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Preface

Why fractals, natural surfaces and scattering? These are actually two ques-
tions compressed in a single statement and should be rephrased as follows:
why fractals and natural surfaces? And why (electromagnetic) scattering by
such surfaces?

Let us consider the first question, which is essentially related to the
appropriate model of the natural surfaces, i.e., surfaces that landscape our
planet (and the other ones, too) and are not man-made. There is increas-
ing experimental evidence that for such a model the Euclidean geometry
is not the appropriate one: a better match is obtained by employing the
fractal geometry. The reason is that forces that model natural surfaces:
gravity and microgravity, tensions, frictions, vibrations, erosions, thermal
and freezing gradients, chemical reaction, etc; and periodic and a-periodic
happenings: seasons and vegetation changes, sun, wind, rain, snow, slides,
subsidence, etc. generate surfaces whose topological dimension is larger
than 2; i.e., larger than the Euclidean one. Loosely speaking, the corruga-
tions and microondulations impressed by the natural forces tend to expand
the surface into the surrounding volume, thus “extending” its topological
dimension in the range from 2 (Euclidean surface) to 3 (Euclidean volume).
Such a geometry is well described by the fractal geometry, which considers
surfaces whose topological dimension is equal to D = 3− H, 0 < H < 1
being the Hurst exponent. The conclusion is that natural surfaces need to
be modeled by an “ad hoc” geometry, the fractal one.

xiii



xiv Preface

Assume now that the fractal geometry has been adopted, and the elec-
tromagnetic theory is used to compute the field scattered by the modeled
surface illuminated by prescribed sources. Then, the second question comes
up: why invest time and effort for setting up computational algorithms and
procedures, while these are already available in the existing literature? In
other words, these techniques have already been developed and applied
to the conventional (Euclidean) models of the natural surfaces: it seems
that one can just change the model and make use of the same techniques.
The appropriate answer to this question is a bit elaborate and is presented
hereafter.

Fractal geometry is mathematical abstraction of fractal physics: it exhibits
properties (for instance, self-affinity) on all scales and does not allow the
derivative operation at any point; surface fractal corrugations possess power
spectra that diverge in the low-frequency regime (infrared catastrophe) and
exhibith non-stationary correlations functions. Use of the mathematical
fractals to model natural surfaces would make any scattering computation
totally intractable. But natural surfaces are observed, sensed, measured, and
represented via instruments that are, for their intrinsic nature, bandlimited.
Accordingly, the mathematical fractals may, or must be bandlimited, thus
generating the physical fractals that recover most, if not all, the prop-
erties needed to manage them in the electromagnetic scattering theory.
In spite of this, it is not immediate to transfer known conventional scattering
computational techniques to the new geometry: a complete rephrasing is
necessary.

This book addresses in detail all previous questions and provides all
needed information to tackle the problem of electromagnetic scattering by
fractally modeled natural surfaces. It is divided in two segments of four
chapter each, the first segment being propedeutic to the second one.

The first four chapters present the fractal geometry and address in detail
the bandlimitation issue, thus examining the properties of physical fractals.
Comparison of the fractal model with the conventional one is discussed as
well, and the fundamentals of the existing methods for (electromagnetic)
scattering computation is included.

The last four chapters are based on the first four ones and present the
full theory of scattering from fractal surfaces, introduce the pertinent
parameters, mainly the scattering cross section, and elucidate the physi-
cal implications of obtained results. The result is a complete monography
on the subject.
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CHAPTER 1

The Scattering Problem

1.1. Introduction and Chapter Outline

This chapter presents the rationale and the motivations for this book on
scattering from natural surfaces. Distinction is made between the classical
and the fractal description of the surfaces; its relevance to the evaluation of
the scattered field is elucidated. Regular and predictable stochastic processes
are introduced; their use for the evaluation of the scattered field within
different electromagnetic methods is presented in detail.

Definition of the scattering problem is provided in Section 1.2, whereas
motivations to obtain a solution for it are given in Section 1.3. Geometric
models for the scattering surface are introduced in Section 1.4, where it is
also discussed how they enter into the evaluation of the scattered field.

The scattering problem is then categorized with respect to both the model
employed for the scattering surface and the electromagnetic method applied
to find the scattered field: deterministic and stochastic models for the scat-
tering surface are introduced and compared in Section 1.5; deterministic
and stochastic evaluations for the scattered field are presented and com-
pared in Section 1.6. Then, depending on the selected surface model and
electromagnetic method, analytic and numerical solution can be obtained
and are introduced in Section 1.7.

Section 1.8 deals with the analytic evaluation in closed form of the
scattered field, which is of main concern in this book according to the
motivations presented in Section 1.3.

1
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The book outline is introduced in Section 1.9.
Key references and suggestions for further readings are reported in

Section 1.10.

1.2. The Scattering-Problem Definition

In the electromagnetic-field theory, scattering problems arise whenever
interaction of electromagnetic fields with matter takes place. Among these
problems, scattering from natural surfaces is of paramount relevance,
because it plays a fundamental role in wave propagation and remote sensing.

Consider a natural surface separating two homogeneous media of semi-
infinite extent (Figure 1.1). The key point is that the surface is natural—that
is, not man-made. Accordingly, it lacks the clear-cut geometric properties
and features that are typical of man-made structures. And it is difficult, if
not impossible, not only to find a general closed-form expression for the
scattered field, but even to generate a reasonably accurate model for the
surface itself. Attention is then devoted to find a convenient approach to
this issue.

The problem to be handled can be defined as follows. When the natural
surface is illuminated by an electromagnetic field, a scattered field is gen-
erated. Accordingly, the total field is decomposed into the sum of two ones,
as detailed in the following paragraphs.

Figure 1.1 Drawing of a portion of a natural surface separating two homogeneous
media of semi-infinite extent.
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The incident field is the one that would be present if the medium were
homogeneous, and coincident with the free-space one. Accordingly, the
scattering surface is no longer present. This incident field is usually taken as
a single, possibly plane, wave: field expansion in convenient bases provides
both rationale and techniques to handle the problem in the most general case.

The scattered field is a solution of the source-free Maxwell equations, sat-
isfying radiation conditions at infinity. It is usually represented by different
expressions inside and outside the natural surface.

The incident and scattered fields together provide the actual electromag-
netic field; continuity conditions of the tangential component of the total
fields on the natural surface must be enforced.

Evaluation of the scattered field is obtained by following analytic as well
as numerical techniques. In the case of natural surfaces, this is accomplished
by a two-step procedure: first the surface is modeled, then a method for
evaluating the scattered field is developed. This second step is strongly
related to the outcome of the first step. The two steps are somehow coupled:
the first step mainly implies to make choices with subsequent mathematical
elaborations; the second is mainly a matter of electromagnetic theory.

1.3. Motivations

Many important applications are connected to the solution of the presented
scattering problem: electromagnetic-wave propagation, radio commu-
nication, remote sensing, radar detection, electromagnetic diagnostics,
electromagnetic imaging. All these disciplines widely benefit from avail-
ability of affordable scattering methods able to efficiently evaluate the
interaction of the electromagnetic field with natural surfaces.

A simple closed-form formulation of the scattered field is a necessary
prerequisite to understand the scattering rationale, to identify key elec-
tromagnetic and surface parameters relevant to the scattering mechanism,
to plan and design scattering sensors and radio-communications instru-
ments, to predict scattering-phenomena effects, to provide the rationale to
simulate the electromagnetic fields scattered from rough surfaces, and to
develop an affordable tool to interpolate and extrapolate scattered fields
from measurement data.

Scattering methods provide a solution to the direct problem, aimed at
evaluating the electromagnetic field whenever the surface is fully described.
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But the inverse problem is of interest, too. It consists of estimating surface
properties from scattering data: direct procedures are the background, and
provide unique guidelines to develop scattering inverse methods. Again,
clarity and simplicity of direct methods are the necessary prerequisite to
developing affordable inverse methods.

1.4. Surface Models and Electromagnetic Methods

In this book, the first step toward evaluating the scattered field is referred
to as surface-modeling; the second one is referred to as electromagnetic-
evaluation procedure. This is different from what is common in the relevant
literature, where these two steps are usually unified and referred to as the
electromagnetic model of the problem. We make reference to this approach
as the classical one: this term is somewhat motivated by the almost standard
description used in modeling natural surfaces, so that the major emphasis
is on the scattered-field computation.

In this book, the above-quoted two steps are considered separately,
because alternative surface models are introduced. Geometric modeling
of natural surfaces is provided by means of the fractal geometry, as widely
suggested by geologic and oceanographic studies: in other words, the pro-
posed geometric models are taken from advanced studies in the field of
natural sciences and mathematics. It is noted that fractal models of natural
surfaces do not hold those mathematical properties required to apply classi-
cal electromagnetic methods in order to analytically evaluate the scattered
field in closed form. Hence, the scattered-field evaluation procedures are
here completely restated according to the characteristics of fractal surfaces,
as detailed in Chapters 5 through 8.

Fractal geometry is illustrated in several excellent books in mathemati-
cal sciences. Some of them deal with natural-surfaces modeling. Analytic
models reported here are able to handle a variety of natural surfaces: bare
and moderately vegetated soils, as well as ocean surfaces. Forested areas
are excluded from the presented analysis, because only surface, and not
volume scattering, is considered here.

Electromagnetic-scattering methods based on fractal models for the
scattering surfaces can be found only in journal papers and a few book
chapters. Accordingly, this book fills a void in the literature, by providing a
common mathematical and electromagnetic approach to unify and enlarge
the applicability of scattering theories to fractal surfaces.
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1.5. Deterministic versus Stochastic Models for the
Natural Surfaces

The geometric shape of natural surfaces can be represented by means of a
deterministic function as well as a stochastic process.

If a specific or assigned natural surface is under study, and if scattering
from this particular surface must be evaluated, then a deterministic function
may be used to model the surface geometry. Conversely, if a class of natural
surfaces is considered and some average or significant parameters of the
expected scattered field from that class of natural surfaces is desired, then
a stochastic process may be appropriately used to model the considered
whole class of natural surfaces.

The choice between these two very different descriptions relies on their
expected use. In this section, the rationale to use deterministic or stochastic
description for the natural surfaces is discussed. Final comments are devoted
to comparing classical- and fractal-based approaches.

1.5.1. Surface Deterministic Models

In the deterministic description of a rough surface, the geometric shape
may be modeled by means of real, possibly single-valued, functions of
two independent space variables. These functions may hold some relevant
properties such as continuity and derivability, and usually belong to some
class of real functions.

From a general viewpoint, scattering from canonical structures—
including simple shapes, periodic structures, and made-made objects—
relies on a deterministic description of the surface of these bodies. For
simple geometric shapes, this evaluation is analytically performed in closed
form, in terms of the geometric and the electromagnetic parameters of the
surface.

Adeterministic description is seldom used in the classical analytic evalua-
tion of electromagnetic scattering from natural surfaces, because its use does
not generally lead to closed-form expressions for the solution. A noticeable
exception is provided by surfaces modeled by almost-periodic functions,
whose scattering properties, although cumbersome, are amenable to an
analytic solution.

A reasonable deterministic fractal description for natural surfaces
is provided by the Weierstrass-Mandelbrot (WM) function. Moreover,
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randomization of the finite number of parameters of the WM function
provides an easy generation model for a stochastic surface.

Finally, deterministic description is also used to represent natural surfaces
whenever a numerical evaluation of the scattered field is in order.

1.5.2. Surface Stochastic Models

In the stochastic description of rough surfaces, the geometric shape may
be modeled by means of a stochastic process of two independent space
variables. In this case, a Cartesian coordinate system is employed, z(r) =
z(x, y), r ≡ xx̂ + yŷ, where z = 0 is the mean plane and z(x, y) describes
its stochastic corrugations. It is worth recalling that a stochastic process
z(r) is a rule for assigning to every outcome ς of the statistical ensemble a
function z(r). Thus, a stochastic process is an ensemble of functions of the
space variables depending on the parameter ς .

Alternatively, a stochastic process can be read as a function z(x, y, ς ) of
three variables: the domain of (x, y) is R2, the domain of ς is the set of all
the experimental outcomes. If the position, r, over the surface is variable,
and the realization, ς , is fixed, then z is a sample space function; if the
position, r, over the surface is fixed, and the realization, ς , is variable, then
z is a random variable; if both position, r, and realization, ς , are fixed, then
z is a number.

In this book, stochastic processes are simply indicated as z(r) whenever
used to describe natural-surface shapes.

Obviously, the field scattered from a stochastic surface exhibits itself a
stochastic behavior. For each space position, the scattered field is a random
variable in the phasor domain, and a stochastic process of the independent
time variable in the time domain. This point is detailed in the Section 1.6.2.

An important classification is between regular and predictable stochas-
tic processes. The difference is that a regular stochastic process consists
of an ensemble of functions that cannot be described in terms of a finite
set of parameters, in contrast to a predictable stochastic process consist-
ing of an ensemble of functions that can be completely specified by a
finite set of parameters. The ensembles of regular stochastic process are
detailed via appropriate stochastic distributions depending on an appropri-
ate finite set of stochastic parameters; this does not happen for predictable
processes.

As an example, consider the height profile z(x, y) of a rough surface.
If the probability distributions of the random process are prescribed, then
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a regular stochastic process is in order. Conversely, the process is pre-
dictable if z(x, y) is expanded in a series of functions that contain statistical
parameters, specified in terms of appropriate probability distributions.

Some interesting properties of regular and predictable processes are
in order. These properties are fundamentals for selecting the type of the
stochastic model to be conveniently used.

For predictable stochastic processes, knowledge of a sample function z(r)
on a subdomain may lead to predicting the whole sample function. This is
not true for a regular stochastic process. Conversely, for regular stochastic
processes, knowledge of a sample function z(r) may lead to reconstructing
the statistics of the entire process. This is not true for a predictable stochastic
process.

In the following paragraphs, both regular and predictable stochastic
processes are used for the natural-surface shape modeling.

Classical rough surfaces are generally introduced as regular stochastic
processes. Use of appropriate synthesis procedures may generate a realiza-
tion of the stochastic process, leading to a deterministic classical surface.
As an alternative, the realization may be experimentally obtained by means
of in situ measurements.

Fractal stochastic surfaces are introduced by using either regular or
predictable stochastic processes. The fractional Brownian motion (fBm)
model is a popular fractal regular stochastic process. Synthesis proce-
dures may then be used to obtain an element of the ensemble—that is,
a deterministic surface. The WM function is a popular fractal determinis-
tic function. Its coefficients can be easily randomized to generate random
surfaces. This amounts to constructing a predictable stochastic fractal
process.

For a visual comparison, examples of fractal and classical surfaces are
provided in Figure 1.2. A fractal surface is presented in the first column,
along with its contour lines (corresponding to five horizontal cuts) and a
generic vertical cut: the classical counterparts are reported in the second
column. The lighter the gray level of the area between successive contour
lines, the higher the surface. Beyond any mathematical or physical expla-
nation, it is evident that the visual comparison between the surfaces models
presented in Figure 1.2 and the natural surfaces is definitively in favor of
the fractal models: the fractal surface exhibits details on any observation
scale, whereas the classical one appears too smooth at the smallest scales;
this is confirmed by the surfaces drawing and the surfaces’ horizontal and
vertical cuts.
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Figure 1.2 Fractal and classical surface models. Drawings and plots in the first column
of the figure are referred to the fractal model, whereas their counterparts for a classical
model are reported in the second column. In the first row of the figure the fractal and
classical surfaces are drawn. In the second row the corresponding contour plots (on five
levels) are presented. In the third row an example of surfaces’ vertical profiles is shown:
the trace of the vertical profiles is a horizontal line passing to the center of the contour
plots.
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1.6. Deterministic versus Stochastic Evaluation for the
Scattered Field

The electromagnetic field scattered from a natural surface can be represented
either as a deterministic function or as a stochastic process; in the former
case, the field is represented by its value; in the latter, by a random variable.

The choice between these two very different descriptions relies on
their expected use, on the possibility to get appropriate—analytical or
numerical—solutions to the scattering problem, and is related strictly to
the corresponding choice performed to model the scattering surface. In this
section, the rationale to consider deterministic or stochastic descriptions for
the scattered field is discussed.

1.6.1. Scattered-Field Deterministic Descriptions

The electromagnetic field scattered from a natural surface can be evaluated
in a deterministic form if the surface description is deterministically pro-
vided: in such a case, the problem consists of computing the field scattered
from the prescribed specific surface.

As discussed in the previous section, in the analytic evaluation of the
scattered electromagnetic field, a deterministic description for classical sur-
faces is not used. This is because any classical-surface model, somehow
approaching the shape of the natural surface, is too much involved and does
not lead to an analytic closed-form solution. In some cases, the only partial
exception to this rule seems to be provided by almost-periodic surfaces.

Conversely, a reasonable deterministic fractal description for natural sur-
faces is provided by the WM function. In this book, it is shown that a
deterministic description for the electromagnetic scattered field from WM
surfaces can be analytically evaluated in closed form (see Chapters 5 and 7).
Obviously, randomization of the finite number of parameters of the WM
function easily allows the evaluation of the scattered field as a predictable
stochastic process. It also turns out that the ensemble element of the scattered
field can be obtained when a predictable stochastic process model for the
surface is adopted. Conversely, only statistical parameters of the scattered
field can be evaluated if a regular stochastic process model is used.

Deterministic descriptions for the scattered field are of paramount rele-
vance if numerical methods are in order. Any numerical evaluation of the
scattered field leads to a deterministic description; as a matter of fact, numer-
ical methods deterministically evaluate the scattered field for a prescribed
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specific surface. When stochastic-process modeling for the scattering sur-
face is used, as a first step the elements of the scattering surface ensemble
are generated; then the scattered field for each ensemble element is numer-
ically evaluated. Multiple application of the procedure can be later used to
determine the stochastic behavior of the scattered field by implementing
appropriate averages on obtained numerical solutions.

1.6.2. Scattered-Field Stochastic Descriptions

The field scattered from a natural surface can be analytically evaluated in
a stochastic form if the surface description is provided in stochastic terms:
in such a case, the problem consists of determining the stochastic charac-
terization of the field scattered from a prescribed class of surfaces. To this
end, the distinction between regular and predictable processes, Section 1.5,
plays an important role. In the case of predictable processes, a particular
choice of the value of the finite number of its describing parameters fully
determines the ensemble element. Accordingly, this element is analytically
and deterministically individuated, and computational techniques can be
applied, in principle, for the evaluation of the scattered field. This is an
element of the ensemble of the scattered field associated to the considered
surface, and its statistical properties may be further explored by operating
on the ensemble set. Conversely, when a regular process is in order, each
ensemble element is by itself described only in a statistical way. Accord-
ingly, no analytic description of the element is available, and only statistical
properties of the scattered field may be directly explored.

For both cases of the analytic and numerical evaluation of the scattered
field, the final result is either a phasor or a time-dependent analytical or
numerical expression. In the phasor domain, the vector stochastic process
E(r) is a rule for assigning to each ensemble element ς of the surface
a function E(r) of three independent space variables; at any space point,
the scattered field is a vector random variable. In time domain, a further
temporal independent variable t is added, so that the vector stochastic pro-
cess e(r, t) depends on four independent variables; at any space point, the
scattered field is a stochastic process with one independent variable—that
is, time. In the following paragraphs, the analysis is driven in the phasor
domain; extension to the temporal domain may be gained by application of
standard Fourier Transform (FT) techniques.

Thus, a stochastic electromagnetic field is an ensemble of functions of
the space variables depending on the parameter ς . If the space position, r,
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is variable, and the realization, ς , is fixed, then E is a vector function of
the variable r; if the space position, r, is fixed, and the realization, ς , is
variable, then E is a vector random variable; if both the position, r, and the
realization, ς , are fixed, then E is a vector.

There is obviously a relevant link between the stochastic description of the
scattering surface and the electromagnetic field: the scattered field evaluated
in closed form inherits the class of the stochastic process from the surface.
In particular, if the surface is described by means of a regular stochastic
process, then the scattered field is a regular stochastic process; similarly,
if the surface is described by means of a predictable stochastic process,
then the scattered field is a predictable stochastic process. Representation
of the scattered field for predictable and regular processes deserves some
comments.

Predictable stochastic-process modeling can be used to describe fractal
surfaces: this happens, for instance, whenever the WM function with ran-
dom coefficients is employed. In this case, the scattered field, and not only
its stochastic parameters, can be evaluated in closed form (see Chapters 5
and 7). If relevant averages of the scattered field are of interest, they can
be evaluated (in some cases in closed form) by employing the obtained
closed-form solution for the scattered field.

Regular stochastic processes are used to describe classical surfaces as
well as fBm fractal-model surfaces: in both cases, the scattered field is a
regular process, and a closed-form solution for the scattered field cannot be
gained—but this does not imply that scattering computational procedures
are not implemented or necessary. As a matter of fact, an analytic formu-
lation of the scattered field must be developed; the stochastic parameters
of the field are then analytically evaluated in closed form, by operating
appropriate averages on the scattered-field analytical formulation. Those
averages obviously require knowledge of the prescribed statistical param-
eters of the height profile, and this step imprints the statistics of the surface
on the scattered field. In conclusion, in the case that regular processes
are employed, the field can be described only by means of its stochastic
parameters. Usually only a few of them are evaluated. The mean field is
the first: however, for natural surfaces whose roughness is not marginal,
the mean scattered field is usually zero. Then the field variance, related
to the scattered power, is evaluated. For remote-sensing application, the
scattered power is employed to evaluate the radar cross section, which can
be properly normalized to the geometric area, thus leading to the scattering
coefficient. Evaluation of these two relevant averages, scattered mean field
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and power, is often sufficient to characterize the scattered field at a single
point in space.

It is important to note that a full description for the scattered field requires
evaluating much more than some relevant averages: as a matter of fact,
knowledge of single-point and multipoint (at any order) joint probability-
density function (pdf) of the stochastic field are required instead. To address
this item, some comments are listed in the following sections.

In most applications, the first- and second-order statistics are usually
sufficient for a satisfactory description of the single-point scattered-field
behavior. This happens, for instance, whenever the central-limit theorem
applies and the modulus of the scattered field turns out to be Rayleigh
distributed. In this case, the scattered field in any single space point is a
stochastic variable fully described at any order by one parameter, this latter
parameter being related to the scattered power. But this is not always the
case: for instance, some marine surfaces exhibit a scattered field whose
modulus is not Rayleigh distributed; in such a case, the full stochastic
characterization (in principle at any order) of the scattered field is required
to provide useful information on the scattering surface. It is important to
note that in this case, the required higher-order statistics of the single-point
scattered field are difficult to find in the current literature. This is mainly
because these averages are difficult to obtain analytically in closed form.

In some cases, multipoint stochastic characterization of the scattered
field is of interest. In particular, the two-point stochastic characterization
describes the scattered field space and/or time correlation. In the former
case, a convenient meaningful statistical parameter for the scattered field
is its correlation length; in the latter, its correlation time. In general, the
covariance matrix of the field should be computed; this is a more difficult
task then finding the single-point statistics. In remote-sensing applications,
its importance is confined to interferometric applications; in cellular propa-
gation, to wideband signals. This book is confined mostly to the single-point
scattered-field characterization and applications.

1.7. Analytic versus Numerical Evaluation of the
Scattered Field

An exact closed-form solution for the electromagnetic field scattered from
natural surfaces does not exist: any approach relies on some approximations.
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The corresponding solution is approximate as well. In spite of these
limitations, classical analytic methods often shed light on the scatter-
ing mechanism and sometimes provide the rationale for interpreting the
scattered data; however, they are rarely satisfactory with respect to the
applications reported in Section 1.3. Then new scattering methods are
continuously proposed, with the aim of improving their applicability; but
usually small improvements in classical approaches are paid for by a large
increase in methods complexity.

In this book, analytic methods to evaluate the scattered field in closed
form, tailored to the fractal models, are presented. These methods are
accommodated to the fractal models, discussing the involved approxima-
tions: each method allows expressing the scattered field as a function of
the surface fractal and electromagnetic parameters, as well as the sensor
geometric and electromagnetic parameters. A complete list of these param-
eters is now presented in detail: this is crucial to identifying the potentiality
inherent to any scattering model.

Surface parameters are in order. In Chapter 3, it is shown that frac-
tal models involve two fractal parameters; for instance, fractal dimension
and topothesy, or alternatively, Hurst exponent and surface-increments
standard deviation can be used. Finally, if spectral representations are
considered, spectral amplitude and slope are used. The electromagnetic
parameters, permittivity and conductivity of the homogeneous medium
below the surface are grouped in the complex dielectric constant in the
usual nonmagnetic-material case. Coming to the sensor parameters, the
narrowband bistatic radar is considered: the usual parameters are the geo-
metric coordinates of the transmitter and the receiver as well as the radar
carrier frequency.

A comment on classical approaches is in order. In Chapter 2, it is shown
that classical models for the scattering surface involve at least two param-
eters: usually the surface standard deviation and the correlation length.
However, the two parameters lead to models that very poorly account for
natural-surfaces properties, and their limitation can be mitigated by increas-
ing the parameters’ number. This (marginal) improvement in the model is
paid for by a significant complication in the evaluation of the scattered field.

Classical procedures to evaluate the scattered electromagnetic field are
available in several excellent books. In some cases, these analytic classical
procedures are also briefly referred to, and this is for two reasons. First,
to underline why they cannot be applied to the fractal surfaces; and second,
to provide a comparison with the results based on fractal geometry.
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Numerical solutions to the problem are also available. In this case, the
scattered field is not obtained in a closed form, and most of the motivation
discussed in Section 1.3 cannot be fulfilled. However, numerical proce-
dures can be used to test the analytic ones. It is important to underline that
also the numerical procedures lead to approximate solutions to the scatter-
ing problem. Hence, the numerical approach also needs some theoretical
discussions to provide its assessment with respect to the actual data.

1.8. Closed-Form Evaluation of the Electromagnetic
Field Scattered from a Natural Surface

Scattering studies related to classical natural surfaces, modeled as rough
geometric objects, date back to the early 1950s. Different methods for
the scattered-field evaluation have been developed, each based on differ-
ent approximations, hence with a different range of validity. Among them,
the most popular ones are the Kirchhoff Approximation (KA); the Extended-
Boundary-Condition Method (EBCM), with the derived Small-Perturbation
Method (SPM); and, more recently, the Integral-Equation Method (IEM).
These techniques are by now well established, and are widely available
in the current literature. They can be quite easily combined with classi-
cal statistical models, which describe natural rough surfaces by means of
stationary stochastic two-dimensional processes, with given probability-
density function (pdf ) (usually Gaussian) and correlation function (usually
Gaussian, exponential, or a combination of the two).

Evaluated scattered fields are in excellent agreement with numerical sim-
ulations and laboratory measurements (performed by using artificial rough
surfaces consistent with above surface models). However, their comparison
with measured data over actual natural surfaces is often less encourag-
ing, and this is probably due to the inadequacy of the adopted surface
models. As a matter of fact, natural surfaces exhibit appropriate statistical
scale-invariance properties that are not met at all by surface classical mod-
els. In Figure 1.3, the concept of this appropriate scale invariance, termed
self-affinity, is elucidated: the natural-surface profile at the top of the figure
is zoomed by a factor of 10 in the second row, and by a factor of 100 in
the third row. Actually, any zooming in reveals finer details, and the sur-
face appears rougher at the smallest scales. A little thought on this point
leads to the conclusion that this is in agreement with experience: a rock
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Figure 1.3 Self-affinity properties of natural and fractal profiles. The surface profile
at the top of the figure is zoomed by a factor 10 in the second row and by a factor 100 in
the third row. Any zooming in reveals finer details of the surface which appear rougher
at smallest scales.
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usually appears relatively, not absolutely, rougher than a mountain. Then
again, a valid candidate for the natural surface cannot be found among the
classical models, or equivalently, a better natural-surface description can
be obtained by using the fractal models.

Fractal geometry was applied in the mid 1970s in order to provide a
mathematical tool to deal with the complex and irregular shape of natural
objects. The effectiveness of fractals to describe natural surfaces has been
demonstrated in a very impressive way by surprisingly realistic computer-
generated synthetic landscapes (see Figure 1.4). One of the reasons for this
success is the ability of fractal models to properly account for the statistical
scale-invariance properties (in particular, self-affinity) of natural surfaces
whose graphical evidence is shown in Figure 1.3 (for mathematical details,

Figure 1.4a A computer generated natural landscape.

Figure 1.4b Contour plot of the natural landscape in Figure 1.4a.
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Figure 1.4c Computer generated natural landscape typical of a seaside area.

Figure 1.4d Computer generated natural landscape typical of a mountainous area.

Figure 1.4e Computer generated natural landscape typical of an archipelago.
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see Section 3.2.3). Accordingly, fractal models, and in particular the fBm
one, have been used recently in different disciplines to describe natural
surfaces. Although use of fractal models in electromagnetic scattering is
not straightforward, some successful attempts have been reported recently.
Such approaches can be roughly divided into two categories: the first one
includes methods in which the fBm model is approximated by using the
WM band-limited function; the second one includes methods that directly
use the definition of the fBm process.

The main advantage of using the WM function is that an analytic expres-
sion of the scattered field can be obtained. However, this expression is quite
involved, and it is not possible to simply analytically evaluate the (expected)
scattered-power density. On the other hand, direct use of the fBm definition
allows obtaining closed-form expressions of the scattered-power density,
at least by using either the KA or the SPM approach. The solutions are not
too involved, and allow an easy evaluation of the scattered-power density
dependence on the surface fractal parameters. The disadvantage is that only
the second-order statistics of the scattered field can be evaluated, and not
the scattered field itself. In spite of their simplicity, all these fractal-based
solutions to the scattering problem always lead to results that are in good
agreement with measured data.

Use of fractal models in connection with IEM is a delicate point.
Currently, a closed-form solution for the scattered-field density or scattered-
power density does not exist, because some mathematical requirements
involved in the IEM approach are not allowed whenever a fractal surface is
considered.

1.9. Book Outline

Chapter 1 provides the motivations and the rationale for a book on scattering
from natural surfaces modeled by means of fractal geometry.

Chapter 2 presents classical surfaces as they are employed in classical-
scattering models.

Chapter 3 presents fractal surfaces as they are used in scattering methods
appropriate to these surfaces. Both fBm and WM models are analyzed, and
the link between them is highlighted. Fractal parameters used to characterize
natural surfaces are defined and illustrated, and their relations with classical-
surface parameters are presented.
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Chapter 4 sets up evaluation procedures for computing the scattered elec-
tromagnetic field. The general theoretical background is presented before
any choice on the evaluation techniques and the surface model is detailed.

Closed-form solutions for the field scattered from fractal surfaces are pre-
sented in Chapters 5 through 8. In each chapter, a different electromagnetic
method or a different geometrical fractal model is adopted. In Chapters 5
and 6, the analytic solution is found within the KA; conversely, the EBCM
is followed in Chapters 7 and 8. In Chapters 5 and 7, the geometric-surface
model falls within the class of random predictable fractal processes; con-
versely, in Chapters 6 and 8, the surface geometric model make reference
to random regular fractal processes.

1.10. References and Further Readings

Suggested references consist of books and journal papers, which are clas-
sified into two different lists at the end of the book. Only most of the books
are referred to in the reference and further reading sections of each chapter.

Many books have been published that present theory and results relevant
to scattering from classical random surfaces: only the most popular ones
are reported. References include books on random surfaces (Beckmann and
Spizzichino 1987), microwave-scattering theory devoted to remote sensing
(Fung 1994; Tsang, Kong, and Shin 1985; Ulaby, Moore, and Fung 1982),
scattering and wave propagation (Ishimaru 1993), and nonhomogeneous
media (Chew 1995).

Contributions on scattering from fractal shapes are available only in some
journal papers (see “References Involving the Authors of This Book” in
Appendix C) and some chapters in books (Jaggard 1990).

Fundamentals on stochastic processes are available (Papoulis 1965), as
well as on fractal geometry (Falconer 1990; Feder 1988; Mandelbrot 1983).

Other references deal with mathematical issues (Abramowitz and
Stegun 1970; Gradshteyn and Ryzhik 1980; Prudnikov, Brychkov, and
Marichev 1990).
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CHAPTER 2

Surface Classical Models

2.1. Introduction and Chapter Outline

This chapter presents the classical geometric models used to describe natural
surfaces, with a special emphasis on those that are appropriate for use in
the area of electromagnetic scattering theory.

Deterministic as well as random representations are introduced, along
with relevant discussions on their use. If a stochastic surface model is
employed for the surface, then the scattered field is also stochastic; hence,
the choice of the surface representation is related to the desired, or allowed,
evaluation of the scattered field.

Fundamentals on stochastic processes are preliminarily introduced in
Sections 2.2 through 2.4. Key definitions, relevant averages, and a short
discussion on stationary processes are presented in Section 2.2, wherein ref-
erence is made to the space domain. Section 2.3 is devoted to introducing
the stochastic-process spectral characterization whenever stationary pro-
cesses are in order. The descriptions in spectral and space domain are then
linked. Key relationships introduced in Sections 2.2 and 2.3 are specialized
in Section 2.4 to the relevant case of isotropic surfaces.

Classical models for rough surfaces are then presented in Sections 2.5
through 2.6 and Appendix 2.A. Section 2.5 is devoted to presenting the
first-order characterization, and focuses on the popular Gaussian case.
Section 2.6 introduces for rough surfaces the second-order characteriza-
tion; autocorrelation functions that allow closed-form evaluation of their

21
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spectral counterpart are presented in detail in Appendix 2.A. The physi-
cal counterpart of the parameters entering into the first- and second-order
surface characterizations is reported in Section 2.7.

Finally, the rationale for selecting the classical rough-surfaces models
to evaluate the scattered electromagnetic field is reported in Section 2.8:
emphasis is placed on the required order description for the surface shape.

Key references and suggestions for further readings are reported in
Section 2.9.

2.2. Fundamentals of Stochastic Processes

Fundamentals of stochastic processes are reported in this section. Wider
discussions can be found in many books and in the specific literature of this
branch of mathematics; the few notes reported here have the intent only to
introduce the reader to notations and symbols used in this book.

Characterization of stochastic processes is briefly introduced. Cumulative-
distribution functions and probability-density function (pdf) are presented.
Some relevant parameters commonly used to synthetically describe stochas-
tic processes are defined. Several scalar processes are of interest in this book:
for instance, the surface height and any component of the electromagnetic
phasor or spectral field. To describe the process, reference can be made to
a complex scalar process, z(r), defined in Cn, n = 1, 2, 3. The complex
conjugate product is implemented, because z(r) can attain complex values;
in the simplest case of the height profile, z(r) is real, r = xx̂+ yŷ—that is,
n = 2, and the complex conjugate may be omitted.

2.2.1. Stochastic Processes: Definition

A stochastic process z(r) is an uncountable infinity of random variables,
one for each r. In the modeling of surface geometric properties, which is of
concern in this book, r is the vector coordinate of the plane, and z(r) is the
random height perturbation of the surface.

A stochastic process is determined to the first order if, for each ζ and for
each r, the first-order Cumulative-Distribution Function (CDF), F(ζ , r), is
assigned:

Pr {z (r) ≤ ζ } �=F(ζ , r), (2.1)

where Pr{·} means probability, and ζ is an independent random variable.
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The derivative of F(ζ , r) with respect to ζ provides p(ζ , r), the first-order
probability-density function (pdf),

p(ζ , r)
�= ∂F(ζ , r)

∂ζ
, (2.2)

which can be used, as an alternative to F(ζ , r), to determine the stochastic
process.

A stochastic process is determined to the second order if the joint-second-
order CDF, F(ζ1, ζ2; r1, r2), is assigned:

Pr {z(r1) ≤ ζ1, z(r2) ≤ ζ2} �=F(ζ1, ζ2; r1, r2) (2.3)

whereas the corresponding joint-second-order pdf is

p (ζ1, ζ2; r1, r2)
�= ∂2F(ζ1, ζ2; r1, r2)

∂ζ1∂ζ2
. (2.4)

Higher-order characterization of the stochastic process can be introduced
by following the rationale illustrated in Equations (2.1) through (2.4).

A stochastic process is fully determined if, for each n, the joint n-th order
CDF, F(ζ1, . . . , ζn; r1, . . . , rn), is assigned:

Pr {z(r1) ≤ ζ1, . . . , z(rn) ≤ ζn} �=F(ζ1, . . . , ζn; r1, . . . , rn), (2.5)

the corresponding n-th order pdf being

p(ζ1, . . . , ζn; r1, . . . , rn)
�= ∂nF(ζ1, . . . , ζn; r1, . . . , rn)

∂ζ1 . . . ∂ζn
. (2.6)

2.2.2. Stochastic Processes: Relevant Averages

In many applications, the complete knowledge of a stochastic process is not
fully required, and it can be assigned up to a prescribed order. This simpli-
fied approach is efficiently applied whenever only some statistical averages
relevant to the stochastic process are of interest: these quantities allow the
evaluation of some relevant meaningful physical observables such as the
mean scattered field and scattered-power density. Usually, for a random
rough surface, only the first-order pdf and some averages related to the
joint-second-order pdf are used.

Most relevant averages for a stochastic process are presented hereafter.
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The statistical mean of the stochastic process is defined by means of the
first-order pdf,

µ(r)
�=〈z(r)〉 �=

∫ ∞

−∞
ζp (ζ , r) dζ . (2.7)

The statistical mean can be recognized as the first-order moment of the
stochastic process, the generic m-order one being defined as

µm(r)
�= 〈

zm(r)
〉 =

∫ ∞

−∞
ζmp (ζ , r) dζ . (2.8)

The autocorrelation of the stochastic process is defined by means of the
second-order pdf:

R(r1, r2)
�= 〈

z(r1)z∗(r2)
〉 =

∫ ∞

−∞

∫ ∞

−∞
ζ1ζ

∗
2 p

(
ζ1, ζ ∗2 ; r1, r2

)
dζ1dζ ∗2 , (2.9)

whereas also the first-order pdf is required to define the related auto-
covariance,

C(r1, r2)
�=R(r1, r2)− µ(r1)µ∗(r2) = 〈

z(r1)z∗(r2)
〉− 〈z(r1)〉 〈z∗(r2)

〉
,

(2.10)

variance,

σ 2(r)
�=C(r, r) = R(r, r)− µ2(r) =

〈
|z(r)|2

〉
− |〈z(r)〉|2 , (2.11)

and normalized-autocovariance function,

ρ(r1, r2)
�= C(r1, r2)

σ (r1)σ (r2)
, (2.12)

the latter being coincident to the normalized-autocorrelation function if a
zero-mean stochastic process is in order.

Autocorrelation, autocovariance, and their normalized counterparts can
be equivalently defined using as independent variables r = r1 and the vector
distance τ = r1 − r2.

The variance of the (zero-mean) surface increments at a given distance
is referred to as the structure function Q(τ) of the process z(r):

Q(r1, r2)
�= 〈|z(r1)− z(r2)|2〉. (2.13)

Equations (2.9) through (2.13) make reference to a complex stochastic
process; if the process is real, as appropriate to natural surfaces, conjugate
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values do not apply. Generalization to complex random processes has been
presented here because the above-mentioned formula can be applied both
to the surface model and to the scattered field: as a matter of fact, sur-
faces represented by means of stochastic processes scatter electromagnetic
fields that, in the phasor domain, are conveniently represented as complex
random-vector processes.

2.2.3. Stochastic Processes: a Relevant Property

Astochastic process is strict-sense stationary (SSS), or simply stationary, if
its statistical properties at any order are invariant to any shift in the domain
where it is defined. Hence,

z(r) =̇ z(r + r̄),∀r̄ (2.14)

where the symbol =̇ means that the two members have the same statistics.
A stochastic process is wide-sense stationary (WSS) if its mean is

constant:

µ(r) = µ, (2.15)

and its autocorrelation depends only on the vector distance, or space lag,
r1 − r2 ≡ τ

R(r1, r2) = R(r1 − r2) = R(τ). (2.16)

For a WSS process, quantities at the first member of Equations (2.7)
and (2.11) are space independent, and quantities at the first member of
Equations (2.9), (2.10), and (2.12) are space-lag dependent only.

According to Equation (2.12), the correlation coefficient of a WSS
stochastic process is the surface-autocovariance function normalized to its
value at zero distance:

ρ(τ)
�= C(τ)

σ 2
. (2.17)

Hence, for any zero-mean WSS stochastic process, the correlation coeffi-
cient is the normalized-autocorrelation function, and its maximum value,
which is reached for τ = 0, is unitary.

Examination of Equations (2.14) through (2.16) shows that strict-
sense stationarity implies wide-sense stationarity; conversely, wide-sense
stationarity is not sufficient for strict-sense stationarity.
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For stationary stochastic processes, the structure function depends on
τ and does not provide any further information with respect to the auto-
correlation function: in fact, these are related by the following simple
relation:

Q(τ) = 〈|z(r1)− z(r2)|2〉
= 〈

(z(r1)− z(r2)) (z(r1)− z(r2))∗
〉

= 2R (0)− R(τ)− R∗(τ). (2.18)

In particular, for zero-mean real stationary stochastic processes, Equa-
tion (2.18) reduces to

Q(τ) = 2σ 2 [1− ρ(τ)] . (2.19)

A final overall comment to simplify the notation is due. Whenever con-
fusion does not arise, in Equations (2.1) through (2.9), the independent
random variable ζ may take the same symbol as the stochastic process, z:
this is also done, starting from the next section, throughout this book.

2.3. Spectral Characterization of Stochastic Processes

In this section, fundamentals of the spectral representation of the stochastic
processes are reported. Zero-mean, 〈z(r)〉 = 0, stochastic processes are
considered here, this condition being easily met for stationary processes via
a simple shift of the coordinate-reference system.

A first-order spectral description is provided by means of the character-
istic function of a stochastic process, defined as the following statistical
mean:

〈exp (−iξz)〉 =
∫ +∞

−∞
p(z, r) exp (−iξz) dz, (2.20)

thus coincident with the Fourier Transform (FT) of the first-order-process
pdf. Use of the characteristic function turns out to be convenient whenever
the description of the stochastic process is made via some relevant averages
of it. As a matter of fact, the stochastic moments of the process are obtained
as the MacLaurin series expansion of the characteristic function.

A second-order spectral description is in order. In the following equa-
tions, it is required that the stochastic processes are stationary: this is the
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case in classical modeling of random rough surfaces and in classical eval-
uation of the electromagnetic field scattered by such surfaces. Conversely,
nonstationary processes are considered in Chapter 3, because they are most
appropriate to natural-surfaces fractal modeling.

We introduce z(r, q), a space-truncated version of the generic element of
the ensemble z(r), namely z(r, q), is coincident with z(r) for values of each
component of the independent space variable between [−q, q], and is zero
outside. Symbolically,

z(r, q)
�= z(r)rect

[
r

2q

]
, (2.21)

whose FT, Z(κ, q) is

Z(κ, q)
�=
∫ ∞

−∞
z(r, q) exp (−iκ · r) dr. (2.22)

The power P associate to the stochastic process z(r) can be defined as

P
�= lim

q→∞

(
1

2q

)n ∫ ∞

−∞

〈
|z(r, q)|2

〉
dr, (2.23)

where n is the number of components of the independent space variables.
Equation (2.23) represents, in the limit for q → ∞, the n-dimensional
space average of the process statistical mean square, and is the appropriate
definition of the process power P, valid also for the nonstationary case.

Similarly, the Power-Density Spectrum (PDS), or power spectrum, W (κ),
can be defined as

W (κ)
�= lim

q→∞

(
1

2q

)n 〈
|Z(κ, q)|2

〉
, (2.24)

where Z is the FT of z, notation that is used from now on and applies to
stationary as well as nonstationary stochastic processes.

The next step is to relate the power associate to the statistical process,
Equation (2.23), to the power spectrum, Equation (2.24). This is readily
accomplished by using the Parseval equality, which allows evaluating the
process energy both in the space and in the transform domain as

∫ ∞

−∞
|z(r, q)|2 dr =

(
1

2π

)n ∫ ∞

−∞
|Z(κ, q)|2 dκ. (2.25)
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Dividing each member of Equation (2.25) by (2q)n, implementing the
statistical mean and the limit for q →∞, it turns out that

lim
q→∞

〈(
1

2q

)n ∫ ∞

−∞
|z(r, q)|2 dr

〉

= lim
q→∞

〈(
1

2q

)n ( 1

2π

)n ∫ ∞

−∞
|Z(κ, q)|2 dκ

〉
; (2.26)

the statistical mean can now be moved inside the integrals, limit and integral
operations are exchanged in the second member, and Definitions (2.23) and
(2.24) are employed to reach the final result that justifies Definition (2.24):

P =
(

1

2π

)n ∫ ∞

−∞
W (κ)dκ. (2.27)

The power spectrum can be linked to the autocorrelation function. As
a matter of fact, substituting Equation (2.22) in Definition (2.24) and
considering Equation (2.21), it turns out that

W (κ) = lim
q→∞

(
1

2q

)n 〈∫ q

−q

∫ q

−q
z(r1)z∗(r2)

exp [−iκ · (r1 − r2)] dr1dr2

〉
. (2.28)

Exchange of the statistical average with the integrals leads to

W (κ) = lim
q→∞

(
1

2q

)n ∞∫

−∞
dr1

∞∫

−∞
R(r1, r2) exp [−iκ · (r1 − r2)]

rect

(
r1

2q

)
rect

(
r2

2q

)
dr2. (2.29)

The following coordinate transformation, whose Jacobian has unitary
modulus, is implemented:

⎧⎪⎨
⎪⎩

r1 = r + τ

2

r2 = r − τ

2

. (2.30)
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A simple geometric construction shows that

rect

(
r1

2q

)
rect

(
r2

2q

)
= rect

(
r + τ/2

2q

)
rect

(
r − τ/2

2q

)

= rect

(
τ/2

2q

)
rect

(
r

2q − |τ|
)

. (2.31)

Then, exchanging the order of integration and moving the limit inside the
integral in τ, it turns out that

W (κ) =
∫ ∞

−∞
dτ exp (−iκ · τ)

[
lim

q→∞

(
1

2q

)n

rect

(
τ

4q

)

×
∫ ∞

−∞
R
(

r + τ

2
, r − τ

2

)
rect

(
r

2q − |τ|
)

dr
]

. (2.32)

In this chapter, stationary surfaces are in order, so that R
(

r + τ

2
, r − τ

2

)
=

R(τ). Hence,

W (κ) =
∫ ∞

−∞
dτR (τ) exp (−iκ · τ)

×
[

lim
q→∞

(
1

2q

)n

rect

(
τ

4q

)∫ ∞

−∞
rect

(
r

2q − |τ|
)

dr
]

=
∫ ∞

−∞
dτR(τ) exp (−iκ · τ)

×
[

lim
q→∞

(
1

2q

)n

rect

(
τ

4q

)
(2q − |τ|)n

]
. (2.33)

Equation (2.33) is further simplified by implementing the limit q →∞.
The rect (τ/4q) states that each component of the variable τ cannot exceed
in module 2q: when q → ∞ it follows that rect (τ/4q) → 1. In addition,
(2q − |τ|)n can be asymptotically (q →∞) replaced by (2q)n: as a matter of
fact, the difference between these two quantities divided by (2q)n vanishes
for q →∞. Thus, the power spectrum can be expressed as follows:

W (κ) =
∫ ∞

−∞
R(τ) exp (−iκ · τ)dτ. (2.34)

Equation (2.34) is referred to as the Wiener-Khinchin theorem, special-
ized to stationary processes: the power spectrum W (κ) turns out to be the FT
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of the autocorrelation function. A slightly different formulation is obtained
in Chapter 3 for the case of nonstationary processes.

The power spectrum provides an alternative popular representation for
a stochastic process, and can be applied to describe both the scattering
roughness and the scattered field. In the following chapters, it is shown that
the surface-roughness power spectrum directly enters into the closed-form
evaluation of the scattered field; more generally, the classical evaluation
of the field scattered from stationary natural surfaces often requires the
knowledge of the generalized power-density spectrum, W (m)(κ), defined as
the FT of the autocorrelation function up to a certain power m:

W (m)(κ)
�=
∫ ∞

−∞
Rm(τ) exp (−iκ · τ) dτ. (2.35)

Obviously, W (1)(κ) = W (κ).
Equations (2.34) and (2.35) do not apply to nonstationary processes: in

this case, the correlation function depends on two vector variables, and
appropriate spatial averaging in Equations (2.34) and (2.35) is required
(see Chapter 3).

2.4. Isotropic Surfaces

Whenever stochastic processes are used to describe a random rough surface,
then the vector variable r can be expressed in terms of two independent
scalar space variables—namely, x and y, when reference is made to a
Cartesian coordinate-reference system. The same reference system, (O, x,
y, z) (see Figure 2.1) is naturally used to analytically evaluate the scattered
field.

A one-dimensional surface profile is obtained by intersecting the two-
dimensional rough surface with a plane parallel to the z-axis. In particular,
one-dimensional profiles shown in the figures of this chapter are obtained
by intersecting the corresponding two-dimensional surfaces with the plane
y = 0.

A random rough surface is said to be isotropic if the same stochastic
characterization is held by all one-dimensional profiles crossing the origin
O: hence, an isotropic surface is statistically invariant for any choice of the
orientation of the Cartesian coordinate system (O, x, y).

For isotropic stationary surfaces, the surface description in the space and
the spectral domain depends only on τ and κ, respectively, being τ = |τ|
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θi
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Figure 2.1 The Cartesian reference coordinate system.

and κ = |κ|: thus, R(τ) = R(τ ) and W (κ) = W (κ). Letting τx = (x1−x2) =
τ cos ϕ , τy = (y1−y2) = τ sin ϕ, kx = k·x̂ = k cos ψ , ky = k·ŷ = k sin ψ ,
then

τ =
√

τ 2
x + τ 2

y = |r1 − r2| =
√

(x1 − x2)2 + (y1 − y2)2, (2.36)

κ =
√

κ2
x + κ2

y , (2.37)

κx and κy being the Fourier mates of τx and τy respectively.
For isotropic stationary surfaces, Equation (2.35) can be rewritten as

W (m)(κ) =
∫ ∞

−∞
Rm(τ ) exp (−iκ · τ) dτ

=
∫ ∞

0
Rm(τ )τdτ

∫ 2π

0
exp [−iτκ cos(ϕ − ψ)] dϕ

= 2π

∫ ∞

0
J0 (κτ) Rm(τ )τdτ , (2.38)
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where use has been made of Equation (A.2.1), letting z = κτ and ν = 0.
In particular, Equation (2.34) can be rewritten as

W (κ) = 2π

∫ ∞

0
J0 (κτ) R(τ )τ dτ . (2.39)

Equation (2.34) can be inverted accordingly to the Fourier Transform
theory: repeating the same procedure leading to Equation (2.38), it turns
out that

R(τ ) = 1

2π

∫ ∞

0
J0 (κτ) W (κ)κ dκ . (2.40)

Equations (2.39) and (2.40) allow us to move from the autocorrela-
tion function to the power spectrum and vice versa, whenever isotropic
stationary processes are in order.

For isotropic stationary processes, the structure function can be easily
related to the isotropic surface spectrum: from Equations (2.18) and (2.40),
it turns out that

Q(τ) = 2
{
R (0)− Re [R (τ)]

}

= 2

(
1

2π

)2 ∫ ∞

−∞

∫ ∞

−∞
[1− cos (κ · τ)]W (κ) dκ

= 2

(
1

2π

)2 ∫ ∞

−∞

∫ ∞

−∞

{
1− 1

2
[exp (iκ · τ)+ exp (−iκ · τ)]

}

×W (κ) dκ. (2.41)

Applying Equation (A.2.1) three times—with ν = 0 and z = 0, −κτ , κτ ,
respectively— the following relation is obtained:

Q(τ ) = 1

π

∫ ∞

0
[1− J0(κτ )]W (κ)κdκ . (2.42)

Again, inverting Equation (2.42) as before, it turns out that

W (κ) = 2

∞∫

0

[1− J0(κτ )]Q (τ ) τdτ . (2.43)

It has to be noted that the structure function can be defined also for
nonstationary processes with stationary increments (see Section 2.2 and
Chapter 3). Of course, in this case, Equations (2.34), (2.35), and (2.40) do
not hold, because R = R(r, τ ), whereas Equations (2.42) and (2.43) still
make sense because Q = Q(τ ).
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2.5. Classical Models for Natural Surfaces: First-Order
Stochastic Characterization

In this section, first-order stochastic processes that are usually employed for
modeling natural surfaces in electromagnetic-scattering theory are reported.
Here and in the following sections, these models are defined as classical,
at variance with the more recently used fractal ones, which are referred to
in Chapter 3. In the approximate analytic evaluations of the scattered field,
these classical-surface models are generally used up to their characterization
to the first and second order only. Isotropic surfaces are hereafter considered,
unless otherwise specified.

A rough scattering surface z(x, y) is usually modeled by a stationary, or
WSS, process. The first-order pdf is usually selected to be a zero-mean σ 2

variance Gaussian distribution z
�= N(0, σ 2):

p(z) = 1√
2πσ

exp

(
− z2

2σ 2

)
. (2.44)

Note that the mean of the first-order pdf can always be set equal to zero,
as in Equation (2.44), by a simple shift, along z, of the coordinate system
adopted in the analytic description of the surface and in the formulation
of the scattered field. Hence, to the first-order characterization, the surface
roughness is described by a single parameter: the standard deviation σ . For
its physical counterpart, see Section 2.7.

The characteristic function of the Gaussian random process is easily
obtained by using Equation (A.2.2):

〈exp(−iξz)〉 =
∫ ∞

−∞
1√

2πσ
exp

(
− z2

2σ 2

)
exp(−iξz) dz

= exp

(
−1

2
σ 2ξ2

)
. (2.45)

Hence, Gaussian first-order pdfs lead to Gaussian characteristic functions
whose variance is the inverse of the pdf variance.

Plots of the Gaussian probability-density function and corresponding
characteristic function are shown in Figure 2.2; several values of the
parameter σ 2 are considered.



34 2 ♦ Surface Classical Models

–4 –2 2 4

1

F ( x )

−4 −2 2 4
z

0.5

p (z)

σ = 1, 2, 3, 4 

σ = 1, 2, 3, 4 

 x

Figure 2.2 Plots of zero-mean σ -standard deviation Gaussian probability density func-
tions p(z) and corresponding characteristic functions F(ξ ). Values of σ = 1, 2, 3, 4 are
considered.

2.6. Classical Models for Natural Surfaces:
Second-Order Stochastic Characterization

The second-order pdf is usually assumed as jointly Gaussian. Considering
a zero-mean isotropic surface, this joint pdf depends on a parameter σ and



2.6. Second-Order Stochastic Characterization 35

a function ρ:

p(z1, z2) = 1

2πσ 2
√

1− ρ2
exp

(
−z2

1 − 2ρz1z2 + z2
2

2σ 2
(
1− ρ2

)
)

. (2.46)

The mathematical counterpart of the two parameters is immediate. Because
∫ ∞

−∞
p(z1, z2) dz1 =

∫ ∞

−∞
p(z1, z2)dz2 = N

(
0, σ 2

)
, (2.47)

then σ turns out to be the standard deviation of both the marginal zero-mean
pdfs of z1 and z2. Moreover, substituting Equation (2.46) in Equation (2.9),
it turns out that

R(z1, z2) = σ 2ρ (τ) . (2.48)

Accordingly, ρ equals the normalized-autocorrelation function, defined
for zero-mean stochastic processes by Equation (2.16), specified to the
isotropic case. For the physical counterpart of the joint pdf parameters, see
Section 2.7.

It has been noted in Section 2.5 that a single parameter, the standard
deviation, is sufficient to characterize to the first order the zero-mean
Gaussian stochastic process. Equation (2.46) shows that an additional
function, the normalized-autocorrelation function, is needed for the second-
order Gaussian characterization. An alternative characterization is possible,
because the process is stationary: the power spectrum can be specified
according to Equation (2.34). A further choice is the structure func-
tion, which is, for the considered stationary surfaces, simply related to
the correlation coefficient and the power spectrum, see Equations (2.19)
and (2.42).

The approach presented above systematically introduces the stochastic
characterization of a stochastic process by considering subsequent orders
for the joint pdfs; however, this is somehow redundant if only scattering
computation from rough surfaces is in order. As a matter of fact, if the
mean scattered field and scattered power must be evaluated, the classical-
scattering approaches require only the knowledge of the surface first-order
pdf and the surface autocorrelation (the latter being possibly replaced by the
surface-structure function or power spectrum); hence, in those approaches,
the second-order pdf is not required. In conclusion, classical evaluation of
significant averages for the scattered stochastic field from a random sur-
face usually requires prescription only of the first-order pdf and the surface
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autocorrelation. Equation (2.9) shows that the surface autocorrelation is
obtained by performing an appropriate average over the second-order pdf;
the latter cannot in general be specified in terms of the former; the Gaussian
case—see Equations (2.46) and (2.48)—provides a noticeable exception to
this rule. Then, in the following section, the first-order surface description
is provided by means of a Gaussian pdf, whereas the second-order surface
description is provided by prescribing only the autocorrelation function.

Several classical choices for this (partial) second-order characterization
of a random rough surface to be employed within the classical scattering
from rough surfaces are listed in Appendix 2.A; autocorrelation func-
tions along with corresponding structure functions, power spectra, and
generalized power spectra are collected in Tables 2.1 through 2.4.

Almost all reported autocorrelation functions share the important property
that functions reported in Tables 2.2 through 2.4 can be analytically evalu-
ated; moreover, power spectra and generalized power spectra enter directly
into popular closed-form solutions for the mean scattered electromagnetic
field and power density: it is concluded that use of surface models with the

Table 2.1 Some classical-surface models: normalized-autocorrelation functions.
Isotropic surfaces are considered.

Stochastic processes Normalized-autocorrelation function ρ(τ )

Gaussian exp

(
− τ 2

L2

)

Exponential exp
(
− τ

L

)

Intermediate Gaussian-exponential exp
[
−
( τ

L

)v]
, v ∈ [1, 2]

Power-law

[
1+

( τ

L

)2
]−3/2

Multiscale Gaussian a exp

(
− τ 2

L2
1

)
+ b exp

(
− τ 2

L2
2

)
, a+ b = 1

Multiscale exponential a exp

(
− τ

L1

)
+ b exp

(
− τ

L2

)
, a+ b = 1

Mixed Gaussian-exponential a exp

(
− τ 2

L2
1

)
+ b exp

(
− τ

L2

)
, a+ b = 1
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Table 2.2 Some classical-surface models: structure functions. Isotropic surfaces are
considered.

Stochastic processes Structure function Q(τ )

Gaussian 2σ 2

[
1− exp

(
− τ 2

L2

)]

Exponential 2σ 2
[
1− exp

(
− τ

L

)]

Intermediate
Gaussian-exponential

2σ 2
{

1− exp
[
−
( τ

L

)v]}
, ν ∈ [1, 2]

Power-law 2σ 2

{
1−

[
1+

( τ

L

)2
]−3/2

}

Multiscale Gaussian 2σ 2

⎧⎨
⎩1−

[
a exp

(
− τ 2

L2
1

)
+ b exp

(
− τ 2

L2
2

)]⎫⎬
⎭ ,

a+ b = 1

Multiscale exponential 2σ 2

{
1−

[
a exp

(
− τ

L1

)
+ b exp

(
− τ

L2

)]}
,

a+ b = 1

Mixed Gaussian-exponential 2σ 2

⎧⎨
⎩
[

1−
[

a exp

(
− τ 2

L2
1

)
+ b exp

(
− τ

L2

)]]⎫⎬
⎭,

a+ b = 1

autocorrelation functions reported in Appendix 2.A allow us to analytically
evaluate in closed form the mean scattered field and power density. Here-
after, some more general comments on autocorrelation-function models are
presented.

Other choices for the surface-autocorrelation function are obviously
allowed, even if they do not lead to closed-form expression for the corre-
sponding functions listed in Tables 2.2 through 2.4. However, any choice for
R(τ ) must satisfy properties held by real stochastic processes. For instance,
the surface autocorrelation has to be an integrable real even function that
reaches its maximum value in the origin and decreases monotonically for
increasing distances τ .
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Table 2.3 Some classical-surface models: power spectrum. Isotropic surfaces are
considered.

Stochastic processes Power spectrum W (κ)

Gaussian πσ 2L2 exp

[
−
(

κL

2

)2
]

Exponential 2πσ 2L2
[
1+ (κL)2

]−3/2

Intermediate
Gaussian-exponential

no analytic result in closed form for general
values of ν ∈ [1, 2]

Power-law 2πσ 2L2 exp (−κL)

Multiscale Gaussian πσ 2L2
1

{
aexp

[
−
(

κL1

2

)2
]
+b

(
L2

L1

)2

exp

[
−
(

κL2

2

)2
]}

,

a+b=1

Multiscale exponential 2πσ 2L2
1

{
a
[
1+(κL1)2

]−3/2+b
(

L2
L1

)2 [
1+(κL2)2

]−3/2
}

,

a+b=1

Mixed
Gaussian-exponential

πσ 2L2
1

{
aexp

[
−
(

κL1

2

)2
]
+2b

(
L2

L1

)2 [
1+(κL2)2

]−3/2

}
,

a+b=1

Let a zero-mean Gaussian first-order pdf be assumed: change of its stan-
dard deviation only acts as an overall amplification factor in the vertical
scale. Similarly, once a choice has been made of the autocorrelation func-
tion, change of its main parameter, the correlation length, acts as an overall
stretching factor in the horizontal scale. But also the shape of the autocor-
relation function largely changes the surface correlation properties, hence,
the surface shape. This behavior can be visually verified by inspection of
Figures 2.4 through 2.10, presented in Appendix 2.A: surfaces with dif-
ferent autocorrelation shapes, but equal standard deviation and correlation
length, look completely different.

The number of independent parameters appearing in the correlation func-
tion is another key issue to be dealt with in modeling the rough surface.
Independent parameters are introduced to assure some model flexibility
once the autocorrelation shape has been fixed: more specifically, they are
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Table 2.4 Some classical-surface models: generalized power spectra. Isotropic
surfaces are considered.

Stochastic
processes

Generalized power spectra W (m)(κ)

Gaussian
πσ 2mL2

m
exp

[
− 1

m

(
κL

2

)2
]

Exponential 2πσ 2m
(

L

m

)2
[

1+
(

κL

m

)2
]−3/2

Intermediate
Gaussian-
exponential

no analytic result in closed form for general values of 1 < ν < 2

Power-law 2πσ 2m L2

�

(
3

2
m

)
(

κL

2

) 3
2 m−1

K1− 3
2 m (κL)

Multiscale
Gaussian

πσ 2mL2
1L2

2

∑m
n=0

(
m
n

)
am−nbn

nL2
1 + (m − n) L2

2

exp

(
−κ

4

L2
1L2

2

nL2
1 + (m − n) L2

2

)
, a+ b = 1

Multiscale
exponential

2πσ 2mL2
1L2

2

∑m
n=0

(
m
n

)
am−nbn

[
nL1 + (m − n) L2

2

]2

[
1+

(
κL1L2

nL1 + (m − n) L2

)2
]−3/2

, a+ b = 1

Mixed
Gaussian-
exponential

2πσ 2m

⎧⎨
⎩am

(
L2

1

2m

)
exp

[
− 1

m

(
κL1

2

)2
]
+bm

(
L2

m

)2
[

1+
(

κL2

m

)2
]−3/2

+ L2
1

∑m−1

n=1

(
m
n

)
ambm−n

2n
exp

[
−1

n

(
κL1

2

)2
]}

, a+b=1

introduced to properly describe different correlation properties at differ-
ent spatial scales that cannot be described by means of a single-parameter
function. Hence, use of more than one independent parameter in the
normalized-autocorrelation function often leads us to consider multiscale
surfaces. A word of warning is now appropriate.

Models for the autocorrelation function or structure function or power
spectrum, with increasing number of scales, certainly allow a better fit
with experimental data: accordingly, use of two-scale autocorrelation, or
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structure function or power spectrum, is very popular when dealing with
actual data. However, the analytic evaluation of the scattered field becomes
cumbersome, and the interpretation of results questionable. In addition, it is
worth arguing that the need of increasing number of scales is often a warning
that the model may not be appropriate. Furthermore, any retrieval proce-
dure of the surface parameters from backscattered data becomes almost not
viable. This point is discussed in detail in Chapter 3, and it is one of the
motivations for the introduction of fractal models in the natural-surfaces
description.

2.7. Physical Counterpart of Natural-Surfaces Classical
Parameters

In the preceding sections, the classical description of natural surfaces has
been presented. It has been shown that some functions (pdfs or CDFs,
along with their joint aggregate of any order) must be prescribed in order to
fully describe the random surface. A simpler description is required if only
some relevant averages of the scattered field must be evaluated: the clas-
sical choice is to postulate for the random surface a first-order description
with a Gaussian behavior, and a partial second-order description via some
allowed autocorrelation functions. In this case, the autocorrelation function
is selected within a class involving the use of possibly few parameters; for
stationary surfaces, those parameters are constant. In the simplest cases,
only two parameters are necessary to describe the surface: a brief examina-
tion of Tables 2.1 and 2.2 shows that they are the standard deviation σ and
the correlation length L.

The descriptions introduced in Section 2.6 and Appendix 2.A are rather
simple; their use allows us to obtain an analytic solution for the scattered
field, often expressed in closed form. Hence, those surfaces are usually
employed in the scattering theory because they allow us to obtain sim-
ple analytic results; however, their use is highly questionable if a reliable
representation of a natural scattering-surface is required. In summary, a
classical-surface model very poorly (and often wrongly) describes a natural
surface, but its scattered field can be evaluated in closed form.

These two parameters should obviously be observable quantities, thus
either corresponding to or being related to physical entities. In this sec-
tion, an attempt to elucidate this particular point is given. This is done for
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σ and L separately. Results of this analysis are not only important per se,
but also because they are a first step in trying to establish a link, under
appropriate specific conditions, between classical and fractal parameters,
the latter introduced in Chapter 3.

2.7.1. Standard Deviation

Seeking a measure of the deviation of the natural surface from a planar one
is addressed. The attempt is to characterize the roughness of the surface.

The obvious candidate for this measure is the mean-square deviation
of the surface height with respect to its mean plane. For the zero-mean
Gaussian stationary isotropic case, it turns out that

∫ ∞

−∞
z2p (z) dz = 1√

2πσ

∫ ∞

−∞
z2 exp

(
− z2

2σ 2

)
dz = σ 2, (2.49)

as expected. Accordingly, an increase of the surface roughness leads to
higher values of σ .

The probability that a point of the surface deviates from the plane more
than σ is given by

Pr
{|z (r)| ≥ σ

} = 2
∫ ∞

σ

p (z) dz ∼= 0.317, (2.50)

whereas Pr
{|z (r)| ≥ 3σ

} ∼= 0.003. These results show not only that σ

is an appropriate measure of the roughness, but also suggest a procedure
(once this Gaussian pdf has been postulated) for its evaluation, starting
from a large number of experiments. Alternatively, the power spectrum
of the surface can be estimated and then evaluated for the wave number
κ → 0: examination of Table 2.3 shows that this value is proportional to
σ 2 times the correlation parameter, or to a combination of the correlation
lengths in the case of multiscale surfaces. This allows the evaluation of σ

when the model has been postulated and the correlation parameter has been
computed (see Section 2.7.2).

2.7.2. Correlation Length

Roughly speaking, the correlation length should be a measure of the con-
straint between height displacements of neighboring points of the surface:
this constraint is expected to be significant if the points are well inside the
correlation length and negligible outside it.
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To further exploit this point, it is convenient to consider the jointly
Gaussian pdf, Equation (2.46), and two points, z1 and z2, at a prescribed
distance τ . The surface is assumed stationary and isotropic. Letting z2 =
z1 +�z, it turns out that

p(z1, z2) → p(z1, �z)

= 1

2πσ 2
√

1− ρ2
exp

[
−2z2

1 (1− ρ)+ 2z1�z (1− ρ)+ (�z)2

2σ 2
(
1− ρ2

)
]

,

(2.51)

where ρ is the normalized-autocorrelation-function coefficient computed at
the distance τ . Integration over z1 provides the pdf of the height change �z:

p (�z) =
∫ ∞

−∞
p (z1, �z) dz1 = 1√

2π
√

2σ
√

1− ρ
exp

[
− (�z)2

4σ 2 (1− ρ)

]
.

(2.52)

Results of Section 2.7.1 can now be applied: probability of excursions |�z|2
larger than few 2σ 2[1− ρ(τ )] = 2[σ 2 − R(τ )] is marginal. Accordingly, if
τ is small so that R(τ ) → σ 2, then also the expected excursions �z tend to
zero. On the contrary, these oscillations can reach values of some σ if τ is
large so that R(τ ) → 0.

It is desirable to put the above qualitative statements on a more quan-
titative basis. The effective correlation length, Le, of the autocorrelation
function is now defined:

∫ 2π

0
dϑ

∫ ∞

0
R (τ ) τdτ = R (0) πL2

e , (2.53)

with the scope of substituting to R(τ ) an effective correlation function, con-
stant and equal to its value R(0) obtained at zero lag, inside the cylinder of
radius Le centered in the origin and zero outside (see Figure 2.3). For the
Gaussian case Le = L, see Table 2.1. Using this effective correlation func-
tion instead of the real one, the surface oscillations disappear for τ < Le,
and are totally uncorrelated for τ > Le, being limited only by the mean-
square-root deviation of the surface. It is therefore attractive to define Le as
the correlation length of the stochastic process.

This definition of the correlation length exhibits an additional interesting
physical counterpart. As for the autocorrelation function, it is possible to
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Figure 2.3 Equivalent correlation length. The Gaussian correlation function drawn on
the left side holds the same correlation length of the equivalent cylindrical correlation
function displayed on the right.

define an effective spectral bandwidth:

2π

∫ ∞

−∞
W (κ)κdκ = W (0)πκ2

e . (2.54)

By means of Equations (2.39) and (2.40), it turns out that

W (0) = 2π

∫ ∞

0
R(τ )τdτ = πR (0) L2

e , (2.55)

R(0) = 1

2π

∫ ∞

0
W (κ)κdκ = 1

(2π)2
πW (0)κ2

e . (2.56)

Combining Equations (2.55) and (2.56), the link between effective correla-
tion length and effective spectral bandwidth is obtained:

κeLe = 2. (2.57)

It follows that κe/2π = 1/πLe is a measure of the maximum spatial fre-
quency exhibited by the randomly corrugated surface. It is concluded that
Le (equal to L in the Gaussian case) is an appropriate measure of the spatial
stochastic undulations of the surface: if Le decreases, the number of the
surface undulations per unit length increases. In passim, the experimental
estimate of the effective width of the power spectrum is a convenient way
to determine Le and L as well, once the surface model has been postulated.

As a last comment, note that a rough surface tends to reradiate an incoher-
ent field when excited by a coherent electromagnetic wave. It is intuitive that
the degree of incoherence increases if the roughness and undulations of the
surface increase as well. Accordingly, a convenient measure of the differ-
ence between planar and rough surfaces is provided by the (adimensional)
ratio

� = σ

Le
= κeσ

2
, (2.58)
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a parameter (σ /L in the Gaussian case) that can be referred to as the
incoherency parameter.

2.8. Surface Classical Models Selection for
Electromagnetic Scattering

In previous sections, it was shown that two independent functions must be
assigned to fully describe the surface roughness up to the second order: in
the stationary case, they are represented by the pdf p(z) and the joint pdf
p(z1, z2).

If the first- and second-order pdfs are assumed to exhibit a Gaussian
behavior, and a zero-mean isotropic stochastic process is in order, this is
fully determined if the parameter σ and the autocorrelation function R(τ ) are
postulated. Alternatively, other functions may be used instead of R(τ ): for
instance, the structure function, which can be defined also for nonstationary
surfaces, or the power spectrum W (κ), which, in the stationary case, is
related to R(τ ) by a simple FT. These data fully describe this random surface
up to the second order, in the Gaussian case; in general, the second-order
description is not complete, but, in any case, this is sufficient to evaluate
some relevant averages of the scattered electromagnetic field. It is important
to note that at least the surface power spectrum in closed form is required
by the classical methods to evaluate the mean and mean-square values of
the scattered field in closed form.

More specifically, classical-scattering methods express the scattered field
in terms of the surface standard deviation and the power spectrum, possi-
bly generalized as reported in Table 2.4. Some of these spectral functions
can be analytically evaluated in closed form, starting from the postulated
autocorrelation function, as detailed in Appendix 2.A.

2.9. References and Further Readings

Fundamentals on random variables and stochastic process can be found
in the work of Papoulis (1965). As far as their application within the
electromagnetic theory is concerned, Ishimaru’s study (1993) provides
details on the structure function. Some of the classical functions presented
in this chapter to describe random rough surfaces are also employed in
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Fung’s work (1994) within the integral-equation method to compute the
scattered field.

Appendix 2.A Surface Classical Models

For most applications, the characterization of stochastic surfaces is often
provided up to the second order. This is particularly true within the elec-
tromagnetic scattering theory, where, in particular, Gaussian models are
usually employed to describe the shape of the scattering surfaces: this corre-
sponds to considering stationary isotropic surfaces, to select for the surfaces’
shape a first-order Gaussian pdf, usually with zero-mean and prescribed
variance σ 2, and a second-order Gaussian joint pdf with prescribed normal-
ized autocorrelation ρ(τ ). Possible choices for ρ(τ ) are selected according
to two requirements: first, to allow the analytic evaluation in closed form
of the scattered field; and second, to comply with rough-surface modeling.
Accordingly, several choices have been proposed and are reported in this
appendix. It is worth recalling that these choices do not provide fully sat-
isfactory models if natural surfaces and their scattered fields are in order:
this being the reason to move to fractal models.

Gaussian, exponential, intermediate Gaussian-exponential, power-law,
multiscale Gaussian, and multiscale exponential normalized-autocorrelation
functions are considered in this appendix. For each choice, the corre-
sponding structure function (using Equation [2.19]), power spectrum (using
Equation [2.39]), and generalized power spectrum (using Equation [2.38])
are computed, possibly in closed form. The computed functions can be
directly inserted into the classical electromagnetic-scattering formulations
to get closed-form solutions; for instance, the surface power spectrum
is required by the SPM classical solution, whereas also the generalized
power spectrum is required by the Physical-Optics (PO) solution to the
KA. According to those models, stationary isotropic surfaces are consid-
ered here. All results are referred to in Tables 2.1 through 2.4, and are
illustrated by graphs depicted in Figures 2.4 through 2.10. Note that all
graphs in this appendix are properly normalized. The horizontal scale for
the autocorrelation function is normalized to L; for the structure function,
the power spectrum, and the generalized power spectra, it is normalized
to 1/L2 (to 1/L2

1 in the multiscale case). The vertical scale is normalized
to σ 2 for the structure function; to σ 2L2, (to σ 2L2

1 in the multiscale case)
for the power spectrum; and to σ 2mL2 (to σ 2mL2

1 in the multiscale case)
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for the generalized power spectra. When the normalized spectra are used to
compute an element of the ensemble of the surface height z(r), the vertical
and horizontal scales are automatically normalized to σ and L (to L1 in the
multiscale case).

2.A.1. Gaussian Autocorrelation

The simplest choice for the surface normalized autocorrelation is a Gaussian
function of prescribed correlation length L > 0:

ρ(τ ) = exp

(
− τ 2

L2

)
. (2.A.1)

Using also Equation (A.2.2), it turns out that this choice implies an inverse
Gaussian shape for the structure function, the power spectrum, and its gen-
eralization. Hence, the choice of Gaussian correlation simplifies most of the
analytic evaluations involved in the scattered-field computation, and allows
a closed-form solution for the scattered field.

Plots of the autocorrelation function, structure function, power spec-
trum, and generalized power spectra are shown in Figure 2.4a. A realization
of this kind of rough surface is also plotted along with a surface cut in
Figure 2.4b.
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Figure 2.4a Plots of a Gaussian autocorrelation function and corresponding structure
function, power spectrum and generalised power spectra of order m = 1, 2, 3, 4.
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Figure 2.4b Graph of a realization of a rough surface with Gaussian autocorrelation
and plot of the surface cut obtained by letting y = 0; the case L = 1 and σ = 1 is
considered.

2.A.2. Exponential Autocorrelation

To model surfaces with higher correlation at larger distances, the normalized
autocorrelation is chosen to be exponential of prescribed correlation length
L > 0:

ρ(τ ) = exp
(
− τ

L

)
. (2.A.2)

This function is not differentiable at zero lag. This may pose some prob-
lems in the analytic evaluation of the scattered field, because the standard
deviation of the derivative process turns out to be not defined.
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Figure 2.5a Plots of a normalized exponential autocorrelation function and corre-
sponding structure function, power spectrum and generalized power spectra of order
m = 1, 2, 3, 4.

The exponential choice implies an inverse exponential shape for the struc-
ture function. The power spectrum W (κ), as well as its generalizations
W (m)(κ), turns out to be of algebraic shape; only for κ � 1/L is a power-law
behavior recognized:

W (κ) ∼= 2πσ 2

L
κ−3, (2.A.3)

and similarly for W (m)(κ).
As for the Gaussian choice, use of exponential autocorrelation is in favor

of finding a closed-form solution for the scattered field.
Plots of the autocorrelation function, structure function, power spectrum,

and generalized power spectra are shown in Figure 2.5a. Arealization of this
kind of rough surface is also plotted along with a surface cut in Figure 2.5b.

2.A.3. Intermediate Gaussian-Exponential Autocorrelation

A wide class of surfaces can also be represented by adopting an intermedi-
ate Gaussian-exponential autocorrelation function, the pure Gaussian and
exponential autocorrelations being limiting cases:

ρ(τ ) = exp
[
−
( τ

L

)v]
, v ∈ [1, 2] . (2.A.4)
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Figure 2.5b Graph of a realization of a rough surface with exponential autocorrelation
and plot of the surface cut obtained by letting y = 0; the case L = 1 and σ = 1 is
considered.

Correlation length, L > 0, and autocorrelation decay parameter, v, are
usually prescribed to be independent; hence, this choice implies an inter-
mediate inverse Gaussian-exponential shape for the structure function, as
shown in Table 2.2. Power spectra cannot be evaluated in a closed form for
any v. Hence, this choice of intermediate Gaussian-exponential autocor-
relation is rarely adopted in electromagnetic applications, because it finds
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Figure 2.6 Plots of a normalized intermediate Gaussian-exponential autocorrelation
function and corresponding structure function; the cases ν = 1, 1.25, 1.5, 1.75, 2 are
considered.

a closed-form solution for the scattered field in a very limited number of
cases.

Plots of autocorrelation function and structure function are shown in
Figure 2.6, parameterized to v.

2.A.4. Power-Law Autocorrelation

For isotropic surfaces, some power-law correlation functions turn out to be
useful because their spectra can be evaluated in a closed form via a Bessel
transform. For obtaining a power decay at large distance τ , the normalized
autocorrelation may be set equal to

ρ(τ ) =
[

1+
(

τ

L

)2
]−3/2

. (2.A.5)

Because ρ(L) ≡ 2−3/2 ∼= 0.354 ∼= 1/e, the role played here by L > 0 is
very similar to that exhibited in the Gaussian and exponential cases by the
correlation length.

The structure function exhibits a powerlike shape as well, at least for
distances much greater than the correlation length, as shown in Table 2.2.

The power spectrum exponentially decays with κ . Amore complex shape,
involving the gamma function �(·) and the Kelvin function of order v,
K−v(·), is exhibited by all the generalized spectra W (m)(κ) (see Table 2.4).

Choice of some power-law autocorrelations allows finding a closed-form
solution for the scattered field.

Comparison of power-law and exponential choices shows that these two
alternatives are dual each other: the power-law shape is met by the autocor-
relation function of the former when τ /L is large, and by the power spectrum
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Figure 2.7a Plots of a normalized power-law autocorrelation function and corre-
sponding structure function, power spectrum and generalized power spectra of order
m = 1, 2, 3, 4.

of the latter when κL is large. In addition, the power-law autocorrelation is
differentiable at the origin, at variance of the exponential one.

Plots of the autocorrelation function, structure function, power spec-
trum, and generalized power spectra are shown in Figure 2.7a. A realization
of this kind of rough surface is also plotted along with a surface cut in
Figure 2.7b.

2.A.5. Multiscale Gaussian Autocorrelation

To represent a wider class of surfaces, autocorrelation functions character-
ized by more than one parameter are introduced.

One of the simplest choices is the two-scale Gaussian autocorrelation
function. For each term of the autocorrelation function, two correlation
lengths, L1 and L2, are defined, and the normalized autocorrelation function
is taken equal to

ρ(τ ) = a exp

(
− τ 2

L2
1

)
+ b exp

(
− τ 2

L2
2

)
, a+ b = 1. (2.A.6)
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and plot of the surface cut obtained by letting y = 0; the case L = 1 and σ = 1 is
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Figure 2.8a Plots of a normalized multi-scale Gaussian autocorrelation function and
corresponding structure function, power spectrum and generalized power spectra of
order m = 2, 3, 4; the cases L2/L1 = 1, 2, 3, 4, a = b = 0.5 are considered.

Hence, a two-scale Gaussian autocorrelation is a three-parameter func-
tion. Equation (2.A.6) implies a two-scale inverse Gaussian shape for the
structure function and the power spectrum. Conversely, the generalized
spectrum W (m)(κ) attains a more complicated shape: its expansion is given
in Table 2.4.

The conclusion is that closed-form solutions for the scattered field are
still possible, but the overall formulation becomes very much involved.

Extension to more than two scales can be easily provided for the autocor-
relation, the structure function, and the power spectrum; generalized power
spectra are less easy to obtain.

Plots of the autocorrelation function, structure function, power spectrum,
and generalized power spectra are shown in Figure 2.8a; several values of L1

and L2 are considered, and all plots are parameterized to L2/L1. Realizations
of this kind of rough surface are also plotted along with corresponding
surface cuts in Figure 2.8b.
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2.A.6. Multiscale Exponential Autocorrelation

For multiscale surfaces exhibiting higher correlation for increasing dis-
tances compared to the multiscale Gaussian autocorrelation, the multiscale
exponential is appropriate. A simple choice relies on a two-scale exponen-
tial autocorrelation function. Also in this case, two correlation lengths, L1

and L2, are defined, and the normalized autocorrelation function is taken
equal to

ρ(τ ) = a exp

(
− τ

L1

)
+ b exp

(
− τ

L2

)
, a+ b = 1. (2.A.7)

Hence, the two-scale exponential autocorrelation is also a three-parameter
function.

It is worth noting that, as in the case of exponential autocorrelation, this
function is also not differentiable at zero lag. This may pose some problems
in the analytic evaluation of the electromagnetic field scattered from such
a surface, because the standard deviation of the derivative process is not
defined.

The autocorrelation function in Equation (2.A.7) implies an inverse expo-
nential shape for the structure function. For κ values much greater than 1/L1

and 1/L2, corresponding to the higher spatial frequencies (thus affecting the
surface behavior at shortest distance spacings), the power spectrum turns
out to be

W (κ) ∼= 2πσ 2
(

a

L1
+ b

L2

)
κ−3, (2.A.8)

thus exhibiting a power-law behavior. Conversely, a more complicated
behavior is obtained for the generalized power spectrum.

As in the previous case, the conclusion is that closed-form solutions for
the scattered field are still possible, but the overall formulation becomes
very much involved.

Extension to more than two scales can be easily provided for the autocor-
relation, the structure function, and the power spectrum; analytic evaluation
of the generalized power spectra is not a straightforward task.

Plots of the autocorrelation function, structure function, power spectrum,
and generalized power spectra are shown in Figure 2.9a; several values of L1

and L2 are considered, and all plots are parameterized to L2/L1. Realizations
of this kind of rough surface are also plotted along with corresponding
surface cuts in Figure 2.9b.
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Figure 2.9a Plots of a normalized multi-scale exponential autocorrelation function
and corresponding structure function, power spectrum and generalized power spectra
of order m = 2, 3, 4; the cases L2/L1 = 1, 2, 3, 4, a = b = 0.5 are considered.

2.A.7. Mixed Gaussian-Exponential Autocorrelation

For multiscale autocorrelation models, it is also possible to prescribe a
mixed behavior between Gaussian and exponential correlation, and the
single-scale Gaussian and exponential autocorrelations can be recovered as
limiting cases. Again, two correlation lengths, L1 and L2, are defined, and
the normalized autocorrelation function is taken equal to

ρ (τ) = a exp

(
− τ 2

L2
1

)
+ b exp

(
− τ

L2

)
, a+ b = 1. (2.A.9)

This choice implies a mixed inverse Gaussian-exponential shape for the
structure function, as well as for the power spectrum.

The more complicated form to the autocorrelation function implies that
the generalized power spectra cannot be evaluated in a closed form for
m �= 1. An approximate expression is available, provided that the correla-
tion length related to the Gaussian term is much lower than the correlation
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Figure 2.9b Graphs of realizations of rough surfaces with multi-scale exponential
autocorrelation and plot of the surfaces cut obtained by letting y = 0; from top to
bottom, the cases L2/L1 = 1, 2, 3, 4, a = b = 0.5 are considered.
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Figure 2.10a Plots of a normalized mixed Gaussian-exponential autocorrelation func-
tion and corresponding structure function and power spectrum; the cases L2/L1 =
1, 2, 3, 4, a = b = 0.5 are considered.

length related to the exponential term. Then, use of Equation (2.38) leads
to the expression referred to in Table 2.4, and valid under the assumption
L1 � L2.

It is concluded that the choice of a mixed Gaussian-exponential auto-
correlation function allows developing some closed-form solutions for the
scattered field.

Plots of the autocorrelation function, structure function, and power spec-
trum are shown in Figure 2.10a; several values of L1 and L2 are considered,
and all plots are parameterized to L2/L1. Realizations of this kind of
rough surface are also plotted along with corresponding surface cuts in
Figure 2.10b.
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Figure 2.10b Graphs of realizations of rough surfaces with mixed Gaussian-
exponential autocorrelation and plot of the surfaces cut obtained by letting y = 0;
from top to bottom, the cases L2/L1 = 1, 2, 3, 4, a = b = 0.5 are considered.
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CHAPTER 3

Surface Fractal Models

3.1. Introduction and Chapter Outline

In this chapter, the basic concepts of fractal geometry are presented. This is
finalized to introduce symbols adopted in the book and to present main
concepts and mathematical background relevant to model natural-surfaces
roughness. The employed framework, in general, presents only main results
from fractal geometry: mathematical details and results derivations are
provided, if necessary, for dealing with the analytic evaluations of the
electromagnetic field scattered from fractal surfaces; other elements of
the theory are justified on intuitive bases. For exhaustive mathematical
treatments and theorems proofs on fractal geometry, the reader may refer to
the excellent mathematical books in this field listed under the References.

Strictly speaking, a unique definition of fractals does not exist. Mathe-
maticians prefer to define fractals according to the properties of the fractal
sets, just as biologists have no definition for life, and prefer to refer to
the properties of living beings. Hence, fractal geometry is invoked for sets
that hold a detailed structure on any arbitrary scale; are too irregular to be
described according to classical geometry; hold some self-similarity or self-
affine properties; are defined in very simple ways, often recursively; and
hold a somehow defined fractal dimension larger than its topological one.
These preliminary concepts are introduced and discussed in Section 3.2.

61
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Sections 3.3 and 3.4 introduce two overall classification frameworks for
fractal-surface models. Use of fractals in natural-surface modeling calls
for physical fractal surfaces; their relationship with the corresponding
mathematical fractal surfaces is presented and discussed in Section 3.3.
Moreover, in Section 3.4, the rationale for distinction between deterministic
and stochastic fractal-surface modeling is provided.

Sections 3.5 and 3.6 introduce the fractal models that can be employed to
model natural-surfaces shape. Two fractal models are presented: the frac-
tional Brownian motion (fBm) process, in Section 3.5, and the Weierstrass-
Mandelbrot (WM) function, in Section 3.6. According to the classification
introduced in Section 1.5, the former is a regular stochastic process, and
the latter is a predictable process that allows us to model deterministic as
well as random surfaces. In these sections, it is shown how to find appro-
priate models descriptions that can be used to express the electromagnetic
scattered field in closed form: this is a crucial point, and great care is
devoted to formally assessing it, thus providing a sound background of
fractal-models use in the scattering problem. For instance, whenever sur-
face spectral descriptions are introduced, their significance is rigorously
assessed by making use of spectral theory for nonstationary processes.

Section 3.7 provides a connection between fBm processes and WM func-
tions, thus showing that, independently from the mathematical employed
model, the fractal surfaces hold a common rationale. Moreover, this con-
nection is useful not only for comparing scattered-field results relying on
the two fractal models, but also for providing the rationale for the syn-
thesis of approximate fBm surfaces by using appropriately connected WM
functions.

In Section 3.8, a fractal surface that is used as a reference in the following
chapters to study the influence of the fractal parameters on the scattered
electromagnetic field is introduced.

In Section 3.9, the existence of a link between classical and band-limited
fractal parameters is discussed. Strictly speaking, there is no mathemati-
cal link between classical and fractal parameters: some fractal parameter,
like the fractal dimension, has no counterpart in classical geometry, whereas
some classical parameter, like the surface correlation length, is not uniquely
defined in the fractal geometry, and in general diverges for mathematical
fractal surfaces. However, a connection can be established whenever param-
eters relevant to band-limited fractals are in order; this connection may be
useful in establishing a link between scattered-field results obtained by using
classical and fractal geometries to model the natural surfaces.



3.2. Fundamentals of Fractal Sets 63

The assumption that the fractals are more suitable than are conventional
classical approaches to modeling natural surfaces is also confirmed by
experiments and field campaigns, as referred to in Section 3.10. More-
over, natural-surface parameters estimation is in favor of fractal models.
As a matter of fact, use of geometric models requires their parameters evalu-
ation; in spite of the fact that classical-parameters evaluation relies on simple
techniques, the values estimated on natural surfaces suffer of ambiguity and
are not stable. Conversely, in spite of the fact that fractal-parameters eval-
uation may rely on involved techniques, the values estimated on natural
surfaces are stable and not ambiguous. This is a further point in favor of
the fractal description, which seems to have a perfect match with nature.
And also it adds some value to the knowledge of the connection between
the parameters that define the two descriptions.

Key references and suggestions for further readings are reported in
Section 3.10.

3.2. Fundamentals of Fractal Sets

In this section, the fundamental concepts of fractal geometry as applied
to describe natural surfaces are introduced. It is worth warning that
some main concepts presented below are first rigorously stated, and then
sometimes rephrased in an unconventional and definitively less rigorous
style that might help the nonexpert reader to comprehend the overall
framework.

The key parameter within fractal geometry is the fractal dimension:
among several possible mathematical choices, the fractal dimension is
defined in this book according to an appropriate measure. Fractal prop-
erties render the fractal models attractive and reliable to model natural
surfaces; among fractal properties, the scaling ones are discussed in this
section because they can be easily verified whenever natural surfaces are in
order.

The fractal dimension employed throughout this book is the Hausdorff,
or Hausdorff-Besicovitch (HB) dimension; its composite name is due to
the fact that properties of the Hausdorff dimension are largely due to
Besicovitch. The definition of the HB dimension is based on the definition of
the Hausdorff measure. This measure is preliminarily introduced; it makes
use of the Caratheodory method, consisting in defining measures as covers
of sets.
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3.2.1. Hausdorff Measure

Let U be any nonempty subset of a n-dimensional Euclidean space, Rn: the
diameter |U| of U is the greatest distance between two points belonging to U.
A countable (or finite) collection of sets {Ui} covers a set F if F ⊂ ⋃

i
Ui;

furthermore, {Ui} is said to be a δ-cover of F, if 0 < |Ui| ≤ δ, ∀i.
The s-dimensional Hausdorff measure Hs(F) of F is defined as

Hs(F) = lim
δ→0

Hs
δ(F), δ > 0, s > 0, (3.1)

where

Hs
δ(F) = inf

{ ∞∑
i=1

|Ui|s: {Ui} is a δ-cover of F

}
, (3.2)

and inf{·} is the lower bound. The superscript s in Equation (3.2) is a symbol
in Hs

δ and an exponent in |Ui|s.
In summary, Equation (3.2) deals with the sum of the s-th power of the

diameters of δ-covering sets; the infimum of such a sum is found with
respect to all permissible δ-covers of F ∈ Rn; as δ decreases, the class of
permissible covers of F in Equation (3.2) reduces and Hs

δ(F) increases; the
limit δ → 0 in Equation (3.1) is defined as the s-dimensional Hausdorff
measure Hs(F) of F; it exists for any set F ∈ Rn.

It can be shown that the Hausdorff measure generalizes, within a multi-
plicative constant, the Lebesgue measure as used, for instance, to define the
number of points (R0), the length (R1), the area (R2), and the volume (R3)
of Euclidean sets in Rn for n = 0, 1, 2, and 3, respectively.

It is convenient to close this subsection with a mathematically non-
rigorous comment that can help in understanding the measure concept.
Roughly speaking, for Euclidean sets, the diameter of each covering set
Ui in Equation (3.2) is elevated to an integer n: for instance, for n = 2, the
measure of F is obtained summing up the squared diameters (somehow
the “areas”) of the smallest sets that provide the best-fit covering of F. Then
the Hausdorff measure appears to be consistent with intuition whenever
measure of Euclidean sets is in order; moreover, it provides a formal exten-
sion that can be intuitively applied to measure irregular sets if, for any
reason, they cannot be “fitted” in a collection of however small Euclidean
covering sets.
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3.2.2. Fractal Dimension

Once the Hausdorff measure has been presented, the Hausdorff dimension
can be easily introduced. It is observed that the Hausdorff measure, as
defined by means of the limit in Equation (3.1), diverges for s smaller than
a certain threshold D, and equals zero for s greater than D. The critical value
s = D for which Hs(F) changes from∞ to 0 is defined as the HB dimension
of F. In this book, the HB dimension of F is used as the fractal dimension
for the surfaces under study.

The Hausdorff dimension D is not forced to be an integer number; if
this is the case, s = n is an integer and the Hausdorff measure generalizes,
within a multiplicative constant, the Lebesgue measure. It appears that
Euclidean dimensions are recovered when the Hausdorff measure coincides
with integer values of D.

Intuitively speaking, any Euclidean set (point, curve, surface, volume,
etc.) has Hausdorff measures that vary accordingly to the kind of covering
sets: it is infinite if the covering is searched with sets of smaller dimensions,
a real value if the covering is searched with sets of equal dimensions, zero
if the covering is searched with sets of larger dimensions. For instance, this
behavior is exhibited whenever segments, circles, and spheres, respectively,
are used as covering sets for measuring the area of a (Euclidean) two-
dimensional surface. Then, for a given set, the Hausdorff dimension is
the only exponent to the covering sets’ diameters that may provide a finite
Hausdorff measure for the set.

The subset F of Rn, with n > 1, is fractal if its fractal dimension
D is greater than its topological dimension, defined as equal to n − 1.
Considering, for instance, the case n = 3, a surface in a three-dimensional
space is fractal if its fractal dimension D is greater than 2 and smaller
than 3. For a fractal surface, an infinite Hausdorff measure is obtained
if one- or even two-dimensional covering sets are employed; conversely,
a zero Hausdorff measure is obtained if three-dimensional covering sets are
employed.

Before proceeding further along a rigorous mathematical treatment, a
brief comment can be now appropriate to elucidate the above-mentioned
concept of noninteger dimensions on a more intuitive but less rigorous
basis. Roughly speaking, any fractal surface “fills” the space more than
any however-complicated combination of Euclidean surfaces, but always
leaves enough “unfilled” empty spaces whenever compared to any however-
complicated combination of Euclidean volumes; and it is crucial to recall



66 3 ♦ Surface Fractal Models

that these behaviors for fractal surfaces are true however “small” and
whatever the shape of each element of the covering surfaces and volume.
In other words, zooming in on a classical surface always leads to a suffi-
ciently small spatial scale where the surface is revealed to be made joining
regular (for instance, almost everywhere derivable), smooth, and possi-
bly small Euclidean surfaces. Conversely, zooming in on a fractal surface
reveals, at any however-small spatial scale, roughness details that cannot
be constrained within a however-conceived collection of Euclidean sur-
faces, but these details never completely “fill” a however-shaped collection
of Euclidean volumes. If the surface is represented via a mathematical
function, then continuity is always verified, whereas derivability of such
a mathematical fractal is never reached at any point and scale. In turn, the
fractal dimension is a continuous parameter that quantifies the intermediate
behavior held by any fractal surface between the two- and three-dimensional
Euclidean limiting cases. And in particular, the HB dimension provides a
sound mathematical background to define and apply this fractal-dimension
concept.

Other definitions of the Hausdorff dimension, or finer definitions of
dimensions, can be introduced (see Section 3.10); these are of some rel-
evance whenever estimation of fractal parameters of a natural surface is in
order, but they have no practical effect on the use of fractals in this book.
Accordingly, this point will not be pursued.

For natural surfaces, the fractal dimension is directly related to the sur-
face roughness in an intuitive way: an almost-smooth fractal surface has
a fractal dimension slightly greater than 2, because is tends to flatten over a
classically modeled surface; conversely, an extremely rough surface has a
fractal dimension that approaches 3, because it tends to fill in a classical
volume.

The fractal dimension is a fundamental parameter, but not the sole one
specifying the fractal set: it is related to the fractal-set scaling properties,
but does not prescribe an overall “amplitude” of the fractal set. In particu-
lar, for fractal surfaces, the fractal dimension, loosely speaking, states the
relation among the different spectral components of the surface. It is evi-
dent that an additional independent overall spectral-amplification factor is
needed to fully specify the surface spectrum and, consequently, the surface
itself. This should not be surprising, and it is exploited in the subsequent
sections: as a matter of fact, this is also true in the classical-surface descrip-
tion, where at least two parameters, the variance and the correlation length,
are needed.
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3.2.3. Scaling Properties

Among other interesting properties, the Hausdorff dimension allows us to
verify the self-affine property that is common to fractal sets. This scaling
property is also presented here because it provides a rationale to conceive
fractal sets and distinguish them from Euclidean ones.

In the previous section, the HB dimension is introduced independently
from the spatial scale: then fractal sets must exhibit some form of scale
invariance to scaling transformations. The self-affine property quantifies
such a scaling invariance, so that the surface roughness at different scales
is related through a precise relationship.

Self-affinity generalizes the self-similarity property.
A set is self-similar if it is invariant with respect to any transformation in

which all the coordinates are scaled by the same factor.
A set is self-affine if it is invariant with respect to any transformation in

which the coordinates are scaled by factors that are in a prescribed relation;
in such a case, the set fractal dimension is linked to the relation among the
scaling factors.

Loosely speaking, for a self-similar set, a zooming function recovers
scaled, and possibly rotated, copies of the original set: but for the scale,
the original and scaled copies are indistinguishable from each other. This is
shown in the example in the first and second row of Figure 3.1 for a generic
set, and in Figure 3.2 for a surface. Conversely, for self-affine sets, the
zooming function generates scaled, possibly rotated, and also appropriately
stretched versions of the original set: this stretching can be appreciated by
comparing the original and scaled copies. This is shown in the example
in the first and third row of Figure 3.1 for a generic set, and in Figure 3.3
for a surface. Self-similarity and self-affinity hold in the statistical sense
if invariance to corresponding coordinates scaling holds for the statistical
distribution used to describe the set.

The s-dimensional Hausdorff measure (s is not forced to be an integer
for fractal sets) scales with a factor γ s if coordinates are scaled by γ . As a
check, when s is an integer number and the Hausdorff measure generalizes
the Lebesgue one, it is evident that the scaling property holds for lengths,
areas, and volumes with s equal to 1, 2, and 3, respectively.

Note that the self-affine behavior is not sufficient to assess that a
function—for example, the WM one—can represent a fractal, because other
smooth nonfractal functions may exhibit this property and are not fractals.
However, within some limitations, self-affinity may provide a rationale
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Figure 3.1 Self similarity and self-affinity: the starting set is depicted in the first row.
Example of similarity transformations leads to the sets shown in the second row, whereas
affine transformation results in the sets shown in the third row.

to conceive fractal sets and understand how they differ from the Euclidean
ones. Intuitively speaking, if at some scale the fractal set “seems” to be cov-
ered by an appropriate collection of Euclidean sets, then it is sufficient to
zoom in on the fractal set to uncover new details that “escape” from the pre-
viously considered cover; and this is true at any however-small scale. Hence,
the fractal set cannot be measured by employing Euclidean covers, the
Hausdorff measure is required, and the fractal dimension provides a norm
to quantify the set behavior with respect to the zooming operation.

3.3. Mathematical versus Physical Fractal Sets

Self-affinity of fractal sets is the key mathematical property that makes
them particularly useful for describing natural surfaces. However, whereas
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Figure 3.2 Self-similarity behavior of a rough surface. From top to bottom, zooming
of a factor 10 along each axis is applied to successive surfaces and corresponding plots
displaying the surface cut y = 0. The surface roughness appears statistically independent
on the observation scale.

fractal sets maintain their self-affinity at any arbitrary observation scale,
natural surfaces hold this relevant property only within inner- and outer-
characteristic scales. In other words, natural surfaces exhibit fractal
characteristics only on a possibly wide but limited range of scale lengths;
these scale lengths represent the surface range of fractalness. Sets that
exhibit an infinite range of fractalness are defined as mathematical frac-
tals. Conversely, sets that exhibit a finite range of fractalness are defined as
physical fractals.

In the following sections, it is shown how to define the spectral content
of the fractal models. Observation scales correspond to surface-spectrum
wavelengths: natural surfaces exhibit power-density spectra that are fractal
only inside a finite bandwidth. This concept is further exploited if the
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Figure 3.3 Self-affine behavior of a natural surface. From top to bottom, zooming of a
factor 10 along each axis is applied between successive surfaces and corresponding plots
displaying a generic vertical cut. The surface appears rougher whenever the observation
scale is smaller.

observable natural surfaces are introduced—that is, if the description of
the surface is related to a thought experiment.

Consider a surface to be explored: in particular, the height profile is
of interest. Any actual instruments would sense, with a finite resolution,
a limited length range of the observed surface. This can be equivalently
stated assuming that the sensor is equipped with a band-pass filter: spa-
tial scales and spectral bandwidth may be equally used to imply a finite
exploration of the surface geometric properties. Each surface scale calls for
a corresponding surface wave number; then range of fractalness calls for a
corresponding fractalness bandwidth. It is concluded that a natural surface
can be rigorously described by means of the corresponding mathematical
fractal, provided that reference is made to range of scales, or bandwidth,
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within which the surface properties coincide with those of the mathematical
fractal.

3.4. Deterministic versus Stochastic Fractal Description
of Natural Surfaces

A natural surface can be represented by means of either a deterministic
or a stochastic fractal set. The choice between these two very different
representations relies on the applications to be made. In this section, the
rationale to use a deterministic or a stochastic fractal description for natural
surfaces is discussed.

Deterministic description of a rough-surface geometric shape may be
accomplished by means of real fractal sets of topological (not fractal) dimen-
sion equal to 2. These sets may hold some relevant properties such as
continuity, but may lack others, such as derivability. A relevant example is
represented by the almost-periodic surfaces. In this case, the WM fractal
function can be used to describe the surface roughness. Evaluation of the
scattered field can then be performed by adopting this geometric description.
In the following chapters, it is shown that this evaluation leads to closed-
form solutions in terms of the geometric and electromagnetic parameters of
the surface. It is important to underline that a closed-form solution for the
field scattered from deterministic natural shapes can be obtained only by
employing fractal models: as stated in Chapter 1, there is no classical deter-
ministic description of natural surfaces that allows a closed-form solution
for the scattered-field problem.

Random fractal surfaces can be described by means of randomized WM
functions as well as of fBm stochastic processes. Randomized WM func-
tions are predictable stochastic processes; conversely, fBm are regular
stochastic processes. Then, accordingly with the considerations stated in
Chapter 1, the WM functions allow evaluating the scattered field as a
predictable process: the electromagnetic field is obtained as a function of
some surface parameter. Conversely, the fBm model for the random sur-
face allows evaluating the scattered field as a regular process: appropriate
averages of the scattered-field distribution, usually the mean and the
variance, can be computed as functions of the stochastic parameters of
the surface probability distributions.

The WM function is a predictable process, so that it is possible to predict
an entire WM sample function from its knowledge on a domain subset.
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Conversely, the fBm process is a regular process, and it is possible to
reconstruct only the statistics of the fBm random process from one sample
function. These properties are fundamental for the selection of the type of
the stochastic fractal model to be conveniently used for the evaluation of the
scattered field. This applies also to the analysis and synthesis procedures of
natural surfaces: the former consist of estimation of the fractal parameters
from fractal-surface realizations; the latter are related to generation of fractal
surfaces with prescribed fractal parameters.

3.5. Fractional Brownian Motion Process

In this section, the fBm is used to describe natural isotropic surfaces. Math-
ematical as well as physical fBm processes are discussed. To simplify the
discussion of crucial and delicate points relevant to the use of this model,
the particular case of isotropic surfaces is considered.

3.5.1. Mathematical fBm Processes

3.5.1.1. Definition

Definition of an fBm process is given in terms of the corresponding incre-
ment process. The stochastic process z(x, y) describes an isotropic fBm
surface if, for every x, y, x′, y′, all belonging to R, the increment process
z(x, y)− z(x′, y′) satisfies the following relation:

Pr
{
z(x, y)− z(x′, y′) < ζ̄

} = 1√
2πsτH

∫ ζ̄

−∞
exp

(
− ζ 2

2s2τ 2H

)
dζ ,

τ =
√

(x − x′)2 + (y − y′)2,

(3.3)

where H is the Hurst coefficient (or exponent), and s is the standard devia-
tion of surface increments at unitary distance measured in [m(1−H)]. In the
following discussion, to shorten notations, s and s2 are referred to as the
surface incremental standard deviation and surface incremental variance,
respectively. In order to fully define an fBm process, the value of z at a given
point should be specified: it is set z(0) = 0 so that, as shown below, the
surface is self-affine. In the surface modeling and in the scattering problem,
this condition is encompassed in the reference-system choice.
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It can be demonstrated that a process satisfying Equation (3.3) exists if
0 < H < 1, and that with probability 1, an fBm sample surface has a fractal
(Hausdorff) dimension.

D = 3− H. (3.4)

Inspection of Equation (3.3) shows that if τ → 0, then z (x, y) −
z
(
x′, y′

)→ 0, thus proving that any sample function z is continuous with
respect to x and y.

The incremental standard deviation s is related to a characteristic length
of the fBm surface, the topothesy, T :

s = T (1−H). (3.5)

By using Equation (3.5), Equation (3.3) can be written, in terms of topothesy
and Hurst coefficient, in the equivalent form:

Pr
{
z(x,y)−z(x′,y′)<ζ̄

}= 1√
2πT (1−H)τH

∫ ζ̄

−∞
exp

(
− ζ 2

2T2(1−H)τ 2H

)
dζ .

(3.6)

Inspection of Equation (3.6) shows that the mean-square deviation of
the surface increments equals T (1−H)τH . Furthermore, the surface-slope
mean-square deviation is equal to the mean-square deviation of the sur-
face increments divided by τ : (T/τ)1−H . It is concluded that topothesy
is the distance (obviously measured in [m]) over which chords joining
points on the surface have a surface-slope mean-square deviation equal
to unity.

Some few relevant properties and crucial issues are presented in the
following paragraphs for the fBm and the surface-increments processes.

3.5.1.2. Order Characterization and Parameters Number

Characterization of the surface to the first order is obtained from the
increments-process definition by adding a reference value to the fBm in
the origin z(0, 0) = 0:

Pr
{
z(x, y)− z(0, 0) < ζ̄

} = Pr
{
z(x, y) < ζ̄

}

= 1√
2πsτH

∫ ζ̄

−∞
exp

(
− ζ 2

2s2τ 2H

)
dζ ,

τ =
√

x2 + y2. (3.7)
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Examination of Equations (3.3) and (3.7) shows that the fBm increment
process, as well as the first-order surface pdf, exhibits a Gaussian behavior.

Equation (3.3) specifies the pdf of the surface increments, p(z1 − z2),
which is not the same thing as the joint pdf p(z1, z2). The surface-increments
pdf is obtained from the joint pdf considering z2 = z1+�z and integrating
upon z1, thus generalizing the procedure reported in Section 2.7.2 for the
Gaussian second-order pdf. In general, the reverse is not true: the second-
order pdf cannot always be fully deduced from knowledge of the first-
order pdf of the increments process. Accordingly, up to this point, the
second-order characterization of the fBm surface is not complete.

However, in subsequent chapters, it is shown that this partial second-order
description of the fBm process is sufficient to represent natural surfaces,
if only relevant averages of the scattered field—that is, its mean and power
density—are of interest. Although a full stochastic characterization of the
scattering surface is not achievable from the fBm fractal model represented
by Definition (3.3) and the prescription z(0) = 0, the presented fractal model
is sufficient to evaluate the scattered-power density from such a surface.

Then, as far as the number of parameters is concerned, the fBm process is
a two-parameter regular random process. Definition of the fBm process has
been done according to H and s in Equation (3.3), and to H and T in Equa-
tion (3.5). Other linked parameters, such as the fractal dimension D (see
Equation [3.4]), can be used. The choice of the two independent parameters
used to describe the process distribution is dictated by the use to be made
of the stochastic process and by the mathematical- or physical-parameters
interpretation.

Examples of fBm sample surfaces, and corresponding plots, are reported
in the following discussion to show the influence of the fractal parameters
on the surface appearance.

First, the effect of H is displayed by depicting in Figure 3.4 the fractal-
surfaces graphs and corresponding plots for values of H ranging from
0.1 to 0.9, with step 0.2 and setting T = 1 m. These graphs show that
the higher the H, the smoother the surface appears, thus visually confirm-
ing (see Equation [3.4]) a direct relationship existing between the fractal
dimension D and an intuitive concept of “roughness.” More specifically,
Figure 3.4 and Equation (3.6) show that an increase of the fractal dimen-
sion does not correspond to a scaling of the graphs along the vertical axis:
visual inspection of the figure shows that the increase of the fractal dimen-
sion generates surfaces whose closer spatial “undulations” become larger.
Whenever the limit conditions H → 0 and H → 1 are considered, the
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Figure 3.4a Fractal surfaces and corresponding profiles for H varying from 0.1 and
0.9, and a fixed value of T = 1 m. Case H = 0.1.

surface graphs and plots behaviors can be inferred as extrapolations of that
reported in Figure 3.4. For H → 0, the surface graphs tend to fill a 3-D
volume, whereas for H → 1, the surface tends to a classical one that is not
flat if T �= 0.

The dual case is analyzed by changing T and leaving H fixed to a constant
value. In Figure 3.5, the cases corresponding to T ranging from 0.5 m to
1.5 m with step of 0.5 m and H = 0.7 are displayed. These graphs show
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Figure 3.4b Fractal surfaces and corresponding profiles for H varying from 0.1 and
0.9, and a fixed valued of T = 1 m. Case H = 0.3.

that the higher T , the rougher the surface appears, thus visually confirming
(see Equation [3.5]) a relationship existing between the topothesy T and
an intuitive concept of “roughness.” More specifically, visual inspection of
the figure shows that an increase of the topothesy corresponds to a scaling
of the graphs along the vertical axis, thus equally affecting all the space
undulations.

Comparison of Figures 3.4 and 3.5 shows the different type of contribu-
tions provided by the two independent parameters D and T to the intuitive
concept of “roughness”: variation of the topothesy implies an overall scaling
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Figure 3.4c Fractal surfaces and corresponding profiles for H varying from 0.1 and
0.9, and a fixed valued of T = 1 m. Case H = 0.5.

to the surface roughness, whereas variation of the fractal dimension provides
a different scaling for closer- and farther-surface “undulations.”

In the following sections of this chapter, a quantitative rigorous mathe-
matical support to this preliminary visual and intuitive analysis is provided.

3.5.1.3. Self-Affinity

As discussed in Section 3.2, a fundamental property of fractal sets is their
self-affinity.
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Figure 3.4d Fractal surfaces and corresponding profiles for H varying from 0.1 and
0.9, and a fixed valued of T = 1 m. Case H = 0.7.

By definition, fBm surfaces have increments that are self-affine in the
statistical sense. Letting r = x x̂ + y ŷ, r′ = x x̂′ + y ŷ′, �z(τ) = z(r) −
z(r′), applying the definition of Equation (3.3) to �z(λτ), and changing the
integration variable ζ /γ H → ζ , leads to

Pr
{
�z(γ τ) < ζ̄

} = Pr

{
�z(τ) <

ζ̄

γ H

}
, (3.8)
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Figure 3.4e Fractal surfaces and corresponding profiles for H varying from 0.1 and
0.9, and a fixed valued of T = 1 m. Case H = 0.9.

for any γ > 0 and any τ and r. It follows that

�z(γ τ) =̇ γ H�z (τ) , (3.9)

where, as in Chapter 2, the symbol =̇means “exhibits the same statistics as.”
Self-affinity is also a property of the process z. As a matter of fact, letting

r′ = 0 and z(0) = 0 in Equation (3.9), it turns out that for any γ > 0 and
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Figure 3.5a Fractal surfaces and corresponding profiles for T varying from 0.5 m to
1.5 m, and a fixed value of H = 0.8. Case T = 0.5 m.

for any τ ,

z(γ τ) =̇ γ Hz(τ) , (3.10)

thus also proving that the isotropic process z is statistically self-affine.

3.5.1.4. Stationarity

Stationarity is a key property to be investigated for random processes. It is
worthwhile verifying if this property is held by the fBm process.
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Figure 3.5b Fractal surfaces and corresponding profiles for T varying from 0.5 m to
1.5 m, and a fixed value of H = 0.8. Case T = 1.0 m.

The second member of Equation (3.3) represents the CDF of the incre-
ments of the z(x, y) process. Hence, Equation (3.3) states that the height
increments at any distance τ have a Gaussian distribution with zero mean
and standard deviation sτH . It is also immediately noted that the fBm z(x, y)
is a stochastic process with wide-sense stationary increments, because
the second member of Equation (3.3) is dependent only on τ instead
of x, y, x′, y′.

However, stationarity is not a property held by the process z. As a matter
of fact, taking into account that z(0) = 0, the autocorrelation of the fBm
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Figure 3.5c Fractal surfaces and corresponding profiles for T varying from 0.5 m to
1.5 m, and a fixed value of H = 0.8. Case T = 1.5 m.

process is computed as follows:

R
(
r, r′

) = 〈
z (r) z

(
r′
)〉

= 1

2

〈
z2 (r)+ z2 (r′)− [

z (r)− z
(
r′
)]2

〉

= 1

2

〈
[z (r)− z (0)]2 + [

z
(
r′
)− z (0)

]2 − [
z (r)− z

(
r′
)]2

〉
(3.11)
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= T2(1−H)

2

(
|r|2H + ∣∣r′∣∣2H − ∣∣r′ − r

∣∣2H
)

,

because each quadratic factor has a Gaussian distribution (see
Equation [3.6]), and its expected value coincides with its variance (see
again Equation [3.6]). Hence, the fBm process is nonstationary because
its autocorrelation is not dependent only on the space lag,

∣∣r′ − r
∣∣, and

particular attention must be paid in defining and evaluating its spectrum.

3.5.1.5. Structure Function

Natural random phenomena are frequently described by means of non-
stationary stochastic processes holding the fundamental property to have
stationary increments. For the particular case of nonstationary stochastic
processes with stationary increments, it is particularly useful to compute
the structure function Q(τ) of the process, defined as the variance of the
(zero-mean) surface increments at given distance. In this relevant case, at
variance to the process autocorrelation, this variance is a function only of
the vector distance τ, and its relation with the power spectrum is simple to
derive. Hence, the structure function for nonstationary processes with sta-
tionary increments represents a practical way to derive the power spectrum.
This is discussed in the next sections.

According to Definitions (3.3) and (3.6), the fBm process of the incre-
ments over a fixed horizontal distance τ is a stationary isotropic zero-mean
Gaussian process with variance equal to s2τ 2H = T2(1−H)τ 2:

�z(τ )
�=N

(
0, s2τ 2H

)
= N

(
0, T2(1−H)τ 2H

)
. (3.12)

Therefore, evaluation of the structure function Q(τ ) of an fBm process is
straightforward, because, according to the definition given in Chapter 2, the
structure function coincides with the variance of the process increments:

Q(τ ) = s2τ 2H = T2(1−H)τ 2H . (3.13)

In Figure 3.6, the plot of the fBm normalized-structure function, param-
eterized to H, vs. the distance τ , shows that the variance of increments
always increases with the distance τ ; for antipersistent fBm (0 < H < 1/2),
the increasing rate decreases with the distance—whereas for persistent
fBm (1/2 < H < 1), it increases with the distance, the intermediate case
corresponding to Brownian motion (H = 1/2) whose increments variance
is proportional to the distance. The meanings of these two definitions, per-
sistent and antipersistent, are explained in the following discussion. It is
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τ

Figure 3.6 Plot of the fBm structure function for some relevant values of H. The
horizontal axis is normalized to the topothesy T and the vertical axis to topothesy
squared T2.

convenient to evaluate the correlation of two successive increments over
the surface,

〈[
z (r)− z

(
r′
)] [

z
(
r′
)− z

(
r′′
)]〉

=
〈
z (r) z

(
r′
)− z (r) z

(
r′′
)− z2 (r′)+ z

(
r′
)

z
(
r′′
)〉

(3.14)

= T2(1−H)

2

(∣∣r − r′′
∣∣− ∣∣r − r′

∣∣2H − ∣∣r′ − r′′
∣∣2H

)
,

wherein the latter expression has been obtained by means of the
Equation (3.11) result. The correlation between successive increments in
Equation (3.14) can assume positive as well as negative values. And “per-
sistence” refers to the property of “saving” the feature of the increment
along a generic path over the surface. If points r, r′, r′′ are aligned along
a generic line, the persistency property becomes transparent: in this case,∣∣r − r′

∣∣+∣∣r′ − r′′
∣∣ = ∣∣r − r′′

∣∣ and
∣∣r − r′

∣∣2H+∣∣r′ − r′′
∣∣2H

>
∣∣r − r′′

∣∣2H if

2H < 1, and vice versa,
∣∣r − r′

∣∣2H + ∣∣r′ − r′′
∣∣2H

<
∣∣r − r′′

∣∣2H if 2H > 1.
It is concluded that antipersistent fBm (0 < H < 1/2) exhibits a neg-

ative correlation between successive increments whose projections onto
the z = 0 plane are aligned; then, successive increments are more likely to
have the opposite sign. Conversely, persistent fBm (1/2 < H < 1) exhibits
positive correlation between successive increments whose projections onto
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the z = 0 plane are aligned; then, successive increments are more likely
to have the same sign. Obviously, antipersistent and persistent behaviors
emphasize whenever H diverges from 1/2 and approaches 0 and 1, respec-
tively. Finally, a Brownian motion (H = 1/2) has uncorrelated successive
increments if their projections onto the z = 0 plane are aligned. Persistent
and antipersistent behaviors relevant to fBm sample surfaces and plots are
presented in Figure 3.7. Visual inspection of those figures and comparison
with actual profiles suggests that natural surfaces more probably behave
like persistent fBm stochastic processes.

3.5.1.6. Power Spectrum

In Chapter 2, it was shown that the power-density spectrum can be expressed
in terms of the autocorrelation function as

W (κ) =
∫ ∞

−∞
dτ exp(−iκ · τ)

[
lim

q→∞

(
1

2q

)n

rect

(
τ

4q

)

∫ ∞

−∞
R
(

r + τ

2
, r − τ

2

)
rect

(
r

2q − |τ|
)

dr
]

. (3.15)
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Figure 3.7 Fractal surfaces and corresponding profiles. First row: H = 0.25, cor-
responding to an anti-persistent fBm; second row: H = 0.75, corresponding to a
persistent fBm.
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This equation holds for stationary as well as nonstationary stochastic pro-
cesses. In Chapter 2, it was also shown that in the case of stationary
processes, the autocorrelation function does not depend on r, and can
be taken outside the inner integral in Equation (3.15), so that a simple
FT relationship between the autocorrelation function and the power spec-
trum exists. For a nonstationary surface, the autocorrelation depends on r,
and different manipulations of Equation (3.15) are required to obtain the
power-spectrum expression: this is done in the following discussion.

Equation (3.15) can be simplified by considering the limit q →∞. The
rect(τ/4q) states that each component of the variable τ cannot exceed
in module 2q: when q →∞ it follows that rect(τ/4q) → 1. In addi-
tion, the rect[r/(2q − |τ|)] can be asymptotically (q → ∞) replaced by
rect[r/(2q)]: as a matter of fact, this implies to extend, for each compo-
nent, the integration interval of R(·) of a length |τ|; being in that interval the
autocorrelation limited, this extracontribution divided by (2q)n vanishes for
q →∞. In conclusion:

W (κ) =
∫ ∞

−∞
dτ exp(−iκ · τ)

[
lim

q→∞

(
1

2q

)n ∫ q

−q
R
(

r + τ

2
, r − τ

2

)
dr
]

.

(3.16)

Thus, the power spectrum can be expressed as follows:

W (κ) =
∫ ∞

−∞
dτ exp(−iκ · τ) R (τ), (3.17)

wherein

R (τ)
�= lim

q→∞

(
1

2q

)n ∫ q

−q
R
(

r + τ

2
, r − τ

2

)
dr (3.18)

is the autocorrelation function averaged over the spatial variable r.
Equations (3.17) and (3.18) are referred to as the Wiener-Khinchin theo-

rem, referring to stationary as well as nonstationary processes, so that they
generalize results obtained in Chapter 2. As a matter of fact, for a stationary
process, R = R (τ) is taken outside the integral in r and R (τ) = R (τ).

Substitution of Equation (3.11) in Equation (3.16) allows for evaluating
the power spectrum of the fBm:

W (κ) =
∫ ∞

−∞
dτ exp(−iκ · τ) R (τ)
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=
∫ ∞

−∞
dτ exp(−iκ · τ)

[
lim

q→∞

(
1

2q

)2 ∫ q

−q
R
(

r + τ

2
, r − τ

2

)
dr

]

=
∫ ∞

−∞
dτ exp(−iκ · τ)

[
lim

q→∞

(
1

2q

)2 T2(1−H)

2
∫ q

−q

(∣∣∣r + τ

2

∣∣∣2H +
∣∣∣r − τ

2

∣∣∣2H − |τ|2H
)

dr
]

. (3.19)

Exchanging the integration limits, it turns out that

W (κ) = lim
q→∞

(
1

2q

)2 T2(1−H)

2

∫ q

−q
dr

∫ ∞

−∞
dτ

(∣∣∣r + τ

2

∣∣∣2H +
∣∣∣r − τ

2

∣∣∣2H − |τ|2H
)

exp(−iκ · τ) .

(3.20)

Computation of the FT of |τ|2H requires resorting to generalized FTs (see
Appendix 3.A):

∫ +∞

−∞
|τ|2H exp(−iκ · τ) dτ = 22+2Hπ

� (1+ H)

� (−H)

1

κ2+2H

= −22+2H�2 (1+ H) sin(πH)
1

κ2+2H
,

(3.21)

wherein Equations (A.3.2) and (A.3.3) have been applied to get the latter
expression. Equation (3.21) exhibits a singularity in the origin. But, as
explained in Appendix 3.A, the generalized FT is intended to be used after
multiplication by a function of an appropriate set (essentially a filter), thus
rendering it of physical interest. Application of the multiplication and shift
rules to this generalized two-dimensional FT provides

∫ +∞

−∞

∣∣∣τ
2
± r

∣∣∣2H
exp (−iκ · τ) dτ

= 22 exp(±2iκ · r)
∫ +∞

−∞
|τ|2H exp(−i2κ · τ) dτ

= −22�2 (1+ H) sin(πH)
1

κ2+2H
exp(±2iκ · r) . (3.22)
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Substitution of Equations (3.21) and (3.22) in Equation (3.20) and use of
Relation (A.3.2) leads to the following result:

W(κ) = T2(1−H)

2
22+2H�2 (1+ H) sin(πH)

1

κ2+2H

lim
q→∞

(
1

2q

)2 ∫ q

−q
dr

[
1− 21−2H cos (2κ · r)

]
. (3.23)

Evaluating the integral in Equation (3.23) leads to

W(κ) = T2(1−H)

2
22+2H�2 (1+ H) sin(πH)

1

κ2+2H[
1− 21−2H lim

q→∞

(
1

2q

)2 sin(2qκx) sin(2qκy)

κxκy

]
. (3.24)

In the limit q → ∞, the sinusoidal term in brackets vanishes, and the
power-density spectrum of the two-dimensional fBm exhibits an appropriate
power-law behavior:

W (κ) = S0κ
−α , (3.25)

characterized by two spectral parameters—the spectral amplitude, S0

measured in [m2−2H ], and the spectral slope, α—that, according to
Equation (3.24), depend on the fractal parameters introduced in the space
domain:

S0 = 22H+1�2 (1+ H) sin(πH)T2(1−H)

= 22H+1�2 (1+ H) sin(πH)s2, (3.26)

α = 2+ 2H = 8− 2D. (3.27)

From the constraint on the Hurst exponent, 0 < H < 1, it turns out that
2 < a < 4, which defines the range of allowed values for the spectral slope
α. Equations (3.26) and (3.27) state the relation between fractal parameters
in the spectral domain, S0 and α, and their mates H (or D) and T (or s) in
the space domain.

The information content inherent to the six introduced fractal parameters
and the mutual relationships between them deserves some comments.

Only two fBm parameters are independent. These two independent
parameters can be selected, according to the corresponding constraints,
in the spatial domain or, alternatively, in the spectral domain; formally,
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Table 3.1 Synoptic view of the relationships between fractal
parameters in the space and spectral domains for a topological
two-dimensional surface. For any allowed choice of the fractal
parameters reported in the first column, the remaining ones are
evaluated in the second column.

H, s
0 < H < 1

D = 3− H
T = s1/(1−H)

α = 2+ 2H
S0 = 22H+1�2 (1+ H) sin(πH)s2

H, T
0 < H < 1

D = 3− H
s = T1−H

α = 2+ 2H
S0 = 22H+1�2 (1+ H) sin(πH)T2(1−H)

D, s
2 < D < 3

H = 3− D
T = s1/(1−H)

α = 8− 2D
S0 = 25−2D�2 (4− D) sin(πD)s2

D, T
2 < D < 3

H = 3− D
s = T1−H

α = 8− 2D
S0 = 25−2D�2 (4− D) sin(πD)T2(1−H)

S0, α
2 < α < 4

H = α/2− 1
D = 4− α/2
s = {−S0/[2α−1�2 (α/2) sin(πα/2)]}1/2

T = {−S0/[2α−1�2 (α/2) sin(πα/2)]}1/(4−α)

a mixed approach could be also followed, but the constraints could be
difficult to interpret. A synoptic view of the relationships between frac-
tals parameters in the space and in the spectral domain is reported in
Table 3.1. Allowed independent parameters are always selected in pairs:
one dimensionless parameter (H, D, or α) together with one dimensional
parameter (T , s, S0). For any pair of the independent fractal parameters,
selected according to the corresponding constraint, the expressions for the
remaining four ones are reported in Table 3.1.

Each one of the introduced pairs of fractal parameters describes the
surface roughness from a different viewpoint. To exploit this point, it is
convenient to refer to one possible choice, say the (H, s) pair. The variance
of the surface increments, coincident with the structure function, is given
by Q(τ ) = s2τ 2H . Assuming that the surface roughness is related to the
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increments’ variance, it depends on s and H, even if on a different footing.
As a matter of fact, changes in the selected value of s imply that variations
of the surface roughness are equal at any distance, whereas changing of H
leads essentially to different variations of the surface roughness at different
distances.

Once the spectral slope has been determined, a simple alternative eval-
uation of the spectral amplitude, S0, Equation (3.26), can be obtained by
employing the surface-structure function. As a matter of fact, substituting
Equation (3.25) in Equation (2.42),

Q (τ ) = 1

π

∫ ∞

0
[1− J0(κτ )]S0k−ακdκ , (3.28)

making use of Equation (3.27) and integrating by parts, it turns out that

Q (τ ) = S0τ

2πH

∫ ∞

0
J1(κτ )κ−2Hdκ . (3.29)

Then, by using Equation (A.3.1) (with, µ = −2H and ν = 1), the structure
function can be evaluated in closed form:

Q(τ ) = S0

2πH
2−2H � (1− H)

� (1+ H)
τ 2H

= S0

22H+1�2 (1+ H) sin(πH)
τ 2H , (3.30)

wherein Equations (A.3.2) and (A.3.3) have been taken into account. Com-
parison with Equation (3.13) leads to the required connection between the
spectral slope and the fractal parameters in the space domain coincident
with Equation (3.26).

It is concluded that the mathematical fBm process is not stationary, and
suffers from the infinite-variance problem: in fact, being α ≥ 2, the integral
of the fBm power spectrum diverges due to singularity in the low-frequency
range (see Equation [3.25]). This low-frequency behavior of the spectrum
is addressed as the infrared catastrophe. The reason is a historical one: the
spectrum was examined in the optics area, where even surface wavelength
of the order of microwaves may be addressed as infrared wavelengths.

Inspection of Equations (2.40) and (2.42) shows a fundamental result
in the theory of nonstationary processes. Existence of the autocorrelation
function requires that the power spectrum W (κ) for κ → 0 behaves like
κα with α < 2; conversely, existence of the structure function requires
only α < 4. If the process is stationary, the autocorrelation and the structure
function both exist, whereas if the process is nonstationary with stationary
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increments, then the structure function does exist, and the autocorrelation, as
a function of the space lag, does not. In the fBm fractal case 2 < a < 4: then,
the structure function always exists, whereas the autocorrelation function
as a function of the space lag only, does not.

3.5.2. Physical fBm Processes

3.5.2.1. Definition

A surface satisfying Equation (3.3) for every τ is self-affine on all scales,
so that it has details on any arbitrarily small scale: it is continuous, but
not differentiable at any point. This poses problems when using Maxwell
differential equations. For these reasons, together with those stated at the
end of Section 3.5.1, physical fBm surfaces must be introduced. This is
possible because no actual natural surface holds Property (3.3) at any scale,
and some properties of fBm mathematical surfaces may be relaxed.

In Section 3.3, it was stated that natural surfaces exhibit a fractal behavior
only on a wide but limited range of scales. A further limitation to the range
of fractalness is imposed by the sensor applied to monitor the surface. The
range of scales of interest for a scattering problem is limited on one side by
the finite linear size l of the illuminated surface, or by the sensor resolution
if processing of the received signal is implemented; and on the other side
by the fact that surface variations on scales much smaller than the incident
wavelength λ do not affect the scattered field. In most cases—in particular in
remote sensing of natural surfaces at microwave frequencies—these limita-
tions due to the employed sensor fall between the limits of intrinsic validity
for the surface-shape fractal model. Accordingly, in electromagnetic scatter-
ing, physical fBm surfaces are considered; an efficient approach on surface
modeling relies on considering surfaces that satisfy Equation (3.3) only for
τm < τ < τM , with τM of the order of l and τm usually taken of the order of
λ/10. If τm � τM , then such surfaces satisfy Equation (3.25) only in a wide
but limited range of spatial frequencies κm < κ < κM , with κm ∼= 1/τm.
That is why these surfaces are also referred to as band-limited fBm, and for
them the infrared catastrophe is avoided; they are stationary, at least in a
wide sense, and regular.

3.5.2.2. Power Spectrum

It is shown hereafter that physical—that is, filtered fBm—fractals may be
rendered stationary, at variance to fBm mathematical fractals.
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A spatial filter function g(·) is applied to the fBm process: the filtered
surface z filt attains the following representation:

zfilt(r) =
∫ +∞

−∞
z (t) g (t − r) dt, (3.31)

wherein g(r) is the inverse FT of the filter transfer function G(κ). Integration
is extended to the 2-D real plane. The filtered surface has zero mean, as
follows by computing the statistical average of Equation (3.31): statistical
average and integral operation are exchanged, and

〈
zfilt(t)

〉 = 0 because also
the unfiltered fBm has zero mean upon setting z(0) = 0.

Evaluation of filtered surface autocorrelation is now in order:

Rfilt(r, r′
) = 〈

zfilt(r) zfilt (r′)〉

= T2(1−H)

2

∫ +∞

−∞

∫ +∞

−∞

(
|t|2H + ∣∣t′∣∣2H − ∣∣t − t′

∣∣2H
)

g (t − r)

× g
(
t′ − r′

)
dt dt′, (3.32)

where Equation (3.31) has been used, as well as statistical average, integrals
exchange, and results of Equation (3.11) accounted for.

Equation (3.32) represents the autocorrelation function as the sum of
three factors, each one expressed as the product of two integrals. The first
two factors, after integration lead to a function which is not depending on
r′ − r only: if it is required that the filtered process must be WSS, these
factors must be made equal to zero, with an appropriate choice for the filter
function.

The first factor, Rfilt
1

(
r, r′

)
, in Equation (3.32),

Rfilt
1

(
r, r′, a

) = T2(1−H)

2

∫ +∞

−∞
|t|2H g (t − r) dt

∫ +∞

−∞
g
(
t′ − r′

)
dt′,

(3.33)

is considered first: appropriate sufficient conditions are searched to render
it equal to zero.

Consider now a simple filter described by

{
G (κ) = 1 ∀κ: κm < κ < κM

G (0) = 0 elsewhere
(3.34)
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in the spectral domain. It turns out that
∫ +∞

−∞
g
(
t′ − r′

)
dt′ =

∫ +∞

−∞
g
(
t′
)

dt′ = G (0) = 0 (3.35)

and Equation (3.33) is rendered equal to zero, provided that the other integral
does not diverge. Then

T2(1−H)

2

∫ +∞

−∞
|t|2H g (t − r) dt = 1

(2π)2

∫ +∞

−∞
S0

κ2H+2
G(κ) exp(iκ · r)dκ

= S0

2π

∫ κM

κm

1

κ2H+2
J0(κr)κdκ �= ∞,

(3.36)

where Equations (3.21), (3.25), and (3.27) have been accounted for, and
the usual transformation from Cartesian to polar integration coordinates
implemented (see Equation [2.38]).

The same conclusion is reached for the second factor. Accordingly, the
correlation function of the filtered surface reduces to the last third factor:

Rfilt (r, r′
) = T2(1−H)

2

∫ +∞

−∞
|ξ|2H dξ

∫ +∞

−∞
g
(
t′ − r′

)
g
(
t′ − ξ− r

)
dt′

= T2(1−H)

2

∫ +∞

−∞
|ξ|2H dξ

∫ +∞

−∞
g (η) g

(
η− ξ+ r′ − r

)
dη,

(3.37)

where the coordinate transformation ξ = (
t′ − t

)
, η = (

t′ − r′
)

has been
implemented. Equation (3.37) can be rewritten as

Rfilt (r − r′
) = T2(1−H)

2

∫ +∞

−∞
|ξ|2H Rg

(
ξ− r′ − r

)
dξ, (3.38)

wherein

Rg (ξ) =
∫ +∞

−∞
g (η) g (η− ξ) dη

= 1

2π

[
κM

J1 (κMξ)

κMξ
− κm

J1 (κmξ)

κmξ

] (3.39)

is the autocorrelation of the filter function g(·).
It is concluded that the appropriately filtered fBm has zero mean, and

its autocorrelation function depends on r′ − r only, so that it is stationary
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in the wide sense. The spectrum is now the FT of the correlation function,
Equation (3.38), and is given by

Wfilt(κ) = S0κ
−αG (κ) , (3.40)

where G(κ) is given by Equation (3.34).
It must be remarked that the simple filter operation described by

Equation (3.34) renders the surface process stationary. However, this filter
with zero phase and sharp edges is not physically realizable: and the applied
sensor is certainly characterized by a smoother filter. In this case, use of
an equivalent effective spatial bandwidth, κM − κm, may be appropriate.
In addition, the filter does not change the spectral properties of the fBm
surface inside the spatial bandwidth of interest, but general features of the
fBm process may be altered.

3.6. Weierstrass-Mandelbrot Function

In the following sections, WM functions used to describe natural surfaces
are presented.

3.6.1. Mathematical WM Functions

Among several possible representations of the WM function, the most suit-
able one for modeling natural surfaces is a real function of two independent
space variables x and y. A convenient choice is provided by the nonnor-
malized WM function z(x,y), amenable to represent deterministic as well
as random surfaces.

Consider the superposition of an infinite number of sinusoidal tones:

z (x, y) =
∞∑

p=−∞
zp

= B
∞∑

p=−∞
Cpν

−Hp sin
[
κ0ν

p (x cos �p + y sin �p
)+�p

]

= B
∞∑

p=−∞
Cpν

−Hp sin
[
κp · r +�p

]
,

κp = κ0ν
p (x̂ cos �p + ŷ sin �p

)
,

(3.41)
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wherein B[m] is the overall amplitude scaling factor; p is the tone index;
κ0[m−1] is the wavenumber of the fundamental component (corresponding
to p = 0); ν > 1 is the seed of the geometric progression that accounts for
spectral separation of successive tones; 0 < H < 1 is the Hurst exponent;
and Cp, Ψp, �p are deterministic or random coefficients that account for
amplitude, direction, and phase of each tone, respectively.

Equation (3.41) exhibits a noninteger fractal dimension D as soon as
ν is irrational, and the Hurst exponent is related to the fractal dimension
D = 3− H as in Equation (3.4).

If the coefficients Cps are deterministic, they must be all equal and con-
stant: Cp = C, so that the tone amplitudes, BCν−Hp, deterministically
follow the power-law spectral behavior typical of fractal functions. For
random coefficients Cps, the usual choice for their pdf is Gaussian with
zero mean and unitary variance.

If the coefficients Ψps are deterministic, all equal and constant, Ψp = Ψ,
the surface exhibits the fractal behavior only in the direction selected by Ψ

and is constant along the direction orthogonal to it. If the coefficients Ψps
are uniformly distributed in [−π , π ), the WM function is isotropic in the
statistical sense; any other choice leads to an anisotropic surface.

If the coefficients Φp s are deterministic, any choice assuring that the WM
function deterministically exhibits the self-affine behavior is allowed. If the
coefficients Φps are random, they are usually chosen uniformly distributed
in [−π , π ), and the zero set of the WM function—that is, the set of points
of intersection with the plane z = 0—is nondeterministic.

In the case of a random WM function, the random coefficients,
Cp, Ψp, Φp, are usually assumed to be mutually independent.

The WM function holds the self-affine behavior only for the discrete val-
ues of γ = νn unless ν → 1: in this case, the WM function approaches
the self-affine behavior for every scaling factor γ . Accordingly, in the
deterministic case,

z(γ x, γ y) = γ Hz(x, y), (3.42)

for ν → 1, and the WM function and its appropriately scaled versions are
equal. Similarly, in the random case,

z(γ x, γ y) =̇ γ Hz(x, y) (3.43)

and the WM function and its appropriately scaled versions are statistically
identical.
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It is concluded that the self-affine behavior, typical of fractals including
fBm, is strictly observed by the mathematical WM fractal function if ν → 1,
irrespective of the random or deterministic behavior of the WM coefficients.

Computation of the power spectrum of the WM function is now in order.
Examination of Equation (3.41) suggests that the power spectrum is com-

posed of lines centred at κ = κp, in view of the independence of Cps
coefficients:

W(κ) =
∞∑

p=−∞
Pp

(
κp
)δ (κ− κp

)
2πκ

, (3.44)

Pp(κ) being the power associated to each tone. This, in turn, can be com-
puted as

Pp
(
κp
) = 〈

z2
p

〉
= B2

〈
C2

p

〉
ν−2Hp

〈
sin2 [κp · r +�p

]〉 = B2 ν−2Hp

2
, (3.45)

upon averaging the Cp and �p. Accordingly, the spectral lines of W (κ) are
given by

W(κ) = B2

2

∞∑
p=−∞

ν−2Hp δ
(
κ− κp

)
2πκ

, (3.46)

and cluster around the origin for large negative values of p, because κp is
proportional to νp; the spectrum diverges with its integral there, so that the
infrared catastrophe is present also for the WM function.

3.6.2. Physical WM Functions

Equation (3.41) shows that the mathematical WM fractal function is deter-
mined by the parameters B, H, ν, κ0. Physical WM functions can be obtained
just limiting the summation to P tones, thus obtaining band-limited WM
surfaces:

z(x, y) = B
P−1∑
p=0

Cpν
−Hp sin

[
κ0ν

p (x cos Ψp + y sin Ψp
)+Φp

]
. (3.47)

As in the case of fBm, use of band-limited WM surfaces is physically justi-
fied by the fact that surface fractality is held on a wide but limited range of
scales, and any scattering measurement is limited to a finite set of scales. Let
(X,Y ) be the antenna footprint over the surface. The lowest spatial frequency
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of the surface, κ0/2π , is linked to the footprint diameter
√

X2 + Y2, possibly
through an appropriate safety factor χ1 ∈ (0, 1], whereas its upper spa-
tial frequency κ0ν

P−1
/

2π is related to the electromagnetic wavelength λ,
possibly through an appropriate safety factor χ2 ∈ (0, 1] , usually set equal
to 0.1. Accordingly, we can set

κm = κ0 = 2πχ1√
X2 + Y2

, (3.48)

and

κM = κ0ν
(P−1) = 2π

χ2λ
. (3.49)

Definitions (3.48) and (3.49) can be combined to provide the number of
tones, P ∈ N, in terms of the sensor wavelength and footprint:

P =
⎡
⎢⎢⎢

ln
(√

X2 + Y2
/

χ1χ2λ
)

ln ν

⎤
⎥⎥⎥+ 1, (3.50)

where �·� stands for the ceiling function, defined so as to take the upper
integer of its argument.

It can be easily checked that the band-limited WM Surface (3.47) is
stationary. The correlation function is given by

R(r1,r2)=〈z (r1)z (r2)〉

=B2
P−1∑
p=0

P−1∑
p=0

〈
CpCqν

−H(p+q) sin
[
κp ·r1+�p

]
sin

[
κp ·r2+�q

]〉

= B2

2

P−1∑
p=0

P−1∑
p=0

ν−H(p+q)
〈
CpCq

〉〈
cos

[
κp ·(r2−r1)+

(
�q−�p

)]

+cos
[
κp ·(r2+r1)+

(
�q+�p

)]〉
,

= B2

2

P−1∑
p=0

ν−2Hp 〈cos
[
κp ·(r2−r1)

]〉

=R(r2−r1), (3.51)

where averaging has been implemented with respect to Cp and �p.
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Equation (3.51) can be further manipulated. Let r2 − r1 = τ cos ϕx̂ −
τ sin ϕŷ; then

cos
[
κp ·(r2−r1)

]=�{exp
[
iκpτ cos

(
ϕ−ψp

)]}

=�
{ +∞∑

n=−∞
Jn
(
κpτ

)
exp(inπ)exp

[−incos
(
ϕ−ψp

)]}
,

(3.52)

(see Equation [A.5.1]). Implementing the averaging process with respect to
Ψp and substituting in Equation (3.51), the final result

R(τ ) = B2

2

P−1∑
p=0

ν−2HpJ0
(
κpτ

)
(3.53)

is obtained.
The power-density spectrum of physical WM functions is obtained by

truncating Series (3.46) to the finite values of p belonging to the interval
[0, P − 1].

3.7. Connection between fBm and WM Models

The connection between these two fractal models is appropriately found by
comparing the spectral behavior of these two stochastic processes. The two
representations cannot be equivalent in any respect because the independent
parameters characterizing the fBm are two, for instance H and S0, whereas in
the WM, four independent parameters are considered, B, H, ν, κ0. However,
it is shown here that from the spectral point of view, the physical WM
process is an appropriately sampled version of a band-limited fBm one.

Let the spectral plane κx, κy to be subdivided into concentric annular
regions of radii

(
κpν

1/2, κpν
−1/2

)
, respectively; then the spectral power

within each annular region can be computed for the WM and fBm density-
power spectra (addressed in the following discussion as spectra).

For the WM function, only the p-th tone is present in the annular region
of central radius κp, hence:

PWM
(
κp
) = B2

2
ν−2Hp = B2

2κ−2H
0

κ−2H
p . (3.54)
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For the fBm process, upon integration within the same annular spectral
interval, it turns out that

PfBm
(
κp
) =

(
1

2π

)2 ∫ κ0ν
p+1/2

κ0ν
p−1/2

2πS0κ
−(2H+1)dκ

= S0

4πH
κ−2H

0 ν−2Hp (νH − ν−H)

= S0

4πH

(
νH − ν−H) κ−2H

p . (3.55)

The spectral decays exhibited by Equations (3.54) and (3.55) coincide, pro-
vided that the Hurst exponent H is the same for the WM and fBm functions.
If this is the case, then it is allowed to enforce the connection between the
two spectra by equating the two powers, thus getting

B2 = S0

2πH
κ−2H

0

(
νH − ν−H) . (3.56)

If Condition (3.56) is verified, the WM spectrum is recognized to be a
discretized version of the fBm spectrum at the discrete wave numbers
κp, p = 0, 1, . . .: each sample is representative of an appropriately defined
annular region of the fBm spectrum.

The transition from the discrete WM to the continuous fBm spectrum
is accomplished by recalling that the power is obtained by integration
of the power-density spectrum divided by (2π )2, according to the Parseval
theorem. Equation (3.54) represents the power provided by the p-tone of
the WM distribution within the spectrum annular region. Therefore, the
equivalent WM power-density spectrum within the annular region is given
by (2π )2 times Equation (3.54) divided by the area of the annular region:

(2π)2 B2

2κ−2H
0

κ−2H
p

1

πκ2
p

(
ν1/2 − ν−1/2

)2
= S0

H

(
νH − ν−H

)
(
ν1/2 − ν−1/2

)2
κ−(2H+2)

p ,

(3.57)

where Equation (3.56) has been accounted for. Now the annular width
κp
(
ν1/2 − ν−1/2

)
approaches zero, if ν → 1. In this limit, kp is made a

continuous variable, κp → κ , and Relation (3.25) under Condition (3.56)
is obtained, because the ratio of the two ν functions approaches H in the
limit ν → 1.

It is concluded that whenever ν → 1, the spacing between successive
tones of the WM functions tends to vanish, and the spectrum tends to become
continuous, closely approximating that of the fBm process.
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The above results can be summarized by comparing an fBm of parameters
H and S0 to a WM function of parameters H, B, ν, κ0. First of all, they both
possess the same Hurst parameter, and hence, at least in the limit ν → 1,
hold a self-affine behavior and the same fractal dimension. This is consistent
with the fact that the equivalent power-spectral decay of the WM function
and the power-spectral decay of the corresponding fBm process are the
same. Finally, if B and κ0 are selected according to Equation (3.56), then
the power content of the WM function and the equivalent fBm process are
equal on appropriate spectral intervals; in the limit of ν → 1, this last result
is valid on any spectral interval.

The established link between WM functions and corresponding fBm pro-
cesses generates a handy procedure to realize samples of band-limited fBm
processes by using physical WM functions. It is not trivial to obtain real-
izations of fBm ensemble functions characterized by H and S0 parameters.
The alternative, simpler way consists of evaluating, via Equation (3.56), the
B parameter for a corresponding WM function, whose ensemble elements
are certainly easier to evaluate via Equation (3.47). In this equation, the
H value is equal to the Hurst coefficient of the fBm process, selection of
the ν value states how closely the WM discrete spectrum represents the
corresponding fBm continuous one, and selection of κ0 and P values are
related to the process band limitation (see Equations [3.48] through [3.50]).

3.8. A Chosen Reference Fractal Surface for the
Scattering Problem

In the following chapters, closed-form solutions to the scattering problem
are derived. Any solution makes use of a fractal model to represent the
natural-surfaces geometric properties, and allows evaluating the scattered
electromagnetic field directly in terms of the surface fractal parameters and
the illumination conditions. In those chapters, some comments are devoted
to explaining the influence of each single fractal parameter on the scattered
field; sometimes this is supported by inspection of the scattering diagrams.
It is therefore convenient to introduce a reference surface to be employed to
parametrically study the influence of each fractal parameter on the scattered
field: this analysis is implemented by changing the fractal parameters with
respect to those of the reference surface.

The selected fractal and illumination parameters identify a refer-
ence case somehow typical of the Earth environment as illuminated at
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Table 3.2 Parameters relevant to the illumination con-
ditions and to the reference surface considered in the
following chapters to study the influence of the fractal
parameters onto the scattered field.

Incidence angle (ϑi) 45◦
Illuminated area (X , Y ) (1 m, 1 m)
Electromagnetic wavelength (λ) 0.1 cm
Hurst exponent (H) 0.8
Tone wave-number spacing coefficient (ν) e
Overall amplitude-scaling factor (B) 0.01 m

microwave frequencies. In particular, all pertinent parameters selected for
the reference case are reported in Table 3.2.

3.9. Fractal-Surface Models and their Comparison with
Classical Ones

The comparison between classical and fractal models to represent two-
dimensional surfaces is now presented. Some words of warning are in order.

Classical and fractal surfaces hold different topological dimensions.
Then, by definition, a full correspondence is not achievable. There is no
correspondence between classical surfaces and mathematical fractal ones.
However, a link can be searched whenever a physical fractal is in order. In
this case, the fractal surface is band-limited, and the fractal description may
contain properties not belonging only to the surface.

Additional comments are due in order to discuss the complexity of
classical and fractal description.

Classical surfaces are usually described by means of a regular process.
Its description starts with the definition of a pdf for the surface height.
If a link between heights for different values of the independent space
variable is considered, then at least a second-order characterization is intro-
duced. Hence, the classical approach would require specifying at least two
functions (pdf and joint pdf). This description is classically very much
simplified by postulating a zero-mean isotropic Gaussian pdf and a second-
order Gaussian joint pdf: in this case, only a parameter σ and a function
R(τ ) are required. However, surfaces obtained by employing the classical
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approach do not resemble the natural-surfaces behavior. It can be argued
that if these natural surfaces must be modeled, the classical approach has
to be extended. Natural extension relies on using for the autocorrelation
function more parameters or different shapes; alternatively, higher-order
descriptions are employed. In any case, in the overall process description,
other—in principle, infinite—parameters are introduced.

Fractal surfaces can be described by means of regular (fBm) as well as
predictable (WM) processes. It has been shown (see Section 3.7) that the
two processes can be linked. In the case that a regular process is employed,
fractal-surfaces description starts with the definition of the pdf for the pro-
cess of the height increments. At this stage, the process representing the
height of the surface is not prescribed, and additional constraints must be
imposed—for instance, a reference altitude (see Section 3.5.1). Natural
surfaces have been shown to be well represented by means of this simple
fractal description: for most applications, no other higher-order description
is required.

Then a correspondence between classical and fractal models should first
be searched, checking if both descriptions may prescribe the same σ value
and the same autocorrelation or structure function. The value of σ for band-
limited fractal models is evaluated in the next subsection, along with the
standard deviation of the first and second derivative of the band-limited
process. As far as the partial second-order description is concerned, it turns
out that the shapes of the structure and autocorrelation functions for classical
and fractal surfaces are different. The power-law behavior exhibited by
the fractal model is not met by any classical model. As a matter of fact,
the fractal model prescribes a power-law behavior at any scale, both in the
spatial and in the spectral domain; and the fractal parameters allow us to
select the shapes of these power-law behaviors. Conversely, the power-
law autocorrelation introduced in Section 2.A.4 actually provides a power-
law behavior in the space domain only for large distances; similarly, the
exponential autocorrelation in Section 2.A.2 actually provides a power-law
behavior in the spectral domain only for large wavenumbers. Moreover,
the shapes of these power-law behaviors are fixed and cannot be selected
by an appropriate parameter. In conclusion, to assure model flexibility, the
classical models may host even a large number of parameters, but they never
play the same role played by the fractal ones.

It turns out that even for band-limited fractal surfaces, a full correspon-
dence is not achievable, because, in general, the number of independent
parameters is not the same for the classical-surface candidate to be put into
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correspondence with the fractal one. This limitation is crucial. A fractal
description relies on few independent parameters: two parameters are
needed for mathematical fBm, whereas two additional parameters are
required to band-limit the process.

Simple classical functions are also described in terms of few parameters,
two in the case of Gaussian or exponential distributions; but these descrip-
tions very poorly resemble natural surfaces. An improved correspondence
may be obtained, at the expense of introduction of additional (in princi-
ple, very large) number of parameters, thus making a comparison with the
fractal description very difficult.

Summarizing, it can be stated that the classical description of the geo-
metric properties of surfaces requires, in general, either a multiparameter
or a multifunctional approach to render the model accurate. On the con-
trary, the fractal description relies on a limited number of parameters, but
implies dealing with a number of issues (e.g., the infrared catastrophe) that
strongly complicate its use to analytically obtain closed-form solution to
the scattered field. These shortcoming may be mitigated if physical fractals
are considered, which requires introduction of additional parameters (band-
width limits), but may render the description dependent also on the sensor
characteristics.

3.9.1. Classical Parameters for the fBm Process

At variance to mathematical, not stationary, fBm surfaces, for physical
band-limited stationary fBm fractal surfaces, some classical-surface param-
eters can be evaluated within the limitations stated at the beginning of this
section. Considering the surface-height stochastic process and its first and
second derivative, the corresponding variances, σ 2, σ ′2 and σ ′′2 can be
computed; their values can be obtained directly from the process power
spectrum W (κx, κy) as follows:

σ 2 = 1

4π2

∫∫
W

(
κx, κy

)
dκxdκy, (3.58)

σ ′2 = 1

4π2

∫∫ (
κ2

x + κ2
y

)
W
(
κx, κy

)
dκxdκy, (3.59)

σ ′′2 = 1

4π2

∫∫ (
κ2

x + κ2
y

)2
W
(
κx, κy

)
dκxdκy. (3.60)

The spectral-power density to be included in Equations (3.58) through
(3.60) is relevant to the band-limited fractal surface, and is provided
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Table 3.3 Variances of surface height (σ 2), slope (σ ′2), and curvature (K2) for a
band-limited fBm surface, as a function of S0, α (2nd column) or T , H(3rd column).

Variances Expressions

σ 2 S0

2π (α − 2)

(
1

κα−2
m

− 1

κα−2
M

)
22H−1�2 (1+ H)

sin(πH)

πH
T2

[( τM

T

)2H −
( τm

T

)2H
]

σ ′2
S0

(
κ4−α

M − κ4−α
m

)

2π (4− α)
22H−1�2 (1+ H)

sin(πH)

π (1− H)[(
T

τm

)2−2H

−
(

T

τM

)2−2H
]

σ ′′2 ∼= K2
S0

(
κ6−α

M − κ6−α
m

)

2π (6− α)
22H−1�2 (1+ H)

sin(πH)

π (2− H)

1

T2[(
T

τm

)4−2H

−
(

T

τM

)4−2H
]

by Equation (3.40): the power-spectral density is given by Equations (3.25)
through (3.27) in the range κm < κ < κM ; outside this interval, the
power spectrum is taken equal to zero. In Table 3.3, evaluations of
these parameters in terms of the spectral-domain (amplitude and slope)
and spatial-domain parameters (topothesy and Hurst coefficient) are
reported.

Evaluations of σ 2, σ ′2 and σ ′′2 are relevant because those classical
parameters are indicators of the surface behavior without formally requir-
ing knowledge of the autocorrelation function: this implies that they can
also be defined if the surface has autocorrelation that is not only a func-
tion of the space lag. Moreover, σ 2, σ ′2, and σ ′′2 also play a fundamental
role in evaluating the electromagnetic scattering from classical surfaces:
as a matter of fact, σ 2 is the surface variance, and usually enters directly
into the scattered-field expression; σ ′2 represents the surface slope, and
is normally used to assess the scattering-solution convergence; σ ′′2 pro-
vides an approximation for the surface curvature K2, assuming that the
surface slope is small, and enters into the approximation to be selected for
the scattered-field evaluation. Note that the radius of curvature is defined
as 1/K .
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Many direct in situ measurements over natural—soil and ocean—surfaces
verified that the latter are self-affine, in agreement with Equation (3.9); that
they exhibit power-law spectra, in agreement with Equation (3.25); and
that the measured height standard deviation is proportional to the length
of the considered profile raised to a power greater than 1 (for H > 1/2, see
Section 3.5.1), in agreement with the evaluation of the surface variance
reported in Table 3.3. These results validate the use of fBm for modeling
natural surfaces.

3.9.2. Classical Parameters for the WM Function

It is assumed that the Cps are mutually independent, zero-mean, unitary-
variance Gaussian random variables; and that the Ψps as well as the Φps are
mutually independent, uniformly distributed in [−π , π ) random variables.
It turns out from Equation (3.47) that the surface mean is zero, and the
surface variance σ 2 is equal to

σ 2 =
〈
z2(x, y)

〉
= 1

2
B2

P−1∑
p=0

ν−2Hp = B2(1− ν−2HP)

2(1− ν−2H )
. (3.61)

Note that setting of the B value allows generating a surface with any
prescribed variance.

For the other variances employed in evaluating the electromagnetic
scattering from classical surfaces, it turns out that

σ ′2 =
〈
|∇z|2

〉
, (3.62)

σ ′′2 =
〈(
∇2z

)2
〉

. (3.63)

All results are collected in Table 3.4. Evaluation of σ ′′2 provides a good
approximation for the curvature K2 if surface slope is small.

Finally, it is worth noting that in the limit ν → 1, variances of surface
height, slope, and curvature for a band-limited WM surface, in Table 3.4,
are in agreement with the corresponding parameters for a band-limited fBm
surface in Table 3.3, as can be verified by using results of Sections 3.6
and 3.7.
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Table 3.4 Variances of surface height
(σ 2), slope (σ ′2), and curvature (K2) for
a band-limited WM surface.

Variances Expressions

σ 2 B2(1− ν−2HP)

2(1− ν−2H )

σ ′2 κ2
0

B2

4

1− ν−2(H−1)P

1− ν−2(H−1)

σ ′′2 ∼= K2 κ4
0

B2

8

1− ν−2(H−2)P

1− ν−2(H−2)

3.10. References and Further Readings

Mandelbrot’s book (1983) introduces fractal geometry: philosophy beyond
fractal geometry is deeply illustrated, and the mathematical implications
are dealt with in detail; attention is also focused on mathematical fractals.
The work of Falconer (1990) presents fractals in all mathematical aspects,
and the reader can assimilate some fundamental mathematical instruments
required to deal with fractal geometry. Several chapters are devoted to illus-
trate mathematical properties of fractal surfaces. Surfaces of fBm type are
presented in a more intuitive way in a study by Feder (1988). In particular,
the books by Mandelbrot and Falconer are starting references to assess the
fundamental question of existence of stochastic processes holding the fBm
properties. In these same works, proofs of the relationship between frac-
tal dimension and the Hurst coefficient are reported. In situ measurements
over natural soil and ocean surfaces, verifying that the latter are modeled by
means of fBm processes, can be found in Mandelbrot’s work. An in-depth
presentation of the WM function can be found in a study by Berry and Lewis
(1980), where the WM fractal dimension is discussed.

Appendix 3.A Generalized Functions

Generalized functions are the generalization of the classical concept of
mathematical function. Generalized functions are alternatively called dis-
tributions, because from the physical viewpoint they are introduced and
are used to ideally describe the distributions of some physical quantities.
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Hence, use of generalized functions allows us to express in a mathematically
correct form idealized physical concepts such as the density of a material
point, the point charge or source, the space-charge density of a layer, the
intensity of an instantaneous charge or source, and so on. A very popular
distribution is the Dirac δ-function: for instance, the charge in a volume
q(r) is represented as superposition of point charges at points r′:

q (r) =
∫ ∞

−∞
q
(
r′
)
δ
(
r − r′

)
dr′ (3.A.1)

In general, a distribution f is a continuous linear function defined on an
appropriate space of test function ϕ, f : ϕ → (f , ϕ).

Definition of the distributions on �, an open set of Rk , is in order. A key
space for the test functions is D(�), represented by functions with compact
support, differentiable at any order and assuming values on the complex
plane C (i.e., ϕ: � → C). Then, a distribution on � is a continuous linear
function f : D(�) → C; the space for the distribution is D′(�), dual space
to D(�).

For a generalized function, the FT is defined. In this case, the space for
the test functions requires the existence of the FT of ϕ

FT[ϕ] =
∫ ∞

−∞
ϕ(r) exp(−ik · r)dr (3.A.2)

and the FT of f is defined as

(FT[ f ], ϕ)
�= ( f , FT[ϕ]). (3.A.3)

Hence, the Fourier transform of a nonintegrable function is allowed in
the sense of distributions, providing that the test functions belong to a
convenient set.

Appendix 3.B Space-Frequency and Space-Scale
Analysis of Nonstationary Signals

3.B.1. Introduction

Application of the fractal models often requires estimating the fractal param-
eters of a prescribed surface. Then, appropriate inverse techniques are
designed. Independently from the selected technique, the assumptions given
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under Section 3.5 are no longer valid: the surface under analysis is generally
viewed only on a finite extent, or its acquisition is provided only up to fixed
scales. Then, the measurement operations lead to an estimated spectrum
that differs from the mathematical fractal one, and it is necessary to operate
in such a way as to avoid the possibility that the estimation procedure could
lead to wrong fractal parameters.

Obtaining a spectral representation for an fBm surface is a delicate
point—because the fBm is not stationary, and suffers from the infrared
catastrophe. Techniques to handle nonstationary signals are referred to
as time-frequency and time-scale analysis, respectively, whenever one-
dimensional signals are in order and the independent variable is time. The
reader can make reference to the literature in the field to find complete
mathematical treatments along with relevant proofs of the material reported
below.

Stationary signals can be studied by making reference to relative dis-
tances only of the independent variables. The simplest manipulations that
can be performed consist of applying to the signal under analysis appro-
priate linear and bilinear transforms. In the first case, signal decomposition
is in order, and a popular approach consists of Fourier transforming the
signal with respect to the independent variables; in the second case, energy
distribution is in order, and a popular approach consists of evaluating the
signal power-density spectrum (PDS); the two approaches are obviously
related. Stationary signals lead to FT and PDS that do not depend on the
independent variables.

It is almost intuitive that whenever nonstationary signals are considered,
the independent variables must enter with their values, not only with their
relative differences. In this case, linear and bilinear transforms map the
nonstationary signal whose independent variable is, for instance, space
into a new function that depends on the same space variable present in
the original signal and on a new auxiliary (possibly vector) variable. In
the space-wavenumber representations, the auxiliary variable is a wave
vector; in the space-scale representations, the auxiliary variable is a scale
factor.

3.B.2. fBm Wigner-Ville Spectrum

The power spectrum of a nonstationary process can be defined following a
space-wavenumber approach via the Wigner-Ville spectrum: this is done in
the following discussion for the fBm.
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Equations (3.17) and (3.18) can be formally restated using the Wigner-
Ville spectrum W (κ, r), defined for deterministic signals as

W (r, κ)
�=
∫ +∞

−∞
z
(

r + τ

2

)
z∗
(

r − τ

2

)
exp[−iκ · τ] dτ; (3.B.1)

applying the stochastic average to Equation (3.B.1) and exchanging the
integration limits, it turns out that for the topological two-dimensional case,
which is of our interest:

W(κ) = lim
q→∞

(
1

2q

)2 ∫ q

−q
drW (κ, r). (3.B.2)

Whenever process realizations of finite extent are available, and if these
include details of the surface at any scale, then only the Wigner-Ville spec-
trum can be evaluated. In this case, the power-density spectrum is obtained
only via a limit operation whenever the area under analysis is taken to be
of infinite extent.

Equations (3.23) and (3.B.2) also allows evaluating the Wigner-Ville
spectrum of the fBm in closed form:

W(κ, r) = T2(1−H)

2
22+2H�2 (1+ H) sin(πH)

1

κ2+2H[
1− 1

22H−1
cos(2κ · r)

]
. (3.B.3)

Results in Equation (3.B.3) helps interpreting Equations (3.24) and (3.25)
relevant to the power density spectrum of an fBm surface. Then, for a
stochastic process of finite extent, the Wigner-Ville spectrum oscillates
with respect to the space variable around an overall power-law behavior.
This behavior provides a rationale to interpret fBm spectra obtained from
measurements over surface samples of finite extent.

Equation (3.25) is amenable to both a mathematical and a physical inter-
pretation. From the mathematical viewpoint, the power-density spectrum of
an fBm process holds a power-law behavior; moreover, the infrared catas-
trophe is attained because the power-density spectrum is not integrable in
the low-frequency range. From the physical viewpoint, Equation (3.24)
shows that the power-law behavior is asymptotically approximated for
q → ∞: because q limits the integration interval over the space vari-
able, q →∞means that the asymptotic behavior is attained for long space
intervals.
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3.B.3. fBm and Wavelet Approach

The power spectrum of a nonstationary process can be defined following a
space-scale approach via the wavelet transform: this is done in the following
section for the fBm.

A spatial-filter function g(·) is applied to the fBm process: the filtered
surface z filt is represented as follows:

z filt(r, a) = 1

a

∫ +∞

−∞
z (t) g

(
t − r

a

)
dt, (3.B.4)

wherein a > 0, and g(r) is the inverse FT of the filter function G(κ).
Integration is extended to the 2-D real plane. Equation (3.B.4) is the wavelet
transform of the unfiltered surface z(·): necessary and sufficient conditions
for this transformation to be invertible are provided by the admissibility
condition.

The filtered surface has zero mean, as follows by computing the statistical
average of Equation (3.B.4): statistical average and integral operation are
exchanged, and

〈
z filt(t)

〉 = 0 because also the unfiltered fBm has zero mean
upon setting z(0) = 0.

Evaluation of the filtered-surface autocorrelation is now in order:

R filt (r, r′, a
) = 〈

z filt (r, a) z filt (r′, a
)〉

= T2(1−H)

2

∫ +∞

−∞

∫ +∞

−∞

(
|t|2H + ∣∣t′∣∣2H − ∣∣t − t′

∣∣2H
)

g

(
t − r

a

)
g

(
t′ − r′

a

)
dt dt′, (3.B.5)

where Equation (3.B.4) has been used, as well as statistical-average
implementation and integrals exchange, and Equation (3.11) accounted for.

Assume now that g(t/a) is a real even function of t, and is either
localized—that is, has a compact support—or infinitesimal of order greater
than 2H + 2 for t → ∞. Then it can be shown that the integral of the
first two factors in Equation (3.B.5) is rendered equal to zero. Accordingly,
the process becomes stationary, and the autocorrelation function attains the
expression



Appendix 3.B Space-Frequency and Space-Scale Analysis 111

R filt(r, r′, a
) = T2(1−H)

2
a2H+2

∫ +∞

−∞
|ξ|2H dξ

∫ +∞

−∞
g

(
t′ − r′

a

)
g

(
t′ − aξ− r

a

)
dt′

= T2(1−H)

2
a2H+2

∫ +∞

−∞
|ξ|2H dξ

∫ +∞

−∞
g (η)

g

(
η− ξ+ r′ − r

a

)
dη, (3.B.6)

where the coordinates transformation ξ = (
t′ − t

)/
a, η = (

t′ − r′
)/

a has
been implemented. Equation (3.B.6) can be rewritten as

R filt (r − r′, a
) = T2(1−H)

2
a2H+2

∫ +∞

−∞
|ξ|2H Rg

(
ξ− r′ − r

a

)
dξ,

(3.B.7)

wherein the even property of the autocorrelation function with respect to
the space variable has been accounted for and

Rg(ξ) =
∫ +∞

−∞
g (η) g (η− ξ) dη (3.B.8)

is the autocorrelation of the filter function g(·).
The FT of Equation (3.B.7) with respect to r′ − r provides the fBm

power spectrum filtered at the scale a. The FT of Rg(ξ), which is itself a
convolution, is just G2(κ), once g(·) is selected real and even; the FT of the
other factor, |ξ|2H , is provided in Equation (3.21). Then the power spectrum
of the filtered surface is

Wfilt(κ, a) = T2(1−H)

2
a2H+2aG2 (ak)

{
FT

[
|ξ|2H

]∣∣∣
ak

}

= T2(1−H)

2
a2H+2aG2 (ak) 22+2H�2 (1+ H) sin(πH)

1

(ak)2+2H

= aG2 (ak)
S0

k2+2H
, (3.B.9)

wherein the scaling theorem for the Fourier transform, FT[af (t)] =
|a|−1 F(aω), has been accounted for, because the convolution in
Equation (3.B.7) is evaluated in η = (

r′ − r
)/

a, and S0 has been provided
by Equation (3.26).



112 3 ♦ Surface Fractal Models

The power spectrum of the fBm surface, W (κ), can be finally recovered
by applying the energy theorem for the wavelet transform:

W (κ) =
∫ +∞

0
Wfilt(κ, a)

1

a2
da; (3.B.10)

then, considering the admissibility condition on the WT, it turns out that

W (κ) = S0

κ2+2H
, (3.B.11)

thus confirming the results previously obtained with a different approach
and reported in Equations (3.25) and (3.27).

Examination of Equation (3.B.9) allows us to identify its last factor as the
power spectrum of the unfiltered surface, as anticipated in Section 3.5.1.
However, its generalized FT, |r|2H , is not the autocorrelation function of the
unfiltered surface, because this latter is not stationary (see Equation [3.11]).

The filtered spectrum again has a clear mathematical and physical coun-
terpart for nonstationary signals: it is related to a convenient linear transform
that can be applied to stochastic processes, and provides an energy distri-
bution of the stochastic process that is related both to space and scale.
Obviously, it is also related to the implemented filter-transfer function.
Whenever process realizations of infinite extent in a finite number of scales
are in order, only the filtered spectrum can be evaluated, and the power-
density spectrum is obtained only via a further integration over all the scales.
If the filter function holds some relevant energy properties that are conve-
niently formalized within the wavelet approach, the obtained fBm spectrum
does not depend on the filter-transfer function, and represents only the fBm
behavior.

3.B.3.1. Filter Implementation

A surface is observed, sensed, or measured to determine its parameters
according to a postulate model (analysis procedure). It is explored over
a finite extent with a sensor of finite resolution: the filter is automatically
implemented, and the analyzed surface turns out to be stationary. The dual
case (synthesis procedure) consists of the assumption of the parameters of
the chosen model to generate, or study, realizations of the surface ensemble.
Then the filter procedure must be implemented if a stationary surface is
desired.

In the analysis procedures, the filter-transfer function, G(κ), is prescribed
by the selected observing, sensing, or measuring instrument. If the filtered
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and unfiltered surface should hold the same power-density spectrum in the
observation bandwidth [κm, κM ], additional constraint must be enforced to
the filter function. Admissibility conditions should be satisfied to assure
that the filter does not corrupt the fBm spectrum; however, if the overall
spectral amplitude is not of interest, simpler choices are allowed. In the case
of isotropic surfaces, a wide class of admissible, commonly encountered
filters can attain the form⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

G (0) = 0

|G (κ)| < 1 ∀κ: κ < κm

|G (κ)| = 1 ∀κ: κm < κ < κM

|G (κ)| < 1 ∀κ: κ > κM

G (κ)→ 0 ∀κ: κ →∞

, (3.B.12)

being everywhere continuous and sufficiently smooth in the origin to assure
that the filter-response function g(r) has compact support or is infinitesimal
of order greater than 2H+2 for |r| → ∞. This filter function does not alter
the spectral behavior for the wave-number band of interest κm < κ < κM .
Moreover, it is convenient to select a filter-transfer function G(κ) such that
the integral of Wfilt(κ) in the transition regions, [0, κm] and [κM ,∞], is much
lower than that in the observation bandwidth [κm, κM ].

In the synthesis procedure, the shape of the filter function can be selected
to be as simple as possible: a = 1 is first set in the Equations included
in Section 3.B.3, the simple filter is implemented via Equation (3.34) and,
by recalling the result of Section 3.5.2, the filtered fBm turns out to be
stationary.
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CHAPTER 4

Analytic Formulations of
Electromagnetic Scattering

4.1. Introduction and Chapter Outline

Exact solution to the problem of electromagnetic-wave scattering must rely
on Maxwell equations together with the associate boundary conditions.
In this book, reference is made to the phasor domain, referring to time-
harmonic electromagnetic fields. Corresponding time-domain fields are
recovered taking the real part of the phasor times exp[iωt], where i = √−1,
ω = 2π f , f being the electromagnetic-wave frequency, and t the time. In
passim, the other convention exp[−iωt] is also followed in the current liter-
ature: the latter is obtained from the adopted one by changing the sign to the
imaginary unit i. This is not always an automatic procedure: for instance,
Hankel functions of second kind must be replaced by Hankel functions of
first kind.

In general, no analytic closed-form exact solution to the scattered field
is achievable for natural surfaces. Only approximate analytic solutions are
obtained by implementing some simple models for the boundary conditions
relevant to the scattering surface; different approximations lead to differ-
ent methods to evaluate the scattered field, each method holding under the
appropriate surface roughness regime. Only for very simple natural-surface
models do these approximate methods lead to an analytic closed-form
solution for the scattered field.

115
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In this chapter, the rationale for expressing the scattered field in analytic
form is presented. Starting from Maxwell equations (Section 4.2), the scat-
tering problem is formulated according to the integral-equation method
(Section 4.3), whose implementation requires a certain number of steps.
The first step is the choice of a reference system that conveniently allows
dealing with field polarization (Section 4.4); then, two frameworks are
presented where closed-form solutions to the scattering problem can be
gained. One of the frameworks is referred to as the Kirchhoff Approxima-
tion (KA) (Section 4.5), and leads to the Physical-Optics (PO) solution
(Section 4.6). The other framework is the Extended-Boundary-Condition
Method (EBCM) (Section 4.7), which leads to the Small-Perturbation
Method (SPM) (Section 4.8).

The general theoretical background is presented before any choice on
the evaluation techniques and the surface models is detailed. Hence, the
reported material is general, can be applied to any surface, and is preliminary
to the following chapters from 5 to 8: in Chapters 5 and 6, the analytic
solution is found within the KA, whereas Chapters 7 and 8 refer to EBCM.
In Chapters 5 and 7, the WM process is used to model the geometric surface;
conversely, in Chapters 6 and 8, the adopted surface geometric model is the
fBm process. Applications of presented methods to the classical surfaces
are found in several excellent books, and reference is made to them for a
full discussion.

4.2. Maxwell Equations

Electromagnetic fields are postulated to satisfy Maxwell equations. In time
domain, their differential form reads as⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∇ × e = −∂b
∂t

∇ × h = ∂d
∂t
+ j

∇ · d = ρ

∇ · b = 0

, (4.1)

wherein t [s] is the time variable, e [V/m] and h [A/m] are the electric
and magnetic fields, b [Wb/m2] and d [F/m2] the electric and magnetic
inductions, and j [A/m2] and ρ [C/m3] the electric current and charges
densities, respectively. All these functions are space-time-dependent fields.
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In the Fourier domain, Equations (4.1) specify as follows:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇ × E = −iωB
∇ ×H = iωD+ J
∇ · D = P

∇ · B = 0

, (4.2)

wherein ω = 2π f , f [s−1] being the frequency, and each field in the trans-
formed domain is indicated with the corresponding capital letter; their
dimensions are those in time domain multiplied by the dimension time.
All these functions are ω-r-dependent fields. In the phasor domain, the
sinusoidal dependence of the fields is prescribed: the same Equations (4.2)
are obtained, ω is a constant, fields depend on the position only, and their
dimensions are equal to those of the corresponding observables in time
domain.

Equations (4.2) do not include any dependence on the medium properties:
those are specified by the constitutive relations that relate inductions and
currents to the fields. For linear, time-invariant, spatially nondispersive
media, the constitutive relations usually relate each induction only to the
corresponding field. Hence, in the phasor domain, they can be expressed as
follows: ⎧⎪⎨

⎪⎩
D(r, ω) = ε(r, ω) · E(r, ω)

B(r, ω) = µ(r, ω) ·H(r, ω)

J(r, ω) = σ (r, ω) · E(r, ω)

, (4.3)

wherein ε, µ and σ are the permittivity, permeability, and conductivity of
the medium, respectively. In general, these are represented by 3×3 matrices,
and reduce to scalars whenever isotropy is invoked. In this case, Maxwell
equations take the form

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇ × E = −iωµH
∇ ×H = iωεE+ J
∇ · εE = P

∇ · µH = 0

, (4.4)

wherein the conductivity is usually included within a complex permittivity:

ε → ε − i
σ

ω
, (4.5)
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so that J and P stand only for current and charge sources. Ohmic, dielectric,
and magnetic losses are accounted for by the imaginary part of permeability
and permittivity.

4.3. The Integral-Equation Method

Solution of Maxwell equations implies managing a three-dimensional inte-
gral problem: all unknowns are defined in a volume. Whenever the space
under analysis can be decomposed in homogenous regions, this may lead
to two-dimensional integral equations whose unknowns must be evaluated
only on two-dimensional surfaces. Hence, one advantage of the surface
integral-equation method relies on reducing by a factor of 1 the problem
dimensionality, because the unknowns appear only in surface integrals.

The integral-equation method is summarized as follows. For each homo-
geneous region, the Green’s function is known. Then, in each region, the
field is expressed as the superposition of two contributions: radiation by
the (volume) sources in the region, and by equivalent surface sources at the
region interfaces. These surface sources are the problem unknowns: they
are determined by solving the surface integral equations that are obtained
by applying boundary conditions at the interfaces between different homo-
geneous regions. The procedure is quite general, and applies to a wide
set of problems: scalar as well as vector fields can be dealt with; more-
over, even for nonhomogeneous regions, surface integral equations can be
derived.

In the following paragraphs, the surface integral equations are set for the
problem of interest (see Figure 4.1): the surface S separates two regions V1

and V2, each one filled with homogeneous media; the sources are confined
in the region V1. The field scattered in the region V1 (and transmitted in the
region V2) must be computed.

For each homogeneous region, the wave equation for the electric field,
in phasor domain, is obtained by taking the curl of the first of Maxwell
Equations (4.4) and substituting the second one:

∇ × ∇ × E1(r)− ω2ε1µ1E1(r) = −iωµ1J(r), r ∈ V1 (4.6)

∇ × ∇ × E2(r)− ω2ε2µ2E2(r) = 0, r ∈ V2, (4.7)

wherein, E1,2, ε1,2 µ1,2, are the electric fields, permittivity, and permeability
in the two media, respectively. For the sake of simplicity, here and in the
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z

V1

V2

S

Figure 4.1 Geometry of the scattering problem projected onto a plane containing the
z-axis. The scattering surface S separating the two homogeneous regions V1 and V2 is
shown. The surface outgoing normal is depicted at a generic point of the surface.

following paragraphs, isotropic media are considered, so that permittivity
and permeability are represented by scalar quantities.

To proceed further, radiation from elementary sources is in order. In the
frequency domain, the field radiated at r by an elementary source s set at r′
is given by G(r−r′) ·s(r′), wherein G(r−r′) is the dyadic Green’s function.
For the two homogeneous media, the Green’s functions are defined by

∇ × ∇ × G1(r − r′)− ω2ε1µ1G1(r − r′) = Iδ(r − r′), (4.8)

∇ × ∇ × G2(r − r′)− ω2ε2µ2G2(r − r′) = Iδ(r − r′), (4.9)

wherein I is the unitary dyadic.
Solution to Equations (4.8) and (4.9) is known and of the type

G(r − r′) =
[

I+ ∇∇
k2

]
exp(−ik|r − r′|)

4π |r − r′| , (4.10)

wherein k = ω
√

εµ is the wave number of the homogeneous isotropic
space under consideration, and radiation condition at infinity has been
enforced.

Due to reciprocity, the dyadic Green’s function holds the following
relevant properties, which also can easily be verified by inspection of
Equation (4.10):

Gt(r′ − r) = G(r − r′), (4.11)

[∇ × G(r′ − r)
]t = −∇ × G(r − r′), (4.12)

the suffix t indicating the transpose matrix.
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Equations (4.6) through (4.9) must be appropriately combined and inte-
grated to obtain four relevant integral equations. This procedure is illustrated
in the following discussion.

In Equations (4.6) and (4.8), the variables r and r′ are first exchanged with
each other. Then the new Equation (4.6) is postmultiplied by G1(r′ − r),
whereas the new Equation (4.8) is premultiplied by E(r′); the differ-
ence between these two expressions is integrated over the volume V1 (see
Figure 4.2). The final result, valid ∀r ∈ V1, is the following one:

∫
V1

[∇′×∇′×E1(r′)·G1(r′−r)−E1(r′)·∇′×∇′×G1(r′−r)
]

dV ′

=−iωµ1

∫
V1

J(r′)·G1(r′−r)dV ′−E1(r), (4.13)

where the factor containing the integral at the right side of the equation
is recognized to be the incident field E(i)(r) radiated by the sources in the
volume V1:

E(i)(r) = −iωµ1

∫
V1

J(r′) · G1(r′ − r) dV ′

= −iωµ1

∫
V1

G1(r − r′) · J(r′)dV ′, (4.14)

V1

V2

z

n̂

S∞

S

Figure 4.2 Relevant to the application of the dyadic divergence theorem to the
volume V1. The region V1 is closed by means of the surfaces S and S∞. The adopted
normal is depicted at a generic point of the surface S.



4.3. The Integral-Equation Method 121

where Equation (4.11) has been accounted for. Note that in Equation (4.14)
we switch from row vectors, as in Equation (4.13), to column vectors.

The volume integral in Equation (4.13) can be transformed onto a
surface integral (see Figure 4.2) by using the dyadic Green’s theorem,
Equation (A.4.1) integrated over V1, with A = E1 and B = G1:

∫
V1

[∇′×∇′×E1(r)·G1(r′−r)−E1(r′)·∇′×∇′×G1(r′−r)
]
dV ′

=
∮

S

{[
n̂×E1(r′)

]·[∇′×G1(r′−r)
]+n̂×∇′×E1(r′)·G1(r′−r)

}
dS′.

(4.15)

Noting that (see Equation [4.12])

[∇′ × G1(r′ − r)
]t = −∇′ × G1(r − r′) = ∇ × G1(r − r′), (4.16)

Equation (4.13) transforms as follows:

E1(r) = E(i)(r)+
∮

S

{
iωµ1G1(r − r′) · [n̂×H1(r′)

]

− [∇ × G1(r − r′)
] · [n̂× E1(r)

]}
dS′, (4.17)

where the first of Equations (4.4) have been accounted for, and the integral
over S∞ has been canceled in view of the radiation conditions at infinity.
Change of the direction of the unit normal n̂ (see Figure 4.1) leads to the
first relevant equation:

E1(r) = E(i)(r)+
∫

S

{−iωµ1G1(r − r′) · [n̂(r′)×H1(r′)
]

+ [∇ × G1(r − r′)
] · [n̂(r′)× E1(r′)

]}
dS′, ∀r ∈ V1. (4.18)

In conclusion, the field in the volume V1 is represented as superposition of
that radiated by real and equivalent sources in an unbounded medium of
parameters ε1, µ1 coincident with those of the volume V1. The equivalent
sources are electric, n̂×H, and magnetic,−n̂×E, surface currents over S,
whose associate fields are computed via the appropriate Green’s functions
−iωµ1G1(r − r′) and −∇ × G1(r − r′), respectively.

The second relevant equation that holds ∀r ∈ V2 is similar to Equa-
tion (4.18), the only differences being that integration is extended to the
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V1

z

S

n̂

Figure 4.3 Relevant to the application of the dyadic divergence theorem to the
volume V2. The region V2 is closed by means of the surfaces S and S∞. The usual
normal is depicted at a generic point of the surface S.

volume V2 (see Figure 4.3) and E1 = 0 because r is outside V1:

0 = E(i)(r)+
∫

S

{−iωµ1G1(r − r′) · [n̂(r′)×H1(r′)
]

+ [∇ × G1(r − r′)
] · [n̂(r′)× E1(r′)

]}
dS′, ∀r ∈ V2, (4.19)

where the volume V2 is filled with the same material as that of the volume V1.
Similar derivations can be developed starting from Equations (4.7) and

(4.9) instead of Equations (4.6) and (4.8). The final result provides the third
and fourth relevant equations:

0 =
∫

S

{
iωµ2G2(r − r′) · [n̂(r′)×H2(r′)

]

− [∇ × G2(r − r′)
] · [n̂(r′)× E2(r′)

]}
dS′, ∀r ∈ V1, (4.20)

E2(r) =
∫

S

{
iωµ2G2(r − r′) · [n̂(r′)×H2(r′)

]

− [∇ × G2(r − r′)
] · [n̂(r′)× E2(r′)

]}
dS′, ∀r ∈ V2, (4.21)

where now both volumes V1 and V2 are filled with the material of the
volume V2.
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Physical implications of Equations (4.18) through (4.21) are now in
order.

Equation (4.18) provides the field E1(r), solution of Maxwell equations
in the volume V1, in the presence of the source field E(i)(r), verifying
radiation condition at infinity and subject to prescribed continuity condi-
tions of the tangential components n̂ × E1(r′), n̂ × H1(r′) of the field
on the boundary surface S. Similarly, Equation (4.21) provides the field,
solution of Maxwell equations in the volume V2, verifying radiation con-
dition at infinity and subject to prescribed continuity conditions of the
tangential components n̂× E2(r′), n̂×H2(r′) of the field on the boundary
surface S.

When the continuity conditions

n̂× E1(r′) = n̂× E2(r′) = n̂× E(r′),

n̂×H1(r′) = n̂×H2(r′) = n̂×H(r′),
(4.22)

on S are enforced, then the uniqueness theorem assures that the field
(E1, H1), (E2, H2) in the volumes V1, V2, respectively, are solutions to the
problem at hand, verifying Maxwell equations, radiation condition at infin-
ity, and continuity of the tangential components of the fields at the boundary
surface S. Their computation is provided by Equations (4.18) and (4.21),
once the surface fields on S are known. As already stated, these surface
fields are not independent: they must verify Maxwell equations—that is,
they are specified, in principle, by the integral Equations (4.19) and (4.20).
These are usually referred to as the electric-field integral equations; by
duality, the corresponding magnetic-field integral equations could be
obtained.

In conclusion, Equations (4.19) and (4.20) are Fredholm integral equa-
tions that define and allow, together with Equations (4.22), computation of
the surface tangential fields; these surface fields are used in Equations (4.18)
and (4.21), which allow evaluation of the scattered

E(s)(r) = E1(r)− E(i)(r),∀r ∈ V1, (4.23)

and the transmitted

E(t)(r) = E2(r),∀r ∈ V2, (4.24)

fields, respectively.
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Equations (4.18) through (4.21) have been mathematically derived start-
ing from Maxwell equations and using some theorems of dyadic calculus.
But they can also be interpreted in terms of the equivalence theorem.

First, let all the space be filled with electromagnetic material of param-
eters ε1, µ1. A (electric and magnetic) surface current distribution over
S is imposed, such that the field is equal to zero in the lower medium
and coincides with the actual field in the upper one. Application of the
equivalence theorem leads to Equations (4.18) and (4.19), where E(i)(r)
is the incident field (i.e., by definition, the unperturbed field): the scat-
tering surface must be removed, and the lower medium must be made
coincident with the upper one. If all the space is now filled with a mate-
rial of electromagnetic parameters coincident with those of the lower
medium, application of the equivalence theorem leads to Equations (4.20)
and (4.21).

Solution of the system formed by Equations (4,19), (4.20), and (4.22)
encounters several difficulties: Fredholm integral equations of the first kind
are in order because the unknowns appear only inside the integrals. Closed-
form solutions for the tangential fields over the surface are known only
in some very limited special cases, the most popular one being the planar
scattering surface. Approximate solutions are then required and are intro-
duced in this chapter. Once the electromagnetic field E, H at each point r′
of the surface is either known, postulated, measured, or somehow evalu-
ated, the associate scattered field E(s) at any observation point r ∈ V1 is
given by

E(s)(r) =
∮

S

{−iωµ1G1(r − r′) · [n̂×H(r′)
]

+ [∇ × G1(r − r′)
] · [n̂× E1(r)

]}
dS′, (4.25)

and similarly for the volume V2.
If the observation point r is in the far-field region, then the dyadic Green

function simplifies as

G1(r, r′) =
[
I− k̂sk̂s

] exp(−ikr)

4πr
exp(iks · r′), (4.26)

wherein the unit vector k̂s defines the observation direction (see the next
section). Hence, the scattered far field along the observation direction k̂s
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can be obtained by substituting Equation (4.26) in Equation (4.25):

E(s)(r)=− ik exp(−ikr)

4πr
(I−k̂sk̂s)

·
∫

S

{
k̂s×

[
n̂×E(r′)

]+ζ1
[
n̂×H(r′)

]}
exp(iks ·r′)dS′, (4.27)

where ζ1 = √µ1/ε1 is the intrinsic impedance of the upper medium.
If expressions obtained in this section are to be applied to a finite part of the

surface, as is the case in remote-sensing application, their validity must be
judged with respect to the transmitting-antenna and receiving-antenna pat-
terns. As a matter of fact, some considerations could lead to safely applying
previous results in case of a surface of finite extent.

4.4. Incident and Scattered-Field Coordinate-Reference
Systems

The geometry of the problem is shown in Figure 4.4, wherein a Cartesian
(O, x, y, z) and a polar (O, r, ϑ , ϕ) reference system are introduced; without
loss of generality, the z = 0 plane is chosen coincident with the natural-
surface mean-plane.

y

O

z

x

θi

θs

ϕs

r

Figure 4.4 Cartesian and polar reference systems relevant to the scattering surface.
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z

ki
ˆ

hi
ˆ

viˆ ks
ˆ

hs
ˆ

v̂s

Figure 4.5 Incident and scattered reference frames. Incidence and scattering angles
are referred to the z-axis, which is orthogonal to the surface mean plane.

Plane-wave superposition can be used to express any incident field: hence,
without loss of generality, the incident field is taken to be a single plane
wave propagating along the direction k̂i, identified by the incidence angle
ϑi over the mean plane and lying in the half plane (x ≤ 0, y = 0) (see
Figure 4.5):

{
E(i) = p̂Ep exp(−iki · r)

H(i) = k̂i × E(i)/ζ1

{
ki = kk̂i = x̂k sin ϑi − ẑk cos ϑi = ω

√
ε1µ1k̂i

ζ1 = √µ1/ε1

, (4.28)

where the unit vector p̂ describes the polarization of the incident field.
It is convenient to introduce the incident-field polarization reference

frame (ĥi, v̂i, k̂i):
⎧⎪⎪⎨
⎪⎪⎩

ĥi = ẑ× k̂i∣∣ẑ× k̂i
∣∣ = ŷ

v̂i = k̂i × ĥi = x̂ cos ϑi + ẑ sin ϑi

, (4.29)

where ẑ and k̂i define the mean plane of incidence, x = 0, with respect to
the surface mean plane z = 0 (see Figure 4.5, specified to the case ϕs = 0).
Then p̂ = ĥi orthogonal to the mean plane of incidence calls for horizontal
(H, TE, or perpendicular) polarization, whereas the polarization is vertical
(V, TM, or parallel) if p̂ = v̂i.
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Now consider the field scattered in the far-field region along the
generic scattering direction k̂s identified by the scattering angles ϑs

and ϕs:{
E(s) = q̂Eq exp(−iks · r)

H(s) = k̂s × E(s)/ζ1{
ks = kk̂s = x̂k sin ϑs cos ϕs + ŷk sin ϑs sin ϕs + ẑk cos ϑs

, (4.30)

where the unit vector q̂ describes the polarization of the scattered field.
As for the incident field, it is convenient to introduce the scattered-field
polarization frame (ĥs, v̂s, k̂s):⎧⎪⎪⎨

⎪⎪⎩
ĥs= ẑ×k̂s∣∣ẑ×k̂s

∣∣ =−x̂sinϕs+ŷcosϕs

v̂s= k̂s×ĥs=−x̂cosϑs cosϕs−ŷcosϑs sinϕs+ ẑsinϑs

, (4.31)

so that parallel and perpendicular components of the scattered field can be
similarly defined.

Incident field and scattered fields can then be expressed in their polariza-
tion frames:⎧⎪⎪⎨
⎪⎪⎩

E(i)=
[
(p̂·v̂i)v̂i+(p̂·ĥi)ĥi

]
Ep exp(−iki ·r′)=E(i)

v v̂i+E(i)
h ĥi

H(i)=
[
−(p̂·v̂i)ĥi+(p̂·ĥi)v̂i

] Ep

ζ1
exp(−iki ·r′)= 1

ζ1
k̂i×E,

(4.32)

⎧⎪⎪⎨
⎪⎪⎩

E(s)=
[
(p̂·v̂s)v̂s+(p̂·ĥs)ĥs

]
Eq exp(−iks ·r)=E(s)

v v̂s+E(s)
h ĥs

H(s)=
[
−(p̂·v̂s)ĥs+(p̂·ĥs)v̂s

] Eq

ζ1
exp(−iks ·r)= 1

ζ1
k̂s×E(s).

(4.33)

By definition, the scattering problem consists of computing the scattered
field whenever the incident one and the media have been prescribed. In
the far-field region, the solution can be formally organized in terms of
the scattering matrix S, relating parallel and perpendicular components of
incident and scattered fields:

E(s) = − ik

4πr
exp(−ikr)S · E(i), (4.34)
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i.e.,
∣∣∣∣∣
E(s)

v

E(s)
h

∣∣∣∣∣ = −
ik

4πr
exp(−ikr)

∣∣∣∣Svv Svh

Shv Shh

∣∣∣∣ ·
∣∣∣∣∣
E(i)

v

E(i)
h

∣∣∣∣∣ , (4.35)

where the scalar coefficient before the scattering matrix is a convenient
normalization factor.

In this chapter, preliminary steps to get the scattering matrix are
referred to.

4.5. The Kirchhoff Approximation

The Kirchhoff approximation provides an estimate of the scattered field
tangent to the surface in terms of the incident one: the scattered tangential
field at each point of the surface is evaluated by locally approximating the
surface with its tangent plane. For each point, the local incidence angle
is evaluated with reference to the local tangential plane; hence, for rough
surfaces, the tangential plane changes over the surface according to the
local normal n̂. Thus, KA provides a dramatic simplification in the integral-
equation approach: the surface integral equations are no longer necessary,
because, in this framework, the surface fields in Equations (4.18) and (4.21)
are evaluated with reference to the locally tangent planes: whenever a
plane wave is incident over a plane discontinuity, the Fresnel coefficients
directly relate, over the discontinuity, scattered and incident tangential
fields.

Evaluation of the tangential field over a rough surface under KA is now
in order.

It is convenient to introduce for each point of the scattering surface the
local incident-field-polarization reference frame (ĥl, v̂l, k̂i) (see Figure 4.6):

⎧⎪⎪⎨
⎪⎪⎩

ĥl = n̂× k̂i∣∣n̂× k̂i
∣∣

v̂l = k̂i × ĥl

, (4.36)

where n̂ and k̂i define the local plane of incidence. These unit vectors
are defined similarly to those in Section 4.4, Equations (4.29), but they
coincide with them only if n̂ ≡ ẑ. It is noted that (ĥi, v̂i) are constant
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kl
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ˆ

n̂
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ˆ

Figure 4.6 Local reference frame. Incidence and scattering angles are referred to the
normal to the surface, which is orthogonal to the local surface tangent plane.

unit vectors, at variance of (ĥl, v̂l) which are space dependent over the
surface.

The electromagnetic field incident over the surface can now be decom-
posed onto its local perpendicular and parallel components:

E(i)=
[
(p̂·v̂l)v̂l+(p̂·ĥl)ĥl

]
Ep exp(−iki ·r′)

H(i)= 1

ζ1
k̂i×E(i)=

[
−(p̂·v̂l)ĥl+(p̂·ĥl)v̂l

] Ep

ζ1
exp(−iki ·r′),

(4.37)

which formally coincide with Equations (4.32), but for the new local
reference frame.

To proceed further, the local Fresnel reflection coefficients for perpen-
dicular and parallel polarization are needed.

Two media of (possibly complex) permittivity and permeability ε1, ε2,
µ1, µ2, respectively, separated by the surface S, are considered. The field
is incident from the upper medium. The Fresnel reflection coefficients for
the two polarizations are

Rh =
µ2
√

ε1µ1 cos θl − µ1

√
ε2µ2 − ε1µ1 sin2 θl

µ2
√

ε1µ1 cos θl + µ1

√
ε2µ2 − ε1µ1 sin2 θl

, (4.38)

Rv =
ε2
√

ε1µ1 cos θl − ε1

√
ε2µ2 − ε1µ1 sin2 θl

ε2
√

ε1µ1 cos θl + ε1

√
ε2µ2 − ε1µ1 sin2 θl

, (4.39)
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where θ l is the local incidence angle defined by

cos θl = −n̂ · k̂i. (4.40)

Fresnel coefficients as given by Equations (4.38) and (4.39) refer to
the tangential component of the electric field. To get the corresponding
coefficient for the magnetic field, only a minus sign must be added.

The more common case pertinent to natural surfaces is considered—
that is, propagation in free space, and incidence on a homogeneous
medium whose complex relative permittivity is εr and whose permeabil-
ity coincides with that of the free space. Equations (4.38) and (4.39)
simplify:

Rh = cos ϑl −
√

εr − sin2 ϑl

cos ϑl +
√

εr − sin2 ϑl

, (4.41)

Rv = εr cos ϑl −
√

εr − sin2 ϑl

εr cos ϑl +
√

εr − sin2 ϑl

. (4.42)

This is the case from now on.
As already anticipated, the scattered field tangent to the surface is taken

proportional to the incident one via the Fresnel reflection coefficients:

n̂× (E(s) · ĥl)ĥl = Rhn̂× (E(i) · ĥl)ĥl

n̂× (E(s) · v̂l)v̂l = Rvn̂× (E(i) · v̂l)v̂l

. (4.43)

It is convenient to express the normal unity vector n̂ in terms of the surface
slopes α and β, which are directly related to the surface profile:

n̂(r′) = −αx̂ − βŷ+ ẑ√
1+ α2 + β2

, (4.44)

wherein

α = ∂z′(x′, y′)
∂x′

, β = ∂z′(x′, y′)
∂y′

. (4.45)

Hence, enforcing KA, the total field tangent to the surface is expressed in
terms of the incident one and of the surface geometric and electromagnetic
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parameters as

n̂×E(r′)= n̂×E(i)(r′)+n̂×E(s)(r′)

=
[
(p̂·v̂l)(n̂×v̂l)(1+Rv)+(p̂·ĥl)(n̂×ĥl)(1+Rh)

]

×Ep exp(−iki ·r′)

n̂×H(r′)= n̂×H(i)(r′)+n̂×H(s)(r′)

=
[
(p̂·ĥl)(n̂×v̂l)(1−Rh)−(p̂·v̂l)(n̂×ĥl)(1−Rv)

]

× Ep

ζ0
exp(−iki ·r′),

(4.46)

where ζ0 is the free-space intrinsic impedance.
In the far-field region, Equation (4.27) can be used, and the scattered field

can be conveniently expressed as

E(s)(r)=− ik exp(−ikr)

4πr
Ep(I−k̂sk̂s)·

∫∫
A

Fp(α,β)exp
[−i(ki−ks)·r′

]
dA′,

(4.47)

where r = [x, y, z(x, y)], A = XY is the illuminated area S projected onto
the (x, y) plane, and

Fp(α, β) =
{

(p̂ · v̂l)
[
k̂s × (n̂× v̂l)

]
(1+ Rv)+ (p̂ · ĥl)

[
k̂s × (n̂× ĥl)

]

(1+ Rh)+
[
(p̂ · ĥl)(n̂× v̂l)(1− Rh)

− (p̂ · v̂l)(n̂× ĥl)(1− Rv)
]}√

1+ α2 + β2. (4.48)

In Equation (4.48), the square root accounts for the Jacobian of the
transformation of the integration variables from S onto A.

In conclusion, KA allows us to express the scattered field in terms of the
incident one and of the surface shape: it is not necessary to solve the sur-
face integral equations, and computation of the scattered field in closed form
requires only evaluation of the integral in Equation (4.47). However, this
evaluation is not straightforward. As a matter of fact, the vector function,
Fp(·) in Equation (4.48) exhibits an involved dependence on the surface
profile; evaluation of the integral in Equation (4.47) can be obtained in
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closed form only for very limited geometric deterministic shapes of scatter-
ing bodies. In the case of rough surfaces, appropriate approximations are
explored to get a closed-form solution for the scattered field. Rationale for
these approximations is presented in the next section.

4.6. Physical-Optics Solution

Within KA, further approximations lead to closed-form analytic solutions
for the scattered field (see Equations [4.47] and [4.48])—namely, Geometric
Optics (GO) and Physical Optics (PO).

GO makes use of an asymptotic expansion of the integral in
Equation (4.47), valid in the so-called high-frequency regime, whose occur-
rence in conjunction with fractal models for the scattering surface may be
questionable. As a matter of fact, fractal surfaces are rough at any scale,
whereas GO solution requires the surface to appear smooth as the electro-
magnetic frequency increases. Hence, GO solution is not explored here,
even if in the following chapters some high-frequency-regime solutions are
presented.

Alternatively, PO makes use of a series expansion of the function Fp(α, β)
in Equation (4.48) in terms of the surface local slopes α and β:

Fp(α, β) = Fp(0, 0)+ ∂Fp(α, β)

∂α

∣∣∣∣
0,0

α + ∂Fp(α, β)

∂β

∣∣∣∣
0,0

β + · · · (4.49)

The small-slope-regime solution is obtained in case only the zero-
order term of the series is retained; this term is constant with respect to
the surface slope. Differently stated, within the small-slope regime, in
Equation (4.49), the normal to the surface becomes coincident with the
z-axis—namely, n̂ ≡ ẑ. It follows that Fp(·) becomes independent on the
surface corrugations, at variance of the exponential term within the inte-
gral in Equation (4.47), where this dependence is retained. This approach
is also a preliminary step toward higher-order solutions that can be recov-
ered, from the small-slope-regime one, by retaining higher-order terms in
Equation (4.49) and proceeding via integration by parts of the integral in
Equation (4.47).

It is convenient to introduce the polarization-dependent scalar compo-
nent Fpq(·):

Fpq(ϑi, ϑs, ϕs) = q̂ · [(I − k̂sk̂s) · Fp(0, 0)
]
, (4.50)
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where the functional dependence on the incident and scattering angles
over the mean plane has now been highlighted. This dimensionless scalar
function, Fpq(·), can be evaluated in the small-slope regime by means of
Equation (4.49), with α = β = 0, n̂ ≡ ẑ, leading to simple expressions
for Fpq(·) that depend on the Fresnel reflection coefficients over the mean
plane, on the incidence and scattering angles, and on the polarizations of
the incident wave (p) and the receiving antenna (q):

Fhh (ϑi, ϑs, ϕs) = [−(1+ Rh0) cos ϑs + (1− Rh0) cos ϑi] cos ϕs

Fhv (ϑi, ϑs, ϕs) = [(1+ Rh0)− (1− Rh0) cos ϑi cos ϑs] sin ϕs

Fvh
(
ϑi, ϑs,ϕs

) = [(1+ Rv0) cos ϑi cos ϑs − (1− Rv0)] sin ϕs

Fvv (ϑi, ϑs, ϕs) = [−(1− Rv0) cos ϑs + (1+ Rv0) cos ϑi] cos ϕs

. (4.51)

In Equations (4.51), Rv0 and Rh0 are the (parallel and perpendicular) Fresnel
reflection coefficients evaluated from Equations (4.41) and (4.42) by setting
ϑl = ϑi,—that is, by making the incidence angle coincident with that over
the mean plane.

It is concluded that in the far-field region, PO solution, in the small-slope
regime, leads to the following expressions for the entries of the scattering
matrix:

Spq = Fpq(ϑi, ϑs, ϕs)
∫∫

A
exp(−iη · r′)dA′, (4.52)

where (p, q) may take any value (h, v), and η = ki−ks is the vector whose
components in the reference (x, y, z) plane are given by⎧⎪⎨

⎪⎩
ηx = k(sin ϑi − sin ϑs cos ϕs)

ηy = −k sin ϑs sin ϕs

ηz = −k(cos ϑi + cos ϑs)

. (4.53)

In Equation (4.53), all angles are referred to the scattering mean plane as
illustrated in Figure 4.4.

In the small-slope expansion, the surface profile is still included in the
exponential term r′ inside the diffraction integral. Hence, getting closed-
form solutions for the scattered field requires that the surface geometric
shape must be considered in the argument of the exponential inside the
integral in Equation (4.47). This is done in Chapter 5 for WM, and in
Chapter 6 for fBm fractal surfaces, respectively. In the former case, the
surface is described by a predictable stochastic process, and the scattered
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field is evaluated as a predictable stochastic process as well; in the latter
case, the surface is described by a regular stochastic process, and the
scattered field is evaluated as a regular stochastic process. For classical
surfaces, the only viable closed-form solution can be obtained for the regu-
lar stochastic-process description of the surface shape; hence, comparison
between the scattered field evaluated starting from classical- and fractal-
surface models is presented only in Chapter 6, where regular stochastic
processes are accounted for.

4.7. Extended-Boundary-Condition Method

A different approach to addressing the surface integral equation is provided
by the Extended-Boundary-Condition Method (EBCM).

Equations (4.19) and (4.20) are now examined, where the equivalent
sources n̂×H1 = n̂×H2 = n̂×H, n̂×E1 = n̂×E2 = n̂×E, are present,
(E, H) being the (unknown) actual fields over the surface S separating the
two media (see Equations [4.22]). It is convenient to introduce the vector
unknowns

a(r′⊥)dr′⊥
�= ζ1n̂(r′)×H1(r′)dS′ = ζ1n̂(r′)×H2(r′)dS′

b(r′⊥)dr′⊥
�= n̂(r′)× E1(r′)dS′ = n̂(r′)× E2(r′)dS′

, (4.54)

where r′⊥ = x′x̂+ y′ŷ, and dr′⊥ = dxdy is the projection of dS′ orthogonal
to the z-axis, so that the Jacobian of the transformation from S to the surface
mean plane is accounted for. These unknowns are related to the magnetic
and electric tangential fields, respectively, are appropriately normalized,
and take into account the Jacobian of the transformation from the surface
integral in dS′ to the double integral in dr′⊥. It also turns out that a and b
are both measured in V·m.

Substitution of Equations (4.54) into Equations (4.19) and (4.20)
leads to⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0=E(i)(r)+∫S

{−ik1G1(r−r′)·a(r′)

+[∇×G1(r−r′)
]·b(r′)

}
dr′⊥ ∀r∈V2

0=∫
S

{
ik2G2(r−r′)·a(r′)−[∇×G2(r−r′)

]·b(r′)
}

dr′⊥ ∀r∈V1

,

(4.55)
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and substitution into Equations (4.18) and (4.21) leads to⎧⎪⎪⎨
⎪⎪⎩

E1(r)=E(i)(r)+∫S

{−ik1G1(r−r′)·a(r′)

+[∇×G1(r−r′)
]·b(r′)

}
dr′⊥ ∀r∈V1

E2(r)=∫
S

{
ik2G2(r−r′)·a(r′)−[∇×G2(r−r′)

]·b(r′)
}

dr′⊥ ∀r∈V2

.

(4.56)

Equations (4.55) form a system of two integral equations to determine
the unknown vectors a, b; then Equations (4.56) are used to compute the
scattered and, if required, the transmitted fields. A further manipulation of
Equations (4.55) and (4.56) is convenient to render the solution of the system
more easy and to facilitate straightforward computation of the scattered
field.

Up to this point, two Green’s dyadics have been introduced: G1(·) and
G2(·), where the lower index specifies the (unbounded) medium, (ε1, µ1)
and (ε2, µ2), where the dyadics are defined. It is now convenient to rep-
resent these dyadics by means of their spectral form. In this case, a single
expression for each dyadic is not available, and it is convenient to introduce
different Green’s dyadics individuated by an additional upper index G+1 (·),
G−1 (·), G+2 (·) and G−2 (·). At variance of the previous ones, these dyadics
hold spectral representations that satisfy radiation condition at z → +∞,
upper index plus, or z → −∞, upper index minus. The reason for this
choice is the convenience of expressing the Green’s functions by means of
their plane-wave expansion:

G±1
(
r − r′

) = −ẑẑ
δ
(
r − r′

)
k2

1

− i

8π2

∫ +∞

−∞
dk⊥

1

k1z

[
v̂±1 v̂±1 + ĥ±1 ĥ±1

]

exp
[−i

(
k⊥ ± k1zẑ

) · (r − r′
)]

, (4.57)

G±2
(
r − r′

) = −ẑẑ
δ
(
r − r′

)
k2

2

− i

8π2

∫ +∞

−∞
dk⊥

1

k2z

[
v̂±1 v̂±1 + ĥ±1 ĥ±1

]

exp
[−i

(
k⊥ ± k2zẑ

) · (r − r′
)]

, (4.58)

where k1,2 = kxx̂+kyŷ+k(1,2)zẑ, k2
1,2 = k2

x+k2
y+k2

(1,2)z and k⊥ = kxx̂+kyŷ.
In Equations (4.57) and (4.58), the other unit vectors⎧⎪⎨

⎪⎩
ĥ+ = ẑ× k̂

|ẑ× k̂|
v̂+ = k̂ × ĥ+

(4.59)
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and ⎧⎪⎨
⎪⎩

ĥ− = ĥ+

v̂− = (k⊥ − kzẑ)

k
× ĥ−

(4.60)

are present, and define the orthonormal systems
(

ĥ+, v̂+, (k⊥+kz ẑ)
k

)
and(

ĥ−, v̂−, (k⊥−kz ẑ)
k

)
with I = (k⊥+kz ẑ)

k
(k⊥+kz ẑ)

k + v̂+v̂+ + ĥ+ĥ+ =
(k⊥−kz ẑ)

k
(k⊥−kz ẑ)

k + v̂−v̂− + ĥ−ĥ−. Equations (4.57) and (4.58) provide
fields radiated by elementary sources that are located on the scattering sur-
face and radiate in an unbounded homogeneous medium toward z →±∞,
depending on the choice of their upper and lower indexes. The total field is
expressed in terms of a continuous superposition of horizontally and verti-
cally polarized (with respect to the mean surface plane, z = 0) plane waves
whose wavevectors are provided by k.

Use of the Green’s functions in Equations (4.55) and (4.56) requires
specification of their indexes. But a problem must be faced (see Figure 4.7),
depending on the position of point r. Let zM , zm be the appropriate coor-
dinate along the z-axis such that all the shape of the surface is included
within them. Then, specification of Equations (4.55) to r(Q2) requires use
of only the Green’s function G−1 (·), where reference is made to the first of
Equations (4.55), because Q2 lies in V2. And similarly for r(Q1), where the

z

zm

zM

Q1(rQ1
)

Q2(rQ2
)

P(rP)zP

Figure 4.7 Relevant to the use of the Green’s function in the EBCM. Homogeneous
regions are defined by z < zm and z > zM .
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appropriate function is G+2 (·). This is at variance of point r(P), where G+1 (·)
must be used for z′ < zp, and G−1 (·) for z′ > zp. This is very inconvenient
for subsequent manipulation of Equations (4.55) and (4.56).

Use of the EBCM implies an approximation: to enforce Equa-
tions (4.55)—not over the full upper and lower spaces, respectively, but
only for z > zM and z < zm. Accordingly, it is not guaranteed that the
equations are verified in the strip between the coordinates (zM , zm).

Substitution of Equations (4.57) and (4.58) into Equations (4.55)
leads to

E(i)(r)= 1

8π2

∫ +∞

−∞
dk⊥ exp

[−i(k⊥−k1zẑ)·r]

k1

k1z

∫ +∞

−∞
dr′⊥ exp

[
i(k⊥−k1zẑ)·r′]

{[
v̂−1 v̂−1 +ĥ−1 ĥ−1

]
·a(r′⊥)+

[
ĥ−1 v̂−1 −v̂−1 ĥ−1

]
·b(r′⊥)

}
, ∀r∈V2,

(4.61)
0= 1

8π2

∫ +∞

−∞
dk⊥ exp

[−i(k⊥+k2zẑ)·r]

k2

k2z

∫ +∞

−∞
dr′⊥ exp

[
i(k⊥+k2zẑ)·r′]

{
k1

k2

[
v̂+2 v̂+2 +ĥ+2 ĥ+2

]
·a(r′⊥)+

[
ĥ+2 v̂+2 −v̂+2 ĥ+2

]
·b(r′⊥)

}
, ∀r∈V1.

(4.62)

Equations (4.61) and (4.62) must be solved in terms of the surface tan-
gential fields, a and b. Then it is possible to express the scattered field in
the upper medium:

E(s)(r)=E(r)−E(i)(r)

=− 1

8π2

∫ +∞

−∞
d2k⊥ exp

[−i(k⊥+k1zẑ)·r]

k1

k1z

∫ +∞

−∞
d2r′⊥ exp

[
i(k⊥+k1zẑ)·r′]

{[
v̂+1 v̂+1 +ĥ+1 ĥ+1

]
·a(r′⊥)+

[
ĥ−1 v̂−1 −v̂−1 ĥ−1

]
·b(r′⊥)

}
(4.63)
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and the transmitted field in the lower medium:

E(t)(r) = 1

8π2

∫ +∞

−∞
d2k⊥ exp

[−i(k⊥ − k2zẑ) · r]

k2

k2z

∫ +∞

−∞
d2r′⊥ exp

[
i(k⊥ − k2zẑ) · r′]

{
k1

k2

[
v̂−2 v̂−2 + ĥ−2 ĥ−2

]
· a(r′⊥)+

[
ĥ+2 v̂+2 − v̂+2 ĥ+2

]
· b(r′⊥)

}
,

(4.64)

wherein Equations (4.56) have been used.
A closed-form solution for the scattered field can be obtained by appro-

priately expanding the incident-, scattered-, and unknown-surface fields
whose tangential components are a and b (see Section 4.8). For periodic
surfaces, these expansions allow us to get closed-form solution for the
scattered-power density. Conversely, in the case of fractal-surface models,
the scattered field can be evaluated in an appropriate closed form that
requires only numerically solving an algebraic system of equations: this
is done in Chapter 7.

4.8. Small-Perturbation Method

A formal evaluation of the equations derived in the EBCM approach is
necessary to address the SPM solution.

It is convenient to separate the z-component of the unknowns, a and b,
from the transverse ones:

a(r′⊥) = a⊥r̂′⊥ + azẑ

b(r′⊥) = b⊥r̂′⊥ + bzẑ
; (4.65)

Unknowns a and b are both tangent to the rough surface whose (local)
normal is n̂(r′⊥) (see Equations [4.54]); then it follows that

n̂(r′⊥) · a(r′⊥) = 0

n̂(r′⊥) · b(r′⊥) = 0
. (4.66)
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Equations (4.66) state that the unknown z-components can be expressed
by means of the transverse ones:

az(r′⊥) =
(

x̂
∂z′(r′⊥)

∂x′
+ ŷ

∂z′(r′⊥)

∂y′

)
· a⊥(r′⊥) (4.67)

bz(r′⊥) =
(

x̂
∂z′(r′⊥)

∂x′
+ ŷ

∂z′(r′⊥)

∂y′

)
· b⊥(r′⊥) (4.68)

It is concluded that four scalar unknowns must be evaluated, while the six
scalar (integral) Equations (4.61) and (4.62) should be enforced. This appar-
ent paradox is resolved by noting that in each one of the two homogeneous
media, z > zM and z < zm, the z-component of the electric field may be
expressed as a function of the transverse one. Accordingly, two independent
(vector) equations are obtained by projection of Equations (4.61) and (4.62)
onto the transverse plane.

Different techniques to solve Equations (4.54), (4.61), and (4.62) in terms
of a and b can be employed. Among these techniques, a popular one is
the Small-Perturbation Method (SPM), whose rationale is described in this
section.

The SPM requires that the exponential terms in the integrals in Equa-
tions (4.61) and (4.62) are expanded in power series for small values
of kzz′:

exp
[±ikzz

′(r′⊥)
] =

∞∑
m=0

[±ikzz′(r′⊥)
]m

m! , (4.69)

exp
[±ik1zz

′(r′⊥)
] =

∞∑
m=0

[±ik1zz′(r′⊥)
]m

m! . (4.70)

Each term of Series (4.69) and (4.70) leads to a corresponding-order solution
for the SPM. More explicitly, the m-th term in Equations (4.69) and (4.70)
leads to the m-th-order solution. Then the complete solution for the SPM is
obtained via an appropriate series expansion of the unknowns a and b:

a
(
r′⊥
) =

∞∑
m=0

a(m)
(
r′⊥
)
, (4.71)

b
(
r′⊥
) =

∞∑
m=0

b(m)
(
r′⊥
)
, (4.72)
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where a(m) and b(m) are the m-th order solution for a and b, respectively.
A discussion about the correct order implementation is in order.

Examination of Equations (4.67) and (4.68) shows that the z-components
of a and b are of higher order compared to the transverse ones, if the small-
slope assumption for the scattering surface is enforced. Accordingly, it is
possible to assume that

a(0)
z (r′⊥) = 0, b(0)

z (r′⊥) = 0, (4.73)

at the order m = 0. By implementing this recursive approach at any order
m ≥ 1, it turns out that

a(m)
z (r′⊥) =

(
x̂
∂z′(r′⊥)

∂x′
+ ŷ

∂z′(r′⊥)

∂y′

)
· a(m−1)
⊥ (r′⊥), (4.74)

b(m)
z (r′⊥) =

(
x̂
∂z′(r′⊥)

∂x′
+ ŷ

∂z′(r′⊥)

∂y′

)
· b(m−1)
⊥ (r′⊥). (4.75)

It is important to remark that in the small-slope expansion, the surface
profile is still included in the exponential term r′ under the diffraction inte-
gral. Hence, to get closed-form solution for the scattered field, the surface
geometric shape has to be introduced in Equation (4.63). This is done in
Chapter 7 for WM fractal surfaces, and in Chapter 8 for fBm surfaces. In
the first case, being the surface described by a regular stochastic process,
the scattered field is evaluated as a regular stochastic process; in the second
one, being the surface described by a predictable stochastic process, the
scattered field is evaluated as a predictable stochastic process. For classical
surfaces, the only viable closed-form solution can be obtained for the regu-
lar stochastic-process description of the surface shape; hence, comparison
with scattered fields evaluated starting from surface fractal models can only
be made with the material appearing in Chapter 8.

4.9. References and Further Readings

Scattering from random rough surfaces is the main subject of many books.
Fundamentals of the scattering problem are reported in any book quoted in
this section. Some relevant peculiarities are underlined here. Fundamentals
on scattering theory are pioneered in the work of Beckmann and Spizzichino
(1987). A study by Ulaby, Moore, and Fung (1982) presents the scattering
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theory underlying KA and SPM, along with fundamentals on electromag-
netic theory and microwave remote-sensing sensors and applications. Chew
(1995) derives the integral equation for the scalar as well as the vectorial
case of interest in electromagnetics. The work of Tsang, Kong, and Shin
(1985) reports EBCM along with the Rayleigh interpretation. The integral-
equation method is illustrated by Fung (1994). In Chew’s book, as well as
in a study by Ishimaru (1993), the theory for propagation in random media
is the main topic.
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CHAPTER 5

Scattering from
Weierstrass-Mandelbrot Surfaces:

Physical-Optics Solution

5.1. Introduction and Chapter Outline

In this chapter, a closed-form PO solution in the small-slope regime under
KA is obtained for the electromagnetic field scattered by natural surfaces
modeled by means of the WM function.

First, the analytic derivation of the scattered field in closed form is sys-
tematically presented in Section 5.2: the main result is that the diffraction
integral defined in Chapter 4 can be evaluated in closed form whenever
the WM function is used to model the geometric features of the scattering
surface. The final formula for the scattered field deserves full attention for
understanding the physical meaning of its terms: this is done in Section 5.3,
showing that the obtained scattered-field structure can be linked to the out-
comes of the Floquet theory on scattering from periodic or almost-periodic
surfaces. Limits of validity of this scattered-field solution are presented
in Section 5.4. Dependence of the scattered field on the WM model and
electromagnetic parameters is illustrated in Section 5.5. A comment on the
statistics of the scattered field is included in Section 5.6. Key references
and suggestions for further readings are reported in Section 5.7.

143
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5.2. Analytic Derivation of the Scattered Field

Analytic evaluation of the scattered field (see Equation [4.47]) in a closed
form may be obtained in some cases if an analytic expression for the scatter-
ing surface is provided. This is the case for planar or sinusoidal surfaces and
for a few other canonical surfaces; no closed-form expression is available
for the field scattered by a natural surface modeled by means of classical
geometry, even if an analytic expression for the surface should be some-
how provided. In this chapter, natural surfaces are modeled by means of
the WM function, as shown in Chapter 3; if the natural surface is random,
then random coefficients for the WM function should be used.

As already presented in Chapter 3, let us represent the surface z(x, y)
geometric properties via a WM function:

z(x, y) = B
P−1∑
p=0

Cpν
−Hp sin

[
κ0ν

p(x cos �p + y sin �p)+�p
]
, (5.1)

wherein B [m] is the overall amplitude-scaling factor; P is the number
of tones; κ0 [m−1] is the wave number of the surface fundamental tone
(corresponding to p = 0); ν (greater than 1) is the seed of the geometric
progression that accounts for spectral separation of consecutive tones of the
surface; 0 < H < 1 is the Hurst exponent; and Cp, �p, �p are deterministic
or random coefficients that account, respectively, for amplitude, direction,
and phase of each tone.

As shown in Chapter 4, the PO solution to the KA provides the scattered
far field as

E(s)
pq (r) = − ik exp(−ikr)

4πr
EpFpq

∫∫
A

exp
[−i(ki − ks) · r′

]
dA, (5.2)

where p and q stand for transmitting and receiving polarizations of the elec-
tric field, usually taken as horizontal and vertical. The reference system is
depicted in Figure 5.1. From now on, the prime that should appear inside the
integral of Equation (5.2) is omitted for the sake of simplicity. Substitution
of Equation (5.1) in Equation (5.2) leads to

E(s)
pq (r)=− ik exp(−ikr)

4πr
EpFpq

∫
A

exp

⎧⎨
⎩i

P−1∑
p=0

up sin
[
�p(x, y)+�p

]
⎫⎬
⎭exp

{−i
[
ηxx+ηyy

]}
dA,

(5.3)
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y

O

z

x

θi

θs

ϕs

r

Figure 5.1 Geometry of the scattering problem. Cartesian and polar reference systems
relevant to the scattering surface are depicted.

wherein η = ki−ks can be expressed in the Cartesian coordinate system as

η = ki − ks = x̂k(sin ϑi − sin ϑs cos ϕs)− ŷk sin ϑs sin ϕs

+ ẑk(cos ϑi − cos ϑs) (5.4)

(see Chapter 4), and

up = −ηzBCpν
−Hp

�p(x, y) = κ0ν
p(x cos �p + y sin �p).

(5.5)

Equation (5.3) can be rewritten as

E(s)
pq (r) = − ik exp(−ikr)

4πr
EpFpq(ϑi, ϑs, ϕs)

∫
A

exp
{−i

[
ηxx + ηyy

]} P−1∏
p=0

exp
{
iup sin[�p(x, y)+�p]

}
dA,

(5.6)

where the dependence on the integration variables is too involved to allow
a closed-form solution for the scattered field. For the exponential terms,
use of the Jacobi-Anger expansion, Equation (A.5.1) with a = up and
ξ = �p + �p, leads to a more manageable expression of the integrand,
because the integration variables in the exponential function appear in linear
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instead of sinusoidal form:

E(s)
pq (r) = − ik exp(−ikr)

4πr
EpFpq(ϑi, ϑs, ϕs)

∫
A

exp
{−i

[
ηxx + ηyy

]}

P−1∏
p=0

+∞∑
m=−∞

Jm(up) exp{im[�p(x, y)+�p]} dA. (5.7)

In Equation (5.7), the integral and the product cannot be exchanged because
�p depends on the integration variables (x, y). To proceed further, it is con-
venient to take advantage of the distributive law for products and sums:
exchanging the order of summation and products in Equation (5.7) is possi-
ble, provided that the index m is replaced by P indexes mp (see Appendix A,
Equation [A.5.2], with a = up and ξ = �p + �p). Then, the product of
P series is converted in P (nested) series whose terms are the product of
P terms.

E(s)
pq (r) = − ik exp(−ikr)

4πr
EpFpq(ϑi, ϑs, ϕs)

∫
A

exp
{−i

[
ηxx + ηyy

]} +∞∑
m0=−∞

· · ·
+∞∑

mP−1=−∞⎧⎨
⎩exp

⎡
⎣i

P−1∑
p=0

mp
[
�p(x, y)+�p

]
⎤
⎦ P−1∏

p=0

Jmp(up)

⎫⎬
⎭dA. (5.8)

Equation (5.8) shows that each generic index mp is linked to the correspond-
ing p-th tone of the WM function.

Now the integral in Equation (5.8) can be split into the sum of a P-infinity
of elementary integrals:

E(s)
pq (r) = − ik exp(−ikr)

4πr
EpFpq(ϑi, ϑs, ϕs)

+∞∑
m0=−∞

· · ·
+∞∑

mP−1=−∞

⎧⎨
⎩
⎡
⎣exp

⎛
⎝i

P−1∑
p=0

mp�p

⎞
⎠ P−1∏

p=0

Jmp(up)

⎤
⎦

∫
A

exp

⎡
⎣i

P−1∑
p=0

mp�p(x, y)

⎤
⎦ exp

[−i(ηxx + ηyy)
]

dA′
⎫⎬
⎭ , (5.9)
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each one amenable to an easy evaluation in closed form. For a scattering
surface A with a rectangular projection over the mean plane z = 0, of
dimensions X and Y along (x, y), respectively, it turns out that

E(s)
pq (r)=− ik exp(−ikr)

4πr
EpFpq(ϑi,ϑs,ϕs)XY

+∞∑
m0=−∞

···
+∞∑

mP−1=−∞

⎧⎨
⎩exp

⎛
⎝i

P−1∑
p=0

mp�p

⎞
⎠ P−1∏

p=0

Jmp(−ηzBCpν
−Hp)

sinc

⎡
⎣
⎛
⎝−ηx+κ0

P−1∑
p=0

mpν
p cos�p

⎞
⎠ X

2

⎤
⎦

sinc

⎡
⎣
⎛
⎝−ηy+κ0

P−1∑
p=0

mpν
p sin�p

⎞
⎠ Y

2

⎤
⎦
⎫⎬
⎭ . (5.10)

Finally, it is convenient to highlight the scattered-field dependence on the
WM function and geometry parameters by substituting the η values in
Equation (5.10):

E(s)
pq (r)=− ik exp(−ikr)

4πr
EpFpq(ϑi,ϑs,ϕs)XY

+∞∑
m0=−∞

···
+∞∑

mP−1=−∞

⎧⎨
⎩exp

⎛
⎝i

P−1∑
p=0

mp�p

⎞
⎠

P−1∏
p=0

Jmp

[
k(cosϑi+cosϑs)BCpν

−Hp]

sinc

⎡
⎣
⎛
⎝−k(sinϑi−sinϑs cosϕs)+κ0

P−1∑
p=0

mpν
p cos�p

⎞
⎠ X

2

⎤
⎦

sinc

⎡
⎣
⎛
⎝k sinϑs sinϕs+κ0

P−1∑
p=0

mpν
p sin�p

⎞
⎠ Y

2

⎤
⎦
⎫⎬
⎭ . (5.11)

The dependence on the electromagnetic parameters is present in the Fpq(·)
function that includes the Fresnel reflection coefficients (see Chapter 4).
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In the small-slope expansion, this function does not depend on the surface
roughness (see Equations [4.51]) for the horizontal and vertical polarization,
being evaluated with reference only to the surface mean plane.

Equation (5.11) states that the electromagnetic scattered field can be
directly evaluated in terms of the WM and electromagnetic parameters as
the superposition of modes, each one being characterized by P values of
the P indexes mp. Accordingly, we have a P-infinity of scattered modes:
each radiated mode functionally appears to be generated from an appropri-
ate combination of contribution from the P tones representing the surface
roughness. The coefficients of the WM function characterize each mode:
the �ps contribute to each mode phase; the Cps contribute to the amplitude
term composed by P products of Bessel functions; the �ps contribute to the
two sinc(·) terms.

The illumination footprint and electromagnetic incident wavenumber set
the number of the tones, P, and the surface fundamental-tone wavenumber,
κ0 (see Chapter 3). These parameters, along with the value selected for the
tones spacing, ν, fix in turn the surface spectrum region accounted for by
the employed WM function, Equation (5.1). Then, according to the phys-
ical considerations reported in Chapter 3, these parameters fix the surface
spectrum region, which is actually sensed by the incident electromagnetic
field.

Finally, a comment on the higher-order statistics of the scattered field
is due: Equation (5.11) turns out to be inappropriate for evaluation of the
scattered-power density, because it does not lead to a (readable) closed-form
expression of its mean-square value.

5.3. Scattered-Field Structure

The main importance of Equation (5.11) is to analytically represent the scat-
tered field in terms of surface and sensor parameters. However, it appears
too cumbersome to establish an easy link between the scattered field and the
illumination and surface parameters. An exhaustive discussion is necessary
to shed light on the implication of Equation (5.11). Accordingly, determi-
nation of the number of modes significantly contributing to the scattered
field is in order, as well as evaluation of their amplitude, phase, and direc-
tion of propagation. As further insight, graphical results are presented for
the simpler case ψp = ϕp = 0—that is, for a surface exhibiting a fractal
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behavior along the x-axis only, and for the scattered field evaluated in the
plane y = 0.

5.3.1. Number of Modes Significantly Contributing to the
Scattered Field

Examination of the scattered modes described by Equation (5.11) is in
order. Each mode is characterized by a string of P indexes, obtained by
picking one term out of each series in Equation (5.11). For instance, in
the case P = 3, a possible string is [0, 1, 0], corresponding to the series
terms characterized by m0 = 0, m1 = 1, m2 = 0. The series terms com-
posing the chosen mode are multiplied by each other, thus generating the
overall amplitude and phase of the considered mode. A key role in any
judgment on the mode amplitude is provided by the product of the Bessel
functions appearing in Equation (5.11): its relevance is related to the Bessel
function argument up and order mp. In particular, Jmp(up) ∼= 0, as soon
as

∣∣up
∣∣ <

∣∣mp
∣∣—that is, when the absolute value of the Bessel function

index exceeds the absolute value of the Bessel function argument; this is
in agreement with existing criteria devoted to determining the bandwidth
of phase- or frequency-modulated signals. Hence, it is possible to set in
Equation (5.11)

P−1∏
p=0

Jmp[k(cos ϑi + cos ϑs)BCpν
−Hp] → 0 (5.12)

whenever

∃p : ∣∣mp
∣∣ > k(cos ϑi + cos ϑs)

∣∣BCp
∣∣ν−Hp. (5.13)

Equation (5.12) implies that any mode whose string contains at least one
index as in Equation (5.13), does not significantly contribute to the scattered
field. Hence, the quantity

∣∣up
∣∣ can be read as the (adimensional) normal-

ized roughness of the p-th tone of the surface: the higher the roughness
of tones, the larger the number of modes that significantly contribute to
the scattered field. This tone-normalized roughness depends on the surface
parameters as well as on the illumination and observation directions and the
electromagnetic-field wavelength (see Equation [5.13]): this confirms the
widespread assumption that the surface roughness must be judged by also
taking into account the adopted sensing system.
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The normalized roughness
∣∣up

∣∣ of the p-th tone increases as the p-th tone
amplitude, BCpν

−Hp, increases as well. On average, the tone’s normalized
roughness decreases with p: the higher H, the more rapid this decrease,
and fewer modes significantly contribute to the scattered field. Conversely,
the lower H, the higher the tone roughness; this result confirms what was
stated, from the geometric point of view, in Chapter 3.

The tone roughness increases as the frequency of the electromagnetic
wave increases, thus confirming the key role played by the employed
electromagnetic wavelength in any sensing instrument. In addition, the
tone roughness increases as (cos ϑi + cos ϑs) increases—that is, when-
ever the illumination and/or the observation directions approach the normal
to the surface mean plane. Conversely, surfaces appear, or are remotely
sensed as smoother, when observed at near-grazing angles. However, at
near-grazing angles, the considered PO solution to the KAis not appropriate
because surface shadowing is not taken into account.

The surface overall roughness is an important concept, intuitively related
to the tones roughness. It is reasonable that a change of quoted parameters
resulting in an increase in tones roughness will similarly increase the overall
roughness. In addition, the higher the tones roughness, the larger the number
of significant radiated modes. Accordingly, this number is the appropriate
indicator of the surface overall roughness. Therefore, it is reasonable to
identify the number of significant radiated modes with the surface overall
normalized roughness.

Evaluation of the number of significant scattered modes M is in order.
As already observed, for each index p, a negligible scattered field is obtained
if
∣∣up

∣∣ <
∣∣mp

∣∣; thus, each mp is practically upper bounded, and only
2
⌈∣∣up

∣∣⌉ + 1 choices are available for its value, where
⌈ · ⌉ indicates the

upper integer ceiling. Accordingly, the total number of significant modes,
M, is provided by the combination of the available values for each of the P
indexes mp, and is given by

M =
P−1∏
p=0

(
2
⌈∣∣up

∣∣⌉+ 1
)
, (5.14)

which clearly shows the dependence of the number of significant modes on
the normalized surface roughness

∣∣up
∣∣.

Equation (5.14) provides a first conservative evaluation of the number of
significant modes. However, the actual number is even lower, as presented
hereafter.
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For 2
∣∣up

∣∣ = 2k(cos ϑi + cos ϑs)
∣∣BCp

∣∣ν−Hp � 1,∀p, Equation (5.14)
shows that only the fundamental mode characterized by mp = 0,∀p signif-
icantly contributes to the scattered field: this mode is individuated by the
P-order string [0, 0, . . . ,0]. In this case, Equation (5.11) can be simplified,
and the scattered field is given by

E(s)
pq (r)=− ik exp(−ikr)

4πr
EpFpq(ϑi,ϑs,ϕs)XY

P−1∏
p=0

J0

[
k(cosϑi+cosϑs)BCpν

−Hp
]

sinc

[
(−k(sinϑi−sinϑs cosϕs))

X

2

]
sinc

[
(k sinϑs sinϕs)

Y

2

]
.

(5.15)

In addition, for the assumed small values of the normalized roughness,
J0(2k(cos ϑi + cos ϑs)BCpν

−Hp) ∼= 1, ∀p, and Equation (5.15) further
simplifies as

E(s)
pq (r)=− ik exp(−ikr)

4πr
EpFpq(ϑi,ϑs,ϕs)XY

sinc

[
(−k(sinϑi−sinϑs cosϕs))

X

2

]
sinc

[
(k sinϑs sinϕs)

Y

2

]
,

(5.16)

so that the scattered field is coincident with that appropriate to a flat
surface. Accordingly, those fractal surfaces whose scattered field is dom-
inated by the fundamental tone can be defined as almost flat (for that
sensing instrument and geometry). For deterministic tone-amplitude coef-
ficients and H �= 1, the condition to assess the almost-flat behavior,
2k(cos ϑi + cos ϑs)

∣∣BCp
∣∣ν−Hp� 1, ∀p, simplifies because the tone ampli-

tudes monotonically decrease with p, and reduces to enforce that 2k(cos ϑi+
cos ϑs)

∣∣BC0
∣∣� 1.

For higher values of the normalized surface roughness, more tones
significantly contribute to the scattered field; the first additional cou-
ple of modes to be included are characterized by m0 = ±1, mp = 0,
∀p �= 0, so that they are individuated by the P-order strings [1, 0, . . . , 0]
and [−1, 0, . . . , 0], respectively. Each mode within this couple exhibits
a maximum-amplitude scattered field that is lower (on the average, for
stochastic fractal surfaces) than that scattered by the specular mode,



152 5 ♦ Scattering from WM Surfaces: PO Solution

because J0[k(cos ϑi + cos ϑs)BC0] > J1[k(cos ϑi + cos ϑs)BC1ν
−H ] for

low values of the Bessel function argument. For these new modes,
Equation (5.11) simplifies, and the total scattered field is given by

E(s)
pq = −

ik exp(−ikr)

4πr
EpFpq(ϑi, ϑs, ϕs)XY

⎧⎨
⎩

P−1∏
p=0

J0

[
k(cos ϑi + cos ϑs)BCpν

−Hp
]

sinc

[
(−k(sin ϑi − sin ϑs cos ϕs))

X

2

]
sinc

[
(k sin ϑs sin ϕs)

Y

2

]

+ J1[k(cos ϑi + cos ϑs)BC0]
P−1∏
p=1

J0[k(cos ϑi + cos ϑs)BCpν
−Hp]

{
exp(i�0)sinc

[
(−k(sin ϑi − sin ϑs cos ϕs)+ κ0 cos �p)

X

2

]

sinc

[
(k sin ϑs sin ϕs + κ0 sin �p)

Y

2

]

− exp(−i�0)sinc

[
(−k(sin ϑi − sin ϑs cos ϕs)− κ0 cos �p)

X

2

]

sinc

[
(k sin ϑs sin ϕs − κ0 sin �p)

Y

2

] }}
. (5.17)

For further roughness increases, the number of modes to be considered must
be augmented by adding further mode couples.

For 2k(cos ϑi+ cos ϑs)
∣∣BCp

∣∣ν−Hp � 1,∀p, i.e., very rough surfaces, the
number of significant modes M can be approximated as

M ∼=
P−1∏
p=0

2k(cos ϑi + cos ϑs)
∣∣BCp

∣∣ν−Hp

∼= (2k(cos ϑi + cos ϑs)B)Pν
−H

∑P−1
p=0 p

= (2k(cos ϑi + cos ϑs)B)Pν−H P(P−1)
2 ,

(5.18)

wherein
∏P−1

p=0

∣∣Cp
∣∣ ∼= 1 has been assumed, which is, on the average, rea-

sonable because each factor Cp equals exactly 1 (deterministic case) or on
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the average (statistical case) (see Section 3.6). For large roughness and
ν → 1 (fBm case, see Section 3.7), the number of significant modes, M,
turns out to be approximately proportional to [k(cos ϑi + cos ϑs)B]P— that
is, with a power law with the number of tones. Because M has been identified
as the surface-roughness indicator, it turns out that the surface roughness
dramatically increases with the number of tones.

5.3.2. Mode Directions of Propagation

The role of sinc(·) functions appearing in Equation (5.11) is in order. These
functions provide (but for the Fpq(·) factor) the spatial distribution of
the electromagnetic field for each mode: the smaller the sinc(·) function
argument, the larger the radiated field. If the condition

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k sin ϑs cos ϕs = k sin ϑi − κ0

P−1∑
p=0

mpν
p cos �p

k sin ϑs sin ϕs = −κ0

P−1∑
p=0

mpν
p sin �p

(5.19)

is enforced, the sinc(·) functions attain their maximum (unitary) value.
However, it is not granted that this value can be reached for (ϑs, ϕs) angles
in the real space. Accordingly, modes may be divided into two categories:
localized ones and diffused ones.

The localized modes are those whose argument of the sinc(·) functions
may reach or be close to zero in the real (angular) region. This condition
specifies a direction of propagation, as well as the main lobe of radiation.

On the other side, the diffused modes appear via the lateral lobes of
the sinc(·) functions argument in the real (angular) region. The direc-
tion of propagation is difficult to individuate; in addition, the amplitude
of the modes may be significantly lowered, so that the effective number
of significant modes turns out to be smaller—or even much smaller—
than the number provided by Equations (5.14). The main role in this
decrease of the number of significant modes is played by the quantities

κ0/k
(∑P−1

p=0 mpν
p cos �p

)
, κ0/k

(∑P−1
p=0 mpν

p sin �p

)
.

And examination of Equations (5.19) shows that an increase in the above
quantities tends to move the corresponding mode in the side-lobe region of
the sinc(·) function.
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Direct expressions for the scattering angles ϑs, ϕs can be easily obtained
by squaring and summing up Equations (5.19):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sinϑs=
√√√√
[

sinϑi− κ0

k

P−1∑
p=0

mpνp cos�p

]2

+
(κ0

k

)2
(

P−1∑
p=0

mpνp sin�p

)2

,

Re[ϑs]∈ [0,π /2]

tanϕs=
κ0

k

∑P−1
p=0 mpν

p sin�p

κ0

k

∑P−1
p=0 mpνp cos�p−sinϑi

, Re[ϕs]∈ (−π ,π ] .

(5.20)

Inspection of Equations (5.20) shows possible appearance of complex
values of ϑs.

It is noted that Equations (5.20) provide values of the couples (ϑs, ϕs)
that are not necessarily solutions of Equations (5.19), due to the performed
squaring operation. This ambiguity is resolved by verifying that each couple
from Equations (5.20) is a solution of Equations (5.19).

For almost-flat surfaces (mp = 0,∀p), only one scattered mode is present,
whose propagation direction turns out to be coincident with the specular one
(ϑs = ϑi, ϕs = 0).

For increasing surface roughness, further couples of modes contribute
significantly to the scattered field; the two modes belonging to the same cou-
ple do not generally propagate along symmetrical directions with respect
to the specular mode: symmetry is recovered along ϑ only for normal
incidence (ϑi = 0), and along ϕ for y-directed surface tones (�p =
±π /2).

As anticipated, numerical results become easier to read if the one-
dimensional fractal surface along the x-axis and the field scattered in the
plane y = 0 are considered. In the following discussion, this surface is
modeled by a WM function with all �p equals, and two limiting cases are
analyzed. In the first case, the surface is rough only along the x-axis, so that
the surface roughness is aligned to the projection of the incident wave vec-
tor onto the scattering-surface mean plane. In the second case, the surface
is rough only along the y-axis, so that the surface roughness is orthogonal
to the projection of the incident wave vector onto the scattering-surface
mean plane.
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The first case is achieved by enforcing �p = 0 in Equation (5.20). The
scattered modes attain their maximum along directions such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin ϑs = sin ϑi − κ0

k

P−1∑
p=0

mpν
p, ϕs = 0

sin ϑs = −
(

sin ϑi − κ0

k

P−1∑
p=0

mpν
p

)
, ϕs = π

. (5.21)

Note that Equations (5.21) can be obtained directly from Equations (5.19),
so that no ambiguity on their solutions is present. Hence, all these modes
propagate parallel to the plane ϕs = 0, π , this latter result being consistent
with the Bragg theory. The fundamental tone is radiated along the specular
direction (ϑs = ϑi, ϕs = 0), because the case ϕs = π does not provide
any solution to ϑs. Subsequent modes attain their maximum in the visible
region if the condition

−(1− sin ϑi) ≤ κ0

k

P−1∑
p=0

mpν
p ≤ (1+ sin ϑi) (5.22)

is satisfied. The first couple, characterized by m0 = ±1, mp = 0,∀p �= 0,
propagates along directions ϑs such that sin ϑs = sin ϑi ∓ κ0/k.

The second case is obtained by letting �p = π /2 in Equations (5.20). The
scattered modes attain their maximum values along directions such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin ϑs =
√(

sin ϑi
)2 +

(
κ0

k

P−1∑
p=0

mpνp

)2

sin ϕs = −
κ0

k

∑P−1
p=0 mpν

p

√
(sin ϑi)2 +

(κ0

k

∑P−1
p=0 mpνp

)2

(5.23)

For ϑs = ϑi, ϕs = 0; moreover, the closer ϑs to ϑi, the closer to ϕs = 0
propagation occurs.

5.3.3. Modes Amplitude and Phase

The complex amplitude of each scattered mode depends on the prod-
uct of the Bessel functions, the sinc(·) functions, and the phase term
(see Equation [5.11]). Only those modes that significantly contribute to
the scattered field (see Section 5.3.2) need to be considered. The larger
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the Bessel functions product, the more relevant is the mode amplitude. This
implies that, at least for small roughness surfaces, modes with lower indexes
are most significant. The role of the sinc(·) function has been presented (see
Section 5.3.2) by individuating the two categories of localized and diffused
modes.

The phase of the modes is determined by those of the corresponding WM
surface expansion. A shift of any surface tone generates phase shift in all the
scattered modes relevant to that tone, as well as a tilt of the corresponding
radiation diagram: this is according to the FT relationship between aperture
distribution and scattered fields.

5.4. Limits of Validity

Kirchhoff approximation holds if the surface mean radius of curvature
is much greater than the electromagnetic incident wavelength. Small-
slope approximation applies whenever the root-mean-square slope is much
smaller than unity. However, the radius of curvature and the root-mean-
square slope are not well defined for the mathematical WM surface
presented in Chapter 3, which involves an infinite number of tones. For
a physical WM surface, Equation (5.1), radius of curvature and the root-
mean-square slope can be defined (see Chapter 3), and are related to
H, B, ν, κ0, P.

Relations found in Chapter 3 can be used to obtain a first approximate
expression of the validity limits of the PO approach. In particular, substi-
tution of the WM function in Equation (3.62) shows that the small-slope
approximation applies whenever

σ ′2 = κ2
0

B2

4

1− ν−2(H−1)P

1− ν−2(H−1)
� 1. (5.24)

A further connection is obtained by substituting the WM function in Equa-
tion (3.63) and requiring that the radius of curvature is much greater than
the electromagnetic wavelength:

K

k2

2 ∼= σ ′′2

k2
= κ4

0

k2

B2

8

1− ν−2(H−2)P

1− ν−2(H−2)
� 1. (5.25)

More-precise validity limits might be determined—for instance, by com-
paring theoretical results with numerical simulation of the scattered
electromagnetic field from fractal surfaces.
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5.5. Influence of Fractal and Electromagnetic
Parameters over the Scattered Field

In this section, the influence of fractal parameters, κ0, ν, P, B, H, on the
scattered field is analyzed. For a systematic study, the WM coefficients
are assumed to be not random: Cp = 1, �p = 0, �p = 0 for any p. The
scattering surface is illuminated from the direction ϑi = π /4, whereas the
scattered field is displayed for any ϑs in the plane identified by ϕs = 0, π ;
this suggests assuming −(π /2) < ϑs ≤ π /2. The cut of the scattering
surface with the plane ϕs = 0, π is also shown in all subsequent figures.

The effect of the fractal parameters on the scattered field is first briefly
described in a qualitative manner. Then, quantitative assessment via Equa-
tion (5.11) is graphically presented in Figures 5.2 through 5.7. The presence
of the factor Fpq(·), which depends on the electromagnetic parameters in
Equation (5.11), is omitted: the reason is that it also appears if classical
surfaces are considered, it does not include any dependence on the fractal
parameters, and it is not relevant to this discussion.

The reference scattering surface is characterized by the fractal parameters
listed in Table 5.1. These parameters are typical for natural surfaces on the
Earth when illuminated by a microwave instrument. Scattering surface and
normalized scattered-power density are displayed in Figure 5.2, along with
its scattered field. Then, in any subsequent subsection, only one of the
surface fractal parameters is changed within a reasonable and significant
range; its specific contribution to the scattered field is graphically displayed.

Plots in Figure 5.2 show that the maximum field scattered by the reference
surface is attained in the specular direction. For scattering angles close to
the specular direction, the scattered field approximately exhibits the sinc(·)
behavior, thus showing that the specular mode dominates the scattering
behavior. The scattered field is arranged in a series of lobes whose mean
width is proportional to the ratio between the length of the illuminated area
and the electromagnetic wavelength. The overall scattered field turns out to
be obtained as superposition of the significant scattered modes, whose num-
ber and individual contribution cannot easily be individuated. Accordingly,
with the considerations presented in Chapter 3 and Section 5.3.1, 4 tones
are necessary to describe the surface, and 135 modes (localized or diffuse)
have been considered in the numerical evaluation.

It is noted that each graph in Figures 5.2 through 5.7 refers to the par-
ticular ensemble element of the surface depicted in the same figure. This is
convenient for many applications, but does not explicitly show the statistical
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Table 5.1 Parameters relevant to the illumination conditions
and to the reference surface are considered in Figure 5.2 and are
used to compare results in Figures 5.2 through 5.7.

Incidence angle (ϑi) 45◦
Illuminated area (X, Y ) (1 m, 1 m)
Electromagnetic wavelength (λ) 0.1 cm
Hurst exponent (H) 0.8
Tone wave-number spacing coefficient (ν) e
Overall amplitude-scaling factor (B) 0.01 m
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Figure 5.2 Plot of the profile, y = 0, of the reference surface holding the fractal
parameters listed under Table 5.1 along with the graph of the corresponding normalized
scattered power density in the plane y = 0.
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behavior of the ensemble itself. To get this additional information, as already
pointed out in Section 1.6.1, the WM model parameters are changed accord-
ing to their statistics, the associate scattered-density power for each element
is computed, and the obtained values are properly processed. For instance,
the expected value of the scattered-power density is obtained by averaging
a sufficient number of graphs as that of Figure 5.2, each relative to one
element of the surface ensemble. This is shown in Figure 5.8.

5.5.1. The Role of the Fundamental-Tone Wavenumber

As shown in Chapter 3, κ0 is not an independent fractal parameter. Its value
can be set according to the illuminated-surface dimension: as already shown
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Figure 5.3a Modified versions of the reference surface are considered. As in
Figure 5.2, surface cuts and corresponding normalized scattered power density graphs
are depicted. Case Lx = Ly = 0.5 m.
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Figure 5.3b Modified versions of the reference surface are considered. As in
Figure 5.2, surface cuts and corresponding normalized scattered power density graphs
are depicted. Case Lx = Ly = 2 m.

(see Section 3.6), it is reasonable to set the fundamental-tone wavelength of
the order of the maximum length of the surface, with an appropriate safety
factor χ1 ∈ (0, 1), the latter to be set equal to 0.1 in most critical cases.
Accordingly:

κ0 = 2π√
X2 + Y2

χ1. (5.26)

Then, instead of κ0, from the electromagnetic-scattering viewpoint, it
is more meaningful to consider the effect induced by a change of the
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Figure 5.4a Modified versions of the reference surface are considered. As in
Figure 5.2, surface cuts and corresponding normalized scattered power density graphs
are depicted. Case ν = e− 0.5.

scattering-surface dimensions. The scattered field evaluated by means of
Equation (5.11) and relevant to different values of the surface dimensions
is depicted in Figures 5.3.

Comparison of results in Figures 5.2 and 5.3 shows that the larger the
illuminated area—that is, the smaller the value of κ0—the narrower the
radiated lobes; the scattered-power density oscillates more rapidly with ϑs.
The side-lobes amplitude appears to be unaffected by κ0. Equations (5.19)
show that the smaller the value of κ0, the higher the number of localized
modes. In Figure 5.3a, 3 tones and 45 modes have been considered; in
Figure 5.3b, 5 tones and 405 modes have been considered.
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Figure 5.4b Modified versions of the reference surface are considered. As in
Figure 5.2, surface cuts and corresponding normalized scattered power density graphs
are depicted. Case ν = e+ 0.5.

5.5.2. The Role of the Tone Wave-Number Spacing Coefficient

As shown in Section 3.6, ν is the fractal parameter that controls the tone
wave-number spacing. Its value sets the degrees of similarity between the
considered WM function and an appropriate fBm process of appropriate
fractal parameters. Its value can be set to any irrational number >1.

The scattered field evaluated by means of Equation (5.11) and relevant
to different values of ν is reported in Figures 5.4.

Comparison of Figures 5.2 and 5.4 shows that the tone spacing
marginally influences the scattered field. A smoother overall shape for the



5.5. Influence of Fractal and Electromagnetic Parameters 163

−π
2

π
2

−π
4

π
4

0
qs

⏐E⏐2

z (x)

0.001

0.01

0.1

1

x
−0.2−0.4 0.2 0.4

−0.04

−0.02

0.02

0.04

Figure 5.5a Modified versions of the reference surface are considered. As in
Figure 5.2, surface cuts and corresponding normalized scattered power density graphs
are depicted. Case λ = 0.05 m.

scattered-power density is obtained for lower ν. However, the ν value can
greatly influence the number of tones that are required to represent the
surface: thus, the number of significant modes, and consequently the com-
putational time for the scattered field, is greatly influenced by the choice
of ν. In Figure 5.4a, 5 tones and 405 modes have been considered; in
Figure 5.4b, 4 tones and 135 modes have been considered. In conclusion,
it is confirmed that ν is a fractal parameter that can be set to obtain reliable
discrete approximation of the continuous fBm spectral behavior, whereas
its value could not be set too close to 1 to allow efficient evaluation of the
scattered field.
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Figure 5.5b Modified versions of the reference surface are considered. As in
Figure 5.2, surface cuts and corresponding normalized scattered power density graphs
are depicted. Case λ = 0.2 m.

5.5.3. The Role of the Number of Tones

As shown in Chapter 3, P is not an independent fractal parameter. Its value
can be set according to the incident wavelength and illuminated-surface
dimension: as already shown (see Section 3.6), it is reasonable to set the
fundamental-tone wavelength of the order of the electromagnetic wave-
length, considering a further appropriate safety factor χ2 ∈ (0, 1), the latter
is usually set to 0.1. Accordingly,

P =
⎡
⎢⎢⎢

ln
(√

X2 + Y2
/
χ1χ2λ

)

ln ν

⎤
⎥⎥⎥+ 1. (5.27)
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Figure 5.6a Modified versions of the reference surface are considered. As in
Figure 5.2, surface cuts and corresponding normalized scattered power density graphs
are depicted. Case B = 0.005 m.

The number of tones increases logarithmically with the ratio between the
surface dimension to the electromagnetic wavelength. The lower the safety
factors or tone spacing, the higher the number of tones.

In view of Equation (5.27) and the results of Section 5.3.3, instead
of P it is more meaningful to consider changes induced by varying the
electromagnetic wavelength λ. The scattered field evaluated by means
of Equation (5.11) and relevant to different values of λ is reported in
Figures 5.5.

Comparison of Figures 5.2 and 5.5 shows that the larger the number
of tones—that is, the smaller the electromagnetic wavelength—the nar-
rower the radiated lobes. For smaller λ, a finer description of the surface
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Figure 5.6b Modified versions of the reference surface are considered. As in
Figure 5.2, surface cuts and corresponding normalized scattered power density graphs
are depicted. Case B = 0.02 m.

is required, including more tones; consequently, the number of modes
increases. In Figure 5.5a, 5 tones and 567 modes have been considered;
in Figure 5.5b, 3 tones and 27 modes have been considered.

5.5.4. The Role of the Overall Amplitude-Scaling Factor

The overall amplitude-scaling factor B directly influences the surface
roughness, Equations (5.1). Normalized tone roughness turns out to be
proportional to B. Hence, the number of significant modes, M, increases
with B. Conversely, B does not affect the number of significant radiated
modes, the latter depending only on mode directions of propagation.
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Figure 5.7a Modified versions of the reference surface are considered. As in Figure
5.2, surface cuts and corresponding normalized scattered power density graphs are
depicted. Case H = 0.7 m.

In Figures 5.6, some graphs are reported of the scattered field relevant to
different values of the overall amplitude-scaling factor B.

Comparison of Figures 5.2 and 5.6 shows that the larger the overall
amplitude-scaling factor B, the larger the number of modes that signif-
icantly contribute to the scattered field. Accordingly, the scattered field
resembles the sinc(·) behavior for lower B; conversely, for higher B, the
sinc(·) behavior is lost. Note that the number of modes may increase, also
varying other fractal parameters; but, accordingly with the considerations
presented in Section 5.3, the disappearance of the sinc(·) behavior is more
evident if B is increased. In Figure 5.6a, 4 tones and 81 modes have been
considered; in Figure 5.6b, 4 tones and 189 modes have been considered.
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Figure 5.7b Modified versions of the reference surface are considered. As in Figure
5.2, surface cuts and corresponding normalized scattered power density graphs are
depicted. Case H = 0.9 m.

5.5.5. The Role of the Hurst Exponent

As shown in Chapter 3, the Hurst coefficient is related to the fractal dimen-
sion. The lower H, the higher the fractal dimension, and the higher the
number of significant modes that enter into the evaluation of the scattered
field.

In Figures 5.7, two graphs are reported, relevant to surfaces with higher,
H = 0.9, and lower, H = 0.7, values of the Hurst coefficient with respect
to the intermediate one H = 0.8, reported in Figure 5.2 and relative to the
reference surface.

Comparison of Figures 5.2 and 5.7 shows that the smaller the Hurst
coefficient, the higher the lateral lobes. In both Figures 5.7a and 5.7b,
4 tones and 135 modes have been considered.
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Figure 5.8 Plots of the normalized scattered power density relevant to a set of surfaces
which have been obtained by randomizing the surface coefficients of the reference
surface. Thirty-two realizations have been considered. top ν = e; bottom ν = e− 0.5.

5.6. Statistics of the Scattered Field

The scattered field evaluated in this chapter is amenable to being
used within any study concerning random natural surfaces. Within this
framework, it can be used to evaluate the scattered-field statistics starting
from the generation of a set of surfaces with prescribed fractal parame-
ters. For each surface of the set, the scattered field can be evaluated in
terms of amplitude and phase. Then, for each position, the statistics of the
scattered field can be obtained by appropriate processing of the computed
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scattered field. Note that this procedure does not prescribe any statistics
to the scattered field: these come out by examination of the scattered field.
Obviously, obtained results are confined by the fractal assumption of the sur-
face. The scattered-power density relevant to a set of WM surfaces obtained
by randomizing the WM coefficients of the reference surface is shown
in Figure 5.8. A smoother power-density diagram is obtained if the num-
ber of modes is increased by diminishing the tone wave-number spacing
coefficient ν from e to e− 0.5.

5.7. References and Further Readings

The physical-optics solution to the scattering problem relevant to classical
surfaces is derived in detail in several books, including studies by Tsang,
Kong, and Shin (1985) and by Ulaby and Dobson (1989). Details on the
WM function are given in works by Falconer (1990), Feder (1988), and
Mandelbrot (1983). Several graphs devoted to presenting the WM profiles
and their characteristics are in a book by Berry and Lewis (1980). Scattering
from WM profiles is studied in a work by Jaggard (1990). The list of papers
written by the authors of this book and concerning the subject of this chapter
is found in Appendix C.



CHAPTER 6

Scattering from Fractional
Brownian Surfaces: Physical-Optics

Solution

6.1. Introduction and Chapter Outline

In this chapter, a method is presented that allows evaluation of the electro-
magnetic (expected) power density scattered from natural rough surfaces
described by means of fractional Brownian motion (fBm) processes. The
Physical-Optics (PO) solution under the Kirchhoff Approximation (KA) to
the diffraction integral is explored.

The natural surface is modeled by means of the fBm process and illumi-
nated by a plane wave; in Section 6.2 the mean-square value of the scattered
far field is analytically evaluated in a closed form within the KA in the
small-slope regime. In Section 6.3 the final result is arranged in two differ-
ent expressions that can be chosen according to the values of the surface
fractal parameters. These expressions simplify in some special cases that
are discussed in detail in Section 6.4. The backscattering coefficient—that
is, the normalized radar cross section (RCS) of the surface—is also pro-
vided in Section 6.5. A theoretical discussion on the validity of this model
is carried out in Section 6.6. Dependence of the scattered power density on
the fBm and electromagnetic parameters is presented in Section 6.7. Key
references and suggestions for further readings are reported in Section 6.8.

171
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The fBm surface model is employed not really for its mathematical
convenience, but rather because it best suits natural rough surfaces, accord-
ing to what was reported in Chapter 3. As a matter of fact, the power-law
spectrum of the fBm process has an exponent α (see Equation [3.27]),
which is limited to the interval 2 < α < 4, as can be verified by recalling
that 0 < H < 1. This is also consistent with all measured soil-surface
spectra, which exhibit power laws with α ≈ 3. The benefit that the fBm
fractal characterization allows the analytic evaluation of the scattered field
is also appealing: note that other generic power-law descriptions require aid
of numerical methods or Monte Carlo simulations.

6.2. Scattered Power-Density Evaluation

In this section, a closed-form solution is derived for the expected value of
the electromagnetic power density scattered from a natural surface modeled
by means of an fBm random process: the solution is obtained according to
the KA in the small-slope regime introduced in Section 4.6. Geometry of
the scattering problem is shown in Figure 6.1.

The starting point is the formulation of the scattered field expressed in
terms of Equation (4.47); then the mean-square value of the scattered field

y

O

z

x

θi
θs

s

r

ϕs

Figure 6.1 Geometry of the scattering problem. Cartesian and polar reference systems
relevant to the scattering surface are depicted.
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is evaluated as
〈∣∣Epq

∣∣2〉 = k2
∣∣Ep

∣∣2 ∣∣Fpq
∣∣2

(4πr)2

×
∫ X

2

− X
2

∫ X
2

− X
2

∫ Y
2

− Y
2

∫ Y
2

− Y
2

exp
[−iηx(x − x′)− iηy

(
y − y′

)]

× 〈
exp

[−iηz(z − z′)
]〉

dxdx′dydy′ (6.1)

where (x, y, z) and (x, y′, z′) are two generic points belonging to the surface.
The projection of the area onto the mean plane is assumed to have a rectan-
gular shape of dimensions X and Y ; the factor η = (ηx, ηy, ηz) depends on
the illumination and observation directions and is expressed in the Cartesian
(x, y, z) reference system as

η = ki − ks = x̂k(sin ϑi − sin ϑs cos ϕs)− ŷk sin ϑs sin ϕs

− ẑk(cos ϑi + cos ϑs) (6.2)

(see Chapter 4).
The expected value appearing inside the integral,

〈
exp

[−iηz(z − z′)
]〉

,
is the characteristic function of the process of increments, z − z′: it has
been shown in Chapter 3 that an fBm fractal model leads to a stationary
and Gaussian increment process. Accordingly, the expected value in Equa-
tion (6.1) can be evaluated in terms of the structure function Q(τ ), as shown
in Chapter 2. For isotropic surfaces,

〈
exp

[−iηz(z − z′)
]〉 = exp

[
−1

2
η2

z Q(τ )

]
. (6.3)

Substituting Equation (6.2) in Equation (6.1), enforcing the coordinates
transformation ⎧⎪⎪⎨

⎪⎪⎩

x − x′ = τ cos ϕ

y − y′ = τ sin ϕ

x = x
y = y

, (6.4)

and integrating with respect to x and y, Equation (6.1) leads to

〈∣∣Epq
∣∣2〉 = k2

∣∣Ep
∣∣2 ∣∣Fpq

∣∣2
(4πr)2

A
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A
exp

[−iτ
(
ηx cos ϕ + ηy sin ϕ

)]

exp

[
−1

2
η2

z Q (τ )

]
τ dϕ dτ , (6.5)
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where A is the projection of the area of the illuminated surface onto the
mean plane.

In Equation 6.5 the integration over ϕ can be performed according to
Equation (A.6.6) with a = τηx and b = τηy. In order to evaluate the
remaining integration with respect to τ , the expression for the surface-
structure function Q(τ ) = s2τ 2H appropriate to the isotropic fBm process
(see Equation [3.13]) must be used. Examination of Equation (6.5) allows
extending the integration limits to the whole plane, provided that the linear
size l of the illuminated area is such that

η2
z Q(l) � 1. (6.6)

Accordingly:

〈∣∣Epq
∣∣2〉 = k2

∣∣∣E(i)
p

∣∣∣2 ∣∣Fpq
∣∣2

(4πr)2
2πA

∫ ∞

0
J0
(
ηxyτ

)
exp

[
−1

2
η2

z Q(τ )

]
τdτ ,

(6.7)

where

ηxy =
√

η2
x + η2

y . (6.8)

In passim, it is noted that Equation (6.7) is also valid if classical-surface
models are employed. However, for classical surfaces, the surface variance
is finite, Q(τ ) is limited, and it does not always exist a surface linear size l
that verifies Equation (6.6). Moreover, use of a classical model employing a
stationary stochastic Gaussian process for surfaces of infinite extent leads to

〈∣∣Epq
∣∣2〉 = k2

∣∣∣E(i)
p

∣∣∣2 ∣∣Fpq
∣∣2

(4πr)2
exp

(
−η2

z σ
2
)

A

[
δ(ηx)δ(ηy)+

∞∑
n=1

η2n
z

n! W (n)(ηxy)

]
. (6.9)

A closed-form expression for scattered power requires a similarly closed-
form expression for the generalized power spectra W (n)(κ) in Equation (6.9).
Accordingly, with the results shown in Chapter 2, this condition is met only
in few specific cases (see Table 2.4); even in these cases, the correspond-
ing expressions often include nonelementary functions. More important,
as already noted, these models are usually not appropriate for natural
surfaces, fractal geometry definitively being a better candidate.
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Substitution of the expression for Q(τ ), Equation (3.13) in Equations (6.6)
and (6.7), leads to

η2
z s2l2H = k2 (cos ϑi + cos ϑs)

2 s2l2H � 1, (6.10)

and

〈∣∣Epq
∣∣2〉 = k2

∣∣Ep
∣∣2 ∣∣Fpq

∣∣2
(4πr)2

2πA
∫ ∞

0
J0
(
ηxyτ

)
exp

[
−1

2
η2

z s2τ 2H
]

τdτ .

(6.11)

Hence, for any sufficiently large fractal surface, Condition (6.10) is fulfilled,
and Equation (6.11) holds.

As a last remark, note that the integral of Equation (6.11), initially space
limited, now spans on all the τ interval from 0 to∞ due to the presence of
the exponential decaying factor. Accordingly, a mathematical fractal can be
used, because computation of the scattered field automatically sets a limit
on the relevant large distances ranges, i.e., on the low frequency fractal
content (infrared catastrophe, see Chapter 3).

Solution of the integral in Equation (6.11) deserves an exhaustive dis-
cussion. In fact, a closed-form solution can be obtained only by using
appropriate series expansions for the integrand function. Two options are
available, and are detailed in the following discussion: either the Bessel
or the exponential function is expanded in power series. Different power-
series expansion obviously calls for different convergence rationales, thus
implying that different closed-form solutions must be used according to the
values of parameters representing the natural surface.

6.2.1. Persistent fBm

Power-series expansion of the zero-order Bessel function, according to
Equation (A.6.1), with t ≡ ηxyτ gives

∫ ∞

0
J0
(
ηxyτ

)
exp

[
−1

2
η2

z s2τ 2H
]

τdτ

=
∫ ∞

0

∞∑
n=0

(−1)nη2n
xy

22n(n!)2
τ 2n exp

[
−1

2
η2

z s2τ 2H
]

τdτ . (6.12)
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Integration of the series term by term, and use of Equation (A.6.2) with
u = η2

z s2/2, v = 2H and w = 2n+ 1, leads to

∫ ∞

0
J0
(
ηxyτ

)
exp

[
−1

2
η2

z s2τ 2H
]

τdτ

= 1

2H

∞∑
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(−1)n

22n(n!)2
· �

(
n+ 1

H

)
η2n

xy(√
2

2 |ηz|s
)2n+2

H

. (6.13)

Note that applicability of integration of the series term by term is not ensured
in this case, because integration in Equation (6.11) spans over an unbounded
interval. Accordingly, convergence of the series in Equations (6.12) and
(6.13) must be checked.

It turns out that this series is convergent only for H ≥ 1/2—that is,
for persistent (see Section 3.5) fBm processes. However, for any H,
Equation (6.12) can still be used under appropriate circumstances. In fact,
the presence of the exponential term in the integrand allows us to limit the
integration interval to values of τ such that ηzsτH < 3—that is, for

τ <
3

(ηzs)1/H
= 3

[k (cos ϑi + cos ϑs) s]1/H
. (6.14)

Then, if

ηH
xy

|ηz|s =
(

sin2 ϑi + sin2 ϑs − 2 sin ϑi sin ϑs cos ϕs

)H/2

k1−H |(cos ϑi + cos ϑs)|s � 1, (6.15)

it turns out that the Bessel function argument is much smaller than unity,
so that the series expansion of the Bessel function in Equation (6.11) can
be truncated after a few terms. Hence, if Condition (6.14) is verified,
Equation (6.13), truncated after a few terms, can be used irrespective of
the value of H.

6.2.2. Antipersistent fBm

The zero-order Bessel function, J0(·), is the real part of the zero-order
Hankel function of the first kind, H(1)

0 (·); the integral appearing in
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Equation (6.11) can be written as∫ ∞
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It is convenient to modify the integral inside the Real Part. This is accom-
plished by analytical continuation of t in the complex plane p = t + i. and
evaluation of the integral∮

C
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z s2(iξ )2H
]

iξd(iξ ) = 0 (6.17)

where the integration contour is depicted in Figure 6.2. The value of the
integral is equal to zero because the ingtegrand exhibits no singularities

ξ

τ

Figure 6.2 Integration closed contour in the complex plane for the integral in
Eq. (6.17). A branch cut along the whole real positive axis is enforced to render the
function pν single valued.
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inside the integration contour, and the only contribution of the circle at
infinity is zero. Use of Equation (6.17) allows the desired modofication,
with the additional use of Equation (A.6.3) with x ≡ ηxyξ , reaching the
final result:
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}
. (6.18)

Because the zero-order Kelvin function, K0(·), decays exponentially for
large values of its argument, expansion of the complex exponential in the
second member of Equation (6.18) is allowed:
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(6.19)

The series is integrated term by term, and Equation (A.6.4) with b = ηxy,
and µ = 2Hn+ 1 is used to obtain
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Taking the real part and use of Equation (A.6.5) leads to∫ ∞
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Note that also in this case applicability of integration by series is not ensured,
because integration spans over an unbounded interval. Accordingly, con-
vergence of the series in Equation (6.21) must be checked.

It turns out that Equation (6.21) is convergent only for 0 < H < 1/2—
that is, for antipersistent (see Section 3.5) fBm processes. However, for
any H, the equation can still be used under appropriate circumstances.
In fact, the presence of the Kelvin function in the integrand allows us to
limit the integration interval to values of τ such that in the integrand of
Equation (6.18), ηxyτ < 3—that is, for

τ <
3

ηxy
= 3

k
(

sin2 ϑi + sin2 ϑs − 2 sin ϑi sin ϑs cos ϕs

)1/2
. (6.22)

Then, if

|ηz|s
ηH

xy
= k1−H |(cos ϑi + cos ϑs)|s(

sin2 ϑi + sin2 ϑs − 2 sin ϑi sin ϑs cos ϕs

)H/2
� 1, (6.23)

it turns out that the exponential-function argument is much smaller than
unity, so that the series expansion of the exponential function in the second
member of Equation (6.18) can be truncated after a few terms. Hence, if
Condition (6.23) is verified, Equation (6.21), truncated after a few terms,
can be used, irrespective of the H value.

6.3. Scattered Power Density

Results from the previous section are expressed here in terms of physical
parameters relevant to the scattering problem; in particular, the scattering
angular behavior is emphasized. The rationale to use obtained formulas for
the scattered-power evaluation is presented.

If the Hurst coefficient, H, and the topothesy, T, are the parameters used
to describe the fractal surface, and if Equation (4.53) is considered, the
scattered-power density can be evaluated by substituting Equation (3.5) in
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Equations (6.13) and (6.21), thus getting

〈∣∣Epq
∣∣2〉 =

∣∣Ep
∣∣2 ∣∣Fpq

∣∣2
(4πr)2

2πA
k2T2

2H

∞∑
n=0

(−1)n

22n(n!)2
�

(
n+ 1

H

)

(sin2 ϑi + sin2 ϑs − 2 sin ϑi sin ϑs cos ϕs)n (kT)2n

[
√

2
2 |(cos ϑi + cos ϑs)| kT ] 2n+2

H

, (6.24)

〈∣∣Epq
∣∣2〉 =

∣∣Ep
∣∣2 ∣∣Fpq

∣∣2
(4πr)2

2πA2Hk2T2
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n=1

(−1)n+122nH

(n− 1)!
�(1+ nH)

�(1− nH)

(
√

2
2 |(cos ϑi + cos ϑs)| kT )2n

[
(sin2 ϑi + sin2 ϑs − 2 sin ϑi sin ϑs cos ϕs) (kT)2

]nH+1
(6.25)

for persistent and antipersistent fBm, respectively.
These two expressions are, to some extent, complementary. The series in

Equation (6.24) is convergent only for H ≥ 1/2; however, it is an asymptotic
expansion of Integral (6.11)

[
(sin2 ϑi + sin2 ϑs − 2sin ϑi sin ϑs cos ϕs)1/2kT

]H

|(cos ϑi + cos ϑs)| kT
→ 0, (6.26)

irrespective of the value of H. Conversely, the series in Equation (6.25) is
convergent only for 0 < H ≤ 1/2; however, it is an asymptotic expansion
of Integral (6.11) for

[
(sin2 ϑi + sin2 ϑs − 2sin ϑi sin ϑs cos ϕs)1/2kT

]H

|(cos ϑi + cos ϑs)| kT
→∞, (6.27)

irrespective of the value of H. Furthermore, the convergence rate of Series
(6.24) increases as the factor in Equation (6.26) decreases, whereas the
convergence rate of Series (6.25) increases as the factor in Equation (6.11)
increases.

6.4. Scattered Power Density: Special Cases

Equations (6.24) and (6.25) simplify in some special cases: scattering in
the specular direction (ηxy = 0), Brownian surfaces (H = 1/2), marginally
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fractal surfaces (H → 1), and quasi-smooth surfaces (kT � 1). One single
expression can be used to evaluate the scattered-power density in each of
these special cases, and these expressions can sometimes be derived in
a more straightforward way with respect to Equations (6.24) and (6.25).
Results for these special cases are discussed in the following sections.

6.4.1. Scattering in the Specular Direction

In the specular direction:
{

ϑi = ϑs

ϕs = 0
, (6.28)

so that ηx = ηy = ηxy = 0 and ηz = 2k cos ϑi: in this case, Equation (6.26)
is always verified and use of Equation (6.24) is appropriate, thus getting

〈∣∣Epq
∣∣2〉 =

∣∣Ep
∣∣2 ∣∣Fpq

∣∣2
(4πr)2

2πA
k2T2

2H

�
(

1
H

)

(
√

2kT cos ϑi)2/H
. (6.29)

6.4.2. Brownian Surfaces (H=1/2)

By definition, a Brownian surface is obtained by setting H = 1/2. Its
intersection with an arbitrary vertical plane is the graph of a Wiener process.

Starting directly from Equation (6.11), specified for H = 1/2, and
Equation (A.6.7) with b = ηxy, u = η2

z s2/2, the result

〈∣∣Epq
∣∣2〉 =

∣∣Ep
∣∣2 ∣∣Fpq

∣∣2 k2T2

(4πr)2
2πA

1
2η2

z T2

[(√
2

2 ηzT
)4 + (ηxyT )2

]3/2
(6.30)

is obtained. Equation (6.30) for Brownian surfaces can also be obtained
from both Equations 6.24) and (6.25): letting H = 1/2, these two equa-
tions coincide, and their series terms are recognized to be the Taylor series
expansion of the function (1+ t2)−3/2 (see Equation [6.30]).

6.4.3. Marginally Fractal Surfaces (H→1)

The limiting case H→ 1 corresponds to a surface with fractal dimen-
sion equal to 2—that is, a regular (“marginally” rough fractal) surface.
In this case, the topothesy T has no meaning, and the parameter s becomes
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dimensionless and assumes the meaning of the rms slope of the surface.
Starting directly from Equation (6.11) with H = 1 and Equation (A.6.8)
with b = ηxy, u = η2

z s2/2, the result

〈∣∣Epq
∣∣2〉 = k2

∣∣Ep
∣∣2 ∣∣Fpq

∣∣2
(4πr)2

2πA
1

η2
z s2

exp

(
− η2

xy

2η2
z s2

)
(6.31)

is obtained. Equation (6.31) can also be obtained by recasting the series in
Equation (6.13) as the Taylor expansion of the exponential function.

It is interesting to note that the quoted result is coincident with that
obtained in the case of very rough classical surfaces with Gaussian pdf
and Gaussian correlation function.

6.4.4. Quasi-Smooth Surfaces (kT � 1)

The condition kT � 1 (quasi-smooth surface) implies that the mean-square
surface slope is very small (see Chapter 3), with τmin ∝ λ. In this case,
the condition in Equation (6.27) is fulfilled, but for directions around the
specular one, and use of Equation (6.25) is appropriate. Considering only
the first term of the series and using Equations (3.25), it turns out that

〈∣∣Epq
∣∣2〉 = k2

∣∣Ep
∣∣2 ∣∣Fpq

∣∣2
(4πr)2

Aη2
z

S0

ηα
xy
= k2

∣∣Ep
∣∣2 ∣∣Fpq

∣∣2
(4πr)2

Aη2
z W (ηxy). (6.32)

This result is analogous to the one obtained for classical surfaces with small
roughness.

6.5. Backscattering Coefficient

In remote-sensing applications, a monostatic radar configuration is often
employed, so that it is useful to evaluate the backscattering coefficient,
usually referred to as normalized radar cross section, NRCS, of the surface:

σ 0
pq =

4πr2
〈∣∣Epq

∣∣2〉

A
∣∣Ep

∣∣2 , (6.33)

with coincident incidence and scattering directions:{
ϑi = ϑs = ϑ

ϕs = π
. (6.34)
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Accordingly,
⎧⎨
⎩

ηx = 2k sin ϑ

ηy = 0
ηz = −2k cos ϑ

, (6.35)

and ⎧⎨
⎩

Fhh(ϑ) = −2Rh(ϑ) cos ϑ

Fhv(ϑ) = Fvh(ϑ) = 0
Fvv(ϑ) = 2Rv(ϑ) cos ϑ

, (6.36)

where Rp(ϑ), with p = h, v, is the Fresnel reflection coefficient of the mean
plane.

Use of Equations (6.33) through (6.36) in Equations (6.24) and (6.25)
leads to

σ 0
pp =

∣∣Rp(ϑ)
∣∣2 k2T2 cos2 ϑ

H

∞∑
n=0

(−1)n�
(

n+ 1
H

)

(n!)2

(kT sin ϑ)2n

(
√

2kT cos ϑ)
2n+ 2

H

,

(6.37)

which is convergent for 0 < H ≤ 1/2, and

σ 0
pp =

∣∣Rp(ϑ)
∣∣2 k2T2 cos2 ϑH

∞∑
n=1

(−1)n+1n�(1+ nH)

n!�(1− nH)

· (
√

2kT cos ϑ)2n

(kT sin ϑ)2nH+2
, (6.38)

which is convergent for 1/2 ≤ H < 1.
Backscattering in the specular direction occurs only in the case of nor-

mal incidence, ϑ = 0; in this case, results are polarization independent;
Equation (6.37) provides

σ 0 = |R(0)|2 k2T2

H

�
(

1
H

)

(
√

2kT )2/H
, (6.39)

which, in the case of a perfectly conducting surface, reduces to the
expression that can be found for classical surfaces.

In all the remaining special cases considered in Section 6.4, both
Equations (6.37) and (6.38) provide the same results for the backscattering
coefficient, as detailed in the following.
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For the Brownian surface (Equation [3.7]):

σ 0
pp =

∣∣Rp(ϑ)
∣∣2 (
√

2kT cos ϑ)4

[
(
√

2kT cos ϑ)4 + (2kT sin ϑ)2
]3/2

. (6.40)

For the marginally fractal surface:

σ 0
pp =

∣∣Rp(ϑ)
∣∣2

2s2
exp

(
− tan2 ϑ

2s2

)
. (6.41)

Finally, for the quasi-smooth surface:

σ 0
pp =

4
∣∣Rp(ϑ)

∣∣2 k4 cos4 ϑ

π

S0

(2k sin ϑ)α

= 4
∣∣Rp(ϑ)

∣∣2 k4 cos4 ϑ

π
W(2k sin ϑ). (6.42)

This last result is analogous to the one obtained for classical surfaces with
small roughness.

6.6. Validity Limits

Application of the above-mentioned formulation to the problem of scattering
from natural surfaces is subject on one side to the adequacy of the employed
surface model, and on the other side to the validity of the Kirchhoff and
small-slope approximations. Adequacy of the surface model is examined
first.

A preliminary consideration is in order. The formal expression of the
expected value of the scattered power density is given by Equation (6.11).
It has been noted that the structure of the integrand is such that the main
contribution to the integral is essentially provided by a finite range of t
values. Accordingly, it is important to assess if the range of fractalness
includes above mentioned range. To examine this problem, it is convenient
to preliminarily analyze the function

τexp

[
−1

2
k2T2 (cos ϑi + cos ϑs)

2
( τ

T

)2H
]

, (6.43)
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which appears in the argument of the integral of Equation (6.11). It can be
easily demonstrated that Equation (6.43) exhibits a maximum for

τ̄ = T

(
1√

HkT (cos ϑi + cos ϑs)

) 1
H

. (6.44)

This value τ̄ is proportional to λ1/H . Scale lengths much smaller or much
larger than τ̄ do not appreciably contribute to the integrand function in
Equation (6.11), and consequently to the generation of the scattered field.
In particular, if H > 0.5, the values of the function in Equation (6.43) are
much smaller than its maximum whenever τ < τ̄ /10 or τ > 4τ̄ ; hence,
only the interval

[
τ̄
10 ÷ 4τ̄

]
appreciably contributes to the scattering pro-

cess. At microwave frequencies, most natural surfaces exhibit a range of
fractalness that includes the above-mentioned interval: then natural surfaces
can be modeled as fractals at the scales that significantly contribute to the
scattering process.

The validity limits of Kirchhoff and small-slope approximations,
expressed in terms of fractal parameters, can now be assessed. As already
stated, Kirchhoff approximation holds if the surface mean radius of curva-
ture is much greater than the wavelength, and the small-slope approximation
is valid if rms slope is much smaller than unity. However, radius of curva-
ture and rms slope are not well defined for a “mathematical” fBm surface.
For a “physical” fBm surface, these quantities are related to τm, tM , T, H,
as indicated in Table 3.3.

Using the results reported in Table 3.3, condition on rms slope much
smaller than unity, σ ′2 � 1, becomes

σ ′2 = 22H−1�2(1+ H)
sin(πH)

π(1− H)

[(
T

τm

)2−2H

−
(

T

τM

)2−2H
]
� 1

(6.45)

which, by setting τm = τ̄ /10, neglecting the marginal contribution to σ ′2
provided by τM , and using Equation (6.44), can be rewritten as

10 · 51−2H�2(1+ H)
sin(πH)

π(1− H)

[√
HkT (cos ϑi + cos ϑs)

] 2−2H
H � 1.

(6.46)
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Furthermore, the condition on the radius of curvature much greater than the
wavelength, 1

K � λ, gives

k2

K2
∼= k2

σ ′′2
∼= 21−2H π(2− H)

�2(1+ H) sin(πH)

k2T2[(
T
τm

)4−2H −
(

T
τM

)4−2H
] � 1

(6.47)

which, as before by setting τm = τ̄ /10, neglecting the marginal contribution
to σ ′′2 provided by τM , and using Equation (6.44), can be rewritten as

103 ·51−2H�2(1+H)
sin(πH)

π(1−H)

1

(kT)2

[√
HkT (cosϑi+cosϑs)

] 4−2H
H �1.

(6.48)

Equations (6.46) and (6.48) provide approximate guidelines to test the
validity of the scattering formulation. More-precise validity limits could be
determined—for instance, by comparing theoretical results with numerical
simulation of scattering from fractal surfaces.

6.7. Influence of Fractal and Electromagnetic
Parameters over the Scattered Field

In this section, the influence of fractal parameters, T and H, on the scattered
field is analyzed; for the sake of completeness, the influence of the electro-
magnetic wavelength is also discussed. The scattering surface is illuminated
from the direction ϑi = π

4 , whereas the scattered field is displayed for any
ϑs in the plane identified by ϕs = 0; this suggests to assume−π

2 ≤ ϑs ≤ π
2 .

The effect of the fractal parameters on the scattered field is first
briefly described in a qualitative manner. Then quantitative assessment via
Equations (6.24) and (6.25) is graphically presented in Figures 6.3 through
6.6. The presence of the factor Fpq(·), which depends on the electromag-
netic parameters and field polarizations, is omitted: the reason is that it also
appears if classical surfaces are considered, it does not include any depen-
dence on the fractal parameters, and it is not relevant to this discussion.
Moreover, the scattered-power density in each figure is normalized to the
value of the scattered-power density radiated by the reference surface in the
specular direction.
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The reference scattering surface is characterized by the fractal parameters
S0 = 0.003076 m2−2H and H = 0.8. These parameters are typical for
natural surfaces on the Earth when illuminated by a microwave instrument.
Moreover, with the chosen parameters, this reference fBm process holds the
same fractal parameters that are held by the WM reference surface (with
ν = e) presented in Chapter 3 and used in Chapter 5. Illumination and
reference-surface parameters are reported in Table 6.1. The corresponding
scattered normalized power density is displayed in Figure 6.3. Then, in
any subsequent subsection, only one of the surface fractal parameters is
changed within a reasonable and significant range; its specific contribution
to the scattered field is graphically displayed. The plot in Figure 6.3 shows
that the maximum field scattered by the reference surface is attained in the

Table 6.1 Parameters relevant to the illumination conditions and to the reference
surface considered in Figure 6.2 and used to compare results in Figures 6.3 through
6.6. These parameters provide a reference surface corresponding to that employed in
Chapter 5, where the WM model is used.

Incidence angle (ϑi) 45◦
Illuminated area (X , Y ) (1 m, 1 m)
Electromagnetic wavelength (λ) 0.1 m
Hurst exponent (H) 0.8
Spectral amplitude (S0) 0.003076 m2−2H
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Figure 6.3 Plots of a profile of the reference surface holding the fractal parameters
H = 0.8 and S0 = 0.003076 m2−2H along with the corresponding normalised scattered
power density. Illumination and conditions and surface parameters for the reference
surface are reported in Table 6.1.
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Figure 6.4 Modified versions of the reference surface are considered. As in
Figure 6.3 corresponding normalized scattered power densities are depicted. top) S0 =
0.003076/2 m2−2H ; bottom) S0 = 0.003076 · 2 m2−2H .

specular direction. It is also evident that the average value evaluated for the
scattered-power density leads to a very smooth graph.

6.7.1. The Role of the Spectral Amplitude

The spectral amplitude, S0, directly influences the surface roughness.
In Figure 6.4, two graphs are reported relevant to the power density scat-
tered by surfaces characterized by different values of the spectral amplitude
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Figure 6.5 Modified versions of the reference surface are considered. As in
Figure 6.3 corresponding normalized scattered power densities are depicted. top) H =
0.7; bottom) H = 0.9.

S0 = 0.003076/2 m2−2H and S0 = 0.003076 · 2 m2−2H—one-half and
double, respectively, that of the value selected for the reference surface.

Comparison of Figures 6.3 and 6.4 shows that the smaller the spectral
amplitude S0, the narrower the power-density diagram around the specu-
lar direction, and the higher the power density scattered in the specular
direction.

6.7.2. The Role of the Hurst Exponent

As shown in Chapter 3, the Hurst coefficient is related to the fractal
dimension. The lower H, the higher the fractal dimension.
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In Figure 6.5, two graphs are reported, relevant to surfaces with higher
(H = 0.9) and lower (H = 0.7) values of the Hurst coefficient with respect
to the intermediate one (H = 0.8) reported in Figure 6.3 and relevant to
the reference surface. It is recalled here that changing the value of H while
leaving the numerical value of S0 constant corresponds to considering the
amplitude of the power-density spectrum at unitary wave number to be
constant.

Comparison of Figures 6.3 and 6.5 shows that the smaller the Hurst coeffi-
cient, the narrower the power-density diagram around the specular direction,
and the higher the power density scattered in the specular direction.
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Figure 6.6 Modified versions of the reference surface are considered. As in Figure 6.3
corresponding normalized scattered power densities are depicted. top) λ = 0.05 m;
bottom) λ = 0.2 m.
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6.7.3. The Role of the Electromagnetic Wavelength

The scattered field evaluated by means of the PO solution and relevant to
different values of λ is reported in Figure 6.6.

In Figure 6.6, two graphs are reported, relevant to electromagnetic wave-
lengths with lower (λ = 0.05 m) and higher (λ = 0.2 m) values with respect
to the intermediate one (λ = 0.1 m) reported in Figure 6.3 and relevant to the
reference surface. Visual inspection of Equations (6.24) and (6.25) shows
that the dependence of the scattered field on the electromagnetic wavelength
can be also employed to study the dependence on the topothesy, T.

Comparison of Figures 6.3 and 6.6 shows that the smaller the electro-
magnetic wavelength, the broader the power-density diagram around the
specular direction, and the lower the power density scattered in the specular
direction.

6.8. References and Further Readings

As far as classical surfaces are concerned, electromagnetic scattering eval-
uated by means of the PO solution to the KA is conveniently reported in
works by Tsang, Kong, and Shin (1985) and by Ulaby, Moore, and Fung
(1982). Falconer (1990) devotes a chapter to fBm surfaces along with rele-
vant definitions and properties. Fundamentals on the convergence of series
similar to those discussed in this chapter are presented in a study by Prud-
nikov, Brychkov, and Marichev (1990). The list of papers written by the
authors of this book and concerning the subject of this paper is found in
Appendix C.
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CHAPTER 7

Scattering from
Weierstrass-Mandelbrot Profiles:
Extended-Boundary-Condition

Method

7.1. Introduction and Chapter Outline

In this chapter, the extended-boundary-condition method (EBCM) is
employed with the Weierstrass-Mandelbrot (WM) fractal function to model
the surface and solve the electromagnetic-scattering problem. Guidelines
of the EBCM have been given in Chapter 4. A key point of the procedure
is the property of the WM to be an almost-periodic function. This allows
us to generalize mathematical techniques employed for periodic structures,
and to express the field by means of a superposition of Floquet modes.
The procedure is devised for the general case of dielectric surfaces. In
order to simplify the analytic derivation and the employed formalism, the
surface profile is considered with a one-dimensional topological dimen-
sion. Criteria for assessing the validity of the method are discussed and
provided.

As far as classical surfaces are concerned, EBCM is applied to evaluate
the scattered field from periodic-surface profiles. For fractal models, the
analytic evaluation of the scattered field relies on the property of the WM

193
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to be an almost-periodic function, which leads to generalizing the tech-
niques employed in the study of the scattering from periodic interfaces.
In particular, it is possible to generalize the Floquet theory, which allows
expressing scattered and transmitted electromagnetic fields as a superposi-
tion of modes, whose directions of propagation are evaluated by means of
the grating equation, and whose amplitudes are computed by means of the
EBCM.

The method effectiveness is tested by means of two criteria. The first one
is based on energy-balancing considerations, and provides the truncation
criterion for the resulting matrices; the second one is based on graphical
considerations on scattered-field radiation diagrams.

EBCM solution for the scattered field from a WM profile does not
require any surface-roughness constraint that would restrict the solu-
tion limits of validity: the obtained solution applies in principle to any
surface roughness. However, the surface scattered field is written in
terms of an infinite series of amplitude coefficients, whose computation
would imply solving a linear system of infinite rank. Numerical solu-
tion for the scattering amplitude coefficients calls for an approximate
problem of finite rank: to avoid significant degradation of the scattered-
field evaluation, this approximate solution needs a profound discussion
on the scattered modes and their relative contribution to the whole exact
scattered fields. The discussion must be focused on surface-profile param-
eters, so as to obtain accurate numerical solutions for the scattered
field.

This chapter is organized as follows. In Section 7.2 the WM one-
dimensional geometric-profile model is presented: the analytic expression
for the profile is supported by the required WM parameters settings. Setup
of EBCM, in terms of integral equations for a polarized field incident on a
prescribed surface profile, is presented in Section 7.3. Surface-fields evalu-
ation is reported in Section 7.4. Incident-, scattered-, and transmitted-field
expansions are introduced in Section 7.5. The problem is set in matrix form
in Section 7.6 and the analytic derivation of EBCM solution for the scattered
field is carried out in Sections 7.7. Section 7.8 deals with the rank order of the
matrices involved in the evaluation of the scattering amplitude coefficients.
Scattered field modes superposition is discussed in Section 7.9, which also
includes relevant consideration of mode truncation and accuracy criteria for
numerical solution. Some meaningful numerical examples are reported in
Section 7.10. Key references and suggestions for further readings are listed
in Section 7.11.
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7.2. Profile Model

In this section, the employed geometric-fractal model for a topologically
one-dimensional natural-surface profile is presented. Reference is made to
Chapter 3, where the two-dimensional topological WM surface model is
presented.

Consider the band-limited WM function z(x), which is appropriate to
describe natural profiles:

z(x) = B
P−1∑
p=0

Cpν
−Hp sin

(
κ0ν

px +�p
)
, (7.1)

where B is the vertical-height profile-scaling factor; Cp and �p are random
variables that account for the amplitude and the phase behavior of each tone;
κ0 is the wave number of the fundamental component; ν > 1, irrational, is
the seed of the geometric progression that accounts for the distribution of the
spectral components of the surface; P is the number of tones employed to
describe the surface; and H is the Hurst coefficient. Hence, the topologically
one-dimensional WM spectrum is formed by a set of P discrete spectral
components spaced according to a νp law and whose amplitudes follow
a ν−Hp law. As in the two-dimensional case reported in Chapter 3, the
lower the value of ν, the closer the WM function approximates a fractional
Brownian motion (fBm) whose spectrum exhibits a continuous shape.

The main difference with respect to the two-dimensional case relies on
the relation between the Hurst exponent and the fractal dimension. It can be
demonstrated that the function given in Equation (7.1) belongs to the class
of band-limited (physical) fractals whose fractal dimension is D = 2− H.
Note that the function in Equation (7.1) is also an almost-periodic function,
as formalized by Besicovitch. This property is fundamental in order to
employ the generalized Floquet theory for studying the field scattered from
fractally corrugated profiles.

As in the two-dimensional case (see Section 3.6.2), use of band-limited
WM surfaces is physically justified because any scattering measurement is
limited to a finite set of scales. Let X represent the antenna footprint over the
surface. The lowest spatial frequency of the surface, κ0/2π , is linked to the
footprint, possibly through an appropriate safety factor χ1 ∈ (0, 1] , and its
upper spatial frequency κ0ν

P−1/2π is related to the electromagnetic wave-
length λ, possibly through another appropriate safety factor χ2 ∈ (0, 1] .
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Accordingly, it is possible to set

κm = κ0 = 2πχ1

X
, (7.2)

and

κM = κ0ν
(P−1) = 2π

χ2λ
. (7.3)

Definitions (7.2) and (7.3) are the equivalent of Equations (3.48) and (3.49)
in the topological two-dimensional case, and can be combined to provide
the number of tones, P ∈ N, in terms of relevant model and scattering
parameters:

P =
⌈

ln(X/χ1χ2λ)

ln ν

⌉
+ 1, (7.4)

where �·� stands for the ceiling function defined so as to take the upper
integer of its argument.

7.3. Setup of the Extended-Boundary-Condition
Method

In this section, setup of EBCM is presented: this is done to accomplish
the specific case at hand, consisting of an incident plane wave impinging
on a one-dimensional WM dielectric fractal profile described by means of
Equation (7.1). This examination is propaedeutic to evaluating, in the next
sections, scattered and transmitted electromagnetic fields.

Hence, in the following discussion the one-dimensional integral equa-
tions are set up: decomposition of the incident field onto perpendicular and
parallel polarizations allows dealing with scalar integral equations in the
unknown (scalar) field ψ . For perpendicular (TE) polarization, ψ stands
for the electric field that is aligned along the y-axis; conversely, for parallel
(TM) polarization, ψ stands for the magnetic field that is aligned along the
y-axis. Finally, incident- and surface-field expansions are presented.

7.3.1. Incident Field

For a single-plane-wave incidence (see Figure 7.1),

ψ (i)(r) = A exp(−iki · r), (7.5)
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O

z

x

θi

θs
^
ki

Figure 7.1 Geometry of the scattering problem. Cartesian and polar reference systems
relevant to the scattering surface are depicted.

where A is an amplitude coefficient, and ki = kixx̂ + kizẑ is the incident
wave-number vector, with kix = k1 sin θi, kiz = −k1 cos θi, θi being the
incidence angle.

Extension to more than a single plane wave can be accomplished by
means of plane-wave expansion.

7.3.2. Integral Equations

By exploiting the assumption of Sections 7.2 and 7.3.1, the integral equa-
tions are written with reference to the cylindrical case that involves a
topologically one-dimensional x-dependent-only surface profile, S; sepa-
ration of TE and TM polarizations allows referring only to the y-component
of either the electric or the magnetic field, respectively. This is done in the
following paragraphs.

As illustrated in Chapter 4, EBCM is based on the equivalence theorem,
and fixes two sets of equivalent sources, which appear inside the integrals in
Equations (7.6) through (7.9), and are related to the tangential fields on the
scattering-surface profile. Each set of sources radiates in a homogeneous
medium holding the same electromagnetic parameters of the upper (sub-
script 1) or lower (subscript 2) medium. In the case at hand, the first set
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radiates the electromagnetic scattered field above the surface profile:

ψ(i)(r)+
∫

S
dS′

[
ψ1

(
r′
)
n̂ · ∇′g1

(
r, r′

)− g1
(
r, r′

)
n̂ · ∇′ψ1

(
r′
)]

= ψ1(r), z > z′
(
x′
)
, (7.6)

and deletes the incident field below the surface profile:

ψ(i)(r)+
∫

S
dS′

[
ψ1

(
r′
)
n̂ · ∇′g1

(
r, r′

)− g1
(
r, r′

)
n̂ · ∇′ψ1

(
r′
)]

= 0, z < z′
(
x′
)

. (7.7)

The second set radiates a null field above the surface profile:

∫
S

dS′
[
ψ2

(
r′
)
n̂ · ∇′g2

(
r, r′

)− g2
(
r, r′

)
n̂ · ∇′ψ2

(
r′
)] = 0, z > z′

(
x′
)

(7.8)

and the electromagnetic transmitted field below the surface profile:

∫
S

dS′
[
ψ2

(
r′
)
n̂ · ∇′g2

(
r, r′

)− g2
(
r, r′

)
n̂ · ∇′ψ2

(
r′
)]

= ψ2(r) , z < z′
(
x′
)

. (7.9)

In Equations (7.6) through (7.9), ψ (i)(r) is the incident field; ψ1(r) and
ψ2(r) are the total fields above and below the surface, respectively; r is
the generic point in the space surrounding the scattering surface; r′ is a
point on the surface profile; the nabla operator, ∇′, operates on the primed

variable, r′: formally,∇′ = ∂

∂x′
x̂+ ∂

∂z′
ẑ; g1

(
r, r′

)
and g2

(
r, r′

)
are the scalar

Green’s functions in the homogeneous two-dimensional media 1 and 2,
respectively: their spectral domain representation is

g1
(
r, r′

) = − i

4π

∫ +∞

−∞
dk1x

1

k1z
exp

[−ik1x
(
x − x′

)− ik1z
∣∣z − z′

∣∣],
(7.10a)

g2
(
r, r′

) = − i

4π

∫ +∞

−∞
dk2x

1

k2z
exp

[−ik2x
(
x − x′

)− ik2z
∣∣z − z′

∣∣],
(7.10b)
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where k1 and k2 are the field wavenumbers in media 1 and 2, respec-
tively, and

k1z =
√

k2
1 − k2

1x, (7.11a)

k2z =
√

k2
2 − k2

2x. (7.11b)

Direct substitution of Equations (7.10) in Equations (7.6) through (7.9)
leads to equations that are, in general, not amenable to any further analytic
development due to the presence of the absolute value,

∣∣z − z′
∣∣, which is

a function of x and x′. This point simplifies if the validity of each integral
equation is limited to an appropriate half-space where the absolute values
can be easily managed: in particular, substitution of Equation (7.10) in the
first and third integral equations leads to managable analytic forms, provided
that the analysis is limited to the half-space defined by z > max

[
z′
(
x′
)] =

z′M ; analogously, the region z < min
[
z′
(
x′
)] = z′m is considered for the

second and fourth integral equations.
Due to the continuity of the tangential fields on the scattering surface, the

two ψ(·) functions included in the integrands appearing in Equations (7.6)
through (7.9) must be related. Let

η =
{

µ2/µ1 TE case

ε2/ε1 TM case.
(7.12)

Then, continuity of the tangential electric and magnetic fields requires that

n̂× ψ2
(
r′
)
ŷ = n̂× ψ1

(
r′
)

ŷ, (7.13a)

n̂× [∇′ × ψ2
(
r′
)

ŷ
] = η n̂× [∇′ × ψ1

(
r′
)

ŷ
]

, (7.13b)

upon use of the Maxwell equations.
Making use of Equation (A.7.1) with A = n̂ and B = ψ ŷ, considering

that n̂ ⊥ ŷ and
(
n̂ · ∇′)ψ(

r′
)

ŷ = [
n̂ · ∇′ψ(

r′
)]

ŷ, then the field-continuity
conditions (Equations [7.13]) can finally be expressed in terms of the func-
tions appearing in the integrands in Equations (7.6) through (7.9), thus
providing

ψ2
(
r′
) = ψ1

(
r′
)

(7.14a)

n̂ · ∇′ψ2
(
r′
) = η n̂ · ∇′ψ1

(
r′
)

. (7.14b)

Equations (7.7) and (7.8), together with the continuity conditions
(Equation [7.14]), are of the integral type, and can be used to evaluate
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the surface (scalar) fields ψ(1,2)

(
r′
)

, n̂ · ∇′ψ(1,2)

(
r′
)

in terms of the inci-
dent (known) field ψ (i)(r). Once the surface fields are computed, the total
field in all the space can be evaluated via Equations (7.6) and (7.9). This
is easily recognized to be the solution to the considered problem: it con-
tains the source field ψ (i)(r), satisfies by construction Maxwell equations,
and fulfills continuity conditions. Note, however, that the obtained solution
turns out to be intrinsically approximated if Equations (7.7) and (7.8) are
enforced only outside the strip z′m < z < z′M by the imposed restrictions on
the Green’s functions.

Equations (7.6) through (7.9) can be rearranged in a more compact form.
Let us introduce the following Neumann- and Dirichlet-type surface scalar
integrals:

I±D(1,2) �
∫

S′
g(1,2)

(
r, r′

)
n̂ · ∇′ψ(1,2)

(
r′
)
dS′, (7.15)

I±N(1,2) �
∫

S′
ψ(1,2)

(
r′
)
n̂ · ∇′g(1,2)

(
r, r′

)
dS′. (7.16)

Notation is as follows.
The + and − signs apply for the half-spaces z > max

[
z′
(
x′
)] = z′M and

z < min
[
z′
(
x′
)] = z′m, respectively. Subscript D or N refers to the two

integrands. In the limit of a perfectly conducting lower space, I±N = 0
for TE, and I±D = 0 for TM polarization, respectively. In these cases,
Equations (7.15) and (7.16) are consistent with Dirichlet and Neumann
boundary conditions. Subscripts (1 and 2) indicate the wave number k1 or
k2 to be used.

The above-mentioned notations allow us to express in a very compact
form the eight surface integrals involved in the equations for TE and TM
cases.

By means of continuity conditions, Equations (7.15) and (7.16) can be
written in terms of only ψ1:

I±D(1,2) = η

∫
S′

g(1,2)

(
r, r′

)
n̂ · ∇′ψ1

(
r′
)
dS′. (7.17)

I±N(1,2) =
∫

S′
ψ1

(
r′
)
n̂ · ∇′g(1,2)

(
r, r′

)
dS′. (7.18)

Hence, it turns out that Equations (7.6) through (7.9) read as

ψ(s)(r) = ψ1(r)− ψ(i)(r) = I+N1 − I+D1; z > z′M , (7.19)

ψ(i)(r) = −I−N1 + I−D1; z < z′m, (7.20)
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0 = I+N2 − I+D2; z > z′M , (7.21)

ψ2(r) = I−N2 − I−D2; z < z′m. (7.22)

Equations (7.20) and (7.21) are the integral equations to be solved to
determine the unknown surface fields in terms of the incident one and sur-
face parameters; then, use of Equations (7.19) and (7.22) allows evaluation
of the scattered and transmitted fields.

To this end, appropriate expansion for unknown surface fields is useful,
and this is reported in the following subsection.

7.3.3. Surface-Field Expansions for WM Profiles

In EBCM, Equations (7.19) through (7.22) are transformed in a set of infi-
nite algebric equations by proper surface-field expansions. These, in turn,
obviously depend on the geometric property of the scattering profile. Appro-
priate surface-field expansion deserves some comments whenever a WM
function is employed. Compact form of the surface-field expansion calls
for rather involved notations, whose rationale deserves some additional
comments.

First of all, it is useful to recall the convenient field expansion whenever
a sinusoidal surface—hence, one single tone, with spatial period 2π /κ0—
is under analysis. In this case, the surface fields are periodic with period
2π /κ0, except for a linear-phase term exp(−ikixx′), so that a 1-D Fourier
expansion is appropriate. As far as ψ1(r) is concerned, and also including

the Jacobian
√

1+ (dz′/dx′)2 of the transformation from dS′ to dx′—that

is, dS′ = dx′
√

1+ (dz′/dx′)2—the periodic functions to be expanded are

actually
√

1+ (dz′/dx′)2ψ1
(
r′
)

and
√

1+ (dz′/dx′)2n̂ · ∇′ψ1
(
r′
)
. Hence,

it turns out that

dS′ψ1
(
r′
) = dx′ exp

(−ikixx′
) +∞∑

q=−∞
αN ,q exp

(−iq0x′
)
, (7.23)

dS′n̂ · ∇′ψ1
(
r′
) = dx′k exp

(−ikixx′
) +∞∑

q=−∞
αD,q exp

(−iq0x′
)

, (7.24)

where the αD,q and αN ,q are the (unknown) coefficients of the Fourier
series expansion for the surface (scalar) fields. On the right-hand side of
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Equations (7.23) and (7.24), no explicit dependence on z′ appears, because
z′ is a function of x′, via the surface-profile Equation (7.1).

If the surface is obtained by superposition of P sinusoidal functions,
each one representing a tone, whose periods are 2π /κ0, . . . , 2π /κP−1, then
Equations (7.23) and (7.24) can be generalized. In this case, the surface
fields are computed by employing the generalized Fourier series expansion,
and can be expressed as follows:

dS′ψ1
(
r′
) = dx′ exp

(−ikixx′
)

+∞∑
q0=−∞

+∞∑
q1=−∞

. . .
+∞∑

qP−1=−∞
αN ,q0,...,qP−1

exp
(−i (q0κ0 + q1κ1 + · · · + qP−1κP−1)x

′) , (7.25)

dS′n̂ · ∇′ψ1
(
r′
) = dx′k1 exp

(−ikixx′
)

+∞∑
q0=−∞

+∞∑
q1=−∞

. . .
+∞∑

qP−1=−∞
αD,q0,...,qP−1

exp
(−i (q0κ0 + q1κ1 + · · · + qP−1κP−1)x

′) . (7.26)

In Equations (7.25) and (7.26), each term of the expansions can be defined
as a surface mode. It is composed of an exponential kernel and a coeffi-
cient that depend on P indexes qj, each one expressing the contribution
of the corresponding surface-profile tone. Explicit use of the P indexes
q0, . . . , qP−1 makes the combination of tones contributing to the mode
immediately visible. Therefore, it is desirable to keep the P indexes in the
formal expression of the field. On the other hand, a more compact notation
would be also attractive. In order to achieve both aims, two string indexes,
q and κ, can be employed:

q̃ = [q0, . . . , qP−1] , (7.27)

κ̃ = [κ0, . . . , κP−1] , (7.28)

where q is a column vector ∈ ZP, whose elements qj, in principle, span
from −∞ to +∞, and κ is the column vector of the tones wavenumbers.
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This (formal) choice allows us to write Equations (7.25) and (7.26) in the
more compact form:

dS′ψ1
(
r′
) = dx′ exp

(−ikixx′
) +∞∑

qj=−∞
j=0,...,P−1

αN ,q exp
(−iq̃ · κx′

)
, (7.29)

dS′n̂ · ∇′ψ1
(
r′
) = dx′k1 exp

(−ikixx′
) +∞∑

qj=−∞
j=0,...,P−1

αD,q exp
(−iq̃ · κx′

)
, (7.30)

thus reducing the formal complexity and allowing an easy reading. In par-
ticular, each mode is addressed by its pertinent q string—that is, by the
ordered sequence of the chosen components of the string.

A further comment on the introduced notation is appropriate.
The introduced basic notation is the following one:

+∞∑
qj=−∞

j=0,...,P−1

Yq =
+∞∑

q0=−∞

+∞∑
q1=−∞

. . .
+∞∑

qP−1=−∞
Yq0,...,qP−1 . (7.31)

Accordingly, the vector index is a shorthand notation to indicate multiple
summations. Furthermore, each summation is an infinite series, because
each element of the vector index— say, qj—spans (in principle) from −∞
to +∞. However, it is anticipated that the practical implementation of
EBCM requires truncation of these series, as discussed in Section 7.9.

If the ratios between all pairs κi, κj are rational numbers, a κ exists
such that κ̃ = [n0κ , . . . , nP−1κ], all nj being integers numbers; in this
case, the surface profile is simply periodic with spatial period 2π /κ . Then
Equations (7.29) and (7.30) can be reduced to Equations (7.23) and (7.24),
in agreement with the Floquet theorem.

Conversely, if at least one of the ratios between the pairs κi, κj is an
irrational number, then the surface profile is almost periodic, and the
generalized Fourier expansions (Equations [7.29] and [7.30]) must be
used. In particular, if the WM function defined by Equation (7.1) is used
to describe the natural profile, inspection of the equation suggests that
κ̃ = [

κ0, κ0ν, . . . , κ0ν
P−1

]
.

The proposed procedure arises from the description of the surface in
terms of a Weierstrass-Mandelbrot function. The almost-periodic nature
of the WM (due to its construction as a superposition of tones) allows
the generalized Fourier series expansion of the surface fields in terms of
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modes, each mode made by appropriately combining contributions of all the
different surface tones and all their possible interactions. As a consequence,
and as shown in the following sections, also the scattered field turns out to
be expressed as a superposition of modes: again, each scattered mode is
due to the mutual interaction of all the tones of the surface.

7.4. Surface-Fields Evaluation

Analytic evaluation of the scattered field via Equations (7.19) through
(7.22) implies solving a set of integral equations that involve Dirichlet
(I±D(1,2))- and Neumann (I±N(1,2))-type integrals defined in Equations (7.15)
and (7.16). The rationale for accomplishing this task is depicted in this
section; analytic details concerning the evaluation of the Dirichlet- and
Neumann-type integrals are found in Appendix 7.A, where the above-
mentioned integrals are analytically solved in closed form, thus leading to
a similarly closed form for the scattered and transmitted fields. For the sake
of simplicity, to avoid considering very complicated formal expressions,
the considered surface profile is assumed to be indefinite, the x′ variable
extending over the whole real axis: this is acceptable for surfaces large in
terms of the incident electromagnetic wavelength. The case of x′ extending
on a finite extension of the real axis is discussed later.

Equations (7.19) through (7.22), which define the surface fields and allow
computation of the scattered and transmitted field, can be rewritten upon
use of the Dirichlet- and Neumann-type integral evaluations provided in
Appendix 7.A:

ψ(s)(r) = ψ1(r)− ψ(i)(r) = I+N1 − I+D1

=
+∞∑

lj=−∞
j=0,...,P−1

(
a+N1,l − a+D1,l

)
exp

(−ik+1l · r
)
; z > z′M

(7.32)

ψ(i)(r) = −I−N1 + I−D1

=
+∞∑

lj=−∞
j=0,...,P−1

(
−a−N1,l + a−D1,l

)
exp

(+ik−1l · r
)
; z < z′m,

(7.33)
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0 = I+N2 − I+D2 =
+∞∑

lj=−∞
j=0,...,P−1

(
a+N2,l − a+D2,l

)
exp

(−ik+2l · r
)

; z > z′M ,

(7.34)

ψ2(r) = I−N2 − I−D2 =
+∞∑

lj=−∞
j=0,...,P−1

(
a−N2,l − a−D2,l

)
exp

(+ik−2l · r
)
; z < z′m.

(7.35)

Equations (7.32) through (7.35) are a reformulation of Equations (7.19)
through (7.22), with the advantage that all integral operations have
been analytically performed. A proper reading of these equations is in
order.

The Dirichlet- and Neumann-type integrals have been solved, and the
obtained closed-form expressions consist of a modal expansion: in each
term of right-hand side of Equations (7.32) through (7.35), a P-infinity num-
ber of modes is present, each one specified by the choice of the P-indexes
of the l string formally defined by Equation (7.A.11). Each mode is char-
acterized by the wave vector k±(1,2)l (see Equation [7.A.16]). In medium 1
and 2, the direction of propagation of each scattered or transmitted mode,
defined by the string l, is given by the (possibly complex) angles provided by
Equations (7.A.17) and (7.A.18), respectively: these equations are usually
referred to as grating-modes equations.

The coefficients a appearing in Equations (7.32) and (7.35) are related,
via Equations (7.A.15) and (7.A.29), to the (unknown) coefficients α of the
Fourier series expansions for the surface fields (see Equations [7.29] and
[7.30]). The further step is to manipulate Equations (7.32) through (7.35)
such that the latter coefficients α directly appear into the above-mentioned
equations set, and can be evaluated. The pertinent procedure is sketched in
the subsequent sections.

7.5. Fields Expansions

To proceed further, examination of Equations (7.32) through (7.35) is in
order.

It is noted that the left-hand sides of Equations (7.33) and (7.34), and
of Equations (7.32) and (7.35), are not on the same footing. The former
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are known fields, whereas the latter are unknown. Accordingly, we use the
first couple to determine the unknown coefficients; after these coefficients
have been computed, we use the second couple to evaluate the scattered
and transmitted fields. Before implementing the necessary mathematical
manipulations, a preliminary expansion of the (known and unknown) fields
is convenient.

The observation that the right-hand-side members of Equations (7.32)
through (7.35) consist of superposition of waves characterized by wavevec-
tors∓k±(1,2)l suggests that we also expand their left-hand side (also including,
for the sake of completeness, the null field) onto the same basis. For the
first couple, Equations (7.33) and (7.34), the representation is the following
one:

ψ(i)(r) =
+∞∑

li=−∞
i=0,...,P−1

c−l exp
(
ik−1l · r

)
, z < z′m, (7.36)

0 =
+∞∑

li=−∞
i=0,...,P−1

c+l exp
(−ik+2l · r

)
, z > z′M , (7.37)

where c±l are the expansion coefficients.
For the second couple, Equations (7.32) and (7.35), one similarly gets

ψ(s)(r) =
+∞∑

lj=−∞
j=0,...,P−1

b+l exp
(−ik+1l · r

)
, z > z′M (7.38)

ψ2(r) =
+∞∑

lj=−∞
j=0,...,P−1

b−l exp
(−ik−2l · r

)
, z < z′m, (7.39)

where b±l are the expansion coefficients.
The coefficients c±l can be immediately evaluated: in particular, inspec-

tion of Equations (7.5) and (7.A.12) suggests that, in the case of the single
incident plane wave, the field-amplitude coefficients c−l are all zero, but for
the string l = [0, 0 . . . 0], which provides an amplitude coefficient equal to
the constant A. Obviously, inspection of Equation (7.37) provides a zero
value for all the null-field coefficients c+l .
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As far as the second set of equations, they provide the formal solution
for the scattered field in the upper medium 1 (Equation [7.38]), and the
transmitted field for the lower medium 2 (Equation [7.39]), in terms of the
(unknown) expansion coefficients b±l .

The formal procedure to be implemented is now clear. The first set
(Equations [7.36] and [7.37]) is substituted in Equations (7.33) and (7.34).
A linear system of equations is obtained (see Section 7.6), which is
inverted to finally obtain the expansion coefficients, αD,q and αN ,q, of the
surface-tangential fields. Then these coefficients are used in Section 7.6 to
compute the expansion coefficients, b±l , of the scattered and transmitted
fields.

The scattered, incident, null, and transmitted fields are expressed as super-
positions of a countable infinity of modes, whose amplitudes are provided
by coefficients b+, c−, c+, and b−, respectively. Modes, coefficients and
wave numbers are all dependent on the P indexes lj. Each combination of
the P indexes identifies a direction of propagation and the corresponding
amplitude of the scattered, incident, and transmitted fields. This is even
more evident if the explicit forms instead of the compact ones are used to
express the electromagnetic fields. For instance, as far as the scattered field
is concerned, Equation (7.38) reads as

ψ (s)(r) =
+∞∑

l0=−∞

+∞∑
l1=−∞

· · ·
+∞∑

lP−1=−∞
b+l0,l1,...,lP−1

exp
(
−ik+1,l0,l1,...,lP−1

· r
)

.

(7.40)

7.6. EBCM Equations in Matrix Form

Inspection of Equations (7.36) through (7.39) allows us to write Equations
(7.32) through (7.35) in a matrix form. This convenient arrangement is
reached along the following procedure. Formal results are presented in
Section 7.7; their practical use is detailed in Section 7.8.

The first step is to substitute Equations (7.36) through (7.39) into Equa-
tions (7.32) through (7.35), so that the coefficients b±l , c±l appearing at the
left-hand sides are related to the coefficients a±l appearing at their right-hand
sides. The second step is to express the coefficients a±l via the surface-
modes expansion coefficients, αD,q and αN ,q, given in Equations (7.A.15)
and (7.A.29). To proceed further, it is convenient to slightly modify the
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surface mode expansion coefficients as follows:

α′D,q = −
i

4π
αD,q exp(iq̃ ·�) , (7.41)

α′N ,q =
1

4π
αN ,q exp(iq̃ ·�) , (7.42)

which also includes the dependence on the profile tones phase Φ (see
Equation [7.A.7]).

At this stage, by considering Expansions (7.36) through (7.39), each of
the Equations (7.32) through (7.35) appears as an identity between two
infinite series, each one containing appropriate coefficients times identical
exponential terms, which are the only r-depending functions. The iden-
tities should be verified for any r in the allowed zones: accordingly, the
corresponding coefficients must be equated to each other.

Then Equations (7.33) and (7.34) attain the following formal matrix form:

{
Q−N1 · α′N + Q−D1 · α′D = c−

Q+N2 · α′N − ηQ+D2 · α′D = 0
, (7.43)

where right-hand sides and left-hand sides have been exchanged, to comply
with the usual formal presentation of a linear system where (matrix) coef-
ficients and (vector) unknowns are on the left-hand side, whereas (vector)
known terms appear at the right-hand side.

Equations (7.32) and (7.35) are similarly recast as

b+ = Q+N1 · α′N − Q+D1 · α′D, (7.44)

b− = Q−N2 · α′N − ηQ−D2 · α′D. (7.45)

In Equations (7.43) through (7.45), the matrices’known entries are given by

Q±D(1,2),ql = (±1)m(l)(±1)m(q) k(1,2)

k(1,2)zl
exp

(
−il̃ ·Φ

)

P−1∏
p=0

Jlp−qp

(
k(1,2)zlBCpν

−Hp), (7.46)
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Q±N(1,2),ql = (±1)m(l)(±1)m(q)
k2
(1,2) − kxlkxq

k2
(1,2)zl

exp
(
−il̃ ·�

)

P−1∏
p=0

Jlp−qp

(
k(1,2)zlBCpν

−Hp). (7.47)

As already stated, Equations (7.46) and (7.47) provide the entries of
the matrices Q±D and Q±N . Each entry is identified by a couple of string
indexes, q and l, as defined in Equations (7.27) and (7.A.11). Each element
of these matrices relates a surface-field mode, identified by the string q
(see Equations [7.29] and [7.30]), to a radiated-field mode, identified by the
string l (see Equations [7.36] through [7.39]).

Afirst observation is that the original integral equations (Equations [7.19]
through [7.22]) are now transformed into matrix equations that in principle
allow their solution. At this stage, the matrices dimensions are infinite,
but this point is dealt with in Section 7.8. A further advantage of above
the formulation is that the matrix equations do not involve the variable r
at all. Hence, solution of the equations is greatly simplified. In Equations
(7.43), the right-hand sides are known, and the unknowns α′D and α′N can be
evaluated. Substitution of the obtained values in Equations (7.44) and (7.45)
allows computing the amplitude coefficients, b+ and b−, of the scattered
and transmitted fields.

7.7. Matrix-Equations Solution

Solution of the linear system (Equations [7.43]) is in order.
Formal inversion of the (linear) system (Equation [7.43]) leads to the

unknowns α′D and α′N evaluation:

α′D =W−1
1 (η) · c− (7.48)

α′N = ηQ+N2
−1 · Q+D2 ·W−1

1 (η) · c− (7.49)

where

W1(η) = Q−N1 · ηQ+N2
−1 · Q+D2 + Q−D1. (7.50)
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Equations (7.48) through (7.50) allow us to express the amplitude coeffi-
cients of the surface-fields modes, α′, in terms of the incident field, c−, and
the surface-profile parameters (included in the matrices).

Substitution of Equations (7.48) and (7.49) in Equation (7.44) leads to

b+ =
(

Q+N1 · ηQ+N2
−1 · Q+D2 − Q+D1

)
· α′D =W2(η) ·W−1

1 (η) · c−,

(7.51)

where

W2(η) = Q+N1 · ηQ+N2
−1 · Q+D2 − Q+D1. (7.52)

Equations (7.51) and (7.52) allow us to express the amplitudes, b+, of
scattered-field modes in terms of the amplitudes coefficients, c−, of the
incoming field and the surface-profile parameters. Hence, the scattered field
is expressed as a countable superposition of modes, whose amplitude coef-
ficients are given by Equation (7.51), and whose directions of propagation
are given by Equation (7.A.17).

Substitution of Equations (7.48) and (7.49) in Equation (7.45) leads to

b− =
(

Q−N2 · ηQ+N2
−1 · Q+D2 − ηQ−D2

)
· α′D =W3(η) ·W−1

1 (η) · c−,

(7.53)

where

W3(η) = Q−N2 · ηQ+N2
−1 · Q+D2 − ηQ−D2. (7.54)

Equations (7.53) and (7.54) allow us to express the amplitudes, b−, of
transmitted-field modes in terms of the amplitudes, c−, of the incoming
field and the surface-profile parameters. Hence, the transmitted field is
expressed as a superposition of modes whose amplitude coefficients are
evaluated via Equation (7.54), and whose directions of propagation are
given by Equation (7.A.18).

7.8. Matrices Organizations

In Equations (7.51) and (7.53), the amplitude coefficients can be eval-
uated once the matrices W1,W2,W3 are computed. To this aim, two
main problems must be solved: matrices elements ordering and matrices
dimensions.
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As far as the ordering problem is concerned, note that, as stated in
Section 7.6, each matrix element in Equations (7.43) through (7.54) is
defined by the chosen entries of the strings q and l. String q states which
mode is considered for the surface-tangential fields (see Equations [7.25]
and [7.26]): any choice of the P elements of q values corresponds to a com-
bination of tones relevant to the surface profile and identifies a surface-field
mode. String l states which mode is considered for the scattered, incident,
null, or transmitted field (see Equations [7.36] through [7.39]): any choice of
the P elements of l values identifies a scattered-field mode, whose direction
of propagation is given by the grating equations (Equations [7.A.17] and
[7.A.18]). Hence, each matrix element in Equations (7.43) through (7.54)
is identified by 2P indexes: P indexes are employed to define the string q,
which identifies the matrix row, whereas the other P indexes are employed
to define the string l, which identifies the matrix column. Then the practical
construction of the matrices depends on the rule that is employed to order
the elements of the strings q and l. However, the order of the matrix ele-
ments does not affect the evaluation of b, provided that the same criterion is
adopted for each matrix appearing in Equations (7.43) through (7.54), and
consequently for each matrix or vector involved in the overall procedure
depicted in Section 7.7.

Matrices appearing in Equations (7.43) through (7.54)—as well as
vectors b+, b−, c+, and c−—have no finite dimension because they are
generated by varying P indexes between −∞ and +∞. These infinite
dimensions are due to the infinite number of terms associated to the gener-
alized Fourier series expansion of the surface field in Equations (7.25) and
(7.26). Then it is necessary to truncate the matrices if numerical methods
may be used to evaluate the expansion coefficients of surface and scattered
fields.

It is important to choose a criterion that allows considering only a finite
number of relevant elements of the matrices, without impairing the precise
evaluation of the scattering coefficients. To this end, it is preliminarily
required to categorize the modes and the matrix elements.

Modes can be categorized according to the value of the strings l. A
radiated mode is defined of K-th (interaction) order if

P−1∑
j=0

∣∣lj∣∣ = K . (7.55)
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A similar definition can be set for the surface modes by referring to the
string q.

It is convenient to set the finite number of modes employed to evaluate the
scattered fields by using only modes whose interaction order is smaller than
a prescribed value Kmax that is chosen according to a criterion presented in
the next section. In other words, only modes characterized by strings l and
q such that ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

P−1∑
j=0

∣∣lj∣∣ ≤ Kmax

P−1∑
j=0

∣∣qj
∣∣ ≤ Kmax

(7.56)

are considered. This criterion truncates the matrices Q to a finite order that
increases exponentially with K . As a matter of fact, assume that at the
interaction order K , n strings q and n strings l are generated. Change of the
order from K to K+1 produces additional strings for each already-existing
string: accordingly, the strings-number increase, �n, is proportional to n,
with the resulting exponential pattern.

However, the number of significant entries for each Q matrix is recog-
nized to be smaller than the number identified by Conditions (7.56): for real
values of k(1,2)zl (not evanescent modes), which account for the propagation
in the far field, the Q entries are significant only if the order of each Bessel
function is lower than its argument. Then, for each lj, only those qj that
satisfy the condition ∣∣lj − qj

∣∣ < k(1,2)zlBCpν
−Hp (7.57)

(see Equations [7.46] and [7.47]) significantly contribute to the formation
of the scattered field. If only the far field must be evaluated, it is possible
to approximate to zero the entries of the Q matrices that do not satisfy
Equation (7.57). It turns out that only the surface-fields modes identified
by string values q close enough to the string value l (see Equation [7.57])
contribute to the formation of the scattered-far-field mode identified by l.
It is concluded that, except for very rough surfaces, the matrices whose
entries are presented in Equations (7.46) and (7.47) are sparse.

The above results lead to an evaluation of the dimensions of matrices as
described in Table 7.1, where Nb is the number of modes of order smaller
or equal to Kmax, Np(Np < Nb) is the number of propagating modes in the
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Table 7.1 Dimensions of the matrices involved in
the EBCM approach.

Matrix Dimensions Matrix Dimensions

Q+D1 Np × Nb Q+D2 Nb × Nb

Q−D1 Nb × Nb Q−D2 NT × Nb

Q+N1 Np × Nb Q+N2 Nb × Nb

Q−N1 Nb × Nb Q−N2 NT × Nb

upper medium, and NT (NT < Nb) is the number of propagating modes in
the lower medium.

7.9. Scattering-Modes Superposition, Matrices
Truncation, and Ill-Conditioning

In Section 7.8, the matrices dimensions are set according to an appropri-
ate selected maximum-interaction order; then it is important to establish a
criterion that fixes this maximum-interaction order Kmax, consistent with
the required accuracy and calculation-time constraint. The criterion is based
on the energy-conservation law.

Define the energy parameter, e, as the sum, normalized to the incident
power, of reflected and transmitted powers. For the considered case of the
single incident plane wave:

e = 1

|A|2 cos θi

⎛
⎝

Np∑
l=1

∣∣b+l
∣∣2 cos θ1l + χ

NT∑
l=1

∣∣b−l
∣∣2 cos θ2l

⎞
⎠, (7.58)

wherein

χ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
µ1/ε1√
µ2/ε2

, TE case

√
µ2/ε2√
µ1/ε1

, TM case.

(7.59)

If e = 1, the energy-conservation law is satisfied: this limiting case is
approached as the interaction order is increased. The criterion for the Kmax
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choice is formalized by the following relationships:
∣∣eKmax − 1

∣∣ < δ1, (7.60)∣∣eKmax − eKmax−1
∣∣ < δ2, (7.61)

wherein δ1 and δ2 are small parameters to be set. Equation (7.60) ensures
that the parameter e converges to the desired value, whereas Equation (7.61)
is a convergence criterion. Implementation of Equations (7.60) and (7.61)
leads to fixing the interaction order Kmax at which the calculations can be
stopped.

The matrices involved in the numerical computation can be ill-
conditioned. This occurs whenever at least one of the singular values of the
matrices that must be inverted is much smaller than the others. In this case,
small changes in the matrix entries—for instance, due to round-off errors—
may cause instability in the numerical matrix inversion, thus leading to
incorrect results for the scattered fields. The problem is related to the
precision of the computer and of the code employed to perform the com-
putations. Numerical solutions based on singular-value decomposition can
be employed to relax this constraint.

Ill-conditioning problems may arise whenever very rough surfaces are
taken into account. In this case, the value of B increases, thus increasing
the arguments of the Bessel functions (see Equations [7.46] and [7.47]),
and the number of modes that significantly contribute to the scattered field
(see Equation [7.57]). Then matrices entries and dimensions are increased,
resulting in a larger probability of having a large ratio of the largest to the
smallest singular value, and the matrices become ill-conditioned.

Ill-conditioning has a physical counterpart that can be individuated by
analyzing Equation (7.34) or Equation (7.33).

Equation (7.34) is considered first. This equation enforces a null field in
the region z > z′M , and not in the whole (wider) region z > z′(x′, y′), as it is
prescribed by Equation (7.8). This different condition has been introduced
in order to employ the simple expression in Equation (7.10b) for the Green’s
function in the spectral domain: this expression involves a plane-wave
expansion that is valid only in the half-space z > z′M . Roughly speaking, if
the roughness is small, the difference between the two regions is limited,
and it is reasonable to expect that the field is approximately equal to zero also
in the region z′

(
x′, y′

)
< z < z′M . If the surface roughness increases—for

instance, by increasing B—even if the field in the half-space z > z′M is null,
different and significant fields can exist in the region z′

(
x′, y′

)
< z < z′M ,
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so that the numerical evaluation of surface fields may be unstable. As a
matter of fact, very different surface fields may radiate different fields in
the region z′

(
x′, y′

)
< z < z′M , but may radiate practically the same null

field in the half-space z > z′M—so that they are virtually equivalent from the
viewpoint of Equation (7.34), and ill-conditioning arises. Analogous con-
siderations hold for matrix Equation (7.33), which is equivalent to enforce
Equation (7.7) only in the half-space z < z′m, and not in all the region
z < z′

(
x′, y′

)
.

Then matrices ill-conditioning has a practical drawback: the numerical
procedure cannot be applied to surface profiles of any (somehow defined)
roughness; and for the EBCM, a maximum roughness needs to be consid-
ered. This maximum-roughness value cannot be set in general: it obviously
depends on the considered situation (surface profile and impinging elec-
tromagnetic field), as well as (and less obviously) on the computer and
implemented numerical code that are employed to solve the scattering
problem.

7.10. Influence of Fractal and Electromagnetic
Parameters over the Scattered Field

In this section, the influence of fractal parameters—κ0, ν, P, B, and H—on
the scattered field is analyzed: the WM coefficients are assumed to be not
random: Cp = 1, �p = 0 for any p. The scattering surface is illuminated
from the direction ϑi = π /4, whereas the scattered field is displayed for
any ϑs; this suggests assuming −π

2 < ϑs ≤ π
2 .

First, the effect of the fractal parameters on the scattered field is
briefly described in a qualitative manner. Then quantitative assessment is
graphically presented in Figures 7.2 through 7.9.

A reference case is considered first. Then, in any subsequent subsection,
only one of the surface fractal parameters is changed within a reasonable
and significant range.

The reference scattering surface is characterized by the fractal parameters
listed in Table 7.2. These parameters are typical for natural surfaces on the
Earth when illuminated by a microwave instrument. The scattering profile
is chosen to be of finite length. This implies that in the series at the right-
hand side of Equations (7.32) through (7.35), each exponential term is
replaced by a sinc(·) function, whose maximum is aligned to the direction
individuated by the wavevectors in Equations (7.A.16) through (7.A.18)
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Table 7.2 Parameters relevant to the electromagnetic illumination
and to the reference surface of Figure 7.2.

Incidence angle (ϑi) 45◦

Illuminated area (X) 1 m
Electromagnetic wavelength (λ) 0.1 m
Hurst exponent (H) 0.8
Tone wave-number spacing coefficient (ν) e
Overall amplitude-scaling factor (B) 0.01 m

for the profile of infinite length. This leads to represent also the scattered,
transmitted, incident and null fields in Equations (7.36) through (7.39) as
superposition of sinc(·) functions, each sinc(·) exhibiting the maximum field
in the directions individuated by Equations (7.A.16) through (7.A.18).

Same normalisations introduced in Section!5.5 are in this section applied:
the reason is to allow the comparison with results shown in Section 5.5,
thus emphasizing the dependence of the scattered power-density on the
fractal parameters. Scattering surface and normalized scattered power-
density are displayed in Figure 7.2. In this figure and in the following ones,
the scattered-power density is normalized to the value of the scattered-
power density radiated by the reference surface in the specular direction.
Graphs in Figure 7.2 have been obtained with Kmax = 2. In Figure 7.3, the
scattered-power density evaluated for Kmax = 1, 2, 3 is displayed: it can be
appreciated that for the reference surface illuminated under the reference
condition reported at the beginning of this section, the scattered power-
density is correctly represented by choosing Kmax = 2. This is confirmed
by the corresponding values attained by the e parameter: e1 = 0.98637;
e2 = 0.99877; e3 = 0.99997. All graphs in the subsequent subsections
have been obtained by setting δ1 = δ2 = 0.01 in Equations (7.60) and
(7.61) to determine Kmax.

Plots in Figure 7.2 show that the maximum field scattered by the reference
surface is attained in the specular direction. For angles close to the specular
direction, the scattered field approximately exhibits the sinc(·) behavior,
showing that the specular mode is the dominant one. The scattered field is
arranged in a series of lobes whose mean width is proportional to the ratio
between the electromagnetic wavelength and the length of the illuminated
area. The overall scattered field is obtained as superposition of the significant
scattered modes. According to the considerations reported in Chapter 3 and
Section 7.8, 4 tones are necessary to describe the surface, and 24 localized
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Figure 7.2 Plot of the profile, y = 0, of the reference surface holding the fractal
parameters listed under Table 5.1 along with the graph of the corresponding normalized
scattered power density in the plane y = 0.

modes have been considered in the numerical evaluation of the scattered-
power density.

It is noted that the graph of Figure 7.2 refers to the particular ensemble
element of the surface depicted in the same figure. This is convenient for
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Figure 7.3 Plots of the normalized scattered power density by varying the number of
interactions: Kmax = 1 top, Kmax = 2 middle, Kmax = 3 bottom figure.
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many applications, but does not explicitly show the statistical behavior of the
ensemble itself. To get this additional information, as was already pointed
out in Section 1.6.1, the WM model parameters are changed according to
their statistics, the associate scattered power-density for each element is
computed, and the obtained values are properly processed. For instance,
the expected value of the scattered-power density is obtained by averaging
thirty-two graphs as that of Figure 7.2, each relative to one element of the
surface ensemble. This is shown in Figure 7.4.

7.10.1. The Role of the Fundamental-Tone Wavenumber

As shown in Chapter 3, κ0 is not an independent fractal parameter. Its value
can be set according to the illuminated-surface dimension: as already shown,
see Equation (7.2), it is reasonable to set the fundamental-tone wavelength
of the order of the maximum length of the surface, with the addition of an
appropriate safety factor χ1 ∈ (0, 1], the latter to be set equal to 0.1 in most
critical cases. Accordingly:

κ0 = 2π

X
χ1. (7.90)

In the numerical examples in this section, χ1 = 1/
√

2 is chosen: this is
done to get the same value of κ0 that was obtained in Chapter 5 for a topo-
logically two-dimensional surface with X = Y under the same illumination
conditions.

Instead of κ0, from the electromagnetic-scattering viewpoint, it is more
meaningful to consider the effect induced by a change of the scattering-
surface dimensions, X, according to Equation (7.90). The scattered-power
density, evaluated in the EBCM and relevant to different values of the
surface dimension, is reported in Figures 7.5.

Comparison of results reported in Figures 7.2 and 7.5 shows that the larger
the illuminated area—that is, the smaller the value of κ0—the narrower the
radiated lobes, with a corresponding increase in the number of oscilla-
tions with ϑs. The side-lobes amplitude appears to be unaffected by κ0.
In Figure 7.5a, 3 tones and 15 localized modes have been considered; in
Figure 7.5b, 5 tones and 32 localized modes have been considered.

7.10.2. The Role of the Tone Wavenumber Spacing Coefficient

As shown in Section 3.6, ν is the fractal parameter that controls the tone
wave-number spacing. Its value sets the degrees of similarity between
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Figure 7.4 Plots of the normalized scattered power density relevant to a set of surfaces
which have been obtained by randomizing the surface coefficients of the reference
surface. Thirty-two realizations have been considered. Top ν = e; bottom ν = e− 0.5.
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Figure 7.5a Modified versions of the reference surface are considered. As in
Figure 7.2, surface cuts and corresponding normalized scattered power density graphs
are depicted. Case Lx = Ly = 0.5 m.

the considered WM function and an appropriate fBm process of appro-
priate fractal parameters. Its value can be set to any irrational number >1.
The scattered power-density relevant to different values of ν is reported in
Figures 7.6.

Comparison of Figures 7.2 and 7.6 shows that the tone spacing marginally
influences the scattered field. A smoother overall shape for the scattered
power-density is obtained for lower values of ν. However, the ν value can
greatly influence the number of tones that are required to represent the
surface: thus, the number of significant modes, and consequently the com-
putational time of the scattered field, is greatly influenced by the choice of ν.
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Figure 7.5b Modified versions of the reference surface are considered. As in
Figure 7.2, surface cuts and corresponding normalized scattered power density graphs
are depicted. Case Lx = Ly = 2 m.

In Figure 7.6a, 5 tones and 32 localized modes have been considered; in
Figure 7.6b, 4 tones and 18 localized modes have been considered. In con-
clusion, it is confirmed that ν is a fractal parameter that can be set to obtain
reliable discrete approximation of the continuous fBm spectral behavior;
furthermore, its choice is relevant for the surface-profile representation, but
not so much as far as the scattered field is concerned. Accordingly, its value
could be set not too close to 1 to allow efficient evaluation of the scattered
field.
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Figure 7.6a Modified versions of the reference surface are considered. As in
Figure 7.2, surface cuts and corresponding normalized scattered power density graphs
are depicted. Case ν = e+ 0.5.

7.10.3. The Role of the Number of Tones

As shown in Chapter 3, P is not an independent fractal parameter. Its value
can be set according to the incident wavelength and illuminated-surface
dimension: as already shown, see Equation (7.2) through (7.4), it is rea-
sonable to set the surface upper spatial wavenumber of the order of the
electromagnetic wavelength, with the addition of an appropriate safety
factor χ2 ∈ (0, 1], the latter usually set to 0.1. Accordingly:

P =
⌈

ln(X/χ1χ2λ)

ln ν

⌉
+ 1. (7.91)



224 7 ♦ Scattering from WM Profiles: EBCM Solution

−0.4 −0.2 0.2 0.4

−0.04

−0.02

0.02

0.04

0.001

0.01

0.1

1

-
x

z (x)

|E|2

qs
0− p

2
p
4

p
2

p
4

−

Figure 7.6b Modified versions of the reference surface are considered. As in
Figure 7.2, surface cuts and corresponding normalized scattered power density graphs
are depicted. Case ν = e+ 0.5.

In the numerical example in this section, χ2 = 1/
√

2 is chosen: this is
done to obtain the same value of P that was obtained the examples in Chapter
5 for a topologically two-dimensional surface with X = Y under the same
illumination conditions. The number of tones increases logarithmically with
the ratio between the surface dimensions to the electromagnetic wavelength.
The lower the safety factors or tone spacing, the higher the number of tones.

In view of Equation (7.4) and the results of Section 5.5.3, instead of P,
it is more meaningful to consider changes induced by varying the electro-
magnetic wavelength λ. The scattered power-density evaluated by means
of the formula presented in this chapter and relevant to different values of
λ is reported in Figures 7.7.
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Figure 7.7a Modified versions of the reference surface are considered. As in
Figure 7.2, surface cuts and corresponding normalized scattered power density graphs
are depicted. Case λ = 0.05 m.

Comparison of Figures 7.2 and 7.7 shows that the larger the number
of tones—that is, the smaller the electromagnetic wavelength—the nar-
rower the radiated lobes. For smaller λ, a finer description of the surface is
required, which implies a corresponding increase in the number of modes.
In Figure 7.7a, 5 tones and 97 modes have been considered; in Figure 7.7b,
3 tones and 15 modes have been considered.

7.10.4. The Role of the Overall Amplitude-Scaling Factor

The overall amplitude-scaling factor B directly influences the surface
roughness (Equation [7.1]). Normalized-tone roughness turns out to be
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Figure 7.7b Modified versions of the reference surface are considered. As in
Figure 7.2, surface cuts and corresponding normalized scattered power density graphs
are depicted. Case λ = 0.2 m.

proportional to B. Hence, the number of significant modes, M, increases
with B.

In Figures 7.8, two graphs are reported of the scattered-power density
relevant to surfaces with lower (B = 0.005 m) and higher (B = 0.02 m)
values of the overall amplitude-scaling factor B with respect to the inter-
mediate one B = 0.01 m reported in Figure 7.2 relevant to the reference
surface.

Comparison of Figures 7.2 and 7.8 shows that the larger the overall
amplitude-scaling factor B, the larger the number of modes that significantly
contribute to the scattered field. Accordingly, the scattered power-density
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Figure 7.8a Modified versions of the reference surface are considered. As in
Figure 7.2, surface cuts and corresponding normalized scattered power density graphs
are depicted. Case B = 0.005 m.

resembles the sinc(·) behavior for lower B; conversely, for higher B, the
sinc(·) behavior is lost. Note that the number of modes may increase, also
varying other fractal parameters; but the disappearance of the sinc(·) behav-
ior is more evident if B is increased. In Figure 7.8a, 4 tones and 24 modes
have been considered; in Figure 7.8b, 4 tones and 122 modes have been
considered.

7.10.5. The Role of the Hurst Exponent

As shown in Chapter 3, the Hurst coefficient is related to the fractal dimen-
sion. The lower the value of H, the higher the fractal dimension, and the
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Figure 7.8b Modified versions of the reference surface are considered. As in
Figure 7.2, surface cuts and corresponding normalized scattered power density graphs
are depicted. Case B = 0.02 m.

higher the number of significant modes that enter into the evaluation of the
scattered field.

In Figures 7.9, two graphs are reported, relevant to surfaces with higher
(H = 0.9) and lower (H = 0.7) values of the Hurst coefficient with respect
to the intermediate one (H = 0.8) in Figure 7.2 relative to the reference
surface.

Comparison of Figures 7.2 and 7.9 shows that the smaller the Hurst
coefficient, the higher the lateral lobes. In both Figures 7.9a and 7.9b,
4 tones and 24 modes have been considered.
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Figure 7.9a Modified versions of the reference surface are considered. As in
Figure 7.2, surface cuts and corresponding normalized scattered power density graphs
are depicted. Case H = 0.7 m.

7.11. References and Further Readings

Scattering of waves from periodic surfaces is discussed in works by Chuang
and Kong (1981) and by Waterman (1975). Theory supporting EBCM can
be found in studies by Kong (1986) and by Tsang, Kong, and Shin (1985).
Besicovitch (1932) describes almost-periodic functions. Fractals and use-
ful information to identify their almost-periodic behavior can be found in
works by Mandelbrot (1983), Falconer (1990), Voss (1985), and Berry and
Lewis (1980). Scattering from WM metallic profiles is presented in a study
by Savaidis et al. (1997). Propagation through almost-periodic media is
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Figure 7.9b Modified versions of the reference surface are considered. As in
Figure 7.2, surface cuts and corresponding normalized scattered power density graphs
are depicted. Case H = 0.9 m.

reported by Mickelson and Jaggard (1979). The EBCM studied from the
Rayleigh point of view is reported by Tsang, Kong, and Shin and also by
Jaggard and Sun (1990a). Floquet modes are presented by Collin (1960).
The list of the papers written by the authors of this book and concerning the
subject of this chapter is found in Appendix C.

Appendix 7.A Evaluation of the Dirichlet- and
Neumann-Type Integrals

Analytic evaluation of the scattered field via Equations (7.19) through
(7.22) implies solving a set of integral equations that involve the
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Dirichlet (I±D(1,2))- and Neumann (I±N(1,2))-type integrals defined by Equa-
tions (7.15) and (7.16). Evaluation of the Dirichlet- and Neumann-type
integrals is presented in this section: this leads to a similarly closed-form
evaluation of the scattered and transmitted fields.

Solution of the Neumann integral requires the solution of the Dirichlet
one; accordingly, the latter is presented first.

7.A.1. Evaluation of the Dirichlet-Type Integral

In this section, the Dirichlet-type integral ID, as reported in Equation (7.17),
is evaluated: the expressions for g

(
r, r′

)
are provided by Equations (7.10);

Equation (7.30) takes care of the surface-fields expansion, and the surface
is described by means of Equation (7.1). Accordingly:

I±D(1,2) = −
ik(1,2)

4π

∫ +∞

−∞
dk(1,2)x

1

k(1,2)z
exp

[−i
(
k(1,2)xx ± k(1,2)zz

)]

+∞∑
qj=−∞
j=0,...,P−1

αD,q

∫ +∞

−∞
dx′ exp

[
i
(
k(1,2)x − kix − q̃ · κ)x′

±ik(1,2)zz
′] , (7.A.1)

where again the upper signs are obtained by letting
∣∣z − z′

∣∣ = z − z′ in the
exponential term of Equations (7.10), thus being referred to the fields in
the half-space z > z′M ; conversely, the lower signs are obtained by letting∣∣z − z′

∣∣ = −(z− z′) in the exponential term of Equations (7.10), thus being
referred to the fields in the half-space z < z′m. Integration in the x′ variable
has been extended to the whole real axis: this is acceptable for surfaces
large in terms of the incident electromagnetic wavelength.

The integral IA in the x′ variable, appearing in Equation (7.A.1),

IA �
∫ +∞

−∞
dx′ exp

[
i
(
k(1,2)x − kix − q̃ · κ)x′ ± ik(1,2)zz

′], (7.A.2)

is now evaluated, where z′ = z′(x′) and is provided by Equation (7.1). By
using the Bessel identity in Equation (A.7.2), letting a = k(1,2)zBCpν

−Hp

and ξ = κ0ν
px′ +�p, it turns out that

exp
(±ik(1,2)zz

′) =
P−1∏
p=0

∞∑
n=−∞

Jn
(±k(1,2)zBCpν

−Hp)

exp
[
in
(
κ0ν

px′ +�p
)]

. (7.A.3)
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The Bessel identity in Equation (A.7.3), in conjunction with the distribution
property in Equation (A.7.4), is now applied:

exp
(±ik(1,2)zz

′) =
+∞∑

nj=−∞
j=0,...,P−1

(±1)m(n) exp
(−iñ ·�− iñ · κx′

)

P−1∏
p=0

Jnp

(
k(1,2)zBCpν

−Hp), (7.A.4)

wherein the function m(n) is defined as

m(n) �
P−1∑
p=0

np (7.A.5)

and

ñ = [n0, . . . , nP−1] , (7.A.6)

�̃ = [�0, . . . , �P−1] . (7.A.7)

Substitution of Equation (7.A.4) in Equation (7.A.2) leads to

IA =
+∞∑

nj=−∞
j=0,...,P−1

(±1)m(n) exp(−iñ ·�)

{∫ +∞

−∞
dx′ exp

[−ikixx′ − i (ñ + q̃)

· κx′ + ik(1,2)xx′
]} P−1∏

p=0

Jnp

(
k(1,2)zBCpν

−Hp)

=
+∞∑

nj=−∞
j=0,...,P−1

(±1)m(n) exp(−iñ ·�)

δ
[
k(1,2)x − kix − (ñ + q̃) · κ]

P−1∏
p=0

Jnp

(
k(1,2)zBCpν

−Hp). (7.A.8)

Equation (7.A.1) can be rearranged by taking advantage of Equation
(7.A.8):

I±D(1,2) = −
ik(1,2)

4π

+∞∑
nj=−∞
j=0,...,P−1

(±1)m(n)exp(−iñ ·�)
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+∞∑
qj=−∞
j=0,...,P−1

αD,q

∫ +∞

−∞
dk(1,2)x · 1

k(1,2)z
exp

[−i
(
k(1,2)xx ± k(1,2)zz

)]

P−1∏
p=0

Jnp

(
k(1,2)zBCpν

−Hp)δ [k(1,2)x − kix − (ñ + q̃) · κ] . (7.A.9)

The spectral integral in Equation (7.A.9) can be evaluated by exploiting
the sampling properties of the Dirac function:

I±D(1,2) = −
ik(1,2)

4π

+∞∑
nj=−∞
j=0,...,P−1

(±1)m(n) exp(−iñ ·�)

+∞∑
qj=−∞
j=0,...,P−1

αD,q
1

k(1,2)zl
exp

[−i
(
kxlx ± k(1,2)zlz

)]

P−1∏
p=0

Jnp

(
k(1,2)zlBCpν

−Hp), (7.A.10)

wherein the string l ∈ ZP:

l � n + q, (7.A.11)

has been introduced, whose elements (in principle) span from−∞ to+∞.
The wavenumber values, k(1,2)xl and k(1,2)zl, in Equations (7.A.10) are
sampled by the Dirac function, and are given by

kxl = k(1,2)xl = kix + l̃ · κ, (7.A.12)

and

k(1,2)zl =
√

k2
(1,2) − k2

xl (7.A.13)

upon considering Equations (7.11).
Equation (7.A.10) can be recast in a very compact form:

I±D(1,2) =
+∞∑

lj=−∞
j=0,...,P−1

a±D(1,2),l exp
(
∓ik±(1,2)l · r

)
(7.A.14)
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where

a±D(1,2),l = −
ik(1,2)

4πk(1,2)zl
(±1)m(l) exp

(
−il̃ ·�

) +∞∑
qj=−∞
j=0,...,P−1

αD,q(±1)m(−q)

exp(+iq̃ ·�) ·
P−1∏
p=0

Jlp−qp

(
k(1,2)zlBCpν

−Hp) (7.A.15)

and

k±(1,2)l = kxlx̂ ± k(1,2)zlẑ. (7.A.16)

A proper reading of Equation (7.A.14) is in order. The Dirichlet-type inte-
gral has been solved, and consists of a mode expansion: a P-infinity number
of modes are present, each one specified by the choice of the P-indexes
of the l string. Each mode is characterized by the wave vector k±(1,2)l
(Equation [7.A.16]). In the medium 1, the mode characterized by the string l
propagates at an (possibly complex) angle θ1l with respect to the z-axis
such that

kxl = k1sinθ1l = k1sinθi + l̃ · κ. (7.A.17)

Similarly, in medium 2, the propagation angle for the mode l is given by

kxl = k2sinθ2l = k1sinθi + l̃ · κ. (7.A.18)

Equations (7.A.17) and (7.A.18) are used also in the following section
and in Section 7.5 to set the direction of propagation of each scattered or
transmitted mode: they are usually referred to as grating-modes equations.

7.A.2. Evaluation of the Neumann-Type Integral

In this section, the Neumann-type integral IN , as reported in Equation (7.18),
is evaluated. The integrand can be exploded as

dS′n̂ · ∇′g(r, r′
) = dx′

[
−dz′

(
x′
)

dx′
∂

∂x′
+ ∂

∂z′

]
g
(
r, r′

)
; (7.A.19)

the expressions for g
(
r, r′

)
are provided by Equations (7.10); Equa-

tion (7.29) takes care of the surface fields in the integral; the surface is
described by means of Equation (7.1). Accordingly:

I±N(1,2) =
1

4π

∫ +∞

−∞
dk(1,2)x

1

k(1,2)z
exp

[−i
(
k(1,2)xx ± k(1,2)zz

)]
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+∞∑
qj=−∞
j=0,...,P−1

αN ,q

∫ +∞

−∞
dx′

(
k(1,2)x

dz′
(
x′
)

dx′
∓ k(1,2)z

)

exp
[
i
(
k(1,2)x − kix − q̃ · κ)x′ ± ik(1,2)zz

′] , (7.A.20)

where again the upper sign corresponds to let
∣∣z − z′

∣∣ = z − z′ in the
exponential term of Equations (7.10), thus being referred to the fields in the
half-plane z > z′M ; conversely, the lower sign corresponds to let

∣∣z − z′
∣∣ =

−(z − z′) in the exponential term of Equations (7.10), thus being referred
to the fields in the half-plane z < z′m. As in Section 7.A.1, integration in the
x′ variable has been extended to the whole real axis.

The integral IB in the x′ variable, appearing in Equation (7.A.20),

IB �
∫ +∞

−∞
dx′

(
k(1,2)x

dz′
(
x′
)

dx′
∓ k(1,2)z

)

exp
[
i
(
k(1,2)x − kix − q̃ · κ) x′ ± ik(1,2)zz

′]

= k(1,2)x

∫ +∞

−∞
dx′

dz′
(
x′
)

dx′
exp

[
i
(
k(1,2)x − kix − q̃ · κ)x′ ± ik(1,2)zz

′]

∓ k(1,2)z

∫ +∞

−∞
dx′ exp

[
i
(
k(1,2)x − kix − q̃ · κ)x′ ± ik(1,2)zz

′]

= IB1 + IB2 (7.A.21)

is now evaluated by splitting it into the two integrals IB1 and IB2. Each one
of the integrals IB1 and IB2 is now manipulated along two steps.

The relation
1

k(1,2)z

d

dx′
{
exp

[−i(kix + q̃ · κ)x′ ± ik(1,2)zz
′]}

= ±i
dz′

dx′
exp

[−i(kix + q̃ · κ)x′ ± ik(1,2)zz
′]− i

(kix + q̃ · κ)

k(1,2)z

exp
[−i(kix + q̃ · κ)x′ ± ik(1,2)zz

′] (7.A.22)

is used to split IB1 into two new integrals I ′B1 and I ′′B1 as follows:

IB1 �k(1,2)x

∫ +∞

−∞
dx′

dz′
(
x′
)

dx′
exp

[
i
(
k(1,2)x−kix−q̃·κ)x′±ik(1,2)zz

′]

=∓i
k(1,2)x

k(1,2)z

∫ +∞

−∞
dx′ exp

(
ik(1,2)xx′

)
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d

dx′
{
exp

[−i (kix+q̃·κ)x′±ik(1,2)zz
′]}

± k(1,2)x

k(1,2)z
(kix+q̃·κ)

∫ +∞

−∞
dx′ exp

[
i
(
k(1,2)x−kix−q̃·κ)x′±ik(1,2)zz

′]

= I ′B1+I ′′B2. (7.A.23)

The first integral I ′B1 in Equation (7.A.23) can be calculated by employing
Equation (7.1) and Relation (7.A.4):

I ′B1 � ∓i
k(1,2)x

k(1,2)z

∫ +∞

−∞
dx′ exp

(
ik(1,2)xx′

)

d

dx′
{
exp

[−i (kix + q̃ · κ) x′ ± ik(1,2)zz
′]}

= ∓i
k(1,2)x

k(1,2)z

+∞∑
nj=−∞
j=0,...,P−1

(±1)m(n) exp(−iñ ·�)

P−1∏
p=0

Jnp

(
k(1,2)zBCpν

−Hp)

∫ +∞

−∞
dx′ exp

{
i
[
k(1,2)x − kix − (q̃+ ñ) · κ] x′

}

[−i (kix + (q̃+ ñ) · κ)] . (7.A.24)

Proceeding as in Section 7.A.1, the final result for I ′B1,

I ′B1 = ∓
+∞∑

nj=−∞
j=0,...,P−1

(±1)m(n) exp(−iñ ·�)
k(1,2)x

k(1,2)z
[kix + (q̃+ ñ) · κ]

δ
[
k(1,2)x − kix − (q̃+ ñ) κ

] P−1∏
p=0

Jnp

(
k(1,2)zBCpν

−Hp), (7.A.25)

is obtained.
The second integral I ′′B1 in Equation (7.A.23) is calculated along the same

lines:

I ′′B1 = ±
k(1,2)x

k(1,2)z
(kix + q̃ · κ)

∫ +∞

−∞
dx′ exp

[
i
(
k(1,2)x − kix − q̃ · κ) x′ ± ik(1,2)zz

′]
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= ±k(1,2)x

k(1,2)z
(kix + q̃ · κ) IA. (7.A.26)

The integral IB2 in Equation (7.A.21) is of the same form of the integral
defined in Equation (7.A.2). Then it turns out that

IB2 � ∓k(1,2)z

∫ +∞

−∞
dx′ exp

[
i
(
k(1,2)x − kix − q̃ · κ)x′ ± ik(1,2)zz

′]

= ∓k(1,2)zIA. (7.A.27)

In conclusion, it is possible to express the integral IN by substituting
first Equations (7.A.25) and (7.A.26) in Equation (7.A.23), then Equations
(7.A.23) and (7.A.27) in Equation (7.A.21), and finally accounting for
Equation (7.A.8). It turns out that:

I±N(1,2) =
+∞∑

lj=−∞
j=0,...,P−1

a±N(1,2),l exp
(
∓ik±(1,2)l · r

)
, (7.A.28)

where

a±N(1,2),l = −
k2
(1,2) − kxlkxq

4πk2
(1,2)zl

(±1)m(l) exp
(
−il̃ ·�

)

+∞∑
qj=−∞
j=0,...,P−1

αN ,q (±1)m(q) exp(iq̃ ·�)

P−1∏
p=0

Jlp−qp

(
k(1,2)zlBCpν

−Hp). (7.A.29)

Equation (7.A.28) represents a superposition of modes, similar to
Equation (7.A.14). Accordingly, the same considerations at the end of
Section 7.A.1 do apply as far as number of modes and their direction
of propagation are concerned; more specifically, the same grating-modes
Equations (7.A.17) and (7.A.18) hold.
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CHAPTER 8

Scattering from Fractional
Brownian Surfaces:

Small-Perturbation Method

8.1. Introduction and Chapter Outline

In this chapter the Small Perturbation Method (SPM) is employed to solve
the scattered power density problem whenever the fractional Brownian
Model (fBm) is used to describe the surface. The procedure presented in
this chapter is based on the EBCM formulation provided in Chapter 4.
The general case of dielectric surfaces with a two-dimensional topologi-
cal dimension is considered. However, the SPM closed-form solution for
the scattered power density is obtained only under appropriate roughness
regimes; more specifically, in the SPM the surface fields and the surface pro-
file are expanded in power series and the solution to the scattering problem is
iteratively obtained for each series term; then, the total scattered power den-
sity is generated by addition of the obtained different order solutions. Zero-
and first-order solutions are presented in detail in this chapter, whereas only
the rationale for higher order solutions is provided instead. It is shown that
the zero-order solution generates the scattered field coherent component,
whereas the first-order solution gives rise to a surface-dependent incoherent
contribution. The key point of the procedure is the property of the fBm to
be represented by the simple, well defined, spectral behavior characterized
by two parameters, that has been presented under Chapter 3.
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The chapter is organized as follows. Rationale to obtain the SPM solution
is described in Section 8.2. The way to express the EBCM equations in the
transformed domain is presented in Section 8.3. Set up of the SPM solution is
provided in Section 8.4. An appropriate coordinate system, which includes
the normal to the surface mean plane, is introduced in Section 8.5: it allows
simplifying the notation in the small roughness regimes. Then, the zero-
order SPM solution is derived in Section 8.6. Results corresponding to the
first-order SPM solution are presented in Section 8.7. Limits of validity
for the SPM are evaluated in Section 8.8. Numerical results and scattering
diagrams are presented and discussed in Section 8.9. References and further
readings are reported in Section 8.10.

8.2. Rationale of the SPM Solution

As stated in Chapter 4, for handling the scattering problem depicted
in Figure 8.1, the SPM makes use of the Integral Equations (4.61)

y

O

z
θi

θs

ϕs

r

x

Figure 8.1 Geometry of the scattering problem. Cartesian and polar reference systems
relevant to the scattering surface are depicted.
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through (4.64), recalled hereafter for convenience:

E(i)(r)= 1

8π2

∫ +∞

−∞
dk⊥ exp

[−i
(
k⊥ − k1zẑ

)· r] k1

k1z∫ +∞

−∞
dr′⊥ exp

[
i
(
k⊥ − k1zẑ

)· r′] {[v̂−1 v̂−1 + ĥ−1 ĥ−1
]
· a(r′⊥)

+
[
ĥ−1 v̂−1 − v̂−1 ĥ−1

]
· b(r′⊥)

}
, ∀z < zm, (8.1)

0 = 1

8π2

∫ +∞

−∞
dk⊥ exp

[−i
(
k⊥ + k2zẑ

)· r] k2

k2z∫ +∞

−∞
dr′⊥ exp

[
i
(
k⊥ + k2zẑ

)· r′]
{

k1

k2

[
v̂+2 v̂+2 + ĥ+2 ĥ+2

]
· a(r′⊥)

+
[
ĥ+2 v̂+2 − v̂+2 ĥ+2

]
· b(r′⊥)

}
, ∀z > zM , (8.2)

E(s)(r)= E(r)− E(i)(r)

= − 1

8π2

∫ +∞

−∞
dk⊥ exp

[−i
(
k⊥ + k1zẑ

)· r] k1

k1z∫ +∞

−∞
dr′⊥ exp

[
i
(
k⊥ + k1zẑ

)· r′] {[v̂+1 v̂+1 + ĥ+1 ĥ+1
]
· a(r′⊥)

+
[
ĥ+1 v̂+1 − v̂+1 ĥ+1

]
· b(r′⊥)

}
, ∀z > zM , (8.3)

E(t)(r)= 1

8π2

∫ +∞

−∞
dk⊥ exp

[−i(k⊥ − k2zẑ)· r] k2

k2z∫ +∞

−∞
dr′⊥ exp

[
i(k⊥ − k2zẑ) · r′]

{
k1

k2

[
v̂−2 v̂−2 + ĥ−2 ĥ−2

]
· a(r′⊥)

+
[
ĥ−2 v̂−2 − v̂−2 ĥ−2

]
· b(r′⊥)

}
, ∀z < zm, (8.4)

that have been obtained upon use of the Greens’ functions evaluated in the
spectral domain. The scattered and transmitted electromagnetic fields at the
generic point r in the upper or lower medium are formally represented in
the left-hand side member of the integral Equations (8.1) and (8.2); they
are obtained, as indicated in the corresponding right-hand side member,
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by considering the contributions provided by the unknown surface fields
a
(
r′⊥
)

and b
(
r′⊥
)
, that are distributed over the scattering surface whose

generic point position is indicated by the vector r′⊥. These surface fields are
solutions of Equations (8.1) and (8.2).

In Equations (8.1) through (8.4), the surface profile is still included in
the exponential term r′ inside the diffraction integral. Hence, the scattered
field is dependent on the surface geometrical shape. For fBm surfaces, this
is described by a regular stochastic process: accordingly, the scattered field
is evaluated as a regular stochastic process, too.

Before proceeding further, manipulation of Equations (8.1) through (8.4)
is convenient. This requires a number of operations, likely to be uneasy to
follow due to the heavy notations appearing in the equations themselves.
For this reason the rationale of the procedure to be implemented is presented
first; then, the analytical details are provided.

First of all, the exponential functions, exp[±ik(1,2)zz′(r′⊥)] appearing in
the equations are expanded in their Taylor power series. The reason is to
move in the direction of the SPM solution: when the argument of the expo-
nentials is small, the power series terms becomes increasingly negligible
as their order increases. In this hypothesis, it is obviously expected that the
final solution could retain only a finite number of the expansion terms: the
n-order solution is referred to when terms up to the n-th order are retained.

The second step is suggested by examination of the equations, each one
consisting of a two-fold integral, the outer in the spectral and the inner
in the space domain. Both integrals contain a FT-type kernel. In particular,
products of powers of the surface profile function and the surface fields, i.e.,
the unknowns to be determined, appear in the inner integral: accordingly,
this integral, that contains a Fourier kernel, is transformed in the convolu-
tion between the FTs of the two factors appearing in the above mentioned
products, i.e., the FT of the powers of the surface profile and the FT of the
unknowns. This formulation, with the convolution integral operating on the
spectral domain variables, simplifies the computational procedure as it is
described in the sections devoted to the analytical details.

The successive step is the elimination of the outer FT-type integral appear-
ing at the right-hand side of the equations. This task is easily accomplished
by enforcing a similar FT at the left-hand side of the equations, and then
equating the integrands. The final result is a set of equations with only a
convolution-type integral at their right-hand side.

Then, the spirit of the SPM solution is fully exploited, as preparation to
the final step: the expansion of the exponential factors inside the integrals
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suggests a similar expansion for the unknowns. Accordingly, these are
expanded in a series of unknown terms, postulating that each one of them
is of the same order of the corresponding surface profile one.

The final step is implemented by inserting the unknown expansions in the
integrals, performing all the mutual products, classifying the latter accord-
ing to their resulting order and enforcing the equations at each order level.
It is easily anticipated that the resulting equations at order n would contain
lower level order terms of the unknowns: the solution proceeds in recur-
sive fashion, so that computation of the n-th order term of the unknowns
requires knowledge of all previous order terms of the unknowns themselves.
Additional details must be accounted for: for instance, the z-component of
the surface profile is of higher order compared to the transverse compo-
nent, if the surface slope is taken small (small slope approximation). But
these details do not impair the presented procedure that is detailed in the
following.

8.3. Extended Boundary Condition Method in the
Transformed Domain

SPM is employed to solve Equations (8.1) and (8.2) and compute Equa-
tions (8.3) and (8.4). This method requires that the exponential terms
involving the surface profile in the integrals of Equations (8.1) through
(8.4) are expanded in power series of k(1,2)zz′:

exp
[±ik(1,2)zz

′(r′⊥)] =
∞∑

m=0

[±ik(1,2)zz′
(
r′⊥
)]m

m! . (8.5)

Equation (8.5) is substituted in Equations (8.1) through (8.4), thus
providing:

E(i)(r)= 1

8π2

∫ +∞

−∞
dk⊥ exp

[−i
(
k⊥ − k1zẑ

)· r] k1

k1z

∫ +∞

−∞
dr′⊥ exp

[
ik⊥ · r′

] {[
v̂−1 v̂−1 + ĥ−1 ĥ−1

]
· a(r′⊥)

+
[
ĥ−1 v̂−1 − v̂−1 ĥ−1

]
· b(r′⊥)

} ∞∑
m=0

[−ik1zz′
(
r′⊥
)]m

m! , ∀z < zm,

(8.6)
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0 = 1

8π2

∫ +∞

−∞
dk⊥ exp

[−i
(
k⊥ + k2zẑ

)· r] k2

k2z

∫ +∞

−∞
dr′⊥ exp

[
ik⊥ · r′

] {k1

k2

[
v̂+2 v̂+2 + ĥ+2 ĥ+2

]
· a(r′⊥)

+
[
ĥ+2 v̂+2 − v̂+2 ĥ+2

]
· b(r′⊥)

} ∞∑
m=0

[
ik2zz′

(
r′⊥
)]m

m! , ∀z > zM ,

(8.7)

E(s)(r)= − 1

8π2

∫ +∞

−∞
dk⊥ exp

[−i
(
k⊥ + k1zẑ

)· r] k1

k1z

∫ +∞

−∞
dr′⊥ exp

[
ik⊥ · r′

] {[
v̂+1 v̂+1 + ĥ+1 ĥ+1

]
· a(r′⊥)

+
[
ĥ+1 v̂+1 − v̂+1 ĥ+1

]
· b(r′⊥)

} ∞∑
m=0

[
ik1zz′

(
r′⊥
)]m

m! , ∀z > zM ,

(8.8)

E(t)(r)= 1

8π2

∫ +∞

−∞
dk⊥ exp

[−i
(
k⊥ − k2zẑ

)· r] k2

k2z

∫ +∞

−∞
dr′⊥ exp

[
ik⊥ · r′

] {k1

k2

[
v̂−2 v̂−2 + ĥ−2 ĥ−2

]
· a(r′⊥)

+
[
ĥ−2 v̂−2 − v̂−2 ĥ−2

]
· b(r′⊥)

} ∞∑
m=0

[−ik2zz′
(
r′⊥
)]m

m! , ∀z < zm.

(8.9)

In Equations (8.6) through (8.9) the integrals in the variable r′⊥ are operated
over the scattering surface, which is assumed here of infinite extent for the
sake of simplicity. Use of Equation (8.5) leads to read these integrals as
Fourier Transforms of the products of the unknown surface fields a and b
with the powers of the surface profile z′

(
r′⊥
)
. A more compact expression

for the Equation (8.6) through (8.9) can then be obtained by introducing
A(k⊥) and B(k⊥), the Fourier domain counterparts of the vector a(r′⊥)
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and b(r′⊥) unknowns functions:

A(k⊥) = 1

(2π)2

∫ ∞

−∞
dr′⊥a

(
r′⊥
)
exp

(
ik⊥ · r′⊥

)

B(k⊥) = 1

(2π)2

∫ ∞

−∞
dr′⊥b

(
r′⊥
)
exp

(
ik⊥ · r′⊥

), (8.10)

as well as of Z ′(m)(k⊥) the generalized Fourier Transform (FT) of z′
(
r′⊥
)
,

i.e., the FT of the m-power, z′m(r′⊥), of the scattering surface shape z′(r′⊥):

Z ′(m)(k⊥) = 1

(2π)2

∫ ∞

−∞
dr⊥ exp(ik⊥ · r⊥)z′m(r⊥). (8.11)

Substitution of Equations (8.10) and (8.11) in Equations (8.6) through
(8.9) and use of the Borel theorem generates the new equations in the FTs
of the surface unknowns, A(k⊥), B(k⊥):

E(i)(r)= 1

2

∫ ∞

−∞
dk⊥ exp(−ik⊥ · r⊥ + ik1zz)

k1

k1z

{[
v̂−1 v̂−1 + ĥ−1 ĥ−1

]

·
[ ∞∑

m=0

(−ik1z)
m
∫

dk′⊥A
(
k′⊥

)
Z ′(m)

(
k⊥ − k′⊥

)]

+
[
ĥ−1 v̂−1 − v̂−1 ĥ−1

]
·
[ ∞∑

m=0

(−ik1z)
m

∫
dk′⊥B

(
k′⊥

)
Z ′(m)

(
k⊥ − k′⊥

)]}
, ∀z < zm, (8.12)

0 = 1

2

∫ ∞

−∞
dk⊥ exp(−ik⊥ · r⊥ − ik2zz)

k2

k2z

{
k1

k2

[
v̂+2 v̂+2 + ĥ+2 ĥ+2

]

·
[ ∞∑

m=0

(ik2z)
m
∫

dk′⊥A
(
k′⊥

)
Z ′(m)

(
k⊥ − k′⊥

)]

+
[
ĥ+2 v̂+2 − v̂+2 ĥ+2

]
·
[ ∞∑

m=0

(ik2z)
m

∫
dk′⊥B

(
k′⊥

)
Z ′(m)

(
k⊥ − k′⊥

)]}
, ∀z > zM , (8.13)
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E(s)(r)= −1

2

∫ ∞

−∞
dk⊥ exp(−ik⊥ · r⊥ − ik1zz)

k1

k1z

{[
v̂+1 v̂+1 + ĥ+1 ĥ+1

]

·
[ ∞∑

m=0

(ik1z)
m
∫

dk′⊥A
(
k′⊥

)
Z ′(m)

(
k⊥ − k′⊥

)]

+
[
ĥ+1 v̂+1 − v̂+1 ĥ+1

]
·
[ ∞∑

m=0

(ik1z)
m

∫
dk′⊥B

(
k′⊥

)
Z ′(m)

(
k⊥ − k′⊥

)]}
, ∀z > zM , (8.14)

E(t)(r)= 1

2

∫ ∞

−∞
dk⊥ exp

(−ik⊥·r⊥+ik2zẑ·r
) k2

k2z

{
k1

k2

[
v̂−2 v̂−2 +ĥ−2 ĥ−2

]

·
[ ∞∑

m=0

(−ik2z)
m
∫

dk′⊥A
(
k′⊥

)
Z ′(m)

(
k⊥−k′⊥

)]

+
[
ĥ−2 v̂−2 −v̂−2 ĥ−2

]
·
[ ∞∑

m=0

(−ik2z)
m

∫
dk′⊥B

(
k′⊥

)
Z ′(m)

(
k⊥−k′⊥

)]}
, ∀z < zm. (8.15)

Equations (8.12) and (8.13) must be solved to get the FT of the surface cur-
rent expressions in the spectral domain. Then, Equations (8.14) and (8.15)
can be employed to get the scattered and transmitted field, respectively.

Solution of Equations (8.12) and (8.13) is in order. Their left-hand side
members, representing the incident and a null fields, can be expanded in
plane waves. For a single plane wave incidence, see Figure 8.1, the incident
field is given by:

E(i)(r) = Ei exp(−iki⊥ · r⊥ + ikizz)êi

=
∫ ∞

−∞
dk⊥Ei exp[−ik⊥ · r⊥ + ik1zz]êiδ(k⊥ − ki⊥) (8.16)

where Ei is the amplitude of the incident field, and ki = kixx̂+kiyŷ+kizẑ =
ki⊥+kizẑ is the incident wavenumber vector. Extension to more than a single
plane wave can be accomplished by means of plane waves expansion.
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Equations (8.12) and (8.13) are now considered. The expression of the
incident field in Equation (8.16) is substituted in Equations (8.12) and (8.13):

∫ ∞

−∞
dk⊥Ei exp[−ik⊥·r⊥+ik1zẑ·r]êiδ(k⊥−ki⊥)

= 1

2

∫ ∞

−∞
dk⊥ exp(−ik⊥·r⊥+ik1zz)

k1

k1z

{[
v̂−1 v̂−1 +ĥ−1 ĥ−1

]

·
[ ∞∑

m=0

(−ik1z)
m
∫

dk′⊥A
(
k′⊥

)
Z ′(m)

(
k⊥−k′⊥

)]+[ĥ−1 v̂−1 −v̂−1 ĥ−1
]

·
[ ∞∑

m=0

(−ik1z)
m
∫

dk′⊥B
(
k′⊥

)
Z ′(m)

(
k⊥−k′⊥

)]}
, ∀z < zm,

(8.17)

0= 1

2

∫ ∞

−∞
dk⊥ exp(−ik⊥·r⊥−ik2zz)

k2

k2z

{
k1

k2

[
v̂+2 v̂+2 +ĥ+2 ĥ+2

]

·
[ ∞∑

m=0

(ik2z)
m
∫

dk′⊥A
(
k′⊥

)
Z ′(m)

(
k⊥−k′⊥

)]+ [
ĥ+2 v̂+2 −v̂+2 ĥ+2

]

·
[ ∞∑

m=0

(ik2z)
m
∫

dk′⊥B
(
k′⊥

)
Z ′(m)

(
k⊥−k′⊥

)]}
, ∀z > zM (8.18)

Equations (8.17) and (8.18) consist of identities between FTs in the variable
k⊥ (the zero value at the left-hand side of Equation (8.18) can be read as the
plane wave expansion of a null field). Accordingly, their inverse FT (which
is here equivalent to equate the integrands) leads to:

Eiêiδ(k⊥ − ki⊥)= 1

2

k1

k1z

{[
v̂−1 v̂−1 + ĥ−1 ĥ−1

]

·
[ ∞∑

m=0

(−ik1z)
m
∫

dk′⊥A
(
k′⊥

)
Z ′(m)

(
k⊥ − k′⊥

)]

+
[
ĥ−1 v̂−1 − v̂−1 ĥ−1

]
·
[ ∞∑

m=0

(−ik1z)
m

∫
dk′⊥B

(
k′⊥

)
Z ′(m)

(
k⊥ − k′⊥

)]}
, ∀z < zm, (8.19)
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0 = 1

2

k2

k2z

{
k1

k2

[
v̂+2 v̂+2 + ĥ+2 ĥ+2

]

·
[ ∞∑

m=0

(ik2z)
m
∫

dk′⊥A
(
k′⊥

)
Z ′(m)

(
k⊥ − k′⊥

)]

+
[
ĥ+2 v̂+2 − v̂+2 ĥ+2

]
·
[ ∞∑

m=0

(ik2z)
m

∫
dk′⊥B

(
k′⊥

)
Z ′(m)

(
k⊥ − k′⊥

)]}
, ∀z > zM , (8.20)

Equations (8.19) and (8.20) must be solved to obtain the FTs of the surface
currents; these can be substituted in Equations (8.14) and (8.15) to obtain the
scattered and transmitted field, respectively. The main advantage of solving
Equations (8.19) and (8.20) instead Equations (8.1) and (8.2) is that they
do not involve the two space and spectral integrals; only one convolution
is present between the FTs of unknown fields and the surface profile.

However, solution of Equations (8.19) and (8.20) is not straightforward at
this stage. Aperturbative approach is suggested by the SPM and is presented
in the next Sections: within appropriate conditions, Equations (8.19) and
(8.20) can be solved iteratively to obtain, to a generic order, the solutions
for the FT of the surface currents: these are substituted in Equations (8.14)
and (8.15) to obtain the corresponding order scattered and transmitted field,
respectively.

8.4. Set up the Small Perturbation Method

A perturbation method can be applied to solve Equations (8.19) and (8.20)
and obtained the scattered and transmitted fields via Equations (8.14) and
(8.15). This method is based on the fulfilment of some conditions.

The first condition is set on the surface profile. First of all, the expansion in
Equation (8.5) is truncated to a finite order M. To accept this approximation
it is required that:

k(1,2)zz
′ � 1, (8.21)

which enforces a bounds on the surface heights variations in terms of the
incident field wavelength. This first condition does not yet allow us to
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solve Equations (8.19) and (8.20). In addition, it is necessary to introduce
a second condition that also bounds the surface slopes:

∂z′

∂x′
� 1,

∂z′

∂y′
� 1. (8.22)

Use of both Conditions (8.21) and (8.22) is the prerequisite to develop
an iterative solution to the scattering problem and justify the name, SPM,
of the method whose rationale is illustrated hereafter.

Condition (8.21) suggests employing a coordinate system which
includes ẑ, the unit normal to the surface mean plane. The reason is the
convenience to express the unknown surface fields a and b, appearing in
Equation (8.1) through (8.4), in terms of their transverse and z-components:

a
(
r′⊥
) = a⊥r̂′⊥ + azẑ

b
(
r′⊥
) = b⊥r̂′⊥ + bzẑ

. (8.23)

Recalling that a and b are tangent to the surface, their z-component are
expressed as:

az
(
r′⊥
) =

(
x̂
∂z′

(
r′⊥
)

∂x

′
+ ŷ

∂z′
(
r′⊥
)

∂y′

)
· a⊥

(
r′⊥
)

bz
(
r′⊥
) =

(
x̂
∂z′

(
r′⊥
)

∂x′
+ ŷ

∂z′
(
r′⊥
)

∂y′

)
· b⊥

(
r′⊥
), (8.24)

see Equations (4.65) through (4.67).
The simple counterpart of Equations (8.23) and (8.24) in the Fourier

domain is easy to obtain. The FT of Equations (8.23) leads to:

A(k⊥) = A⊥r̂′⊥ + Azẑ,

B(k⊥) = B⊥r̂′⊥ + Bzẑ.
(8.25)

whereas the FT of Equations (8.24) along with the Borel theorem provides:

Az(k⊥) = −i
∫ ∞

−∞
dk′⊥

(
k⊥ − k′⊥

)· A⊥(k′⊥)Z ′(k⊥ − k′⊥
)

Bz(k⊥) = −i
∫ ∞

−∞
dk′⊥

(
k⊥ − k′⊥

)· B⊥(k′⊥)Z ′(k⊥ − k′⊥
). (8.26)

The series appearing in Equations (8.12) through (8.15) where each term
is of higher order compared to the previous ones, see Conditions (8.21),
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suggests a similar series expansion of the unknowns a and b:

a
(
r′⊥
) =

∞∑
m=0

a(m)
(
r′⊥
)

b
(
r′⊥
) =

∞∑
m=0

b(m)
(
r′⊥
), (8.27)

where a(m) and b(m) are the m-th order terms for the SPM solution for a and
b, respectively. The reason is to perform all products, individuate terms of
equal order and find the corresponding order solution.

Examination of Equation (8.24) shows that at any order, the z-components
of a and b are of higher order compared to the transverse ones, because the
small slope assumption for the scattering surface is enforced, see Condi-
tion (8.22). Accordingly, at the order m = 0 of the SPM approach, the
z-components of a and b should be taken equal to zero,

a(0)
z

(
r′⊥
) = 0

b(0)
z

(
r′⊥
) = 0

, (8.28)

so that the surface fields are coincident with those relevant to a flat surface.
By implementing the proposed recursive approach at any order m ≥ 1,

it turns out that Equation (8.24) leads to:

a(m)
z

(
r′⊥
) =

(
x̂
∂z′

(
r′⊥
)

∂x′
+ ŷ

∂z′
(
r′⊥
)

∂y′

)
· a(m−1)
⊥

(
r′⊥
)

b(m)
z

(
r′⊥
) =

(
x̂
∂z′

(
r′⊥
)

∂x′
+ ŷ

∂z′
(
r′⊥
)

∂y′

)
· b(m−1)
⊥

(
r′⊥
). (8.29)

Similarly, in the recursive framework, Equations (8.26) takes the form:

A(m)
z (k⊥) = −i

∫ ∞

−∞
dk′⊥

(
k⊥ − k′⊥

)· A(m−1)
⊥

(
k′⊥

)
Z ′
(
k⊥ − k′⊥

)

B(m)
z (k⊥) = −i

∫ ∞

−∞
dk′⊥

(
k⊥ − k′⊥

)· B(m−1)
⊥

(
k′⊥

)
Z ′
(
k⊥ − k′⊥

). (8.30)

These z-components appear as known terms in the solution of the equation,
thus improving the method stability.
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8.5. An Appropriate Coordinate System

In previous chapters the fields have been referred to as the coordinate sys-
tem (ĥ, v̂, k̂). Use of this reference system is less convenient here: the
reason is that, in the SPM the transverse (to the z-axis) components of
the fields are dominant compared to the longitudinal (along the z-axis)
ones. Accordingly, a reference system that makes use of the unit vector ẑ
is desired, so that equation processing and approximation implementation
becomes more transparent. The new alternative coordinate system (ŝ, t̂, ẑ)
is given by the projections of v̂ and ĥ orthogonal to ẑ:

t̂(k⊥) = ĥ±(1,2) (8.31a)

ŝ(k⊥) = t̂(k⊥)× ẑ = k̂⊥, (8.31b)

and the normal ẑ to the surface mean plane. This reference system is used
to represent the unknown surface fields in the transformed domain:

A(k⊥) = At(k⊥)t̂(k⊥)+ As(k⊥)ŝ(k⊥)+ Az(k⊥)ẑ

B(k⊥) = Bt(k⊥)t̂(k⊥)+ Bs(k⊥)ŝ(k⊥)+ Bz(k⊥)ẑ
. (8.32)

Moreover, the orthogonal components of the wavevectors can be written in
terms of a polar coordinate system

k⊥ = kρ cos φk x̂ + kρ sin φk ŷ (8.33a)

k′⊥ = k′ρ cos φ′k x̂ + k′ρ sin φ′k ŷ. (8.33b)

The two coordinate systems (ŝ, t̂, ẑ) and (ĥ, v̂, k̂) are linked. As a matter
of fact:

v̂±(1,2) = k̂±(1,2) × ĥ±(1,2)

= k̂±(1,2) × t̂(k⊥) = ∓k(1,2)z

k(1,2)

ŝ(k⊥)+ kρ

k(1,2)

ẑ. (8.34)

Equations (8.31a) and (8.34) are employed to evaluate the dot products in
Equations (8.14), (8.15), (8.19) and (8.20) between the dyadics and the
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vectors representing the surface fields in the transformed domain:(
v̂±(1,2)v̂

±
(1,2) + ĥ±(1,2)ĥ

±
(1,2)

)
· A(k⊥)

= v̂±(1,2)

[
kρ

k(1,2)

Az(k⊥)∓ k(1,2)z

k(1,2)

As(k⊥)

]
+ ĥ±(1,2)At(k⊥) (8.35)

(
ĥ±(1,2)v̂

±
(1,2) − v̂±(1,2)ĥ

±
(1,2)

)
· B(k⊥)

= ĥ±(1,2)

[
kρ

k(1,2)

Bz(k⊥)∓ k(1,2)z

k(1,2)

Bs(k⊥)

]
− v̂±(1,2)Bt(k⊥) . (8.36)

8.6. Zero-order Solution

In order to get the solution up to the zero-order, the series appearing in
Equations (8.6) through (8.9) are truncated at M = 0; and the similarly
truncated FTs of Expansions (8.27) for the surface fields are substituted in
the same equations. Then, only the zero-order terms must be retained. This
implies that:

A(0)
z = 0

B(0)
z = 0

, (8.37)

as it was already recognized, see Equation (8.28). The conclusion is that
the zero-order surface fields in the transformed domain are orthogonal to
the normal to the mean plane surface.

It is easy to check that, at this zero order, Equations (8.19) and (8.20)
becomes the following ones:

êiEiδ(k⊥ − ki⊥) = 1

2

k1

k1z

[
v̂−1 v̂−1 + ĥ−1 ĥ−1

]
· A(0)

⊥ (k⊥)

+ 1

2

k1

k1z

[
ĥ−1 v̂−1 − v̂−1 ĥ−1

]
· B(0)
⊥ (k⊥) (8.38)

0 = 1

2

k1

k2z

[
v̂+2 v̂+2 + ĥ+2 ĥ+2

]
· A(0)

⊥ (k⊥)

+ 1

2

k2

k2z

[
ĥ+2 v̂+2 − v̂+2 ĥ+2

]
· B(0)
⊥ (k⊥), (8.39)

because Equation (8.11) provides Z ′(0)(k⊥) = δ(k⊥)and the integrals are
easily evaluated. Solution of Equations (8.38) and (8.39) is initiated by
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enforcing the representation of the surface fields A(0)
⊥ (k⊥) and B(0)

⊥ (k⊥) in
the reference system (ŝ, t̂, ẑ) orthogonal system. Furthermore, examination
of Equation (8.38) suggests the following position:

A(0)
⊥ (k⊥) = Ei

(
t̂a(0)

t + ŝa(0)
s

)
δ (k⊥ − ki⊥)

B(0)
⊥ (k⊥) = Ei

(
t̂b(0)

t + ŝb(0)
s

)
δ (k⊥ − ki⊥)

, (8.40)

that essentially implies selection of the wavevector characterised by

k⊥ = ki⊥; (8.41)

in Equations (8.38) and (8.39), as well as in the zero-order version of
Equations (8.14) and (8.15) that provide the zero-order scattered and
transmitted field. Condition (8.41) also fixes the z-components of the
wavevectors involved in the zero-order SPM solution:

k2
1z = k2

iz = k2
1 − k2

i⊥
k2

2z = k2
2 − k2

i⊥
. (8.42)

Equations (8.40) are substituted into Equations (8.38) and (8.39), thus
forming a linear system of two vector equations in two unknowns. To
convert the vector equations into scalar ones, appropriate projections are
required.

Equation (8.38) is projected onto v̂−1 , and Equation (8.39) onto v̂+2 ,
respectively, with the result:

v̂−1 · êi = 1

2
a(0)

s − 1

2

k1

k1z
b(0)

t (8.43)

0 = −1

2

k1

k2
a(0)

s − 1

2

k2

k2z
b(0)

t . (8.44)

Equations (8.43) and (8.44) form a linear system with constant coefficients
a(0)

s , b(0)
t see Equations (8.41) and (8.42) to be solved in the unknown zero-

order unknowns (as, bt). The solution can be cast in the following form:

a(0)
s (k⊥)= [

v̂−1 · êi
]
(1+ Rv0) (8.45)

b(0)
t (k⊥)= [

v̂−1 · êi
] k1z

k1
(1− Rv0) (8.46)
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wherein the factor

Rv0 = k2
2k1z − k2

1k2z

k2
2k1z + k2

1k2z
, (8.47)

has been introduced; by considering Equations (8.42) Rv0 is recognized to
be equal to the v-polarised Fresnel coefficient relevant to the surface mean
plane.

Similarly, projections of Equation (8.38) onto ĥ−1 , and Equation (8.39)
onto ĥ+2 leads to:

ĥ−1 · êi = 1

2

k1

k1z
a(0)

t + 1

2
b(0)

t (8.48)

0 = 1

2

k1

k2z
a(0)

t − 1

2
b(0)

s . (8.49)

By considering Equations (8.41) and (8.42), the Equations (8.48) and (8.49)
form a linear system with constant coefficients to be solved in the unknown
zero-order unknowns a(0)

t , b(0)
s . The solution can be cast in the following

form:

a(0)
t (k⊥)=

[
ĥ−1 · êi

] k1z

k1
(1− Rh0) (8.50)

b(0)
s (k⊥)=

[
ĥ−1 · êi

]
(1+ Rh0), (8.51)

wherein the coefficient

Rh0 = k1z − k2z

k1z + k2z
, (8.52)

has been introduced; examination of Equations (8.42) Rh0 is recognized to
be equal to the h-polarised Fresnel coefficient relevant to the surface mean
plane.

Substitution of the transformed domain values for the surface currents
provided by Equations (8.40), (8.45) (8.46) (8.50) and (8.51) in the zero-
order version of Equation (8.14)

E(s,0)(r) = −1

2

∫ ∞

−∞
dk⊥ exp(−ik⊥ · r⊥ − ik1zz)

k1

k1z

{[
v̂+1 v̂+1 + ĥ+1 ĥ+1

]
· A(0)(k′⊥)

+
[
ĥ+1 v̂+1 − v̂+1 ĥ+1

]
· B(0)(k′⊥)

}
, ∀z > zM (8.53)
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leads to express, in closed form, the zero-order SPM solution for the
scattered field:

E(s,0)(r)= Ei

[
Rh0ĥ+1

[
ĥ−1 · êi

]
+ Rv0v̂+1

[
v̂−1 · êi

] ]

exp
{
−i

[
ki⊥ · r⊥ +

(
k2

1 − k2
i⊥
)

z
]}

, (8.54)

wherein ĥ−1 and v̂−1 take the values pertinent to the incident direction,
whereas ĥ+1 and v̂+1 take those for the specular direction.

Similarly, the zero-order version of Equation (8.15)

E(t,0)(r)= 1

2

∫ ∞

−∞
dk⊥ exp

(−ik⊥·r⊥+ik2zẑ·r
) k2

k2z

{
k1

k2

[
v̂−2 v̂−2 +ĥ−2 ĥ−2

]

·A(0)
(
k′⊥

)+[ĥ−2 v̂−2 −v̂−2 ĥ−2
]
·B(0)

(
k′⊥

)}

(8.55)

is considered in order to evaluate the transmitted field. Proceeding along
the same line, it turns out that:

E(t,0)(r)= Ei

[
(1+ Rh)ĥ

−
2

[
ĥ−1 · êi

]
+(1+ Rv)

k1

k2
v̂+2

[
v̂−1 · êi

]]

exp
{
−i

[
ki⊥ · r⊥ +

(
k2

2 − k2
i⊥
)

z
]}

, (8.56)

wherein ĥ−1 and v̂−1 take the values pertinent to the incident direction,
whereas ĥ+2 and v̂+2 take the values pertinent to the specular direction.

Equations (8.54) and (8.56) express the scattered and transmitted fields:
note the presence of the Fresnel reflection coefficient R in the former and
the transmission coefficient 1 + R in the latter expression. Also, factors
appropriate to parallel and perpendicular polarisations appear at the right
place. As for flat surfaces of infinite extent, a single plane wave is scattered in
the specular direction and provides the coherent contribution to the scattered
field. Similarly, a single plane wave is transmitted in the lower medium.
For surfaces of finite extent, Equations (8.54) and (8.56) modify, and the
zero-order field is scattered and transmitted in any direction with the usual
sinc(·) shape. In both cases, no fractal parameter appears: accordingly, the
solution is of deterministic nature being coincident with that of a plane
surface.
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8.7. First-order Solution

In order to get the solution up to the first order, the procedure introduced
in Section 8.6 is systematically iterated. The terms of the first-order SPM
solution are formally identified by the symbol 1 in the apex parenthesis. The
series appearing in Equations (8.6) through (8.9) are truncated at M = 1
and the similarly truncated Expansions (8.27) are substituted therein. Then,
only the terms of order 1 are individuated and retained in the considered
equations. Accordingly, a system of four scalar equations is obtained in the
four unknowns A(1)

t (k⊥), A(1)
s (k⊥), B(1)

t (k⊥) and B(1)
s (k⊥). The procedure

can be systematically implemented, finally leading to the evaluation of the
transverse (to the z-axis) components of the field.

Before proceeding further, it is noted that, differently from the zero-order
SPM solution, the first-order one exhibits a z-component for the surface
fields. By benefiting of Condition (8.22), these components can be evalu-
ated by setting m = 1 in Equations (8.30), and by substituting the zero-order
solution for the transverse surface fields that has been obtained in the pre-
vious step and whose formal expression is reported in Equations (8.40).
It turns out that:

A(1)
z (k⊥) = −iEiZ ′(k⊥ − ki⊥) (k⊥ − ki⊥) · (t̂a(0)

t + ŝa(0)
s )

B(1)
z (k⊥) = −iEiZ ′(k⊥ − ki⊥) (k⊥ − ki⊥) · (t̂b(0)

t + ŝb(0)
s )

, (8.57)

wherein Definition (8.11) leads to set Z ′(1)(k⊥ − k′⊥) = Z ′(k⊥ − k′⊥).
Solution of Equations (8.19) and (8.20) aimed to provide the FT of the

surface currents is now in order. Their first order component is obtained
by following the rationale presented in Section 8.2 and the set up reported
in Section 8.4. Accordingly, the first order version of Equations (8.19) and
(8.20) is given by:

1

2

k1

k1z

{[
v̂−1 v̂−1 + ĥ−1 ĥ−1

]
· A(1)

⊥ (k⊥)+
[
ĥ−1 v̂−1 − v̂−1 ĥ−1

]
· B(1)
⊥ (k⊥)

}

= 1

2

k1

k1z
iEiZ

′ (k⊥ − ki⊥)
{[

v̂−1 v̂−1 + ĥ−1 ĥ−1
]
· (k⊥ − ki⊥)

· (t̂a(0)
t + ŝa(0)

s )ẑ+ k1z(t̂a
(0)
t + ŝa(0)

s )+
[
ĥ−1 v̂−1 − v̂−1 ĥ−1

]

· (k⊥ − ki⊥) · (t̂b(0)
t + ŝb(0)

s )ẑ+ k1z(t̂b
(0)
t + ŝb(0)

s )
}

, (8.58)



8.7. First-order Solution 257

1

2

k2

k2z

{
k1

k2

[
v̂+2 v̂+2 + ĥ+2 ĥ+2

]
· A(1)

⊥ (k⊥)+
[
ĥ+2 v̂+2 − v̂+2 ĥ+2

]
· B(1)
⊥ (k⊥)

}

= 1

2

k2

k2z
iEiZ

′ (k⊥ − ki⊥)

{
k1

k2

[
v̂+2 v̂+2 + ĥ+2 ĥ+2

]
· (k⊥ − ki⊥)

· (t̂a(0)
t + ŝa(0)

s )ẑ− k2z(t̂a
(0)
t + ŝa(0)

s )+
[
ĥ+2 v̂+2 − v̂+2 ĥ+2

]

· (k⊥ − ki⊥) · (t̂b(0)
t + ŝb(0)

s )ẑ− k2z(t̂b
(0)
t + ŝb(0)

s )
}

.

(8.59)

To get Equations (8.58) and (8.59) two main step have been implemented:
first, Equations (8.57) have been employed to express the first order
z-component for the surface fields in terms of the zero-order ones; then,
the convolution integral between the FT of the surface profile and the zero-
order surface fields has been solved by benefiting of the solutions provided
in Equations (8.40). This second step is easily accomplished due to the
simple integral relation provided by the convolution form that has been
obtained by employing Condition (8.21).

Equations (8.58) and (8.59) must be solved for the first order unknown
orthogonal components A(1)

⊥ (k⊥) and B(1)
⊥ (k⊥) of the transformed surface

fields. However, a simple inspection of Equations (8.58) and (8.59) leads to
derive a number of interesting results. Equations (8.58) and (8.59) show
that A(1)

⊥ (k⊥) and B(1)
⊥ (k⊥) are both proportional to the FT of the sur-

face profile Z ′(k⊥ − ki⊥). More specifically, the FT of the surface fields
at the wavevector individuated by the value of k⊥is proportional to the
amplitude of the FT of the surface profile at (the resonant) wavevector
(k⊥ − ki⊥).

Similarly to what done for the zero order solution, the vector Equa-
tions (8.58) and (8.59) are projected onto the (ŝ, t̂, ẑ) coordinate system,
thus providing a system of four scalar equations to be solved in the
four unknowns A(1)

t (k⊥), A(1)
s (k⊥), B(1)

t (k⊥) and B(1)
s (k⊥). The remain-

ing z-components of the transformed surface fields, A(1)
z (k⊥) and B(1)

z (k⊥),
are computed via Equations (8.57). The obtained transverse components,
A(1)
⊥ (k⊥) and B(1)

⊥ (k⊥), of the FT of the surface fields, together with their
associate z-components, are substituted in the first-order SPM equation for
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the scattered and transmitted field, thus formally leading to:

E(s,1)(r) = −1

2

∞∫

−∞
dk⊥ exp (−ik⊥ · r⊥ − ik1zz)

k1

k1z

{ [
v̂+1 v̂+1 + ĥ+1 ĥ+1

]

·
[

A(1)(k⊥)− ik1z

∫
dk′⊥A(0)

⊥ (k′⊥)Z ′
(
k⊥ − k′⊥

)]

+
[
ĥ+1 v̂+1 − v̂+1 ĥ+1

]
·
[
B(1)(k⊥)− ik1z

∫
dk′⊥B(0)

⊥ (k′⊥)Z ′(k⊥ − k′⊥)
]}

,

(8.60)

E(t,1)(r)= 1

2

∞∫

−∞
dk⊥ exp

(−ik⊥·r⊥+ik2zẑ·r
) k2

k2z

{
k1

k2

[
v̂+2 v̂−2 +ĥ−2 ĥ−2

]

·
[

A(1)(k⊥)+ik2z

∫
dk′⊥A(0)

⊥ (k′⊥)Z ′(k⊥−k′⊥)

]

+
[
ĥ−2 v̂−2 −v̂−2 ĥ−2

]
·
[
B(1)(k⊥)+ik2z

∫
dk′⊥B(0)

⊥ (k′⊥)Z ′(k⊥−k′⊥)
]}

.

(8.61)

Equations (8.40) and (8.57) are then substituted in Equations (8.60) and
(8.61) to provide a convenient first-order SPM expression for the scattered
and transmitted fields:

E(s,1)(r) = −1

2

∞∫

−∞
dk⊥ exp(−ik⊥ · r⊥ − ik1zz)

k1

k1z

{[
v̂+1 v̂+1 + ĥ+1 ĥ+1

]

·
[
A(1)
⊥ (k⊥)− iEiZ

′(k⊥ − ki⊥)
[
(k⊥ − ki⊥) · (t̂a(0)

t + ŝa(0)
s )ẑ

+k1z(t̂a
(0)
t + ŝa(0)

s )
]]
+
[
ĥ+1 v̂+1 − v̂+1 ĥ+1

]

·
[
B(1)
⊥ (k⊥)− iEiZ

′(k⊥ − ki⊥) [(k⊥ − ki⊥)

· (t̂b(0)
t + ŝb(0)

s )ẑ+ k1z(t̂b
(0)
t + ŝb(0)

s )
]]}

, (8.62)
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E(t,1)(r) = 1

2

∞∫

−∞
dk⊥ exp

(−ik⊥ · r⊥ + ik2zẑ · r
) k2

k2z

{
k1

k2

[
v̂−2 v̂−2 + ĥ−2 ĥ−2

]

·
[
A(1)
⊥ (k⊥)− iEiZ

′(k⊥ − ki⊥)
[
(k⊥ − ki⊥) · (t̂a(0)

t + ŝa(0)
s )ẑ

−k2z(t̂a
(0)
t + ŝa(0)

s )
]]
+
[
ĥ−2 v̂−2 − v̂−2 ĥ−2

]

·
[
B(1)
⊥ (k⊥)− iEiZ

′(k⊥ − ki⊥) [(k⊥ − ki⊥)

· (t̂b(0)
t + ŝb(0)

s )ẑ− k2z(t̂b
(0)
t + ŝb(0)

s )
]]

. (8.63)

Equations (8.62) and (8.63) formally express, in a meaningful way, the
scattered and transmitted fields in terms of the FT of the surface. It has
already been noted that the unknown fields are proportional to Z ′(k⊥ − ki⊥).
Examination of Equations (8.62) and (8.63) shows that this happens also
for any other of the factors in the integrals. Asymptotic evaluation of the
integrals at large distance shows that the scattered field along the generic
direction individuated by ks⊥is proportional to the integrand evaluated for
k⊥ = ks⊥. This implies that only the line ks⊥−ki⊥ of the spectrum Z ′(k⊥)
of z′(r′⊥) contributes to the field.

Computation of the scattered power-density in the far field, up to the first
order, requires that the sum of the zero- and first-order terms of the field is
considered. However, it has already been noted that the zero-order term is a
deterministic one: accordingly, the statistical mean of the mixed product is
proportional to the statistical average of Z ′(k⊥ − ki⊥), which approaches
zero as the roughness is at least comparable to the wavelength. Accordingly,
the statistical part of the scattered power density in the far field coincides
with its first-order contribution.

To obtain this scattered power density, Equation (8.62) must be multiplied
by its complex conjugate and the ensemble average must be implemented.
These operations show that, in the direction individuated by the value of
k⊥ = ks⊥, the scattered power density is proportional to the amplitude of
the surface power density spectrum at (the resonant) wavector ks⊥ − ki⊥:
this result is in agreement with the Bragg theory.

In this averaging procedure, it is convenient to recast the equation for
the scattered power density in terms of the incident and the scattered polar-
isations p and q and the parameters for the scattering geometry depicted
in Figure 8.1. The final result is to express the scattered power-density
in terms of four scalar coefficients. The SPM expression of the scattered
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power-density turns out to be written as:

〈 ∣∣∣E (s,1)
pq

∣∣∣2
〉
= 4A|Ei|2|k4 cos2 ϑs cos2 ϑi|Gpq|2W (ηxy)

(2πr)2
, (8.64)

that, for an isotropic surface can be expressed in terms of the fractal
parameters introduced in Chapter 3 as:
〈 ∣∣∣E(s,1)

pq

∣∣∣2
〉

= 22H+1�2(1+ H)sin(πH)A cos2 ϑs cos2 ϑi |Ei|2
∣∣Gpq

∣∣2(kT)2(1−H)

(πkr)2(
√

sin2 ϑi + sin2 ϑs − 2 sin ϑi sin ϑs cos ϕs)2H+2
.

(8.65)

In Equations (8.53) and (8.54) Gpq is a coefficient that depends on polari-
sation, incidence and scattering angles, and the relative complex dielectric
constant, εr , of the scattering medium:

Ghh = (εr − 1)cos ϕs(
cos ϑs +

√
εr − sin2 ϑs

)(
cos ϑi +

√
εr − sin2 ϑi

) (8.66)

Ghv = (εr − 1)
√

εr − sin2 ϑs sin ϕs(
cos ϑs +

√
εr − sin2 ϑs

)(
εr cos ϑi +

√
εr − sin2 ϑi

) (8.67)

Gvh = (εr − 1)
√

εr − sin2 ϑs sin ϕs(
εr cos ϑs +

√
εr − sin2 ϑs

)(
cos ϑi +

√
εr − sin2 ϑi

) (8.68)

Gvv =
(√

εr − sin2 ϑs

√
εr − sin2 ϑi cos ϕs − εr sin ϑi sin ϑs

)
(εr − 1)(

εr cos ϑs +
√

εr − sin2 ϑs

)(
εr cos ϑi +

√
εr − sin2 ϑi

) .

(8.69)

8.8. Small Perturbation Method Limits of Validity

A priori conditions to apply the SPM have been introduced in Equations
(8.21) and (8.22) for a deterministic surface. In the case of bandlimited
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fBm stochastic process, Eq. (8.21) takes the form:

k(1,2)zσ � 1. (8.70)

Similarly, Equation (8.22) takes the form:

σ ′ � 1. (8.71)

Equations (8.74) and (8.75) can be expressed in terms of the fractal
parameters by taking into account the results reported in Table 3.3. Thus,
Conditions (8.74) and (8.75) read as

k(1,2)z2
2H−1�2 (1+ H)

sin(πH)

πH
T2

[(τM

T

)2H −
(τm

T

)2H
]
� 1, (8.72)

22H−1�2 (1+ H)
sin(πH)

π(1− H)

[(
T

τm

)2−2H

−
(

T

τM

)2−2H
]
� 1, (8.73)

respectively. The expression of the two parameters, τm, τM , appearing in
Equations (8.72) and (8.73) are provided by Equations (3.48) and (3.49) as
function of the surface dimensions and the incident wavelength.

For surfaces of infinite extent the zero-order solution provides a scattered
field in the specular direction only; for surface of finite extent the zero-order
solution for the scattered fields leads to the coherent component which takes
the usual sinc(·) shape.

As far as the first order SPM solution is taken into account, for the
mathematical fBm, the fBm power spectrum has been substituted in Equa-
tion (8.64) to get Equation (8.65). However, the considerations reported
in Chapter 3 show that the power-law form for the power spectrum of the
physical fBm can be fully applied only in an appropriate wavenumber inter-
val κ = ηxy ∈ [κm, κM ]; by considering Equations (3.48) and (3.49), this
interval can be written in terms of the surface and viewing parameters:

k
√

sin2 ϑi + sin2 ϑs − 2 sin ϑi sin ϑs cos ϕs ∈
[

2πχ1√
X2 + Y2

,
2π

χ2λ

]
.

(8.74)

Then, Equation (8.74) provides a further validity limit, in terms of the
scattering angles, to employ the first order SPM solution. In particular,
Condition (8.74) shows that for surfaces of finite extent Equation (8.65)
cannot be employed in the specular direction which is characterised by
ks⊥ = ki⊥: in this case the zero-order solution (8.54) can be used, providing
that, as noted at the end of Section 8.6, the usual sinc(·) shape is assumed.
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8.9. Influence of Fractal and Electromagnetic
Parameters Over the Scattered Field

In this section the influence of fractal parameters, S0 and H, on the scattered
field is analyzed; for the sake of completeness the influence of the electro-
magnetic wavelength is also discussed. The scattering surface is illuminated

from the direction ϑi = π

4
, whereas the scattered field is displayed for any

ϑs in the plane identified by ϕs = 0; this suggests assuming−π

2
≤ ϑs ≤ π

2
.

Scattered power density diagrams for the zero-order SPM solution are not
displayed: their contents are trivial, being coincident with those relevant to
a flat surface.

Scattered power density diagrams are displayed for the first order SPM
solution only: the shape of these diagrams depends on the surface fractal
parameters, but suffer for the infrared catastrophe that leads to a power
density spectrum for the surface profile that diverges in the origin. Then,
as shown by Condition (8.74), for scattering directions close to the spec-
ular one, the scattered power-density cannot be obtained by the first-order
SPM solution, whereas the zero-order one can be conveniently employed.
Moreover, by considering surface of not marginal roughness, for scatter-
ing directions not close to the specular one, the zero-order SPM solution
becomes negligible when compared to the first-order one.

The effect of the fractal parameters on the scattered field is first briefly
described in a qualitative manner. Then, quantitative assessment via Equa-
tions (8.65) is graphically presented in Figures 8.2 through 8.5. The presence
of the factor Gpq(·), which depends on the electromagnetic parameters and
fields polarisations is omitted: the reason is that it also appears if classical
surfaces are considered, it does not include any dependence on the fractal
parameters, and is not relevant to this discussion. Moreover, the scattered
power density in each figure provides the scattering diagram only for angles
not very close to the specular direction, see Condition (8.74).

The reference scattering surface is characterised by the fractal parameters
S0 = 0.003076 m2−2H and H = 0.8. These parameters are typical for
natural surfaces on the Earth when illuminated by a microwave instrument.
Moreover, with the chosen parameters, this reference fBm process holds the
same fractal parameters that are held by the WM reference surface (with
ν = e) presented in Chapter 3 and used in Chapter 5. Illumination and
reference surface parameters are reported in Table 8.1. The corresponding
scattered normalized power density is displayed in Figure 8.2. Then, in
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Figure 8.2 Plots of the normalised power density scattered by the reference surface
holding the fractal parameters H = 0.8 and S0 = 0.003076 m2−2H . Illumination
conditions and surface parameters for the reference surface are reported in Table 8.1.

Table 8.1 Parameters relevant to the illumination conditions and to the
reference surface considered in Figure 8.2 and used to compare results
in Figures 8.2 through 8.5. These parameters provide a reference surface
corresponding to that employed in Chapter 5 where the WM model is used.

Incidence angle (ϑi) 45◦
Illuminated area (X,Y ) (1m, 1m)
Electromagnetic wavelength (λ) 0.1 m
Hurst exponent (H) 0.8
Spectral amplitude (S0) 0.003076 m2−2H

any subsequent subsection only one of the surface fractal parameters is
changed within a reasonable and significant range; its specific contribution
to the scattered field is graphically displayed. The plot in Figure 8.2 shows
that the maximum field scattered by the reference surface is attained in the
specular direction. It is also evident that the average value evaluated for the
scattered power density leads to a very smooth graph.

8.9.1. The Role of the Spectral Amplitude

The spectral amplitude S0, directly influences the surface roughness,
In Figure 8.3 two graphs are reported relevant to the power density scat-
tered by surfaces characterized by different values of the spectral amplitude
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Figure 8.3 Modified versions of the reference surface are considered. As in Figure 8.2,
corresponding normalized scattered power densities are depicted. Top S0 = 0.003076/2
m2−2H ; bottom S0 = 0.003076·2 m2−2H .

S0 = 0.003076/2 m2−2H and S0 = 0.003076 · 2 m2−2H , one-half and
double the value selected for the reference surface, respectively.

Comparison of Figures 8.2 and 8.3 shows that the smaller the spectral
amplitude S0, the narrower the power density diagram around the spec-
ular direction, and the higher the power density scattered in the specular
direction.

8.9.2. The Role of the Hurst Exponent

As shown in Chapter 3, the Hurst coefficient is related to the fractal
dimension. The lower H, the higher the fractal dimension.
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Figure 8.4 Modified versions of the reference surface are considered. As in Figure 8.2,
corresponding normalized scattered power densities are depicted. Top H = 0.7; bottom
H = 0.9.

In Figure 8.4 two graphs are reported, relevant to surfaces with higher,
H = 0.9, and lower, H = 0.7, values of the Hurst coefficient with respect
to the intermediate one H = 0.8 reported in Figure 8.2 and relevant to
the reference surface. It is here recalled that changing the value of H,
while leaving the numerical value of S0 constant, corresponds to con-
sidering constant the amplitude of power density spectrum at unitary
wavenumber.

Comparison of Figures 8.2 and 8.4 shows that the smaller the Hurst coeffi-
cient the narrower the power density diagram around the specular direction,
and the higher the power density scattered in the specular direction.
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8.9.3. The Role of the Electromagnetic Wavelength

The scattered field evaluated by means of PO solution and relevant to
different values of λ is reported under Figure 8.5

In Figure 8.5 two graphs are reported, relevant to electromagnetic
wavelengths with lower, λ = 0.05 m, and higher, λ = 0.2 m,
values with respect to the intermediate one λ = 0.1 m reported in
Figure 8.2 and relevant to the reference surface. Visual inspection of Equa-
tion (8.65) shows that the dependence of the scattered power density on the
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Figure 8.5 Modified versions of the reference surface are considered. As in Figure 8.2,
corresponding normalized scattered power densities are depicted. Top λ = 0.05 m;
bottom λ = 0.2 m.
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electromagnetic wavelength can also be employed to study the dependence
on the Topothesy, T .

Comparison of Figures 8.2 and 8.5 shows that the smaller the electromag-
netic wavelength the broader the power density diagram around the specular
direction, and the lower the power density scattered in the specular direction.

8.10. References and Further Readings

As far as classical surfaces are concerned the electromagnetic scattering
evaluated by means of the SPM approach is conveniently reported in the
books of Tsang (1985), Tsang (2001), Ulaby (1982). The second order SPM
solution for classical surfaces is presented in the book of Tsang (2001). Con-
nection between the SPM solution and the Integral Equation Approach is
provided in the book by Fung (1994). A chapter in the book of Falconer
(1990) is devoted to fBm surfaces along with relevant definitions and proper-
ties. The list of the papers written by the authors of this book and concerning
the subject of this chapter is found in Appendix C.
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Appendix A

Mathematical Formulae

Mathematical formulae are reported in this section as long as they are used
in the corresponding chapters.

Chapter 2

∫ 2π

0
exp [iz cos ϕ] exp [iνϕ] dϕ = (−i)ν 2πJν(z) (A.2.1)

∫ ∞

−∞
1√

2πσ
exp

(
− z2

2σ 2

)
exp(−iξz) dz = exp

(
−1

2
σ 2ξ2

)
(A.2.2)

Chapter 3

∫ ∞

0
xµJν(τx) dx = 2µτ−µ−1

�
(

1
2 + 1

2ν + 1
2µ

)

�
(

1
2 + 1

2ν − 1
2µ

) ,

(−ν − 1 < µ < 0.5 and τ > 0) (A.3.1)

z�(z) = �(1+ z) (A.3.2)

�(1+ z) �(1− z) = πz

sin(πz)
(A.3.3)
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Chapter 4

∇ · [(∇ × A)× B+ A× (∇ × B)] = ∇ × ∇ × A · B− A · ∇ × ∇ × B
(A.4.1)

Chapter 5

exp {ia sin ξ} =
+∞∑

m=−∞
Jm(a) exp{im ξ} (A.5.1)

P−1∏
p=0

+∞∑
m=−∞

Jm(ap) exp{im ξp}

=
+∞∑

m0=−∞
· · ·

+∞∑
mP−1=−∞

⎡
⎣exp

⎛
⎝i

P−1∑
p=0

mpξp

⎞
⎠ P−1∏

p=0

Jmp

(
ap
)
⎤
⎦ (A.5.2)

Chapter 6

J0(t) =
∞∑

n=0

(−1)n t2n

22n(n!)2
(A.6.1)

∫ ∞

0
exp

(−uτ v) · τwdτ = 1

v
· 1

u
w+1

v

· �
(

w+ 1

v

)
,

�(u) > 0, �(v) > 0, �(w) > −1 (A.6.2)

K0 (x) = iπ

2
H(1)

0 (ix) (A.6.3)
∫ ∞

0
ξµK0(bξ) dξ = 2µ−1b−µ−1�2

(
1+ µ

2

)
(A.6.4)

�(1+ nH) �(1− nH) = πnH

sin(πnH)
(A.6.5)

∫ 2π

0
exp [−i (a cos ϕ + b sin ϕ)] dϕ = J0

(√
a2 + b2

)
(A.6.6)
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∫ ∞

0
J0(bτ ) exp(−uτ )τdτ = u(

u2 + b2
)3/2

(A.6.7)

∫ ∞

0
J0(bτ) exp

(
−uτ 2

)
τdτ = 1

2u
exp

(
− b2

4u

)
(A.6.8)

Chapter 7

∇ (A · B) = (A · ∇) B+ (B · ∇) A+ A× (∇ × B)+ B× (∇ × A)

(A.7.1)

exp{ia sin ξ} =
+∞∑

m=−∞
Jm(a) exp{imξ} (A.7.2)

Jm(−a) = (−1)m Jm(a) (A.7.3)

P−1∏
p=0

+∞∑
m=−∞

Jm(ap) exp{im ξp}

=
+∞∑

m0=−∞
· · ·

+∞∑
mP−1=−∞

⎡
⎣exp

⎛
⎝i

P−1∑
p=0

mpξp

⎞
⎠ P−1∏

p=0

Jmp(ap)

⎤
⎦ (A.7.4)
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Appendix B

Glossary

a surface tangential field
α spectral slope

B(r) magnetic induction in phasor domain
b surface tangential field
b(r, t) magnetic induction in space-time domain

C(r1, r2) Autocovariance (or covariance) function
CDF Cumulative-Distribution Function

D(r) electric induction in phasor domain
d(r, t) electric induction in space-time domain
D fractal dimension
δ(x) Dirac function

E(r) electric field in phasor domain
e(r, t) electric field in space-time domain
E(i) incident electric field
E(s) scattered electric field
E(s)

pq polarized components of the scattered electric field
EBCM Extended-Boundary-Condition Method
ε permittivity
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f electromagnetic frequency
F(ζ , r) Cumulative-Distribution Function
Fpq(·) polarization scattering coefficients
fBm fractional Brownian motion
FT Fourier Transform

g(r) filter function in spatial domain
G(κ) filter function in spectral domain
G(r − r′) dyadic Green’s function in spatial domain
GO Geometric Optics
�(x) Gamma function

ĥ perpendicular polarization unit vector
H(r) magnetic field in phasor domain
h(r, t) magnetic field in space-time domain

H(1)
m (x) Hankel function of first kind and order m

H Hurst coefficient (or exponent)
HB Hausdorff-Besicovitch dimension

I unitary dyadic
� imaginary part
IEM Integral-Equation Method
I±D (r) Dirichlet-type surface scalar integral
I±N (r) Neumann-type surface scalar integral

J(r) current density in phasor domain
j(r, t) current density in space-time domain
Jm(x) Bessel function of first kind and order m

k = k⊥ + kzẑ vector wavenumber
K radius of curvature
κe effective spectral bandwidth
κ0 fundamental-tone wavenumber, WM function
Km(x) Kelvin function of order m
KA Kirchhoff approximation

L correlation length
Le effective correlation length
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λ electromagnetic wavelength
µ permittivity
µ(r) statistical mean

N(0, σ 2) zero mean σ 2 variance Gaussian distribution
NRCS Normalized Radar Cross-Section
ν tone wavenumber spacing coefficient, WM function

ω electromagnetic angular frequency
� incoherency parameter

p̂ parallel polarization unit vector
p(ζ , r) probability-density function
p(ζ1, ζ2; r1, r2) second order probability-density function
pdf probability-density function
PDS Power-Density Spectrum
PO Physical Optics

Q(τ) structure function

r = r⊥ + zẑ space vector coordinate
� real part
Rh vertical polarization Fresnel reflection coefficient
Rv horizontal polarization Fresnel reflection

coefficient
R(r1, r2) autocorrelation function
rect[x/X] unitary function of spatial width X
RCS Radar Cross Section
ρ(τ) correlation coefficient

s surface incremental standard deviation
s2 surface incremental variance
S scattering matrix
S0 spectral amplitude
SPM small-perturbation method
SSS Strict-Sense Stationary
σ standard deviation
σ 2(r) variance
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σ ′2 slope variance
σ ′′2 radius of curvature variance

t time
T topothesy
τ = r1 − r2 vector distance

ζ intrinsic impedance of space

W (κ) power spectrum
WM Weierstrass-Mandelbrot
WSS Wide-Sense Stationary

1-D one-dimensional
2-D two-dimensional
3-D three-dimensional

〈x〉 statistical mean of x

�x� upper integer ceiling of x

⊗ convolution operator

� defined as
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