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Prolegomena

Nature is full of symmetries. . . and of symmetry breakings! The word sym-
metry has a Greek origin: syn \with" and metron \measure", and means
regularity and harmony. The notion of symmetry is important in physics be-
cause it relates to the idea of invariance, and therefore of conservation laws
and also of selection rules. Indeed, if the notion of symmetry has become
so popular today, it is in large part due to the existence of the particularly
powerful tool which is group theory.

Group theory has played such a fundamental role in di�erent domains of
physics in the twentieth century that it is interesting to consider why the no-
tion was not introduced much earlier. The answer looks simple. The �rst (or
one of the �rst) general de�nition of a group, as we know it today, was given
at the end of the last century by Weber in his Trait�e d'Alg�ebre Sup�erieure
(1898). But why did the notion of group come so late in the history of
mathematics, while complex numbers were already known in the sixteenth
century? Why did not the Greeks, who used numbers and geometry, con-
ceive the idea of group structure? An insight into these questions is given
by the mathematician Dieudonn�e (La Gen�ese de la Th�eorie des Groupes,
La Recherche, 103 (1979) 866; see also Pour l'Honneur de l'Esprit Humain,
Hachette, Paris (1988)). Based on the fact that the Greeks did not have the
notion of negative numbers, Dieudonn�e explains that they could not imag-
ine the group structure for real numbers with addition as a composition law.
And though the Greeks were familiar with the multiplication of positive real
numbers, as well as with the notion of fraction, this was the only example
of group structure they had. It is clearly di�cult to generalize a concept
with only one example to hand! The Greeks were also experts in geometry,
but they were only studying \static" properties of �gures. They lacked the
idea of a group of \transformations", or of a group \acting" on a set, which
is always the case when group theory is applied to physics. Still following
Dieudonn�e, it seems that mathematicians were led to introduce the notion
of group from two sources, both intrinsically related. The �rst one concerns
the composition of applications. Such an idea started slowly around 1770
with the work of Lagrange, among others, dealing with the resolution of
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n-th order equations. The study of the variation of an n variable function
f(x1; x2; : : : ; xn) when the order in the variables is changed, or \permuted",
forced mathematicians of that time to overcome the \static" vision of their
science, and led to the discovery of the group of permutations, which was
�rst described in the memoirs of Cauchy (1813) and Galois (1830). Note
that the name \group" was introduced by Galois, but owing to his dramatic
death in 1832 at the age of twenty-one, his work only came to the attention
of the mathematical community in 1846. The second source relates to the
notion of equivalence class. Lagrange was probably the �rst to notice that
an equivalence relation may be determined among the integer x; y solutions
of the binary quadratic forms Q(x; y) = ax2 + bxy + cy2 = n with a; b; c
integers. But it was Gauss in his Disquisitiones arithmeticae (1800) who
gave a precise de�nition of an equivalent class, and wrote explicitly the com-
position of two classes. If one adds that it was only in 1872 that the general
de�nition of an application from one set to another was given for the �rst
time by Dedekind, who also dared to talk in 1877 about a group structure for
the classes of binary quadratic forms, it is easier to understand how di�cult
and convoluted was the introduction of the mathematical object that we
now commonly call a group. This short historical introduction may allow an
appreciation of the distance covered by group theory during the twentieth
century, after its slow and arduous discovery in the nineteenth century. It
is interesting to remark that the notion of transformation group was at the
origin of the concept of group. This same notion, so fundamental in physics,
also led to the development of group theory, giving rise in particular to the
theory of group representations.

A second essential notion concerning symmetries in physics should be
added. The physicist is faced with two kinds of symmetries: exact symme-
tries, for which no kind of violation has been observed, and approached or
broken symmetries. In this latter case, one could distinguish between ex-
plicit or spontaneous breakings. A typical example of explicit breaking is
provided by the so-called Zeeman e�ect in quantum mechanics in which the
introduction of a magnetic �eld near to an atom leads to the adjunction of
a supplementary term in the Hamiltonian H, which breaks the symmetry of
H and splits the degenerate energy states. The left-over degeneracy of the
energy levels can be understood and classi�ed in terms of the residual sym-
metry, still present after the introduction of the symmetry breaking term.
Examples of spontaneous breakings are found in gauge theory. Here, the
Lagrangian is not perturbed when the symmetry of the minima of energy
states, or vacua, is broken: one talks about spontaneous symmetry breaking,
and this gives rise to the Higgs phenomenon. In both cases it is abolutely
necessary to have a deep understanding of the subgroups of a group (and/or
of the Lie subalgebras of a Lie algebra), as well as of the decompositions
of the group (and/or algebra) representations with respect to the residual
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subgroup (subalgebra).

It is usually agreed that invariance is of two types: geometrical or dy-
namical. Geometrical invariance is fundamental in the description of physical
systems such as objects in three-dimensional space, or in four-dimensional
space{time. For example, for molecules and crystals, it is as important to
determine their symmetries to classify them as it is to study their vibratory
modes or their electronic properties. And it is hard to think about relativity
without referring to the Poincar�e group. One of the best examples of dy-
namical invariance is found in gauge theories in elementary particle physics.
The most famous illustration is the Glashow{Weinberg{Salam electroweak
theory, which allows us to \classify" members of a same family of quarks and
leptons while simultaneously \�xing" their electromagnetic and weak inter-
actions. These gauge symmetries allow us to conceptualize with a unique
model two a priori di�erent interactions. Including the strong interaction,
together with gravitation, in order to obtain a uni�ed theory of the four
(known today) fundamental interactions, is of course the next big question!
Here, symmetry has led to the notion of uni�cation.

In these examples, two kinds of groups are used: �nite groups or more
generally discrete groups, and continuous groups or more speci�cally Lie
groups. Both are essential in the study of mathematical physics. Even
though Lie groups and Lie algebras are nowadays of greater importance, one
cannot avoid the use of �nite (discrete) groups to investigate their properties,
as for example using the Weyl group to study simple Lie algebras. It should
be noted that although Lie algebras have been extensively used through-
out the twentieth century, some major developments only occurred in the
last twenty years due to the blossoming of supersymmetry and supergravity.
Two-dimensional conformal �eld theories, while federating string theories,
models of statistical mechanics and more generally integrable systems, have
also strongly contributed to the development of in�nite dimensional Lie alge-
bras, in particular Kac{Moody and Virasoro,W algebras and superalgebras.
One should not forget the deformations of the universal enveloping algebras
known as quantum groups. Other promising structures that are currently
studied include hyperbolic algebras, and Yangian and elliptic algebras.

In this book, we will only be concerned with �nite dimensional Lie al-
gebras and superalgebras, and consequently e�orts will be concentrated on
semi-simple algebras and superalgebras. Our aim is to provide the reader
with an elementary and easy to use handbook on continuous symmetries and
unlike the traditional presentation, this volume is organized as a short dictio-
nary. The main de�nitions and properties of Lie algebras and superalgebras
are given in alphabetical order. Our hope is that in this way the beginner will
be able to discover easily the main concepts on algebras and superalgebras,
while a more experienced theorist will �nd quickly the necessary tools and
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information for any speci�c use. It follows that the potential readers are
researchers working in mathematical and/or theoretical physics, PhD stu-
dents who need to learn the main elements on symmetries, or experimental
physicists looking for formal tools while studying theoretical papers.

It should be noted that Lie algebras and Lie superalgebras are treated
on an equal footing in Part I and Part II of the volume. This is done for
two main reasons. The �rst is that superalgebras are becoming increasingly
used in theoretical physics. The second is linked to the natural extension
of the theory of simple Lie algebras to superalgebras, in spite, of course,
of some speci�c di�erences, such as, for example, the existence for super-
algebras of atypical representations or the indecomposability of products of
representations.

We would also like to emphasize two simple and natural guidelines we
have followed in the elaboration of this volume. They have been introduced
above and concern on the one hand the notion of a group of transforma-
tions, or a group acting on a set, and on the other hand the notion of
symmetry breaking. In this spirit we have presented a detailed description
of the structure of Lie algebras and superalgebras, particularly of the sim-
ple and semi-simple ones, and an extensive study of their �nite dimensional
representation theory.

Since we earnestly desire this book to be of practical use, we have in-
cluded a large number of tables, which constitute its third part. Such explicit
computations often serve to illustrate methods and techniques which are de-
veloped in the �rst two parts and which have never before been considered
in text books. As examples, the reader will �nd in Part I methods, involving
generalized Young tableaux, for the decomposition into irreducible repre-
sentations of the Kronecker product of representations for the orthogonal,
symplectic and also G2 exceptional algebras; techniques for the computation
of branching rules of Lie algebras; and the Dynkin method for the classi�-
cation of sl(2) subalgebras of a simple Lie algebra. In Part II, the special
feature of a simple superalgebra of rank larger than one to admit more than
one Dynkin diagram and the method for determining osp(1j2) and sl(1j2)
sub-superalgebras of a simple superalgebra are developed. Among other
results explicit realizations of all simple Lie algebras and superalgebras in
terms of bosonic and/or fermionic oscillators are provided.

The discussion of concepts and techniques for supersymmetry would itself
require a book. Here again, we have tried to be pragmatic while introducing
the supersymmetry algebra, the basic ingredients on superspace and super-
�elds, and spinors in the Lorentz group. We believe that the elementary
particle physicist will �nd here the necessary tools for further computations
and developments.

We are aware that this work is far from exhaustive: priority has been
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given to clarity and to subjects which seem to us of potential interest today
as well as for direct applications for the study of more elaborated structures,
such as in�nite dimensional algebras or quantum groups. The list of ref-
erences should be viewed as a selection of books and articles in which the
reader can �nd proofs and developments of the presented items, as well as a
more detailed bibliography.

Finally, we wish to thank sincerely many colleagues1 and friends for
providing us with useful suggestions and unceasing encouragement.

Annecy and Napoli Luc, Nino and Paul

November 1999

1Special thanks are due to Michel Du
o for his detailed and constructive remarks on
the superalgebra section.
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Part 1

Lie Algebras

Unless otherwise stated, all Lie algebras considered here
are complex and �nite dimensional.



2 Lie Algebras

1.1 Action of a group

Groups are never considered abstractly in physics, but by their action on
some set S: they are called groups of transformations.

De�nition
Let G be a group and S a set. An action of G on S is an application from
G�S into S such that for all g 2 G and s 2 S the image is g(s) with the
properties

g(g0(s)) = (g � g0)(s) ; 8 g; g0 2 G; 8 s 2 S
e(s) = s where e is the identity in G

Finally, the group G and its action on the set S need to be \represented"
(! 1.72 Representation of a group and 1.48 Lie group of transformations).

1.2 Adjoint representation

Theorem
The structure constants of a Lie algebra G (! 1.85) provide a matrix
representation (! 1.73) for the algebra. This representation is called the
adjoint or regular representation.

In general, this representation is not faithful (that is one to one).

Construction of the adjoint representation

Let X� (� = 1; : : : ; n) be a basis of the Lie algebra G and C �
�� the structure

constants: h
X�;X�

i
= C �

�� X�

Let us associate to each X� a n� n matrix M� such that

(M�)
�
� = �C �

��

One can easily check that � : X� 7!M� is a homomorphism from G into the
group of n� n matrices, and therefore de�nes a representation. Indeed:h

X�;X�

i
= C �

�� X� 7!
h
M�;M�

i�
�

= (M�)


�(M�)

�

 � (M�)



�(M�)

�



= C 

�� C �

�
 � C 

�� C �

�


= �C 

�� C �


�

= C 

�� (M
)

�
�
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where the Jacobi identity (! 1.46) has been used.

Example
The Lie algebra su(3) of the group SU(3) admits as a basis the eight 3�3
hermitian matrices �i (i = 1; : : : ; 8) also called the Gell-Mann matrices
(! 1.90) which satisfy (i; j; k = 1; : : : ; 8)h�i

2
;
�j
2

i
= i fijk

�k
2

The matrices �(�i=2) in the adjoint representation are therefore 8�8 ma-
trices the entries of which are, up to the coe�cient i, the structure con-
stants fijk. More simply, we can say that to the element �j=2 of su(3) will
be associated by action of the generator �i=2 the element

P
k fijk�k=2.

We will write

ad�i=2

�
�j
2

�
=
h�i
2
;
�j
2

i
= i fijk

�k
2

�

Remark on the adjoint representation

In the case of an Abelian algebra, the adjoint representation is trivial and
therefore useless since any structure constant is zero.

In the case of a simple Lie algebra, the adjoint representation is a faithful
representation.

Using the notation adX (Y ) = [X;Y ] if X;Y 2 G, we deduce

ad�X+�Y = � adX +� adY
ad[X;Y ] = [adX ; adY ]

(�; � 2 K where K is the �eld on which G is de�ned).

The last relation is easy to obtain using the Jacobi identity; let Z 2 G:

ad[X;Y ] (Z) =
h
[X;Y ]; Z

i
=

h
X; [Y;Z]

i
�
h
Y; [X;Z]

i
= adX adY (Z)� adY adX (Z)

=
h
adX ; adY

i
(Z)

Note that we express here in other words what is presented above for the
construction of the adjoint representation.
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1.3 Algebra

De�nition
An algebra A over a �eld K (usually R or C , �elds of real or complex
numbers) is a linear vector space with internal law + (addition) endowed
with a second internal law � (multiplication), which is right and left dis-
tributive with respect to the addition; that is for all X;Y;Z 2 A

(X + Y ) � Z = X � Z + Y � Z
X � (Y + Z) = X � Y +X � Z

The algebra is said to be associative if for all X;Y;Z 2 A
(X � Y ) � Z = X � (Y � Z)

and commutative or Abelian if for all X;Y 2 A
X � Y = Y �X

1.4 Automorphisms

Group automorphisms

De�nition
Let G be a group. An automorphism of G is a bijective endomorphism
of G, that is a bijective homomorphism of G on itself (! 1.38).

Property
The set of automorphisms of a group G forms a group denoted Aut(G).
Its internal law is the natural composition of applications. The identity
is the identity operator (associating to each element g 2 G the element g
itself). The inverse of an automorphism of G is the inverse application.

Example
Let g0 be an element of G. The application

Adg0 : g 2 G 7! g0 g g
�1
0 2 G

is an automorphism. Such an automorphism is called an inner automor-
phism or a conjugation. Moreover the elements g and g0 = g0 g g

�1
0 will

be said to be conjugate with respect to g0. �

Property
The set of the inner automorphisms of a group G forms a group denoted
Int(G) (which is of course a subgroup of Aut(G)).
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It is easy to understand the importance of inner automorphisms. For ex-
ample, consider the rotation group in three dimensions { orthogonal group
O(3) { acting on the three-dimensional space R 3 . Then any rotation R(�; ~n)
of angle � around a �xed axis ~n is conjugate to the rotation R(�; ~m) of same
angle � around the axis ~m. Let us call R0 the rotation in the plane (~n; ~m)
such that ~m = R0~n; then we will have

R0R(�; ~n)R0�1 = R(�;R0~n)

Such a conjugation reduces to an orthogonal change of frame.

Property
The inner automorphism group of a group G is isomorphic to the quotient
of G by its center Z(G):

Int(G) ' G=Z(G)

This property is obvious since any element in the center of G (! 1.10) acts
trivially as a conjugation on any element of G. We have in particular the
property

Z(G) = ker(Ad) =
n
g0 2 G

��� Adg0 = I

o
Remember also that Z(G) is an invariant subgroup of G.

But any automorphism of a group is not in general an inner one.

De�nition
An automorphism of a group G which is not inner is called outer auto-
morphism.

The set of outer automorphisms is not a group in general. But one has:

Theorem
The application Ad : g 2 G 7! Adg 2 Aut(G) is a homorphism and
Int(G) is a normal (or invariant) subgroup of G. It follows that the
quotient Aut(G)=Int(G) is a group. Moreover, if the group G is simple
(! 1.82), the quotient group Aut(G)=Int(G) is �nite.

Example
Consider the Euclidean group (! 1.29) in three dimensions E(3). One
can check that the center of E(3) contains only the identity element
Z(E(3)) = f(0; I)g and therefore Int(G) ' G, but that there exist outer
automorphisms, actually dilatations
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D�(~a;R) = (�~a;R)

� being a real number, argument of the dilatation.

These dilatations form a one parameter group D(1) which can be seen
as the quotient Aut(E(3))=E(3). The dilatation group commutes with
the rotation part, and therefore Aut(E(3)) can be seen as the semi-direct
product of E(3) by D(1) or of T (3) by SO(3)�D(1) if we denote E(3)
as the semi-direct product T (3)n SO(3). �

Lie algebra automorphisms

De�nition
Let G be a Lie algebra. An automorphism of G is a bijective homomor-
phism of G on itself. The set of automorphisms of a Lie algebra G forms
a group denoted Aut(G).

The group of inner automorphisms of G, denoted Int(G), is the group gener-
ated by the automorphisms of the form X 7! gXg�1 with g = expY where
X;Y 2 G.

Property
Let G be a simple Lie algebra with root system � with respect to a
Cartan subalgebra H of G. Let Aut(�) be the group of automorphisms
and W (�) the Weyl group of �. One has the following isomorphism:

Aut(G)
Int(G) '

Aut(�)

W (�)
= F (G)

F (G) is called the factor group; it is isomorphic to Out(G) if we de�ne
Out(G) as the group of G-automorphisms up to an element of Int(G), itself
isomorphic to G since G is simple. F (G) is also isomorphic to the group of
symmetry of the Dynkin diagram (! 1.27) of G, since an element of W (�)
can be lifted to an inner automorphism of G and a symmetry of the Dynkin
diagram is then associated to an outer automorphism of G.
Let us add that one has also

Aut(�) =W (�)3F (G)
where W (�) is a normal subgroup of Aut(�).

Table 1.1 lists the outer automorphisms of the simple Lie algebras.
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Table 1.1: Outer automorphisms of the simple Lie algebras.

simple Lie algebra G Out(G) simple Lie algebra G Out(G)
AN�1, DN , E6 Z2 A1, BN , CN I

D4 S3 E7, E8, F4, G2 I

1.5 Branching rules

De�nition
Let G be a (semi-)simple Lie algebra and K a subalgebra of G. An irre-
ducible representation R(G) of G is obviously a representation, in general
reducible, R(K) of K. So the following formula holds

R(G) =
M
i

miRi(K)

where Ri(K) is an irreducible representation of K and mi 2 Z>0 is
the number of times (degeneracy) the representation Ri(K) appears in
R(G). The determination of the above decomposition for any RG gives
the branching rules of G with respect to K.

One has clearly

dimR(G) =
X
i

mi dimRi(K)

In some cases general procedure to determine the branching rules exist, but
in most cases one has to work out the result case by case. In the following,
we give general procedure for the cases

1. su(p+ q) � su(p)� su(q)� U(1)
2. su(pq) � su(p)� su(q)
3. so(2n) � su(n)
4. sp(2n) � su(n)
5. so(2n+ 1) � so(2n)
6. so(2n) � so(2n� 1)

and we report in tables a few results concerning the branching rules for the
exceptional Lie algebras with respect to the maximal regular subalgebras and
with respect to (singular) subalgebras containing the exceptional Lie algebras
(see Tables 3.31{3.37). In refs. [59, 87, 98, 100] tables with branching rules
can be found.
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Branching rules for su(p+ q) � su(p)� su(q)� U(1)

To any irreducible representation of su(p), su(q) we can associate two Young
tableaux (! 1.96), say [�] and [�]. Then an irreducible representation of
su(p + q) speci�ed by the Young tableaux [�] contains the representation
([�]; [�]) if the \outer" product of the Young tableaux [�] and [�] contains
the Young tableaux [�], with the multiplicity given by the times the Young
tableaux [�] appears in [�] 
 [�] (see ref. [44]). The \outer" product of
two Young tableaux is performed using the rules given in ! 1.96, without
imposing any limit on the number of rows. Once the product has been
performed, the terms containing Young tableaux with more than p+ q rows
have to be neglected. As to any Young tableaux of su(n) we can add k
columns of n rows, it follows that the same representation ([�]; [�]) appears
in the representation of su(p+ q) with kp+ lq extra boxes for [�] (k; l 2 Z+).
In general a representation of ([�]; [�]) appears in the representation [�] of
su(p+ q) if (n� being the number of boxes of the Young tableau [�])

kp+ lq + n� + n� = n�

The value of the charge Y of U(1) can be computed, up to a multiplicative
numerical factor which depends on the normalization, by

Y = q n� � pn�

the one-dimensional trivial representation being represented by a Young
tableau with zero box.

Remarks:

1. in order to apply the above formula, one has to count the number
of boxes of the Young tableaux [�] and [�] before taking away the
columms with, respectively, p and q rows.

2. the sum of the values of the charge Y over all the states of the ir-
reducible representations of su(p), su(q), taken with the appropriate
multiplicity, appearing in an irreducible representation of su(p+ q) is
zero.

Example
The decomposition of the Young tableaux corresponding to the irreducible
representation [2; 1; 1; 1] of dimension 504 of su(8) is

=

 
; �
!
�
 

;

!
�
 

;

!
�
 

;

!
(1.1)
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�
 

;

!
�
 

;

!
� terms interchanging the Y.T. (1.2)

Let us consider the branching rules for su(8) � su(3)� su(5)� U(1). In
this case, we have to neglect the Young tableau with more than three
rows in the �rst term. Using the table of dimensions, we have, writing
the dimension of su(3) and su(5) and the value of the charge Y of U(1):

504 = (3; 5; 17)� (8; 10; 9)� (1; 15; 9)� (1; 10; 9)� (6; 10; 1)

�(3; 40; 1)� (3; 10; 1)� (3; 45;�7)� (3; 5;�7)� (1; 24;�15)

Let us consider the branching rule for su(8) � su(4) � su(4) � U(1). In
this case, all the Young tableaux have to be taken into account and we
�nd

504 = (4; 1; 20)� (15; 4; 12)� (1; 4; 12)� (20; 6; 4)� (4; 10; 4)

�(4; 6; 4)� (6; 4;�4)� (10; 4;�4)� (6; 20;�4)� (4; 1;�12)
�(4; 15;�12)� (1; 4;�20)

�

Branching rules for su(pq) � su(p)� su(q)

An irreducible representation of su(pq) labelled by the Young tableau [�]
with n� boxes contains only the irreducible representations of (su(p); su(q))
labelled by Young tableaux containing resp. n��kp and n�� lq, boxes with
k; l 2 Z>0 (see ref. [44]). In order to determine which irreducible represen-
tations of (su(p); su(q)) are contained in the irreducible representation [�],
we have to compute all the possible irreducible representations of su(q) and
su(p), with n� boxes, such that the \inner" product of such Young tableaux,
considered as irreducible representations of the symmetric group Sn� , con-
tains the Young tableau [�], with the appropriate multiplicity. Rules for
performing such \inner" product have been given by several authors, see ref.
[38] where references to the original papers can be found. In the following
we report some general special formulae and the table of the inner products
of Sn for n = 2; 3; 4 (see Table 3.30). Tables for n � 8 can be found in ref.
[44].

[n� 1; 1]
 [n� 1; 1] = [n]� [n� 1; 1]� [n� 2; 2]� [n� 2; 1; 1]

[n� 1; 1]
 [n� 2; 2] = [n� 1; 1]� [n� 2; 2]� [n� 2; 1; 1]� [n� 3; 3]

�[n� 3; 2; 1]
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[n� 1; 1]
 [n� 2; 1; 1] = [n� 1; 1]� [n� 2; 2]� [n� 2; 1; 1]

�[n� 3; 2; 1]� [n� 3; 1; 1; 1]

[n� 2; 2]
 [n� 2; 2] = [n]� [n� 1; 1]� 2 [n� 2; 2]� [n� 2; 1; 1]

�[n� 3; 3]� 2 [n� 3; 2; 1]� [n� 3; 1; 1; 1]

�[n� 4; 4]� [n� 4; 3; 1]� [n� 4; 2; 2]

The terms in the r.h.s. which do not correspond to meaningful Young
tableaux or to Young tableaux with more than p, resp. q, rows have to
be neglected.

[�]
 [1n] = [�]T

where [�]T is the Young tableau obtained by [�] interchanging rows with
columns.

Example
Let us consider the branching rule for the irreducible representation [2; 2]
of sl(6) � sl(2) � sl(3). From the table of dimensions, neglecting the
Young tableaux with more than two (resp. three) rows in the �rst term
(resp. second term), we �nd

=

 
;

!
�
 

;

!

�
 

;

!
�
 

;

!

that is in terms of the dimensions

105 = (5; 6) � (1; 21) � (3; 15) � (3; 3)

�

Branching rules for so(2n) � su(n)

The Young tableaux associated to the irreducible representations of su(n)
appearing in the decomposition of a vector irreducible representation of
so(2n) associated to a generalized Young tableau (GYT) [�] (! 1.64) can
be found by the following two-step procedure:

1. Find the set of generalized Young tableaux f[�j]g given by (0 � j �
n�), n� being the number of boxes of [�])

f[�j]g = (fL2j
n g 
 [�])A
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where L2j
n are completely negative Young tableaux with n rows of the

form

L2j
n (faig) = [: : : ;�a2;�a2;�a1;�a1]

where faig is a set of non-negative integers satisfying ai � ai+1 andP
i ai = j. For n = 5 we have e.g.

L2
5 = [0; 0; 0;�1;�1] ; L4

5 = [0;�1;�1;�1;�1] ; [0; 0; 0;�2;�2] ; : : :

The GYTs L2j
n are a generalization of the GYT denoted with the same

symbol introduced in ! 1.64.

The lower label Ameans that we have to keep only the GYTs satisfying
the following conditions:

(a) Denoting by �i the number of boxes in the ith row of a generic
GYT in the l.h.s,

P
i j�ij � n� and j�ij � �1.

(b) If some j�ij is equal to �1 (which may be either �1 or �n), then
any other label must be not larger than �2 and so on.

(c) A GYT appearing more than once in the product with L2j
n (faig),

for the same set faig, has to be considered only once.

(d) A GYT appearing twice in the product with L2j
n (faig), for di�er-

ent sets faig, has to be considered twice only if

nX
i

j�ij � n� � 2(j � 1)

For more complicated multiplicity, which however may appear
only with large GYT [�], care has to be applied in order to deter-
mine how many times the GYT in the l.h.s. has to be counted, the
root of the di�culty being the same as the determination of the
multiplicity of a state in an irreducible representation of so(2n).

2. Subsequently we have to replace a GYT [�] with negative boxes by the
complementary Young tableau [m] (with positive boxes) obtained from
[�] by replacing a column with ci negative boxes by a column with n�ci
positive boxes. E.g. in so(8), the complementary Young tableau of the
GYT [2; 0;�1;�2] is [4; 2; 1; 0]. As a consequence of the de�nition, the
complementary Young tableau satis�es always m1 = �1+ j�nj, mn = 0
and the number of the boxes of [m] is the (algebraic) sum of the boxes
of [�] plus nj�nj.
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Example 1
From example 1 of ! 1.64, the irreducible representation [12] of so(10)
decomposes with respect to su(5) as

[12] ! [12] � [1; 0; 0; 0;�1] � [0] � [0; 0; 0;�1;�1]
! [12] � [2; 1; 1; 1] � [0] � [13]

Using the table of dimensions, we get

45 = 10 � 24 � 1 � 10

�

Example 2
As a second example, we discuss the decomposition of the irreducible
representation [2; 1] of so(10) with respect to su(5). We get

3X
j=0

(L2j
5 
 [2; 1])A =

=

8>><>>:
0BB@� � � � � �

1CCA 

9>>=>>;
A

= � � � � � � � �

which leads to

� � � � � � � �

Using the table of dimensions, we have

330 = 45 � 5 � 70 � 45 � 45 � 70 � 5 � 10 � 40

Note that the GYT [1; 0; 0;�1;�1] for example appears in the product
twice (in [2; 1] 
 [0;�1;�1;�1;�1] and [2; 1] 
 [0; 0; 0;�2;�2] respec-
tively), but we keep it only once due to rule (c) of step 1. �
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Branching rules for sp(2n) � su(n)

The Young tableaux associated to the irreducible representations of su(n)
appearing in the decomposition of an irreducible representation of sp(2n)
associated to a generalized Young tableaux [�] (! 1.66) can be found by the
following two-step procedure:

1. Find the set of generalized Young tableaux f[�j]g given by (0 � j � n�)

f[�j]g = (fP 2j
n g 
 [�])A

where P 2j
n are completely negative Young tableaux with n rows of the

form

P 2j
n (fbig) = [: : : ;�b3;�b2;�b1]

where fbig is a set of non-negative even integers satisfying bi � bi+1
and

P
i bi = 2j. For n = 4 we have e.g.

P 2
4 = [0; 0; 0;�2] ; P 4

4 = [0; 0;�2;�2] ; [0; 0; 0;�4]

The GYT P 2j
n are a generalization of the GYT denoted with the same

symbol introduced in ! 1.66.

The lower label Ameans that we have to keep only the GYTs satisfying
the following conditions:

(a) Denoting by �i the number of boxes in the ith row of a generic
GYT in the l.h.s,

P
i j�ij � n� and j�ij � �1.

(b) If a j�ij is equal to �1 (which may be either �1 or �n), then any
other label must be not larger than �1 and so on.

(c) A GYT appearing more than once in the product with P 2j
n (fbig),

for the same set fbig, has to be considered only once.

(d) Care has to be applied to determine how many times a GYT
appearing more than once has to be counted, the root of the
di�culty being the same as the determination of the multiplicity
of a state in an irreducible representation of sp(2n). However this
happens only for large GYT [�].

2. Subsequently we have to replace a GYT [�] with negative boxes by the
complementary Young tableau [m] (see previous subsection).
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Example 1
From example 1 of ! 1.66, the irreducible representation [12] of sp(10)
decomposes with respect to su(5) as

[12] ! [12] � [1; 0; 0; 0;�1] � [0; 0; 0;�1;�1]
! [12] � [2; 1; 1; 1] � [13]

Using the table of dimensions, we get

44 = 10 � 24 � 10

�

Example 2
As a second example, we discuss the decomposition of the irreducible
representation [2; 1] of sp(10) with respect to su(5). We have

3X
j=0

(P 2j
5 
 [2; 1])A =

=

( 
� � � � � �

!



)
A

= � � � � � � �

which leads to

� � � � � � �

Using the table of dimensions, we have

320 = 40 � 5 � 70 � 45 � 70 � 45 � 5 � 40

�

Branching rules for so(2n+ 1) � so(2n)

The generalized Young tableaux f[�k]g associated to the irreducible represen-
tations of so(2n) appearing in the decomposition of an irreducible representa-
tion of so(2n+1) associated to a generalized Young tableau [�] = [�1; : : : ; �n]
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(! 1.65) are given by (0 � k � �1)

f[�k]g = (fSkng 
 [�])(+)

where Skn are completely negative Young tableaux with n rows of the form

Skn = [0; : : : ; 0;�k] k = 0; 1; 2; : : :

and the lower label (+) means that we have to keep only the completely
positive GYTs.

Moreover if the GYT [�] has n non-vanishing rows or in the case of spinor
irreducible representations, the conjugate irreducible representations has to
be added.

Example
We consider the branching of the irreducible representation [2; 1; 1; 1] of
so(9) with respect to so(8). We have

S04 
 [2; 1; 1; 1] = [2; 1; 1; 1]

S14 
 [2; 1; 1; 1] = [1; 1; 1; 1]� [2; 1; 1]

S24 
 [2; 1; 1; 1] = [1; 1; 1]

So �nally we have [2; 1; 1; 1] = [2; 1; 1; 1] � [2; 1; 1;�1] � [1; 1; 1; 1] �
[1; 1; 1;�1]� [2; 1; 1]� [1; 1; 1], that is in terms of the dimensions

924 = 224� 224� 35� 35� 350� 56

�

Branching rules for so(2n) � so(2n� 1)

The generalized Young tableaux f[�k]g associated to the irreducible repre-
sentations of so(2n � 1) appearing in the decomposition of an irreducible
representation of so(2n) associated to a generalized Young tableau [�] (with
�n � 0) (! 1.64) are given by

f[�k]g = (fSkng 
 [�])(+)

where the meaning of Skn and of the lower label (+) is the same as in the
branching rules for so(2n+ 1) � so(2n). Moreover one has to keep only the
GYTs with at most n� 1 rows. It follows that we have the equality:

dim [pn] = dim [pn�1] (p 2 Z+)
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The branching rules for the irreducible representation [�] (with �n < 0) is
the same as the complex conjugate irreducible representation, i.e. the one
obtained changing the sign of �n.

Example
We consider the branching of the spinor irreducible representation [3]0 of
so(10) with respect to so(9). We have

S05 
 [3]0 = [3]0 S15 
 [3]0 = [2]0

S25 
 [3]0 = [1]0 S35 
 [3]0 = [0]0

So the �nal result is [3]0 = [3]0 � [2]0 � [1]0 � [0]0, that is in terms of the
dimensions

2640 = 1920� 576� 128� 16

�

1.6 Cartan{Weyl basis, Cartan subalgebra

Properties of simple Lie algebras, in particular their classi�cation and their
representations, are consequences of the structure of the Cartan basis asso-
ciated to these algebras. In order to better understand the meaning of the
Cartan basis, and to keep in mind its properties, we give below the main
steps leading to this decomposition.

Cartan's problem

Let G be a simple Lie algebra of dimension n over R and fX1; : : : ;Xng a
basis of generators of G such thath

Xi;Xj

i
= C k

ij Xk

Let A 2 G. The Cartan's problem is to �nd the X 2 G such that

adA (X) =
h
A;X

i
= �X

that is, if A = aiXi and X = xjXj,

aixjC k
ij = �xk

This is a system of n linear equations, the solution of which is non-trivial if
and only if

det(aiC k
ij � ��kj ) = 0
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We have here an nth order equation in �, which will admit n solutions (xi)�
and then n operators X�, as soon as one complexi�es G, that is one considers
G de�ned on the complex �eld C (remember that an n degree polynomial
equation has n solutions on the �eld of complex numbers C but not on R :
R is not algebraically closed).

The solution to this problem has been given by Cartan:

Theorem (Cartan)
Let G be a simple Lie algebra. If A is chosen such that the equation
det(aiC k

ij � ��kj ) = 0 has a maximal number of di�erent roots, then

1. the root � = 0 is r times degenerate and there are r linearly inde-
pendent elements H1; : : : ;Hr such that (i; j = 1; : : : ; r)h

A;Hi

i
=
h
Hi;Hj

i
= 0

2. the other n � r roots are not degenerate. Denoting E� the eigen-
vectors with eigenvalue �, one hash

A;E�

i
= �E�

The r elements Hi and the n � r elements E� are linearly independent
and therefore constitute a basis of G, which is called the Cartan basis.

Consequences of Cartan's theorem

Let us noteh
A;
h
Hi; E�

ii
=
hh
A;Hi

i
; E�

i
+
h
Hi;
h
A;E�

ii
= �

h
Hi; E�

i
Since � is a non-degenerate eigenvalue,

h
Hi; E�

i
is proportional to E�:

h
Hi; E�

i
= �iE�

Moreover, considerh
A;
h
E�; E�

ii
=
hh
A;E�

i
; E�

i
+
h
E�;

h
A;E�

ii
= (�+ �)

h
E�; E�

i
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We have now three possibilities:

1: �+ � is not a root:
h
E�; E�

i
= 0

2: �+ � 6= 0
h
E�; E�

i
= N�� E�+�

3: �+ � = 0
h
E�; E�

i
=
h
E�; E��

i
=
Pr

i=1 �
iHi

Actually, one has the following property:

Theorem
If � is a root, then �� is a root.

As a consequence, the number of roots is even and is equal to n � r. We
have also to note that:

Property
adHi

can be chosen hermitian. Therefore the eigenvalues �i are real.

Let us summarize the above discussion with the two de�nitions:

Cartan{Weyl basis, Cartan subalgebra

De�nition
Let G be a simple complex Lie algebra of dimension n. The Cartan{
Weyl basis of G will be constituted by the r generators Hi and the n� r
generators E� satisfying the commutation relations:h

Hi;Hj

i
= 0

h
Hi; E�

i
= �iE�h

E�; E��
i
=

rX
i=1

�iHih
E�; E�

i
= N�� E�+� if �+ � is a non-zero root

The r-dimensional vector � = (�1; : : : ; �r) of R r is said to be root associated
to the root generator E�. The coe�cients N�� satisfy for any pair of roots
� and �

N2
�� =

1
2k(k

0 + 1)�2

where k and k0 are integers such that �+k� and ��k0� are roots. Moreover,
one has

N�� = �N�� = �N����
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where the roots are normalized such thatX
�6=0

�i�j = �ij =)
X
� 6=0

�2 = r

in accordance with the Killing form (! 1.44)

gij =

0BBBBBBB@

�ij
0 1 0
1 0

. . .

0 0 1
1 0

1CCCCCCCA
|{z}
r
| {z }

n�r=2p

De�nition
The set H generated by the generators (H1; : : : ;Hr) is called the Cartan
subalgebra of G. The dimension of the Cartan subalgebra is the rank of
the Lie algebra G:

rankG = dimH
Property

The Cartan subalgebra H is unique up to conjugation of G. It is maximal
as Abelian subalgebra of G, that is any Abelian subalgebra of G is in H
(up to a conjugation). Because of its uniqueness, one can say that H is
\the" maximal Abelian subalgebra of G.

Property
Any element of a semi-simple algebra G is conjugate to an element of the
Cartan subalgebra H once given a basis for G and H (i.e. for any X 2 G,
one can choose H such that X 2 H).

For any element H =
Pr

i=1 �
iHi 2 H, one can writeh
H;E�

i
= �(H)E�

where � is a linear functional on H, that is an element of the dual H� of H,
such that �(H) =

Pr
i=1 �

i�i.

Since there exists a unique (up to a multiplicative factor) non-degenerate
symmetric bilinear form B (! 1.44) on the Cartan subalgebra H, one can
associate to any functional � 2 H� an element H� 2 H, such that

B(H;H�) = �(H)
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Now, one can de�ne the scalar product of two roots � and � by

� � � = B(H�;H�)

that is � � � = �(H�) = �(H�).

Example 1
Consider the Lie algebra su(2) of SU(2), group for 2�2 unitary matrices
with determinant equal to one. A basis of generators is J1; J2; J3 such
that h

Ji; Jj

i
= i "ijk Jk

"ijk is the completely antisymmetric rank three tensor with "123 = 1. One
chooses (su(2) is of rank 1)

H = J3 and E� = J� = J1 � iJ2
then h

J3; J�
i
= �J� and

h
J+; J�

i
= 2J3

�

Example 2
Consider the Lie algebra su(3) of SU(3), group for 3�3 unitary matrices
with determinant equal to one. A basis of generators is given by the
Gell-Mann matrices �i (! 1.90). Choosing (su(3) is of rank 2)

H1 = �3 and H2 = �8

the roots can be taken as

E�� = �1 � i�2 ; E�� = �4 � i�5 ; E�
 = �6 � i�7
The three operators �3; �1 � i�2 form a Cartan basis of an su(2) subal-
gebra; so do the three operators �3 +

p
3�8; �4 � i�5 or the three others

�3 �
p
3�8; �6 � i�7: we have constructed the so-called I, U and V spin

algebras. �

1.7 Cartan classi�cation of simple Lie algebras

From Levi's theorem (! 1.47), one knows that any Lie algebra can be seen
as the semi-direct sum of a solvable Lie algebra by a semi-simple one. Let
us remember that a semi-simple Lie algebra is a direct sum of simple Lie
algebras. Owing to the work of Cartan one knows that any simple �nite
dimensional Lie algebra is one of the following types:
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� AN�1 or su(N), where N � 2 is an integer, is the Lie algebra of the
group of unitary N �N matrices of determinant 1. Its rank is N � 1
and its dimension is N2 � 1.

� BN or so(2N +1), where N � 1 is an integer, is the Lie algebra of the
group of orthogonal (2N + 1) � (2N + 1) matrices of determinant 1.
Its rank is N and its dimension is N(2N + 1).

� CN or sp(2N), where N � 1 is an integer, is the Lie algebra of the
group of symplectic 2N � 2N matrices of determinant 1. Its rank is N
and its dimension is N(2N + 1).

� DN or so(2N), where N � 3 is an integer, is the Lie algebra of the
group of orthogonal 2N � 2N matrices of determinant 1. Its rank is
N and its dimension is N(2N � 1). For N = 2, one �nds so(4) which
is not simple but semi-simple: so(4) = so(3)� so(3).

To these four series of Lie algebras have to be added �ve \isolated" simple
Lie algebras:

� G2, F4, E6, E7, E8, Lie algebras of �ve exceptional Lie groups of rank
2, 4, 6, 7, 8 and dimension 14, 52, 78, 133, 248 respectively.

For any of these algebras, there exists a positive integer N such that the
algebra under consideration is a subalgebra of gl(N; C ), the Lie algebra of
the group GL(N; C ) of N �N invertible complex matrices.

Based on algebra, this classi�cation can be illustrated geometrically (! 1.77
Roots, root system).

! 1.30 Exceptional Lie algebras, 1.58 Orthogonal groups and algebras, 1.89
Symplectic groups and algebras, 1.90 Unitary groups and algebras.

1.8 Cartan matrix

De�nition
Let G be a simple Lie algebra with Cartan subalgebra H and simple root
system �0 = (�1; : : : ; �r). The Cartan matrix A = (Aij) of the simple
Lie algebra G is the r � r matrix de�ned by

Aij = 2
�i � �j
�i � �i = �_i � �j 1 � i; j � r

where �_i = 2�i=(�i ��i) is the coroot (! 1.83) associated to the root �i.

This matrix plays a fundamental role in the theory of the simple Lie algebras:
in particular, it is the basic ingredient for the description of the Lie algebra
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in the so-called Serre{Chevalley basis (! 1.81); this matrix is also encoded
in the Dynkin diagram (! 1.27) of the Lie algebra.

The Cartan matrix satis�es the following properties:

Aij 2 Z

Aii = 2 and Aij � 0 (i 6= j)

Aij = 0 ) Aji = 0

AijAji 2 f0; 1; 2; 3g (i 6= j)

detA 6= 0 (the Cartan matrix is non-degenerate)

In fact, only the following possibilities occur for the simple Lie algebras:

AijAji = 1 for all pairs i 6= j: AN , DN , E6, E7, E8.
AijAji = 1 or 2 for all pairs i 6= j: BN , CN , F4.
AijAji = 1 or 3 for all pairs i 6= j: G2.

The Cartan matrices of the simple Lie algebras are listed in Tables 3.1{3.9.

Generalized Cartan matrix

Let G be a simple Lie algebra with Cartan subalgebra H and simple root
system �0 = (�1; : : : ; �r). One de�nes the extended simple root system byb�0 = �0 [ f�0g where ��0 is the highest root with respect to �0. The

generalized Cartan matrix bA = ( bAij) of the simple Lie algebra G is the
(r + 1)� (r + 1) matrix de�ned by

bAij = 2
�i � �j
�i � �i 0 � i; j � r

Obviously one has bAij = Aij for 1 � i; j � r and bA00 = 2, while the 0-th
row and 0-th column have the following coe�cients (1 � i � r):

bAi0 = � rX
j=1

Aij aj and bA0i = �
rX
j=1

a_j Aji

where aj and a
_
j are the marks and the comarks (! 1.83), and the roots are

normalized such that the longest root has length squared equal to two.

1.9 Casimir invariants

Given a representation � of a semi-simple Lie group G with representation
space V, one can form, in the set of polynomials de�ned on V, quantities
which are invariant { or scalar { under G. For each representation � of
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G, there exist a �nite number of functionally and algebraically independent
invariants. As an example, let us consider the three-dimensional represen-
tation of the orthogonal group SO(3) and ~v a three-dimensional vector in
the representation space V. Then the quantity ~v 2 = ~v:~v is invariant under
SO(3), that is R~v:R~v = ~v:~v for all R 2 SO(3). ~v 2 is the only independent
invariant of the representation, in the sense that any function of ~v invariant
under SO(3) is actually a function of ~v 2.

Specially important invariants are those which can be built in the adjoint
representation of G. At the Lie algebra level, one has to �nd the polynomials
in the generators which are invariant under the action of the algebra. A semi-
simple Lie algebra G of rank r has r fundamental invariants (that is any of
these invariants cannot be written as the function of other invariants, and
any invariant is either one of these r invariants or a function of them). In
particular, G contains one fundamental invariant of degree 2:

C2 = g��X�X�

where g�� is the inverse of the Killing form g�� = C �
�� C �

�� corresponding

to the basis fX�g of G satisfying [X�;X�] = i C 

�� X
. C2 and the other

fundamental invariants of G are called the Casimir invariants of G.
Table 1.2 gives the degrees of the Casimir invariants of the simple Lie al-
gebras. The degrees of the Casimir invariants minus one are called the
exponents of the simple Lie algebra.

Table 1.2: Casimir invariants of the simple Lie algebras.

G degrees of the Casimirs G degrees of the Casimirs

AN�1 2, 3, . . . , N E6 2, 5, 6, 8, 9, 12
BN 2, 4, . . . , 2N E7 2, 6, 8, 10, 12, 14, 18
CN 2, 4, . . . , 2N E8 2, 8, 12, 14, 18, 20, 24, 30
DN 2, 4, . . . , 2N � 2, N F4 2, 6, 8, 12

G2 2, 6

Since a Casimir operator C built in the algebra of polynomials of G, or
enveloping algebra of G (! 1.91), is G-invariant, one hash

C;X
i
= 0 ; 8X 2 G

It follows, using Schur's theorem, that C is a multiple of the identity in any
irreducible representation of G and one has the property:

Property
Let G be a simple Lie algebra of rank r. The eigenvalues of the r Casimir
invariants on an irreducible representation � of G completely characterize
this representation.
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Let G be a simple Lie algebra of rank r. In the Cartan{Weyl basis (! 1.6)
of G, the second order Casimir invariant reads

C2 =
rX
i=1

HiHi +
X
�2�+

� � �
2

(E�E�� + E��E�)

where �+ is the positive root system, Hi are the Cartan generators and E��
the root generators of G.
If � is an irreducible representation of G with highest weight �, the evaluation
of C2 on the corresponding weight vector j�i is given by

C2j�i =
�
� � �+

X
�2�+

� � �
�
j�i = � � (� + 2�)j�i

where � is the Weyl vector (half-sum of the positive roots) (! 1.94).

Since C2 commutes with all the generators of G, it follows that C2 has the
same eigenvalue on all states of the representation � of highest weight �
(as indicated in the above property). It has also the same eigenvalue on all
states of the conjugate representation �� of highest weight ��.

Examples

The Lie algebra sl(2) is of rank one. If
h
Ji; Jj

i
= i "ijk Jk (i; j; k = 1; 2; 3),

the only Casimir operator is

C2 = J2 =
3X
i=1

J2i

Its eigenvalue for the representation Dj of dimension (2j + 1) is j(j + 1).

The Lie algebra sl(3) is of rank two. Using the Gell-Mann matrices �i (i =

1; : : : ; 8) satisfying
h
�i; �j

i
= 2i fijk �k and

n
�i; �j

o
= 4

3�ij I+ 2dijk �k

(! 1.2), the two Casimir operators can be written as

C2 =
8X
i=1

�2i and C3 =
8X

i;j;k=1

dijk �i�j�k

and their eigenvalues in the representationD(j1; j2) (whose corresponding
Young tableau (! 1.96) has j1+ j2 boxes in the �rst row and j2 boxes in
the second row) are:
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C2 =
1

9

h
(j21 + j1j2 + j22) + 3(j1 + j2)

i
C3 = 16(j1 � j2)

h
2
9(j1 + j2)

2 + 1
9j1j2 + j1 + j2 + 1

i
�

A complete study of the eigenvalues of the Casimir operators for the compact
Lie algebras AN , BN , CN , DN and G2 can be found in ref. [68].

1.10 Center (of a group, of an algebra)

De�nition
Let G be a group; then the center of G is the set of elements of G which
commute with any element in G. We will denote it Z(G):

Z(G) =
n
g 2 G

��� g � g0 = g0 � g ; 8 g0 2 G
o

Z(G) is a normal Abelian subgroup of G.

De�nition
Let G be a Lie algebra; then the center Z(G) of G is the set of elements
of G which commute with any element of G:

Z(G) =
n
X 2 G

��� hX;Y i = 0 ; 8Y 2 G
o

Z(G) is an (Abelian) ideal of G.

Property
The center of a simple Lie algebra is empty.

1.11 Centralizer (of a group, of an algebra)

De�nition
Let G be a group, S a subset of elements in G. The centralizer CG(S) is
the subset of G given by

CG(S) =
n
g 2 G

��� g � s = s � g ; 8 s 2 S
o

The centralizer CG(S) is a subgroup of G.
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De�nition
Let G be a Lie algebra, S a subset of elements in G. The centralizer CG(S)
is the subset of G given by

CG(S) =
n
X 2 G

��� hX;Y i = 0 ; 8Y 2 S
o

The centralizer CG(S) is a subalgebra of G.

1.12 Characters

This very important notion is used in many places. It is involved in the de-
termination of dimensions of representations, as well as of partition functions
for statistical mechanics models and string theory. Below, and also in the
rest of this book, only �nite dimensional representations of �nite dimensional
groups are considered.

De�nition
Let G be a group and � a �nite dimensional representation of G. The
character of � is the function � from G to R (or C ) de�ned by

�(g) = tr[�(g)] for any g 2 G
It is obvious that �(g) = �(g0) if g and g0 in G are conjugated, that is 9 g0 2
G such that g = g0g

0g�10 . We note also that two equivalent representations
� and �0 of G (! 1.72) have the same character.

Since any element x in a simple Lie algebra G of rank r is conjugated to an
element h in a Cartan subalgebra H of G by a element g 2 G, x = ghg�1
with h =

Pr
j=1 �

jhj , the character of a G representation will be a function

of the r variables �1; : : : ; �r.

Example
As an example, let us look at the SU(2) group. Any element in its
Lie algebra can be seen as the conjugate of a Cartan element h = �J3,
referring to traditional notations. It follows that the corresponding G
element is written in the (2j + 1) dimensional Dj representation as

Dj(�) =

0BBBBB@
eij�

ei(j�1)�
. . .

e�i(j�1)�

e�ij�

1CCCCCA
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Therefore, the character �j of Dj depends only of the angle � as follows:

�j =

jX
m=�j

eim� =
sin(j + 1

2)�

sin 1
2�

�

Theorem (Weyl formula)
Considering a (semi-)simple Lie algebra G, the character of its irreducible
representation �(�), determined by its highest weight �, is given by the
Weyl formula:

�(�) =

X
w2W

"(w) ew(�+�)X
w2W

"(w) ew(�)

where the sum is over all the elements w of the Weyl group W of G, "(w)
is the parity of the element w (! 1.93) and � is the Weyl vector, half-sum
of the positive roots.

The character function �(�) acts on the Cartan element h 2 H via the
root applications de�ned on its dual � 2 H�, that is

�(h) =

rX
j=1

�j�
j if h =

rX
j=1

�jhj

1.13 Classical Lie groups and Lie algebras

Classical Lie groups

The classical Lie groups can be described as subgroups of the general linear
group GL(n; C ) (resp. GL(n; R )) of order n of invertible n � n complex
(resp. real) matrices.

One sets, if In denotes the n� n unit matrix,

Ip;q =

�
Ip 0
0 �Iq

�
and J2n =

�
0 In

�In 0

�
One de�nes the classical Lie groups as follows (� denotes the complex con-
jugation, t the transposition and y the transconjugation, i.e. transposition
and complex conjugation):
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Linear groups:
{ The special linear group SL(n; C ) (resp. SL(n; R )) is the group of complex
matrices M 2 GL(n; C ) (resp. real matrices M 2 GL(n; R )) with determi-
nant 1.
{ The unitary group U(n) is the group of complex matrices M 2 GL(n; C )
such that M yM = In. The special unitary group SU(n) is the subgroup of
matrices of U(n) with determinant 1.
{ The unitary group U(p; q) with signature (p; q) is the group of complex
matrices M 2 GL(p+ q; C ) such that M yIp;qM = Ip;q. The special unitary
group SU(p; q) with signature (p; q) is the subgroup of matrices of U(p; q)
with determinant 1.
{ The special star unitary group SU�(2n) is the group of complex matrices
M 2 SL(2n; C ) such that J2nM

� =MJ2n.

Orthogonal groups:
{ The orthogonal group O(n; C ) is the group of complex matrices M 2
GL(n; C ) such that M tM = In. The special orthogonal group SO(n; C ) is
the subgroup of matrices of O(n; C ) with determinant 1.
{ The orthogonal group O(n) is the group of real matrices M 2 GL(n; R )
such that M tM = In. The special orthogonal group SO(n) is the subgroup
of matrices of O(n) with determinant 1.
{ The orthogonal group O(p; q) with signature (p; q) is the group of real ma-
trices M 2 GL(p+ q; R ) such that M tIp;qM = Ip;q. The special orthogonal
group SO(p; q) with signature (p; q) is the subgroup of matrices of O(p; q)
with determinant 1.
{ The special star orthogonal group SO�(2n) is the group of complex ma-
trices M 2 SO(2n; C ) such that M tJ2nM

� = J2n.

Symplectic groups:
{ The symplectic group Sp(2n; C ) (resp. Sp(2n; R )) is the group of complex
matrices M 2 GL(2n; C ) (resp. real matrices M 2 GL(2n; R )) such that
M tJ2nM = J2n.
{ The symplectic group Sp(2n) is the group of complex matricesM 2 U(2n)
such that M tJ2nM = J2n.
{ The symplectic group Sp(2p; 2q) with signature (p; q) is the group of com-
plex matrices M 2 Sp(2p+ 2q; C ) such that M yI2
 Ip;qM = I2
 Ip;q.

Classical Lie algebras

Since the Lie algebra gl(n; C ) of the general linear group GL(n; C ) is the Lie
algebra of all n � n complex matrices with the Lie bracket as Lie product
(! 1.46), the corresponding classical Lie algebras are described in terms of
suitable subalgebras of gl(n; C ) as follows:
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Linear and unitary algebras:
{ The special linear algebra sl(n; C ) (resp. sl(n; R ) is the set of n�n complex
(resp. real) traceless matrices.
{ The unitary algebra u(n) is the set of n�n complex antihermitian matrices:
my = �m. The special unitary Lie algebra su(n) is the subset of u(n) of
traceless matrices: tr(m) = 0.
{ The unitary algebra u(p; q) with signature (p; q) is the set of (p+q)�(p+q)
complex matrices such thatmyIp;q = �mIp;q. The special unitary Lie algebra
su(p; q) is the subset of u(p; q) of traceless matrices: tr(m) = 0.
{ The special star unitary algebra su�(2n) is the set of 2n � 2n complex
traceless matrices such that J2nm

� = mJ2n.

Orthogonal algebras:
{ The special orthogonal algebra so(n; C ) is the set of n� n antisymmetric
complex matrices: mt = �m.
{ The special orthogonal algebra so(n) is the set of n�n antisymmetric real
matrices: mt = �m.
{ The special orthogonal algebra so(p; q) with signature (p; q) is the set of
(p+ q)� (p+ q) real matrices such that mtIp;q = �Ip;qm.
{ The special star orthogonal algebra so�(2n) is the set of 2n� 2n complex
antisymmetric matrices such that myJ2n = �J2nm.

Symplectic algebras:
{ The symplectic algebra sp(2n; C ) (resp. sp(2n; R )) is the set of 2n � 2n
complex (resp. real) matrices such that mtJ2n = �J2nm.
{ The symplectic algebra sp(2n) is the set of 2n� 2n complex antihermitian
matrices (my = �m) such that mtJ2n = �J2nm.
{ The symplectic algebra sp(2p; 2q) with signature (p; q) is the group of
matrices of sp(2p + 2q; C ) such that mtJ2n = �J2nm and myI2 
 Ip;q =
�I2
 Ip;qm.

1.14 Clebsch-Gordan coe�cients

The direct product of two irreducible representations D(j1) and D(j2) of the
rotation group SO(3) decomposes into a direct sum of irreducible represen-
tations:

D(j1)
D(j2) =
j1+j2M

J=jj1�j2j
D(J)

Let jj1m1i with �j1 � m1 � j1 and jj2m2i with �j2 � m2 � j2 be the
canonical bases of the Hilbert spaces H(D(j1)) and H(D(j2)) of the irre-
ducible representations D(j1) and D(j2). The product space H(D(j1)) 

H(D(j2)) decomposes into a direct sum of invariant spaces H(D(J)) which
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transform according to the irreducible representation D(J). Let jJMi with
�J �M � J denote the canonical basis of the space H(D(J)). We have

jJMi =
X

m1+m2=M

hj1j2m1m2jJMi jj1m1i 
 jj2m2i

The numerical coe�cients hj1j2m1m2jJMi are called Clebsch-Gordan coef-
�cients.

To complete the de�nition of the Clebsch-Gordan coe�cients, once �xed the
transformation properties of the canonical basis with respect to the in�nites-
imal generators, one needs to �x a phase. In general it is required

hj1j2m1m2jJMi � 0

Since the Clebsch-Gordan coe�cients relate two orthonormal bases, they can
be considered as matrix elements of an unitary matrix, that isX

m1

hj1j2m1m2jJMihj1j2m1m2jJ 0M 0i = �JJ 0�MM 0

The Clebsch-Gordan coe�cients have many symmetry and orthogonality
relations and can be computed in di�erent ways. For the properties and the
explicit calculation of Clebsch-Gordan coe�cients, see for example ref. [60].
The concept of Clebsch-Gordan coe�cients can be generalized to any direct
product of two irreducible representations �1 and �2 of any Lie group. In the
general de�nition, Clebsch-Gordan coe�cients are the numerical coe�cients
relating the canonical basis of any irreducible representation � appearing in
the direct product to the bases of �1 and �2. For the groups of relevant
interest for physics they have been explicitly computed: for SU(3) see ref.
[15], for SU(4) see ref. [37], for SU(6) see ref. [88].

1.15 Compacity

De�nition
A Lie group G of dimension n is compact if the domain of variation of its
n essential parameters a1; : : : ; an is compact.

As an example, the rotation group in N dimensions SO(N) is compact since
the domain of variation of each of its N(N � 1)=2 parameters is the closed
and bounded subset [0; 2�] of R .

The Poincar�e group P (3; 1) is not compact, but contains as a subgroup the
rotation group SO(3) which is compact. Actually, SO(3) is maximal as
a compact subgroup of P (3; 1), any compact subgroup of P (3; 1) being a
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subgroup of SO(3), up to a conjugation. More generally, any Lie group G
admits a maximal compact subgroup (which may be the unit element).

The Lorentz group is not compact. Actually, it is isomorphic to O(3; 1),
which is a non-compact form of O(4). The Lie algebra of O(3; 1) can be
easily deduced from the Lie algebra of O(4): let Mij (i; j = 0; 1; 2; 3) be the
generators of SO(4) (! 1.58), multiply by i 2 C the three generators M0j

(j = 1; 2; 3), that is de�ne M 0
0j = iM0j , and keep unchanged the three other

generators Mij (i; j = 1; 2; 3). The three generators Mij (i; j = 1; 2; 3) form
again the algebra of the rotation group SO(3) while the three generatorsM 0

0j

(j = 1; 2; 3) generate the three \boosts" in the Minkowski space, or \complex
rotations" in the plane tx; ty; tz if the four axis are denoted t; x; y; z.

This method of constructing the non-compact forms from a compact Lie
algebra is general, and can be illustrated on the SO(N) Lie algebras as
follows:

M =

�
M11 M12

�M t
12 M22

�
2 SO(p+ q)!M =

�
M11 iM12

�iM t
12 M22

�
2 SO(p; q)

The SO(p + q) group leaves invariant the scalar product ~x:~y =
Pp+q

i=1 xiyi
with ~x; ~y 2 R p+q , while the SO(p; q) group leaves invariant the product ~x:~y =Pp

i=1 xiyi �
Pq

j=p+1 xjyj (! 1.13 Classical Lie groups and Lie algebras).

More on the general structure of non-compact semi-simple Lie algebra can
be found in ! 1.44 Killing form.

1.16 Complex structures

De�nition
A complex structure on a vector space V over R of �nite dimension is an
R -linear endomorphism J of V such that J2 = �I, I being the identity
mapping of V.

A real vector space V with a complex structure J can be transformed into a
complex vector space VC by setting iX � JX for any X 2 V. One remarks
that dimC VC = 1

2 dimR V, which implies that V must be even-dimensional.

De�nition
A complex structure on a real Lie algebra G is a complex structure J on
its G vector space which satis�es in addition

[X;JY ] = J [X;Y ] for all X;Y 2 G
Referring to the real forms of the simple Lie algebras (! 1.71), one de-
duces that the real Lie algebra GR, called the reali�cation of the complex
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Lie algebra G, possesses a canonical complex structure J derived from the
multiplication by the complex number i on G.

1.17 Conformal group

In d dimensions, the conformal group is the group of general coordinate
transformations which leave the metric invariant, up to a scale factor. Let
R d be the Euclidean space with the metric g�� of signature (p; q) where
d = p+ q. Then the conformal transformations can be written as

x� 7! x0� such that g�� 7! g0�� =
@x�

@x0�
@x�

@x0�
g�� = 
(x)g��

The conformal transformations in d dimensions (d � 3) contain:

{ the d translations x� 7! x� + a�,
{ the d(d� 1)=2 rotations x� 7! 
��x� with 
�� 2 SO(p; q),
{ the dilatation x� 7! �x�,

{ the d special conformal transformations x� 7! x� � b�x2
b2x2 � 2bx+ 1

.

The corresponding conformal algebra is actually isomorphic to so(p+1; q+1)
of dimension 1

2(d+ 1)(d+ 2).

In the Minkowski space R 4 of signature (3; 1), the conformal algebra, iso-
morphic to so(4; 2) is 15-dimensional. Choosing as a basis the matrices
M�� = �M�� satisfying (�; �; 
; � = 0; 00; 1; 2; 3; 4)h

M��;M
�

i
= i(�g��M�
 + g�
M�� + g��M�
 � g�
M��)

with g00 = g0000 = �g11 = �g22 = �g33 = �g44 = 1, the generators M��

and P� = M00� +M4� with �; � = 0; 1; 2; 3 span the Poincar�e algebra, the
generators of the special conformal transformations appear as K� =M00� �
M4�, while D = M004 is the generator of the dilatations. One can check
that: h

M�� ;M��

i
= i(�g��M�� + g��M�� + g��M�� � g��M��)h

M�� ; P�

i
= i(g��P� � g��P�)h

M�� ;K�

i
= i(g��K� � g��K�)h

D;M��

i
= 0

h
D;P�

i
= �iP�

h
D;K�

i
= iK�h

P�; P�

i
= 0

h
K�;K�

i
= 0

h
P�;K�

i
= 2i(g��D �M��)
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The three Casimir invariants are:

C2 =M��M
�� C3 =M��W

�� C4 =W��W
��

where W�� = "��
���M

�M��.

Since
h
D;P 2

i
= �2iP 2, only massless discrete states may exist in a scale

invariant theory.

Free electromagnetic theory and wave equation for massless particles ex-
hibit a symmetry for a larger group than the Poincar�e group, namely the
conformal group O(4; 2).

For more details, see refs. [6, 20].

1.18 Connexity

These topological notions are important for at least two reasons. First, they
allow us to understand that two Lie groups with the same Lie algebra can
di�er (example: SO(3) is doubly connected and SU(2) simply connected
and as Lie groups are related as follows: SO(3) ' SU(2)=Z2). Second, such
properties are directly related to the existence of monopoles in gauge theories
(see for example ref. [33]).

De�nition
A space is said to be connected if any two points in the space can be
joined by a line, and all the points of the line lie in the space.

Example
Consider the two-dimensional Lie group of transformations G acting on
R such that

x 7! ax+ b a; b 2 G;x 2 R

G can actually be de�ned as the manifold in R 2 :

G =
n
(a; b)

��� a; b 2 R ; a 6= 0 and (a0; b0) � (a; b) = (aa0; b+ b0)
o

We realize that G is not connected: the segment joining the two points
(�1; 0) and (1; 0) on the a-axis does not belong to G, since (0; 0) =2 G. �

De�nition
A connected space is said to be simply connected if a curve connecting
any two points in the space can be continuously deformed into every other
curve connecting the same two points.
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Example
The torus is not simply connected since there does not exist a continuous
mapping of the major circle onto the minor circle. �

The SO(3)� SU(2) case
The two groups SO(3) and SU(2) have isomorphic Lie algebras. Indeed,
a basis of the Lie algebra su(2) is provided by the 2 � 2 hermitian Pauli
matrices �i (i = 1; 2; 3) which satisfyh

�i; �j

i
= 2i "ijk �k

or de�ning the antihermitian matrices Xi = i�i=2 such that
h
Xi;Xj

i
=

�"ijkXk, while a basis of the Lie algebra so(3) is obtained with the 3 � 3
antisymmetric real matrices Mi (i = 1; 2; 3) such that (Mi)jk = "ijk which
also satisfy h

Mi;Mj

i
= �"ijkMk

The most general elements of SU(2) and SO(3) can be written respectively
as

exp(�iXi) = I2 cos
�

2
+ i(b�i �i) sin �

2

and
exp(�iMi) = I3+ (b�iMi) sin � + (b�iMi)

2(1� cos �)

where I2 and I3 denote the 2 � 2 and 3 � 3 unit matrices, the parameters
�i (i = 1; 2; 3) determine the angle of rotation � =

p
(�1)2 + (�2)2 + (�3)3

around the unit vector b� of components b�i = �i=�. Now, we can see from
the above expressions that the two groups are not the same since

for SU(2) (b�; �) = �(b�; � + 2�) = (b�; � + 4�)

while

for SO(3) (b�; �) = (b�; � + 2�)

If we associate, in the three-dimensional space R 3 , to each element (b�; �)
the end point of the vector of origin O and length � in the direction b� =

(b�1; b�2; b�3), then the SU(2) group will be represented by a sphere of radius 2�
with all the points on its surface identi�ed with �I, while the SO(3) group
will be represented by a sphere of radius � with antipodal points (that is a
pair of points on the surface on the sphere symmetric with respect to the
origin O) identi�ed.



Lie Algebras 35

�
�&%
'$

�
��

�
�


2�

�2�
�

�&%
'$

�
��

�
�


�

��

SU(2) SO(3)

Consider C a closed path AOB cutting the surface of the SO(3) parameter
sphere \once", A and B being antipodal points and therefore identi�ed. The
closed path C cannot be continuously deformed to the point O. Indeed as
soon as one antipodal point is moved one way, the other must move the
other way in order to remain antipodal. In fact, it appears that there are
two classes of closed paths in SO(3): the class of all paths that cut the
surface an even number of times (any path of this kind can be deformed
up to the identity), and the class of paths which cut the surface an odd
number of times. Considering in SO(3) all the closed paths with a common
point, O for instance, one can separate the paths which cut the surface an
even number of times from those which cut the surface an odd number of
times: the two classes of paths thus obtained are such that two paths can
be deformed one into the other if and only if they belong to the same class.
One will say that the homotopy group of SO(3) contains two elements, or
that SO(3) is doubly connected.

An analogous analysis for SU(2) would show that SU(2) is simply connected,
or that its homotopy group reduces to the identity. Moreover, it appears that
SU(2) has one and only one (if we exclude the identity) invariant discrete
subgroup Z2 = f�I; Ig and that the quotient group SU(2)=Z2 is isomorphic
to SO(3).

Actually, this relationship between homotopy groups and discrete invariant
subgroups (or between algebra and topology) in the theory of Lie groups is
more general and allows to relate the di�erent Lie groups with the same Lie
algebra.

Theorem
Let G be a Lie group with homotopy group HG and Lie algebra G. Then
there exists exactly one simply connected Lie group G with Lie algebra
G. Moreover

G=D ' G
D being one of the discrete subgroup of G (actually HG ' D). G is called
the universal covering group of G. The Lie group G is said to be multiply
connected when D contains more than one element.

Thus the enumeration of all possible Lie groups with the same Lie algebra G
reduces to the problem of �nding all possible discrete invariant subgroups of
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the simply connected group G possessing G as Lie algebra. Such a program
can be achieved as follows as soon as G is known: determine the center Z(G)
of G; then select in Z(G) the set of all discrete operations. This set forms a
group D. Any subgroup of D is a discrete invariant subgroup of G and all
discrete invariant subgroups of G are subgroups of D.

1.19 Contraction

Let G be a Lie algebra of dimension n generated by Xi with commutation

relations [Xi;Xj ] = C k
ij Xk where i; j; k = 1; : : : ; n, and let us de�ne a basis

in G depending on an arbitrary parameter " such that eXi = Xi("). Thenh eXi; eXj

i
= C k

ij (") eXk

If for any triplet i; j; k, the following limit makes sense:

lim
"!1C k

ij (") = C k
ij (1)

one can de�ne a new Lie algebra eG of dimension n, called the contraction of
G with the commutation relationsh eXi; eXj

i
= C k

ij (1) eXk

As an example, consider the Lie algebra so(3):h
Xi;Xj

i
= "ijkXk

and de�ne eX1 = "X1 ; eX2 = "X2 ; eX3 = X3

Then [ eX1; eX2] = " eX3 ! 0 when "! 0, while [ eX3; eX1] = eX2 and [ eX3; eX2] =eX1. We therefore obtain the Lie algebra of the Euclidean group E(2) in two
dimensions (one rotation and two translations).

Other examples are given with the Galilei group (! 1.33) and the De Sitter
group (! 1.24).

1.20 Coxeter number

Let G be a simple Lie algebra, A its Cartan matrix and bA its generalized

Cartan matrix (! 1.8). One has bA = ( bAij) with 0 � i; j � r and A = (Aij)
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with 1 � i; j � r. Then there is an unique vector ~a with positive inte-
ger components (a0; a1; : : : ; an) that are relatively prime (i.e. their greatest
common divisor is one), such that

nX
j=0

bAij aj = 0

The components of ~a labelled by j 6= 0 are just the components of the
highest root of the Lie algebra G, that is the marks or Kac labels (! 1.83)
associated to the Dynkin diagram corresponding to the matrix A. Let us
introduce the transposed matrix AT and the corresponding Dynkin diagram,
which is obtained from the previous one by interchanging the direction of
the arrows, and the dual vector ~a _, whose 0-th component is equal to one.

De�nition
The Coxeter number h and the dual Coxeter number h_ of a simple Lie
algebra G are de�ned by:

h =
nX
i=0

ai and h_ =
nX
i=0

a_i

The Coxeter and dual Coxeter numbers of the simple Lie algebras are the
following (h_ = h for the simply-laced Lie algebras):

G AN BN CN DN G2 F4 E6 E7 E8

h N + 1 2N 2N 2N � 2 6 12 12 18 30
h_ N + 1 2N � 1 N + 1 2N � 2 4 9 12 18 30

The maximal exponent (! 1.9) of a simple Lie algebra is equal to h� 1.

1.21 Decompositions w.r.t. sl(2) subalgebras

The method for �nding the decompositions of the fundamental and the ad-
joint representations of the classical Lie algebras with respect to their di�er-
ent sl(2) subalgebras is the following:

1. One considers a sl(2) embedding in a classical Lie algebra G, deter-
mined by a certain subalgebra K in G (! 1.28), which is expressed as
a direct sum of simple components: K = �iKi.

2. To each couple (G;Ki) one associates sl(2) representations given in
Table 3.40. Let us recall that the sl(2) representations are labelled by
a non-negative integer or half-integer j and denoted by Dj.
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3. The decomposition of the fundamental representation of G with respect
to the sl(2) subalgebra under consideration is then given by a direct
sum of sl(2) representations.

4. Starting from a decomposition of the fundamental representation of G
of the form

fundK G = �iDji

the decomposition of the adjoint representation adK G is given in the
unitary series by

adK G =
�
�i Dji

�


�
�i Dji

�
�D0

in the symplectic series by

adK G =
�
�i Dji

�


�
�i Dji

����
S

and in the orthogonal series by

adK G =
�
�i Dji

�


�
�i Dji

����
A

The following formulae, giving the symmetrized (S) and antisymmetrized
(A) products of sl(2) representations, are especially convenient:

(Dj 
Dj)A = D2j�1 �D2j�3 �D2j�5 � : : :
(Dj 
Dj)S = D2j �D2j�2 �D2j�4 � : : :

andh
(Dj � : : :�Dj| {z }

m times

) 
 (Dj � : : :�Dj| {z }
m times

)
i
A

=
m(m+ 1)

2
(Dj 
Dj)A � m(m� 1)

2
(Dj 
Dj)S

= m(Dj 
Dj)A � m(m� 1)

2
(Dj 
Dj)h

(Dj � : : :�Dj| {z }
m times

) 
 (Dj � : : :�Dj| {z }
m times

)
i
S

=
m(m+ 1)

2
(Dj 
Dj)S � m(m� 1)

2
(Dj 
Dj)A

= m(Dj 
Dj)S � m(m� 1)

2
(Dj 
Dj)

Tables 3.40 and 3.41 give the di�erent decompositions of the fundamental
and adjoint representations of the classical Lie algebras with respect to the
di�erent sl(2) embeddings.
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1.22 Derivation of a Lie algebra

Let G be a Lie algebra and � an automorphism (! 1.4) of G. Then one has
for all X;Y 2 G and all �; � 2 C :

�(�X + �Y ) = ��(X) + ��(Y )

�([X;Y ]) = [�(X); �(Y )]

If � is a continuous automorphism, one can consider its in�nitesimal part:
� = I+ d+ : : : One has then

d([X;Y ]) =
h
d(X); Y

i
+
h
X; d(Y )

i
d is called a derivation of G. The set of derivations of the Lie algebra G has
the structure of a Lie algebra. Indeed, one can check that if d and d0 are
derivations of G, then for all X;Y 2 G:

(dd0 � d0d)([X;Y ]) =
h
(dd0 � d0d)(X); Y

i
+
h
X; (dd0 � d0d)(Y )

i
and denoting Aut(G) the group of automorphisms of G, its Lie algebra is
actually the algebra of the derivations of G which will be denoted DerG.
In particular,

adX : Y 7! adX (Y ) =
h
X;Y

i
is a derivation of G. These derivations are called inner derivations of G. They
form an ideal InderG of DerG. The algebra InderG can be identi�ed with
the algebra of the group Int(G), which is also the algebra of the group Int(G)
of inner automorphisms of G, where G is a Lie group whose Lie algebra is
G.
Finally, in the same way that Int(G) ' G=Z(G), we can write InderG '
G=Z(G).

1.23 Derivative of a Lie algebra { Nilpotent and

solvable algebras

De�nition
Let G be a Lie algebra. The set of all the elements obtained by commuting
elements of G forms an ideal of G which is called the derivative of G and
denoted G0:

G0 =
n
X 2 G

���9A;B 2 G such that X =
h
A;B

io
and one writes G0 =

h
G;G

i
.
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Property
If G is Abelian, then G0 = f0g.
If G is a simple Lie algebra, then G0 = G.

De�nition
The Lie algebra G is said to be solvable if, considering the seriesh
G;G

i
= G(1) ;

h
G(1);G(1)

i
= G(2) ; : : : ;

h
G(i�1);G(i�1)

i
= G(i)

then there exists an integer n such that G(n) = f0g.
Notice that the G(i) are ideals of G.

De�nition
The Lie algebra G is said to be nilpotent if, considering the seriesh

G;G
i
= G[1] ;

h
G;G[1]

i
= G[2] ; : : : ;

h
G;G[i�1]

i
= G[i]

then there exists an integer n such that G[n] = f0g.
Notice that the G[i] are ideals of G.

Property
Let G be a Lie algebra.

{ G is solvable if and only if the derivative G0 is nilpotent.
{ If G is nilpotent, then G is solvable (but a solvable Lie algebra is not
necessary nilpotent: as an example, one can consider the two-dimensional
Lie algebra generated by a and b such that [a; b] = b).
{ If G is solvable (resp. nilpotent), then any subalgebra H of G is a
solvable (resp. nilpotent) Lie algebra.

De�nition
Let G be a Lie algebra. The maximal solvable ideal of G is called the
radical of G.

1.24 De Sitter group

In a non-
at space{time, the group of invariance of physical laws would no
longer be the Poincar�e group, but the group of invariance of the space. In a
constant curvature space, the De Sitter space, the metric can be written as
(�; � = 0; 1; 2; 3)

ds2 = �2(x2)g��dx�dx�

where �(x2) = (1 + x2=4�R2)�1, x2 = g��x�x� and g00 = �g11 = �g22 =
�g33 = 1. R is a dimensional parameter, the radius of curvature of the
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space. The x� can be seen as stereographic projection coordinates of a �ve-
dimensional pseudo-hypersphere

R2 = g������

where �; � = 0; 1; 2; 3; 4 and g44 = �1 (we are considering only the case of
constant positive curvature). If g44 = 1, we have the so-called anti-De Sitter
space.

The set of linear transformations which map the hypersphere into itself form
the De Sitter group O(4; 1) (in the case of the anti-De Sitter space O(3; 2))
and these transformations leave invariant the metric

ds2 = g��d��d�� = �2(x2)g��dx�dx�

The element of the group is de�ned by � with

�0� = ����� such that g���
�

�

�
� = g
�

The action of the De Sitter group on the Minkowski space is not linear. The
relation between the �� and the x� is

�� = �(x2)x� �4 = R�(x2)(1� x2=4�R2)�1

x� = 2��=(1 + �4=R) x2=4R2 =
1� �4=R
1 + �4=R

�(x2) =
2

1 + �4=R

The De Sitter group is a 10-parameter group and its in�nitesimal generators
M�� with �; � = 0; 1; 2; 3; 4 satisfy the commutation relations (both for
SO(4; 1) and SO(3; 2) depending on the choice of the metric tensor)h

M��;M
�

i
= �i(g��M�
 + g�
M�� � g��M�
 � g�
M��)

De�ning
�� =M4�=R � = 0; 1; 2; 3

we have the commutation relationsh
M�� ;M��

i
= i(�g��M�� + g��M�� + g��M�� � g��M��)h

M�� ; ��

i
= i(g���� � g����)h

��; ��

i
= iM��=R

2
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where �; �; �; � = 0; 1; 2; 3 and the M�� generate the Lorentz algebra.

When R ! +1, the above commutation relations give the commutation
relations of the Poincar�e algebra. The Poincar�e algebra is a contraction (!
1.19) of the De Sitter algebra in the limit of in�nite radius of curvature of
space{time.

The two Casimir operators are

C2 =
1

2R2
M��M

�� = ���
� +

1

2R2
M��M

��

and
C4 =W�W

� =W�W
� +W 2

4

where W� =
1
8R"���
�M

��M
�.

Taking the limit R ! +1, one recovers the two Casimir invariants of the
Poincar�e group (the square of the mass and the square of the Pauli{Lubanski
vector). Note that in a curved space{time, the linear momentum and the
angular momentum are mixed together. In the limit R! +1, they become
independent and the mass and the spin become good quantum numbers (see
refs. [6, 36]).

1.25 Direct and semi-direct products of groups

De�nition
A group G is the direct product of its subgroups H and K, and we note
G = H �K, if

1. h � k = k � h 8h 2 H; 8 k 2 K
2. 8 g 2 G, the decomposition g = h � k where h 2 H; k 2 K is unique

Theorem
A group G is the direct product of its subgroups H and K if and only if

1. G = H �K
2. H \K = feg
3. H, K are normal subgroups

Construction: Let A and B be two groups. De�ning the groups H and K by
the isomorphisms a 2 A 7! (a; e00) 2 H and b 2 B 7! (e0; b) 2 K where e0 and
e00 are the identity elements in A and B respectively, the group G = H �K
can be identi�ed by the set of couples (a; b) with the group law

(a; b) � (a0; b0) = (aa0; bb0)
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Example
The translation group T (2) in the two-dimensional Euclidean plane can
be seen as the direct product Tx�Ty of the translation group along the x-
axis by the translation group along the y-axis. T (2) is a two-dimensional
non-compact Lie group. �

De�nition
A group G is the semi-direct product of a subgroup H by a subgroup K,
and we note G = H nK, if

1. G = H �K
2. H \K = feg
3. H is a normal subgroup

Then for all g 2 G, the decomposition g = h � k with h 2 H; k 2 K is
unique.

Construction: Let A and B be two groups. De�ning the groups H and
K by the isomorphisms a 2 A 7! (a; e00) 2 H and b 2 B 7! (e0; b) 2
K where e0 and e00 are the identity elements in A and B respectively and
choosing a homomorphism  : B ! Aut(A), where Aut(A) is the group of
automorphisms of A, then we can identify the group G, semi-direct product
of H by K, associated with the homomorphism  , with the set of couples
(a; b) with the group law

(a; b) � (a0; b0) = (a: b(a
0); bb0)

and we note G = H n K.

Example
Let us take the case of the Euclidean group E(3). Any element can be
written as (~a;R) (translation, rotation) and we have the group law

(~a;R) � (~a 0; R0) = (~a+R~a 0; RR0)

�

In this example, the homomorphism  which is involved associates to each
element R of the rotation group SO(3) the rotation R itself acting on the
translation group as an automorphism: R~a 0 = ~a 00. We check immediately
from the group law that the translation part T (3) is an invariant subgroup
of E(3), indeed:

(~a;R)(~a0; I)(~a;R)
�1 = (~a+R~a0; R)(�R�1~a;R�1) = (R~a0; I)
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We note E(3) = T (3)n SO(3) omitting in general to specify the homomor-
phism  which is given by the group law.

Let us conclude this section by noting that the direct product G = H �K,
in which H and K are normal, can be seen as a limit case of the semi-direct
product G0 = H nK where only H is normal.

1.26 Direct and semi-direct sums of algebras

De�nition
If G is a Lie group, and the direct product of its subgroups H and K, its
Lie algebra G will be the direct sum of the Lie algebraH and K associated
to H and K respectively:

G = H�K
that is any X 2 G can be written in a unique way X = Y +Z with Y 2 H
and Z 2 K and any element of H commute with any element of K:h

H;K
i
= 0

Example
The Lie algebra so(4) of the group SO(4) is the direct sum of two so(3)
algebras: so(4) = so(3)� so(3) (! 1.58). �

To the semi-direct Lie group G = H n K will correspond the algebra G,
semi-direct sum G = H3K. The subgroup H of G being a normal subgroup,
its Lie algebra H will be an ideal in G. It therefore follows:h

K;K
i
= K

h
K;H

i
= H

h
H;H

i
= H

We recall that following Levi's theorem (! 1.47) an arbitrary Lie algebra
G has a semi-direct sum structure G = S2 R with R solvable and S semi-
simple.

1.27 Dynkin diagrams

The main properties of the root diagram (! 1.77) and therefore of the
Cartan matrix (! 1.8) of a semi-simple Lie algebra G of dimension n and of
rank r are summarized in the Dynkin diagram of G.
The Dynkin diagram associated to a simple Lie algebra G is constructed as
follows. A simple root (! 1.83) will be represented by a circle. Moreover
two simple roots � and � will be connected by 0, 1, 2 or 3 lines depending
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on whether the angle ��� between them is 90�, 120�, 135� or 150� (! 1.77).
Finally, when two roots � and � are connected by more than one line, one
puts an arrow from the longest root towards the shorter one. Then the
correspondence simple Lie algebra $ Dynkin diagram is unique. The table
of Dynkin diagrams associated to the simple Lie algebras can be drawn once
one knows for each simple Lie algebra G the set �0 of the r simple roots
which can be computed from its root space (! 1.77).

We give below the list of the Dynkin diagrams of the simple Lie alge-
bras. The numbers on the diagrams are the marks or Kac labels (! 1.83).

AN i i i
1 1 1

i i i i@
�

1 2 2 2
BN

CN i i i i�
@

2 2 2 1
i i i

i

i

��

HH

1 2 2 1

1

DN

E6 i i i i i

i

1 2 3 2 1

2

i i i i i i

i

2 3 4 3 2 1

2

E7

E8 i i i i i i i

i

2 4 6 5 4 3 2

3

F4 i i i i@
�

2 3 4 2
i i
�
@

2 3
G2

Remarks on Dynkin diagrams

1. The Dynkin diagrams of A1, B1 and C1 are identical, therefore A1, B1

and C1 are isomorphic.

2. The Dynkin diagrams of B2 and C2 are identical, therefore B2 and C2

are isomorphic.

i i@
�

B2
i i
@
� C2

3. The Dynkin diagrams of A3 and D3 are identical, therefore A3 and D3
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are isomorphic.

i i i

A3

i
i

i

��

HH
D3

4. There is a particular symmetry in the Dynkin diagram of D4 = so(8).
This property is called \triality".

i i
i

i

��

HH
D4

As a consequence, there are three di�erent representations of dimension
8 (one is called a vector representation 8V , the others spinor ones 8S
and 80S) that satisfy, when reducing the Kronecker product of two of
them: 8V 
 8S = 80S � : : :, 8S 
 80S = 8V � : : :, 80S 
 8V = 8S � : : : (see
ref. [35] for more details).

5. From the form of the Dynkin diagrams of the exceptional algebras E6,
E7, E8, one might call E5 the Lie algebra D5 and E4 the Lie algebra
A4.

Extended Dynkin diagram

Let �0 = f�1; : : : ; �rg be the simple root system of a simple Lie algebra G
of rank r. Let ��0 be the highest root with respect to �0, that is the unique
root of maximal height (! 1.83). One de�nes the extended Dynkin diagram
by adding to the Dynkin diagram of G a dot associated to the root +�0.
This diagram is especially important; in particular it allows us to determine
all regular subalgebras of G (! 1.87). Moreover, it is the Dynkin diagram

of the so-called a�nization bG of the Lie algebra G. For the extended Dynkin
diagrams of the simple Lie algebras, see Tables 3.1{3.9.

1.28 Embeddings of sl(2)

The problem of the determination of the possible sl(2) subalgebras of a
simple Lie algebra G has been solved by Dynkin (see ref. [17]). The solution
uses the notion of principal embedding.

De�nition
Let G be a simple Lie algebra of rank r with simple root system �0 =
f�1; : : : ; �rg and corresponding simple root generators e�i in the Serre{
Chevalley basis (! 1.81).
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The generators of the sl(2) principal embedding in G are de�ned by

E+ =
rX
i=1

e+i ; E� =
rX
i=1

rX
j=1

Aije�i

Aij being the Cartan matrix of G and Aij = (A�1)ij .

Theorem
1. Any sl(2) embedding in a simple Lie algebra G can be considered

as the principal sl(2) subalgebra of a regular subalgebra K of G.
2. For G = so(2N) with N � 4, besides the sl(2) principal embeddings

of item 1, there exist
�
N�2
2

�
sl(2) subalgebras associated to the

singular embeddings so(2k + 1) � so(2N � 2k � 1) � so(2N) with
1 � k � N � 1.

3. For G = E6; E7; E8, besides the sl(2) principal embeddings of item
1, there exist sl(2) subalgebras associated to singular embeddings
(one for E6, two for E7 and E8, see ref. [17] for more details).

The de�ning vector of the embedding sl(2) � G corresponding to a principal
sl(2) subalgebra of a regular subalgebra K � G is given by the following
rules when K is simple:

A2p � AN : f = (2p; 2p� 2; : : : ; 2; 0; : : : ; 0| {z }
N+1�2p

;�2; : : : ; 2� 2p;�2p)

A2p+1 � AN : f = (2p+ 1; 2p� 1; : : : ; 1; 0; : : : ; 0| {z }
N�1�2p

;�1; : : : ; 1� 2p;�1� 2p)

Bp � BN ;Dp+1 � DN ;Dp+1 � BN : f = (2p; 2p� 2; : : : ; 2; 0; : : : ; 0)

A2p � DN ; A2p � BN ; A2
2p � CN :

f = (2p; 2p; 2p� 2; 2p� 2; : : : ; 2; 2; 0; : : : ; 0)

A2p+1 � DN ; A2p+1 � BN ; A2
2p+1 � CN :

f = (2p+ 1; 2p+ 1; 2p� 1; 2p� 1; : : : ; 1; 1; 0; : : : ; 0)

Cp � CN : f = (2p� 1; 2p� 3; : : : ; 1; 0; : : : ; 0)

A2
1 � BN : f = (2; 0; : : : ; 0)

A1
1 � CN : f = (1; 0; : : : ; 0)

When K is the sum of simple Lie algebras, K = �iKi, the resulting de�n-
ing vector f is obtained by merging the di�erent de�ning vectors fi corre-
sponding to Ki, in such a way that the number of zeros is minimized and
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the entries of the de�ning vector f are put in decreasing order. For ex-
ample, to the embedding A3 � A2 � A6 with de�ning vectors fA3�A6 =
(3; 1; 0; 0; 0;�1;�3) and fA2�A6 = (2; 0; 0; 0; 0; 0;�2) corresponds the de�n-
ing vector f = (3; 2; 1; 0;�1;�2;�3).
! 1.41 Index of an embedding { De�ning vector.

1.29 Euclidean group

The Euclidean group E(n) in n dimensions is the group of transformations in
the Euclidean space R n such that, denoting (~a;R) its most general element
where ~a 2 R n and R 2 SO(n), we have

~x 0 � (~a;R)~x = R~x+ ~a ; 8 ~x 2 R
n

E(n) is the semi-direct product of the n-dimensional translation group T (n)
by the rotation group SO(n), denoted T (n)n SO(n). Its product law is as
follows:

(~a;R)(~a 0; R0) = (~a+R~a 0; RR0)

E(n) will often be taken as an example to illustrate several concepts.

The Euclidean group is a group with 1
2 n(n+ 1) parameters. Its Lie algebra

is generated by the rotation generators Mij and the translation generators
Pi, which satisfy the following commutation relations (i; j = 1; : : : ; n):h

Mij ;Mkl

i
= i(�jkMil + �ilMjk � �ikMjl � �jlMik)h

Mij ; Pk

i
= i(�jkPi � �ikPj)h

Pi; Pj

i
= 0

An explicit realization of the algebra of the Euclidean group E(n) in terms
of di�erential operators is given by (1 � k 6= l � n):

for the translation generators Pk = i
@

@xk

for the rotation generators Mkl = i
�
xk

@

@xl
� xl @

@xk

�
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1.30 Exceptional Lie algebras

Looking at the Cartan classi�cation of simple Lie algebras of �nite dimension
(! 1.7), one notes that to the four in�nite families denoted AN ; BN ; CN ;DN ,
are added �ve and only �ve Lie algebras which are called E6; E7; E8; F4 and
G2 (any attempt to add another simple root to the Dynkin diagram of an
exceptional Lie algebra will lead in the best case to an in�nite dimensional
algebra).

The peculiarity of these algebras, namely their link with octonions (! 1.56),
their structure { more precisely the type of subalgebras they contain { and
of course their property to be only �ve, have led physicists to think that
the exceptional Lie algebras must play a fundamental role in physics (for
example Grand Uni�ed models, String theory).

The exceptional Lie algebra F4

The Lie algebra F4 of rank 4 has dimension 52. In terms of the orthonormal
vectors "1; "2; "3; "4, the root system is given by � = f�"i�"j ; �"i; 1

2(�"1�
"2 � "3 � "4)g (1 � i 6= j � 4). The simple root system is �0 = f�1 = "2 �
"3; �2 = "3� "4; �3 = "4; �4 =

1
2("1� "2� "3� "4)g and the corresponding

Dynkin diagram and Cartan matrix are

m m m m
�1 �2 �3 �4

�
@

0BB@
2 �1 0 0
�1 2 �2 0
0 �1 2 �1
0 0 �1 2

1CCA
The algebra F4 is singularily embedded into so(26). To describe this embed-
ding, it is convenient to use a so(26) basis constructed as follows. Consider
the elementary 26 � 26 matrices mij such that (mij)kl = �ik�jl. Then the
matrices Mij = mij �m27�j;27�i where 1 � i 6= j � 13 generate so(26): the
Cartan subalgebra of so(26) is generated by the matrices Mii, the "i � "j
root generators are given by Mij , the "i+ "j (resp. �"i� "j) root generators
by Mi;27�j (resp. M27�i;j) with i < j. In terms of the Mij , the generators
of F4 in the Cartan{Weyl basis are given by (with obvious notations)

{ for the Cartan generators:

H1 =M1;1 +
1
2 (M2;2 +M3;3 +M4;4 +M5;5 +M6;6 +M8;8 +M10;10 +M12;12)

H2 =M7;7 +
1
2 (M2;2 +M3;3 +M4;4 +M5;5 �M6;6 �M8;8 �M10;10 �M12;12)

H3 =M9;9 +
1
2 (M2;2 +M3;3 �M4;4 �M5;5 +M6;6 +M8;8 �M10;10 �M12;12)

H4 =M11;11 +
1
2 (M2;2 �M3;3 +M4;4 �M5;5 +M6;6 �M8;8 +M10;10 �M12;12)
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{ for the positive long root so(9) generators:

E"1�"2 =M1;7 �M6;15 +M8;17 E"1+"2 =M1;20 �M2;22 +M3;23

E"1�"3 = �M1;9 �M4;15 +M5;17 E"1+"3 =M1;18 �M2;19 +M3;21

E"1�"4 = �M1;11 +M3;15 �M5;19 E"1+"4 = �M1;16 +M2;17 �M4;21

E"2�"3 =M4;6 +M5;8 +M7;9 E"2+"3 =M2;10 +M3;12 �M7;18

E"2�"4 = �M3;6 +M5;10 +M7;11 E"2+"4 =M2;8 �M4;12 +M7;16

E"3�"4 =M3;4 +M8;10 +M9;11 E"3+"4 = �M2;5 �M6;12 +M9;16

{ for the positive short root so(9) generators:

E"1 =
1p
2
(M1;13 �M1;14 +M2;15 +M3;17 �M4;19 �M5;21)

E"2 =
1p
2
(M2;6 �M3;8 �M4;10 +M5;12 +M7;13 �M7;14)

E"3 =
1p
2
(�M2;4 +M3;5 �M6;10 +M8;12 +M9;13 �M9;14)

E"4 =
1p
2
(M2;3 +M4;5 +M6;8 +M10;12 +M11;13 �M11;14)

{ for the positive weights so(9) spinor operators (j = e2i�=3):

E 1

2
("1+"2+"3+"4) =

1p
2

�
M1;12 + jM2;13 +M4;18 � j2M2;14 �M3;16 �M6;20

�
E 1

2
("1+"2+"3�"4) =

1p
2

�
M2;11 + jM3;14 +M5;18 +M7;19 �M1;10 � j2M3;13

�
E 1

2
("1+"2�"3+"4) =

1p
2

�
M2;9 + j2M4;13 �M1;8 � jM4;14 �M5;15 �M7;17

�
E 1

2
("1+"2�"3�"4) =

1p
2

�
jM5;13 +M7;15 � j2M4;15 �M1;6 �M3;9 �M4;11

�
E 1

2
("1�"2+"3+"4) =

1p
2

�
M1;5 + j2M6;13 �M2;7 � jM6;14 �M8;16 �M9;17

�
E 1

2
("1�"2+"3�"4) =

1p
2

�
M1;4 +M3;7 + jM8;13 +M9;15 �M6;11 � j2M8;14

�
E 1

2
("1�"2�"3+"4) =

1p
2

�
M4;7 +M9;9 + jM10;13 +M11;15 �M1;3 � j2M10;14

�
E 1

2
("1�"2�"3�"4) =

1p
2

�
M1;2 +M5;7 +M8;9 +M10;11 + jM12;14 � j2M12;13

�

The negative root generators are given by E�� = (E�)
y.

The generators in the Serre{Chevalley basis are related to those of the
Cartan{Weyl basis by:

h1 = H2 �H3 h2 = H3 �H4 h3 = 2H4 h4 = H1 �H2 �H3 �H4

e1 = E"2�"3 e2 = E"3�"4 e3 =
p
2E"4 e4 =

p
2E 1

2
("1�"2�"3�"4)

f1 = E�"2+"3 f2 = E�"3+"4 f3 =
p
2E�"4 f4 =

p
2E 1

2
(�"1+"2+"3+"4)

An irreducible representation of F4 is characterized by its Dynkin labels
(a1; a2; a3; a4) which are non-negative integers. The dimension of the F4
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irreducible representation with heighest weight �(a1; a2; a3; a4) is given by

N = N0 b1 b2 b3 b4 (b1 + b2)(b2 + b3)(b3 + b4)(b1 + b2 + b3)(b1 + 2b2 + b3)

(2b1 + 2b2 + b3)(2b2 + b3)(b2 + b3 + b4)(2b2 + b3 + b4)(2b1 + 2b2 + b3 + b4)

(2b2 + 2b3 + b4)(b1 + b2 + b3 + b4)(b1 + 2b2 + b3 + b4)(b1 + 2b2 + 2b3 + b4)

(b1 + 3b2 + 2b3 + b4)(2b1 + 2b2 + 2b3 + b4)(2b1 + 3b2 + 2b3 + b4)

(2b1 + 4b2 + 2b3 + b4)(2b1 + 4b2 + 3b3 + b4)(2b1 + 4b2 + 3b3 + 2b4)

where bi = ai + 1 and 1=N0 = 215 37 54 72 11.

The representations of F4 are all real (! 1.92). The fundamental simple rep-
resentation (0,0,0,1) is of dimension 26. The adjoint representation (1,0,0,0)
is of dimension 52. See Table 3.8 for the complete list of fundamental weights
of F4. The irreducible representations of dimension up to 106 are listed in
Table 3.21.

F4 contains as maximal regular subalgebras so(9), sp(6)� sl(2) and sl(3)�
sl(3) and as maximal singular subalgebras G2� sl(2)8 and sl(2)156 (! 1.87)
where the superscripts are the Dynkin indices (! 1.41).

The exceptional Lie algebra G2

The Lie algebra G2 of rank 2 has dimension 14. In terms of the orthonormal
vectors "1; "2; "3 such that "1 + "2 + "3 = 0, the root system is given by
� = f"i � "j ; "i + "j � 2"kg (1 � i 6= j 6= k � 3). The simple root system
is �0 = f�1 = "2 + "3 � 2"1; �2 = "1 � "2g and the corresponding Dynkin
diagram and Cartan matrix are

m m
�1 �2

�
@

�
2 �3
�1 2

�
In order to write the commutation relations of G2, it is convenient to use
a so(7) basis. Consider the so(7) generators Mpq = �Mqp where 1 � p 6=
q � 7. The singular embedding G2 � so(7) is obtained by imposing on the
generators Mpq the constraints

�ijkMij = 0

where the tensor �ijk is completely antisymmetric and whose non-vanishing
components are

�123 = �145 = �176 = �246 = �257 = �347 = �365 = 1
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The commutation relations of G2 then read as:h
Mpq;Mrs

i
= �qrMps + �psMqr � �prMqs � �qsMpr +

1
3�pqu�rsvMuv

In terms of the Mpq, the generators of G2 are given by

E1 = i(M17 �M24) E0
1 = i

p
3(M17 +M24)

E2 = i(M21 �M74) E0
2 = �i

p
3(M21 +M74)

E3 = i(M72 �M14) E0
3 = i

p
3(M72 +M14) = �E8

E4 = i(M43 �M16) E0
4 = i

p
3(M43 +M16)

E5 = i(M31 �M46) E0
5 = i

p
3(M31 +M46)

E6 = i(M62 �M73) E0
6 = i

p
3(M62 +M73)

E7 = i(M32 �M67) E0
7 = i

p
3(M32 +M67)

The generators Ea with a = 1; : : : ; 8 generate sl(3) and satisfy the commu-
tation relations h

Ea; Eb

i
= 2ifabcEc

where fabc are the usual totally antisymmetric Gell-Mann structure constants
(! 1.90). The commutation relations between the G2 generators Ea and E

0
i

(i = 1; 2; 4; 5; 6; 7) are h
Ea; E

0
i

i
= 2icaijE

0
jh

E0
i; E

0
j

i
= 2i(caijEa + c0ijkE

0
k)

where the structure constants caij (antisymmetric in the indices i; j) and c
0
ijk

(totally antisymmetric) are

c147 = c156 = c257 = c345 = c367 = c417 = c725 = 1=2

c246 = c426 = c516 = c527 = c615 = c624 = c714 = �1=2
c845 = c876 = �1=2

p
3 c812 = �1=

p
3

c0147 = c0165 = c0246 = c0257 = �1=
p
3

The generators E3 and E8 constitute a Cartan basis of the G2 algebra. One
can also take a basis H1;H2;H3 such that H1 + H2 + H3 = 0 given by

H1 =
1
2(E3 +

p
3
3 E8), H2 =

1
2(�E3 +

p
3
3 E8), H3 = �

p
3
3 E8. The generators

in the Cartan{Weyl basis are given by (with obvious notations):

H1 =
1
2(E3 +

p
3
3 E8) H2 =

1
2(�E3 +

p
3
3 E8) H3 = �

p
3
3 E8

E�("1�"2) = E1 � iE2 E�("2�"3) = E6 � iE7 E�("1�"3) = E4 � iE5

E�"1 = E0
7 � iE0

6 E�"2 = E0
4 � iE0

5 E�"3 = E0
1 � iE0

2
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An irreducible representation of G2 is characterized by its Dynkin labels
(a1; a2) which are non-negative integers. The dimension of the G2 irreducible
representation with heighest weight �(a1; a2) is given by

N = 1
120 (a1+1)(a2+1)(a1+a2+2)(2a1+a2+3)(3a1+a2+4)(3a1+2a2+5)

The representations of G2 are all real (! 1.92). The fundamental simple
representation (0,1) is of dimension 7. The adjoint representation (1,0) is of
dimension 14. See Table 3.9 for the complete list of fundamental weights of
G2. The irreducible representations of dimension up to 20 000 are listed in
Table 3.20.

G2 contains as maximal regular subalgebras su(3) and su(2)� su(2) and as
maximal singular subalgebra sl(2)28 (! 1.87) where the superscripts are the
Dynkin indices (! 1.41).

The exceptional Lie algebra E6

The Lie algebra E6 of rank 6 has dimension 78. The root system of E6 can
be described in two di�erent ways.

Consider the eight-dimensional vector space R 8 with an orthonormal basis
f"1; : : : ; "8g. Let V6 be the hyperplane in R 8 orthogonal to the vectors "7+"8
and "6+ "7+2"8. The root system of E6 is then given by �(E6) = �(E8)\
V6 = f�"i�"j ; �1

2(�"1�: : :�"5�"6�"7+"8)g (1 � i 6= j � 5). The simple

root system is �0 = f�1 = 1
2("1 + "8 �

P7
j=2 "j); �2 = "2 � "1; : : : ; �5 =

"5 � "4; �6 = "1 + "2g.
The root system of E6 can be also described in terms of the orthonormal
basis f"1; : : : ; "6g in a six-dimensional space. The root system of E6 is then
given by � = f�"i � "j ; 1

2(�"1 � : : : � "5 �
p
3 "6)g where 1 � i 6= j � 5

and the total number of minus sign in 1
2(�"1 � : : :� "5 �

p
3 "6) is even.

The corresponding Dynkin diagram and Cartan matrix are given in Table
3.5.

An irreducible representation of E6 is characterized by its Dynkin labels
(a1; a2; a3; a4; a5; a6) which are non-negative integers. The representations
such that a1 = a5 and a2 = a4 are real, the other ones are complex (! 1.92).
The fundamental simple representation (1,0,0,0,0,0) is of dimension 27. The
adjoint representation (0,0,0,0,0,1) is of dimension 78. See Table 3.5 for the
complete list of fundamental weights of E6. The irreducible representations
of dimension up to 106 are listed in Table 3.24.

E6 contains as maximal regular subalgebras sl(6)�sl(2), sl(3)�sl(3)�sl(3)
and so(10)�U(1) and as maximal singular subalgebras F 1

4 , G
3
2, G

1
2� sl(3)2,

sp(8)1 and sl(3)9 (! 1.87) where the superscripts are the Dynkin indices
(! 1.41).
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The exceptional Lie algebra E7

The Lie algebra E7 of rank 7 has dimension 133. The root system of E7 can
be described in two di�erent ways.

Consider the eight-dimensional vector space R 8 with an orthonormal basis
f"1; : : : ; "8g. Let V7 be the hyperplane in R 8 orthogonal to the vector "7+"8.
The root system of E7 is then given by �(E7) = �(E8) \ V7 = f�"i �
"j ; �("8 � "7); �1

2(�"1 � : : :� "6 � "7 + "8)g where 1 � i 6= j � 6 and the

total number of minus signs in 1
2(�"1� : : :�"6�"7+"8) is even. The simple

root system is �0 = f�1 = 1
2("1 + "8 �

P7
j=2 "j); �2 = "2 � "1; : : : ; �5 =

"5 � "4; �6 = "6 � "5; �7 = "1 + "2g.
The root system of E7 can be also described in terms of the orthonormal
basis f"1; : : : ; "7g in a seven-dimensional space. The root system of E7 is then
given by � = f�"i�"j ; �

p
2 "7;

1
2(�"1� : : :�"6�

p
2 "7)g (1 � i 6= j � 6)

where the number of minus signs in 1
2(�"1 � : : :� "6 �

p
2 "7) in the �rst 6

vectors is even.

The corresponding Dynkin diagram and Cartan matrix are given in Table
3.6.

An irreducible representation of E7 is characterized by its Dynkin labels
(a1; a2; a3; a4; a5; a6; a7) which are non-negative integers. The representa-
tions of E7 are real if a4 + a6 + a7 is even and pseudo-real if a4 + a6 + a7
is odd (! 1.92). The fundamental simple representation (0,0,0,0,0,1,0) is
of dimension 56. The adjoint representation (1,0,0,0,0,0,0) is of dimension
133. See Table 3.6 for the complete list of fundamental weights of E7. The
irreducible representations of dimension up to 106 are listed in Table 3.25.

E7 contains as maximal regular subalgebras so(12)�sl(2), sl(6)�sl(3), sl(8)
and E6�U(1) and as maximal singular subalgebras F 1

4 �sl(2)3, G2
2�sl(2)7,

G1
2 � sp(6)1, sl(2)24 � sl(2)15, sl(3)21, sl(2)231 and sl(2)399 (! 1.87) where

the superscripts are the Dynkin indices (! 1.41).

The exceptional Lie algebra E8

The Lie algebra E8 of rank 8 has dimension 248. In terms of the orthonormal
basis f"1; : : : ; "8g of R 8 , the root system of E8 is given by � = f�"i �
"j ;

1
2(�"1 � : : : � "8)g where 1 � i 6= j � 8 and the total number of minus

signs in 1
2(�"1 � : : : � "8) is even. The simple root system is �0 = f�1 =

1
2("1 + "8 �

P7
j=2 "j); �2 = "2 � "1; : : : ; �7 = "7 � "6; �8 = "1 + "2g. The

corresponding Dynkin diagram and Cartan matrix are given in Table 3.7.

An irreducible representation of E8 is characterized by its Dynkin labels
(a1; a2; a3; a4; a5; a6; a7; a8) which are non-negative integers. The represen-
tations of E8 are all real (! 1.92). The fundamental simple representation
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is the adjoint representation (0,0,0,0,0,0,1,0) of dimension 248. See Table
3.7 for the complete list of fundamental weights of E8. The irreducible rep-
resentations of dimension up to 109 are listed in Table 3.26.

E8 contains as maximal regular subalgebras so(16), E7 � sl(2) E6 � sl(3),
sl(5)�sl(5) and sl(9) and as singular maximal subalgebras so(5)12, G1

2�F 1
4 ,

sl(3)6 � sl(2)16, sl(2)1240, sl(2)760 and sl(2)520 (! 1.87) where the super-
scripts are the Dynkin indices (! 1.41).

1.31 Folding

! 1.87 Subalgebras: regular and singular subalgebras.

1.32 Fundamental representation

! 1.92 Weights of a representation.

1.33 Galilei group

The Galilei group plays a fundamental role in classical physics since both
classical mechanics and non-relativistic quantum mechanics have to satisfy
covariance under transformations of the Galilei group.

The Galilei group is the set of linear transformations in Newtonian space{
time which leave invariant the time interval between events and the space
distance of simultaneous events. Its elements g = (�;~a;~v;R), where R is a
3�3 orthogonal matrix, ~v and ~a are arbitrary real vectors and � an arbitrary
real number, are de�ned as follows:

x0 � (�;~a;~v;R)x where x = (t; ~r); x0 = (t0; ~r 0) (t 2 R and ~r; ~r 0 2 R
3)

with
t0 = t+ � and ~r 0 = R~r + ~vt+ ~a

The composition law is

(�;~a;~v;R)(� 0;~a 0; ~v 0; R0) = (� + � 0;~a+R~a 0 + �~v 0; ~v +R~v 0; RR0)

and the inverse element is given by

(�;~a;~v;R)�1 = (��;R�1(~a� �~v);�R�1~v;R�1)
The Galilei group is a 10-parameter group. The in�nitesimal generators sat-
isfy the Galilei algebra whose commutation relations are given below, where
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P0 is the time translation, Pi are the space translations, Ji the rotations and
Ki the pure Galilean transformations (i = 1; 2; 3):h

Ji; Jj

i
= i "ijk Jk

h
Ki;Kj

i
=
h
Ki; Pj

i
= 0h

Ji;Kj

i
= i "ijkKk

h
Pi; Pj

i
=
h
Pi; P0

i
=
h
Ji; P0

i
= 0h

Ji; Pj

i
= i "ijk Pk

h
Ki; P0

i
= iPi

The two Casimir operators are

~P 2 = PiP
i

~N2 = ( ~K � ~P )2 = NiN
i = "ijkK

jP k"ilmKlPm

The Galilei algebra can be obtained as a contraction from the Poincar�e
algebra. To see this, one rewrites the Poincar�e algebra in terms of the
in�nitesimal generators J 0i = Ji, K

0
i = Ki=c, P

0
i = Pi, P

0
0 = cP0 where c is a

parameter to be identi�ed in physics with the speed of light, and apply the
limit c!1: one obtains the Galilei algebra [54].

The Galilei algebra admits a non-trivial central extension M such thath
Ki; Pj

i
= i �ijMh

M;Ji

i
=
h
M;Ki

i
=
h
M;Pi

i
=
h
M;P0

i
= 0

the generator M being interpreted as a mass, and the algebra generated by
the Ki; Pi (i = 1; 2; 3) and M constituting the Heisenberg algebra H3.

1.34 Gelfand{Zetlin basis for su(n)

An irreducible representation of su(n) can be characterized by a set of
n � 1 non-negative integers (m1n; : : : ;mn�1;n) such that min � mi+1;n.
[m1n; : : : ;mn�1;n] corresponds to the Young tableaux (! 1.96) notation.

Property
The Gelfand{Zetlin basis of the representation space V(m1n; : : : ;mn�1;n)
is constituted by orthonormal states (m) represented by the triangular
patterns
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(m) =

�����������

m1n m2n : : : mn�1;n 0
m1;n�1 m2;n�1 : : : mn�1;n�1

. . . . .
.

m12 m22

m11

B
B
B
B

�
�
�
�

where the mij satisfy the condition

mi;j+1 � mij � mi+1;j+1 � 0

Example
Gelfand{Zetlin basis in su(3): The vectors of the Gelfand{Zetlin basis in
su(3) take the general form

(m) =

������
m13 m23 0
m12 m22

m11

B
BB

�
��

where m13 � m12 � m11;m23 � m22 � 0

The fundamental representation of dimension 3 is spanned by the vectors������
1 0 0
1 0
1

B
BB

�
��

������
1 0 0
1 0
0

B
BB

�
��

������
1 0 0
0 0
0

B
BB

�
��

The adjoint representation of dimension 8 is spanned by the vectors������
2 1 0
2 1
2

B
BB

�
��

������
2 1 0
2 1
1

B
BB

�
��

������
2 1 0
1 1
1

B
BB

�
��

������
2 1 0
2 0
2

B
BB

�
��������

2 1 0
2 0
1

B
BB

�
��

������
2 1 0
2 0
0

B
BB

�
��

������
2 1 0
1 0
1

B
BB

�
��

������
2 1 0
1 0
0

B
BB

�
��

�

Introducing the standard generators eij of gl(n) which satisfy the commu-
tation relations h

eij; ekl

i
= �jk eil � �il ekj

where i; j; k; l = 1; : : : ; n, the generators eii are diagonal in the Gelfand{
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Zetlin basis
eiij(m)i =

X
i<j

(mij �mi;j�1)j(m)i

while the generators ei;i+1 and ei+1;i act as raising and lowering operators
respectively. One has

ei;i+1j(m)i =
iX

�=1

a+i� jm�i ! m�i + 1i

ei+1;ij(m)i =
iX

�=1

a�i� jm�i ! m�i � 1i

where

a+i� =

2666664(�1)i
i+1Y
s=1

(ms;i+1 �m�;i � s+ �)
i�1Y
s=1

(ms;i�1 �m�;i � s+ � � 1)

iY
s=1;s 6=�

(ms;i �m�;i � s+ �) (ms;i �m�;i � s+ � � 1)

3777775
1=2

and

a�i� =

2666664(�1)i
i+1Y
s=1

(ms;i+1 �m�;i � s+ � + 1)
i�1Y
s=1

(ms;i�1 �m�;i � s+ �)

iY
s=1;s 6=�

(ms;i �m�;i � s+ � + 1) (ms;i �m�;i � s+ �)

3777775
1=2

In this framework, it is specially easy to decompose a su(n) representation
�(m1n; : : : ;mn�1;n) into irreducible representations of su(n� 1):

�(m1n; : : : ;mn�1;n) =M
min�mi;n�1�mi+1;n

�(m1;n�1 �mn�1;n�1; : : : ;mn�2;n�1 �mn�1;n�1)

the basis vectors of the su(n � 1) representation �(m1;n�1 �mn�1;n�1; : : :,
mn�2;n�1 �mn�1;n�1) being obtained from the above vectors in which the
�rst row has been discarded. Iterating this reduction, one sees that the
construction of the Gelfand{Zetlin basis for an irreducible representation �
of su(n) stands on the reduction of � with respect to the following chain of
embeddings:

su(n) � su(n� 1) � su(n� 2) � : : : � su(2) � U(1)
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1.35 Gelfand{Zetlin basis for so(n)

An irreducible representation of so(n) with n = 2p or n = 2p+ 1 is charac-
terized by a set of p integers or p half-integers (m1; : : : ;mp) such that

for n = 2p, m1 � m2 � : : : � mp�1 � jmpj
for n = 2p+ 1, m1 � m2 � : : : � mp�1 � mp � 0

In the case of so(2p+ 2), the Gelfand{Zetlin tableaux are of the form

(m) =

���������������������

m1 m2 : : : : : : mp mp+1

m1;2p m2;2p : : : mp�1;2p mp;2p

m1;2p�1 m2;2p�1 : : : mp�1;2p�1 mp;2p�1
m1;2p�2 : : : mp�1;2p�2
m1;2p�3 : : : mp�1;2p�3

. . . . .
.

m14 m24

m13 m23

m12

m11

B
B
B
B
B
BB

�
�
�
�
�
��

where the numbers mij are simultaneously all integers or all half-integers,
and satisfy the conditions

m1 � m1;2p � m2 � m2;2p � : : : � mp � mp;2p � jmp+1j
mi;2t+1 � mi;2t � mi+1;2t+1 (1 � i � t � p� 1)

mi;2t � mi;2t�1 � mi+1;2t (1 � i � t� 1 � p� 1)

with the particular conditions on the right boundary

mt;2t � jmt+1;2t+1j and mt;2t�1 � �mt;2t

In the case of so(2p+ 1), the Gelfand{Zetlin tableaux are of the form

(m) =

�������������������

m1 m2 : : : mp�1 mp

m1;2p�1 m2;2p�1 : : : mp�1;2p�1 mk;2p�1
m1;2p�2 : : : mp�1;2p�2
m1;2p�3 : : : mp�1;2p�3

. . . . .
.

m14 m24

m13 m23

m12

m11

B
B
B
B
B
BB

�
�
�
�
�
��
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satisfying the conditions

m1 � m1;2p�1 � m2 � m2;2p�1 � : : : � mp � mp;2p�1 � �mp

mi;2t+1 � mi;2t � mi+1;2t+1 (1 � i � t � p� 1)

mi;2t � mi;2t�1 � mi+1;2t (1 � i � t� 1 � p� 1)

and on the right boundary

mt;2t � jmt+1;2t+1j and mt;2t�1 � �mt;2t

As in the su(n) case (! 1.34), the Gelfand{Zetlin basis for so(n) makes
transparent the canonical decomposition so(n) � so(n � 1) � so(n �
2) � : : : Indeed, if the �rst line m1; : : : ;mp+1 of the Gelfand{Zetlin pat-
tern for so(2p+2) determines an irreducible representation �(m1; : : : ;mp+1)
of so(2p+2), then the second lines allowed by the above conditions label the
so(2p+ 1) representations contained in �(m1; : : : ;mp+1). So does the third
row for the representations of so(2p), and so on, up to the last lines in which
m12 and m11 characterize the so(3) and so(2) representations respectively.
It is because the rank of so(2p) and so(2p + 1) are the same, and equal to
p, that the number of mij 's in a row decreases by one every other two lines.

The action of the so(n) generators on the vectors in the Gelfand{Zetlin
basis is much more involved than in the su(n) case. Let us introduce the
standard generators Mij of so(n) which satisfy the commutation relations
(where i; j; k; l = 1; : : : ; n)h

Mij ;Mkl

i
= �ilMjk + �jkMil � �ikMjl � �jlMik

The generator Mi;i+1 acting on a Gelfand{Zetlin basis vector will change
only the line (i� 1) and will leave the other rows unchanged. Denoting by
jm�

iji the vector obtained from the vector j(m)i by mij ! mij � 1, one gets

M2t+1;2tj(m)i =
tX

j=1

A(mj;2t�1)jm+
j;2t�1i �

tX
j=1

A(mj;2t�1 � 1)jm�
j;2t�1i

M2t+2;2t+1j(m)i =
tX

j=1

B(mj;2t)jm+
j;2ti �

tX
j=1

B(mj;2t�1 � 1)jm�
j;2ti

+iC2tj(m)i

where the expressions of A;B;C are given by, setting l�;2t�1 = m�;2t�1+t��
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and l�;2t = m�;2t + t� � + 1:

A(mj;2t�1) =

2666664
t�1Y
�=1

(l�;2t�2 � lj;2t�1 � 1)(l�;2t�2 + lj;2t�1)Y
� 6=j

(l2�;2t�1 � l2j;2t�1)(l2�;2t�1 � (lj;2t�1 + 1)2)

3777775
1=2

�
"

tY
�=1

(l�;2t � lj;2t�1 � 1)(l�;2t + lj;2t�1)

#1=2

B(mj;2t) =

2666664
tY

�=1

(l2�;2t�1 � l2j;2t)
t+1Y
�=1

(l2�;2t+1 � l2j;2t)

l2j;2t(4l
2
j;2t � 1)

Y
� 6=j

(l2�;2t � l2j;2t)((l�;2t � 1)2 � l2j;2t)

3777775
1=2

C2t =

tY
�=1

l�;2t�1
t+1Y
�=1

l�;2t+1

tY
�=1

l�;2t(l�;2t � 1)

Note that the Gelfand{Zetlin basis vectors are not eigenvectors of the p
commuting generators M12, M34, : : :, M2p�1;2p, but only of the �rst one
M12.

For more details, see refs. [27, 29].

1.36 Generalized Young tableaux

It is useful to introduce generalized Young tableaux for performing the prod-
uct of representations for orthogonal, symplectic and even exceptional groups
(! 1.64, 1.65, 1.66 and 1.63).

So, following ref. [30], we de�ne in the context of a rank n simple Lie
group G, in particular with G = SO(2n), SO(2n + 1), Sp(2n) or G2, a
generalized Young tableau (GYT) as a tableau associated with the ordered
set of positive, null and negative numbers [�1; : : : ; �n] satisfying �1 � : : : �
�n, the considered tableau being constituted by j�ij boxes in the ith row,
these boxes being arranged on the right hand side (resp. left hand side) of a
virtual vertical axis following �i > 0 (resp. �i < 0). For example, the GYT
[1; 0;�1;�2] will be drawn as follows:
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One can add that the introduction of such tableaux is related to the study
of the di�erent weights in an irreducible representation of G.

Finally, we point out that a GYT relative to a rank n Lie group G cannot
have more than n rows.

Let us de�ne the rules for the product of two GYTs.

If the product we have to consider concerns two GYTs with only positive
rows (standard Young tableaux), then the product has to be performed
according to the product law of SU(n) Young tableaux, the only di�erence
being that a GYT with n positive rows [m1; : : : ;mn] is not equivalent to the
simpli�ed GYT [m1 �mn; : : : ;mn�1 �mn; 0].

Otherwise the multiplication law we de�ne is a direct generalization of the
product of SU(n) Young tableaux, and it is convenient to consider three
kinds of products:

1. A completely arbitrary GYT [�] with �1 � : : : � �n multiplying a
positive GYT [�] with �1 � : : : � �n � 0.

Call the boxes in the �rst line a, those of the second line b and so on
up to the n-th line of the GYT [�]. Add to the GYT [�] one box a

of [�] using all di�erent ways so that one always gets a GYT. A box
added to a negative row of [�] will cancel the negative box furthest left

in this row. Then add a second box a to the obtained tableaux and
so on using the usual SU(n) prescriptions.

As an illustration, let us consider the following product relative to
SO(6):



a a a
b b
c

=
a a a

b b
c�
� � a

a a
b b

c�
� � a

a a

b
b
c�

� � a a
a

b
b

c�
�

[1;�1;�1]
 [3; 2; 1] = [4; 1; 0] � [3; 2; 0] � [3; 1; 1] � [2; 2; 1]

Notice that the tableau

b
a a

a
b
c�

�

does not exist since, before adding the b boxes, we would get the
tableau [3;�1; 0], which is not a GYT.
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2. A completely arbitrary GYT [�] multiplying a negative GYT [�] with
0 � �1 � : : : � �n.
Call the boxes in the last line a, those of the line just above b and so on
up to the �rst line of GYT [�]. Add to the GYT [�] one box a of [�]
in all the possible ways giving always a GYT. A negative box added
to a positive row of [�] will cancel the positive box furthest right in

the row. Then add a second box a and so on using the usual SU(n)
prescriptions, but reading from left to right and from bottom to top,
to satisfy ni(a) � ni(b) � : : : (instead of counting from right to left
and from top to bottom).

As an example:



a
b =

a
b� �

a

b�
� a

b

�
�

[2; 1;�1]
 [0;�1;�1] = [2; 0;�2] � [1; 1;�2] � [1; 0;�1]

3. Finally, the product of two arbitrary GYTs can be done by combining
the rules of cases 1 and 2 and the following recurrence formula:

[�]
 [�] = ([�]
 [�]�)
 [�]+ 	 [�]
 f[�]g
where

[�]� = [0; : : : ; 0; �k+1; : : : ; �n] and [�]+ = [�1; : : : ; �k; 0; : : : ; 0]

with �1; : : : ; �k � 0, �k+1; : : : ; �n < 0 and f[�]g denotes the set of
GYTs obtained from [�] cancelling in all the possible ways one or more
negative boxes with one or more positive boxes (\contraction") with
the following prescription: one labels by a the boxes on the �rst positive
row, b on the second row and so on; in the contracted diagram, denot-
ing ni(a) the number of boxes labelled by a in the i-th �rst columns
starting from the right and n0i(a) the number of boxes labelled by a in
the i-th �rst rows starting from the top, and identical de�nitions for
the other labels b; c; : : :, one must have ni(a) � ni(b) � ni(c) � : : : and
n0i(a) � n0i(b) � n0i(c) � : : :.
As an example:

f[2; 2;�1;�2]g = [2; 1; 0;�2] � [2; 1;�1;�1] � [1; 1; 0;�1]
� [1; 0; 0; 0] � [2; 0; 0;�1]

Each element of f[�]g has again to be decomposed into a positive and
a negative part. It is clear that the decomposition of [�]
 [�] will be
obtained by repeating the formula a �nite number of times.
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Remark:
A procedure to perform the product of two GYTs, say [�]
 [�], just bringing
it back to the product of two standard Young tableaux, is to add to each
row of a GYT [�] (resp. [�]) j�nj boxes (resp. j�nj boxes). In this way
we get two standard Young tableaux with no boxes in the last row. We
perform the product according to the Young tableaux rules (! 1.67) and we
subtract from each row of the obtained Young tableaux j�nj + j�nj boxes.
This procedure justi�es the above set of rules.

1.37 Group { Subgroup

De�nition
A group G is a set of elements together with a composition law (denoted
here multiplicatively) such that

1: 8 g; g0 2 G; g � g0 2 G internal law

2: 8 g; g0; g00 2 G; (g � g0) � g00 = g � (g0 � g00) associativity

3: 9 e 2 G such that 8 g 2 G; g � e = e � g identity element

4: 8 g 2 G; 9 g�1 2 G such that g � g�1 = e inverse

A group is said to be �nite if it contains a �nite number of elements, this
number being called the order of the group.

A group is said to be commutative or Abelian if g � g0 = g0 � g for all
g; g0 2 G.

One can prove the following theorem:

Theorem
Let G be a group. Then

1: 8 g 2 G; g�1 � g = e

2: 8 g 2 G; e � g = g

3: e is unique, and for any g 2 G, g�1 is unique
De�nition

A subgroup of a group G is a non-empty part H � G which is a group
with the composition law induced by G. H is a proper subgroup of G if
H 6= G and H 6= feg.

Theorem
The non-empty part H � G of a group G is a subgroup of G if and only
if x � y�1 2 H for all x; y 2 H.
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De�nition
Let G be a group and H a subgroup of G. H is called a normal or
invariant subgroup of G if it is globally invariant by conjugation of any
element g 2 G, that is

gHg�1 = H ; 8 g 2 G

Example
Consider the Euclidean group E(3) in three dimensions (! 1.29). Its
three-dimensional translation subgroup T (3) = f(~a; I)g is a normal sub-
group of E(3). �

The importance of the notion of normal subgroup is developed in ! 1.68
Quotient group and ! 1.25 Direct and semi-direct products of groups.

1.38 Group morphisms

Let G and G0 be two groups with internal laws � and ? respectively. A
homomorphism � of the group G on the group G0 is an application from G
to G0 which respects the group laws, that is

�(g � g0) = �(g) ? �(g0) ; 8 g; g0 2 G

� An isomorphism is a bijective homomorphism.
� An endomorphism is a homomorphism of the group G on itself. An impor-
tant example of endomorphism is given by the conjugation by an element g0
of G: �g0(g) = g0 � g � g�10 .
� An automorphism is a bijective endomorphism.

1.39 Group parameter

! 1.48 Lie group and 1.49 Lie group of transformations.

1.40 Ideal

! 1.51 Lie subalgebra { Ideal.
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1.41 Index of an embedding { De�ning vector

De�nition
Let G be a simple Lie algebra of rank r and eG a subalgebra of G of rank
`. Denoting by H = fH1; : : : ;Hrg and eH = f eH1; : : : ; eH`g the Cartan
subalgebras of G and eG respectively, the embedding eG � G is completely
de�ned by the mapping f from eH to H:

f( eHi) =
rX
j=1

fij Hj 1 � i � `

The matrix (fij) is called the de�ning matrix of the embedding eG � G.
When eG = sl(2), this matrix becomes a vector (f1; : : : ; fr) called the
de�ning vector of the embedding sl(2) � G.

De�nition
Let G be a simple Lie algebra of rank r and eG a subalgebra of G of rank
` with the de�ning matrix (fij) (1 � i � ` and 1 � j � r). If K and eK
denote the Killing forms (! 1.44) on G and eG, one has

K(f( eX); f(eY )) = jf eK( eX; eY ) eX; eY 2 eG
The number jf , which is independent of eX; eY , is called the Dynkin index

of the embedding eG � G.
Theorem

The index jf of an embedding eG � G is an integer.

Property

Let f1; : : : ; fn be embeddings of a simple Lie algebra eG into the simple
Lie algebra G, such that

[fi( eX); fj(eY )] = 0 i 6= j and eX; eY 2 eG
Then f = f1 + : : :+ fn is also an embedding and jf = jf1 + : : :+ jfn .

Property
Let G1, G2, G3 be simple Lie algebras such that G1 � G2 � G3. Then

jG1�G3 = jG1�G2 jG2�G3
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Property
Let G be a simple Lie algebra of rank r and (f1; : : : ; fr) the de�ning vector
of an embedding sl(2) � G. Then the index of the embedding is given by

jf =
1
2

rX
i=1

f2i

The case of the embedding sl(2) � G is treated in detail in ! 1.28 Embed-
dings of sl(2).

1.42 Index of a representation

De�nition
Let G be a simple Lie algebra and � a representation of G. The bilinear
form associated to � is de�ned by B�(X;Y ) = tr(�(X)�(Y )) and the
Killing form by K(X;Y ) = tr(adX adY ) where X;Y 2 G (! 1.44). One
has

B�(X;Y ) = j�K(X;Y )

where j� is independent of the elements X and Y of G. The number j�
is called the index of the representation �.

Property
Let G be a simple Lie algebra and � a representation of G of dimension
N and highest weight �. The value of the index j� is given by

j� =
N

dimG C2(�)

where C2(�) is the value of the second order Casimir in the representation
�, properly normalized (i.e. C2 = 1 in the adjoint representation).

1.43 Iwasawa decomposition

Let G a semi-simple real Lie algebra. One knows (! 1.44) that G satis�es
the Cartan decomposition

G = C � P
where C is compact.
Through the complex extension GC of G, one can consider to each root � of
GC the root subspace

G� =
n
x 2 GC

��� hh; xi = �(h)x; h 2 H
o
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where H is a Cartan subalgebra of G.
� being the involution de�ned on G (! 1.44) such that

�(X) = X for X 2 C
�(X) = �X for X 2 P

it can be shown that the application �� de�ned from � by

��(h) = �(�h) 8h 2 H
is also a root for the algebra GC .
Then de�ning

N =
M
�2P+

G� where P+ =
n
� 2 H�

���� 2 � ; � 6= ��
o

and
N0 = G \ N

one has the following theorem:

Theorem (Iwasawa)
The semi-simple real Lie algebra G admits the direct vector space decom-
position

G = C � HP �N0

where C is compact, N0 = G\N is as de�ned above and HP is a maximal
Abelian subalgebra of P.
The spaces N and N0 are nilpotent Lie algebras and S0 = HP �N0 is a
solvable algebra (! 1.23).

1.44 Killing form

The importance of the Killing form stands in its properties of providing
criteria for the semi-simplicity of a Lie algebra and for the compacity of
semi-simple groups.

De�nition
Let G be a Lie algebra. One de�nes the bilinear form B� associated to a
representation � of G as a bilinear form from G � G into the �eld of real
numbers R such that

B�(X;Y ) = tr(�(X)�(Y )) ; 8 X;Y 2 G

�(X) are the matrices of the generators X 2 G in the representation �.
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De�nition
The bilinear form associated to the adjoint representation of G is called
the Killing form on G and is denoted K(X;Y ):

K(X;Y ) = tr(adX adY ) ; 8 X;Y 2 G

We recall that adX (Y ) = [X;Y ] and (adX�
)�� = �C �

�� (! 1.2) where C �
��

are the structure constants for the basis fX�g of G (� = 1; : : : ;dimG). We
can therefore write

K(X�;X�) = C �
�� C �

�� = g��

Cartan's criterion
G is semi-simple if and only if K is non-degenerate, that is det g 6= 0.

Theorem
G is semi-simple if and only if G is a direct sum of ideals which are simple
as Lie algebras.

Theorem (Weyl)
Let G be a semi-simple connected Lie group. Then G is compact if and
only if the Killing form on its Lie algebra G is negative de�nite, that is
8X 2 G ;K(X;X) < 0.

We remark that in this last case, �K de�nes a scalar product on G.
Finally, for a general semi-simple Lie algebra, we have the following result:

Theorem (Cartan)
Any semi-simple Lie algebra G over R can be seen as the direct sum of
two vector spaces:

G = C � P
where:

1. C is a compact subalgebra of G, that is
h
C; C

i
� C.

adC leaves P invariant, that is
h
C;P

i
� P and

h
P;P

i
� C.

2. The Killing form K of G restricted to C is negative de�nite, while
that restricted to P is positive de�nite. Furthermore, any subalge-
bra C0 of G such that the Killing form of G restricted to C0 is negative
de�nite is conjugate under G to a subalgebra of C.
The coset space G=C is called a symmetric space (! 1.71).
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The subalgebra C is called a symmetric subalgebra because of the existence
of the automorphism � of G de�ned as follows:

�(X) = X for X 2 C
�(X) = �X for X 2 P

Compacti�cation of G: from above, one can note that G can be \com-
pacti�ed" by replacing any element X 2 P by iX. Then K(iX; iX) =
�K(X;X) < 0.

1.45 Lattices

De�nition
Let V be an N -dimensional vector space on R with basis ("1; : : : ; "N ). V
is endowed with a symmetric bilinear form (inner product), denoted u � v
for u; v 2 V. A lattice L is de�ned as a set of points in V such that

L =
n NX
i=1

ni "i ; ni 2 Z

o
In the following, we assume V = R p;q where p+q = N , with pseudo-Euclidean
inner product of signature (p; q). In the case p = N; q = 0, the lattice L is
said to be Euclidean. In the case p = N � 1; q = 1, the lattice L is said to
be Lorentzian.

De�nition
The dual lattice L� of an n-dimensional lattice L is de�ned by

L
� =

n
y 2 V

��� y � x 2 Z ; 8x 2 L
o

A basis of L� is given by the dual basis ("�1; : : : ; "
�
N ) to the basis ("1; : : : ; "N ),

that is "�i � "j = �ij .

De�nition
A lattice L is called:

{ unimodular if it has one point per unit volume, that is vol(L) =pjdet gj = 1 where gij = "i � "j .
{ integral if x � y 2 Z for all x; y 2 L. One has then L � L�. Furthermore
an integral lattice is called even if all lattice vectors have even squared
length: x2 2 2Z for all x 2 L. It is called odd otherwise.
{ self-dual if L = L

�.
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Property
A lattice L is self-dual if and only if it is unimodular and integral.

Among the lattices related to the simple Lie algebras, the root lattice Q,
the coroot lattice Q_ and the weight lattice P are particularly relevant. For
a given Lie algebra G of rank r, they are de�ned as follows: f�1; : : : ; �rg
being the simple root system, f�_1 ; : : : ; �_r g the simple coroot system where
�_i � 2�i=(�i ��i) and f�1; : : : ;�rg the fundamental weight system, one has:

Q =
n rX
i=1

ni �i ; ni 2 Z

o
Q_ =

n rX
i=1

ni �
_
i ; ni 2 Z

o
P =

n rX
i=1

ni �i ; ni 2 Z

o

From the relation 2
�i � �j
�j � �j = �i ��_j = �ij , it follows that the weight lattice P

is dual to the coroot lattice Q_. The integer numbers specifying the position
of a point in P are the eigenvalues of the Cartan{Chevalley generators hi.
The e�ects on P of the other generators is to shift the point in the lattice
by an element of Q. Since the roots are the weights (! 1.92) of the adjoint
representation, one has the inclusion Q � P . In particular for the algebras
E8, F4 and G2, the lattices Q and P coincide. The quotient P=Q is a �nite
group whose order jP=Qj is equal to the determinant of the Cartan matrix of
the algebra. This �nite group is isomorphic to the center Z(G) of the group
G corresponding to the algebra G. The elements of P=Q de�ne the conjugacy
or congruence classes. Of course, the weight of an irreducible representation
of G belongs to exactly one conjugacy class. For instance, for the algebra
sl(n) there are n conjugacy classes which are de�ned by

n�1X
i=1

i�i mod P=Q

For any simple Lie algebra G the conjugacy classes are de�ned by

~� � ~C =

rX
i=1

Ci �i mod P=Q and mod Z=2Z for D2N

where ~C is the so-called conjugacy or congruence vector.
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For a simple Lie algebra G, one has

vol(Q) =
q
det(Aij) =

p
Nc

where (Aij) is the Cartan matrix (! 1.8) and Nc is the number of conjugacy
classes of G.
Table 1.3 gives for the simple Lie algebras the root lattice Q, the coroot
lattice Q_, the weight lattice P , the discrete factor group P=Q and the
conjugacy vectors (for non-simply-laced algebras: P 6= Q). In this table,
LN is the cubic lattice ZN with basis ("1; : : : ; "N ). The lattice L0N is the

sublattice of LN constituted by the points x =
PN

i=1 xi"i such that
P

i xi 2
2Z. One de�nes also the lattices eLN = LN [$Z and eL0N = L0N [$Z where

$ = 1
2

PN
i=1 "i. Clearly LN=L

0
N ' Z=2Z and eLN=LN ' Z=2Z . VN is the

hyperplane in RN orthogonal to$ and �1 = "1� 2
N $ is the �rst fundamental

weight of AN�1; V7 is the hyperplane in R 8 orthogonal to the fundamental
weight �8 of E8 and �07 = "6 +

1
2 ("8 � "7) is the last fundamental weight

of E7; V6 is the hyperplane in R 8 orthogonal to the fundamental weights �8

and �7 of E8 and �006 = "5 +
1
3 ("8 � "7 � "6) is the last fundamental weight

of E6; L["12; "13] is the lattice with basis "12 � "1 � "2; "13 � "1 � "3 in the
hyperplane of R 3 orthogonal to "1 + "2 + "3.

For more details, see also Tables 3.1{3.9.

Table 1.3: Root and weight lattices of the simple Lie algebras.

algebra Q P P=Q conjugacy vectors

AN�1 LN \ VN Q [ �1Z Z=NZ 1; 2; : : : ; N � 1; N

BN LN
eLN Z=2Z 0; 0; : : : ; 0; 1

CN L
0
N LN Z=2Z 1; 2; : : : ; N � 1; N

D2N L
0
2N

eL2N Z=2Z � Z=2Z 2; 4; : : : ; 2N � 2; N

D2N+1 L
0
2N+1

eL2N+1 Z=4Z 0; 0; : : : ; 1; 1

E6
eL0N \ V6 eL0N [ �006Z Z=3Z 1; 2; 0; 1; 2; 0

E7
eL0N \ V7 eL0N [ �07Z Z=2Z 0, 0, 0, 1, 0, 1, 1

E8
eL0N eL0N I

F4 eLN eLN I

G2 L["12; "13] Q I
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Self-dual lattices play a particular role in certain theories, for example in
string theory. Very few self-dual lattices exist for small dimensions. For
Euclidean lattices, the �rst examples are the root lattice of the Lie algebra
E8 (in dimension 8) which is even, and the weight lattice of the Lie algebra
D12 (in dimension 12) which is odd. Even self-dual Euclidean lattices only
occur in dimension 8k with k positive integer; there are two in dimension 16
(the root lattice of E8�E8 and the weight lattice of SO(32)=Z2), and 24 in
dimension 24, in which appears the Leech lattice whose minimum non-zero
squared length is 4. For Lorentzian lattices, there is exactly one odd self-
dual lattice in each dimension, which is ZN�1;1 . Even self-dual Lorentzian
lattices only occur in dimension 8k + 2 with k positive integer; they are
denoted by �N�1;1 = fx 2 ZN�1;1 or x 2 ZN�1;1 +$ j x �$ 2 Zg where
$ = (12 ; : : : ;

1
2).

1.46 Lie algebra: de�nition

De�nition
G is a Lie algebra over a �eld K of characteristic zero (usually K = R

or C ) if G is an algebra over K with its second internal law � satisfying
8X;Y;Z 2 G:

X � Y = �Y �X
X � (Y � Z) + Y � (Z �X) + Z � (X � Y ) = 0

The �rst equation means that the product � is antisymmetric and the second
equation is called the Jacobi identity.

An associative algebra A over the �eld K (with product �) acquires the
structure of a Lie algebra by taking for the product the Lie bracket [ ; ]
(also called commutator):h

X;Y
i
= X � Y � Y �X

for two elements X;Y 2 A.
It is the case for example of Lie algebras of linear operators (or matrices).

Example 1
Consider the Lie algebras of dimension 2 over C , generated by two ele-
ments a and b. There exist only two such Lie algebras: the Abelian Lie
algebra with commutation relation [a; b] = 0 and the non-Abelian one
with commutation relation [a; b] = b. �
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Example 2
Consider the Lie algebras of dimension 3 over C , generated by three
elements a, b and c. Let us denote the derivative (! 1.23) of the Lie
algebra G by G0 and the center (! 1.10) of G by Z(G). The Lie algebras of
dimension 3 over C are de�ned by one of the following sets of commutation
relations (�; � 2 C nf0g):

[a; b] = [b; c] = [c; a] = 0 (dimG0 = 0;G is Abelian)

[a; b] = c; [c; a] = [c; b] = 0 (dimG0 = 1 and G0 � Z(G))
[a; b] = b; [c; a] = [c; b] = 0 (dimG0 = 1 and G0 6� Z(G))
[a; b] = 0; [c; a] = a; [c; b] = �b (dimG0 = 2)

[a; b] = 0; [c; a] = a+ �b; [c; b] = b (dimG0 = 2)

[a; b] = c; [c; a] = �a; [c; b] = �b (dimG0 = 3)

�

1.47 Lie algebra: general decomposition

Theorem (Levi)
An arbitrary Lie algebra G has a semi-direct sum structure G = S2 R
with R solvable Lie algebra (called the radical of the Lie algebra), ideal
of G and S semi-simple Lie algebra. It followsh

R;R
i
� R ;

h
R;S

i
� R ;

h
S;S

i
� S

Theorem (Malcev)
Any semi-simple subalgebra of G is conjugate (by an inner automorphism)
to a subalgebra of S, that is S is unique. S is called the Levi's factor of
the Lie algebra G.

52 3 4 6

1 1 Lie Algebras (L.A.)
2 Abelian L.A.
3 Nilpotent L.A.
4 Solvable L.A.
5 Simple L.A.
6 Semi-simple L.A.
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Example
Consider the Lie algebra of the Euclidean group E(3). E(3) is the semi-
direct product of the three-dimensional Abelian translation group T (3) by
the rotation group in three dimensions SO(3). Its Lie algebra is therefore
the semi-direct sum t(3)3 so(3), with the generators Ji and Pi (i = 1; 2; 3)
of so(3) and t(3) respectively satisfying:h

Ji; Jj

i
= i "ijk Jk ;

h
Ji; Pj

i
= i "ijk Pk ;

h
Pi; Pj

i
= 0

The subalgebra generated by fJz; Jx+Py; Jy�Pxg is isomorphic to so(3).
From Malcev's theorem, it must be conjugated to the algebra generated
by fJx; Jy; Jzg. By action of the element exp(Pz), we obtain:

exp(Pz)Jx exp(�Pz) = Jx +
h
Pz; Jx

i
= Jx + Py

exp(Pz)Jy exp(�Pz) = Jy +
h
Pz; Jy

i
= Jy � Px

exp(Pz)Jz exp(�Pz) = Jz

�

1.48 Lie group

De�nition
Let G be a group. G is a Lie group of dimension n if it is an n-dimensional
analytic manifold, that is:

1. For all g 2 G, the element x can be parametrized, at least locally,
with the help of n parameters a1; : : : ; an 2 R (or C ).

2. For all g; g0 2 G such that g = g(a1; : : : ; an) and g
0 = g0(a01; : : : ; a

0
n),

the elements g:g0 = g00(a001; : : : ; a
00
n) and g

�1 = g(a1; : : : ; an) are such
that the functions a00i (a1; : : : ; an; a

0
1; : : : ; a

0
n) and ai(a1; : : : ; an) are

analytic functions of the arguments.

1.49 Lie group of transformations

Let G be a Lie group of dimension n. G is a Lie group of transformations on
them-dimensional manifoldM if there exists an application f : G�M !M ,
that is

x0i = f i(x1; : : : ; xm; a1; : : : ; an) i = 1; : : : ;m

which is analytic in its (n+m) arguments and in addition satis�es
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1. For all x0 = f(x; a) and x00 = f(x0; a0), there exists a00 = a00(a; a0)
analytic in a and a0 with x00 = f(x; a00).

2. For all a, there exists a unique a such that x0 = f(x; a)) x = f(x0; a).

3. There exists a0 such that x = f(x; a0) for all x 2 G.

Example of a Lie group of transformation

Consider the rotation group O(3) in three dimensions. Let g be the element
which rotates the frame (Ox;Oy;Oz) into the new frame (Ox0; Oy0; Oz0).
Such a rotation will be completely determined once one knows for example
the Euler angles  ; �; �. We can represent g = g( ; �; �) by the matrix0@cos cos�� cos � sin sin� � cos sin�� cos � sin cos� sin sin �
sin cos�+ cos � cos sin� � sin sin�+ cos � cos cos� � cos sin �

sin� sin � cos� sin � cos �

1A
where 0 � �;  � 2� and 0 � � � �. One can remark that

g( ; �; �) = g� g� g 

that is g( ; �; �) can be decomposed as the product of three rotations: a
rotation g around the axis Oz, followed by a rotation g� around the axis
OL (which determines the intersection of the two planes xOy and x0Oy0),
and �nally a rotation g� around the axis Oz

0. Moreover, the inverse of g can
be written g( ; �; �)�1 = g(� � �; �; � �  ).
Let us emphasize that:

1. this group contains three essential parameters (a fourth parameter
would be redundant and it is impossible to describe any rotation of
the three-dimensional space R 3 with only two parameters).

2. one has g( ; �; �) � g0( 0; �0; �0) = g00( 00; �00; �00) for any g( ; �; �) and
g0( 0; �0; �0), where  00, �00, �00 are continuous functions in  , �, �,  0,
�0, �0.

3. the domain of variation of each parameter is compact (since it is a
closed set of the real axis: 0 � �;  � 2� and 0 � � � �).

It follows that the group O(3) is a continuous three-dimensional group:
it is a three-dimensional Lie group of transformations. Moreover, it is
compact since the domain of variation of each parameter of O(3) is com-
pact. Topologically, O(3) is a manifold: indeed there is a one-to-one corre-
spondence between the elements of O(3) and the elements in the subspace
S = f0 �  ; � � 2�; 0 � � � �g of R 3 :

g 2 O(3) 7! ( ; �; �) 2 S
in which concepts and methods in R 3 are valid (S is locally Euclidean).



Lie Algebras 77

1.50 Lie group of transformation generator

From the above de�nition of a Lie group of transformations, one has xi =
f i(x; 0) for any x 2 M . Considering an in�nitesimal transformation x 7!
x + dx of parameters da = (da1; : : : ; dan), one obtains x + dx = f(x; da),
thus

dxi =
@f i(x; a)

@aj

�����
a=0

daj =
X
j

uij(x) da
j (i = 1; : : : ;m and j = 1; : : : ; n)

Let F be a form from M into K = R or C . Then

dF =
@F

@x
dx =

X
ij

uij(x)
@F

@xi
daj =

X
j

(dajXj)F

The n operators

Xj =
mX
i=1

uij(x)
@

@xi

are called the generators of the Lie group of transformations G.

Example
Let G be the three-dimensional rotation group SO(3). Then x0 =
f(x; a) = Ax, where A is a 3 � 3 orthogonal matrix (that is AAt = I

or in�nitesimally dA = �dAt), thus:

dA =

0@ 0 da3 �da2
�da3 0 da1

da2 �da1 0

1A
Then

dx1 = x2da3 � x3da2
dx2 = x3da1 � x1da3
dx3 = x1da2 � x2da1

and since dxi =
P3

i=1 u
i
j(x) da

j , we deduce the representation of the three
generators of SO(3):

X1 = x2
@

@x3
� x3 @

@x2

X2 = x3
@

@x1
� x1 @

@x3

X3 = x1
@

@x2
� x2 @

@x1
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and we can check the commutation relationsh
X1;X2

i
= �X3 ;

h
X2;X3

i
= �X1 ;

h
X3;X1

i
= �X2

Let us also consider the functions F k (k = 1; 2; 3) which associate to any
vector ~x 2 R 3 its components xk 2 R , F j : ~x 7! xj . Then

dF k(~x) =
X
ij

daj
�
uij(x)

@

@xi

�
xk =

X
j

daj ukj (x)

that is

d~x =

0@X
j

dajXj

1A ~x

But since dxi = dAij x
j and due to the form of the matrix dA, we get the

representation of Xj by 3� 3 matrices:

X1 =

0@ 0 0 0
0 0 1
0 �1 0

1A X2 =

0@ 0 0 �1
0 0 0
1 0 0

1A X3 =

0@ 0 1 0
�1 0 0
0 0 0

1A
�

1.51 Lie subalgebra { Ideal

De�nition
Let G be a Lie algebra over the �eld K (K = R or C ). A subset H of G
is called a subalgebra of G if H is a vector subspace of G which is itself
a Lie algebra. A subalgebra H of G such that H 6= G is called a proper
subalgebra of G.

De�nition
Let G be a Lie algebra and I a subalgebra of G. I is called an ideal of G
if
h
G; I

i
� I, that is

X 2 G; Y 2 I )
h
X;Y

i
2 I

An ideal I of G such that I 6= G is called a proper ideal of G.

If H is a normal subgroup of the Lie group G, then its Lie algebra H is an
ideal of the Lie algebra G of G.
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Property

Let G be a Lie algebra and I, I 0 two ideals of G. Then
h
I; I 0

i
, I \I 0 and

I [ I 0 are ideals of G.

1.52 Lie theorems

Let G be an n-dimensional Lie group of transformations on the m-dimensio-
nal manifold M .

Theorem
Let x 2 M . In an in�nitesimal transformation of the G-parameters, one
has dxi =

P
j u

i
j(x) da

j (! 1.50). Then the functions uij are analytic.

Theorem
If X� (� = 1; : : : ; n) are the generators of an n-dimensional Lie group G,

then the coe�cients C �
�� given byh

X�;X�

i
= X�X� �X�X� = C �

�� X�

are constants and called the structure constants of G (note that they
do not depend on the representation chosen for G: they are intrinsic
quantities of G once given a basis of generators of G).

Theorem
The structure constants satisfy:

C �
�� = �C �

��

C �
�� C �

�� + C �
�� C �

�� + C �
�� C �

�� = 0

The �rst property comes from the antisymmetry of the Lie bracket and the
last one can be easily deduced from the Jacobi identityh

X�;
h
X�;X�

ii
+
h
X�;

h
X� ;X�

ii
+
h
X� ;

h
X�X�

ii
= 0

for any triplet X�;X�;X� of generators.

Property
The in�nitesimal generators of an n-dimensional Lie group generate an
n-dimensional Lie algebra (! 1.46).
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Example
Consider the Lie algebra su(3) of SU(3) and the basis constituted by the
matrices �i (i = 1; : : : ; 8) (! 1.90)h

�i; �j

i
= �i�j � �i�j = 2i f k

ij �k

In this basis, the structure constants f k
ij are not only antisymmetric in

the indices i; j (f k
ij = �f k

ji ) but completely antisymmetric in the three
indices i; j; k, that is

f k
ij � fijk = �fjik = �fkji = �fikj = fjki = fkij

that last property being obviously not the case in any basis of su(3).

Converse of the Lie theorems

We have just seen that to each Lie group can be associated one and only
one Lie algebra. Is the converse true? The answer is no. More precisely,
in general it is not the case that only one Lie group corresponds to a Lie
algebra. Let us state the \converse of the Lie theorem":

Theorem
Let G be an abstract Lie algebra of dimension n over the �eld R of real
numbers. Then there is a simply connected Lie group G of dimension n
(! 1.18) whose Lie algebra is isomorphic to G. The group G is uniquely
determined by G up to a local analytic isomorphism. G is called the
universal covering group.

Let us emphasize that there is not a one-to-one correspondence between Lie
algebras and Lie groups, since several Lie groups may have the same Lie
algebra.

The above theorem leads to the following questions: How to construct a Lie
group from a Lie algebra? How to get all Lie groups with the same Lie alge-
bra? The answer to the last question has been given in! 1.18 (Connexity).
The answer to the �rst question is given by the Taylor's theorem:

Theorem (Taylor)
The Lie group operation corresponding to the Lie algebra element ��X�

is
��X� 7! exp(��X�)
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Example
Let us consider in R 3 a rotation of angle � around the Oz axis:0@ cos � sin � 0

� sin � cos � 0
0 0 1

1A
# (� ! 0)0@ 1� 1

2�
2 + : : : � + : : : 0

�� + : : : 1� 1
2�

2 + : : : 0
0 0 1

1A
where the lower matrix is obtained from the upper matrix by a Taylor
expansion. We realize that ROz(�) can be rewritten as an exponential of
the generator X3 already introduced in the previous paragraph, that is

ROz(�) = exp(�X3) �! I+ �X3 + : : :

�

Taylor's theorem does not insure that we can obtain any Lie group element
by taking the exponential of some element in the Lie algebra. Considering
for example the Euclidean group in three dimensions (! 1.29). It appears
that the most general element can only be written as the product of two
exponentials exp(�iPi) exp(�

iJi) if Pi and Ji are respectively the translation
and the rotation generators (i = 1; 2; 3), but not as a single exponential of a
Lie algebra element. However, we have the following property:

Property
Every element of a compact Lie group G lies on a one-dimensional Abelian
subgroup of G and can be obtained by exponentiating some element in
the Lie algebra.

1.53 Lorentz group

The Lorentz invariance of physical laws implies that physical equations have
to be covariant under transformations of the Lorentz group.

The Lorentz group L or O(3; 1) is the set of linear transformations which
leave invariant the scalar product of two four-vectors in the Minkowski space
(�; � = 0; 1; 2; 3):

xy = g��x�x� with g�� = 2��0��0 � ���
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Its elements are de�ned by x0� = � �
� x� where the 4� 4 matrices � satisfy

g���
�
� � �

� = g�� or �tg� = g with det� = �1

The Lorentz group is a 6-parameter group. Its in�nitesimal generators
M�� = �M�� satisfy the commutation relations (Lorentz algebra):h

M�� ;M��

i
= i(�g��M�� + g��M�� + g��M�� � g��M��)

In the 4� 4 matrix representation they can be written as (i; j = 1; 2; 3)

(Mij)�� = �i(�i� �j� � �i� �j�)
(M0i)�� = i(�0� �i� + �0� �i�)

where the row and column indices � and � run from 0 to 3.

If we de�ne
Ji =

1
2 "ijkMjk and Ki =M0i

we haveh
Ji; Jj

i
= i "ijk Jk ;

h
Ji;Kj

i
= i "ijkKk ;

h
Ki;Kj

i
= �i "ijk Jk

The Casimir operators are given by

C1 =
1
2 M

��M�� = ~J 2 � ~K 2

C2 =
1
4 "����M

��M�� = 2 ~J � ~K
where "���� is the complete antisymmetric tensor such that "0123 = +1.

The �nite (not unitary) irreducible representations of the proper Lorentz
group SO(3; 1) (det� = 1), or more correctly of its covering group SL(2; C ),
are labelled by two non-negative integers (tensor representations) or half-
integers (spinor representations) (j1; j2) and have dimension (2j1+1)(2j2+1).
The unitary irreducible representations, in�nite dimensional, are labelled by
two numbers (c;M) where i) c is an arbitrary imaginary number and M an
arbitrary non-negative integer or half-integer (principal series) or ii) c is a
real number so that 0 < c < 1 and M = 0 (complementary series).

For references, see ref. [66].

1.54 Module of a Lie algebra

! 1.73 Representation of a Lie algebra.
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1.55 Normalizer (of a group, of an algebra)

De�nition
Let G be a group, S a subset of elements in G. The normalizer NG(S) is
the subset of G given by

NG(S) =
n
g 2 G

��� g � s � g�1 2 S; 8 s 2 So
It is a subgroup of G.

De�nition
Let G be a Lie algebra, S a subset of elements in G. The normalizer
NG(S) is the subset of G given by

CG(S) =
n
X 2 G

��� hX;Y i 2 S; 8Y 2 So
It is a subalgebra of G.

Notice that if S is an ideal of G, then NG(S) = G.

1.56 Octonions { Quaternions

De�nition
Let A be an unital algebra (that is with an identity element).
A is a composition algebra if it has a norm N such that

N(x)N(y) = N(x � y) ; 8x; y 2 A

A is a division algebra if

x � y = 0 ) x = 0 or y = 0 ; 8x; y 2 A
According to Hurwitz theorem, there are only four di�erent algebras which
are division and composition algebras: these are the real numbers R , the
complex numbers C , the quaternions H and the octonions O .

In the same way any complex number is written z = a + ib with a; b real
numbers and i satis�es i2 = �1; { = �i, a quaternion q is obtained by
de�ning a secondary imaginary unit j such that

j2 = �1 ; | = �j ; ij + ji = 0 ; {| = |{ = �ij
It follows that a quaternion can be written in terms of the real numbers
a; b; c; d as

q = a+ ib+ jc+ ijd = (a+ jc) + i(b+ jd)
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The norm for complex numbers is de�ned as N2(z) = zz = a2 + b2. The
norm for quaternions will be de�ned as

N2(q) = qq = a2 + b2 + c2 + d2

The algebra H is not a commutative algebra, but it is still an associative one.
Setting e1 � i, e2 � j and e3 � ij, the multiplication table for quaternionic
units can be summarized as (�; �; 
 = 1; 2; 3):

e� � e� = ���� + "��
 e


We note the isomorphism between these units and the Pauli matrices via
the identi�cation e� = i��, � = 1; 2; 3.

The octonion algebra O can be de�ned by adding to the quaternion algebra
another imaginary unit k such that

k2 = �1 ; ik + ki = jk + kj = 0 ; (ij)k + (ji)k = i(jk) + j(ik)

We obtain now seven octonionic units and any element of O will be written
as

! = a0 +
7X

�=1

a�e�

where a0; : : : ; a7 are real numbers and

e1 � j ; e2 � k ; e3 � jk ; e4 � ij ; e5 � ik ; e6 � i(jk) ; e7 � i ;
the e� satisfying the multiplication law

e� � e� = ��� + sign(f��
) e


f��
 being the su(3) structure constants in the so-called Gell-Mann basis
(! 1.90).

Notice that with the octonion algebra O , one loses also the associativity.
The norm in O is de�ned by

N2(!) = !! = a20 +
7X

�=1

a2�

The norm is left invariant under an SO(8) transformation. A subgroup of
SO(8) is the automorphism group of the octonions algebra (that is the group
of transformations leaving the above multiplication table invariant): it is the
exceptional group G2.

For more details on the structure of octonions and the embeddings G2 �
SO(7) and SO(7) � SO(8), see ref. [35].
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1.57 Orbit and stratum

Let G be a group and � a representation of G with representation space V.

De�nition
The orbit of m 2 V is the set of elements m0 2 V one can reach by action
of G on m, that is

G(m) =
n
m0 = g(m)

��� g 2 Go
denoting g(m) = �(g(m)).

De�nition
The little group or stabilizer of m 2 V is the set

Gm =
n
g 2 G

��� g(m) = m
o

Gm is a subgroup of G.

Property
If m and m0 are on the same orbit, their little groups are conjugate. More
precisely, if m0 = gm then Gm0 = gGmg

�1.

Now, two points m and m0 need not be on the same orbit to have conjugate
little groups; by de�nition they are on the same stratum.

De�nition
The stratum S(m) is the union of all orbits such that the little groups of
their points are all conjugate.

Property
The orbits form a partition of V. The strata also form a partition of V
(that is the union of the orbits (resp. strata) is V and the intersection of
two di�erent orbits (resp. strata) is zero).

Therefore the decomposition of V into orbits and strata is equivalent to the
classi�cation of little groups for the considered representation. When G is
compact, the number of little groups is �nite and several nice properties can
be proved (see refs. [30, 61, 62]).
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1.58 Orthogonal groups and algebras

The orthogonal group in the n-dimensional real space R n is the group of
n� n real matrices O leaving invariant the scalar product

~x � ~y =
nX
i=1

xiyi = O~x �O~y ; 8 ~x; ~y 2 R
n

This group is denoted O(n). One can also de�ne it as the group of n�n real
orthogonal matrices: Ot = O�1. Note that any matrix O 2 O(n) satis�es
detO = �1. The set of n � n orthogonal matrices such that detO = 1
forms a subgroup of O(n) denoted SO(n) or special orthogonal group in n
dimensions.

The group O(n) with n � 2 is compact and its Lie algebra so(n) is simple
for n � 2; n 6= 4. Any element O 2 O(n) can be written

O = eM with M antisymmetric: M t = �M
There exist n(n�1)=2 independent n�n antisymmetric matrices. Therefore
the Lie algebra of O(n) has 1

2n(n� 1) generators. Note that the Lie algebra
of SO(n) has the same number of generators as that of O(n) (contrary to
the case of the U(n) and SU(n) groups).

As a basis of so(n), one can choose the set of matrices Mij with all entries
equal to 0 zero except the i-th row and j-th column equal to 1 and the j-th
row and i-th column equal to �1 (i; j = 1; : : : ; n). The matrices Mij are
antisymmetric, Mij = �Mji, and the commutation relations areh

Mij ;Mkl

i
= �jkMil + �ilMjk � �ikMjl � �jlMik

In the particular case of so(3), we have

M12 =

0@ 0 1 0
�1 0 0
0 0 0

1A M23 =

0@ 0 0 0
0 0 1
0 �1 0

1A M31 =

0@ 0 0 �1
0 0 0
1 0 0

1A
The algebra so(4) is not simple, but is the direct sum of two so(3) Lie
algebras. One can easily convince oneself of this property by building from
the six generators Mij (i; j = 1; 2; 3; 4) the two subsets fM12 +M34;M23 +
M14;M31 +M24g and fM12 �M34;M23 �M14;M31 �M24g, each of them
constituting a basis of so(3) and any generator of the �rst set commuting
with the three generators of the other. As Lie groups, we have

SO(4) ' SU(2)� SU(2)
Z2
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Note also that SO(3) ' SU(2)=Z2 and SO(6) ' SU(4)=Z2 (! 1.18): SU(2)
is the covering group of SO(3) and SU(4) is the covering group of SO(6)).

Let us also note that if M is antisymmetric real, then �iM is hermitian.
Therefore, we can write any element O 2 O(n) as

O = eiN with N hermitian: N y = N

Considering again the so(3) Lie algebra, we can choose as a basis the three
hermitian matrices

J1 =
p
2

0@ 0 1 0
1 0 1
0 1 0

1A J2 =
p
2

0@ 0 �i 0
i 0 �i
0 i 0

1A J3 =

0@ 1 0 0
0 0 0
0 0 �1

1A
which satisfy (i; j; k = 1; 2; 3)h

Ji; Jj

i
= i "ijk Jk

An irreducible representation of SO(n) with n = 2p or n = 2p+ 1 is either
characterized by the Dynkin labels (a1; : : : ; ap) where ai are positive or null
integers, or by a set of p integers or p half-integers (m1; : : : ;mp) such that

for n = 2p; m1 � m2 � : : : � mp�1 � jmpj
for n = 2p+ 1; m1 � m2 � : : : � mp�1 � mp � 0

In the case of a representation of SO(2p) the last index can be negative.
Actually the representations (m1; : : : ;mp�1;mp) and (m1; : : : ;mp�1;�mp)
are conjugate representations.

The SO(n) representations (m1; : : : ;mp) with m1; : : : ;mp integers (resp.
half-integers) are called vector (resp. spinor) representations; in SO(3)
for example, the spinor representations are the representations Dj with
j = 1=2; 3=2; : : :

The correspondence between the two labellings is the following:

for n = 2p
ai = mi �mi+1 (1 � i � p� 1)
ap = mp�1 +mp

for n = 2p+ 1
ai = mi �mi+1 (1 � i � p� 1)
ap = 2mp
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The dimension of the SO(n) irreducible representation �(m1; : : : ;mp) is
given by

for n = 2p; N(m1; : : : ;mp) =

Y
1�i<j�p

(li � lj)(li + lj)Y
1�i<j�p

(�i � �j)(�i + �j)

for n = 2p+ 1; N(m1; : : : ;mp) =

Y
1�i�p

li
Y

1�i<j�p
(li � lj)(li + lj)Y

1�i�p
�i

Y
1�i<j�p

(�i � �j)(�i + �j)

where li = mi + �i with �i = p� i in the case n = 2p and �i = p� i + 1
2 in

the case n = 2p+ 1, that is:

for SO(2p)

N =
Y

1�i<j�p

mi �mj + j � i
j � i

Y
1�i<j�p

mi +mj + 2p� i� j
2p� i� j

and for SO(2p+ 1)

N =
Y

1�i�p

2mi + 2p� 2i+ 1

2p� 2i+ 1

Y
1�i<j�p

mi �mj + j � i
j � i

�
Y

1�i<j�p

mi +mj + 2p� i� j + 1

2p� i� j + 1

1.59 Oscillator realizations: classical Lie algebras

Let us consider a set of 2N bosonic oscillators b�i and b+i with commutation
relations: h

b�i ; b
�
j

i
=
h
b+i ; b

+
j

i
= 0 and

h
b�i ; b

+
j

i
= �ij

and a set of 2N fermionic oscillators a�i and a+i with anticommutation rela-
tions: n

a�i ; a
�
j

o
=
n
a+i ; a

+
j

o
= 0 and

n
a�i ; a

+
j

o
= �ij

the two sets commuting each other:h
b�i ; a

�
j

i
=
h
b�i ; a

+
j

i
=
h
b+i ; a

�
j

i
=
h
b+i ; a

+
j

i
= 0
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Oscillator realization of AN�1

Let � = f "i � "j g be the root system of AN�1 expressed in terms of the
orthonormal vectors "1; : : : ; "N . The Lie algebra AN�1 admits two di�erent
natural oscillator realizations, a bosonic one and a fermionic one. A bosonic
oscillator realization of the generators of AN�1 in the Cartan{Weyl basis is
given by

Hi = b+i b
�
i � b+i+1b�i+1 (1 � i � N � 1)

E"i�"j = b+i b
�
j

and a fermionic oscillator realization by

Hi = a+i a
�
i � a+i+1a�i+1 (1 � i � N � 1)

E"i�"j = a+i a
�
j

Oscillator realization of BN

Let � = f �"i�"j ; �"i g be the root system of BN expressed in terms of the
orthonormal vectors "1; : : : ; "N . An oscillator realization of the generators
of BN in the Cartan{Weyl basis is given by

Hi = a+i a
�
i � a+i+1a�i+1 (1 � i � N � 1) ; HN = 2a+Na

�
N � 1

E�"i�"j = a�i a
�
j

E�"i = �(�1)Na�i
where N =

Pm
k=1 a

+
k a

�
k .

Oscillator realization of CN

Let � = f �"i � "j ; �2"i g be the root system of CN expressed in terms of
the orthonormal vectors "1; : : : ; "N . An oscillator realization of the genera-
tors of CN in the Cartan{Weyl basis is given by

Hi = b+i b
�
i � b+i+1b�i+1 (1 � i � N � 1) ; HN = 2b+Nb

�
N + 1

E�"i�"j = b�i b
�
j

E�2"i = (b�i )
2

Oscillator realization of DN

Let � = f �"i � "j g be the root system of DN expressed in terms of the
orthonormal vectors "1; : : : ; "N . An oscillator realization of the generators
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of DN in the Cartan{Weyl basis is given by

Hi = a+i a
�
i � a+i+1a�i+1 (1 � i � N � 1)

HN = a+N�1a
�
N�1 + a+Na

�
N � 1

E�"i�"j = a�i a
�
j

1.60 Oscillator realizations: exceptional Lie alge-

bras

Oscillator realization of E8

The realization of E8 in terms of fermionic oscillators [82] is based on the
following two key points:

1. The embedding
E8 � so(8) � so0(8)

with the corresponding decomposition of the adjoint of E8

248 = (28; 10) � (1; 280) � (8v; 8
0
v) � (8s; 8

0
s) � (8c; 8

0
c)

where we have denoted with 28, 8v, 8s and 8c, respectively the adjoint,
the vector, the spinor and the complex conjugate spinor representations
of so(8) and with a prime the corresponding representations of so0(8).

2. The de�nition of fermionic operators which transform respectively as
8v, 8s and 8c and the triality property.

Let us consider

1. A set of 8 fermionic oscillators a+i and ai transforming as 8v (i =
1; 2; 3; 4) with standard anticommutation relations.

2. A set of 16 fermionic oscillators labelled by a quadruple of numbers
l1, l2, l3, l4 , (li 2 f�1=2;+1=2g, i = 1; 2; 3; 4). We introduce an
hermitian conjugation (h.c.), denoted by \+", which changes the signs
of li. We divide this set in two 8-dimensional subsets, denoted by �
and �, transforming respectively as 8s and 8c. We denote each element
by lower labels ranging between 1 and 4 , written in increasing order
and identifying the labels li = +1=2. It is convenient to introduce the
notation (no sum over repeated labels)

�1234 = (�+1234)
+ �i = "ijkl �

+
jkl

�ij = �ijkl �
+
kl �+ijk = � �+P (ijk)

�+ij = ��+ji (i < j) (� � parity of permutation P)
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The sets satisfy the following anticommutation relations:n
�; �

o
=
n
�+; �+

o
=
n
�; �

o
=
n
�+; �+

o
= 0

and n
�1234; �

+
1234

o
= 1

n
�ij ; �

+
kl

o
= �ik�jl

n
�i; �

+
j

o
= �ij

Due to the triality property we can realize the algebra so(8) by using one of
the three sets introduced above. So we identify

a+i a
+
j = �+1234 �

+
ij = �+ijk �

+
ijl (k < l)

a+i a
�
j = �+ik �

�
jl = �+i �

�
j (i < j; k < l)

and (with hi = a+i ai)

�+1234 �1234 � 1
2

4X
i=1

hi ; �+ij �ij � 1
2

�
hi+hj �

X
k 6=i;j

hk

�
; �+i �i � hi�

X
l 6=i

hl

From consistency relations we require the three sets to satisfy the following
commutation relations:h

ai; �
+
1234

i
= �j

h
aj ; �

+
jkl

i
= �+kl

h
ai; �

+
jk

i
= �ij �

+
k � �jk �+ih

a+i ; �
+
1234

i
= 0

h
a+i ; �

+
jkl

i
= �ijkl

h
a+i ; �

+
jk

i
= �+ijkh

�j; �1234

i
= aj

h
�+i ; �1234

i
= 0

h
�i; �

+
jk

i
= �ij a

+
k � �ik a+jh

a+i ; �
+
j

i
= �+ij

h
�+i ; �

+
jk

i
= "ijkl al

h
a+i ; �j

i
= �ij �

+
1234

and the ones obtained by hermitian conjugation.

In the following we denote the sets of fermionic operators relative to so0(8)
by a four-units shift in the labels.

We can now write the explicit realization of E8 in terms of bilinears in the
previous fermionic operators:

(28; 10) a+i a
+
j ; ai aj ; a+i aj ; a+j ai ; hi = a+i ai ;

(1; 280) a+m a
+
n ; am an ; a+m an ; a+n am ; hm = a+m am ;

(8v; 8
0
v) a+i a

+
m ; ai am ; a+i am ; ai a

+
m ;

(8s; 8
0
s) �+1234 �

+
mn ; �+ij �5678 ; �+1234 �

+
5678 ; �+1234 �5678 ; �+ij �

+
mn ;

�1234 �mn ; �ij �
+
5678 ; �1234 �5678 ; �1234 �

+
5678 ;

(8c; 8
0
c) �+ijk �

+
mnp ; �+ijk �

+
m ; �+i �

+
mnp ; �+i �

+
m
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where 1 � i < j < k � 4 and 5 � m < n < p � 8.

Each line corresponds to a term in the decomposition of the adjoint of E8

with respect to so(8) � so(8). The simple positive generators are, with
reference to the labelling of Table 3.7,

e+1 = �+1 �
+
8 ; e+r = a+r ar�1 (r = 2; ::; 7) ; e+8 = a+1 a

+
2 ;

the simple negative ones e�i are obtained by hermitian conjugation and the
corresponding Cartan generators are

H1 =
1
2

�
h1 + h8 �

7X
k=2

hk

�
; H8 = h1 + h2 � 1 ; Hr = hr � hr�1

The negative generators are obtained from the positive ones by hermitian
conjugation. Let us remark that the generators bilinear in the set fag corre-
spond to the roots of the form �"i� "j (i.e. the roots of so(16) � E8), while
the generators bilinear in the sets f�g and f�g correspond to the remaining
roots (i.e. to the 128-dimensional spinor representation of so(16)).

Oscillator realization of E7

From the embedding E8 � E7 � su(2) with the corresponding decomposition
of the adjoint representation ofE8, 248 = (133; 1)� (1; 3)� (56; 2), we obtain

a+i a
+
j ; ai aj ; a+i aj ; a+j ai ; hi ;

a+5 a
+
6 ; a5 a6 ; a+5 a6 ; a+6 a5 ; a+7 a8 ; a+8 a7 ; h7 � h8 ;

a+i a
+
m ; ai am ; a+i am ; a+m ai ; hm ;

�+1234 �
+
mp ; �1234 �

+
mp ; �+ij �

+
mp

�+ijk �
+
56p ; �+ijk �

+
p ; �+i �

+
56p ; �+i �

+
p

where 1 � i < j < k � 4, m = 5; 6 and p = 7; 8.

The simple generators are the same as E8 omitting the value r = 7.

Oscillator realization of E6

From the embedding E7 � E6 � U(1) with the corresponding decomposition
of the adjoint representation of E7, 133 = (78; 0)� (1; 0)� (27;�1)� (27; 1),
we obtain (where 1 � i < j < k � 4)

a+i a
+
j ; ai aj ; a+i aj ; a+j ai ; hi ;

a+i a
+
5 ; ai a5 ; a+i a5 ; a+5 ai ; h5 ; 2h6 + h7 � h8 ;

�+1234 �
+
67 ; �1234 �

+
67 ; �+ij �

+
67 ; �+1234 �

+
58 ; �1234 �

+
58 ; �+ij �

+
58

�+ijk �
+
567 ; �+ijk �

+
8 ; �+i �

+
567 ; �+i �

+
8
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The simple generators are the same as E8 omitting the values r = 6 and
r = 7.

Oscillator realization of F4

From the embedding E6 � F4 with the corresponding decomposition of the
adjoint representation of E6, 78 = 52 � 26, we obtain, for the simple positive
generators

e+1 = a+1 a
+
2 ; e+2 = a+3 a2 ; e+3 = a+2 a1 + a+4 a3 ; e+4 = �+1 �

+
8 + a+5 a4

and for the Cartan generators

H1 = h1 + h2 ; H2 = h3 � h2 ; H3 = h2 + h4 � h1 � h3

H4 =
1
2

�
h1 + h8 + 2h5 � 2h4 �

7X
k=2

hk

�
the remaining twenty positive generators are given by:

a+3 a
+
4 ; a+4 a1 ; a3 a

+
5 � �+2 �+8 ; a1 a

+
5 � �+4 �+8 ; a2 a

+
5 + �+3 �

+
8

a+1 a
+
3 ; a+2 a

+
4 ; a+1 a

+
5 � �+123 �+8 ; a+2 a

+
5 � �+124 �+8 ; a+3 a

+
5 + �+134 �

+
8

�+12 �
+
58 ; �+13 �

+
58 ; �1234 �

+
58 ; �+23 �

+
58 + �+14 �

+
58 ; a+2 a

+
3 + a+3 a

+
4

�+24 �
+
58 ; �+34 �

+
58 ; �+1234 �

+
58 ; a+1 a2 + �+13 �

+
58 ; a+3 a1 � a+4 a2

Oscillator realization of G2

From the embedding so(8) � G2 with the corresponding decomposition of
the adjoint representation of so(8), 28 = 14 � 7 � 7, we obtain for the simple
generators

e1 = a+2 a3 ; e2 = a+1 a2 + a+3 a4 + a+3 a
+
4

and for the Cartan generators

H1 = h2 � h3 ; H2 = h1 � h2 + 2h3 � 1

The remaining four positive generators are

a+1 a3 � a+2 a4 � a+2 a+4 ; a+1 a4 + a+1 a
+
4 + a+2 a

+
3 ; a+1 a

+
3 ; a+1 a

+
2

Another realization, using only six fermionic operators, can be obtained
from the embedding G2 � su(3) with the corresponding decomposition of
the adjoint representation of G2, 14 = 8 � 3 � 3. We obtain for the simple
generators

e1 = a+1 a2 ; e2 = a+2 + a+3 a1

and for the Cartan generators

H1 = h1 � h2 ; H2 = 2h2 � h1 + h3 � 1
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1.61 Pauli matrices

! 1.90 Unitary groups and algebras.

1.62 Poincar�e group

The relativistic quantum theory has to satisfy Poincar�e invariance, which
implies that the Hilbert space of physical states is a representation space of
the Poincar�e group.

The Poincar�e group P { or inhomogeneous Lorentz group { is the set of
linear transformations which leave invariant the interval (x � y)2 with x =
(x0 = ct; x1; x2; x3) in the Minkowski space. The general element of the
Poincar�e group will be denoted (a;�) with

x0� = ���x� + a�

where � is an element of the Lorentz group L and a is a four-vector in the
Minkowski space.

The Poincar�e group appears as the semi-direct product of the four-dimen-
sional translation group T (4) in the Minkowski space by the Lorentz group
L: P = T (4)n L. The composition law is

(a;�)(a0;�0) = (a+ �a0;��0)

and the inverse of an element is

(a;�)�1 = (���1a;��1)
The Poincar�e group is a 10-parameter group. Its Lie algebra, the Poincar�e
algebra, is generated by M�� (Lorentz generators) and P� (translation gen-
erators), which satisfy the following commutation relations:h

M�� ;M��

i
= i(�g��M�� + g��M�� + g��M�� � g��M��)h

M�� ; P�

i
= i(g��P� � g��P�)h

P�; P�

i
= 0

where the metric tensor g�� is given by g�� = 2��0��0 � ��� .
An explicit realization of the Poincar�e algebra in terms of di�erential oper-
ators is given by (�; � = 0; 1; 2; 3):

for the translation generators P� = i @�

for the Lorentz generators M�� = i(x�@� � x�@�)



Lie Algebras 95

where @� � @

@x�
= g��

@

@x�
.

The Casimir operators are

P 2 = P�P
�

W 2 =W�W
� with W � = 1

2"
����P�M��

where h
W�; P�

i
= 0 and W�P

� = 0h
W�;W�

i
= i " ��

�� W�W�h
M�� ;W�

i
= i(g��W� � g��W�)

The unitary irreducible representations of the proper Poincar�e group (that
is det� = 1), or more correctly of its covering group T (4) n SL(2; C ), can
be essentially classi�ed into three classes:

1. P 2 > 0. The unitary irreducible representations are characterized
by a real positive number m (the mass) and by an integer or half-
integer non-negative number s (the spin). To each spin s there are
(2s + 1) states. These representations describe physical particles of
non-vanishing mass.

2. P 2 < 0 (representations of imaginary mass). The unitary irreducible
representations are characterized by a continuous spectrum corres-
ponding to the unitary irreducible representations of the three-dimen-
sional Lorentz group SU(1; 1) (! 1.13).

3. P 2 = 0 (and P� 6= 0). The unitary irreducible representations are
characterized by m = 0 and by:
(a) if W 2 = 0, an arbitrary integer or half-integer number h called the
helicity;
(b) if W 2 < 0, a continuous spectrum corresponding to the unitary
irreducible representations of the three-dimensional Euclidean group
E(2).

These representations describe physical particles of zero mass.

For references, see ref. [97].
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1.63 Products of G2 representations

Rules for performing the Kronecker product of two irreducible representa-
tions of G2 have been given by R.C. King in ref. [51]. Here we present a
method, see ref. [85], which allows us to perform the product of any irre-
ducible representation with a fundamental one. Despite its apparent limita-
tion, the repeated application of this method allows us to perform any pair
of G2 irreducible representations, since any irreducible representation can
be constructed by Kronecker products of the fundamental ones. The advan-
tage of the following method is its simplicity; in fact the rules to perform the
Kronecker product of two G2 irreducible representations are brought back to
the rules of the Kronecker product of two SU(3) irreducible representations.

We specify a G2 irreducible representation characterized by the Dynkin la-
bels (a1; a2), where the label a1 corresponds to the long root, by a two-row
Young tableau [�] = [�1; �2] with

�1 = 3a1 + 2a2 �2 = a2

Note that the most common de�nition of a G2 Young tableau [�] = [�1; �2]
is di�erent from ours:

�1 = a1 + a2 �2 = a1

As the Dynkin labels a1; a2 are non-negative integers, it follows from the
inverse relations

a1 =
1
3 (�1 � 2�2) a2 = �1

that the meaningful Young tableaux [�1; �2] have to satisfy the following
constraints:

�1 + �2 = 3n where n 2 N and �1 � 2�2 (�)
The two fundamental G2 irreducible representations (a1 = 1; a2 = 0) and
(a1 = 0; a2 = 1) of respective dimensions 7 and 14 can therefore be rep-
resented by the [�] Young tableaux [2; 1] and [3; 0]. Note that the 14-
dimensional representation [3; 0] is also the adjoint G2 representation.

So, let us consider separately the product of any G2 representation [�] by
the representation [2; 1] and by the representation [3; 0].

Case 1: The rules specifying the irreducible representations which appear
in the decomposition of the Kronecker product [�1; �2]
 [2; 1] are specially
simple:
{ act as in the SU(3) case (with the tableau [13] corresponding to the trivial
G2 representation) and draw away any tableau not satisfying the constraints
(*).
{ subtract from the sum one tableau [�1; �2].
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Case 2: The rules specifying the irreducible representations which appear in
the decomposition of the Kronecker product [�1; �2]
 [3; 0] are the following:
{ act as in the SU(3) case (with the tableau [13] corresponding to the trivial
G2 representation) and draw away any tableau not satisfying the constraints
(*).
{ if �2 = 0, take away the tableau [�1 + 2; 1].
{ if �1 = 2�2 and �2 � 3, add the tableau [�1; �2 � 3].
{ if �1 > 2�2, add the following tableaux if meaningful: [�1; �2], [�1+3; �2+
3], [�1 � 3; �2 + 3] and [�1 � 3; �2].
{ �nally, for the special case �1 = 2; �2 = 1, we have to use the conditions
given in case 1.

Let us illustrate the method on the following example. We consider the ten-
sor product of the irreducible representation [6; 0] (of dimension 77) with the
representation [4; 2] (of dimension 27). First we remark that [4; 2] appears
in the tensor product of the representation [2; 1] by itself:

[2; 1] 
 [2; 1] = [4; 2] � [3; 0] � [2; 1] � [0]

It follows that:

[6; 0]
 [4; 2] = ([6; 0]
 [2; 1])
 [2; 1]	 ([6; 0]
 [3; 0])	 ([6; 0]
 [2; 1])	 [6; 0]

which necessitates decomposition, using the rules given above, of the follow-
ing products:

[6; 0] 
 [2; 1] = [8; 1] � [7; 2] � [5; 1]

[8; 1] 
 [2; 1] = [10; 2] � [9; 3] � [9; 0] � [8; 1] � [7; 2] � [6; 0]

[7; 2] 
 [2; 1] = [9; 3] � [8; 4] � [8; 1] � [7; 2] � [6; 3] � [6; 0] � [5; 1]

[5; 1] � [2; 1] = [7; 2] � [6; 3] � [6; 0] � [5; 1] � [4; 2] � [3; 0]

[6; 0] 
 [3; 0] = [9; 0] � [9; 3] � [7; 2] � [6; 3] � [6; 0] � [3; 0]

Finally, we get

[6; 0] 
 [4; 2] = [10; 2] � [9; 3] � [8; 4] � [8; 1] � [7; 2]

� [6; 3] � [6; 0] � [5; 1] � [4; 2]

that is, in terms of the dimensions:

77 
 27 = 729 � 448 � 182 � 286 � 189 � 77 � 77 � 64 � 27

A list of dimensions and explicit products of G2 representations is also avail-
able in the table section (see Tables 3.20 and 3.22).

For more details, see ref. [85].
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1.64 Products of SO(2n) representations

We present here a simpli�ed version of the method introduced in ref. [31]
for performing the Kronecker product of two irreducible representations of
the orthogonal group SO(2n) (n > 3) by means of product of generalized
Young tableaux or GYT (! 1.36). We identify an irreducible representation
of SO(2n) by n integer (half-integer) numbersmi, respectively for vector (V)
and spinor (S) irreducible representations, such that m1 � : : : � jmnj � 0,
so the last one mn can also be negative. The correspondence between the set
of non-negative integers (a1; : : : ; an) identifying an irreducible representation
D(a1; : : : ; an) (Dynkin labels) and the n-uple (m1; : : : ;mn) is

aj = mj �mj+1 for j = 1; : : : ; n� 1

an = mn�1 +mn

It may be useful to point out that:

� the n-th label mn can be not vanishing only if the �rst n�1 labels are
all not vanishing; mn is always non-zero for spinor irreducible repre-
sentations.

� two irreducible representations which di�er by the sign of mn are con-
jugate to one another.

� the irreducible representations of SO(4q + 2) with m2q+1 6= 0 are
complex representations, while the irreducible representations with
m2q+1 = 0 as well as all the irreducible representations of SO(4q)
are real. We recall that an irreducible representation is real (complex)
if in the Kronecker product with itself (resp. its conjugate) the identity
representation appears.

To such an n-uple (m1; : : : ;mn), we associate a GYT [�] made of �i = jmij
boxes if mi 2 Z and by �i = jmi � 1

2 j boxes if mi 2 Z + 1
2 , in the i-th row,

all these rows being on the right hand side of a vertical axis, except the
n-th one which will stand on the left hand side when mn < 0. Note that
this prescription leads to association to the fundamental spinor irreducible
representation m1 = : : : = mn = 1

2 , the null GYT, and to the complex

conjugate one m1 = : : : = mn�1 = �mn =
1
2 , the GYT [�] = [0; : : : ; 0;�1].

Let us add that associating the GYT [0] to the trivial vector representation
(0; : : : ; 0) as well as to the fundamental spinor one (12 ; : : : ;

1
2) will not bring

any confusion in our product computation if we keep in mind that simple
rule, (V ) and (S) denoting vector and spinor representations respectively:

(V )
 (V ) = (V ) ; (V )
 (S) = (S) ; (S)
 (S) = (V )

However in the following the GYTs associated to the spinor representations
will be denoted by a prime in order to avoid any misunderstanding.
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Below, we present the method which allows us to achieve the product of
any irreducible representation, denoted by the GYT [�], with any SO(2n)
fundamental representation labelled by the Dynkin labels ak = 1 and aj = 0
for j 6= k. The GYT associated to such a fundamental representation will
be [1k], (k = 1; : : : ; n � 2) in the vector case and [�] = [0]0 or [0n�1;�1]0
in the spinor case. Indeed any irreducible representation can be obtained
by performing repeated products of the fundamental irreducible representa-
tions: we will illustrate this property by an example at the end of this entry.
A list of dimensions and explicit products of SO(2n) representations is also
available in the table section (see Tables 3.14, 3.16 and 3.18).

We successively consider the products [�]
 [1k] and [�]
 [�] where [�] is a
vector or a spinor representation.

Case 1: The GYTs specifying the irreducible representations which appear
in the decomposition of the Kronecker product [�]
 [1k] with [�] associated
to a vector representation are given by

[�]
[1k] =
kX
j=0

(L2j
n 
[1k])A 
 [�] 	

kX
i = 1; j = 0
i+ j � k

(L2i
n 
[�])NA 
 (L2j

n 
[1k])A

where:

{ the symbol L2j
n denotes a negative GYT of the following type:

L2j
n = [0; : : : ; 0;��q;��q; : : : ;��2;��2;��1;��1]

where q = [[n=2]] (integer part of n=2), �i 2 f0; 1; 2g satisfying �i��j 2 f0; 1g
with i < j and

P
i �i = 2j. Explicitly, one has

L2j
2n =

8>><>>:
(0; : : : ; 0| {z }

2n�2j
;�1; : : : ;�1| {z }

2j

) if 0 � j � n

(�1; : : : ;�1| {z }
4n�2j

;�2; : : : ;�2| {z }
2j�2n

) if n � j � 2n
for SO(4n)

L2j
2n+1 =

8>><>>:
(0; 0; : : : ; 0| {z }

2n�2j
;�1; : : : ;�1| {z }

2j

) if 0 � j � n

(0;�1; : : : ;�1| {z }
4n�2j

;�2; : : : ;�2| {z }
2j�2n

) if n � j � 2n
for SO(4n+ 2)

{ the su�x A means that in the product of the two GYTs we have to keep
only the \allowed" GYTs [�], which satisfy the two conditions j�ij � 1 for
all i and

P
i j�ij � k.

{ the su�x NA means that in the product of the two GYTs we have to keep
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only the (not allowed) GYTs [�] such that
P

i j�ij >
P

i j�ij.
{ in the r.h.s. of the above equation, after performing the product one has to
keep only the GYTs [�] with at most one negative row, the last one satisfying
�n�1 > j�nj.
{ a GYT appearing only in the subtracting part of [�] 
 [1k] has to be
omitted.
{ in the subtracting part of [�]
 [1k], if the same GYT appears for di�erent
values of i and j with i+ j �xed, it has to be taken into account only once.

Finally, let us add that in case of the product [1p]
 [1k] (p 6= k), it is more
convenient to choose for [�] the longer tableau.

In the general formula for [�] 
 [1k], the second term of the r.h.s. in most

cases reduces to
Pk

j=1 (L
2j
n 
 [�])NA 
 [1k]. In fact, the j � 1 contributions

may appear only for k � 3 and n � 4.

Case 2: The GYTs specifying the irreducible representations which appear
in the decomposition of the Kronecker product of [�] with [1k] with [�]
associated to a spinor representation are given as follows. The labels �i are
related to the (m1; : : : ;mn) by the relations �i = mi� 1

2 . Then, one proceeds
as in Case 1, with the following modi�cations:

{ the su�x NA is relative to a GYT [�] such that
P

i j�i+ 1
2 j >

P
i j�i+ 1

2 j.
{ in the �nal result, one has to keep only the GYTs [�] such that, after adding
1
2 to each label �i, at most the last row is negative and satis�es �n�1 � j�nj.
Case 3: The GYTs specifying the irreducible representations which appear in
the decomposition of the Kronecker product of [�] with [�] with [�] associated
to a vector representation are given by

[�]
 [�] =
kX
j=0

(eL2j
n 
 [�]) 
 [�]

Let us recall that [�] is of the form [0n]0 or [0n�1;�1]0. The eL2j
n 's are a

subset of the L2j
n 's, the �i labels being now restricted to the values f0; 1g.

Explicitly, one has (with 0 � j � 2n)eL2j
2n = (0; : : : ; 0| {z }

2n�2j
;�1; : : : ;�1| {z }

2j

) for SO(4n)

eL2j
2n+1 = (0; 0; : : : ; 0| {z }

2n�2j
;�1; : : : ;�1| {z }

2j

) for SO(4n+ 2)

As in Case 2, one has to keep in the �nal result only the GYTs [�] such that,
after adding 1

2 to each label �i, at most the last row is negative and satis�es
�n�1 � j�nj.
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Case 4: To obtain the GYTs specifying the irreducible representations which
appear in the decomposition of the Kronecker product of [�] with [�] with
[�] associated to a spinor representation, one proceeds as in Case 3, and then
one has to add 1 to all the rows of the obtained GYTs [�], which must now
satisfy �n�1 � j�nj � 0. Again, let us recall that the product of two spinor
representations produces only vector representations.

Finally, we have to consider the product [�]
[�] where neither [�] nor [�] is a
fundamental SO(2n) irreducible representation. Then it is always possible to
rewrite [�] with the help of products involving fundamental representations,
and to use the above described formulae. As a illustration, let us consider
the product [5]
[3]. One can use the decomposition [2]
[1] = [3]�[2; 1]�[1]
and [12]
 [1] = [2; 1]� [13]� [1] to rewrite [5]
 [3] as ([5]
 [2]
 [1])	 ([5]

[12]
 [1])	 2([5]
 [1])	 ([5]
 [13]).

Note: The Kronecker product is of course commutative, notwithstanding the
fact that the above formula deals with the two irrreducible representations
on a di�erent basis.

Example 1
As a �rst example of the above formulae, let us discuss the Kronecker
product of the representations [22] and [12] in SO(8). Using the simpli�ed
formula given in Case 1:

2X
j=0

(L2j
n 
 [12])A 
 [22] =

( 
� � �

!



)
A




=

 
� � � �

!



=

 
� �

!
�

 
� � �

!
� �

2X
j=1

(L2j
n 
 [22])NA 
 [12] =

( 
�

!



)
NA
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= 
 =

leading to

[22] 
 [12] = [32] � [3; 2; 1] � [3; 1] � [2; 2; 1; 1]

� [2; 2; 1;�1] � [2; 2] � [2; 1; 1] � [12]

that is, making the dimensions of these SO(8) representations explicit:

300 
 28 = 1925 � 4096 � 567 � 5670 � 56700 � 300 � 350 � 28

The product [22] 
 [12] in SO(2n) with n > 4 is obtained by simply dis-
garding in the r.h.s. of the above decomposition the tableau [2; 2; 1;�1],
which obviously does not correspond to a representation in SO(2n) when
n 6= 4. �

Example 2
Now, consider the case of the product [2; 1] 
 [13] in SO(8) for which it
is needed to apply the full general formula of Case 1.

2X
j=0

(L2j
n 
 [13])A 
 [2; 1] =

8>><>>:
 
� � �

!



9>>=>>;
A




=

0BB@ � � � �

1CCA 


=

 
� �

!
�
 

� �
!
�

 
� � � � � �

!
�

 
� �

!
�
 

�
!
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and

3X
i = 1; j = 0
i+ j � 3

(L2i
n 
 [2; 1])NA 
 (L2j

n 
 [13])A = 


0BB@ �

1CCA
=

 
�

!
�
 

�
!

leading to

[2; 1] 
 [13] = [3; 2; 1] � [3; 1; 1; 1] � [3; 1; 1;�1] � [3; 1]

� [2; 2; 1; 1] � [2; 2; 1;�1] � [2; 2] � 3 [2; 1; 1] � [2]

� [1; 1; 1; 1] � [1; 1; 1;�1] � [12]

that is, making the dimensions explicit:

160 
 56 = 4096 � 840 � 840� � 567 � 5670 � 5670� � 300

� 350 � 350 � 350 � 35 � 350 � 350� � 28

�

Example 3
Finally, consider in SO(2n) the product of the spinor fundamental repre-
sentation (12 ; : : : ;

1
2) = [0]0 by itself. Using the appropriate formula:

kX
j=0

(eL2j
n 
 [0]0) 
 [0]0 =

8>><>>:
0BB@� � � � : : :

1CCA 
 [0]0

9>>=>>; 
 [0]0

= � � � � : : :

Since we started from two spinor representations, we have to add one box
to each row of the obtained GYTs, that is �nally:

[0]0 
 [0]0 = [1n] � [1n�2] � [1n�4] � : : : � [�]
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where � = 0 or 1 depending on whether n is even or odd, that is also in
the mi notation:

(12
n
) 
 (12

n
) = (1n) � (1n�2) � (1n�4) � : : : � (�)

with again � = 0 for n even and � = 1 for n odd.

In particular, for SO(8) we get 8S 
 8S = 35 � 28 � 1. �

More generally, some compact formulae can be obtained for product of repre-
sentations with special symmetry. Using themi notation in order to consider
simultaneously vector and spinor representations, we can write:

{ in the SO(4q) case:

[m; : : : ;m] 
 [m0; : : : ;m0] =M
fkig

[m+m0 � k1;m+m0 � k1; : : : ;m+m0 � kq;m+m0 � kq]

[m; : : : ;m] 
 [m0; : : : ;m0;�m0] =M
fkig

[m+m0;m+m0 � k1;m+m0 � k1; : : : ;m+m0 � kq�1;

m+m0 � kq�1;m�m0]

where the ki 2 Z satisfy 0 � k1 � : : : � kq�1 � 2n.

{ in the SO(4q + 2) case:

[m; : : : ;m] 
 [m0; : : : ;m0] =M
fkig

[m+m0;m+m0 � k1;m+m0 � k1; : : : ;m+m0 � kq;m+m0 � kq]

[m; : : : ;m] 
 [m0; : : : ;m0;�m0] =M
fkig

[m+m0 � k1;m+m0 � k1; : : : ;m+m0 � kq;m+m0 � kq;m�m0]

where the ki 2 Z satisfy 0 � k1 � : : : � kq � 2n.

Finally for the product of two completely SO(2n) symmetric representation
we get:

[m; 0; : : : ; 0]
 [m0; 0; : : : ; 0] =
m0M
l=0

m0�lM
k=0

[m+m0 � k � 2l; k; : : : ; 0]

with m � m0 ;m+m0 � 2l � 2k � 0.

For more details, see ref. [31].
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1.65 Products of SO(2n+ 1) representations

We present here a simpli�ed version of the method introduced in ref. [31] for
performing the Kronecker product of two irreducible representations of the
orthogonal group SO(2n+1) (n > 1) by means of the product of generalized
Young tableaux or GYTs (! 1.36). We identify an irreducible representation
of SO(2n+1) by n integer (half-integer) numbers mi, respectively for vector
(V) and spinor (S) irreducible representations, such thatm1 � : : : � mn � 0.
The correspondence between the set of non-negative integers (a1; : : : ; an)
identifying an irreducible representation D(a1; : : : ; an) (Dynkin labels) and
the n-uple (m1; : : : ;mn) is

aj = mj �mj+1 for j = 1; : : : ; n� 1

an = 2mn

To such an n-uple (m1; : : : ;mn), we associate a GYT [�] made of �i = mi

boxes if mi 2 Z and by �i = mi� 1
2 boxes if mi 2 Z+ 1

2 , in the i-th row. The
rules for the product of two GYTs have been given in ! 1.36 Generalized
Young tableaux.

Below, we present the method which allows us to achieve the product of
a general irreducible representation, denoted by the GYT [�], with any
SO(2n+1) fundamental representation labelled by the Dynkin labels ak = 1
and aj = 0 for j 6= k, denoted by [1k],(k = 1; : : : ; n � 2) for the vector rep-
resentation and by [�] = [0]0 for the spinor one (the GYT [0] denotes the
trivial vector representation). Indeed any irreducible representation can be
obtained by products of the fundamental irreducible representations by re-
peated applications of the rules given below. For examples, see more details
in ! 1.64.

A list of dimensions and explicit products of SO(2n + 1) representations is
also available in the table section (see Tables 3.15, 3.17 and 3.19).

We have to introduce a class of completely negative GYTs made of two
columns with i boxes in the �rst column to the left of the vertical axis and
j boxes in the second one with i � j. We denote such a tableau by Lijn .
Explicitly, one has

Lijn = [0; : : : ; 0| {z }
n�i

;�1; : : : ;�1| {z }
i�j

;�2; : : : ;�2| {z }
j

]

For necessity, we complete this set of GYTs with the trivial one L00
n .

As in SO(2n), we discuss separately the product of a general irreducible
representation [�] by a vector fundamental one, and the product of [�] by a
spinor fundamental one, taking in both cases [�] either as a vector or as a
spinor representation.
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Case 1: The GYTs specifying the irreducible representations which appear in
the decomposition of the Kronecker product of [�] with [1k] (k = 1; : : : ; n�1)
are given by

[�]
 [1k] =

i;j=kX
i;j=0; j�i

(Lijn 
 [1k])A 
 [�] 	
i;j=kX

i;j=0; j�i
(Lijn 
 [�])NA 
 [1k]

where:

{ the su�x A means that in the product of the two GYTs we have to keep
only the \allowed" GYTs [�], which satisfy the two conditions j�ij � 1 for
all i and

P
i j�ij � k.

{ if the same GYT appears in the product with two di�erent Lijn , it has to
be taken into account only once.
{ the su�x NA means that in the product of the two GYTs we have to keep
only the (not allowed) GYTs [�] such that

P
i j�ij >

P
i j�ij if [�] corresponds

to a vector representation and
P

i j�i+ 1
2 j >

P
i j�i+ 1

2 j if [�] corresponds to
a spinor one.
{ in the r.h.s. of the above equation, after performing the product one has
to keep only the GYTs [�] with positive rows.
{ a GYT appearing only in the subtracting part of [�] 
 [1k] has to be
omitted.
{ if [�] is a GYT of the form [1p], one has to assume p � k.
{ in the case where [�] is spinor, do not forget to add 1

2 to each row of each
obtained tableau after computation.

Case 2: The GYTs specifying the irreducible representations which appear
in the decomposition of the Kronecker product of [�] with the fundamental
spinor representation [0]0 are given by

[�]
 [0]0 =
nX
i=0

(Li0n 
 [0]0) 
 [�]

with the same prescriptions as above, and adding either 1
2 or 1 to each row

of the obtained tableaux depending on whether [�] is relative to a vector or
a spinor representation.

As for the SO(2n) case, in order to perform the product [�] 
 [�] when
neither [�] nor [�] corresponds to a fundamental representation, one has �rst
to rewrite the smaller of these two GYTs as a sum of products involving the
fundamental representations and operate as above.

Note: The Kronecker product is of course commutative, notwithstanding the
fact that the above formula deals with the two irrreducible representations
on a di�erent basis.
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Example
As an example of the above formulae, we discuss the Kronecker product
of [2] with [12] for SO(9). Let us summarize the di�erent steps of the
computation:

i;j=2X
i;j=0; j�i

(Lij4 
 [12])A 
 [2] =

=

( 
� � � � � �

!



)
A




=

 
� � � � � �

!



=

 
�

!
�
 

�
!
�

 
�

!
� � � � � �

and

i;j=2X
i;j=0; j�i

(Lij4 
 [2])NA 
 [12] =

=

( 
� � � � � �

!



)
NA




=

 
� � � � �

� � �
!
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=

 
�

!
� � � � � �

that is, after subtraction:

[2] 
 [12] = [3; 1] � [2; 1; 1] � [12] � [2]

that is also, making the dimensions of these SO(9) representations ex-
plicit:

44 
 36 = 910 � 594 � 36 � 44

�

Finally, we can give compact formulae for the product of two completely
symmetric or antisymmetric GYTs:

[�; 0; : : : ; 0]
 [�; 0; : : : ; 0] =

�X
l=0

��lX
k=0

[�+ � � k � 2l; k; : : : ; 0] (� � �)

[�; : : : ; �]
 [�; : : : ; �] =

���X
k1=0

����k1X
k2=0

: : :

����k1�:::�kn�1X
kn=0

[�+ � � k1; �+ � � k1 � k2; : : : ; �+ � � k1 � : : :� kn]

1.66 Products of Sp(2n) representations

We present here a simpli�ed version of the method introduced in ref. [32] for
performing the Kronecker product of two irreducible representations of the
symplectic group Sp(2n) by means of product of generalized Young tableaux
or GYT (! 1.36). An irreducible representation of Sp(2n) is either labelled
by D(a1; : : : ; an) where the positive or null integers ai are the Dynkin labels,
or by the set of n non-negative integers (m1; : : : ;mn) such that mi � mi+1,
the correspondence between the two notations being given by:

aj = mj �mj+1 for j = 1; : : : ; n� 1

an = mn

To such an n-uple (m1; : : : ;mn), we associate a GYT [�] made of �i = mi

boxes in the i-th row, that is a tableau which is drawn as a standard Young
tableau [�1; : : : ; �n]. However, in order to perform the product of two Sp(2n)
irreducible representations, negative GYTs have to be introduced and the
product of a negative GYT with a positive GYT is considered (! 1.36).

First we present the method to perform the product of any irreducible rep-
resentation, denoted by the GYT [�], with a fundamental representation



Lie Algebras 109

denoted by the GYT [1k], that is a GYT with k rows of one box or one
column with k boxes (k � n), or equivalently, by the Dynkin labels ak = 1
and aj = 0 for j 6= k.

The GYTs specifying the irreducible representations which appear in the
decomposition of the Kronecker product of [�] with [1k] are given by

[�]
 [1k] =

kX
j=0

(P 2j
n 
 [1k])A 
 [�]

where:

{ the symbol P 2j
n denotes a negative GYT with n rows [��1; : : : ;��n], where

the �i 2 f0; 2g are constrained by the condition
P

i �i = 2j. Explicitly, one
has (with 0 � j � n)

P 2j
n = [0; : : : ; 0| {z }

n�j
;�2; : : : ;�2| {z }

j

]

{ the su�x A means that in the product of the two GYTs we have to keep
only the \allowed" GYTs [�] which satisfy the two conditions j�ij � 1 for
all i and

P
i j�ij � k.

Note that at each level j, the product (P 2j
n 
[1k])A provides only one tableau.

Let us illustrate this procedure with the example [22]
 [12] in Sp(2n) with
n � 3. Then:

[22] 
 [12] =

( 
� + �

!



)
A




=

 
� �

!



that is

[12] 
 [22] = [3; 3] � [3; 2; 1] � [2; 2; 1; 1]

[1; 0; : : : ; 0;�1] 
 [22] = [3; 1] � [2; 2] � [2; 1; 1]

[0; : : : ; 0;�1;�1] 
 [22] = [12]

and �nally

[22]
 [12] = [3; 3]� [3; 2; 1]� [3; 1]� [2; 2; 1; 1]� [2; 2]� [2; 1; 1]� [12]
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We note that the representation [2; 2; 1; 1] does not exist for Sp(6). More
generally, a tableau with more than n rows has to be rejected as soon as it
is the group Sp(2n) which is considered.

{ in the r.h.s. of the above equation, after performing the product, one has
to keep only positive GYTs.
{ if [�] is a GYT of the form [1p], one has to assume p � k.

Now, in order to perform the Kronecker product of any two Sp(2n) irre-
ducible representations [�] 
 [�], we need to apply the above considered
formula several times, using the property of any irreducible represention [�]
to arise from the product of fundamental irreducible ones. For example, con-
sidering the product [5]
 [2], one will �rst compute [1]
 [1] = [2]� [12]� [0],
where [0] denotes the (one-dimensional) trivial Sp(2n) irreducible repre-
sentation, and one rewrites [5] 
 [2] = ([5] 
 [1]) 
 [1] 	 ([5] 
 [12]) 	
[5]. As a second example, if [�] = [3; 1], one could proceed as follows:
[2; 1] 
 [1] = [3; 1] � [22] � [2; 1; 1] � [2] � [12], [12] 
 [1] = [2; 1] � [13] � [1]
and then [12] 
 [12] = [22] � [2; 1; 1] � [14] � [2] � [12] � [0], providing
[3; 1] = ([12]
 [1]
 [1])	 ([13]
 [1])	 ([1]
 [1])	 ([12]
 [12])� [14]
 [0]. It
is this last expression for [3; 1], written as a sum of products of fundamental
[1k] representations, that we will put into our canonical formula.

Note: The Kronecker product is of course commutative, notwithstanding the
fact that the above formula deals with the two irrreducible representations
on a di�erent basis.

We refer to Tables 3.12 and 3.13 for the dimensions and the explicit compu-
tation of Sp(2n) representation products.

Finally we can give compact formulae for the product of two completely
symmetric or antisymmetric GYTs:

[�; 0; : : : ; 0]
 [�; 0; : : : ; 0] =
�X
l=0

��lX
k=0

[�+ � � k � 2l; k; : : : ; 0] (� � �)

[�; : : : ; �]
 [�; : : : ; �] =
X

0�k1�k2�:::�kn
[�+ � � 2k1; : : : ; �+ � � 2kn]

For more details, see ref. [32].

1.67 Products of SU(n) representations

Let G be a Lie group, and � and �0 be two representations of G. Then the
tensor product � 
 �0 is also a representation of G (! 1.75). But if � and
�0 are irreducible, the representation � 
 �0 will be in general a reducible
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representation of G. When G is compact, it can be decomposed into a direct
sum of irreducible representations as follows:

� 
 �0 =
M
i

ni �i

We provide below the decomposition method based on the use of Young
tableaux (! 1.96) in the case where G = SU(n).

Method
Let T and T 0 be the Young tableaux associated to the representations �
and �0 respectively.

1. Choose the simpler tableau, say T 0, and call a each box in the �rst
row, b those of the second row, and so on.

�!

a a a
b b
c
d

2. Add to T one box marked with a of T 0 using all possible ways such that
one always gets a Young tableau. Then add to the obtained tableau a
second box marked with a with the prescription that two boxes marked
with a must not be in the same column.

3. When all the boxes marked with a are used, add the boxes marked
with b, then the boxes marked with c, and so on in the same way, but
with the conditions:

{ two boxes with the same label must not be in the same column,
{ denoting ni(a) the number of boxes labelled by a in the i-th �rst
columns starting from the right and n0i(a) the number of boxes labelled
by a in the i-th �rst rows starting from the top, and identical de�nitions
for the other labels b; c; : : :, one must have

 � ni
aa

a bb
c

d

n0i
#

ni(a) � ni(b) � ni(c) � : : :
n0i(a) � n0i(b) � n0i(c) � : : :

4. Any obtained tableau with more than n rows will be suppressed. More-
over, any tableau with n rows will be replaced by the corresponding
tableau in which the n box columns are suppressed.

For example, in the case of SU(5), [3; 2; 2; 1; 1] does not exist and
[3; 2; 2; 1] has to be replaced by [2; 1; 1; 0].
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5. The same dummy (that is without the labels a; b; c; : : :) tableau may
appear several times. Suppose it appears twice:

{ if the distribution of a; b; c; : : : in the tableaux is the same, then one
of the tableaux must be suppressed.
{ if the distribution of a; b; c; : : : in the tableaux is di�erent, then the ir-
reducible representation associated with the dummy tableaux appears
twice.

Examples


 a = a � a


 a =
a

� a



aa

b =
a a

b �
a a

b �
a

a b

�
a

a
b �

a

a

b �
a

b
a � a

a
b �

a
a

b

In this last example, following prescription (5), the representation asso-
ciated to the Young tableau [3; 2; 1] appears twice since the distribution
of the labels a; b in the two corresponding tableaux is di�erent. If we
consider SU(3), the two tableaux with four rows have to be thrown away
and the four tableaux with three rows have to be simpli�ed. We will
�nally get in SU(3):


 = � � � � � �
that is

8 
 8 = 27 � 10 � 10 � 8 � 8 � 1

�

A list of dimensions and explicit products of SU(n) representations is also
available in the table section (see Tables 3.10 and 3.11).
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The reduction of the product of two representations of the orthogonal groups
and of the symplectic groups can be done using generalized Young tableaux
[31, 32].

1.68 Quotient group

Let G be a group and H a subgroup of G. One can de�ne the equivalence
relation

x � y $ x�1y 2 H ; 8x; y 2 G
(indeed this relation is re
exive: x � x ; 8x 2 G, symmetric: x � y ) y �
x ; 8x; y 2 G, transitive: x � y and y � z ) x � z ; 8x; y; z 2 G).
The set of elements in G which are equivalent to the element x 2 G will be
called the left coset (modulo H) associated to x and denoted

_x � xH = fy 2 G j x � yg = fxh jh 2 Hg

Such a class can be de�ned by any of its elements (indeed if x � y then
y = xh or x = yh�1 and therefore _x = _y). The set of left cosets (modulo
H) G=H is a partition of G (that is it covers all G and the intersection of
two di�erent classes is empty). In the same way, one can de�ne a second
equivalence relation by

x � y $ xy�1 2 H ; 8x; y 2 G

and therefore the right coset (modulo H) associated to x:

�x � Hx = fy 2 G j x � yg = fhx jh 2 Hg

and the set of right cosets H nG.
When do the partitions in G=H and H nG coincide? One must have xH =
Hx ;8x 2 G, that means that H must be an invariant subgroup of G (!
1.37). In this last case, G=H (H n G) has canonically a group structure:
indeed, given that xH and yH are two elements of G=H, one can de�ne the
product (xH) � (yH) = xyH (this product being uniquely de�ned since if
z 2 yH, that is z = yh with h 2 H, one has (xH)(yH) = xzH = xyH).
The identity element is eH = H and the inverse of xH is (xH)�1 = x�1H.
Actually, one has a canonical homomorphism

� : G! G=H ; x 7! xH

G=H is called the quotient group of G by H.
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Example
From the Euclidean group in n dimensions E(n) = T (n) n SO(n), one
can construct the quotient group E(n)=T (n) since the translation group
T (n) is an invariant group of E(n). Such a quotient group is isomorphic
to the rotation group SO(n). �

More generally, for any group which is the semi-direct product AnB of two
groups A and B with A invariant subgroup, one can form the quotient group
(AnB)=A ' B.

1.69 Quotient Lie algebra

We can use the concepts above discussed (! 1.68) to de�ne a quotient
algebra.

Theorem
Let G be a Lie algebra and H an ideal of G, that is

h
G;H

i
� H. Then the

quotient space G=H made of elements x+H = fy 2 G j y = x+h ; h 2 Hg
is a Lie algebra with the composition laws:

(x+H) + (y +H) = (x+ y)Hh
x+H; y +H

i
= [x; y]H

1.70 Racah coe�cients

The tensor product of three irreducible representations D(j1), D(j2) and
D(j3) of the rotation group SO(3) decomposes into a direct sum of irre-
ducible representations:

D(j1)
D(j2)
D(j3) =
j1+j2+j3M

J=jj1�j2�j3j
D(J)

The following two di�erent coupling schemes allow two di�erent decompo-
sition of the space H(D(j1))
H(D(j2))
H(D(j3)) into irreducible spaces
H(D(J)) (from the associativity of the tensor product):

D(j1)
D(j2)
D(j3) =
M
J12

D(J12)
D(j3) =
M
J12;J

DJ12;j3(J)

D(j1)
D(j2)
D(j3) =
M
J23

D(j1)
D(J23) =
M
J23;J

Dj1;J23(J)
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Let jjimii with �ji � mi � ji and i = 1; 2; 3 be the canonical bases of the
Hilbert spaces H(D(ji)) of the irreducible representations D(ji). We have
(! 1.14):

jJ12j3;JMi =
X

m1;m2;m3

hj1j2m1m2jJ12M12i hJ12j3M12m3jJMi

jj1m1i 
 jj2m2i 
 jj3m3i

and

jj1J23;JMi =
X

m1;m2;m3

hj2j3m2m3jJ23M23i hj1J23m1M23jJMi

jj1m1i 
 jj2m2i 
 jj3m3i

It is possible to go from one basis to the other one by means of unitary
transformation. The Wigner coe�cients (or 6j-symbols) are de�ned in terms
of the coe�cients of this unitary transformation and one has

jJ12j3;JMi =
X
J23

p
(2J12 + 1)(2J23 + 1) (�1)j1+j2+j3+J

�
j1 j2 J12
j3 J J23

�
jj1J23;JMi

The Racah coe�cients are de�ned in terms of the 6j-symbols

W (j1j2J1J2; j3J3) = (�1)j1+j2+J1+J2
�
j1 j2 j3
J1 J2 J3

�
The Wigner and Racah coe�cients are related to the Clebsch-Gordan co-
e�cients (! 1.14) and satisfy several symmetry relations (see ref. [60] for
references). They are used in physics when one has to couple three angular
momenta j1; j2; j3.

1.71 Real forms

Let us recall that a Lie algebra is in particular a vector space de�ned on a
�eld K : the Lie algebra is called real when K is the �eld of real numbers R
and complex when K is the �eld of complex numbers C . Although real Lie
algebras (and real Lie groups) are intensively used, the notion of complex
Lie algebra is fundamental: for example, the Cartan theory of simple Lie
algebras could not be obtained by restricting to real Lie algebras, because
the �eld of real numbers is not algebraically closed (! 1.7).
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Starting from the real Lie algebra G, one de�nes the Lie algebra GC as the
complexi�cation of G by applying on G a sort of \analytic continuation"
process, i.e.

GC =
n
Z = X + iY

���X;Y 2 Go = G � iG
Note that GC can be considered as a real Lie algebra of twice the real di-
mension of G (X and iX being considered as two independent elements),
although it is also a complex Lie algebra of the same dimension as the real
Lie algebra G. If fe1; : : : ; eng denotes a basis of GC of dimension n, the
Lie algebra over R with basis fe1; : : : ; en; ie1; : : : ; ieng will be called the re-
ali�cation GR of GC and will be of dimension 2n. One may note that the
real Lie algebra GR possesses a complex structure J (! 1.16) derived from
multiplication by the complex number i on G.

Example
Let us consider the real Lie algebra gl(n; R ), generated by the elementary
n � n matrices eij such that (eij)kl = �ik�jl. Its complex extension is
gl(n; C ) with matrices M = aijeij , the a

ij being complex numbers.

Consider now the Lie algebra u(n; C ). It is constituted by n�n matrices
M with complex entries satisfying the condition M y = �M , that is, if
M = aijeij , such that (aij)� = �aji. The complexi�cation of the real
algebra u(n; C ) provides the algebra gl(n; C ). �

We now come to the de�nition of a real form:

De�nition
Let GC be a complex Lie algebra and GR its reali�cation. A real subalge-
bra S of GR is called a real form of GC if SC = GC .

The two following theorems are of special importance:

Theorem
Let G be a simple real Lie algebra. Then G is either isomorphic to the
reali�cation of a simple complex Lie algebra, or G is isomorphic to a real
form of a simple complex Lie algebra.

Theorem
Every reali�cation of a simple complex Lie algebra is a simple real Lie
algebra.

As an example, let us think at the real simple algebra sl(2; R ). Its complex-
i�cation is sl(2; C ). The reali�cation of sl(2; C ) is a six-dimensional algebra
isomorphic to so(3; 1) (! 1.53 Lorentz group).
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It is also important to recall the Cartan's theorem (! 1.44) ensuring that any
(semi)simple Lie algebra G has a vector space decomposition G = C�P such

that C is a compact subalgebra and P satis�es
h
C;P

i
� P and

h
P;P

i
� C.

From the property of the Killing form to be negative on a compact simple Lie
algebra, the possibility of transforming G into a compact algebra by acting
on the P generators by multiplication by i appears rather clearly in this
framework: K(X;X) > 0) K(iX; iX) < 0 for any X 2 P. Therefore, one
can state:

Theorem
Every (semi)simple complex Lie algebra G has a compact real form.

Morevover, the existence of an involutive automorphism � (i.e. �2 = 1) of G
acting as 1 on C elements and as �1 on P elements is obvious. Actually, all
the real forms of a semi(simple) complex Lie algebra GC will be obtained by
determining all the involutive automorphisms of its compact form.

The real forms of the simple Lie algebras are given in Table 3.38. One usually
de�nes the character of a real form of a complex semi-simple Lie algebra G
as the di�erence between the number of non-compact generators and the
number of compact ones. This explains the index written in parentheses
after each real form of the exceptional Lie algebras appearing in Table 3.38.
For example, the compact E6 algebra of dimension 78 is denoted by E6(�78)
(zero non-compact generators and 78 compact ones), while the E6 real form
with F4 as maximal compact subalgebra is denoted E6(�26) (26 non-compact
generators and 52 compact ones).

Let us add that the involutive automorphisms involved in the determination
of the real forms are inner except for the �ve following cases: sl(N; R ),
su�(2N), so(2N � 2p � 1; 2p+ 1), E6(�26) and E6(+6), which are related to
outer automorphisms (see ref. [13] for more details).

Finally, we must add that the spaces G=C, where G is a connected Lie
group whose Lie algebra is a real form of a simple Lie algebra over G and C
a maximal compact subgroup of G, determine symmetric spaces: a detailed
study is o�ered in ref. [39].

1.72 Representation of a group

We know the explicit action of a group of transformations G on a set S if we
know the representation of G on S. Actually, S will be in general a linear
vector space on the �eld of real R or complex C numbers (sometimes on
the quaternions H or octonions O ) and we will be interested in the \linear
representations" of G.
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De�nition
Let G be a group and V a linear vector space on the �eld K (usually
K = R or C ). A linear representation of G in V is a homomorphism � of
G into the group of the linear and invertible operators of V, that is

�(g)�(g0) = �(gg0) ; 8 g; g0 2 G

In particular, �(e) = IV where e is the identity element of G and �(g�1) =
�(g)�1.
The vector space V is the representation space. The dimension of the
representation � is the dimension of the vector space V.

Consider for example the orthogonal group in 3 dimensions. The three-
dimensional representation of O(3) is immediately given by the de�nition
itself of O(3) (group of 3�3 orthogonal matrices). But one can imagine that
there exist representations of O(3) on vector spaces of a di�erent dimension:
actually any irreducible representation of O(3) is labelled by an integer j
and is of dimension 2j+1 (! 1.92), for the explicit form of the in�nitesimal
matrices of the representation j of O(3)).

De�nition
The representation � of G on V is said to be:

{ faithful if 8 g 2 G, �(g) 6= IV (identity on V).
{ trivial if 8 g 2 G, �(g) = IV.

One can de�ne an equivalence relation among representations as follows:

De�nition
Let � : V ! V and �0 : V 0 ! V 0 be two linear representations of G in the
linear vector space V and V 0 respectively. � and �0 are called equivalent
representations if there exists a one-to-one linear mapping A : V ! V 0
such that

A�(g)A�1 = �0(g) ; 8 g 2 G

If V and V 0 are Hilbert spaces and A unitary then � and �0 will be called
unitarily equivalent representations.

Let � be a linear representation of a Lie group G. One de�nes (8 g 2 G):
{ the complex conjugate representation �� by ��(g) = [�(g)]�,
{ the transposed representation �t by �t(g) = [�(g)]t,
{ the hermitian conjugate representation �y by �y(g) = [�(g)]y � [��(g)]t.

One can check that ��, �t and �y are indeed representations.
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Property
1. The representations �, ��, �t and �y are simultaneously irreducible

or reducible (! 1.74).

2. If the representation � is unitary, so are ��, �t and �y.

3. The representation � is real if and only if � = ��.

4. If the representation � is real, then the character (! 1.12) �(g) is
real.

5. If �(g) is real, then � and �� are equivalent (there exists a matrix
A such that �� = A�A�1). The representations � and �� are then
called self-conjugated. Moreover, if the representation � is unitary,
the matrix A is either symmetric or antisymmetric.

Finally, let us note that a representation may be of �nite or in�nite dimen-
sion. However:

Theorem (Peter{Weyl)
Any unitary irreducible representation of a compact group is �nite di-
mensional.

1.73 Representation of a Lie algebra

De�nition
Let G be a Lie algebra over the �eld K (usually K = R or C ). Let V be
a vector space on K and consider the algebra EndV of endomorphisms
of V. A linear representation � of G in V is a homomorphism of G into
EndV, that is for all X;Y 2 G, � 2 K , and [ ; ] denoting the Lie bracket

�(�X) = ��(X)

�(X + Y ) = �(X) + �(Y )

�([X;Y ]) = [�(X); �(Y )]

The vector space V is the representation space. The dimension of the
representation � is the dimension of the vector space V.

As an example, ! 1.2 Adjoint representation.

De�nition
Let G be a Lie algebra over the �eld K and V a vector space on K . V
is called a G-module if there exists an action of G on V such that, for all
X;Y 2 G, �; � 2 K and ~v; ~w 2 V:
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(�X + �Y )(~v) = �X(~v) + �Y (~v)

X(�~v + � ~w) = �X(~v) + �X(~w)

[X;Y ](~v) = X(Y (~v))� Y (X(~v))

Let � be a representation of the Lie algebra G with representation space V.
Then the vector space V has the structure of a G-module by X(~v) = �(X)~v.

Theorem (Ado)
Every �nite dimensional Lie algebra G over the �eld K = C or R has a
faithful �nite dimensional representation.

1.74 Representation: reducibility

De�nition
Let G be a Lie group and � a representation of G in the vector space V.
The part V 0 � V is an invariant subspace of V under � if 8 g 2 G

[�(g)](V 0) � V 0

Let V be a �nite dimensional representation space of G. Then V = V 0 �V 00,
V 00 being a complementary subspace of V 0 in V, and the invariance of V 0
under � implies 8 g 2 G:

�(g) =

0@ �(1)(g) �(12)(g)

0 �(2)(g)

1A acting on vectors

0@ 1A o
dimV 0o
dimV 00

It follows that the restriction �(1) of � to V 0 as well as the restriction �(2) of
� to a complementary subspace of V 0 in V are themselves representations of
G.

De�nition
The representation � ofG in V is called irreducible if there are no invariant
subspaces except trivial ones. Otherwise the representation � is said
reducible.

De�nition
The representation � of G in V is called completely reducible if for any
invariant subspace, there exists a complementary subspace which is it-
self invariant. A representation which is reducible but not completely
reducible is called indecomposable.
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In this case, the representation � can be decomposed as follows:

�(g) =

0B@ �(1)(g) 0
. . .

0 �(k)(g)

1CA
the representations �(1); : : : ; �(k) of G, acting on V(1); : : : ;V(k) with V =
V(1) � : : :� V(k), being irreducible.
De�nition

The same de�nitions hold for the representations of Lie algebras. More-
over, if a representation � of a Lie algebra G with representation space
V is irreducible (resp. completely reducible), the G-module V is called a
simple (resp. semi-simple) module.

Now we have the following important theorem:

Theorem
Any unitary representation U of G in a Hilbert space H is completely
reducible.

Let V be a H subspace invariant by the unitary representation U , and V?
the supplementary subspace. Then for all x 2 V, y 2 V?, g 2 G, one has
(U(g)x; y) = 0 = (x;U(g�1)y), that is [U(g)]V? � V? for all g 2 G.
Corollary

Any representation � of a compact group G in a linear vector space V is
completely reducible.

Two important cases for the reduction of the representation of a compact
group G in physics are the following:

1. Let � be an irreducible representation of G and S a subgroup of G. �
is therefore a representation of S but in general reducible under S.

2. Let � and �0 be two irreducible representations of G. Then the tensor
product � 
 �0 is a representation of G which is in general reducible
under G.

Let us conclude this entry by emphasizing the properties of a linear represen-
tation of a compact group: there always exists a scalar product making the
representation unitary. This unitary representation is completely reducible
and �nite dimensional (! 1.72). Note that these properties are valid for
�nite groups which can be seen as particular cases of compact groups. Actu-
ally, it appears that most of the properties on representations of �nite groups
are valid for compact Lie groups.
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1.75 Representation: sums and products

Sum and products: general de�nitions

Let us �rst recall that if V and V 0 are two linear vector spaces on the �eld
K = R or C of respective dimensions n and n0 with f~e1; : : : ; ~eng basis of V
and f~en+1; : : : ; ~en+n0g basis of V 0, the direct sum of V and V 0 is the linear
vector space V � V 0 of dimension n + n0 such that any ~v 2 V � V 0 can be

written as ~v =
Pn+n0

i=1 vi~ei where v
i 2 K , and the tensor product of V and V 0

is the linear vector space V 
 V 0 of dimension nn0 such that any ~v 2 V 
 V 0
can be written as ~v =

Pnn0

i;j=1 v
ij~ei 
 ~ej where vij 2 K .

We can then give the de�nitions:

De�nition
Let � and �0 be two representations of G with representation spaces V and
V 0. One de�nes the direct sum representation � � �0 with representation
space V � V 0, the action of which on V � V 0 being given by, for g 2 G,
~v 2 V and ~v 0 2 V 0:

(� � �0)(g)~v � ~v 0 = �(g)~v � �0(g)~v 0

that is

(� � �0)(g) :
�

~v
~v 0

�
7!

�
�(g) 0
0 �0(g)

��
~v
~v 0

�
=

�
�(g)~v
�0(g)~v 0

�
De�nition

Let � and �0 be two representations of G with representation spaces
V and V 0. One de�nes the tensor product representation � 
 �0 with
representation space V 
 V 0, the action of which on V 
 V 0 being given
by, for g 2 G, ~v 2 V and ~v 0 2 V 0:

(� 
 �0)(g)~v 
 ~v 0 = �(g)~v 
 �0(g)~v 0

The tensor product of representations is associative. It follows that if �, �0
and �00 are three representations of the Lie group G, the tensor products
(�
�0)
�00 and �
 (�0
�00) are isomorphic. For �xed bases in each of the
representations �, �0, �00, the entries of the invertible matrix which relates
the two products (� 
 �0) 
 �00 and � 
 (�0 
 �00) are called the Wigner
coe�cients or 6j-symbols (! 1.70).

The same de�nitions hold for the representations of Lie algebras.

If �(g) = eX and �0(g) = eX
0

with X and X 0 representing the same element
in the Lie algebra G of G for the two representations � and �0, then for all
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~v 2 V and ~v 0 2 V 0

~v 
 ~v 0 7! (eX~v)
 (eX
0

~v 0) = [(I+X + : : :)~v]
 [(I+X 0 + : : :)~v 0]
= [IV 
 IV 0 + (X 
 IV 0 + IV 
X 0) + : : :]~v 
 ~v 0

from which we deduce that

(� 
 �0)(g) = exp(X 
 IV 0 + IV 
X 0)

More generally:

De�nition
Let G = H �K be the direct product of the groups H and K, and �(H)

and �(K) be representations of H and K in VH and VK respectively. The
Kronecker product �(H) 
 �(K) of the representations �(H) and �(K) is
the representation such that for h 2 H and k 2 K:

(�(H) 
 �(K))(h; k) = �(H)(h)
 �(K)(k)

One can check that the applications � � �0, � 
 �0 and �(H) 
 �(K) de�ned
above are representations.

The same de�nition holds for Lie algebras, replacing the direct product of
groups by direct sums of algebras.

Example
Let G be the group SU(3) � SU(2) and let us call (u; d; s) a basis of
the three-dimensional fundamental representation space V of SU(3) and
("; #) a basis of the two-dimensional fundamental representation space V 0
of SU(2). The direct product V 
 V 0 contains three quarks u; d; s with
their spin states ("; #): u"; d"; s"; u#; d#; s#. The generators of SU(3) and
SU(2) being denoted by �i (i = 1; : : : ; 8) and �j (j = 1; 2; 3) respectively,
we can de�ne the tensor product of representations � 
 �0 8 g 2 G by

(� 
 �0)(g)q 
 s = exp(i�i�i)q 
 exp(i�j�j)s

= exp(i(�i�i 
 I2+ I3
 �j�j))q 
 s

Actually, one can embed SU(3)�SU(2) into the group SU(6) by adding
to the eleven generators �i 
 I2 and I3 
 �j the 24 generators �i 
 �j.
Notice that this 6-dimensional representation of SU(6) will reduce with
respect to this subgroup SU(3)� SU(2) as 6 = (3; 2). �
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Symmetric and antisymmetric products

Very often it is useful to know the symmetric and antisymmetric spaces
contained in the tensor product of k irreducible representations � of a com-
pact Lie group G. A useful tool to solve the problem is the knowledge of
the formula which connects the character (! 1.12), denoted by b�k, of the
(generally reducible) symmetric representation �S (resp. antisymmetric �A)
(�S; �A � 
k�), in terms of the character � of the irreducible representation
� of the compact Lie group G. These formulae can be obtained from the
character theory of the symmetric group Sk [57]. The general formulae are
(g 2 G):
{ for the symmetric representation:

b�k(g) =X �q1(gp1)�q2(gp2) : : : �qj (gpj )

q1! p
q1
1 q2! p

q2
2 : : : qj ! p

qj
j

where the sum is over all possible di�erent partitions of k

k = q1p1 + q2p2 + : : :+ qjpj

{ for the antisymmetric representation:

b�k(g) =X (�1)q1+q2:::+qj�k �
q1(gp1)�q2(gp2) : : : �qj (gpj )

q1! p
q1
1 q2! p

q2
2 : : : qj ! p

qj
j

In particular for k = 2; 3; 4 we obtain:

{ for the symmetric representation:

b�2(g) = 1
2 �(g

2) + 1
2 �

2(g)b�3(g) = 1
3 �(g

3) + 1
2 �(g

2)�(g) + 1
6 �

3(g)b�4(g) = 1
4 �(g

4) + 1
3 �(g

3)�(g) + 1
8 �

2(g2) + 1
4 �

2(g)�(g2) + 1
24 �

4(g)

{ for the antisymmetric representation:

b�2(g) = 1
2 �

2(g)� 1
2 �(g

2)b�3(g) = 1
3 �(g

3)� 1
2 �(g

2)�(g) + 1
6 �

3(g)b�4(g) = � 1
4 �(g

4) + 1
3 �(g

3)�(g) + 1
8 �

2(g2)� 1
4 �

2(g)�(g2) + 1
24 �

4(g)

Choosing as element g 2 G the identity e, the above formulae give the dimen-
sion of the symmetric representation �S, resp. antisymmetric representation
�A, contained in the k-fold tensor product of �. This knowledge is useful
to obtain the decomposition of the symmetric, resp. antisymmetric, space
into its irreducible subspaces. Recall that the highest irreducible represen-
tation contained in the tensor product, i.e. the irreducible representation
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labelled by the Dynkin labels sum of k times the Dynkin labels of �, is
always symmetric.

Example
Find the symmetric irreducible representation contained in the square
product of the irreducible representation [2; 1] of dimension 8 of SU(3).
Using the rules to perform the Kronecker product of two irreducible rep-
resentations of SU(n) (! 1.67) we obtain

[2; 1]
 [2; 1] = [4; 2]� [3; 3]� 2 [2; 1]� [3]� [0]

Using the above formula for k = 2, we �nd: dim ([2; 1]
 [2; 1])S =
1
2 8

2 +
1
2 8 = 36. As the highest irreducible representation [4; 2] has dimension
27, it is immediately possible to conclude that

([2; 1]
 [2; 1])S = [4; 2]� [2; 1]� [0]

([2; 1]
 [2; 1])A = [3; 3]� [2; 1]� [3]

1.76 Representation: unitarity

De�nition
Let H be a Hilbert space. A unitary representation of a group G in H is
a homomorphism U of G in the group of unitary operators of H.

In particular, U(e) = IH and for all g 2 G, U(g�1) = U(g)�1 = U(g)y from
the de�nition of a unitary operator in H: (U(g)x ; U(g)y ) = (x ; y ) for all
x; y 2 H where ( : ; : ) is the scalar product in H.

Theorem
For any linear representation � of a compact Lie group on V, there exists
a scalar product making the representation unitary.

Indeed, if ( : ; : ) is a scalar product in V, then the hermitian form h such
that, for all ~v;~v 0 2 V,

h(~v;~v 0) =
Z
G
(�(g)~v ; �(g)~v 0 ) d�(g)

where � is the Haar measure, de�nes a new scalar product on V which is
invariant with respect to � (that is h(~v;~v 0) = h(�(g)~v �(g)~v 0) for all g 2 G).
Therefore � is unitary with the scalar product de�ned by h.

See for example ref. [73].
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1.77 Roots, root system

De�nition
Let G be a simple Lie algebra of dimension n and rank r. Let H be
a Cartan subalgebra of G with basis of generators fH1; : : : ;Hrg. From
Cartan's theorem, one can complete the Cartan basis of G with n � r
generators E� that are simultaneous eigenvectors of Hi with eigenvalues
�i: h

Hi; E�

i
= �iE�

The r-dimensional vector � = (�1; : : : ; �r) is called the root (vector)
associated to the root generator E�.

Hence the algebra G can be decomposed as follows:

G =
M
�

G�

where
G� =

n
x 2 G

��� hh; xi = �(h)x; h 2 H
o

The set
� =

n
� 2 H�

���G� 6= 0
o

is by de�nition the root system of G.
Property

The roots have the following properties:

1. � 2 � ) k� 2 � if and only if k = �1; 0; 1.

2. If � and � are roots, then 2
� � �
� � � is an integer.

3. If � and � are roots, then 
 = � � 2
� � �
� � � � is a root.

Two roots � and � being given, 
 is the symmetric of � with respect to the
hyperplane orthogonal to �. Such a geometrical transformation, transform-
ing the root � into the root 
, is called a Weyl re
ection (! 1.93). The
Weyl re
ections are particularly important to construct the root diagram of
a Lie algebra G.
As a consequence of the above properties, one can deduce the following
result:

� � �
� � � 2

1
2Z ) � � � =

m

2
� � �
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� � �
�:�

2 1
2Z ) � � � =

n

2
� � �

where m;n are integers. It follows that

cos2 ��� =
(� � �)2

(� � �)(� � �) =
mn

4
and

� � �
� � � =

n

m

Choosing the angle ��� between the roots � and � to be such that 0 � ��� �
90� (for ��� > 90� change � and/or � in �� and/or ��) we can draw the
following tableau where all the possibilities are present:

cos2 ��� 1 3=4 1=2 1=4 0

��� 0� 30� 45� 60� 90�

�2=�2 1 3 2 1 undetermined

A simple Lie algebra for which all roots have the same length is called simply-
laced.

Root diagram { Root space

The vector space spanned by all the possible roots is called the root space.
It is the dual H� of the Cartan subalgebra H as vector space. Owing to the
above geometrical properties of the roots, the set of n � r roots of the Lie
algebra G of dimension n and rank r can be represented without di�culty {
at least for small values of r { in the r-dimensional Euclidean space: such a
representation will constitute the root diagram of G. The di�erent types of
simple Lie algebras could then be selected and classi�ed, that completes the
Cartan classi�cation already discussed above.

Examples
Case r = 1: The only possibility is sl(2) = A1. The root space is one-
dimensional and the Weyl hyperplane is an axis orthogonal to this axis.

Case r = 2: There are three possibilities corresponding to the Lie algebras
sl(3) = A2, so(5) = B2 ' sp(4) = C2 and G2 (the corresponding root
systems are drawn below). Let � and � be two roots.

Consider �rst the situation where ��� = 60�. Then �2 = �2. By a Weyl
re
ection with respect to the axis orthogonal to �, we get the root 
.
Then we construct the opposite roots ��;��;�
. By Weyl re
ections,
no new root is obtained. We therefore get six roots, hence six root gen-
erators, which with the two Cartan generators form an eight-dimensional
Lie algebra, the Lie algebra sl(3).
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Consider then the situation where ��� = 45�. Then one can choose
�2=�2 = 2 for instance. By a Weyl re
ection with respect to the axis
orthogonal to �, we get the root 
. Then by a Weyl re
ection with
respect to the axis orthogonal to �, we get the root �. Then we construct
the opposite roots ��;��;�
;��. By Weyl re
ections, no new root is
obtained. We therefore get eight roots, hence eight root generators, which
with the two Cartan generators form a ten-dimensional Lie algebra, the
Lie algebra so(5) ' sp(4).
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Consider now the situation where ��� = 30� and one takes �2=�2 = 3.
By a Weyl re
ection with respect to the axis orthogonal to �, we get the
root 
. Then by a Weyl re
ection with respect to the axis orthogonal to
�, we get the root �. Repeating the Weyl re
ection with respect to the
axis orthogonal to �, we get the root � and �nally the Weyl re
ection
with respect to the axis orthogonal to 
 leads to the root �. Then we
construct the opposite roots ��;��;�
;��;��;��. By Weyl re
ections,
no new root is obtained. We therefore get twelve roots, hence twelve
root generators, which with the two Cartan generators form a fourteen-
dimensional Lie algebra, the Lie algebra G2.
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Finally, the case ��� = 90� leads to the semi-simple algebra so(4) =
A1 � A1 and the case ��� = 0� is a special case: since � and � are
proportional, we will not �nd there a (semi)simple Lie algebra. �

General case: In the same way one can construct the two-dimensional root
spaces from the one-dimensional one, one can build the (r + 1)-dimensional
root spaces �r+1 from the r-dimensional ones �r by:

{ adding to each space �r an additional vector such that it coincides with

none of the vectors in �r and the condition 2
� � �
� � � 2 Z is satis�ed.

{ completing then the space by Weyl re
ections.

{ if all vectors resulting from the completion still obey the condition 2
� � �
� � � 2

Z, then we have obtained a new root space; if not, it is not.

Table 1.4: Root systems of the simple Lie algebras.

algebra G root system � dim�

AN�1 "i � "j N(N � 1)

BN �"i � "j ; �"i 2N2

CN �"i � "j ; �2"i 2N2

DN �"i � "j 2N(N � 1)

E6 �"i � "j ; �1
2(�"1 � : : :� "5 � "6 � "7 + "8) 72

E7
� "i � "j ; �("8 � "7);

�1
2(�"1 � : : :� "6 � "7 + "8)

126

E8 �"i � "j ; 1
2(�"1 � : : :� "8) 240

F4 �"i � "j ; �"i; 1
2(�"1 � "2 � "3 � "4) 48

G2 "i � "j ; �("i + "j)� 2"k 12

For the algebras AN�1, BN , CN , DN , the indices i 6= j run from 1 to N .
For the algebras E6, E7, E8, F4, G2, the indices i 6= j run from 1 to 5, 6,
8, 4, 3 respectively, with in the case of G2, the condition "1 + "2 + "3 = 0
and i; j; k is a permutation of (1,2,3). The total number of + signs (or �
signs) is even in 1

2(�"1� : : :� "8) for E8,
1
2(�"1� : : :� "6� "7+ "8) for E7,

1
2(�"1 � : : :� "5 � "6 � "7 + "8) for E6.

The description of the root space can be simpli�ed owing to Dynkin dia-
grams. We have then to introduce the notions of positive and simple roots
(! 1.27, 1.83).
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1.78 Schr�odinger algebra

The Schr�odinger equation [67] in 3+1 dimensions is left invariant under a
group of space{time transformations which is bigger than the Galilei group
(! 1.33). These extra transformations are a dilatation

~r 0 = exp(�)~r and t0 = exp(2�) t

and a conformal transformation

~r 0 =
~r

1� �t and t0 =
t

1� �t
where � and � are arbitrary real parameters.

A basis of the Schr�odinger algebra is therefore obtained by adding to the
Galilei algebra two extra generators D and C satisfying the following non-
zero commutation relations:h

D;Pj

i
= i Pj

h
D;Kj

i
= iKj

h
D;P0

i
= �2i P0h

C;Pj

i
= iKj

h
C;P0

i
= �iD

h
C;D

i
= �2i C

It has to be noted that the three generators P0;D;C form the sl(2; R ) algebra
and naturally commute with the rotation algebra generated by the Ji (i =
1; 2; 3).

The Schr�odinger algebra acting on the 3+1 dimensional space{time is there-
fore twelve dimensional. It admits, as the Galilei algebra, a central ex-
tension. The extended Schr�odinger algebra is obtained by adding to the
eleven-dimensional extended Galilei algebra the two generators D and C.

It is of physical interest to remark [11] that the conformal algebra (! 1.17)
associated with 3+1 dimensional space{time contains as a subalgebra not
only the Galilei algebra in 2+1 dimensions, but also the Schr�odinger algebra
in 2+1 dimensions. Using the notations of section 1.17, one has the following
correspondence:

P0 =
1
2 (M000 +M40 �M003 �M43) =

1
2 (p0 � p3)

Pj =M00j +M4j = pj ; Kj = �M0j �M3j (j = 1; 2)

M =M000 +M40 +M003 +M43 = p0 + p3
C = 1

2 (M000 �M40 +M003 �M43) =
1
2 (k0 + k3)

D =M004 �M03 ; J3 =M12

where the M�� (�; � = 0; 00; 1; 2; 3; 4) are the generators of the so(4; 2) al-
gebra and we have denoted by p� = M00� +M4� and k� = M00� �M4� the
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translations and special conformal transformations of section 1.17. One has
as expected the following non-zero commutation relations (j; k = 1; 2):h

J3; Pj

i
= i "3jk Pk

h
J3;Kj

i
= i "3jkKjh

P0;Kj

i
= �i Pj

h
Kj ; Pk

i
= i �jkM

1.79 Schur function

Schur functions (S-functions) are special functions of the roots of the matri-
ces characterizing the classical groups, which allow the study of the weights
of the irreducible representations of this class of groups. Before introducing
the S-functions we need the following de�nitions:

De�nition
A set (�) of l integer numbers �i ordered from greatest to smallest is
called an ordered partition of order l of the integer number N =

Pl
i �i.

A Young tableau (! 1.96) can be associated to any ordered partition.

De�nition
A symmetric function of n variables xi is a function left unchanged by
any permutation of the variables xi.

De�nition
Given a partition (�) of N , the associated Schur function, denoted usually
by f�g, is a symmetric function of n variables (N � n) de�ned as the
ratio of two determinants:

f�g =
det
���x�i+n�ij

���
det
���xn�ij

���
where (xk�ij ) (k � n) is an n�n matrix whose ij-entry is xk�ij and �i = 0
for i � l.

Note that the determinant in the denominator of the above equation is just
the Vandermonde determinant which can also be written as

det
���xn�ij

��� = Y
1�i�j�n

(xi � xj)
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To give an alternative expression of the Schur function, we introduce the
de�nition of a symmetric monomial function which is associated to any par-
tition f�g by the formula

S(�) =
X

P (fmjg)
x�1m1

: : : x�lml

where the sum is over the di�erent permutations of xi andmj 2 f1; 2; : : : ; ng,
j = 1; 2; : : : ; l.

A homogeneous polynomial symmetric function of degree N , denoted pN ,
is the sum of all the symmetric monomial functions associated with the
partitions of N

pN =
X
f�g

S(�)

where the sum is over all the partitions of N .

For example, for n = 4, we have one monomial symmetric function for N = 1

S(1) = x1 + x2 + x3 + x4

for N = 2 there are two monomial symmetric functions

S(11) = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4

S(2) = x21 + x22 + x23 + x24

and for N = 3 one �nds three monomial symmetric functions

S(111) = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4

S(21) = x21x2 + x21x3 + x21x4 + x22x1 + x22x3 + x22x4

+x23x1 + x23x2 + x23x4 + x24x1 + x24x2 + x24x3

S(3) = x31 + x32 + x33 + x34

The Schur function can be rewritten in the form

f�g = det jp�i�i+j j
where i; j are respectively the row and column indices and it is assumed that
p0 = 1 and pq = 0 for q < 0. So the order of the matrix is given by the order
l of the partition. For instance, the S-function associated to the partition
f221g is

f221g =
0@ p2 p3 p4

p1 p2 p3
p�1 p0 p1

1A = p1p
2
2 + p1p4 � p21p3 � p2p3
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One can show that

fN; 0; : : : ; 0g = pN and f1; 1; : : : ; 1g = x1x2 : : : xN = S11:::1

Littlewood has shown that there is a complete equivalence between the above
de�ned S-function and a function which can be de�ned on the symmetric
group SN and which characterizes the irreducible representation of SN .
From the connection between SN and GL(N), many properties of the clas-
sical Lie groups can be expressed in terms of the S-function. It is possible
to de�ne inner and outer multiplication and division of S-function. Then
characters (! 1.12), Kronecker products of representations (! 1.96), and
branching rules (! 1.5) of classical groups can be expressed by use of S-
functions. We refer to refs. [55, 98, 99] for detailed discussion and for
reference to the original works.

Example
As an illustration we derive a formula for the dimension of the irreducible
representations of sl(N) labelled by the Young tableau [�] or highest
weight �. The Weyl character formula (! 1.12) reads

�(�) =

X
w2W

"(w) ew(�+�)X
w2W

"(w) ew(�)

where the sum is over all the elements w of the Weyl group W (! 1.93),
"(w) is the parity of w, and � is the Weyl vector, half-sum of the positive
roots. Writing the roots of sl(N) in the orthogonal basis f"ig (! Table
3.1), the Weyl group becomes the permutation group SN acting on "i.
Introducing the formal variables

xi = e"i with

NY
i

xi = 1

using the following expression for the determinant

det
���xk�ij

��� =X
P

"(P )

nY
i=1

xk�iei

where the sum is over all the permutations and the set fe1; : : : ; eng is
obtained from f1; 2; : : : ; ng by action of the permutation P of parity "(P ),
the Weyl character formula can be written in the form of a Schur function
(as in the de�nition above).
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Performing the limit xi ! 1 in the formula we �nally get

dim�(�) =
Y

1�i�j�n

(�j � �i + j � i)
(j � i)

the �i being the components of the Young tableau [�]. �

1.80 Schur's Lemma

Lemma (Schur)
Let � be an irreducible representation of a group G in a complex linear
vector space V. Let

C(�) =
n
� : V ! V

��� h�(g); �i = 0 ; 8 g 2 G
o

where � 2 EndV. Then C(�) is a multiple of the identity operator I.

This lemma is specially important. In particular it allows us to deduce:

Properties
1. Any irreducible complex representation of an Abelian group G is

unidimensional.
[the proof is straightforward: for a given g0 2 G, [�(g); �(g0)] = 0
8 g 2 G since G is Abelian and therefore �(g0) = �g0I, �g0 2 C , if
� is irreducible.]

2. Let � be an irreducible complex representation of a Lie group G.
Then all Casimir invariants (! 1.9) are multiple of the identity (or
even zero).

Finally, the Schur's Lemma has a converse theorem which gives a criterion
for the irreducibility of an unitary representation.

Theorem (converse of the Schur's Lemma)
Let U be an unitary representation of the group G in a complex vector

space V. If for any operator � such that 8 g 2 G,
h
U(g); �

i
= 0, � is

proportional to the identity operator, then U is irreducible.

Let us recall that for any linear representation of a compact Lie group on a
vector space, there exists a scalar product making the representation unitary
(! 1.76).



Lie Algebras 135

1.81 Serre{Chevalley basis

The Serre{Chevalley presentation of a Lie algebra consists to describe the
algebra in terms of simple root and Cartan generators, the only parameters
being the entries of the Cartan matrix of the algebra.

Let G be a Lie algebra of rank r with Cartan subalgebra H = fh1; : : : ; hrg
and simple root system �0 = f�1; : : : ; �rg and denote by e�i (1 � i � r) the
corresponding simple root generators. Let A = (Aij) be the Cartan matrix
of G. The Serre{Chevalley basis of G is the basis in which the commutation
relations take the formh

hi; hj

i
= 0

h
hi; e

�
j

i
= �Aij e�j

h
e+i ; e

�
j

i
= �ij hi

The remaining commutation relations are given by the so-called Serre rela-
tions: �

ad e�i
�1�Aij e�j =

1�AijX
n=0

(�1)n(e�i )1�Aij�ne�j (e�i )n = 0

Example
Consider the Lie algebra sl(3) with simple root system f�1; �2g and sim-
ple root generators e�1 ; e

�
2 . The Serre relations read ash

e�1 ;
h
e�1 ; e

�
2

ii
= 0 and

h
e�2 ;
h
e�2 ; e

�
1

ii
= 0

It follows that �(�1 + �2) are roots of height 2 (since [e�1 ; e
�
2 ] 6= 0) but

�(2�1 + �2) and �(�1 + 2�2) are not roots. Thus, the root system of
sl(3) is given by � = f��1;��2;�(�1 + �2)g (for the notion of height
! 1.77). �

Relation between the Serre{Chevalley and the Cartan{Weyl bases

Let � be the root system of G. The commutation relations among the
generators of G in the Cartan{Weyl basis read ash

Hi;Hj

i
= 0h

Hi; E�

i
= �iE�h

E�; E��
i
=

rX
i=1

�iHih
E�; E�

i
= N�� E�+� if �+ � is a non-zero root
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Restricting oneself to the simple roots f�1; : : : ; �rg of G, one getsh
Hi;Hj

i
= 0h

Hi; E�j

i
= �ij E�jh

E�i ; E��j
i
= �j �H �ij

The relation between the two bases is then given by

e�i =

s
2

�2i
E��i and hi =

2

�2i
�i �H =

2

�2i

rX
j=1

�jiHj

1.82 Simple and semi-simple Lie groups and Lie

algebras

De�nition
The group G is a simple group if it does not contain any invariant sub-
groups other than the group G itself and the identity element feg.

De�nition
The group G is a semi-simple group if it does not contain any Abelian
invariant subgroups except the identity element feg.

As an example, the group SO(3) is simple and the group SO(4) is semi-
simple. The group SU(3) is not simple since its center is Z3 { group with
three elements, the three cubic roots of unity { but SU(3)=Z3 is simple.

Since to an invariant Lie subgroup H of a group G there corresponds in the
Lie algebra G an ideal (or invariant subalgebra) H, one can state:

De�nition
The Lie algebra G is a simple algebra if it does not contain any ideal other
than G itself and f0g.

De�nition
The Lie algebra G is a semi-simple algebra if it does not contain any
Abelian ideal except f0g.

An important property is the following:

Theorem
The Lie algebra G is a semi-simple Lie algebra if and only if it is a direct
sum of ideals that are simple as Lie algebras.
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1.83 Simple root systems

De�nition
Let G be a simple Lie algebra with Cartan subalgebra H. Then G admits

subalgebras N+ and N� such that
h
H;N+

i
� N+ and

h
H;N�

i
� N�

with dimN+ = dimN�. The decomposition G = N+�H�N� is called
a Borel decomposition. The subalgebras B = H � N� are called Borel
subalgebras of G (that is maximal solvable subalgebras of G).

Example
Consider the Lie algebra sl(3). A basis of generators is given by the Gell-
Mann matrices �i with i = 1; : : : ; 8 (! 1.90). A Cartan subalgebra H is
generated by �3 and �8. The subalgebras N+ and N� can be chosen as
N+ = f�1+i�2; �4+i�5; �6+i�7g and N� = f�1�i�2; �4�i�5; �6�i�7g.
�

De�nition
Let G be a simple Lie algebra of rank r with Cartan subalgebra H and
root system �. Denote by G = N+ �H�N� a Borel decomposition of
G. The root decomposition of G is

G = H�
M
�2�
G�

A root � is called positive if G� \ N+ 6= ; and negative if G� \ N� 6= ;.
A root is called simple if it cannot be decomposed into a sum of positive
roots. The set of all simple roots is called a simple root system of G and
is denoted here by �0. The number of simple roots of G is equal to the
rank r.

Example
Consider the Lie algebra sl(3). A Cartan subalgebra H being generated
by �3 and �8, the root generators can be taken as

E�� = �1 � i�2 ; E�� = �4 � i�5 ; E�
 = �6 � i�7
The set of positive roots is �+ = f�; �; 
g. A system of simple roots is
given by �0 = f�; �g and 
 = �+ �. �

Let us remark that the choice of the Borel decomposition is far from being
unique. However, in the case of the simple Lie algebras, all Borel subalgebras
are conjugate and hence all simple root systems are equivalent. More pre-
cisely, one can get a simple root system �00 from another one �0 by means
of Weyl transformations on the simple roots of �0.
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�0 = f�1; : : : ; �rg being a simple root system of G, each root � 2 � can be
decomposed uniquely in terms of the simple roots �i:

� =
rX
i=1

�i�i

where all the �i are positive (resp. negative) integers if � is a positive (resp.
negative) root. The quantity h� =

Pr
i=1 �

i is called the height of the root
� (obviously, the roots of height 1 are the simple roots).

When the Lie algebra G is not simply-laced (! 1.77), it is useful to de�ne
the simple coroots �_i as follows:

�_i � 2�i=(�i � �i)

�0_ = f�_1 ; : : : ; �_r g is called the simple coroot system.

When the Lie algebra is simply-laced, choosing the normalization of the
roots such that their squared length is equal to 2, the roots and the coroots
coincide so that �0_ = �0.

Among the roots, there is a unique root of maximal height: it is called the
highest root. Denoting the highest root by ��0, one has

��0 =
rX
i=1

ai�i =
rX
i=1

a_i �
_
i

The numbers ai and a
_
i are called respectively the marks or Kac labels and

the comarks or dual Kac labels. There are usually written on the Dynkin
diagram of G (! 1.27).

Note that the sum of the marks of a simple Lie algebra, that is the height of
its highest root, is equal to the maximal exponent (! 1.9) of the algebra.

Example
In the Lie algebra so(5), the eight non-zero roots are �"i � "j and �"i
(i; j = 1; 2; i 6= j) where ("1; "2) forms an orthonormal basis in the vector
space R 2 and 1 � i; j � 2. The simple roots are �1 = "1 and �2 = "2�"1.
The positive roots are �1 and �2 of height 1, �1 + �2 = "2 of height 2,
2�1 + �2 = "1 + "2 of height 3, which is the highest root. �

Table 1.5 provides a list of the simple root systems of the simple Lie algebras
in terms of the orthonormal vectors "i.
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Table 1.5: Simple root systems of the simple Lie algebras.

algebra G simple root system �0

AN�1 "1 � "2; : : : ; "N�1 � "N
BN "1 � "2; : : : ; "N�1 � "N ; "N
CN "1 � "2; : : : ; "N�1 � "N ; 2"N
DN "1 � "2; : : : ; "N�1 � "N ; "N�1 + "N

E6
1
2("1 + "8 �

P7
j=2 "j); "1 + "2; "2 � "1; : : : ; "5 � "4

E7
1
2("1 + "8 �

P7
j=2 "j); "1 + "2; "2 � "1; : : : ; "6 � "5

E8
1
2("1 + "8 �

P7
j=2 "j); "1 + "2; "2 � "1; : : : ; "7 � "6

F4 "2 � "3; "3 � "4; "4; 12("1 � "2 � "3 � "4)
G2 "1 � "2; "2 + "3 � 2"1

1.84 Spinors

The representation j = 1=2 of the group SU(2) is called a spinor representa-
tion and the elements of the two-dimensional representation space are called
spinors under SU(2). By extension, any representation j = (2p + 1)=2 is
called a spinor representation of SU(2). Moreover, any representation of an
algebra so(2n) or so(2n+1), the components of the highest weight of which
are n half-integers, is also called a spinor representation. We recall that the
representations j = (2p + 1)=2 of the algebra so(3) are not representations
of the group SO(3) but of its covering group SU(2) (! 1.18). In the same
way, the spinor representations of so(n) (! 1.58) are not representations of
the group SO(n) but of its covering group called Spin(n) for n � 7.

Now, let us consider the case of the Lorentz group. Its Lie algebra is also
the Lie algebra of the group SO(3; 1), non-compact form of SO(4), and also
of the SL(2; C ) group, group of 2 � 2 complex matrices of determinant 1,
generated by the six matrices �j ; i�j where the �j are the Pauli matrices.
There are two fundamental representations, each of dimension 2, of SL(2; C ),
denoted D(1=2; 0) and D(0; 1=2). The Dirac representation corresponds to
the representation D(1=2; 0)�D(0; 1=2). From the four basic Dirac matrices

� (� = 0; 1; 2; 3) satisfying the Cli�ord algebra (! 2.10), one can form the
spinor representation of the Lie algebra of the Lorentz group:

��� =
1

4

h

�; 
�

i
The elements in the four-dimensional representation space are the Dirac
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spinors. Using the projectors 1
2(I+ 
5) where 
5 = i
0
1
2
3 one decom-

poses a four-component Dirac spinor into two two-component Weyl spinors
on the subspaces of D(1=2; 0) and D(0; 1=2) respectively. Finally, if the 

matrices are chosen real, one obtains a Majorana representation in which
the Majorana spinors are real. See for example ref. [94].

The spinors in the Lorentz group are treated in detail in section 2.47.

1.85 Structure constants

! 1.52 Lie theorems.

1.86 Subalgebra { Subgroup

De�nition
A subalgebra A0 of an algebra A is a non-empty subset A0 � A which is
an algebra with the two composition laws induced by A.
A0 will be called a proper subalgebra of A if A0 6= A and A0 6= f0g.

Theorem
The part A0 of the real Lie algebra A is a Lie subalgebra of A if and only
if

�A+ �B 2 A0 and
h
A;B

i
2 A0 8�; � 2 R ; 8A;B 2 A0

De�nition
A subgroup G0 of a group G is a non-empty subset G0 � G which is a
group with the composition law induced by G.

G0 will be called a proper subgroup of G if G0 6= G and G0 6= feg where
feg is the identity element of G.

Theorem
The non-empty subset G0 � G of a group G is a subgroup of G if and
only if, for all x; y 2 G0, xy�1 2 G0.

One is often faced with the problem of symmetry breaking in physics: ex-
plicit symmetry breaking (for example the Zeeman e�ect) or spontaneous
symmetry breaking (Higgs mechanism). Then the knowledge of the sub-
groups of a group is sometimes useful. If one is interested only in the Lie
subgroups of a Lie group, the following theorem is specially important.
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Theorem
Let G be a connected Lie group. Then:

1. If H is a Lie subgroup of G, its Lie algebra H is a subalgebra of the
Lie algebra G of G.

2. Each subalgebra of G is the Lie algebra of exactly one connected
Lie subgroup of G.

Consequence: Classifying all the subalgebras H of G is equivalent to classi-
fying all the connected subgroups of the connected group G.

Of course, one is interested in the classi�cation of the subgroups of a group
up to a conjugation, or inner automorphism (! 1.4). One can add:

Property
The classi�cation of the connected subgroups of the connected Lie group
G up to a conjugation of G is equivalent to the classi�cation of the Lie
subalgebras of G up to an inner automorphism of G.

General theorems on the classi�cation of the simple Lie algebras have been
given in ref. [17] (! 1.87). An explicit classi�cation of the semi-simple
Lie subalgebras of the simple Lie algebras is given for algebras up to rank
6 in ref. [56]. Tables of branching rules (that is reduction with respect to
subalgebras) for representations of simple Lie algebras can be found in ref.
[59].

1.87 Subalgebras: regular and singular subalge-

bras

Regular subalgebras

De�nition
Let G be a simple Lie algebra, and consider its canonical root decompo-
sition

G = H�
M
�2�
G�

where H is the Cartan subalgebra G and � its corresponding root system.
A subalgebra G0 of G is called regular if G0 has the root decomposition

G0 = H0 �
M
�02�0

G0�0

where H0 � H and � � �0.
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Property
Let G0 be a regular subalgebra of G. Then G0 is semi-simple if and only if
� 2 �0 ) �� 2 �0 and H0 is the linear closure of �0.

The method for �nding the regular semi-simple subalgebras of a given simple
Lie algebra G is based on the use of the extended Dynkin diagram of G (!
1.27). A simple root system �0 of G and its associated Dynkin diagram
being given, one de�nes the corresponding extended simple root system byb�0 = �0 [ f�0g where ��0 is the highest root with respect to �0, to which
is associated the extended Dynkin diagram.

Deleting arbitrarily some dot(s) of the extended diagram will yield to some
connected Dynkin diagram or a set of disjointed Dynkin diagrams corre-
sponding to a regular semi-simple subalgebra of G. Indeed, taking away one
or more roots from b�0, one is left with a set of independent roots which
constitute the simple root system of a regular semi-simple subalgebra of G.
Then repeating the same operation on the obtained Dynkin diagrams { that
is adjunction of a dot associated to the lowest root of a simple part and
cancellation of one arbitrary dot (or two in the unitary case) { as many time
as necessary, one obtains all the Dynkin diagrams associated with regular
semi-simple subalgebras. One gets the maximal regular semi-simple subal-
gebras of the same rank r of G by carrying out only the �rst step. The other
possible maximal regular subalgebras of G if they exist will be obtained by
deleting only one dot in the non-extended Dynkin diagram of G and will be
therefore of rank r � 1.

Let us emphasize that for the exceptional Lie algebras, deleting one dot of the
extended Dynkin diagram may not lead to a maximal regular subalgebra: in
that case, the obtained algebra is contained in a maximal regular subalgebra
reached by the deletion of another dot from the same extended Dynkin

diagram. Denoting by bG=�i the subalgebra of G obtained by deleting the
simple root �i, one hasbF4=�3 � bF4=�4 bE7=�3 � bE7=�1bE8=�2 � bE8=�7 bE8=�3 � bE8=�6 bE8=�5 � bE8=�1

The regular semi-simple subalgebras of the simple Lie algebras AN�1, BN ,
CN and DN are of the following type:

algebra regular subalgebra dimension

AN�1 Ak1 � : : :�Akp
pX
i=1

(ki + 1) = N

BN
Ak1 � : : :� Akp�

Dm1
� : : :�Dmq �Br

pX
i=1

(ki + 1) +

qX
i=1

mi + r = N
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algebra regular subalgebra dimension

CN
Ak1 � : : :� Akp�
Cn1 � : : :� Cnq

pX
i=1

(ki + 1) +

qX
i=1

ni = N

DN
Ak1 � : : :� Akp�
Dm1

� : : :�Dmq

pX
i=1

(ki + 1) +

qX
i=1

mi = N

where k1 � : : : � kp � 0, l1 � : : : � lq > 0, m1 � : : : � mp > 1 and r � 0.

Table 1.6 presents the list of the maximal regular semi-simple subalgebras
of the simple Lie algebras.

Table 1.6: Maximal regular subalgebras of the simple Lie algebras

algebras subalgebras

AN�1 Ai�1 �AN�i�1
BN Bi �DN�i BN�1
CN Ci � CN�i AN�1
DN Di �DN�i DN�1 AN�1
E6 A2 � A2 � A2 D5 � U(1) A5 � A1

E7 D6 �A1 A5 � A2 E6 � U(1) A7

E8 E7 � A1 E6 � A2 A4 � A4 D8 A8

F4 C3 � A1 A2 � A2 B4

G2 A1 �A1 A2

Singular subalgebras

De�nition
Let G be a simple Lie algebra. A subalgebra G0 of G is called singular if
it is not regular.

The folding method allows us to obtain some singular subalgebras of the
simple Lie algebras. Let G be a simple Lie algebra, with non-trivial outer
automorphism, that is Out(G) does not reduce to the identity. Then, the
Dynkin diagram of G has a symmetry � of order N (�N = 1) given by
Out(G). This symmetry induces a direct construction of the subalgebra G0
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invariant under the G outer automorphism associated to � : if the simple
root �i is transformed into �(�i), then �i + �(�i) + : : : + �N�1(�i) is � -
invariant since �N = 1, and appears as a simple root of G0 associated to
the generator E�i + E�(�i) + : : :+ E�N�1(�i), where E�k(�i) is the generator

corresponding to the root �k(�i) (k = 0; : : : ; N � 1). A Dynkin diagram of
G0 will therefore be obtained by folding the ZN -symmetric Dynkin diagram
of G, that is by transforming each N -uple (�i; �(�i); : : : ; �

N�1(�i)) into the
root �i + �(�i) + : : :+ �N�1(�i) of G0. One obtains the following invariant
subalgebras, which are singular by construction:

A2N�1 i i i �! i i i
@
� CN

DN i i
i

i

��

HH

�! i i i@
�

BN�1

D4 i i
i

i

��

HH

�! i i
�
@ G2

E6 i i i i i

i

�! i i i i@
�

F4

Moreover, suppose that a Lie algebra G has an N -dimensional representation
� with highest weight � and invariant bilinear form B� (! 1.44). Then G
can be embedded in so(N) (resp. sp(N)) if and only if the bilinear form B�
is symmetric (resp. antisymmetric). If the representation � does not admit
an invariant bilinear form, then G can be embedded into sl(N). A necessary
condition for a representation to admit an invariant form is to be real or self-
conjugate (! 1.92). An invariant form is symmetric (resp. antisymmetric)
if

� � L = 0 (resp. 1) mod 2

where L is the level vector (! 1.92) of G (see Tables 3.1{3.9).

For more details, see ref. [17].

1.88 Symmetric spaces

! 1.71 Real forms.
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1.89 Symplectic groups and algebras

The symplectic group Sp(2n) in the 2n-dimensional real space R 2n is the
group of 2n� 2n real matrices S leaving invariant the scalar product

~x � ~y = ~x g ~y = S~x � S~y ; 8 ~x; ~y 2 R
2n

with the metric g de�ned as follows

g =

0BBBBBB@

1
0 . .

.

1

�1
. .
.

0
�1

1CCCCCCA
The group Sp(2n) is compact and its Lie algebra simple. Any element S of
Sp(2n) satis�es

St g S = g

and can be written

S = eK with K such that Kt g = �g K
We will rewrite K in the form

K =

�
K11 K12

K21 K22

�
where the four n� n Kij submatrices satisfy

K11 = � eK22 K12 = eK12 K21 = eK21

where eKij means the matrix obtained from Kij by transposing its elements
with respect to the minor diagonal.

It follows that the number of independent K matrices and therefore the
dimension of the Lie algebra sp(2n) is

n2 + 2

�
n+

n� 1

2

�
= n(2n+ 1) =

2n(2n+ 1)

2

Note that Sp(2) ' SU(2) and Sp(4)=Z2 ' SO(5).
With respect to the basis (~en; : : : ; ~e1; ~e�1; : : : ; ~e�n), the sp(2n) algebra can
be seen as generated by the matrices

Mij = E
(2n)
ij � �(i)�(j)E(2n)

�j;�i

Mi;�i = E
(2n)
i;�i
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where �(i) = i=jij = sign(i) and i; j = �1; : : : ;�n, i 6= j. The matrices

E
(2n)
ij are the 2n� 2n elementary matrices with entry 1 in the i-th row and

j-th column, and zeros elsewhere. We have then commutation relationsh
Mij ;Mkl

i
= sign(jk) (Mil�kj +M�j;k�il +Mi;�k��j;l +M�j;l�k;�i)

and the property
Mij = �sign(ij)M�j;�i

Relabelling the generators Mij as follows

Mi0j0 �!Mij with

�
i = 2i0 (i0 > 0)
i = 2(�i0)� 1 (i0 < 0)

the n generators Hi =M2i;2i (i = 1; : : : ; n) span the Cartan subalgebra.

An irreducible representation of Sp(2n) is either characterized by the Dynkin
labels (a1; : : : ; an) where ai are positive or null integers, or by the set of n
non-negative integers (m1; : : : ;mn) such that mi � mi+1, with ai = mi �
mi+1 for i = 1; : : : ; n� 1 and an = mn.

The dimension of the Sp(2n) irreducible representation �(m1; : : : ;mn) is
given by

N(m1; : : : ;mn) =

Y
1�i�n

li
Y

1�i<j�n
(li � lj)(li + lj)Y

1�i�n
�i

Y
1�i<j�n

(�i � �j)(�i + �j)

where �i = n� i+ 1 and li = mi + �i, that is

N =
Y

1�i�n

mi + n� i+ 1

n� i+ 1

Y
1�i<j�n

mi �mj + j � i
j � i

�
Y

1�i<j�n

mi +mj + 2n� i� j + 2

2n� i� j + 2

1.90 Unitary groups and algebras

The unitary group in the n-dimensional complex space C n is the group of
n� n complex matrices U leaving invariant the scalar product

~x � ~y =
nX
i=1

x�i yi = U~x � U~y ; 8 ~x; ~y 2 C
n
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This group is denoted U(n). One can also de�ne it as the group of n �
n complex unitary matrices U such that U y = U�1. Imposing on U the
condition detU = 1, we obtain the subgroup SU(n) of U(n) or special
unitary group in n dimensions. The group U(n) is compact and its Lie
algebra su(n) is simple. Any element U of U(n) can be written

U = eiM with M hermitian: M y =M

or
U = eN with N antihermitian: N y = �N

One can form n2 independent n � n hermitian matrices. Therefore the
number of generators of U(n) is n2. Imposing the condition detU = 1
implies, since detU = exp(tr(lnU)), that tr(M) = 0, and therefore SU(n)
has n2 � 1 generators.

An irreducible representation of SU(n) is either characterized by the Dynkin
labels (a1; : : : ; an�1) where ai are positive or null integers, or by the set
of n � 1 non-negative integers (m1; : : : ;mn�1) such that mi � mi+1, with
ai = mi � mi+1 for i = 1; : : : ; n � 2 and an�1 = mn�1. [m1; : : : ;mn�1]
corresponds to the Young tableaux (! 1.96) notation.

The dimension of the SU(n) irreducible representation �(m1; : : : ;mn�1) is
given by

N(m1; : : : ;mn�1) =

Y
1�i<j�n�1

(li � lj)Y
1�i<j�n�1

(�i � �j)
Y

1�i�n�1

li
�i

where �i = n� i and li = mi + �i, that is

N =
Y

1�i<j�n�1

mi �mj + j � i
j � i

Y
1�i�n�1

mi + n� i
n� i

In terms of the Dynkin labels a1; : : : ; an�1, it can be written as

N =

n�1Y
i=1

(ai + 1)
n�2Y
i=1

(ai + ai+1 + 2) : : : (a1 + : : :+ an�1 + n� 1)

1! 2! : : : (n� 1)!

In particular, the completely symmetric representations are characterized by
m1 = m and mi = 0 for i 6= 1 (the Young tableau reduces to one row of m
boxes). The dimension of the representation �(m; 0; : : : ; 0) is given by

N(m; 0; : : : ; 0) =

�
n+m� 1

m

�
=

(n+m� 1)!

m! (n� 1)!
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The completely antisymmetric representations are characterized by mi = 1
for 1 � i � j � n � 1 and mi = 0 for i > j (the Young tableau reduces to
one column of j boxes). The dimension of the representation �(1j; 0; : : : ; 0)
is given by

N(1j ; 0; : : : ; 0) =

�
n
j

�
=

n!

j! (n� j)!

The Lie algebra su(2)

For the su(2) Lie algebra, one can choose as a basis the well-known Pauli
matrices:

�1 =

�
0 1
1 0

�
�2 =

�
0 �i
i 0

�
�3 =

�
1 0
0 �1

�
satisfying h

�i; �j

i
= 2i "ijk �k

Adding to them the identity matrix �0 =

�
1 0
0 1

�
one obtains a basis for

the Lie algebra u(2) = su(2)� u(1) of U(2).

The Lie algebra su(3)

A basis of the Lie algebra su(3) is given by the Gell-Mann matrices �i
(i = 1; : : : ; 8)

�1 =

0@ 0 1 0
1 0 0
0 0 0

1A �2 =

0@ 0 �i 0
i 0 0
0 0 0

1A �3 =

0@ 1 0 0
0 �1 0
0 0 0

1A
�4 =

0@ 0 0 1
0 0 0
1 0 0

1A �5 =

0@ 0 0 �i
0 0 0
i 0 0

1A �6 =

0@ 0 0 0
0 0 1
0 1 0

1A
�7 =

0@ 0 0 0
0 0 �i
0 i 0

1A �8 = 1=
p
3

0@ 1 0 0
0 1 0
0 0 �2

1A
Adding the generator �0 =

p
2=3 I3 (I3 is the 3� 3 unit matrix) we obtain

a basis for the Lie algebra u(3) = su(3) � u(1) of U(3). Note that the
generators �i are normalized such that (i; j = 0; 1; : : : ; 8)

tr(�i�j) = 2�ij
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The communtation relations among the Gell-Mann matrices readh
�i; �j

i
= �i�j � �i�j = 2i fijk �k

where the structure constants fijk are completely antisymmetric in the three
indices i; j; k. Their non-vanishing values are

f123 = 1; f458 = f678 =
p
3=2

f147 = f165 = f246 = f257 = f345 = f376 = 1=2

In the same way, one can de�ne completely symmetric coe�cients for the
Lie algebra su(3), sincen

�i; �j

o
= �i�j + �i�j =

4
3 �ij I+ 2 dijk �k

with dijk completely symmetric in its three indices, and such that

d118 = d228 = d338 = �d888 = 1=
p
3

d147 = d157 = �d247 = d256 = d344 = d355 = �d366 = �d377 = 1=2

d448 = d558 = d668 = d778 = �1=2
p
3

Such completely symmetric and antisymmetric quantities can be de�ned only
for any su(n) Lie algebra (see ref. [62]).

1.91 Universal enveloping algebra

De�nition
Let G be a Lie algebra of dimension n. G
 being the tensor algebra over
G, and I the ideal of G
 generated by [X;Y ]� (X 
 Y � Y 
X) where
X;Y 2 G, the universal enveloping algebra U(G) is the quotient G
=I.

Theorem (Poincar�e{Birkho�{Witt)
Let b1; : : : ; bn be a basis of G. Then the elements

bi11 : : : b
in
B with i1; : : : ; in � 0

form a basis of the universal enveloping algebra U(G).

The universal enveloping algebra U(G) is endowed with a natural coproduct
� de�ned by

� : U(G) ! U(G)
 U(G)
g 7! �(g) = g 
 1 + 1
 g

Together with the antipode S : U(G) ! U(G), g 7! S(g) = �g such that
S(g1g2) = S(g2)S(g1) and the counit " : U(G) ! C , g 7! "(g) = 0, the
universal enveloping algebra U(G) acquires the structure of a Hopf algebra.
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1.92 Weights of a representation

Notion of weight { Basic properties

Let G be a semi-simple Lie algebra of dimension n and rank r. Denote by
Hi (i = 1; : : : ; r) the Cartan generators of G, which can be taken to be her-
mitian. Let � be a representation of G: one can choose a system of common
eigenvectors for the Hi which will provide a basis of the representation space
V. If we denote j�i such a vector, we have

Hij�i = �ij�i
where the Hi appear as N �N matrices if dimV = N .

De�nition
The r-dimensional vector � = (�1; : : : ;�r) associated to j�i such that
Hij�i = �ij�i is called the weight of j�i in �.
The number of eigenvectors j�i with the same weight � is called the
multiplicity of �. A weight is said to be simple if its multiplicity is one.

Property
The knowledge of the weight diagram of a representation completely char-
acterizes the representation, that is it allows us to obtain explicitly the
matrices Hi and E�.

Example

Considering the Cartan's basis of G such that
h
Hi; E�

i
= �iE�, the root

diagram of G is the weight diagram of the adjoint representation of G. �
De�nition

Two weights � and �0 are said to be equivalent if they are related by an
element of the Weyl re
ection group.

Properties
1. If � is a representation of G with representation space V of dimension
N , then there exist at most N weights (indeed the eigenvectors
corresponding to the di�erent weights are linearly independent and
there are at most N independent vectors in V).

2. Let j�i be an eigenvector with weight �, then E�j�i is either zero
or is an eigenvector with weight � + �.

3. Let � be a root and � be a weight. Then 2
� � �
� � � is an integer and

�0 = �� 2
� � �
� � � � is a weight with the same multiplicity as �.
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Highest weights { Fundamental weights

De�nition
{ A weight � is said higher than the weight �0 if the vector � � �0 is
positive, that is its �rst non-zero component is strictly positive.
{ The highest weight of a set of equivalent weights is said to be dominant.

Theorem
In any irreducible representation of a simple Lie algebra G, there is a
highest weight. This highest weight is simple. Moreover, two irreducible
representations of G are equivalent if and only if they have the same
highest weight.

It follows from this theorem that the highest weight of an irreducible repre-
sentation of a semi-simple Lie algebra fully characterizes this representation.

Example
Let us take the simplest non-trivial case, that is the representations of
the SO(3) group. The rank being one, each weight in a given represen-
tation is a one-dimensional vector. Using the basis J1; J2; J3 (! 1.58)
the weights in the three-dimensional or adjoint representation are the
eigenvalues of J3, that is 1; 0;�1 associated to the eigenvectors (1; 0; 0),
(0; 1; 0), (0; 0; 1) in the three-dimensional representation space. Then 1
is the highest weight and one obtains the other weights by action of the
ladder operator J� = J1 � iJ2. The adjoint representation is denoted
j = 1.

More generally, in the representation j of dimension 2j + 1, the highest
weight is j and the others weights j � 1; j � 2; : : : ;�j + 1;�j. It will be
possible to choose J3 diagonal with eigenvalues j; : : : ;�j and to construct
J1 and J2 from the relations

J�j�i = (J1 � iJ2) j�i =
p
(j + �)(j � � + 1) j�� 1i

J+j�i = (J1 + iJ2) j�i =
p
(j � �)(j +�+ 1) j�+ 1i

For any representation of SO(3) there is no degeneracy of the states. The
situation is more complicated for representations of groups of rank r > 1
(see ref. [78] for example).

Moreover, the representations of the Lie algebra so(3) ' su(2) are la-
belled by j integer or half-integer. At the group level, SO(3) admits only
representations with j integer while SU(2) admits also j half-integer or
spin representations (! 1.18 and 1.84). �
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The classi�cation of the irreducible representations of a simple Lie algebra
is made possible by a theorem due to Cartan:

Theorem (Cartan)
For every simple Lie algebra of rank r, there are r dominant weights
called fundamental dominant weights �i (i = 1; : : : ; r) such that any
other dominant weight � is

� =

rX
i=1

ai�i � �(a1; : : : ; ar)

where the ai are non-negative integers. The numbers ai are called the
Dynkin labels.

Furthermore, there exist r so-called fundamental irreducible representa-
tions which have the r fundamental dominant weights as their highest
weights.

Finally, to any dominant weight �(a1; : : : ; ar) there corresponds one
and only one (up to an equivalence) irreducible representation with
�(a1; : : : ; ar) as its highest weight: this representation will be denoted
by D(a1; : : : ; ar).

The r fundamental representations of a simple Lie algebra of rank r are
denoted D(i) = D(0; : : : ; 1; : : : ; 0) (the 1 being at the ith place) while the
representation D(0; : : : ; 0) will be the trivial representation.

The fundamental weights are determined as follows: let �0 = f�1; : : : ; �rg
be the simple root system of G and �0_ = f�_1 ; : : : ; �_r g the corresponding
simple coroot system (! 1.83). The fundamental dominant weights �j are
dual to the simple coroots:

2
�j � �i
�i � �i = �j � �_i = �ij

The Dynkin labels (a1; : : : ; ar) corresponding to a dominant weight � are
given by

ai = � � �_i = 2
� � �i
�i � �i

It follows that the Dynkin labels are in a one-to-one correspondence with the
dots of the Dynkin diagram of the Lie algebra G. The fundamental represen-
tations for which the non-zero Dynkin label corresponds to an endpoint of
the Dynkin diagram are called the simple fundamental representations. All
other �nite dimensional irreducible representations of G can be constructed
by tensor products of the simple fundamental ones.
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The fundamental weights of the simple Lie algebras are displayed in Tables
3.1{3.9.

Examples
Consider the Lie algebra sl(2) of rank 1. From the root diagram and the
above relation, we deduce

�i � � = 1
2�

By Weyl re
ection with respect to the axis orthogonal to � at the origin,
we get the other weight �� and thus the two-dimensional fundamental
representation of sl(2).

Consider now the Lie algebra sl(3) of rank two. The two simple roots
being � and �, we deduce �1 and �2 using again the above relation:

�1 =
1
3(2�+ �) and �2 =

1
3(�+ 2�)

By Weyl re
ections, we deduce from �1 the �rst fundamental sl(3) rep-
resentation D(1; 0) and from �2 the second fundamental representation
D(0; 1), both of dimension 3.

Moreover, in terms of the Dynkin labels �1 and �2, the dominant weights
take the form �(�1; �2) =

1
3(2�1 + �2)�+

1
3(�1 + 2�2)�.

�
�
�
��

T
T
T
TT

T
T
T
TT

�
�
�
��

"
""

b
bb

�

�




��

��

�
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�2

"
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b
bb

�1

b
bb

"
"" �2

�

Complex, real and pseudo-real representations

De�nition
Let G be a simple Lie algebra and � be an irreducible representation of G
of highest weight �. The level of a weight of the representation � is the
number of simple roots one has to substract from � to obtain this weight.

De�nition
Let G be a simple Lie algebra of rank r and � be an irreducible represen-
tation of G of highest weight � with Dynkin labels (a1; : : : ; ar).
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The highest level of the irreducible representation � is called the height
of the representation. It is given by

h(�) =

rX
i=1

Liai

where L = (L1; : : : ; Lr) is the level vector or height vector of G (see Tables
3.1{3.9).

Let � be a highest weight irreducible representations (HWIR) of a simple Lie
algebra G with representation space V. The HWIRs of a simple Lie algebra
G fall into one of two classes:

1. The complex representations: the weights at level ` are not the negative
of those at level h(�)� `. This case occurs when the Dynkin diagram
of G has a non-trivial symmetry (AN , DN , E6), see below.

2. The self-conjugate representations: the weights at level ` are the neg-
ative of those at level h(�) � `. In that case, there exists a bilinear
form B on V such that

B(Lx; y) = B(x;Ly) L 2 �(G) ; x; y 2 V

One has then to distinguish according to the parity of h(�).

(a) the real representations: if h(�) is even, one can set the entries
of the representation matrices to real values. The bilinear form
on V is then symmetric: (x; y) = (y; x).

(b) the pseudo-real representations: if h(�) is odd, one cannot set the
entries of the representation matrices to real values. The bilinear
form on V is then antisymmetric: (x; y) = �(y; x).

For example, the representations Dj of su(2) with j integer are real,
while the representations Dj with j half-integer are pseudo-real.

The classi�cation of the HWIR of the simple Lie algebras is the following:

{ For AN , the representation D(a1; : : : ; aN ) is:
complex if (a1; : : : ; aN ) 6= (aN ; : : : ; a1),
otherwise

� when N 6= 4q + 1: real if (a1; : : : ; aN ) = (aN ; : : : ; a1).
� when N = 4q + 1: real if (a1; : : : ; aN ) = (aN ; : : : ; a1) and a(N+1)=2 is
even, pseudo-real if (a1; : : : ; aN ) = (aN ; : : : ; a1) and a(N+1)=2 is odd.

{ For BN , the representation D(a1; : : : ; aN ) is:
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� when N = 4q+1 or 4q+2: real if aN is even, pseudo-real if aN is odd.
� when N = 4q or 4q + 3: always real.

{ For CN , the representation D(a1; : : : ; aN ) is:
real if a1 + a3 + a5 + : : : is even, pseudo-real if a1 + a3 + a5 + : : : is odd.

{ For DN , the representation D(a1; : : : ; aN ) is:

� when N = 4q: always real.
� when N = 4q + 2:
real if a4q+1 + a4q+2 is even, pseudo-real if a4q+1 + a4q+2 is odd.

� when N = 4q + 1 or 4q + 3:
complex if (a1; : : : ; aN�2; aN�1; aN ) 6= (a1; : : : ; aN�2; aN ; aN�1),
real if (a1; : : : ; aN�2; aN�1; aN ) = (a1; : : : ; aN�2; aN ; aN�1).

{ For E6, the representation D(a1; : : : ; aN ) is:
complex if (a1; a2; a3; a4; a5; a6) 6= (a5; a4; a3; a2; a1; a6),
real if (a1; a2; a3; a4; a5; a6) = (a5; a4; a3; a2; a1; a6).

{ For E7, the representation D(a1; : : : ; aN ) is:
real if a4 + a6 + a7 is even, pseudo-real if a4 + a6 + a7 is odd.

{ The exceptional Lie algebras E8, F4 and G2 have only real representations
(without any conditions on the Dynkin labels).

Weyl formula

Theorem (Weyl dimension formula)
Let G be a simple Lie algebra of rank r, �+ the set of positive roots of
G and � the Weyl vector (half-sum of the positive roots). The dimension
of an irreducible representation of highest weight � is given by the Weyl
formula:

N(�) =
Y
�2�+

(� + �) � �
� � �

Expressing the highest weight � in terms of the Dynkin labels (a1; : : : ; ar)
and decomposing the positive roots in the simple coroot system �_, that is
� =

Pr
i=1 �

i_�_i , the Weyl formula takes the following form:

N(�) =
Y
�2�+

Pr
i=1(ai + 1)�i_Pr

i=1 �
i_

Example
Consider the Lie algebra sl(3) with positive roots �1, �2 and �1 + �2.
The representation D(a1; a2) has dimension

N(a1; a2) =
1
2 (a1 + 1)(a2 + 1)(a1 + a2 + 2)

�
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Freudenthal recursion formula

When the dimension of an irreducible representation is su�ciently large, the
multiplicities of the weight are not so easy to determine and the construction
of the weight diagram can be cumbersome. The problem is solved by the
Freudenthal recursion formula that allows us to determine the multiplicity
of a weight � from the multiplicities of the weights of lower level.

Theorem (Freudenthal recursion formula)
Let G be a simple Lie algebra, � an irreducible representation of highest
weight � and � the Weyl vector. Denoting by mult�(�) the multiplicity
of a weight � of the representation �, one has:

[(� + �) � (� + �)� (�+ �) � (�+ �)] mult�(�) =

2
X
�2�+

X
k>0

(�+ k�) � � mult�(�+ k�)

the sums over � 2 �+ and k > 0 being such that �+ k� is still a weight.

Example
Let us illustrate the previous notions on the adjoint representation of
sl(3). Denote by �0 = f�; �g the simple root system of sl(3). The
highest weight of the adjoint representation is the highest root �+�. The
non-zero weights of the representations are the roots of the Lie algebra,
with multiplicity one. The zero weight appears with multiplicity equal to
the rank of the algebra, as can be checked by the Freudenthal formula.
Finally, the descending scheme and the weight diagram are the following:

�
�
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T
T
T
�
�
�
�T

T
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s

sss
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Symmetric quadratic form

Any weight w of an irreducible representation can be written as a linear
combination of the simple (co)roots (! 1.83) as

w =
X
i

wi �
_
i =

X
i

wi
2

�i � �i �i

The Dynkin labels for any weight w are de�ned as

ai = w � �_i = 2
w � �i
�i � �i

If w is the highest weight � we �nd the (non-negative) integers which label
the irreducible representation. For a generic weight the Dynkin labels can
be negative. One can de�ne the scalar product of two weights by

w1 � w2 =
X
i;j

w1
i

2

�i � �i �i w
2
j

2

�j � �j �j =
X
i;j

a1i Gij a
2
j

where (Gij) is called the symmetric metric tensor or symmetric quadratic
form and is given by

Gij = (A�1)ij
�i � �i
2

where (Aij) is the Cartan matrix (! 1.8) and the roots are normalized such
that the longest root has length squared equal to two.

Introducing a basis �i in the weight space as �i =
P

j (A
�1)ji �j the sym-

metric metric tensor can be written as

Gij = �i � �j
For the explicit form of (Gij) for the simple Lie algebras, see Tables 3.1{3.9.

1.93 Weyl group

De�nition
Let G be a simple Lie algebra of rank r with root system � and coroot
system �_. For any root � 2 � there is a transformation w� in the weight
space (therefore, in particular, in the root space), called Weyl re
ection,
such that if � is a weight:

w�(�) = �� 2
� � �
� � � � = �� (�_ � �)�

The set of Weyl re
ections with respect to all the roots of G forms a �nite
group W called the Weyl group of G.
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The Weyl re
ection w� leaves �xed any vector in the hyperplane orthogonal
to � and transforms � into ��. The Weyl group is generated by the r
re
ections w�i with respect to the simple positive roots �i (1 � i � r)
and by the identity. The length l(w) of w 2 W is the minimun number of
re
ections w�i such that w =

Q
iw�i . The parity "(w) of w is de�ned as

"(w) = (�1)l(w).
W is a normal subgroup (! 1.37) of the automorphism group (! 1.4) of
�. It is often interesting to know the conjugacy class of W as conjugate
automorphisms correspond to a di�erent choice of the simple root systems.
A complete list of the conjugacy classes can be found in ref. [12].

De�nition
Denote by f�1; : : : ; �rg the simple root system of G. The element

c = w�1 : : : w�r

ofW is called the Coxeter element ofW . Its order is equal to the Coxeter
number h of G. It is the element of the Weyl group of maximal length.

Table 1.7: Weyl group of the simple Lie algebras.

simple Lie algebra G Weyl group W dimW

AN�1 SN N !
BN SN n (Z=2Z)N 2NN !
CN SN n (Z=2Z)N 2NN !
DN SN n (Z=2Z)N�1 2N�1N !
E6 27:34:5
E7 210:34:5:7
E8 214:35:52:7
F4 S3 n (S4 n (Z=2Z)2) 27:32

G2 dihedral group 12

1.94 Weyl vector

De�nition
Let G be a simple Lie algebra, � the root system and �_ the coroot
system of G. The vectors

� = 1
2

X
�2�+

� and �_ = 1
2

X
�2�+

�_

are called respectively the Weyl vector and the dual Weyl vector of G.
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Properties
1. The Weyl vector of a simple Lie algebra G is equal to the sum of

the fundamental weights (! 1.92) of G (r is the rank of G):

� =
rX
i=1

�i

2. The dual Weyl vector �_ and the level vector L (! 1.92) of G are
related by �_ = 1

2 L.

3. Let �0 = f�1; : : : ; �rg and �0_ = f�_1 ; : : : ; �_r g be the simple root
and simple coroot systems of G. The Weyl vector and the dual Weyl
vector satisfy

� � �_i = 1 and �_ � �i = 1

Theorem (strange formula)
Let G be a simple Lie algebra, � is the Weyl vector, ��0 is the highest
root, h_ is the dual Coxeter number. Then the following formula, called
the strange formula, holds:

� � �
�0 � �0 = 1

24 h
_ dimG

1.95 Wigner-Eckart theorem

A family of operators A� is called an irreducible �-tensor operator family
under a compact group G, if each operator of the family transforms under
the action of the group as follows:

�(g)A� �
�1(g) =

X
�0

����0(g)A�0

where ����0(g) are the matrix elements of the unitary irreducible represen-
tation � with highest weight � of G. Note that � and �; �0 are short hand
notations for the set of labels which specify the unitary irreducible represen-
tation and its space states.

The matrix element of an operator A� between the states of the unitary irre-
ducible representations of G satis�es the following identity, due to Wigner-
Eckart:

h�0�0jA�j�00�00i =
X
h�0kA�k�00ih�00�00��j�0�0i

where h�0kA�k�00i is called the reduced matrix element and h�00�00��j�0�0i
are the Clebsch-Gordan coe�cients.
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1.96 Young tableaux: SU(N) representations

The Young tableau technique is a powerful tool for the study of the irre-
ducible representations of the groups GL(N; C ) (! 1.13) and of its sub-
groups, in particular SU(N). Hereafter we will be concerned only with the
case of the SU(N) group.

Any representation of SU(N) can be obtained from the tensor product of
its fundamental representation D(1; 0; : : : ; 0) { using the notation of weights
(! 1.92) { by itself a certain number of times. The elements in the represen-
tation space of the tensor representation thus obtained are tensors satisfying
symmetry properties under the permutation group SN . These properties are
contained in the Young tableau formalism which allows us to obtain explicit
forms for the vectors in a representation space and also gives a method for
the reduction into irreducible representations of the product of two SU(N)
representations.

Let us �rst de�ne a Young tableau:

De�nition
A Young tableau is constituted by a certain number of \boxes" set on
one or more rows such that, if the rows are numbered from the top to
the bottom, the number of boxes in the i-th row is bigger or equal to the
number of boxes in the (i+ 1)-th row.

For example, the Young tableau [4; 2; 1] is given by .

To the irreducible representation D(�1; : : : ; �N�1) of SU(N) will be associ-
ated the (N � 1) row Young tableau [m1N ;m2N ; : : : ;mN�2;N ;mN�1;N ] with

m1N = �1 + : : :+ �N�1
m2N = �2 + : : :+ �N�1
: : :

mN�2;N = �N�2 + �N�1
mN�1;N = �N�1

that is

D(�1; : : : ; �N�1) �!
|{z}
�2

| {z }
�1

Then the fundamental representation D(1; 0; : : : ; 0) of SU(N) of dimension
N will be represented by

D(1; 0; : : : ; 0) �!
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Let us remark that if to a given representation D(�1; : : : ; �N�1) of SU(N)
there corresponds one and only one Young tableau, the converse is not
true, since to the tableau [m1; : : : ;mN�1] will correspond the representations
D(m1�m2; : : : ;mN�1) of SU(N), D(m1�m2; : : : ;mN�1; 0) of SU(N +1),
D(m1 � m2; : : : ;mN�1; 0; 0) of SU(N + 2), and so on. In order to avoid
mistakes, one has just to keep in mind that any irreducible representation of
SU(N) will be represented by a Young tableau with at most N rows. If the
Young tableau has more than N rows, it will correspond to the representa-
tion 0 of SU(N). If T has exactly N rows, [m1; : : : ;mN ] will be replaced by
[m1 �mN ; : : : ;mN�1 �mN ], since the mN columns of length N are in fact
related to the U(1) generator commuting with SU(N) in the U(N) group.
Therefore the trivial representation (of dimension 1) D(0; : : : ; 0) of SU(N)
will be represented by no box, or one or several columns of N boxes.

As an example, the trivial representation D(0; 0) of the group SU(3) will

admit as Young tableau � or or etc., while the representation

will be considered the same as .

The two representations D(�1; : : : ; �N�1) and D(�N�1; : : : ; �1) will be rep-
resented by two Young tableaux [m1N ; : : : ;mN�1;N ] and [m0

1N ; : : : ;m
0
N�1;N ]

such that m1N = m0
1N = m2N + m0

N�1;N = m3N + m0
N�2;N = : : : =

miN + m0
N+1�i;N = mN�1;N + m0

2N . That is [m0
1N ; : : : ;m

0
N�1;N ] can be

seen as the upside down complementary subspace of [m1N ; : : : ;mN�1;N ] in a
rectangle of N:m1N boxes with m1N boxes in each row and N boxes in each
column.

Two such representations D(�1; : : : ; �N�1) and D = D(�N�1; : : : ; �1) are
called contragredient representations and can be obtained one from the other
as follows:

D(g) = D(g�1)t ; 8 g 2 G
that is, if D = U unitary, U(g) = U(g)y. We can deduce that if U = U (that
is miN = m0

iN for i = 1; : : : ; N � 1) then the representation is real.

As an example, let us consider the group SU(3).

{ The two fundamental representations D(1; 0) or also denoted 3, and

D(0; 1) or also denoted 3, are contragredient.

{ The 8-dimensional (adjoint) representation is equal to its contragre-
dient and is real.

Now let us de�ne the Young operator associated to an irreducible SU(N)
representation.
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De�nition
Let us consider the Young tableau T = [m1; : : : ;mN�1] and let us label
1; : : : ;m1 the boxes in the �rst row from left to right, m1+1; : : : ;m1+m2

the boxes in the second row, and so on up to the last box of the last row.
Then denoting �T (resp. �T ) any permutation leaving the rows (resp.
the columns) globally invariant, the operator Y = QP with P =

P
�T

and Q =
P
"(�T )�T where "(�T ) is the parity of the permutation �T will

be called the Young operator associated with T while P and Q will be
called respectively the symmetrizer and antisymmetrizer of T .

Example
Let us consider the following 3-box diagrams [3], [1; 1; 1] and [2; 1]. Using
the permutation group S3 we will have:

�! 1 2 3

Here, Q is the identity while P is the sum of all permutations of 1,2,3. It
follows that Y = e+ (1; 2) + (2; 3) + (3; 1) + (1; 2; 3) + (1; 3; 2).

�!
1
2
3

Here, P is the identity while Q is the sum of all graded permutations of
1,2,3. It follows that Y = e� (1; 2)� (2; 3)� (3; 1) + (1; 2; 3) + (1; 3; 2).

�!
1 2
3

Here, P = e+(1; 2),Q = e�(1; 3) and therefore Y = [e+(1; 2)][e�(1; 3)] =
e+ (1; 2)� (1; 3)� (1; 2; 3). �

Property
The knowledge of the operator Y associated to the Young tableau T
allows the construction of all the states of the SU(n) representation D
whose Young tableau is T . All the states of D are simply obtained by
action of Y on the most general vector of the tensor vector space V
kn
where Vn is the fundamental representation space of SU(n) and k the
number of boxes in T .

Example
Consider the group SU(3). Its fundamental representation is of dimension
3: let us denote a; b; c an orthonormal basis in V3.
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The 10-dimensional representation space of D(3; 0) or will be gen-
erated by the vectors aaa, bbb, ccc, Sym(aab) = aab+aba+baa, Sym(aac),
Sym(abb), Sym(acc), Sym(bbc), Sym(bcc), Sym(abc). �





Part 2

Lie Superalgebras

Unless otherwise stated, all Lie superalgebras considered here
are complex and �nite dimensional.
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2.1 Automorphisms

Let G = G0 � G1 be a simple Lie superalgebra. An automorphism � of
G is a bijective homomorphism from G into itself which respects the Z2-
gradation, that is �(G0) � G0 and �(G1) � G1. The automorphisms of G
form a group denoted by Aut(G). The group Int(G) of inner automorphisms
of G is the group generated by the automorphisms of the form X 7! gXg�1
with g = expY where X 2 G and Y 2 G0. Every inner automorphism of G0
can be extended to an inner automorphism of G. The automorphisms of G
which are not inner are called outer automorphisms.

In the case of a simple Lie algebra A, the quotient of the automorphism
group by the inner automorphism group Aut(A)=Int(A) { called the factor
group F (A) { is �nite and isomorphic to the group of symmetries of the
Dynkin diagram of A (! 1.4).

The situation is slightly di�erent for the superalgebras: the result is as
follows. In most of the cases, the outer automorphisms of a basic Lie super-
algebra G can be studied from the Dynkin diagrams of G. More precisely,
de�ning Out(G) = Aut(G)=Int(G), it is possible to reconstruct Out(G) by
looking at the symmetries of the Dynkin diagrams of G. Two exceptions
have to be mentioned:

{ Such a diagrammatic approach does not hold for A(2m; 2n) with m 6= n
or m = n.
{ For A(n; n), in addition to the discrete set of outer automorphisms Z2 �
Z2 , which in particular acts non-trivially on the G0 part, has to be added
a continuous one-parameter set of automorphisms f�� j� 2 Rg acting as
follows on the general element M 2 A(n; n) (! 2.25):

M =

�
A B
C D

�
�! ��(M) =

�
A �B

��1C D

�
One recognizes the generator of this transformation in the diagonal (2n �
2n) matrix diag(In;�In), and notices that the automorphism �� acts as
a dilatation on the fermionic part G1 while it leaves each element of G0
invariant.

As a conclusion, Out(G) is a �nite group for any basic superalgebra G except
for A(n; n) where a continuous part has to be added: these discrete groups,
which in particular will allow us to construct the twisted a�ne simple Lie
superalgebras, are given in Table 2.1.

For more details, see refs. [19, 23, 86].

! 2.15 Dynkin diagram, 2.42 Roots, root systems, 2.63 Weyl group.
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Table 2.1: Discrete outer automorphisms of the basic Lie superalgebras.

basic superalgebra G Out(G) basic superalgebra G Out(G)

A(m;n) (m 6= n 6= 0) Z2 C(n+ 1) Z2

A(1; 1) Z2 D(m;n) Z2

A(0; 2n� 1) Z2 D(2; 1; e2i�=3) Z3

A(n; n) (n 6= 0; 1) Z2 � Z2 D(2; 1;�) for generic � I

A(0; 2n) Z4 F (4); G(3) I

B(m;n) I

2.2 Cartan matrix

Let G be a basic Lie superalgebra with Cartan subalgebra H and simple root
system �0 = (�1; : : : ; �r). The following commutation relations hold:h

Hi;Hj

i
= 0h

Hi; E��j
i
= �ij E��jhh

E�j ; E��j
ii
= �j �H

For any root � 2 �, one can writeh
H;E��

i
= ��(H)E��

where � is a linear functional on H, that is an element of the dual H� of H,
such that �(Hi) = �i (�i being the i-th component of the root �).

For all basic Lie superalgebras, there exists a supersymmetric bilinear form
B, which is non-degenerate on the Cartan subalgebra H, and which coin-
cides (up to a multiplicative factor) with the Killing form (! 2.23) except
for A(n; n), D(n + 1; n) and D(2; 1;�) for which the Killing form vanishes.
Therefore, one can associate to any functional � 2 H� an element H� 2 H,
such that

B(H;H�) = �(H)

Now, one can de�ne the scalar product of two roots � and � by

� � � = B(H�;H�)

that is � � � = �(H�) = �(H�).
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Rescaling the generators Hi, one de�nes

hi =
2

(�i; �i)
Hi if �i � �i 6= 0

hi =
1

(�i; �0i)
Hi if �i � �i = 0

where �0i 2 f�0kg such that �i � �0k 6= 0 and �i � �0i has the smallest value.
Then, one can write h

hi; E��j
i
= �Aij E��j

where one de�nes the Cartan matrix of G as:

Aij = 2
�i � �j
�i � �i if �i � �i 6= 0

Aij =
�i � �j
�i � �0i

if �i � �i = 0

If �i � �i 6= 0, then Aii = 2. If �i � �i = 0, then Aii = 0 and it may happen
that some o�-diagonal entries of the i-th row of the matrix take non-integer
values. In this case, one has to rescale the corresponding row such that all
the entries assume the smallest integer values.

De�nition
For each basic Lie superalgebra, there exists a particular simple root
system for which the number of odd roots is equal to one. Such a simple
root system is called a distinguished simple root system (! 2.45). All
equivalent distinguished simple root systems lead to the same Cartan
matrix as de�ned above. Such a Cartan matrix is called the distinguished
Cartan matrix.

The distinguished Cartan matrices of the basic Lie superalgebras can be
found in Tables 3.52{3.60.

One can also use symmetric Cartan matrices, which is equivalent to rescaling
the Cartan generators hi. The symmetric Cartan matrices are computed as
follows. One considers a distinguished simple root system �0 = (�1; : : : ; �r)
such that �i � �j 2 Z and min j�i � �j j = 1 if �i � �j 6= 0. This can always be
done since the scalar product on the root space is de�ned up to a multiplica-
tive factor. Then, for any simple root system, one de�nes the symmetric
Cartan matrix A0 with integer entries as:

A0ij = �i � �j
If one de�nes the matrix Dij = di�ij where the rational coe�cients di satisfy
diAij = djAji, the distinguished symmetric Cartan matrix is given from the
distinguished Cartan matrix A by A0 = DA, where
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di = (1; : : : ; 1| {z }
m+1

;�1; : : : ;�1| {z }
n

) for A(m;n),

di = (1; : : : ; 1| {z }
n

;�1; : : : ;�1| {z }
m�1

;�1=2) for B(m;n),

di = (1; : : : ; 1| {z }
n�1

; 1=2) for B(0; n),

di = (1;�1; : : : ;�1| {z }
n�1

;�2) for C(n+ 1),

di = (1; : : : ; 1| {z }
n

;�1; : : : ;�1| {z }
m

) for D(m;n),

di = (1;�1;�2;�2) for F (4),
di = (1;�1;�3) for G(3).

Such a diagonal matrix Dij can be de�ned for any simple root system.

Example
The distinguished Cartan matrix A and the distinguished symmetric Car-
tan matrix A0 for F (4) are given by

A =

0BB@
0 1 0 0
�1 2 �2 0
0 �1 2 �1
0 0 �1 2

1CCA and A0 =

0BB@
0 1 0 0
1 �2 2 0
0 2 �4 2
0 0 2 �4

1CCA
associated to the distinguished simple root system �0 = f�1 = 1

2(��"1�
"2 � "3); �2 = "3; �3 = "2 � "3; �4 = "1 � "2g (! 2.18) with the scalar
product "i � "j = �2�ij , � � � = 6, "i � � = 0 (which should be compared
with the scalar product used in section 2.18).

! 2.23 Killing form, 2.45 Simple root systems.

2.3 Cartan subalgebras

Let G = G0 � G1 be a classical Lie superalgebra. A Cartan subalgebra H of
G is de�ned as the maximal nilpotent (! 2.26) subalgebra of G coinciding
with its own normalizer, that is

H nilpotent and
n
X 2 G

��� hX;Hi � Ho = H

In most cases (for basic Lie superalgebras e.g.), a Cartan subalgebra H
reduces to the Cartan subalgebra of the even part G0 (then the Cartan
subalgebras of a Lie superalgebra are conjugate since the Cartan subalgebras
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of a Lie algebra are conjugate and any inner automorphism of the even part
G0 can be extended to an inner automorphism of G).
In the case of the strange superalgebra Q(n), the Cartan subalgebra H does
not coincide with the Cartan subalgebra of the even part sl(n), but admits
also an odd part: H \ G1 6= ;. Since the odd generators of H change the
gradation of the generators on which they act, it is rather convenient to give
the root decomposition of Q(n) with respect to H0 = H\ G0 instead of H.
From what precedes, all Cartan subalgebras of a classical superalgebra G
have the same dimension. By de�nition, the dimension of a Cartan subalge-
bra H is the rank of G:

rankG = dimH

2.4 Cartan type superalgebras

The Cartan type Lie superalgebras are the simple Lie superalgebras in which
the representation of the even subalgebra on the odd part is not completely
reducible (! 2.9). The Cartan type simple Lie superalgebras are classi-
�ed into four in�nite families called W (n) with n � 2, S(n) with n � 3,eS(n) and H(n) with n � 4. S(n) and eS(n) are called special Cartan type
Lie superalgebras and H(n) Hamiltonian Cartan type Lie superalgebras.
Strictly speaking, W (2), S(3) and H(4) are not Cartan type superalgebras
since they are isomorphic to classical ones (see below).

Cartan type superalgebras W (n)

Consider �(n) the Grassmann algebra (! 2.22) of order n with generators
�1; : : : ; �n and relations �i�j = ��j�i. The Z2-gradation is induced by setting
deg �i = 1. Let W (n) be the derivation superalgebra of �(n): W (n) =
Der�(n). Any derivation D 2W (n) is written as

D =
nX
i=1

Pi
@

@�i

where Pi 2 �(n) and the action of the �-derivative is de�ned by

@�j
@�i

= �ij

The Z2-gradation of �(n) induces a consistent Z-gradation of W (n) by

W (n)k =
n nX
i=1

Pi
@

@�i
; Pi 2 �(n); degPi = k + 1

o
(�1 � k � n� 1)
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One has

W (n) =

n�1M
k=�1

W (n)k

where hh
W (n)i;W (n)j

ii
�W (n)i+j

The superalgebra W (n) has the following properties:

� W (n) has dimension n2n, the number of even generators being equal
to the number of odd generators.

� The superalgebra W (n) is simple for n � 2.

� The semi-simple part of W (n)0 is isomorphic to gl(n).

� The superalgebra W (2) is isomorphic to A(1; 0).

� Every automorphism of W (n) with n � 3 is induced by an automor-
phism of �(n).

� The superalgebra W (n) is transitive.

� W (n) is universal as a Z-graded Lie superalgebra. More precisely, if
G = �i��1Gi is a transitive Z-graded superalgebra with dimG�1 = n,
then there is an embedding of G in W (n) preserving the Z-gradation.

� The representations of sl(n) in the subspace W (n)i (i = �1; 0; : : : ; n�
1) are in Young tableaux notation [2i+11n�2�i] � [1i] where the second
representation appears only for i � 0 and [10] has to be read as the
singlet. For example we have (the subscripts stand for the Z-gradation
indices i):

for W (3) (3)�1 � (8� 1)0 � (6� 3)1 � (3)2

for W (4) (4)�1 � (15� 1)0 � (20� 4)1 � (10� 6)2 � (4)3

for W (5) (5)�1 � (24� 1)0 � (45� 5)1 � (40� 10)2 � (15� 10)3
�(5)4

Cartan type superalgebras S(n) and eS(n)

The Cartan type Lie superalgebras S(n) and eS(n), called special Lie super-
algebras, are constructed as follows. Consider �(n) the associative super-
algebra over �(n) with generators denoted by ��1; : : : ; ��n and relations
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��i ^ ��j = ���j ^ ��i. A Z2-gradation is induced by setting deg ��i = 1.
Any element of �(n) is written as

!k =
X

i1<:::<ik

ai1:::ik ��i1 ^ : : : ^ ��ik

where ai1:::ik 2 �(n).
One then de�nes the volume form superalgebra S(!) as a W (n) subsuper-
algebra by

S(!) =
n
D 2W (n)

���D(!) = 0
o

where ! = a(�1; : : : ; �n) ��1 ^ : : : ^ ��n and a 2 �(n)0, a(0) 6= 0.

Any element of S(!) has the form

nX
i=1

Pi
@

@�i
with

nX
i=1

@(aPi)

@�i
= 0

One sets also

S(n) = S
�
! = ��1 ^ : : : ^ ��n

�
=
n
D 2W (n)

���D���1 ^ : : : ^ ��n� = 0
o

and for n even

eS(n) = S
�
! = (1 + �1 : : : �n) ��1 ^ : : : ^ ��n

�
=

n
D 2W (n)

���D�(1 + �1 : : : �n) ��1 ^ : : : ^ ��n
�
= 0
o

Elements of S(n) are thus divergenceless derivations of W (n):

S(n) =
n nX
i=1

Pi
@

@�i
2W (n)

��� nX
i=1

@Pi
@�i

= 0
o

The Lie superalgebras S(n) and eS(n) have the following properties:
� S(n) and eS(n) have dimension (n � 1)2n + 1, the number of even
generators being less (resp. greater) by 1 than the number of odd
generators for n even (resp. odd).

� The superalgebra S(n) is simple for n � 3 and eS(n) is simple for n � 4.

� The semi-simple part of S(n)0 and eS(n)0 is isomorphic to sl(n).
� The superalgebra S(3) is isomorphic to P (3).
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� the Z-graded Lie superalgebra S(n) is transitive.

� Every automorphism of S(n) with n � 3 and eS(n) with n � 4 is
induced by an automorphism of �(n).

� Every superalgebra S(!) is isomorphic either to S(n) or eS(n).
� The representation of sl(n) in the subspace S(n)i (i = �1; 0; : : : ; n�2)
is in Young tableaux notation [2i+11n�2�i]. For example we have (the
subscripts stand for the Z-gradation indices i):

for S(4) (4)�1 � (15)0 � (20)1 � (10)2

for S(5) (5)�1 � (24)0 � (45)1 � (40)2 � (15)3

for S(6) (6)�1 � (35)0 � (84)1 � (105)2 � (70)3 � (21)4

Cartan type superalgebras H(n)

The Cartan type Lie superalgebras H(n) and eH(n), called Hamiltonian Lie
superalgebras, are constructed as follows. Consider 
(n) the associative
superalgebra over �(n) with generators denoted by d�1; : : : ; d�n and relations
d�i � d�j = d�j � d�i. The Z2-gradation is induced by setting deg d�i = 0.
Any element of 
(n) is written as

!k =
X

i1�:::�ik
ai1:::ik d�i1 � : : : � d�ik

where ai1:::ik 2 �(n).
Among them are the Hamiltonian forms de�ned by

! =
nX

i;j=1

aij d�i � d�j

where aij 2 �(n), aij = aji and det(aij(0)) 6= 0. One then de�nes for each

Hamiltonian form ! the Hamiltonian form superalgebra eH(!) as a W (n)
subsuperalgebra by

eH(!) =
n
D 2W (n)

���D(!) = 0
o

and

H(!) =
hh eH(!); eH(!)

ii
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Any element of eH(!) has the form

nX
i=1

Pi
@

@�i
with

@

@�j

nX
t=1

aitPt +
@

@�i

nX
t=1

ajtPt = 0

One sets also

eH(n) = eH�(d�1)2 + : : :+ (d�n)
2
�

H(n) =
hh eH(n); eH(n)

ii
The Lie superalgebra H(n) has the following properties:

� H(n) has dimension 2n�2, the number of even generators being equal
(resp. less by 2) to (than) the number of odd generators for n odd
(resp. even).

� The superalgebra H(n) is simple for n � 4.

� The semi-simple part of eH(n)0 is isomorphic to so(n).

� The superalgebra H(4) is isomorphic to A(1; 1).

� The Z-graded Lie superalgebras H(n) and eH(n) are transitive.

� Every automorphism of H(n) with n � 4 and of eH(n) with n � 3 is
induced by an automorphism of �(n).

� The representation of so(n) in the subspaceH(n)i (i = �1; 0; : : : ; n�3)
is given by the antisymmetric tensor of rank i + 2. For example we
have (the subscripts stand for the Z-gradation indices i):

for H(4) (4)�1 � (6)0 � (4)1

for H(5) (5)�1 � (10)0 � (10)1 � (5)2

for H(10) (10)�1 � (45)0 � (120)1 � (210)2 � (252)3 � (210)4
�(45)6 � (10)7 � (120)5

For more details, see refs. [46, 47, 48].
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2.5 Casimir invariants

The study of Casimir invariants plays a great role in the representation the-
ory of simple Lie algebras since their eigenvalues on a �nite dimensional
highest weight irreducible representation completely characterize this rep-
resentation. In the case of Lie superalgebras, the situation is di�erent. In
fact, the eigenvalues of the Casimir invariants do not always characterize the
�nite dimensional highest weight irreducible representations of a Lie super-
algebra. More precisely, their eigenvalues on a typical representation com-
pletely characterize this representation while they are identically vanishing
on an atypical representation (! 2.40).

De�nition
Let G = G0 � G1 be a classical Lie superalgebra and U(G) its univer-
sal enveloping superalgebra (! 2.62). An element C 2 U(G) such that
[[C;X]] = 0 for allX 2 U(G) is called a Casimir element of G ([[ ; ]] denotes
the Z2-graded commutator). The algebra of the Casimir elements of G is
the Z2-center of U(G), denoted by ZU(G). It is a (Z2-graded) subalgebra
of U(G).

Standard sequences of Casimir elements of the basic Lie superalgebras can
be constructed as follows. Let G = sl(mjn) with m 6= n or osp(mjn) be a
basic Lie superalgebra with non-degenerate bilinear form. Let fEIJg be a
matrix basis of generators of G where I; J = 1; : : : ;m + n with deg I = 0
for 1 � I � m and deg I = 1 for m + 1 � I � m + n. Then de�ning

(E
0
)IJ = �IJ and (E

p+1
)IJ = (�1)degKEIK(Ep

)KJ , a standard sequence of
Casimir operators is given by

Cp = str(E
p
) = (�1)deg I(Ep)II

= EII1(�1)deg I1 : : : EIkIk+1(�1)deg Ik+1 : : : EIp�1I
Consider the (m + n)2 elementary matrices eIJ of order m + n satisfying
(eIJ)KL = �IL�JK .

In the case of sl(mjn) with m 6= n, a basis fEIJg is given by the matrices

Eij = eij � 1

m
�ij

q=mX
q=1

eqq

Ekl = ekl � 1

n
�kl

q=m+nX
q=m+1

eqq

Y = � 1

m� n
�
n

q=mX
q=1

eqq +m

q=m+nX
q=m+1

eqq

�
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for the even part and Eik = eik, Ekj = ekj for the odd part, where 1 � i; j �
m and m+ 1 � k; l � m+ n. One �nds for example C1 = 0 and

C2 =
mX

i;j=1

EijEji�
m+nX

k;l=m+1

EklElk+
mX
i=1

m+nX
k=m+1

(EkiEik�EikEki)� m� n
mn

Y 2

In the case of osp(mjn), a basis fEIJg is given by the matrices

EIJ = GIKeKJ + (�1)(1+deg I)(1+deg J)GJKeKI

where the matrix GIJ is de�ned in ! 2.27. One �nds for example C1 = 0
and

C2 =
mX

i;j=1

EijEji �
m+nX

i0;j0=m+1

Ei0j0Ej0i0 +
mX
i=1

m+nX
i0=m+1

(Ei0iEii0 � Eii0Ei0i)

where 1 � i; j � m and m+ 1 � i0; j0 � m+ n.

One has to stress that unlike the algebraic case, the center ZU(G) for the
classical Lie superalgebras is in general not �nitely generated. More precisely,
the only classical Lie superalgebras for which the center ZU(G) is �nitely
generated are osp(1j2n). In that case, ZU (G) is generated by n Casimirs
invariants of degree 2; 4; : : : ; 2n.

Example 1
Consider the superalgebra sl(1j2) with generators H, Z, E+, E�, F+,

F�, F+
, F

�
(! 2.53). Then one can prove that a generating system of

the center ZU (G) is given by, for p 2 N and H� � H � Z:

Cp+2 = H+H�Zp + E�E+(Z � 1
2)
p

+F
�
F+
�
H+Z

p � (H+ + 1)(Z + 1
2)
p
�

+F�F+
�
(H� + 1)(Z � 1

2)
p �H�Zp

�
+(E�F+

F+ + F
�
F�E+)

�
Zp � (Z � 1

2)
p
�

+F
�
F�F+

F+
�
(Z + 1

2)
p + (Z � 1

2)
p � 2Zp

�
In that case, the Casimir elements Cp satisfy the polynomial relations
CpCq = CrCs for p+ q = r + s where p; q; r; s � 2. �
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Example 2
Consider the superalgebra osp(1j2) with generators H, E�, F� (! 2.52).
In that case, the center ZU(G) is �nitely generated by

C2 = H2 + 1
2(E

�E+ + E+E�)� (F+F� � F�F+)

Moreover, there exists in the universal enveloping superalgebra U of
osp(1j2) an even operator S which is a square root of the Casimir op-
erator C2 that commutes with the even generators and anticommutes
with the odd ones, given by

S = 2(F+F� � F�F+) + 1
4

More precisely, it satis�es S2 = C2 +
1
16 . Such an operator exists for any

superalgebra of the type osp(1j2n) [1]). �

Harish{Chandra homomorphism

Consider a Borel decomposition G = N+ �H�N� of G (! 2.45) where H
is a Cartan subalgebra of G and set � = �0 � �1 where �0 is the half-sum of
positive even roots and �1 the half-sum of positive odd roots. The universal
enveloping superalgebra U(G) can be decomposed as follows:

U(G) = U(H)� (N�U(G) + U(G)N+)

Then any element of the center ZU(G) can be written as z = z0 + z0 where
z0 2 U(H) and z0 2 N�U(G)+U(G)N+. Let S(H) � U(H) be the symmetric
algebra over H. Consider the projection h : ZU(G) ! S(H), z 7! z0
and 
 the automorphism of S(H) such that for all H 2 H and � 2 H�,

(H(�)) = H(�� �). The mapping

h = 
 � h : ZU (G)! S(H); z 7! 
(z0)

is called the Harish{Chandra homomorphism [49, 50].

Property
Let S(H)W be the subset of elements of S(H) invariant under the Weyl
group of G (! 2.63). Then the image of ZU(G) by the Harish{Chandra
homomorphism is a subset of S(H)W .

Example
Consider the Casimir elements Cp of sl(1j2) given above. In the fermionic
basis of sl(1j2) (! 2.45), the positive (resp. negative) root generators are

E+; F+; F
+
(resp. E�; F�; F�

) and � = 0.
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It follows that the image of Cp by the Harish{Chandra homomorphism is
given by

h(Cp+2) = H+H�Zp = 2�pH+H�(H+ �H�)p

which is obviously invariant under the action of the Weyl group H+ $
�H�. �

For more details, see refs. [34, 45, 77, 80].

2.6 Centralizer, center, normalizer of a Lie super-

algebra

The de�nitions of the centralizer, the center, the normalizer of a Lie super-
algebra follow those of a Lie algebra.

De�nition
Let G be a Lie superalgebra and S a subset of elements in G.
{ The centralizer CG(S) is the subset of G given by

CG(S) =
n
X 2 G

��� hhX;Y ii = 0; 8Y 2 S
o

{ The center Z(G) of G is the set of elements of G which commute with
any element of G (in other words, it is the centralizer of G in G):

Z(G) =
n
X 2 G

��� hhX;Y ii = 0; 8Y 2 G
o

{ The normalizer NG(S) is the subset of G given by

NG(S) =
n
X 2 G

��� hhX;Y ii 2 S; 8Y 2 So
2.7 Characters and supercharacters

Let G be a basic Lie superalgebra with Cartan subalgebra H. Consider V(�)
a highest weight representation (! 2.35) of G with highest weight �, the
weight decomposition of V with respect to H is

V(�) =
M
�

V� where V� =
n
~v 2 V

���h(~v) = �(h)~v; h 2 H
o

Let e� be the formal exponential, function on H� (dual of H) such that
e�(�) = ��;� for two elements �; � 2 H�, which satis�es e�e� = e�+�.
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The character and supercharacter of V(�) are de�ned by

chV(�) =
X
�

(dimV�)e�

schV(�) =
X
�

(�1)deg �(dimV�)e�

Let W (G) be the Weyl group (! 2.63) of G, � the root system of G, �+
0

the set of positive even roots, �+
1
the set of positive odd roots, �

+
0 the

subset of roots � 2 �+
0
such that �=2 =2 �+

1
. We set for an element w 2

W (G), "(w) = (�1)`(w) and "0(w) = (�1)`0(w) where `(w) is the number
of re
ections in the expression of w 2 W (G) and `0(w) is the number of

re
ections with respect to the roots of �
+
0 in the expression of w 2 W (G).

We denote by �0 and �1 the half-sums of positive even roots and positive
odd roots, and � = �0 � �1. The characters and supercharacters of the
typical �nite dimensional representations V(�) (! 2.40) of the basic Lie
superalgebras are given by

chV(�) = L�1
X
w

"(w)ew(�+�)

schV(�) = L0�1
X
w

"0(w)ew(�+�)

where

L =

Q
�2�+

0

(e�=2 � e��=2)Q
�2�+

1

(e�=2 + e��=2)
and L0 =

Q
�2�+

0

(e�=2 � e��=2)Q
�2�+

1

(e�=2 � e��=2)

In the case of the superalgebra B(0; n) all the representations are typical.
One �nds then explicitly

chV(�) =
P

w "(w)e
w(�+�)P

w "(w)e
w(�)

and schV(�) =
P

w "
0(w)ew(�+�)P

w "
0(w)ew(�)

In the case of the superalgebra A(m;n), the character of the typical repre-
sentation V(�) is given by

chV(�) = 1

L0

X
w

"(w)w

0B@e�+�0 Y
�2�+

1

(1 + e��)

1CA
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and the character of the singly atypical representation by (see ref. [93])

chV(�) = 1

L0

X
w

"(w)w

0B@e�+�0 Y
�2�+

1
;h�+�j�i6=0

(1 + e��)

1CA
where L0 is de�ned as Y

�2�+

0

(e�=2 � e��=2)

In the case of the superalgebra C(n+1), the highest weight irreducible repre-
sentations are either typical or singly atypical. It follows that the character
formulae of the typical and atypical representations of C(n+1) are the same
as for A(m;n) above (with the symbols being those of C(n+ 1)).

! 2.35 Representations: highest weight representations, 2.36 Representa-
tions: induced modules, 2.40 Representations: typicality and atypicality.

For more details, see refs. [49, 93].

2.8 Classical Lie superalgebras

De�nition
A simple Lie superalgebra G = G0 � G1 is called classical if the repre-
sentation of the even subalgebra G0 on the odd part G1 is completely
reducible.

Theorem
A simple Lie superalgebra G is classical if and only if its even part G0 is
a reductive Lie algebra.

Let G = G0 � G1 be a classical Lie superalgebra. Then the representation of
G0 on G1 is either:

1. irreducible; the superalgebra is said to be of type II.

or

2. the direct sum of two irreducible representations of G0; the super-
algebra is said to be of type I. In that case, one has G1 = G�1 � G1
with n

G�1;G1
o
= G0 and

n
G1;G1

o
=
n
G�1;G�1

o
= 0
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Table 2.2 resumes the classi�cation, while Table 2.3 gives the Z2-gradation
(G0 and G1 structure) of the classical Lie superalgebras G. In Table 2.3, the
parentheses denote the dimension of the representations of the non-Abelian
part of G0 and the value of the U(1), and the brackets [ ] are a Young
tableau notation (! 1.96).

Table 2.2: Classical Lie superalgebras.

type I type II

BASIC A(m;n) m > n � 0 B(m;n) m � 0; n � 1

(non-degenerate C(n+ 1) n � 1 D(m;n)

�
m � 2; n � 1
m 6= n+ 1

Killing form) F (4)
G(3)

BASIC A(n; n) n � 1 D(n+ 1; n) n � 1
(zero Killing form) D(2; 1;�) � =2 f0;�1g

STRANGE P (n) n � 2 Q(n) n � 2

Table 2.3: Z2-gradation of the classical Lie superalgebras.

superalgebra G even part G0 odd part G1
A(m;n) Am � An � U(1) (m;n; 1)� (m;n;�1)
A(n; n) An � An (n; n)� (n; n)
C(n+ 1) Cn � U(1) (2n; 1)� (2n;�1)
B(m;n) Bm � Cn (2m+ 1; 2n)
D(m;n) Dm � Cn (2m; 2n)
F (4) A1 �B3 (2; 8)
G(3) A1 �G2 (2; 7)

D(2; 1;�) A1 � A1 � A1 (2; 2; 2)

P (n) An [2]� [1n�1]
Q(n) An ad(An)

De�nition
A classical Lie superalgebra G is called basic if there exists a non-
degenerate invariant bilinear form on G (! 2.23). The classical Lie super-
algebras which are not basic are called strange.

Theorem
Let G = G0�G1 be a classical basic Lie superalgebra. Then there exists a
consistent Z-gradation (! 2.24) G = �i2Z Gi of G, called the distinguished
Z-gradation, such that
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{ for superalgebras of type I, Gi = 0 for jij > 1 and G0 = G0, G1 = G�1�G1.
{ for superalgebras of type II, Gi = 0 for jij > 2 and G0 = G�2 � G0 � G2,
G1 = G�1 � G1.

Table 2.4 gives the Z-gradation structure of the classical basic Lie super-
algebras (same notations as for Table 2.3).

Table 2.4: Z-gradation of the classical basic Lie superalgebras.

G G0 G1 � G�1 G2 � G�2
A(m;n) Am � An � U(1) (m;n)� (m;n) ;
A(n; n) An � An (n; n)� (n; n) ;
C(n+ 1) Cn � U(1) (2n)+ � (2n)� ;
B(m;n) Bm � An�1 � U(1) (2m+ 1; n)� (2m+ 1; n) [2]� [2n�1]
D(m;n) Dm � An�1 � U(1) (2m;n)� (2m;n) [2]� [2n�1]
F (4) B3 � U(1) 8+ � 8� 1+ � 1�
G(3) G2 � U(1) 7+ � 7� 1+ � 1�

D(2; 1;�) A1 � A1 � U(1) (2; 2)+ � (2; 2)� 1+ � 1�

! 2.18{2.20 Exceptional Lie superalgebras, 2.27 Orthosymplectic super-
algebras, 2.48{2.49 Strange superalgebras, 2.61 Unitary superalgebras.

For more details, see refs. [46, 47, 48, 79].

2.9 Classi�cation of simple Lie superalgebras

Among Lie superalgebras appearing in the classi�cation of simple Lie super-
algebras, one distinguishes two general families: the classical Lie super-
algebras in which the representation of the even subalgebra on the odd part
is completely reducible, and the Cartan type superalgebras in which such a
property is no longer valid. Among the classical superalgebras (! 2.8), one
naturally separates the basic series from the strange ones.

The basic (or contragredient) Lie superalgebras split into four in�nite fami-
lies denoted by A(m;n) or sl(m+ 1jn+ 1) for m 6= n and A(n; n) or sl(n+
1jn+1)=Z = psl(n+1jn+1) where Z is a one-dimensional center for m = n
(unitary series), B(m;n) or osp(2m + 1j2n), C(n) or osp(2j2n), D(m;n)
or osp(2mj2n) (orthosymplectic series) and three exceptional superalgebras
F (4), G(3) andD(2; 1;�), the last one being actually a one-parameter family
of superalgebras. Two in�nite families denoted by P (n) and Q(n) constitute
the strange (or non-contragredient) superalgebras.

The Cartan type superalgebras (! 2.4) are classi�ed into four in�nite fam-

ilies, W (n), S(n), eS(n) and H(n).
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The following scheme resumes this classi�cation:

Simple Lie
superalgebras
. &

Classical Lie Cartan type
superalgebras superalgebras
. & W (n); S(n)

Basic Lie Strange eS(n);H(n)
superalgebras superalgebras

A(m;n); B(m;n) P (n); Q(n)
C(n+ 1);D(m;n)
F (4); G(3);D(2; 1;�)

! 2.4 Cartan type superalgebras, 2.8 Classical Lie superalgebras.

For more details, see refs. [46, 47, 48, 64, 69].

2.10 Cli�ord algebra

Let f
ig (i = 1; : : : ; n) be a set of square matrices such thatn

i; 
j

o
= 
i
j + 
j
i = 2�ijI

where I is the unit matrix. The algebra spanned by the n matrices 
i is
called the Cli�ord algebra. These relations can be satis�ed by matrices of
order 2p when n = 2p or n = 2p+ 1.

Consider the 2� 2 Pauli matrices �1, �2, �3:

�1 =

�
0 1
1 0

�
�2 =

�
0 �i
i 0

�
�3 =

�
1 0
0 �1

�
Then the matrices 
i can be expressed in terms of a p-fold tensor product of
the Pauli matrices.

Property
There exists a representation such that

1. if n is even, the matrices 
i are hermitian, half of them being sym-
metric, half of them being antisymmetric.

2. if n is odd, the matrices 
i with i = 1; : : : ; 2p are hermitian, half of
them being symmetric, half of them being antisymmetric and the
matrix 
2p+1 is diagonal.
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In this representation, the matrices 
 can be written as (i = 1; : : : ; p� 1)


1 = �
(1)
1 
 : : :
 �(p)1


2i = �
(1)
1 
 : : :
 �(p�i)1 
 �(p�i+1)2 
 I

(p�i+2)
 : : :
 I
(p)


2i+1 = �
(1)
1 
 : : :
 �(p�i)1 
 �(p�i+1)3 
 I

(p�i+2)
 : : :
 I
(p)


2p = �
(1)
2 
 I

(2)
 : : :
 I
(p)


2p+1 = �
(1)
3 
 I

(2)
 : : :
 I
(p)

One can check that with this representation, one has (i = 1; : : : ; p)


t2i = �
2i and 
t2i+1 = 
2i+1 ; 

t
2p+1 = 
2p+1

De�nition
The matrix C =

Qp
i=1 
2i�1 for n = 2p and C =

Qp+1
i=1 
2i�1 for n = 2p+1

is called the charge conjugation matrix.

Property
The charge conjugation matrix satis�es

� CtC = 1

� for n = 2p

Ct = (�1)p(p�1)=2C =

�
C for p = 0; 1 (mod 4)
�C for p = 2; 3 (mod 4)

C
i = (�1)p+1
tiC (i = 1; : : : ; 2p)

� for n = 2p+ 1

Ct = (�1)p(p+1)=2C =

�
C for p = 0; 3 (mod 4)
�C for p = 1; 2 (mod 4)

C
i = (�1)p
tiC (i = 1; : : : ; 2p+ 1)

2.11 Decompositions w.r.t. osp(1j2) subalgebras

The method for �nding the decompositions of the fundamental and the ad-
joint representations of the basic Lie superalgebras with respect to their
di�erent osp(1j2) subsuperalgebras is the following:

1. One considers an osp(1j2) embedding in a basic Lie superalgebra G =
G0 � G1, determined by a certain subsuperalgebra K in G (! 2.16),
which is expressed as a direct sum of simple components: K = �iKi.



Lie Superalgebras 185

2. To each couple (G;Ki) one associates osp(1j2) representations given in
Table 3.76; the notations R and R00 are explained below.

3. The decomposition of the fundamental representation of G with respect
to the osp(1j2) subalgebra under consideration is then given by a direct
sum of osp(1j2) representations.

4. Starting from a decomposition of the fundamental representation of G
of the form

fundK G =
�
�
i
Rji
�
�
�
�
k
R00jk

�
the decomposition of the adjoint representation adK G is given in the
unitary series by

adK G =
�
�
i
Rji �

k
R00jk

�


�
�
i
Rji �

k
R00jk

�
�R0 for sl(mjn) ;m 6= n

adK G =
�
�
i
Rji �

k
R00jk

�


�
�
i
Rji �

k
R00jk

�
� 2R0 for psl(njn)

and in the orthosymplectic series by

adK G =
�
�
i
Rji
�
2���

A
�
�
�
k
R00jk

�
2���
S
�
�
�
i
Rji
�


�
�
k
R00jk

�
The symmetrized and antisymmetrized products of osp(1j2) representations
Rj are expressed, by analogy with the Lie algebra case, by (in the following
formulae j and q are integer)

Rj 
Rj
���
A
=

jM
q=1

�
R2q�1 �R2q�1=2

�

Rj 
Rj
���
S
=

j�1M
q=0

�
R2q �R2q+1=2

�
�R2j

Rj�1=2 
Rj�1=2
���
A
=

j�1M
q=0

�
R2q �R2q+1=2

�

Rj�1=2 
Rj�1=2
���
S
=

j�1M
q=1

�
R2q�1 �R2q�1=2

�
�R2j�1

together with (for j; k integer or half-integer)

(Rj �Rk)
2
���
A

=
�
Rj 
Rj

����
A
�
�
Rk 
Rk

����
A
� (Rj �Rk)

(Rj �Rk)
2
���
S

=
�
Rj 
Rj

����
S
�
�
Rk 
Rk

����
S
� (Rj �Rk)
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and (n integer)

(nRj 
 nRj)
���
A

=
n(n+ 1)

2
(Rj 
Rj)

���
A
� n(n� 1)

2
(Rj 
Rj)

���
S

(nRj 
 nRj)
���
S

=
n(n+ 1)

2
(Rj 
Rj)

���
S
� n(n� 1)

2
(Rj 
Rj)

���
A

The same formulae also hold for the R00 representations.
Let us stress that one has to introduce here two di�erent notations for the
osp(1j2) representations which enter into the decomposition of the funda-
mental representation of G, depending on the origin of the two factors Dj
and Dj�1=2 of a representation Rj (we recall that an osp(1j2) representation
Rj decomposes under the sl(2) part as Rj = Dj�Dj�1=2). For G = sl(mjn)
(resp. G = osp(mjn)), an osp(1j2) representation is denoted Rj if the rep-
resentation Dj comes from the decomposition of the fundamental of sl(m)
(resp. so(m)), and R00j if the representation Dj comes from the decomposi-

tion of the fundamental of sl(n) (resp. sp(n)).

In the same way, considering the tensor products of R and R00 represen-
tations given above, one has to distinguish the osp(1j2) representations in
the decomposition of the adjoint representations: the Rj representations are
such that the Dj comes from the decomposition of the even part G0 for j
integer or of the odd part G1 for j half-integer and the R0j representations
are such that Dj comes from the decomposition of the even part G0 for j
half-integer or of the odd part G1 for j integer.
Finally, the products between unprimed and primed representations obey
the following rules

Rj1 
Rj2 =
� �Rj3 if j1 + j2 is integer
�R0j3 if j1 + j2 is half-integer

R00j1 
R00j2 =
� �Rj3 if j1 + j2 is integer
�R0j3 if j1 + j2 is half-integer

Rj1 
R00j2 =
� �R0j3 if j1 + j2 is integer

�Rj3 if j1 + j2 is half-integer

Tables 3.76{3.85 give the di�erent decompositions of the fundamental and
adjoint representations of the basic Lie superalgebras with respect to the
di�erent osp(1j2) embeddings. For more details, see ref. [22].

2.12 Decompositions w.r.t. sl(1j2) subalgebras

The method for �nding the decompositions of the fundamental and the ad-
joint representations of the basic Lie superalgebras with respect to their
di�erent sl(1j2) subsuperalgebras is the following:
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1. One considers a sl(1j2) embedding in a basic Lie superalgebra G =
G0 � G1, determined by a certain subsuperalgebra K in G (! 2.17),
which is expressed as a direct sum of simple components: K = �iKi.

2. To each pair (G;Ki) one associates (atypical) sl(1j2) representations
�(�ji; ji) � ��(ji) or osp(2j2) representations �(0; 12) (! 2.53) given
in the following table:

G K fundK G
sl(mjn) sl(p+ 1jp) �+(

p
2)

sl(pjp+ 1) �00+(
p
2)

osp(mj2n) sl(p+ 1jp) �+(
p
2)� ��(p2)

sl(pjp+ 1) �00+(
p
2)� �00�(p2)

osp(2j2) �00(0; 12)

(The notation � or �00 is just to distinguish between the superalgebras
sl(p+ 1jp) or sl(pjp+ 1) they come from. This will be used below).

In the case of sl(mjn), one could also use �� and �00� representations as
well, leading to di�erent but equivalent decompositions of the adjoint
representation of G. This fact is related to the existence of non-trivial
outer automorphisms for sl(1j2).

3. The decomposition of the fundamental representation of G with respect
to the sl(1j2) subalgebra under consideration is then given by a direct
sum of sl(1j2) representations of the above type, eventually completed
by trivial representations.

4. Starting from a decomposition of the fundamental representation of G
of the form

fundK G =
�
�i ��(ji)

�
�
�
�k �00�(jk)

�
the decomposition of the adjoint representation adK G is given in the
unitary series by

adK G =
�
�i ��(ji)�k �00�(jk)

�
2 � �(0; 0) for sl(mjn) ;m 6= n

adK G =
�
�i ��(ji)�k �00�(jk)

�
2 � 2�(0; 0) for psl(njn)

and in the orthosymplectic series by

adK G =
�
�i ��(ji)

�
2���
A
�
�
�k �00�(jk)

�
2���
S
�
�
�i ��(ji)�i �00�(jk)

�
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The symmetrized and antisymmetrized products of atypical sl(1j2) repre-
sentations are given by�

��(j)� ��(k)
�
2���

A
=

�
��(j)
 ��(j)

����
A
�
�
��(k)
 ��(k)

����
A

�
�
��(j)
 ��(k)

�
�
��(j)� ��(k)

�
2���
S

=
�
��(j)
 ��(j)

����
S
�
�
��(k)
 ��(k)

����
S

�
�
��(j)
 ��(k)

�
and (n integer)�

n��(j)
 n��(j)
����
A

=
n(n+ 1)

2

�
��(j)
 ��(j)

����
A

� n(n� 1)

2

�
��(j)
 ��(j)

����
S�

n��(j)
 n��(j)
����
S

=
n(n+ 1)

2

�
��(j)� ��(j)

����
S

� n(n� 1)

2

�
��(j)
 ��(j)

����
A

where (in the following formulae j and q are integer)�
�+(j)� ��(j)

�
2���
A

=
2j�
q=0

�(0; q)
j�

q=1
�(2j + 1

2 ; 2q � 1
2)

j�
q=1

�(�2j � 1
2 ; 2q � 1

2)�
�+(j)� ��(j)

�
2���
S

=
2j�
q=0

�(0; q)
j�1�
q=0

�(2j + 1
2 ; 2q +

1
2)

j�
q=0

�(�2j � 1
2 ; 2q +

1
2)� �+(2j)� ��(2j)

�
�+(j +

1
2)� ��(j + 1

2)
�
2���

A
=

2j+1�
q=0

�(0; q)
j�
q=0

�(2j + 3
2 ; 2q +

1
2)

j�
q=0

�(�2j � 3
2 ; 2q +

1
2)�

�+(j +
1
2)� ��(j + 1

2)
�
2���

S
=

2j+1�
q=0

�(0; q)
j�
q=1

�(2j + 3
2 ; 2q � 1

2)

j�
q=1

�(�2j � 3
2 ; 2q � 1

2)

��+(2j + 1)� ��(2j + 1)
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Finally, in the case of osp(2j2) embeddings, the product of the �(0; 12) repre-
sentation by itself is not fully reducible but gives rise to the indecomposable
sl(1j2) representation of the type �(0;�1

2 ;
1
2 ; 0) (! 2.53).

Considering the tensor products of � and �00 representations given above,
one has to distinguish the sl(1j2) representations in the decomposition of
the adjoint representations. Let us recall that a sl(1j2) representation �(b; j)
decomposes under the sl(2)�U(1) part as �(b; j) = Dj(b)�Dj�1=2(b�1=2)�
Dj�1=2(b + 1=2) � Dj�1(b) and ��(j) = Dj(�j) � Dj�1=2(�j � 1=2). The
�(b; j) representations are such that the Dj comes from the decomposition
of the even part G0 for j integer or of the odd part G1 for j half-integer and
the �0(b; j) representations are such that Dj comes from the decomposition
of the even part G0 for j half-integer or of the odd part G1 for j integer.
Finally, the products between unprimed and primed representations obey
the following rules

�(b1; j1)
 �(b2; j2) =

� ��(b3; j3) if j1 + j2 is integer
��0(b3; j3) if j1 + j2 is half-integer

�00(b1; j1)
 �00(b2; j2) =

� ��(b3; j3) if j1 + j2 is integer
��0(b3; j3) if j1 + j2 is half-integer

�(b1; j1)
 �00(b2; j2) =

� ��0(b3; j3) if j1 + j2 is integer
��(b3; j3) if j1 + j2 is half-integer

Tables 3.86{3.89 give the di�erent decompositions of the fundamental and
adjoint representations of the basic Lie superalgebras with respect to the
di�erent sl(1j2) embeddings.
For more details, see ref. [74].

2.13 Derivation of a Lie superalgebra

De�nition
Let G = G0�G1 be a Lie superalgebra. A derivation D of degree degD 2
Z2 of the superalgebra G is an endomorphism of G such that

D
hh
X;Y

ii
=
hh
D(X); Y

ii
+ (�1)degD: degX

hh
X;D(Y )

ii
If degD = 0, the derivation is even, otherwise degD = 1 and the deriva-
tion is odd.

The space of all the derivations of G is denoted by DerG = Der0 G �Der1 G.
If D and D0 are two derivations of G, then

hh
D;D0

ii
2 DerG, that is the

space DerG closes under the Lie superbracket.
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The space DerG is called the superalgebra of derivations of G. In particular,

adX : Y 7! adX(Y ) =
hh
X;Y

ii
is a derivation of G. These derivations are called inner derivations of G. They
form an ideal InderG of DerG. Every derivation of a simple Lie superalgebra
with non-degenerate Killing form is inner.

2.14 Dirac matrices

! 2.10 Cli�ord algebra, 2.47 Spinors (in the Lorentz group), 2.59 Super-
symmetry algebra: de�nition, 2.54 Superconformal algebra.

2.15 Dynkin diagrams

Let G be a basic Lie superalgebra of rank r and dimension n with Cartan
subalgebra H. Let �0 = (�1; : : : ; �r) be a simple root system (! 2.45) of
G, A be the associated Cartan matrix and A0 = (A0ij) be the corresponding
symmetric Cartan matrix (! 2.2), de�ned by A0ij = �i � �j .
One can associate to �0 a Dynkin diagram according to the following rules.

1. Using the Cartan matrix A:

(a) One associates to each simple even root a white dot, to each
simple odd root of non-zero length (Aii 6= 0) a black dot and to
each simple odd root of zero length (Aii = 0) a grey dot.

m
white dot

}
black dot

m�@
grey dot

(b) The i-th and j-th dots will be joined by �ij lines where

�ij = max
�
jAij j; jAjij

�
(c) We add an arrow on the lines connecting the i-th and j-th dots

when �ij > 1 and jAij j 6= jAjij, pointing from j to i if jAij j > 1.

(d) For D(2; 1;�), �ij = 1 if Aij 6= 0 and �ij = 0 if Aij = 0. No arrow
is put on the Dynkin diagram.

2. Using the symmetric Cartan matrix A0:

(a) One associates to each simple even root a white dot, to each
simple odd root of non-zero length (A0ii 6= 0) a black dot and to
each simple odd root of zero length (A0ii = 0) a grey dot (see
pictures above).
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(b) The i-th and j-th dots will be joined by �ij lines where

�ij =
2jA0ij j

min(jA0iij; jA0jjj)
if A0ii:A

0
jj 6= 0

�ij =
2jA0ij j

min(jA0iij; 2)
if A0ii 6= 0 and A0jj = 0

�ij = jA0ij j if A0ii = A0jj = 0

(c) We add an arrow on the lines connecting the i-th and j-th dots
when �ij > 1, pointing from i to j if A0ii:A

0
jj 6= 0 and jA0iij > jA0jjj

or if A0ii = 0, A0jj 6= 0, jA0jj j < 2, and pointing from j to i if

A0ii = 0, A0jj 6= 0, jA0jj j > 2.

(d) For D(2; 1;�), �ij = 1 if A0ij 6= 0 and �ij = 0 if A0ij = 0. No arrow
is put on the Dynkin diagram.

Although the rules seem more complicated when using the symmetric Car-
tan matrix A0, note that the computation of the Cartan matrix A is more
involved than the symmetric Cartan matrix A0.

Since a basic Lie superalgebra possesses many inequivalent simple root sys-
tems (! 2.45), for a basic Lie superalgebra there will be many inequivalent
Dynkin diagrams. For each basic Lie superalgebra, there is a particular
Dynkin diagram which can be considered as canonical. Its characteristic
is that it contains exactly one odd root. Such a Dynkin diagram is called
distinguished.

De�nition
The distinguished Dynkin diagram is the Dynkin diagram associated to
a distinguished simple root system (! 2.45) (note that the Dynkin dia-
grams corresponding to equivalent simple root systems are the same). It
is constructed as follows. Consider the distinguished Z-gradation of G (!
2.8 and Table 2.4): G = �i2Z Gi. The even dots are given by the Dynkin
diagram of G0 (it may be not connected) and the odd dot corresponds to
the lowest weight of the representation G1 of G0.

Lists of the distinguished Dynkin diagrams of the basic Lie superalgebras
are given in Tables 3.52{3.60), while in Table 3.61 are displayed all Dynkin
diagrams of the basic Lie superalgebras of rank r � 4.

! 2.2 Cartan matrix, 2.45 Simple root systems.

For more details, see refs. [23, 47, 48].
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2.16 Embeddings of osp(1j2)

The determination of the possible osp(1j2) subsuperalgebras of a basic Lie
superalgebra G can be seen as the supersymmetric version of the Dynkin
classi�cation of sl(2) subalgebras in a simple Lie algebra. Interest for this
problem appears in the framework of supersymmetric integrable models (for
instance super-Toda theories) and super-W algebras [22, 52]. As in the alge-
braic case, it uses the notion of principal (here superprincipal) embedding.

De�nition
Let G be a basic Lie superalgebra of rank r with simple root system �0 =
f�1; : : : ; �rg and corresponding simple root generators e�i in the Serre{
Chevalley basis (! 2.44). The generators of the osp(1j2) superprincipal
embedding in G are de�ned by

F+ =
rX
i=1

e+i ; F� =
rX
i=1

rX
j=1

Aije�i

Aij being the Cartan matrix of G and Aij = (A�1)ij . The even generators
of the superprincipal osp(1j2) are given by anticommutation of the odd
generators F+ and F�:

H = 2
n
F+; F�

o
E+ = 2

n
F+; F+

o
E� = �2

n
F�; F�

o
Not all the basic Lie superalgebras admit an osp(1j2) superprincipal em-
bedding. It is clear from the expression of the osp(1j2) generators that a
superprincipal embedding can be de�ned only if the superalgebra under con-
sideration admits a completely odd simple root system (which corresponds
to a Dynkin diagram with no white dot). This condition is however necessary
but not su�cient (the superalgebra A(njn) does not admit a superprincipal
embedding although it has a completely odd simple root system). The basic
Lie superalgebras admitting a superprincipal osp(1j2) are the following:

sl(n� 1jn); osp(2n� 1j2n); osp(2nj2n);
osp(2n+ 2j2n); D(2; 1;�) (� 6= 0;�1)

The classi�cation of the osp(1j2) embeddings of a basic Lie superalgebra G
is given by the following theorem.

Theorem
1. Any osp(1j2) embedding in a basic Lie superalgebra G can be con-

sidered as the superprincipal osp(1j2) subsuperalgebra of a regular
subsuperalgebra K of G.
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2. For G = osp(2n � 2j2n) with n � 2, besides the osp(1j2) super-
principal embeddings of item 1, there exist osp(1j2) embeddings
associated to the singular embeddings osp(2k � 1j2k) � osp(2n �
2k � 1j2n� 2k) � osp(2n� 2j2n) with 1 � k � �n�12 �.

3. For G = osp(2nj2n) with n � 2, besides the osp(1j2) superprincipal
embeddings of item 1, there exist osp(1j2) embeddings associated to
the singular embeddings osp(2k�1j2k)�osp(2n�2k�1j2n�2k) �
osp(2nj2n) with 1 � k � �n�22 �.

2.17 Embeddings of sl(2j1)

In the same way one can consider osp(1j2) embeddings of a basic Lie super-
algebra, it is possible to determine the sl(2j1) subsuperalgebras of a basic
Lie superalgebra G. This problem was recently considered for an exhaustive
classi�cation and characterization of all extended N = 2 superconformal
algebras and all string theories obtained by gauging N = 2 Wess{Zumino{
Witten models [74]. Let us consider the basic Lie superalgebra sl(n + 1jn)
with completely odd simple root system �0:

�0 =
n
"1 � �1; �1 � "2; "2 � �2; : : : ; �n�1 � "n; "n � �n; �n � "n+1

o
Denoting by E�("i��i), E�(�i�"i+1) (1 � i � n) the simple root generators in
the Serre{Chevalley basis (! 2.44), the sl(2j1) superprincipal embedding in
sl(n+ 1jn) is de�ned as follows. The odd part of the superprincipal sl(2j1)
is generated by F�� and F�� where

F+� =
nX
i=1

E�i�"i+1 F�� =
nX
i=1

2nX
j=1

Aj;2iE��i+"i+1

F+� =
nX
i=1

E"i��i F�� =
nX
i=1

2nX
j=1

Aj;2i�1E�"i+�i

Aij being the Cartan matrix of sl(n+ 1jn), Aij = (A�1)ij and Aij is chosen
as

A =

0BBBBBBBBB@

0 1
1 0 �1
�1 0 1

1 0
. . .

0 1
1 0

1CCCCCCCCCA
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The even generators of the superprincipal sl(2j1) are given by anticommu-
tation of the odd generators F�� and F��:n

F+�; F��
o
= H+ +H�

n
F+�; F��

o
= H+ �H�n

F��; F��
o
=
n
F��; F��

o
= 0

n
F��; F��

o
= E�

One obtains �nallyh
E�; F��

i
= 0

h
E�; F��

i
= 0h

E�; F��
i
= �F��

h
E�; F��

i
= �F��h

H�; F+�
i
= �1

2F+�

h
H�; F��

i
= �1

2F��h
H�; F+�

i
= 1

2F+�

h
H�; F��

i
= �1

2F��h
H+; E�

i
= �E�

h
H�; E�

i
= 0

where

H� = 1
2

nX
i=1

2nX
j=1

(aj;2iH2i � aj;2i�1H2i�1)

This sl(2j1) superprincipal embedding contains as maximal subsuperalgebra
the superprincipal osp(1j2) with generators H+; E� and F� = F�� + F��.
The classi�cation of the sl(2j1) embeddings of a basic Lie superalgebra G is
given by the following theorem.

Theorem
Let G be a basic Lie superalgebra. Any sl(2j1) embedding into G can
be seen as the principal embedding of a (sum of) regular sl(njn � 1)
subsuperalgebra of G, except in the case of osp(mjn) (m > 1), F (4) and
D(2; 1;�) where the (sum of) regular osp(2j2) has also to be considered.

2.18 Exceptional Lie superalgebra F (4)

The Lie superalgebra F (4) of rank 4 has dimension 40. The even part (of
dimension 24) is a non-compact form of sl(2) � so(7) and the odd part (of
dimension 16) is the spinor representation (2; 8) of sl(2) � so(7). In terms
of the vectors "1; "2; "3 and � such that "i � "j = �ij , � � � = �3, "i � � = 0, the
root system � = �0 [�1 is given by

�0 =
n
� �; �"i � "j ; �"i

o
and �1 =

n
1
2(�� � "1 � "2 � "3)

o
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The di�erent simple root systems of F (4) with the corresponding Dynkin
diagrams and Cartan matrices are the following:

� Simple root system �0 =
n
�1 = 1

2(� � "1 � "2 � "3); �2 = "3; �3 =

"2 � "3; �4 = "1 � "2
o

m m m m
�1 �2 �3 �4

�@ �
@

0BB@
0 1 0 0
�1 2 �2 0
0 �1 2 �1
0 0 �1 2

1CCA
� Simple root system �0 =

n
�1 =

1
2(��+ "1+ "2+ "3); �2 = 1

2(�� "1� "2+
"3); �3 = "2 � "3; �4 = "1 � "2

o

m m m m
�1 �2 �3 �4

�@ �@ �
@

0BB@
0 1 0 0
1 0 �2 0
0 �1 2 �1
0 0 �1 2

1CCA
� Simple root system �0 =

n
�1 = "1 � "2; �2 = 1

2(� � "1 + "2 � "3); �3 =
1
2(�� + "1 + "2 � "3); �4 = "3

o
m m m
�1 �2 �3

�4

@
� �@ �@

mA
A
A

�
�
�

0BB@
2 �1 0 0
2 0 �2 1
0 �2 0 1
0 �1 �1 2

1CCA
� Simple root system �0 =

n
�1 =

1
2(� + "1 � "2 � "3); �2 = 1

2(� � "1 + "2 +

"3); �3 =
1
2(�� + "1 � "2 + "3); �4 = "2 � "3

o
m

m

�1

�2

m m
�3 �4�@

�@

�@
��
�

HH
HHH

�
@

0BB@
0 3 �2 0
3 0 �1 0
�2 �1 0 2
0 0 �1 2

1CCA
� Simple root system �0 =

n
�1 = �; �2 =

1
2(��+"1�"2�"3); �3 = "3; �4 =

"2 � "3
o
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m m m m
�1 �2 �3 �4

@
� �@ �

@

0BB@
2 �1 0 0
�3 0 1 0
0 �1 2 �2
0 0 �1 2

1CCA
� Simple root system �0 =

n
�1 = �; �2 = 1

2(�� � "1 + "2 + "3); �3 =

"1 � "2; �4 = "2 � "3
o

m m m m
�1 �2 �3 �4

�@@
�

�
@

0BB@
2 �1 0 0
�3 0 2 0
0 �1 2 �1
0 0 �1 2

1CCA
The superalgebra F (4) is of type II. Denoting by H the distinguished Cartan
subalgebra, the distinguished Z-gradation (! 2.8) has the following struc-
ture:

G = G�2 � G�1 � G0 � G1 � G2
where (1 � i < j � 3)

G0 = H [ fE�"i�"j ; E�"ig G2 = fE�g G�2 = fE��g
G1 = fE 1

2
(��"1�"2�"3)g G�1 = fE 1

2
(��"1�"2�"3)g

Denoting by Ti where i = 1; 2; 3 the generators of sl(2), by Mpq = �Mqp

where 1 � p 6= q � 7 the generators of so(7) and by F�� where � = +;�
and 1 � � � 8 the generators of the odd part, the commutation relations of
F (4) read as:h

Ti; Tj

i
= i"ijkTk

h
Ti;Mpq

i
= 0h

Mpq;Mrs

i
= �qrMps + �psMqr � �prMqs � �qsMprh

Ti; F��

i
= 1

2�
i
��F��

h
Mpq; F��

i
= 1

2(
p
q)��F��n
F��; F��

o
= 2C

(8)
�� (C(2)�i)��Ti +

1
3 C

(2)
�� (C

(8)
p
q)��Mpq

where �1; �2; �3 are the Pauli matrices and C(2) (= i�2) is the 2� 2 charge
conjugation matrix. The 8-dimensional matrices 
p form a Cli�ord algebra

f
p; 
qg = 2�pq and C
(8) is the 8 � 8 charge conjugation matrix. They can

be chosen, I being the 2� 2 unit matrix, as (! 2.10):


1 = �1 
 �3 
 I ; 
2 = �1 
 �1 
 �3 ; 
3 = �1 
 �1 
 �1

4 = �2 
 I
 I ; 
5 = �1 
 �2 
 I ; 
6 = �1 
 �1 
 �2

7 = �3 
 I
 I
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The generators in the Cartan{Weyl basis are given by (with obvious nota-
tions):

H2 = iM41 H3 = iM52 H4 = iM63 H1 = T3

E�"1 =
ip
2
(M17 � iM47) E�"2 =

ip
2
(M27 � iM57)

E�"3 =
ip
2
(M37 � iM67) E�� = T1 � iT2

E�("1+"2) =
i
2(M12 � iM42 +M54 � iM15)

E�("1�"2) =
i
2(M12 � iM42 �M54 � iM15)

E�("2+"3) =
i
2(M23 � iM53 +M65 � iM26)

E�("2�"3) =
i
2(M23 � iM53 �M65 � iM26)

E�("1+"3) =
i
2(M13 � iM43 +M64 � iM16)

E�("1�"3) =
i
2(M13 � iM43 �M64 � iM16)

E 1

2
(���"1�"2�"3) = F�;�

where in the last equation the index � and the sign in �� are in one-to-one
correspondence and the correspondence between the index � and the signs
in �"1� "2� "3 is given by (1; 2; 3; 4; 5; 6; 7; 8) = (+++;+��;��+;�+
�;�++;���;+�+;++�).
For more details, see refs. [16, 47, 64].

2.19 Exceptional Lie superalgebra G(3)

The Lie superalgebra G(3) of rank 3 has dimension 31. The even part (of
dimension 17) is a non-compact form of sl(2) � G2 and the odd part (of
dimension 14) is the representation (2; 7) of sl(2) � G2. In terms of the
vectors "1; "2; "3 with "1 + "2 + "3 = 0 and � such that "i � "j = 1 � 3�ij,
� � � = 2, "i � � = 0, the root system � = �0 [�1 is given by

�0 =
n
� 2�; "i � "j ; �"i

o
and �1 =

n
� "i � �; ��

o
The di�erent simple root systems of G(3) with the corresponding Dynkin
diagrams and Cartan matrices are the following:

� Simple root system �0 =
n
�1 = � + "3; �2 = "1; �3 = "2 � "1

o

m m m
�1 �2 �3

�@ �
@

0@ 0 1 0
�1 2 �3
0 �1 2

1A
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� Simple root system �0 =
n
�1 = �� � "3; �2 = � � "2; �3 = "2 � "1

o

m m m
�1 �2 �3

�@ �@ �
@

0@ 0 1 0
1 0 �3
0 �1 2

1A
� Simple root system �0 =

n
�1 = �; �2 = �� + "1; �3 = "2 � "1

o

} m m
�1 �2 �3

�@ �
@

0@ 2 �2 0
2 0 �3
0 �1 2

1A
� Simple root system �0 =

n
�1 = � � "1; �2 = �� + "2; �3 = "1

o
m

m

m
�1

�2

�3�@

�@
��
�

HH
HHH

0@ 0 3 �2
3 0 �1
�2 �1 2

1A

The superalgebra G(3) is of type II. Denoting by H the distinguished Cartan
subalgebra, the distinguished Z-gradation (! 2.8) has the following struc-
ture:

G = G�2 � G�1 � G0 � G1 � G2
where (1 � i 6= j � 3)

G0 = H [ fE"i�"j ; E�"ig G2 = fE2�g G�2 = fE�2�g
G1 = fE��"i ; E�g G�1 = fE���"i ; E��g

In order to write the commutation relations of G(3), it is convenient to use
a so(7) basis. Consider the so(7) generators Mpq = �Mqp where 1 � p 6=
q � 7. The singular embedding G2 � so(7) is obtained by imposing to the
generators Mpq the constraints (! 1.30)

�ijkMij = 0

where the symbol �ijk is completely antisymmetric and whose non-vanishing
components are

�123 = �145 = �176 = �246 = �257 = �347 = �365 = 1
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Denoting by Ti where i = 1; 2; 3 the generators of sl(2), by F�p where � =
+;� and 1 � p � 7 the generators of the odd part, the commutation relations
of G(3) read as:h

Ti; Tj

i
= i"ijkTk

h
Ti;Mpq

i
= 0h

Mpq;Mrs

i
= �qrMps + �psMqr � �prMqs � �qsMpr +

1
3�pqu�rsvMuvh

Ti; F�p

i
= 1

2�
i
��F�p

h
Mpq; F�r

i
= 2

3�qrF�p � 2
3�prF�q +

1
3�pqrsF�sn

F�p; F�q

o
= 2�pq(C�

i)��Ti +
3
2C��Mpq

where the symbol �pqrs is completely antisymmetric and whose non-vanishing
components are

�1247 = �1265 = �1364 = �1375 = �2345 = �2376 = �4576 = 1

It can be written as

�pqrs = �ps�qr � �pr�qs +
7X

u=1

�pqu�rsu

The �i are the Pauli matrices and C (= i�2) is the 2� 2 charge conjugation
matrix.

In terms of the Mpq, the generators of G2, denoted by Ei and E0
i where

1 � i � 7, are given in section 1.30. The generators Ea with a = 1; : : : ; 8
(E8 � E0

3) generate sl(3) while the generators E0
i with 1 � i � 7, i 6= 3

transform as the 3 and 3 representations of sl(3). The generators E3 and
E8 constitute a Cartan basis of the G2 algebra. One can also take a basis

H1;H2;H3 such that H1 + H2 + H3 = 0 given by H1 = 1
2(E3 +

p
3
3 E8),

H2 =
1
2(�E3+

p
3
3 E8), H3 = �

p
3
3 E8. The generators of G(3) in the Cartan{

Weyl basis are then given by (with obvious notations):

H1 =
1
2(E3 +

p
3
3 E8) H2 =

1
2(�E3 +

p
3
3 E8) H3 = �

p
3
3 E8

E�("1�"2) = E1 � iE2 E�("2�"3) = E6 � iE7 E�("1�"3) = E4 � iE5

E�"1 = E0
7 � iE0

6 E�"2 = E0
4 � iE0

5 E�"3 = E0
1 � iE0

2

E��+"1 = F�1 + iF�4 E��+"2 = F�7 + iF�2 E��+"3 = F�3 + iF�6
E���"1 = F�1 � iF�4 E���"2 = F�7 � iF�2 E���"3 = F�3 � iF�6
H4 = T3 E�2� = T1 � iT2 E�� = F�5

For more details, see refs. [16, 47, 64].
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2.20 Exceptional Lie superalgebras D(2; 1;�)

The Lie superalgebras D(2; 1;�) with � 6= 0;�1;1 form a one-parameter
family of superalgebras of rank 3 and dimension 17. The even part (of
dimension 9) is a non-compact form of sl(2)� sl(2)� sl(2) and the odd part
(of dimension 8) is the spinor representation (2; 2; 2) of the even part. In
terms of the vectors "1; "2; "3 such that "21 = �(1+�)=2, "22 = 1=2, "23 = �=2
and "i � "j = 0 if i 6= j, the root system � = �0 [�1 is given by

�0 =
n
� 2"i

o
and �1 =

n
� "1 � "2 � "3

o
D(2; 1;�) is actually a deformation of the superalgebra D(2; 1) which corre-
sponds to the case � = 1.

The di�erent simple root systems of D(2; 1;�) with the corresponding Dyn-
kin diagrams and Cartan matrices are the following:

� Simple root system �0 =
n
�1 = "1 � "2 � "3; �2 = 2"2; �3 = 2"3

o

m�@

m

m
�1

�2

�3�

��

HH

0@ 0 1 �
�1 2 0
�1 0 2

1A
� Simple root system �0 =

n
�1 = 2"2; �2 = �"1 � "2 + "3; �3 = 2"1

o

m�@

m

m
�2

�3

�1

1+�
��

HH

0@ 2 �1 0
1 0 1 + �
0 �1 2

1A
� Simple root system �0 =

n
�1 = 2"3; �2 = 2"1; �3 = �"1 + "2 � "3

o

m�@

m

m
�3

�2

�1

1+�

�

��

HH

0@ 2 0 �1
0 2 �1
�� 1 + � 0

1A
� Simple root system �0 =

n
�1 = �"1 + "2 + "3; �2 = "1 + "2 � "3; �3 =

"1 � "2 + "3

o

m�@

m

m
�3

�1

�2

�

1+�

��

HH

�@

�@

0@ 0 1 �
1 0 �1� �
� �1� � 0

1A
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(the labels on the links are equal to the absolute values of the scalar products
of the simple roots which are linked.)

The superalgebra D(2; 1;�) is of type II. Denoting by H the distinguished
Cartan subalgebra, the distinguished Z-gradation (! 2.8) has the following
structure:

G = G�2 � G�1 � G0 � G1 � G2
where

G0 = H [ fE�2"1 ; E�2"2g G2 = fE2"3g G�2 = fE�2"3g
G1 = fE"3�"1�"2g G�1 = fE�"3�"1�"2g

Denoting by T
(a)
i where i = 1; 2; 3 and a = 1; 2; 3 the generators of the three

sl(2) and by F��0�00 where �; �
0; �00 = +;�, the generators of the odd part,

the commutation relations of D(2; 1;�) read as:h
T
(a)
i ; T

(b)
j

i
= i�ab"ijkT

(a)
k

h
T
(1)
i ; F��0�00

i
= 1

2�
i

�F
�0�00h

T
(2)
i ; F��0�00

i
= 1

2�
i

0�0F�
0�00

h
T
(3)
i ; F��0�00

i
= 1

2�
i

00�00F��0
00n

F��0�00 ; F

0
00
o
= s1C�0
0C�00
00(C�

i)�
T
(1)
i + s2C�00
00C�
(C�

i)�0
0T
(2)
i

+ s3C�
C�0
0(C�
i)�00
00T

(3)
i

where s1+ s2+ s3 = 0 is imposed by the generalized Jacobi identity. The �i

are the Pauli matrices and C (= i�2) is the 2�2 charge conjugation matrix.
Since the superalgebras de�ned by the triplets �s1; �s2; �s3 (� 2 C ) are
isomorphic, one can set s2=s1 = � and s3=s1 = �1 � � (the normalization
of the roots given above corresponds to the choice s1 = 1, s2 = � and
s3 = �1� �). One can deduce after some simple calculation that:

Property
The superalgebras de�ned by the parameters ��1, �(1 + �)�1 and� ��
1 + �

��1
are isomorphic. Moreover, for the values 1, �2 and �1=2

of the parameter �, the superalgebra D(2; 1;�) is isomorphic to D(2; 1).

In the Cartan{Weyl basis, the generators are given by:

H1 = T
(1)
3 H2 = T

(2)
3 H3 = T

(3)
3

E�2"1 = T
(1)
1 � iT (1)

2 E�2"2 = T
(2)
1 � iT (2)

2 E�2"3 = T
(3)
1 � iT (3)

2

E�"1�"2�"3 = F��0�00

where in the last equation the signs in the indices �"1 � "2 � "3 and the
indices ��0�00 are in one-to-one correspondence.

For more details, see refs. [47, 64].
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2.21 Gelfand{Zetlin basis

Let us recall that the �nite dimensional representations of the basic Lie
superalgebras are either irreducible representations or indecomposable ones
or direct sums of these. The irreducible representations are called atypical
when there exists a weight vector, di�erent from the highest one, that is
annihilated by all the positive root generators. Otherwise, the representation
is called typical. The atypical representations therefore can be seen as the
building blocks for the indecomposable ones, and will not be considered in
this section.

De�nition
Consider the gl(mjn) basic Lie superalgebra with the chain of embeddings

gl(mjn) � gl(mjn� 1) � : : : � gl(mjk) � : : : � gl(mj1) � gl(m)

Let � be a �nite dimensional typical irreducible representation of gl(mjn)
and consider the reduction of � with respect to the previous chain of
subalgebras. The representation � is called essentially typical if there is
no atypical gl(mjk)-module for any k in the above chain.

From the concept of Gelfand{Zetlin basis, it follows that one can construct
such a basis if and only if the representation is essentially typical. Note
that if the representation is not essentially typical, some gl(mjk)-module is
atypical. In that case, the highest weight is not su�cient to cope with this
fact and one needs additional labels. However it has not been clear up to
now how to introduce them.

We give in the following some ideas in the case of the Lie superalgebras
gl(njm) and in particular gl(nj1), and we refer the reader to the bibliography
for more details, see refs. [70, 71].

Gelfand{Zetlin basis for gl(njm) Lie superalgebras

Let eij be the standard generators of gl(njm) which satisfy the commutation
relations (1 � i; j; k; l � r = n+m)hh

eij; ekl

ii
= �jk eil � (�1)[deg(i)+deg(j)][deg(k)+deg(l)] �il ekj

where deg(i) = 0 for i = 1; : : : ; n and deg(i) = 1 for i = n+ 1; : : : ; n+m. A
basis of the Cartan subalgebra is provided by the generators (e11; : : : ; err).

A highest weight �nite dimensional irreducible representation � of gl(njm)
is determined by the components m1r; : : : ;mrr of the highest weight � in
the basis dual to the basis (e11; : : : ; err), such that mir � mi+1;r 2 Z+ for
i = 1; : : : ; r and i 6= n.
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Property
The representation �(m1r; : : : ;mrr) of gl(njm) is typical if and only if the
numbers

lir = (�1)deg(i)mir + jn� ij+ 1� deg(i) (i = 1; : : : ; r)

are all di�erent.

Property
The representation �(m1r; : : : ;mrr) of gl(njm) is essentially typical if and
only if

lir 62 fln+1;r; ln+1;r + 1; ln+1;r + 2; : : : ; lrrg (i = 1; : : : ; r)

Property
A Gelfand{Zetlin basis of the essentially typical gl(njm) representation
�(m1r; : : : ;mrr) can be chosen as follows (with r = n+m):

(m) =

�����������

m1r m2r : : : mr�1;r mrr

m1;r�1 m2;r�1 : : : mr�1;r�1
. . . . .

.

m12 m22

m11

B
B
B
B

�
�
�
�

where the numbers mij are constrained by the following conditions:

mjk �mj;k�1 2 f0; 1g
mjk �mj+1;k 2 Z+

mi;j+1 �mij 2 Z+

mij �mi+1;j+1 2 Z+

with 1 � i � j � r � 1 and 1 � k � r � 1.

The gl(n)-generators eii (1 � i � n) are diagonal in the Gelfand{Zetlin
basis:

eiij(m)i =
X
j<i

(mji �mj;i�1)j(m)i

while the gl(n)-generators ei;i+1 and ei+1;i act as raising and lowering oper-
ators respectively:

ei;i+1j(m)i =
X
j�i

a+ji jmji ! mji + 1i
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ei+1;ij(m)i =
X
j�i

a�ji jmji ! mji � 1i

where

a+ji =

2666664
i+1Y
k=1

(lk;i+1 � lji)
i�1Y
k=1

(lk;i�1 � lji � 1)

iY
k=1;k 6=j

(lki � lji) (lki � lji � 1)

3777775
1=2

and

a�ji =

2666664
i+1Y
k=1

(lk;i+1 � lji + 1)
i�1Y
k=1

(lk;i�1 � lji)

iY
k=1;k 6=j

(lki � lji + 1) (lki � lji)

3777775
1=2

the coe�cients lij being given by lij = (�1)deg(i)mij + jn � ij + 1 � deg(i)
for any 1 � i � j � r.

Gelfand{Zetlin basis for gl(nj1) Lie superalgebras

Property
Every �nite dimensional typical representation of gl(nj1) is essentially
typical. More precisely, any �nite dimensional typical representation of
gl(nj1) decomposes as a direct sum of gl(n) representations with multi-
plicity one. It follows that any �nite dimensional typical representation
of gl(nj1) admits a Gelfand{Zetlin basis.

The vectors of the Gelfand{Zetlin basis are obtained from the expression
given for gl(njm) with m = 1. The action of the even generators of gl(nj1)
is determined by the above equations while the action of the odd generators
is given by

en;n+1j(m)i =
X
j�n

a+jn jmjn ! mjn + 1i

en+1;nj(m)i =
X
j�n

a�jn jmjn ! mjn � 1i
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where

a+jn = �jn(�1)
j�1P
k=1

(1+�kn)

2666664
n�1Y
k=1

(lk;n�1 � ljn � 1)

nY
k=1;k 6=j

(lk;n+1 � lj;n+1)

3777775
1=2

and

a�jn = (1� �jn)(�1)
j�1P
k=1

(1+�kn)
(lj;n+1 � ln+1;n+1)

2666664
n�1Y
k=1

(lk;n�1 � ljn)
nY

k=1;k 6=j
(lk;n+1 � lj;n+1)

3777775
1=2

For more details on the Gelfand{Zetlin basis for Lie superalgebras, see refs.
[70, 71] and references therein.

2.22 Grassmann algebras

De�nition
The real (resp. complex) Grassmann algebra �(n) of order n is the algebra
over R (resp. C ) generated from the unit element 1 and the n quantities �i
(called Grassmann variables) which satisfy the anticommutation relationsn

�i; �j

o
= 0

This algebra has 2n generators 1; �i; �i�j ; �i�j�k; : : : ; �1 : : : �n.

Putting deg �i = 1, the algebra �(n) acquires the structure of a superalgebra:
�(n) = �(n)0��(n)1, where �(n)0 is generated by the monomials in �i with
an even number of �i (even generators) and �(n)1 by the monomials in �i with
an odd number of �i (odd generators). Since dim�(n)0 = dim�(n)1 = 2n�1,
the superalgebra �(n) is supersymmetric. The Grassmann superalgebra is
associative and commutative (in the sense of the superbracket).

It is possible to de�ne the complex conjugation on the Grassmann variables.
However, there are two possibilities for doing so. If c is a complex number
and c� its complex conjugate, �i; �j being Grassmann variables, the star
operation, denoted by �, is de�ned by

(c�i)
� = c���i ; ���i = �i ; (�i�j)

� = ��j �
�
i
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and the superstar operation, denoted by #, is de�ned by

(c�i)
# = c��#i ; �##

i = ��i ; (�i�j)
# = �#i �

#
j

Let us mention that the derivation superalgebra (! 2.13) Der �(n) of �(n)
is the Cartan type (! 2.4) simple Lie superalgebra W (n).

2.23 Killing form

De�nition
Let G be a Lie superalgebra. One de�nes the bilinear form B� associated
to a representation � of G as a bilinear form from G � G into the �eld of
real numbers R such that

B�(X;Y ) = str(�(X)�(Y )) ; 8 X;Y 2 G

�(X) are the matrices of the generators X 2 G in the representation �
and str denotes the supertrace (! 2.57).

If fXig is the basis of generators of G (i = 1; : : : ;dimG), one has therefore
B�(Xi; Yj) = str(�(Xi)�(Yj)) = g�ij

De�nition
A bilinear form B on G = G0 � G1 is called
{ consistent if B(X;Y ) = 0 for all X 2 G0 and all Y 2 G1.
{ supersymmetric if B(X;Y ) = (�1)degX:deg YB(Y;X), for all X;Y 2 G.
{ invariant if B([[X;Y ]]; Z) = B(X; [[Y;Z]]), for all X;Y;Z 2 G.

Property
An invariant form on a simple Lie superalgebra G is either non-degenerate
(that is its kernel is zero) or identically zero, and two invariant forms on
G are proportional.

De�nition
A bilinear form on G is called an inner product on G if it is consistent,
supersymmetric and invariant.

De�nition
The bilinear form associated to the adjoint representation of G is called
the Killing form on G and is denoted K(X;Y ):

K(X;Y ) = str(ad(X) ad(Y )) ; 8X;Y 2 G
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We recall that ad(X)Z = [[X;Z]] and

�
ad(Xi)

�k
j

= �C k
ij where C k

ij are

the structure constants for the basis fXig of generators of G. We can there-
fore write

K(Xi;Xj) = (�1)degXmC n
mi C

m
nj = gij

Property
The Killing form K of a Lie superalgebra G is consistent, supersymmetric
and invariant (in other words, it is an inner product).

Property
The Killing form K of a Lie superalgebra G satis�es

K(�(X); �(Y )) = K(X;Y )

for all � 2 Aut(G) and X;Y 2 G.

The following theorems give the fundamental results concerning the Killing
form of the (simple) Lie superalgebras:

Theorem
1. A Lie superalgebra G with a non-degenerate Killing form is a di-

rect sum of simple Lie superalgebras each having a non-degenerate
Killing form.

2. A simple �nite dimensional Lie superalgebra G with a non-dege-
nerate Killing form is of the type A(m;n) where m 6= n, B(m;n),
C(n+ 1), D(m;n) where m 6= n+ 1, F (4) or G(3).

3. A simple �nite dimensional Lie superalgebra G with a zero Killing
form is of the type A(n; n), D(n+ 1; n), D(2; 1;�), P (n) or Q(n).

For more details, see refs. [47, 48].

2.24 Lie superalgebra, subalgebra, ideal

De�nition
A Lie superalgebra G over a �eld K of characteristic zero (usually K = R

or C ) is a Z2-graded algebra, that is a vector space, direct sum of two
vector spaces G0 and G1, in which a product [[ ; ]] is de�ned as follows:
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� Z2-gradation: hh
Gi;Gj

ii
� Gi+j (i; j 2 Z=2Z)

� graded-antisymmetry:hh
Xi;Xj

ii
= �(�1)degXi:degXj

hh
Xj ;Xi

ii
where degXi is the degree of the vector space. G0 is called the even
space and G1 the odd space. If degXi:degXj = 0, the bracket [[ ; ]]
de�nes the usual commutator, otherwise it is an anticommutator.

� generalized Jacobi identity:

(�1)degXi: degXk

hh
Xi;
hh
Xj;Xk

iiii
+ (�1)degXj : degXi

hh
Xj ;

hh
Xk;Xi

iiii
+(�1)degXk: degXj

hh
Xk;

hh
Xi;Xj

iiii
= 0

Notice that G0 is a Lie algebra { called the even or bosonic part of G { while
G1 { called the odd or fermionic part of G { is not an algebra.

An associative superalgebra G = G0�G1 over the �eld K acquires the struc-
ture of a Lie superalgebra by taking for the product [[ ; ]] the Lie superbracket
or supercommutator (also called generalized or graded commutator)hh

X;Y
ii
= XY � (�1)degX: deg Y Y X

for two elements X;Y 2 G.
De�nition

Let G = G0�G1 be a Lie superalgebra. G is a Z-graded Lie superalgebra if
it can be written as a direct sum of �nite dimensional Z2-graded subspaces
Gi such that

G =
M
i2Z
Gi where

hh
Gi;Gj

ii
� Gi+j

The Z-gradation is said to be consistent with the Z2-gradation if

G0 =
X
i2Z
G2i and G1 =

X
i2Z
G2i+1

It follows that G0 is a Lie subalgebra and that each Gi (i 6= 0) is a
G0-module.
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De�nition
A Z-graded Lie superalgebra G = �

i2Z
Gi is called transitive if for a 2 Gi�0hh

a;G�1
ii
= 0 ) a = 0

De�nition
Let G = G0 � G0 be a Lie superalgebra.
{ A subalgebra K = K0�K1 of G is a subset of elements of G which forms
a vector subspace of G that is closed with respect to the Lie product of
G such that K0 � G0 and K1 � G1. A subalgebra K of G such that K 6= G
is called a proper subalgebra of G.
{ An ideal I of G is a subalgebra of G such that

hh
G; I

ii
� I, that is

X 2 G; Y 2 I )
hh
X;Y

ii
2 I

An ideal I of G such that I 6= G is called a proper ideal of G.
Property

Let G be a Lie superalgebra and I, I 0 two ideals of G. Then
hh
I; I 0

ii
is

an ideal of G.

2.25 Matrix realizations of the classical Lie super-

algebras

The classical Lie superalgebras can be described as matrix superalgebras as
follows. Consider the Z2-graded vector space V = V0 � V1 with dimV0 = m
and dimV1 = n. Then the algebra EndV acquires naturally a superalgebra
structure by

EndV = End0V � End1V where EndiV =
n
� 2 EndV

����(Vj) � Vi+jo
The Lie superalgebra gl(mjn) is de�ned as the superalgebra EndV supplied
with the Lie superbracket (! 2.24). gl(mjn) is spanned by matrices of the
form

M =

�
A B
C D

�
where A and D are gl(m) and gl(n) matrices, B and C are m�n and n�m
rectangular matrices.

One de�nes on gl(mjn) the supertrace function denoted by str:

str(M) = tr(A)� tr(D)
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The unitary superalgebra A(m � 1; n � 1) = sl(mjn) is de�ned as the
superalgebra of matrices M 2 gl(mjn) satisfying the supertrace condition
str(M) = 0. In the case m = n, sl(njn) contains a one-dimensional ideal I
generated by I2n and one sets A(n� 1; n� 1) = sl(njn)=I = psl(njn).
The orthosymplectic superalgebra osp(mj2n) is de�ned as the superalgebra
of matrices M 2 gl(mjn) satisfying the conditions

At = �A ; DtG = �GD ; B = CtG

where t denotes the usual sign of transposition and the matrix G is given by

G =

�
0 In

�In 0

�
The strange superalgebra P (n) is de�ned as the superalgebra of matrices
M 2 gl(njn) satisfying the conditions

At = �D ; Bt = B ; Ct = �C ; tr(A) = 0

The strange superalgebra eQ(n) is de�ned as the superalgebra of matrices
M 2 gl(njn) satisfying the conditions

A = D ; B = C ; tr(B) = 0

The superalgebra eQ(n) has a one-dimensional center Z. The simple super-
algebra Q(n) is given by Q(n) = eQ(n)=Z.
! 2.27 Orthosymplectic superalgebras, 2.48{2.49 Strange superalgebras,
2.61 Unitary superalgebras.

For more details, see refs. [48, 75].

2.26 Nilpotent and solvable Lie superalgebras

De�nition
Let G = G0 � G1 be a Lie superalgebra. G is said to be nilpotent if,
considering the serieshh

G;G
ii
= G[1] ;

hh
G;G[1]

ii
= G[2] ; : : : ;

hh
G;G[i�1]

ii
= G[i]

then there exists an integer n such that G[n] = f0g.
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De�nition
G is said to be solvable if, considering the serieshh
G;G

ii
= G(1) ;

hh
G(1);G(1)

ii
= G(2) ; : : : ;

hh
G(i�1);G(i�1)

ii
= G(i)

then there exists an integer n such that G(n) = f0g.
Theorem

The Lie superalgebra G is solvable if and only if G0 is solvable.
Property

Let G = G0 � G1 be a solvable Lie superalgebra. Then the irreducible

representations of G are one-dimensional if and only if
n
G1;G1

o
�
h
G0;G0

i
(let us recall that in the case of a solvable Lie algebra, the irreducible �nite
dimensional representations are one-dimensional).

Property
Let G = G0 � G1 be a solvable Lie superalgebra and let V = V0 � V1 be
the space of irreducible �nite dimensional representations. Then either
dimV0 = dimV1 and dimV = 2s with 1 � s � dimG1, or dimV = 1.

2.27 Orthosymplectic superalgebras

The orthosymplectic superalgebras form three in�nite families of basic Lie
superalgebras. The superalgebra B(m;n) or osp(2m + 1j2n) de�ned for
m � 0; n � 1 has as even part the Lie algebra so(2m + 1) � sp(2n) and as
odd part the (2m+1; 2n) representation of the even part; it has rank m+n
and dimension 2(m+n)2+m+3n. The superalgebra C(n+1) or osp(2j2n)
where n � 1 has as even part the Lie algebra so(2)�sp(2n) and the odd part
is twice the fundamental representation (2n) of sp(2n); it has rank n+1 and
dimension 2n2 + 5n + 1. The superalgebra D(m;n) or osp(2mj2n) de�ned
for m � 2; n � 1 has as even part the Lie algebra so(2m) � sp(2n) and its
odd part is the (2m; 2n) representation of the even part; it has rank m+ n
and dimension 2(m+ n)2 �m+ n.

The root systems can be expressed in terms of the orthogonal vectors "1,
: : :, "m and �1, : : :, �n as follows.

{ for B(m;n) with m 6= 0:

�0 =
n
� "i� "j ; �"i; ��i � �j ; �2�i

o
and �1 =

n
� "i� �j ; ��j

o
;

{ for B(0; n):

�0 =
n
� �i � �j ; �2�i

o
and �1 =

n
� �j

o
;
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{ for C(n+ 1):

�0 =
n
� �i � �j ; �2�i

o
and �1 =

n
� "� �j

o
;

{ for D(m;n):

�0 =
n
� "i � "j ; ��i � �j ; �2�i

o
and �1 =

n
� "i � �j

o
:

The Dynkin diagrams (! 2.15) of the orthosymplectic superalgebras are of
the following types:

{ for the superalgebra B(m;n)

v v v v2 2 2 2 m
2

@
�

v v v v1 2 2 2 m
2

@
�

v v v v1 2 2 2 }
2

@
�

v v v v2 2 2 2 }
2

@
�

K = 1 K = 0

{ for the superalgebra C(n+ 1)

v v v v1 2 2 2��
�

HHH

m1

m1

�@

�@

v v v v2 2 2 2��
�

HHH

m1

m1

�@

�@

v v v v1 2 2 2 m
2

@
� v v v v2 2 2 2 m

2

@
�

K = 1 K = 0

{for the superalgebra D(m;n)

v v v v2 2 2 2��
�

HHH

m1

m1

v v v v1 2 2 2��
�

HHH

m1

m1

v v v v1 2 2 2��
�

HHH

m1

m1

�@

�@

v v v v2 2 2 2��
�

HHH

m1

m1

�@

�@

v v v v1 2 2 2 m
1

@
� v v v v2 2 2 2 m

1

@
�

K = 1 K = 0
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In these diagrams, the labels are the Kac labels which give the decomposi-
tion of the highest root in terms of the simple roots. The small black dots
represent either white dots (associated to even roots) or grey dots (associ-
ated to odd roots of zero length), and K is the parity of the number of grey
dots. The Dynkin diagrams of the orthosymplectic Lie superalgebras up to
rank 4 are given in Table 3.61.

The superalgebras B(m;n) and D(m;n) are of type II while the super-
algebras C(n + 1) are of type I (! 2.8). Denoting by H the distinguished
Cartan subalgebra, the distinguished Z-gradation (! 2.8) of the type II
orthosymplectic superalgebras has the following structure:

G = G�2 � G�1 � G0 � G1 � G2
where:

{ for the superalgebras B(m;n) (with 1 � i < j � m, 1 � k < l � n)

G0 = H [ fE�"i�"j ; E�"i ; E�k��lg
G2 = fE�k+�l ; E2�kg G�2 = fE��k��l ; E�2�kg
G1 = fE�"i+�k ; E�kg G�1 = fE�"i��k ; E��kg

{ for the superalgebras D(m;n) (with 1 � i < j � m, 1 � k < l � n)

G0 = H [ fE�"i�"j ; E�k��lg
G2 = fE�k+�l ; E2�kg G�2 = fE��k��l ; E�2�kg
G1 = fE�"i+�kg G�1 = fE�"i��kg

The orthosymplectic superalgebras osp(M jN) (with M = 2m or 2m+1 and
N = 2n) can be generated as matrix superalgebras by taking a basis of (M+
N)2 elementary matrices eIJ of order M + N satisfying (eIJ)KL = �IL�JK
(I; J;K;L = 1; : : : ;M +N). One de�nes the following graded matrices

GIJ =

0BB@
0 Im

Im 0
0

0
0 In

�In 0

1CCA if M = 2m

GIJ =

0BBBB@
0 Im 0
Im 0 0
0 0 1

0

0
0 In

�In 0

1CCCCA if M = 2m+ 1
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where Im and In are the m�m and n� n identity matrices respectively.

Dividing the capital indices I; J; : : : into small unprimed indices i; j; : : : run-
ning from 1 to M and small primed indices i0; j0; : : : running from M + 1 to
M +N , the generators of osp(M jN) are given by

Eij = Gikekj �Gjkeki
Ei0j0 = Gi0k0ek0j0 +Gj0k0ek0i0

Eij0 = Ej0i = Gikekj0

Then the Eij (antisymmetric in the indices i; j) generate the so(M) part,
the Ei0j0 (symmetric in the indices i0; j0) generate the sp(N) part and the
Eij0 transform as the (M;N) representation of osp(M jN). They satisfy the
following (super)commutation relations:h

Eij ; Ekl

i
= GjkEil +GilEjk �GikEjl �GjlEikh

Ei0j0 ; Ek0l0
i
= �Gj0k0Ei0l0 �Gi0l0Ej0k0 �Gj0l0Ei0k0 �Gi0k0Ej0l0h

Eij ; Ek0l0
i
= 0h

Eij ; Ekl0
i
= GjkEil0 �GikEjl0h

Ei0j0 ; Ekl0
i
= �Gi0l0Ekj0 �Gj0l0Eki0n

Eij0 ; Ekl0
o
= GikEj0l0 �Gj0l0Eik

In the case of the superalgebra osp(1jN), the commutation relations greatly
simplify. One obtainsh

Ei0j0 ; Ek0l0
i
= �Gj0k0Ei0l0 �Gi0l0Ej0k0 �Gj0l0Ei0k0 �Gi0k0Ej0l0h

Ei0j0 ; Ek0
i
= �Gi0k0Ej0 �Gj0k0Ei0n

Ei0 ; Ej0
o
= Ei0j0

where Ei0 denote the odd generators.

2.28 Oscillator realizations: Cartan type super-

algebras

Oscillator realizations of the Cartan type superalgebras can be obtained as
follows. Take a set of 2n fermionic oscillators a�i and a+i with standard
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anticommutation relationsn
a�i ; a

�
j

o
=
n
a+i ; a

+
j

o
= 0 and

n
a+i ; a

�
j

o
= �ij

In the case of the W (n) superalgebra, one de�nes the following subspaces:

G�1 =
n
a�i0
o

and G0 =
n
a+i0a

�
i1

o
G1 =

n
a+i0a

+
i1
a�i2
o

i0 6= i1
: : :

Gn�1 =
n
a+i0a

+
i1
: : : a+in�1a

�
in

o
i0 6= i1 6= : : : 6= in�1

the superalgebra W (n) is given by

W (n) =
n�1M
i=�1

Gi

with Z-gradation
h
Gi;Gj

i
� Gi+j .

In the case of S(n) and eS(n), de�ning the following subspaces:
G�1 =

n
a�i0
o

and G0�1 =
n
(1 + a+1 : : : a

+
n )a

�
i0

o
G0 =

n
a+1 a

�
1 � a+i0a�i0 (i0 6= 1); a+i0a

�
i1

(i1 6= i0)
o

G1 =
n
a+i1(a

+
1 a

�
1 � a+i0a�i0) (i1 6= i0 6= 1);

a+1 (a
+
2 a

�
2 � a+i0a�i0) (i0 6= 1; 2);

a+i2a
+
i1
a�i0 (i2 6= i1 6= i0)

o
G2 =

n
a+i2a

+
i1
(a+1 a

�
1 � a+i0a�i0) (i2 6= i1 6= i0 6= 1);

a+i1a
+
1 (a

+
2 a

�
2 � a+i0a�i0) (i1 6= i0 6= 1; 2);

a+1 a
+
2 (a

+
3 a

�
3 � a+i0a�i0) (i0 6= 1; 2; 3);

a+i3a
+
i2
a+i1a

�
i0

(i3 6= i2 6= i1 6= i0)
o

: : :

the superalgebra S(n) is given by

S(n) =
n�2M
i=0

Gi � G�1
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and the superalgebra eS(n) by
eS(n) = n�2M

i=0

Gi � G0�1

Finally, in the case of H(n) one de�nes the following subspaces:

G�1 =
n
a�i0
o

G0 =
n
a+i0a

�
i1
� a+i1a�i0

o
G1 =

n
a+i0a

+
i1
a�i2 � a+i0a+i2a�i1 � a+i2a+i0a�i1 + a+i1a

+
i2
a�i0 + a+i2a

+
i0
a�i1 � a+i2a+i1a�i0

o
: : :

The superalgebra H(n) is given by

H(n) =
n�3M
i=�1

Gi

For more details, see ref. [75].

2.29 Oscillator realizations: exceptional Lie super-

algebras

In terms of the 24 fermionic oscillators denoted by a, � and � (! 1.60 for
the notations), but imposing now that

fa ; �g = fa ; �g = f� ; �g = 0

and of six bosonic oscillators b+i , bi, which commute with the operators a,
� and �, we can write oscillator realizations of the exceptional Lie super-
algebras. See ref. [14] for more details.

Oscillator realization of F (4)

With reference to the Dynkin diagram in the distinguished basis (! 2.18),
we can write the generators corresponding to the simple positive roots as

E1 =
q

3
2 (�

+
4 b

+
1 + �1234 b

+
2 )

E2 = �+31 �
+
32 + �+1234 �

+
34 + �+3 �4 + �1 �2

E3 = �+21 �
+
24 + �+2 �3

E4 = �+13 �
+
14 + �+1 �2
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The generators corresponding to the simple negative roots are obtained by
hermitian conjugation. The Cartan generators are

H1 = 3
2 (�

+
1234 �1234 � �+4 �4 + b+1 b1 + b+2 b2)

H2 = �+31 �31 + �+32 �32 + �+1234 �1234 + �+34 �34

+�+3 �3 � �+4 �4 � �+1 �1 � �+2 �2
H3 = �+21 �21 + �+24 �24 + �+2 �2 � �+3 �3
H4 = �+13 �13 + �+14 �14 + �+1 �1 � �+2 �2

The remaining generators are obtained by the supercommutators of the sim-
ple generators. The Cartan generator of the sl(2) hidden by the fermionic
root �1 is given by

K = 1
3 (2H1 � 3H2 � 4H3 � 2H4)

Note that we have made use of only 16 fermionic (�, �) and four bosonic
oscillators.

Oscillator realization of G(3)

With reference to the Dynkin diagram in the distinguished basis (! 2.19),
we can write the generators corresponding to the simple positive roots as

E1 =
p
2 (�+4 b

+
1 + �1234 b

+
1 + a1 b

+
3 )

E2 = a+1 a2 + a+3 a4 + a+3 a
+
4 + �+13 �

+
14 + �+31 �

+
32 + �+1234 �

+
34

+�+1 �2 + �+3 �4 + �1 �2

E3 = a+2 a3 + �+21 �
+
24 + �+2 �3

The generators corresponding to the simple negative roots are obtained by
hermitian conjugation. The Cartan generators are

H1 = 2 (a+1 a1 + �+1234 �1234 � �+4 �4 + b+1 b1 + b+2 b2 + b+3 b3 + 1)

H2 = a+1 a1 � a+2 a2 + 2 a+3 a3 + 2�+13 �13 + �+34 �34 + �+1234 �1234

�2�+2 �2 + �+3 �3 � �+4 �4
H3 = a+1 a1 � a+2 a2 + �+21 �21 + �+24 �24 + �+2 �2 � �+3 �3

while the Cartan generator of the sl(2) hidden by the fermionic root �1 is
given by

K = 1
2 (H1 � 2H2 � 3H3)
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Oscillator realization of D(2; 1;�)

With reference to the Dynkin diagram in the distinguished basis (! 2.20),
we can write the generators corresponding to the simple positive roots as

E1 =
1
2 b

+
1 b2 b3 E2 = �1

2 (b
+
2 )

2 E3 = �1
2 (b

+
3 )

2

Note that we have made use only of the six bosonic oscillators. The gen-
erators corresponding to negative simple roots are obtained by hermitian
conjugation. Moreover as we have written the fermionic generator E1 as a
trilinear in the bosonic operators, we cannot obtain the Cartan generators
E1 by means of the usual anticommutator of E1 with F1, which, indeed,
would give for H1 an expression as a quadrilinear in the bosonic oscillators.
So we de�ne the following symmetric composition rule

b+1 b2 b3 � b1 b+2 b+3 � �1 fb+1 ; b1g [b2; b+2 ] [b3; b+3 ]
+ �2 fb+2 ; b2g [b+1 ; b1] [b3; b+3 ]
+ �3 fb+3 ; b3g [b+1 ; b1] [b2; b+2 ]

where [ ; ] and f ; g are the usual commutator and anticommutator and �i
are three complex numbers satisfying the constraint, required by the Jacobi
identity,

�1 + �2 + �3 = 0

Choosing (�1; �2; �3) = (1 + �;�1;��), we get
H1 =

1
2 f(1 + �)K +H2 + �H3g

where (j = 2; 3)

Hj =
1
4 [(b

+
j )

2; (bj)
2] = 1

2 fb+j ; bjg and K = 1
2 fb+1 ; b1g

K is the Cartan generator of the sl(2) hidden by the fermionic root �1.
Notice that for � = 1 (resp. � = �1) we get a new realization of D(2; 1)
(resp. A(1; 1)) in terms that are bilinear and trilinear in bosonic operators.

2.30 Oscillator realizations: orthosymplectic and

unitary series

Let us consider a set of 2n bosonic oscillators b�i and b+i with commutation
relations: h

b�i ; b
�
j

i
=
h
b+i ; b

+
j

i
= 0 and

h
b�i ; b

+
j

i
= �ij

and a set of 2m fermionic oscillators a�i and a+i with anticommutation rela-
tions: n

a�i ; a
�
j

o
=
n
a+i ; a

+
j

o
= 0 and

n
a�i ; a

+
j

o
= �ij
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the two sets commuting each other:h
b�i ; a

�
j

i
=
h
b�i ; a

+
j

i
=
h
b+i ; a

�
j

i
=
h
b+i ; a

+
j

i
= 0

In the case of B(m;n), one needs also a supplementary real fermionic oscil-
lator e such that e2 = 1 with (anti)commutation relationsn

a�i ; e
o
= 0 and

h
b�i ; e

i
= 0

Oscillator realization of A(m� 1; n� 1)

Let

� =
n
"i � "j ; �k � �l; "i � �k; �"i + �k

o
be the root system of A(m� 1; n� 1) expressed in terms of the orthogonal
vectors "1; : : : ; "m and �1; : : : ; �n. An oscillator realization of the simple
generators in the distinguished basis is given by (where 1 � i � m � 1 and
1 � k � n� 1)

Hi = a+i a
�
i � a+i+1a�i+1 E"i�"i+1 = a+i a

�
i+1 E"i+1�"i = a+i+1a

�
i

Hm = a+ma
�
m + b+1 b

�
1 E"m��1 = a+mb

�
1 E�1�"m = b+1 a

�
m

Hm+k = b+k b
�
k � b+k+1b�k+1 E�k��k+1 = b+k b

�
k+1 E�k+1��k = b+k+1b

�
k

By commutation relation, one �nds the realization of the whole set of root
generators (1 � i; j � m and 1 � k; l � n):

E"i�"j = a+i a
�
j ; E�k��l = b+k b

�
l ; E"i��k = a+i b

�
k ; E�"i+�k = b+k a

�
i

Oscillator realization of B(m;n)

Let

� =
n
� "i � "j ; �"i; ��k � �l; �2�k; �"i � �k; ��k

o
be the root system of B(m;n) expressed in terms of the orthogonal vectors
"1; : : : ; "m and �1; : : : ; �n. An oscillator realization of the simple generators
in the distinguished basis is given by (where 1 � i � m�1 and 1 � k � n�1)

Hk = b+k b
�
k � b+k+1b�k+1 E�k��k+1 = b+k b

�
k+1 E�k+1��k = b+k+1b

�
k

Hn = b+n b
�
n + a+1 a

�
1 E�n�"1 = b+n a

�
1 E"1��n = a+1 b

�
n

Hn+i = a+i a
�
i � a+i+1a�i+1 E"i�"i+1 = a+i a

�
i+1 E"i+1�"i = a+i+1a

�
i

Hn+m = 2a+ma
�
m � 1 E+

"m = a+me E�
"m = ea�m
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By commutation relation, one �nds the realization of the whole set of root
generators (1 � i; j � m and 1 � k; l � n):
E�"i�"j = a�i a

�
j ; E�"i��k = a�i b

�
k ; E"i = a+i e ; E�"i = ea�i

E��k��l = b�k b
�
l ; E�2�k = (b�k )

2 ; E�k = b+k e ; E��k = eb�k

Oscillator realization of B(0; n)

The case B(0; n) requires special attention. The root system of B(0; n) can
be expressed in terms of the orthogonal vectors �1; : : : ; �n and reduces to

� =
n
� �k � �l; �2�k; ��k

o
An oscillator realization of the generators of B(0; n) can be obtained only
with the help of bosonic oscillators. It is given for the simple generators by
(where 1 � k � n� 1)

Hk = b+k b
�
k � b+k+1b�k+1 E�k��k+1 = b+k b

�
k+1 E�k+1��k = b+k+1b

�
k

Hn = b+n b
�
n + 1

2 E�n =
1p
2
b+n E��n =

1p
2
b�n

By commutation relation, one �nds the realization of the whole set of root
generators (1 � k; l � n):

E��k��l = b�k b
�
l ; E�2�k = (b�k )

2 ; E��k =
1p
2
b�k

Oscillator realization of C(n+ 1)

Let
� =

n
� �k � �l; �2�k; �"� �k

o
be the root system of C(n + 1) expressed in terms of the orthogonal vec-
tors "; �1; : : : ; �n. An oscillator realization of the simple generators in the
distinguished basis is given by (where 2 � k � n)

H1 = a+1 a
�
1 + b+1 b

�
1 E"��1 = a+1 b

�
1 E�1�" = b+1 a

�
1

Hk = b+k b
�
k � b+k+1b�k+1 E�k��k+1 = b+k b

�
k+1 E�k+1��k = b+k+1b

�
k

Hn+1 = �b+n b�n � 1=2 E2�n =
1
2(b

+
n )

2 E�2�n =
1
2(b

�
n )

2

By commutation relation, one �nds the realization of the whole set of root
generators (1 � k; l � n):
E��k��l = b�k b

�
l ; E�2�k =

1
2(b

�
k )

2 ; E"��l = a+1 b
�
l ; E�"��l = b�l a

�
1
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Oscillator realization of D(m;n)

Let

� =
n
� "i � "j ; ��k � �l; �2�k; �"i � �k

o
be the root system of D(m;n) expressed in terms of the orthogonal vectors
"1; : : : ; "m and �1; : : : ; �n. An oscillator realization of the simple generators
in the distinguished basis is given by (where 1 � i � m�1 and 1 � k � n�1)

Hk = b+k b
�
k � b+k+1b�k+1 E�k��k+1 = b+k b

�
k+1 E�k+1��k = b+k+1b

�
k

Hn = b+n b
�
n + a+1 a

�
1 E�n�"1 = b+n a

�
1 E"1��n = a+1 b

�
n

Hn+i = a+i a
�
i � a+i+1a�i+1 E"i�"i+1 = a+i a

�
i+1 E"i+1�"i = a+i+1a

�
i

Hn+m = a+m�1a
�
m�1 + a+ma

�
m � 1

E"m�1+"m = a+m�1a
+
m E�"m�"m�1

= a�ma
�
m�1

By commutation relation, one �nds the realization of the whole set of root
generators (1 � i; j � m and 1 � k; l � n):

E�"i�"j = a�i a
�
j ; E�"i��k = a�i b

�
k ; E��k��l = b�k b

�
l ; E�2�k = (b�k )

2

For more details, see ref. [5]. In ref. [5] oscillator realizations were used to
analyze supersymmetric structure in the spectra of complex nuclei; the �rst
reference to this interesting approach is [43].

2.31 Oscillator realizations: strange series

Let us consider a set of 2n bosonic oscillators b�i and b+i with commutation
relations: h

b�i ; b
�
j

i
=
h
b+i ; b

+
j

i
= 0 and

h
b�i ; b

+
j

i
= �ij

and a set of 2n fermionic oscillators a�i and a+i with anticommutation rela-
tions: n

a�i ; a
�
j

o
=
n
a+i ; a

+
j

o
= 0 and

n
a�i ; a

+
j

o
= �ij

the two sets commuting each other:h
b�i ; a

�
j

i
=
h
b�i ; a

+
j

i
=
h
b+i ; a

�
j

i
=
h
b+i ; a

+
j

i
= 0
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Oscillator realization of P (n)

An oscillator realization of the generators of P (n) is obtained as follows:

{ the generators of the even sl(n) part are given by

Hi = a+i a
�
i � a+i+1a�i+1 + b+i b

�
i � b+i+1b�i+1 with 1 � i � n� 1

E+
ij = a+i a

�
j + b+i b

�
j with 1 � i < j � n

E�
ij = a+i a

�
j + b+i b

�
j with 1 � j < i � n

{ the generators of the odd symmetric part GS of P (n) by

F+
ij = b+i a

+
j + b+j a

+
i with 1 � i 6= j � n

F+
i = b+i b

+
j with 1 � i � n

{ the generators of the odd antisymmetric part GA of P (n) by

F�
ij = b�i a

�
j + b�j a

�
i with 1 � i 6= j � n

Oscillator realization of Q(n)

An oscillator realization of the generators of Q(n) is obtained as follows:

{ the generators of the even sl(n) part are given by

Hi = a+i a
�
i � a+i+1a�i+1 + b+i b

�
i � b+i+1b�i+1

Eij = a+i a
�
j + b+i b

�
j

{ the generator of the U(1) part by

Z =
nX
i=1

a+i a
�
i + b+i b

�
i

{ the generators of the odd sl(n) part by

Ki = a+i b
�
i � a+i+1b�i+1 + b+i a

�
i � b+i+1a�i+1

Fij = a+i b
�
j + b+i a

�
j

For more details, see ref. [24].
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2.32 Real forms

De�nition
Let G be a classical Lie superalgebra over C . A semi-morphism � of G is
a semi-linear transformation of G which preserves the gradation, that is
such that

�(�X + �Y ) = ���(X) + ���(Y )
[[�(X); �(Y )]] = �([[X;Y ]])

for all X;Y 2 G and �; � 2 C (�� denotes the complex conjugate of �).

If � is an involutive semi-morphism of G, the superalgebra G� = fX +
�(X) j X 2 Gg is a real classical Lie superalgebra. Moreover, two involutive

semi-morphisms � and �0 of G being given, the real forms G� and G�0 are
isomorphic if and only if � and �0 are conjugate by an automorphism (!
2.1) of G.
It follows that the real classical Lie superalgebras are either the complex clas-
sical Lie superalgebras regarded as real superalgebras or the real forms ob-
tained as subsuperalgebras of �xed points of the involutive semi-morphisms
of a complex classical Lie superalgebra. The real forms of a complex classical
Lie superalgebra G are thus classi�ed by the involutive semi-morphisms of
G in the automorphism group of G. One can prove that the real forms of
the complex classical Lie superalgebras are uniquely determined by the real

forms G�
0
of the even part G0 of G. These are displayed in Table 3.75.

The integersm;n have to be even for sl(mjn; H ), psl(njn; H ) andHQ(n). We

recall that su�(2n) is the set of 2n�2n matrices of the form

�
Xn Yn
�Y �

n X�
n

�
such that Xn; Yn are matrices of order n and and tr(Xn) + tr(X�

n) = 0 and

so�(2n) is the set of 2n� 2n matrices of the form

�
Xn Yn
�Y �

n X�
n

�
such that

Xn and Yn are antisymmetric and hermitian complex matrices of order n
respectively.

For more details, see refs. [47, 72].

2.33 Representations: basic de�nitions

De�nition
Let G = G0 � G1 be a classical Lie superalgebra. Let V = V0 � V1 be a
Z2-graded vector space and consider the superalgebra EndV = End0V �
End1V of endomorphisms of V.
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A linear representation � of G is a homomorphism of G into EndV, that
is, [[ ; ]] denoting the superbracket,

�(�X + �Y ) = ��(X) + ��(Y )

�([[X;Y ]]) = [[�(X); �(Y )]]

�(G0) � End0V and �(G1) � End1V

for all X;Y 2 G and �; � 2 C .

The vector space V is the representation space. The vector space V has the
structure of a G-module by X(~v) = �(X)~v for X 2 G and ~v 2 V.
The dimension (resp. superdimension) of the representation � is the dimen-
sion (resp. graded dimension) of the vector space V:

dim� = dimV0 + dimV1
sdim� = dimV0 � dimV1

De�nition
The representation � is said to be

{ faithful if �(X) 6= 0 for all X 2 G.
{ trivial if �(X) = 0 for all X 2 G.

Every classical Lie superalgebra has a �nite dimensional faithful representa-
tion. In particular, the representation ad : G ! EndG (G being considered
as a Z2-graded vector space) such that ad(X)Y = [[X;Y ]] is called the adjoint
representation of G.

2.34 Representations: exceptional superalgebras

Representations of F (4)

A highest weight irreducible representation of F (4) is characterized by its
Dynkin labels (! 2.35) drawn on the distinguished Dynkin diagram:

m m m m
a1 a2 a3 a4

�@ �
@

where a2; a3; a4 are positive or null integers.

For the so(7) part, a2 is the shorter root. The sl(2) representation label is
hidden by the odd root and its value is given by b = 1

3(2a1�3a2�4a3�2a4).
Since b has to be a non-negative integer, this relation implies a1 to be a
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positive integer or half-integer. Finally, a F (4) representation with b < 4
has to satisfy a consistency condition, that is

b = 0 a1 = a2 = a3 = a4 = 0

b = 1 not possible

b = 2 a2 = a4 = 0

b = 3 a2 = 2a4 + 1

The eight atypicality conditions for the F (4) representations are the follow-
ing:

a1 = 0 or b = 0

a1 = a2 + 1 or b = 1
3 (2� a2 � 4a3 � 2a4)

a1 = a2 + 2a3 + 3 or b = 1
3 (6� a2 � 2a4)

a1 = a2 + 2a3 + 2a4 + 5 or b = 1
3 (10� a2 + 2a4)

a1 = 2a2 + 2a3 + 4 or b = 1
3 (8 + a2 � 2a4)

a1 = 2a2 + 2a3 + 2a4 + 6 or b = 1
3 (12 + a2 + 2a4)

a1 = 2a2 + 4a3 + 2a4 + 8 or b = 1
3 (16 + a2 + 4a3 + 2a4)

a1 = 3a2 + 4a3 + 2a4 + 9 or b = 1
3 (18 + 3a2 + 4a3 + 2a4)

Moreover, a necessary (but not su�cient) condition for a representation to
be typical is that b � 4.

The dimension of a typical representation with highest weight � = (a1; a2;
a3; a4) is given by

dimV(�) =
32

45
(a2 + 1)(a3 + 1)(a4 + 1)(a2 + a3 + 2)(a3 + a4 + 2)

(a2 + 2a3 + 3)(a2 + a3 + a4 + 3)(a2 + 2a3 + 2a4 + 5)

(a2 + 2a3 + a4 + 4)(2a1 � 3a2 � 4a3 � 2a4 � 9)

Moreover, the reader will �nd in Table 3.73 dimensions of representations
for the exceptional Lie superalgebra F (4). See page 364 for explanations.

For more details, see refs. [50, 84].

Representations of G(3)

A highest weight irreducible representation of G(3) is characterized by its
Dynkin labels (! 2.35) drawn on the distinguished Dynkin diagram:
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m m m
a1 a2 a3

�@ �
@

where a2; a3 are positive or null integers.

For the G(2) part, a2 is the shorter root. The sl(2) representation label is
hidden by the odd root and its value is given by b = 1

2(a1 � 2a2 � 3a3).
Since b has to be a non-negative integer, this relation implies a1 to be a
positive integer. Finally, a G(3) representation with b < 3 has to satisfy a
consistency condition, that is

b = 0 a1 = a2 = a3 = 0

b = 1 not possible

b = 2 a2 = 0

The six atypicality conditions for the G(3) representations are the following:

a1 = 0 or b = 0

a1 = a2 + 1 or b = 1
2(1� a2 � 3a3)

a1 = a2 + 3a3 + 4 or b = 1
2(4� a2)

a1 = 3a2 + 3a3 + 6 or b = 1
2(6 + a2)

a1 = 3a2 + 6a3 + 9 or b = 1
2(4 + a2 + 3a3)

a1 = 4a2 + 6a3 + 10 or b = 1
2(10 + 2a2 + 3a3)

Let us remark that the �rst condition corresponds to the trivial representa-
tion and the second one is never satis�ed.

Moreover, a necessary (but not su�cient) condition for a representation to
be typical is that b � 3.

The dimension of a typical representation with highest weight �=(a1; a2; a3)
is given by

dimV(�) =
8

15
(a2 + 1)(a3 + 1)(a2 + a3 + 2)(a2 + 3a3 + 4)

(a2 + 2a3 + 3)(2a2 + 3a3 + 5)(a1 � 2a2 � 3a3 � 5)

Moreover, the reader will �nd in Table 3.74 dimensions of representations
for the exceptional Lie superalgebra G(3). See page 364 for explanations.

For more details, see refs. [50, 85].
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Representations of D(2; 1;�)

A highest weight irreducible representation of D(2; 1;�) is characterized by
its Dynkin labels (! 2.35) drawn on the distinguished Dynkin diagram:

m m m
a2 a1 a3

�@

where a2; a3 are positive or null integers.

The sl(2) representation label is hidden by the odd root and its value is
given by b = 1

1+�(2a1 � a2 � �a3), which has to be a non-negative integer.

Finally, a D(2; 1;�) representation with b < 2 has to satisfy a consistency
condition, that is

b = 0 a1 = a2 = a3 = 0

b = 1 �(a3 + 1) = �(a2 + 1)

The four atypicality conditions for the D(2; 1;�) representations are the
following:

a1 = 0 or b = 0

a1 = a2 + 1 or b = 1
1+�(2 + 2a2 � �a3)

a1 = �(a3 + 1) or b = 1
1+�(2�� a2 � �a3)

a1 = a2 + �a3 + 1 + � or b = 1
1+�(2 + 2�+ a2 + �a3)

The dimension of a typical representation with highest weight �=(a1; a2; a3)
is given by

dimV(�) = 16

1 + �
(a2 + 1)(a3 + 1)(2a1 � a2 � �a3 � 1� �)

For more details, see refs. [50, 91].

2.35 Representations: highest weight representa-

tions

Let G = G0�G1 be a basic Lie superalgebra with Cartan subalgebraH andH�
be the dual of H. We assume that G 6= A(n; n) but the following results still
hold for sl(n+1jn+1). Let G = N+�H�N� be a Borel decomposition (!
2.45) of G where N+ (resp. N�) is spanned by the positive (resp. negative)
root generators of G (! 2.45).
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De�nition
A representation � : G ! EndV with representation space V is called a
highest weight representation with highest weight � 2 H� if there exists
a non-zero vector ~v� 2 V such that

N+~v� = 0

h(~v�) = �(h)~v� (h 2 H)

The G-module V is called a highest weight module, denoted by V(�), and
the vector ~v� 2 V a highest weight vector.

From now on, H is the distinguished Cartan subalgebra (! 2.3) of G with
basis of generators (H1; : : : ;Hr) where r = rankG andHs denotes the Cartan
generator associated to the odd simple root. The Dynkin labels are de�ned
by

ai = 2
� � �i
�i � �i for i 6= s and as = � � �s

A weight � 2 H� is called a dominant weight if ai � 0 for all i 6= s, integral
if ai 2 Z for all i 6= s, and integral dominant if ai 2 N for all i 6= s.

Property
A necessary condition for the highest weight representation of G with
highest weight � to be �nite dimensional is that � be an integral dominant
weight.

Following V.G. Kac (see ref. [50]), one de�nes the Kac's module:

De�nition
Let G be a basic Lie superalgebra with the distinguished Z-gradation
G = �i2Z Gi (! 2.8). Let � 2 H� be an integral dominant weight and
V0(�) be the G0-module with highest weight � 2 H�. Consider the G-
subalgebra K = G0 � N+ where N+ = �i>0Gi. The G0-module V0(�) is
extended to a K-module by setting N+V0(�) = 0. The Kac module V(�)
is de�ned as follows:

1. if the superalgebra G is of type I (the odd part is the direct sum of
two irreducible representations of the even part), the Kac module
is the induced module (! 2.36)

V(�) = IndGK V0(�)
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2. if the superalgebra G is of type II (the odd part is an irreducible rep-
resentation of the even part), the induced module IndGK V0(�) con-
tains a submoduleM(�) = U(G)Gb+1� V0(�) where  is the longest
simple root of G0 which is hidden behind the odd simple root (that
is the longest simple root of sp(2n) in the case of osp(mj2n) and
the simple root of sl(2) in the case of F (4), G(3) and D(2; 1;�))
and b = 2� �  = �  is the component of � with respect to  (!
2.34 and 2.37 for explicit expressions of b). The Kac module is then
de�ned as the quotient of the induced module IndGK V0(�) by the
submoduleM(�):

V(�) = IndGK V0(�)=U(G)Gb+1� V0(�)

In the case where the Kac module is not simple, it contains a maximal
submodule I(�) and the quotient module V(�) = V(�)=I(�) is a simple
module.

The fundamental result concerning the representations of basic Lie super-
algebras is the following:

Theorem
� Any �nite dimensional irreducible representation of G is of the form
V(�) = V(�)=I(�) where � is an integral dominant weight.

� Any �nite dimensional simple G-module is uniquely characterized
by its integral dominant weight �: two G-modules V(�) and V(�0)
are isomorphic if and only if � = �0.

� The �nite dimensional simple G-module V(�) = V(�)=I(�) has the
weight decomposition

V(�) =
M
���
V� with V� =

n
~v 2 V

���h(~v) = �(h)~v; h 2 H
o

2.36 Representations: induced modules

The method of induced representations is an elegant and powerful way to
construct the highest weight representations (! 2.35) of the basic Lie super-
algebras. This section is quite formal compared to the rest of the text but
is fundamental for the representation theory of the Lie superalgebras.

Let G be a basic Lie superalgebra and K be a subalgebra of G. Denote by
U(G) and U(K) the corresponding universal enveloping superalgebras (!
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2.62). From a K-module V (! 2.33), it is possible to construct a G-module
in the following way. The vector space V is naturally extended to a U(K)-
module. One considers the factor space U(G)
U(K) V consisting of elements
of U(G)
 V such that the elements h
 ~v and 1
 h(~v) have been identi�ed
for h 2 K and ~v 2 V. This space acquires the structure of a G-module by
setting g(u
 ~v) = gu
 ~v for u 2 U(G), g 2 G and ~v 2 V.

De�nition
The G-module U(G) 
U(K) V is called the induced module from the K-
module V and denoted by IndGK V.

Theorem
Let K0 and K00 be subalgebras of G such that K00 � K0 � G. If V is a
K00-module, then

IndGK0 (Ind
K0

K00 V) = IndGK00 V

Theorem
Let G be a basic Lie superalgebra, K be a subalgebra of G such that G0 � K
and V a K-module. If ff1; : : : ; fdg denotes a basis of odd generators of
G=K, then

IndGK V =
M

1�i1<:::<ik�d
fi1 : : : fikV

is a direct sum of subspaces and dim IndGK V = 2d dimV.

Example
Consider a basic Lie superalgebra G of type I (the odd part is the di-
rect sum of two irreducible representations of the even part, that is
G = sl(mjn) or osp(2j2n)) with Z-gradation G = G�1 � G0 � G1 (! 2.8).
Take for K the subalgebra G0�G1. Let V0(�) be a G0-module with highest
weight �, which is extended to a K-module by setting G1V0(�) = 0. Sincen
G�1;G�1

o
= 0, only the completely antisymmetric combinations of the

generators of G�1 can apply on V0(�). In other words, the G-module V(�)
is obtained by

V =
^
(G�1)
 V0 ' U(G�1)
 V0

where ^
(G�1) =

dimG�1M
k=0

^k(G�1)

is the exterior algebra over G�1 of dimension 2d if d = dimG�1. It follows
that V(�) is built from V0(�) by induction of the generators of G=K:
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V = U(G�1)
 V0 = U(G)
U(G0�G1) V0 = IndGG0�G1 V0

Since dim^k(G�1) =
�
d
k

�
, the dimension of V is given by

dimV(�) =
dX

k=0

�
d

k

�
dimV0(�) = 2d dimV0(�)

while its superdimension (! 2.33) is identically zero

sdimV(�) =
dX

k=0

(�1)k
�
d

k

�
dimV0(�) = 0

Let us stress that such a G-module is not always an irreducible one. �

For more details, see refs. [49, 50, 93].

2.37 Representations: orthosymplectic superalge-

bras

A highest weight irreducible representation of osp(M jN) is characterized by
its Dynkin labels (! 2.35) drawn on the distinguished Dynkin diagram. The
di�erent diagrams are the following:

� osp(2m+ 1j2n) with � = (a1; : : : ; am+n)

m m m m m m
a1 an�1 an an+1 am+n�1 am+n

�@ @
�

� osp(2j2n) with � = (a1; : : : ; an+1)

m m m m
a1 a2 an an+1

�@ �
@

� osp(2mj2n) with � = (a1; : : : ; am+n)

m m m m m
a1 an�1 an an+1 am+n�2

�@
��

HH

man+m�1

m an+m

� osp(1j2n) with � = (a1; : : : ; an)

m m }
a1 an�1 an

@
�
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The superalgebra osp(2j2n) is of type I, while the superalgebras osp(2m +
1j2n) and osp(2mj2n) are of type II: in the �rst case, the odd part is the
direct sum of two irreducible representations of the even part, in the second
case it is an irreducible representation of the even part. The numbers ai are
constrained to satisfy the following conditions:

an is integer or half-integer for osp(2m+ 1j2n) and osp(2mj2n),
a1 is an arbitrary complex number for osp(2j2n).

The coordinates of � in the root space characterize a so(M) � sp(2n) rep-
resentation (M = 2m or M = 2m + 1). The so(M) representation can
be directly read on the Kac{Dynkin diagram, but the longest simple root
of sp(2n) is hidden behind the odd simple roots. From the knowledge of
(an; : : : ; am+n), it is possible to deduce the component b that � would have
with respect to the longest simple root:

in the osp(2m+ 1j2n) case
b = an � an+1 � : : :� am+n�1 � 1

2am+n

in the osp(2mj2n) case
b = an � an+1 � : : :� am+n�2 � 1

2(am+n�1 + am+n)

The number b has to be a non-negative integer.

The highest weight of a �nite representation of osp(M j2n) belongs therefore
to a so(M) � sp(2n) representation and thus one must have the following
consistency conditions:

b � 0

for osp(2m+ 1j2n); an+b+1 = : : : = an+m = 0 if b � m� 1

for osp(2mj2n); an+b+1 = : : : = an+m = 0 if b � m� 2

and an+m�1 = an+m if b = m� 1

We give below the atypicality conditions of the representations for the super-
algebras of the orthosymplectic series. If at least one of these conditions is
satis�ed, the representation is an atypical one. Otherwise, the representation
is typical, the dimension of which is given by the number dimV(�).
The reader will �nd in Part 3 tables of dimensions of representations for
the orthosymplectic superalgebras of small rank (see Tables 3.62{3.68). See
page 364 for explanations.

Lie superalgebras osp(2m+ 1j2n)

The atypicality conditions are

nX
q=i

aq �
jX

q=n+1

aq + 2n� i� j = 0
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nX
q=i

aq �
jX

q=n+1

aq � 2

m+n�1X
q=j+1

aq � am+n � 2m� i+ j + 1 = 0

with 1 � i � n � j � m+ n� 1

The dimensions of the typical representations are given by

dim

 
m m m m m m
a1 an�1 an an+1 an+m�1 an+m

�@ @
�

!
= 2(2m+1)n �

dim

 
m m m
a1 an�1 b�m� 1

2
�
@

!
� dim

 
m m m

an+1 an+m�1 an+m

�
@

!
that is

dimV(�) = 2(2m+1)n

�
Y

1�i�j�n�1

jP
q=i

aq + j � i+ 1

j � i+ 1

Y
n+1�i�j�n+m�1

jP
q=i

aq + j � i+ 1

j � i+ 1

�
Y

1�i�j�n

(
j�1P
q=i

+2
nP
q=j
�2

n+m�1P
q=n+1

)aq � an+m + 2n� 2m� i� j + 1

2n� i� j + 2

�
Y

n+1�i�j�n+m

j�1P
q=i

aq + 2
m+n�1P
q=j

aq + am+n + 2m� i� j + 1

2m� i� j + 1

Lie superalgebras osp(2j2n)

The atypicality conditions are

a1 �
iX

q=2

aq � i+ 1 = 0

a1 �
iX

q=2

aq � 2
n+1X
q=i+1

aq � 2n+ i� 1 = 0

with 1 � i � n

The dimensions of the typical representations are given by

dim

 
m m m m
a1 a2 an an+1

�@ �
@

!
= 22n � dim

 
m m m
a2 an an+1

�
@

!
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that is

dimV(�) = 22n
Y

2�i�j�n

jP
q=i

aq + j � i+ 1

j � i+ 1

�
Y

2�i�j�n+1

j�1P
q=i

aq + 2
n+1P
q=j

aq + 2n� i� j + 4

2n� i� j + 4

Lie superalgebras osp(2mj2n)

The atypicality conditions are

nX
q=i

aq �
jX

q=n+1

aq + 2n� i� j = 0 with 1 � i � n � j � m+ n� 1

nX
q=i

aq �
m+n�2X
q=n+1

aq � am+n + n�m� i+ 1 = 0 with 1 � i � n

nX
q=i

aq �
jX

q=n+1

aq � 2
m+n�2X
q=j+1

aq � am+n�1 � am+n � 2m� i+ j + 2 = 0

with 1 � i � n � j � m+ n� 2

The dimensions of the typical representations are given by

dim

0BB@ m m m m m
a1 an�1 an an+1 am+n�2

�@
��

HH

man+m�1

m an+m

1CCA = 22mn �

�dim
 

m m m
a1 an�1 b�m

�
@

!
� dim

 
m m

an+1 an+m�2
��

HH

man+m�1

m an+m

!
that is

dimV(�) = 22mn

�
Y

1�i�j�n�1

jP
q=i

aq + j � i+ 1

j � i+ 1

Y
n+1�i�j�n+m�1

jP
q=i

aq + j � i+ 1

j � i+ 1
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�
Y

n+1�i�j�n+m�2

j�1P
q=i

aq + 2
n+m�2P
q=j

aq + an+m�1 + an+m + 2m+ 2n� i� j

2m+ 2n� i� j

�
Y

1�i�j�n

(
j�1P
q=i

+2
nP
q=j
�2

n+m�2P
q=n+1

)aq � an+m�1 � an+m � 2m+ 2n� i� j + 1

2n� i� j + 2

�
Y

n+1�i�n+m�1

n+m�2P
q=i

aq + an+m +m� i

m� i

Lie superalgebras osp(1j2n)

The superalgebras osp(1j2n) carry the property of having only typical repre-
sentation (the Dynkin diagram of osp(1j2n) does not contain any grey dot).
One has

dimV(�) =
Y

1�i<j�n

j�1P
q=i

aq + 2
n�1P
q=j

aq + an + 2n� j � i+ 2

2n� j � i+ 2

�
Y

1�i<j�n

j�1P
q=i

aq + j � i

j � i
Y

1�i�n

2
n�1P
q=i

aq + an + 2n� 2i+ 1

2n� 2i+ 1

Moreover, the representations of osp(1j2n) can be put in a one-to-one corre-
spondence with those of so(2n+ 1) [77]. More precisely, one has

dim

 
m m }
a1 an�1 an

�
@

!
= dim

 
m m m
a1 an�1 an

�
@

!

as well as

sdim

 
m m }
a1 an�1 an

�
@

!
=

1

2n�1
dim

 
m m
a1 an�2

��

HH

m an�1

man�1+
an+1

!

(let us recall that dimV = dimV0+dimV1 while sdimV = dimV0�dimV1).
For more details, see refs. [40, 41, 50, 63, 77].
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2.38 Representations: reducibility

De�nition
Let G be a classical Lie superalgebra. A representation � : G ! EndV is
called irreducible if the G-module V has no G-submodules except trivial
ones. The G-module V is then called a simple module.

Otherwise the representation � is said to be reducible. In that case, one
has V = V 0 � V 00, V 00 being a complementary subspace of V 0 in V and
the G-submodule V 0 is an invariant subspace under �. If the subspace
V 00 is also an invariant subspace under �, the representation � is said to
be completely reducible. The G-module V is then called a semi-simple
module.

A representation which is reducible but not completely reducible is called
indecomposable.

De�nition
Two representations � and �0 of G being given, with representation spaces
V and V 0, one de�nes the direct sum ���0 with representation space V�V 0
and the direct (or tensor) product �
�0 with representation space V
V 0
of the two representations. The action of the representations � � �0 and
�
 �0 on the corresponding representation spaces is given by, for X 2 G,
~v 2 V and ~v 0 2 V 0:

(� � �0)(X)~v � ~v 0 = �(X)~v � �0(X)~v 0

(� 
 �0)(X)~v 
 ~v 0 = �(X)~v 
 ~v 0 + ~v 
 �0(X)~v 0

The representations � and �0 of G being irreducible, the tensor product �
�0
is a representation which is in general reducible. Notice however that, con-
trary to the Lie algebra case, in the Lie superalgebra case the tensor product
of two irreducible representations is not necessarily completely reducible. In
fact, one has the following theorem:

Theorem (Djokovic{Hochschild)
The only Lie superalgebras for which all �nite dimensional representa-
tions are completely reducible are the direct products of osp(1j2n) super-
algebras and semi-simple Lie algebras.

2.39 Representations: star and superstar repre-

sentations

The star and superstar representations of a classical Lie superalgebra are the
generalization of the hermitian representations of a simple Lie algebra. The



Lie Superalgebras 237

importance of the hermitian representations for simple Lie algebras comes
from the fact that the �nite dimensional representations of a compact simple
Lie algebra are equivalent to hermitian representations.

Let G = G0�G1 be a classical Lie superalgebra. One can de�ne two di�erent
adjoint operations as follows.

De�nition
An adjoint operation in G, denoted by y, is a mapping from G into G such
that:

� X 2 Gi ) Xy 2 Gi for i = 0; 1,

� (�X + �Y )y = ��Xy + ��Y y,

�
hh
X;Y

iiy
=
hh
Y y;Xy

ii
,

� (Xy)y = X,

where X;Y 2 G, �; � 2 C and ��; �� are the complex conjugate of �; �.

De�nition
A superadjoint operation in G, denoted by z, is a mapping from G into G
such that:

� X 2 Gi ) Xz 2 Gi for i = 0; 1,

� (�X + �Y )z = ��Xz + ��Y z,

�
hh
X;Y

iiz
= (�1)degX:deg Y

hh
Y z;Xz

ii
,

� (Xz)z = (�1)degXX,

where X;Y 2 G and �; � 2 C .

The de�nitions of the star and superstar representations follow immediately.

De�nition
Let G be a classical Lie superalgebra and � a representation of G acting
in a Z2-graded vector space V. Then � is a star representation of G if
�(Xy) = �(X)y and a superstar representation of G if �(Xz) = �(X)z for
all X 2 G.

The following properties hold:
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Property
1. Any star representation � of G in a graded Hilbert space V is com-

pletely reducible.

2. Any superstar representation � of G in a graded Hilbert space V is
completely reducible.

3. The tensor product � 
 �0 of two star representations (resp. to
superstar representations) � and �0 is a star representation (resp. a
superstar representation).

4. The tensor product � 
 �0 of two star representations � and �0 is
completely reducible.

Let us emphasize that the last property does not hold for superstar rep-
resentations (that is the tensor product of two superstar representations
is in general not completely reducible).

The classes of star and superstar representations of the classical Lie super-
algebras are the following:

{ the superalgebra A(m;n) has two classes of star representations and two
classes of superstar representations.
{ the superalgebras B(m;n) and D(m;n) have two classes of superstar rep-
resentations.
{ the superalgebra C(n + 1) has either two classes of star representations
and two classes of superstar representations, or one class of superstar rep-
resentations, depending on the de�nition of the adjoint operation in the Lie
algebra part.
{ the superalgebras F (4) and G(3) have two classes of superstar representa-
tions.
{ the superalgebra P (n) has neither star nor superstar representations.
{ the superalgebra Q(n) has two classes of star representations.

For more details, see ref. [65].

2.40 Representations: typicality and atypicality

Any representation of a basic Lie superalgebra G = G0 � G1 can be decom-
posed into a direct sum of irreducible representations of the even subalgebra
G0. The generators associated to the odd roots will transform a vector basis
belonging to a certain representation of G0 into a vector in another repre-
sentation of G0 (or into the null vector), while the generators associated to
the even roots will operate inside an irreducible representation of G0.
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The presence of odd roots will have another important consequence in the
representation theory of superalgebras. Indeed, one might �nd that in cer-
tain representations weight vectors, di�erent from the highest one specifying
the representation, are annihilated by all the generators corresponding to
positive roots. Such vector have, of course, to be decoupled from the repre-
sentation. Representations of this kind are called atypical, while the other
irreducible representations not su�ering this pathology are called typical.

More precisely, let G = G0�G1 be a basic Lie superalgebra with distinguished
Cartan subalgebra H. Let � 2 H� be an integral dominant weight. Denote
the root system of G by � = �0[�1. One de�nes �0 as the subset of roots

� 2 �0 such that �=2 =2 �1 and �1 as the subset of roots � 2 �1 such that
2� =2 �0. Let �0 be the half-sum of the roots of �+

0
, �0 the half-sum of the

roots of �
+
0 , �1 the half-sum of the roots of �+

1
, and � = �0 � �1.

De�nition
The representation � with highest weight � is called typical if

(� + �) � � 6= 0 for all � 2 �+
1

The highest weight � is then called typical.

If there exists some � 2 �+
1 such that (�+ �) � � = 0, the representation

� and the highest weight � are called atypical. The number of distinct
elements � 2 �

+
1 for which � is atypical is the degree of atypicality of

the representation �. If there exists one and only one � 2 �
+
1 such that

(� + �) � � = 0, the representation � and the highest weight � are called
singly atypical.

Denoting as before V(�) the Kac module (! 2.35) corresponding to the
integral dominant weight �, one has the following theorem:

Theorem
The Kac module V(�) is a simple G-module if and only if the highest
weight � is typical.

Properties
1. All the �nite dimensional representations of B(0; n) are typical.

2. All the �nite dimensional representations of C(n+1) are either typical
or singly atypical.

Let V be a typical �nite dimensional representation of G. Then the dimension
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of V(�) is given by

dimV(�) = 2dim�+

1

Y
�2�+

0

(� + �) � �
�0 � �

and

dimV0(�)� dimV1(�) = 0 if G 6= B(0; n)

dimV0(�)� dimV1(�) =
Y
�2�+

0

(� + �) � �
�0 � �

if G = B(0; n)

The fundamental representations of the basic Lie superalgebras sl(mjn) and
osp(mjn) (of dimension m + n) are atypical ones as well as the adjoint
representations of the basic Lie superalgebras G 6= sl(n � 1jn), osp(2n �
1j2n), osp(2nj2n), osp(2n + 2j2n), osp(1j2n) (of dimension dimG) (since
dimV0 � dimV1 6= 0).

For more details, see refs. [49, 50].

2.41 Representations: unitary superalgebras

A highest weight irreducible representation of sl(mjn) is characterized by its
Dynkin labels (! 2.35) drawn on the distinguished Dynkin diagram. The
di�erent diagrams are the following:

m m m m m
a1 an�1 an an+1 am+n�1

�@

The numbers ai are constrained: ai are non-negative integer for i = 1; : : : ; n�
1; n+ 1; : : : ;m+ n� 1, and an is an arbitrary real number.

For the atypical representations, the numbers ai have to satisfy one of the
following atypicality conditions (where 1 � i � n � j � m+ n� 1):

n�1X
k=i

ak �
jX

k=n+1

ak + an + 2n� i� j = 0

Otherwise, the representation under consideration is a typical one. Then its
dimension is given by

dimV(�) = 2mn
Y

1�i�j�n�1

q=jP
q=i

aq + j � i+ 1

j � i+ 1

Y
n+1�i�j�m+n�1

q=jP
q=i

aq + j � i+ 1

j � i+ 1
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The reader will �nd in Part 3 tables of dimensions of representations for the
unitary superalgebras of small rank (see Tables 3.69{3.72). See page 364 for
explanations.

For more details, see refs. [40, 42, 50].

2.42 Roots, root systems

Let G = G0 � G1 be a classical Lie superalgebra of dimension n. Let H be a
Cartan subalgebra of G. The superalgebra G can be decomposed as follows:

G =
M
�

G�

where

G� =
n
x 2 G

��� hh; xi = �(h)x; h 2 H
o

The set

� =
n
� 2 H�

���G� 6= 0
o

is by de�nition the root system of G. A root � is called even (resp. odd) if
G� \ G0 6= ; (resp. G� \ G1 6= ;). The set of even roots is denoted by �0 : it
is the root system of the even part G0 of G. The set of odd roots is denoted
by �1 : it is the weight system of the representation of G0 in G1. One has
� = �0 [�1. Notice that a root can be both even and odd (however this
only occurs in the case of the superalgebra Q(n)). The vector space spanned
by all the possible roots is called the root space. It is the dual H� of the
Cartan subalgebra H as vector space.

Except for A(1; 1), P (n) and Q(n), using the invariant bilinear form de�ned
on the superalgebra G, one can de�ne a bilinear form on the root space H�
by (�i; �j) = (Hi;Hj) where the Hi form a basis of H (! 2.2 and 2.23).
One has the following properties.

Properties
1. G(�=0) = H except for Q(n).

2. dimG� = 1 when � 6= 0 except for A(1; 1), P (2), P (3) and Q(n).

3. Except for A(1; 1), P (n) and Q(n), one has

�
hh
G�;G�

ii
6= 0 if and only if �; �; �+ � 2 �

� (G�;G�) = 0 for �+ � 6= 0
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� if � 2 � (resp. �0, �1), then �� 2 � (resp. �0, �1)

� � 2 � =) 2� 2 � if and only if � 2 �1 and � � � 6= 0

� �0 and �1 are invariant under the action of the Weyl group of G0
The roots of a basic Lie superalgebra do not satisfy many properties of the
roots of a simple Lie algebra. In particular, the bilinear form on H� has
in general pseudo-Euclidean signature (except in the case of B(0; n)). The
roots of a basic Lie superalgebra can be classi�ed into three classes:

{ roots � such that � � � 6= 0 and 2� is not a root. Such roots will be called
even or bosonic roots.
{ roots � such that � � � 6= 0 and 2� is still a root (of bosonic type). Such
roots will be called odd or fermionic roots of non-zero length.
{ roots � such that � � � = 0. Such roots will be called odd or fermionic
roots of zero length (or also isotropic odd roots).

The root systems of the basic Lie superalgebras are given in Table 2.5.

Table 2.5: Root systems of the basic Lie superalgebras.

superalgebra G even root system �0 odd root system �1

A(m� 1; n� 1) "i � "j ; �i � �j �("i � �j)
B(m;n) �"i � "j ; �"i; ��i � �j ; �2�i �"i � �j; ��i
B(0; n) ��i � �j ; �2�i ��i
C(n+ 1) ��i � �j ; �2�i �"� �i
D(m;n) �"i � "j ; ��i � �j ; �2�i �"i � �j
F (4) ��; �"i � "j; �"i 1

2(�"1 � "2 � "3 � �)
G(3) �2�; �"i; "i � "j ��; �"i � �

D(2; 1;�) �2"i �"1 � "2 � "3

For the superalgebras A(m� 1; n � 1), B(m;n), D(m;n), the indices i 6= j
run from 1 to m for the vectors " and from 1 to n for the vectors �. For the
superalgebras C(n+ 1), the indices i 6= j run from 1 to n for the vectors �.
For the superalgebras F (4), G(3), D(2; 1;�), the indices i 6= j run from 1 to
3 for the vectors ", with the condition "1 + "2 + "3 = 0 in the case of G(3)
(see Tables 3.52{3.60 for more details). For the superalgebras A(n; n), one
has to add the condition

Pn
i=1 "i =

Pn
i=1 �i.

! 2.2 Cartan matrix, 2.23 Killing form, 2.45 Simple root systems.

For more details, see refs. [47, 48].



Lie Superalgebras 243

2.43 Schur's Lemma

The Schur's Lemma is of special importance. Let us stress however that in
the superalgebra case it takes a slightly di�erent form than in the algebra
case [48].

Lemma
Let G = G0 � G1 be a basic Lie superalgebra and � be an irreducible
representation of G in a complex linear vector space V. Let

C(�) =
n
� : V ! V

��� hh�(X); �
ii
= 0 ; 8X 2 G

o
where � 2 EndV. Then either

� C(�) is a multiple of the identity operator I.
or
� If dimG0 = dimG1, C(�) =

n
I; �
o
where � is a non-singular operator

in G permuting G0 and G1.

2.44 Serre{Chevalley basis

The Serre presentation of a Lie algebra consists in describing the algebra in
terms of simple generators and relations, the only parameters being the en-
tries of the Cartan matrix of the algebra. For the basic Lie superalgebras, the
presentation is quite similar to the Lie algebra case but with some subtleties.

Let G be a basic Lie superalgebra of rank r with Cartan subalgebra H =
fh1; : : : ; hrg and simple root system �0 = f�1; : : : ; �rg and denote by e�i
(1 � i � r) the corresponding simple root generators. If � is a subset of

I =
n
1; : : : ; r

o
, the Z2-gradation is de�ned by deg e�i = 0 if i =2 � and

deg e�i = 1 if i 2 � . The de�ning (super)commutation relations areh
hi; hj

i
= 0

h
hi; e

�
j

i
= �Aij e�jhh

e+i ; e
�
j

ii
= hi �ij

n
e�i ; e

�
i

o
= 0 if Aii = 0

and the Serre relations read as�
ad e�i

�1� eAij e�j = 0

where the matrix eA = ( eAij) is deduced from the Cartan matrix A = (Aij)
of G by replacing all its positive o�-diagonal entries by �1. Here ad denotes
the adjoint action:

(adX)Y = XY � (�1)degX: deg Y Y X
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In the case of superalgebras however, the description given by these Serre
relations leads in general to a bigger superalgebra than the superalgebra un-
der consideration. It is necessary to write supplementary relations involving
more than two generators, in order to quotient the bigger superalgebra and
recover the original one. As one can imagine, these supplementary conditions
appear when one deals with odd roots of zero length (that is Aii = 0).

The supplementary conditions depend on the di�erent kinds of vertices which
appear in the Dynkin diagrams. For the superalgebrasA(m;n) withm;n � 1
and B(m;n), C(n+ 1), D(m;n), the vertices can be of the following type:

v m v�@

m� 1 m m+ 1

v m m�@

m� 1 m m+ 1

�
@

type I type IIa

v m }�@

m� 1 m m+ 1

�
@

vm� 1
��
�

HHH

m m

mm+ 1

�@

�@

type IIb type III

m m m�@ �@

m� 1 m m+ 1

�
@

v m m m�@

m� 2 m� 1 m m+ 1

�
@

type IV type V

where the small black dots represent either white dots associated to even
roots or grey dots associated to isotropic odd roots.

The supplementary conditions take the following form:

- for the type I, IIa and IIb vertices:

(ad e�m)(ad e
�
m+1)(ad e

�
m)e

�
m�1 = (ad e�m)(ad e

�
m�1)(ad e

�
m)e

�
m+1 = 0

- for the type III vertex:

(ad e�m)(ad e
�
m+1)e

�
m�1 � (ad e�m+1)(ad e

�
m)e

�
m�1 = 0

- for the type IV vertex:

(ad e�m)
�h
(ad e�m+1)(ad e

�
m)e

�
m�1; (ad e

�
m)e

�
m�1

i�
= 0

- for the type V vertex:

(ad e�m)(ad e
�
m�1)(ad e

�
m)(ad e

�
m+1)(ad e

�
m)(ad e

�
m�1)e

�
m�2 = 0
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For A(m;n) with m = 0 or n = 0, F (4) and G(3), it is not necessary to
impose supplementary conditions.

For more details, see refs. [21, 53, 81, 101].

2.45 Simple root systems

Let G = G0 � G1 be a basic Lie superalgebra with Cartan subalgebra H
and root system � = �0 [�1. Then G admits a Borel decomposition G =

N+�H�N� where N+ and N� are subalgebras such that
h
H;N+

i
� N+

and
h
H;N�

i
� N� with dimN+ = dimN�.

If G = HL� G� is the root decomposition of G, a root � is called positive
if G� \ N+ 6= ; and negative if G� \ N� 6= ;. A root is called simple if it
cannot be decomposed into a sum of positive roots. The set of all simple
roots is called a simple root system of G and is denoted here by �0.

Let �0 be the half-sum of the positive even roots, �1 the half-sum of the
positive odd roots and � = �0 � �1. Then one has for a simple root �i,
� ��i = 1

2 �i ��i. In particular, one has � ��i = 0 if �i 2 �0
1
with �i ��i = 0.

We will call B = H � N+ a Borel subalgebra of G. Notice that such a
Borel subalgebra is solvable but not maximal solvable. Indeed, adding to
such a Borel subalgebra B a negative simple isotropic root generator (that
is a generator associated to an odd root of zero length, ! 2.42), the ob-
tained subalgebra is still solvable since the superalgebra sl(1j1) is solvable.
However, B contains a maximal solvable subalgebra B0 of the even part G0.
In general, for a basic Lie superalgebra G, there are many inequivalent classes
of conjugacy of Borel subalgebras (while for the simple Lie algebras, all Borel
subalgebras are conjugate). To each class of conjugacy of Borel subalgebras
of G is associated a simple root system�0. Hence, contrary to the Lie algebra
case, to a given basic Lie superalgebra G will be associated in general many
inequivalent simple root systems, up to a transformation of the Weyl group
W (G) of G (under a transformation of W (G), a simple root system will be
transformed into an equivalent one with the same Dynkin diagram).

The generalization of the Weyl group (! 2.63) for a basic Lie superalgebra
G gives a method for constructing all the simple root systems of G and hence
all the inequivalent Dynkin diagrams (! 2.15) of G. A simple root system
�0 being given, from any root � 2 �0 such that (�; �) = 0, one constructs
the simple root system w�(�

0) where w� is the generalized Weyl re
ection
with respect to � and one repeats the procedure on the obtained system
until no new basis arises.
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In the set of all inequivalent simple root systems of a basic Lie superalgebra,
there is one simple root system that plays a particular role: the distinguished
simple root system.

De�nition
For each basic Lie superalgebra, there exists a particular simple root
system for which the number of odd roots is equal to one. It is constructed
as follows. Consider the distinguished Z-gradation of G (! 2.8): G =
�i2Z Gi. The even simple roots are given by the simple root system of
the Lie subalgebra G0 and the odd simple root is the lowest weight of the
representation G1 of G0. Such a simple root system is called a distinguished
simple root system. Two di�erent distinguished simple root systems are
related by means of Weyl re
ections (! 1.93) with respect to the even
roots; hence all distinguished simple root systems are equivalent.

Table 2.6: Distinguished simple root systems of the basic Lie superalgebras.

superalgebra G distinguished simple root system �0

A(m� 1; n� 1) �1 � �2; : : : ; �n�1 � �n; �n � "1; "1 � "2; : : : ; "m�1 � "m
B(m;n) �1 � �2; : : : ; �n�1 � �n; �n � "1;

"1 � "2; : : : ; "m�1 � "m; "m
B(0; n) �1 � �2; : : : ; �n�1 � �n; �n
C(n) "� �1; �1 � �2; : : : ; �n�1 � �n; 2�n

D(m;n) �1 � �2; : : : ; �n�1 � �n; �n � "1;
"1 � "2; : : : ; "m�1 � "m; "m�1 + "m

F (4) 1
2(� � "1 � "2 � "3); "3; "2 � "3; "1 � "2

G(3) � + "3; "1; "2 � "1
D(2; 1;�) "1 � "2 � "3; 2"2; 2"3

Example
Consider the basic Lie superalgebra sl(2j1) with Cartan generators

H;Z and root generators E�, F�, F�
. The root system is given by

� = f�("1 � "2);�("1 � �);�("2 � �)g. One can �nd two inequiv-

alent Borel subalgebras, namely B0 = fH;Z;E+; F
+
; F

�g and B00 =

fH;Z;E+; F
+
; F+g, with positive root systems �0+ = f"1 � "2; "1 �

�; "2 � �g and �00+ = f"1 � "2; "1 � �;�"2 + �g respectively.
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The corresponding simple root systems are �00 = f"1� "2; "2� �g (called
distinguished simple root system) and �000 = f"1 � �;�"2 + �g (called
fermionic simple root system). The fermionic simple root system �000

is obtained from the distinguished one �00 by the Weyl transformation
associated to the odd root "2��: w"2��("2��) = �"2+� and w"2��("1�
"2) = "1 � �. �

Table 2.6 lists the distinguished simple root systems of the basic Lie super-
algebras in terms of the orthogonal vectors "i and �i. For more details,
see ref. [47]. See also Tables 3.52{3.60 for the corresponding distinguished
Dynkin diagrams and Table 3.61 for the list of Dynkin diagrams of the basic
Lie superalgebras of rank r � 4.

2.46 Simple and semi-simple Lie superalgebras

De�nition
Let G = G0�G1 be a non-Abelian Lie superalgebra. The Lie superalgebra
G is called simple if it does not contain any non-trivial ideal. The Lie
superalgebra G is called semi-simple if it does not contain any non-trivial
solvable ideal.

A necessary condition for a Lie superalgebra G = G0�G1 (with G1 6= ;) to be
simple is that the representation of G0 on G1 is faithful and

n
G1;G1

o
= G0.

If the representation of G0 on G1 is irreducible, then G is simple.

Recall that if A is a semi-simple Lie algebra, then it can be written as the
direct sum of simple Lie algebras Ai: A = �iAi. This is not the case for
superalgebras. However, the following properties hold.

Properties
1. If G is a Lie superalgebra and I is the maximal solvable ideal, then

the quotient G=I is a semi-simple Lie superalgebra. However, unlike
the case of Lie algebras, one cannot write here G = G2 I where G
is a direct sum of simple Lie superalgebras.

2. If G is a Lie superalgebra with a non-singular Killing form, then G is
a direct sum of simple Lie superalgebras with non-singular Killing
form.

3. If G is a Lie superalgebra, all of whose �nite dimensional represen-
tations are completely reducible, then G is a direct sum of simple
Lie algebras and osp(1jn) simple superalgebras.
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4. Let G = G0 �G1 be a Lie superalgebra such that its even part G0 is
a semi-simple Lie algebra. Then G is an elementary extension of a
direct sum of Lie algebras or one of the Lie superalgebras A(n; n),
B(m;n), D(m;n), D(2; 1;�), F (4), G(3), P (n), Q(n), DerQ(n) or
G(S1; : : : ; Sr;L). (For the de�nition of G(S1; : : : ; Sr;L), see ref.
[47]).

The elementary extension of a Lie superalgebra G = G0 � G1 is

de�ned as G2 I where I is an odd commutative ideal and
n
G1; I

o
=

0.

For more details, see refs. [47, 75].

2.47 Spinors (in the Lorentz group)

The algebra of the Lorentz group is o(1; 3) whose generators M�� = �M��

satisfy the commutation relations (�; � = 0; 1; 2; 3)h
M�� ;M��

i
= i(�g��M�� + g��M�� + g��M�� � g��M��)

where the metric is g�� = 2��0��0� ��� = diag(1;�1;�1;�1) and g��g�� =
��� .

If we de�ne Ji =
1
2 "ijkMjk and Ki =M0i, we haveh

Ji; Jj

i
= i "ijk Jk ;

h
Ji;Kj

i
= i "ijkKk ;

h
Ki;Kj

i
= �i "ijk Jk

where i; j; k = 1; 2; 3 and "ijk is the completely antisymmetric rank three
tensor, "123 = 1.

De�ning Mi =
1
2 (Ji + iKi) and Ni =

1
2 (Ji � iKi), the Lorentz algebra can

be rewritten as:h
Mi;Mj

i
= i "ijkMk ;

h
Ni; Nj

i
= i "ijkNk ;

h
Mi; Nj

i
= 0

The �nite dimensional irreducible representations of the Lorentz group are
labelled by a pair of integers or half-integers (m;n); the representation (m;n)
is of dimension (2m+1)(2n+1). These representations are non-unitary since
the generators Mi and Ni can be represented by �nite dimensional hermi-

tian matrices, hence Ji is hermitian (Jyi = Ji) while Ki is antihermitian

(Ky
i = �Ki). Because of the relation Ji =Mi +Ni, the combination m+ n

is the spin of the representation. Representations with half-integer spin
(resp. integer spin) are called spinor (resp. tensor) representations. The



Lie Superalgebras 249

two representations (1=2; 0) and (0; 1=2) are the fundamental spinor repre-
sentations: all the spinor and tensor representations of the Lorentz group
can be obtained by tensorization and symmetrization of these.

The �i being the Pauli matrices, one has in the representation (1=2; 0)

Mi =
1
2 �

i and Ni = 0 that is Ji =
1
2 �

i and Ki = � i
2 �

i

and in the representation (0; 1=2)

Mi = 0 and Ni =
1
2 �

i that is Ji =
1
2 �

i and Ki =
i
2 �

i

The vectors of the representation spaces of the spinor representations are
called (Weyl) spinors under the Lorentz group. De�ne �� = (I; �i) and
�� = (I;��i).
Under a Lorentz transformation ��� , a covariant undotted spinor  � (resp.
contravariant undotted spinor  �) transforms as

 � 7! S �
�  � and  � 7!  � (S�1) �

�

where the matrix S is related to the matrix ��� by

��� =
1
2 tr(S��S

y��)

The spinors  � (or  �) transform as the (1=2; 0) representation of the
Lorentz group.

The generators of the Lorentz group in the spinor representations (1=2; 0)
are given by

1
2 �

�� = i
4 (�

��� � ����)
��� is a self-dual rank two tensor:

��� = 1
2i "

�������

where "���� is the completely antisymmetric rank four tensor with "0123 = 1
and "���� = �"����.
Under a Lorentz transformation ��� , a covariant dotted spinor  _� (resp.

contravariant dotted spinor  
_�
) transforms as

 _� 7!  _� (S
y)

_�

_�
and  

_� 7! (Sy
�1
) _� _�

 
_�

where the matrix S is related to the matrix ��� by

��� =
1
2 tr((S

y)�1��S�1��)
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The spinors  _� (or  
_�
) transform as the (0; 1=2) representation of the

Lorentz group.

The generators of the Lorentz group in the spinor representations (0; 1=2)
are given by

1
2 �

�� = i
4 (�

��� � ����)
��� is an antiself-dual rank two tensor:

��� = � 1
2i "

�������

The relation between covariant and contravariant spinors is given by means
of the two-dimensional Levi-Civit�a undotted tensors "��; "

�� and dotted

tensors " _� _�; "
_� _� such that "�� = "�� = �" _� _� = �" _�

_� and "12 = 1:

 � = "��  � ;  � =  � "�� ;  
_�
=  _� "

_� _� ;  _� = " _� _�  
_�

Notice that  
_�
= ( �)� and  _� = ( �)

� where the star denotes the complex
conjugation, and also " _� _� = �("��)�.
Finally, the rule for contracting undotted and dotted spinor indices is the
following:

 � �  ��� = � ��� and  � �  _��
_�
= � _�

� _�

Under a Lorentz transformation ��� , a covariant vector  � (resp. contravari-
ant vector  �) transforms as

 � 7!  � �
�
� and  � 7! ���  

�

The relation between covariant and contravariant vectors is given by means
of the metric tensor g�� :  � = g�� � and  � = g�� 

� .

From the relations �� = ���S��Sy and �� = ���(Sy)�1��S�1, one can
assign to the matrices �� and �� two spinor indices, one dotted and one
undotted, as follows: ��� _� and �� _��.

There is a one-to-one correspondence between a vector  � and a bispinor
 _�� or  � _�:

 _�� =  � � _��
� and  � = 1

2  
_�� ��� _�

 � _� =  � � � _�
� and  � = 1

2  
� _� �� _��

The vectors  � (or  �) transform as the (1=2; 1=2) representation.
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The space inversion leaves the rotation generators Ji invariant but changes
the sign of the boost generatorsKi. It follows that under the space inversion,
the undotted Weyl spinors are transformed into dotted ones and vice versa.
On the (reducible) representation (1=2; 0)� (0; 1=2), the space inversion acts
in a well-de�ned way. The corresponding vectors in the representation space
are called Dirac spinors. In the Weyl representation, the Dirac spinors are
given by

	D =

�
 �
� _�

�
Under a Lorentz transformation ��� , a Dirac spinor 	D transforms as

	D 7! L	D =

�
S(��� ) 0

0 S(���
y
)�1

��
 �
� _�

�
=

�
S(��� ) �

S(���
y
)�1 � _�

�
The generators of the Lorentz group in the (1=2; 0)� (0; 1=2) representation
are given by

��� =

�
��� 0
0 ���

�
= i

2

�
���� � ���� 0

0 ���� � ����
�
= i

2

h

�; 
�

i
where the matrices 
�, called the Dirac matrices, are given by (in the Weyl
representation)


� =

�
0 ��

�� 0

�
They satisfy the Cli�ord algebra (! 2.10) in four dimensions:n


�; 
�
o
= 
� 
� + 
� 
� = 2g��

One de�nes also the 
5 matrix by 
5 = i
0
1
2
3 such that
n

5; 


�
o
= 0,


25 = I and 
y5 = 
5.

The adjoint spinor 	 and the charge conjugate spinors 	c and 	
c
of a

Dirac spinor 	 =

�
 �
� _�

�
are de�ned by 	 =

�
��  _�

�
, 	c =

 
��

 
_�

!
and 	

c
= ( � � _�). The spinors 	 and 	c are related through the charge

conjugation matrix C by 	c = C	
t
. The six matrices C; 
�
5C; 
5C are

antisymmetric and the ten matrices 
�C;���C are symmetric. They form
a set of 16 linearly independent matrices.

The charge conjugation matrix C satis�es the following relations:

C2 = �I ; CCy = CyC = I ;

C
�C�1 = �(
�)t ; C
5C
�1 = (
5)

t ; C
5

�C�1 = (
5


�)t
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A Majorana spinor is a Dirac spinor such that 	 = 	c. For such a spinor,
there is a relation between the two Weyl components: a Majorana spinor

	 has the form 	 =

 
 �

 
_�

!
. In the Majorana representation of the 


matrices, the components of a Majorana spinor are all real and the 
 matrices
are all purely imaginary.

The 
 matrices are given, in the Weyl representation, by


0 =

�
0 �0

�0 0

�

i =

�
0 �i

��i 0

�

5 =

�
I 0
0 �I

�
C =

� �i�2 0
0 i�2

�

Another used representation of the 
 matrices is the Dirac representation:


0 =

�
�0 0
0 ��0

�

i =

�
0 �i

��i 0

�

5 =

�
0 I

I 0

�
C =

�
0 �i�2

�i�2 0

�

Finally, in the Majorana representation, one has:


1 =

�
i�3 0
0 i�3

�

2 =

�
0 ��2
�2 0

�

3 =

� �i�1 0
0 �i�1

�


0 =

�
0 �2

�2 0

�

5 =

�
�2 0
0 ��2

�
C =

�
0 �i�2

�i�2 0

�

The 
 matrices satisfy the following relations (independent of the chosen
representation):


0
�
0 = 
�y ; 
0
5

0 = �
5y ; 
0
5


�
0 = (
5

�)y

There exist also very nice contraction and trace formulae that are extremely
useful for example in the calculation of Feynman graphs:


�
� = 4 ; 
�
�
� = �2
� ; 
�
�
�
� = 4g�� ; 
�
�
�
�
� = �2
�
�
�

and

tr(
�) = tr(
5) = tr(
5

�) = tr(
5


�
�) = 0

tr(
� 
�) = 4g��

tr(
�
�
�
�) = 4(g��g�� � g��g�� + g��g��)

tr(
5

�
�
�
�) = �4i "����
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2.48 Strange superalgebras P (n)

We consider the superalgebra A(n � 1; n � 1) and P (n � 1) the subalgebra
of A(n� 1; n� 1) generated by the 2n� 2n matrices of the form�

� S
A ��t

�
where � are sl(n) matrices, S and A are n�n symmetric and antisymmetric
complex matrices which can be seen as elements of the twofold symmetric
representation ([2] in Young tableau notation) of dimension n(n+ 1)=2 and
of the (n � 2)-fold antisymmetric representation ([1n�2] in Young tableau
notation) of dimension n(n � 1)=2 respectively. The Z-gradation of the
superalgebra P (n�1) being G = G�1�G0�G1 where G0 = sl(n), G1 = [2] and
G�1 = [1n�2], the subspaces Gi satisfy the following commutation relationsh

G0;G0
i
� G0

h
G0;G�1

i
� G�1n

G1;G1
o
=
n
G�1;G�1

o
= 0

n
G1;G�1

o
� G0

The Z-gradation is consistent: G0 = G0 and G1 = G�1 � G1.
De�ning the Cartan subalgebraH as the Cartan subalgebra of the even part,
the root system � = �0 [�1 of P (n� 1) can be expressed in terms of the
orthogonal vectors "1; : : : ; "n as

�0 =
n
�ij = "i � "j

o
and

�1 =
n
� �ij = �

 
"i + "j � 2

n

nX
k=1

"k

!
; 
i = 2"i � 2

n

nX
k=1

"k

o
Denoting by Hi the Cartan generators, by E� the even root generators and
by E� ; E
 the odd root generators of P (n � 1), the commutation relations
in the Cartan{Weyl basis are the following:h

Hk; E�ij

i
= (�ik � �jk � �i;k+1 + �j;k+1)E�ijh

Hk; E�ij

i
= (�ik + �jk � �i;k+1 � �j;k+1)E�ijh

Hk; E��ij
i
= �(�ik + �jk � �i;k+1 � �j;k+1)E��ijh

Hk; E
i

i
= 2(�ik � �i;k+1)E
i
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h
E�ij ; E�kl

i
= �jkE�il � �ilE�kjh

E�ij ; E��ij
i
=

j�1X
k=i

Hk

h
E�ij ; E�kl

i
=

(
�jkE�il + �jlE�ik if (i; j) 6= (k; l)

E
i if (i; j) = (k; l)h
E�ij ; E��kl

i
=

( ��ikE��jl + �ilE��jk if (i; j) 6= (k; l)

0 if (i; j) = (k; l)h
E�ij ; E
k

i
= �jkE�ikn

E��ij ; E
k
o
= ��ikE�kj + �jkE�ki

n
E�ij ; E��kl

o
=

8>>><>>>:
��ikE�jl + �ilE�jk � �jkE�il + �jlE�ik

if (i; j) 6= (k; l)
j�1X
k=i

Hk if (i; j) = (k; l)n
E�ij ; E�kl

o
=
n
E��ij ; E��kl

o
=
n
E�ij ; E
k

o
= 0

Let us emphasize that P (n) is a non-contragredient simple Lie superalgebra,
that is the number of positive roots and the number of negative roots are
not equal. Moreover, since every bilinear form is identically vanishing in
P (n), it is impossible to de�ne a non-degenerate scalar product on the root
space. It follows that the notions of Cartan matrix and Dynkin diagram
are not de�ned for P (n). However, using an extension of P (n) by suitable
diagonal matrices, one can construct a non-vanishing bilinear form on the
Cartan subalgebra of this extension and therefore one can generalize to this
case the notions of Cartan matrix and Dynkin diagram.

! 2.31 Oscillator realization: strange series.

For more details, see ref. [24].

2.49 Strange superalgebras Q(n)

We consider the superalgebra sl(njn) and eQ(n�1) the subalgebra of sl(njn)
generated by the 2n� 2n matrices of the form�

A B
B A

�
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where A andB are sl(n) matrices. The even part of the superalgebra eQ(n�1)
is the Lie algebra G0 = sl(n) � U(1) of dimension n2 and the odd part
is the adjoint representation G1 of sl(n) of dimension n2 � 1. The even
generators of G0 are divided into the sl(n) Cartan generators Hi with 1 �
i � n � 1, the U(1) generator Z and the n(n � 1) root generators Eij with
1 � i 6= j � n of sl(n). The odd root generators of G1 are also divided
into two parts, Fij with 1 � i 6= j � n and Ki with 1 � i � n � 1. This

superalgebra eQ(n � 1) is not a simple superalgebra: in order to obtain a
simple superalgebra, one should factor out the one-dimensional center, as in
the case of the sl(njn) superalgebra. We will denote by Q(n� 1) the simple

superalgebra eQ(n� 1)=U(1).

Following the de�nition of the Cartan subalgebra (! 2.3), the strange super-
algebra Q(n � 1) has the property that the Cartan subalgebra H does not
coincide with the Cartan subalgebra of the even part sl(n), but admits also
an odd part: H \ G1 6= ;. More precisely, one has

H = H0 �H1

where H0 is spanned by the Hi generators and H1 by the Ki generators (1 �
i � n � 1). However, since the Ki generators are odd, the root generators
Eij and Fij are not eigenvectors of H1. It is convenient in this case to give
the root decomposition with respect to H0 = H\G0 instead of H. The root
system � of Q(n� 1) coincide then with the root system of sl(n). One has

G = G0 � G1 = H0 �
�M
�2�
G�
�

with dimG(� 6=0) = 2 and dimG(�=0) = n

Moreover, since dimG� \ G0 6= ; and dimG� \ G1 6= ; for any non-zero root
�, the non-zero roots of Q(n� 1) are both even and odd.

Denoting by Hi the Cartan generators, by Eij the even root generators and

by Fij the odd root generators of eQ(n), the commutation relations in the
Cartan{Weyl basis are the following:h

Hi;Hj

i
=
h
Hi;Kj

i
= 0n

Ki;Kj

o
=

2

n

�
2�ij � �i;j+1 � �i;j�1

� 
Z �

n�1X
k=1

kHk

!

+2(�ij � �i;j+1)
n�1X
k=i

Hk + 2(�ij � �i;j�1)
n�1X
k=i+1

Hkh
Hk; Eij

i
= (�ik � �jk � �i;k+1 + �j;k+1)Eij
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h
Hk; Fij

i
= (�ik � �jk � �i;k+1 + �j;k+1)Fijh

Kk; Eij

i
= (�ik � �jk � �i;k+1 + �j;k+1)Fijn

Kk; Fij

o
= (�ik + �jk � �i;k+1 � �j;k+1)Eijh

Eij ; Ekl

i
= �jkEil � �ilEkj (i; j) 6= (k; l)h

Eij ; Eji

i
=

j�1X
k=i

Hkh
Eij ; Fkl

i
= �jkFil � �ilFkj (i; j) 6= (k; l)h

Eij ; Fji

i
=

j�1X
k=i

Kkn
Fij ; Fkl

o
= �jkEil + �ilEkj (i; j) 6= (k; l)

n
Fij ; Fji

o
=

2

n
Z +

n� 2

n

0@2 n�1X
k=i

kHk � n
n�1X
k=i

Hk � n
n�1X
k=j

Hk

1A
! 2.3 Cartan subalgebras, 2.31 Oscillator realization: strange series.

2.50 Subsuperalgebras: regular and singular sub-

superalgebras

Regular subsuperalgebras

De�nition
Let G be a basic Lie superalgebra. Consider its canonical root decompo-
sition, where H is a Cartan subalgebra of G and � its corresponding root
system (! 2.42):

G = H�
M
�2�
G�

A subsuperalgebra G0 of G is called regular (by analogy with the algebra
case) if it has the root decomposition

G0 = H0 �
M
�02�0

G0�0

where H0 � H and � � �0. The semi-simplicity of G0 will be insured if
to each �0 2 �0 then ��0 2 �0 and H0 is the linear closure of �0.
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The method for �nding the regular semi-simple sub(super)algebras of a given
basic Lie superalgebra G is completely analogous to the usual one for Lie
algebras by means of extended Dynkin diagrams. However, one has now to
consider all the Dynkin diagrams associated to the inequivalent simple root
systems. For a given simple root system �0 of G, one considers the associated
Dynkin diagram. The corresponding extended simple root system is b�0 =
�0[f	g where 	 is the lowest root with respect to �0, to which is associated
the extended Dynkin diagram. Now, if one deletes arbitrarily some dot(s)
of the extended diagram, one obtains some connected Dynkin diagram or
a set of disjointed Dynkin diagrams corresponding to a regular semi-simple

sub(super)algebra of G. Indeed, taking away one or more roots from b�0,
one is left with a set of independent roots which constitute the simple root
system of a regular semi-simple subsuperalgebra of G. Then repeating the
same operation on the obtained Dynkin diagrams { that is adjunction of a
dot associated to the lowest root of a simple part and cancellation of one
arbitrary dot (or two in the unitary case) { as many time as necessary, one
obtains all the Dynkin diagrams associated with regular semi-simple basic
Lie sub(super)algebras. In order to get the maximal regular semi-simple
sub(super)algebras of the same rank r of G, only the �rst step has to be
achieved. The other possible maximal regular subsuperalgebras of G, if they
exist, will be obtained by deleting only one dot in the non-extended Dynkin
diagram of G and will be therefore of rank r � 1.

Table 2.7 lists the maximal regular semi-simple sub(super)algebras for the
basic Lie superalgebras.

Singular subsuperalgebras

De�nition
Let G be a basic Lie superalgebra. A subsuperalgebra G0 of G is called
singular if it is not regular.

Some of the singular subsuperalgebras of the basic Lie superalgebras can be
found by the folding technique. Let G be a basic Lie superalgebra, with non-
trivial outer automorphism (Out(G) does not reduce to the identity). Then,
there exists at least one Dynkin diagram of G which has the symmetry given
by Out(G). It can be seen that each symmetry � exhibited by the Dynkin
diagram induces a direct construction of the subsuperalgebra G0 invariant
under the G outer automorphism associated to � . Indeed, if the simple root
� is transformed into �(�), then 1

2(� + �(�)) is � -invariant since �2 = 1,
and appears as a simple root of G0 associated to the generators E� + E�(�),
the generator E� (resp. E�(�) corresponding to the root � (resp. �(�)). A
Dynkin diagram of G0 will therefore be obtained by folding the Z2-symmetric
Dynkin diagram of G, that is by transforming each couple (�; �(�)) into the
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Table 2.7: Maximal regular sub(super)algebras of the basic Lie super-
algebras.

superalgebras subsuperalgebras

A(m;n) A(i; j)� A(i0; j0) (i+ i0 = m� 1 and j + j0 = n� 1)
Am � An

B(m;n) B(i; j)�D(i0; j0) (i+ i0 = m and j + j0 = n)
Bm � Cn
D(m;n)

C(n+ 1) Ci � C(n� i+ 1) A(m� 1; n� 1) Cn

D(m;n) D(i; j)�D(i0; j0) (i+ i0 = m and j + j0 = n)
Dm � Cn

F4 A1 �B3 A2 � A(0; 1) A1 �D(2; 1; 2)
A(0; 3) C(3)

G2 A1 �G2 A1 �B(1; 1) A2 �B(0; 1)
A(0; 2) D(2; 1; 3)

D(2; 1;�) A1 � A1 �A1 A(0; 1)

root 1
2(�+�(�)) of G0. One obtains the following invariant subsuperalgebras

(which are singular):

superalgebra G singular subsuperalgebra G0
sl(2m+ 1j2n) osp(2m+ 1j2n)
sl(2mj2n) osp(2mj2n)
osp(2mj2n) osp(2m� 1j2n)
osp(2j2n) osp(1j2n)

! 2.3 Cartan subalgebras, 2.15 Dynkin diagrams, 2.42 Roots, root systems,
2.46 Simple and semi-simple Lie superalgebras.

For more details, see ref. [92].

2.51 Superalgebra, subsuperalgebra

De�nition
Let A be an algebra over a �eld K of characteristic zero (usually K = R or
C ) with internal laws + and �. One sets Z2 = Z=2Z = f0; 1g. A is called
a superalgebra or Z2-graded algebra if A can be written into a direct sum
of two spaces A = A0 �A1, such that
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A0 � A0 � A0; A0 � A1 � A1; A1 � A1 � A0

Elements X 2 A0 are called even or of degree degX = 0 while elements
X 2 A1 are called odd or of degree degX = 1.

One de�nes the Lie superbracket or supercommutator of two elements X and
Y by hh

X;Y
ii
= X � Y � (�1)degX: deg Y Y �X

A superalgebra A is called associative if (X � Y ) � Z = X � (Y � Z) for all
elements X;Y;Z 2 A.
A superalgebra A is called commutative if X � Y = Y �X for all elements
X;Y 2 A.

De�nition
A (graded) subalgebra K = K0 �K1 of a superalgebra A = A0 �A1 is a
non-empty set K � A which is a superalgebra with the two composition
laws induced by A such that K0 � A0 and K1 � A1.

De�nition
A homomorphism � from a superalgebra A into a superalgebra A0 is a
linear application from A into A0 which respects the Z2-gradation, that
is �(A0) � A00 and �(A1) � A01.

Let A and A0 be two superalgebras. One de�nes the tensor product A
A0
of the two superalgebras by

(X1 
X 0
1)(X2 
X 0

2) = (�1)degX2: degX0

1(X1X2 
X 0
1X

0
2)

if X1;X2 2 A and X 0
1;X

0
2 2 A0.

! 2.24 Lie superalgebra, superalgebra, ideal.

2.52 Superalgebra osp(1j2)

The superalgebra osp(1j2) is the simplest one and can be viewed as the super-
symmetric version of sl(2). It contains three bosonic generators E+; E�;H
which form the Lie algebra sl(2) and two fermionic generators F+; F�, whose
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non-vanishing commutation relations in the Cartan{Weyl basis read ash
H;E�

i
= �E�

h
E+; E�

i
= 2Hh

H;F�
i
= �1

2F
�

n
F+; F�

o
= 1

2Hh
E�; F�

i
= �F�

n
F�; F�

o
= �1

2E
�

The three-dimensional matrix representation (fundamental representation)
is given by

H =

0@ 1
2 0 0
0 �1

2 0
0 0 0

1A E+ =

0@ 0 1 0
0 0 0
0 0 0

1A E� =

0@ 0 0 0
1 0 0
0 0 0

1A
F+ =

0@ 0 0 1
2

0 0 0
0 1

2 0

1A F� =

0@ 0 0 0
0 0 �1

2
1
2 0 0

1A
The quadratic Casimir operator is

C2 = H2 + 1
2(E

+E� + E�E+)� (F+F� � F�F+)

The superalgebra osp(1j2) reveals many features which make it very close
to the Lie algebras. In particular, one has the following results for the
representation theory:

1. All �nite dimensional representations of osp(1j2) are completely re-
ducible.

2. Any irreducible representation of osp(1j2) is typical.
3. An irreducible representation R of osp(1j2) is characterized by a non-

negative integer or half-integer j = 0; 1=2; 1; 3=2; : : : and decomposes
under the even part sl(2) into two multipletsRj = Dj�Dj�1=2 for j 6=
0, the case j = 0 reducing to the trivial one-dimensional representation.
The dimension of an irreducible representation Rj of osp(1j2) is 4j+1.
The eigenvalue of the quadratic Casimir C2 in the representation Rj
is j(j + 1

2).

4. The product of two irreducible osp(1j2) representations decomposes as
follows:

Rj1 
Rj2 =
j=j1+j2M
j=jj1�j2j

Rj

j taking integer and half-integer values.
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! 2.5 Casimir invariants, 2.11 Decomposition w.r.t. osp(1j2) subalgebras,
2.16 Embeddings of osp(1j2).
For more details, see refs. [9, 65].

2.53 Superalgebra sl(1j2)

The superalgebra sl(1j2) ' sl(2j1) is the N = 2 extended supersymmetric
version of sl(2) and contains four bosonic generators E+, E�, H, Z which
form the Lie algebra sl(2) � U(1) and four fermionic generators F+, F�,
F
+
, F

�
, whose commutation relations in the Cartan{Weyl basis read ash

H;E�
i
= �E�

h
H;F�

i
= �1

2F
�

h
H;F

�i
= �1

2F
�h

Z;H
i
=
h
Z;E�

i
= 0

h
Z;F�

i
= 1

2F
�

h
Z;F

�i
= �1

2F
�h

E�; F�
i
=
h
E�; F�i

= 0
h
E�; F�

i
= �F�

h
E�; F�i

= F
�h

E+; E�
i
= 2H

n
F�; F�o

= Z �H
n
F�; F�o

= E�n
F�; F�

o
=
n
F
�
; F

�o
= 0

n
F�; F�

o
=
n
F
�
; F

�o
= 0

The three-dimensional matrix representation (fundamental representation)
is given by

H =

0@ 1
2 0 0
0 �1

2 0
0 0 0

1A Z =

0@ 1
2 0 0
0 1

2 0
0 0 1

1A
E+ =

0@ 0 1 0
0 0 0
0 0 0

1A F+ =

0@ 0 0 0
0 0 0
0 1 0

1A F
+
=

0@ 0 0 1
0 0 0
0 0 0

1A
E� =

0@ 0 0 0
1 0 0
0 0 0

1A F� =

0@ 0 0 0
0 0 0
1 0 0

1A F
�
=

0@ 0 0 0
0 0 1
0 0 0

1A
The quadratic and cubic Casimir operators are

C2 = H2 � Z2 + E�E+ + F�F+ � F�
F+

C3 = (H2 � Z2)Z + E�E+(Z � 1
2)� 1

2F
�F+

(H � 3Z + 1)

� 1
2F

�
F+(H + 3Z + 1) + 1

2E
�F+

F+ + 1
2F

�
F�E+
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The irreducible representations of sl(1j2) are characterized by the pair of
labels (b; j) where j is a non-negative integer or half-integer and b an arbi-
trary complex number. The representations �(b; j) with b 6= �j are typical
and have dimension 8j. The representations �(�j; j) are atypical and have
dimension 4j+1. In the typical representation �(b; j), the Casimir operators
C2 and C3 have the eigenvalues C2 = j2� b2 and C3 = b(j2� b2) while they
are identically zero in the atypical representations �(�j; j).
The typical representation �(b; j) of sl(1j2) decomposes under the even part
sl(2)� U(1) for j � 1 as

�(b; j) = Dj(b)�Dj�1=2(b� 1=2)�Dj�1=2(b+ 1=2)�Dj�1(b)

the case j = 1
2 reducing to

�(b; 12) = D1=2(b)�D0(b� 1=2)�D0(b+ 1=2)

where Dj(b) denotes the representation of sl(2) � U(1) with isospin j and
hypercharge b.

The irreducible atypical representations ��(j) � �(�j; j) of sl(1j2) decom-
pose under the even part sl(2)� U(1) as

�+(j) = Dj(j)�Dj�1=2(j + 1=2)

��(j) = Dj(�j)�Dj�1=2(�j � 1=2)

The not completely reducible atypical representations of sl(1j2) decompose
as semi-direct sums of sl(1j2) irreducible (atypical) representations. More
precisely, they are of the following types:

��(j; j � 1=2) � ��(j)3 ��(j � 1=2)

��(j � 1=2; j) � ��(j � 1=2)3 ��(j)
��(j � 1=2; j + 1=2; j) � ��(j � 1=2)3 ��(j)2 ��(j + 1=2)

��(j; j � 1=2; j + 1=2) � ��(j � 1=2)2 ��(j)3 ��(j + 1=2)

��(j; j � 1; j � 1=2; j � 3=2)

� ��(j)3 ��(j � 1=2)2 ��(j � 1)3 ��(j � 3=2)

��(j; j � 1=2; j + 1=2; j) � ��(j) 3 ��(j � 1=2)3
3 ��(j + 1=2)3 ��(j)

where the semi-direct sum symbol 3 (resp. 2 ) means that the representa-
tion space on the left (resp. on the right) is an invariant subspace of the
whole representation space.

It is also possible to decompose the sl(1j2) representations under the super-
principal osp(1j2) subsuperalgebra of sl(1j2) (! 2.16). One obtains for the
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typical representations �(b; j) = Rj � Rj�1=2 and for the irreducible atyp-
ical representations ��(j) = Rj where Rj denotes an irreducible osp(1j2)
representation.

We give now the formulae of the tensor products of two sl(1j2) representa-
tions �(b1; j1) and �(b2; j2). In what follows, we set b = b1 + b2, j = j1 + j2
and | = jj1 � j2j. Moreover, the product of two irreducible representations
will be called non-degenerate if it decomposes into a direct sum of irreducible
representations; otherwise it is called degenerate.

Product of two typical representations

The product of two typical representations �(b1; j1) and �(b2; j2) is non-
degenerate when b 6= �(j�n) for n = 0; 1; : : : ; 2min(j1; j2). It is then given
by

�(b1; j1)
 �(b2; j2) =

2min(j1;j2)��j1;j2M
n=0

�(b; j � n)
2min(j1;j2)�1M

n=1

�(b; j � n)

2min(j1;j2)�1M
n=0

�(b+ 1
2 ; j � 1

2 � n) � �(b� 1
2 ; j � 1

2 � n)

�(b1; j1)
 �(b2; 12) = �(b; j1 +
1
2) � �(b; j1 � 1

2) � �(b+ 1
2 ; j1)

� �(b� 1
2 ; j1)

�(b1;
1
2)
 �(b2; 12) = �(b; 1) � �(b+ 1

2 ;
1
2) � �(b� 1

2 ;
1
2)

When the product is degenerate, one has

1. if b = �j:
�(b; j)� �(b� 1=2; j� 1=2) is replaced by ��(j� 1=2; j� 1; j; j� 1=2)

2. if b = �| 6= 0:
�(b; |)� �(b� 1=2; |+ 1=2) is replaced by ��(|; |� 1=2; |+ 1=2; |)

3. if b = | = 0:
�(1=2; 1=2)� �(�1=2; 1=2) is replaced by �(0;�1=2; 1=2; 0)

4. if b = �(j � n) for n = 1; : : : ; 2min(j1; j2):
�(b�1=2; j+1=2�n)��(b; j�n)��(b; j�n)��(b�1=2; j�1=2�n)
is replaced by ��(j � 1=2� n; j � 1� n; j � n; j � 1=2� n)� ��(j �
n; j � 1=2� n; j + 1=2� n; j � n)
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Product of a typical with an atypical representation

The non-degenerate product of a typical representation �(b1; j1) with an
atypical one ��(j2) (b2 = �j2) is given by

if j1 � j2

�(b1; j1)
 ��(j2) =

2min(j1;j2)�1M
n=0

�(b; j � n) � �(b� 1
2 ; j � 1

2 � n)

if j1 > j2

�(b1; j1)
 ��(j2) =

2min(j1;j2)�1M
n=0

�(b; j � n)

� �(b� 1
2 ; j � 1

2 � n) � �(b; jj1 � j2j)
When the product �(b1; j1)
 �+(j2) is degenerate, one has

1. if b = �(j � n) for n = 0; 1; : : : ; 2min(j1; j2)� 1:
�(b; j � n)� �(b+ 1=2; j � 1=2� n) is replaced by ��(j � 1=2� n; j �
1� n; j � n; j � 1=2� n)

2. if b = j � n for n = 1; : : : ; 2min(j1; j2):
�(b; j � n)� �(b+ 1=2; j + 1=2� n) is replaced by ��(j � n; j � 1=2�
n; j + 1=2� n; j � n)

The case of the degenerate product �(b1; j1)
 ��(j2) is similar.

Product of two atypical representations

The product of two atypical representations ��(j1) and ��(j2) is always
non-degenerate. It is given by

��(j1)
 ��(j2) = ��(j)�
2min(j1;j2)�1M

n=0

�(�(j + 1
2); j � 1

2 � n)

�(j1; j1)
 �(�j2; j2) =
2min(j1;j2)�1M

n=0

�(j1 � j2; j � n)

�
8<:

�(j1 � j2; j1 � j2) if j1 > j2
�(j1 � j2; j2 � j1) if j1 < j2
(0) if j1 = j2

! 2.5 Casimir invariants, 2.12 Decomposition w.r.t. sl(1j2) subalgebras,
2.17 Embeddings of sl(1j2).
For more details, see refs. [58, 65].
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2.54 Superconformal algebra

For massless theory the concept of Fermi-Bose symmetry or supersymmetry
requires the extension of the conformal Lie algebra including the generators
of the supersymmetry transformationsQ�, S� which transform bosonic �elds
into fermionic ones and vice versa. The conformal algebra in four space{
time dimensions is spanned by the 15 generators M�� , P�, K� and D (with
the Greek labels running from 0 to 3). The generators M�� and P� span
the Poincar�e algebra and their commutation relations are given in ! 2.59
(Supersymmetry algebra: de�nition), while K� and D are respectively the
generators of the conformal transformations and of the dilatation (! 1.17).
The commutation relations of the N = 1 superconformal algebra read as
(the metric is g�� = diag(1;�1;�1;�1)):h

M�� ;M��

i
= i(�g��M�� + g��M�� + g��M�� � g��M��)h

M�� ; P�

i
= i(g��P� � g��P�)

h
P�; P�

i
= 0h

M�� ;K�

i
= i(g��K� � g��K�)

h
K�;K�

i
= 0h

P�;K�

i
= 2i(g��D �M��)

h
D;M��

i
= 0h

D;P�

i
= �iP�

h
D;K�

i
= iK�h

M�� ; Qa

i
= �1

2(���)
b
a Qb

h
M�� ; Sa

i
= �1

2(���)
b
a Sbh

P�; Qa

i
= 0

h
P�; Sa

i
= �(
�) b

a Qbh
K�; Qa

i
= �(
�) b

a Sb

h
K�; Sa

i
= 0h

D;Qa

i
= �1

2 iQa

h
D;Sa

i
= 1

2 iSah
Y;Qa

i
= i(
5)

b
a Qb

h
Y; Sa

i
= �i(
5) b

a Sbh
Y;M��

i
=
h
Y;D

i
= 0

h
Y; P�

i
=
h
Y;K�

i
= 0n

Qa; Qb

o
= 2(
�C)abP

�
n
Sa; Sb

o
= 2(
�C)abK

�n
Qa; Sb

o
= (���C)abM

�� + 2iCabD + 3i(
5C)abY

where the Dirac indices a; b run from 1 to 4, 
� are the Dirac matrices in
Majorana representation, C is the charge conjugation matrix, the ��� are
the generators of the Lorentz group in the representation (1=2; 0)� (0; 1=2):
��� = i

2 (

�
� � 
�
�) (! 2.47) and Y is the generator of the (chiral)



266 Lie Superalgebras

U(1). The transformations of Qa and Sa under M�� show that the Qa and
Sa are spinors. The superconformal algebra contains the super-Poincar�e as
subsuperalgebra, however in the conformal case the are no central charges
for N > 1.

Let us emphasize that the superconformal algebra is isomorphic to the simple
Lie superalgebra su(2; 2jN), real form of sl(4jN).

! 2.47 Spinors (in the Lorentz group), 2.59 Supersymmetry algebra: de�-
nition.

For more details, see refs. [89, 96].

2.55 Supergroups

In order to construct the supergroup or group with Grassmann structure
associated to a (simple) superalgebra A = A0 � A1, one starts from the
complex Grassmann algebra (! 2.22) �(n) of order n with n generators 1,

�1; : : : ; �n satisfying
n
�i; �j

o
= 0. The element

� =
X
m�0

X
i1<:::<im

�i1:::im�i1 : : : �im

is called even (resp. odd) if each complex coe�cient �i1:::im in the above
expression of � corresponds to an even (resp. odd) value of m. As a vector
space, one decomposes �(n) as �(n) = �(n)0 � �(n)1 with �(n)0 (resp.
�(n)1) made of homogeneous even (resp. odd) elements.

The Grassmann envelope A(�) of A consists of formal linear combinationsP
i �iai where faig is a basis of A and �i 2 �(n) such that for a �xed index

i, the elements ai and �i are both even or odd. The commutator between
two arbitrary elements X =

P
i �iai and Y =

P
j �

0
jaj is naturally de�ned

by [X;Y ] =
P

ij �i�
0
j [[ai; aj ]] where [[ai; aj ]] means the supercommutator in

A. This commutator confers to the Grassmann envelope A(�) of A a Lie
algebra structure.

The relation between a supergroup and its superalgebra is analogous to the
Lie algebra case: the supergroup A associated to the superalgebra A is
the exponential mapping of the Grassmann envelope A(�) of A, the even
generators of the superalgebra A corresponding to even parameters (that is
even elements of the Grassmann algebra) and the odd generators of A to
odd parameters (that is odd elements of the Grassmann algebra).

The above approach is due to Berezin. In particular, the case of osp(1j2)
is worked out explicitly in ref. [9]. On classical supergroups, see also refs.
[47, 48, 76].

! 2.22 Grassmann algebras.
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2.56 Supergroups of linear transformations

Let � = �0 � �1 be a Grassmann algebra (! 2.22) over a �eld K = R or C
and consider the set of (m + n) � (m + n) even supermatrices (! 2.57) of
the form

M =

�
A B
C D

�
where A;B;C;D arem�m, m�n, n�m and n�n submatrices respectively,
with even entries in �0 for A;D and odd entries in �1 for B;C.

The general linear supergroup GL(mjn; K ) is the supergroup of even invert-
ible supermatricesM , the product law being the usual matrix multiplication.

The transposition and adjoint operations allow us to de�ne the classical
subsupergroups of GL(mjn; K ) corresponding to the classical superalgebras.
The special linear supergroup SL(mjn; K ) is the subsupergroup of superma-
trices M 2 GL(mjn; K ) such that sdetM = 1.

The unitary and superunitary supergroups U(mjn) and sU(mjn) are the
subsupergroups of supermatrices M 2 GL(mjn; C ) such that MM y = 1 and
MM z = 1 respectively (for the notations y and z, ! 2.57).

The orthosymplectic supergroup OSP (mjn; K ) is the subsupergroup of su-
permatrices M 2 GL(mjn; K ) such that M stHM = H where (n = 2p)

H =

�
Im 0
0 J2p

�
and J2p =

�
0 Ip

�Ip 0

�
The compact forms are USL(mjn) and sOSP (mjn), subsupergroups of su-
permatricesM 2 GL(mjn; C ) such that sdetM = 1,MM y = 1 andM stHM
= H, MM z = 1 respectively.

Finally the strange supergroups are de�ned as follows. The supergroup P (n)
is the subsupergroup of supermatricesM 2 GL(njn; K ) such that sdetM = 1
and MJ2nM

st = J2n with J2n de�ned above. The supergroup Q(n) is the
subsupergroup of supermatrices M 2 GL(njn; K ) with A = D and B = C
such that tr ln((A�B)�1(A+B)) = 0.

For more details, see ref. [75].

2.57 Supermatrices

De�nition
A matrix M is called a complex (resp. real) supermatrix if its entries
have values in a complex (resp. real) Grassmann algebra � = �0��1 (!
2.22). More precisely, consider the set of (m+ n)� (p+ q) supermatrices
M of the form
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M =

�
A B
C D

�
where A;B;C;D arem�p, n�p,m�q and n�q submatrices respectively.
The supermatrix M is called even (or of degree 0) if A;D 2 �0 and
B;C 2 �1, while it is called odd (or of degree 1) if A;D 2 �1 and
B;C 2 �0.

The product of supermatrices is de�ned as the product of matrices: if M
and M 0 are two (m+ n)� (p+ q) and (p+ q)� (r + s) supermatrices, then
the entries of the (m+ n)� (r + s) supermatrix MM 0 are given by

(MM 0)ij =
p+qX
k=1

MikM
0
kj

Since the Grassmann algebra � is associative, the product of supermatrices
is also associative.

From now on, we will consider only square supermatrices, that is such that
m = p and n = q. The set of (m+ n)� (m+ n) complex (resp. real) square
supermatrices is denoted by M(mjn; C ) (resp. M(mjn; R )).
A square supermatrix M is said to be invertible if there exists a square
supermatrixM 0 such thatMM 0 =M 0M = I where I is the unit supermatrix
(even supermatrix with zero o�-diagonal entries and diagonal entries equal
to the unit 1 of the Grassmann algebra �).

De�nition
The general linear supergroup GL(mjn; C ) (resp. GL(mjn; R )) is the
supergroup of even invertible complex (resp. real) supermatrices, the
group law being the product of supermatrices.

The usual operations of transposition, determinant, trace, adjoint are de�ned
as follows in the case of supermatrices.

Let M 2M(mjn; C ) be a complex square supermatrix of the form

M =

�
A B
C D

�
The transpose and supertranspose of M are de�ned by:

M t =

�
At Ct

Bt Dt

�
transpose

M st =

�
At (�1)degMCt

�(�1)degMBt Dt

�
supertranspose
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Explicitly, one �nds

M st =

�
At Ct

�Bt Dt

�
if M is even

M st =

�
At �Ct
Bt Dt

�
if M is odd

It follows that

((M)st)st =

�
A �B
�C D

�
((((M)st)st)st)st =M

(MN)st = (�1)degM: degNN stM st

but (MN)t 6= N tM t.

The supertrace of M is de�ned by

str(M) = tr(A)� (�1)degM tr(D) =

�
tr(A)� tr(D) if M is even
tr(A) + tr(D) if M is odd

One has the following properties for the supertrace:

str(M +N) = str(M) + str(N) if degM = degN

str(MN) = (�1)degM: degN str(M)str(N)

str(M st) = str(M)

If M is even invertible, one de�nes the superdeterminant (or Berezinian) of
M by

sdet(M) =
det(A�BD�1C)

det(D)
=

det(A)

det(D � CA�1B)
Notice that M being an even invertible matrix, the inverse matrices A�1
and D�1 exist.

One has the following properties for the superdeterminant:

sdet(MN) = sdet(M) sdet(N)

sdet(M st) = sdet(M)

sdet(exp(M)) = exp(str(M))

The adjoint operations on the supermatrix M are de�ned by

M y = (M t)
�

adjoint

M z = (M st)
#

superadjoint
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One has

(MN)y = N yM y

(MN)z = N zM z

(M y)y =M and (M z)z =M

sdetM y = sdetM = (sdetM)�

where the bar denotes the usual complex conjugation and the star the Grass-
mann complex conjugation (! 2.22).

! 2.56 Supergroups of linear transformations.

For more details, see refs. [4, 75].

2.58 Superspace and super�elds

It is fruitful to consider the supergroup associated to the supersymmetry
algebra, the super-Poincar�e group. A group element g is then given by
the exponential of the supersymmetry algebra generators. However, since
Q� and Q _� are fermionic, the corresponding parameters have to be anti-
commuting (! 2.22). More precisely, a group element g with parameters

x�; !�� ; ��; �
_�
is given by

g(x�; !�� ; ��; �
_�
) = exp i(x�P� +

1
2!

��M�� + ��Q� +Q _��
_�
)

One de�nes the superspace as the coset space of the super-Poincar�e group

by the Lorentz group, parametrized by the coordinates x�; ��; �
_�
subject to

the condition �
_�
= (��)�. The multiplication of group elements is induced

by the supersymmetry algebra:

g(x�; ��; �
_�
) g(y�; ��; �

_�
) = g(x� + y� + i���� � i����; � + �; � + �)

If group element multiplication is considered as a left action, one can write
in�nitesimally

g(y�; ��; �
_�
) g(x�; ��; �

_�
) =

h
1� iy�P� � i��Q� � i� _�Q _�

i
g(x�; ��; �

_�
)

where the di�erential operators

Q� = i
@

@��
� (���)�@� and Q _� = �i

@

@�
_�
+ (���) _�@�

are the supersymmetry generators of the supersymmetry algebra (! 2.59).
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If group element multiplication is considered as a right action, one has in-
�nitesimally

g(x�; ��; �
_�
) g(y�; ��; �

_�
) =

h
1� iy�P� � i��D� � i� _�D _�

i
g(x�; ��; �

_�
)

where the di�erential operators

D� = i
@

@��
+ (���)�@� and D _� = �i @

@�
_�
� (���) _�@�

satisfy the following algebran
D�;D _�

o
= �2i��

� _�
@�n

D�;D�

o
=
n
D _�;D _�

o
= 0

and anticommute with the Q� and Q _� generators.

Unlike the Q generators, the D generators behave like covariant derivatives
under the super-Poincar�e group.

One de�nes a super�eld F as a function of the superspace. Since the param-

eters ��; �
_�
are Grassmann variables, a Taylor expansion of F in �; � has a

�nite number of terms:

F(x; �; �) = f(x) + ��(x) + ��(x) + ��m(x) + ��n(x)

+����A�(x) + ����(x) + ����0(x) + ����d(x)

Notice the very important property that the product of two super�elds is
again a super�eld.

Under a superspace transformation, the variation of the super�eld F is given
by the action of the supersymmetry generators Q� and Q _�:

�F(x; �; �) = �i(�Q+Q�)F
The super�eld F forms a representation of the supersymmetry algebra. How-
ever, this representation is not irreducible. Irreducible representations can
be obtained by imposing constraints on the super�elds. The two main ex-
amples are the scalar (chiral or antichiral) and the vector super�elds.

{ The chiral super�eld F is de�ned by the covariant constraint D _�F = 0.
It follows that the chiral super�eld F can be expressed, in terms of y� =
x� � i���� and �, as

F = A(y) + 2� (y) + ��F (y)
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The transformation law for the chiral super�eld is therefore

�A = 2� 

� = �i���@�A+ �F

�F = 2i@� �
��

{ In the same way, the antichiral super�eld F is de�ned by the covariant
constraint D�F = 0. The antichiral super�eld F can be expressed, in terms
of (y�)y = x� + i���� and �, as

F = A�(yy) + 2� (yy) + ��F �(yy)

and the transformation law for the antichiral super�eld is

�Ay = 2 �

� = i���@�A
y + F y�

�F y = �2i���@� 

{ The vector super�eld F is de�ned by the reality constraint Fy = F . In
terms of x; �; �, it takes the form (with standard notations)

F(x; �; �) = C(x) + i��(x)� i��(x) + i
2��
�
M(x) + iN(x)

�
� i

2��
�
M(x)� iN(x)

�
� ����A�(x) + i���

�
�(x) + i

2�
�@��(x)

�
�i���

�
�(x) + i

2�
�@��(x)

�
+ 1

2����
�
D(x) + 1

2�C(x)
�

where C;M;N;D are real scalar �elds, A� is a real vector �eld and �; � are
spinor �elds.

! 2.22 Grassmann algebras, 2.47 Spinors (in the Lorentz group), 2.59{2.60
Supersymmetry algebra: de�nition, representations.

For more details, see refs. [3, 89, 96].

2.59 Supersymmetry algebra: de�nition

The concept of Fermi-Bose symmetry or supersymmetry requires the exten-
sion of the Poincar�e Lie algebra including the generators of the supersymme-
try transformations Q� and Q _�, which are fermionic, that is they transform
bosonic �elds into fermionic ones and vice versa. The supersymmetry gener-
ators Q� and Q _� behave like (1/2,0) and (0,1/2) spinors under the Lorentz
group (! 2.47).
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The metric being g�� = diag(1;�1;�1;�1), the N = 1 supersymmetry
algebra takes the following form in two-spinor notation (the indices �; �; : : : =

0; 1; 2; 3 are space{time indices while the indices �; � = 1; 2 and _�; _� = _1; _2
are spinor ones):h

M�� ;M��

i
= i(�g��M�� + g��M�� + g��M�� � g��M��)h

M�� ; P�

i
= i(g��P� � g��P�)h

P�; P�

i
= 0h

M�� ; Q�

i
= �1

2(���)
�
� Q�

h
M�� ; Q _�

i
= �1

2Q _�(���)
_�

_�h
P�; Q�

i
=
h
P�; Q _�

i
= 0n

Q�; Q�

o
=
n
Q _�; Q _�

o
= 0

n
Q�; Q _�

o
= 2��

� _�
P�

where the �i are the Pauli matrices, �i = ��i for i = 1; 2; 3 and �0 = �0 = I.
The matrices 1

2 �
�� and 1

2 �
�� are the generators of the Lorentz group in

the two fundamental spinor representations: ��� = i
2 (�

��� � ����) and

��� = i
2 (�

��� � ����).
In four-spinor notation, the N = 1 supersymmetry algebra reads as:h

M�� ; Qa

i
= �1

2(���)
b
a Qbh

P�; Qa

i
= 0n

Qa; Qb

o
= 2(
�C)abP

�

where Qa =

 
Q�

Q
_�

!
is a Majorana spinor (a = 1; 2; 3; 4), 
� are the Dirac

matrices in the Majorana representation, C is the charge conjugation matrix
and the ��� are the generators of the Lorentz group in the representation
(1=2; 0)� (0; 1=2): ��� = i

2 (

�
� � 
�
�) (! 2.47).

It is also useful to write the full supersymmetry algebra in two-spinor nota-
tion including the Poincar�e generators. One has

P� =
1
2 �

_��
� P� _�

M�� =
i
4 (("���)

�� J�� + (���")
_� _� J _� _�)
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or

J�� = � i
2 (�

��")��M��

J _� _� = � i
2 ("�

��) _� _�M�� = Jy��
P� _� = ��

� _�
P�

The Poincar�e algebra then readsh
J��; J _
 _�

i
= 0h

J��; P
 _�

i
= �i("�
P� _� + "�
P� _�)h

J��; J

�
i
= �i(�
�J�� + �
�J

�
� + ���J



� + ���J



�)

The remaining commutation relations of the supersymmetry algebra can be
written in the form h

J��; Q


i
= i("
�Q� + "
�Q�)h

P� _�; Q


i
=
h
J _� _�; Q


i
= 0n

Q�; Q�

o
= 0

n
Q�; Q _�

o
= P� _�

There is an extended version of this algebra if one considers many super-

symmetry generators QA� , Q
A
_� with A = 1; : : : ; N transforming under some

symmetry group. The extended N -supersymmetry algebra then becomes in
two-spinor notation:h

M�� ; Q
A
�

i
= �1

2(���)
�
� QA�

h
M�� ; Q

A
_�

i
= �1

2Q
A
_� (���)

_�

_�h
P�; Q

A
�

i
= 0

h
P�; Q

A
_�

i
= 0n

QA� ; Q
B
�

o
= 2"��Z

AB
n
Q
A
_� ; Q

B
_�

o
= �2" _� _�(Z

AB)yn
QA� ; Q

B
_�

o
= 2��

� _�
P� �ABh

Ti; Tj

i
= i f k

ij Tk

h
Ti;M��

i
=
h
Ti; P�

i
= 0h

Ti; Q
A
�

i
= (�i)

A
BQ

B
�

h
Ti; Q

A
_�

i
= �QB_� (�i) A

Bh
ZAB; anything

i
= 0
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where ZAB are central charges, "�� and " _� _� are (un)dotted tensors given in
section 2.47.

In four-spinor notation it takes the form (for the relations involving the
supersymmetry generators):h

M�� ; Q
A
a

i
= �1

2(���)
b
a Q

A
bh

P�; Q
A
a

i
= 0n

QAa ; Q
B
b

o
= 2(
�C)abP��

AB + CabU
AB + (
5C)abV

ABh
Ti; Q

A
a

i
= (�i)

A
BQ

B
a + (i�i)

A
B(
5)

b
a Q

B
bh

UAB; anything
i
=
h
V AB; anything

i
= 0

UAB and V AB being central charges and the matrices �i; �i having to satisfy
(�i + i�i) + (�i + i�i)

y = 0.

In fact, the number of central charges UAB = �UBA and V AB = �V BA

present in the algebra imposes constraints on the symmetry group of the
matrices �i and �i. If there is no central charge this symmetry group is
U(N), otherwise it is USp(2N), compact form of Sp(2N).

For more details, see refs. [3, 18, 25, 89, 96].

2.60 Supersymmetry algebra: representations

We will only consider the �nite dimensional representations of the N -super-
symmetry algebra (! 2.59). Since the translation generators P� commute

with the supersymmetry generators QA� and Q
A
_� , the representations of the

N -supersymmetry algebra are labelled by the massM ifM2 is the eigenvalue
of the Casimir operator P 2 = P�P�.

If NF is the fermion number operator, the states jBi such that (�1)NF jBi =
jBi are bosonic states while the states jF i such that (�1)NF jF i = �jF i are
fermionic ones. In a �nite dimensional representation, one has tr(�1)NF =
0, from which it follows that the �nite dimensional representations of the
supersymmetry algebra contain an equal number of bosonic and fermionic
states.

For the massive representations (M 6= 0), the supersymmetry algebra in the
rest frame, where P� = (M; 0; 0; 0), takes the form (with vanishing central
charges) n

QA� ; Q
B
_�

o
= 2M�� _��AB
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n
QA� ; Q

B
�

o
=
n
Q
A
_� ; Q

B
_�

o
= 0

with A;B = 1; : : : ; N .

The rescaled operators aA� = QA�=
p
2M and (aA� )

y = Q
A
_�=
p
2M satisfy the

Cli�ord algebra (! 2.10) in 2N dimensions. The states of a representation
can be arranged into spin multiplets of some ground state { or vacuum {
j
i of given spin s, annihilated by the aA� operators. The other states of the
representation are given by

jaA1�1 : : : aAn�n i = (aA1�1 )
y : : : (aAn�n )

yj
i

When the ground state j
i has spin s, the maximal spin state has spin s+ 1
2N

and the minimal spin state has spin 0 if s � 1
2N or s� 1

2N if s � 1
2N .

When the ground state j
i has spin zero, the total number of states is equal
to 22N with 22N�1 fermionic states (constructed with an odd number of (aA� )y

operators) and 22N�1 bosonic states (constructed with an even number of
(aA� )

y operators). The maximal spin is 1
2N and the minimal spin is 0.

In the case N = 1, when the ground state j
i has spin j, the states of the
multiplet have spins (j; j + 1

2 ; j � 1
2 ; j). When the ground state j
i has spin

0, the multiplet has two states of spin 0 and one state of spin 1
2 .

The following table gives the dimensions of the massive representations with
ground states 
s (of spin s) for N = 1; 2; 3; 4.

N = 1

spin 
0 
1=2 
1 
3=2

0 2 1
1
2 1 2 1
1 1 2 1
3
2 1 2
2 1

spin 
0

0 42
1
2 48
1 27
3
2 8
2 1

N = 4

N = 2

spin 
0 
1=2 
1

0 5 4 1
1
2 4 6 4
1 1 4 6
3
2 1 4
2 1

spin 
0 
1=2

0 14 14
1
2 14 20
1 6 15
3
2 1 6
2 1

N = 3

We consider now the massless representations corresponding to P 2 = 0. In a
reference frame where P� = (E; 0; 0; E), the supersymmetry algebra becomen

QA� ; Q
B
_�

o
= 4E�AB�� _�;1_1
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n
QA� ; Q

B
�

o
=
n
Q
A
_� ; Q

B
_�

o
= 0

The rescaled operators aA = QA1 =
p
4E and (aA)y = Q

A
_1 =
p
4E satisfy the

Cli�ord algebra in N dimensions while the operators a0A = QA2 =
p
4E and

(a0A)y = Q
A
_2 =
p
4E mutually anticommute and act as zero on the represen-

tation states. A representation of the supersymmetry algebra is therefore
characterized by a Cli�ord ground state j
i labelled by the energy E and
the helicity � and annihilated by the aA operators. The other states of the
representation are given by

jaA1 : : : aAni = (aA1)y : : : (aAn)yj
i
The number of states with helicity � + n with 0 � n � 1

2N is
�
N
2n

�
. The

total number of states is therefore 2N with 2N�1 bosonic states and 2N�1
fermionic states.

For more details on the supersymmetry representations (in particular when
the central charges are not zero), see refs. [3, 18, 89, 96].

2.61 Unitary superalgebras

The superalgebras A(m� 1; n� 1) with m 6= n

The unitary superalgebra A(m�1; n�1) or sl(mjn) with m 6= n de�ned for
m > n � 0 has as even part the Lie algebra sl(m)� sl(n)�U(1) and as odd
part the (m;n)+(m;n) representation of the even part; it has rank m+n�1
and dimension (m+ n)2 � 1. One has A(m� 1; n� 1) ' A(n� 1;m� 1).

The root system � = �0 [�1 of A(m� 1; n� 1) can be expressed in terms
of the orthogonal vectors "1; : : : ; "m and �1; : : : ; �n such that "2i = 1 and
�2i = �1 as

�0 =
n
"i � "j ; �i � �j

o
and �1 =

n
"i � �j; �"i + �j

o
The Dynkin diagrams of the unitary superalgebras A(m � 1; n � 1) are of
the following types:

v v v v1 1 1 1

where the small black dots represent either white dots (associated to even
roots) or grey dots (associated to odd roots of zero length). The diagrams are
drawn with their Dynkin labels which give the decomposition of the highest
root in terms of the simple ones. The Dynkin diagrams of the unitary Lie
superalgebras up to rank 4 are given in Table 3.61.
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The superalgebra A(m�1; n�1) can be generated as a matrix superalgebra
by taking matrices of the form

M =

�
Xmm Tmn
Tnm Xnn

�
where Xmm and Xnn are gl(m) and gl(n) matrices, Tmn and Tnm are m� n
and n�m matrices respectively, with the supertrace condition

str(X) = tr(Xmm)� tr(Xnn) = 0

A basis of matrices can be constructed as follows. Consider (m+n)2 elemen-
tary matrices eIJ of order m+ n such that (eIJ)KL = �IL�JK (I; J;K;L =
1; : : : ;m+ n) and de�ne the (m+ n)2 � 1 generators

Eij = eij � 1
m�n�ij

�Pm
k=1 ekk +

Pm+n
k0=m+1 ek0k0

�
Eij0 = eij0

Ei0j0 = ei0j0 +
1

m�n�i0j0
�Pm

k=1 ekk +
Pm+n

k0=m+1 ek0k0
�

Ei0j = ei0j

Y = � 1
m�n

�
n
Pm

k=1 ekk +m
Pm+n

k0=m+1 ek0k0
�

where the indices i; j; : : : run from 1 to m and i0; j0; : : : from m+1 to m+n.
Then the generator Y generates the U(1) part, the generators Eij � 1

m�ijY

generate the sl(m) part and the generators Ei0j0+
1
n�i0j0Y generate the sl(n)

part, while Eij0 and Ei0j transform as the (m;n) and (m;n) representations
of sl(m) � sl(n) with U(1) values +1 and �1 respectively. In all these
expressions, summation over repeated indices is understood.

The generators in the Cartan{Weyl basis are given by:

� for the Cartan subalgebra

Hi = Eii �Ei+1;i+1 with 1 � i � m� 1

Hi0 = Ei0i0 � Ei0+1;i0+1 with m+ 1 � i0 � m+ n� 1

Hm = Emm + Em+1;m+1

� for the raising operators

Eij with i < j for sl(m)

Ei0j0 with i0 < j0 for sl(n)
Eij0 for the odd part

� for the lowering operators

Eji with i < j for sl(m)

Ej0i0 with i0 < j0 for sl(n)
Ei0j for the odd part
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The commutation relations in the Cartan{Weyl basis read as:h
HI ;HJ

i
= 0h

HK ; EIJ

i
= �IKEKJ � �I;K+1EK+1;J � �KJEIK + �K+1;JEI;K+1h

Hm; EIJ

i
= �ImEmJ + �I;m+1Em+1;J � �mJEIm � �m+1;JEI;m+1h

EIJ ; EKL

i
= �JKEIL � �ILEKJ for EIJ and EKL even (IJ 6= LK)h

EIJ ; EKL

i
= �JKEIL � �ILEKJ for EIJ even and EKL oddn

EIJ ; EKL

o
= �JKEIL + �ILEKJ for EIJ and EKL odd (IJ 6= LK)

h
Eij ; Eji

i
=

j�1X
k=1

Hk

h
Ei0j0 ; Ej0i0

i
=

j0�1X
k0=m+1

Hk0

n
Eij0 ; Ej0i

o
=

mX
k=1

Hk �
j0�1X

k0=m+1

Hk0

The superalgebras A(n� 1; n� 1) with n > 1

The unitary superalgebra A(n � 1; n � 1) or psl(njn) de�ned for n > 1 has
as even part the Lie algebra sl(n)� sl(n) and as odd part the (n; n)+ (n; n)
representation of the even part; it has rank 2n � 2 and dimension 4n2 � 2.
Note that the superalgebra A(0; 0) is not simple.

The root system � = �0 [�1 of A(n� 1; n� 1) can be expressed in terms
of the orthogonal vectors "1; : : : ; "n and �1; : : : ; �n such that "2i = 1, �2i = �1
and

Pn
i=1 "i =

Pn
i=1 �i as

�0 =
n
"i � "j ; �i � �j

o
and �1 =

n
"i � �j; �"i + �j

o
The Dynkin diagrams of the unitary superalgebras A(n�1; n�1) are of the
same type as those of the A(m� 1; n� 1) case.

The superalgebra A(n� 1; n� 1) can be generated as a matrix superalgebra
by taking matrices of sl(njn). However, sl(njn) contains a one-dimensional
ideal I generated by I2n and one sets A(n�1; n�1) � sl(njn)=I = psl(njn),
hence the rank and dimension of A(n� 1; n� 1).

It should be stressed that the rank of the superalgebra is 2n � 2 although
the Dynkin diagram has 2n� 1 dots: the 2n� 1 associated simple roots are
not linearly independent in that case.
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Moreover, in the case of A(1; 1), one has the relations "1 + "2 = �1 + �2
from which it follows that there are only four distinct odd roots � such that
dimG� = 2 and each odd root is both positive and negative.

2.62 Universal enveloping superalgebra

De�nition
Let G = G0 � G1 be a Lie superalgebra over a �eld K = R or C . The
de�nition of the universal enveloping superalgebra U(G) is similar to the
de�nition in the algebraic case. If G
 is the tensor algebra over G with
Z2-graded tensor product (! 2.51) and I the ideal of G generated by
[[X;Y ]]� (X 
 Y � (�1)degX: deg Y Y 
X) where X;Y 2 G, the universal
enveloping superalgebra U(G) is the quotient G
=I.

Theorem (Poincar�e{Birkho�{Witt)
Let b1; : : : ; bB (B = dimG0) be a basis of the even part G0 and f1; : : : ; fF
(F = dimG1) be a basis of the odd part G1. Then the elements

bi11 : : : b
iB
B f

j1
1 : : : f jFF with i1; : : : ; iB � 0 and j1; : : : ; jF 2 f0; 1g

form a basis of the universal enveloping superalgebra U(G), called the
Poincar�e{Birkho�{Witt (PBW) basis.

The universal enveloping superalgebra U(G) contains in general zero divisors
(let us recall that U(G0) never contains zero divisors). In fact, if F 2 G1 is a
generator associated to an isotropic root, one has F 2 = fF;Fg = 0 in U(G).
More precisely, one has the following property:

Property
The universal enveloping superalgebra U(G) does not contain any zero
divisors if and only if G = ops(1j2n). In that case, U(G) is said to be
entire.

Filtration of G: U(G) can be naturally �ltered as follows. Let Un be the
subspace of U(G) generated by the PBW-basis monomials of degree � n
(e.g. U0 = K and U1 = K + G). Then one has the following �ltration, with
Ui Uj � Ui+j :

U0 � U1 � : : : � Un � : : : � U(G) =
1[
Un

De�ning the quotient subspaces U0 = U0 and U i = Ui=Ui�1 for i � 1, one
can associate to U(G) the following graded algebra Gr(U(G)):

Gr(U(G)) = U0 � U1 � : : : � Un � : : :
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Then, one can show that

Gr(U(G)) ' K [b1 ; : : : ; bB]
 �(f1; : : : ; fF )

where K [b1 ; : : : ; bB] is the ring of polynomials in the indeterminates b1; : : : ; bB
with coe�cients in K and �(f1; : : : ; fF ) is the exterior algebra over G.
For more details, see ref. [47].

2.63 Weyl group

Let G = G0�G1 be a classical Lie superalgebra with root system � = �0[�1.
�0 is the set of even roots and �1 the set of odd roots. The Weyl group
W (G) of G is generated by the Weyl re
ections w with respect to the even
roots:

w�(�) = � � 2
� � �
� � � �

where � 2 �0 and � 2 �.
The properties of the Weyl group are the following.

Properties
1. The Weyl group W (G) leaves �, �0, �1, �0, �1 invariant, where

�, �0, �1 are de�ned above, �0 is the subset of roots � 2 �0 such
that �=2 =2 �1 and �1 is the subset of roots � 2 �1 such that
2� =2 �0.

2. Let e� be the formal exponential, function on H� such that e�(�) =
��;� for two elements �; � 2 H�, which satis�es e�e� = e�+�. One
de�nes

L =

Q
�2�+

0

(e�=2 � e��=2)Q
�2�+

1

(e�=2 + e��=2)
and L0 =

Q
�2�+

0

(e�=2 � e��=2)Q
�2�+

1

(e�=2 � e��=2)

where �+
0
and �+

1
are the sets of positive even roots and positive

odd roots respectively. Then one has

w(L) = "(w)L and w(L0) = "0(w)L0 where w 2W (G)

with "(w) = (�1)`(w) and "0(w) = (�1)`0(w) where `(w) is the num-
ber of re
ections in the expression of w 2 W (G) and `0(w) is the
number of re
ections with respect to the roots of �

+
0 in the expres-

sion of w 2W (G).
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For the basic Lie superalgebras, one can extend the Weyl group W (G) to
a larger group by adding the following transformations (called generalized
Weyl transformations) associated to the odd roots of G [23, 52]. For � 2 �1,
one de�nes:

w�(�) = � � 2
� � �
� � � � if � � � 6= 0

w�(�) = � + � if � � � = 0 and � � � 6= 0

w�(�) = � if � � � = 0 and � � � = 0

w�(�) = ��
Notice that the transformation associated to an odd root � of zero length
cannot be lifted to an automorphism of the superalgebra since w� transforms
even roots into odd ones, and vice versa, and the Z2-gradation would not be
respected.

For more details, see ref. [47].
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Tables on Lie algebras

Table 3.1: The simple Lie algebra AN�1 = sl(N).

Rank: N � 1, dimension: N2 � 1.
Root system (1 � i 6= j � N):

� = f"i � "jg
Simple root system:

�1 = "1 � "2; : : : ; �N�1 = "N�1 � "N
Positive roots (1 � i < j � N):

"i � "j = �i + � � �+ �j�1

Sum of positive roots:

2� =
NX
i=1

(N � 2i+ 1)"i =
N�1X
i=1

i(N � i)�i

Dynkin diagram:

m m m m m
�1 �N�1

Cartan matrix A:

A =

0BBBBBBB@

2 �1 0 � � � 0

�1 . . .
. . .

. . .
...

0
. . .

. . . 0
...

. . .
. . .

. . . �1
0 � � � 0 �1 2

1CCCCCCCA
Fundamental weights (1 � i � N � 1):

�i = "1 + � � �+ "i � i

N

NX
j=1

"j =
1

N

N�1X
j=1

min(i; j) min(N � i;N � j)�j

(continued)
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Table 3.1 (continued)

Level vector: L = (N; 2(N � 1); 3(N � 2); : : : ; (N � 1)2; N)
Weyl group: W = SN (permutation group), dimW = N !.
Root lattice Q, weight lattice P :

Q =

NX
i=1

xi"i where
X
i

xi = 0 ; P = Q [ �1Z ; P=Q ' Z=NZ

Highest root: ��0 = �1 + � � �+ �N = "1 � "N .
Coxeter number h = N , dual Coxeter number h_ = N .
Quadratic matrix form G:

G =
1

N

0BBBBBBB@

1:(N � 1) 1:(N � 2) 1:(N � 3) � � � 1:2 1:1
1:(N � 2) 2:(N � 2) 2:(N � 3) � � � 2:2 2:1
1:(N � 3) 2:(N � 3) 3:(N � 3) � � � 3:2 3:1

...
...

...
. . .

...
...

1:2 2:2 3:2 � � � (N � 2):2 (N � 2):1
1:1 2:1 3:1 � � � (N � 2):2 (N � 1):1

1CCCCCCCA
Extended Dynkin diagram:

m m m

m

�1 �N�1

�0

��
��

��
��

HH
HH

HH
HH

m m
�0 �1

@
�

N � 3 N = 2

Factor group Out(G) = Aut(G)=Int(G) = Z2 .
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Table 3.2: The simple Lie algebra BN = so(2N + 1).

Rank: N , dimension: N(2N + 1).
Root system (1 � i 6= j � N):

� = f�"i � "j ; �"ig ; �L = f�"i � "jg ; �S = f�"ig

dim� = 2N2, dim�L = 2N(N � 1), dim�S = 2N .
Simple root system:

�1 = "1 � "2; : : : ; �N�1 = "N�1 � "N ; �N = "N

Positive roots (1 � i < j � N):

"i � "j = �i + � � �+ �j�1
"i + "j = �i + � � �+ �j�1 + 2(�j + � � �+ �N )

"i = �i + � � �+ �N

Sum of positive roots:

2� =
NX
i=1

(2N � 2i+ 1)"i =
NX
i=1

i(2N � i)�i

Dynkin diagram:

m m m m m
�1 �2 �N�2 �N�1 �N

@
�

Cartan matrix A:

A =

0BBBBBBBBBB@

2 �1 0 � � � � � � 0

�1 2
. . .

. . .
...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . . 2 �1 0
...

. . . �1 2 �1
0 � � � � � � 0 �2 2

1CCCCCCCCCCA
(continued)
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Table 3.2 (continued)

Fundamental weights:

�i = "1 + � � �+ "i =
NX
j=1

min(i; j)�j (1 � i � N � 1)

�N = 1
2("1 + � � �+ "N ) = 1

2

NX
j=1

j�j

Level vector: L = (2N; 2(2N�1); 3(2N�2); : : : ; (N�1)(N+2); 12 N(N+1))

Weyl group: W = SN n (Z=2Z)N , dimW = 2NN !.
Root lattice Q, weight lattice P :

Q =
NX
i=1

xi"i where all xi 2 Z

P =
NX
i=1

xi"i where all xi 2 Z or all xi 2 Z + 1
2

P=Q ' Z=2Z

Highest root: ��0 = �1 + 2�2 + � � �+ 2�N = "1 + "2.
Coxeter number h = 2N , dual Coxeter number h_ = 2N � 1.
Quadratic matrix form G:

G =
1

2

0BBBBBBB@

2 2 2 � � � 2 1
2 4 4 � � � 4 2
2 4 6 � � � 6 3
...

...
...

. . .
...

...
2 4 6 � � � 2(N � 1) N � 1
1 2 3 � � � N � 1 N=2

1CCCCCCCA
Extended Dynkin diagram:

m m m m

m�0

m�1

HH

��

�2 �N�2 �N�1 �N
@
�

m m m
�0 �1 �2

@
� @

�

N � 3 N = 2

Factor group Out(G) = Aut(G)=Int(G) = I.
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Table 3.3: The simple Lie algebra CN = sp(2N).

Rank: N , dimension: N(2N + 1).
Root system (1 � i 6= j � N):

� = f�"i � "j; �2"ig ; �L = f�2"ig ; �S = f�"i � "jg
dim� = 2N2, dim�L = 2N , dim�S = 2N(N � 1).
Simple root system:

�1 = "1 � "2; : : : ; �N�1 = "N�1 � "N ; �N = 2"N

Positive roots (1 � i < j � N):

"i � "j = �i + � � �+ �j�1
"i + "j = �i + � � �+ �j�1 + 2(�j + � � �+ �N�1) + �N (j 6= N)

"i + "N = �i + � � �+ �N
2"i = 2(�i + � � �+ �N�1) + �N (i 6= N)

2"N = �N

Sum of positive roots:

2� =
NX
i=1

(2N � 2i+ 2)"i =
N�1X
i=1

i(2N � i+ 1)�i +
1
2N(N + 1)�N

Dynkin diagram:

m m m m m
�1 �2 �N�2 �N�1 �N

@
�

Cartan matrix A:

A =

0BBBBBBBBBB@

2 �1 0 � � � � � � 0

�1 2
. . .

. . .
...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . . 2 �1 0
...

. . . �1 2 �2
0 � � � � � � 0 �1 2

1CCCCCCCCCCA
(continued)
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Table 3.3 (continued)

Fundamental weights (1 � i � N):

�i = "1 + � � �+ "i = �1 + � � �+ (i� 1)�i�1 + i(�i + � � �+ �N�1 + 1
2�N )

Level vector: L = (2N � 1; 2(2N � 2); 3(2N � 3); : : : ; (N � 1)(N + 1); N2)
Weyl group: W = SN n (Z=2Z)N , dimW = 2NN !.
Root lattice Q, weight lattice P :

Q =

NX
i=1

xi"i where
P

i xi 2 2Z

P =

NX
i=1

xi"i where all xi 2 Z

P=Q ' Z=2Z

Highest root: ��0 = 2�1 + � � �+ 2�N�1 + �N = 2"1.
Coxeter number h = 2N , dual Coxeter number h_ = N + 1.
Quadratic matrix form G:

G =
1

2

0BBBBBBB@

1 1 1 � � � 1 1
1 2 2 � � � 2 2
1 2 3 � � � 3 3
...

...
...

. . .
...

...
1 2 3 � � � N � 1 N � 1
1 2 3 � � � N � 1 N

1CCCCCCCA
Extended Dynkin diagram:

m m m m m
�0 �1 �N�1 �N

@
� @

�

Factor group Out(G) = Aut(G)=Int(G) = I.
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Table 3.4: The simple Lie algebra DN = so(2N).

Rank: N , dimension: N(2N � 1).
Root system (1 � i 6= j � N):

� = f�"i � "jg
Simple root system:

�1 = "1 � "2; : : : ; �N�1 = "N�1 � "N ; �N = "N�1 + "N

Positive roots (1 � i < j � N):

"i � "j = �i + � � �+ �j�1
"i + "j = �i + � � �+ �j�1 + 2(�j + � � �+ �N�2) + �N�1 + �N (j � N � 2)

"i + "N�1 = �i + � � �+ �N�1
"i + "N = �i + � � �+ �N

Sum of positive roots:

2� =
NX
i=1

(2N � 2i)"i =
N�2X
i=1

i(N � i� 1)�i +
1
2N(N � 1)(�N�1 + �N )

Dynkin diagram:

m m m m
�1 �2 �N�3 �N�2

��

HH

m�N�1

m �N

Cartan matrix A:

A =

0BBBBBBBBBB@

2 �1 0 � � � � � � 0

�1 2
. . .

. . .
...

0
. . .

. . .
. . . 0 0

...
. . .

. . . 2 �1 �1
... 0 �1 2 0
0 � � � 0 �1 0 2

1CCCCCCCCCCA
(continued)
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Table 3.4 (continued)

Fundamental weights:

�i = "1 + � � �+ "i

=
N�2X
j=1

min(i; j)�j +
1
2 i(�N�1 + �N ) (1 � i � N � 2)

�N�1 = 1
2("1 + � � �+ "N�1 � "N )

= 1
2

N�2X
j=1

j �j +
1
4N�N�1 +

1
4(N � 2)�N

�N = 1
2("1 + � � �+ "N�1 + "N )

= 1
2

N�2X
j=1

j �j +
1
4(N � 2)�N�1 + 1

4N�N

Level vector: L = (2N�2; 2(2N�3); 3(2N�4); : : : ; (N�2)(N+1); 12 N(N�
1); 12 N(N � 1))

Weyl group: W = SN n (Z=2Z)N�1 , dimW = 2N�1N !.
Root lattice Q, weight lattice P :

Q =
NX
i=1

xi"i where
P

i xi 2 2Z

P =
NX
i=1

xi"i where all xi 2 Z or all xi 2 Z + 1
2

P=Q '
�

Z=4Z for N odd
Z=2Z � Z=2Z for N even

Highest root: ��0 = �1 + 2�2 + � � �+ 2�N�2 + �N�1 + �N = "1 + "2.
Coxeter number h = 2N � 2, dual Coxeter number h_ = 2N � 2.
Quadratic matrix form G:

G =
1

2

0BBBBBBBBB@

2 2 2 � � � 2 1 1
2 4 4 � � � 4 2 2
2 4 6 � � � 6 3 3
...

...
...

. . .
...

...
...

2 4 6 � � � 2(N � 2) N � 2 N � 2
1 2 3 � � � N � 2 N=2 (N � 2)=2
1 2 3 � � � N � 2 (N � 2)=2 N=2

1CCCCCCCCCA
(continued)
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Table 3.4 (continued)

Extended Dynkin diagram:

m m m

m�0

m�1

HH

��

�2 �N�2
��

HH

m�N�1

m �N

Factor group Out(G) = Aut(G)=Int(G) :

Out(G) =
�
S3 for N = 4
Z2 for N � 5
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Table 3.5: The simple Lie algebra E6.

Rank: 6, dimension: 78.
Root system (1 � i 6= j � 5):

� = f�"i � "j; �1
2(�"1 � : : :� "5 � "6 � "7 + "8)g

The total number of + signs (or � signs) is even in 1
2(�"1 � : : :� "5 � "6 �

"7 + "8).
Simple root system:

�1 =
1
2("1 + "8 �

7X
j=2

"j); �2 = "2 � "1; : : : ; �5 = "5 � "4; �6 = "1 + "2

Positive roots (1 � j < i � 5):

"i � "j ; "i + "j ;
1
2("8 � "7 � "6 +

5X
j=1

�"j)

Sum of positive roots:

2� = 2"2 + 4"3 + 6"4 + 8"5 + 8("8 � "7 � "6)
= 16�1 + 30�2 + 42�3 + 30�4 + 16�5 + 22�6

Dynkin diagram:

m m m m m
�1 �2 �3 �4 �5

m�6

Cartan matrix A:

A =

0BBBBBB@

2 �1 0 0 0 0
�1 2 �1 0 0 0
0 �1 2 �1 0 �1
0 0 �1 2 �1 0
0 0 0 �1 2 0
0 0 �1 0 0 2

1CCCCCCA
(continued)
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Table 3.5 (continued)

Fundamental weights:

�1 = 2
3("8 � "7 � "6)

= 1
3(4�1 + 5�2 + 6�3 + 4�4 + 2�5 + 3�6)

�2 = 1
2(�"1 + "2 + "3 + "4 + "5) +

5
6("8 � "7 � "6)

= 1
3(5�1 + 10�2 + 12�3 + 8�4 + 4�5 + 6�6)

�3 = "3 + "4 + "5 + "8 � "7 � "6
= 2�1 + 4�2 + 6�3 + 4�4 + 2�5 + 3�6

�4 = "4 + "5 +
2
3("8 � "7 � "6)

= 1
3(4�1 + 8�2 + 10�3 + 12�4 + 5�5 + 6�6)

�5 = "5 +
1
3("8 � "7 � "6)

= 1
3(2�1 + 4�2 + 6�3 + 5�4 + 4�5 + 3�6)

�6 = 1
2("1 + "2 + "3 + "4 + "5 + "8 � "7 � "6)

= �1 + 2�2 + 3�3 + 2�4 + �5 + 2�6

Level vector: L = (16; 30; 42; 30; 16; 22)
Weyl group: dimW = 27:34:5 = 51 840.
Root lattice Q, weight lattice P :

Q = Q(E8) \ V6
(V6 hyperplane in R 8 orthogonal to "7 + "8 and "6 + "7 + 2"8)

P = Q(E8) [
�
"5 +

1
3 ("8 � "7 � "6)

�
Z

P=Q ' Z=3Z

Highest root:

��0 = �1 + 2�2 + 3�3 + 2�4 + �5 + 2�6
= 1

2("1 + "2 + "3 + "4 + "5 � "6 � "7 + "8)

Coxeter number h = 12, dual Coxeter number h_ = 12.
Quadratic matrix form G:

G =
1

3

0BBBBBB@

4 5 6 4 2 3
5 10 12 8 4 6
6 12 18 12 6 9
4 8 12 10 5 6
2 4 6 5 4 3
3 6 9 6 3 6

1CCCCCCA
(continued)
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Table 3.5 (continued)

Extended Dynkin diagram:

m m m m m
�1 �2 �3 �4 �5

m�6

m�0

Factor group Out(G) = Aut(G)=Int(G) = I.
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Table 3.6: The simple Lie algebra E7.

Rank: 7, dimension: 133.
Root system (1 � i 6= j � 6):

� = f�"i � "j ; �("8 � "7); �1
2(�"1 � : : :� "6 � "7 + "8)g

The total number of + signs (or � signs) is even in 1
2(�"1� : : :�"6�"7+"8).

Simple root system:

�1 =
1
2("1 + "8 �

7X
j=2

"j); �2 = "2 � "1; : : : ; �6 = "6 � "5; �7 = "1 + "2

Positive roots (1 � j < i � 6):

"i � "j ; "i + "j ; "8 � "7 ; 1
2("8 � "7 +

6X
j=1

�"j)

Sum of positive roots:

2� = 2"2 + 4"3 + 6"4 + 8"5 + 10"6 + 17("8 � "7)
= 34�1 + 66�2 + 96�3 + 75�4 + 52�5 + 27�6 + 49�7

Dynkin diagram:

m m m m m m
�1 �2 �3 �4 �5 �6

m�7

Cartan matrix A:

A =

0BBBBBBBB@

2 �1 0 0 0 0 0
�1 2 �1 0 0 0 0
0 �1 2 �1 0 0 �1
0 0 �1 2 �1 0 0
0 0 0 �1 2 �1 0
0 0 0 0 �1 2 0
0 0 �1 0 0 0 2

1CCCCCCCCA
(continued)
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Table 3.6 (continued)

Fundamental weights:

�1 = "8 � "7
= 2�1 + 3�2 + 4�3 + 3�4 + 2�5 + �6 + 2�7

�2 = 1
2(�"1 + "2 + "3 + "4 + "5 + "6) +

3
2("8 � "7)

= 3�1 + 6�2 + 8�3 + 6�4 + 4�5 + 3�6 + 4�7
�3 = "3 + "4 + "5 + "6 + 2("8 � "7)

= 4�1 + 8�2 + 12�3 + 9�4 + 6�5 + 3�6 + 6�7
�4 = "4 + "5 + "6 +

3
2("8 � "7)

= 1
2(6�1 + 12�2 + 18�3 + 15�4 + 10�5 + 5�6 + 9�7)

�5 = "5 + "6 + "8 � "7
= 2�1 + 4�2 + 6�3 + 5�4 + 4�5 + 2�6 + 3�7

�6 = "6 +
1
2("8 � "7)

= 1
2(2�1 + 4�2 + 6�3 + 5�4 + 4�5 + 3�6 + 3�7)

�7 = 1
2("1 + "2 + "3 + "4 + "5 + "6) + "8 � "7

= 1
2(4�1 + 8�2 + 12�3 + 9�4 + 6�5 + 3�6 + 7�7)

Level vector: L = (34; 66; 96; 75; 52; 27; 49)
Weyl group: dimW = 210:34:5:7 = 2 903 040.
Root lattice Q, weight lattice P :

Q = Q(E8) \ V7 ; V7 hyperplane in R 8 orthogonal to "7 + "8

P = Q(E8) [
�
"6 +

1
2 ("8 � "7)

�
Z

P=Q ' Z=2Z

Highest root:

��0 = 2�1 + 3�2 + 4�3 + 3�4 + 2�5 + �6 + 2�7 = "8 � "7
Coxeter number h = 18, dual Coxeter number h_ = 18.
Quadratic matrix form G:

G =
1

2

0BBBBBBBB@

4 6 8 6 4 2 4
6 12 16 12 8 4 8
8 16 24 18 12 6 12
6 12 18 15 10 5 9
4 8 12 10 8 4 6
2 4 6 5 4 3 3
4 8 12 9 6 3 7

1CCCCCCCCA
(continued)
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Table 3.6 (continued)

Extended Dynkin diagram:

m m m m m m m
�0 �1 �2 �3 �4 �5 �6

m�7

Factor group Out(G) = Aut(G)=Int(G) = I.
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Table 3.7: The simple Lie algebra E8.

Rank: 8, dimension: 248.
Root system (1 � i 6= j � 8):

� = f�"i � "j ; 1
2(�"1 � : : :� "8)g

The total number of + signs (or � signs) is even in 1
2(�"1 � : : :� "8).

Simple root system:

�1 =
1
2("1 + "8 �

7X
j=2

"j); �2 = "2 � "1; : : : ; �7 = "7 � "6; �8 = "1 + "2

Positive roots (1 � j < i � 8):

"i � "j ; "i + "j ;
1
2("8 +

7X
j=1

�"j)

Sum of positive roots:

2� = 2"2 + 3"3 + 3"4 + "5 � "6 � "7 + "8
= �1 + �2 + �3 + �4 + �5 + �6 + �7 + �8

Dynkin diagram:

m m m m m m m
�1 �2 �3 �4 �5 �6 �7

m�8
Cartan matrix A:

A =

0BBBBBBBBBB@

2 �1 0 0 0 0 0 0
�1 2 �1 0 0 0 0 0
0 �1 2 �1 0 0 0 �1
0 0 �1 2 �1 0 0 0
0 0 0 �1 2 �1 0 0
0 0 0 0 �1 2 �1 0
0 0 0 0 0 �1 2 0
0 0 �1 0 0 0 0 2

1CCCCCCCCCCA
(continued)
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Table 3.7 (continued)

Fundamental weights:

�1 = 2"8 = 4�1 + 7�2 + 10�3 + 8�4 + 6�5 + 4�6 + 2�7 + 5�8
�2 = 1

2(�"1 + "2 + "3 + "4 + "5 + "6 + "7 + 7"8)

= 7�1 + 14�2 + 20�3 + 16�4 + 12�5 + 8�6 + 4�7 + 10�8
�3 = "3 + "4 + "5 + "6 + "7 + 5"8

= 10�1 + 20�2 + 30�3 + 24�4 + 18�5 + 12�6 + 6�7 + 15�8
�4 = "4 + "5 + "6 + "7 + 4"8

= 8�1 + 16�2 + 24�3 + 20�4 + 15�5 + 10�6 + 5�7 + 12�8
�5 = "5 + "6 + "7 + 3"8

= 6�1 + 12�2 + 18�3 + 15�4 + 12�5 + 8�6 + 4�7 + 9�8
�6 = "6 + "7 + 2"8

= 4�1 + 8�2 + 12�3 + 10�4 + 8�5 + 6�6 + 3�7 + 6�8
�7 = "7 + "8

= 2�1 + 4�2 + 6�3 + 5�4 + 4�5 + 3�6 + 2�7 + 3�8
�8 = 1

2("1 + "2 + "3 + "4 + "5 + "6 + "7 + 5"8)

= 5�1 + 10�2 + 15�3 + 12�4 + 9�5 + 6�6 + 3�7 + 8�8

Level vector: L = (92; 182; 270; 220; 168; 114; 58; 136)
Weyl group: dimW = 214:35:52:7 = 696 729 600.
Root lattice Q, weight lattice P :

Q = P =
NX
i=1

xi"i where 2xi 2 Z ; xi � xj 2 Z ;
X
i

xi 2 2Z :

Highest root:

��0 = 2�1 + 4�2 + 6�3 + 5�4 + 4�5 + 3�6 + 2�7 + 3�8 = "8 + "7

Coxeter number h = 30, dual Coxeter number h_ = 30.
Quadratic matrix form G:

G =

0BBBBBBBBBB@

4 7 10 8 6 4 2 5
7 14 20 16 12 8 4 10
10 20 30 24 18 12 6 15
8 16 24 20 15 10 5 12
6 12 18 15 12 8 4 9
4 8 12 10 8 6 3 6
2 4 6 5 4 3 2 3
5 10 15 12 9 6 3 8

1CCCCCCCCCCA
(continued)
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Table 3.7 (continued)

Extended Dynkin diagram:

m m m m m m m m
�1 �2 �3 �4 �5 �6 �7 �0

m�8

Factor group Out(G) = Aut(G)=Int(G) = I.



302 Tables on Lie Algebras

Table 3.8: The simple Lie algebra F4.

Rank: 4, dimension: 52.
Root system (1 � i 6= j � 4):

� = f�"i � "j ; �"i; 1
2(�"1 � "2 � "3 � "4)g

�L = f�"i � "jg ; �S = f�"i; 1
2(�"1 � "2 � "3 � "4)g

dim� = 48, dim�L = 24, dim�S = 24.
Simple root system:

�1 = "2 � "3; �2 = "3 � "4; �3 = "4; �4 =
1
2("1 � "2 � "3 � "4)

Positive roots (1 � i < j � 4):

"i � "j ; "i + "j ; "i ;
1
2("1 � "2 � "3 � "4)

Sum of positive roots:

2� = 11"1 + 5"2 + 3"3 + "4 = 16�1 + 30�2 + 42�3 + 22�4

Dynkin diagram:

m m m m
�1 �2 �3 �4

�
@

Cartan matrix A:

A =

0BB@
2 �1 0 0
�1 2 �1 0
0 �2 2 �1
0 0 �1 2

1CCA
Fundamental weights:

�1 = "1 + "2 = 2�1 + 3�2 + 4�3 + 2�4
�2 = 2"1 + "2 + "3 = 3�1 + 6�2 + 8�3 + 4�4
�3 = 1

2(3"1 + "2 + "3 + "4) = 2�1 + 4�2 + 6�3 + 3�4
�4 = "1 = �1 + 2�2 + 3�3 + 2�4

Level vector: L = (22; 42; 30; 16)
Weyl group: W = S3 n (S4 n (Z=2Z)2), dimW = 27:32 = 1152.
Root lattice Q, weight lattice P :

Q = P =
NX
i=1

xi"i where all xi 2 Z or all xi 2 Z + 1
2

(continued)
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Table 3.8 (continued)

Highest root:

��0 = 2�1 + 3�2 + 4�3 + 2�4 = "1 + "2

Coxeter number h = 12, dual Coxeter number h_ = 9.
Quadratic matrix form G:

G =

0BB@
2 3 2 1
3 6 4 2
2 4 3 3

2
1 2 3

2 1

1CCA
Extended Dynkin diagram:

m m m m m
�0 �1 �2 �3 �4

@
�

Factor group Out(G) = Aut(G)=Int(G) = I.
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Table 3.9: The simple Lie algebra G2.

Rank: 2, dimension: 14.
Root system (1 � i 6= j 6= k � 3):

� = f"i� "j; "i+ "j � 2"kg ; �L = f"i� "jg ; �S = f"i+ "j � 2"kg
dim� = 12, dim�L = 6, dim�S = 6.
Simple root system:

�1 = "2 + "3 � 2"1; �2 = "1 � "2
Positive roots:

"2 + "3 � 2"1 = �1; "1 � "2 = �2; "3 � "1 = �1 + �2;

"3 � "2 = �1 + 2�2; "1 + "3 � 2"2 = �1 + 3�2;

�"1 � "2 + 2"3 = 2�1 + 3�2

Sum of positive roots:

2� = �2"1 � 4"2 + 6"3 = 6�1 + 10�2

Dynkin diagram:

m m
�1 �2

�
@

Cartan matrix A and Quadratic matric form G:

A =

�
2 �1
�3 2

�
G = 1

3

�
6 3
3 2

�
Fundamental weights:

�1 = �"1 � "2 + 2"3 = 2�1 + 3�2
�2 = "3 � "2 = �1 + 2�2

Level vector: L = (10; 6)
Weyl group: W is the dihedral group, dimW = 12.
Root lattice Q, weight lattice P :

Q = P = �["1 � "2; "1 � "3]
Highest root: ��0 = 2�1 + 3�2 = �"1 � "2 + 2"3
Coxeter number h = 6, dual Coxeter number h_ = 4.
Extended Dynkin diagram:

m m m
�0 �1 �2

@
�

Factor group Out(G) = Aut(G)=Int(G) = I.
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Table 3.10: Dimensions of SU(n) irreducible representations.

YT SU(3) SU(4) SU(5) SU(6) SU(8) YT SU(3) SU(4)

[1] 3 4 5 6 8 [8; 3] 120 1100
[2] 6 10 15 21 36 [8; 4] 125 1375
[2; 1] 8 20 40 70 168 [9; 2] 132 1056
[3] 10 20 35 56 120 [9; 3] 154 1540
[3; 1] 15 45 105 210 630 [9; 4] 165 1980
[4] 15 35 70 126 330 [10; 2] 162 1404
[4; 1] 24 84 224 504 1848 [10; 3] 192 2080
[4; 2] 27 126 420 1134 5544 [11; 2] 195 1820
[5] 21 56 126 252 792 [12; 1] 168 1260
[5; 1] 35 140 420 1050 4620 [13; 1] 195 1560
[5; 2] 42 224 840 2520 14784 [17] 171 1140
[6] 28 84 210 462 1716 [18] 190 1330
[6; 1] 48 216 720 1980 10296

[6; 2] 60 360 1500 4950 34320 YT SU(6) SU(8)

[6; 3] 64 480 2400 9240 82368 [13] 20 56
[7] 36 120 330 792 3432 [2; 14] 35 420
[7; 1] 63 315 1155 3465 21021 [2; 2; 1; 1] 189 1512
[7; 2] 81 540 2475 8910 72072 [2; 2; 2] 175 1176
[8] 45 165 495 1287 6435 [3; 14] 120 1800
[8; 1] 80 440 1760 5720 40040
[9] 55 220 715 2002 11440
[9; 1] 99 594 2574 9009 72072

YT SU(3) SU(4) SU(5) SU(6) YT SU(3) SU(4) SU(5)

[10] 66 286 1001 3003 [7; 3] 90 750 4125
[11] 78 364 1365 4368 [8; 2] 105 770 3850
[12] 91 455 1820 6188 [10; 1] 120 780 3640
[13] 105 560 2380 8568 [11; 1] 143 1001 5005
[14] 120 680 3060 11628 [15] 136 816 3876
[16] 153 969 4845

(continued)
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Table 3.10 (continued)

YT SU(4) SU(5) SU(6) SU(8) YT SU(5) SU(6) SU(8)

[1; 1] 6 10 15 28 [2; 1; 1; 1] 24 84 504
[2; 1; 1] 15 45 105 378 [2; 2; 1] 75 210 1008
[2; 2] 20 50 105 336 [3; 1; 1; 1] 70 280 2100
[3; 1; 1] 36 126 336 1512 [3; 2; 1; 1] 175 840 8400
[3; 2] 60 175 420 1680 [3; 2; 2] 210 840 7056
[3; 2; 1] 64 280 896 5376 [3; 3; 1] 315 1176 9072
[3; 3] 50 175 490 2520 [4; 1; 1; 1] 160 720 6600
[4; 1; 1] 70 280 840 4620 [4; 2; 1; 1] 450 2430 29700
[4; 2; 1] 140 700 2520 18480 [4; 2; 2; 1] 480 3240 55440
[4; 2; 2] 84 560 2520 25872 [4; 2; 2; 2] 200 1800 46200
[4; 3] 140 560 1764 11088 [4; 3; 1; 1] 720 4536 71280
[4; 3; 1] 175 1050 4410 41580 [4; 3; 2; 1] 1024 8064 177408
[4; 4] 105 490 1764 13860 [4; 3; 2] 1120 5880 77616
[5; 1; 1] 120 540 1800 11880 [4; 3; 3] 700 4410 77616
[5; 2; 1] 256 1440 5760 50688 [4; 4; 1] 980 4704 55440
[5; 2; 2] 160 1200 6000 73920 [5; 1; 1; 1] 315 1575 17325
[5; 3] 280 1260 4410 33264 [5; 2; 1; 1] 945 5670 83160
[5; 4] 280 1470 5880 55440 [5; 2; 2; 1] 1050 7875 161700
[5; 5] 196 1176 5292 60984 [5; 2; 2; 2] 450 4500 138600
[6; 1; 1] 189 945 3465 27027 [6; 1; 1; 1] 560 3080 40040
[7; 1; 1] 280 1540 6160 56056 [6; 2; 2; 2] 875 9625 350350

[7; 1; 1; 1] 924 5544 84084

YT SU(4) SU(5) YT SU(4) SU(5) YT SU(5) SU(6)

[5; 3; 1] 360 2430 [7; 2; 2] 420 3850 [3; 2; 2; 2] 560 11760
[5; 3; 2] 300 2700 [7; 3; 1] 1000 8250 [3; 3; 3] 980 14112
[5; 4; 1] 384 3024 [7; 3; 2] 875 9625 [4; 14] 315 5775
[6; 2; 1] 420 2625 [7; 3; 3] 500 6875 [4; 4; 2] 1176 7056
[6; 2; 2] 270 2250 [7; 4] 900 5775 [5; 3; 2; 2] 1215 14175
[6; 3; 1] 630 4725 [7; 5] 945 6930
[6; 3; 2] 540 5400 [7; 6] 840 6930
[6; 3; 3] 300 3750 [7; 7] 540 4950
[6; 4] 540 3150 [8; 1; 1] 396 2376
[6; 4; 1] 756 6615 [9; 1; 1] 540 3510
[6; 4; 2] 729 8505 [8; 2; 1] 924 6930
[6; 5] 504 3360 [8; 2; 2] 616 6160
[6; 5; 1] 735 7350 [9; 2; 2] 864 9360
[6; 6] 336 2520 [10; 1; 1] 715 5005
[7; 2; 1] 640 4400 [11; 1; 1] 924 6930
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Table 3.11: Products of SU(n) irreducible representations.

[p] 
 [1k] = [p+ 1; 1k�1] � [p; 1k]

[1p] 
 [1k] =

kM
i=0

[2k; 1p+k�2i] (p � k)
= [2k; 1p�k] � [2k�1; 1p�k+2] � : : : � [2; 1p+k�2] � [1p+k]

[p] 
 [k] =

kM
i=0

[p+ k � i; i] (p � k)
= [p+ k] � [p+ k � 1; 1] � : : : � [p+ 1; k � 1] � [p; k]

[p; 1] 
 [1k] = [p+ 1; 2; 1k�2] � [p+ 1; 1k] � [p; 2; 1k�1] � [p; 1k+1]

[p; 1] 
 [k] =
M

0�i�min(k;p�1)
[p+ k � i; i+ 1]M

0�i�min(k�1;p�1)
[p+ k � i� 1; i+ 1; 1]

[p; 1] 
 [k; 1] =
M

0�i�min(k;p�1)
([p+ k � i+ 1; i+ 1]� [p+ k � i; i+ 1; 1])M

0�i�min(k�1;p�1)
([p+ k � i; i+ 1; 1]� [p+ k � i� 1; i+ 1; 1; 1])M

0�i�min(k;p�2)
[p+ k � i; i+ 2]

M
0�i�min(k�1;p�2)

[p+ k � i� 1; i+ 2; 1]M
1�i�min(k�1;p�1)

[p+ k � i� 1; i+ 1; 2]

N.B. One has to avoid in the r.h.s. tableaux with a number of rows larger
than the rank n of the algebra under consideration.
Moreover, any tableau with n rows will be replaced by the corresponding
tableau in which the n box columns are suppressed.
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Table 3.12: Dimensions of Sp(2n) irreducible representations.

Young Tabl. Sp(6) Sp(8) Sp(10) Sp(12)
[m1; : : : ;mn]

[0] 1 1 1 1
[1] (fond.) 6 8 10 12
[12] 14 27 44 65
[13] 14 48 110 208
[14] � 42 165 429
[15] � � 132 572
[2] (adjoint) 21 36 55 78
[2; 1] 64 160 320 560
[2; 1; 1] 70 315 891 2002
[2; 1; 1; 1] � 288 1408 4368
[2; 2] 90 308 780 1650
[2; 2; 1] 126 792 2860 7800
[2; 2; 2] 84 825 4004 13650
[3] 56 120 220 364
[3; 1] 189 594 1430 2925
[3; 1; 1] 216 1232 4212 11088
[3; 2] 350 1512 4620 11440
[3; 2; 1] 512 4096 17920 57344
[3; 2; 2] 378 4752 28028 112320
[3; 3] 385 2184 8250 24310
[3; 3; 1] 616 6552 35640 136136
[3; 3; 2] 594 10010 73710 353430
[3; 3; 3] 330 8008 76440 448800
[4] 126 330 715 1365
[4; 1] 448 1728 4928 11648
[4; 1; 1] 525 3696 15015 45760
[4; 2] 924 4914 17820 51051
[5] 252 792 2002 4368
[5; 1] 924 4290 14300 38675
[6] 462 1716 5005 12376
[7] 792 3432 11440 31824
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Table 3.13: Products of Sp(2n) irreducible representations (n � 3).

[p] 
 [k] =
kM
l=0

kM
m=l

[p+ k �m� l;m� l] (p � k)

[p] 
 [1] = [p+ 1] � [p; 1] � [p� 1]

[p] 
 [1k] = [p+ 1; 1k�1] � [p; 1k] � [p; 1k�2] � [p� 1; 1k�1]

[p; k] 
 [1] = [p+ 1; k] � [p; k + 1] � [p; k; 1] � [p; k � 1]
� [p� 1; k] (p � k)

[p; 1] 
 [1k] = [p+ 1; 2; 1k�2] � [p+ 1; 1k] � [p+ 1; 1k�2]
� [p; 2; 1k�1] � [p; 2; 1k�3] � [p; 1k+1] � [p; 1k�1]
� [p; 1k�1]� � [p; 1k�3] � [p� 1; 2; 1k�2]
� [p� 1; 1k] � [p� 1; 1k�2] (p; k � 2)

[p; 2] 
 [1k] = [p+ 1; 3; 1k�2] � [p+ 1; 2; 1k�1] � [p+ 1; 2; 1k�3]
� [p+ 1; 1k�1] � [p; 3; 1k�1] � [p; 3; 1k�3]
� [p; 2; 1k] � [p; 2; 1k�2] � [p; 2; 1k�4] � [p; 1k�2]
� [p� 1; 3; 1k�2] � [p� 1; 2; 1k�1] � [p� 1; 2; 1k�3]
� [p� 1; 1k�1] (p; k � 2)

[1p] 
 [1k] =
kM
l=0

kM
m=l

[2m�l; 1p+k�2m] (p � k)

where the GYTs such that p+ k �m > n do not appear for Sp(2n)

[�] 
 [1] = f[�]+g � f[�]�g

N.B. One has to avoid in the r.h.s. tableaux with a number of rows larger
than the rank n of the algebra under consideration or any non-meaningful
GYT. The � representations do not appear for Sp(2k).
In the last product, [�] is any GYT, f[�]+g (respectively f[�]�g) is the set of
GYTs obtained by adding (respectively subtracting) a box in any meaningful
way to any row of [�].
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Table 3.14: Dimensions of SO(2n) irreducible vector representations.

Young Tabl. SO(8) SO(10) SO(12) SO(14) SO(16) SO(24) SO(32)

[1] 8 10 12 14 16 24 32
[12] 28 45 66 91 120 276 496
[13] 56 120 220 364 560 2024 4960
[14] 35 210 495 1001 1820 10626 35960
[15] � 126 792 2002 4368 42504 201376
[16] � � 462 3003 8008 134596 906192
[2] 35 54 77 104 135 299 527
[2; 1] 160 320 560 896 1344 4576 10880
[2; 1; 1] 350 945 2079 4004 7020 37674 122264
[2; 1; 1; 1] 224 1728 4928 11648 24192 210496 944384
[2; 1; 1; 1; 1] � 1050 8085 24024 60060 874874 5501880
[2; 2] 300 770 1638 3080 5304 27300 86768
[2; 2; 1] 840 2970 8008 18200 36720 299000 1298528
[2; 2; 2] 840 4125 14014 38220 89760 1136200 6678144
[3] 112 210 352 546 800 2576 5952
[3; 1] 567 1386 2860 5265 8925 44275 138105
[3; 1; 1] 1296 4312 11232 24948 49504 388080 1653696
[3; 2] 1400 4410 11088 24024 46800 351624 1467168
[3; 3] 1925 7644 23100 58344 129675 1450449 8023575
[4] 294 660 1287 2275 3740 17250 51832
[4; 1] 1568 4608 11088 23296 44352 315744 1281664
[5] 672 1782 4004 8008 14688 95680 371008
[5; 1] 3696 12870 35750 85085 180800 1821600 9548000
[6] 1386 4290 11011 24752 50388 457470 2272424

Young Tabl. SO(8) SO(10) SO(12) SO(14) SO(16) SO(24)

[2; 2; 1; 1] 567 5940 21021 58968 141372 1874730
[2; 2; 1; 1; 1] � 3696 36036 128128 371280 8288280
[2; 2; 2; 1] 672 10560 48048 163072 456960 9472320
[2; 2; 2; 2] 294 8910 55055 231868 771120
[3; 1; 1; 1] 840 8085 27456 75075 176800 2254000
[3; 1; 1; 1; 1] � 4950 45760 157950 448800 9614000
[3; 2; 1] 4096 17920 57344 150528 344064 4100096
[3; 2; 1; 1] 2800 36750 155232 504504 1372800
[3; 2; 2] 4536 27720 112112 353808 942480
[3; 3; 1] 6160 34398 133056 408408 1067040
[4; 1; 1] 3675 14784 45045 114400 255255 2877875
[4; 1; 1; 1] 2400 28160 112320 352000 933504
[4; 2] 4312 16380 48114 119119 260832 2816856
[4; 3] 7840 37632 133056 384384 960960
[5; 1; 1] 8800 42120 148500 427856 1067040
[7] 2640 9438 27456 68952 155040 1937520
[8] 4719 19305 63206 176358 436050 7413705
[9] 8008 37180 136136 419900 1136960
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Table 3.15: Dimensions of SO(2n+ 1) irreducible vector representations.

Young Tabl. SO(5) SO(7) SO(9) SO(11) SO(13) SO(15)

[1] 5 7 9 11 13 15
[12] 10 21 36 55 78 105
[13] � 35 84 165 286 455
[14] � � 126 330 715 1365
[15] � � � 462 1287 3003
[2] 14 27 44 65 90 119
[2; 1] 35 105 231 429 715 1105
[2; 1; 1] � 189 594 1430 2925 5355
[2; 1; 1; 1] � � 924 3003 7722 17017
[2; 2] 35 168 495 1144 2275 4080
[2; 2; 1] � 378 1650 5005 12285 26180
[2; 2; 1; 1] � � 2772 11583 36036 92820
[2; 2; 2] � 294 1980 7865 23660 59500
[2; 2; 2; 1] � � 4158 23595 91091 278460
[2; 2; 2; 2] � � 2772 23595 117117 433160
[3] 30 77 156 275 442 665
[3; 1] 81 330 910 2025 3927 6916
[3; 1; 1] � 616 2457 7128 17017 35568
[3; 1; 1; 1] � � 3900 15400 46410 117040
[3; 2] 105 693 2574 7150 16575 33915
[3; 2; 1] � 1617 9009 33033 94809 230945
[3; 2; 1; 1] � � 15444 78650 287300 847875
[3; 2; 2] � 1386 12012 57915 204204 587860
[3; 3] 84 825 4004 13650 37400 88179
[3; 3; 1] � 2079 15444 70070 238680 671517
[4] 55 182 450 935 1729 2940
[4; 1] 154 819 2772 7293 16302 32487
[4; 1; 1] � 1560 7700 26520 73150 173264
[4; 1; 1; 1] � � 12375 58344 203775 583440
[4; 2] 220 1911 8748 28798 77064 178605
[4; 2; 1] � 4550 31500 137445 456456 1261260
[4; 3] 231 3003 18018 72930 230945 617253
[4; 4] 165 3003 22932 112200 415701 1270815
[5] 91 378 1122 2717 5733 10948
[5; 1] 260 1750 7140 21945 56056 125580
[5; 1; 1] � 3375 20196 81510 257400 686205
[5; 2] 390 4312 23868 91960 281554 734160
[6] 140 714 2508 7007 16744 35700
[6; 1] 405 3366 16302 57915 167739 419900
[7] 204 1254 5148 16445 44200 104652
[7; 1] 595 5985 33957 138138 450450 1253070
[8] 285 2079 9867 35750 107406 281010
[9] 385 3289 17875 72930 243542 700910
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Table 3.16: Dimensions of SO(2n) irreducible spinor representations.

Young Tabl. SO(8) SO(10) SO(12) SO(14) SO(16) SO(24) SO(32)

[0]0 8 16 32 64 128 2048 32768
[1]0 56 144 352 832 1920 47104 1015808
[12]0 160 560 1728 4928 13312 516096
[13]0 224 1200 4928 17472 56320 3579904
[14]0 112 1440 8800 40768 161280
[15]0 � 672 9504 64064 326144
[16]0 � � 4224 64064 465920
[2]0 224 720 2112 5824 15360 565248
[2; 1]0 840 3696 13728 45760 141440 8243200
[2; 1; 1]0 1296 8800 43680 181440 670208
[2; 1; 1; 1]0 672 11088 82368 448448 2036736
[2; 2]0 1400 8064 36960 146432 524160
[3]0 672 2640 9152 29120 87040 4710400
[3; 1]0 2800 15120 66528 256256 898560
[4]0 1680 7920 32032 116480 391680

Table 3.17: Dimensions of SO(2n+ 1) irreducible spinor representations.

Young Tabl. SO(5) SO(7) SO(9) SO(11) SO(13) SO(15)

[0]0 4 8 16 32 64 128
[1]0 16 48 128 320 768 1792
[12]0 20 112 432 1408 4160 11520
[13]0 � 112 768 3520 13312 44800
[14]0 � � 672 5280 27456 116480
[2]0 40 168 576 1760 4992 13440
[2; 1]0 64 512 2560 10240 35840 114688
[2; 1; 1]0 � 560 5040 28512 128128 499200
[2; 2]0 56 720 4928 24960 105600 396032
[2; 2; 1]0 � 1008 12672 91520 499200 2284800
[2; 2; 2]0 � 672 13200 128128 873600 4787200
[3]0 80 448 1920 7040 23296 71680
[3; 1]0 140 1512 9504 45760 187200 685440
[3; 2]0 160 2800 24192 147840 732160 3144960
[3; 3]0 120 3080 34944 264000 1555840 7745920
[4]0 140 1008 5280 22880 87360 304640
[50] 224 2016 12672 64064 279552 1096704
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Table 3.18: Products of SO(2n) irreducible representations (n � 4).

[p] 
 [p0] =

p0M
l=0

p0�lM
k=0

[p+ p0 � k � 2l; k] (p � p0)

[p] 
 [1] = [p+ 1] � [p; 1] � [p� 1]

[p; 1] 
 [1] = [p+ 1; 1] � [p; 2] � [p; 1; 1] � [p] � [p� 1; 1]

[p; 2] 
 [1] = [p+ 1; 2] � [p; 3] � [p; 2; 1] � [p; 1] � [p� 1; 2]

[p; 1; 1] 
 [1] = [p+ 1; 1; 1] � [p; 2; 1] � [p; 1; 1; 1] � [p; 1; 1;�1]�
� [p; 1] � [p� 1; 1; 1]

[p; 2; 1] 
 [1] = [p+ 1; 2; 1] � [p; 3; 1] � [p; 2; 2] � [p; 2; 1; 1]

� [p; 2; 1;�1]� � [p; 2] � [p; 1; 1] � [p� 1; 2; 1]

[p] 
 [12] = [p+ 1; 1] � [p; 1; 1] � [p] � [p� 1; 1]

[p; 1] 
 [12] = [p+ 1; 2] � [p+ 1; 1; 1] � [p+ 1] � [p; 2; 1]

� [p; 1; 1; 1] � [p; 1; 1;�1]� � 2 [p; 1] � [p� 1; 2]

� [p� 1; 1; 1] � [p� 1] (p � 2)

[12] 
 [12] = [2; 2] � [2; 1; 1] � [2] � [14] � [13;�1]� � [12]
� [0]

[13] 
 [12] = [2; 2; 1] � [2; 1; 1; 1] � [2; 1] � [13] � [1]

�

8>><>>:
[2; 1; 1;�1] � [13] for n = 4

[15] � [14;�1] for n = 5

[15] for n � 6

[13] 
 [13] = [2; 2; 2] � [2; 2; 1; 1] � [2; 2] � [2; 1; 1] � [2]

� [14] � [12] � [0]

�

8>>>>><>>>>>:
[2; 2; 1;�1] � [2; 1; 1] � [13;�1] � [12] for n = 4

[2; 1; 1; 1; 1] � [2; 1; 1; 1;�1] � [14] for n = 5

[2; 1; 1; 1; 1] � [16] � [15;�1] for n = 6

[2; 1; 1; 1; 1] � [16] for n � 7

[2] 
 [13] = [3; 1; 1] � [2; 1; 1; 1] � [2; 1; 1;�1]� � [2; 1] � [13]

(continued)
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Table 3.18 (continued)

[p] 
 [0]0 = [p]0 � [p� 1]00

[1k] 
 [0]0 = [1k]0 � [1k�1]00 � [1k�2]0 � [1k�3]00 � : : :

�
(

[0]0 for k even

[0]00 for k odd

[1] 
 [1]0 = [2]0 � [12]0 � [1]00 � [0]0

[12] 
 [1]0 = [2; 1]0 � [13]0 � [2]00 � [12]00 � 2 [1]0 � [0]00

[13] 
 [1]0 = [2; 1; 1]0 � [2; 1]00 � [2]0 � [14]0 � [13]00 � 2 [12]0

� 2 [1]00 � [0]0

[0]0 
 [0]0 = [1n] � [1n�2] � : : : � [12(1� (�1)n)]
[0]0 
 [0]00 = [1n�1] � [1n�3] � : : : � [12(1 + (�1)n)]
[0]0 
 [1]0 = [21n�1] � [21n�3] � : : : � [2; 12(1 + (�1)n)]

� [1n�1] � [1n�3] � : : : � [1; 12(1� (�1)n)]
[0]00 
 [1]0 = [21n�2] � [21n�4] � : : : � [2; 12(1� (�1)n)]

� [1n�2] � [1n�4] � : : : � [1; 12(1 + (�1)n)]
[2] 
 [1]0 = [3]0 � [2; 1]0 � [2]00 � [12]00 � [1]0 � [0]00

N.B. One has to avoid in the r.h.s. tableaux with a number of rows larger
than the rank n of the algebra under consideration or any non-meaningful
GYT. The GYTs with � exist only for SO(8).
The notation [: : : ; : : : ; : : :| {z }

p

]00 means [: : : ; : : : ; : : :| {z }
p

; 0n�p�1;�1]0.

The spinor representations [u; v; w; : : :]0 and [u; v; w; : : :]00 have the same
dimension (they are conjugate to each other).

One has also the general formula

[�] 
 [1] = f[�]+g � f[�]�g

where [�] is any GYT, f[�]+g (respectively f[�]�g) is the set of GYTs ob-
tained by adding (respectively subtracting) a box in any meaningful way to
any row of [�].
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Table 3.19: Products of SO(2n+ 1) irreducible representations (n � 3).

[p] 
 [1] = [p+ 1] � [p; 1] � [p� 1]

[12] 
 [1] = [2; 1] � [13] � [1]

[12] 
 [2] = [3; 1] � [2; 1; 1] � [2] � [12]

[2] 
 [2] = [4] � [3; 1] � [2; 2] � [2] � [12] � [0]

[12] 
 [12] =

8>><>>:
[2; 2] � [2; 1; 1] � [13] � [2] � [12] � [0]

for n = 3

[2; 2] � [2; 1; 1] � [14] � [2] � [12] � [0]
for n � 4

[13] 
 [1] =

(
[2; 1; 1] � [13] � [12] for n = 3

[2; 1; 1] � [14] � [12] for n � 4

[13] 
 [12] =

8>>>>>>><>>>>>>>:

[2; 2; 1] � [2; 1; 1] � [2; 1] � [13] � [12] � [1]
for n = 3

[2; 2; 1] � [2; 1; 1; 1] � [2; 1] � [14] � [13] � [1]
for n = 4

[2; 2; 1] � [2; 1; 1; 1] � [2; 1] � [15] � [13] � [1]
for n � 5

[14] 
 [1] =

(
[2; 1; 1; 1] � [14] � [13] for n = 4

[2; 1; 1; 1] � [15] � [13] for n � 5

[2] 
 [13] =

(
[3; 1; 1] � [2; 1; 1] � [2; 1] � [13] for n = 3

[3; 1; 1] � [2; 1; 1; 1] � [2; 1] � [13] for n � 4

[2] 
 [14] =

8>><>>:
[3; 1; 1; 1] � [2; 1; 1; 1] � [2; 1; 1] � [14]

for n = 4

[3; 1; 1; 1] � [2; 1; 1; 1; 1] � [2; 1; 1] � [14]
for n � 5

(continued)
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Table 3.19 (continued)

[p] 
 [0]0 = [p]0 � [p� 1]0

[1k] 
 [0]0 = [1k]0 � [1k�1]0 � [1k�2]0 � : : : � [0]0

[1] 
 [1]0 = [2]0 � [12]0 � [1]0 � [0]0

[12] 
 [1]0 = [2; 1]0 � [2]0 � [13]0 � [12]0 � 2 [1]0 � [0]0

[13] 
 [1]0 = [2; 1; 1]0 � [2; 1]0 � [2]0 � [14]0 � [13]0 � 2 [12]0

� 2 [1]0 � [0]0

[2] 
 [1]0 = [3]0 � [2; 1]0 � [2]0 � [12]0 � [1]0 � [0]0

[0]0 
 [0]0 = [1n] � [1n�1] � : : : � [0]

[0]0 
 [1]0 = [21n�1] � [21n�2] � : : : � [2]

� [1n] � [1n�1] � : : : � [0]

N.B. One has to avoid in the r.h.s. tableaux with a number of rows larger
than the rank n of the algebra under consideration or any non-meaningful
GYT.

One has also the general formula

[�] 
 [1] =

( f[�]+g � f[�]�g if �n = 0

f[�]+g � f[�]�g � [�] if �n 6= 0

where [�] is any GYT, f[�]+g (respectively f[�]�g) is the set of GYTs ob-
tained by adding (respectively subtracting) a box in any meaningful way to
any row of [�].
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Table 3.20: Dimensions of G2 irreducible representations.

Dynkin dim. Dynkin dim. Dynkin dim. Dynkin dim.

0 1 7 4 0 748 3 3 4096 0 12 10556
1 0 14 3 1 896 4 2 4914 8 0 11571
0 2 27 1 4 924 5 1 4928 1 9 11648
1 1 64 0 7 1254 1 7 49280 3 5 12096
2 0 77 2 3 1547 0 10 5005 2 7 13090
0 3 770 1 5 1728 2 5 5103 0 13 14756
0 4 182 5 0 1729 7 0 6630 4 4 15625
1 2 189 3 2 2079 3 4 7293 1 10 17017
3 0 273 0 8 20790 0 11 7371 7 1 17472
2 1 286 4 1 2261 1 8 7722 5 3 18304
0 5 378 2 4 2926 2 6 8372 3 6 19019
1 3 448 1 6 3003 4 3 9177 9 0 19096
0 6 714 0 9 3289 6 1 9660 6 2 19278
2 2 729 6 0 3542 5 2 10206 2 8 19683

Table 3.21: Dimensions of F4 irreducible representations.

Dynkin dimension Dynkin dimension Dynkin dimension

0001 26 2001 17901 3001 184756
1000 52 0101 19278 0021 205751
0010 273 0020 19448 0013 212992
0002 324 1100 29172 0200 226746
1001 1053 0012 34749 2100 340119
2000 10530 1003 76076 0006 342056
0100 1274 0005 81081 1101 379848
0003 2652 4000 100776 1004 412776
0011 4096 1011 106496 1020 420147
1010 8424 0110 107406 5000 627912
1002 10829 2010 119119 0030 629356
3000 12376 0102 160056 1012 787644
0004 16302 2002 1600560 0103 952952
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Table 3.22: Products of G2 irreducible representations.

7
 7 = (1 � 27)s � (7 � 14)a

7
 14 = 7 � 27 � 64

14
 14 = (1 � 27 � 77)s � (14 � 770)a

7
 27 = 7 � 14 � 27 � 64 � 770

14
 27 = 7 � 14 � 27 � 64 � 770 � 189

27
 27 = (1 � 27 � 27 � 64 � 77 � 182)s
� (7 � 14 � 64 � 770 � 189)a

7
 64 = 14 � 27 � 64 � 77 � 770 � 189

14
 64 = 7 � 27 � 64 � 64 � 770 � 182 � 189 � 286

27
 64 = 7 � 14 � 27 � 27 � 64 � 64 � 77 � 770 � 770 � 182 � 189
� 189 � 286 � 448

64
 64 = 1 � 7 � 14 � 14 � 27 � 27 � 64 � 64 � 77 � 77 � 770

770 � � 770 � 182 � 182 � 189 � 189 � 189 � 273 � 286
� 378 � 448 � 448 � 729

7
 77 = 64 � 189 � 286

14
 77 = 14 � 77 � 770 � 189 � 273 � 448

27
 77 = 27 � 64 � 77 � 770 � 182 � 189 � 286 � 448 � 729

7
 770 = 27 � 64 � 770 � 182 � 189

14
 770 = 14 � 27 � 64 � 77 � 770 � 182 � 189 � 448

27
 770 = 7 � 14 � 27 � 64 � 64 � 77 � 770 � 770 � 182 � 189
� 189 � 286 � 378 � 448

7
 182 = 770 � 182 � 189 � 378 � 448

14
 182 = 64 � 770 � 182 � 189 � 286 � 378 � 448 � 924

7
 189 = 64 � 77 � 770 � 182 � 189 � 286 � 448

14
 189 = 27 � 64 � 77 � 770 � 182 � 189 � 189 � 286 � 378 � 448
� 729

7
 273 = 286 � 729 � 896

14
 273 = 77 � 273 � 448 � 729 � 748 � 1547
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Table 3.23: Products of F4 irreducible representations.

26
 26 = (1 � 26 � 324)s � (52 � 273)a

26 
 52 = 26 � 273 � 1053

52 
 52 = (1 � 324 � 10530)s � (52 � 1274)a

26 
 273 = 26 � 52 � 273 � 324 � 1053 � 1274 � 4096

52 
 273 = 26 � 273 � 324 � 1053 � 4096 � 8424

273 
 273 = (1 � 26 � 324 � 324 � 1053 � 10530 � 2652 � 4096
� 8424 � 19448)s � (52 � 273 � 273 � 1053 � 1274
� 4096 � 10829 � 19278)a

26 
 324 = 26 � 273 � 324 � 1053 � 2652 � 4096

52 
 324 = 52 � 273 � 324 � 1274 � 4096 � 10829

273 
 324 = 26 � 52 � 273 � 273 � 324 � 1053 � 1053 � 1274 � 2652
� 4096 � 4096 � 8424 � 10829 � 19278 � 34749

324 
 324 = (1 � 26 � 324 � 324 � 10530 � 2652 � 4096 � 8424
� 16302 � 19448)s � (52 � 273 � 1053 � 1274 � 4096
� 10829 � 34749)a
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Table 3.24: Dimensions of E6 irreducible representations.

Dynkin label dimension Dynkin label dimension Dynkin label dimension

100000 27 000003 43758 R 011000 386100
000001 78 R 100002 46332 000102 393822
000100 351 101000 51975 000210 412776
000020 3510 210000 54054 600000 442442
100010 650 R 100030 61425 200002 459459
100001 1728 010100 70070 R 001020 494208
000002 2430 R 010020 78975 000004 537966 R
001000 2925 R 200020 85293 R 010030 579150
300000 3003 500000 100386 020010 600600
000110 5824 001001 105600 R 200030 638820
010010 7371 100110 112320 000013 741312
200010 7722 300001 146432 100012 812175 R
000101 17550 000111 252252 101010 852930 R
000021 19305 100101 314496 000041 853281
400000 193050 000130 359424 010110 967680
020000 34398 200011 359424 100120 972972
100011 34749 R 100040 371800

The real representations are labelled by (R).

Table 3.25: Dimensions of E7 irreducible representations.

Dynkin label dimension Dynkin label dimension Dynkin label dimension

0000010 56 0001000 27664 200010 320112
1000000 133 0000011 40755 0100010 362880
0000001 912 0000110 51072 0010000 365750
0000020 1463 1000001 86184 1100000 573440
0000100 1539 1000020 150822 0000200 617253
1000010 6480 1000100 152152 0000101 861840
2000000 7371 3000000 238602 0000021 885248
0100000 8645 0000002 253935 0000120 915705
0000030 24320 0000040 293930 0001010 980343

Table 3.26: Dimensions of E8 irreducible representations.

Dynkin label dimension Dynkin label dimension Dynkin label dimension

00000010 248 00001000 2450240 00000040 79143000
10000000 3875 00000110 4096000 00010000 146325270
00000020 27000 20000000 4881384 00000200 203205000
00000100 30380 01000000 6696000 00000120 281545875
00000001 147250 00000011 26411008 10000001 301694976
10000010 779247 10000020 70680000 00001010 344452500
00000030 1763125 10000100 76271625 20000010 820260000
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Table 3.27: Products of E6 irreducible representations.

27 
 27 = (27 � 351
0
)s � 351a

27 
 27 = 1 � 78 � 650

27 
 78 = 27 � 351 � 1728

78 
 78 = (1 � 650 � 2430)s � (78 � 2925)a

27 
 351 = 78 � 650 � 2925 � 5824

27 
 351 = 27 � 351 � 1728 � 7371

27 
 351
0

= 650 � 3003 � 5824

27 
 351
0

= 27 � 1728 � 7722

78 
 351 = 27 � 351 � 3510 � 1728 � 7371 � 17550

78 
 3510 = 351 � 3510 � 7371 � 19305

351 
 351 = 1 � 78 � 650 � 650 � 2430 � 2925 � 5824 � 5824
� 34749 � 70070

351 
 351 = (27 � 3510 � 1728 � 7722 � 17550 � 34398)s
� (351 � 1728 � 7371 � 51975)a

3510 
 351
0

= 1 � 78 � 650 � 2430 � 34749 � 85293

351
0 
 351

0
= (3510 � 7722 � 193050 � 34398)s � (7371 � 54054)a

351 
 3510 = 78 � 650 � 2925 � 5824 � 34749 � 78975

351 
 351
0

= 351 � 1728 � 7371 � 7722 � 51975 � 54054

27 
 650 = 27 � 351 � 3510 � 1728 � 7371 � 7722

78 
 650 = 78 � 650 � 650 � 2925 � 5824 � 5824 � 34749

27 
 1728 = 78 � 650 � 2430 � 2925 � 5824 � 34749

27 
 1728 = 351 � 3510 � 1728 � 7371 � 17550 � 19305

78 
 1728 = 27 � 351 � 1728 � 1728 � 7371 � 7722 � 17550 � 46332
� 51975

650 
 650 = (1 � 78 � 650 � 650 � 2430 � 3003 � 3003 � 5824
� 5824 � 34749 � 70070 � 85293)s � (78 � 650 � 2925
� 2925 � 5824 � 5824 � 34749 � 78975 � 78975)a
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Table 3.28: Products of E7 irreducible representations.

56 
 56 = (133 � 1463)s � (1 � 1539)a

56 
 133 = 56 � 912 � 6480

133 
 133 = (1 � 1539 � 7371)s � (133 � 8645)a

56 
 912 = 133 � 1539 � 8645 � 40755

133 
 912 = 56 � 912 � 6480 � 27664 � 86184

912 
 912 = (133 � 1463 � 8645 � 152152 � 253935)s
� (1 � 1539 � 7371 � 40755 � 365750)a

56 
 1463 = 56 � 6480 � 24320 � 51072

133 
 1463 = 1463 � 1539 � 40755 � 150822

912 
 1463 = 912 � 6480 � 27664 � 51072 � 362880 � 885248

1463 
 1463 = (1 � 1539 � 7371 � 150822 � 293930 � 617253)s
� (133 � 1463 � 152152 � 915705)a

56 
 1539 = 56 � 912 � 6480 � 27664 � 51072

133 
 1539 = 133 � 1463 � 1539 � 8645 � 40755 � 152152

912 
 1539 = 56 � 912 � 6480 � 6480 � 27664 � 51072 � 86184
� 362880 � 861840

1463 
 1539 = 133 � 1463 � 1539 � 8645 � 40755 � 150822 � 152152
� 915705 � 980343

1539 
 1539 = (133 � 1463 � 8645 � 40755 � 152152 � 980343)a�
(1 � 1539 � 1539 � 7371 � 40755 � 150822 � 365750
� 617253)s
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Table 3.29: Products of E8 irreducible representations.

248 
 248 = (1 � 3875 � 27000)s � (248 � 30380)a

248 
 3875 = 248 � 3875 � 30380 � 147250 � 779247

3875 
 3875 = (1 � 3875 � 27000 � 147250 � 2450240 � 4881384)s
� (248 � 30380 � 779247 � 6696000)a

248 
 27000 = 248 � 27000 � 30380 � 779247 � 1763125 � 4096000

248 
 30380 = 248 � 3875 � 27000 � 30380 � 147250 � 779247
� 2450240 � 4096000

Table 3.30: Inner products for the symmetric groups.

Inner products for the symmetric group S2

[2]
 [2] = [2] [12]
 [12] = [2]
[12]
 [2] = [12]

Inner products for the symmetric group S3

[3]
 [3] = [3] [13]
 [13] = [3]
[3]
 [2; 1] = [2; 1] [13]
 [2; 1] = [2; 1]
[2; 1]
 [2; 1] = [3]� [2; 1]� [13] [3]
 [13] = [13]

Inner products for the symmetric group S4

[4]
 [4] = [4] [14]
 [14] = [4]
[4]
 [3; 1] = [3; 1] [14]
 [2; 12] = [3; 1]
[4]
 [22] = [22] [14]
 [22] = [22]
[3; 1]
 [22] = [3; 1]� [2; 12] [2; 12]
 [22] = [3; 1]� [2; 12]
[14]
 [3; 1] = [3; 1] [4]
 [2; 12] = [3; 1]
[22]
 [22] = [4]� [22]� [14] [4]
 [14] = [14]
[3; 1]
 [3; 1] = [4]� [3; 1]� [22]� [2; 12]
[2; 12]
 [2; 12] = [4]� [3; 1]� [22]� [2; 12]
[3; 1]
 [2; 12] = [3; 1]� [22]� [2; 12]� [14]
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Table 3.31: Branching rules for F4.

Branching rules for F4 � so(9)

26 = 1� 9� 16

52 = 16� 36

273 = 9� 16� 36� 84� 128

324 = 1� 9� 16� 44� 126� 128

1053 = 16� 36� 84� 126� 128� 231� 432

10530 = 126� 432� 495

1274 = 36� 84� 128� 432� 594

2652 = 1� 9� 16� 44� 126� 128� 156� 576� 672� 924

4096 = 9� 16� 36� 44� 84� 126� 128� 128� 231� 432� 576
�594� 768� 924

8424 = 84� 126� 128� 231� 432� 432� 495� 594� 768� 924
�1650� 2560

Branching rules for F4 � sl(3)� sl(3)

26 = (8; 1)� (3; 3)� (3; 3)

52 = (8; 1)� (1; 8)� (6; 3)� (6; 3)

273 = (1; 1)� (8; 1)� (3; 3)� (3; 3)� (10; 1)� (10; 1)� (6; 3)� (6; 3)
�(3; 6)� (3; 6)� (15; 3)� (15; 3)� (8; 8)

324 = (1; 1)� (8; 1)� (1; 8)� (3; 3)� (3; 3)� (27; 1)� (6; 3)� (6; 3)
�(6; 6)� (6; 6)� (15; 3)� (15; 3)� (8; 8)

Branching rules for F4 � sl(2)� sp(6)

26 = (2; 6)� (1; 14)

52 = (3; 1)� (1; 21)� (2; 14)

Branching rules for F4 � sl(2)�G2

26 = (5; 1)� (3; 7)

52 = (3; 1)� (1; 14)� (5; 7)
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Table 3.32: Branching rules for so(26) � F4.

26 = 26

325 = 273� 52

350 = 324� 26

2600 = 1274� 1053� 273

3250 = 2652� 324� 273� 1

5824 = 4096� 1053� 324� 273� 52� 26

14950 = 8424� 4096� 1053� 10530 � 324

23400 = 16302� 4096� 2652� 324� 26

37674 = 19448� 8424� 4096� 2652� 1053� 10530 � 324� 324� 273
�26� 1

52325 = 19278� 10829� 8424� 2 (4096� 1274� 1053� 273)� 324
�52� 26

60750 = 34749� 10829� 2652� 1274� 2 (4096� 1053� 273)� 324
�52� 26

Table 3.33: Branching rules for so(7) � G2.

7 = 7

21 = 7� 14

27 = 27

35 = 1� 7� 27

48 = 7� 14� 27

77 = 770

105 = 14� 27� 64

168 = 27� 64� 77

182 = 182

189 = 7� 14� 27� 64� 770

330 = 64� 770 � 189

378 = 7� 14� 27� 64� 770 � 189

616 = 27� 64� 77� 770 � 182� 189
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Table 3.34: Branching rules for E6.

Branching rules for E6 � F4

27 = 27� 1

78 = 52� 26

351 = 273� 52� 26

3510 = 324� 26� 1

650 = 324� 273� 26� 26� 1

1728 = 1053� 324� 273� 52� 26

2430 = 1053� 10530 � 324

2925 = 1274� 1053� 273� 273� 52

Branching rules for E6 � so(10)

27 = 16� 10� 1

78 = 45� 16� 16� 1

351 = 144� 120� 45� 16� 16� 10

3510 = 144� 126� 54� 16� 10� 1

650 = 210� 144� 144� 54� 45� 16� 16� 10� 10� 1

1728 = 560� 320� 210� 144� 144� 126� 120� 45� 16� 16� 16
�10� 1

2430 = 770� 560� 560� 210� 126� 126� 45� 16� 16� 1

2925 = 945� 560� 560� 210� 144� 144� 120� 120� 45� 45� 16� 16

Branching rules for E6 � sl(6)� sl(2)

27 = (15; 1)� (6; 2)

78 = (35; 1)� (20; 2)� (1; 3)

351 = (105; 1)� (84; 2)� (21; 1)� (15; 3)� (6; 2)

3510 = (1050; 1)� (84; 2)� (21; 3)� (15; 1)

650 = (189; 1)� (70; 2)� (70; 2)� (35; 3)� (35; 1)� (20; 2)� (1; 1)

1728 = (384; 1)� (210; 2)� (120; 2)� (105; 3)� (105; 1)� (84; 2)� (15; 3)
�(15; 1)� (6; 4)� (6; 2)

2430 = (540; 2)� (405; 1)� (189; 1)� (175; 3)� (35; 3)� (20; 4)� (20; 2)
�(1; 5)� (1; 1)

2925 = (540; 2)� (280; 1)� (280; 1)� (189; 3)� (175; 1)� (70; 2)� (70; 2)
�(35; 3)� (35; 1)� (20; 4)� (20; 2)� (1; 3)

(continued)
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Table 3.34 (continued)

Branching rules for E6 � sl(3)� sl(3)� sl(3)

27 = (3; 3; 1)� (3; 1; 3)� (1; 3; 3)

78 = (8; 1; 1)� (1; 8; 1)� (1; 1; 8)� (3; 3; 3)� (3; 3; 3)

351 = (3; 3; 1)� (3; 6; 1)� (6; 3; 1)� (3; 1; 3)� (6; 1; 3)� (3; 8; 3)
�(1; 3; 3)� (1; 6; 3)� (8; 3; 3)� (3; 1; 6)� (1; 3; 6)� (3; 3; 8)

3510 = (1; 3; 3)� (3; 1; 3)� (3; 3; 1)� (1; 6; 6)� (6; 1; 6)� (6; 6; 1)
�(8; 3; 3)� (3; 8; 3)� (3; 3; 8)

650 = 2 [(1; 1; 1)� (3; 3; 3)� (3; 3; 3)]� (8; 1; 1)� (1; 8; 1)� (1; 1; 8)
(8; 8; 1)� (8; 1; 8)� (1; 8; 8)��(6; 3; 3)� (6; 3; 3)� (3; 6; 3)
�(3; 6; 3)� (3; 3; 6)� (3; 3; 6)

1728 = (15; 1; 3)� (3; 1; 15)� (3; 15; 1)� (15; 3; 1)� (1; 3; 15)� (1; 15; 3)
�(8; 6; 3)� (8; 3; 6)� (6; 3; 8)� (6; 8; 3)� (3; 8; 6)� (3; 6; 8)
�2 [(8; 3; 3)� (3; 3; 8)� (3; 8; 3)� (3; 3; 1)� (1; 3; 3)� (3; 1; 3)]
�(6; 3; 1)� (1; 3; 6)� (1; 6; 3)� (6; 1; 3)� (3; 1; 6)� (3; 6; 1)

2430 = (27; 1; 1)� (1; 27; 1)� (1; 1; 27)� (8; 8; 8)� (6; 6; 6)� (6; 6; 6)
�(15; 3; 3)� (15; 3; 3)� (3; 15; 3)� (3; 15; 3)� (3; 3; 15)� (3; 3; 15)
�(8; 8; 1)� (8; 1; 8)� (1; 8; 8)� (8; 1; 1)� (1; 8; 1)� (1; 1; 8)
�(6; 3; 3)� (6; 3; 3)� (3; 6; 3)� (3; 6; 3)� (3; 3; 6)� (3; 3; 6)
�(3; 3; 3)� (3; 3; 3)� (1; 1; 1)

2925 = (15; 3; 3)� (15; 3; 3)� (3; 15; 3)� (3; 15; 3)� (3; 3; 15)� (3; 3; 15)
�(10; 1; 1)� (1; 10; 1)� (1; 1; 10)� (10; 1; 1)� (1; 10; 1)� (1; 1; 10)
�(8; 8; 8)� 2 [(8; 8; 1)� (8; 1; 8)� (1; 8; 8)]� 3 [(3; 3; 3)� (3; 3; 3)]
�(6; 6; 3)� (6; 6; 3)� (6; 3; 6)� (6; 3; 6)� (3; 6; 6)� (3; 6; 6)
�(6; 3; 3)� (6; 3; 3)� (3; 6; 3)� (3; 6; 3)� (3; 3; 6)� (3; 3; 6)
�(8; 1; 1)� (1; 8; 1)� (1; 1; 8)� (1; 1; 1)

Branching rules for E6 � sl(2)�G2

27 = (6; 1)� (3; 7)

78 = (8; 1)� (1; 14)� (8; 7)

Branching rules for E6 � G2

27 = 27

78 = 14� 64
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Table 3.35: Branching rules for E7.

Branching rules for E7 � E6

56 = 27� 27� 1� 1

133 = 78� 27� 27� 1

912 = 351� 351� 78� 78� 27� 27

1463 = 650� 3510 � 351
0 � 27� 27� 27� 27� 1� 1� 1

1539 = 650� 351� 351� 78� 27� 27� 27� 27� 1

Branching rules for E7 � sl(8)

56 = 28� 28

133 = 70� 63

912 = 420� 420� 36� 36

1463 = 720� 336� 336� 70� 1

1539 = 720� 378� 378� 63

Branching rules for E7 � sl(6)� sl(3)

56 = (20; 1)� (6; 3)� (6; 3)

133 = (35; 1)� (15; 3)� (15; 3)� (1; 8)

912 = (84; 3)� (84; 3)� (70; 1)� (70; 1)� (20; 8)� (6; 6)� (6; 6)
�(6; 3)� (6; 3)

1463 = (175; 1)� (105; 3)� (105; 3)� (35; 8)� (35; 1)� (21; 6)� (21; 6)
�(15; 3)� (15; 3)� (1; 1)

1539 = (189; 1)� (105; 3)� (105; 3)� (35; 8)� (35; 1)� (21; 3)� (21; 3)
�(15; 6)� (15; 6)� (15; 3)� (15; 3)� (1; 8)� (1; 1)

Branching rules for E7 � so(12)� sl(2)

56 = (32; 1)� (12; 2)

133 = (66; 1)� (320; 2)� (1; 3)

912 = (352; 1)� (220; 2)� (32; 3)� (12; 2)

1463 = (462; 1)� (3520; 2)� (77; 3)� (66; 1)

1539 = (495; 1)� (3520; 2)� (77; 1)� (66; 3)� (320; 2)� (1; 1)

Branching rules for E7 � G2 � sp(6)

56 = (1; 140)� (7; 6)

133 = (14; 1)� (1; 21)� (7; 14)
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Table 3.36: Branching rules for E8.

Branching rules E8 � so(16)

248 = 128� 120

3875 = 1920� 1820� 135

Branching rules E8 � sl(9)

248 = 84� 84� 80

3875 = 1215� 1050� 1050� 240� 240� 80

Branching rules E8 � E7 � sl(2)

248 = (133; 1)� (56; 2)� (1; 3)

3875 = (1539; 1)� (912; 2)� (133; 3)� (56; 2)� (1; 1)

Branching rules E8 � E6 � sl(3)

248 = (78; 1)� (27; 3)� (27; 3)� (1; 8)

3875 = (650; 1)� (351; 3)� (351; 3)� (78; 8)� (27; 6)� (27; 6)� (27; 3)
�(27; 3)� (1; 8)� (1; 1)

Branching rules E8 � sl(5)� sl(5)

248 = (1; 24)� (24; 1)� (5; 10)� (5; 10)� (10; 5)� (10; 5)

3875 = (1; 24)� (24; 1)� (5; 10)� (5; 10)� (10; 5)� (10; 5)� (1; 1)� (5; 15)
�(5; 15)� (15; 5)� (15; 5)� (1; 75)� (75; 1)� (5; 40)� (5; 40)
�(40; 5)� (40; 5)� (45; 10)� (45; 10)� (10; 45)� (10; 45)� (24; 24)

Branching rules E8 � G2 � F4

248 = (14; 1)� (1; 52)� (7; 26)
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Table 3.37: Branching rules for G2.

Branching rules for G2 � sl(3)
7 = 3� 3� 1

14 = 8� 3� 3

27 = 8� 6� 6� 3� 3� 1

64 = 15� 15� 8� 8� 6� 6� 3� 3� 1

77 = 27� 15� 15� 8� 6� 6

770 = 15� 15� 10� 10� 6� 6

182 = 27� 24� 24� 15� 15� 150 � 15
0 � 10� 10� 8� 6� 6� 3� 3� 1

189 = 27� 24� 24� 2 (15� 15� 8)� 10� 10� 6� 6� 3� 3

273 = 64� 42� 42� 27� 24� 24� 15� 15� 10� 10

286 = 42� 42� 2 (27� 15� 15)� 24� 24� 10� 10� 8� 6� 6

Branching rules for G2 � sl(2)� sl(2)

7 = (2; 2)� (1; 3)

14 = (3; 1)� (2; 4)� (1; 3)

27 = (3; 3)� (2; 4)� (2; 2)� (1; 5)� (1; 1)

64 = (4; 2)� (3; 5)� (3; 3)� (2; 6)� (2; 4)� (2; 2)� (1; 5)� (1; 3)

77 = (5; 1)� (4; 4)� (3; 7)� (3; 3)� (2; 6)� (2; 4)� (1; 5)� (1; 1)

770 = (4; 4)� (3; 5)� (3; 3)� (3; 1)� (2; 6)� (2; 4)� (2; 2)� (1; 7)� (1; 3)

182 = (5; 5)� (4; 6)� (4; 4)� (4; 2)� (3; 7)� (3; 5)� (3; 3)� (3; 3)� (2; 8)
�(2; 6)� (2; 4)� (2; 2)� (1; 9)� (1; 5)� (1; 1)

189 = (5; 3)� (4; 6)� (4; 4)� (4; 2)� (3; 7)� (3; 5)� (3; 5)� (3; 3)� (3; 1)
�(2; 8)� (2; 6)� (2; 4)� (2; 4)� (2; 2)� (1; 7)� (1; 5)� (1; 3)

273 = (7; 1)� (6; 4)� (5; 7)� (5; 3)� (4; 10)� (4; 6)� (4; 4)� (3; 9)� (3; 7)
�(3; 5)� (3; 1)� (2; 8)� (2; 6)� (2; 4)� (1; 7)� (1; 3)

286 = (6; 2)� (5; 5)� (5; 3)� (4; 8)� (4; 6)� (4; 4)� (4; 2)� (3; 9)� (3; 7)
�(3; 5)� (3; 5)� (3; 3)� (2; 8)� (2; 6)� (2; 6)� (2; 4)� (2; 2)
�(1; 7)� (1; 5)� (1; 3)
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Table 3.38: Real forms of the simple Lie algebras.

G Compact Associated Maximal
form non-compact form compact subalgebra

AN�1 su(N) sl(N; R ) so(N)
su(2N) su�(2N) sp(2N)
su(p+ q) su(p; q) su(p)� su(q)� U(1)

BN so(p+ q) so(p; q) so(p)� so(q)
CN sp(2N) sp(2N; R ) su(N)� U(1)

sp(2p+ 2q) sp(2p; 2q) sp(2p)� sp(2q)
DN so(p+ q) so(p; q) so(p)� so(q)

so(2N) so�(2N) su(N)� U(1)
E6 E6(�78) E6(�26) F4

E6(�78) E6(�14) D5 � R

E6(�78) E6(+2) A5 � A1

E6(�78) E6(+6) C4

E7 E7(�133) E7(�25) E6 � R

E7(�133) E7(�5) D6 � A1

E7(�133) E7(+7) A7

E8 E8(�248) E8(�24) E7 �A1

E8(�248) E8(+8) D8

F4 F4(�52) F4(�20) B4

F4(�52) F4(+4) C3 �A1

G2 G2(�14) G2(+2) A1 � A1
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Table 3.39: Singular subalgebras of the exceptional simple Lie algebras.
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Table 3.40: sl(2) decompositions of the fundamental representations of the
classical Lie algebras.

G K fundG =K

slN slp D(p�1)=2 � (N � p)D0

sp(2N) sp(2p) Dp�1=2 � (2N � 2p+ 1)D0

sl(p) 2D(p�1)=2 � (2N � 2p)D0

sl(2)2 2D1=2 � (2N � 4)D0

sl(2)1 D1=2 � (2N � 2)D0

so(N)
so(2p+ 1)
so(2p+ 2)

Dp � (N � 2p� 1)D0

sl(p) (p 6= 2) 2D(p�1)=2 � (N � 2p)D0

sl(2)1 2D1=2 � (N � 4)D0

2sl(2) 4D1=2 � (N � 8)D0

2sl(2)0 D1 � (N � 3)D0

so(2N + 1) sl(2)2 D1 � (2N � 2)D0

so(2N)
so(2k + 1)�

so(2N � 2k � 1)
Dk �DN�k�1
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Table 3.41: sl(2) decompositions of the adjoint representations of the clas-
sical Lie algebras.

G K adG =K
slN slp

p�1�
j=1

Dj � 2(N � p)D(p�1)=2 � (N � p)2D0

sp(2N) sp(2p)

p�1�
j=0

Dj � (2N � 2p+ 1)Dp�1=2

�(N � p)(2N � 2p+ 1)D0

sl(p)
2
[p=2]
�
j=1

Dp�2j � 2(2N � 2p)D(p�1)=2
p�1�
j=0

Dj � (N � p)(2N � 2p� 1)D0

sl(2)2 3D1 � (4N � 8)D1=2 � (2N2 � 7N + 7)D0

sl(2)1 D1 � (2N � 2)D1=2 � (N � 1)(2N � 1)D0

so(N)
so(2p+ 1)
so(2p+ 2)

2
p�
j=1

D2j�1 � (N � 2p� 1)Dp

�1
2 (N � 2p� 1)(N � 2p� 2)D0

sl(p) (p 6= 2)

[p=2]
�
j=1

Dp�2j �
p�1�
j=0

Dj � 2(N � 2p)D(p�1)=2

�1
2 (N � 2p)(N � 2p� 1)D0

sl(2)1
D1 � 2(N � 4)D1=2

�(3 + 1
2 (N � 4)(N � 5))D0

2sl(2)
6D1 � 4(N � 8)D1=2

�(10 + 1
2 (N � 8)(N � 9))D0

2sl(2)0 (N � 2)D1 � 1
2 (N � 3)(N � 4)D0

so(2N + 1) sl(2)2 (2N � 1)D1 � (N � 1)(2N � 3)D0
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Table 3.42: sl(2) decompositions of the AN Lie algebras up to rank 4.

G Subalgebra Decomposition of the Decomposition of the
in G fundamental of G adjoint of G

A1 A1 D1=2 D1

A2 A1 D1=2 �D0 D1 � 2D1=2 �D0

A2 D1 D2 �D1

A3 A1 D1=2 � 2D0 D1 � 4D1=2 � 4D0

2A1 2D1=2 4D1 � 3D0

A2 D1 �D0 D2 � 3D1 �D0

A3 D3=2 D3 �D2 �D1

A4 A1 D1=2 � 3D0 D1 � 6D1=2 � 9D0

2A1 2D1=2 �D0 4D1 � 4D1=2 � 4D0

A2 D1 � 2D0 D2 � 5D1 � 4D0

A2 � A1 D1 �D1=2
D2 � 2D3=2 � 2D1

�2D1=2 �D0

A3 D3=2 �D0 D3 �D2 � 2D3=2 �D1 �D0

A4 D2 D4 �D3 �D2 �D1
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Table 3.43: sl(2) decompositions of the DN Lie algebras up to rank 4.

G Subalgebra Decomposition of the Decomposition of the
in G fundamental of G adjoint of G

D3 A1 2D1=2 � 2D0 D1 � 4D1=2 � 4D0

2A1 D1 � 3D0 4D1 � 3D0

A2 2D1 D2 � 3D1 �D0

D3 D2 �D0 D3 �D2 �D1

D4 A1 2D1=2 � 4D0 D1 � 8D1=2 � 9D0

2A1 D1 � 5D0 6D1 � 10D0

(2A1)
0 4D1=2 6D1 � 10D0

3A1 D1 � 2D1=2 �D0
2D3=2 � 3D1

�4D1=2 � 3D0

A2 ; 4A1 2D1 � 2D0 D2 � 7D1 � 2D0

A3 2D3=2 D3 � 3D2 �D1 � 3D0

D3 D2 � 3D0 D3 � 3D2 �D1 � 3D0

B2 �B1 D2 �D1 2D3 �D2 � 3D1

D4 D3 �D0 D5 � 2D3 �D1
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Table 3.44: sl(2) decompositions of the BN Lie algebras up to rank 4.

G Subalgebra Decomposition of the Decomposition of the
in G fundamental of G adjoint of G

B2 A1 2D1=2 �D0 D1 � 2D1=2 � 3D0

A2
1 ; 2A1 D1 � 2D0 3D1 �D0

B2 D2 D3 �D1

B3 A1 2D1=2 � 3D0 D1 � 6D1=2 � 6D0

A2
1 ; 2A1 D1 � 4D0 5D1 � 6D0

A1 � A2
1 D1 � 2D1=2 2D3=2 � 2D1 � 2D1=2 � 3D0

A2

2A1 � A2
1

�
2D1 �D0 D2 � 5D1 �D0

A3 ; B2 D2 � 2D0 D3 � 2D2 �D1 �D0

B3 D3 D5 �D3 �D1

B4 A1 2D1=2 � 5D0 D1 � 10D1=2 � 13D0

A2
1 ; 2A1 D1 � 6D0 7D1 � 15D0

(2A1)
0 4D1=2 �D0 6D1 � 4D1=2 � 10D0

A1 �A2
1

3A1

�
D1 � 2D1=2 � 2D0 2D3=2 � 4D1 � 6D1=2 � 4D0

A2

4A1

2A1 � A2
1

9=; 2D1 � 3D0 D2 � 9D1 � 4D0

A2 � A2
1 3D1 3D2 � 6D1 � 3D0

A3 2D3=2 �D0
D3 � 3D2 � 2D3=2

�D1 � 3D0

A3 ; B2 D2 � 4D0 D3 � 4D2 �D1 � 6D0

B2 �A1 D2 � 2D1=2
D3 � 2D5=2 � 2D3=2

�2D1 � 3D0

B2 � 2A1

A3 �A2
1

�
D2 �D1 �D0 2D3 � 2D2 � 4D1

B3 ; D4 D3 � 2D0 D5 � 3D3 �D1 �D0

B4 D4 D7 �D5 �D3 �D1
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Table 3.45: sl(2) decompositions of the CN Lie algebras up to rank 4.

G Subalgebra Decomposition of the Decomposition of the
in G fundamental of G adjoint of G

C2 A1 D1=2 � 2D0 D1 � 2D1=2 � 3D0

A2
1 ; 2A1 2D1=2 3D1 �D0

C2 D3=2 D3 �D1

C3 A1 D1=2 � 4D0 D1 � 4D1=2 � 10D0

A2
1 ; 2A1 2D1=2 � 2D0 3D1 � 4D1=2 � 4D0

A2
2 2D1 3D2 �D1 � 3D0

C2 D3=2 � 2D0 D3 � 2D3=2 �D1 � 3D0

A1 � A2
1

3A1

�
3D1=2 6D1 � 3D0

C2 � A1 D3=2 �D1=2 D3 �D2 � 3D1

C3 D5=2 D5 �D3 �D1

C4 A1 D1=2 � 6D0 D1 � 6D1=2 � 21D0

A2
1 ; 2A1 2D1=2 � 4D0 3D1 � 8D1=2 � 11D0

A1 � A2
1

3A1

�
3D1=2 � 2D0 6D1 � 6D1=2 � 6D0

2A2
1 ; 4A1

2A1 � A2
1

�
4D1=2 10D1 � 6D0

A2
2 2D1 � 2D0 3D2 � 5D1 � 6D0

A2
2 � A1 2D1 �D1=2

3D2 � 2D3=2 � 2D1

�2D1=2 � 3D0

C2 D3=2 � 4D0 D3 � 4D3=2 �D1 � 10D0

C2 � A1 D3=2 �D1=2 � 2D0
D3 �D2 � 2D3=2 � 3D1

�2D1=2 � 3D0

C2 � A2
1

C2 � 2A1

�
D3=2 � 2D1=2 D3 � 2D2 � 6D1 �D0

A2
3 ; 2C2 2D3=2 3D3 �D2 � 3D1 �D0

C3 D5=2 � 2D0 D5 �D3 � 2D5=2 �D1 � 3D0

C3 � A1 D5=2 �D1=2 D5 � 2D3 �D2 � 2D1

C4 D7=2 D7 �D5 �D3 �D1
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Table 3.46: sl(2) decompositions of the exceptional Lie algebras G2 and F4
(fundamental representation).

G Subalgebra Decomposition of the
in G fundamental of G

G2 A1 2D1=2 � 3D0

A2
1 D1 � 2D1=2

A1 � A2
1 2D1 �D0

G2 D3

F4 A1 6D1=2 � 14D0

A2
1 ; 2A1 D1 � 8D1=2 � 7D0

A1 �A2
1

3A1

�
3D1 � 6D1=2 � 5D0

4A1

2A1 � A2
1

A2

9=; 6D1 � 8D0

A2
2 D2 � 7D1

A2 � A2
1 D2 � 2D3=2 � 3D1 � 2D1=2

A1 � A2
2 2D3=2 � 3D1 � 4D1=2 �D0

A2
2 � A2

A3 � A2
1

B2 � 2A1

9=; 3D2 � 3D1 � 2D0

B2 ; A3 D2 � 4D3=2 � 5D0

B2 �A1 2D2 � 2D3=2 �D1 � 2D1=2 �D0

B3 ; D4 3D3 � 5D0

B4 D5 �D4 �D2 �D0

C3 D4 � 2D5=2 �D2

C3 �A1 D4 �D3 � 2D2

F4 D8 �D4
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Table 3.47: sl(2) decompositions of the exceptional Lie algebras G2 and F4
(adjoint representation).

G Subalgebra Decomposition of the
in G adjoint of G

G2 A1 D1 � 4D1=2 � 3D0

A2
1 2D3=2 �D1 � 3D0

A1 � A2
1 D2 � 3D1

G2 D5 �D1

F4 A1 D1 � 14D1=2 � 21D0

A2
1 ; 2A1 7D1 � 10D1=2 � 15D0

A1 � A2
1

3A1

�
2D3=2 � 6D1 � 10D1=2 � 6D0

4A1

2A1 � A2
1

A2

9=; D2 � 13D1 � 8D0

A2
2 7D2 �D1 � 14D0

A2 � A2
1 2D3 � 3D2 � 6D1 � 2D1=2 �D0

A1 � A2
2 3D2 � 2D3=2 � 6D1 � 4D1=2 � 3D0

A2
2 �A2

A3 �A2
1

B2 � 2A1

9=; 2D3 � 4D2 � 6D1

B2 ; A3 D3 � 4D2 � 4D3=2 �D1 � 6D0

B2 � A1 D3 � 2D5=2 �D2 � 4D3=2 � 3D1 � 3D0

B3 ; D4 D5 � 5D3 �D1 � 3D0

B4 D7 � 2D5 �D3 �D2 �D1

C3 D5 � 2D9=2 �D3 � 2D3=2 �D1 � 3D0

C3 � A1 2D5 �D4 �D3 �D2 � 3D1

F4 D11 �D7 �D5 �D1
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Tables on Lie superalgebras

Table 3.48: Classi�cation of the simple Lie superalgebras.

Simple Lie
superalgebras
. &

Classical Lie Cartan type
superalgebras superalgebras
. & W (n); S(n)

Basic Lie Strange eS(n);H(n)
superalgebras superalgebras

A(m;n); B(m;n) P (n); Q(n)
C(n+ 1);D(m;n)
F (4); G(3);D(2; 1;�)

Table 3.49: Classical Lie superalgebras.

type I type II

BASIC A(m;n) m > n � 0 B(m;n) m � 0; n � 1

(non-degenerate C(n+ 1) n � 1 D(m;n)

�
m � 2; n � 1
m 6= n+ 1

Killing form) F (4)
G(3)

BASIC A(n; n) n � 1 D(n+ 1; n) n � 1
(zero Killing form) D(2; 1;�) � =2 f0;�1g

STRANGE P (n) n � 2 Q(n) n � 2
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Table 3.50: Z2-gradation of the classical Lie superalgebras.

superalgebra G even part G0 odd part G1
A(m;n) Am � An � U(1) (m;n)� (m;n)
A(n; n) An � An (n; n)� (n; n)
C(n+ 1) Cn � U(1) (2n)� (2n)

B(m;n) Bm � Cn (2m+ 1; 2n)
D(m;n) Dm � Cn (2m; 2n)
F (4) A1 �B3 (2; 8)
G(3) A1 �G2 (2; 7)

D(2; 1;�) A1 � A1 � A1 (2; 2; 2)

P (n) An [2]� [1n�1]
Q(n) An ad(An)

Table 3.51: Z-gradation of the classical basic Lie superalgebras.

G G0 G1 � G�1 G2 � G�2
A(m;n) Am � An � U(1) (m;n)� (m;n) ;
A(n; n) An � An (n; n)� (n; n) ;
C(n+ 1) Cn � U(1) (2n)+ � (2n)� ;
B(m;n) Bm � An�1 � U(1) (2m+ 1; n)� (2m+ 1; n) [2]� [2n�1]
D(m;n) Dm � An�1 � U(1) (2m;n)� (2m;n) [2]� [2n�1]
F (4) B3 � U(1) 8+ � 8� 1+ � 1�
G(3) G2 � U(1) 7+ � 7� 1+ � 1�

D(2; 1;�) A1 � A1 � U(1) (2; 2)+ � (2; 2)� 1+ � 1�
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Table 3.52: The basic Lie superalgebra A(m� 1; n� 1) = sl(mjn).

Structure: G0 = sl(m)� sl(n)� U(1) and G1 = (m;n; 1)� (m;n;�1),
type I.
Rank: m+ n� 1, dimension: (m+ n)2 � 1.
Root system (1 � i 6= j � m and 1 � k 6= l � n):

� = f"i � "j ; �k � �l; "i � �k; �k � "ig
�0 = �0 = f"i � "j ; �k � �lg ; �1 = �1 = f"i � �k; �k � "ig

dim�0 = dim�0 = m2 + n2 �m� n+ 1 and dim�1 = dim�1 = 2mn.
Distinguished simple root system:

�1 = �1 � �2; : : : ; �n�1 = �n�1 � �n; �n = �n � "1;
�n+1 = "1 � "2; : : : ; �m+n�1 = "m�1 � "m

Distinguished positive roots (1 � i < j � m and 1 � k < l � n):
�k � �l = �k + � � �+ �l�1
"i � "j = �n+i + � � �+ �n+j�1
�k � "i = �k + � � �+ �n+i�1

Sums of even/odd distinguished positive roots:

2�0 = (m� 1)"1 + (m� 3)"2 + � � � � (m� 3)"m�1 � (m� 1)"m
+(n� 1)�1 + (n� 3)�2 + � � � � (n� 3)�n�1 � (n� 1)�n

=
nX
i=1

(n� 2i+ 1)�i +
mX
j=1

(m� 2j + 1)"j

=
n�1X
i=1

i(n� i)�i +
m�1X
j=1

j(m� j)�n+j

2�1 = n("1 + � � �+ "m)�m(�1 + � � �+ �n)

Distinguished Dynkin diagram:

m m m m m
�1 �n�1 �n �n+1 �n+m

�@

(continued)
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Table 3.52 (continued)

Distinguished Cartan matrix:0BBBBBBBBBBBBBBBBBBBBBBBB@

2 �1 0 � � � 0 � � � � � � � � � 0

�1 . . .
. . .

. . .
...

0
. . .

. . . 0
...

. . .
. . .

. . . �1 . . .

0 0 �1 2 �1 . . .
...

...
. . . �1 0 1

. . .
...

...
. . . �1 2 �1 0 0

. . . �1 . . .
. . .

. . .
...

0
. . .

. . . 0
. . .

. . .
. . . �1

0 � � � � � � � � � 0 � � � 0 �1 2

1CCCCCCCCCCCCCCCCCCCCCCCCA
Highest distinguished root:

��0 = �1 + � � �+ �m+n�1 = �1 � "m
Distinguished extended Dynkin diagram:

m m m m m

m

�1 �n�1 �n �n+1 �n+m

�0

�@

�@

��
��

��
��

HH
HH

HH
HH

Factor group Out(G) = Aut(G)=Int(G):
Out(G) = Z2 for A(m;n) with m 6= n 6= 0 and A(0; 2n� 1)

Out(G) = Z4 for A(0; 2n)
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Table 3.53: The basic Lie superalgebra A(n� 1; n� 1) = psl(njn) (n > 1).

Structure: G0 = sl(n)� sl(n) and G1 = (n; n)� (n; n), type I.
Rank: 2n� 2, dimension: 4n2 � 2.
Root system (1 � i 6= j � n):

� = f"i � "j; �i � �j ; "i � �j ; �j � "ig
�0 = �0 = f"i � "j ; �i � �jg ; �1 = �1 = f"i � �j ; �j � "ig

where
Pn

i=1 "i =
Pn

i=1 �i.

dim�0 = dim�0 = 2n2 � 2n and dim�1 = dim�1 = 2n2.
Distinguished simple root system:

�1 = �1 � �2; : : : ; �n�1 = �n�1 � �n; �n = �n � "1;
�n+1 = "1 � "2; : : : ; �2n�1 = "n�1 � "n

Number of simple roots = 2n � 1 (6= rank); the simple roots are not inde-
pendent:

�1 + 2�2 + � � �+ n�n + (n� 1)�n+1 + � � �+ 2�2n�2 + �2n�1 = 0

Distinguished positive roots (1 � i < j � n):
�k � �l = �k + � � �+ �l�1
"i � "j = �n+i + � � �+ �n+j�1
�k � "i = �k + � � �+ �n+i�1

Sums of even/odd distinguished positive roots:

2�0 = (n� 1)"1 + (n� 3)"2 + � � � � (n� 3)"n�1 � (n� 1)"n
+(n� 1)�1 + (n� 3)�2 + � � � � (n� 3)�n�1 � (n� 1)�n

=
nX
i=1

(n� 2i+ 1)("i + �i)

2�1 = 0

Distinguished Dynkin diagram:

m m m m m
�1 �n�1 �n �n+1 �n+m

�@

(continued)
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Table 3.53 (continued)

Distinguished Cartan matrix:0BBBBBBBBBBBBBBBBBBBBBBBB@

2 �1 0 � � � 0 � � � � � � � � � 0

�1 . . .
. . .

. . .
...

0
. . .

. . . 0
...

. . .
. . .

. . . �1 . . .

0 0 �1 2 �1 . . .
...

...
. . . �1 0 1

. . .
...

...
. . . �1 2 �1 0 0

. . . �1 . . .
. . .

. . .
...

0
. . .

. . . 0
. . .

. . .
. . . �1

0 � � � � � � � � � 0 � � � 0 �1 2

1CCCCCCCCCCCCCCCCCCCCCCCCA
Highest distinguished root:

��0 = �1 + � � �+ �2n�1 = �1 � "n
Distinguished extended Dynkin diagram:

m m m m m

m

�1 �n�1 �n �n+1 �n+m

�0

�@

�@

��
��

��
��

HH
HH

HH
HH

Factor group Out(G) = Aut(G)=Int(G):
Out(G) � Z2 � Z2 for A(n; n) with n 6= 1

Out(G) � Z2 for A(1; 1)

(see section 2.1 for more details.)
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Table 3.54: The basic Lie superalgebra B(m;n) = osp(2m+ 1j2n).

Structure: G0 = so(2m+ 1)� sp(2n) and G1 = (2m+ 1; 2n), type II.
Rank: m+ n, dimension: 2(m+ n)2 +m+ 3n.
Root system (1 � i 6= j � m and 1 � k 6= l � n):

� = f�"i � "j ; �"i; ��k � �l; �2�k; �"i � �k; ��kg
�0 = f�"i � "j ; �"i; ��k � �l; �2�kg ; �1 = f�"i � �k; ��kg
�0 = f�"i � "j ; �"i; ��k � �lg; �1 = f�"i � �kg

dim�0 = 2m2 + 2n2, dim�1 = 4mn + 2n, dim�0 = 2m2 + 2n2 � 2n,

dim�1 = 4mn.
Distinguished simple root system:

�1 = �1 � �2; : : : ; �n�1 = �n�1 � �n; �n = �n � "1;
�n+1 = "1 � "2; : : : ; �n+m�1 = "m�1 � "m; �n+m = "m

Distinguished positive roots (1 � i < j � m and 1 � k < l � n):
�k � �l = �k + � � �+ �l�1
�k + �l = �k + � � �+ �l�1 + 2�l + � � �+ 2�n+m

2�k = 2�k + � � �+ 2�n+m
"i � "j = �n+i + � � �+ �n+j�1
"i + "j = �n+i + � � �+ �n+j�1 + 2�n+j + � � �+ 2�n+m

"i = �n+i + � � �+ �n+m
�k � "i = �k + � � �+ �n+i�1
�k + "i = �k + � � �+ �n+i�1 + 2�n+i + � � �+ 2�n+m

�k = �k + � � �+ �n+m

Sums of even/odd distinguished positive roots:

2�0 = (2m� 1)"1 + (2m� 3)"2 + � � �+ 3"m�1 + "m
+2n�1 + (2n� 2)�2 + � � �+ 4�n�1 + 2�n

=
mX
i=1

(2m� 2i+ 1)"i +
nX
k=1

(2n� 2i+ 2)�k

=
n�1X
k=1

k(2n� k + 1)�k + n(n+ 1)
n+mX
k=n

�k +
mX
i=1

i(2m� i)�i

(continued)
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Table 3.54 (continued)

2�1 = (2m+ 1)(�1 + � � �+ �n)

= (2m+ 1)
nX
k=1

k�k + n(2m+ 1)
mX
i=1

�n+j

Distinguished Dynkin diagram:

m m m m m m
�1 �n�1 �n �n+1 �n+m�1 �n+m

�@ @
�

Distinguished Cartan matrix:0BBBBBBBBBBBBBBBBBBBBBBBB@

2 �1 0 � � � 0 � � � � � � � � � 0

�1 . . .
. . .

. . .
...

0
. . .

. . . 0
...

. . .
. . .

. . . �1 . . .

0 0 �1 2 �1 . . .
...

...
. . . �1 0 1

. . .
...

...
. . . �1 2 �1 0 0

. . . �1 . . .
. . .

. . .
...

0
. . .

. . . �1 0
. . . �1 2 �1

0 � � � � � � � � � 0 � � � 0 �2 2

1CCCCCCCCCCCCCCCCCCCCCCCCA
Highest distinguished root:

��0 = 2�1 + � � �+ 2�n+m = 2�1

Distinguished extended Dynkin diagram:

m m m m m m m
�0 �1 �n�1 �n �n+1 �n+m�1 �n+m

�@@
�

@
�

Factor group Out(G) = Aut(G)=Int(G) = I.
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Table 3.55: The basic Lie superalgebra B(0; n) = osp(1j2n).

Structure: G0 = sp(2n) and G1 = (2n), type II.
Rank: n, dimension: 2n2 + 3n.
Root system (1 � k 6= l � n):

� = f��k � �l; �2�k; ��kg
�0 = f��k � �l; �2�kg ; �1 = f��kg
�0 = f��k � �lg ; �1 = ;

dim�0 = 2n2, dim�1 = 2n, dim�0 = 2n2 � 2n, dim�1 = 0.
Simple root system:

�1 = �1 � �2; : : : ; �n�1 = �n�1 � �n; �n = �n

Positive roots (1 � k < l � n):
�k � �l = �k + � � �+ �l�1
�k + �l = �k + � � �+ �l�1 + 2�l + � � �+ 2�n+m

2�k = 2�k + � � �+ 2�n+m
�k = �k + � � �+ �n+m

Sums of even/odd positive roots:

2�0 = 2n�1 + (2n� 2)�2 + � � �+ 4�n�1 + 2�n =
nX
k=1

(2n� 2i+ 2)�k

2�1 = �1 + � � �+ �n

Dynkin diagram:

m m }
�1 �n�1 �n

@
�

Cartan matrix: 0BBBBBBBBBB@

2 �1 0 � � � � � � 0

�1 2
. . .

. . .
...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . . 2 �1 0
...

. . . �1 2 �1
0 � � � � � � 0 �2 2

1CCCCCCCCCCA
(continued)
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Table 3.55 (continued)

Highest root:
��0 = 2�1 + � � �+ 2�n = 2�1

Extended Dynkin diagram:

m m m }
�0 �1 �n�1 �n

@
�

@
�

Factor group Out(G) = Aut(G)=Int(G) = I.
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Table 3.56: The basic Lie superalgebra C(n+ 1) = osp(2j2n).

Structure: G0 = so(2)� sp(2n) and G1 = (2n)� (2n), type I.
Rank: n+ 1, dimension: 2n2 + 5n+ 1.
Root system (1 � k 6= l � n):

� = f��k � �l; �2�k; �"� �kg
�0 = �0 = f��k � �l; �2�kg ; �1 = �1 = f�"� �kg

dim�0 = dim�0 = 2n2 and dim�1 = dim�1 = 4n.
Distinguished simple root system:

�1 = "� �1; �2 = �1 � �2; : : : ; �n = �n�1 � �n; �n+1 = 2�n

Distinguished positive roots (1 � k < l � n):
�k � �l = �k+1 + � � �+ �l
�k + �l = �k+1 + � � �+ �l + 2�l+1 + � � �+ 2�n + �n+1 (l < n)

�k + �n = �k+1 + � � �+ �n+1
2�k = 2�k+1 + � � �+ 2�n + �n+1 (k < n)

2�n = �n+1
"� �k = �1 + � � �+ �k
"+ �k = �1 + � � �+ �k + 2�k+1 + � � �+ 2�n + �n+1 (k < n)

"+ �n = �1 + � � �+ �n+1

Sums of even/odd distinguished positive roots:

2�0 = 2n�1 + (2n� 2)�2 + � � �+ 4�n�1 + 2�n =
nX
k=1

(2n� 2i+ 2)�k

2�1 = 2n"

Distinguished Dynkin diagram:

m m m m
�1 �2 �n �n+1

�@ �
@

(continued)
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Table 3.56 (continued)

Distinguished Cartan matrix:0BBBBBBBBB@

0 1 0 � � � � � � 0

�1 2 �1 0 0

0 �1 . . .
. . .

. . .
...

0 0
. . .

. . . �1 0
...

. . . �1 2 �2
0 � � � � � � 0 �1 2

1CCCCCCCCCA
Highest distinguished root:

��0 = �1 + 2�2 + � � �+ 2�n+1 + �n = "+ �1

Distinguished extended Dynkin diagram:

m

m

m m m
�0

�1

�2 �n �n+1�@

�@
��

HH �
@

Factor group Out(G) = Aut(G)=Int(G) = Z2 .
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Table 3.57: The basic Lie superalgebra D(m;n) = osp(2mj2n).

Structure: G0 = so(2m)� sp(2n) and G1 = (2m; 2n), type II.
Rank: m+ n, dimension: 2(m+ n)2 �m+ n.
Root system (1 � i 6= j � m and 1 � k 6= l � n):

� = f�"i � "j ; ��k � �l; �2�k; �"i � �kg
�0 = �0 = f�"i � "j ; ��k � �l; �2�kg ; �1 = �1 = f�"i � �kg

dim�0 = dim�0 = 2m2 + 2n2 � 2m and dim�1 = dim�1 = 4mn.
Distinguished simple root system:

�1 = �1 � �2; : : : ; �n�1 = �n�1 � �n; �n = �n � "1;
�n+1 = "1 � "2; : : : ; �n+m�1 = "m�1 � "m; �n+m = "m�1 + "m

Distinguished positive roots (1 � i < j � m and 1 � k < l � n):
�k � �l = �k + � � �+ �l�1
�k + �l = �k + � � �+ �l�1 + 2�l + � � �+ 2�n+m�2 + �n+m�1 + �n+m

2�k = 2�k + � � �+ 2�n+m�2 + �n+m�1 + �n+m
"i � "j = �n+i + � � �+ �n+j�1
"i + "j = �n+i + � � �+ �n+j�1 + 2�n+j + � � �+ 2�n+m�2

+�n+m�1 + �n+m (j < m� 1)

"i + "m�1 = �n+i + � � �+ �n+m�2 + �n+m�1 + �n+m
"i + "m = �n+i + � � �+ �n+m�2 + �n+m
�k � "i = �k + � � �+ �n+i�1
�k + "i = �k + � � �+ �n+i�1 + 2�n+i + � � �+ 2�n+m�2

+�n+m�1 + �n+m (i < m� 1)

�k + "m�1 = �k + � � �+ �n+m�2 + �n+m�1 + �n+m
�k + "m = �k + � � �+ �n+m�2 + �n+m

Sums of even/odd distinguished positive roots:

2�0 = (2m� 2)"1 + (2m� 4)"2 + � � �+ 2"m�1
+2n�1 + (2n� 2)�2 + � � �+ 4�n�1 + 2�n

=
mX
i=1

(2m� 2i)"i +
nX
k=1

(2n� 2k + 2)�k

2�1 = 2m(�1 + � � �+ �n)

(continued)
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Table 3.57 (continued)

Distinguished Dynkin diagram:

m m m m m

m

m

�1 �n�1 �n �n+1 �n+m�2 �n+m�1

�n+m

�@
��

HH

Distinguished Cartan matrix:0BBBBBBBBBBBBBBBBBBBBBBBB@

2 �1 0 � � � 0 � � � � � � � � � 0

�1 . . .
. . .

. . .
...

0
. . .

. . . 0
...

. . .
. . .

. . . �1 . . .

0 0 �1 2 �1 . . .
...

...
. . . �1 0 1

. . .
...

...
. . . �1 2 �1 0 0

. . . �1 . . .
. . .

. . .
...

0
. . .

. . . �1 �1
. . . �1 2 0

0 � � � � � � � � � 0 � � � �1 0 2

1CCCCCCCCCCCCCCCCCCCCCCCCA
Highest distinguished root:

��0 = 2�1 + � � �+ 2�n+m�2 + �n+m�1 + �n+m = 2�1

Distinguished extended Dynkin diagram:

m m m m m m

m

m

�0 �1 �n�1 �n �n+1 �n+m�2 �n+m�1

�n+m

�@@
�

��

HH

Factor group Out(G) = Aut(G)=Int(G) = Z2 .



Tables on Lie Superalgebras 355

Table 3.58: The basic Lie superalgebra F (4).

Structure: G0 = sl(2)� so(7) and G1 = (2; 8), type II.
Rank: 4, dimension: 40.
Root system (1 � i 6= j � 3):

� = f��; �"i � "j ; �"i; 1
2(�"1 � "2 � "3 � �)g

�0 = �0 = f��; �"i � "j ; �"ig ; �1 = �1 = f12(�"1 � "2 � "3 � �)g
dim�0 = dim�0 = 20 and dim�1 = dim�1 = 16.
Distinguished simple root system:

�1 =
1
2(� � "1 � "2 � "3); �2 = "3; �3 = "2 � "3; �4 = "1 � "2

Distinguished positive roots (1 � i < j � 3):

"i � "j = �3; �4; �3 + �4
"i + "j = 2�2 + �3; 2�2 + �3 + �4; 2�2 + 2�3 + �4

"i = �2; �2 + �3; �2 + �3 + �4
� = 2�1 + 3�2 + 2�3 + �4

1
2(� � "1 � "2 � "3) = �1; �1 + �2; �1 + �2 + �3; �1 + �2 + �3 + �4;

�1 + 2�2 + �3; �1 + 2�2 + �3 + �4;

�1 + 2�2 + 2�3 + �4; �1 + 3�2 + 2�3 + �4

Sums of even/odd distinguished positive roots:

2�0 = 5"1 + 3"2 + "3 + �

2�1 = 4�

Distinguished Dynkin diagram:

m m m m
�1 �2 �3 �4

�@ �
@

Distinguished Cartan matrix:0BB@
0 1 0 0
�1 2 �2 0
0 �1 2 �1
0 0 �1 2

1CCA
Highest distinguished root:

��0 = 2�1 + 3�2 + 2�3 + �4 = �

(continued)
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Table 3.58 (continued)

Distinguished extended Dynkin diagram:

m m m m m
�0 �1 �2 �3 �4

�@@
�

�
@

Factor group Out(G) = Aut(G)=Int(G) = I.
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Table 3.59: The basic Lie superalgebra G(3).

Structure: G0 = sl(2)�G2 and G1 = (2; 7), type II.
Rank: 3, dimension: 31.
Root system (1 � i 6= j � 3):

� = f�2�; �"i; "i � "j ; ��; �"i � �g
�0 = f�2�; �"i; "i � "jg ; �1 = f��; �"i � �g
�0 = f�"i; "i � "jg ; �1 = f�"i � �g

where "1 + "2 + "3 = 0.
dim�0 = 14, dim�1 = 14, dim�0 = 12, dim�1 = 12.
Distinguished simple root system:

�1 = � + "3; �2 = "1; �3 = "2 � "1
Distinguished positive roots:

even roots: �2; �3; �2 + �3; 2�2 + �3; 3�2 + �3; 3�2 + 2�3;

2�1 + 4�2 + 2�3
odd roots: �1; �1 + �2; �1 + �2 + �3; �1 + 2�2 + �3;

�1 + 3�2 + �3; �1 + 3�2 + 2�3; �1 + 4�2 + 2�3

Sums of even/odd distinguished positive roots:

2�0 = 2"1 + 4"2 � 2"3 + 2�

2�1 = 7�

Distinguished Dynkin diagram:

m m m
�1 �2 �3

�@ �
@

Distinguished Cartan matrix:0@ 0 1 0
�1 2 �3
0 �1 2

1A
Highest distinguished root:

��0 = 2�1 + 4�2 + 2�3 = 2�

(continued)
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Table 3.59 (continued)

Distinguished extended Dynkin diagram:

m m m m
�0 �1 �2 �3

�@@
�

�
@

Factor group Out(G) = Aut(G)=Int(G) = I.
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Table 3.60: The basic Lie superalgebra D(2; 1;�).

Structure: G0 = sl(2)� sl(2)� sl(2) and G1 = (2; 2; 2), type II.
Rank: 3, dimension: 17.
Root system (1 � i � 3):

� = f�2"i; �"1 � "2 � "3g
�0 = f�2"ig; �1 = f�"1 � "2 � "3g
�0 = �0; �1 = �1

dim�0 = dim�0 = 6 and dim�1 = dim�1 = 8.
Distinguished simple root system:

�1 = "1 � "2 � "3; �2 = 2"2; �3 = 2"3

Distinguished positive roots (1 � j � 3):

even roots: �2; �3; 2�1 + �2 + �3
odd roots: �1; �1 + �2; �1 + �3; �1 + �2 + �3

Sums of even/odd distinguished positive roots:

2�0 = 2"1 + 2"2 + 2"3
2�1 = 4"1

Distinguished Dynkin diagram:

m

m

m
�1

�2

�3

�@
��

HH

Distinguished Cartan matrix:0@ 0 1 �
�1 2 0
�1 0 2

1A
Highest distinguished root:

��0 = 2�1 + �2 + �3 = 2"1

(continued)
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Table 3.60 (continued)

Distinguished extended Dynkin diagram:

m m

m

m

�0 �1
�2

�3

�@
��

HH

Factor group Out(G) = Aut(G)=Int(G):
Out(G) = I for generic �

Out(G) = Z2 for � = 1;�2;�1=2
Out(G) = Z3 for � = e2i�=3; e4i�=3
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Table 3.61: Dynkin diagrams of the basic Lie superalgebras of rank � 4.

psl(1j1) sl(1j2) osp(2j2)

m
1

�@ m m
1 1

�@ m m
1 1

�@ �@ m m
1 1

�@ �@ m m
2 1

�@ @
�

osp(1j2) osp(1j4) osp(3j2)

}
2

m }
2 2

@
�

m m
2 2

�@ @
�

m }
2 2

�@ @
�

sl(1j3) osp(1j6)

m m m
1 1 1

�@ m m m
1 1 1

�@ �@ m m }
2 2 2

@
�

psl(2j2)

m m m
1 1 1

�@ m m m
1 1 1

�@ �@ �@ m m m
1 1 1

�@ �@

osp(2j4)

m m m
1 2 1

@
��@ m m m

2 2 1

@
��@ �@ m

2
��

HH

m1

m1

�@

�@

osp(3j4)

m m m
2 2 2

@
��@ m m }

1 2 2

@
��@ m m }

2 2 2

@
��@ �@

osp(4j2)

m m m
1 2 1

@
��@ m

1
��

HH

m1

m1

�@ m
1
��

HH

m1

m1

�@

�@

�@

osp(5j2)

m m m
2 2 2

@
��@ m m m

1 2 2

@
��@ �@ m m }

1 2 2

@
��@

(continued)
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Table 3.61 (continued)

sl(1j4) m m m m
1 1 1 1

�@ m m m m
1 1 1 1

�@ �@

m m m m
1 1 1 1

�@ �@

sl(2j3) m m m m
1 1 1 1

�@ m m m m
1 1 1 1

�@ �@ �@

m m m m
1 1 1 1

�@ �@ �@ m m m m
1 1 1 1

�@ �@ �@ �@

m m m m
1 1 1 1

�@ �@ m m m m
1 1 1 1

�@ �@

osp(1j8) m m m }
2 2 2 2

@
�

osp(2j6) m m m m
1 2 2 2

@
��@ m m m m

2 2 2 2

@
��@ �@

m m m m
2 2 2 2

@
��@ �@ m m

2 2
��

HH

m1

m1

�@

�@

osp(3j6) m m m }
1 2 2 2

@
��@ m m m }

2 2 2 2

@
��@ �@

m m m }
2 2 2 2

@
��@ �@ m m m m

2 2 2 2

@
��@

(continued)
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Table 3.61 (continued)

osp(4j4) m m m m
1 2 2 1

@
��@ �@ �@ m m m m

1 2 2 1

@
��@

m m m m
2 2 2 1

@
��@ �@ m m

2 2

�@
��

HH

m1

m1

m m
2 2

�@ �@
��

HH

m1

m1

�@

�@

m m
1 2

�@
��

HH

m1

m1

�@

�@

osp(5j4) m m m m
2 2 2 2

@
��@ m m m m

2 2 2 2

@
��@ �@ �@

m m m m
1 2 2 2

@
��@ �@ m m m }

1 2 2 2

@
��@ �@ �@

m m m }
1 2 2 2

@
��@ m m m }

2 2 2 2

@
��@ �@

osp(6j2) m m m m
1 2 2 1

@
��@ m m

1 2

�@
��

HH

m1

m1

�@

�@

m m
1 2

�@ �@
��

HH

m1

m1

m m
2 2

�@
��

HH

m1

m1

osp(7j2) m m m }
1 2 2 2

@
��@ m m m m

1 2 2 2

@
��@ �@

m m m m
1 2 2 2

@
��@ �@ m m m m

2 2 2 2

@
��@
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Tables 3.62{3.74 provide dimensions of representations for the basic super-
algebras of small rank: osp(1j4), osp(1j6), osp(3j2), osp(4j2), osp(5j2) and
osp(2j4) for the orthosymplectic series, sl(1j3), sl(2j2), sl(1j4) and sl(2j3)
for the unitary series, F (4) and G(3). For the superalgebras sl(1j2) and
osp(1j2), see sections 2.52 and 2.53. For each representation these tables
provide the Dynkin labels, the type of representation (typical or atypical, in
the latter case the number of the atypicality condition is given), the dimen-
sion of the representation space V = V0 � V1, the dimension of the bosonic
part V0, the dimension of the fermionic part V1 and the decomposition under
the bosonic subalgebra G0. The superscript � appearing in the terms of the
decomposition indicates whether the corresponding representation belongs
to the bosonic space V0 (+) or the fermionic one V1 (�).
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Table 3.62: Dimensions of osp(1j4) irreducible representations.
labels dimR dimR0 dimR1 decomposition under sp(4)

0;0 1 1 1 1+

0;1 5 4 1 4+ = 1�

1;0 10 6 4 5+ = 4� = 1+

0;2 14 10 4 10+ = 4�

0;3 30 20 10 20+ = 10�

1;1 35 20 15 16+ = 10� 5� = 4+

2;0 35 19 16 14+ = 16� = 5+

0;4 55 35 20 35+ = 20�

1;2 81 45 36 35+ = 20� 16� = 10+

3;0 84 44 40 30+ = 40� = 14+

0;5 91 56 35 56+ = 35�

2;1 105 56 49 40+ = 35� 14� = 16+

0;6 140 84 56 84+ = 56�

1;3 154 84 70 64+ = 35� 35� = 20+

4;0 165 85 80 55+ = 80� = 30+

2;2 220 116 104 81+ = 64� 40� = 35+

3;1 231 120 111 80+ = 81� 30� = 40+

1;4 260 140 120 105+ = 64� 56� = 35+

Table 3.63: Dimensions of osp(1j6) irreducible representations.
labels dimR dimR0 dimR1 decomposition under sp(6)

0;0,0 1 1 0 1+

0;0,1 7 6 1 6+ = 1�

0;1,0 21 15 6 14+ = 6� = 1+

0;0,2 27 21 6 21+ = 6�

1;0,0 35 20 15 14+ = 14� = 6+ = 1�

0;0,3 77 56 21 56+ = 21�

0;1,1 105 70 35 64+ = 21� 14� = 6+

0;2,0 168 104 64 90+ = 64� = 14+

0;0,4 182 126 56 126+ = 56�

1;0,1 189 105 84 70+ = 64� 14� = 21+ 14+ = 6�

2;0,0 294 154 140 84+ = 126� = 70+ = 14�

0;1,2 330 210 120 189+ = 64� 56� = 21+

1;1,0 378 204 174 126+ = 90� 70� = 64+ 14+ = 14�

1;0,2 616 336 280 216+ = 189� 70� = 64+ 56+ = 21�

0;2,1 693 414 279 350+ = 189� 90� = 64+

0;1,3 819 504 315 448+ = 189� 126� = 56+

0;3,0 825 475 350 385+ = 350� = 90+
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Table 3.64: Dimensions of osp(2j4) irreducible representations.
labels type dimR dimR0 dimR1 decomposition under sp(4)� U(1)

0;0,0 atp-1 1 1 0 (1; 0)+

1;0,0 atp-2 6 2 4 (1; 1)+ = (4; 0)� = (1;�1)+

3;0,0 atp-3 10 6 4 (1; 3)+ = (4; 2)� = (5; 1)+

�1;0,1 atp-1 10 6 4 (5;�1)+ = (4;�2)� = (1;�3)+

4;0,0 atp-4 15 7 8 (1; 4)+ = (4; 3)� = (5; 2)+ (1; 2)+ = (4; 1)�

�1;1,0 atp-1 15 8 7 (4;�1)+ = (5;�2)� (1;�2)� = (4;�3)+

= (1;�4)�

k;0,0 typ 16 8 8 (1; k)+ = (4; k � 1)� = (5; k � 2)+

(1; k � 2)+ = (4; k � 3)� = (1; k � 4)+

1;1,0 atp-2 19 8 11 (4; 1)+ = (10; 0)� (1; 0)� = (4;�1)+

4;0,1 atp-3 35 19 16 (5; 4)+ = (16; 3)� = (14; 2)+

�2;0,2 atp-1 35 19 16 (14;�2)+ = (16;�3)� = (5;�4)+

1;2,0 atp-2 44 20 24 (10; 1)+ = (20; 0)� (4; 0)� = (10;�1)+

0;0,1 atp-2 45 21 24 (5; 0)+ = (16;�1)� (4;�1)� = (10;�2)+

(5;�2)+ (1;�2)+ = (4;�3)�

3;1,0 atp-3 45 24 21 (4; 3)+ = (10; 2)� (5; 2)� (1; 2)� =
(16; 1)+ (4; 1)+ = (5; 0)�

5;1,0 atp-4 49 24 25 (4; 5)+ = (10; 4)� (5; 4)� = (16; 3)+

(4; 3)+ = (10; 2)�

�2;2,0 atp-1 49 25 24 (10;�2)+ = (16;�3)� (4;�3)� =
(10;�4)+ (5;�4)+ = (4;�5)�

k;1,0 typ 64 32 32 (4; k)+ = (10; k � 1)� (5; k � 1)�

(1; k � 1)� = (16; k � 2)+ (24; k � 2)+ =
(10; k � 3)� (5; k � 3)� (1; k � 3)� =
(4; k � 4)+

5;0,1 atp-4 70 34 36 (5; 5)+ = (16; 4)� (4; 4)� = (14; 3)+

(10; 3)+ (5; 3)+ = (16; 2)�

�2;1,1 atp-1 70 36 34 (16;�2)+ = (14;�3)� (10;�3)�

(5;�3)� = (16;�4)+ (4;�4)+ = (5;�5)�

k;0,1 typ 80 40 40 (5; k)+ = (16; k � 1)� (4; k � 1)� =
(14; k � 2)+ (10; k � 2)+ (5; k � 2)+

(1; k � 2)+ = (16; k � 3)� (4; k � 3)� =
(5; k � 4)+

5;0,2 atp-3 84 44 40 (14; 5)+ = (40; 4)� = (30; 3)+

�3;0,3 atp-1 84 44 40 (30;�3)+ = (40;�4)� = (14;�5)+

1;3,0 atp-2 85 40 45 (20; 1)+ = (35; 0)� (10; 0)� = (20;�1)+

k;2,0 typ 160 80 80 (10; k)+ = (20; k � 1)� (16; k � 1)�

(4; k � 1)� = (210; k � 2)+ (35; k � 2)+

(5; k � 2)+ = (20; k � 3)� = (16; k � 3)�

(4; k � 3)� = (10; k � 4)+

k;0,2 typ 224 112 112 (14; k)+ = (40; k � 1)� (16; k � 1)� =
(35; k � 2)+ (30; k � 2)+ (14; k � 2)+

(5; k � 2)+ = (40; k � 3)� (16; k � 3)� =
(14; k � 4)+
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Table 3.65: Dimensions of osp(3j2) irreducible representations.
labels type dimR dimR0 dimR1 decomposition under sp(2)� so(3)

0;0 atp-1 1 1 0 (1; 1)+

1;0 atp-2 5 2 3 (2; 1)+ = (1; 3)�

1;1 typ 8 4 4 (2; 2)+ = (1; 4)�

1;2 typ 12 6 6 (2; 3)+ = (1; 5)� (1; 1)�

2;0 typ 12 6 6 (3; 1)+ = (2; 3)� (1; 3)�

1;3 typ 16 8 8 (2; 4)+ = (1; 6)� (1; 2)�

1;4 typ 20 10 10 (2; 5)+ = (1; 7)� (1; 3)�

3;0 typ 20 10 10 (4; 1)+ = (3; 3)� = (2; 3)+ = (1; 1)�

1;5 typ 24 12 12 (2; 6)+ = (1; 8)� (1; 4)�

2;1 typ 24 12 12 (3; 2)+ = (2; 4)� (2; 2)� = (1; 4)+ (1; 2)+

1;6 typ 28 14 14 (2; 7)+ = (1; 9)� (1; 5)�

4;0 typ 28 14 14 (5; 1)+ = (4; 3)� = (3; 3)+ = (2; 1)�

2;2 atp-2 30 14 16 (3; 3)+ = (2; 5)� (2; 3)� = (1; 5)+

1;7 typ 32 16 16 (2; 8)+ = (1; 10)� (1; 6)�

5;0 typ 36 18 18 (6; 1)+ = (5; 3)� = (4; 3)+ = (3; 1)�

3;1 typ 40 20 20 (4; 2)+ = (3; 4)� (3; 2)� = (2; 4)+ (2; 2)+

= (1; 2)�

6;0 typ 44 22 22 (7; 1)+ = (6; 3)� = (5; 3)+ = (4; 1)�

2;3 typ 48 24 24 (3; 4)+ = (2; 6)� (2; 4)� (2; 2)� =
(1; 6)+ (1; 4)+ (1; 2)+

7;0 typ 52 26 26 (8; 1)+ = (7; 3)� = (6; 3)+ = (5; 1)�

4;1 typ 56 28 28 (5; 2)+ = (4; 4)� (4; 2)� = (3; 4)+ (3; 2)+

= (2; 2)�

2;4 typ 60 30 30 (3; 5)+ = (2; 7)� (2; 5)� (2; 3)� =
(1; 7)+ (1; 5)+ (1; 3)+

3;2 typ 60 30 30 (4; 3)+ = (3; 5)� (3; 3)� (3; 1)� =
(2; 5)+ (2; 3)+ (2; 1)+ = (1; 3)�

8;0 typ 60 30 30 (9; 1)+ = (8; 3)� = (7; 3)+ = (6; 1)�

3;4 atp-2 70 34 36 (4; 5)+ = (3; 7)� (3; 5)� = (2; 7)+

2;5 typ 72 36 36 (3; 6)+ = (2; 8)� (2; 6)� (2; 4)� =
(1; 8)+ (1; 6)+ (1; 4)+

5;1 typ 72 36 36 (6; 2)+ = (5; 4)� (5; 2)� = (4; 4)+ (4; 2)+

= (3; 2)�

3;3 typ 80 40 40 (4; 4)+ = (3; 6)� (3; 4)� (3; 2)� =
(2; 6)+ (2; 4)+ (2; 2)+ = (1; 4)�

2;6 typ 84 42 42 (3; 7)+ = (2; 9)� (2; 7)� (2; 5)� =
(1; 9)+ (1; 7)+ (1; 5)+

4;2 typ 84 42 42 (5; 3)+ = (4; 5)� (4; 3)� (4; 1)� =
(3; 5)+ (3; 3)+ (3; 1)+ = (2; 3)�

6;1 typ 88 44 44 (7; 2)+ = (6; 4)� (6; 2)� = (5; 4)+ (5; 2)+

= (4; 2)�
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Table 3.66: Dimensions of osp(4j2) tensor irreducible representations.
labels type dimR dimR0 dimR1 decomp. under sl(2)� sl(2)� sl(2)

0;0,0 atp-1 1 1 0 (1; 0)+

1;0,0 atp-2,3 6 2 4 (2; 1; 1)+ = (1; 2; 2)�

2;0,0 atp-4 17 9 8 (3; 1; 1)+ = (2; 2; 2)� = (1; 3; 1)+ (1; 1; 3)+

1;1,1 atp-2,3 18 8 10 (2; 2; 2)+ = (1; 3; 3)� (1; 1; 1)�

2;2,0 atp-2 30 14 16 (3; 3; 1)+ = (2; 4; 2)� = (1; 5; 1)+

3;0,0 typ 32 16 16 (4; 1; 1)+ = (3; 2; 2)� = (2; 3; 1)+

(2; 1; 3)+ = (1; 2; 2)�

1;2,2 atp-2,3 38 18 20 (2; 3; 3)+ = (1; 4; 4)� (1; 2; 2)�

4;0,0 typ 48 24 24 (5; 1; 1)+ = (4; 2; 2)� = (3; 3; 1)+

(3; 1; 3)+ = (2; 2; 2)� = (1; 1; 1)+

2;1,1 typ 64 32 32 (3; 2; 2)+ = (2; 3; 3)� (2; 3; 1)� (2; 1; 3)�

(2; 1; 1)� = (1; 4; 2)+ (1; 2; 4)+ (1; 2; 2)+

5;0,0 typ 64 32 32 (6; 1; 1)+ = (5; 2; 2)� = (4; 3; 1)+

(4; 1; 3)+ = (3; 2; 2)� = (2; 1; 1)+

1;3,3 atp-2,3 66 32 34 (2; 4; 4)+ = (1; 5; 5)� (1; 3; 3)�

3;4,0 atp-2 70 34 36 (4; 5; 1)+ = (3; 6; 2)� = (2; 7; 1)+

2;4,0 typ 80 40 40 (3; 5; 1)+ = (2; 6; 2)� (2; 4; 2)� =
(1; 7; 1)+ (1; 5; 3)+ (1; 3; 1)+

6;0,0 typ 80 40 40 (7; 1; 1)+ = (6; 2; 2)� = (5; 3; 1)+

(5; 1; 3)+ = (4; 2; 2)� = (3; 1; 1)+

2;3,1 atp-2 90 44 46 (3; 4; 2)+ = (2; 5; 3)� (2; 5; 1)�

(2; 3; 1)� = (1; 6; 2)+ (1; 4; 2)+

3;2,0 atp-4 90 46 44 (4; 3; 1)+ = (3; 4; 2)� (3; 2; 2)� =
(2; 5; 1)+ (2; 3; 3)+ (2; 3; 1)+ = (1; 4; 2)�

7;0,0 typ 96 48 48 (8; 1; 1)+ = (7; 2; 2)� = (6; 3; 1)+

(6; 1; 3)+ = (5; 2; 2)� = (4; 1; 1)+

3;1,1 atp-4 110 56 54 (4; 2; 2)+ = (3; 3; 3)� (3; 3; 1)� (3; 1; 3)�

= (2; 4; 2)+ (2; 2; 4)+ (2; 2; 2)+ = (1; 3; 3)�

2;6,0 typ 112 56 56 (3; 7; 1)+ = (2; 8; 2)� (2; 6; 2)� =
(1; 9; 1)+ (1; 7; 3)+ (1; 5; 1)+

8;0,0 typ 112 56 56 (9; 1; 1)+ = (8; 2; 2)� = (7; 3; 1)+

(7; 1; 3)+ = (6; 2; 2)� = (5; 1; 1)+

2;2,2 typ 144 72 72 (3; 3; 3)+ = (2; 4; 4)� (2; 4; 2)� (2; 2; 4)�

(2; 2; 2)� = (1; 5; 3)+ (1; 3; 5)+ (1; 3; 3)+

(1; 3; 1)+ (1; 1; 3)+

4;2,0 typ 144 72 72 (5; 3; 1)+ = (4; 4; 2)� (4; 2; 2)� =
(3; 5; 1)+ (3; 3; 3)+ (3; 3; 1)+ (3; 1; 1)+ =
(2; 4; 2)� (2; 2; 2)� = (1; 3; 1)+

The decompositions under sl(2)�sl(2)�sl(2) of the representations labelled
by (k; l;m) and (k;m; l) are obtained by interchanging the last two sl(2)
representations.
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Table 3.67: Dimensions of osp(4j2) spinor irreducible representations.
labels type dimR dimR0 dimR1 decomposition under sl(2)� sl(2)� sl(2)

2;1,0 typ 32 16 16 (3; 2; 1)+ = (2; 3; 2)� (2; 1; 2)� =
(1; 4; 1)+ (1; 2; 3)+

2;3,0 typ 64 32 32 (3; 4; 1)+ = (2; 5; 2)� (2; 3; 2)� =
(1; 6; 1)+ (1; 4; 3)+ (1; 2; 1)+

3;1,0 typ 64 32 32 (4; 2; 1)+ = (3; 3; 2)� (3; 1; 2)� = (2; 4; 1)+

(2; 2; 3)+ (2; 2; 1)+ = (1; 3; 2)� (1; 1; 2)�

2;1,2 typ 96 48 48 (3; 2; 3)+ = (2; 3; 4)� (2; 3; 2)� (2; 1; 4)�

(2; 1; 2)� = (1; 4; 3)+ (1; 2; 5)+ (1; 2; 3)+

(1; 2; 1)+

2;5,0 typ 96 48 48 (3; 6; 1)+ = (2; 7; 2)� (2; 5; 2)� =
(1; 8; 1)+ (1; 6; 3)+ (1; 4; 1)+

4;1,0 typ 96 48 48 (5; 2; 1)+ = (4; 3; 2)� (4; 1; 2)� =
(3; 4; 1)+ (3; 2; 3)+ (3; 2; 1)+ =
(2; 3; 2)� (2; 1; 2)� = (1; 2; 1)+

3;3,0 typ 128 64 64 (4; 4; 1)+ = (3; 5; 2)� (3; 3; 2)� =
(2; 6; 1)+ (2; 4; 3)+ (2; 4; 1)+

(2; 2; 1)+ = (1; 5; 2)� (1; 3; 2)�

5;1,0 typ 128 64 64 (6; 2; 1)+ = (5; 3; 2)� (5; 1; 2)� =
(4; 4; 1)+ (4; 2; 3)+ (4; 2; 1)+ =
(3; 3; 2)� (3; 1; 2)� = (2; 2; 1)+

2;1,4 typ 160 80 80 (3; 2; 5)+ = (2; 3; 6)� (2; 3; 4)�

(2; 1; 6)� (2; 1; 4)� = (1; 4; 5)+

(1; 2; 7)+ (1; 2; 5)+ (1; 2; 3)+

6;1,0 typ 160 80 80 (7; 2; 1)+ = (6; 3; 2)� (6; 1; 2)� =
(5; 4; 1)+ (5; 2; 3)+ (5; 2; 1)+ =
(4; 3; 2)� (4; 1; 2)� = (3; 2; 1)+

The spinor representations (k; l;m) and (k;m; l) are conjugate to each other.
Their decompositions under sl(2)�sl(2)�sl(2) are obtained by interchanging
the last two sl(2) representations.
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Table 3.68: Dimensions of osp(5j2) irreducible representations.
labels type dimR dimR0 dimR1 decomposition under sp(2)� so(5)

0;0,0 atp-1 1 1 0 (1; 1)+

1;0,0 atp-2 7 2 5 (2; 1)+ = (1; 5)�

2;0,0 atp-3 23 13 10 (3; 1)+ = (2; 5)+ (1; 10)�

1;1,0 atp-2 25 10 15 (2; 5)+ = (1; 14)� (1; 1)�

3;0,0 atp-4 49 24 25 (4; 1)+ = (3; 5)� = (2; 10)+ = (1; 10)�

1;2,0 atp-2 63 28 35 (2; 14)+ = (1; 30)� (1; 5)�

2;0,1 typ 64 32 32 (3; 4)+ = (2; 16)� = (1; 20)+

4;0,0 typ 80 40 40 (5; 1)+ = (4; 5)� = (3; 10)+ = (2; 10)� =
(1; 5)+

2;1,0 atp-3 105 55 50 (3; 5)+ = (2; 14)� (2; 10)� (2; 1)� =
(1; 35)+ (1; 5)+

5;0,0 typ 112 56 56 (6; 1)+ = (5; 5)� = (4; 10)+ = (3; 10)� =
(2; 5)+ = (1; 1)�

1;3,0 atp-2 129 60 69 (2; 30)+ = (1; 55)� (1; 14)�

6;0,0 typ 144 72 72 (7; 1)+ = (6; 5)� = (5; 10)+ = (4; 10)� =
(3; 5)+ = (2; 1)�

2;0,2 typ 160 80 80 (3; 10)+ = (2; 35)� (2; 5)� = (1; 35)+

(1; 14)+ (1; 1)+

3;0,1 typ 192 96 96 (4; 4)+ = (3; 16)� (3; 4)� = (2; 20)+

(2; 16)+ (2; 4)+ = (1; 20)� (1; 16)�

1;4,0 atp-2 231 110 121 (2; 55)+ = (1; 91)� (1; 30)�

3;1,0 typ 240 120 120 (4; 5)+ = (3; 14)� (3; 10)� (3; 1)� =
(2; 35)+ (2; 10)+ (2; 5)+ = (1; 35)� (1; 10)�

2;1,1 typ 256 128 128 (3; 16)+ = (2; 40)� (2; 20)� (2; 4)� =
(1; 64)+ (1; 16)+

2;2,0 atp-3 287 147 140 (3; 14)+ = (2; 35)� (2; 30)� (2; 5)� =
(1; 81)+ (1; 14)+ (1; 10)+

2;0,3 typ 320 160 160 (3; 20)+ = (2; 64)� (2; 16)� = (1; 56)+

(1; 40)+ (1; 4)+

4;0,1 typ 320 160 160 (5; 4)+ = (4; 16)� (4; 4)� = (3; 20)+

(3; 16)+ (3; 4)+ = (2; 20)� (2; 16)�

(2; 4)� = (1; 16)+ (1; 4)+

3;0,2 atp-3 350 180 170 (4; 10)+ = (3; 35)� (3; 10)� = (2; 35)+

(2; 35)+ = (1; 35)�

4;1,0 atp-4 350 174 176 (5; 5)+ = (4; 14)� (4; 10)� = (3; 35)+

(3; 10)+ = (2; 35)� (2; 5)� = (1; 14)+

1;5,0 atp-2 377 182 195 (2; 91)+ = (1; 140)� (1; 55)�

5;0,1 typ 448 224 224 (6; 4)+ = (5; 16)� (5; 4)� = (4; 20)+

(4; 16)+ (4; 4)+ = (3; 20)� (3; 16)�

(3; 4)� = (2; 16)+ (2; 4)+ = (1; 4)�
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Table 3.69: Dimensions of sl(1j3) irreducible representations.
labels type dimR dimR0 dimR1 decomposition under sl(3)� U(1)

0;0,0 atp-1 1 1 0 (1; 0)+

3/2;0,0 atp-2 4 1 3 (1; 3=2)+ = (3; 1=2)�

�1/2;0,1 atp-1 4 3 1 (30;�1=2)+ = (1;�3=2)�

3;0,0 atp-3 7 4 3 (1; 3)+ = (3; 2)� = (30; 1)+

�1;1,0 atp-1 7 4 3 (3;�1)+ = (30;�2)� = (1;�3)+

k;0,0 typ 8 4 4 (1; k)+ = (3; k � 1)� = (30; k � 2)+ =
(1; k � 3)�

�1;0,2 atp-1 9 6 3 (60;�1)+ = (30;�2)�

2;1,0 atp-2 9 3 6 (3; 2)+ = (6; 1)�

1;0,1 atp-2 15 6 9 (30; 1)+ = (8; 0)� (1; 0)� = (3;�1)+

�3/2;0,3 atp-1 16 10 6 (100;�3=2)+ = (60;�5=2)�

5/2;2,0 atp-2 16 6 10 (6; 5=2)+ = (10; 3=2)�

4;0,1 atp-3 17 9 8 (30; 4)+ = (8; 3)� = (60; 2)+

�2;2,0 atp-1 17 9 8 (6;�2)+ = (8;�3)� = (3;�4)+

7/2;1,0 atp-3 20 11 9 (3; 7=2)+ = (6; 5=2)� (30; 5=2)� =
(8; 3=2)+

�3/2;1,1 atp-1 20 9 11 (8;�3=2)+ = (60;�5=2)� (3;�5=2)�

= (30;�7=2)+

k;0,1 typ 24 12 12 (30; k)+ = (8; k � 1)� (1; k � 1)� =
(60; k � 2)+ (3; k � 2)+ = (30; k � 3)�

k;1,0 typ 24 12 12 (3; k)+ = (6; k � 1)� (30; k � 1)� =
(8; k � 2)+ (1; k � 2)+

�2;0,4 atp-1 25 15 10 (150;�2)+ = (100;�3)�

3;3,0 atp-2 25 10 15 (10; 3)+ = (15; 2)�

5;0,2 atp-3 31 16 15 (60; 5)+ = (150; 4)� = (100; 3)+

�3;3,0 atp-1 31 16 15 (10;�3)+ = (15;�4)� = (6;�5)+

1/2;0,2 atp-2 32 14 18 (60; 1=2)+ = (150;�1=2)� (30;�1=2)�

= (8;�3=2)+

3/2;1,1 atp-2 32 14 18 (8; 3=2)+ = (15; 1=2)� (3; 1=2)� =
(6;�1=2)+

7/2;4,0 atp-2 36 15 21 (15; 7=2)+ = (21; 5=2)�

�2;1,2 atp-1 39 21 18 (150;�2)+ = (100;�3)� (8;�3)� =
(60;�4)+

4;2,0 atp-3 39 21 18 (6; 4)+ = (10; 3)� (8; 3)� = (15; 2)+

9/2;1,1 atp-3 44 23 21 (8; 9=2)+ = (15; 7=2)� (60; 7=2)� =
(150; 5=2)+

�5/2;2,1 atp-1 44 23 21 (15;�5=2)+ = (150;�7=2)� (6;�7=2)�

= (8;�9=2)+

k;0,2 typ 48 24 24 (60; k)+ = (150; k � 1)� (30; k � 1)� =
(100; k � 2)+ (8; k � 2)+ = (60; k � 3)�

k;2,0 typ 48 24 24 (6; k)+ = (10; k � 1)� (8; k � 1)� =
(15; k � 2)+ (3; k � 2)+ = (6; k � 3)�

6;0,3 atp-3 49 25 24 (100; 6)+ = (240; 5)� = (150; 4)+

�4;4,0 atp-1 49 25 24 (15;�4)+ = (24;�5)� = (10;�6)+
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Table 3.70: Dimensions of psl(2j2) irreducible representations.
labels type dimR dimR0 dimR1 decomposition under sl(2)� sl(2)

0,0 atp-1,4 1 1 0 (1; 1)+

1,1 atp-1,4 14 8 6 (2; 2)+ = (3; 1)� (1; 3)� = (2; 2)+

0,1 typ 32 16 16 (1; 2)+ = (2; 3)� (2; 1)� = (3; 2)+ (1; 4)+

(1; 2)+ = (2; 3)� (2; 1)� = (1; 2)+

2,2 atp-1,4 34 18 16 (3; 3)+ = (4; 2)� (2; 4)� = (3; 3)+

0,2 typ 48 24 24 (1; 3)+ = (2; 4)� (2; 2)� = (3; 3)+ (1; 5)+

(1; 3)+ (1; 1)+ = (2; 4)� (2; 2)� = (1; 3)+

3,3 atp-1,4 62 32 30 (4; 4)+ = (5; 3)� (3; 5)� = (4; 4)+

0,3 typ 64 32 32 (1; 4)+ = (2; 5)� (2; 3)� = (3; 4)+ (1; 6)+

(1; 4)+ (1; 2)+ = (2; 5)� (2; 3)� = (1; 4)+

0,4 typ 80 40 40 (1; 5)+ = (2; 6)� (2; 4)� = (3; 5)+ (1; 7)+

(1; 5)+ (1; 3)+ = (2; 6)� (2; 4)� = (1; 5)+

0,5 typ 96 48 48 (1; 6)+ = (2; 7)� (2; 5)� = (3; 6)+ (1; 8)+

(1; 6)+ (1; 4)+ = (2; 7)� (2; 5)� = (1; 6)+

1,2 typ 96 48 48 (2; 3)+ = (3; 4)� (3; 2)� (1; 4)� (1; 2)�

= (4; 3)+ (2; 5)+ 2 (2; 3)+ (2; 1)+ =
(3; 4)� (3; 2)� (1; 4)� (1; 2)� = (2; 3)+

4,4 atp-1,4 98 50 48 (5; 5)+ = (6; 4)� (4; 6)� = (5; 5)+

0,6 typ 112 56 56 (1; 7)+ = (2; 8)� (2; 6)� = (3; 7)+ (1; 9)+

(1; 7)+ (1; 5)+ = (2; 8)� (2; 6)� = (1; 7)+

0,7 typ 128 64 64 (1; 8)+ = (2; 9)� (2; 7)� = (3; 8)+ (1; 10)+

(1; 8)+ (1; 6)+ = (2; 9)� (2; 7)� = (1; 8)+

1,3 typ 128 64 64 (2; 4)+ = (3; 5)� (3; 3)� (1; 5)� (1; 3)�

= (4; 4)+ (2; 6)+ 2 (2; 4)+ (2; 2)+ =
(3; 5)� (3; 3)� (1; 5)� (1; 3)� = (2; 4)+

0,8 typ 144 72 72 (1; 9)+ = (2; 10)� (2; 8)� = (3; 9)+

(1; 11)+ (1; 9)+ (1; 7)+ = (2; 10)�

(2; 8)� = (1; 9)+

1,4 typ 160 80 80 (2; 5)+ = (3; 6)� (3; 4)� (1; 6)� (1; 4)�

= (4; 5)+ (2; 7)+ 2 (2; 5)+ (2; 3)+ =
(3; 6)� (3; 4)� (1; 6)� (1; 4)� = (2; 5)+

1,5 typ 192 96 96 (2; 6)+ = (3; 7)� (3; 5)� (1; 7)� (1; 5)�

= (4; 6)+ (2; 8)+ 2 (2; 6)+ (2; 4)+ =
(3; 7)� (3; 5)� (1; 7)� (1; 5)� = (2; 6)+

2,3 typ 192 96 96 (3; 4)+ = (4; 5)� (4; 3)� (2; 5)� (2; 3)� =
(5; 4)+ (3; 6)+ 2 (3; 4)+ (3; 2)+ (1; 4)+ =
(4; 5)� (4; 3)� (2; 5)� (2; 3)� = (3; 4)+

1,6 typ 224 112 112 (2; 7)+ = (3; 8)� (3; 6)� (1; 8)� (1; 6)�

= (4; 7)+ (2; 9)+ 2 (2; 7)+ (2; 5)+ =
(3; 8)� (3; 6)� (1; 8)� (1; 6)� = (2; 7)+

2,4 typ 240 120 120 (3; 5)+ = (4; 6)� (4; 4)� (2; 6)� (2; 4)� =
(5; 5)+ (3; 7)+ 2 (3; 5)+ (3; 3)+ (1; 5)+ =
(4; 6)� (4; 4)� (2; 6)� (2; 4)� = (3; 5)+
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Table 3.71: Dimensions of sl(1j4) irreducible representations.
labels type dimR dimR0 dimR1 decomposition under sl(4)� U(1)

0;0,0,0 atp-1 1 1 0 (1; 0)+

4/3;0,0,0 atp-2 5 1 4 (1; 4=3)+ = (4; 1=3)�

�1/3;0,0,1 atp-1 5 4 1 (40;�1=3)+ = (1;�4=3)�

8/3;0,0,0 atp-3 11 7 4 (1; 8=3)+ = (4; 5=3)� = (6; 2=3)+

�2/3;0,1,0 atp-1 11 7 4 (6;�2=3)+ = (40;�5=3)� =
(1;�8=3)�

�2/3;0,0,2 atp-1 14 10 4 (100;�2=3)+ = (40;�5=3)�

5/3;1,0,0 atp-2 14 4 10 (4; 5=3)+ = (10; 2=3)�

4;0,0,0 atp-4 15 7 8 (1; 4)+ = (4; 3)� = (6; 2)+ = (40; 1)�

�1;1,0,0 atp-1 15 8 7 (4;�1)+ = (6;�2)� = (40;�3)+ =
(1;�4)�

k;0,0,0 typ 16 8 8 (1; k)+ = (4; k � 1)� = (6; k � 2)+ =
= (40; k � 3)� = (1; k � 4)+

1;0,0,1 atp-2 24 8 16 (40; 1)+ = (15; 0)� (1; 0)� = (4;�1)+

2;2,0,0 atp-2 30 10 20 (10; 2)+ = (20; 1)�

�1;0,1,1 atp-1 40 24 16 (200;�1)+ = (100;�2)� (6;�2)� =
(40;�3)+

3;1,0,0 atp-3 40 24 16 (4; 3)+ = (10; 2)� (6; 2)� = (20; 1)+

10/3;0,1,0 atp-3 46 26 20 (6; 10=3)+ = (20; 7=3)� = (20; 4=3)+

�4/3;0,2,0 atp-1 46 26 20 (20;�4=3)+ = (200;�7=3)� =
(6;�10=3)+

5;0,0,1 atp-4 49 24 25 (40; 5)+ = (15; 4)� = (200; 3)+ =
(100; 2)�

�2;2,0,0 atp-1 49 25 24 (10;�2)+ = (20;�3)� = (15;�4)+

(4;�5)�

7/3;0,0,1 atp-3 50 28 22 (40; 7=3)+ = (15; 4=3)� (1; 4=3)� =
(200; 1=3)+ (4; 1=3)+ = (6;�2=3)�

2/3;0,1,0 atp-2 50 22 28 (6; 2=3)+ = (20;�1=3)� (40;�1=3)� =
(15;�4=3)+ (1;�4=3)+ = (4;�7=3)�

13/3;1,0,0 atp-4 59 28 31 (4; 13=3)+ = (10; 10=3)� (6; 10=3)�

= (20; 7=3)+ (40; 7=3)+ = (15; 4=3)�

�4/3;1,0,1 atp-1 59 31 28 (15;�4=3)+ = (200;�7=3)�

(4;�7=3)� = (100;�10=3)+

(6;�10=3)+ = (40;�13=3)�

k;0,0,1 typ 64 32 32 (40; k)+ = (15; k � 1)� (1; k � 1)� =
(200; k � 2)+ (4; k � 2)+ =
(10; k � 3)� (6; k � 3)� = (40; k � 4)+

k;1,0,0 typ 64 32 32 (4; k)+ = (10; k � 1)� (6; k � 1)� =
(20; k � 2)+ (40; k � 2)+ =
(15; k � 3)� (1; k � 3)� = (4; k � 4)+

2/3;0,0,2 atp-2 65 25 40 (100; 2=3)+ = (360;�1=3)�

(40;�1=3)� = (15;�4=3)+

4/3;1,0,1 atp-2 65 25 40 (15; 4=3)+ = (36; 1=3)� (4; 1=3)� =
(10;�2=3)+
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Table 3.72: Dimensions of sl(2j3) irreducible representations.
labels type dimR dimR0 dimR1 decomp. under sl(2)� sl(3)� U(1)

0;0;0,0 atp-1,4 1 1 0 (1; 1; 0)+

1;3;0,0 atp-1,6 5 2 3 (2; 1; 3)+ = (1; 3; 2)�

2;�2;0,1 atp-1,4 5 3 2 (1; 30;�2)+ = (2; 1;�3)�

0;�4;1,0 atp-1 12 6 6 (1; 3;�4)+ =(2; 30;�5)� = (3; 1;�6)+

2;6;0,0 atp-1 12 6 6 (3; 1; 6)+ = (2; 3; 5)� = (1; 30; 4)+

0;6;0,0 atp-3,6 13 7 6 (1; 1; 6)+ = (2; 3; 5)� = (1; 6; 4)+

0;�4;0,2 atp-1,4 13 7 6 (1; 60;�4)+ = (2; 30;�5)� =
(1; 1� 6)+

0;�6;0,0 atp-2 20 10 10 (1; 1� 6)+ = (2; 3;�7)� =
(3; 30;�8)+ = (4; 1;�9)�

1;1;0,1 atp-1 24 12 12 (2; 30; 1)+ = (1; 8; 0)� (3; 1; 0)�

(1; 1; 0)� = (2; 3;�1)+

0;8;1,0 atp-3,6 25 13 12 (1; 3; 8)+ = (2; 6; 7)� = (1; 10; 6)+

1;�9;0,0 atp-2 28 14 14 (2; 1� 9)+ = (3; 3;�10)� =
(4; 30;�11)+ = (5; 1;�12)�

2;�12;0,0 atp-2 36 18 18 (3; 1;�12)+ = (4; 3;�13)� =
(5; 30;�14)+ = (6; 1;�15)�

0;�6;1,1 atp-1 40 20 20 (1; 8;�6)+ = (2; 60;�7)� (2; 3;�7)�

= (3; 30;�8)+ (1; 30;�8)+ =
(2; 1;�9)�

1;9;0,0 atp-3 40 20 20 (2; 1; 9)+ = (3; 3; 8)� (1; 3; 8)� =
(2; 6; 7)+ (2; 30; 7)+ = (1; 8; 6)�

0;10;2,0 atp-3,6 41 21 20 (1; 6; 10)+ = (2; 10; 9)� = (1; 15; 8)+

0;12,0,0 atp-5 44 22 22 (1; 1; 12)+ = (2; 3; 11)� = (1; 6; 10)+

(3; 3;0 ; 10)+ = (2; 8; 9)� = (1; 60; 8)+

0;�8;2,0 atp-1 44 22 22 (1; 6;�8)+ = (2; 8;�9)� =
(1; 60;�10)+ (3; 3;�10)+ =
(2; 30;�11)� = (1; 1;�12)+

1;�1;1,0 atp-1,4 50 26 24 (2; 3;�1)+ = (1; 6;�2)� (3; 30;�2)�

= (2; 8;�3)+ (4; 1;�3)+ = (3; 3;�4)�

0;4;0,1 atp-3 60 30 30 (1; 30; 4)+ = (2; 8; 3)� (2; 1; 3)� =
(1; 15; 2)+ (3; 3; 2)+ (1; 3; 2)+ =
(2; 6; 1)�

0;k;0,0 typ 64 32 32 (1; 1; k)+ = (2; 3; k � 1)� =
(1; 6; k � 2)+ (3; 30; k � 2)+ =
(2; 8; k � 3)� (4; 1; k � 3)� =
(1; 60; k � 4)+ (3; 3; k � 4)+ =
(2; 30; k � 5)� = (1; 1; k � 6)+

0;�8;0,1 atp-2 72 36 36 (1; 30;�8)+ = (2; 8;�9)� (2; 1;�9)�

= (3; 60;�10)+ (3; 3;�10)+

(1; 3;�10)+ = (4; 30;�11)�

(2; 30;�11)�= (3; 1;�12)+

2;12;0,0 atp-3 72 36 36 (3; 1; 12)+ = (4; 3; 11)� (2; 3; 11)� =
(3; 6; 10)+ (3; 30; 10)+ (1; 30; 10)+ =
(2; 8; 9)� (2; 1; 9)� = (1; 3; 8)+
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Table 3.73: Dimensions of F (4) irreducible representations.

labels type dimR dimR0 dimR1 decomposition under sl(2)� so(7)

0;0,0,0 atp-1 1 1 0 (1; 1)+

2;0,0,0 atp-3 40 24 16 (3; 1)+ = (2; 8)� = (1; 21)+

4;0,0,0 atp-6 296 152 144 (5; 1)+ = (4; 8)� = (3; 21)+ (3; 7)+ =
(2; 48)� (2; 8)� = (1; 35)+ (1; 27)+

(1; 1)+

2;0,1,0 atp-3 507 267 240 (3; 21)+ = (2; 112)� (2; 8)� =
(1; 168)+ (1; 35)+ (1; 1)+

5;0,0,0 typ 512 256 256 (6; 1)+ = (5; 8)� = (4; 21)+ (4; 7)+ =
(3; 48)� (3; 8)� = (2; 35)+ (2; 27)+

(2; 7)+ = (1; 48)�

3;1,0,0 atp-4,5 756 368 364 (4; 8)+ = (3; 35)� (3; 21)� = (2; 112)+

(2; 48)+ (2; 8)+ = (1; 189)� (1; 7)�

6;0,0,0 atp-8 769 385 384 (7; 1)+ = (6; 8)� = (5; 21)+ (5; 7)+ =
(4; 48)� (4; 8)� = (3; 35)+ (3; 27)+

(3; 7)+ (3; 1)+ = (2; 48)� (2; 8)� =
(1; 21)+ (1; 7)+

4;0,0,1 atp-5 1036 508 528 (5; 7)+ = (4; 48)� = (3; 105)+ (3; 27)+ =
(2; 168)� = (1; 77)+

4;1,0,0 typ 2048 1024 1024 (5; 8)+ = (4; 35)� (4; 21)� (4; 7)�

(4; 1)� = (3; 112)+ 2 (3; 48)+ (3; 8)+ =
(2; 189)� (2; 105)� (2; 35)� (2; 27)�

(2; 21)� (2; 7)� = (1; 168)+ (1; 112)+

(1; 48)+ (1; 8)+

2;0,2,0 atp-3 3392 1728 1664 (3; 168)+ = (2; 720)� (2; 112)� =
(1; 825)+ (1; 378)+ (1; 21)+

5;0,0,1 typ 3584 1792 1792 (6; 7)+ = (5; 48)� (5; 8)� = (4; 105)+

(4; 35)+ (4; 27)+ (4; 21)+ (4; 7)+ (4; 1)+

= (3; 168)� (3; 112)� 2 (3; 48)� 2 (3; 8)�

= (2; 189)+ (2; 105)+ (2; 77)+ (2; 35)+

(2; 27)+ 2 (2; 21)+ (2; 7)+ (2; 1)+ =
(1; 168)� (1; 112)� (1; 48)� (1; 8)�

5;1,0,0 typ 4096 2048 2048 (6; 8)+ = (5; 35)� (5; 21)� (5; 7)� (5; 1)�

= (4; 112)+ 2 (4; 48)+ 2 (4; 8)+ = (3; 1)�

(3; 189)� (3; 105)� 2 (3; 35)� (3; 27)�

2 (3; 21)� 2 (3; 7)� = (2; 168)+ 2 (2; 8)+

2 (2; 112)+ 3 (2; 48)+ = (1; 189)� (1; 7)�

(1; 105)� (1; 35)� (1; 27)� (1; 21)�

4;0,0,2 typ 6912 3456 3456 (5; 27)+ = (4; 168)� (4; 48)� = (3; 330)+

(3; 189)+ (3; 105)+ (3; 77)+ (3; 21)+

(3; 7)+ = (2; 512)� (2; 448)� (2; 168)�

(2; 112)� (2; 48)� (2; 8)� = (1; 616)+

(1; 182)+ (1; 168)+ (1; 105)+ (1; 35)+

(1; 27)+ (1; 1)+
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Table 3.74: Dimensions of G(3) irreducible representations.

labels type dimR dimR0 dimR1 decomposition under sl(2)�G(2)

0;0,0 atp-1 1 1 0 (1; 1)+

2;0;0 atp-3 31 17 14 (3; 1)+ = (2; 7)� = (1; 14)+

3;0,0 atp-4 95 46 49 (4; 1)+ = (3; 7)� = (2; 14)+ (2; 7)+ =
(1; 27)� (1; 1)�

4;0,0 typ 192 96 96 (5; 1)+ = (4; 7)� = (3; 14)+ (3; 7)+ =
(2; 27)� (2; 7)� = (1; 27)+ (1; 1)+

2;0,1 atp-3 289 147 142 (3; 14)+ = (2; 64)� (2; 7)� = (1; 77)+

(1; 27)+ (1; 1)+

5;0,0 atp-6 321 160 161 (6; 1)+ = (5; 7)� = (4; 14)+ (4; 7)+ =
(3; 27)� (3; 7)� (3; 1)� = (2; 27)+

(2; 7)+ (2; 1)+ = (1; 14)� (1; 7)�

6;0,0 typ 448 224 224 (7; 1)+ = (6; 7)� = (5; 14)+ (5; 7)+ =
(4; 27)� (4; 7)� (4; 1)� = (3; 27)+

(3; 7)+ (3; 1)+ = (2; 14)� (2; 7)� = (1; 7)+

3;1,0 typ 448 224 224 (4; 7)+ = (3; 27)� (3; 14)� (3; 1)� =
(2; 64)+ (2; 27)+ (2; 7)+ = (1; 77)�

(1; 14)� (1; 7)�

7;0,0 typ 576 288 288 (8; 1)+ = (7; 7)� = (6; 14)+ (6; 7)+ =
(5; 27)� (5; 7)� (5; 1)� = (4; 27)+ (4; 7)+

(4; 1)+ = (3; 14)� (3; 7)� = (2; 7)+ = (1; 1)�

3;0,1 atp-4 1185 590 595 (4; 14)+ = (3; 64)� (3; 27)� (3; 7)� =
(2; 77)+ (2; 77)+ (2; 64)+ (2; 27)+ (2; 14)+

(2; 7)+ (2; 1)+ = (1; 189)� (1; 64)� (1; 27)�

(1; 14)� (1; 7)�

4;1,0 typ 1344 672 672 (5; 7)+ = (4; 27)� (4; 14)� (4; 7)� (4; 1)�

= (3; 64)+ 2 (3; 27)+ (3; 14)+ 2 (3; 7)+

(3; 1)+ = (2; 77)� (2; 64)� 2 (2; 27)�

2 (2; 14)� 2 (2; 7)� (2; 1)� = (1; 77)+

(1; 64)+ (1; 27)+ (1; 14)+ 2 (1; 7)+

2;0,2 atp-3 1407 707 700 (3; 77)+ = (2; 286)� (2; 64)� = (1; 273)+

(1; 189)+ (1; 14)+

3;2,0 typ 1728 864 864 (4; 27)+ = (3; 77)� (3; 64)� (3; 14)�

(3; 7)� = (2; 189)+ (2; 77)+ (2; 64)+

(2; 27)+ (2; 14)+ (2; 7)+ = (1; 182)�

(1; 77)� (1; 64)� 2 (1; 27)� (1; 1)�

5;1,0 atp-5 2114 1060 1054 (6; 7)+ = (5; 27)� (5; 14)� (5; 7)�

(5; 1)� = (4; 64)+ 2 (4; 27)+ (4; 14)+

2 (4; 7)+ = (3; 77)� (3; 64)� 2 (3; 27)�

2 (3; 14)� 2 (3; 7)� = (2; 77)+ (2; 64)+

2 (2; 27)+ (2; 14)+ (2; 7)+ (2; 1)+ =
(1; 64)� (1; 27)� (1; 7)�

(continued)
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Table 3.74 (continued)

labels type dimR dimR0 dimR1 decomposition under sl(2)�G(2)

4;0,1 typ 2688 1344 1344 (5; 14)+ = (4; 64)� (4; 27)� (4; 7)� =
(3; 77)+ (3; 77)+ (3; 64)+ 2 (3; 27)+ (3; 7)+

(3; 14)+ (3; 1)+ = (2; 77)� (2; 14)� 2 (2; 7)�

(2; 189)� 2 (2; 64)� 2 (2; 27)� = (1; 189)+

(1; 77)+ (1; 64)+ (1; 27)+ 2 (1; 14)+ (1; 7)+

6;1,0 atp-6 2814 1406 1408 (7; 7)+ = (6; 27)� (6; 14)� (6; 7)� =
(5; 64)+ 2 (5; 27)+ (5; 14)+ (5; 7)+ (5; 1)+ =
(4; 77)� (4; 64)� 2 (4; 27)� (4; 14)� (4; 1)�

2 (4; 7)� = (3; 77)+ (3; 64)+ (3; 27)+

2 (3; 14)+ 2 (3; 7)+ = (2; 64)� (2; 27)�

(2; 14)� (2; 7)� = (1; 27)+

4;2,0 atp-4 3710 1850 1860 (5; 27)+ = (4; 77)� (4; 64)� (4; 27)� (4; 7)�

= (3; 189)+ 2 (3; 77)+ (3; 64)+ (3; 27)+

(3; 14)+ (3; 7)+ = (2; 189)� (2; 182)�

(2; 77)� (2; 64)� 2 (2; 27)� (2; 14)� =
(1; 182)+ (1; 77)+ (1; 64)+ (1; 27)+

3;1,1 typ 4096 2048 2048 (4; 64)+ = (3; 189)� (3; 77)� (3; 77)�

(3; 27)� (3; 14)� = (2; 286)+ (2; 189)+

(2; 182)+ (2; 77)+ 2 (2; 64)+ (2; 27)+

(2; 7)+ = (1; 448)� (1; 189)� (1; 77)�

(1; 77)� (1; 64)� (1; 27)� (1; 14)�

6;0,1 atp-5 4158 2082 2076 (7; 14)+ = (6; 64)� (6; 27)� = (5; 77)+

(5; 77)+ (5; 64)+ (5; 27)+ = (4; 189)�

(4; 77)� (4; 64)� (4; 14)� = (3; 189)+

(3; 64)+ = (2; 77)�

5;0,1 typ 4480 2240 2240 (6; 14)+ = (5; 64)� (5; 27)� (5; 7)� =
(4; 77)+ (4; 77)+ (4; 64)+ 2 (4; 27)+ (4; 1)+

(4; 14)+ (4; 7)+ = (3; 189)� (3; 77)�

2 (3; 64)� 2 (3; 27)� 2 (3; 14)� 2 (3; 7)� =
(2; 189)+ (2; 77)+ 2 (2; 64)+ 2 (2; 27)+

2 (2; 14)+ 2 (2; 7)+ = (1; 77)� (1; 77)�

(1; 64)� 2 (1; 27)� (1; 7)� (1; 1)�

2;0,3 atp-3 4737 2373 2364 (3; 273)+ = (2; 896)� (2; 286)� = (1; 748)+

(1; 729)+ (1; 77)+

3;3,0 typ 4928 2464 2464 (4; 77)+ = (3; 189)� (3; 182)� (3; 64)�

(3; 27)� = (2; 448)+ (2; 189)+ (2; 182)+

(2; 77)+ (2; 77)+ (2; 64)+ (2; 27)+ (2; 14)+

= (1; 378)� (1; 286)� (1; 189)� 2 (1; 77)�

(1; 64)� (1; 7)�

3;0,2 atp-4 6335 3164 3171 (4; 77)+ = (3; 286)� (3; 189)� (3; 64)� =
(2; 448)+ (2; 286)+ (2; 273)+ (2; 189)+

(2; 77)+ (2; 77)+ (2; 64)+ (2; 14)+ =
(1; 729)� (1; 286)� (1; 189)� (1; 182)�

(1; 77)� (1; 64)� (1; 27)�
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Table 3.77: osp(1j2) decompositions of the adjoint representations of the
basic Lie superalgebras (regular cases).

ad sl(mjn)
sl(p+ 1jp) = Rp � Rp�1=2 � Rp�1 � : : : � R1=2

� 2(n� p)Rp=2 � 2(m� p� 1)R0p=2
� [(m� p� 1)2 + (n� p)2]R0 � 2(m� p� 1)(n� p)R00

ad sl(mjn)
sl(pjp+ 1)

= Rp � Rp�1=2 � Rp�1 � : : : � R1=2

� 2(m� p)Rp=2 � 2(n� p� 1)R0p=2
� [(m� p)2 + (n� p� 1)2]R0 � 2(m� p)(n� p� 1)R00

ad psl(njn)
sl(p+ 1jp) = Rp � Rp�1=2 � Rp�1 � : : : � R1=2

� 2(n� p)Rp=2 � 2(n� p� 1)R0p=2
� 2(n� p� 1)(n� p)R0 � 2(n� p� 1)(n� p)R00

ad psl(njn)
sl(pjp+ 1)

= Rp � Rp�1=2 � Rp�1 � : : : � R1=2

� 2(n� p� 1)Rp=2 � 2(n� p)R0p=2
� 2(n� p� 1)(n� p)R0 � 2(n� p� 1)(n� p)R00

ad osp(2mj2n)
osp(2kj2k) = R2k�1 � R2k�5=2 � R2k�3 � R2k�9=2 � : : :

�R3=2 � R1 � (2m� 2k + 1)Rk�1=2 � 2(n� k)R0k�1=2
� 2(2m� 2k + 1)(n� k)R00
� [(2m� 2k + 1)(m� k) + (2n� 2k + 1)(n� k)]R0

(continued)
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Table 3.77 (continued)

ad osp(2mj2n)
osp(2k + 2j2k) = R2k�1=2 � R2k�1 � R2k�5=2 � R2k�3 � : : :

�R3=2 � R1 � (2m� 2k � 1)Rk � 2(n� k)R0k
� 2(2m� 2k � 1)(n� k)R00
� [(2m� 2k � 1)(m� k � 1) + (2n� 2k + 1)(n� k)]R0

ad osp(2mj2n)
sl(2k + 1j2k) = R2k � 3R2k�1 � R2k�2 � : : : � R2 � 3R1 � R0

� 3R2k�1=2 � R2k�3=2 � 3R2k�5=2 � : : : � 3R3=2 � R1=2

� 4(m� 2k � 1)Rk � 4(n� 2k)R0k � 4(m� 2k � 1)(n� 2k)R00
� [(2m� 4k � 3)(m� 2k � 1) + (2n� 4k + 1)(n� 2k)]R0

ad osp(2mj2n)
sl(2k � 1j2k) = 3R2k�1 � R2k�2 � 3R2k�3 � : : : � R2 � 3R1

�R0 � R2k�3=2 � 3R2k�5=2 � R2k�7=2 � : : : � 3R3=2 � R1=2

� 4(m� 2k + 1)Rk�1=2 � 4(n� 2k)R0k�1=2
� 4(m� 2k + 1)(n� 2k)R00
� [(2m� 4k + 1)(m� 2k + 1) + (2n� 4k + 1)(n� 2k)]R0

ad osp(2mj2n)
sl(2kj2k + 1)

= 3R2k � R2k�1 � 3R2k�2 � : : : � 3R2 � R1

� 3R0 � R2k�1=2 � 3R2k�3=2 � R2k�5=2 � : : : � R3=2 � 3R1=2

� 4(m� 2k)R0k � 4(n� 2k � 1)Rk � 4(m� 2k)(n� 2k � 1)R00
� [(2m� 4k � 1)(m� 2k) + (2n� 4k � 1)(n� 2k � 1)]R0

ad osp(2mj2n)
sl(2kj2k � 1)

= R2k�1 � 3R2k�2 � R2k�3 � : : : � 3R2 � R1

� 3R0 � 3R2k�3=2 � R2k�5=2 � 3R2k�7=2 � : : : � R3=2

� 3R1=2 � 4(m� 2k)R0k�1=2 � 4(n� 2k + 1)Rk�1=2
� 4(m� 2k)(n� 2k + 1)R00
� [(2m� 4k � 1)(m� 2k) + (2n� 4k + 3)(n� 2k + 1)]R0

(continued)
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Table 3.77 (continued)

ad osp(2m+ 1j2n)
osp(2kj2k) =

ad osp(2m+ 1j2n)
osp(2k � 1j2k) =

R2k�1 � R2k�5=2 � R2k�3 � R2k�9=2 � : : : � R3=2 � R1

� 2(m� k + 1)Rk�1=2 � 2(n� k)R0k�1=2 � 4(m� k + 1)(n� k)R00
� [(2m� 2k + 1)(m� k + 1) + (2n� 2k + 1)(n� k)]R0

ad osp(2m+ 1j2n)
osp(2k + 2j2k) =

ad osp(2m+ 1j2n)
osp(2k + 1j2k) =

R2k�1=2 � R2k�1 � R2k�5=2 � R2k�3 � : : : � R3=2 � R1

� 2(n� k)R0k � 2(m� k)Rk � 4(m� k)(n� k)R00
� [(2m� 2k � 1)(m� k) + (2n� 2k + 1)(n� k)]R0

ad osp(2j2n)
osp(2j2) = R1 � R1=2 � (2n� 2)R01=2 � (2n2 � 3n+ 1)R0 �
(2n� 2)R00

ad osp(2j2n)
sl(1j2) = 3R1 � R1=2 � (4n� 8)R01=2 � (2n2 � 7n+ 7)R0
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Table 3.78: osp(1j2) decompositions of the adjoint representations of the
basic Lie superalgebras (singular cases).

ad osp(2n+ 2j2n)
osp(2k + 1j2k) � osp(2n� 2k + 1j2n� 2k)

= R2n�2k�1

�R2n�2k�3 � : : : � R1 � R2n�2k�1=2 � R2n�2k�3=2 � : : :

�R3=2 � R2k�1 � R2k�3 � : : : � R1 � R2k�1=2 � R2k�3=2
� : : : � R3=2 � Rn � Rn�1 � : : : � Rn�2k
�Rn�1=2 � Rn�3=2 � : : : � Rn�2k+1=2

ad osp(2n� 2j2n)
osp(2k � 1j2k) � osp(2n� 2k � 1j2n� 2k)

= R2n�2k�1

�R2n�2k�3 � : : : � R1 � R2n�2k�5=2 � R2n�2k�7=2 � : : :

�R3=2 � R2k�1 � R2k�3 � : : : � R1 � R2k�5=2 � R2k�7=2
� : : : � R3=2 � Rn�1 � Rn�2 � : : : � Rn�2k
�Rn�3=2 � Rn�5=2 � : : : � Rn�2k+1=2

ad osp(2nj2n)
osp(2k + 1j2k) � osp(2n� 2k � 1j2n� 2k)

= R2n�2k�1

�R2n�2k�3 � : : : � R1 � R2n�2k�5=2 � R2n�2k�7=2 � : : :

�R3=2 � R2k�1 � R2k�3 � : : : � R1 � R2k�1=2 � R2k�3=2
� : : : � R3=2 � Rn�1 � Rn�2 � : : : � Rn�2k
�Rn�1=2 � Rn�3=2 � : : : � Rn�2k�1=2

ad osp(2nj2n)
osp(2k � 1j2k) � osp(2n� 2k + 1j2n� 2k)

= R2n�2k�1

�R2n�2k�3 � : : : � R1 � R2n�2k�1=2 � R2n�2k�3=2 � : : :

�R3=2 � R2k�1 � R2k�3 � : : : � R1 � R2k�5=2 � R2k�7=2
� : : : � R3=2 � Rn�1 � Rn�2 � : : : � Rn�2k+1
�Rn�1=2 � Rn�3=2 � : : : � Rn�2k+1=2
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Table 3.83: osp(1j2) decompositions of the superalgebra F (4).

SSA Decomposition of the
in G adjoint of G

A(1; 0) R1 � 7R1=2 � 14R0

A(0; 1) R1 � 3R1=2 � 6R01=2 � 6R0 � 2R00
C(2) 5R1 � 3R1=2 � 6R0

D(2; 1; 2) R3=2 � 2R03=2 � 2R1 � 2R01=2 � 3R0

Table 3.84: osp(1j2) decompositions of the superalgebra G(3).

SSA Decomposition of the
in G adjoint of G

A(1; 0) R1 � 3R1=2 � 4R01=2 � 3R0 � 2R00
A(1; 0)0 2R03=2 �R1 � 3R1=2 � 3R0

B(0; 1) R1 � 6R1=2 � 8R0

B(1; 1) R3=2 � 2R03=2 �R1 � 3R0 � 2R00

D(2; 1; 3) R2 �R3=2 � 3R1

Table 3.85: osp(1j2) decompositions of the superalgebra D(2; 1;�).

SSA Decomposition of the Decomposition of the
in G fundamental of G adjoint of G

D(2; 1) R1 �R0 R3=2 � 2R1

C(2) R001=2 � 3R0 R1 � 3R1=2 � 3R0

A(1; 0) 2R1=2 R1 � 3R1=2 � 3R0
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1 2
)
�
2
�
(0
;0
)
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Table 3.89: sl(1j2) decompositions of the exceptional superalgebras.

G SSA Decomposition of the
in G adjoint of G

F (4) A(1; 0) (0; 1)� 3�(16 ;
1
2)� 3�(�1

6 ;
1
2)� 8�(0; 0)

A(0; 1)
�(0; 1)� �(1; 12)� �(�1; 12)� 4�(0; 0)
�2�0(12 ; 12)� 2�0(�1

2 ;
1
2)� 2�0(0; 12)

C(2)
�(0; 1)� 2�(1; 1)� 2�(�1; 1)
��(52 ; 12)� �(�5

2 ;
1
2)� 4�(0; 0)

G(3) A(1; 0)
�(0; 1)� �(56 ; 12)� �(�5

6 ;
1
2)� �0(16 ; 12)

��0(�1
6 ;

1
2)� �0(12 ; 12)� �0(�1

2 ;
1
2)� �(0; 0)

A(1; 0)0 �(0; 1)� �(72 ; 12)� �(�7
2 ;

1
2)

��0(32 ; 32)� �0(�3
2 ;

3
2)� �(0; 0)

C(2) �(0; 1)� 2�(14 ;
1
2)� 2�(�1

4 ;
1
2)� �(0; 12)

D(2; 1;�) A(1; 0) �(0; 1)� �(�+ 1
2 ;

1
2)� �(��� 1

2);
1
2)� �(0; 0)

A(1; 0)0 �(0; 1)� �(12
�
1��
1+�

�
; 12)� �(�1

2

�
1��
1+�

�
; 12)� �(0; 0)

C(2) �(0; 1)� �(12
�
2+�
�

�
; 12)� �(�1

2

�
2+�
�

�
; 12)� �(0; 0)

Let us remark that for D(2; 1;�) from any sl(1j2) decomposition one gets

the two others by replacing � by one of the values ��1, �1��, ��
1 + �

. This

corresponds to isomorphic versions of the exceptional superalgebraD(2; 1;�)
(! 2.20). One can check this triality-like property, which certainly deserves
some developments, by the studying the completely odd Dynkin diagram of
D(2; 1;�).
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A(0; 1), see sl(1j2)
A(m;n), 277, 343

A(n; n), 279, 345
osp(1j2) decompositions, 384
sl(1j2) decompositions, 389
oscillator realization, 219
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AN , 146, 284
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representations, 110, 147
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products, 307
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B(0; n), 349
oscillator realization, 220
representations, 235

osp(1j2) decompositions, 385
sl(1j2) decompositions, 390
oscillator realization, 219
representations, 232
structure, 213

BN , 86, 286
sl(2) decompositions, 337

de�nition, 21, 29
oscillator realization, 89
representations, 87, 105
dimensions, 311, 312
products, 315, 316

C(n+ 1), 211, 351
osp(1j2) decompositions, 384
sl(1j2) decompositions, 389
oscillator realization, 220
representations, 233

CN , 145, 288
sl(2) decompositions, 338
de�nition, 21, 29
oscillator realization, 89
representations, 108, 146
dimensions, 308
products, 309

D(2; 1;�), 200, 359
osp(1j2) decompositions, 388
sl(1j2) decompositions, 392
oscillator realization, 218
representations, 227
structure, 201

D(m;n), 211, 353
osp(1j2) decompositions, 387
sl(1j2) decompositions, 391
oscillator realization, 221
representations, 234
structure, 213

DN , 86, 290
sl(2) decompositions, 336
so�(2n), 29
de�nition, 21, 29
oscillator realization, 89
representations, 87, 98
dimensions, 310, 312
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products, 313, 314
E6, 53, 293

branching rules, 326
maximal subalgebras, 53
oscillator realization, 92
representations, 53
dimensions, 320
products, 321

E7, 54, 296
branching rules, 328
maximal subalgebras, 54
oscillator realization, 92
representations, 54
dimensions, 320
products, 322

E8, 54, 299
branching rules, 329
maximal subalgebras, 55
oscillator realization, 90
representations, 55
dimensions, 320
products, 323

F (4), 194, 355
osp(1j2) decompositions, 388
sl(1j2) decompositions, 392
oscillator realization, 216
representations, 224
structure, 196

F4, 49, 302
sl(2) decompositions, 339, 340
branching rules, 324, 325
maximal subalgebras, 51
oscillator realization, 93
representations, 51
dimensions, 317
products, 319

G(3), 197, 357
osp(1j2) decompositions, 388
sl(1j2) decompositions, 392
oscillator realization, 217
representations, 225
structure, 198

G2, 51, 304
sl(2) decompositions, 339, 340
branching rules, 325, 330

maximal subalgebras, 53
oscillator realization, 93
representations, 53, 96
dimensions, 317
products, 318

H(n), 173
de�nition, 173
oscillator realization, 216

P (n)
de�nition, 253
oscillator realization, 222

Q(n)
de�nition, 254
oscillator realization, 222

S(n), 171
de�nition, 171
oscillator realization, 215eS(n), 171
de�nition, 171
oscillator realization, 215

W (n), 170
de�nition, 170
oscillator realization, 215

Z-gradation
consistent, 208

dijk, 149
fijk, 3, 80, 149
osp(1j2), 259

Casimir invariants, 260
decompositions
adjoint repres., 380, 383
fundamental repres., 379

representations, 260
antisymmetrized products, 186
symmetrized products, 186
tensor products, 260

superprincipal embedding, 192
osp(1j2n), see B(0; n)
osp(2m+ 1j2n), see B(m;n)
osp(2mj2n), see D(m;n)
osp(2j2n), see C(n+ 1)
sl(1j2), 261

Casimir invariants, 261
representations, 262
antisymmetrized products, 189
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symmetrized products, 189
tensor products, 263

superprincipal embedding, 194
sl(2) decomposition

adjoint representations, 334
fundamental representations, 333

sl(2) representations
antisymmetrized products, 38
symmetrized products, 38

sl(mjn), see A(m;n)
sl(n), see AN

so(2n), see DN

so(2n+ 1), see BN

sp(2n), see CN

su(2), 20, 148
su(3), 3, 20, 148

A

Action of a group, 2
Adjoint, see Representation
Adjoint operation, 237
Ado's Theorem, 120
Algebra, 4

Abelian, 4
associative, 4
Cli�ord, 183
commutative, 4
composition, 83
conformal, 32
De Sitter, 41
division, 83
Euclidean, 48
Galilei, 56
Grassmann, 205
Lie, see Lie algebra
Lorentz, 82, 248
orthogonal, 29, 86
Poincar�e, 94
Schr�odinger, 130
special linear, 29
spin, 20
superconformal, 265
supersymmetry, 272
symplectic, 29, 145
unitary, 29, 146

Anti De Sitter group, 40
Atypicality conditions

A(m;n), 240
B(m;n), 232
C(n+ 1), 233
D(2; 1;�), 227
D(m;n), 234
F (4), 225
G(3), 226

Automorphism, 4, 65, 166
group, 4
inner, 4, 6, 166
of a group, 4
of a Lie algebra, 6
of a Lie superalgebra, 166
outer, 5, 6, 166

B

Bilinear form, 68, 206
consistent, 206
invariant, 206
supersymmetric, 206

Borel decomposition, 137, 245
Borel subalgebra, 137, 245
Branching rules, 7

so(2n), 10, 15
so(2n+ 1), 14
sp(2n), 13
su(n), 8, 9
exceptional Lie algebras, 7

C

Cartan basis, 17
Cartan matrix, 21

de�nition, 21
distinguished, 168
generalized, 22
Lie algebra, 21
Lie superalgebra, 167
symmetric, 169

Cartan subalgebra, 16, 19, 169
Cartan type superalgebra, 170, 182

H(n), 173
S(n), 171eS(n), 171
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W (n), 170
oscillator realization, 214

Cartan's problem, 16
Cartan's Theorems, 17, 69, 152
Cartan{Weyl basis, 16, 18, 135
Casimir invariants, 22, 134, 175

osp(1j2), 177, 260
osp(mjn), 176
sl(1j2), 176, 261
sl(2), 24
sl(3), 24
sl(mjn), 176
adjoint representation, 24
atypical representation, 175
conformal algebra, 33
Galilei algebra, 56
Lorentz algebra, 82
Poincar�e algebra, 95
second order, 24
simple Lie algebras, 23
typical representation, 175

Center, 25, 178
of a group, 5, 25
of a Lie algebra, 25
of a Lie superalgebra, 176, 178

Centralizer, 25, 178
of a group, 25
of a Lie algebra, 26
of a Lie superalgebra, 178

Characters, 26, 178
A(m;n) representations, 180
B(0; n) representations, 179
C(n+ 1) representations, 180
sl(2) representations, 26
de�nition, 26
singly typical representation, 180
superalgebras, 178
typical representations, 179
Weyl formula, 27

Charge conjugation, 184, 251
Classical Lie algebras, 28
Classical Lie groups, 27
Classical Lie superalgebras, 180

Z-gradation, 182, 342
Z2 -gradation, 181, 342

de�nition, 180
matrix realization, 209

Clebsch-Gordan coe�cients, 29
Cli�ord algebra, 183, 251
Comarks, 22
Compacity, 30
Compacti�cation, 70
Complex structure, 31
Complexi�cation, 116
Composition algebra, 83
Conformal algebra, 32
Conformal group, 32
Conjugacy class, 71, 158
Conjugacy vector, 71
Conjugation, 4
Connected space, 33
Connexity, 33

SO(3)� SU(2) case, 34
Contraction, 36
Coproduct, 149
Coroot, 138
Coset space, 113
Coxeter

dual number, 37
element, 158
number, 37, 158

D

De Sitter algebra, 41
De Sitter group, 40
Decompositions

osp(1j2) subalgebras, 184
sl(1j2) subalgebras, 186
sl(2) subalgebras, 37

De�ning matrix, 66
De�ning vector, 47, 66
Derivation

inner, 39
of a Lie algebra, 39
of a Lie superalgebra, 189

Derivation superalgebra, 170
Derivative of a Lie algebra, 39
Dirac matrices, 190, 251
Dirac spinors, 251
Direct product, 42
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Direct sum, 44
Division algebra, 83
Djokovic{Hochschild Theorem, 236
Dual Coxeter number, 37
Dual Weyl vector, 158
Dynkin diagram, 44

distinguished, 191
extended, 46
of a basic Lie superalgebra, 190
of a simple Lie algebra, 45

Dynkin index, 66
Dynkin label, 152

E

Embedding
osp(1j2), 192
sl(1j2), 193
sl(2), 46, 47
principal, 47
superprincipal, 192, 194

Endomorphism, 65
Enveloping algebra, 149
Enveloping superalgebra, 177, 280

entire, 280
�ltration, 280
zero divisors, 280

Euclidean algebra, 36, 48
di�erential realization, 48

Euclidean group, 5, 43, 48, 75
Exceptional Lie algebras, 21, 49

E6, 53, 293
E7, 54, 296
E8, 54, 299
F4, 49, 302
G2, 51, 304
oscillator realization, 90

Exceptional Lie superalgebras, 194
D(2; 1;�), 200
F (4), 194
G(3), 197
oscillator realization, 216

Exponents, 23, 37, 138

F

Factor group, 6, 166

Folding, 55, 144
Freudenthal formula, 156

G

Galilei algebra, 56
central extension, 56

Galilei group, 55
Gamma matrices, 184
Gelfand{Zetlin basis, 56, 202

gl(nj1), 204
gl(njm), 202
so(2n), 59
so(2n+ 1), 59
su(n), 56

Gell-Mann matrices, 3, 20, 148
Generalized Jacobi identity, 208
Generalized Young tableaux, see also

Young tableaux, 61
Graded antisymmetry, 208
Grassmann algebra, 170, 205, 266
Group, 64

Abelian, 64
Anti De Sitter, 40
commutative, 64
compact, 30
conformal, 32
De Sitter, 40
de�nition, 64
direct product, 42
Euclidean, 43
�nite, 64
Galilei, 55
Lie, see Lie group
linear, 28
Lorentz, 81
morphism, 65
non-compact, 31
orthogonal, 28, 86
semi-direct product, 43
semi-simple, 136
simple, 136
subgroup, see Subgroup
supergroup, 266
symplectic, 28, 145
unitary, 28, 146
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universal covering, 80

H

Height vector, see Level vector
Homomorphism, 65

Harish{Chandra, 177
Homotopy group, 35
Hopf algebra, 149
Hurwitz Theorem, 83

I

Ideal, 78, 207, 209
Index, 66, 67

of a representation, 67
of an embedding, 66

Induced module, 230
Inner derivation, 190
Inner product, 206
Isomorphism, 65
Iwasawa decomposition, 67
Iwasawa's Theorem, 68

J

Jacobi identity, 79
generalized, 208

K

Kac labels, 37, 45, 138
Kac's module, 228, 239
Killing form, 68, 181, 206

L

Lattice, 70
de�nition, 70
dual, 70
Euclidean, 70
integral, 70
Leech, 73
Lorentzian, 70
root, 71
self-dual, 70
self-dual Euclidean, 73
self-dual Lorentzian, 73
unimodular, 70
weight, 71

Level vector, 144, 154

Levi's Theorem, 74
Lie algebra

Abelian, 74
classical, 28
complexi�cation, 116
de�nition, 73
direct sum, 44
general decomposition, 74
nilpotent, 40, 74
real form, 115
reali�cation, 116
representation, see Representation
semi-direct sum, 44
semi-simple, 74, 136
simple, 74, 136
simply-laced, 37, 127
solvable, 40, 74

Lie group
classical, 27
compact, 30
de�nition, 75
generator, 77
of transformations, 75
representations, 118
universal covering, 35

Lie subalgebra, 78
Lie superalgebra, 207

A(m;n), 277
B(m;n), 211
C(n+ 1), 211
D(m;n), 211
gl(mjn), 209
osp(1j2), see osp(1j2)
osp(mjn), 211
psl(njn), 279
sl(1j2), see sl(1j2)
sl(mjn), 277
basic, 181, 182
Z-gradation, 182

Cartan type, 170
classical, 180, 182
Z gradation, 182, 342
Z2 gradation, 181, 342
de�nition, 180

classi�cation, 182
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de�nition, 207
Hamiltonian, 173
nilpotent, 210
real form, 223
semi-simple, 247
simple, 247
solvable, 211
strange, 181, 182
transitive, 171{174, 209
type I, 180
type II, 180

Lie superalgebras
D(2; 1;�), 200
F (4), 194
G(3), 197

Lie superbracket, 208, 259
Lie supercommutator, 208
Lie Theorems, 79
Little group, 85
Lorentz algebra, 82, 248
Lorentz group, 81

compacity, 31
representations, 82, 249
spinors, 248

M

Malcev's Theorem, 74
Marks, 22, 37, 138
Module, 119

highest weight, 228
induced, 229, 230
Kac, 228
semi-simple, 121
simple, 121, 229

N

Nilpotent Lie algebra, 40
Nilpotent Lie superalgebra, 210
Normalizer

of a group, 83
of a Lie algebra, 83
of a Lie superalgebra, 178

O

Octonions, 83

Orbit, 85
Orthogonal algebras, 21, 29, 86
Orthogonal groups, 86
Orthosymplectic superalgebras, 211

de�nition, 211
oscillator realization, 218
representations, 231

Oscillator realization
A(m;n), 219
AN , 89
B(0; n), 220
B(m;n), 219
BN , 89
C(n+ 1), 220
CN , 89
D(2; 1;�), 218
D(m;n), 221
DN , 89
E6, 92
E7, 92
E8, 90
F (4), 216
F4, 93
G(3), 217
G2, 93
H(n), 216
P (n), 222
Q(n), 222
S(n), 215eS(n), 215
W (n), 215

Outer automorphism, 5, 167

P

Partition, 131
Pauli matrices, 94, 148, 183
Peter{Weyl Theorem, 119
Poincar�e{Birkho�{Witt Theorem, 149,

280
Poincar�e algebra, 94

Casimir invariants, 95
di�erential realization, 95

Poincar�e group, 94
representations, 95
compacity, 31
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Q

Quaternions, 83
Quotient group, 113
Quotient Lie algebra, 114

R

Racah coe�cients, 114
Radical, 40, 74
Rank, 19, 170
Real form

Lie algebra, 115, 331
Lie superalgebra, 223, 378

Regular subalgebra, see Subalgebra
Representation

A(m;n), 240
AN , 155
B(0; n), 235
B(m;n), 232
BN , 155
C(n+ 1), 233
CN , 155
D(2; 1;�), 227
D(m;n), 234
DN , 155
E6, 53, 155
E7, 54, 155
E8, 55, 155
F (4), 224, 375
F4, 51, 155
G(3), 225, 376
G2, 53, 96, 155
osp(1j2), 260
osp(1j4), 365
osp(1j6), 365
osp(2j4), 366
osp(3j2), 367
osp(4j2), 368, 369
osp(5j2), 370
psl(2j2), 372
sl(1j2), 262
sl(1j3), 371
sl(1j4), 373
sl(2j3), 374
so(2n), 98
so(2n+ 1), 105

sp(2n), 108
su(n), 110
adjoint, 2, 224
atypical, 238, 239
completely reducible, 120, 236
complex, 154
dimension, 119, 224
direct sum, 122
equivalent, 118
essentially typical, 202
faithful, 118, 224
Freudenthal formula, 156
fundamental, 152
group, 117
height, 154
highest weight, 151, 228
indecomposable, 120, 236
induced module, 229
irreducible, 120, 236
Kronecker product, 123
Lie algebra, 119
Lie superalgebra, 223
linear, 119
Lorentz group, 82
orthosymplectic superalgebras, 231
Poincar�e group, 95
product, 122
pseudo-real, 154
real, 154
reducible, 120, 236
regular, 2
self-conjugate, 154
singly atypical, 239
spinor, 249
star, 237
sum, 122, 236
superdimension, 224
superstar, 237
supersymmetry algebra, 275
tensor product, 122, 236
trivial, 118, 224
typical, 238, 239
unitarily equivalent, 118
unitarity, 125
unitary superalgebras, 240
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Weyl dimension formula, 155
Root, 18, 126, 241

coroot, 138
de�nition, 18, 126
diagram, 127
even, 241
height, 138
highest, 46, 138
lattice, 71
odd, 241
positive, 137, 245
simple, 137, 245
space, 127, 241
system, 126, 241
Lie algebras, 129
Lie superalgebras, 242

S

Scasimir, 177
Schr�odinger algebra, 130
Schur function, 131
Schur's Lemma, 134, 243
Semi-direct product, 43
Semi-direct sum, 44
Semi-morphism, 223
Serre relations, 135, 243, 244
Serre{Chevalley basis, 47, 135, 243
Simple Lie algebras, 20
Simple root system, 137, 245

distinguished, 168, 246
extended, 22
simple Lie algebras, 139
simple Lie superalgebras, 246

Simply connected space, 33
Singular subalgebra, see Subalgebra
Solvable Lie algebra, 40
Solvable Lie superalgebra, 210
Spin algebras, 20
Spinors, 139, 248

adjoint, 251
charge conjugate, 251
Dirac, 251
dotted, 250
Lorentz group, 248
Majorana, 252

undotted, 249
Weyl, 249

Stabilizer, 85
Star operation, 206
Strange formula, 159
Strange superalgebras

P (n), 253
Q(n), 254
Cartan subalgebra, 170
oscillator realization, 221

Stratum, 85
Structure constants, 2, 79

for su(3), 149
Subalgebra, 140, 209, 256

folding, 258
regular, 141, 256
singular, 143, 257, 332

Subgroup, 64, 140
invariant, 65
normal, 65
proper, 64

Subsuperalgebra, see Superalgebra
Superadjoint operation, 237
Superalgebra, 258

associative, 259
commutative, 259
de�nition, 258
homomorphism, 259
Lie, see Lie superalgebra
subsuperalgebra, 259
tensor product, 259

Supercharacters, 178
typical representations, 179

Superconformal algebra, 265
Superdeterminant, 269
Superdimension, 224
Super�eld, 270

antichiral, 272
chiral, 271
de�nition, 271
vector, 272

Supergroup, 266
de�nition, 266
of linear transformations, 267

Supermatrices, 267
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even, 268
odd, 268
superdeterminant, 269
supertrace, 269
transposition, 269

Superspace, 270
Superstar operation, 206
Supersymmetry, 270
Supersymmetry algebra, 272

de�nition, 272
extended, 274
representations, 275

Supertrace, 269
Symmetric function, 131
Symmetric group

inner product, 9, 323
Symmetric metric tensor, 157
Symmetric quadratic form, 157
Symmetric space, 69, 144
Symplectic algebras, 21, 29, 145
Symplectic groups, 145

T

Taylor's Theorem, 80

U

Unitary algebras, 21, 29, 146
Unitary groups, 146
Unitary superalgebras, 277

oscillator realization, 218
representations, 240

Universal
covering group, 35, 80
enveloping algebra, 149
enveloping superalgebra, 280
entire, 280
�ltration, 280
zero divisors, 280

W

Weight, 150
de�nition, 150
dominant, 151, 228
equivalent, 150
fundamental, 152

highest, 151
integral, 228
integral dominant, 228
lattice, 71
level, 153
multiplicity, 150
simple, 150

Weyl
character formula, 27, 134
dimension formula, 155
dual vector, 158
group, 6, 157, 281
re
ection, 157, 282
length, 158
Lie superalgebras, 245, 282
parity, 158

spinors, 249
theorem, 69
vector, 158, 245

Wigner coe�cients, 115
Wigner-Eckart Theorem, 159

Y

Young tableaux, 160
G2, 96
sl(n), 160
de�nition, 160
generalized, 61
so(2n), 10, 98
so(2n+ 1), 15, 105
sp(2n), 13, 108
de�nition, 61
products, 62

inner product, 9
outer product, 8


