). By relating

these distributions to satellite-derived environmental data, we can

investigate their large-scale ecological correlates.

For each species, a clear relationship exists between prevalence

of infection and remotely sensed Land Surface Temperature (LST)

(Cracknell, 1997): prevalence of A. lumbricoides and T. trichiura is

generally o5% in areas where LST exceeds 38–401C, whereas hook-

worm infection remains highly prevalent throughout the upper end of

the thermal range (Figure 3). This is an intriguing observation since

experimental studies suggest that each STH species has similar thermal
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thresholds (Table 1). The apparent ability of hookworm to survive

hotter conditions may be explained in part by the ability of mobile

larvae to migrate to more suitable thermal and moisture conditions. In

particular, whereas hookworm larvae stages have some limited motility

and can move downward into the soil, thereby avoiding desiccation,

the ova of A. lumbricoides and T. trichiura are non-motile, and high

surface temperatures will result in ova dying from desiccation (Beaver,

1953).

Some features of helminth life cycles, such as hypobiosis, equip the

parasite to survive periods that are unsuitable for transmission. How-

ever, hypobiosis only occurs for A. duodenale in humans (Schad et al.,

1973) and not for N. americanus, the hookworm species predominant

in SSA (Kilama, 1990) and is therefore excluded here as a possible

explanation for hookworm’s apparent wider thermal tolerance. Other

species-differences in life history traits may play an important role. It is

suggested that the probability of hookworm larvae surviving to infect

hosts is enhanced by their more rapid development in the soil (3–10

days) in comparison with A. lumbricoides larvae (28–84 days) and

T. trichiura larvae (10–30 days) (Table 1). This hypothesis is supported

by an observed relationship between prevalence and the number of
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days in the year that below the thermal threshold (Figure 4). The

prevalence of A. lumbricoides and T. trichiura was generally low in

locations where temperatures fall below the thermal threshold for less

than 35–40 days, and increased with increasing number of days.

Hookworms, however, required a much smaller (8 day) window of

thermal suitability for transmission and so were able to persist even

when the period available for development was of the order of 10 days.

Finally, a potentially very important factor is the longevity of the

adult worm, since the location inside the host is essentially a refuge
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from the high external temperatures. Hookworms have a longer

adult stage life expectancy (3–4 years) than either A. lumbricoides or

T. trichiura (1–2 years). This implies that hookworms can find refuge

from external temperatures for more than twice the length of time

of the other species, and are effectively protected from extreme tem-

peratures over a 3–4 year period in appropriate conditions for

development. This greatly increases the chances of hookworm trans-

mission stages being deposited and developing in suitable thermal

conditions.

4. PREDICTING DISTRIBUTIONS

These analyses have enabled the first continent-wide predictions of in-

fection patterns on the basis of satellite-derived environmental covari-

ates as well as providing insight into the ecology of infection. Predictions

of prevalence were based on binomial logistic regression analysis, where,

for each location, the response variable contained the total number of

positive responses and the total number examined, and the independent

variables were satellite-derived mean LST and Normalized Difference

Vegetation Index (NDVI) for 1982–1999 (Hay et al., this volume, pp.

37–77) and elevation (http://edcwww.cr.usgs.gov/landdaac/gtopo30/).

Models were then cross-validated using a jack-knife procedure (King

et al., 2004) and predicted values were compared to observed values

using Receiver Operating Characteristics (ROC) analysis (Brooker et al.,

2002b). The models for A. lumbricoides and T. trichiura provided im-

pressive descriptive accuracies of low transmission (prevalence o5%)

areas and of areas which would be the target of mass treatment pro-

grammes (prevalence 450%) (Figure 2). By contrast, the hookworm

model has only moderate accuracy, a probable reflection of the apparent

wider distribution of hookworm. The models indicate that prevalence of

A. lumbricoides and T. trichiura is greatest in equatorial, central and west

Africa, eastern Madagascar and southeast Africa, whereas hookworm is

more widely distributed across the continent. A limitation of this anal-

ysis is the use of infection prevalence rather than infection intensity,

which has greater relevance to transmission dynamics and morbidity,
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but which few studies quantify. There remains the need to investigate

geographical heterogeneity in infection intensity.

Satellite data can therefore help define the large-scale distributions of

STH infection, which are demonstrated to be influenced by hetero-

geneities in climate. At smaller spatial scales other factors, including

variability in human behaviour, including personal hygiene, as well as

differences in sanitation and socio-economic status, have to be con-

sidered. For example, in climatically unsuitable areas, microhabitats,

influenced by local housing and sanitation, may provide suitable

transmission foci, and vice versa. Such microhabitats are commonly

found in urban areas.

5. URBANIZATION

In common with many other parasitic infections, STH infections

flourish in impoverished areas characterized by inadequate sanitation

and overcrowding. It is commonly assumed that A. lumbricoides and

T. trichiura are more prevalent in urban areas whereas hookworm is

more often found in rural areas (Crompton and Savioli, 1993). How-

ever, comparable data for STH infections in urban and rural settings

are remarkably few and those that do exist indicate a more compli-

cated picture. Studies which surveyed similar age groups and socio-

economic areas indicate that the prevalence of A. lumbricoides and

T. trichiura differ between urban and rural communities, but in no

systematic manner (Table 2). By contrast, hookworm appears to be

equally prevalent in both urban and rural settings (Table 2). The

precise reasons for the urban–rural dichotomies for A. lumbricoides

and T. trichiura are as yet unclear. Differences in prevalence of A.

lumbricoides and T. trichiura in urban and rural areas may reflect

differences in sanitation or population density; socio-economic differ-

ences will also play an important role. It is clear that further work is

needed to resolve these issues.

By 2007, it is predicted that more than half of the global human

population will be urban citizens, most of them living in the

rapidly growing cities of Africa, Asia and Latin America (United Na-

tions, 2003). Urbanization often accompanies social and economic
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Table 2 Prevalence of STH infections among schoolchildren in urban and rural communities in developing countries.
Included studies sought to restrict investigation to areas of similar socio-economic characteristics

Setting Sample size A. lumbricoides T. trichiura Hookworm Reference

Urban Rural Urban Rural Urban Rural

Blantyre, Malawi 553 children (3–14 years old) 15.4 0.7 — — 0.4 2.1 Phiri et al. (2000)

Pemba, Tanzania 256 children (3–14 years old) 60.6 63.6 100 100 97.6 94.6 Albonico et al. (1997)

Buea, Cameroon 211 children (8–15 years old) 33.9 56.4 32.3 59 0 5.1 Ndenecho et al. (2002)

Rolandia, Brazil 236 children (5–15 years old) 6.1 1.3 0.7 0.1 4.3 4.4 Giraldi et al. (2001)

Malaysia 3073 children (o15 years old) 51.7 21.2 65.3 29.1 5.7 5.9 Kan et al. (1989)

Penang, Malaysia 192 children (7–12 years old) 37.4 33.4 100 92 18.7 19.7 Rahman (1998)
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development, with better opportunities for education, adequate living

standards and higher incomes. However, overcrowding and lack of

adequate water and sanitation in urban slum communities may increase

transmission of STH infections. Investigation of the impact of increased

urbanization on STH infections together with assessment of the effec-

tiveness of urban helminth control measures in low-income settings

is clearly warranted because increased urbanization may promote

the transmission of STH infections, especially A. lumbricoides and

T. trichiura.

6. GLOBAL CONTROL STRATEGIES

Recommended drugs for use in public health programmes to con-

trol STH infection are the BZAs, albendazole or mebendazole; older

drugs including pyrantel pamoate and levamisole are also occa-

sionally used in some developing countries (WHO (World Health

Organization), 2002; Utzinger and Keiser, 2004). In areas where STH

infections co-occur with schistosomiasis, BZAs are co-administered

with praziquantel (PQZ), the major drug used for the treatment of

schistosomiasis (Fenwick et al., 2003).

Current efforts to control STH infection, as well as schistosomiasis,

focus on the school-age population. It is estimated that between 25%

and 35% of school-aged children are infected with one or more of the

major species of worms (Bundy, 1997; de Silva et al., 2003). The most

intense worm infections and related illnesses occur at school age

(Partnership for Child Development (PCD), 1998, 1999).

Infection can result in significant consequences for health and de-

velopment, affecting growth, promoting anaemia and causing some

overt clinical disease, much of which is rapidly reversed by treatment

(Warren et al., 1993; Hotez et al., 2006). In addition to these impacts

on health and physical development, infected schoolchildren perform

poorly in tests of cognitive function; when treated, immediate educa-

tional and cognitive benefits are apparent only for children with heavy

worm burdens or with concurrent nutritional deficits (Bundy et al.,

2006). Treatment alone can neither reverse the cumulative effects of

lifelong infection nor compensate for years of missed learning, but
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studies suggest that children are more ready to learn after treatment for

worm infections and may be able to catch up if this learning potential

is exploited effectively in the classroom. In Kenya, treatment reduced

absenteeism by one quarter, with the largest gains for the youngest

children who suffered the most ill health (Miguel and Kremer,

2004).

For these reasons, school-age children are the natural targets for

treatment, and school-based treatment delivery programmes offer ma-

jor cost advantages because of the use of the existing school infra-

structure and the fact that schoolchildren are accessible through

schools. An important element of the approach is to minimize the need

for clinical diagnosis, which is often more expensive than the treatment

itself, and to focus on mass delivery of services. Evidence suggests that

mass delivery of deworming is preferable on efficacy, economic

and equity grounds to approaches that require diagnostic screening

(Warren et al., 1993). School-based deworming also has major exter-

nalities for untreated children and the whole community by reducing

disease transmission in the community as a whole (Bundy et al.,

1990).

Recognizing the centrality of school-age children to the response to

helminth infection, in 2001, the 54th World Health Assembly of the

WHO passed a resolution to provide regular deworming treatment to

75% of school-age children at risk (an estimated target population of

398 million) by 2010. School health and nutrition programmes provide

the vehicle for delivering regular but infrequent (every 6 months or

more) anthelmintic treatment to schoolchildren. Operational research

has demonstrated how interventions can be implemented and evaluated

at the country level, for example enabling mass deworming of school-

children (Bundy and Guyatt, 1996; PCD, 1998, 1999; Guyatt et al.,

2001).

A major step forward in international coordination and cohesion

was achieved when a framework to Focus Resources on Effective

School Health (FRESH) was launched at the World Education Forum

in Dakar in April 2000 (World Bank, 2000). Among the early partners

in this effort were UNESCO, UNICEF, the World Food Programme

(WFP), the WHO and the World Bank, with the Education Devel-

opment Centre, Education International and the PCD. The FRESH
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framework provides a consensus approach of agreed good practice for

the effective implementation of health and nutrition services within

school health programmes. The framework proposes four core com-

ponents that should be considered in designing an effective school

health and nutrition programme and suggests that the programme will

be most equitable and cost-effective if all of these components are

made available, together, in all schools. The four components also

provide the appropriate mix of interventions for responding to helmi-

nth infection globally: (1) Policy: health- and nutrition-related school

policies that promote the nutrition and health of staff and children

(and promote the role of teachers in delivering anthelmintic treatment);

(2) School environment: access to safe water and provision of effective

sanitation facilities (which helps break the helminth transmission cy-

cle); (3) Education: skills-based education, including life skills that ad-

dresses health and hygiene issues and promotion of positive behaviours

(including promoting handwashing and other hygienic behaviours that

protect against helminth infection); and (4) Services: simple, safe and

familiar health and nutrition services that can be delivered cost-

effectively in schools (such as deworming).

This common focus has encouraged concerted action by the par-

ticipating agencies and has increased significantly the number of

countries implementing school health reforms. The simplicity of the

approach, combined with the enhanced resources available from do-

nor coordination, has helped ensure that these programmes can go to

scale. For example, annual external support from the World Bank for

these actions approaches US$90 million, targeting some 100 million

schoolchildren.

The FRESH framework does not prescribe the design of school-

based deworming programmes, and in practice these are highly

variable and country specific (Bundy et al., 2006). In low-income

countries a public sector model is commonly used, involving the

Ministry of Health in supervising the activity, and the Ministry of

Education in implementing the intervention through teachers. In mid-

dle-income countries, including Indonesia and, historically, Japan and

South Korea, a private-sector model involving non-governmental

organizations delivering treatment that is paid for by the community

has proven sustainable and effective.
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Whatever the design, identifying which schools and communities

require treatment is an essential part of the process, and requires a

key role for GIS.

7. CONTROL APPLICATIONS OF GIS/RS

As recently as 5 years ago, applications of GIS and RS in helmi-

nthology had only been attempted for schistosomiasis and filariasis

(reviewed in Brooker and Michael, 2000; Brooker, 2002). Since then,

studies have investigated spatial patterns of STH infection (Brooker

et al., 2002b, 2003, 2004b; Saathoff et al., 2005), Loa loa (Thomson

et al., 2004) and onchocerciasis (Carabin et al., 2003). These studies

have focused on the use of RS data to identify ecological correlates of

infection and develop statistical models of disease risk. While these

applications are attractive research objectives, the challenge remains

to apply these geographic tools in the context of large-scale control

programmes. Here we examine how GIS and RS have contributed to

the design and implementation of helminth control programmes.

Human onchocerciasis or river blindness results from infection

with a parasitic filarial worm, Onchocerca volvulus, which is trans-

mitted by female Simulium blackflies. Blackflies breed in areas close

to fast-flowing and well-oxygenated rivers and seldom travel more

than 15 km in search of a bloodmeal. This means that high-prevalence

communities are located close to breeding sites. Rapid Epidemiolog-

ical Mapping of Onchocerciasis (REMO), developed by TDR (Trop-

ical Disease Research)/WHO, has been a key geographic tool for the

control of onchocerciasis (Ngoumou et al., 1994; Katabarwa et al.,

1999). With REMO, it is possible to assess quickly and cheaply,

which communities are at high risk of onchocerciasis and where they

are located. REMO uses geographical information, particularly the

locations of river basins, to identify communities that are likely to be

at high risk. A subsample of these communities is then rapidly as-

sessed by screening individuals for onchocercal nodules. This enables

communities to be classified into three categories: priority areas

which require community-directed treatment with ivermectin; areas

which do not require treatment; and possible endemic areas but
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which require further investigation. Results of REMO have been

effectively incorporated into a GIS to visualize priority areas for mass

distribution of ivermectin and estimate the number of individuals to

be treated (Noma et al., 2002). This has helped the African Pro-

gramme for Onchocerciasis Control (APOC) to prioritize allocation

of resources according to need. The robustness of REMO following

several rounds of interventions remains, however, to be fully inves-

tigated since there has been little validation of the approach since its

initial development.

Severe adverse (and sometimes fatal) encephalopathic reactions

following treatment with ivermectin have been reported in individuals

co-infected with O. volvulus and Loa loa (loiasis), and as such, there is

an operational necessity to identify areas with a high prevalence of L.

loa (Addiss et al., 2003). Thomson et al. (2000, 2004) developed a

spatial model that predicted the prevalence of L. loa microfilaraemia

on the basis of satellite-derived environmental data in Cameroon,

with applications for defining areas at-risk of post-ivermectin

Loa-related severe adverse reactions. Like onchocerciasis, treatment

strategies have been defined according to levels of endemicity of

onchocerciasis and loiasis. In areas where both diseases are highly

endemic, detailed measures, such as training of medical staff, pro-

vision of medical supplies and heightened surveillance of treated in-

dividuals, are required.

A rapid mapping method has also been developed for lymphatic

filariasis. This disease is caused by the filarial parasite Wuchereria

bancrofti and is being targeted for eradication by the Global Alliance

for the Elimination of Lymphatic Filariasis (www.filariasis.org). As

with other control programmes, delimitation of endemic localities is an

essential prerequisite for planning control elimination programmes,

based on treatment with diethylcarbamazine (DEC) plus albendazole

or ivermectin plus albendazole. To address this, a method for the

Rapid Geographical Assessment of Bancroftian Filariasis (RAGFIL)

has been developed by TDR/WHO. This is based on the use of a

spatial sampling grid with either 25 km or 50km between sampled

communities, rapid prevalence assessments using immunochromato-

graphic card tests (ICT) for the detection of circulating antigen from

adult W. bancrofti filarial antigenaemia, and geostatistical methods for
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predicting the distribution of filariasis throughout the target area

(WHO, 1998). Using this method, Gyapong et al. (2002) predicted

prevalence in four countries in West Africa, enabling control planning

to be initiated. Other analyses suggest, however, that endemic foci can

persist within the interstices of the proposed grid and that smaller grids

are required (Srividya et al., 2002; Alexander et al., 2003).

The Schistosomiasis Control Initiative (SCI) is currently supporting

six countries in SSA to implement national control programmes for

schistosomiasis and STH infections, including Burkina Faso, Mali,

Niger, Tanzania, Uganda and Zambia (www.schisto.org). In Uganda,

where Schistosoma mansoni is widespread, GIS and RS have been

employed to classify the country according to different treatment

strategies. Regular chemotherapy with PQZ and albendazole is being

provided to schoolchildren and other high-risk groups (Kabatereine

et al., 2005). Following WHO guidelines, the programme is classifying

communities according to three strategies: (1) in communities with a

high prevalence (Z50%) schoolchildren are treated every year and

high-risk groups, such as fishermen, are treated; (2) in communities

with a moderate prevalence (Z20% and o50%) schoolchildren are

treated once every 2 years; and (3) in communities with a low prev-

alence (o20%) chemotherapy is made available in health facilities for

treatment of suspected cases. With the use of GIS coupled with satellite

and climatic data, geographical analysis found that no transmission of

S. mansoni typically occurs in areas of Uganda where total annual

rainfall was o850mm or altitude was 41400m (Kabatereine et al.,

2004). These areas were subsequently set aside without the need for

further surveys (Brooker et al., 2004a) (Figure 5). It was also shown

that prevalence consistently exceeded 50% in areas within 5km of

Lakes Victoria and Albert, and thus in these areas warranted mass

treatment without the need for further surveys. Prospective surveys

have validated these predicted classifications (Kabatereine et al., un-

published results).

Outside these two ecological areas, where smaller rivers and water

bodies are numerous, it is suggested that individual communities are

surveyed using standard parasitological methods (Brooker et al.,

2004a). Rapid mapping of communities is based on the Lot Quality

Assurance Sampling (LQAS) method (Brooker et al., 2005). Developed
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in industry for quality control, LQAS makes it possible to use small

sample sizes when conducting surveys among populations (lots), best

used in situations where classification of a population is useful and

where the emphasis is on decision making (e.g. whether or not to

intervene in a particular community) rather than estimation of prev-

alence and intensity of infection. Field testing showed that a LQAS

sampling plan where only 15 children are sampled and a decision to

intervene is made if seven children are found to be infected had ex-

cellent diagnostic performance, while economic analysis demonstrated

that screening using LQAS was more cost-effective than mass treating

Figure 5 Distribution of S. mansoni in Uganda and classification of the
country according to treatment category: (1) mass treatment without further
surveys, o5 km from Lake Victoria and Lake Albert (not shown); (2) non-
treatment areas, altitude 41400m or annual rainfall o850mm (grey areas);
(3) and areas requiring further investigation using LQAS (white areas). For
further details see Kabatereine et al., (2004) and Brooker et al., (2004a,
2005).
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all schools in a single sub-county (Brooker et al., 2005). Based on these

findings, LQAS is employed in Uganda to quantify the fine-scale dis-

tribution of S. mansoni in areas of potential risk. Thus, GIS/RS cou-

pled with field data can target schistosomiasis control from the

national to the local level.

Predictive risk-mapping has also been employed to determine target

areas for mass treatment in Tanzania (Clements et al., 2006). First,

simulation studies were conducted to determine the number of indi-

viduals and schools that were required to give a desired level of pre-

cision in risk estimates. Parasitological surveys were then conducted in

143 schools in northwestern Tanzania. The proportions of children

found to have S. haematobium and S. mansoni infections were deter-

mined for each school and these were used as the outcome variables in

separate spatially explicit binomial logistic regression models. The

models were developed in a Bayesian framework and included envi-

ronmental covariates derived from RS and a geostatistical component,

using a powered exponential function to describe spatial correlation in

the datasets. Models were externally validated against an independ-

ently collected dataset from one district within the study area and were

used to make spatial predictions for S. haematobium and S. mansoni

risk at prediction co-ordinates, defined by a grid of equally spaced

locations and predictions were interpolated to produce a continuous

risk surface for the study area as shown in Figure 6a and 6b. (Figure 6a

and b are Plates 7.6a and b in the Separate Color Plate Section).

Subsequently, prediction surfaces for S. haematobium and S. mansoni

were combined to make a single intervention map (as the treatment

programme and its use of PQZ, makes no distinction between the two

schistosome species), consisting of contours that equated to a prevalence

of S. haematobium or S. mansoni of 10% and 50% (Figure 6c is Plate 7.6

in the Separate Color Plate Section). The lower contour (10%) separates

areas that would and would not be targeted by the mass treatment

campaign and the upper contour (50%) separates areas where mass

treatment would only be conducted in school-age children and areas

where both school-age children and other high-risk groups in the com-

munity would be targeted. Estimates of uncertainty in the spatial

predictions help identify the area where further data collection is

required.
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The experience of SCI in Tanzania and Uganda amply demonstrates

the usefulness of GIS/RS as geographic decision-making tools for im-

plementing helminth control at both national scales and local scales.

Geographical distributions are continually updated as new epidemio-

logical data are collected, and as intervention reduces the prevalence of

infection. Analysis of the cost-effectiveness of the tools, which is ger-

mane to their long-term and sustainable use, is currently underway.

The above examples have shown how research and international

programmes have led the way in developing the use of GIS/RS for

directing control programmes. An important emerging trend is that

national governments are beginning to use this approach for design-

ing and developing sustainable national programmes. GIS/RS has

been employed by national governments to plan and conduct na-

tionwide rapid epidemiological assessments of STH and schist-

osomiasis in Chad (Brooker et al., 2002a) and Eritrea (PCD, 2003),

and to design and implement national parasite control programmes,

in both cases as part of national development programmes with

World Bank assistance. In Chad, RS data were used to define seven

ecological zones, which were combined with population data in a GIS

to define the sample protocol, whereby 20 schools, in different ec-

ological zones were surveyed. This approach substantially reduced

the cost of the sample survey, while preserving its utility and effec-

tiveness. The analysis showed that the patterns of hookworm and

S. haematobium had a close association with the RS/GIS defined

ecological zones, and significant relationships with environmental

variables; it was correctly predicted that A. lumbricoides and T.

trichiura would not occur in the country. The results from the survey

helped the government plan the country’s school-based control pro-

gramme, and resulted in significant cost savings for the programme

since it identified the need to target far fewer schools than had first

been anticipated. A similar geographical approach was adopted in

planning the school health programme in Eritrea (PCD, 2003). Again

the sampling methodology proved substantially less expensive, and

more practical, than traditional approaches developed without the

benefit of GIS/RS. The national survey revealed that infection was

highly focal, and that deworming interventions could be precisely

targeted, with significant savings in financial and technical resources.
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8. GLOBAL DISTRIBUTIONS

The above examples show that, used appropriately, GIS/RS can

provide a practical and low-cost tool for designing and implementing

sustainable helminth control programmes. GIS has the potential to

promote evidence-based priority setting and careful targeting of finite

financial resources, resulting in savings in resources and enhancement

of sustainability. For this to become a reality, a critical first step is

defining the geographical distribution of infection globally.

As with all diseases, there is long history of attempts to define

global distributions of STH infections, and provide estimates of

numbers infected. A first seminal effort was provided by Stoll (1947),

which has been frequently updated (Peters, 1978; Crompton and

Tulley, 1987; Bundy and Cooper, 1989; Chan et al., 1994; Brooker

et al., 2000; Bundy et al., 2004), with the most recent estimates pro-

vided by de Silva et al. (2003).

Since Stoll provided his estimates nearly 60 years ago, efforts to

control STH infections and morbidity have varied across different re-

gions of the world. The analysis by de Silva et al., (2003) showed that

in certain regions there has been a reduction in STH infection prev-

alence. In the Americas, for example, there has been a precipitous

decline in prevalence and in absolute numbers since the 1960s, a change

largely attributable to national treatment programmes coincidental

with social and economic development that have brought about im-

proved access to clean water and proper sanitation (Pan-American

Health Organization (PAHO), 2000; Ehrenberg et al., 2003). Well-

documented declines in prevalence exist for Brazil and Mexico, the two

most populous countries in the region (Tay et al., 1976, 1995; Vinha,

1971; PAHO, 2000). Because of the success of control we do not con-

sider the geographical distribution of infection in the region any fur-

ther although we recognize that there may be small foci of high

prevalence which require control activities.

In Asia, several countries, notably Japan, South Korea and Taiwan,

have achieved sustained and successful control of STH infections over

the last 40 years (WHO, 1996). More recently, a national control pro-

gramme in Sri Lanka has reduced prevalence to o5%. Control pro-

grammes have also been launched in several other Asian countries
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including China, Indonesia, Malaysia, Nepal, The Philippines and

Thailand. Despite these control efforts, data available for south and

southeast Asia suggest the need for effective control (Figure 7). STH

Prevalence of infection

<5%

5-19%

20-49%

50% +

No data

(a) (b)

(c)

Figure 7 Prevalence of STH infection by province in Asia. (a) A. lumb-
ricoides, (b) T. trichiura and (c) hookworm. Horizontal hatched areas in-
dicate areas where sustained control has resulted in prevalence levels of
o5%; white areas indicate a lack of data. Data were derived from published
surveys or reviews: Afghanistan (Albis Gabrielli, unpublished data), Bang-
ladesh (Hall and Nahar, 1994; Mascie-Taylor et al., 1999), Bhutan (Allen
et al., 2004), Cambodia (Sinuon et al., 2003; Urbani et al., 2001), China (Xu
et al., 1995), India (de Silva et al., 2003), Indonesia (Margono, 2001), Lao
PDR (Rim et al., 2003), Malaysia (Singh and Cox-Singh, 2001) Myanmar
(Montresor et al., 2004), Pakistan (Government of Pakistan, 1988), Thai-
land (Anantaphruti et al., 2000, 2002, 2004; Chongsuvivatwong et al., 1994;
Kasuya et al., 1989; Nacher et al., 2002; Waikagul et al., 2002), Pacific
Islands (Hughes et al., 2004); Vietnam (Anon, 1995; van der Hoek et al.,
2003). In Cambodia and Myanmar, where empirical data are lacking, prev-
alence of A. lumbricoides and T. trichiura was estimated from RS-based
prediction models (Brooker et al., 2003).
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infection remains prevalent in China and India, countries that account

for a third of the world’s population. The highest prevalence rates are

observed for southern China and the northern regions of southeast

Asia, and the lowest rates in northern China, northern India and

Pakistan. In northern China, A. lumbricoides is more prevalent than

either T. trichiura or hookworm. STH species are also widespread in

the Pacific Islands (Hughes et al., 2004).

We suggest that such distribution patterns reflect environmental

suitability of STH transmission, especially thermal constraints. Here,

this hypothesis is explored by investigating the relationship between

prevalence of infection and satellite data for each administrative unit

in the Asia region. LST was expressed as the median value for each

of a number of 5 1C intervals (bins) spanning the full range of tem-

peratures across the region (Figure 8). Median LST is estimated to

be o201C in northern China and 4401C in northern India and

Pakistan, where STH infection prevalence is lowest. It appears that

A. lumbricoides is more widespread in Asia and is able to survive

colder temperatures than either T. trichiura or hookworm. It can

thus be interpreted that these represent the lower thermal limits of

STH transmission. Insufficient data were available to adequately

explore the upper thermal limits of transmission in the region, as was

possible for SSA (Figure 3). The current regional analysis for Asia

supports previous studies, which show that heterogeneities in STH

infection prevalences are correlated with temperature and humidity

in China (Xu et al., 1995; Lai and His, 1996) and southeast Asia

(Brooker et al., 2003). The latter study used satellite data to predict

prevalence in areas lacking detailed data (Brooker et al., 2003).

While there have been declines in the prevalence of STH infection

in the Americas and parts of Asia, estimated prevalence rates for SSA

are equivalent to those first estimated by Norman Stoll more than 60

years ago (de Silva et al., 2003). In fact, the prevalence and distri-

bution of STH infection remain largely unknown, because the region

has weak disease surveillance systems. The helminthological data that

do exist in the formal and ‘grey’ literature have been collated into a

GIS database (Brooker et al., 2000). However, this continental

database includes data for only 15% of districts in SSA, with most

data on hookworm infection. Furthermore, for reasons outlined
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previously (Stoll, 1947; Brooker and Michael, 2000), the inherent

variability in the data, because of differences in the timing, method-

ology and study population, makes it difficult to use these data

to reliably define the distribution of STH species. Instead, we have

utilized the robust predictions of STH prevalence developed here

(Figure 2). These predictions provide perhaps the most detailed de-

scription of STH infection in SSA to date.

9. PREDICTED NUMBERS OF INFECTIONS

As indicated, school-based deworming represents the most cost-

effective and feasible intervention strategy for STH infections and the

greatest need for control exists in SSA. For these reasons, we derive

country-specific estimates of school-aged children infected in the re-

gion. Consistent with other analyses in this edition, population was

estimated from the Gridded Population of the World version 3
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Figure 8 The relationship between prevalence of STH infection in Asia
and satellite-derived mean LST for 1982–1999, obtained from NOAA’s
AVHRR. Prevalence is expressed as median prevalence for each tempera-
ture category and the median temperature was calculated for each geo-
graphical region; it is recognized that this approach masks the heterogeneity
in STH prevalence and temperature within regions, but epidemiological data
are not available at finer spatial resolution.
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(GPW3) global human population distribution for 2005 (Balk et al.,

this volume, pp. 119–156). Country-specific medium variant popula-

tion growth rates and proportions of the population aged 5–14 years

from the United Nations Population Division – World Population

Prospects database (http://esa.un.org/unpp) were used to project this

age cohort of the population total to 2005. These population data

were spatially related to our species-specific risk models (Figure 2),

which were re-sampled at 1 km, the spatial resolution of GPW3. Since

the models were developed using prevalence estimates among school-

aged children it is assumed that models define prevalence for this age

group. For each district, population totals and predicted infection

prevalence were extracted and used to estimate numbers of school-

aged children infected with each species. Since no clear patterns in

urban–rural differences in species prevalence exist (Table 2) no ad-

justment was made for the effect of urbanization.

Infections from A. lumbricoides, T. trichiura and hookworm are

often found in the same communities and individuals and BZAs, such

as albendazole and mebendazole, are broadly effective against all

species. In order to estimate the cost of interventions against multiple

STH infections, an estimate of the numbers of infections of any spe-

cies, either single- or multiple- species infections, is required. To

quantify the numbers of multiple-species infections we use a validated

probabilistic model to predict the prevalence of multiple-species in-

fections for each district for which only overall prevalence data exist

(Booth and Bundy, 1995), thereby allowing the number of children

infected with any STH species to be estimated.

It is estimated that over 30.7 million African school-aged children are

infected with A. lumbricoides, 36.5 million with T. trichiura and 50.0

million with hookworm. Since many children have multiple infections,

it is estimated that 89.9 million are infected with one or more STH

species. Forty four per cent of the infections are concentrated in just

four countries: in descending order of magnitude these are Nigeria, the

Democratic Republic of Congo, South Africa and Tanzania (Table 3).

Previous estimates have suggested larger numbers of infections; the

most recent estimate suggesting that 53 million school-aged children

(5–15 years) are infected with A. lumbricoides, 50 million with T.

trichiura and 47 million with hookworm (de Silva et al., 2003). Previous
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Table 3 Estimated numbers of STH infection among school-aged children in SSA by country, 2005

Country School-aged

population

(1000s)

Estimated numbers of infections (1000s) Estimated numbers

requiring mass

treatment based on

50% threshold

(1000s)

Total annual per

treatment cost

(US$ 1000s)bA. lumbricoides T. trichiura Hookworm All STH

species

Angola 3666 610 712 1048 1896 2031 122–183

Benin 1737 256 352 399 831 836 50–75

Botswana 422 8 10 121 113 — —

Burkina Faso 3222 30 35 759 671 — —

Burundi 1768 309 341 583 956 753 45–68

Cameroon 4091 1227 1490 1059 2728 3017 181–272

Cape Verde 111 7 13 44 50 22 1–2

CARa 1014 200 227 256 555 640 38–58

Chad 2186 25 27 529 474 — —

Comoros 146 72 81 45 131 147 9–13

DRCa 14151 4111 4710 3790 9643 13410 805–1207

Republic of Con-

go 839 242 310 201 574 828 50–75

Cote d’ Ivoire 4399 1400 1783 044 3189 3967 238–357

Djibouti 170 1 1 41 14 — —

Equatorial Gui-

nea 125 70 81 37 118 126 8–11

Eritrea 1020 11 14 324 281 4 0.3–0.4

Ethiopia 17424 1653 1641 6085 7362 4476 269–403

Gabon 332 155 191 9 295 331 20–30

Gambia 353 15 21 99 112 41 2–4

Ghana 5326 1330 1699 1300 3284 3551 213–320

Guinea 2226 505 622 584 1325 1450 87–131

Guinea Bissau 330 47 66 84 161 105 6–9

Kenya 8385 1134 1158 2682 3921 3661 220–330
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Lesotho 549 175 217 206 423 553 33–50

Liberia 807 401 485 185 734 813 49–73

Madagascar 4413 1538 1739 1224 3146 3312 199–298

Malawi 3113 471 548 857 1525 1308 79–118

Mali 3160 41 49 750 688 — —

Mauritania 337 5 11 75 76 — —

Mauritius 292 168 190 84 277 295 18–27

Mozambique 5006 995 1188 1216 2767 3319 199–299

Namibia 473 7 9 140 126 — —

Niger 3034 14 9 725 613 — —

Nigeria 31742 4690 6346 8332 15193 14286 857–1286

Rwanda 2105 474 526 714 1272 1326 80–119

Réunion 192 116 128 61 185 194 12–17

Senegal 2574 424 495 589 1023 560 34–50

Seychelles 22 7 8 16 19 22 1–2

Sierra Leone 1224 475 590 319 1004 1234 74–111

Somalia 2458 136 155 799 803 74 16–25

South Africa 11787 3436 4123 3358 7779 7770 466–699

Sudan 8571 86 104 2140 1897 — —

Swaziland 256 84 99 66 189 258 15–23

São Tomé &

Prı́ncipe 37 26 29 9 37 37 2–3

Tanzania 9628 1385 1542 2839 4591 3906 234–352

Togo 1250 149 213 294 550 348 21–31

Uganda 6540 1324 1388 1977 3630 3498 210–315

Zambia 2853 382 423 840 1334 1044 63–94

Zimbabwe 3434 289 322 1002 1312 302 18–27

Total 179308 30710 36530 50010 89900 84056 5043–7565

aCAR, Central African Republic; DRC, Democratic Republic of Congo.
bRange based on delivery costs of US$0.03–0.04 per child and drug costs US$0.03–0.05 per child.
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estimates at a regional or continental scale have all been based on the

approach first established by Stoll in 1947: the prevalence data from the

few studies available within a country are used to estimate a mean

prevalence for the country as a whole, and then expressed as a product

of the estimated number of school-age children in the country. The

estimates we present here are the first at this scale to explicitly include

the fine spatial variation in distribution of both infection and popu-

lation, and indicate that the earlier methodology tended to overesti-

mate. It is also worth emphasizing that this level of precision has been

achieved affordably only because of the use of GIS/RS: using tradi-

tional survey methods to obtain these data would be prohibitively ex-

pensive.

The estimates provide a basis for quantifying the financial re-

sources required to support school-based deworming in SSA. It is

assumed that mass treatment is only provided in districts where

prevalence of any STH infection exceeds 50%, and in these districts

treatment is provided to all school-age children irrespective of infec-

tion status, according to WHO guidelines on mass treatment (WHO,

2002). Cost analyses estimate that the school-based delivery costs of

albendazole or mebendazole, anthelmintics that are effective against

all the common STH species, are in the range between US$0.03 and

0.04 per capita (PCD, 1999), while the drug costs are in the range

between US$ 0.03 and 0.05 per capita (Guyatt, 2003). Under these

assumptions, using the school-based approach to provide a single

annual treatment to all school-age children in all districts in Africa

where mass treatment is justified would cost US$5.0–7.6 million.

These cost estimates are for maintaining a programme and do not

include the higher costs of start-up. Nevertheless they suggest that

continent-wide control of parasites is, from a financial perspective, an

attainable goal.

10. THE FUTURE

GIS/RS is a powerful tool that has evolved from supporting sophis-

ticated epidemiological research, through a role in directing public

health interventions, to now showing a real potential for assisting the
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design of sustainable development programmes. The initial epidemi-

ological research was critical to this evolution, because it has pro-

vided the evidence for the link between transmission dynamics and

the environmental factors that can be detected by RS. Furthermore,

as illustrated here, it can provide important new insights into patterns

of transmission at a geographical scale that has proven impossible to

address using more traditional approaches.

The present analyses have shown that, with the available evidence,

GIS/RS can predict patterns of STH transmission, and can do so at a

scale that is relevant to the design of national control programmes.

Most importantly, this approach is able to achieve this even for areas

for which limited empirical data are available and at low cost relative

to traditional survey technologies. This approach has the potential to

facilitate the design of national control programmes, and the key

question now is how best to realize this potential.

The experience of international vertical programmes aimed at con-

trolling lymphatic filariasis, schistosomiasis and onchocerciasis pro-

vides some insights, but it is perhaps the examples from Chad, Eritrea,

Tanzania and Uganda of national government efforts that more clearly

point the way forward. GIS/RS has emerged as a tried and tested and

increasingly acceptable technology that can provide national govern-

ments with a relatively low-cost approach to surveying and programme

design, and which can significantly reduce the cost of practical pro-

grammes through more precise geographical targeting and simplifying

the processes of monitoring and evaluation. It is important to recog-

nize that GIS/RS can reduce both the upstream (e.g. survey and de-

sign) and downstream (e.g. targeting, monitoring and evaluation) costs

of programmes, while at the same time enhancing programme effec-

tiveness.

As more use is made of GIS/RS in control, there is a need to assess

their cost and cost-effectiveness in targeting control efforts. At present,

most funding for their use comes from international agencies and

northern researchers. Determining the long-term sustainability of the

use of GIS/RS in disease control and how they influence allocation of

resources is crucial. It is also important to assess the inherent uncer-

tainties in spatial data (epidemiological and environmental) within a

GIS and the propagation of uncertainty in predictions and estimations.
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Such research is underway for ecological modelling but similar re-

search is clearly needed for epidemiological applications.

Notwithstanding these issues, the clear message is that this technology

should be made available to policy makers and planners at the national

level. In terms of helminth control an essential component is to enhance

access to the predicted geographical patterns of transmission, such as

those described here. As a contribution to improving access, all the maps

presented in this text are made available at www.schoolsandhealth.org,

and are available separately to individual countries in CD format by

request from the same site. In this same spirit we welcome the release of

the population and environmental data with this volume.
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ABSTRACT

Evidence is presented that the evolution of the tick-borne flaviviruses

is driven by biotic factors, principally the exploitation of new hosts as

transmission routes. Because vector-borne diseases are limited by

r 2007 Elsevier Ltd.

All rights reserved



climatic conditions, however, abiotic factors have the potential to

direct and constrain the evolutionary pathways. This idea is explored

by testing the hypothesis that closely related viruses occupy more

similar eco-climatic spaces than do more distantly related viruses. A

statistical comparison of the conventional phylogenetic tree derived

from molecular distances and a novel phenetic tree derived from

distances between the climatic spaces within which each virus circu-

lates, indicates that these trees match each other more closely than

would be expected at random. This suggests that these viruses are

indeed limited in the degree to which they can evolve into new

environmental conditions.

1. PREDICTING CHANGING RISK OF INFECTION ON
EVOLUTIONARY TIME SCALES

In this review, we shall apply the same methods used in the global

mapping of infectious diseases to exploring the role of climatic factors

in the evolution of vector-borne diseases. Natural selection acts on

the limiting components of biological systems; those features that are

limiting are likely to show evolutionary change. Vector-borne path-

ogen systems are climate-limited, principally through the impact of

climate on the distribution, abundance and population dynamics of

the arthropod vectors. This leads to the prediction that climate has

been a significant factor in the evolution of these pathogens, and, by

implication, will be important in future events on both evolutionary

and ecological time scales. This is not to deny the important role of

biotic interactions in the evolution of these pathogens. Evidence from

many sources indicates that biotic interactions are important in se-

lecting for novel mechanisms in vector–pathogen and pathogen–host

interactions to overcome the many intrinsic biological barriers, effec-

tively the innate immunity of host and vector, inherent in indirect

transmission cycles. New pathogen strains evolve to exploit enhanced

or even new transmission routes. This raises the questions, which new

strains may establish persistent transmission cycles and where might

this be? This is determined largely by extrinsic multi-factorial

environmental factors, together with intrinsic factors such as
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host-acquired immunity, upon which depends the quantitative

balance between all the rates of the transmission processes: trans-

mission may be biologically possible but may not always occur

effectively enough to allow persistent cycles of transmission. The

same small handful of basic processes (birth, development, feeding

and death of the vectors, for example) generate a vast array of

patterns simply by virtue of their differing rates.

It is because rates of processes may change more rapidly than the

underlying mechanisms that the risk of infection varies so markedly

through space and time. It is important to distinguish non-

evolutionary emergence of pathogens from evolutionary emergence,

the subject of this review.

1.1. Evolutionary Emergence of Vector-Borne Pathogens

The ever-changing nature of threats posed by arthropod-borne

microbes involves two separate phenomena. Most commonly, the

incidence of infection with existing types of microbes changes, and

where the incidence in humans exceeds zero for the first time, new foci

of human disease may develop. Many vector-borne diseases are

zoonoses, where the pathogen circulates naturally between vectors

and wildlife hosts; humans are incidental hosts, typically unable to

transmit the pathogen back to biting vectors and so contributing

nothing to pathogen persistence. In these cases, a substantial ‘iceberg’

of enzootic cycles may exist hidden beneath the surface (i.e. unde-

tected without specific prospective searches for infection in vectors or

vertebrates) until it ‘emerges’ through some quantitative change in

the dynamic vector–host–pathogen interactions. The recent cases of

western tick-borne encephalitis (WTBE) in southeast Norway

provide an excellent example. The first clinical case was recognized

in 1998 (Ormaasen et al., 2001), with four additional cases reported

from 1998 to 2001, all from the small coastal island of Tromøya in

Aust-Agder County (Skarpass et al., 2002). Yet, between 1992 and

2000, 16.4% of 317 serum samples collected from dogs in Arendal, on

the mainland just west of Tromøya, were positive for antibodies to

WTBE virus (Csango et al., 2004). This animal survey suggests
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persistent enzootic cycles, with infected ticks biting dogs but not yet

sufficiently abundant to cause infections in humans (upon which ticks

feed much less frequently). Meanwhile, in Tromøya, the annual

number of human cases increased to four in 2004. Clearly, this is an

emergence of existing microbes within an existing transmission

system. With a clear explanation and quantification of the driving

forces of existent vector-borne disease systems, as derived from

methods described in this volume, it is possible to predict this sort of

emergence (non-evolutionary) in response to known or forecast

changes in the critical abiotic and biotic factors.

Less common is the emergence of new types of microbes. This

involves three essential steps, evolution, establishment within host

populations and geographic spread, which differ in their predictabil-

ity. It is not possible to predict the first step, arising initially from

genetic changes that affect biotic interactions. It is, however, possible

to predict that vector-borne microbes may be more constrained than

directly transmitted microbes in their tolerance to mutations and re-

combinations, given that they must remain adaptive to two very

different sorts of host environments, invertebrate and vertebrate.

The probability of establishment may be predicted only with suffi-

ciently detailed knowledge of the biology of the new host relation-

ships and transmission conditions. More common are post-hoc

explanations, which may themselves contribute to future predictions

of similar systems. For example, we now understand why we escaped

so lightly from the first appearance of the SARS virus, despite its

rapid global distribution; fortunately and somewhat atypically, the

incubation period (time to infectivity) was longer than the latent

period (time to clinical symptoms), allowing isolation of patients

before they became infectious (but exposing healthcare workers to

highest risk) (Anderson et al., 2004). In effect, this SARS virus did

not establish itself within the human population, even though re-

peated sporadic entry into human populations remains a distinct

possibility.

Third, the extent of spread from the point of origin can be predicted

by risk mapping, the subject of this volume. As soon as there are

sufficient initial observed and accurately geo-referenced foci, the critical

limiting factors, both abiotic and biotic, can be identified statistically.
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Any place with matching conditions elsewhere in the world, would, in

theory, be at potential risk of invasion by the new microbe. Nowhere in

the UK, for example, matches the climatic conditions seen within

known foci of West Nile virus (WNV) in Europe, suggesting that the

UK is not at risk of invasion (D.J. Rogers, unpublished). Mutations of

the virus, however, might easily change the precise nature (qualitative

or quantitative) of those limiting factors. Statistical, pattern-matching

methods, by definition, assume that the correlations upon which the

model is built will apply in different times and different places, and

cannot take account of dynamic biological (evolutionary) change. In

addition to the extent, the speed of any spread could be predicted from

estimates of the force of transmission, specifically the basic reproductive

number, R0, based on the number of secondary cases that arise from

each primary case introduced into a fully susceptible population. A

higher R0 value also implies greater robustness in the system that per-

mits persistence under a wider range of conditions. In this way, the

speed of spread may be functionally related to the extent of spread, as

illustrated by the genetically distinct type of WNV (Davis et al., 2003)

that swept throughout North America within 5 years of its arrival,

apparently from Israel (Giladi et al., 2001; Lanciotti et al., 1999).

Thus, while biotic factors drive the first and second steps above, we

hypothesize that the final step in the evolution of new epidemiological

patterns is directed and constrained by abiotic factors. We have

tested this by examining one clade within the vector-borne RNA flavi-

viruses.

2. THE EVOLUTIONARY TIME SCALE FOR VECTOR-
BORNE FLAVIVIRUSES

Before trying to relate evolutionary history to environmental condi-

tions, it is necessary to establish that the time frames for the observed

patterns of evolution and the environment are compatible. Modern

climatic conditions can tell us nothing about the abiotic constraints

on the processes occurring millions of years ago that have generated

palaeontological patterns. Microbes, however, are capable of rapid

evolutionary change through their very large population sizes arising
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from exceptionally high rates of replication from single copies. The

simpler the microbe, the more these features apply, making RNA

viruses among the most rapidly evolving biological entities known

(Moya et al., 2004). Natural selection for newly adaptive strains,

however, operates on the complete life cycle, or transmission cycle for

parasitic microbes, so that more complex indirect transmission routes

not only impose strong selection forces, but also prolong generation

times, and therefore slow down the rate of evolutionary change.

The force of this brake appears to differ with the contrasting

biology of the two major classes of vectors, insects and ticks. For

insect vectors, the relatively short blood-feeding interval, a few days,

must be added to the microbe’s development cycle within its vector

(the so-called extrinsic incubation period), which may take 1–2 weeks.

This allows a complete transmission cycle within a very few weeks. At

the other extreme, hard ticks of the family Ixodidae feed only once

per life stage, as larvae, nymphs and adults. The tick’s inter-stadial

development period varies from weeks to many months depending on

the geographically and seasonally variable climate, after which there

may be a considerable period before the new tick stage feeds again.

This introduces a long delay into the transmission process, during

which a high percentage of ticks die, especially in dry summers

(Randolph, 2004b). This protracted mode of transmission by ticks

(with each complete cycle measured in months or even years) is likely

to act as a brake on evolutionary change (Gritsun et al., 1995;

Zanotto et al., 1995). Indeed, based on rates of non-synonymous

nucleotide substitution among the RNA flaviviruses, the tick-borne

species show an apparent rate of evolution estimated to be about

56% of the rate seen in the insect-borne species (Zanotto et al., 1996).

The patterns of cladogenesis also differ. Tick-borne flaviviruses ap-

pear to have diverged more or less continually over the last 2000

years, with only one, Louping ill (LI) virus, having arisen o800 years

ago and diversifying within the last 300 years (Gould et al., 2001;

McGuire et al., 1998; Zanotto et al., 1996). In contrast, although the

major groups of mosquito-borne flaviviruses diverged several

thousand years ago, periods of intense cladogenesis in the dengue

and Japanese encephalitis (JE) serotypes have occurred during the

last two centuries (Zanotto et al., 1996).
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These best estimates of the dates of divergence within phylogenetic

trees of vector-borne RNA viruses indicate an evolutionary time scale

of the order of hundreds of years. This significantly shortens the

conventional gap between evolutionary and ecological time scales,

making it more reasonable to use modern abiotic conditions to

nvestigate evolutionary constraints. Although climate has varied over

the past one or two millennia, these changes through time are small

compared with spatial variation across continents, with which the

analysis addressed in this review is concerned. It also makes evolu-

tionary change a matter of more immediate relevance to changing

epidemiological risk. If we can explain the driving forces and con-

straints that have shaped the evolutionary pathways of pathogen

strains, that are now so well described in the new and improving

phylogenies based on molecular analyses, we shall be better equipped

to predict the likely establishment and spread, if not the first

appearance, of new strains as they appear in the future.

3. CORRELATES OF PHYLOGENETIC PATTERNS

3.1. Biotic Selectors

The evolutionary history of the flaviviruses has been deduced from

their molecular phylogeny and has been well described in recent years

(Gould et al., 2001, 1997; McGuire et al., 1998; Zanotto et al., 1995,

1996). Division into major clades coincides with different principal

vectors (insects, ticks or no known vector), with further sub-division

according to vertebrate hosts (Gaunt et al., 2001). Among the insect-

borne species, neurotropic viruses associated with encephalitic disease

in humans (e.g. JE, WNV) persist in cycles between Culex mosquitoes

and birds, while non-neurotropic viruses associated with

haemorrhagic disease in humans (e.g. Dengue, Yellow Fever) cycle

between Aedes mosquitoes and primates. Although mosquitoes show

species-specific patterns of feeding behaviour, this is not absolute,

and each genus of mosquitoes may feed on and infect both birds and

mammals (Gaunt et al., 2001). Nevertheless, complete transmission

cycles appear to be largely confined to one class of vertebrates or the
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other (Culex-birds or Aedes-primates) (Gaunt et al., 2001), indicating

the dominant role of the vertebrate host in driving the selection

process underlying this pattern of clades.

Gould et al. (2001) make a clear case for the role of vertebrate hosts

in selecting for different genotypes of tick-borne viruses. Early in the

evolution of the genus (but apparently not until after the most recent

glaciation) a major split occurred into two clades of viruses, the first

being transmitted via seabirds (the TYU serogroup) and the second

transmitted principally via mammals (the TBE complex viruses)

(Figure 1). Furthermore, a group of closely related encephalomyelitis

viruses all associated with sheep diverged from the other TBE

complex viruses that are associated mostly with forest rodents.

3.2. Geography and Phylogeny

The following account is taken from Gould et al. (2001). One of the

earliest nodes of the tick-borne clades includes an African virus

(KAD), suggesting that during the past 5000 years, infected ticks

have been dispersed by seabirds from an African (or Asian) origin, to

northwest France (MEA), to the eastern coast of Russia (TYU) and

to the Great Barrier Reef (SRE). Corresponding to the migratory

behaviour of seabirds, this most ancient lineage of tick-borne viruses

shows the greatest geographical and genetic separation (c. 60%

amino acid identity compared with 70% between most of the TBE

complex viruses). At the deeper nodes of the tree, the earliest TBE

complex viruses are also found at great geographic distance from

each other, possibly suggesting similar bird-based introductions to

far-flung places (e.g. GGY virus, found in ticks under rocks and

debris used by penguins and other seabirds on Macquarie Island,

several hundred miles off southern Australia).

The most recent TBE complex viruses, however, show an asym-

metric topology on all phylogenetic trees so far constructed, indicat-

ing a continuous rather than interrupted evolution. Moreover, the

correlation between the genetic and geographic distances between

these viruses is interpreted as indicating an evolutionary cline from

east to west across the northern hemisphere (Zanotto et al., 1995).
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Thus, within the mammal-associated lineage, the viruses of Southeast

Asia (KFD and LGT) are the ancestors of the viruses of the northern

forests of central Russia, Far East and Siberia (OHF, FETBE and

STBE), which in turn are the ancestors of the viruses of eastern

and central Europe (WTBE, TSE, GGE), culminating in a virus

found only in northern Spain (SSE) and the most westerly virus (LI)

found in the British Isles. It is only these last four viruses that are

transmitted via sheep, and LI is evidently also transmissible via red

Figure 1 Phylogenetic tree of the tick-borne clade of flaviviruses: con-
sensus tree based on the 1st and 2nd codon positions for 41 E genes and the
NS5 gene sequence, taken from Gould et al. (2001) and Gaunt et al. (2001).
The source of the gene sequences used to construct this tree is given in the
original publications. The genus Flavivirus contains about 70 distinct an-
tigenically related flaviviruses. These are positive-stranded RNA viruses that
consist of three structural proteins (C capsid, M membrane and E envelope)
and seven non-structural (NS) proteins. TYU, Tyuleniy; SRE, Saumarez
Reef; MEA, Meaban; KAD, Kadam; POW, Powassan; KSI, Karshi; RF,
Royal Farm; GGY, Gadget’s Gully; KFD, Kyasanur Forest disease; LGT,
Langat; OHF, Omsk haemorrhagic fever; FETBE, Far Eastern tick-borne
encephalitis; STBE, Siberian tick-borne encephalitis; WTBE, Western
tick-borne encephalitis; TSE, Turkish sheep encephalitis; GGE, Greek goat
encephalitis; SSE, Spanish sheep encephalitis; LI, Louping ill. Principal
vertebrate host types and the geographical distribution are shown.
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grouse (Lagopus scoticus) (Hudson et al., 1995) and mountain hares

(Lepus timidus) (Jones et al., 1997), but not rodents (Gilbert

et al., 2000). Despite being found in isolated foci within upland

sheep-grazing regions of Turkey (TSE), Bulgaria and Greece (GGE),

Spain (SSE) and Ireland, UK and Norway (LI), all are antigenically

very closely related, but distinguishable by a unique tripeptide se-

quence in the envelope (E) gene (Gao et al., 1993; Gould et al., 2001).

The existence of this cline immediately raises the question: what

directed its development? It is not sufficient to point to the extremely

limited mobility of ticks. Ticks rely for their displacement on the

movement of their hosts, which is also fairly limited in the case of

rodents, but not so for birds and ruminants (deer as well as livestock).

Clearly, through movement of hosts, either natural or due to man’s

intervention, TBE complex viruses have been able to colonize a large

proportion of the northern hemisphere during the past few thousand

years. Yet, each virus is characterized by a geographically coherent,

focal distribution within the much more continuous ranges of both

the competent vector tick species and rodent or ovine (sheep and

goats) transmission hosts. The implication is that the chance of each

specific virus (within an infected tick or host) successfully invading a

new region is rare, and that the distribution of viruses is limited less

by their ability to reach a new place than by their ability to survive

there. At least for WTBE virus, this limitation is now known to be

due to rather specific climatic conditions required for persistent

enzootic cycles, which in turn are determined by the biological basis

of transmission.

3.3. Biotic Liberators, Abiotic Constraints

3.3.1. Fragile Cycles of WTBE Virus Associated with Rodents

Under laboratory conditions, WTBE virus is transmissible by a wide

range of Eurasian tick species (Korenberg and Kovaleskii, 1994) and

even an African species (Nuttall and Labuda, 1994), and also via a

range of natural rodent host species (Labuda et al., 1993a). In natural

conditions, however, only the specific ecological association of
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I. ricinus with field mice (Apodemus flavicollis) contributes signifi-

cantly to WTBE virus maintenance (Labuda and Randolph, 1999).

The vertebrate specificity is due to a particular route of transmission,

now recognized as crucial because of its quantitative impact. A com-

plete transmission cycle, from tick to tick via vertebrates, occurs most

efficiently between co-feeding ticks in the absence of a systemic

viraemia (Labuda et al., 1993a). Only certain vertebrate species

(notably Apodemus mice) allow the necessary virus replication within

particular cells of the skin’s immune system (Labuda et al., 1996),

enhanced by pharmacologically active substances in tick saliva

(Nuttall, 1998; Wikel, 1996). Epidemiologically, the quantitative

significance of this transmission pathway is that non-systemic infec-

tions are less virulent than fully developed systemic viraemias, and so

allow Apodemus to survive long enough to permit ticks to complete

their prolonged blood meals (Labuda et al., 1993b). The consequent

450% increase in the force of transmission relative to the systemic

pathway is crucial to virus survival given the inherent fragility of this

system (Randolph et al., 1996), but it is not sufficient.

In either case, non-viraemic or viraemic, the period of vertebrate

infectivity is limited to a few days. Specific seasonal climatic condi-

tions are therefore required to ensure that larvae and nymphs actively

seek their hosts in seasonal synchrony (Randolph et al., 2000), so that

large numbers of larvae co-feed with any one infected nymph. Only

this condition, plus the coincident aggregated distributions of larvae

and nymphs concentrated principally on sexually active male rodents,

ensures enough amplification of infected ticks (Randolph et al., 1999)

to offset the high percentage mortality that inevitably occurs between

each life stage (Randolph, 1998). The geographical distribution of

these specific seasonal climatic conditions dictates the focal distribu-

tion of TBEV within a subset of the extensive range of its vectors and

hosts. Based on correlations between the patterns of remotely sensed

climatic conditions and TBE foci, the critical climatic factors that

determine where these biological requirements are satisfied and there-

fore where WTBE foci exist, have been identified (Randolph, 2000).

First, high humidity at ground level during the summer allows good

tick survival, active host-seeking activity and therefore adequate tick

populations. These conditions are typically found in deciduous
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woodlands (Daniel and Kolar, 1990) and also on some upland

moorlands, where large host species such as deer or sheep, that feed

the reproductive adult ticks, are also found. Secondly, a particular

seasonal profile of land surface temperature is statistically associated

with both synchronous feeding by larvae and nymphs and the pres-

ence of WTBE human infections (Randolph et al., 2000), although

the precise biological processes that link these temperature and tick

patterns have not yet been fully uncovered.

Among the potential tick vectors in Europe, only I. ricinus has the

correct host relationships and the appropriate natural life cycle in

certain places to support WTBE virus transmission cycles. This is a

good example of the quantitative ecological hurdles referred to at the

start of this review, in this case imposing biotic specificity.

3.3.2. Geographically Limited TBE Complex Viruses Associated with
Sheep

So far, WTBE is the only tick-borne flavivirus for which this degree

of quantitative explanation of natural enzootic cycles has been

achieved. Intensive field investigations and mathematical modelling

of the biotic elements of the LI system indicate that persistent cycles

of LI virus depend on specific combinations of vertebrate hosts, in-

cluding sheep, grouse and mountain hares (Hudson, 1992; Hudson

et al., 1995; Jones et al., 1997; Norman et al., 1999), that have not yet

been fully identified in all situations (Laurenson et al., 2003). Abiotic

factors also appear to be important; recent analysis of climatic cor-

relates of LI foci indicates the need for specific temperature condi-

tions that confine LI virus to sub-sets of the distribution of the vector

tick, I. ricinus (Benjamin McCormick, pers. comm.). Very little is

known about the natural host relationships of TSE, GGE and SSE

viruses beyond their ability to be transmitted via sheep or goats by

I. ricinus and perhaps also by other tick species.

Gritsun et al. (1995) suggest that the mutations in the variable

regions of the E gene probably reflect adaptation to different wildlife

host species. Escape from the ancestral rodent transmission pathway

by LI, TSE and GGE viruses may have had significant evolutionary

consequences. Unlike the sheep-transmitted viruses, WTBE virus
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may be funnelled through vectors of greater than average genetic

homogeneity at each transmission cycle, because a large propor-

tion of each cluster of larval ticks co-feeding on any one mouse is

likely to come from a single egg batch (larvae quest close to where

they emerge). WTBE virus also has a considerably narrower effec-

tive host range than LI virus. Both these factors might explain the

greater genetic and antigenic homogeneity of WTBE across its wide

geographical range (2% amino acid diversity in continental Europe)

compared with the higher strain diversity (3–4%) of LI over its much

smaller range within the UK (Gould et al., 2001; Guirakhoo

et al., 1987; Heinz and Kunz, 1981, 1982).

The same mutations might also have significant epidemiological

consequences. Larger vertebrate host species feed both nymphs and

adults of I. ricinus, allowing virus transmission between these two tick

stages, which much more commonly (always?) show synchronous

feeding seasons. These systems, therefore, might be expected to be

more robust than the WTBE virus system. Any excess slack in the

system would permit invasion into less than optimum biotic or

abiotic contexts. Yet, despite the widespread, overlapping or contig-

uous distributions of rodents and sheep (and goats) throughout

Europe, each virus is confined to its own geographically separated,

well-defined range. For example, ‘hundreds of thousands of sheep’

migrate from Bosnia to an area of a natural WTBE focus in Croatia

for winter grazing, and take local ticks back with them when they

return to Bosnia in the spring, but neither WTBE virus nor any

sheep-transmitted viral type has been introduced to Bosnia (Borcic

et al., 1999). Isolates of TSE have been recorded only from six villages

close to Gebze and Kirklareli in northwest Turkey (Hartley et al.,

1969; Whitby et al., 1993), and of GGE from northeast Greece

(Papadopoulos, 1980) and Plodiv district of central Bulgaria (Pavlov,

1968). Their full distributions are unknown, but appear to be some-

what limited. Interestingly (but of no known significance), in the

Bulgarian focus, which is several hundred kilometres southwest of

WTBE foci in Romania, GGE was isolated from sheep, ticks and

shrews (Sorex araneus).

Once TSE or GGE had established itself in livestock hosts, trans-

portation by humans could easily permit dissemination to other
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regions where distinct strains have evolved. Yet, this appears to have

occurred very infrequently: once from Turkey, Greece and Bulgaria

to the Basque highlands of Spain (SSE), thence to Ireland (LI/MA54)

and thence to parts of Wales (LI/I), northern England (LI/917 et al.),

Scotland (LI/31 et al.) and finally to southwest England (LI/A and

LI/DEV4) (McGuire et al., 1998). Indeed, most LI virus dispersal in

the British Isles has been related to the history of sheep farming

during the last 300 years (Gould et al., 2001; McGuire et al., 1998).

Sheep were imported into Norway from Britain in the 19th century,

and LI was isolated from goats in Norway in 1978 and from sheep in

1982 (Ulvund et al., 1983). LI, however, did not spread beyond a

limited southwest coastal region closest to Scotland, despite extensive

tick populations and other tick-transmitted infections of sheep and

wild ruminants along most of the coastal regions of southern Norway

as far north as Nordland county (Stuen, 2003).

Why has each virus type remained so isolated? What has prevented

its spreading out of the area of its presumed introduction, infecting

sheep over their much wider distributions? It appears that each virus

may be ‘trapped’, presumably by a set of peculiar abiotic environ-

mental conditions acting on any one part of the pathogen–

vector–host interaction, just as has been identified for WTBE virus.

In that case, while biotic elements have selected for new strains, abi-

otic factors seem to have imposed constraints, preventing spread

throughout Europe despite the ubiquity of competent vectors and

hosts.

4. TESTING THE ROLE OF CLIMATE IN THE EVOLUTION
OF TICK-BORNE FLAVIVIRUSES

If climate dictates the distribution of these viruses, it is reasonable to

hypothesize that climate has directed and constrained their evolution.

One way to investigate this is to test whether the eco-climatic spaces

occupied by closely related viruses are more or less similar than those

occupied by more distantly related ones. If they prove to be very

similar, one could conclude that climate has been a significant

evolutionary constraint, whereas if they are significantly different,

S. E. RANDOLPH AND D. J. ROGERS276



one could conclude that viruses have been free to leap from one

eco-space to another with no constraint imposed by climate per se

despite the evident geographic constraints.

We are applying the methods outlined in other reviews in this

volume to test for matches between virus phylogeny and the

environmental conditions in which each virus circulates by seeking

correlations between two very different sorts of trees. First are the

familiar molecular phylogenetic trees, constructed on the basis of

genetic differences as a direct measure of evolutionary distance between

related species. These describe evolutionary history. Second are eco-

climatic trees, constructed from the statistical distances between the

eco-climatic spaces in which each virus circulates. These trees are purely

descriptive, containing no information on evolutionary history.

4.1. Constructing Phenetic Eco-Climatic Trees for
Viruses

The basis for these eco-climatic trees is the ability to define the

conditions within which each virus can survive (i.e. exists), plotted in

multi-variate space. With the advent of Geographical Information

Systems, this procedure has now become commonplace for a wide

variety of organisms, although the quality of the input observations

and predictor variables, and of the statistical analyses and their

interpretation, varies considerably. Based on correlations between

environmental and distributional patterns, over the past decade the

distributions of single species of organisms or single diseases have

been routinely mapped with high accuracy. Good accuracy statistics,

however, do not always guarantee good visual matches between the

observed and predicted maps of presence and absence. Both statis-

tical and visual matches must be good for the predictions to be con-

vincing. It is the use to which these maps are put that is now the

challenge. Most simply they paint a fuller picture of a pre-existing but

incomplete description of the distribution, providing a more accurate

blueprint upon which to base better public health decisions or control

strategies. More interestingly, the variables identified as limiting an

organism’s presence may help to quantify the complex of biological
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processes that determine the distributional patterns, and predict any

possible changes in these patterns under dynamic eco-climatic

conditions.

For the present purpose, it is a specific product of the statistical

method itself, in this case discriminant analysis (Green, 1978; Rogers

et al., 1996), that is of use for creating phenetic trees. The particular

virtue of this method is that it provides a measure of distance: the

Mahalanobis distance is the distance between the geometric centres of

multi-variate eco-climatic spaces, adjusted for the co-variance

between the variables that define that space (Figure 2). It is a way

of reducing the many differences in eco-climatic conditions to a single

measure of separation between presence and absence, or between the

presence of pairs of species. The ecologist’s Mahalanobis distance is

thus comparable to the evolutionary biologist’s molecular distance.

Using forward stepwise selection of variables, discriminant analysis

Figure 2 An illustration of the principle of linear discriminant analysis
used to distinguish between the abiotic conditions in which an organism is
present or absent, and the conditions occupied by two different species.
Mahalanobis distances are represented by the heavy double-ended arrows.
(Reprinted from Randolph (2004a), with permission of Cambridge Univer-
sity Press.)

S. E. RANDOLPH AND D. J. ROGERS278



also assigns relative importance to the variables that define the species

distribution, thereby yielding both discrete and distance information.

Furthermore, creating a map for all the tick-borne flaviviruses is

itself a novel challenge here. To create phenetic eco-climatic trees, the

Mahalanobis distances between species must be derived from the

same set of variables. One way of doing this would be to make

predictive maps of each virus individually in the conventional manner

and derive a consensus list of the 10 most commonly selected

predictor variables, which would inevitably involve a degree of sub-

jective decisions. Alternatively, it is computationally possible to make

a composite predictive map of all the viruses in a single analytical

exercise. As each virus is added, however, the accuracies for any one

will inevitably be compromised, unless all the viruses are in fact

limited by precisely the same set of variables. The analytical proce-

dure is as follows: (i) create a single composite predictive map for all

viruses together to assess its accuracy and therefore the validity of the

selected predictor variables that apply to all the viruses; (ii) create a

matrix of Mahalanobis distances based on these variables; and (iii)

test for a better than random match between the matrices of Mah-

alanobis and molecular distances. Note that the Mahalanobis

distances are derived from the observed points of presence of each

virus (i.e. the training data), not from the predictive maps.

4.2. Data Quantity and Quality

With the super-abundance of information of abiotic factors now avail-

able from remotely sensed sources, the problem is to find equally well

geo-referenced biotic data at comparable spatial resolutions and geo-

graphical ranges. For the tick-borne flaviviruses, at one extreme good

point data exist for the observed presence of SSE (n ¼ 41), LI (n ¼ 143),

OHF (n ¼ 32) and KFD (n ¼ 24)1 that can be geo-referenced by

1Data sources: SSE, map in Juste et al. (1997); LI, compiled by Ben McCormick

from data provided by P.J. Hudson, and the UK Veterinary Laboratory Agency; P.J.

Timoney, pers. comm.; Adams et al. (1977); Davidson et al. (1991); Hubalek et al.

(1995); McGuire et al. (1998); Walton and Kennedy (1966); OHF, Kharitonova and

Leonov (1985); KFD, Work (1958, 1960); Sreenivasan et al. (1986); Banerjee (1988);

Bhat et al. (1978); Dandawate et al. (1994).
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matching recorded place names (or local grid references) to universal

longitude and latitude coordinates using standard atlases. The distribu-

tion of WTBE has been mapped in the form of polygons (Immuno,

1997), within which c. 900 presence points were selected at random.

These data (Figure 3a is Plate 8.3 in the Separate Color Plate Section)

are sufficient to generate predictive maps for each virus. At the other

extreme, only eight sites of recorded presence are currently available to

the authors for Powassan (across North America) (not shown), and up

to only three sites for Kadam (in Uganda), Karshi (in Uzbekistan),

Langat (in Thailand andMalaya), TSE (in Turkey) and GGE (in Greece

and Bulgaria)2 corresponding to published reports of virus isolation,

although more sites could possibly be recovered in the future from local

sources (also plotted in Figure 3a).

The situation with regard to TBE in Russia is complicated by the co-

circulation of more than one virus type within such a vast area, whose

charting is mostly buried in an inaccessible Russian literature. The

disease previously known as Russian spring-summer encephalitis

(RSSE) is now known to be caused by two genetically distinct virus

subtypes, Far Eastern (FETBE) and Siberian (STBE) tick-borne en-

cephalitis (Ecker et al., 1999). The latter has now been isolated over a

wide longitudinal range from Estonia and Latvia in the west (26–271E)

(Golovljova et al., 2004; Lundkvist et al., 2001) to Irkutsk near Lake

Baikal in Siberia (1041E) in the east (Ecker et al., 1999). It is therefore

currently impossible to distinguish the distribution of STBE from that

of FETBE, which has also been isolated from Estonia and Latvia (ibid)

and throughout Russia to the extreme far east (e.g. Khabarovsk,

1351E) (Hayasaka et al., 1999) and from several sites on Hokkaido

Island, Japan (1411E) (Takeda et al., 1999). In the absence of point

data representative of the full geographical range of these viruses,

but knowing that they occur more or less wherever the vector tick

I. persulcatus occurs (Korenberg, 1994), 3000 points were selected at

random from the predicted distribution of I. persulcatus (Katharine

Mansell, unpublished MSc thesis), within the broad geographical limits

2Powassan, McLean and Donohue (1959); Artsob (1989); Ebel et al. (1999);

Kadam, Karabatsos (1985); Karshi, Karabatsos (1985); Khutoretskaya et al. (1985);

Langat, Bancroft et al. (1976); Karabatsos (1985); TSE, Hartley et al. (1969); Whitby

et al. (1993); GGE, Papadopoulos (1980); Pavlov (1968).
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for this tick as described by (Korenberg et al., 1969) (Figure 3a). This

gives a fuller definition of the eco-climatic limits of TBE in Russia than

the specific point data available to us for I. persulcatus only in Estonia

(Vasilenko et al., 1997), Latvia (A. Bormane, pers. comm.) and western

Russia as far east as the Urals (E.I. Korenberg, pers. comm.). This

approximation is an example of a solution to the problem of data

availability.

The eco-climatic conditions characteristic of absence of all the six

flaviviruses (SSE, LI, WTBE, Russian TBE, OHF and KFD) were

defined by selecting points at random outside the areas of presence, at

a distance between 0.05 and 0.51 longitude/latitude from any presence

points.

4.3. Composite Predictive Map for Six Viruses

To date it has proved possible to capture the distributions of six

tick-borne flaviviruses (LI, SSE, WTBE, all Russian TBE, OHF and

KFD) in a single exercise with 70–100% accuracy for all except OHF;

75% of OHF observed points were assigned to the Russian TBE

category, but only within the narrow OHF geographical range which

overlaps with Russian TBE (Figure 3b is Plate 8.3 in the Sep-

arate Colour Plate Section). The overall kappa index (Congalton,

1991) ¼ 0.729 7 0.012. As expected, the accuracy of the modelled

distribution of each virus is considerably less than when each is

modelled individually, with a tendency for false predictions of pres-

ence beyond the known range. For example, the model identifies

conditions suitable for WTBE far to the west and south of its actual

location, and even in a few parts of the far east, without the degree of

focality known to characterize this virus and captured successfully by

an earlier solo model (Randolph, 2000). Likewise, scattered false

predictions of SSE appear outside the Basque highlands of Spain and

even in Italy. Nevertheless, the overall fit to the known distribution of

these viruses across very large parts of the globe is correct. This

confirms that the same 10-predictor satellite variables may be used to

distinguish areas of presence of each virus from each of the others,

and from areas of absence. These 10 predictor variables are shown in
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Table 1 in the order in which they were selected, i.e. their relative

importance in fitting the model to the observations.

Statistically, therefore, each of these six viruses falls within a

distinct eco-climatic space defined by factors that are all temporal

Fourier variables (i.e. seasonal characteristics) of thermal (nine

factors) and moisture (one factor) conditions. To illustrate this on the

page, the two most significant variables are chosen as axes for

bi-variate plots that illustrate in two dimensions the differences that

the model has in fact identified in 10 dimensions (Figure 4 is Plate 8.4

in the Separate Colour Plate Section). In addition, the handful of

points representing the observed locations for GGE, TSE, Karshi,

Langat and POW are plotted on the same axes. There is clear sep-

aration between many viral types even in bi-variate space, and each

virus occupies only a subset of the total environmental space at least

potentially available to it (note the wider scatter of absence points).

As expected from their more southerly locations, KFD, Langat

and even Karshi occupy eco-climatic spaces very different from the

northern viruses. However, not all viruses are clearly separated by the

two variables used in Figure 4, and some of them are more separated

by other variables. For example, LI and WTBE appear to be close

together on this graph, but just as the molecular phylogeny shows

Table 1 The predictor variables selected by forward step-wise selection
that define the distinguished areas of presence of each of six tick-borne
flaviviruses (SSE, LI, WTBE, Russian TBE, OHF and KFD) from each of
the others, and from areas of absence

Satellite signal Temporal Fourier variable

Normalized Difference Vegetation Index Annual variance

Land Surface Temperature (LST) Minimum

Air Temperature (T’air) Amplitude of the bi-annual cycle

Middle Infra-red (MIR) Amplitude of the annual cycle

MIR Mean

T’air Amplitude of the annual cycle

T’air Maximum

T’air Phase of the annual cycle

MIR Minimum

LST Amplitude of the bi-annual cycle

Note: For an explanation of the meaning of these temporal Fourier variables, see
Hay et al. (this volume, pp. 37–77).
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that LI virus did not evolve directly from WTBE virus, so the

Fourier-processed satellite imagery of temperature and moisture

conditions shows a barrier of seasonally distinct climate in France.

Biologically, relevant climate factors now explain why WTBE has not

reached Britain through France (Randolph et al., 2000), but instead

the distinct LI virus entered Britain apparently via Spain and Ireland

(Gould et al., 2001; McGuire et al., 1998).

4.4. Congruence between Phylogenetic and Eco-Climatic
Trees?

Although the above results are only the first, albeit very important,

steps towards deriving Mahalonobis distances between all the

tick-borne flaviviruses, and so constructing a complete phenetic

ecological tree, we now have sufficient data to warrant a first attempt

at comparing the matrices of phylogenetic and eco-climatic distances.

Eco-climatic distances were calculated in terms of the Mahalanobis

distances separating each pair of viruses, calculated using the 10 pre-

dictor variables used to produce the map (Figure 3b). The distances

were inserted into a matrix of distances in the same order as the

matrix of genetic differences (Table 2). Mahalanobis distances are

measures of multi-variate separation that allow for the co-variance of

the variables concerned (Rogers, 2000). Thus, two centroids (means

of multi-variate distributions) may be the same absolute distance

apart in multi-variate space (as indicated by the Euclidean distance

between them), but the Mahalanobis distance between them will be

different if their co-variances differ (especially if they have different

orientations in multi-variate space). The calculation of Mahalanobis

distances involves inversion of the co-variance matrix, and this can

sometimes be difficult if one of the sample sizes is rather small. Thus,

a second eco-climatic distance matrix was calculated using just the

Euclidean distances (which do not require matrix inversion) between

the centroids defining each virus species. In both types of matrix

(genetic and environmental), larger numbers indicate a greater genetic

or environmental difference between the pairs of viruses being

compared.
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The pairs of genetic/environmental distance matrices were com-

pared using the non-parametric Mantel test. This provides a test of

the H0 hypothesis, that there is no association between the elements

of the two dissimilarity matrices being compared, by carrying out

10 000 randomizations of one of the matrices and estimating each

time the test statistic (g, the standard normal variate); collectively, the

randomizations define the frequency distribution of g and the posi-

tion within this frequency distribution of the actual value obtained is

Table 2 Matrix of genetic distances (top) between the six tick-borne
flaviviruses for which sufficient geo-referenced data currently exist to allow
estimates of the Mahalonobis and Euclidean distances (middle and bottom)
between the eco-climatic spaces occupied by each virus

Genetic distances

LI OHF POW FETBE WTBE KFD

LI 0

OHF 0.35275 0

POW 0.88279 0.99877 0

FETBE 0.22538 0.29843 0.86321 0

WTBE 0.15808 0.30600 0.95008 0.19537 0

KFD 0.65441 0.57301 0.95661 0.58159 0.62972 0

Mahalanobis environmental distances

LI OHF POW FETBE WTBE KFD

LI 0

OHF 30.325 0

POW 25.71 10.43 0

FETBE 25.05 3.31 6.76 0

WTBE 6.88 11.13 7.88 8.14 0

KFD 788.27 870.68 860.11 875.01 833.48 0

Euclidean environmental distances

LI OHF POW FETBE WTBE KFD

LI 0

OHF 363.21 0

POW 383.34 21.76 0

FETBE 360.85 9.03 24.82 0

WTBE 191.92 171.41 191.5 169.3 0

KFD 42.56 374.94 394.85 373.49 204.84 0

Source: Genetic distances supplied by E.C. Holmes.
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then examined. If it is outside the boundary of 95% of the random-

izations, then H0 is rejected in favour of the alternative hypothesis

that there is some association between the values in the two matrices

(po0.05). For the Genetic distance/Euclidean distance matrix com-

parison, the Mantel test gave a value of g of 1.76 (po0.05). For the

Genetic distance/Mahalanobis distance comparison g ¼ 2.246

(po0.025).

The results indicate a significant association between genetic and

environmental distances, suggesting that climate may indeed have

played a role in directing the evolution of the flaviviruses. Further-

more, the particular environmental factors that appear to be

correlated with the origin of new viruses mostly concern the precise

seasonal thermal cycle, perhaps determining crucial features of the

vector tick’s seasonal population dynamics and host relationships as

has been shown for WTBE. This result will direct the search for the

processes underlying the evolutionary patterns, leading to new inter-

pretations and understanding of the forces that direct and constrain

pathogen evolution. These same critical conditions are also likely to

direct any shifting incidence of these existing vector-borne diseases

under the forces of natural and anthropogenic environmental change.
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Moya, A., Holmes, E.C. and González-Candelas, F. (2004). The population
genetics and evolutionary epidemiology of RNA viruses. Nature Reviews
Microbiology 2, 279–288.

Norman, R., Bowers, R.G., Begon, M. and Hudson, P.J. (1999). Persistence
of tick-borne virus in the presence of multiple host species: tick reservoirs
and parasite mediated competition. Journal of Theoretical Biology
200, 111–118.

Nuttall, P.A. (1998). Displaced tick-parasite interactions at the host inter-
face. Parasitology 116, S65–S72.

TICK-BORNE DISEASE SYSTEMS 289



Nuttall, P.A. and Labuda, M. (1994). Tick-borne encephalitides. In: Eco-
logical Dynamics of Tick-borne Zoonoses (D.E. Sonenshine and T.N.
Mather, eds), pp. 351–391. New York: Oxford University Press.

Ormaasen, V., Brantsaeter, A.B. and Moen, E.W. (2001). [Tick-borne en-
cephalitis in Norway.] (in Norwegian). Tidsskr Nor Laegeforen 121,
807–809.

Papadopoulos, O. (1980). Arbovirus problems in Greece. In: Arboviruses in
the Mediterranean Countries, 6th FEMS Symposium (J. Vesenjak-Hirjan,
J.S. Porterfield, and E. Arslanagic, eds), Zentralblatt für Bakteriologie,
Mikrobiologie und Hygiene 1, 117–121.

Pavlov, P. (1968). Studies of tick-borne encephalitis of sheep and their nat-
ural foci in Bulgaria. Zentralblatt für Bakteriologie, Parasitenkiende,
Infektionskrankh und Hygeine 206, 360–367.

Randolph, S.E. (1998). Ticks are not insects: consequences of contrasting
vector biology for transmission potential. Parasitology Today 14,
186–192.

Randolph, S.E. (2000). Ticks and tick-borne disease systems in space and
from space. Advances in Parasitology 47, 217–243.

Randolph, S.E. (2004a). Evolution of tick-borne disease systems. In: Society
of General Microbiology Symposium (S.H. Gillespie, G.L. Smith and A.
Osbourn, eds), Vol. 63, pp. 19–42. Cambridge: Cambridge University
Press.

Randolph, S.E. (2004b). Tick ecology: processes and patterns behind the
epidemiological risk posed by ixodid ticks as vectors. Parasitology 129,
S37–S66.

Randolph, S.E., Gern, L. and Nuttall, P.A. (1996). Co-feeding ticks: ep-
idemiological significance for tick-borne pathogen transmission. Parasi-
tology Today 12, 472–479.

Randolph, S.E., Green, R.M., Peacey, M.F. and Rogers, D.J. (2000).
Seasonal synchrony: the key to tick-borne encephalitis foci identified by
satellite data. Parasitology 121, 15–23.
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ABSTRACT

Air, sea and land transport networks continue to expand in reach,

speed of travel and volume of passengers and goods carried. Path-

ogens and their vectors can now move further, faster and in greater

numbers than ever before. Three important consequences of global

transport network expansion are infectious disease pandemics, vector

invasion events and vector-borne pathogen importation. This review

briefly examines some of the important historical examples of these

disease and vector movements, such as the global influenza pandem-

ics, the devastating Anopheles gambiae invasion of Brazil and the

recent increases in imported Plasmodium falciparum malaria cases.

We then outline potential approaches for future studies of disease

movement, focussing on vector invasion and vector-borne disease

importation. Such approaches allow us to explore the potential im-

plications of international air travel, shipping routes and other meth-

ods of transport on global pathogen and vector traffic.

1. INTRODUCTION

For most of human history, regional and continental populations

have been relatively isolated from each other. Only comparatively

recently has there been extensive contact between peoples, flora and

fauna from both old and new worlds (Diamond, 1998). The move-

ment of disease has proved a major force in shaping world history, as

wars, crusades, diasporas and migrations have carried infections to

susceptible populations. Until World War II, more war victims died

of microbes introduced by the enemy, than of battle wounds (Karlen,

1995). More often than not, the victors in past wars were not those

armies with the best weapons and generals, but those bearing the

deadliest pathogens (Zinsser, 1943; Diamond, 1998).

Initially, new infectious diseases could spread only as fast and far

as people could walk. Then as fast and far as horses could gallop and

ships could sail. With the advent of truly global travel, the last five

centuries have seen more new diseases than ever before become po-

tential pandemics (Karlen, 1995). The current reach, volume and

speed of travel are unprecedented, so that human mobility has
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increased in high-income countries by over 1000-fold since 1800

(Wilson, 1995, 2003). Aviation, in particular, has expanded rapidly as

the world economy has grown, though worries about its potential for

spreading disease began with the advent of commercial aviation

(Massey, 1933). Passenger numbers have grown at nearly 9% per

annum since 1960 and are expected to increase at more than 5% per

annum for at least the next 10 years, with airfreight traffic showing

similar changes (Upham et al., 2003). Similarly, globalization of the

world economy has also resulted in a shipping traffic increase of over

27% since 1993 (Zachcial and Heideloff, 2003).

The efficiency, speed and reach of modern transport networks puts

people at risk from the emergence of new strains of familiar diseases,

or from completely new diseases (Guimera et al., 2005). Additionally,

the global growth of economic activity, tourism and human migra-

tion is leading to ever more cases of the movement of both disease

vectors and the diseases they carry.

This contribution reviews examples of past movement of three

categories of disease through global transport networks: (i) pandem-

ics; (ii) disease vector invasions; and (iii) vector-borne diseases. For

each, we review examples of past events and their current status,

while for sections (ii) and (iii), we put forward novel approaches for

the modelling and prediction of future events.

2. GLOBAL TRANSPORT NETWORKS AND PANDEMICS

The past 500 years have provided numerous examples of how the

establishment and expansion of worldwide transport networks has

facilitated global pandemics of communicable diseases. Here we

briefly review a selection of the world’s major pandemics, their po-

tential future threat and examine the development of approaches for

their prediction and control.

2.1. Plague

More than 200 million people are thought to have been killed by

bubonic plague in three major pandemics between the 14th and 17th
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centuries (Duplaix, 1988; Eckert, 2000). The plague bacillus, Yersinia

pestis, was transmitted from infected rodents, often rats, by flea bites

(Lounibos, 2002). Historical data show occasional major outbreaks

of plague separated by long, plague-free periods (Keeling and

Gilligan, 2000).

Many medical historians believe that the ‘‘Black Death’’ that killed

a third of Europe’s central and northern populations in the mid 14th

century was brought about by bubonic plague. This view, however,

has recently been questioned (Scott and Duncan, 2004). The Black

Death arrived in Sicily in 1347 and within two years had swept

northwards to Scandinavia, at a time when rats appear to have been

absent from much of Europe (Twigg, 1984, 2003). Even if introduced

at ports, rat populations could not feasibly have colonized such large

areas so quickly. New examination of contemporary accounts, and

local parish records, reveal patterns of death that are consistent with

a directly transmitted infection among family members and neigh-

bours, with symptoms consistent with some sort of viral ha-

emorrhagia. The real ‘vector’ appears to have been man: occasional

introductions to certain nearby towns and villages coincided with the

arrival of travellers on foot or horseback (Scott and Duncan, 2004).

People at the time were aware of the effectiveness of isolation and

quarantine within affected households, which would not have pre-

vented infection spread by rats and fleas. It seems that only the lim-

ited transport and movement patterns of the time prevented even

greater impacts on the European human population.

Whether caused by plague or some other pathogen, the Black

Death found an entirely susceptible population, devoid of resistance.

Its first sweep across Europe afflicted two-thirds of Europe’s popu-

lation before subsiding, though it remained endemic. Population re-

growth and renewed travel then reignited the disease, causing further

epidemics in 1361, 1371 and 1382, afflicting half, one-tenth and one-

twentieth of the population respectively (Zinsser, 1943).

The most recent confirmed plague pandemic occurred early last cen-

tury, with outbreaks principally in port cities, reflecting the dominant

mode of international travel at the time. Initially originating in China,

plague-infected rats were transported around the world in sailing ves-

sels, sparking major epidemics at international ports such as Sydney,
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Bombay, San Francisco and Rio de Janeiro (Duplaix, 1988). The lim-

ited spread inland from port cities remains a mystery, but the control of

rats and modernization of housing, food storage and sanitation, have

been suggested as preventing large-scale inland rat migration (Zinsser,

1943). Spread did occur from San Francisco, however, resulting in

plague becoming endemic in prairie dog colonies of Western USA,

causing occasional human cases even today (Markel, 2005).

Bubonic plague is now principally regarded as a disease of only

historical importance. There are, however, more frequent reports of

increasing incidence locally (Barretto et al., 1994; Kumar, 1995), im-

portation (Perlman et al., 2003), and of antibiotic-resistant strains

(Galimand, 1997). Plague is thus re-emerging as a significant public

health concern. Since the last pandemic, plague’s geographic range

has expanded, posing new threats to previously unaffected regions

(Gage and Kosoy, 2005) and resulting in hundreds of cases in at least

14 countries (World Health Organization, 2003). Although recent

outbreaks have been quickly controlled limiting case numbers, re-

sultant economic disruptions have been severe. India’s 1994 outbreak

resulted in just 52 deaths, but over 1 billion USD in economic costs,

demonstrating how vulnerable the global economy can be to the

threat of infectious diseases (Cash and Narasimhan, 2000).

2.2. Cholera

Cholera is caused by an intestinal infection with the bacterium, Vibrio

cholerae, leading to severe dehydration, shock and often-rapid death

(Sack et al., 2004). The bacterium can survive for long periods in water

and is commonly transmitted by contaminated water, or food that has

been washed in such water. Accounts of cholera-like diseases go back

as far as the times of Hippocrates and Buddha (Reidl and Klose, 2002).

Over the past 185 years, Vibrio cholerae has escaped seven times from

its endemic heartland in West Bengal, India, to result in pandemics

(Sack et al., 2004). It first started as an epidemic outbreak in 1817 in

India, but soon started spreading, in part due to British ship and troop

movements, carrying the infection north and east to China, Japan and

Indonesia (Reidl and Klose, 2002). The disease also spread along trade
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routes to the west as far as southern Russia (Karlen, 1995). Each

successive pandemic increased in extent and severity, reflecting the

expanding reach of the global transport system and increased move-

ments of people, particularly on religious pilgrimages (Rogers, 1919).

The 1830s saw Russian troops, English ships, Irish immigrants and

Canadian exploration carry Vibrio cholerae to the Baltic, England,

Ireland, Canada, USA and Mexico (Curtin, 1995). Its arrival in Mecca

in 1831 in time for the Muslim pilgrimage is thought to have sparked

over 40 epidemics by 1912 (McNeill, 1976). Statistically, the impact of

cholera epidemics was rarely severe, with only a small percentage of

populations affected, but it developed a fearsome reputation through

seemingly bypassing all attempts at quarantine and because it attacked

rich as well as poor (McNeill, 1976). Not until John Snow’s work on

cholera clusters in London in the 1850s, and later acceptance of ‘germ’

theories of disease, did a proper understanding and effective control

develop (McNeill, 1976).

Cholera continues to affect many parts of the world. The most

recent, and current, pandemic has resulted in the disease becoming

endemic in much of Africa (Naidoo and Patric, 2002; Weir and

Haider, 2004), South America (Seas et al., 2000; Chevallier et al.,

2004) and southern Asia (Phukan et al., 2004; Weir and Haider,

2004), with antibiotic resistance on the rise (Sack et al., 2004). Newly

found serotypes of Vibrio cholerae are likely to be the source of the

next cholera pandemic, having already resulted in 30 000 cases in just

a few months in Dhaka, Bangladesh (Faruque et al., 2003).

2.3. Influenza

The influenza virus is remarkable for the rapidity with which it can

spread, the brevity of immunity it confers and its genetic variability

(McNeill, 1976; Ferguson et al., 2003a). Despite an often-low fatality

rate, the large number of cases makes influenza pandemics and ep-

idemics a major health problem (Palese, 2004). Around 20% of chil-

dren and 5% of adults worldwide develop symptomatic influenza

each year (Nicholson et al., 2003). During the 20th century, influ-

enza was the principal infectious disease to be influenced by the

A.J. TATEM ET AL.298



growing global transport network and to display pandemic behav-

iour. Three major pandemics occurred in 1918, 1957 and 1968 (Cox

and Subbarao, 2000).

In 1918, the confluence of American with both European and

African troops in northern France, and the emergence of new virus

strains, provided the milieu for an epidemic of unprecedented scope

(McNeill, 1976). The 1918 influenza pandemic killed around 40 mil-

lion people in a year (Oxford, 2004), and resulted in an almost 10-

year drop in the calculated average life expectancy of the global

population (Palese, 2004). This disease is now used as a worst-case

scenario for pandemic preparedness planning (Mills et al., 2004).

Three influenza viruses with different haemagglutin surface proteins

(H1, H2, H3) were responsible for the pandemics of the 20th century.

Although it is theoretically possible to create vaccines against any

new influenza virus given enough time and production capacity, the

genetic instability of the virus means it can evolve quickly, thereby

escaping the effects of newly developed vaccines (McNeill, 1976).

The 1957 pandemic originated in mainland China and traversed the

globe within six months. This speed was attributable both to a ha-

emagglutin surface protein shift from previous viruses, leaving the

global population susceptible to infection; and to the availability of

regular air and sea travel via which secondary epidemic sources were

established (Thomas, 1992). Before it became widely epidemic in

many countries, a vaccine had been developed and produced in suf-

ficient quantities to reduce the incidence and intensity of influenza in

developed countries with available vaccine, yet it still claimed over

70 000 lives in the US and many more elsewhere (Palese, 2004). In

1968, another strain was isolated in Hong Kong, and quickly spread

around the world causing thousands of deaths, even though anti-

bodies remaining from the 1957 pandemic were thought to have

moderated the severity of infections (Cox and Subbarao, 2000).

Epidemics continue to occur regularly (Viboud et al., 2004), as do

movements of the virus through the global transportation system,

causing outbreaks even on aircraft (Marsden, 2003).

Much remains unknown about influenza and the viruses that cause

it; how they arise, how the shift to new strains occurs and whether the

viruses migrate between northern and southern hemispheres to become
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epidemic in cold-weather seasons (Cox and Subbarao, 2000). The

recent emergence of the avian influenza virus in south-east Asia has

led many to fear that the next global pandemic is imminent (Webby

and Webster, 2003; Fouchier et al., 2005; Webster and Hulse, 2005).

At the time of writing, the H5N1 virus has infected at least 88 people,

killing 51 of them (Webster and Hulse, 2005). Should the virus mu-

tate sufficiently to enable sustained human-to-human transmission

(Ungchusak et al., 2005), modern transport (Enserink, 2004) and the

size of the currently susceptible global population means it could kill

millions more than any previous pandemic if adequate preventative

measures are not in place (Osterholm, 2005a, b; Oxford, 2005).

2.4. HIV/AIDS

The spread of the HIV/AIDS pandemic worldwide is a travel story

whose episodes can be traced by molecular tools and epidemiology

(Lemey et al., 2003; Perrin et al., 2003). The exact origin of the HIV/

AIDS virus remains unknown, but sero-archaeological studies have

documented human infections with HIV prior to 1970 (Mann, 1989).

Phylogenetic analysis has indicated that multiple interspecies transmis-

sions from simians introduced two genetically distinct types of HIV into

the human population: HIV-1 from chimpanzees and HIV-2 from

sooty mangabeys (Lemey et al., 2003). While HIV-2 is mainly restricted

to West Africa and is thought to have originated in Guinea-Bissau

(Lemey et al., 2003), HIV-1 has spread globally from the first zoonotic

transmission from chimpanzee to people around 70 years ago in central

Africa (Jonassen et al., 1997; Russell et al., 2000; Perrin et al., 2003).

Data suggest that the current pandemic started in the mid-1970s and

by 1980, through air travel, sea travel and human migration, had

spread to between 100000 and 300 000 people on at least five conti-

nents (Mann, 1989). Studies have also shown that certain groups of

mobile and sexually active individuals are important in seeding local

epidemics, including immigrants, intravenous drug users, tourists,

truck drivers, military troops and seamen (Perrin et al., 2003; Salit

et al., 2005). This is illustrated by the first documented infections in

Europe, caused by a Norwegian seaman infected through heterosexual
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contact in a West African seaport, returning to infect his wife, who

transmitted the infection to her daughter (Jonassen et al., 1997). The

role of international travel in the spread of HIV was also highlighted

by the case of ‘Patient Zero’, a Canadian flight attendant who travelled

extensively worldwide. Analysis of several of the early AIDS cases

showed that the infected individuals were the attendant’s direct or

indirect sexual contacts and could be traced to several different Amer-

ican cities, thereby demonstrating the role of international travel in

spreading the virus (Karlen, 1995).

According to UNAIDS estimates, 39.4 million people were living

with HIV at the end of 2004, causing around 3 million deaths a year

in sub-Saharan Africa (SSA), the worst-hit region (UNAIDS, 2004).

The disease’s spread can be linked to a variety of factors. In the

United States, the rapid spread of AIDS between 1984 and 1990 can

be modelled accurately using air traffic flows between cities (Gould,

1995, 1999). The non-homogenous distribution of the global pan-

demic both between and within countries reflects levels of social vul-

nerability and mobility (Bronfman et al., 2002). Infection rates are

usually higher in urban areas; rural areas, especially in Africa, are

affected by the levels of mobility and migration which enable the

virus to shift from urban to rural centres, and tend to mean that

infection rates are higher near main roads and in trading centres than

in isolated villages (Lagarde et al., 2003).

2.5. Severe Acute Respiratory Syndrome

Severe acute respiratory syndrome (SARS) is a coronavirus that

adapted from animal hosts to become readily transmissible between

humans (Peiris et al., 2004). Southern China has produced one plague

pandemic and two influenza pandemics over the last 150 years

(McNeill, 1976), and SARS represents the fourth global pandemic

originating from the region. SARS probably first emerged in Guang-

dong province around November 2002 among those in contact with

the live-game trade (Peiris et al., 2004). Although unproven, it seems

likely that animal to human interspecies transmission occurred at ‘wet

markets’ where a wide range of live poultry, fish, reptiles and other

mammals are sold (Peiris et al., 2004).
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On 21 February 2003, a physician from Guangdong spent a single

day in a Hong Kong hotel, during which time he transmitted an

infection to 16 other guests. These guests seeded outbreaks in Hong

Kong, Toronto, Singapore and Vietnam, and within weeks SARS

infected over 8000 people in 26 countries across 5 continents (Peiris

et al., 2004). The WHO invoked traditional public health measures to

contain the outbreak, including heightened vigilance, screening of

travellers and isolation and quarantine of affected individuals and

their close contacts. At the same time, advanced technologies iden-

tified the causative agent and informed prevention and treatment

options (Skowronski et al., 2005). The exhaustive effort resulted in

cessation of transmission by early July 2003.

While the number of fatalities was small (o800) (Skowronski et al.,

2005) in comparison with other pandemics, the speed and extent of the

proliferation of SARS highlighted the potential for modern globalized

economic activity and an ever-expanding air travel network to spread

infectious diseases. It also demonstrated how a new and poorly un-

derstood disease, with no vaccine and no effective cure, can adversely

affect economic growth, trade, tourism and social stability, especially

when its perceived risk is many times higher than its actual risk

(Heymann, 2004). The economic impact of SARS has been estimated

at between US$30–140 billion (Skowronski et al., 2005), largely as a

consequence of reduced travel and investment in Asia. SARS also

showed how inadequate surveillance and response capacity in a single

country can have an impact upon global public health security

(Heymann, 2004). While the pandemic ended in late 2003, the fact that

three years later there is no vaccine and that the animal reservoir of

the disease remains to be identified conclusively (though civet cats are

thought to be the source; Song et al., 2005), means a return of SARS

cannot be ruled out (Skowronski et al., 2005).

2.6. Bioterrorism

While bioterrorism has been at the forefront of public health plan-

ning since the 11 September 2001 attacks on New York, it has a long

history. One of the earliest documented uses of biological weaponry
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occurred in 1346 when wars and plague were decimating the Middle

East. A three-year siege of the Crimean walled-port of Jaffa by the

Tatars was finally ended soon after plague-infected corpses were cat-

apulted over the city walls, seeding epidemics which led to its down-

fall (Karlen, 1995).

Today, the list of agents posing major public health risks if acquired

and effectively disseminated in a bioterrorist attack is relatively short

(Kortepeter and Parker, 1999). This is counterbalanced by the poten-

tial of such agents to challenge our abilities to limit the numbers of

casualties. The most threatening of infectious agents include botulism,

influenza, plague, tularaemia, viral haemorrhagic fevers (e.g. Ebola,

Marburg and Lassa fevers), anthrax and smallpox (Lane et al., 2001;

Madjid et al., 2003). In the minds of most military and counterter-

rorism planners, anthrax and smallpox represent the greatest bioterror

threats (Kortepeter and Parker, 1999).

Anthrax is one of the great infectious diseases of antiquity, and

some of the plagues described in the Bible may have been outbreaks

of this disease in cattle and humans (Cieslak and Eitzen, 1999).

Caused by infection with Bacillus anthracis, it has little potential for

person-to-person transmission, and most endemic cases are con-

tracted cutaneously through contact with infected herbivores. As a

weapon, it would most likely be delivered by aerosol as seen in 2001

in the US Postal Service attacks (Dewan et al., 2002; Greene et al.,

2002) and, consequently, acquired by inhalation. Without rapid

treatment, death may occur in as many as 95% of cases (Cieslak and

Eitzen, 1999). Although a licensed vaccine and efficient therapy ex-

ists, the short incubation period and rapid progression of the disease

means identification and treatment of any exposed populations is

likely to present a major challenge.

Smallpox is a viral disease spread by inhalation of air droplets or

aerosols and is unique to humans (Henderson, 1999). It has played a

major part in shaping human history, repeatedly killing millions in

Europe in epidemics throughout the 16th century before immunity

arose to reduce its severity (Alibek, 2004). Europeans then inadvert-

ently introduced smallpox to the NewWorld, where it aided in wiping

out whole ancient civilizations that had no immunity (McNeill, 1976;

Karlen, 1995). Aggressive global vaccination programmes led to the
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eradication of naturally occurring smallpox in 1977. The consequent

halt to routine vaccination means that today the world’s population

again has little immunity to the disease (Lane et al., 2001). Smallpox’s

case mortality rate of around 30% and its high transmissibility make

it a potentially potent bioweapon and although officially just two

samples exist, the existence of other sources, particularly from the

1970s Soviet research programme, cannot be ruled out (Lane et al.,

2001). In the face of such a possible threat, funding of research ex-

amining the scale of possible casualties and optimal control strategies

has been increased massively, and various high-profile modelling

studies have been undertaken (Meltzer et al., 2001; Halloran et al.,

2002; Kaplan et al., 2002; Bozzette, 2003; Ferguson et al., 2003b;

Grais et al., 2003b). The following section looks at the approaches

and findings of such studies.

2.7. Predicting, Modelling and Controlling Future
Pandemics

Numerous approaches have been developed which attempt to capture

the possible future movements of newly emergent communicable dis-

eases through global and local transport networks (Thomas, 1992;

Haggett, 2000). The growth and movement of an epidemic or pan-

demic is governed principally by the number of secondary cases gen-

erated by an initial or primary case in an entirely susceptible

population (the reproductive number of the disease, R0), and the

average time taken for the secondary cases to be infected by a pri-

mary case (Bailey, 1967; Anderson and May, 1991). Splitting mod-

elled populations into susceptible, infected and recovered categories

forms the basis of much epidemic and pandemic modelling and has

provided qualitative insights into the epidemiology of a wide range of

pathogens. To obtain quantitative predictions for risk assessment and

policy formulation, however, refinement of such basic concepts is

required to account for complex biological and behavioural factors,

including the variation of infectiveness and susceptibility within a

population, and the mixing, movement and socio-economic structure

of the population at risk (Ferguson et al., 2003b).
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While the movements of pandemics are notoriously unpredictable

(Thomas, 1992), those models that can be calibrated using data from

previous epidemic events are perhaps the ones that stand the best

chance of being used to predict the spread of communicable diseases

in the future, enabling the construction of early warning systems and

forming a basis for planning control strategies (Haggett, 2000). Such

an approach was demonstrated by Rvachev and Longini (1985) who

showed the diffusion of the 1968–1969 influenza pandemic to be

predictable through a model based on the air travel network of the

time. Incidence data from the pandemic origin, Hong Kong, were

used to estimate model parameters, such as contact level between

susceptible and infectious individuals, time taken in latent and infec-

tious states and the fraction of people susceptible to the virus. Annual

average daily air passenger numbers between 52 cities were then used

to derive probabilities of travel between the cities. Finally, the sea-

sonality of influenza was taken into account by applying a scaling

factor to northern and southern hemisphere city contact level pa-

rameters to mimic the hemispheric swing of influenza epidemics. This

model was later updated and refined to provide the basis for predic-

tive models of the spread of influenza, smallpox, SARS and other

infectious agents through the global transportation network (Longini

et al., 1986; Dye and Gay, 2003; Grais et al., 2003a, b; Vogel, 2003;

Hufnagel et al., 2004).

Given the vast range of complicating factors, no model can be ex-

pected to predict the spread of an infectious disease pandemic with

complete accuracy. Modelling can, however, identify possible efficient

interventions from a range of available scenarios, taking into account

the range of uncertainties of key epidemiological parameters (Ferguson

et al., 2003b). Models can also find use during actual outbreaks, as was

shown in the real-time statistical modelling of the 2001 UK foot-

and-mouth epidemic (Ferguson et al., 2001; Keeling et al., 2003).

Haggett (2000) outlines a number of important points relevant to the

future control of epidemics and pandemics: (i) pandemic control will

rely less and less on conventional spatial barriers as the global trans-

port network continues to expand, (ii) the speed of modern transport

means prompt surveillance and rapid reporting now play a critical role

in preventing the spatial spread of a disease, (iii) mathematical models
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will become central in identifying aberrant behaviour in disease trends

and (iv) the high cost of surveillance makes sampling design and the

development of cost-effective monitoring and testing approaches vital

to effective epidemic early warning systems.

3. GLOBAL TRANSPORT NETWORKS AND DISEASE
VECTOR INVASIONS

Aircraft and ships are believed to be directly responsible for rapid

expansion in the range of many plants and animals via inadvertent

transport (Perrings et al., 2005), including some of the world’s prin-

cipal disease vectors (Lounibos, 2002). Here we briefly review some of

the major invasion events facilitated by transport, and demonstrate

some approaches to the prediction of future disease vector invasions.

3.1. Aedes aegypti

Ae. aegypti is known to be a vector of numerous human pathogens,

and is the principal vector of both yellow and dengue fever viruses.

Though the mosquito is now established throughout the tropical and

sub-tropical regions of the world, it was located solely in West Africa

until the 15th century (Lounibos, 2002). At some point, the insect

adapted to anthropogenic breeding sites, such as water storage jars in

ships (Lounibos, 2002). This ability enabled it to take full advantage

of the growing slave trade from West Africa to reach the new world

or to invade Portugal and Spain before its proliferation elsewhere on

European ships. Ae. aegypti consequently became established across

the tropical and temperate regions of the Americas, where caused

yellow fever epidemics at port cities (Haggett, 2000). Intensive control

and eradication schemes in the 1950s and 1960s reduced its extent

(Gubler, 2004a). Gradual resurgence following the end of these con-

trol campaigns has resulted in the species once again becoming wide-

spread across the Americas, and associated with the emergence of

dengue and dengue haemorrhagic fever (Gubler and Clark, 1995).

Ae. aegypti also invaded tropical Asia, where its dispersal has again
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been associated with a rise in dengue and dengue haemorrhagic fever

incidence (Gubler and Clark, 1995).

3.2. Anopheles gambiae

Perhaps the most devastating introduction of a disease vector of re-

cent times was that of An. gambiae, the most efficient vector of

Plasmodium falciparum malaria, from West Africa to Natal in North-

Eastern Brazil by either steamship or aircraft in 1930 (Soper and

Wilson, 1943; Lounibos, 2002). An. gambiae proved extremely well

suited to parts of Brazil where the temperature, humidity and pre-

cipitation patterns match closely malaria endemic regions of East

Africa (Killeen et al., 2002; Killeen, 2003). Its gradual spread over 10

years into 54 000 km2 of Northeast Brazil led to extensive malaria

epidemics, costing 16 000 lives and around 3 billion USD (modern

day estimate) in healthcare, drugs and the vector eradication pro-

gramme (Killeen et al., 2002). These epidemics were based solely on

the greater vectorial capacity of An. gambiae relative to local mos-

quito species, as malaria was already endemic in Brazil. Similarly,

high mortality rates were seen on Mauritius when An. gambiae was

introduced accidentally in 1866, sparking major malaria epidemics

(Lounibos, 2002). Control efforts ended the epidemics, but low-level

and localized rural transmission continues.

3.3. Aedes japonicus

Ae. japonicus was first recorded in the states of New York and New

Jersey, USA in 1998 (Peyton et al., 1999). Native to Japan, Southern

China and Korea where the larvae develop in natural and artificial

containers, its likely mode of introduction was through tyre ship-

ments. Since the initial introduction, the mosquito has spread to

Connecticut (Mustermann and Andreadis, 1999), Maryland, Penn-

sylvania and Ohio (Lounibos, 2002). The discovery of wild-caught

Ae. japonicus infected with West Nile virus (WNV) (Turell et al.,

2001) and the mosquito’s competence as a vector of Japanese en-

cephalitis suggest that it could become of public health importance in

GLOBAL TRANSPORT NETWORKS 307



North America. Ae. japonicus was also recently detected in Orne

Departement in Northern France and in New Zealand, demonstrat-

ing its potential to expand into Europe and Australasia (Laird et al.,

1994; Schaffner et al., 2003).

3.4. Aedes albopictus

The Asian tiger mosquito, Ae. albopictus, is a competent vector of 22

arboviruses, including West Nile, dengue and yellow fever viruses

(Gubler, 2003; Gratz, 2004). Although Ae. aegypti is the principal

vector of dengue fever, recent outbreaks of the disease in the absence

of Ae. aegypti have implicated Ae. albopictus as a competent vector

(Gratz, 2004; Effler et al., 2005). The range expansion of Ae.

albopictus from its Old World distribution (Figure 1) over the past 75

years is perhaps the best documented of any vector invasion. The

mosquito spread from its range initially to the Pacific Islands (Gratz,

2004) in the 1930s and then, within the last 20 years, to other coun-

tries in both the Old and New Worlds (Moore and Mitchell, 1997;

Gratz, 2004). This is thought to have been through ship-borne trans-

portation of eggs and larvae in tyres (Reiter and Sprenger, 1987;

Reiter, 1998). The spread of Ae. albopictus throughout the Eastern

USA from its discovery in Harris County, Texas, in 1985 has been

monitored extensively (Moore and Mitchell, 1997; Moore, 1999).

Figure 2 shows its extent in 2000.

3.5. Predicting Future Disease Vector Invasions

Developing approaches to highlight routes of the greatest risk of in-

vasion by disease vectors within the global transport network is an

important prerequisite to planning effective control and disinsection

efforts. Although distance may no longer represent a significant barrier

to vector traffic, climate at the point of entry still presents a funda-

mental constraint to establishment, since poikilothermic arthropods

are very sensitive to the weather. Here we review an approach, first

outlined in Tatem et al. (2006a), based on air and sea traffic volume as

A.J. TATEM ET AL.308



Figure 1 The Old World distribution of Ae. albopictus (dark grey); countries reporting established breeding pop-
ulations of Ae. albopictus in the last 30 years (middle grey); countries reporting Ae. albopictus interception at ports (light
grey). Data sources: Center for International Earth Science Information Network (CIESIN) (http://www.ciesin.org/docs/
001-613/map15.gif), supplemented with information from literature sources (Gratz, 2004; Gubler, 2003; Lounibos, 2002;
Medlock et al., 2005; Moore, 1999; Moore and Mitchell, 1997).
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Figure 2 Counties of the United States of America reporting the presence of Ae. albopictus in 2000. (Adapted from US
Centers for Disease Control and Prevention (CDC); URL: http://www.cdc.gov/ncidod/dvbid/arbor/albopic_97_sm.htm.)
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well as climatic data, and tested against the movements of Ae.

albopictus to examine how well these factors predicted its spread.

3.5.1. Data Sources

Major international seaport names, locations and estimated number

of ships per annum between each were obtained from Drake and

Lodge (2004). The data consisted of the estimated number of ship

visits in 2000 to the 243 most frequently visited ports. Flight data on

total passenger numbers moving between major airports in the year

2000 (assuming 100% aircraft capacity) using statistics supplied by all

scheduled airlines were obtained from OAG Worldwide Ltd. The

database contained data on the world’s top 100 airports by traffic,

plus the principal airport of 178 other countries if otherwise not

included in the top 100. Data on a total of 7129 routes between 278

international airports in the year 2000 were therefore available.

Gridded meteorological data (New et al., 2002) at 100 spatial reso-

lution 1961–1990 were obtained and averaged to produce a synoptic

year. The mean, maximum and minimum temperature, rainfall and

humidity measurements were extracted to produce nine climatology

surfaces.

3.5.2. Climatic Dendrograms

Dendrograms are visual representations of the results of hierarchical

clustering (described below) that are commonly used in the fields of

evolution and genetics, and occasionally in an environmental context

(Sugihara et al., 2003; Rogers and Robinson, 2004). Here, dendro-

grams are used to provide a climatic representation of the global air

and sea transportation networks, a method first outlined in Tatem

et al. (2006a). The dendrograms provide a way of restructuring the

world as a disease vector may see it, given unlimited transport op-

portunities, with certain spatially distant sea/airports linked closely

because of their climatic similarities, while spatially proximate ports

may appear poorly linked if their climates differ significantly.
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To create global sea and air transport network dendrograms, the

locations of the 243 ports and 278 airports were superimposed onto

the nine climatology surfaces and each 100 spatial resolution grid

square covering the seaport/airport location identified. To ensure that

a representative climate was included, where possible, up to eight land

pixels surrounding each seaport/airport grid square were also iden-

tified, forming a 3� 3 grid square window centred on the airport/

port. This requirement was not met for airports located coastally or

on small islands or for the majority of seaports. In these cases, re-

duced numbers of land pixels were extracted. Any seaports/airports

located on islands too small to be represented by the climatology

surfaces were eliminated from the analysis (reducing the sample size

to 241 seaports and 259 airports). The selected grid square data from

the nine climatology surfaces thus formed the climate ‘signatures’

used in the analyses. These signatures represented a quantitative de-

scription of the climatic regime at each seaport and airport, in terms

of temperature, rainfall and humidity.

Both the lack of sufficient co-variance information in the majority

of seaport/airport signatures and the location of many seaports/air-

ports on small islands dictated that only ‘Euclidean’ distances could

be used as a measure of climatic similarities. Euclidean distance is

defined as the shortest straight-line distance between two points: in

this case it is the distance between the centroids of the port climate

signatures in nine-dimensional space (ERDAS, 2003). Euclidean dis-

tances between the centroid of each seaport/airport signature and the

centroids of every other seaport/airport signature were calculated to

derive separate seaport and airport climate dissimilarity matrices. A

simple test using other distance measures (e.g. divergence, Jefferies-

Matusita; ERDAS, 2003) showed no obvious changes in the den-

drogram architecture from the Euclidean one used here.

The climate dissimilarity matrices were subject to hierarchical clus-

tering using an agglomerative algorithm (Webb, 2003). Hierarchical

clustering procedures are the most commonly used method of sum-

marising data structure (Webb, 2003). The clustering process pro-

duces a hierarchical tree, which is a nested set of partitions

represented by a tree diagram, or dendrogram. The clustering results

here were translated into dendrograms based on centroid linkage.
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Figures 3a and b show the climatic dendrograms for the major sea-

ports and airports, respectively.

The seaport and airport locations were overlaid on the (historical)

Ae. albopictus distribution map (Figure 1) and were classified as either

inside or outside the distribution. Those seaports/airports within the

distribution were located on the relevant dendrogram (Figure 3). The

dendrogram branch which encompassed at least 90% of the seaports/

airports was designated as defining the limits of the ‘climatic enve-

lope’ of Ae. albopictus, i.e. the range of climatic conditions within

which it can survive. This allowed for the fact that Ae. albopictus has

both temperate (diapausing) and tropical (non-diapausing) races with

distinct environmental requirements and different original geograph-

ical distributions (Hawley et al., 1987). Thus, the 90% cut-off on the

seaports dendrogram (Figure 3a) encompassed a single branch, but

contained two major sub-branches, with the remaining 10% of ports

displaying quite distinct environments (Mormugao, New-Mangalore

and Kuching). Ninety percent of airports within the pre-expansion

distribution of Ae. albopictus can be encompassed in a single branch

of the airport dendrogram (Figure 3b), but temperate and tropical

races are again distinguishable within this branch. Those seaports/

airports not within its historical distribution, but linked by a den-

drogram branch within the climatic envelope were therefore identified

as being similar enough climatically for there to be a risk of estab-

lishment.

3.5.3. Risk Routes

Given that ship/aircraft volume on a transport route, as well as climatic

similarity between origin and destination port, is important in deter-

mining invasion risk (Lounibos, 2002; Drake and Lodge, 2004; Normile,

2004), the transport and Euclidean climatic distance matrices were used

to obtain a relative measure of importation and establishment risk to

those seaports/airports identified as being at-risk within the dendrogram.

Each matrix was rescaled independently to a range of 0–1 and the results

for the climatic matrix then inverted so that values near to 1 represented

similar climates and values close to 0 represented dissimilar ones. Values
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Figure 3 (a) Climatic similarity dendrograms for the major seaports of the World and (b) climatic similarity den-
drograms for the major airports of the World. In both figures the inset close-up shows the branches of significance to the
dispersal of Ae. Albopictus.
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Figure 3 (continued)
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in the two rescaled matrices for any pair of ports—one with and

one without the invading species in question—were then multiplied to-

gether to estimate the relative risk of invasion and establishment. As an

example, the rescaled climatic distance between Chiba, Japan and

Richards Bay, South Africa was 0.9703, reflecting similar climatic re-

gimes, while the rescaled traffic volume on the route was just 0.0012, a

low-traffic volume in global terms. When these are multiplied, we arrive

at a disease vector invasion risk of 0.00116, which is low in comparison

to the risk value of 0.35 for the Chiba to New Orleans, USA, route and

may partly explain why Ae. albopictus invaded New Orleans success-

fully, but not Richards Bay (to date).

Table 1 details the top 20 shipping routes (from over 20000 possible

routes) and Table 2 shows the air travel routes (from over 6000 possible

routes) identified as having the highest relative risk of Ae. albopictus

invasion. The values relative to route 1 and the recorded details of this

mosquito’s spread are included in both tables. There is correspondence

between the predicted risk routes in Table 1 and the global invasions or

interception of Ae. albopictus. Three of the top 10 shipping routes run

from Japan to the south-east United States, where some of the earliest

breeding populations of Ae. albopictus were found and identified as

originating from Japan (Lounibos, 2002). Genoa, the destination of five

more routes from Japan in the top 20, was one of the earliest European

cities to report Ae. albopictus establishment in 1990 (Romi et al., 1999);

the vector has since become the most important local nuisance mosquito

(Gratz, 2004). Of the remaining routes in Table 1, interceptions of Ae.

albopictus in tyre shipments from Japan to Australasia have been made

in both Brisbane (Kay et al., 1990) and Auckland (Laird, 1990; Laird

et al., 1994), but the species appears not to have become established

there, probably due to strict inspection and fumigation policies

(Lounibos, 2002). No documented evidence exists of invasion by Ae.

albopictus of Fraser and Vancouver (Canada). On the basis of Fraser’s

and Vancouver’s climatic similarities to, and the seaborne traffic levels

from, Japan, these ports should be considered at high risk, especially as

Ae. albopictus has already been intercepted at nearby Seattle (CDC,

1986).

The relative importance of sea traffic volume and local climate in

the establishment of Ae. albopictus was estimated by examining the 69
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ports within the invasion risk group. Twenty-one ports are within the

original range of Ae. albopictus, but of the other 47, to-date just over

half are in regions reported to be colonized by this species or where

breeding populations have been found. Within this group of 47 ports,

the average climatic distances of the 24 invaded and 23 non-invaded

ports were identical, but sea traffic volumes were 2.43 times greater in

the former than the latter (41.84 ship visits per annum per route for

invaded ports and 17.24 for non-invaded ones), with the difference

found to be significant (t ¼ 2:343; p ¼ 0:024). Sea traffic volumes,

therefore, appear to make an important contribution to relative in-

vasion risk. This result corroborates recent theories regarding direct

linkage between biological invasion success and propagule pressure

(Vila and Pujadas, 2001; Levine and D’Antonio, 2003; Normile, 2004;

Lockwood et al., 2005).

Although air travel was not implicated in the spread of Ae.

albopictus, 8 of the 20 highest risk air routes link the original range

of Ae. albopictus with Honolulu in Hawaii, where this species has

Table 1 Ae. albopictus top twenty shipping risk routes

Rank From To Ae.

albopictus

intercepted?

Ae.

albopictus

established?

Risk

relative to

route 1

1 Chiba Japan New Orleans USA Y Y 1.00

2 Chiba Japan Genoa Italy Y Y 0.99

3 Chiba Japan Fraser Canada N ? 0.92

4 Chiba Japan Brisbane Australia Y ? 0.83

5 Chiba Japan Auckland NZ Y ? 0.67

6 Chiba Japan South Louisiana USA Y Y 0.65

7 Yokohama Japan Fraser Canada N ? 0.64

8 Kobe Japan Fraser Canada N ? 0.59

9 Chiba Japan Miami USA Y Y 0.59

10 Yokohama Japan Genoa Italy Y Y 0.59

11 Chiba Japan Vancouver Canada N ? 0.57

12 Kobe Japan Genoa Italy Y Y 0.53

13 Osaka Japan Fraser Canada N ? 0.51

14 Yokohama Japan Brisbane Australia Y ? 0.51

15 Chiba Japan Freemantle Australia Y ? 0.50

16 Tokyo Japan Genoa Italy Y Y 0.46

17 Osaka Japan Genoa Italy Y Y 0.45

18 Tokyo Japan Fraser Canada N ? 0.44

19 Kobe Japan Brisbane Australia Y ? 0.44

20 Kobe Japan New Orleans USA Y Y 0.44

GLOBAL TRANSPORT NETWORKS 317



established (Mitchell, 1995) (Table 2). The large air traffic volume

running from Tokyo to Hawaii identifies this route as providing over

double the risk of invasion as the others in Table 2. Details on

Hawaiian ports were not available in the sea traffic database. In every

one of the top 20 high-risk air routes, Ae. albopictus has been either

intercepted or found breeding at the destinations listed.

3.5.4. Climatic Distance Images

In addition to determining at which seaport or airport an accidentally

introduced disease vector is likely to become established, it is impor-

tant to identify the areas to which vectors may subsequently spread.

An initial assessment of this can be undertaken by examining the

climatic distance of the surrounding area from the disease vector’s

origin. This was tested for Ae. albopictus, again using gridded

climatologies (New et al., 2002). Given that the origin of the invasive

Ae. albopictus was found to be Japan (Moore, 1999; Gratz, 2004), and

the above analysis found Chiba to be the likely origin port, the

climatic signature of Chiba was used to calculate a global climatic

Table 2 Ae. albopictus top twenty air travel risk routes

Rank From To Ae.

albopictus

intercepted?

Ae.

albopictus

established?

Risk

relative to

route 1

1 Tokyo N Japan Honolulu Hawaii (USA) Y Y 1.00

2 Osaka K Japan Honolulu Hawaii (USA) Y Y 0.48

3 Nagoya Japan Honolulu Hawaii (USA) Y Y 0.30

4 Tokyo N Japan Seattle USA Y ? 0.29

5 Tokyo N Japan Brisbane Australia Y ? 0.14

6 Fukuoka Japan Honolulu Hawaii (USA) Y Y 0.13

7 Seoul South Korea Honolulu Hawaii (USA) Y Y 0.12

8 Tokyo H Japan Honolulu Hawaii (USA) Y Y 0.10

9 Taipei C Taiwan Seattle USA Y ? 0.10

10 Tokyo N Japan Portland USA Y ? 0.09

11 Nagoya Japan Portland USA Y ? 0.09

12 Guam Guam Honolulu Hawaii (USA) Y Y 0.09

13 Kuala Lumpur Malaysia Brisbane Australia Y ? 0.08

14 Tokyo N Japan Noumea New Caledonia 0.08

15 Taipei C Taiwan Brisbane Australia Y ? 0.08

16 Taipei C Taiwan Honolulu Hawaii (USA) Y Y 0.07

17 Osaka K Japan Seattle USA Y ? 0.07

18 Port Moresby P.N.G. Brisbane Australia Y ? 0.06

19 St Denis Reunion Dzaoudzi Mayotte 0.06

20 Bangkok Thailand Brisbane Australia Y ? 0.05
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distance image at 100 spatial resolution. In this analysis, the ‘Mah-

alanobis’ distance rather than the Euclidean distance of every 100

pixel from Chiba’s signature was calculated. The Mahalanobis dis-

tance differs from Euclidean distance as it accounts for the correla-

tions of the dataset by examining the similarity between each

signature’s covariance matrix (ERDAS, 2003). The results are shown

in Figure 4a, with a close-up of the USA in Figure 4b. Comparison

with maps of known Ae. albopictus invasion (Figures 1 and 2;

Lounibos, 2002) shows good correspondence, demonstrating the

broad applicability of the approach in estimating future disease vec-

tor movement. The dark regions (indicating climatic similarity

to Chiba) across Europe and in South Africa, Australia and New

Zealand, indicate that given the opportunity provided by transport

networks, Ae. albopictus may spread yet further. Future work on

invasion risk should focus on the incorporation of data on land

transport routes, human population distribution and how these relate

spatially to endemic disease regions.

4. GLOBAL TRANSPORT NETWORKS AND VECTOR-
BORNE DISEASES

This section reviews briefly the movement and emergence of vector-

borne diseases through global human transport, and outlines ap-

proaches for highlighting areas at risk from future events.

4.1. Yellow Fever

Outlined in detail in Rogers et al., (this volume, pp. 181–220), yellow

fever represents a major public health problem in many regions of

tropical Africa and South America, and used to be a disease that was

regularly exported elsewhere (Haggett, 2000). The enforcement by the

World Health Organization of yellow fever vaccination requirements

for travel to endemic regions, and consequent minimal movement of

the disease, demonstrates the effectiveness of global control measures.

Despite advances in preventative measures and the existence of a
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Figure 4 Mahalanobis climatic distance from Chiba Port, Japan, for (a) the world and (b) the United States of
America. Darker shades represent areas with climates more similar to that of Chiba.
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reliable vaccine, yellow fever outbreaks and epidemics have increased

in recent years, particularly in Africa (Mutebi and Barrett, 2002).

Many of these epidemics have been caused by the large-scale move-

ments of susceptible individuals into high yellow fever risk zones and

by the neglect of control procedures (Mutebi and Barrett, 2002).

4.2. Dengue

Outlined in detail in Rogers et al., (this volume, pp. 181–220), dengue

fever and dengue haemorrhagic fever are probably the fastest spread-

ing diseases of the modern day (Gubler and Clark, 1995; Gubler,

2002). The past 30 years has seen a marked global emergence and re-

emergence of epidemic dengue, with more frequent and larger epi-

demics associated with more severe disease (Mackenzie et al., 2004).

Fuelled by the expansion of the range of its principal vector, Ae.

aegypti (Lounibos, 2002), the expansion of the range of what may be

an urban–rural bridge vector, Ae. albopictus (Lounibos, 2002; Gratz,

2004), large-scale global urbanization (Gubler, 2004b; Tatem and

Hay, 2004) and increasing movement by air of people incubating its

infections (Upham et al., 2003), dengue is fast becoming the most

important arboviral disease of humans (Mackenzie et al., 2004). The

global air transport network is not only aiding the spread of both

dengue vectors and virus serotypes within tropical regions suitable for

transmission, but also facilitating a substantial increase of imported

cases elsewhere (Jelinek, 2000; Frank et al., 2004; Effler et al., 2005;

Shu et al., 2005).

4.3. West Nile Virus

WNV is a mosquito-borne flavivirus native to Africa, Europe and

Western Asia (Hayes, 2001). It circulates mainly among birds, but can

infect many species of mammals, amphibians and reptiles (Dauphin

et al., 2004; Kilpatrick et al., 2005). The appearance of WNV in New

York in 1999 and its subsequent spread westwards across the United

States (Petersen and Hayes, 2004) and into Central America repre-

sents the best-documented movement of a disease in recent times
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(Granwehr et al., 2004). Spread by many different species of mosqui-

toes and the movement of birds, it is less influenced by human trans-

portation networks than other diseases discussed in this review, but its

arrival in the US in 1999 is thought to be associated with some form of

commerce or human travel. With changing climate, coupled with in-

creased human movement and spread of exotic mosquitoes via global

transport networks, the risks of further WNV outbreaks are a distinct

possibility (Granwehr et al., 2004; Medlock et al., 2005).

4.4. Malaria

General socio-economic improvement, combined with wetland drain-

age and other water resource development, improved housing, better

animal husbandry and wider availability of quinine resulted in the

decline of indigenous malaria in high-income countries during the

19th and 20th centuries (Hay et al., 2004). In contrast, increasing

tourism and human migration has meant that malaria continues to be

imported into high-income countries, which have been classified as

free of malaria transmission. Numbers vary, but it is estimated that as

many as 40 000 cases of malaria a year occur in Europe alone (Toovey

and Jamieson, 2003). This influx of infected travellers poses two ma-

jor hazards: (i) a returning traveller who has acquired malaria may be

diagnosed incorrectly, as malaria may be unfamiliar to a physician in

a country without indigenous malaria, resulting in high P. falciparum

case-fatality rates (Muentener et al., 1999; Ryan et al., 2002; Spira,

2003). (ii) Favourable climatic conditions may make autochthonous

transmission possible through local vectors (Isaäcson, 1989; Layton

et al., 1995; Gratz et al., 2000).

4.4.1. Imported Malaria Trends

The last 25 years have seen both the numbers and types of malaria

imported to high-income countries change significantly. Figures 5a

and b highlight the trends in imported cases to the UK and USA,

respectively. Figure 5a shows that the UK consistently had

1500–2500 cases of malaria every year reported since 1977. However
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the proportion of P. falciparum malaria has risen substantially (Ma-

laria Reference Laboratory, 2004). Figure 5b demonstrates that while

the USA has fewer imported malaria cases annually than the UK, the

trend towards increasing numbers of P. falciparum cases continues.

The rise in P. falciparum cases in the USA is mirrored by a substantial

rise in cases acquired in Africa (Figure 5c). The precise causes of the

decline in imported Plasmodium vivax cases and increase in those of

P. falciparum in the UK and USA are difficult to determine given the

myriad of factors involved in transmission, including changes over

time of levels and types of antimalarial use, malaria prevalence, travel

activities and reporting efficiency. What is clear, however, is that over

the past few decades, travel from the UK and USA to SSA, where P.

falciparum malaria is highly endemic, has risen steadily. Analysis of

UK Civil Aviation Authority (UKCAA) statistics shows that the

number of passengers travelling on flight routes between SSA and the

UK rose by around a million between 1997 and 2003 (Figure 5d),

with the largest rises on routes from West Africa, where the highest

levels of P. falciparum malaria endemicity are found (see Guerra

et al., this volume, pp. 157–179).

4.4.2. Drug Resistance

The increasing level of malaria movement also has the effect of en-

hancing the possibility and speed of drug-resistant malaria spread.

Since the first reports of chloroquine resistance 50 years ago, drug-

resistant malaria has posed a major and increasing problem in ma-

laria control (Hastings and Mackinnon, 1998; Anderson and Roper,

2005; Hastings and Watkins, 2005). Chloroquine resistance is now

worldwide, while resistance to newer drugs is appearing in many re-

gions, especially in South-east Asia, where multidrug resistance is a

major public health problem (Wongsrichanalai et al., 2002; Roper

et al., 2004). The growth in global travel and human migration is

assumed to have caused this spread, with the speed of spread of

resistance mirroring its expansion. Though chloroquine remained ef-

fective for some 20 years before signs of resistance emerged, it is

unlikely that a similar period of grace can be realistically expected for
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recently deployed treatments given the current levels of global travel

(Hartl, 2004).

4.4.3. Airport Malaria

Airport malaria is acquired through the bite of an infected tropical

Anopheline mosquito taken on persons whose geographical history

firmly excludes exposure to the vector in its natural habitat (Isaäcson,

1989). Between 1969 and 1999, 87 suspected cases were recorded, with

almost all being P. falciparum and occurring in the proximity of Paris,

Brussels and London airports (Giacomini and Brumpt, 1989;

Isaäcson, 1989; Danis et al., 1996; Giacomini, 1998; Gratz et al.,

2000), indicative of their air links and sufficient, if only seasonal,

climatic similarity with SSA (Tatem et al., 2006b). Figure 6 summa-

rises the locations and time of year of these probable airport malaria

cases. An. gambiae s.l. mosquitoes have been shown to survive long

haul flights (Misao and Ishihara, 1945; Russell, 1987, 1989). For ex-

ample, in a three-week period in 1994, it was estimated that

2000–5000 Anopheline mosquitoes were imported into France by

250–300 aircraft arriving from malaria-endemic regions of Africa, at

the rate of 8–20 Anopheline mosquitoes per flight (Gratz et al., 2000).

The ever expanding global transport network, increased travel to

malaria-endemic countries and a decline in aircraft disinsection

(Gratz et al., 2000), mean the numbers of malaria-infected Anopheles

arrivals will only increase, resulting in more cases of airport malaria.

4.5. Predicting Future Vector-Borne Disease Movement

The establishment of a vector-borne disease in a new area from an

endemic region can be caused either by movement of an infected host

and availability of competent vectors in the new area, or the invasion,

if only temporarily, of an infected vector. Here, we extend the meth-

odology outlined in Section 3.5 and review the approaches outlined in

Tatem et al. (2006b) to examine the latter in terms of a basic explor-

atory analysis of the monthly risks of P. falciparum malaria-infected

An. gambiae importation by plane from Africa, causing consequent
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Figure 6 (a) Countries in which confirmed or probable cases of airport
malaria have been reported. (b) Month in which suspected European airport
malaria cases occurred (where date is provided). (Data taken from Alos
et al., 1985; Csillag, 1996; Danis et al., 1996; Giacomini, 1998; Giacomini
and Brumpt, 1989; Giacomini and Mathieu, 1996; Giacomini et al., 1995;
Gratz et al., 2000; Guillet et al., 1998; Hemmer, 1999; Holvoet et al., 1982;
Isaäcson, 1989; Isaäcson and Frean, 2001; Jafari et al., 2002; Karch et al.,
2001; Kruger et al., 2001; Lusina et al., 2000; Majori et al., 1990; Mangili
and Gendreau, 2005; Mantel et al., 1995; Mouchet, 2000; Praetorius et al.,
1999; Shpilberg et al., 1988; Signorelli and Messineo, 1990; Smith and
Carter, 1984; Thang et al., 2002; Toovey and Jamieson, 2003; Van den Ende
et al., 1996; Whitfield et al., 1984.)
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autochthonous transmission. While globally, the movement of P. vivax

malaria-infected mosquitoes may occur more frequently and pose

more of an invasion risk to many regions, it is the movement of

P. falciparum-infected Anopheles that has resulted in numerous airport

malaria cases. Additionally, the possible effects of invasion of malaria

endemic regions by An. gambiae have been seen in the devastating

malaria epidemics in Brazil and Mauritius (Lounibos, 2002). The like-

lihood, however, of a more than very temporary establishment of

P. falciparum or An. gambiae through air travel to Europe and many

other locations remains low. Unsuitable year-round climate, An. gam-

biae’s intolerance of urban areas (Hay et al., 2005) and competition

from local mosquitoes that are inefficient vectors of P. falciparum all

provide barriers to establishment.

Malaria caused by P. vivax and vectored predominantly by Anoph-

eles atroparvus was a common cause of death in the marshes or wet-

lands of England during the 19th and 20th centuries (Kuhn et al.,

2003), with the last autochthonous cases reported in 1953 (Crockett

and Simpson, 1953). Although malaria has been eradicated in the

UK, re-introduction is theoretically possible (Hay et al., 2000). This

risk is negligible, however, as the majority of the former habitats of

An. atroparvus have disappeared and returning travellers are rapidly

diagnosed and treated, and in any case rarely live near suitable vector

habitats (Kuhn et al., 2003). This is supported by the analyses pre-

sented above and the fact that not one of the 52 000 imported malaria

cases reported since 1953 has led to a secondary case. The growth of

travel to Africa therefore presents a negligible risk of the establish-

ment of malaria in the UK.

The approach described here follows on from that described in

Section 3.5 and full details are given in Tatem et al. (2006b). Monthly

gridded climatologies were acquired (New et al., 2002) and used to

create climatic signatures for each airport, for each month of the year.

Climate dissimilarity matrices were created for each month, and these

were clustered hierarchically to create 12 global airport dendrograms,

one for each month of the year. Airport malaria cases represent in-

stances where imported infected mosquitoes have caused autochthonous

malaria transmission and, therefore, were used to define climatic suit-

ability thresholds on each dendrogram. Malaria seasonality maps for
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Africa (Tanser et al., 2003) were used to identify the timing of the

principal malaria transmission season at each SSA airport to identify

when exported Anopheles were most likely to be malarious. Finally, the

situation in 2000 was examined using the air traffic database described in

Section 3.5, and future risks of opening new air routes were examined by

analysing climatic similarities between airports and synchrony with ma-

laria transmission seasons.

Table 3 shows the 18 routes identified as at risk for P. falciparum-

infected mosquito importation and consequent autochthonous

transmission for 2000. Comparison with Figure 6 shows excellent cor-

respondence with the timing and location of actual suspected cases of

infected-mosquito importation and autochthonous transmission. The

relative risks suggest that the high traffic volumes on the Abidjan to

Paris route in August, when both have sufficiently similar climates and

Côte d’Ivoire is experiencing its principal malaria transmission season,

makes this the most likely route for airport malaria occurrence.

Figure 7 shows those sets of SSA airports and non-SSA airports

similar enough climatically in January, April, July and October for P.

falciparum-infected mosquito invasion. The results indicate that many

airports in other regions of the world are more favourable climat-

ically for Anopheles survival, and for many more months of the year

than European destinations. The concentration of major airports in

the temperate north means that July (summer in this region) on

Figure 7 shows the largest number of potentially suitable destinations

climatically, mainly linked to West African airports, including those

in Europe where most SSA air traffic is directed, causing cases of

airport malaria in the summer months particularly in unusually hot

and humid periods. The other three months on Figure 7 show con-

siderably fewer at risk airports, though throughout the year, Carib-

bean and Central American airports are highlighted consistently,

indicating that their climates vary in synchrony most closely with the

cycle of African malaria transmission seasons.

The current heavy bias of SSA air traffic to European destinations

has resulted in around two cases a year of airport malaria in the

summer months, when particularly hot and humid conditions can be

suitable for temporary Anopheles survival, and occur in synchrony with

West African transmission seasons. The effects of opening up new air
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Table 3 Year 2000 air travel risk routes for possible temporary P. falciparum-infected An. gambiae invasion and
subsequent autochthonous transmission

Rank From To Month Risk relative to

route 1

1 Abidjan Côte d’Ivoire Paris Charles de Gaulle France August 1.00

2 Accra Ghana Amsterdam Schippol Netherlands July 0.26

3 Entebbe/Kampala Uganda Brussels Belgium July 0.26

4 Accra Ghana Amsterdam Schippol Netherlands September 0.22

5 Abidjan Côte d’Ivoire Brussels Belgium August 0.21

6 Accra Ghana Rome Fiumicino Apt Italy September 0.18

7 Abidjan Côte d’Ivoire Zurich Switzerland July 0.17

8 Accra Ghana Rome Fiumicino Italy August 0.17

9 Abidjan Côte d’Ivoire London Gatwick United Kingdom August 0.12

10 Cotonou Benin Brussels Belgium August 0.06

11 Libreville Gabon Rome Fiumicino Italy July 0.06

12 Cotonou Benin Paris Charles de Gaulle France August 0.05

13 Lome Togo Brussels Belgium August 0.05

14 Accra Ghana London Gatwick United Kingdom July 0.05

15 Entebbe/Kampala Uganda London Gatwick United Kingdom July 0.04

16 Libreville Gabon Dubai United Arab Emirates July 0.03

17 Abidjan Côte d’Ivoire Frankfurt Germany August 0.01

18 Entebbe/Kampala Uganda London Heathrow United Kingdom July 0.01
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Figure 7 Non-SSA airports that are similar enough climatically to the SSA airports within their primary malaria
transmission season for possible P. falciparum-infected Anopheles invasion to occur.
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routes from malaria-endemic African countries to non-European des-

tinations, where conditions are more suitable for Anopheles survival

and are synchronous with African malaria transmission seasons year-

round, could therefore have serious and largely unexpected conse-

quences.

5. CONCLUSIONS

Increases in global travel are occuring simultaneously with many

other processes that favour the emergence of disease (Wilson, 1995).

Travel is a potent force in disease emergence and spread, whether it is

aircraft moving human-incubated pathogens, or insect vectors, great

distances in short times, or ships transporting used tyres containing

mosquito eggs. The speed and complexity of modern transport make

both geographical space and the traditional ‘drawbridge’ strategy of

disease control and quarantine increasingly irrelevant (Haggett,

2000). With no apparent end in sight to the continued growth in

global air travel and shipborne trade, we must expect the continued

appearance of communicable disease pandemics, disease vector in-

vasions and vector-borne disease movement. Approaches that can

model, predict and explain such events can be used to focus surveil-

lance and control efforts efficiently. This review has shown that the

risk of movement of infectious diseases and their vectors through the

global transportation network can be predicted to provide such in-

formation. Future challenges must focus on incorporating informa-

tion on temporal variations in passenger numbers, stopover risks,

intra-species competition, human populations at risk, breeding site

availability, possible climate change, disinsection and land transport,

as well as quantifying the relative importance of all types of transport

for vector and disease movement.
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ABSTRACT

In this review we examine formally the conditions under which vec-

tor-borne diseases are likely to change, and the directions of those

changes, under various scenarios of climate change. We specify the

criteria that must be met in order to conclude that climate change is

having an effect on vector-borne diseases. We then take several ex-

amples from the literature and show how some of them meet these

criteria, while others do not. For those that do not, there are alter-

native explanations that involve much more plausible drivers of the

recorded changes in the diseases concerned.

1. THE MATHEMATICS AND BIOLOGY OF CHANGES IN
VECTOR-BORNE DISEASES

The debate about the impact of climate change on vector-borne dis-

eases is informed and stimulated by increases (or decreases) in the

numbers of disease cases through time. It is therefore essential to

adopt a quantitative, modelling approach to understand these

changes, and this is most usefully based on the Basic Reproductive

Number (R0) equation for such diseases, defined as follows:

R0 ¼
mbca2e�mT

mr
(1)

where

m ¼ the ratio of vector numbers (V) to host numbers (N),

b ¼ the transmission coefficient from vertebrate to vector,

c ¼ the transmission coefficient from vector to vertebrate,

a ¼ the biting rate of the vectors on the hosts of interest,

m ¼ the mortality rate of the vectors,

T ¼ the extrinsic incubation period of the infection in the vectors

and

r ¼ the rate of recovery of the host from infection.

The R0 equation defines the number of new cases of the disease that

arise at some time in the future from one case of the disease at the

present time when introduced into a population of totally susceptible
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hosts. If the vertebrate hosts experience a significant natural mortality

rate and/or a pronounced parasite-induced increase in mortality rate

during the course of infections, this (combined) rate should be added

to the recovery rate term in the denominator of Eq. (1), since it

determines the rate at which the infections disappear from the host

population.

It can be seen from Eq. (1) that there is a strong link between the

R0 equation and the Vectorial Capacity (VC) equation familiar to

many medical entomologists. The latter generally assumes perfect

transmission efficiency between vertebrate and vector and vector

back to vertebrate (i.e. b ¼ c ¼ 1 in Eq. (1)) in which case the re-

lationship between R0 and VC is as follows:

VC ¼ R0r (2)

Thus, the VC equation (as it was intended to do) contains all the

information about the rate of transmission of the disease from the

vector to the vertebrate population, but none of the information

about the vertebrate’s response to that infection (in the form of the

recovery rate, r).

The R0 equation is useful throughout epidemiology because many

important quantities may be derived from it, such as the equilibrium

disease prevalence or the level of vaccination required to suppress or

even eradicate any disease. Clearly, if the value of R0 lies below 1.0,

the disease will decline, and eventually will be eradicated. If R0 is

above 1.0, the disease will increase from very low levels to reach an

equilibrium prevalence that is determined inter alia by the strength of

the host’s immune response. We emphasize that this critical threshold

of an R0 value of 1.0 is an absolute figure—not a relative one. To

define R0 for any disease, therefore, we must have accurate estimates

of each of the contributory parameters and variables. We should

never drop parameters or variables out of the equation simply be-

cause we have no estimates of their values, as this effectively sets a

default value of 1.0 for them.

It is clear from Eq. (1) that climate will be vital in determining the

R0 values of most or all vector-borne diseases for the simple reason

that six of the seven variables and parameters in that equation are

related to vector abundance, biology or physiology. Vectors are
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generally small arthropods that are exquisitely sensitive to weather

conditions at many stages of their life cycles. Even those parameters

that might be expected to remain constant (such as b and c in Eq. (1))

are known to be affected by temperature in one or more vector spe-

cies. For example, Culicoides nubeculosus is a midge that is normally

refractory to the strains of bluetongue virus circulating in Europe at

the present time (i.e. for this species b ¼ 0 in Eq. (1)). When its larvae

or pupae are kept at higher than normal temperatures, however, the

emerging adults of this species are capable of being infected with

bluetongue, and can transmit the disease (Baylis et al., 2001, 2002).

Also, the availability to vectors of microbes as they circulate in the

vertebrate host’s peripheral blood may vary with temperature and the

degree of vasodilation.

If climate change is to have any effect at all on vector-borne diseases,

it must do so through the intermediaries of the parameters and variables

of the R0 equation. That is to say that unless climate change affects the

value of one or more of the variables or parameters of Eq. (1), there will

be no impact of climate change on vector-borne diseases. It is important

to distinguish two concepts that are often confused in the contemporary

literature. Few vector biologists would deny the importance of climate/

weather in determining the natural distribution and intensity of vector-

borne diseases, as is obvious from Eq. (1). The present debate concerns

how much current changes in climate are affecting changes in vector-

borne diseases. Denial (or questioning) of the second idea does not

imply denial (or questioning) of the first.

The question now arises as to the direction of change in R0 that

might arise from climate-induced changes in any of the contributing

parameters or variables of the R0 equation. Should we expect R0

always to increase with global warming, or to decrease (imagining, of

course, that the prevalence of the disease will increase or decrease as a

consequence)? One thing is certain; the direction of change will be

determined by the outcome of interactions between effects that tend

to push in opposite directions. For example, it is likely that increasing

temperature will lead to an increase in the vector-biting rate (a),

tending to increase R0, but also to an increase in the mortality rate

(m), tending to decrease R0. How can we quantify these effects for-

mally?
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Let us imagine that climate, for simplicity in the form only of

temperature, affects only four parameters and variables of Eq. (1); m,

a, m and T (these quantities will certainly be affected by climate, and

the argument presented here can easily be extended to the others).

The effect of temperature on R0 is then the sum of the effects of

temperature on each component of R0, as follows:

dR0

dt
¼

dm

dt

dR0

dm
þ

da

dt

dR0

da
þ
dm
dt

dR0

dm
þ

dT

dt

dR0

dT
(3)

where t is temperature and all the other variables/parameters are as

defined in Eq. (1). Each term on the right-hand side of Eq. (3) con-

tains two parts, one for the effect of temperature on the variable/

parameter of interest, and one for the effect of varying this variable/

parameter on R0. Effectively, therefore, the first part is biology and

the second part is mathematics. For example, the first part of the first

term (dm/dt) describes how vector/host ratios change with temper-

ature, while the second part (dR0/dm) describes how R0 changes in

response to this changing ratio. Figure 1 (Figure 1 is Plate 10.1 in the

Separate Color Plate Section) shows sketches of the likely effect of

temperature on each of the biological parts of Eq. (3). The figure

shows that there is the greatest uncertainty about the direction of

change in vector/host ratio with temperature increases. It is not clear

whether this ratio will increase or decrease with increasing global

temperatures (in fact, it is likely to increase in some areas and de-

crease in others). In all other cases, it is possible to guess the likely

direction of the effect (positive or negative), but not its precise shape

or level. Figure 1 indicates with a positive or negative sign the di-

rection of the change shown in each panel without, for the moment,

quantifying such changes any further.

The impacts of these biological changes on the R0 equation are

defined mathematically as follows:

dR0

dm
¼

bca2e�mT

mr
¼

R0

m

dR0

da
¼

mbc2ae�mT

mr
¼

2R0

a
(4)
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dR0

dm
¼ �R0

1þ mT

r

� �

dR0

dT
¼ �mR0

It should be noted again that some of these effects are positive, while

others are negative. For example, R0 increases with increase in the

vector/host ratio (the first result in Eq. (4)), but decreases with in-

creases in the vector mortality rate (the last result in Eq. (4)).

The biological effects in Figure 1 and the mathematical effects in

Eq. (4) are brought together in Table 1. The biological effects are

shown in the second column of the table and the mathematical effects

in the third column. The fourth column, titled ‘Net effect’, is simply

the product of the second and third columns, as required by Eq. (3),

and these net effects are summed in the very last cell of the last

column, again as required by Eq. (3). We conclude that the net effect

of global warming on vector-borne diseases may be positive or neg-

ative, depending on the relative contributions of variations in each of

the contributory variables/parameters. Table 1 shows that even if we

were certain of the impact of global warming on the vector/host ratio

(the second row in Table 1), the final summed term might still be

Table 1 Effects of temperature on the biological ingredients of the R0

equation

Biology Mathematics Net effect

m, Vectors per host + ? � + +/�?

a, Biting rate + + +

m, Mortality rate + � �

T, Incubation period � � +

Net effect of global warming ¼ S ¼ + or �?

Note: The effects of temperature on the biological ingredients of the R0 equation
are shown in the second column (from the panels in Figure 1). The effects of these
changes on the contribution of each ingredient to R0 are shown in the third column
(from text Eq. (4)), leading to a prediction of the net effect of each ingredient in the
fourth column (the product of columns 2 and 3). The overall effect of changes in all
ingredients is the sum of the individual effects, and is shown in the last cell of the last
column.
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negative or positive, depending on the relative strengths of the effects

on biting and mortality rates in the third and fourth rows.

While all of the above are fairly obvious with a little careful thought

applied to Eq. (1), this formal treatment shows just how far we have to

go before we can predict the quantitative impact of climate change on

vector-borne diseases. It is not good enough to imagine that climate

change affects only one climatic variable (temperature) and always has

the same effect (producing an increase) on all vector-borne diseases. As

the examples below show, disentangling cause and effect in changing

vector-borne disease incidence and prevalence is an art requiring a

mixture of sound biology and robust mathematics.

2. DEFINING THE CRITERIA FOR CLAIMING CLIMATE
IMPACTS ON VECTOR-BORNE DISEASES

In this section we move from the theoretical treatment of the previous

section towards the application of theory to real-world practice. To

conclude that there has been an impact of climate change on any dis-

ease we need to quantify precisely how varying climate affects each and

every parameter and variable of Eq. (1). We should be able to show a

‘significant’ change in one or more variables in response to a measured

change in climate. In practice this has not yet been done. Instead, we

have meteorological records that show changing weather patterns re-

corded at a series of weather stations, and records of changing numbers

of disease cases diagnosed in local clinics and hospitals.

Several cautions must be applied in interpreting these datasets.

First, the network of stations that have recorded climatic conditions

globally has not been constant. In general, there was an increase in

the number of stations over the course of the last century. Notable

regional decreases did occur in the last quarter of the century, such as

in eastern Europe, as an effect of political changes occurring at the

time. Second, meteorological stations historically tended to be situ-

ated in or near towns and major airports. Expansion of the cities

locally, and the associated ‘heat island’ effects could have caused an

increase in recorded instrumental temperatures that apply only to the

urban areas, not to the rural ones where much vector-borne disease
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transmission occurs. Third, the spatial coverage of meteorological

stations was variable, adequate in most of the USA and Europe, but

patchy elsewhere, especially in the tropics. While the interpolation

techniques applied to these meteorological station (i.e. point) data

were shown to be robust by the original authors, debates have since

centred upon the confidence that can be placed in the gridded, 0.51

resolution climate surfaces produced from the original point data. In

some cases, (especially the tropics) the gridded data are aggregated

into regional estimates of climate variables before further analysis,

while in others, conclusions are drawn on analyses carried out at the

individual grid cell (i.e. 0.51) level.

Disease data from hospitals and clinics are also prone to a variety

of hidden errors. Improved diagnostic methods can produce an ap-

parent increase in numbers of cases without any increase in trans-

mission. In many parts of the tropics, where health service provision

has not kept pace with human population increases, increasing num-

bers of cases might simply reflect an increasing population rather

than an increase in disease prevalence. There are rarely any denom-

inator data to correct for these effects (for example, total population

within the catchment area of each health centre).

With these caveats in mind we seek here to define how we might

operationally link climate changes to increases or decreases in vector-

borne diseases through time, to say beyond reasonable doubt that

climate has ‘caused’ the observed changes in vector-borne diseases. We

thus seek to go beyond the mindless correlation of one dataset with

another that is all too prevalent in the climate change literature.

We suggest that climate change might reasonably be judged to be

the cause of changing vector-borne disease incidence, prevalence or

distribution if three conditions are met simultaneously. The observed

climate change should have occurred at the right time, in the right

place and in the ‘right’ direction (according to our current under-

standing of climate/disease linkages) for it to be the likely cause of the

observed changes in disease over time (Randolph, 2004). These are

logical criteria that exclude many of the current examples of climate-

induced changes in vector-borne diseases, which generally exhibit

only one or two of the required characteristics, not all three. Some of

these are discussed below.
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3. MODELS FOR CLIMATE CHANGE IMPACTS ON
VECTOR-BORNE DISEASES

In the absence of any direct evidence for climate impacts on disease,

considerable modelling effort has recently been directed towards pre-

dicting the potential impacts of climate change, and this modelling

has been of one of two major types. The first sort of model is bi-

ologically based and seeks to describe some aspect of the process of

transmission, and how this will be affected by climate change; these

are referred to here as mechanistic, biological or ‘process-based’

models. The second sort of model attempts to match the current

distribution of the disease in question to current climate variables in a

statistical framework. Within this framework the impact of future

climate changes is explored by interpolation and extrapolation of the

results obtained; these are referred to here as statistical or ‘pattern

matching’ models.

Because, for example, the distribution of a disease or its vector is

predicted from known relationships of biological to climatic varia-

bles, biological or process-based models do not use the recorded dis-

tribution of the disease or vector in the model-building process itself.

In theory, the recorded distribution could therefore be used to meas-

ure model accuracy. In practice, however, this is rarely done for the

reason (given above) that the observed distribution has often been

affected by human intervention of one sort or another and is there-

fore an inaccurate measure of the (unknown or unrecorded) original

geographic extent of the disease (which is what the biological model

claims to provide). This situation is of course less than satisfactory,

since a model that cannot be tested against an existing dataset is

irrefutable, and therefore effectively worthless.

By the same token that biological models cannot use observed,

present-day distributions to test their accuracy, it is sometimes stated

that statistical models should also not use present-day distributions as

a basis for their pattern-matching approach. A distribution that has

been affected by intervention cannot be used to define the full ‘en-

vironmental envelope’ of the disease, which is assumed to be the goal

of the statistical exercise. In defence of this approach, however, we

believe we can only start with whatever records we have for any
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disease. Human intervention is likely to make inroads into the dis-

tribution of vector-borne diseases only in those places where the dis-

eases are near the natural limits of their distribution in the first place.

This suggestion is supported by a recent analysis showing that the

impact of human intervention on areas of holo-endemic malaria has

been negligible, while the impact on seasonally malarial areas in

temperate regions has been considerable (Hay et al., 2004). There is

indeed a link between the natural ecology of a disease system and the

extent to which its distribution has been diminished by human in-

tervention: the surviving core range indicates where environmental

conditions are particularly favourable for transmission. We thus

question the rejection of the use of current maps of disease distri-

bution, on the grounds of their unnaturalness, for both biological and

statistical approaches to modelling vector-borne disease distributions.

It seems strange to reject the only piece of information we have for

many diseases (i.e. a map) in our attempts to understand the distri-

bution of the same diseases!

Unquestionably, the biological or process-based modelling route is to

be preferred for two major reasons. First, only process-based models

can give us real insight into the quantitative relationship between bi-

ological and meteorological variables. Second, only such models can be

used to explore quantitatively the effects of interventions of one sort or

another (e.g. environmental sanitation, insecticide applications, drug

prophylaxis or vaccine administration) on future levels of disease. Only

through use of such models can the cost-effectiveness of various alter-

native strategies for disease control be investigated. There is, however, a

serious downside to such models; they must be complete or else they

will mislead, or fail altogether.

For all their biological inadequacies, statistical models hold out

more promise in situations where biological knowledge is incomplete.

It is generally always possible to build a statistical model of one sort

or another for any disease situation. For example, logistic regression

and discriminant analytical models have been used to describe the

distributions of vectors and the diseases they transmit, and can

achieve impressive (statistical) accuracy. Care should be taken when

building such models, however, and great attention should be paid to

investigating the contribution to the obtained fit of each of the
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included variables, as explained in detail in Rogers (this volume,

pp. 1–35). Statistical packages can be applied more or less mindlessly

to describe distributions; but they should not be applied thought-

lessly.

4. BIOLOGICAL AND STATISTICAL APPROACHES TO
VECTOR-BORNE DISEASE FUTURES

To illustrate many of the above points we examine features of the

current debate of the impact of global change on malaria, malaria in

Africa and tick-borne encephalitis in Europe.

4.1. Malaria: The Biological Approach

In a series of papers Martens and colleagues have applied a version

of Eq. (1) for predicting the impact of climate change on malaria

(Martens, 1997, 1998; Martens et al., 1999).

Equation (1) is first re-arranged at the value of R0 equal to 1.0 to

determine the vector/host ratio (m) at this critical threshold for dis-

ease persistence:

m ¼
mr

bca2e�mT
(5)

A high value of m means that more vectors per host are required

for the disease to persist, and therefore implies inefficient transmis-

sion compared with the situation when m is low. Equation (5) can be

re-expressed as follows:

1

m
¼

bca2e�mT

mr
(6)

The left-hand side of this equation was originally called the

Epidemic Potential (EP), but is now referred to as the Transmission

Potential (TP) and is taken as a direct measure of the environmental

favourability of conditions for disease persistence; the higher the TP

(i.e. the lower the m), the more favourable are local conditions

for disease persistence. In applying this equation to climate change
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scenarios (that affect some of the parameters and variables on the

right-hand side of Eq. (6), as indicated schematically in Figure 1),

Martens and colleagues effectively omitted parameters r, b and c by

setting them equal to 1.0 because their precise values were unknown

and they were assumed to be unaffected by climate change. In so

doing, of course, an original equation that requires absolute measures

of all parameters and variables (i.e. the R0 equation) has been reduced

to one that gives an unquantified relative measure of the same critical

number. The authors felt they had overcome this problem by calcu-

lating the ratio of TP after climate change to TP before climate

change, to give a measure of relative change in TP over time. Con-

stant variables that appear both on the top and bottom line of this

ratio cancel each other out and thus disappear from the final result.

However, ratios of this sort can be very misleading. Consider two

places on the globe. In one, the absolute value of R0 increases from 5

(before climate change) to 10 (after climate change), while in the

other, R0 increases from 0.1 to 0.2. In both cases the critical ratio of

R0 after change to R0 before change (or some linear function of these

quantities) is 2. Malaria was present in the first place, and absent in

the second, both before and after climate change; the change itself did

not bring about any change in the status (i.e. distribution) of malaria

at the two points, although in a third place (with absolute R0 values

of 0.75 before and 1.5 after climate change) it might do so, again with

the same critical ratio of 2. The point to stress, therefore, is that the

ratio of the paired values of R0 (or some measure of this quantity) is a

totally inadequate guide to the changing status of malaria under cli-

mate change scenarios, although maps of the TPafter climate change/

TPbefore climate change ratio, showing high values in temperate regions

are regularly interpreted (and explicitly described, e.g. Epstein, 2000)

as predicting malaria spread into temperate regions under conditions

of global warming.

Predictions of dire malaria futures in the face of climate changes

cannot, by definition, be tested at the present time, but their repe-

tition leads to a view that they are both consensual and correct

(McCarthy et al., 2001). ‘‘One can be certain, but one can be wrong’’

(John Kerry, during the US presidential campaign in 2004) applies

not just to American politicians.
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More recent assessments of future impacts using Martens’ ap-

proach and HadCM3 scenarios predict less dramatic impacts of

warming on malaria globally, but continue to use an incompletely

parameterized TP model, in this case to identify areas where the

climate is suitable for malaria transmission for at least three months

of the year (van Lieshout et al., 2004). The paper does not reveal how

TP estimates are used to determine whether or not any particular

month is suitable for malaria transmission.

4.2. Malaria: The Statistical Approach

With a view to overcoming these methodological problems in predicting

malaria futures, Rogers and Randolph (2000) applied the statistical or

pattern-matching approach to the same problem, beginning with the

recorded distribution map of global malaria (WHO, 1997). A geo-

referenced version of this map was sampled by taking 1500 points at

random within the recorded distribution and 1500 other points at ran-

dom outside the distribution, but within 101 of any recorded presence

site. This limits absence sites to being within a reasonable geographical

(and hence climatic) distance of presence sites. Processed climatic data

from the interpolated meteorological station records held by the Cli-

matic Research Unit CRU in the University of East Anglia, UK, were

extracted for each presence and absence point. These data, at 0.51 grid

resolution, form the global climate norms for the period 1961 to 1990

used by the Intergovernmental Panel on Climate Change (IPCC)

[http://ipcc-ddc.cru.uea.ac.uk] and are hereafter referred to as the ‘CRU

global climate norms dataset’. The mean, maximum and minimum

values of the mean (TM), maximum (TX) and minimum (TN) monthly

temperatures, rainfall (PR) and saturation vapour pressure (SVP) var-

iables were available in the climate dataset, and variables were selected

in a step-wise inclusive fashion to maximize the Mahalanobis distance

(a multi-variate measure of distance, adjusting for co-variance of the

variables) between any pairs of dissimilar (absence to presence) clusters.

Only five variables (minimum TM, minimum R, minimum SVP, mean

SVP and mean TX) were required to give a satisfactory fit, with 78% of

points accurately identified, 14% false positives and 8% false negatives

(Figure 2a). (Figures 2a–c are Plates 10.2a–c in the separate Color Plate
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Section). The fit of the statistical model to the global malaria was

significantly better than the fit of two alternative, biological models to

the same map, although this is not particularly surprising because the

map was used in the construction of the statistical model, but not the

biological one. We repeat, however, that the biological model has not

been tested for its accuracy against any independent datasets. The

model is assumed to be correct and therefore, it is further assumed, the

map resulting from it must also be a correct picture of where malaria

was distributed before human intervention.

The statistically based model of global malaria distribution under

present-day climate was then re-run with various climate scenarios

for the future (Rogers and Randolph, 2000). Even under a relatively

extreme scenario of climate change (the HadCM2 ‘High’ scenario:

http://www.met-office.gov.uk/sec5/CR_dic/Brochure97/), there was

remarkably little change in the predicted global distribution of

malaria in the future, compared with the present day (Figures 2b and

c). Unsurprisingly, areas predicted to be the most affected are those

near the current edges of malaria’s global distribution; the southern

United States, Turkey, Turkmenistan and Uzbekistan, Brazil and

China. They also include some highland areas, for example, in East

Africa, where malaria is predicted to appear for the first time, and

some presently marginal areas that become too dry in the future and

from which malaria is predicted to disappear (e.g. the eastern sea-

board of India). In global terms, malaria is predicted to appear for

the first time in areas in which about 360 million people live at the

present time, and to disappear from areas where about 330 million

people live at present (Figure 2c). The net difference (30 million peo-

ple) is almost certainly not significant, given the uncertainties in the

modelling. Zero net differences, however, hide the fact that almost

700 million people will be affected, one way or another, by even the

modest changes predicted by the statistical model.

4.3. Malaria: Further Developments of Biological Models

Using a different biological model for malaria in Africa, Thomas

et al. came to conclusions rather more like those of the statistical
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model just described (Thomas et al., 2004). These authors used the

model produced by the Mapping Malaria Risk in Africa (MARA/

ARMA) Collaboration [http://www.mara.org.za], which is based on

a series of fuzzy class membership rules that each generate a value

from zero (conditions unsuitable for malaria transmission) to 1.0

(conditions suitable for transmission) using monthly precipitation,

monthly mean temperature and annual frost data from the CRU

global climate norms dataset.

As Thomas et al. point out, the MARA model does not incorpo-

rate any multi-dimensional statistical relationship between the cli-

mate variables in generating the fuzzy logic values. In other words,

each climate variable is used independently to calculate a fuzzy value,

and the minimum fuzzy value (across all variables) for any month

determines whether or not malaria transmission is possible in that

month. This minimum value is referred to as a Malaria Transmission

Climate Suitability Index (MTCSI). The MTCSI is obviously on a

continuous scale and the operator needs to decide a threshold value

on this scale that distinguishes suitable from unsuitable conditions for

the period in question. Four consecutive months of suitability

(MTCSI X0.9) were deemed necessary by Thomas et al. for malaria

persistence in any area, and it is generally accepted that these con-

ditions define areas of stable malaria transmission and not those with

unstable transmission associated with epidemics. Neither the original

MARA/ARMA model nor Thomas et al.’s version of it has been

tested statistically against any map of malaria for the continent, al-

though it has ‘‘performed well against observed data’’ (Thomas et al.,

2004).

Under future climates described by the HadCM2 medium-high

scenario [http://ipcc-ddc.cru.uea.uk] Thomas et al.’s version of the

MARA/ARMA model predicted reduced climatic suitability for ma-

laria transmission in areas of central/southern Africa centred on

Zambia/Zimbabwe/western Mozambique for 2025, 2055 and 2085,

the area becoming more extensive during this time, and in parts of the

dry savannah regions of West Africa centred on southern Mali for

2055 and 2085. The model predicted increases in climatic suitability

for transmission in many parts of the Horn of Africa, especially

Ethiopia, Kenya and Somalia and in southern Africa (Botswana and
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South Africa) with smaller patches elsewhere between these two re-

gions, and in Angola. For the 2025 prediction of malaria status in

Africa (Thomas et al., 2004) the MARA/ARMA model was run

specifying a minimum of five consecutive months with minimum

fuzzy logic values greater than thresholds of 0.5 or 0.9 (i.e. two

models) to classify an area as suitable for stable malaria; this was

done in an attempt to ‘‘test the model predictions regarding the high-

lands’’ (Thomas et al., 2004).

Despite the very different approaches of the biological model of

Thomas et al. and the statistical model of Rogers and Randolph, and

the different scenarios of climate change chosen by these authors

(HadCM2 ‘medium-high’ and ‘high’, respectively), both models pre-

dict that similar, scattered areas in East Africa will become climat-

ically suitable for malaria transmission by 2025 or 2050, respectively.

On the other hand, the biological model predicts a much more ex-

tensive disappearance of malaria from central/southern Africa than is

predicted by the statistical model (compare Figures 2e and f with

Figure 1c in the respective publications). Nevertheless, overall, there

seems to be a much greater chance of reconciling the biological and

statistical approaches to modelling malaria futures in Africa than was

the case earlier. We stress again the importance of considering care-

fully what is being modelled in such exercises. A change in malaria

suitability is itself not a good measure of whether or not malaria will

newly appear in an area, or disappear from part of its historical

distribution. Suitability can increase in an area already suitable for

the disease, or decrease in an already unsuitable area, with no change

in the malaria status (presence or absence) in either area. The change

must be categorical, from predicted absence to predicted presence, or

vice versa, for the distribution map of malaria to change in the future.

Of course, within the distributional limits of the disease, its severity

might also change, for example, if the duration of seasonal trans-

mission is prolonged.

A different approach again to predicting malaria futures in Africa

was taken by Tanser et al., who developed a threshold-based model

predicting whether or not any particular month is suitable for Plasm-

odium falciparum malaria transmission in Africa (Tanser et al., 2003).

The model predicted monthly malaria suitability in areas with centred
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3-month moving average mean temperatures of X19.5 1C plus the

local yearly standard deviation of mean monthly temperature, min-

imum yearly temperatures of X5 1C and retrospective 3 monthly av-

erage rainfall of X60mm, with at least one of the 3-monthly averages

during the year of X80mm (that acts as a ‘catalyst’, thought by the

authors to be essential for malaria persistence). Single months pre-

dicted unsuitable for transmission but bounded on either side by

suitable months were automatically assigned transmission status on

the assumption that the parasite reservoir would persist through the

short period of climatic unsuitability. The various threshold values

were determined by inspection of climatic and malaria data from 15

sites across Africa (encompassing the full range from holoendemic

malaria to malaria-free conditions), further informed by the literature

on malaria development in both vectors and vertebrate hosts, and

finally refined with area-specific expert knowledge and historical

published and unpublished maps. Historical climatic data for Africa,

derived from records taken between 1920 and 1980 and spatially in-

terpolated to 0.051 resolution were used in model development

(Hutchinson et al., 1995). All of the threshold criteria had to be met

for an area to be classed as malarial in any particular month and the

model was run to predict present and future durations of the malarial

seasons in Africa (Tanser et al., 2003). Here, therefore, both the ge-

ographic extent and the seasonal duration of malaria could be ex-

amined. It is possible that there may be more malaria in the future in

Africa only in those regions already affected by the disease; this in-

crease would not be detected in the other statistical or biological

models described in this section. Tanser et al. used their model to

predict the current malaria status (i.e. the duration of the transmis-

sion season) throughout the continent and validated these predictions

against a database of 3791 (3199 positive and 592 negative) parasite

ratio surveys carried out between 1929 and 1994. These surveys were

completed within a single month; the model was deemed accurate if it

predicted, plus or minus one month, malaria transmission for each

survey month. Based on these criteria, the model’s spatial sensitivity

(the ability of the model to predict areas of transmission to within a

month) was 63% (95% CI 61–65%), temporal sensitivity (the ability

to predict malaria occurrence in any month) was 90% (95% CI
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89–91%) and specificity within 1-month temporal accuracy was 96%

(95% CI 91–100%). It predicted a current total of 3.1 billion person-

months of exposure to Africa every year, among a total exposed

population of 445 million people. Using a variety of HadCM3 future

climate scenarios (Johns et al., 2003), Tanser et al. predict that even

by 2100, there is surprisingly little change in the latitudinal extent of

malaria in Africa (an exception being the Limpopo Province of South

Africa which becomes prone to occasional epidemics), but a 5–7%

(mainly altitudinal) increase within this area and an overall conti-

nental increase of 16–28% in person-months of exposure across all

three scenarios investigated. Much of this increase, therefore, occurs

because of an increase in the duration of the transmission season

within areas that are already malarial; changes are as much due to

changing (both decreasing and increasing) rainfall as they are to in-

creasing temperature (Tanser et al., 2003). Predicted increases by the

year 2100 in malaria in the highlands of East Africa (Ethiopia and

Kenya), into parts of South Africa and in Angola parallel the pre-

dicted changes in climate suitability of Thomas et al. (and to some

extent the statistical model of Rogers and Randolph), as do predicted

decreases in the length of the transmission season in West Africa

(central Mali), but there is no equivalent predicted decrease or dis-

appearance of malaria in Zambia/Zimbabwe/Mozambique (Thomas

et al., 2004); instead this region is predicted to have more extensive

areas of transmission suitability of 4–6 months’ duration (Tanser

et al., 2003).

While the Tanser et al. model appears to be the only biological model

that has been independently validated, criticism has been directed at

this study because of the small number of reference sites used to derive

the thresholds, the ways in which model accuracy was gauged, the

inappropriateness of parasitological surveys to estimate current trans-

mission of malaria (parasites are not cleared from bloodstreams the

instant transmission ceases each year) and finally the use of ‘person-

months’ exposure as a measure of transmission (an increase from a low

base level is likely to create a greater increase in clinical malaria than is

an equivalent increase from a high base level in areas where population

immunity is already high) (Reiter et al., 2004). The commentary ac-

companying the Tanser et al. paper (Hales and Woodward, 2003) is
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also criticized because of its assumptions about stability and seasonality

of malaria transmission (Reiter et al., 2004).

Of course, we have no proof that the predictions of malaria futures

by either the statistical or biological models are correct. What these

exercises show, with alarming clarity, is the great ignorance that we

still have of one of the major killer diseases of children in the de-

veloping world. It seems somewhat misguided to argue the future of a

disease that we are so significantly failing to control at the present

time (Guerra et al., this volume, pp. 157–179).

4.4. Tick-Borne Encephalitis (TBE) in Europe

It is not only the tropics that are affected by severe vector-borne dis-

eases. Tick-borne encephalitis (TBE), caused by two subtypes of flavi-

virus (TBEV) transmitted by the ticks Ixodes ricinus and I. persulcatus,

is the most significant vector-borne disease in Europe and Eurasia.

Central nervous system pathology causes a case morbidity rate of

10–30%, and a case mortality rate typically of 1–2%, but as high as

24% in the Far East (Immuno, 1997). TBE is a typical zoonosis, with

enzootic cycles maintained in natural rodent-tick cycles (Labuda and

Randolph, 1999); humans may be infected if accidentally bitten by an

infected tick, or, less commonly, by drinking untreated milk from in-

fected sheep or goats (which cannot themselves pass the virus to ticks

(Labuda et al., 1997)). Increased risk to humans may therefore arise in

three ways: improved conditions for natural transmission cycles re-

sulting in higher densities of infected ticks; changed human behaviour

resulting in greater exposure to ticks and increased consumption of raw

milk. As both of the first two factors are climate dependent, TBEV is

commonly included in the list of vector-borne pathogens anticipated to

become more of a threat to humans in a predicted warmer world

(Lindgren, 1998; Martens et al., 1999).

In Europe, TBEV is highly focal in its distribution, limited to a

well-defined region in central Europe, where the distribution is very

patchy, and a quasi-separate region covering the Baltic States and the

south-eastern rim of Scandinavia, where the distribution is more

continuous. This pattern has been predicted with 85% accuracy from

satellite-derived data on environmental conditions (Randolph, 2000),
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and its biological basis is now clearly understood. TBEV occurs in

only a narrow subset of suitable tick habitats because its cycles are

maintained by transmission of non-systemic infections between in-

fected nymphs and uninfected larval ticks co-feeding on small rodent

hosts, principally mice of the genus Apodemus (Labuda et al., 1993).

The force of transmission is sufficiently high only when there is a high

degree of coincident feeding of larval and nymphal ticks on individual

hosts (Randolph et al., 1999), which is only possible when the sea-

sonal activity periods of these two tick stages occur in synchrony

(Randolph et al., 2000). This is determined by rather precise climatic

conditions, specifically a particular seasonal land-surface temperature

profile. A pattern of higher than average rate of cooling in the au-

tumn relative to midsummer peak temperatures is statistically sig-

nificantly associated with larval–nymphal synchrony and with the

presence of TBE (Randolph, 2000; Randolph et al., 2000), although

the precise biological basis for this phenomenon is not yet fully un-

derstood. At the same time, moisture availability to ticks on the

ground, as measured by a remotely sensed vegetation index, must be

sufficient to ensure good tick survival.

Like many vector-borne pathogen cycles that depend on the inter-

action of so many biotic agents with each other and with their abiotic

environment, enzootic cycles of TBEV have an inherent fragility. Their

continuing survival or expansion cannot be predicted from simple uni-

variate correlations, for example, with temperature. As the biological

models needed to capture the complexity of such systems are not yet in

place, we applied the same two-step statistical approach as described

for malaria above to predict the effects of forecast climate change

(Randolph and Rogers, 2000). TBE distribution was matched first to

present climatic conditions and then to future climate scenarios, using

the same sources of information on present and future climate as for

the malaria study (Rogers and Randolph, 2000).

The extent, although not the focality, of the present distribution was

predicted with 86% accuracy by five climatic variables, minimum TN,

minimum TX, mean TX, maximum TM and maximum SVP from the

CRU global climate norms dataset, selected by discriminant analysis as

the most important variables. These variables are all consistent with

those selected from satellite imagery for predictive mapping of TBEV
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(Randolph, 2000). Climate surfaces, however, are very much cruder than

satellite imagery (offering a narrower range of climatic variables and

much coarser spatial resolution), and they falsely predict TBEV presence

through southern Poland and in southwestern Sweden, although new

foci have indeed been identified in this latter region since 2000.

Future rises in temperature and decreases in moisture in the sum-

mer, as predicted under the HadCM2 medium-high scenario, appear

set to drive the distribution of TBEV into higher latitude and higher

altitude regions progressively through the 2020s, 2050s and 2080s.

The Alps, however, are always too high to become a region of risk. In

the 2020s, France, Switzerland, Slovenia, Hungary and much of

Austria may be cleared of TBEV and the range of this virus (though

not necessarily its vector) may contract to inland regions of the Baltic

States. By the 2050s, TBEV may move into areas at present free of

infection, notably the mountains on the Slovak/Polish border and

further northwest in Scandinavia, but central Europe may be virtually

cleared of TBEV. The final toe-hold in the 2080s may be confined to a

small part of Scandinavia, including new foci in southern Finland.

Although the predictions can only be as good as the climate sce-

narios upon which they are based, this analysis disproves the com-

mon perception that a warmer world will necessarily be a world under

greater threat from vector-borne diseases. In the case of TBEV that

change appears to be to our advantage. Despite the untestability of

these predictions, they are at least consistent with our understanding

of the inherent fragility of this particular system: climate change

seems likely to disrupt the fine balance between precise seasonal

temperature profiles, summer moisture conditions and the tick’s sea-

sonal population dynamics. Furthermore, the prediction that the

distribution of TBEV may expand north and west of Stockholm is

consistent with the conclusion that increased temperatures have al-

ready extended the northern and western limits of I. ricinus in Sweden

(Talleklint and Jaenson, 1998; Lindgren et al., 2000). There have also

been recent observations of ticks and cases of TBE above the pre-

viously defined altitudinal limit of 700m in the Czech Republic

(Daniel et al., 2003).

Yet, in apparent contradiction to our predictions that the overall

distribution of TBE will contract at some time between 1990 and the
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2020s, TBE has in fact increased in incidence by an order of mag-

nitude in some parts of Europe over the past one or two decades. It is

of course perfectly possible for incidence in persisting foci within a

contracted range to increase. There are also many reasons to believe

that this increase has been caused by factors other than climate, as the

next section discusses.

5. RECENT CHANGES IN VECTOR-BORNE DISEASES:
HAS CLIMATE CHANGE ALREADY HAD AN IMPACT?

Predictions about the future of vector-borne diseases are inherently

untestable but, given that there are already significant signs of ant-

hropogenic effects on global climates, we may reasonably ask if there

is any evidence to date that vector-borne diseases have changed their

incidence or prevalence in the last few decades and according to the

three criteria specified in Section 2. In the following examples, we

shall see signs of significant changes in vector-borne diseases, but

these do not always meet the specified requirements because one or

more of the criteria are not met. Instead there are often other, non-

climatic reasons for the changes observed.

5.1. Increased Incidence of TBE: Coincidence or
Causality of Climate Change?

The changing incidence of TBE in Europe offers an excellent case

study to distinguish between coincidence and causality of climate

change by testing for our strict criteria (the right sorts of climate

change, at the right time and in the right places), because the pattern of

change has been temporally and spatially highly heterogeneous. At the

northern extreme, in Sweden, the annual case numbers of TBE showed

a 3-fold step increase between 1983 and 1986, followed by a stable

higher incidence from 1986 and then a further doubling from 2000

(Figure 3). Along the southern boundary of Europe, in Slovenia,

Croatia and Hungary, recorded case numbers of TBE changed very

little from the mid-1970s, until there was a 60–70% decrease in Croatia

and Hungary from 1997 (Figure 3). In eastern Europe, TBE cases
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Figure 3 Top: changes in the annual numbers of cases of tick-borne
encephalitis in Sweden, Hungary and Lithuania, 1960–2004. The step in-
creases in Sweden from 1983 to 1986 and again in 2000 are highlighted by
horizontal lines showing mean levels in each period. Bottom: changes in
mean spring (upper) and summer (lower) temperatures (taken from the in-
terpolated climate surfaces prepared by the CRU, University of East Anglia)
for 0.51 grid squares centred on Zala county Hungary, Siauliu in Lithuania
and Stockholm in Sweden. Dotted horizontal lines show the 1960–2000
mean levels for each site.
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increased dramatically, but not until 1992 or 1993: the Czech Republic

and Slovakia suffered 2-fold increases, Estonia a 5-fold increase, and

Poland, Lithuania and Latvia increases of an order of magnitude each

(Figure 3). In Latvia, however, this increase has been largely reversed

since 1999, with some evidence that this is due to vaccination (Sumilo

et al., 2006). Furthermore, the degree of TBE increase varied markedly

in different regions within each country (Zabicka, 1994; Danielová and

Benes, 1997; Vaisviliene et al., 2002; Sumilo et al., 2006).

Based on our understanding of the biology and ecology of the TBE

system, we can identify the following factors as most likely to be the

‘right sort’ of climate change to account for these epidemiological pat-

terns: warmer temperatures during the spring may cause earlier onset of

both tick host-seeking activity and human work or leisure activity in

tick-infested forests; warmer springs and summers may accelerate tick

development rates and therefore the virus transmission cycle; but drier

summers may cause higher tick mortality. Of the three possible sources

of information on climate change (satellite imagery, ground records

from meteorological stations and climate surfaces constructed by in-

terpolation between ground stations), each has its own strengths and

weaknesses. Following the IPCC, here we use the latter, available as

mean monthly records for the last century at a spatial resolution of 0.51

longitude/latitude, compiled by the CRU at the University of East

Anglia in the UK (New et al., 2000). This dataset is hereafter referred to

as the ‘CRU global climate time series’.

A commonly observed pattern in long-term temperature records

(IPCC, 2001) is a gradual increase in mean temperatures over the past

40 years, but a more marked increase in spring from 1989 onwards

and in winter from 1988, possibly due to increased solar radiation at

the Earth’s surface caused by less polluted air (Wild et al., 2005). This

pattern is indeed seen at all sites so far examined in the Czech

Republic, Lithuania, Poland, Hungary and Sweden (Randolph,

2004), irrespective of the variable changes in TBE incidence (Figure

3). Higher absolute temperatures in Hungary where TBE decreased,

however, might have caused greater tick mortality over the summer

(Figure 3), even though they were accompanied by lesser decreases in

spring and summer rainfall over the same period than in NE Poland

and Lithuania where TBE increased.
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In addition, more detailed analysis of ground meteorological sta-

tion records in Latvia has revealed a sudden and sustained increase in

mean maximum temperatures only for the third dekad (days 21–30)

of April starting in 1993 (Sumilo et al., 2006). Although as yet un-

explained, it could be epidemiologically significant, because this is

precisely the time of year when rising spring temperatures cross the

threshold necessary for larval tick activity. From 1993 onwards, con-

ditions have been consistently favourable for the synchronous onset

of nymphal and larval activity and therefore TBEV transmission.

Again, this pattern is common to all sites examined in Latvia, how-

ever, and therefore cannot on its own explain regional differences in

TBE epidemiology.

In Sweden, the temporal mismatch between TBE epidemiology and

recent climate change undermines claims that warmer spring and win-

ter conditions caused increased TBE incidence in Stockholm county

(Lindgren and Gustafson, 2001). The increases in these seasonal tem-

peratures from 1989 occurred after the step increase in TBE cases from

1984. The weak statistical correlation between TBE case numbers and

spring temperatures, due entirely to two extreme points, cannot there-

fore signify causality, and indeed after 1984 there were more cases of

TBE in many years despite similar temperature conditions (Randolph,

2001). However, it is intuitively likely that low temperatures could be

the limiting factor in TBEV transmission at the northern extreme of its

range. Evidence that climate change has driven the increase in TBE

incidence here is not yet convincing.

Nevertheless, a seasonal shift in reported cases of TBE in the Czech

Republic and Poland, with proportionally more cases earlier in the

summer and later in the autumn (Zabicka, 1994; Danielová and Benes,

1997), suggests that TBEV transmission dynamics have changed some-

what. This could be due as much to reduced host seeking by ticks in

drier summers (Randolph et al., 1999) as to warmer spring and autumn

temperatures.

Climate is just one of the many factors, biological (abiotic and

biotic) and non-biological (socio-economic and public health), that

influence tick-borne disease dynamics. Ultimately, all cause variable

rates of contact between ticks, transmission hosts and humans, re-

sulting in greater densities of infected ticks and greater incidental
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spill-over from enzootic cycles to humans. Although changing climate

factors may have played a role in the up-surge of TBE, none has yet

been identified that can satisfactorily explain both the spatial vari-

ation and the major temporal discontinuities in the incidence of this

disease. Increased abundance of wildlife hosts for ticks, especially

deer that feed adult reproductive ticks, and sociological changes that

followed the collapse of communism are currently the subject of de-

tailed investigation at regional levels on a pan-European scale to seek

tight correlations with tick-borne disease patterns.

5.2. Increased Incidence of Malaria in the East African
Highlands

Given the model-based predictions of malaria spread in a future,

warmer world, it is perhaps not surprising that several workers have

claimed evidence for this already, in the form of increased malaria,

especially in the highlands of East Africa. In doing so, they combine

an assumption (increased highland temperatures) with a fact (in-

creased malaria) and conclude that the one is the ‘cause’ of the other.

As pointed out earlier, no one disputes that malaria and other vector-

borne diseases are affected by temperature. What is in dispute is how

many of the three key criteria for judging an impact of global change

on disease have been met in these cases. Has the temperature really

increased? Has malaria incidence or prevalence (rather than simply

the number of malaria cases) increased? Have the increases in tem-

perature been in the ‘right’ direction’, in the ‘right’ places and at the

‘right’ times to explain the increases in malaria? Hay and colleagues

examined the long-term climate records for East Africa, both for the

last century as a whole, and also for the crucial last decades of the last

century, and could find very few sites where recorded temperatures

(from the CRU global climate time series) have shown any significant

change of any sort, while in many places malaria has increased sub-

stantially (Hay et al., 2002a). The augmented Dickey–Fuller test was

used to conclude that temperature has not changed significantly. This

test is drawn from the field of econometrics and is not necessarily

favoured by all time-series analysts (Chatfield, 2004), but the point to
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stress here is that those who claimed that there is an effect of global

warming on malaria had carried out no statistical tests of any sort at

all! Hay et al.’s analysis revealed quite clearly that even when average

temperatures (and other climate variables) have changed by a certain

amount, these changes are not spatially uniform. According to the

CRU global climate time series, some areas of East Africa actually

became cooler during parts of the last century, while others warmed

at faster-than-average rates (Hay et al., 2002). Whether this is an

artefact of a rather sparse set of meteorological stations in East Af-

rica, or a genuine phenomenon remains unclear. We shall see in the

case of bluetongue below that Europe (much better provided with

meteorological stations) also showed signs of spatial patchiness in the

degree and even direction of global warming in the last 20–30 years.

We conclude that ‘global warming’ does not mean ‘warming globally’

and urge great caution in the bringing together of sets of meteoro-

logical and epidemiological data to look for impacts of climate

change.

Hay et al.’s analysis was initially criticized on two main grounds: a

claimed inappropriate use of a 0.51 grid climate dataset to estimate

climate changes at the clinic sites in East Africa and the assumption

that only statistically significant changes in climate will give rise to

significant changes in malaria (Patz et al., 2002). Patz et al. suggested

that increased climate variability without any increases in climate mean

values may give rise to malaria outbreaks, although they gave no ex-

amples of this. In response to these criticisms, Hay and colleagues first

stated that the malaria case data recorded at each point (the location of

a clinic) came from an area around that point approximately equiv-

alent in size to one of the 0.51 grid squares (Hay et al., 2002b) and later

showed that independent climate records from a meteorological station

at Kericho also showed no long-term trends in either mean climate

values (Shanks et al., 2002) or climate variability (Rogers et al., 2002).

Later analyses using a different statistical approach showed no increase

in climate variability either globally or locally, at the East African sites

from where the malaria data came (Vinnikov and Robock, 2002; SIH,

personal communication).

Further light was thrown on the potential contribution of climate

change to changes in malaria in Africa during the last century by
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Small et al. who applied the MARA/ARMA model (Craig et al.,

1999) to the African data from the CRU global climate time series to

derive the MTCSI on a monthly basis for each of the 0.51 grid squares

from 1911 to 1995 (Small et al., 2003). Excluding areas that were

never suitable (MTCSI always p0.1) or perennially suitable (MTSCI

always X0.9) left a total of 4603 grid cells with potentially variable

climatic suitability. Each of these was subjected to the same sort of

time-series analysis as used by Hay et al. (2002a). In this analysis,

83.2% of the tested grid squares showed no significant change over

time in their MTSCI values (78.8% classified as stationary with no

trend and 4.4% as random walk with no drift). Further, 11.8% of the

cells showed deterministic trends, nearly equally split between pos-

itive (5.7%) and negative (6.1%) and the remaining 5.1% of cells

showed significant stochastic trends. Strong positive deterministic

trends were found mostly in East Africa, with a cluster of grid cells in

southern Mozambique. Strong negative trends were found along the

Sahelian border across Africa, with clusters in south-eastern Ethiopia

and the southern part of the common border of Côte d’Ivoire and

Ghana. Grid cells with stochastic trends were scattered throughout

the moist and semi-moist areas of the continent, with a concentration

of high values in the southern Congo basin (Small et al., 2003). The

authors’ conclusion (p. 15344) is simple and clear: ‘‘Climate warming,

expressed as a systematic temperature increase over the 85 year period,

does not appear to be responsible for an increase in malaria suitability

over any region in Africa.’’ They also point out that where predicted

suitability has changed over the last century, this usually has more to

do with changing precipitation patterns than with changing temper-

ature, a point also hinted at by both Thomas et al. (2004) and Tanser

et al. (2003).

The issue of climate variability in Africa was later revisited by Zhou

et al. (2004) who first showed that there were effectively no significant

changes in meteorological station averages for three climate variables at

seven sites above an altitude of 2000m in East Africa (i.e. 21 obser-

vations) between 1978–1988 (n ¼ 11) and 1989–1998 (n ¼ 10); 19/21

t-tests for three climate variables were not significant; no allowance was

made for multiple t-tests which would diminish further the small

number of ‘significant’ differences. There were, however, significant
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increases in the variances of the maximum monthly temperatures be-

tween the two time periods at five sites (Alaba, Kericho, Eldoret, Nandi

and Kabale), in the minimum monthly temperature at Kericho and in

rainfall at Eldoret, and a significant decrease in the variance of min-

imum temperature at Ziway. Zhou et al. then fitted a seasonal auto-

regressive model to the monthly malaria inpatient (wrongly claimed to

be outpatient) data (Step 1) and the residuals of this fit were used as the

dependent variables in a step-wise linear regression model using the

climate variables (Step 2). For reasons that are not explained in the

original paper, those variables at lags found to be significant during

Step 2 were included in the final model with equal weights (of 1.0) and

were summed across all significant lag periods (Zhou et al., 2004). This

practice, of course, tends to overemphasise the importance of each of

the climate variables at higher lags. The proportions of the variance of

the raw data extracted sequentially by Steps 1 and 2 were taken by the

authors to indicate the relative roles of seasonal autoregression com-

ponents (essentially the intrinsic determinants of malaria case numbers)

and climatic variability (essentially the extrinsic determinants of malaria

case numbers) at each site (Zhou et al., 2004). However, this latter

component in the model included only measures of climate (Tmin, Tmax,

Rain and their cross-products) not of climate variability, so the authors

do not seem to have produced a model that tests their hypothesis.

Approximately equal mean amounts (38.6 and 36.1%) of variance of

the monthly malaria figures were attributed to the seasonal autoregres-

sive components and the climatic variables, respectively (ranges

18–63% and 12–63%, respectively), the combination summing to be-

tween 65 and 81% of the total across the seven study sites. These

authors also highlight the joint importance of both rainfall and tem-

perature; ‘‘the use of either temperature or rainfall alone is not sensitive

enough for the detection of anomalies that are associated with malaria

epidemics’’ (Zhou et al., 2004). Zhou et al.’s paper has been criticized

along the lines indicated here by Hay et al. (2005) who also highlight a

number of other difficulties with the paper, including the critical as-

sumption that public health provision has kept pace with population

increase in Kenya (almost certainly, it has not).

There remains, of course, the possibility that statistically insignifi-

cant changes in either mean climatic variables or variation in these
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variables may be responsible for increasing malaria (Patz et al., 2002),

but, given the wealth of evidence for other causative factors for these

increases, until proven otherwise, it seems more parsimonious to rule

out climate as the driving variable.

Evidence for increasing malaria in many parts of Africa is over-

whelming, but the more likely causes for most of these changes to

date include land-cover and land-use changes and, most importantly,

drug resistance rather than any effect of climate. The recrudescence of

malaria in the tea estates near Kericho, Kenya, in East Africa, where

temperature has not changed significantly (Hay et al., 2002a), shows

all the signs of a disease that has escaped drug control following the

evolution of chloroquine resistance by the malarial parasite. Twelve

year windowed Fourier analysis of these changes through time pro-

vided strong support for the (re-)emergence of annual (i.e. seasonal)

and 3-year cycles in disease cases (Rogers et al., 2002). Neither local

temperature nor rainfall nor an El Niño proxy showed any signs of

similar changes in the amplitude of their corresponding annual and 3-

yearly cycles that might have caused these changes. We conclude that

malaria waxes and wanes to the beat of two rhythms: an annual one

dominated by local, seasonal weather conditions and a ca.3-yearly

one dominated by herd immunity (Hay et al., 2000). Effective drugs

suppress both cycles before they can be expressed. This produces a

population which is mainly or entirely dependent on drug effective-

ness, and which suffers the consequence of eventual drug failure,

during which the rhythms re-establish themselves, as they appear to

have done in Kericho.

5.3. Northern Spread of Bluetongue Virus into Europe

The one good example of the impact of climate change to date on an

observed emergence of a vector-borne disease concerns the expanded

distribution of bluetongue virus (BTV). This account is taken from

the review by Purse et al., (2005). This virus infects ruminants, caus-

ing a devastating but non-contagious disease in sheep and some deer

species, and long-lived sub-clinical infections in cattle that therefore

act as the principal reservoir host. It is transmitted by certain species

of Culicoides biting midges within tropical and sub-tropical parts of
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the world (351S–401N), where the competent species occur. These

weak flyers can be transported by the wind for several kilometres

within one night. This, together with traditional livestock trade

routes, has long offered the potential for BTV to enter Europe from

sub-Saharan Africa, Turkey and the Middle East. Yet BTV appeared

only occasionally and briefly in southern Europe prior to 1998, with

outbreaks confined to Portugal, southwest Spain and some Greek

islands within the northern limits of the range of the major Old World

vector, C. imicola.

Since 1998, three separate incursions into Europe by several different

bluetongue serotypes have occurred: from the east, some via Turkey,

spreading westwards and northwards into Greece, the Balkans as far as

Croatia, and Italy and the central Mediterranean islands; others

through Greece westward into Italy; and from the south via Tunisia

and/or Algeria into Italy and the Mediterranean islands including the

Balearics. In summary, over the past 7 years six strains of BTV from

two different directions have achieved an overall northward range ex-

tension of some 800km into 12 new countries.

Purse et al. (2005) plausibly discounted most possible biotic, soci-

ological or agricultural factors as likely causes of the precisely observed

molecular epidemiology and movement patterns. On the other hand,

coincident in time and space with the emergence of BTV in Europe,

there were pronounced increases in nighttime and winter temperatures,

therefore fewer frost days, and changes in moisture conditions (Purse

et al., 2005). In addition to the temperature-sensitive parameters com-

mon to insect-borne disease systems (see Section 1 above), the com-

petence of Culicoides vectors is also directly enhanced by warm

temperatures (Paweska et al., 2002). As Purse et al. (2005) point out, it

is the interacting effects of multi-variate climate that determine the

‘normal’ spatial and seasonal distributions of Culicoides vectors and

their competence to transmit BTV. They provide detailed evidence

that, on balance, the biological responses (‘independent and sometimes

opposing’) to the observed changes in climate in this part of Europe

between the 1980s and the 1990s could have permitted the following

observed novel features since 1998: (i) increased virus persistence dur-

ing the winter, (ii) the northward expansion of the major BTV vector,

Culicoides imicola, from its previous limits within N Africa, Portugal,
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SW Spain, and some Greek islands and (iii) new transmission by in-

digenous European Culicoides species.

This latter phenomenon is particularly significant. It represents a

qualitative change, presumably arising out of small quantitative re-

sponses to gradual climate change such as increased midge survival

rates and population sizes and possibly increased transmission effi-

ciency, to novel vectors that are common and widespread across the

whole of central and northern Europe. If C. imicola continues to

expand its own range, it will become increasingly easy to hand over

the baton of the vector role within greater areas of overlap with

northern midge species.

6. CONCLUSIONS

Biologists should take a leaf out of the climatologists’ work on what

is known of the ‘problem of attribution’; this means establishing the

correct quantitative relationship between cause and effect. A recent

analysis of the heat wave in Europe in 2003 that resulted in thousands

of excess human deaths concluded that there was a ca. 50% chance

that it was due to anthropogenic effects (Stott et al., 2004). This

example shows that it will probably never be possible to state with

absolute certainty that effect B is the result of cause A. In our view

the causal chain between global warming and increases or decreases

in malaria and other vector-borne diseases is even longer than the link

between greenhouse gas emissions and global climate change, and

likely has many more non-linearities of the sort outlined at the start

of this review. Not only will it never be possible to say that effect B

(e.g. an increase in disease) is the direct result of cause A (e.g. an

increase in temperature) and cause A only, it also seems likely that the

predicted regional mean changes in climatic variables hide a great

deal of local spatial variation, to which any particular disease might

respond in quite different ways. Knowing that this is likely to happen

should alert epidemiologists to take a great deal more care in inter-

preting disease data than has been the case to date.

The theoretical treatment given in this review shows that our un-

derstanding of the dynamics of vector-borne diseases is considerably
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greater than our understanding of other infectious diseases, and we

need to turn this understanding into a protocol for determining how

and in what direction climate change might affect vector-borne dis-

eases. The examples given here show that a good statistical model is

better than a bad biological model; that biological models for the

same disease do not always agree with each other; that climate may

have ‘opposite’ effects on different diseases; that there is often a

multitude of causes for changes in vector-borne diseases and that in a

number of cases already reported in the literature, these causes are

clearly not climatological.

It is important, therefore, to adopt a landscape-epidemiological

approach in which the ‘landscape’ includes not just the physical en-

vironment and its changing climate, but the economic and sociolog-

ical environments as well. A recent analysis of the history of malaria

in Europe shows how changing land-use and livestock practices were

more responsible for diminishing malaria’s geographic extent in the

continent than were any concurrent climatological changes (Kuhn

et al., 2003). As for the future of vector-borne diseases, we could do

worse than heed Einstein: ‘‘I never think of the future. It comes soon

enough’’ (Partington, 1996).
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Plate 1.2



Plate 1.2 An example of treatment of a sparse data set. Records of the presence of

Rift Valley Fever (RVF) in Africa and the near Middle East are modeled here in three

different ways. (A) Maximum likelihood discriminant analysis applied to records for

RVF presence (n ¼ 62) and 2000 randomly selected points for RVF absence within 0.5

to 10.00 degrees of any presence point; (B) mean predictions of 100 bootstrap samples

from these data, of 200 presence and 200 absence points sampled at random from the

training set, with replacement; (C) after expansion of the environmental envelope using

the predictions of the bootstrap samples of Figure 2B and re-assignment of ‘absence’ to

‘presence’ status of training set absence points that were consistently classified as

presence points. A single model was then produced, as for Figure 2A. The records of

RVF presence used in all models are shown as blue points. These records were ob-

tained from querying two sources: (a) the PubMed reference database (National Cen-

ter for Biotechnology Information (NCBI) of the National Library of Medicine

(NLM), MD, USA; url: http://www.ncbi.nim.nih.gov/entrez/query.fcgi) for the period

1920–2005 and (b) the ProMED database (url: http://www.promedmail.org/) for the

period January 1994–December 2004. In each case, geographical point locations were

extracted wherever possible from the original literature or from geo-locatable place

names referenced in the GEONet Names Server of the National Geospatial-Intelli-

gence Agency’s and the US Board of Geographic Names’ databases (http://earth-

info.nga.mil/gns/html/), the Encarta 2005 Premium Suite (Microsoft Corporation,

WA, USA), the Alexandria Digital Library Gazetteer (http://middleware.alexan-

dria.ucsb.edu/client/gaz/adl/index.jsp) or the Getty Thesaurus of Geographic Names

Online (http://www.getty.edu/research/conducting_research/vocabularies/tgn/in-

dex.html). I thank Dr Simon Hay for providing these data for modelling.

The environmental data were derived from the Advanced Very High Resolution

Radiometer (AVHRR) on board the National Oceanographic and Atmospheric Ad-

ministration (NOAA) satellites and cover the period from 1982 to 1999. These data are

described in detail in Hay et al. (this volume, pp. 37–77). Monthly maximum-value

composited data from the AVHRR middle infra red, the derived land surface tem-

perature (LST) and the normalized difference vegetation index (NDVI) data were

temporal Fourier processed to extract annual, bi-annual and tri-annual seasonal sig-

nals, which were captured as separate images showing the amplitudes and phases or

timing of the first peak of each of the three signals (Rogers, 2000). In addition the

signal means, maxima, minima and variances were also available, as was a single

digital elevation surface (DEM) derived from the GTOPO30 coverage (http://ed-

cdaac.usgs.gov/gtopo30/gtopo30.asp). All AVHRR data were originally produced and

made available at a spatial resolution of 8� 8km in the Goode’s Interrupted Ho-

molosine projection and after Fourier processing were projected back to latitude/

longitude format by bi-linear interpolation to 0.10 degree spatial resolution. The DEM

data at an original 30 arc second resolution (1/120th of a degree) were similarly re-

sampled to 0.1 degree resolution by averaging. Satellite and DEM data were later

extracted for each of the disease ‘presence’ and ‘absence’ points and these data formed

the training sets for model construction.

All models used a non-linear discriminant analysis approach (Rogers, 2000). Train-

ing set data were first clustered into 2 presence and 3 absence clusters and, for each

model, 10 variables were selected by step-wise inclusion using the minimum AICc

values as the selection criterion (Burnham and Anderson, 2002). Models assumed

equal prior probabilities and the output risk maps shown here are of posterior prob-

abilities (averaged values in the case of the bootstrapped models).



Plate 4.7 Spatial Lorenz curve for the population distribution compared to the

land area of Ecuador, 2000 (with insert indicating the non-cumulative distribution of

population density).

Plate 1.2 (continued)



Plate 1.3 Results from the 100 bootstrap models for (left) Rift Valley Fever, (middle) Yellow Fever and (right) Dengue. Each row in the image refers to one of the

models, which are arranged in rank order, with 1 (lowest AICc value) at the top and 100 (highest AICc value) at the bottom. Each of the 31 columns on the right of the

image indicates one of the satellite predictor variables available to describe the disease. The first column of these 31 columns is for the digital elevation layer or DEM.

There then follow three sets of 10 columns referring to the Fourier-processed AVHRR MIR, LST and NDVI imagery. These layers are in the following order: mean,

phase of annual cycle, amplitude of annual cycle; phase of bi-annual cycle, amplitude of bi-annual cycle; phase of tri-annual cycle, amplitude of tri-annual cycle;

maximum of fitted Fourier cycles (summed annual to tri-annual), minimum of fitted Fourier cycles and variance of the original signal. In any single model (row) the

top (i.e. first selected) predictor variable is coloured red, the second most important variable is coloured orange and so on according to the rainbow colour scale to the

right of the image. Variables not chosen in any model are not coloured at all in that row. The red line down the first image indicates variable 14 in the variable list,

which is the annual amplitude of LST. This variable is consistently chosen in all RVF models, and is usually the most important variable, but there is no other single

variable which is consistently chosen second. (The left-most column refers to the model number in the sequence; this, and the grey area to the left of the variable

columns should be ignored.) The other two images may be similarly interpreted (see Rogers et al., this volume, pp. 181–220, for more details).



Plate 4.3 Process by which GRUMP population surface is constructed, illus-

trated for southern Ghana. Panel 1 shows inputs side by side with their population

counts. Panel 1A is identical to the inputs to GPW, panel 1B shows the additional

urban areas used in GRUMP. In panel 2, the inputs are merged, first illustrated as an

overlay of the urban footprints over the administrative polygons in panel 2A, and the

final grid, in panel 2B (with administrative and urban) boundaries overlaid (density/

square km).



Predominantly P. falciparum risk
Predominantly P. vivax risk
Mixed risk
No risk

Plate 5.1 Malaria distribution in 2005 after altitudinal and population exclusions indicating areas at risk according to species of

Plasmodium.



Plate 5.2 A–R First level administrative division boundaries and P. falciparum (Pf)

and P. vivax (Pv) ratios by WHO region (A–C: AFRO; D–F: AMRO; G–I: EMRO;

J–L: EURO; M–O: SEARO; P–R: WPRO). Outlined in thick black line are countries

belonging to each region. Malarious countries are filled in light blue with a light grey

thin line representing sub-national boundaries. Dark grey areas represent malaria

distribution outside the given region and light grey ones are malaria-free areas.
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Plate 5.2 (continued)



Plate 5.2 (continued)



Plate 5.2 (continued)



Plate 5.2 (continued)



Plate 5.2 (continued)
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Plate 5.2 (continued)



Plate 5.2 (continued)



Plate 5.2 (continued)



Plate 5.2 (continued)



Plate 5.2 (continued)



Plate 6.7 Risk map for yellow fever. This risk map is the average of 100 bootstrap models each based on a sample of 300 presence

and 300 absence pixels selected at random with replacement from the training set for this disease. Risk is on a probability scale from

zero to 1.0. Probabilities from 0.0 to 0.49 are coloured green (darker to lighter) and indicate conditions not suitable for the disease (i.e.

predicted absence of disease). Probabilities from 0.50 to 1.0 are coloured yellow through to dark red, indicating conditions increasingly

suitable for the disease. The database observations of presence are indicated by the blue dots and the WHO 2003 map for yellow fever

by the thick black outline.



Plate 6.7 (continued)



Plate 6.8 Risk map for dengue. This risk map is the average of 100 bootstrap models each based on a sample of 900 presence and 900

absence pixels selected at random with replacement from the training set for this disease. Risk is on a probability scale from zero to 1.0.

Probabilities from 0.0 to 0.49 are coloured green (darker to lighter) and indicate conditions not suitable for the disease (i.e. predicted absence

of disease). Probabilities from 0.50 to 1.0 are coloured yellow through to dark red, indicating conditions increasingly suitable for the disease.

The database observations of presence are indicated by the blue dots and the WHO 2003 map for dengue by the thick black outline.



Plate 6.8 (continued)



Plate 7.2 Predicted prevalence of (A) A. lumbricoides, (B) T. trichiura and (C) hookworm, based on relationships between observed prevalence of

infection among school-aged children (insert) and AVHRR satellite data (see Hay et al., this volume for details) and elevation obtained from an

interpolated digital elevation model from the Global Land Information System (GLIS) of the United States Geological Survey (http://ed-

cwww.cr.usgs.gov/landdaac/gtopo30/). Prevalence data are available for 1172 sites across SSA including 84 412 children. All surveys were conducted

using similar diagnostic techniques (direct smear, typically using the Kato–Katz method) and based on random samples of children in areas where no

control measures have previously been undertaken. Due to non-linear relationships between observed prevalence and predictor variables, the predictors

were categorized before being entered into the models. The coefficients from these models were then applied to the categories of the predictor variables to

generate a predicted prevalence of infection. Validation statistics including area under the curve (AUC), optimal prediction threshold and sensitivity,

specificity, positive predictive value (PPV) and negative predictive value (NPV) at the optimal prediction threshold are presented for observed prevalence

thresholds of 5% and 50%.



(A) Validation statistic
Prevalence threshold

 5% 50% 
AUC 0.90 0.91 
Optimal prediction threshold 0.13 0.28 
Sensitivity (%) 86.2 89.5 
Specificity (%) 80.9 81.9 
PPV (%) 79.9 60.0 
NPV (%) 86.9 96.3 

 (B) Validation statistic 5% 50% 
AUC 0.88 0.92 
Optimal prediction threshold 0.12 0.32 
Sensitivity (%) 84.8 87.7 
Specificity (%) 77.5 85.0 
PPV (%) 76.0 68.0 
NPV (%) 85.9 95.0 

 (C) Validation statistic 5% 50% 
AUC 0.76 0.70 
Optimal prediction threshold 0.31 0.36 
Sensitivity (%) 78.6 67.7 
Specificity (%) 79.7 68.5 
PPV (%) 88.7 50.8 
NPV (%) 68.9 81.5 

C
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Plate 7.6 (continued)



Plate 7.6 (A) Risk prediction surface for prevalence of S. haematobium infection

in northwest Tanzania. Values presented are interpolated median posterior risk es-

timates from a Bayesian geostatistical binomial logistic regression model. Model

parameters were: a (intercept) ¼ 2.3 (95% Bayesian CI �0.7 to 5.9), k (smoothing

parameter) ¼ 0.9 (95% Bayesian CI 0.6 – 1.2), j (decay of spatial correlation) ¼ 0.2

(95%Bayesian CI 0.1 – 0.5) and s (overall variance) ¼ 4.8 (95%Bayesian CI 2.7 –

7.6). (B) Risk prediction surface for prevalence of S. mansoni infection in northwest

Tanzania. Values presented are interpolated median posterior risk estimates from the

Bayesian geostatistical binomial logistic regression model. Model parameters were: a
(intercept) ¼ �12.3 (95%Bayesian CI �18.8 to �4.5), coefficient for distance to

perennial water body, o0.04 decimal degrees ¼ 4.1 (95%Bayesian CI 2.8 – 5.4),

coefficient for distance to perennial water body, 0.04 – 0.1 decimal degrees ¼ 2.3

(95%Bayesian CI 1.2 – 3.4), coefficient for distance to perennial water body, 0.1 – 0.4

decimal degrees ¼ 1.1 (95%Bayesian CI 0.1 – 2.0), coefficient for annual minimum

temperature ¼ 0.4 (95%Bayesian CI 0.0 – 0.8), k (smoothing parameter) ¼ 0.8

(95%Bayesian CI 0.5 – 1.3) ¼ j (decay of spatial correlation) ¼ 2.8 (95%Bayesian

CI 1.0 – 5.7) and s (overall variance) ¼ 1.2 (95%Bayesian CI 0.8 – 1.9). (C) Inter-

vention contour map overlying districts of northwest Tanzania. Areas outside the 0.1

risk contour will be excluded from the mass treatment programme and PQZ will be

made available in health centres. Areas between the 0.1 and 0.5 risk contour will

receive mass treatment, targeted at school-age children. Areas within the 0.5 risk

contour are priority areas where mass treatment will be targeted at school-age chil-

dren and other high-risk groups.



Plate 8.3 (A) The distribution of geo-referenced sites of known presence of TBE complex flaviviruses used in this analysis. In

addition to those shown associated with the phylogenetic matrix (circles), see 1–3 sites for each of TSE (brown triangle) in Turkey, GGE

(orange triangles) in Greece and Bulgaria, Karshi (mauve triangles) in Uzbekistan and Langat (red triangles) in SE Asia. For sources,

see text. (B) The distribution of six tick-borne flaviviruses predicted in a single exercise of discriminant analysis, based on satellite-

derived climatic variables. Each virus is represented by a colour that matches those in Figure 3A: LI, green; SSE, turquoise; WTBE, red;

all Russian TBE, blue; OHF, yellow; KFD, black



Plate 8.3 (continued)



Plate 8.4 Each virus of the tick-borne encephalitis complex occupies a distinct

‘eco-climatic’ space, illustrated here in bi-variate space defined by two of the most

significant climatic variables that predict the distribution of each virus. NDVI (nor-

malized difference vegetation index) is an indirect measure of moisture conditions.

m, vector/host ratio a, biting rate

µ, vector mortality rate T, extrinsic incubation period

m
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temperature temperature
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Plate 10.1 Likely effects of increasing temperature on the variables and param-

eters of the R0 equation. The net effect is indicated by the positive or negative symbol

within each panel. Notice that a positive effect here might decrease transmission (e.g.

the effect on m) or increase it (e.g. the effect on a).
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Plate 10.2 (a) Global map of malaria distribution according to the WHO (1997) (yellow cross-hatching) and predicted distribution

made from 1961–1990 global climate norms. Predictions were made using a discriminant analysis approach (Chapter 1 and (Rogers,

2000)) and are on a probability scale from zero (coloured red) to 1.0 (coloured green) (see inset legend) (model results: 78% correct with

14% false positives and 8% false negatives). (b) Predicted global distribution of malaria in 2050 under the HadCM2 High scenario of

global warming. The model from (A) was run using these climate predictions to produce an estimate of malaria distribution in 2050

(colour scale as in A). The WHO map of malaria is shown for reference (yellow cross-hatching). (c) The difference between Plate 10.2A

and B reveal the predicted changes in global malaria distribution in 2050. Areas coloured red are presently suitable for malaria but will

become unsuitable (generally because of higher temperature or lower rainfall). Areas coloured green are presently unsuitable but are

predicted to become suitable. All areas of no change (i.e. suitable or unsuitable, now and in 2050) are coloured white. Plates 10.2A–C

from Rogers and Randolph (2000), with permission.
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