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Introduction

Mathematical diffi culties are a big problem. Many children demonstrate 
signifi cant diffi culties in learning mathematics (Dowker, 2004, 2005; Geary, 
1993; Ginsburg, 1977; Jordan et al., 2003; Ostad, 1998). It is estimated that up 
to 6% have severe specifi c diffi culties that may be described as ‘dyscalculia’ 
(Butterworth, 2005; Gross-Tsur et al., 1996). Many more have problems that are 
less severe or less specifi c. Nor are mathematical diffi culties restricted to child-
hood. For example, Bynner and Parsons (1997) found that nearly one-quarter of 
a British sample of 37-year-olds had ‘very low’ skills in basic numeracy, and 
that their employment and earning power were signifi cantly affected.

In recent years, there has been a greatly increased emphasis on mathematics 
and mathematical diffi culties in (especially developmental) psychology (e.g., 
Baroody and Dowker, 2003; Dowker, 2005; Geary and Hoard, 2005; Gersten
et al., 2005; Mazzocco, 2005); in neuroscience (e.g., Butterworth, 1999; Dehaene, 
1997; Delazer, 2003; Lochy et al., 2005); and in education (Chinn, 2004; 
Department for Education and Skills, 2005; Dowker, 2004; Gifford, 2005; Wright 
et al., 2002). The British Government is currently in process of setting up an 
‘Every Child Counts’ program for providing interventions for children with math-
ematical diffi culties. However, there is still much less research on learning diffi -
culties in mathematics than in some other areas such as language and reading.

Moreover, if we are to gain a greater understanding of mathematical diffi cul-
ties and of ways to prevent or ameliorate them, it is important to obtain converg-
ing evidence from as many fi elds as possible. At present, there is still a tendency 
for research in different disciplines to proceed independently, so that neuroscien-
tists, developmental psychologists and educationists may not even be aware of 
mutually relevant work: a situation which limits the scope of such research.



This book includes chapters by a variety of authors, looking at mathemati-
cal, especially arithmetical, diffi culties in both typical and atypical populations. 
These discuss the behavioural, educational and neuropsychological characteris-
tics of children with mathematical diffi culties, and educational interventions to 
prevent, diagnose, treat or ameliorate such diffi culties. A particular aim of the 
book is to bring together studies from different disciplines, including develop-
mental psychology, neuroscience and education, and to include perspectives 
from practitioners, including teachers and clinical/educational psychologists.

This book follows on from an international conference held in Oxford in 
September 2002, which included chapters from leading researchers in psychol-
ogy, neuroscience and education. This book will include new and updated papers 
by most of the speakers at the conference and by a few others. There has already 
been signifi cant change in the fi eld – notably in the increasing application of 
neuroscience to the study of early arithmetical development, and in the increas-
ing emphasis on early intervention for children with arithmetical diffi culties.

This book begins with two chapters about current research on the psychology 
and neuroscience of arithmetic and arithmetical development. The fi rst chapter 
by Liane Kaufmann discusses research on the neuroscience of number process-
ing and arithmetic, and its applications to our understanding of mathematical 
development and diffi culties in children. It is followed by a chapter by Daniel 
Ansari, Ian D. Holloway, Gavin R. Price and Lucia van Eimeren on research on 
early numerical development in typical and atypical populations, from several 
perspectives, including neuroscience. The subsequent chapters discuss appli-
cations of such research. Nancy Jordan discusses applications of the study of 
early number development to the creation of an assessment technique for iden-
tifying children at risk of mathematical diffi culties, and Barbrina Ertle, Herbert 
Ginsburg and their colleagues discuss its applications to early childhood math-
ematics education, especially for children from groups at social risk for math-
ematical underachievement.

The next chapters look at mathematical development and diffi culties in some-
what older, primary school children. Margaret Brown discusses the extensive 
data from the Leverhulme Numeracy Research Program, concerning individual 
differences in children’s perfomance in different aspects of arithmetic. Most chil-
dren remain in a similar position (whether arithmetically strong or weak) with 
respect to their contemporaries, over a period of time. However, a signifi cant 
number show either improvement or deterioration in their relative position over 
their school career. The author discusses possible reasons for such improvements 
and deteriorations, and their implications for education.

The chapters that follow on from Brown’s look more directly at the charac-
teristics of children with learning diffi culties in mathematics. Christine Lawson 
describes her Dyscalculia Test Battery, and analyzes the nature of children’s 
numerical diffi culties, observed in a clinical practice, and proposes remedial 
approaches. Snorre Ostad reports comparative data on children with and with-
out mathematical diffi culties, and discusses the features that tend to characterize 
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children with such diffi culties. Two chapters follow, which discuss the mathe-
matical strengths and weaknesses that are associated with language diffi culties 
in children. Richard Cowan reports research on number development in children 
with specifi c language impairment. Sula Ellis and Tim Miles discuss a particular 
arithmetical skill – division – in children with dyslexia.

The following chapters discuss intervention programs for children with math-
ematical diffi culties. Ann Dowker describes her Numeracy Recovery program, 
which was based on previous research suggesting a multi-component theory of 
arithmetical ability. The chapter looks at the nature of the program, its effec-
tiveness, and at ways in which results of the assessments used in the program 
give further support to such a multi-component theory. Thus, research and inter-
vention infl uence and inform each other. Bob Wright describes his intensive 
Mathematics Recovery program for children with mathematical diffi culties.

The fi nal chapters provide perspectives from teachers as to how research on 
mathematical development and diffi culties can be, and is being, applied in the 
school context. Margaret Haseler of Bromley Local Education Authority pro-
poses ways of making interventions in numeracy more effective in schools.

Thus, this book brings together converging international research from several 
fi elds, including developmental psychology, neuroscience and education, which 
aims to add to our knowledge about how numerical and other mathematical abil-
ities develop in children; what problems can arise in their development; what 
psychology and neuroscience can tell us about the nature of such diffi culties; 
and how this knowledge can be applied to educational practice, and especially to 
interventions for children who are experiencing such diffi culties.

I am grateful to the British Psychological Society, the Mathematical 
Association and the McDonnell Foundation for fi nancial support for the confer-
ence that inspired this book.

REFERENCES

Baroody, A. & Dowker, A. (Eds.) (2003). The Development of Arithmetical Concepts and Skills
(pp. 385–407). Mahwah, NJ: Erlbaum.

Butterworth, B. (1999). The Mathematical Brain. London: Macmillan.
Butterworth, B. (2005). Developmental dyscalculia. In Campbell, J. I. D. (Ed.), Handbook of 

Mathematical Cognition (pp. 455–467). Hove: Psychology Press.
Bynner, J. & Parsons, S. (1997). It Doesn’t Get Any Better: The Impact of Poor Numeracy Skills on 

the Lives of 37-Year-Olds. London: Basic Skills Agency.
Chinn, S. J. (2004). The Trouble with Maths: A Practical Guide to Helping Learners with Numeracy 

Diffi culties. London: Routledge.
Dehaene, S. (1997). The Number Sense. London: Macmillan.
Delazer, M. (2003). Neuropsychological fi ndings on conceptual knowledge of arithmetic. In Baroody, 

A. & Dowker, A. (Eds.), The Development of Arithmetical Concepts and Skills (pp. 385–407). 
Mahwah, NJ: Erlbaum.

Department for Education and Skills (2005). Targeting Support: Implementing Interventions for 
Children with Signifi cant Diffi culties in Mathematics. London: DfES.

Dowker, A. D. (2004). Children with Diffi culties in Mathematics: What Works? London: DfES.

Introduction xix



Dowker, A. D. (2005). Individual Differences in Arithmetic: Implications for Psychology, Neuroscience 
and Education. Hove: Psychology Press.

Geary, D. C. (1993). Mathematical disabilities: Cognitive, neuropsychological and genetic compo-
nents. Psychological Bulletin, 114, 345–362.

Geary, D. C. & Hoard, M. K. (2005). Learning diffi culties in arithmetic and mathematics: Theoretical 
and empirical perspectives. In Campbell, J. I. D. (Ed.), Handbook of Mathematical Cognition 
(pp. 253–268). Hove: Psychology Press.

Gersten, R., Jordan, N., & Flojo, J. (2005). Early identifi cation and intervention for students with 
mathematics diffi culties. Journal of Learning Disabilities, 38, 293–304.

Gifford, S. (2005). Young Children’s Diffi culties in Learning Mathematics: Review of Research in 
Relation to Dyscalculia. London: Qualifi cations and Curriculum Agency.

Ginsburg, H. P. (1977). Children’s Arithmetic: How They Learn It and How You Teach It. New York: 
Teachers’ College Press.

Gross-Tsur, V., Manor, O., & Shalev, R. (1996). Developmental dyscalculia: Prevalence and demo-
graphic features. Developmental Medicine and Child Neurology, 38, 25–33.

Jordan, N. C., Hanich, L., & Uberti, H. Z. (2003). Mathematical thinking and learning diffi culties. 
In Baroody, A. & Dowker, A. (Eds.), The Development of Arithmetical Concepts and Skills
(pp. 359–383). Mahwah, NJ: Erlbaum.

Lochy, A., Domahs, F., & Delazer, M. (2005). Rehabilitation of acquired calculation and number 
processing disorders. In Campbell, J. I. D. (Ed.), Handbook of Mathematical Cognition. Hove: 
Psychology Press (pp. 469–485).

Mazzocco, M. (2005). Challenges in identifying target skills for mathematical disability screening 
and intervention. Journal of Learning Disabilities, 38, 318–331.

Ostad, S. (1998). Developmental differences in solving simple arithmetic problems and simple 
number fact problems: A comparison of mathematically normal and mathematically disabled 
children. Mathematical Cognition, 4, 1–19.

Wright, R., Martland, J., Stafford, A., & Stanger, G. (2002). Teaching Number: Advancing Children’s 
Skills and Strategies. London: Chapman.

xx Introduction



1

INTRODUCTION

During the last two decades, our understanding of children’s emerging numer-
ical competencies has been considerably refi ned. For instance, already preschool 
children demonstrate an almost intuitive knowledge about magnitudes and num-
bers. It has been repeatedly shown that already before explicitly taught in school; 
children are able to recite the counting words and more than that, they also seem 
to have an inherent knowledge of counting principles (Fuson, 1988; Gelman & 
Gallistel, 1978). However, it is currently still debated whether the principles pre-
cede the counting knowledge or not: proponents of the ‘principles fi rst’ view are 
Gallistel and Gelman (1992), while Fuson (1988) suggests that the acquaintance 
of the verbal counting routines is a prerequisite for developing knowledge about 
counting principles. Nonetheless, it is noteworthy that (non-verbal) magnitude 
processing per se seems to be independent from language processing (Brannon, 
2005b; Gelman & Butterworth, 2005).
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2 Mathematical Diffi culties: Psychology and Intervention

While it is not very surprising to learn that preschoolers exhibit magnitude 
and numerical skills before they enter formal mathematics education, somewhat 
more astonishing are fi ndings suggesting that already infants might have an 
innate capacity to discriminate object sets based on their numerical distinctness 
and moreover, seem to demonstrate expectancy behavior in response to viola-
tions of addition and subtraction (e.g., Wynn, 1992). While the fi ndings of Wynn 
(1992) were restricted to small object sets implicating that babies as young as 5 
to 6-month-old are capable to discriminate objects sets up to three or four items 
only, the follow-up work by Xu and Spelke (2000) showed that 6-month-old 
infants may also discriminate larger object sets provided the ratio between the 
to-be-discriminated sets is large enough (i.e., infants succeeded in discriminating 
8 from 16 objects, but failed on a ratio of 8–12). Moreover, infants as young as 
9–11 months exhibit a sense of ordinality (i.e., of greater than/less than relation-
ships; Brannon, 2002).

Interestingly, infants are not the only preverbal species demonstrating a sense 
for magnitude. There is accumulating evidence from the animal literature that 
also non-human species are capable of manipulating – concrete and abstract – 
magnitudes (the vast majority of respective studies being done with monkeys; 
e.g., Brannon & Terrace, 1998; Dehaene et al., 1998; Hauser et al., 2000; 
Matsuzawa, 1985). The latter fi ndings thus corroborate assumptions propos-
ing that (abstract) magnitude processing might be an innate capacity of human 
beings, possibly shared by non-human species (for controversial views, see 
Clearfi eld & Mix, 1999; Mix et al., 2002; Tan & Bryant, 2000).

NEUROANATOMICAL CORRELATES OF 
NUMBER PROCESSING AND CALCULATION: 
ARE THEY IDENTICAL IN DEVELOPING AND 

MATURE BRAIN SYSTEMS?

With the avenue of new technologies enabling us to visualize the human brain 
‘in action’ exciting possibilities for cognitive research emerged. More specifi -
cally, brain imaging techniques enable us to trace the neural correlates of the 
cognitive effort associated with the task of interest. The following section will 
be devoted to fi ndings obtained from studies implementing functional magnetic 
resonance imaging (fMRI) and event-related potentials (ERP) as the latter two 
techniques are the most widely used brain imaging methods and furthermore, 
up to date seem to be the most advanced from a methodological point of view.1 
Nonetheless, regarding the current debate as to whether number processing is an 
innate capacity of the human brain, fMRI is not the method of choice because 
it’s applicability is restricted to children aged fi ve and older (however, one recent 
study investigated magnitude processing in 4-year-olds successfully, Cantlon 
et al., 2006). This is so because the fMRI technique requires participants to be 
awake and respond to stimuli presented in the (narrow and very noisy) scanner 
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environment while simultaneously task-processing related changes in the blood 
oxygen consumption in different brain regions are recorded. Hence, fMRI stud-
ies provide both behavioral and brain imaging data by measuring the so called 
BOLD (blood oxygen level dependent) responses. Though this method renders 
exciting possibilities to image the neural activity of ‘verbal’ individuals (i.e., 
those being capable of comprehending and responding to task requirements), 
it is generally not suitable for children below age four or fi ve (however, for a 
study investigating language processing/phoneme discrimination in babies, see 
Dehaene-Lambertz et al., 2002).

An often cited review of the adult literature on number processing and calcu-
lation has been provided by Dehaene et al. (2003). The latter authors propose a 
neurofunctional three-partitioning within the parietal lobe with respect to number 
processing and calculation: (i) numerical magnitude processing per se is thought 
to be modulated by the horizontal segment of the intraparietal sulcus (IPS) bilat-
erally; (ii) language and phonologically mediated numerical processing (e.g., 
verbal recitation of counting sequences, verbal retrieval of number facts) is 
thought to be supported by the left angular gyrus and adjacent perisylvian struc-
tures; and (iii) attentional and spatial orientation on the mental number line is 
supposed to be mediated by posterior superior parietal lobes (PSPL) bilaterally. 
Moreover, Dehaene et al. propose that more complex arithmetical skills depend 
on the interplay between parietal and extra-parietal regions (e.g., prefrontal brain 
areas being essential for monitoring and updating information upon multi-step 
arithmetic procedures; occipital regions such as the fusiform gyrus subserving 
the identifi cation of Arabic numerals).

Considering behavioral studies suggesting that numerosity/magnitude dis-
crimination abilities might be an innate capacity inherent to infants and non-
human species (see above), the question arises whether the latter magnitude 
discrimination abilities are supported by identical brain regions in infants 
and adults. Unfortunately, developmental brain imaging studies in the fi eld of 
numerical cognition are scarce and moreover, diffi cult to compare to each other 
because the methodological approaches employed are not readily comparable.

One of the fi rst studies investigating the neural basis of number processing in 
children was undertaken by Temple and Posner (1998). The latter authors used the 
ERP method to compare the electrophysiological correlates of adults and 5-year-
old children upon making magnitude classifi cations. Their fi ndings suggest that 
children and adults alike recruit parietal brain regions upon making symbolic and 
non-symbolic magnitude judgments (i.e., picking the larger of two simultaneously 
presented one-digit numerals [symbolic task]; selecting the more numerous of two 
simultaneously presented dot patterns [non-symbolic task]). Further support for 
the hypothesis that (intra)parietal regions play a crucial role in the acquaintance 
of arithmetical skills was provided by Isaacs et al. (2001) who compared prema-
turely born adolescents with and without dyscalculia. More specifi cally, Isaacs 
et al. (2001) found structural abnormalities in (intra)parietal regions (reduced gray 
matter densities) in children with, but not in those without, dyscalculia.
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Interestingly, a recent fMRI study of 4-year-old children partially corrobo-
rates the latter fi ndings. Cantlon et al. (2006) studied magnitude processing by 
implementing an event-related fMRI adaptation paradigm in adults and 4-year-
old children. By using a habituation paradigm requiring participants to indicate 
the presence of deviant stimuli (the ratio by which the deviant differed from the 
standard was 2:1); the results of the latter authors reveal that the signifi cant IPS 
activations upon detecting numerically deviant non-symbolic stimuli were inde-
pendent of age. Hence, Cantlon et al. (2006) suggest that the IPS plays a cru-
cial role in non-symbolic magnitude processing in both adults and 4-year-old 
children. Finally, the latter authors propose that the signifi cant IPS activations 
in 4-year-olds might be ‘…fi rst evidence that the neural locus of adult numeri-
cal cognition takes form early in development, prior to sophisticated symbolic 
numerical experience’ (Abstract, p. e125). Moreover, Cantlon et al. (2006) were 
able to show that non-symbolic (dot patterns) stimuli elicit signifi cant IPS activa-
tions also in adult participants and interpret their fi ndings as supporting the – up 
to date controversially discussed – notion of a neurophysiologic link between 
non-symbolic and symbolic number processing. Nonetheless, it has to be noted 
that up to date our understanding of the developmental processes and mecha-
nisms bridging the gap between non-symbolic and symbolic arithmetic are still 
undeveloped.

Moreover, the latter fi ndings (demonstrating a link between IPS and the for-
mation of arithmetical skills) are opposed by others demonstrating age-related 
changes in activation patterns. For example, upon investigating symbolic arith-
metic (addition and subtraction with one- and two-digit operands) in healthy par-
ticipants aged 8–19, Rivera et al. (2005) report a positive correlation between 
age and parietal activation and a negative correlation between age and frontal 
activation. In other words, with increasing age children rely more on parietal, but 
less on frontal brain regions upon solving simple addition and subtraction prob-
lems. Importantly, the latter authors were able to demonstrate that this increasing 
functional specialization of parietal regions was not associated with structural 
changes (i.e., the gray matter density in parietal regions remained rather stable 
within this age span). Likewise, the fi ndings of Kaufmann et al. (2005, 2006) 
suggest that relative to adults, children seem to rely more on (pre)frontal (and 
cerebellar) regions upon making magnitude classifi cations. More specifi cally, 
parietal activations in 9 to 12-year-old children upon making magnitude classi-
fi cations were not found to be as strong and consistent than in adults (Kaufmann 
et al., 2006). Upon extending their study group to individuals aged above 60, 
Kaufmann et al. (in press) report that both elderly with and without minimal 
cognitive impairment recruit fronto-parietal networks upon processing number 
magnitude thus suggesting that the functional specialization of (intra)parietal 
regions for number magnitude remains stable in the mature brain and even in 
early phases of deteriorating diseases.

The consistent fi nding that relative to young adults, children, and elderly seem 
to recruit additional prefrontal regions in response to magnitude processing has 
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been interpreted as refl ecting compensatory efforts such as increased demands 
on monitoring, working memory or interference control (children: Kaufmann 
et al., 2006; Rivera et al., 2005; elderly: Kaufmann et al., in press; Wood et al., 
submitted). Furthermore, a direct comparison between three age groups (chil-
dren, young adults, and elderly; Wood et al., submitted) revealed a non-linear 
age trend in parietal activations: Relative to old adults, children and young 
adults had to recruit the smallest network upon making number magnitude judg-
ments. As children displayed the highest error rates, it is plausible to assume 
that compared with children the magnitude representations of elderly and young 
adults are better established (and hence more accurate). Overall, the stronger 
parietal activations found in elderly have been interpreted as being associated 
to compensatory mechanisms allowing for very accurate responses (Kaufmann 
et al., in press; see also Rypma et al., 2006 for similar results in prefrontal regions).

The latter hypothesis is compatible with preliminary fi ndings from children 
with developmental dyscalculia (Kaufmann & Vogel, 2008). In a group of care-
fully selected 9-year-old children we found a negative correlation between magni-
tude processing defi ciency and parietal activation extents. In other words: parietal 
activations of children with extremely poor magnitude skills were weak (i.e., not 
reaching predefi ned signifi cance thresholds), while children with relatively bet-
ter established – but nevertheless defi cient – number skills exhibited stronger (and 
more distributed) parietal activations. Certainly, these preliminary results need 
to be replicated with larger sample sizes before drawing any strong conclusions. 
Nonetheless, our results are interesting because they further confi rm the notion that 
the relationship between behavioral performance and cerebral activation is a very 
complex one and researchers should take a closer look into individual data sets 
(because group data are likely to mask any individual differences). Moreover and 
most importantly, our fi ndings clearly show that the activation extent of parietal 
BOLD responses may vary considerably according to competence level. Hence, 
instead of merely classifying participants into those with and without dyscalculia
(i.e., refl ecting a dichotomous disease approach) future research endeavors are 
encouraged to quantify competence levels, thus enabling us to study the link 
between behavioral performance and functional activation patterns in more detail 
(for a similar approach in adults, see also Grabner et al., 2007).”

Though there is converging evidence that magnitude processing is modality 
independent, at least concerning non-verbal mental magnitudes (numerical magni-
tudes: Barth et al., 2003; Brannon, 2005a; action: Wynn, 1996; auditory perception: 
Bijeljac-Babic et al., 1993), a still unresolved issue concerns the domain-specifi city 
of number processing. While in the adult literature, the empirical data leads 
to quite controversial views (pros: e.g., Cohen-Kadosh et al., 2005; cons: e.g., 
Shuman & Kanwisher, 2004), respective systematic investigations in the develop-
ment literature still need to be published. A popular theory challenging the notion 
that the IPS is domain-specifi c for numbers was put forward by Walsh (2003). By 
referring to empirical fi ndings from quite different fi elds of cognition (i.e., spa-
tial, time and numerical processing) Walsh (2003) proposed the so called ‘ATOM’ 
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theory (A Theory Of Magnitude) suggesting that numbers are only one manifesta-
tion of magnitude and therefore, the repeatedly reported (intra)parietal activations 
in response to number processing should not be mistaken as refl ecting domain-
specifi c activations but rather should be interpreted as indicating the involvement 
of one kind of magnitude system. According to the latter view, parietal involve-
ment is also to be expected in tasks tapping spatial and time processing as the lat-
ter domains are characterized by an inherent magnitude system, too (see also Fias 
et al., 2003). Likewise, the fi ndings of a recent review detailing empirical evidence 
from both animal and human studies strongly support the notion of a neurofunc-
tional association between spatial and numerical cognition (Hubbard et al., 2005).

ARE NEUROIMAGING STUDIES APT TO HAVE 
ANY EDUCATIONAL IMPLICATIONS?

Considering the quickly growing body on imaging studies investigating 
number processing and calculation, the question whether and how the fi ndings of 
these studies could be benefi cial and/or applicable to educational sciences clearly 
is warranted. A frequent critique concerns the issue that experimental studies in 
general and neuroimaging studies specifi cally tend to investigate isolated skills 
rather than complex abilities (as required in everyday life and/or academic set-
tings). The latter criticism surely has to be taken seriously, but at the same time 
it has to be acknowledged that the fi eld of neuroimaging is based on very recent 
technological advances and the vast majority of respective research is targeted at 
basic research. Before aiming at investigating complex cognitive abilities, it is 
essential to gain an understanding of the basic skills that constitute and/or con-
tribute to the complex behaviors of interest.

“A fi rst step toward such an endeavor has been taken by investigating the 
potential link between fi ngers and number processing. Children’s reliance on 
fi nger-based number representations is a universal phenomenon and even in adults 
fi ngers may serve as a back-up calculation strategy (Butterworth, 1999). Recently, 
we asked elementary school children and adults to make number magnitude classi-
fi cations by judging which of two simultaneously presented fi nger patterns showed 
more fi ngers (Kaufmann et al., 2008).2 Results revealed that relative to adults, pari-
etal activations of children extended to anterior intraparietal regions as well as to 
post- and pre-central gyri. Interestingly, the very same regions were deactivated in 
adults. Upon acknowledging that the anterior IPS and adjacent regions including 
the post-/pre-central gyri support fi nger use (and gnosis), it is plausible to argue 
that children – even though exhibiting a fl awless and adult-like performance on 
this easy task – recruit fi nger-relevant regions when asked to solve simple number 
tasks (Kaufmann et al., 2008). Overall, the latter results suggest that fi nger-
based number representations are still important for elementary school children’s 
number processing skills. Clearly, future research is needed to investigate whether 
the explicit use of fi ngers (i.e., fi nger-based counting and calculation) in early 



Neural Correlates of Number Processing and Calculation 7

mathematics may be benefi cial for typically developing children and/or may sup-
port the formation of abstract number representations in children with and without 
dyscalculia.

Nonetheless, the above mentioned critics are justifi ed insofar, as the main 
interest of professions dealing with the teaching (educational sciences) and 
re-teaching (rehabilitation sciences) of skills and abilities concern complex 
and adaptive functions rather than islets of skills. Remarkably, one line of cogni-
tive neuroscience indirectly supports these concerns by questioning the validity 
and applicability of modular views of cognition.

PROS AND CONS REGARDING A MODULAR VIEW OF 
NUMERICAL SKILLS

In the adult literature, many insights into the neurofunctional calculation 
system were gained from patients with acquired calculation disorders (acalcu-
lia). There is converging evidence from numerous neuropsychological case 
studies that specifi c components of the calculation system might be selectively 
impaired as a consequence of focal brain injury (mostly affecting left posterior 
brain regions, for an overview, see Dehaene et al., 2003). These selective impair-
ments in formerly normally functioning brain systems, sometimes leading to 
so called ‘double dissociations’ (i.e., function A being defi cient in the presence 
of a spared function B in one patient, while the opposite performance profi le, 
namely function A being spared in the presence of an impaired function B, is 
found in another patient), have led researchers to suggest that number (magni-
tude) processing is modularly organized. Furthermore, it has been argued that 
numerical magnitude representations are quite independent from other cognitive 
domains such as language, memory, attention, and visual-spatial skills (for over-
views, see Butterworth, 1999; Dehaene et al., 2003).

Likewise, a similar approach has been adopted in the developmental lit-
erature. Most researchers investigating developmental dyscalculia agree on the 
modularity hypothesis of number processing or at least, take the assumption 
of modularity as a starting point. Recent attempts to disentangle language and 
numerical processing at both functional and neuroanatomical levels (Brannon, 
2005b; Gelman & Butterworth, 2005) seem to justify such a view.

However, there are some problems inherent in the modularity view (see also 
Aslin & Fiser, 2005; Pennington, 2006). As a thorough discussion of the latter 
issue goes far beyond the scope of this article, I would like to focus on an issue 
that is intimately linked to the conceptualization of developmental dyscalculia. In 
the absence of an empirically tested developmental calculation model, it has to be 
noted that the most widely adopted current conceptualization of developmental 
dyscalculia implicates a single-defi cit model. For instance, Butterworth (2005) (see 
also Landerl et al., 2004; Wilson & Dehaene, 2007) proposes defi cient numerosity 
processing being a core defi cit of children suffering from developmental dyscalcu-
lia. Others concentrate their investigations on children, who’s calculation diffi culties 
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are most pronounced regarding the retrieval of simple mental calculations (number 
fact disorders, Temple & Sherwood, 2002; see also Geary, 2000; Kaufmann 
et al., 2004; Temple, 1991). However, the mere existence of rather circumscribed 
functional impairments and/or functional double dissociations (between two indi-
viduals or within one individual) in developmental disorders might not be suffi -
cient to conclude that these defi cits are indeed causally related to an assumed 
anatomical substrate mediating this function. This might be somewhat different 
in adults with acquired calculation disorders, where the assumption that a newly 
acquired focal lesion is likely to have caused the – previous to the traumatic event 
not existent – functional defi cit which seems rather plausible. However, in devel-
opmental disorders the matter is far more complicated.

First, the modular view cannot account for the possibility of cognitive sub-
types (e.g., magnitude/numerosity processing defi ciencies vs number fact dis-
order). According to Pennington (2006), who discusses this issue with respect 
to dyslexia, single defi cit models – being fostered by strong modularity views 
of the cognitive architecture – are neither suffi cient nor suitable to explain the 
symptoms of complex developmental disorders because each subtype possibly 
has its own distinct single cognitive defi cit. Similarly, attempts to link these cog-
nitive defi cits to their neuroanatomical and/or genetic underpinnings are far from 
being straight forward. In a similar vein, Aslin and Fiser (2005) postulate that 
though neuroimaging techniques may provide valuable insights into the mapping 
of brain structure and function, they are not suffi cient to broaden our understand-
ing of how information is represented and learnt in the brain (unless methods 
are employed that aim at investigating learning processes and mechanisms in a 
computational framework).

Second, children with developmental dyscalculia very rarely exhibit isolated 
cognitive defi cits in the numerical domain. Rather, even if fulfi lling the so-called 
discrepancy criteria (of age-equivalent intellectual abilities and defi cient math 
achievement), they often have additional diffi culties in non-numerical domains 
such as visual-spatial processing, attention, working memory and motor skills. 
Despite the scarcity of studies investigating co-morbidities of developmental dis-
orders, there are some studies reporting the co-occurrence of dyscalculia, dys-
lexia (reading disorder) and attentional disorders. For instance, in a large cohort 
study incorporating more than 3,000 children, Gross-Tsur et al. (1996) found 
that in their sample 17% of children with a diagnosis of dyscalculia also met cri-
teria for dyslexia and 26% for ADHD (attention-defi cit/hyperactivity disorder). 
Thus, it is rather surprising that up to date the rather high incidence of co-morbid 
cognitive diffi culties has been little appreciated in the research community investi-
gating developmental dyscalculia.

Third, developmental dyscalculia is a very heterogeneous disorder manifesting 
itself with very differential performance profi les both between individuals (leading 
some people to claim the necessity for subtyping) and within individuals (Dowker, 
2005). Dowker (2005) devoted a whole book to these individual differences, trying 
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to outline the importance of the appreciation of these inter- and intra-individual 
differences for both differential diagnosis and intervention planning.

Overall, a major theoretical consequence of acknowledging the complex-
ity of developmental dyscalculia (both with respect to potential subtypes and 
the frequency of co-morbid disorders and associated, but not yet systematically 
investigated, processing defi ciencies in non-numerical domains) could be a 
methodological reorientation toward a multiple defi cit view of developmental 
dyscalculia (see Pennington, 2006; for a similar claim regarding dyslexia and 
ADHD). Multiple defi cit models have the advantage that they readily appreciate 
modulating cognitive abilities (both with respect to numerical and non-numeri-
cal components) on the encoding, storing and accessing of mental numerical/
magnitude representations, number processing and calculation skills (see also 
Kaufmann & Nuerk, 2005). Finally, in contrast to single defi cit models, multiple 
defi cit models are better apt to account for the up to date rather poorly understood 
interactions between cognitive (functional), anatomical (structural) and genetic (eti-
ological) factors mediating the acquisition and maintenance of arithmetical skills.

SYNOPSIS

Despite the growing interest and almost exploding number of imaging stud-
ies investigating numerical cognition in adults, brain imaging studies in children 
are scarce. To further complicate the matter, methodological differences between 
studies make direct comparisons questionable if not impossible.

Up to date, our knowledge regarding the developmental trajectories of the 
neural underpinnings of number processing and calculation remains unde-
veloped. Moreover, there is accumulating evidence challenging the view that 
(intra)parietal regions might be domain-specifi c for numerical cognition. It is 
important to note that fronto–parietal network activations are not only a frequent 
fi nding in the number processing literature, but also in studies investigating 
attentional and interference processing. Furthermore, though some components 
of arithmetic might be modularly organized, calculation abilities on the large are 
not independent from non-numerical skills such as visual-spatial cognition, lan-
guage, working memory, motor skills, etc. Similarly, only very small proportions 
of children with calculation diffi culties exhibit a ‘pure’ dyscalculia but rather 
are likely to have diffi culties in non-numerical domains as well. The latter facts 
should be taken into account upon developing (behavioral and brain imaging) 
study paradigms apt for children and adequate for investigating educationally 
important questions.

Furthermore, experimental paradigms employed in brain imaging studies tap 
circumscribed skills rather than cognitive processes. Though certainly leading to 
a better understanding of the association between the neural networks support-
ing the cognitive task at hand, it has to be stressed that signifi cant activations as 
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reported in imaging studies only identify brain regions that modulate a specifi c 
task which is not equivalent to regions being necessary to process the task at hand.

Hence, a crucial requirement for future investigations is the development of 
adequate imaging paradigms tapping ecologically and educationally relevant and 
process-orientated tasks allowing us to assess cognitive processes and mecha-
nisms. Importantly, the quality of future research bridging the gap between edu-
cational sciences and neurosciences will critically depend on the quality and 
intensity of bi-directional knowledge transfer between the two fi elds. Finally, it 
has to be noted that imaging studies are only as good as the behavioral para-
digms they are implementing. In turn, the development of adequate behavioral 
paradigms should be based on a sophisticated understanding of the interplay 
between neurocognitive, genetic and socio-cultural factors determining the 
development of typical and atypical trajectories of numerical cognition.

REFERENCES

Aslin, R. N. & Fiser, J. (2005). Methodological challenges for understanding cognitive development 
in infants. Trends in Cognitive Sciences, 9(3), 92–98.

Barth, H., Kanwisher, N. & Spelke, E. (2003). The construction of large number representations in 
adults. Cognition, 86, 201–221.

Bijeljac-Babic, R., Bertoncini, J. & Mehler, J. (1993). How do four-day-old infants categorize multi-
syllabic utterances? Development Psychology, 29, 711–721.

Brannon, E. M. (2002). The development of ordinal numerical knowledge in infancy. Cognition, 83, 
223–240.

Brannon, E. M. (2005a). Number knows no bound. Trends in Cognitive Sciences, 7(7), 279–281.
Brannon, E. M. (2005b). The independence of language and mathematical reasoning. Proceedings of 

the National Academy of Sciences USA, 102(9), 3177–3178.
Brannon, E. M. & Terrace, H. S. (1998). Ordering of the numerosities 1 to 9 by monkeys. Science, 

282, 746–749.
Butterworth, B. (1999). The Mathematical Brain. London: Macmillan Publishers Ltd.
Cantlon, J. F., Brannon, E. M., Carter, E. J. & Pelphrey, K. A. (2006). Functional imaging of numeri-

cal processing in adults and 4-y-old children. PLOS Biology, 4(5), e125.
Clearfi eld, M. W. & Mix, K. S. (1999). Number versus contour length in infants’ discrimination of 

small visual sets. Psychological Science, 10, 408–411.
Cohen-Kadosh, R., Henik, A., Rubinstein, O., Mohr, H., Dori, H., van de Ven, V., Zorzi, M., Hendler, T., 

Goebel, R. & Linden, D. E. J. (2005). Are numbers special? The comparison systems of the 
human brain investigated by fMRI. Neuropsychologia, 43, 1238–1248.

Dehaene, S., Dehaene-Lambertz, G. & Cohen, L. (1998). Abstract representation of numbers in the 
animal and human brain. Nature Neuroscience, 21, 355–361.

Dehaene, S., Piazza, M., Pinel, P. & Cohen, L. (2003). Three parietal circuits for number processing. 
Cognitive Neuropsychology, 20(3–6), 487–506.

Dehaene-Lambertz, G., Dehaene, S. & Hertz-Panniere, L. (2002). Functional imaging of speech per-
ception in infants. Science, 298(5600), 2013–2015.

Dowker, A. (2005). Individual Differences in Arithmetic: Implications for Psychology, Neuroscience 
and Education. Hove, UK: Psychology Press.

Fias, W., Lammertyn, J., Reynvoet, B., Dupont, P. & Orban, G. A. (2003). Parietal representation of 
symbolic and nonsymbolic magnitude. Journal of Cognitive Neuroscience, 15(1), 47–56.



Neural Correlates of Number Processing and Calculation 11

Fuson, K. (1988). Children’s Counting and Concepts of Number. New York: Springer-Verlag.
Gallistel, C. R. & Gelman, R. (1992). Preverbal counting and computation. Cognition, 44, 

43–74.
Geary, D. C. (2000). From infancy to adulthood: the development of numerical abilities. European 

Child and Adolescent Psychiatry, 9(2), 11–16.
Gelman, R. & Butterworth, B. (2005). Number and language: how are they related? Trends in 

Cognitive Sciences, 9(1), 6–10.
Gelman, R. & Gallistel, C. R. (1978). The Child’s Concept of Number. Cambridge, MA: Harvard 

University Press.
Grabner, R., Ansari, D., Reishofer, G., Stern, E., Ebner, F. & Neuper, C. (2007). Individual differ-

ences in mathematical competence predict parietal brain activation during mental calculation. 
Neuroimage, 38, 346–356.

Gross-Tsur, V., Manor, O. & Shalev, R. (1996). Developmental dyscalculia: prevalence and demo-
graphic features. Developmental Medicine and Child Neurology, 38, 25–33.

Hauser, M. D., Carey, S. & Hauser, L. B. (2000). Spontaneous number representation in wild rhesus 
monkeys. Proceedings of the Royal Academy of Sciences, 93, 1514–1517.

Hubbard, E. M., Piazza, M., Pinel, P. & Dehaene, S. (2005). Interactions between number and space 
in parietal cortex. Nature Reviews Neuroscience, 6, 435–448.

Isaacs, E. B., Edmonds, C. J., Lucas, A. & Gadian, D. G. (2001). Calculation diffi culties in children 
of very low birthweight. Brain, 124(9), 1701–1707.

Kaufmann, L., Lochy, A., Drexler, A. & Semenza, C. (2004). Defi cient arithmetic fact retrieval – 
storage or access problem? A case study. Neuropsychologia, 42, 482–496.

Kaufmann, L. & Nuerk, H. C. (2005). Numerical development: current issues and future perspec-
tives. Psychology Science (Special Issue: Brain and Number), 47(1), 142–170.

Kaufmann, L., Kaufmann, L., Koppelstaetter, F., Delazer, M., Siedentopf, C., Rhomberg, P., 
Golaszewski, S., Felber, S. & Ischebeck, A. (2005). Neural correlates of distance and congruity 
effects in a numerical Stroop task: an event-related fMRI study. NeuroImage, 25, 888–898.

Kaufmann, L. (2008). Dyscalculia: Neuroscience and education. Educational Research, 50(2), 
163–175.

Kaufmann, L. & Vogel, S.E. (2008). Developmental dyscalculia: One or many core defi cits? Paper 
presented at the International Conference of the British Dyslexia Association, Harrogate, UK, 
March 28.

Kaufmann, L., Vogel, S., Wood, G., Kremser, C., Schocke, M., Zimmerhackl, L.-B. & Koten, J. W. 
(2008). A developmental fMRI study of nonsymbolic numerical and spatial processing. Cortex, 
44, 376–385.

Kaufmann, L., Ischebeck, A., Koppelstaetter, F., Siedentopf, C., Weiss, E., Gotwald, T., Marksteiner, J.
& Wood, G. (in press). An fMRI study of the Numerical Stroop Task in Individuals with and 
without MCI. Cortex.

Kaufmann, L., Koppelstaetter, F., Siedentopf, C., Haala, I., Haberlandt, E., Zimmerhackl, L.-B., 
Felber, S. & Ischebeck, A. (2006). Neural correlates of a number-size interference task in chil-
dren. NeuroReport, 17(6), 587–591.

Landerl, K., Bevan, A. & Butterworth, B. (2004). Developmental dyscalculia and basic numerical 
capacities: a study of 8-9-year-old students. Cognition, 93, 99–125.

Matsuzawa, T. (1985). Use of numbers by a chimpanzee. Nature, 315, 57–59.
Mix, K. S., Huttenlocher, J. & Levine, S. C. (2002). Quantitative development in infancy and early 

childhood. Oxford: Oxford University Press.
Pennington, B. F. (2006). From single to multiple defi cit models of developmental disorders. 

Cognition , 101(2), 385–413.
Rivera, S. M., Reiss, A. L., Eckert, M. A. & Menon, V. (2005). Developmental changes in mental 

arithmetic: evidence for increased functional specialization in the left inferior parietal cortex. 
Cerebral Cortex, 15, 1779–1790

Rypma, B., Berger, J. S., Prabhakaran, V., Bly, B. M., Kimberg, D. Y., Biswal, B. B. & D’Esposito, M.
(2006). Neural correlates of cognitive effi ciency. Neuroimage, 33, 969–979.



12 Mathematical Diffi culties: Psychology and Intervention

Shuman, M. & Kanwisher, N. (2004). Numerical magnitude in the human parietal lobe : tests of rep-
resentational generality and domain specifi city. Neuron, 44, 557–569.

Tan, L. S. & Bryant, P. (2000). The cues that infants use to distinguish discontinuous quantities : evi-
dence using a shift-rate recovery paradigm. Child Development, 71, 1162–1178.

Temple, C. M. (1991). Procedural dyscalculia and number fact dyscalculia: double dissociation in 
developmental dyscalculia. Cognitive Neuropsychology, 8(2), 155–176.

Temple, E. & Posner, M. (1998). Brain mechanisms of quantity are similar in 5-year-olds and adults. 
Proceedings of the National Academy of Sciences USA, 95, 7836–7841.

Temple, C. M. & Sherwood, S. (2002). Representation and retrieval of arithmetic facts: 
Developmental diffi culties. Quarterly Journal of Experimental Psychology, 55A, 733–752.

Walsh, V. (2003). Cognitive neuroscience: numerate neurons. Current Biology, 13, 447–448.
Wilson, A. J. & Dehaene, S. (2007). Number Sense and Developmental Dyscalculia. In Coch, D.,

Dawson, G., & Fischer, K. (Eds.), Human Behavior, Learning, and the Developing Brain: 
Atypical Development (pp. 212–238). New York: Guilford Press.

Wood, G., Ischebeck, A., Koppelstaetter, F., Gotwald, T. & Kaufmann L. (submitted). Developmental 
trajectories of magnitude processing and interference control: A fMRI study.

Wynn, K. (1992). Addition and subtraction by human infants. Nature, 358, 749–750.
Wynn, K. (1996). Infants’ individuation and enumeration of actions. Psychological Science, 7, 

164–169.
Xu, F. & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Science, 7, 

164–169.

NOTE

 1.  Other frequently used brain imaging methods are SPECT (single photon emission computed 
tomography) and PET (positron emission tomography). However, the latter methods are not 
suitable for younger children as its application requires the injection of contrast agents bearing 
the risk of medical complications. A rather new development is the NIRS (near infrared spectro-
scopy) which is non-invasive and thus more negligible in developmental studies, but currently 
not ready for routine clinical investigations.

 2. In the control task, identical stimuli were presented but this time, participants had to decide 
whether the palms of the two hands showed in the same direction or not. The control task is 
important because by subtracting activation patterns obtained by the control task from those 
obtained by the experimental task, it is ensured that only relevant activations remain (because 
task-irrelevant activations such as encoding, decision process, and response selection are par-
tialled out by the subtraction procedure).
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INTRODUCTION

The development of methodology to non-invasively measure brain activity 
and its correlates (such as cerebral blood fl ow) in humans has led to an explo-
sion in the fi eld of cognitive neuroscience (Albright et al., 2000). Methods such 
as functional magnetic resonance imaging (fMRI), event-related brain potentials 
(ERP) and transcranial magnetic stimulation (TMS) have enabled insights into 
the brain regions that are both correlated with and directly implicated in particu-
lar cognitive processes. The fi eld of cognitive neuroscience is concerned with 
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the study of the neural instantiation of cognition, with the principle aim being to 
develop biologically plausible models of cognitive processes. The cognitive neu-
roscience approach has been very infl uential in a host of domains, such as atten-
tion (Corbetta & Shulman, 2002), reading (McCandliss & Noble, 2003), social 
cognition (Ochsner & Lieberman, 2001) and education (Ansari & Coch, 2006) 
to name a few. Cognitive neuroscience approaches to cognitive functions have 
helped to constrain existing models based on behavioral data and have lead to 
the formulation of new hypotheses.

The advent of cognitive neuroscience as a new framework for studying the 
biological basis of cognition has also lead to signifi cant advances in the under-
standing of the neural basis of numerical and mathematical cognition. Functional 
neuroimaging has provided insights into the neural correlates of numerical and 
mathematical processes ranging from basic numerical magnitude processing 
(Dehaene et al., 2003) to calculation (Dehaene et al., 1999). In concert with evi-
dence from adult neuropsychological patients, these insights have inspired new 
models of the systems thought to underlie mathematical processing (Dehaene & 
Cohen, 1995).

While there continues to be enormous progress in understanding the numeri-
cal processes and representations in the adult brain, there are currently only a 
handful of studies approaching the development of numerical cognition using
 a cognitive neuroscience approach.

The aim of this chapter is to highlight both the promise and challenges of a 
developmental cognitive neuroscience approach to the study of both typical and 
atypical number development and to propose how such an approach can provide 
insights into the ontogenesis of numerical and mathematical skills not afforded 
by purely behavioral methods. In order to do this, the chapter will fi rst provide a 
detailed and critical review of the state-of-the-art of research on number process-
ing in the adult brain, pointing out both the progress that has been made as well 
as outstanding questions and challenges. While this review aims to refl ect the 
current state of knowledge, it is necessarily selective. In the interest of space and 
focus, the review focuses on central topics such as numerical magnitude process-
ing and calculation in the adult brain and does not explore more specialized top-
ics, such as the difference between small and large number processing (Piazza 
et al., 2002, 2003) or the neural basis of the size congruity (numerical stroop) 
effect (Ansari et al., 2006b; Kaufmann et al., 2005).

This review of the neural correlates of numerical magnitude processing and 
calculation in adults will provide a resource for the generation of hypotheses rel-
evant to the cognitive neuroscience of number development, and will enable an 
assessment of the few existing developmental neuroimaging studies of typical 
and atypical numerical cognition as well as their implications. We will close with 
a discussion of the methodological and conceptual challenges meeting investiga-
tions into the neural basis of the development of numerical cognition as well as 
what we perceive are the outstanding questions facing a developmental cognitive 
neuroscience approach to number development.
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NUMBER PROCESSING IN THE ADULT BRAIN

Studies exploring the neural substrates of numerical understanding in the 
adult brain are growing in number and complexity. Over the past 15 years, neu-
roimaging research has utilized a variety of methodologies and tasks to elicit and 
characterize aspects of basic numerical processing and representation. The fol-
lowing discussion will highlight some of the key fi ndings from this literature and 
consider outstanding questions that face the fi eld. The goal, then, is not to give 
an exhaustive description, but rather to characterize what is currently known and 
unknown about numerical magnitude in the brain.

NUMERICAL MAGNITUDE PROCESSING IN THE 
ADULT BRAIN

Many studies exploring basic magnitude processing utilize tasks that involve 
numerical comparison. In numerical comparison paradigms, individuals are 
asked to compare which of two numbers is numerically larger or to compare the 
numerosity of a given number to a target number. The stimuli are varied along 
the parameter commonly known as numerical distance. Thus, numbers can be 
separated by a large numerical distance like 7 (e.g., 2 vs. 9) or a relatively small 
numerical distance such as 2 (e.g., 3 vs. 5). This task is used not simply because 
it ensures that a participant must access numerical representations necessary 
for a correct comparison response, but because the task elicits the well-known 
distance effect. The distance effect is characterized by an inverse relationship 
between numerical distance and reaction time, such that the smaller the numeri-
cal distance the longer it takes an individual to subjectively discriminate between 
the numbers (Moyer & Landauer, 1967). This fundamental relationship between 
numerical distance and an individual’s reaction time is thought to refl ect the 
nature of quantity representations and has therefore inspired a variety of mod-
els describing how numbers might be internally represented (Dehaene, 1992; 
Gallistel & Gelman, 2000; Verguts et al., 2005; Zorzi & Butterworth, 1999). 
In addition to its theoretical importance to neuroimaging studies of numerical 
cognition, the distance effect has frequently been utilized in behavioral experi-
ments on quantitative processing and therefore serves as a methodological bridge 
between behavioral and neuroimaging studies.

One of the fundamental questions about magnitude representation in the brain 
concerns the degree to which this representation is abstract and therefore invariant 
to stimulus format and presentation modality. An early neuroimaging study used 
an additive factors model of Event-related brain potentials, which affords the tem-
poral precision to examine aspects of number comparison, with the goal of deter-
mining whether numerical magnitude, independent of surface format, is processed 
by a stimulus-independent brain mechanism (Dehaene, 1996). Employing a numer-
ical comparison task that presented either two Arabic numerals or two number 
words, it was shown that the identifi cation and decoding of Arabic numerals 
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and number words had signifi cantly different ERP waveform characteristics. 
However, the Component of the ERP signal refl ecting the effect of numerical 
distance was similar for both numerals and number words. Furthermore, the 
distance effect was found to be localized to a right-lateralized parieto-occipito-
temporal region of the cerebral cortex. These data were interpreted as evidence 
for the existence of a dedicated brain area or network involved in the abstract 
(semantic) representation of numerical magnitude information, located some-
where in the inferior parietal area of the cerebral cortex. This groundbreaking 
work has led to an infl uential conceptualization of magnitude representation in 
the brain.

From this point of departure, a large amount of the subsequent research has 
attempted better characterize the exact relationship between the intraparietal 
lobe (IPL), particularly the intraparietal sulcus (IPS), and abstract numerical 
magnitude representations (Dehaene et al., 1998, 2003). For instance, Pinel and 
colleagues utilized a distance effect task that involved either numerals or number 
words (Pinel et al., 1999). Using fMRI, this study demonstrated that notational 
effects on the fMRI signal are found to be associated with the right fusiform 
gyrus. The distance effect, on the other hand, was associated with bilateral pari-
etal activation, including two areas in the left inferior parietal lobule and one at 
the junction between a right postcentral and inferior parietal region. Importantly, 
these parietal effects were not affected by the stimulus format (Arabic numer-
als vs. number words), which was taken as further evidence that these regions 
are responsible for an abstract (notation independent) representation of numeri-
cal magnitude. The fi ndings of these fi rst two studies were replicated in a later 
study using a combination of fMRI and additive factors model ERPs to examine 
the distance effect underlying the comparison of Arabic numerals and number 
words (Pinel et al., 2001).

One of the fundamental assumptions of the above studies is that the activa-
tions that are described within them are specifi c to the activation of numerical 
magnitude representations. However, it is entirely possible, and arguably more 
likely, that the IPS houses a representational system common to both numeri-
cal and non-numerical (e.g., time, space, intensity) magnitudes (see Walsh, 2003, 
for an alternative theory of magnitude). Several studies have sought to explore 
the specifi city of representation in the IPS. One study asked subjects to deter-
mine whether a string of three letters, numbers and shapes were in order (either 
ascending or descending) or not (Fulbright et al., 2003). In the letter condition 
‘A, C, H’ and ‘G, C, B’ should both be considered in order and ‘F, I, H’ consid-
ered out of order. A similar condition was created for the numerals 1–9. In the 
shape condition, three different shapes were presented in three different sizes, 
which were judged to be in ascending or descending order, or not. Fulbright 
et al. found that the IPS was involved in judging the relative magnitude for all 
three types of stimuli. Against this background, Fulbright et al. contended that 
the parietal regions may instead be refl ective of a system for magnitude represen-
tation common to both numerical and non-numerical information. The  assumption 
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in this design is that an ordinality judgment necessarily involves assignment of a 
magnitude to the stimuli. The legitimacy of this assumption has been challenged 
by Turconi and colleagues who, using ERP, demonstrated an important tempo-
ral distinction between comparing two numbers along the dimensions of quan-
tity and ordinality (Turconi et al., 2004). This experiment required participants to 
determine whether a number was smaller or larger than 15 (quantity condition) or 
whether a number came before or after 15 (order condition). Though they found 
a behavioral distance effect in both conditions, the characteristics of the ERP 
waveform were distinct for each condition. The P2 component was found earlier 
and was left lateralized in the quantity condition, whereas in the order condition 
this component was later and bilateral. The authors concluded that distinct neural 
mechanisms are involved in judging the order and quantity of numbers.

In light of the fi ndings by Turconi and colleagues, the conclusion drawn by 
Fulbright et al. that there exists a shared neural mechanism for numerical and 
non-numerical ordinality should be interpreted with care. These fi ndings also 
highlight the importance of using both measures with high temporal resolution 
(such as ERP) and high spatial resolution (such as fMRI) to assess the neuroana-
tomical correlates of cognitive processes.

The notion that the IPS houses a representation of both numerical and non-
numerical magnitude was supported by a study that analyzed the neural sub-
strate associated with comparison of angles, line length and number. Fias et al. 
found activation in the left IPS to be associated with magnitude comparison for 
both the numerical and non-numerical stimuli (Fias et al., 2003). Two subse-
quent studies presented participants with two numbers that differed along three 
dimensions: numerical magnitude, physical size and physical luminance (Cohen 
Kadosh et al., 2005; Pinel et al., 2004). In Pinel et al.’s (2004) study individu-
als were asked to make judgments along one of the three stimulus dimensions 
(physical size, numerical magnitude and luminance). The results of this study 
demonstrated that while distinct regions of the IPS were activated for each type 
of comparison, these activations overlap for numbers and size comparison in 
the anterior IPS as well as for size and brightness comparisons in the posterior 
IPS, but not for number and brightness comparisons. Thus, this study added sup-
port to the notion that the IPS activation associated with number comparison is 
related to both numerical and non-numerical magnitude comparison. Another 
study addressing the same issue of domain-specifi c activation in the IPS found 
similar results (Cohen Kadosh et al., 2005). Using slightly different stimuli, 
these researchers also found evidence that the bilateral IPS is activated for all 
three types of magnitude comparison. In addition, however, specifi c modulation 
of activity by the numerical distance effect was found exclusively in an area of 
the left IPS. In sum, these studies support a characterization of the IPS as the 
seat for the representation of general magnitude, while also indicating there may 
be some number-specifi c processing that occurs within this area.

Thus far, the discussion has focused on studies that have utilized numerical 
comparison as a means to elicit a neural response which is assumed to be caused 
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by the activation of numerical representations. While it is certainly possible that 
specifi c areas of the brain are the site of an abstract semantic numerical represen-
tation, the use of a comparison task to access these representations is problematic. 
Specifi cally, the activations described above could be the result of the comparison 
and response-selection process rather than anything directly related to magnitude 
representation. In other words, individuals performing a numerical comparison 
task are always faced with a forced choice decision. Therefore, activation of rep-
resentation is always confounded with the process of selecting and performing 
the proper response. This confound was demonstrated by Göbel et al. (2004) who 
asked subjects to judge whether a target number was larger or smaller than a ref-
erence number. In an additional task, participants were asked to judge whether a 
line was present or absent in a display of either intact or scrambled numbers. No 
differences in parietal activation were found in the experimental and control tasks. 
The authors concluded that insofar as parietal activation is associated with mag-
nitude representation, the activation of quantitative information may be very diffi -
cult to disentangle from activation associated with response selection. This study 
casts doubt upon the role of the IPS as the source of numerical representation.

Eger and colleagues overcame the problem of response selection by present-
ing subjects with intermixed numbers, letter and colors either in the auditory 
or visual modality (Eger et al., 2003). In each run, subjects were given a par-
ticular target category (numbers, letters or colors) and asked to press a button 
each time they saw or heard an exemplar of that category. The results revealed 
that activation in bilateral parietal cortex was signifi cantly greater for number 
compared to letter and colors regardless of whether they were presented in the 
visual or auditory modality. Note that this activation was found in the absence of 
a task that required attention to any semantic information, but simply the detec-
tion of a target, which indicated that numerical representations in the IPS could 
be automatically activated even in the absence of directed attention. This study 
also asked three of their participants to perform mental subtraction and found 
that subtraction was associated with a much larger network of areas than number 
detection. Crucially, however, the intraparietal area found in number detection 
was also found in subtraction. The authors interpreted this overlap in activation 
elicited by auditory detection, visual detection and calculation as evidence that 
the IPS does, indeed, house a representation of numerical magnitude that is inde-
pendent of both modality and stimulus type. This study is particularly exciting in 
that it explores the notion of implicit activation of number as a means by which 
research can bypass response-selection confounds.

Recent studies have utilized the phenomenon of fMRI adaptation (fMRA) 
to further explore this notion of implicit activation of numerical magnitude rep-
resentation in the IPS. In adaptation paradigms, individuals are presented with 
arrays made up of a particular number of items, and that number is invariant 
across subsequent presentation of stimuli. Simultaneously, these arrays can vary 
other aspects of the items such as shape, size or color. The neural response to the 
repeatedly presented number attenuates (habituation) after a signifi cant number 
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of repetitions. After a given number of stimuli, a deviant is displayed with a new 
number of items. Any systematic neural change (dishabituation) to this deviant 
is assumed to result directly from the change in numerosity. Generally, in order 
to ensure that individuals are attending to the display, participants are asked to 
make a response to a completely irrelevant aspect of the display, like the appear-
ance of a fi xation cross. However, no instructions are given to attend to any par-
ticular aspect of the array (for a detailed description of fMRA methodology, see 
Grill-Spector et al., 2006).

Studies using habituation paradigms have demonstrated automatic activation 
of numerical magnitude in the IPS, a result which is free from the constraints 
of response selection (Ansari et al., 2006a; Piazza et al., 2004). Piazza and col-
leagues habituated individuals to numerosities presented as non-symbolic dots 
arrays. To rule out the possibility that the dishabituation response could be due 
to general change detection, the deviants used varied either in number or in 
shape. The extent to which the numerosity of the number deviant differed from 
the habituated numerosity was systematically varied to test whether numerical 
distance would parametrically affect the neural response. These authors found 
that the right and left intraparietal sulci were the only areas that responded pro-
portionally to the numerical magnitude of the deviants. A parametric effect of 
numerical distance on neural response in the IPS was also elucidated by Ansari 
et al. who presented individuals with alternating slides of 8 vs. 8, 8 vs. 12 or 8 vs. 
16 squares in separate stimulus blocks. These studies provide evidence to suggest 
that number may be processed and represented in the parietal cortex independ-
ent of response selection. However, the results of these two studies should be 
tempered by acknowledging the fi ndings of Shuman and Kanwisher who have 
reported no number-specifi c activation in the IPS (Shuman & Kanwisher, 2004).

Two very recent studies used fMRA paradigms investigate the issue of stimulus 
format in the representation of numerical magnitude in the IPS. Piazza and col-
leagues conducted an experiment in which individuals were habituated to either 
small (17–19) or large (47–49) numerosities presented as either non-symbolic dot 
arrays or Arabic numerals (Piazza et al., 2007). The deviants, in addition to being 
either numerically close or far from the habituated numerosity, could also be the 
same stimulus format (e.g., Arabic numeral deviants and Arabic numeral habitu-
ation stream) or different stimulus format (e.g., Dot arrays deviants and Arabic 
numeral habituation stream). The results showed that the effect of numerical dis-
tance on the dishabituation response was similar for both Arabic numerals and 
non-symbolic arrays in the right IPS. However, the dishabituation in the left IPS 
failed to show sensitivity to numerical distance when participants were habitu-
ated to Arabic numerals and the deviant used was a dot array. To interpret these 
subtle fi ndings, the authors argued that the left IPS represents Arabic numerals 
very precisely compared with the relatively coarse representation of non-symbolic 
numerosities. Thus, when the non- symbolic numerosity were presented, the IPS 
dishabituated to all non-symbolic deviants because very little of the numerical 
 magnitude representation between Arabic numerals and non-symbolic magnitudes 
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is shared. This is a very subtle effect that is nonetheless important in its sugges-
tion of hemispheric differences in magnitude representation.

In a separate study habituated individuals using the sequential presentation 
of two number words and/or Arabic numerals (Cohen Kadosh et al., 2007). 
Stimulus format and quantity were defi ned orthogonally to each other such that 
the two stimuli presented could be different in quantity, format or both. The 
results demonstrated that the left IPS habituates to the quantity associated with 
both Arabic numerals and number words, but the right IPS only habituated to the 
quantity represented by Arabic numerals. Note that these data confl ict with those 
of Dehaene (1996) and Pinel et al. (1999), who both found no notational effects 
in the IPS response to numerical distance in a comparison task. This confl ict is 
likely due to the differences in methodology. Functional magnetic resonance 
adaptation (fMRA) affords the explorations of very specifi c questions, such as the 
effect of stimulus format that may simply not be possible through the analysis of 
the number comparison process. Together, these two studies challenge the notion 
that magnitude representation is entirely abstract, by exposing important hemi-
spheric differences in number representations. The fi ndings of these two studies 
are relatively disparate, but one interesting possibility for convergence between 
them is differential activation of the left compared to right IPS when represent-
ing culturally defi ned formats (numerals and words) of numerical representation. 
However, much more research must be conducted to better characterize the hemi-
spheric differences in and stimulus dependence of number representation.

CALCULATION IN THE ADULT BRAIN

Historically, through neuropsychological studies of brain damaged patients, 
there exists a long-standing association between the adult parietal lobe and cal-
culation (Henschen, 1919). In particular, damage to the left angular gyrus (AG) 
has been found to be associated with Gerstmann syndrome, which among other 
symptoms, causes defi cits in calculation (Gerstmann, 1940). Functional neuroim-
aging studies have also revealed association between calculation and the parietal 
and frontal lobes. Indeed a review of the functional neuroimaging literature, in 
particular fMRI, suggests that calculation was one of the fi rst cognitive processes 
to be studied using this method. In the fi rst neuroimaging study of calculation, 
Roland and Friberg (1985) using the Xe intra-carotid method for visualization of 
cerebral blow fl ow and found activation in left and right AG as well as modula-
tion of prefrontal regions during a subtraction task. In another early neuroimag-
ing study using fMRI, Burbaud et al. (1995) performed fMRI of regions within 
the frontal lobe to investigate the role of prefrontal cortex in calculation. Activity 
during sub-vocal calculation was found to be left lateralized in right handed par-
ticipants. In contrast, left handed participants exhibited more bilateral activation 
of prefrontal regions during calculation. The authors conclude that similar to lan-
guage processing, prefrontal activity during calculation is signifi cantly more left 
lateralized in right compared with left handed individuals.
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While Burbaud et al. focused their analyses on the neural correlates of 
 calculation in the prefrontal cortex, Rueckert et al. (1996) used fMRI to investi-
gate brain regions involved in subtraction and found, consistent with the above 
studies, activation in the angular and supramarginal gyri, with stronger activation 
on the left compared with the right. In addition to parietal regions, subtraction rel-
ative to counting was also found to modulate activation of prefrontal regions. In 
the same year, Dehaene et al. (1996) used whole brain PET imaging to compare 
and contrast patterns of activation associated with multiplication and comparison. 
During the acquisition of PET images participants were presented with two dig-
its and had to either compare these for their relative numerical magnitude (which 
is larger) or multiply the two digits. When compared against rest, both multipli-
cation and comparison were found to be associated with activation of visual and 
motor regions. A direct comparison of multiplication and comparison revealed 
signifi cantly greater activation in bilateral regions of the inferior parietal cortex. 
In contrast comparison was found to activate frontal and temporal regions more 
than the multiplication tasks. These results are convergent with the notion that the 
parietal cortex plays an important role in calculation. However, the absence of sig-
nifi cant parietal activation during comparison is somewhat at odds with the data 
reported above. Furthermore, calculation was not found to signifi cantly modulate 
the left AG, which has been strongly linked with calculation defi cits in studies 
of neuropsychological patients. However, consistent with the notion that calcula-
tion is largely left lateralized, Dehaene et al. report a hemispheric asymmetry in 
the activation of the parietal lobe during multiplication vs. rest, showing greater 
activation in left relative to the right parietal lobe. In a more recent fMRI study 
Rickard et al. (2000) also investigate the brain regions activated by simple arith-
metic and number comparison. Convergent with the earlier fi ndings, Rickard 
et al. found that mental arithmetic (multiplication) yielded signifi cantly greater 
activity than a control task (detect a one in a string of numbers) and the number 
comparison task in dorsolateral prefrontal cortex as well as inferior and superior 
parietal cortex. Furthermore both frontal and parietal activation was found to be 
greater in the left compared with the right hemisphere. Interestingly the authors 
found that the angular and supramarginal gyri were signifi cantly deactivated 
during the arithmetic task in comparison to the control task. Deactivation of the 
AG has been reported in multiple tasks using both numerical and non-numerical 
stimuli and the reasons for these patterns of deactivation are largely unknown and 
are an important topic for further investigation. Rickard et al. interpret this fi nd-
ing as evidence against a strong role of the AG in calculation and go on to suggest 
that neuropsychological models may have underestimated the effect of lesions to 
superior regions of the left parietal lobe in causing calculation defi cits. What these 
fi ndings highlight is that it is crucial to explore the sign of activation (whether 
there are differences in activation or deactivation between conditions) in neuroim-
aging studies. The absence of AG activation is therefore consistent with the fi nd-
ings of Dehaene et al. (1996) but not those reported by Roland and Friberg (1992) 
or Rueckert et al. (1996). Furthermore, consistent with the fi ndings reported by 
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Dehaene et al. (1996), activation during number comparison was found to be less 
robust in parietal regions and more variable across participants.

These early studies suggest that both prefrontal and parietal regions are 
involved in mental calculations. Furthermore, they suggest substantial variability 
in the parietal regions modulated by calculation both between subjects within a 
single study and between studies. While some studies report activation of supe-
rior regions of the parietal lobe such as the IPS and superior parietal lobe dur-
ing calculation, others have reported activation of the AG. However, variability in 
functional neuroimaging studies is common, especially when higher-level func-
tion are examined, where differences between studies in the paradigms used can 
lead to differences in the processes of no-interest (e.g., working memory, atten-
tion, response selection) and can therefore lead to differences in the areas acti-
vated. Furthermore, all the early studies of calculation indicate the involvement of 
a left lateralized network of prefrontal and parietal regions involved in calculation
and thereby provide a good starting point for the investigation of the specifi c 
cognitive functions and operations carried out by these brain regions during 
calculation.

More recently, questions about the neural basis of calculation in adulthood 
have shifted away from localizing the critical regions involved in calculation 
to a question of the specifi c role played by these regions and their relationship 
to other aspects of number processing. In this vein, Dehaene et al. (1999) in a 
highly infl uential study investigated the difference between calculating the exact 
solution of a simple arithmetic problem vs. performing and approximate cal-
culation. In both fMRI and ERP experiments, participants were presented with 
single-digit addition (3 � 5) and were instructed to either compute the exact 
answer or an approximate answer. In order to do this, the presentation of the 
addition problem was followed by either (a) A slide containing the exact answer 
together with a close, but wrong answer (8 6) or (b) the presentation of two 
answers close to the exact answer (6 9). A contrast of brain regions involved 
in exact vs. approximate calculation revealed that approximate calculation lead 
to activation of bilateral regions of the IPS, while exact calculation modulated 
the left AG as well as left frontal regions. Similarly, the ERP data, coupled with 
source localization techniques, revealed that the time course of the ERP signal 
varied for exact and approximate calculation in such a way that left inferior fron-
tal electrodes were more strongly modulated by exact compared with approxi-
mate calculation, while bilateral parietal electrodes exhibited greater ERP 
responses during approximate compared with exact calculation. Importantly, 
these differences were observed very shortly after the presentation of the sin-
gle-digit addition problem and thus make it unlikely that the difference observed 
in the fMRI data (which are of substantially lower temporal resolution) can be 
explained by difference in the decision rather than the calculation stage. These 
fi ndings highlight the importance of using both measures with relatively high 
spatial resolution (e.g., fMRI) and those that afford high temporal resolution 
(e.g., ERP) in cognitive neuroscience research.
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The fi ndings reported by Dehaene et al. suggest the existence and neural 
 dissociation of two processes underlying numerical cognition. On the one hand 
an approximate system of number representation (see previous section on numer-
ical magnitude processing in the adult brain) recruits regions of the bilateral IPS, 
while exact number processing draws on regions typically associated with verbal 
processing such as left frontal regions as well as the AG. This dissociation is also 
interesting in the context of data from neuropsychological patients which suggest 
that damage to parietal regions impairs approximate calculation while leaving 
exact calculation intact, while damage to left frontal regions impairs arithmetic 
fact retrieval while leave approximate number abilities such as number compari-
son and estimation intact (Dehaene & Cohen, 1995).

It should be noted however, that subsequent fMRI studies using the exact and 
approximate single-digit addition paradigm have failed to replicate the fi nding of 
increased frontal activation during exact but not approximate calculation (Molko 
et al., 2003; Venkatraman et al., 2005). These studies suggest that the parietal 
cortex is involved in both exact and approximate calculation. Furthermore, it has 
been contended that the use of single-digit arithmetic makes it hard for individu-
als to suppress the exact answer in favor of an approximate strategy. In other 
words, it is likely the case that during approximate calculation, participants to 
automatically retrieve the exact answer and then compare this to the two approx-
imate solutions in order to establish which of the solutions is numerically closest 
to the exact result.

Recently, Venkatraman et al. (2006) compared exact and approximate cal-
culation in English-Chinese participants using a language switching paradigm. 
Instead of using single-digit arithmetic to compare exact and approximate cal-
culation, Venkatraman et al. trained participants perform exact base-7 addition 
and percentage estimation. Participants were trained to perform these exact and 
approximate operations in one of their languages. Subsequent to training, par-
ticipants were scanned using fMRI while they performed exact (base-7 addition) 
and approximate calculation (percentage estimation) either in their trained or 
untrained languages. Comparison of activation during computation of the exact 
and approximate problems in the trained vs. untrained language served as a way 
to establish the degree to which language switching would draw on language 
related areas and therefore suggest the dependence on language processes for 
either exact or approximate calculation. Consistent with the fi ndings by Dehaene 
et al. (1999) greater activation for exact problems presented in untrained vs. 
trained language was found in the left inferior frontal gyrus as well as the left 
AG (this region showed deactivations for both trained and untrained problems). 
In contrast, comparison of approximate problems presented in the untrained vs. 
trained language modulated regions in bilateral posterior parietal cortex.

Taken together there is increasing evidence that exact calculation is functionally 
dissociated from processes involving approximate number processing. However, 
there is a need for more studies to address this dissociation using well-matched para-
digms to track both associations and dissociations between exact and approximate 
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number processing in the brain. Furthermore, it should be noted that many of 
the early studies comparing calculation with more basic, approximate numerical 
processing (e.g., number comparison), reviewed above, found greater engagement 
of parietal regions for calculation compared to number comparison suggesting that 
the exact role of the parietal lobes in these processes are as yet unclear.

In addition to the question of how the brain regions involved in calculation 
differ from and converge with those involved in more basic aspects of number, 
it is important to dissociate the fronto-parietal network typically revealed in neu-
roimaging studies of calculation into its subcomponents. Calculation is not proc-
ess pure. In other words, in addition to processes which are calculation specifi c, 
such as the mental manipulation of numerical quantities, calculation draws on 
processes related to working memory, attention and speed of processing. In this 
vein it has been argued by numerous authors (Dehaene et al., 1996; Gruber et al., 
2001; Rueckert et al., 1996) that the prefrontal activation observed during calcu-
lation may refl ect processes of working memory, response selection and atten-
tion, while parietal activation refl ect calculation-specifi c processes. In order to 
empirically test this hypothesis, Menon et al. (2000) used a factorial design to 
manipulate both calculation-dependent and -independent task diffi culty. To do 
this, Menon et al. varied: (a) the number of operands in an arithmetic verifi cation 
problem (e.g., 3 � 5 � 8 vs. 6 � 2 � 4 � 4) or (b) the presentation rate (one 
problem every 3 or 6 seconds). This enabled an analyses of main effect of rate 
(3 vs. 6 seconds) and operands (2 vs. 3). While the main effect of rate was found 
to modulate prefrontal regions, main effects of operand on the fMRI signal were 
found in left and right IPS and AG. Furthermore, no signifi cant interaction effect 
of rate and number of operands was found in any brain area. These fi ndings pro-
vide empirical support for the notion that while task diffi culty which is inde-
pendent of calculation (such as presentation rate) modulates prefrontal regions, 
task diffi culty related to calculation (such as number of operands) affects activa-
tion of regions in the parietal cortex, such as the IPS and AG. These fi ndings 
therefore strengthen the suggestion of a strong link between calculation and the 
parietal cortex, while the involvement of prefrontal regions during calculation 
may be related to domain general factors, such as working memory and response 
selection.

The above studies treat calculation as a static unitary process. However, adult 
as well as developmental studies suggest that calculation is underlain by multi-
ple strategies that differ as a function of developmental stage, learning and the 
particular operation itself. Therefore, in order to understand the neural basis of 
calculation it is important to understand whether differences in functional brain 
activation differ as a function of strategy, learning and operation. In a recent 
series of studies, Delazer and colleagues (Delazer et al., 2003, 2005; Ischebeck 
et al., 2006) have explored the neural changes associated with learning to cal-
culate. In one study (Delazer et al., 2003) adults were extensively trained on 
a set of complex multiplication problems. Subsequently, in an fMRI experi-
ment, participants solved both problems they had been trained on as well as 
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novel, untrained problems. Comparison of blocks during which subjects solved 
untrained vs. trained problems revealed greater activation in left intraparietal as 
well as left inferior frontal regions. Interestingly, the reverse contrast (trained vs. 
untrained) revealed greater activation for trained problems in the left AG. These 
fi ndings therefore suggest a training-related shift in activation from left intrapa-
rietal regions to the left AG. Delazer and colleagues suggest that this shift may 
refl ect increasing reliance on automatic fact retrieval with training. Further evi-
dence for a role of the AG in automatic retrieval comes from the comparison 
of the neural mechanisms underlying multiplication and subtraction. Ischebeck 
et al. (2006) found that while the AG was more activated by trained compared 
to untrained multiplication problems, this region did not exhibit training effects 
for subtraction. Given that training of multiplication leads to increasing fact 
retrieval, while subtraction requires mental manipulation of quantity and strate-
gies rather than retrieval, these data suggest that the AG plays a crucial role in 
the effi cient retrieval of arithmetic facts.

These training studies are important as they help to reveal the neural proc-
esses of learning and can therefore help to formulate developmental predictions. 
It may be possible in the future to use functional neuroimaging methods to track 
the changes associated with structured intervention programs for children with 
mathematical diffi culties. In addition to revealing differences in the functional 
neuroanatomy underlying different operations, Delazer et al. have also investi-
gated the effects of training arithmetic operations by drill or through the use of 
particular strategies and have been able to reveal different networks underlying 
these two ways of learning to calculate (Delazer et al., 2005).

NUMBER PROCESSING IN THE TYPICALLY 
DEVELOPING BRAIN

The above section provides a review of adult cognitive neuroscience research 
into the neural basis of mature numerical and mathematical processing. We now 
turn our attention to a critical review of the few existing neuroimaging studies 
which seek to chart the typical developmental trajectory of number processing 
in the brain. It should be noted at the outset that there are very few published 
neuroimaging studies of number development. Hence a cognitive neuroscience 
approach to the study of number development needs to consider the above dis-
cussed adult literature and use this body of literature to generate developmentally 
sensitive and meaningful predictions and experimental designs.

The fi rst developmental neuroimaging of numerical cognition was conducted 
by Temple and Posner (1998) and used ERP to investigate developmental dif-
ferences in the time course underlying symbolic and non-symbolic magnitude 
comparisons between 5-year-old children and adults. As a measure of magnitude 
representation the effect of distance on the ERP waveform was investigated. The 
authors found a signifi cant effect of numerical distance on the ERP waveform as 
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early as 200 milliseconds after the presentation of the pair of Arabic numerals 
or dots. Most interestingly, the effect of numerical distance on the ERP wave-
forms was found to be broadly similar between children and adults for both sym-
bolic and non-symbolic comparisons. These fi ndings were therefore interpreted 
to suggest that the brain circuitry underlying numerical magnitude processing 
is mature by the age of 5 years. Further evidence for similarity between chil-
dren and adults brain responses during magnitude comparisons was obtained by 
means of ERP source localization. Using this method, Temple and Posner were 
able to demonstrate that the distance effect in the ERP signal for both symbolic 
and non-symbolic number comparisons in children and adults was maximal over 
parietal electrodes, similar to those reported by Dehaene (1996), reviewed above.

These fi ndings suggest that there are similarities not only in the time course 
of brain responses during numerical magnitude processing between children and 
adults, but that furthermore, the brain region generating this response exhibits 
developmental continuity. However, it is important to note that while the absence 
of a developmental difference is certainly suggested by the inspection of their 
data, it is unclear how ERP responses from children and adults were compared. 
The paper does not provide a direct statistical comparison between children and 
adults and it is therefore diffi cult to ascertain whether or not the profi les of chil-
dren and adults were in fact similar. Another general constraint of using ERPs 
is their very limited spatial resolution. Despite the fact that Temple and Posner 
used source localization, their fi ndings do not represent the same spatial resolu-
tion that is afforded by fMRI. It is therefore possible that temporal characteristics 
of the ERP modulation by numerical distance are similar in children and adults, 
while the regions generating this response differ as a function of age.

More recently, the neural correlates of arithmetic have been compared between 
children and adults using fMRI, which affords a greater spatial resolution than 
ERP (Kawashima et al., 2004; Rivera et al., 2005). Kawashima and colleagues 
(2004) assessed the neural correlates of addition, subtraction and multiplication. 
The results suggest that children (9–14 years) and adults (40–49 years) show 
broadly similar functional activation patterns during each of the three arithmeti-
cal operations tested. More specifi cally, after a direct statistical comparison in a 
common stereotactic space, areas of overlapping brain activation between chil-
dren and adults were found in the prefrontal, intraparietal, occipital and occipito-
temporal cortices. This is consistent with a large body of adult fMRI studies 
implicating this network of regions in arithmetic processing (see review of adult 
studies above). Notwithstanding the broad similarities in the activation profi les of 
children and adults, some subtle differences were found. More specifi cally, while 
activation in the prefrontal cortex was found to be largely left lateralized in the 
children, the adults exhibited more bilateral activation of prefrontal regions.

Children commonly acquire addition skills before they learn how to subtract 
and typically start to multiply after they know how to add and subtract. Given 
this hierarchical developmental pattern it might have been expected that there 
would be signifi cant differences between the neural networks underlying these 
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three operations in the group of children. However, somewhat surprisingly, no 
such differences were found, indicating that the behavioral differences typically 
found between arithmetical operations among children are not refl ected in differ-
ences in fMRI activation patterns.

Importantly, it should be noted that the behavioral data reported by Kawashima 
et al. point toward a speed accuracy trade-off. Even though the accuracy levels 
were comparable between adults and children, the reaction time for each arithme-
tic operation was signifi cantly longer in children. Thus, the differences in neural 
activity pointed out by this study and others might in fact be due to differences in 
cognitive strategies rather than pure numerical processing.

In a more recent study, Rivera et al. (2005) used a cross-sectional approach 
to investigate how brain activation underlying arithmetic reasoning changes 
between the ages 8 and 19 years (mean age: 13.67 years). In this study, they 
only included addition and subtraction and refrained from using multiplication 
problems as their youngest participants had gained no expertise on this operation 
yet. The 17 subjects were asked to press a button if the result of an arithmetic 
equation was correct. The equations were chosen is such a way that all num-
bers including the resultants were single digits (e.g., 5 � 2 � 4). The control 
task was a simple reaction task also including numbers. Here subjects had to 
respond as soon as a Zero appears in a appeared number string (e.g., ‘4 0 2 6 9’ 
or ‘2 4 5 1 3’).

One key result of their study was a decrease in activation with age in the pre-
frontal cortex, namely dorsolateral and ventrolateral prefrontal cortex, in addi-
tion to the anterior cingulate cortex. Since these areas are linked to working 
memory and attentional resources, the authors suggest that younger children use 
these additional processes to achieve similar levels of arithmetic performance.

Most importantly, Rivera et al. (2005) revealed that activation patterns associ-
ated with arithmetic reasoning seem to be subject to an age-related difference in the 
involvement of left and right parietal cortex. Specifi cally, while the right parietal 
cortex showed only little changes in activation, the left parietal cortex, especially the 
left supramarginal gyrus and adjoining IPS, became gradually more active between 
the ages of 8 and 19. These regions have been frequently shown to be related to 
arithmetic processing (e.g., Dehaene et al., 1999). Against this background, Rivera 
et al. argue that this hemispherical shift should be considered as a functional spe-
cialization of these left lateralized structures for arithmetic processing.

A particular strength of Rivera et al.’s study is that in addition to examin-
ing age-related changes in functional neuroanatomy, the authors investigated 
the degree to which these changes were associated with age-related structural 
changes (measured by gray-matter density, GMD). By comparing functional and 
structural differences between age groups, Rivera et al. were able to establish 
that the age-related functional activation changes differed from the age-related 
GMD changes in the same regions. In other words, this fi nding suggests that 
age-related functional changes could be the consequence of a maturing neural 
network rather than evolving from gray matter changes.
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A series of recent neuroimaging studies have sought to reveal developmental 
differences in brain activation associated with basic numerical processing during 
symbolic (Ansari et al., 2005) and non-symbolic (Ansari & Dhital, 2006) mag-
nitude comparison. These studies, like the previously discussed study of Temple 
and Posner, investigated the effect of numerical distance on brain activation pat-
terns. Their fi ndings again support the notion that the IPS has a central role in 
numerical cognition as it not only plays an active part in number processing in 
adults, but is already recruited for such processes in early childhood. Ansari et 
al. (2005) demonstrated age-related shifts in functional activity from reliance 
on prefrontal regions to increasing recruitment of parietal areas in response to 
numerical distance in a symbolic number comparison task. In a second study 
(Ansari & Dhital, 2006) further evidence for such a shift was provided using 
non-symbolic stimuli. These fi ndings suggest that the functional neuroanatomy 
underlying the numerical magnitude represented by symbolic (e.g., Arabic 
numerals) and non-symbolic (e.g., arrays of dots) stimulus formats changes con-
siderably over developmental time.

The fi nding of greater modulation of parietal regions by numerical distance 
in adults compared with children has been interpreted as refl ecting a shift toward 
increasingly automatic and effi cient processing of numerical magnitude. In this 
vein, the greater engagement of frontal regions in the group of children may 
refl ect greater recruitment of working memory and attentional resources to oper-
ate on representations of numerical magnitude.

These studies leave a number of questions open. First of all, it is unclear 
whether the increasing recruitment of parietal regions with age represents a 
number-specifi c process or a general maturation of parietal structures underly-
ing response selection (Göbel et al., 2004). Similarly, the present fi ndings may 
suggest that while the processes enabling children to make numerical magnitude 
comparison mature over developmental time, the representations of numerical 
magnitudes themselves undergo little ontogenetic change.

Through the use of a passive paradigm Cantlon et al. (2006) have recently 
been able to address age-related differences in functional neuroanatomy under-
lying number processing in the absence of response-selection confounds and 
differences in performance. In their study, subjects passively viewed arrays 
of visual stimuli that were constant in number (16 or 32) and shape (circles, 
squares or triangles). Cantlon et al. compared a group of 12 adults (mean age: 
25 years) with a group of 4-year-old children. Similar to the fMRA studies dis-
cussed above, the prediction here is that repetition of a particular numerosity will 
lead to adaptation of the fMRI response in number sensitive areas of the brain. 
The presentation of a deviant (e.g., 16 dots following a long period of repeti-
tion of 32 dots) will lead to a recovery of the adapted response. The shape devi-
ants were included to serve as a control for the specifi city of number deviant 
responses. Cantlon et al. predicted that number sensitive regions would exhibit 
greater responses following number relative to shape deviants.
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Consistent with other studies (Ansari et al., 2006a; Piazza et al., 2004, 2007), 
responses to number deviants (e.g., change from 16 to 32) were found in bilat-
eral regions of the IPS. Furthermore the response to number deviants in these 
regions was found to be greater than those for shape deviants. On the other hand, 
shape deviants lead to greater activation than number deviants in the regions 
within the left lateral occipital cortex. Interestingly, Cantlon et al. found that the 
response to number and shape deviants in the group of 4-year-old children were 
very similar to those of the adults. This was particularly true of the right IPS, 
while left IPS showed greater modulation by number deviants in the adults com-
pared to the children. From these data, Cantlon et al. conclude that the number-
specifi c responses in the IPS develop early and that the non-symbolic processing 
of numerical magnitude in this region may form the basis for the acquisition of 
symbolic representation of numerical magnitude (Arabic numerals).

Notwithstanding the signifi cance of these data, one has to keep in mind that 
passive fMRA paradigms do not address the active processing of numerical 
quantity in the context of an active task. It is therefore possible that activation 
in the IPS is associated with low-level processing of numerical magnitude that 
is similar between children and adults, but that processes that translate these rep-
resentations into meaningful numerical behaviors differ substantially between 
children and adults.

Existing developmental neuroimaging studies of number processing provide 
divergent interpretations of the observed functional differences between children 
and adults. While for example Kawashima et al. or Cantlon et al. interpret their 
fi ndings as evidence of a similar activation pattern associated with numerical 
processing in children and adults, other studies (e.g., Rivera et al., Ansari et al.) 
argue that the changes are quite substantial across development. The differences 
in activation patterns – mostly increased frontal activation in children – are usu-
ally interpreted as refl ecting the recruitment of additional cognitive processes 
in children when working with numerical quantities. This possible discrepancy 
between a child’s representation of number and how to meaningfully use this 
information to improve performance should be further examined and disentan-
gled in future research. Furthermore it will be important to investigate the devel-
opmental relationship between symbolic and non-symbolic number processing 
in the brain in an effort to better understand the brain mechanisms involved in 
mapping numerical magnitude representations onto abstract symbols such as 
Arabic numerals.

Another important issue is to assess the relationship between age-related 
changes in both brain structure and function. So far only one study (Rivera 
et al., 2005) attempted to map out both structural and functional changes and 
tried to investigate their interaction. Here the authors investigated whether GMD 
correlates with the functional activations associated with numerical process-
ing in the developing brain. Data from studies looking at age-related changes 
in structural anatomy using MRI, however, point out that gray-matter volume 



30 Mathematical Diffi culties: Psychology and Intervention

and density changes have an inverted U-shaped pattern throughout development, 
whereas white-matter volume and density are roughly linear (for a review see, 
Amso & Casey, 2006). This suggests that the ongoing myelination process might 
in fact be a better measure of functionally relevant structural changes than gray-
matter volume.

NUMBER PROCESSING IN THE ATYPICALLY 
DEVELOPING BRAIN

As reviewed above, a wealth of adult neuroimaging literature has investi-
gated the neural correlates of numerical cognition in typically developed adults 
(Dehaene, 1996; Dehaene et al., 1998, 1999, 2003; Piazza et al., 2004; Pinel 
et al., 2001) and more recently in comparing typically developing children and 
adults (Ansari & Dhital, 2006; Ansari et al., 2005). Tasks which require some 
form of numerical magnitude processing are usually associated with activations 
in the posterior parietal areas of the brain, typically including the bilateral IPS. 
An important area that needs to be explored is the association between brain 
regions and numerical processing across development. Furthermore, how those 
associations can deviate from typical developmental trajectories will help inform 
our understanding of behavioral and neurobiological developmental ‘check-
points’ and how they underpin successful mathematical learning.

In contrast to research on mathematical disabilities, studies examining the 
neural correlates of reading, and their dysfunction in dyslexia have been fairly 
widespread, and have thus been able to identify key differences in brain acti-
vation between dyslexics and normal readers, especially in the left occipito-
temporal area (e.g., Shaywitz et al., 2002). These fi ndings have been highly 
relevant in informing theories of developmental dyslexia based on defi cits in 
phonological decoding, for example. In view of this ‘success story’ it is likely 
that the study of mathematical learning disabilities would benefi t highly from 
similar neuroimaging contributions. The relatively recent advent of functional 
imaging studies of numerical cognition in normal populations coupled with the 
heterogeneity of mathematical learning disabilities and the limited understand-
ing of their root causes have perhaps delayed the approach to this important and 
exciting area.

An initial pathway into the brain level study of atypical numerical processing 
has been provided by populations with numerical and visuo-spatial impairments 
occurring in the context of genetic developmental syndromes, such as Turner 
Syndrome (TS), Williams Syndrome (WS) and Fragile X syndrome (fraX).

Using both functional and structural neuroimaging methods, Molko et al. 
(2003) compared 14 TS subjects (Mean age 24.5 years) with 14 controls, in an 
fMRI design previously reported by Dehaene et al. (1999) that uses exact and 
approximate calculation to investigate the impact of number size and numerical
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task demand on brain activation. During exact calculation, subjects had to 
choose the correct one of two alternative solutions to a visually presented  simple 
calculation. Approximate calculation, on the other hand, required subjects to 
choose the most plausible of two incorrect candidate solutions. Subjects were 
told that since one of the incorrect solutions was grossly false they did not 
have compute the exact solution. The assumption is that participants are able to 
make the approximate calculation using general estimation mechanisms rather 
than precise verbally based calculation. While the control subjects showed 
increased activation in the bilateral IPS as the diffi culty of exact calculations 
increased, the TS subjects did not show the same modulation. In a morphometric 
analysis, TS subjects also showed abnormal structural organization of the IPS 
in the right hemisphere. In particular, they showed reduced gray-matter vol-
ume and an unusual interruption in the horizontal segment of the IPS, an area 
which is systematically activated when numbers are manipulated, and which 
is increasingly activated as the task puts greater emphasis on quantity process-
ing (Dehaene et al., 2003). Interestingly, the behavioral fi ndings showed that 
TS subjects performed disproportionately worse when the diffi culty of exact 
calculations increased relative to controls. In addition, the brain area associ-
ated with supporting the increased level of quantity processing in controls does 
not respond to increased demand in TS subjects, a pattern also observed in 
females with fraX in calculation verifi cation tasks (Rivera et al., 2002). Taken 
together these fi ndings strongly support the crucial role of the IPS in numerical 
cognition.

Calculation defi cits have also been linked to IPS abnormalities by Isaacs 
et al. (2001), who compared adolescents of very low birth weight who had defi -
cits in numerical operations (including addition, subtraction, multiplication and 
division, NOD group), those with defi cits in mathematical reasoning (including 
problem solving, numeration and number concepts, MDR group), and typically 
achieving controls who were matched to the experimental groups for gender, age, 
IQ and other perinatal variables. The authors found that the NOD group showed 
signifi cantly less gray matter in the left IPS than matched controls, while the 
MDR was not found to exhibit signifi cantly different gray-matter volumes from 
the control group without any mathematical defi cits. The region of reduced gray 
matter was very close to an area described by Dehaene et al. (1999) as being 
involved in approximate relative to exact calculation (i.e., non-verbal numerical 
processes).

An important caveat in the interpretation of anatomical studies of atypi-
cally performing groups is that the observed structural changes may be either 
the cause or effect of impaired performance in the cognitive domain with which 
that brain region is associated, so causal inferences should be treated with cau-
tion. However, that does not reduce the importance of observing that region 
as a correlate of numerical processing, and as our understanding deepens, and 
theories become more sophisticated, causal relationships will be more clearly 
elucidated.
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A problem in the identifi cation of the neural substrates of numerical process-
ing is the complexity of the cognitive domain being investigated. A wide range 
of tasks have been used in adult neuroimaging, resulting in theories propos-
ing distinct neural networks subserving various aspects of numerical cognition 
(Dehaene et al., 2003). This complexity is equally a problem when investigating 
neural correlates of numerical cognition in atypical populations, but furthermore, 
the populations themselves increase the complexity of the issue. Groups of atypi-
cally developing individuals with different genetic disorders have been compared 
as though they shared a single defi cit in numerical processing. It is dangerous 
to equate the visuo-spatial and numerical impairments between these groups 
simply because they share similar behavioral profi les on standardized arithme-
tic achievement tests. Although the consequences are unknown, the fact that 
these groups present with these mathematical impairments as part of very differ-
ent genetic syndromes should not be forgotten when generalizing the results of 
these studies.

Only one study so far has investigated brain activation during numeri-
cal processing in groups of children with developmental dyscalculia that was 
not part of a wider genetic developmental syndrome. Kucian et al. (2006) con-
ducted an fMRI experiment with developmental dyscalculics in the 3rd and 
6th Grades, defi ned by discrepancy between scores on a battery of mathemati-
cal and reading tests and general IQ, and two groups of age matched controls. 
The experiment included approximate and exact calculation conditions, in the 
same paradigm used by Molko et al. (2003). Subjects also completed a magni-
tude comparison task, comparing small sets of different objects (e.g., strawber-
ries vs. nuts). The results of the fMRI showed similar activation patterns, albeit 
generally weaker and more diffuse, for DD and control groups in all conditions. 
There was no effect of age on activation pattern. The main difference between 
groups was found using region of interest analysis in the IPS. In this region DD 
subjects showed signifi cantly weaker activation in response to approximate cal-
culation in the left IPS, and a non-signifi cant trend in the same direction in the 
right IPS. However this difference was not observed in direct statistical compari-
son between groups using repeated measures general linear model analysis on 
a whole brain level, and so cannot be viewed as a particularly robust fi nding. It 
is important to note that in this study no behavioral differences between groups 
were observed for any of the experimental tasks.

The null results of this study could be the consequence of several factors. 
The subject selection on the basis of the ICD-10 classifi cation, which is far 
from precise in characterizing the disorder, leaves open the possibility that the 
developmental dyscalculic group was comprised of individuals whose mathemati-
cal diffi culties stemmed from other cognitive domains, or were at least highly 
variable in their severity. Another possible reason for the absence of group 
differences may be related to the particular task that was used. Although func-
tional activation differences have been observed between exact and approximate 
calculation in normal adults (e.g., Dehaene & Cohen, 1995; Dehaene et al., 2003; 
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Stanescu-Cosson et al., 2000), dissociations between the two tasks have not been 
replicated in normal and disabled calculators (Molko et al., 2003; Venkatraman 
et al., 2005), and so it is not clear that they relate directly to behavioral or brain 
level differences between typically and atypically developing groups. The lack of 
differences in the magnitude comparison condition can potentially be accounted 
for by the dramatically different visual properties of the stimuli in comparison sets.

Interesting evidence for the role of impaired development of the parietal area 
in developmental dyscalculia comes from a single-case study presented by 
Levy et al. (1999). J.S., a right handed male who at the time of testing was 18 
years old, had been diagnosed with acalculia in elementary school. J.S. was in 
the upper 5th percentile on tests of non-verbal IQ, his full scale IQ was meas-
ured at 108, but he exhibited marked impairments in spelling, number computa-
tions, and was particularly impaired when the complexity of problems increased 
or mental computation was required. Levy and colleagues employed magnetic 
resonance spectroscopy to reveal a ‘focal, wedge shaped defect in the left tem-
poro-parietal brain in the region of the AG,’ including defects in metabolite 
amplitudes. Conventional MRI scans showed no abnormalities, and for this 
reason this case is particularly interesting, because it shows that conventional 
MRI may not detect functionally relevant impairments in atypically developing 
brains.

Neuroimaging of basic number processing in atypically developing popula-
tions has so far provided variable results. Different experimental designs and 
populations with highly variable cognitive profi les outside the number domain 
have made it diffi cult to apply a uniform interpretation of the fi ndings. However 
some consistent fi ndings have emerged, in that almost all of these populations, 
when the task is well controlled, some abnormal functional or structural mod-
ulation of parietal regions appear. Given that the role of this area in typically 
developing populations has yet to be fully resolved, fi ndings linking atypical 
behavioral profi les in numerical processing to atypical structural and functional 
properties of specifi c brain regions may provide a powerful resource in better 
understand the neural correlates of numerical cognition. This case illustrates the 
importance of using multiple methods to capture a particular cognitive phenom-
enon and its developmental trajectory.

When considering directions for future research an important factor emerges 
from looking at the samples used in most of the studies mentioned above. 
That is, although they investigate populations whose mathematical defi cits are 
undoubtedly developmental rather than acquired, the majority of subjects are 
tested during adolescence or early adulthood. It is therefore only possible to say 
that with a given behavioral developmental trajectory, these subjects do or do 
not end up to the same neurobiological profi le as typically developing groups. 
Inferences about the association of parietal regions with numerical processing 
defi cits that occur over developmental time cannot yet be made, and hence the 
exact role of the IPS, for example, in numerical cognition cannot be fully elu-
cidated. Does that region support the development of numerical representation 
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from birth, or is the association formed on the basis of increased frequency of 
access to numerical semantic information across development? Such questions 
can only be answered by means of longitudinal studies of typically and atypi-
cally developing populations.

FUTURE DIRECTIONS

The above sections represent a critical review of the currently available 
functional neuroimaging research into the neural correlates of numerical and 
mathematical processes in adults and children. It is clear that much insight has 
been gained into the brain processes that enable adults and children to enumer-
ate, estimate and calculate. However, numerous challenges remain. In order to 
work toward realizing the potential of a developmental cognitive neuroscience 
approach to the study of typical and atypical number development, it is impor-
tant to consider both the methodological and conceptual challenges facing this 
emerging fi eld.

CONCEPTUAL CHALLENGES

On the face of it, a cognitive neuroscience approach is informative sim-
ply because it increases our understanding of the neural processes underlying 
developmental changes in number processing. However, the aim of cognitive 
neuroscience is not merely to attribute cognitive processes to brain regions but 
to have neuroscientifi c and behavioral data mutually constrain one another. In 
other words, besides the obvious knowledge gain afforded by the new depend-
ent measures (functional neuroimaging methods), the added value of cognitive 
neuro science studies must lie in their ability to add to and constrain models of 
develop ment derived from a behavioral analyses. Seron and Fias (2006) discuss 
this issue very nicely in the light of numerical research and come to the con-
clusion that brain imaging in this research area has been valuable for cognitive 
research since it both tested existing hypothesis and generated new ones. It is 
important to stress the point that neuroimaging for neuroimaging’s sake is not 
enough. The inferences about cognitive processes that can and cannot be drawn 
from neuroimaging data are still the subject of signifi cant debate (Henson, 2006; 
Poldrack, 2006).

With respect to studying the development of cognitive functions, neuroimag-
ing must meet the challenge of providing evidence which will help to construct 
biologically plausible theories of the development of mental functions. Dowker 
(2006) distinguishes between three different forms of insight one can gather 
about child development (typical or atypical) using functional brain imaging. 
Firstly, functional MRI can be used to diagnose and understand certain neurolog-
ical disorders in children. Secondly, through fMRI studies with young children 
we can add to our understanding of children’s neurocognitive development and 
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can thus draw conclusions that could not only infl uence current cognitive mod-
els, but might even have implications for intervention or teaching techniques. In 
gaining insight of how different areas of the brain are differently contributing to 
certain cognitive processes throughout development, we can deepen our under-
standing of the connections between cognitive functions. Through this approach 
we may be able to provide possible educational intervention techniques, which 
are adapted to the diversity of the different components of cognitive functions 
and thus facilitate their maturation process.

Thirdly, Dowker (2006) points out that functional neuroimaging studies with 
adults have had a marked infl uence on behavioral studies of cognitive develop-
ment. Even though we are unaware of any direct claims made in adult literature 
concerning developmental theories, it is certainly evident that results from stud-
ies using adults inspire a closer look at, for example, basic number processing 
in children. For example the notion of approximate, language independent and 
exact, language-dependent number processing has had an effect on the investiga-
tion of number processing in WS. Individuals with WS present with relatively 
good language skills coupled with strongly impaired visuo-spatial cognitive abil-
ities. This lead Ansari et al. (2003) to investigate approximate vs. exact number 
abilities in this syndrome.

However, using adult studies to infer developmental processes ignores the 
fact that the functional and structural organization of the brain differs markedly 
between infants, children and adults (Karmiloff-Smith, 1998). Therefore acti-
vation patterns in the adult brain should be conceptualized as the outcome of 
a developmental process, that itself needs to be studied. By adopting a devel-
opmental perspective, it becomes possible to answer important questions about 
both development of brain processes underlying the acquisition of numerical 
skills and the neural correlates of number processing in the mature, adult brain. 
As developmental changes in neural activation patterns refl ect the maturation 
of cognitive functions, we can answer the important question: how do abilities 
emerge over developmental time. The answer to this question will deepen our 
understanding of the nature of higher cognitive functions. In the adult literature 
we can often only go as far as to understand that certain areas of the brain form a 
network and are associated with a certain cognitive process. By adopting a devel-
opmental approach it is possible to gather more information by fi nding answers 
to questions such as: when do certain abilities develop? Which system of a neu-
ral network in the adult brain develops fi rst? When do certain parts of the brain 
come ‘online’? Does the connectivity of different systems or the maturation of a 
network refl ect behavioral changes?

METHODOLOGICAL CHALLENGES

In addition to the broad conceptual challenges facing a developmental cogni-
tive neuroscience approach to the study of atypical and typical number develop-
ment there are numerous methodological challenges.
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Developmental neuroimaging studies are subject to the same constraints as 
behavioral developmental studies. When designing a developmental investiga-
tion we have the choice between a cross-sectional and a longitudinal approach, 
both having advantages and disadvantages. In a cross-sectional approach we 
have to consider greater unknown between subject variability. In brain imaging 
this cohort effect means that a certain age group might have certain functional 
or structural characteristics, which complicates direct comparison. These cohort 
effects can either be due to cultural or experience-based changes, which were 
shown to have effects on functional data and brain structure (Maguire et al., 
2000; Paulesu et al., 2000). Thus would fi nd differences that are not due to mere 
development, but are group specifi c differences.

In a longitudinal approach however it is hard to tease apart whether the 
changes are due to development or learning, since the same subjects participate 
multiple times. Also one should not underestimate changes within subjects over 
time which are unrelated to the cognitive processes assessed. For example the 
fi rst time in a scanner is a very different experience than the second or third time.

A constraint that cross-sectional and longitudinal studies both share is the 
potential confound represented by age-related differences in task diffi culty. As 
task diffi culty decreases drastically with age and experience, it is hard to distin-
guish which activations are due to learning processes and which are due to the 
consequences of learning. Poldrack (2000) suggests that one way to better dis-
tinguish performance from age-related changes is to use parametric designs that 
systematically vary task diffi culty, while keeping the variable of interest con-
stant. By comparing regions that show a main effect of task diffi culty with those 
exhibiting an effect of task independent of diffi culty it is possible to dissociate 
areas modulated by the task from those engaged by varying levels of diffi culty.

A different approach has been suggested by Schlaggar et al. (2002). These 
authors suggest that in order to compare the functional neuroanatomy underlying 
a particular cognitive process between children and adults it is important to match 
groups on performance. In a design that involved single word reading, Schlaggar 
et al. divided children and adults into subgroups of children and adults with the 
same performance level (performance matched) and those who differed in their 
behavioral performance (non-matched). The authors argue that through this 
subdivision they can classify regions of activations into being either age related 
(differences in activation that are revealed in both subgroup analyses) or being 
performance related (difference in activation is only present in the non-matched 
subgroup). However, one has to consider the following: this approach is only pos-
sible if the two compared age groups are naturally close in performance levels, 
otherwise the overlap is either too small or meaningless, since the performance-
matched group could consist of participants that are not typical of the general 
population, since slow adults are matched to fast children.

An alternative approach that does not involve matching or parametric modula-
tion of diffi culty was put forward by Turkeltaub et al. (2003). These authors used 
an implicit task to measure the functional neuroanatomy underlying reading. In 
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their task participants were presented with words and false font strings and were 
instructed to detect the presence of a tall letter. This task is so simple that no 
age-related performance differences were observed. Against this background, the 
contrast of words vs. false font strings allowed Turkeltaub et al. to map regions 
involved in implicit reading without requiring a response directly related to read-
ing. The real strength of their approach is that the authors were able to corre-
late external reading measures with the functional data and reveal associations 
between activation related to implicit reading and individual differences in read-
ing competence. This approach is intriguing in the aspect that it tries to connect 
very basic neural activation patterns to actual behavioral correlates outside of the 
scanner. However, a slight constraint of this implicit measure is that we actually 
can not presume that the underlying functions are fundamentally the same. Nor 
can we be certain about possible interactions between the implicit processing 
and the explicit task they perform. In other words, the level of diffi culty of the 
primary task may modulate the implicit process functions and this might have a 
different impact over development.

Another important methodological constraint concerns the possibility that 
important development differences in the response measured by fMRI exists 
between children and adults. As mentioned above, fMRI measures changes in 
local oxygenated and deoxygenated blood fl ow and the signal is referred to as 
the Blood Oxygen Level Dependent (BOLD) signal. Recent evidence suggests 
that when comparing BOLD responses in children to those in adults the shape 
of the BOLD response changes systematically as a function of age (Richter & 
Richter, 2003; Thomason et al., 2005) and that furthermore within a child’s 
brain those changes vary depending on the brain region (Schapiro et al., 2004). 
Against this background, some authors (e.g., Richter & Richter, 2003) suggest 
using different statistical approaches (e.g., focusing on the peak intensity of the 
BOLD signal) rather than using a model BOLD signal derived from adult studies 
to estimate the fi t of the data to a given model of activation.

In addition to concerns over differences in the fMRI response between 
children and adults, there is some controversy over the most accurate way to 
compare the neuroanatomy of children and adults in the context of functional 
activation patterns. In adult neuroimaging it is common practice to normalize 
the brains of individual subjects to a template brain. Such a common space can 
be associated with a neuroanatomical atlas (Talairach & Tournoux, 1988) or can 
be a standardized space derived from the averaging of multiple anatomic scans 
(Evans et al., 1992). This process achieves a degree of structural normalization 
of the individual brains within a given study and allows for the use of a coor-
dinate system that is common across studies and thereby allows for systematic 
comparisons of activation patterns between studies. This process of normaliza-
tion to a template brain may be problematic in the context of comparing chil-
dren and adults as there are marked anatomical difference between children and 
even when comparing young and older children. Therefore is it possible to make 
systematic comparisons of functional activations and to normalize both children 
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and adults to the same template brain? In a series of recent studies no evidence 
was found that would seriously question the feasibility of direct statistical com-
parison between different age groups within a common space (Burgund et al., 
2002; Kang et al., 2003). Burgund et al. (2002) found that even though there 
are minor anatomical differences between 7–8 year olds and 18–30 year olds, 
a computer simulation with the same data revealed that the functional image 
comparison was not negatively affected by it. Similarly Kang et al. (2003) found 
that activation location was statistically similar between adults and children. 
However it has to be mentioned here that their data was restricted to visual and 
motor cortex region. In the light of investigations into the age-related changes 
in gray- and white-matter development (e.g., Gogtay et al., 2004) the areas of 
primary interest the prefrontal and lateral temporal cortices, as these seem to 
mature late.

Researchers in the fi eld of developmental neuroimaging are constantly 
struggling with issues related to small sample sizes. While Byars et al. (2002) 
point out that it is in fact feasible to conduct a large-scale fMRI study with chil-
dren, they also make quite clear that in order to do so one has to take into con-
sideration that the drop-out/failure rate is inversely related to age. Firstly, very 
young children usually fi nd the situation estranging. Even for adults scanning 
sessions can be frightening or at least unpleasant. Preparing young children for 
fMRI scans is work intensive and time consuming. It usually includes several 
meetings with the parents and/or the children and if the facilities allow a prior 
introduction to a so called ‘mock scanner,’ which simulates the situation in the 
actual scanner.

CONCLUSIONS

The last 20 years have witnessed tremendous advances in our understanding 
of the neural correlates of adult numerical cognition. The use of methods such 
as ERPs, fMRI and TMS have enabled researchers to investigate basic numeri-
cal magnitude processing in the brain as well the brain regions underlying cal-
culation. In the present chapter we have reviewed the cognitive neuroscience 
approach to numerical cognition in an effort to highlight both the promise and 
challenges facing the emergence of a developmental cognitive neuroscience 
approach to the study of numerical cognition. To do this we have reviewed and 
highlighted:

1. The increasing growth of cognitive neuroscience investigations into adult 
number processing and calculation, which are starting to go beyond simply map-
ping the neural networks involved in various components of numerical cogni-
tion to a fi ner grained analyses of the specifi c functions of regions activated 
by number processing and calculation and the relationship between numerical 
and non-numerical processes engaged by tasks of basic number processing and 
calculation.
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2. That a cognitive neuroscience approach to number processing, in com-
bination with traditional behavioral measures, can help to constrain models of 
numerical cognition and provide new levels of analyses that are not afforded by 
investigations purely based on behavioral measures.

3. Investigations in to the brain circuits underlying the atypical and typi-
cal trajectories of number development are lagging behind those into the adult 
neural correlates of numerical cognition. However, at the same time, these stud-
ies are starting to reveal that typical development is marked both by changes in 
functional neuroanatomy as well as similarities between children and adults. 
These studies highlight the importance of taking a developmental perspective. 
Furthermore, the study of atypical development is beginning to show that brain 
circuits implicated in typical number processing are both structurally and func-
tionally disordered in children suffering from mathematical diffi culties.

4. That numerous important conceptual and methodological diffi culties 
are faced by a developmental cognitive neuroscience approach to the study of 
numerical cognition. These need to be carefully considered in future studies. A 
consideration of these also highlights the importance of looking toward other 
fi elds (e.g., reading research) for ways in which to deal with issues such as per-
formance-related confounds and task design.

In sum, we hope that the present chapter will serve as a resource for research-
ers taking a developmental cognitive neuroscience approach to the study of 
numerical cognition. Future studies will help to further characterize the interplay 
between behavioral, functional and structural neuroanatomical changes that give 
rise to the ability to enumerate, estimate and calculate as well as the breakdown 
of these abilities in children with mathematical diffi culties. Such information 
will hopefully contribute to a better understanding of how to both teach math-
ematics and diagnose and remediate children with mathematical diffi culties.
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Poor achievement in math can have serious educational and vocational con-
sequences. Students with weak math skills at the end of middle school are 
less likely to graduate from college than are students who are strong in math 
(National Mathematics Advisory Panel, 2007). Competence in advanced math 
is important for success in college-level science courses and a wide range of 
vocations in the sciences (Sadler & Tai, 2007). Many students in US elemen-
tary schools do not develop foundations for success in algebra, and low-income 
learners lag far behind their middle-income peers (NAEP, 2007).

Fluency with math operations is a hallmark of mathematical learning in the 
early grades. Fluency is associated with foundational knowledge of key calcula-
tion principles (e.g., reciprocal relations among operations; Jordan et al., 2003a). 
Calculation fl uency is necessary for math achievement at all levels – from solv-
ing simple whole number problems, to calculating with fractions, decimals and 
percentages, to solving algebraic equations. Even success with basic geometry 
depends on facility with calculation (e.g., calculating the angles of a triangle to 
add up to 180 degrees).

Mathematical Diffi culties:  Copyright © 2008 Elsevier Inc.
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Dysfl uent calculation is a signature characteristic of students with learning 
disabilities in math (Jordan, 2007). Recent research suggests that calculation 
defi ciencies, from the fi rst year of formal schooling onward, can be traced to 
fundamental weaknesses in understanding the meaning of numbers and number 
operations, or number sense (Gersten et al., 2005; Malofeeva et al., 2004). Weak 
number sense can result in poorly developed counting procedures, slow fact 
retrieval, and inaccurate computation, all characteristics of math learning dis-
abilities (Geary et al., 2000; Jordan et al., 2003a, b). It is diffi cult to memorize 
arithmetic ‘facts’ by rote, without understanding how combinations relate to one 
another on a mental number line (Booth & Siegler, in press). Accurate and effi -
cient counting procedures can lead to strong connections between a problem and 
its solution (Siegler & Shrager, 1984). It has been suggested that basic number 
sense is a circumscribed cognitive function and relatively independent from gen-
eral memory, language and spatial knowledge (Gelman & Butterworth, 2005; 
Landerl et al., 2004). Although there is a high rate of co-occurrence between 
math and reading/language diffi culties, specifi c math diffi culties with normal 
development in other cognitive and academic areas are well documented (Jordan, 
2007; Butterworth & Reigosa, 2007).

WHAT IS NUMBER SENSE?

Although number sense has been defi ned differently and sometimes is used 
loosely in connection with math (Gersten et al., 2005), researchers generally 
agree that number sense in the 3- to 6-year-old period involves interrelated 
abilities involving numbers and operations, such as subitizing (derived from the 
Latin word subitus, for sudden) quantities of 3 or less quickly, without counting; 
counting items in a set to at least fi ve with knowledge that the fi nal count word 
indicates how many are in the set; discriminating between small quantities (e.g., 
4 is greater than 3 or 2 is less than 5); comparing numerical magnitudes (e.g., 5 
is 2 more than 3) and transforming sets with totals of 5 or less by adding or tak-
ing away items. Arguably, number and associated operational knowledge is the 
most important area of mathematical learning in early childhood (Clements & 
Sarama, 2007). Weak number sense prevents children from benefi ting from for-
mal instruction in math (Baroody & Rosu, 2006; Griffi n et al., 1994).

Most children bring considerable number sense to school, although there are 
clear individual differences often associated with social class and learning abilities 
(e.g., Dowker, 2005; Dowker, in press; Ginsburg & Russell, 1981; Ginsburg & 
Golbeck, 2004; Jordan et al., 1992). Nonverbal number sense is present in infancy 
(Mix et al., 2002). For example, preverbal infants can discriminate between two and 
three objects and are sensitive to ordinal relations (i.e., more vs. less; Starkey & 
Cooper, 1980). Infants also can keep track of the results of adding of removing 
objects from an array, suggesting sensitivity to number operations (Wynn, 1992). 
Early sensitivities to number have a neurological basis in the intraparietal sulcus 
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(IPS) regions of the brain and are the roots for learning symbol systems that repre-
sent number in preschool (e.g., number names, number symbols, counting; Berger 
et al., 2006). Atypicalities in IPS brain regions have been associated with specifi c 
impairments in mathematical operations (Isaacs et al., 2001).

Knowledge of the verbal number system is heavily infl uenced by experi-
ence or instruction (Geary, 1995; Levine et al., 1992). Case and Griffi n (1990) 
report that number sense development is closely associated with children’s home 
experiences with number concepts. Efforts to teach number sense to high-risk 
children in early childhood have resulted in signifi cant gains on fi rst-grade math 
outcomes compared to control groups (Griffi n et al., 1994). Engaging young 
children in number activities (e.g., a mother asking her child to give her 3 
spoons) and simple games (e.g., board games that emphasize one-to-one corre-
spondences, counting and number lines) develop foundations and build number 
knowledge (Gersten et al., 2005).

COMPONENTS OF NUMBER SENSE

Counting: Counting is a crucial tool for learning about numbers and arithme-
tic operations (Baroody, 1987), and counting weaknesses have consistently been 
linked to mathematics diffi culties (Geary, 2003). Most children develop knowl-
edge of ‘how to count’ principles before they enter kindergarten (Gelman & 
Gallistel, 1978), including one-to-one correspondence (each item is counted only 
once), stable order (count words always proceed in the same order) and cardinal-
ity (the fi nal word of a count indicates the number of items in a set). Typically, 
children learn the count sequence by rote and then map counting principles onto 
the sequence through their experiences with counting objects (Briars & Siegler, 
1984). As children move through early childhood, they learn that items can be 
counted in any order (e.g., right to left or left to right), that sets do not have to 
be homogeneous, and that anything can be counted (e.g., the number of prom-
ises broken or the number of days in a week). They become increasingly fl exible 
with counting, counting backward and by twos and fi ves. Children eventually 
acquire words for decades and learn rules for combining number words (e.g., 
combining 20 with 5 to make 25) (Ginsburg, 1989). Early diffi culties in counting 
are precursors for later problems with math operations (Geary et al., 1999).

Number knowledge: Children as young as 4 years of age recognize and 
describe global differences in small quantities (Case & Griffi n, 1990; Griffi n, 
2002, 2004). For example, they can tell which of two sets of objects has more or 
less. Although younger children rely on visual perception rather than on counting 
to make these judgments (Xu & Spelke, 2000), by 6 years of age most children 
incorporate their global quantity and counting schemas into a mental number line 
(Siegler & Booth, 2004). This overarching structure allows children to make bet-
ter sense of their quantitative worlds (Griffi n, 2002). Children  gradually learn 
that numbers later in the counting sequence have larger quantities than earlier 
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 numbers. They come to see that numbers have magnitudes, such that 7 is  bigger 
than 6 or that 5 is smaller than 8. Children use these skills in multiple contexts and 
eventually construct a linear representation of numerical magnitude, which allows 
them to learn place value and perform mental calculations. Number knowledge 
helps children think about mathematical problems, and its development refl ects 
children’s early experiences with number (Griffi n et al., 1994; Saxe et al., 1987; 
Siegler & Booth, 2004). Middle-income children enter kindergarten with better-
developed number knowledge than low-income children (Griffi n et al., 1994; 
Jordan et al., 2006), and number knowledge is a strong predictor of math achieve-
ment in the early school years (Baker et al., 2002; Jordan et al., 2007).

Number Operations: The number knowledge and counting abilities that 
children acquire in early childhood are relevant to learning conventional math 
operations involving exact rather than approximate representations. Although 
preschoolers have limited success in performing verbally presented calculation 
problems, such as story problems (‘Bob had 3 marbles. Jill gave him 2 more 
marbles. How many pennies does he have now?’) and number combinations 
(‘How much is 2 and 3?’), they are successful on nonverbal calculation tasks, 
which provide physical referents but do not require understanding of words and 
syntactic structures (Ginsburg & Russell, 1981; Hughes, 1986; Levine et al., 
1992; Huttenlocher et al., 1994). Young children’s success in solving nonverbal 
calculations requires children to hold and manipulate mental representations of 
numbers in working memory (Klein & Bisanz, 2000). Nonverbal calculation 
ability varies less across social classes than does the ability to solve verbal cal-
culations (which clearly favors middle- over low-income children) (Jordan et al., 
1992, 1994, 2006).

PREDICTABILITY OF NUMBER SENSE

Number sense predicts math outcomes in elementary school. A number 
knowledge test, fi rst developed by Okamoto and Case (1996) and later tested by 
Baker et al. (2002), revealed strong predictability. The test, which assessed chil-
dren’s understanding of the magnitude concepts of ‘smaller than’ or ‘bigger than’ 
as well as knowledge of math operations, was given in the spring of kindergar-
ten. The correlation with a math achievement criterion at the end of fi rst grade 
was strong and signifi cant. Clarke and Shinn (2004) also found that the ability to 
name numbers, to identify a missing number from a sequence of numbers, and 
to identify which of two numbers is larger predicts math outcomes at the end 
of fi rst grade. Booth and Siegler (in press) report that the linearity of children’s 
estimates on a number line is highly related to general math outcomes and that 
visual presentation of the magnitudes of addends and sums improves learning of 
number operations.

Although much of the research on number sense predictability is concerned 
with relatively near outcomes (e.g., kindergarten to fi rst grade), we have found in 
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our research lab (see more detailed discussion in the next section of this chapter) 
that number sense – even at the very beginning kindergarten – retains its predic-
tive validity at least through the end of third grade (Jordan et al., 2007; Jordan et al.,
under review; Locuniak & Jordan, in press). Moreover, recent work (Duncan
et al., 2007) suggests that the connection continues throughout the school years.

DEVELOPING A NUMBER SENSE BATTERY

Many math disabilities are not identifi ed until middle school or later. In 
US schools, math interventions are much less common for early learners than 
are reading interventions (Jordan et al., 2002). To improve early identifi cation 
of math problems, our research group (Jordan et al., 2006, 2007) developed a 
number sense battery for children from the beginning of US kindergarten to 
the middle of fi rst grade (from approximately 5 to 6 years of age). The battery, 
developed as a part of a large longitudinal study of children’s math, is based on 
the premise that number sense is of central importance to math learning and is 
guided by theoretically valid components of number sense. These components 
include counting, number knowledge and number operations. As noted earlier 
in this chapter, the components are closely linked to the skills children will need 
to acquire in formal math in elementary school. Reliability (alpha coeffi cient) 
of our core number sense battery ranged from 0.82 to 0.89 across the six time 
points. Our battery included the following tasks.

COUNTING AND NUMBER RECOGNITION

Children are assessed on counting skills and principles as well as their abil-
ity to recognize numbers. Children are asked to count to at least ten and allowed 
to restart counting only once but can self-correct at any time. Counting princi-
ples were adapted from Geary et al. (1999). For each item (after ruling out color 
blindness), children are shown a set of alternating yellow and blue dots. Then a 
fi nger puppet tells them he is learning how to count. The child is asked to indi-
cate whether the puppet count is ‘OK’ or ‘not OK.’ Correct counting involves 
counting from left to right and counting from right to left. Unusual but correct 
counts involve counting the yellow dots fi rst and then counting the blue dots or 
vice versa. For incorrect counts, the puppet counts from left to right but counts 
the fi rst dot twice. For number recognition, children are asked to name a visually 
presented Arabic number.

NUMBER KNOWLEDGE

Number knowledge tasks were adapted from Griffi n (2002). Given a number 
(e.g., 7), children are asked what number comes after that number and what 
number comes two numbers after that number. Given two numbers (e.g., 5 and 4), 
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children are asked, which number is bigger or which number is smaller. Children 
also are shown visual arrays of three Arabic numbers (e.g., 6, 2 and 5), each 
placed on a point of an equilateral triangle and asked to identify which number 
is closer to the target number at the apex (e.g., 5).

NUMBER OPERATIONS

To assess number operations, we used three related tasks: Nonverbal calcula-
tion, number combinations and story problems.

On the nonverbal calculation task, adapted from Levine et al. (1992), the 
tester and child face each other with a 45 � 30 cm white mat in front of each 
and a box of 20 chips placed off to the side. The tester also has a box lid with 
an opening on the side. Three warm-up trials are given in which we engage the 
children in a matching task by placing a certain number of chips on the mat in 
a horizontal line, in view of the child and then covering the chips with the box 
lid. The child is asked to indicate how many chips are hidden, either with chips 
or by saying the number. After the warm-up, addition problems and subtraction 
problems are presented. The tester places a set of chips on her mat (in a hori-
zontal line) and tells the child how many chips are on the mat. The chips are 
then covered with the box lid. Chips are either added or removed (through the 
side opening) one at a time. For each item, the children is asked to indicate how 
many chips are left hiding under the box, either by displaying the appropriate 
number of chips or giving a number word.

Addition and subtraction story problems and number combinations are pre-
sented orally, one at a time. The addition problems are phrased as follows: ‘Jill 
has m pennies. Jim gives her n more pennies. How many pennies does Jill have 
now?,’ while the subtraction problems are phrased: ‘Mark has n cookies. Colleen 
takes away m of his cookies. How many cookies does Mark have now?’ Number 
combinations are phrased as: ‘How much is m and n?’ and ‘How much is n take 
away m?’

We used the battery to assess 400 US students in kindergarten (mean
age � 5 years, 6 months at the beginning of the year). We followed more than 
300 students through fi rst grade and roughly 200 through third grade. About a 
third of the children were from low-income families. Children’s number sense 
was assessed on six occasions, from the beginning of kindergarten through
the middle of fi rst grade. Math achievement was subsequently measured with 
the Woodcock–Johnson Tests (WJ) of Achievement (McGrew et al., 2007) on fi ve 
occasions, from the end of fi rst grade through the end of third grade.

KEY FINDINGS FROM THE CHILDREN’S 
MATH LONGITUDINAL STUDY

Between the beginning of US kindergarten and the middle of fi rst grade, we 
found three statistically distinct number sense growth trajectories (Jordan et al., 
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2006, 2007): Children who start kindergarten at a high level and remain there; 
children who start kindergarten at a low to moderate level but start showing 
steep growth in the middle of the year; and children who start kindergarten at 
a low level and experience little growth. Low-income children were over repre-
sented in the latter low performing, low growth group and under represented in 
the other two groups.

Longitudinal analyses also revealed that number sense performance in US 
kindergarten, as well as number sense growth, accounts for 66% of the variance 
in fi rst-grade math achievement (Jordan et al., 2007). Background characteristics 
of income status, gender, age and reading ability did not add explain variance 
in math achievement over and above number sense. Even at the beginning of 
kindergarten, number sense is highly related to end fi rst-grade math achievement
(r � 0.70). Moreover, the predictive value of kindergarten and fi rst-grade number 
sense holds until at least the end of third grade or 8 to 9 years of age (Jordan et al., 
under review). Number sense predicted rate of math achievement between fi rst 
and third grades as well as level of math performance at the end of third grade. 
We also found that least 80% of the time, children who meet state-defi ned math 
standards (as required by the US No Child Left Behind Law) have a higher-
kindergarten number sense score than children who do not meet the standards.

We were particularly interested in how well early number sense predicts 
calculation fl uency (Locuniak & Jordan, in press). Kindergarten number sense 
was a signifi cant predictor of calculation fl uency in elementary school, over 
and above age, reading and general cognitive competencies. Although facility 
with number combinations, number knowledge, and working memory capacity 
all were uniquely predictive, early facility with number combinations was the 
strongest single predictor of later calculation fl uency.

STREAMLINING THE NUMBER SENSE SCREENING TOOL

As noted above, early number sense is highly predictive of important math 
outcomes in school. However, the instrument we used for the studies just 
described was a research tool with a relatively long administration time (more 
than 30 minutes in most cases). In 2007, we began work on the development of a 
shortened screening measure of number sense for 5 and 6 year olds. In the initial 
research battery, a third as many items were developed as the fi nal number in the 
streamlined version. The fi nal items were selected using Rasch item analyses, as 
well as a more subjective review of issues related to item bias. The exact number 
sense test items are presented in the Appendix.

Reliability: Several statistics are useful to describe a test’s reliability. Among 
them are person and item separation indices culled from the Rasch model of Item 
Response Theory (Hambleton et al., 1991; Thissen & Wainer, 2001). In addition 
to the Rasch indices, the provision of internal-consistency reliabilities is recom-
mended by the Standards for Educational and Psychological Testing (American 
Educational Research Association, 1999).
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The person and item separation statistics in the Rasch measurement model 
provide statistical tools by which to evaluate the successful development of a 
variable and by which to assess the precision of the measurement (Harvey & 
Hammer, 1999; Wright & Stone, 1979). Respectively, person and item separation 
reliabilities were 0.80 and 0.99. The person separation statistic gives information 
on the test’s capacity to distinguish among a sample of children on the basis of 
the total number of items answered correctly. Person separation reliabilities are 
equivalent to other measures of internal consistency and, accordingly, estimate 
the amount of error in measurement. Alternatively, item separation reliabilities 
indicate how well items defi ne the variables being measured. The obtained esti-
mate of 0.99 indicates that the items in the test are suffi ciently separated from 
easy to hard to form variable lines that are complete and well spaced.

Cronbach’s (1951) coeffi cient alpha was used to calculate internal-consist-
ency reliability. Coeffi cient alpha provides a lower bound value of internal con-
sistency and is considered to be a conservative estimate of a test’s reliability 
(Gregory, 2007). The alpha coeffi cient was 0.84. As expected, this value exceeds 
the minimum, accepted internal-consistency level of 0.80 endorsed by leading 
measurement textbooks (Gregory, 2007; Reynolds et al., 2006; Salvia et al., 
2007).

Validity: Strong construct validity is suggested whenever there is an appropri-
ate pattern of convergent and divergent associations between an instrument and 
an external measure (Campbell, 1960; Reynolds et al., 2006; Thorndike, 1982). 
Because the number sense screen and the Woodcock–Johnson Achievement Test 
in math both purport to measure similar qualities, high correlations should occur 
between the measures. Likewise, scales measuring less similar qualities (e.g., 
reading achievement) would show lower correlations.

Table 3.1 shows correlations between scores on our number sense screen and 
the WJ-Math and reading (as measured by the TOWRE, Test of Word Reading 
Effi ciency; Torgesen et al., 1999). Number sense scores were obtained on three 
occasions in US schools: (1) at the beginning of kindergarten, (2) the end of kin-
dergarten and (3) at the middle of fi rst grade. Criterion scores from the WJ-Math 
and TOWRE were obtained at the end of third grade.

TABLE 3.1 Correlations Between Scores on the Number Sense Screen and Wj-math (Math 
Achievement) and TOWRE (Reading Achievement)

Number sense
End of Grade 3 math
achievement (WJ-Math)

End of Grade 3 reading
achievement (TOWRE)

Beginning of kindergarten 0.65 0.33

End of kindergarten 0.63 0.29

Middle of fi rst grade 0.62 0.40
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All of the correlations were statistically signifi cant (p � 0.01). With respect 
to the pattern of associations, the convergent correlations between the number 
sense screen and the WJ-Math were high, ranging from 0.62 to 0.65. The diver-
gent associations between the number sense screen and the TOWRE were lower 
than the convergent associations, ranging from 0.29 to 0.40. All three conver-
gent associations (number sense and math achievement) were much higher 
than the three divergent associations (number sense and reading achievement). 
Consequently, the pattern of convergent and divergent associations was appro-
priate and strongly support inferences of construct validity for the number sense 
screen.

Although the shortened number sense screening tool is still in development 
and we are collecting normative data in the US, it has good potential for identi-
fying young children who are at risk for developing learning diffi culties in math. 
At present, the measure is reliable, predicts math achievement in the early school 
years, and can be administered in less than 30 minutes.

INSTRUCTIONAL IMPLICATIONS

Although early interventions in math have received relatively little attention 
in the literature (Gersten et al., 2005), the available research offers insights for 
children who may be at risk for struggling in math. Number sense appears to be 
malleable and young children are likely to benefi t from explicit help in represent-
ing, comparing and ordering small numbers as well as in joining and separating 
sets of 5 or less (National Council for Teachers of Mathematics, 2006; Fuson, 
1992). Children should manipulate small quantities with sets of objects (e.g., as 
in the nonverbal calculation task) or their fi ngers (Jordan et al., in press) and 
then encouraged to imagine set transformations in their heads and to extract cal-
culation principles (e.g., 2 � 3 is the same as 3 � 2 or 4 � 1). Recent work by 
Siegler and colleagues (e.g., Booth and Siegler, in press) shows that activities as 
simple as board games that require children to move up and down a number list 
help children develop meaningful knowledge of quantities and number magni-
tudes and increase math achievement. Helping children build number sense early 
should give them the background they need to achieve in math during the school 
years. However, this assertion needs to be tested through randomized-controlled 
studies of number sense interventions. Our number sense instrument should be 
useful for reliably monitoring progress and responses to targeted interventions.
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APPENDIX

The streamlined number sense screening tool (N � 33 items).

(Write 1 for correct; 0 for incorrect)

Give the child a picture with 5 stars in a line. Say: ‘Here are some stars. I want 
you to count each star. Touch each star as you count.’ When the child is fi nished 
counting, ask, ‘How many stars are on the paper?’

1. Enumerated 5 ___
2. Indicated there were 5 stars were on the paper ___

Say: ‘I want you to count as high as you can. But I bet you’re a very good coun-
ter, so I’ll stop you after you’ve counted high enough, OK?’

Allow children to count up to 10. If they don’t make any mistakes, record 
‘10.’ Record the highest-correct number they counted up to without error.

3. Write in last correct number spoken ___
 Child counted up to 10 without error ____

Show the child a line of 5 alternating blue and yellow dots printed on a paper. 
Say: ‘Here are some yellow and blue dots. This is Dino (show a fi nger puppet), 
and he would like you to help him play a game. Dino is going to count the dots 
on the paper, but he is just learning how to count and sometimes he makes mis-
takes. Sometimes he counts in ways that are OK but sometimes he counts in ways 
that are not OK and that are wrong. It is your job to tell him after he fi nishes if 
it was OK to count the way he did or not OK. So, remember you have to tell him 
if he counts in a way that is OK or in a way that is not OK and wrong. Do you 
have any questions?’

 Trial type Response
4. Left to right OK Not OK ___
5. Right to left OK Not OK ___
6. Yellow then blue OK Not OK ___
7. Double First OK  Not OK ___

For items 8 through 11, point to each number that is printed on a separate card 
and say: ‘What number is this?’

8. 13 ___
9. 37 ___

10. 82 ___
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11. 124 ___
12. What number comes right after 7? ___
13. What number comes two numbers after 7? ___
14. Which is bigger: 5 or 4? ___
15. Which is bigger: 7 or 9? ___
16. Which is smaller: 8 or 6?___
17. Which is smaller: 5 or 7?___
18. Which number is closer to 5: 6 or 2? ___

Say: ‘We are going to play a game with these chips. Watch carefully.’ Place two 
chips on your mat. ‘See these, there are 2 chips.’ Cover the chips and put out 
another chip. ‘Here is one more chip.’ Before the transformation say, ‘Watch 
what I do. Now make yours just like mine or just tell me how many chips are 
hiding under the box.’ Add/remove chips one at a time. Items 19 to 22 are the 
nonverbal calculations.

19. 2 � 1 ___
20. 4 � 3 ___
21. 3 � 2 ___
22. 3 � 1 ___

Say: ‘I’m going to read you some number questions and you can do anything 
you want to help you fi nd the answer. Some questions might be easy for you and 
others might be hard. Don’t worry if you don’t get them all right. Listen carefully 
to the question before you answer.’

23.  Jill has 2 pennies. Jim gives her 1 more penny. How many pennies does 
Jill have now? ___

24.  Sally has 4 crayons. Stan gives her 3 more crayons. How many crayons 
does Sally have now? ___

25.  Jose has 3 cookies. Sarah gives him 2 more cookies. How many cookies 
does Jose have now? ___

26.  Kisha has 6 pennies. Peter takes away 4 of her pennnies. How many 
pennies does Kisha have now? ___

27.  Paul has 5 oranges. Maria takes away 2 of his oranges. How many oranges 
does Paul have now? ___

28. How much is 2 and 1? ___
29. How much is 3 and 2? ___
30. How much is 4 and 3? ___
31. How much is 2 and 4? ___
32. How much is 7 take away 3? ___
33. How much is 6 take away 4? ___



59

Many events occurring over the last 25 years or so have infl uenced the way in 
which the fi eld of early childhood education (ECE) views what is meant by ‘mathe-
matics’ and how it should be taught to young children (usually ages 3, 4, and 5), 
at least in the US. This chapter begins by describing several social, political, and 
research infl uences that have produced a dramatic change in both the perception 
and the reality of early math education (EME) in the US. Then the paper shows 
how the new view of EME requires reconceptualizing the mathematics that should 
be taught to young children and how it should be taught. Implementing the new 
EME in turn requires new approaches to professional development. We describe 
one such approach that we employed with a group of teachers who were attempt-
ing to implement the Big Math for Little Kids curriculum (Ginsburg et al., 2003) 
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at a publicly funded early care and education agency in New York City. We show 
how that experience affected the group’s attitudes, beliefs, and behaviors and dis-
cuss the implications for supporting focused professional development.

SOCIAL, POLITICAL, AND RESEARCH 
INFLUENCES

In 1986, the National Association for the Education of Young Children 
(NAEYC) issued a position statement on Developmentally Appropriate Practice 
in Early Childhood Programs Serving Children from Birth Through Age 8 
(Bredekamp & Copple, 1986) that deeply shaped the thinking of ECE policy-
makers, administrators and practitioners in the US. The document strongly 
opposed the 1980’s trend of increased formal instruction for young children and 
instead advocated ‘developmentally appropriate’ practice (DAP), in which teach-
ers do not lecture or verbally instruct, but instead serve as guides or facilitators. 
DAP involves providing children with a rich environment and utilizing teachable 
moments to extend learning. Furthermore, mathematical activities were mostly 
considered developmentally inappropriate, except when they were integrated 
with activities such as building with blocks or playing with sand or water.

The NAEYC position statement had a profound impact on ECE in the US 
(although more explicit early childhood mathematics instruction was employed 
elsewhere, e.g., Aubrey 1997). The defi nition of DAP was quickly incorporated 
into policy. For example, in October 1986, the New York City Agency for Child 
Development (ACD) used the NAEYC position statement to create a program 
assessment instrument to assess DAP in over 350 center-based child care centers in 
New York City.

However, as the century turned, important political and social tensions were 
brewing in the US that would have a critical effect on ECE. For example, the fed-
eral ‘No Child Left Behind’ legislation (2001) strengthened accountability require-
ments for the academic achievement of elementary and secondary students. And 
the country had also become engaged in school reform driven by standards set not 
only by professional organizations but also by the federal and state governments.

Of equal importance was research on cognition, learning, and child develop-
ment during the last half of the 20th century. In 1999, the National Research Council 
commissioned the Committee on Early Childhood Pedagogy to review behavioral 
and social science research that had clear implications for the education of young 
children. The fi ndings from this extensive report – Eager to Learn: Educating our 
Preschoolers – indicated that young children were more capable learners than the 
current practices refl ected and that more challenging educational practices in the pre-
school years could have a positive impact on school learning (Bowman et al., 2001).

For example, considerable research (Ginsburg et al., 2006) has shown that 
young children develop a relatively powerful ‘informal’ mathematics before 
they enter school. They can competently deal with some very abstract ideas 
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(Ginsburg & Ertle, 2008), such as cardinality (Gelman & Gallistel, 1986) and 
addition (Brush, 1978; Groen & Resnick, 1977). Indeed, contrary to some inter-
pretations, Piaget did not propose that young children were totally ‘concrete’ 
in their thinking. In fact, Piaget claimed that in many respects young children 
were overly abstract (Piaget & Inhelder, 1969). Taken as a whole, contemporary 
research suggests that young children are capable of learning more challenging 
and abstract mathematics than are usually assumed. It is therefore not necessar-
ily developmentally inappropriate to engage in EME (although like anything 
else, the teaching of early mathematics can be done badly).

Research has shown that not only are children capable of learning challeng-
ing mathematics but doing so can be useful, and indeed essential, for subsequent 
education (Bowman et al., 2001). Recently, Duncan et al. (2007) showed that 
early mathematics skills are even more powerful predictors of later school suc-
cess than reading abilities. Research has also shown that early intervention pro-
grams can be effective in reducing achievement disparities in mathematics (e.g., 
Dowker, 2001; Reynolds, 1995), suggesting that beginning instruction as early 
as possible could potentially reduce or prevent later mathematical diffi culties 
and the need for remediation. EME can play a major role in preparing children 
for later success in school.

In 2000, the National Council of Teachers of Mathematics (NCTM) responded 
to research fi ndings like these by including pre-kindergarten (pre-k) in its newest 
Standards document, Principles and Standards for School Mathematics. In 2002, 
NAEYC partnered with NCTM on a joint position statement which outlined rec-
ommendations for the teaching of mathematics in the pre-k classroom (NAEYC/
NCTM, 2002). Like earlier NAEYC position papers, the statement endorsed pro-
moting learning through play in rich environments, utilizing teachable moments 
to extend learning, and even adult-guided learning experiences like theme-based 
projects. But the document also took the important, and to some, radical position 
of stating that these types of learning experiences are not enough. The teach-
ing of mathematics needs also to involve an organized curriculum presenting 
deep mathematical ideas in a coherent, developmental sequence that utilizes and 
builds on children’s prior learning and experiences.

Together, the NAEYC/NCTM position statement and the NCTM preschool 
standards, based as they were on the research literature, then set the groundwork 
for the design of developmentally appropriate early mathematics curricula in the 
US, including Number Worlds (Griffi n, 2000), Pre-K Mathematics (Klein et al., 
2002), Big Math for Little Kids (Ginsburg et al., 2003), Building Blocks (Sarama & 
Clements, 2004), and a Head Start curriculum (Sophian, 2004). Other countries 
have also seen the recent emergence of early mathematics curricula and inter-
vention programs (Dowker, 2001; Kaufmann et al., 2003; Van de Rijt & Van 
Luit, 1998; Young-Loveridge, 2004).

In April 2002, the Good Start, Grow Smart initiative – the early education 
reform companion of the No Child Left Behind Act (2001) – called for feder-
ally funded programs to develop early learning goals that specifi ed the skills and 
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competencies that preschool children should possess before starting school. The 
initiative is intended to stimulate increased attention to the teaching of mathe-
matics, among other subjects.

But content standards, goals, and curricula exert effects beyond expecta-
tions for children. They also change what we require of practitioners. The new 
policies – which represent a radical shift in perspective for many preschool 
teachers and ECE professionals – require teachers to engage in a more rigor-
ous, intentional, and organized approach to early childhood mathematics educa-
tion than was previously employed. This in turn requires extensive professional 
development: the quality of classroom practice is signifi cantly related to teach-
ers’ education and training (Pianta et al., 2005). Yet the educational background 
of the ECE workforce in the US is weak – only 20–30% of center-based pre-
school teachers hold a bachelor’s degree (Brandon & Martinez-Beck, 2006). 
Therefore, some federal and state programs now require higher degrees of prepa-
ration for their early childhood practitioners (Martinez-Beck & Zaslow, 2006).

In brief, new research on children’s abilities and social pressures have resulted 
in a serious movement in the US to raise standards and expectations for EME, to 
create new programs of EME, to enhance those already in place, and to provide 
a teaching force that can implement the programs effectively.

As professionals attempt to implement EME on a wide scale, especially for 
low-income children, several challenges arise that must be successfully addressed 
if we are to achieve our goals. This chapter describes those challenges and the 
means for meeting them. We fi rst discuss the content of EME. It is much deeper, 
wider, and more abstract than ordinarily assumed. Next we examine the several 
components of early mathematics which are now recommended. EME involves 
far more than letting children play with rich materials. We show how necessary 
educational activities include free play, the teachable moment, projects, and cur-
riculum. The last of these is the most poorly understood, but potentially the most 
powerful (and still developmentally appropriate). The nature of desirable math-
ematics teaching for little children is also poorly understood. We show that in 
some ways it is similar to teaching at any grade level. Given our analyses of the 
mathematics to be taught, the major components of EME, and good teaching, 
we then examine teachers’ conceptions about EME. We show that they tend to 
favor social and emotional development over academic subjects such as mathe-
matics, and many are resistant to the EME movement. But these conceptions are 
linked to content knowledge and are entangled with socioeconomic status (SES). 
Then we consider the quality of current EME teaching and teachers’ readiness to 
teach mathematics. We show that current teaching practices are often very poor 
and that considerable professional development is required to improve them. We 
discuss key features of professional development that have been shown to be 
useful. To illustrate the challenges of creating and implementing a program of 
professional development for poorly trained early childhood teachers in an inner-
city setting, we describe and discuss an example, the Big Math for Little Kids 
professional development program conducted at a city-funded ECE agency in 
New York City. Finally, we discuss the implications of our fi ndings and provide 
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recommendations for helping a district or an agency set up a plan for profes-
sional development in EME.

THE CONTENT OF EARLY MATHEMATICS

In many of today’s early childhood classrooms and day care centers, chil-
dren’s exposure to mathematics content is fairly narrow, often limited to the 
learning of small numbers and simple shapes (Balfanz, 1999). However, EME 
should not be limited to such topics. The leading professional organizations now 
recommend that EME involve ‘big ideas’ of mathematics in the areas of number, 
geometry, measurement, and algebra – particularly pattern (NAEYC/NCTM, 
2002; NCTM, 2000). These areas encompass some very deep mathematics, even 
at the level appropriate for young children (Ginsburg & Ertle, 2008). Number, 
for example, includes such concepts as the counting words (‘one, two, three,…’), 
the ordinal positions (‘fi rst, second, third,…’), the idea of cardinal value (how 
many are there?), and the various operations on number like addition and sub-
traction. Even if we examine only elements of number commonly presented in 
today’s early childhood classrooms, the depth of the mathematics can be made 
evident. Consider the counting words and enumeration (determining how many).

Before we can determine ‘how many’ are in a group of objects, we fi rst need 
to know the counting words (in English, ‘one, two, three,…’). In most lan-
guages, the fi rst ten number words or so are completely arbitrary, but beyond 
that they assume a pattern, as most languages use a base-ten system to organ-
ize numbers. Consequently, despite the need to memorize the fi rst ten numbers, 
learning to count is not merely an act of memorization. It involves learning the 
building blocks of an elegant pattern, derived from the base ten system, that once 
understood, permits counting to very high numbers with little additional memo-
rization. For example, the counting words are organized into groups of tens and 
ones, and the names for the tens are derived from the names of the units. Once 
the names for the tens (ten, twenty, thirty,…) are known, the unit words (one, 
two, three,…) can easily be appended. The result is a simple and elegant  pattern, 
which is even simpler and more elegant in East Asian languages (Miller & 
Parades, 1996). However, when children fi rst tackle the act of counting, the very 
elements that make the counting system so simple to adults are not yet known. 
Children must grapple with memorizing the fi rst set of numbers and with try-
ing to understand why a fi xed order is required before its necessity and utility 
become apparent in the elegance of the system.

Once the counting words are known, they can then be used to enumerate, or 
‘count’ a group of objects. Enumeration also entails a number of underlying com-
plexities that many adults take for granted. One is the idea that a group of things 
to be counted can contain any variety of things – real or imagined; they do not 
have to be limited to similar objects, like the set of three red circles that children
are commonly presented with. But possibly the most diffi cult idea for a child 
to grapple with when counting a set of objects is that the numbers do not
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specifi cally name the items being counted; instead they describe the cardinal 
value of the items. So when counting a set of three objects – a ball, a blue car, and 
a wood block – you may point to the ball and say ‘one,’ the car and say ‘two’, the 
block and say ‘three,’ but you could just as easily begin counting with the block. 
A child must come to understand that pointing to the objects and saying ‘one, two, 
three’ is different in a crucial respect from pointing to them and saying ‘round,’ 
‘blue,’ and ‘wood.’ Names designate objects; counting words refer to quantity.

And that is just the beginning of the depth of the ideas found within the 
domain of number. The other areas of mathematics contain equally deep ideas 
and complexities. Early mathematics is both basic and deep. And as we have 
seen, young children can deal with ideas like these, even without explicit instruc-
tion (Ginsburg et al., 2006).

THE DIFFERENT COMPONENTS OF EARLY 
MATHEMATICS

If early mathematics is deep, how should it be taught? A new NAEYC guide 
clarifi es guidelines for DAP (Copple & Bredekamp, 2006): ‘The idea that there 
is very little or no structure in a DAP classroom is a misconception. Again, in 
reality the opposite is true. To be developmentally appropriate, a program must 
be thoughtfully structured to build on and advance children’s competence’ 
(p. 60). The issue then arises as to the form this structure should take.

Drawing in part on the Joint Position Statement (NAEYC/NCTM, 2002), we pro-
pose fi ve levels of classroom structure necessary for promoting mathematics learn-
ing: a rich environment, play, the teachable moment, projects, and curriculum.

The fi rst is the environment. The preschool classroom (or ‘day care center’ –
we use the terms synonymously) should contain a rich variety of materials that can 
afford mathematics and other learning. It should be divided into areas such as blocks, 
water table, and science table which encourage children’s play, exploration, and dis-
covery. There has never been much controversy about the need for a rich environ-
ment. Widespread agreement on this requirement has resulted in the extensive use 
of the Early Childhood Environment Rating Scale (ECERS) (Harms et al., 1998), 
which mainly provides a rating of the quality of the preschool classroom environ-
ment. But a rich environment by itself is not enough. The crucial factor is not just 
what the environment makes possible, but what children do in a rich environment.

The second important component of EME is play. We know that children 
do indeed learn a good deal of everyday mathematics on their own (Seo & 
Ginsburg, 2004). Play provides valuable opportunities to explore and to under-
take activities than can be surprisingly sophisticated from a mathematical point 
of view (Ginsburg, 2006), especially in block play (Hirsch, 1996). Play is essen-
tial for children’s intellectual development generally and for mathematics learn-
ing in particular. But play is not enough. Children need experiences beyond the 
play to help them learn even more – especially how to communicate about their 
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experiences and how to see them in explicit mathematical terms. Consequently, 
some degree of adult guidance is necessary.

The third component of EME is the teachable moment, a form of adult guid-
ance that enjoys widespread acceptance in the preschool world. The teachable 
moment involves the teacher’s careful observation of children’s play in order 
to identify the spontaneously emerging situation that can be exploited to pro-
mote learning. The Creative Curriculum program (Dodge et al., 2002), which is 
extremely popular in the US, relies on use of the teachable moment.

No doubt, the teachable moment, accurately perceived and suitably addressed, 
can provide a superb learning experience for the child. But there are good rea-
sons to believe that in practice the teachable moment is not an effective educa-
tional method or policy. First, most preschool teachers spend little time in the 
careful observation necessary to perceive such moments. Teachers tend to man-
age behavior during free play (Kontos, 1999) or to spend very little time with 
children during free play (Seo & Ginsburg, 2004); in practice, teachers do not 
even attempt to exploit teachable moments. Second, it is very hard to know what 
to do when such moments arise, especially in the unlikely event that a teacher is 
able to recognize the deep mathematical issues with which many children may 
engage. The teachable moment demands considerable and rapid creativity –
a quality in short supply in all professions. It therefore seems grossly unfair to 
expect teachers to rely on the exploitation of teachable moments as the primary 
component of mathematics education. Third, extensive reliance on the teacha-
ble moment is an impractical educational policy. How can a teacher manage all 
the teachable moments (even if she were able to notice them) that might arise 
among the 15 or 20 or 25 children in a classroom during the course of a year? 
The task seems virtually impossible and would seem to be a less than ideal way 
of responding to young children’s intellectual needs. In brief, exploiting the 
teachable moment is wonderful if it can be done, but usually teachers do not 
try to notice teachable moments, could not respond effectively to such moments 
even if noticed, and could not manage all those that could be noticed.

A fourth component involves projects (Katz & Chard, 1989). Projects are 
intended to engage children in extensive teacher initiated and guided explorations of 
complex topics related to the everyday world, like fi guring out how to create a map 
of the classroom. A project of this type can involve consideration of measurement, 
space, perspective, representation, and a whole host of mathematical and other ideas 
(e.g., scientifi c) which have very practical application and appeal. They can help chil-
dren learn that making sense of real-life problems can be stimulating and enjoyable.

Although projects can be enormously effective, they are not suffi cient unto 
themselves:

Teachers should ensure that the mathematics experiences woven throughout the curricu-
lum follow logical sequences, allow depth and focus, and help children move forward in 
knowledge and skills. The curriculum should not become… a grab bag of any mathematics-
related experiences that seem to relate to a theme or project. Rather, concepts should be 
developed in a coherent, planful manner (NAEYC/NCTM, 2002, p. 10).
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Some kind of ‘intentional curriculum’ (Klein & Knitzer, 2006) is therefore 
necessary. Direct, intentional literacy instruction is particularly important in sup-
porting achievement gains for low-SES children (Hamre & Pianta, 2005); the 
same is likely to be true for EME.

A mathematics curriculum, the fi fth component, involves a sequence of 
planned activities designed to help children progress through the learning of key 
mathematical ideas throughout the year. The Big Math for Little Kids curriculum 
(Ginsburg et al., 2003), which provides the illustrative material for this paper, 
engages children fi rst in learning key concepts of number, then shape, pattern, 
measurement, operations on number, and then space. Activities are offered for 
each day of the school year. Within each of the larger topics, the activities are 
arranged in order of diffi culty, as indicated by research on the developmental 
trajectories of children’s mathematics learning. Thus, in the case of number con-
cepts, children fi rst begin to learn number words, then encounter concepts of car-
dinal number, representation, and next ordinal number, in that rough order. Later 
activities revisit earlier concepts, for example, as when shape activities involve 
analysis of shapes into numbers of sides, and practice in several activities (like 
counting) is provided throughout the year. Research on the curriculum’s effec-
tiveness is currently underway.

In brief, EME involves a hierarchy of components. Adults provide the fi rst two 
but do not intervene directly in them: a rich environment and the opportunity to 
play. But adults do take a more direct role in the next three components, the teach-
able moment, the project approach, and especially the curriculum. Consequently, 
the success of these components depends on the quality of teaching.

WHAT IS GOOD EARLY MATHEMATICS 
TEACHING?

Quality teaching in preschool resembles good teaching in the early elemen-
tary grades. The best preschool programs are those in which children are sys-
tematically, regularly, and frequently engaged in a mix of teacher-led and 
child-initiated activities that enhance the development of knowledge and skills 
(Barnett & Belfi eld, 2006). Also, teachers in quality classrooms show familiar-
ity with children’s academic needs, are sensitive toward individual children, and 
modify lessons and activities to fi t the emotional and the academic needs of their 
students (Rimm-Kaufman et al., 2005). They also tend to promote children’s learn-
ing through scaffolding and support and offer appropriate questioning and feedback 
(Rimm-Kaufman et al., 2005). Good teachers also prepare carefully, understand the 
mathematics they teach (Ma, 1999), motivate their students with games and inter-
esting activities, employ useful materials and manipulatives and exploit their poten-
tials for teaching ideas (Williams & Kamii, 1986), possess the pedagogical content 
knowledge necessary for implementing lessons effectively (Shulman, 2000), encour-
age language (Klibanoff et al., 2006) and metacognition (Bodrova & Leong, 1996), 
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and blend formative assessment with teaching (Bransford et al., 1998). Good 
teachers also assign children to appropriate size groups – whole class, small 
group, and individual – depending on the nature of the activity.

Although early mathematics teaching has seldom been studied, perhaps 
because it is seldom done, quality teaching of young children is likely to have 
many of the characteristics identifi ed in the context of elementary education.

TEACHERS’ CONCEPTIONS ABOUT EME

Given that ECE has not until recently emphasized the systematic teaching of 
mathematics, many teachers, administrators, and policymakers have not had to 
think about what it means to teach mathematical content. Perhaps this explains 
why many EC teachers believe that focusing on social and emotional develop-
ment is most appropriate for young children and that academic subjects, such 
as mathematics, are less important (Ackerman & Barnett, 2005; Graham et al., 
1997; Kowalski et al., 2001; Lee & Ginsburg, 2007; Wesley & Buysse, 2003). 
Many early childhood educators think that it is developmentally inappropriate 
to teach children numbers and alphabet, to engage them in direct instruction, or 
to require them to participate in an activity. Play and self-directed activities are 
emphasized as the overarching principles of ECE. Many early childhood prac-
titioners believe that teachers should intervene as little as possible and allow 
children to explore and play without adult guidance or support (Bowman, 2001). 
This view may have resulted in part from overly enthusiastic acceptance of the 
early NAEYC position paper (Bredekamp & Copple, 1986).

But other beliefs not necessarily related to the issue of DAP also play a role 
in teachers’ conceptions and attitudes toward early mathematics teaching. For 
example, we have observed many pre-k teachers and administrators to believe 
that their role is simply to ‘prepare’ children to learn math but not to really teach 
math. They believe that ‘real’ learning begins in elementary school. Beliefs like 
these have a strong infl uence on EME.

Teachers’ content knowledge also plays a role in their beliefs. Early elemen-
tary teachers who seem to understand the mathematics they teach tend to have 
more optimistic expectations of their students’ knowledge of mathematics than 
do teachers who are not comfortable teaching mathematics (White et al., 2004). 
And it appears that many early childhood teachers are quite uncomfortable 
teaching early mathematics.

Socioeconomic status of teacher and child also plays a role in teacher beliefs. 
Pre-k teachers of low-income children are more likely to place a high priority on 
academic learning and working toward math and literacy goals whereas teachers of 
middle-SES children are more likely to value social development (Lee & Ginsburg, 
2007). Many early childhood teachers, especially those from middle-SES back-
grounds, have been trained not to teach content in explicit ways, but rather to focus 
on the social–emotional functioning of the children (Kowalski et al., 2001).
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Teachers’ beliefs about teaching practices are also infl uenced by their experi-
ences working with children and their families (Williams, 1996). In this context, 
it does not seem surprising that the teachers of low-SES children favor structured 
and deliberate mathematics instruction (Lee & Ginsburg, 2007). ‘Like it or not, 
their parents insist on this and so do many politicians’ (Ginsburg & Ertle, 2008, 
p. 3). Children from low-income families begin kindergarten a year to a year and a 
half behind their middle-class peers so there is more pressure on low-SES teachers 
to transform their students’ education and improve their knowledge (Stipek, 2006).

In summary, many early childhood teachers believe that teaching mathemat-
ics is developmentally inappropriate for various reasons. This is an important 
obstacle to overcome in implementing effective EME.

HOW GOOD IS EARLY MATHEMATICS 
TEACHING? ARE TEACHERS READY FOR IT?

Although we have some ideas about what EME should entail in terms of con-
tent and components, little is known about how mathematics is actually being 
taught in preschool classrooms. The small amount of available research suggests 
that current preschool mathematics teaching is not at the level needed.

Childcare teachers teach mathematics in minimal, unconnected, and sporadic 
ways (Graham et al., 1997). Preschool classrooms generally provide moder-
ately high levels of emotional support but fairly low levels of instructional 
support, especially with regard to concept development and feedback (La Paro
et al., 2004). In fact, Pianta and La Paro (2003) characterize EC environments 
as being ‘socially positive but instructionally passive’ (p. 28). We have already 
shown that preschool teachers seldom acknowledge, let alone build on, mathe-
matical ‘teachable moments’ that come up during their interactions with children 
(Kontos, 1999; Seo & Ginsburg, 2004).

In addition, mathematics may be taught differently in classrooms of low-SES 
children than that of higher-SES children. For example, teachers serving eco-
nomically disadvantaged students often devote less time and emphasis to higher-
level thinking skills important in learning mathematics than do teachers serving 
more advantaged students (Copley and Padron, 1998).

Given that early mathematics teaching does not appear to meet the current 
recommendations, though, we must examine whether teachers are actually ready 
and able to meet the recommendations. In other words, do they have the neces-
sary knowledge, skills, and resources with which to teach mathematics?

The answer to this question is also deeply entangled with SES. For example, 
in addition to the SES role in prioritization of content versus social–emotional 
foci, teachers of low- and middle-SES children differ in terms of their educa-
tional backgrounds and experiences (Lee & Ginsburg, 2007). Teachers of low-
SES children tend to have less teaching experience and lower levels of education 
than teachers of middle-SES children. Therefore, although teachers of low-
income children tend to place greater importance on teaching math, ironically 
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they tend to lack the training and experience that might help them to teach it. 
Also, classrooms for low-SES children are generally of poorer quality than those 
for middle-SES children (Pianta et al., 2005), suggesting inadequate resources 
with which to teach early mathematics.

Research on the teaching of mathematics at the elementary level may also 
provide insight into preschool teachers’ readiness to teach mathematics. Despite 
requisite schooling and credentialing, elementary teachers often do not have the 
deep knowledge necessary for teaching mathematics (Ma, 1999). Given that the 
ECE credentialing requirements are even lower than those for elementary school 
teachers, and given prior lack of attention to mathematics education in ECE, it 
seems likely that EC teachers would be less prepared than elementary teachers 
to teach mathematics.

Further, Copley and Padron (1998) found that although EC teachers generally 
like teaching reading and other language-oriented skills, they fi nd math and/or 
science to be diffi cult subjects, ones they feel unable to teach. They are likely 
disinclined to give it the time and attention it needs. We have encountered this 
phenomenon in the teachers with whom we have worked. One teacher, in fact, 
felt so intimidated by the prospect of teaching mathematics that she turned the 
task over to her assistant teacher for much of the fi rst year of our work together. 
And this occurred despite the fact that she attended our professional develop-
ment workshops to develop her mathematical understanding and readiness to 
teach. This comes in sharp contrast to her later testimonial – after a year’s expe-
rience with the program and her gradual increase in understanding and confi -
dence – of how much she loved teaching math, how much her students loved 
math, and how math had become a part of each day in her pre-k classroom. This 
provides a promising indication that, with appropriate professional development, 
preschool teachers’ beliefs and practices regarding mathematics teaching can 
change as their understanding and confi dence is increased.

THE STATUS OF EME PROFESSIONAL 
DEVELOPMENT

Just as with later schooling, successful preschool programs offer ongoing pro-
fessional development (Bowman et al., 2001; Klein & Knitzer, 2006; Pianta, et. al.,
2005). Despite this, little is being done to better prepare preschool teachers to 
teach mathematics. Most EC teacher preparation programs require just one 
course in mathematics education, and, more often than not, such courses do 
not even focus on early childhood (Ginsburg et al., 2006; Sarama & DiBiase, 
2004). Further, few early childhood professional development programs focus 
on mathematics at all (Copley & Padron, 1998; Martinez-Beck & Zaslow, 2006). 
Instead, most professional development programs aim to give general characteri-
zations of developmentally appropriate curricula, to help build pre-literacy skills, 
to share classroom management techniques, and to improve children’s social and 
emotional development (Copley and Padron, 1998).
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The Good Start Grow Smart Early Childhood Initiative of the No Child Left 
Behind Act of 2001 also neglected mathematics professional development. 
Although the initiative states the importance of teaching and assessing ‘numer-
acy’ skills, it only provides Head Start teachers with opportunities to receive pro-
fessional development aimed at improving early literacy. Therefore, despite the 
current demands for implementing and improving EME, little support is being 
provided to ensure its success.

Regardless of the lack of support for developing and providing professional 
development in EME, efforts have been made to defi ne the requirements of 
effective mathematics professional development, primarily at the elementary 
level. Various academics, educators, and policymakers have created or assem-
bled standards and guiding principles for effective professional development in 
mathematics (Lee, 2001; Loucks-Horsley et al., 1996; NAEYC/NCTM, 2002; 
NCTM, 1991). For example, NCTM (1991) defi ned a set of six standards for the 
professional development of teachers of mathematics. These standards include 
experiencing good mathematics teaching, knowing mathematics and school 
mathematics, knowing students as learners of mathematics, knowing mathemati-
cal pedagogy, developing as a teacher of mathematics, and the teacher’s role in 
professional development. The joint NAEYC/NCTM (2002) position statement 
further attempted to clarify the characteristics of effective EME professional 
development. It states that in-service professional development has the most 
impact on teacher learning if it includes opportunities for teachers to network or 
form study groups, sustained and focused opportunities for learning, collective 
participation of staff who work in similar settings, content focused both on what 
and on how to teach, active learning techniques, and opportunity for professional 
development to be seen as a part of a coherent program of teacher learning.

One might believe that effective teacher training will simply result from 
school districts, government agencies, and policymakers using such standards 
or guidelines to create and implement professional development programs. 
However, this may be wishful thinking. After attending 13 professional develop-
ment sessions and relating the workshops’ content to eight common and measur-
able standards, Hill (2004) noticed that some of the workshops that met many 
of the standards lacked substance. They only briefl y examined the mathematics 
content and student learning. Other workshops that met fewer standards actually 
delved more deeply into the math content and student learning. She concluded 
that a professional development program’s adherence to the standards does not 
ensure workshop quality. Moreover, the current standards lack the necessary 
substance to help teachers, school districts, or policymakers to create, identify, 
or implement effective professional development.

We agree. Effective workshops need to offer more substance than the various 
Standards seem to propose. Preparing teachers and their supervisors for EME 
requires helping them to understand the necessary mathematics, children’s learn-
ing and thinking, and pedagogical principles, all in the context of specifi c cur-
riculum activities. It is to this topic that we turn next.
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AN EXAMPLE: BIG MATH FOR LITTLE KIDS

It is within this interesting and challenging context that the Big Math for Little 
Kids (BMLK) curriculum and professional development program was introduced 
to a group of teachers from the New York City Administration for Children’s 
Services Division of Child Care and Head Start (ACS DCCHS) centers. When 
the program fi rst began, many of the teachers admitted to suffering from ‘math 
phobia.’ But they had also learned from academic test results that their chil-
dren’s mathematical competencies were lagging, and they passionately wanted 
to improve their chances for later school success (Cordero, 2004). At the same 
time, despite their desire to embrace a math program that would benefi t their 
children, they questioned whether such a program was developmentally appro-
priate. They questioned whether their 4-year-old children were capable of learn-
ing the mathematics covered in the curriculum.

Our work with these teachers resulted in many surprises. As expected, we 
encountered resistance, but we also encountered enthusiasm, a willingness 
to learn, great learning potential, and a deep desire to help their children suc-
ceed in school. We witnessed amazing changes in attitudes, beliefs, and behav-
iors. In fact, it has been our experience that teachers who complete the BMLK
professional development program become strong advocates for introducing 
content-oriented mathematics into the ECE. But before describing the program 
of professional development, we provide background on BMLK.

BIG MATH FOR LITTLE KIDS – AN OVERVIEW

BMLK is a pre-k and kindergarten curriculum developed with funding from the 
National Science Foundation (Ginsburg et al., 2003). It was developed to provide 
children with a developmentally appropriate and research-based curriculum that 
would help prepare them for elementary school. It was also developed with the 
premise that although mathematics learning in early childhood is different from 
what it is during later years, it still can engage children in deep thought.

BMLK provides teachers with many different opportunities to help their chil-
dren learn ‘Big Math’ concepts. First, the curriculum offers teachers a sequenced, 
extensive, and in-depth coverage of various mathematical concepts. Second, 
the curriculum provides teachers direct ways to connect literacy, language, and 
mathematics. Finally, the curriculum presents opportunities for math learning to 
directly connect from the classroom to the home.

The BMLK curriculum covers six units: number, shape, patterns and logic, 
measurement, number operations, and space. Each of these math concepts is 
introduced in the pre-k curriculum and further developed in the kindergarten cur-
riculum. In the number unit children learn to say the counting sequence, to use 
a number to tell how many (cardinality) and to use ordinal numbers to identify 
positions in a line (ordinality). In the shape unit children learn the names and 
important attributes of two- and three-dimensional shapes as well as the concept 
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of symmetry. The patterns and logic unit gives children experience with patterns 
involving sound, color, shape, letters, and numbers. Children also learn to rea-
son logically through the use of clues. In the measurement unit children develop 
basic measurement principles as they investigate length, weight, capacity, tem-
perature, time, and money. The number operations unit extends children’s under-
standing of number by introducing addition, subtraction, multiplication, and 
division concepts through manipulatives, stories, and games. In the spatial rela-
tions unit children learn to identify positions in space, navigate through space, 
and represent space using maps.

Teachers are meant to teach BMLK lessons throughout the year on a daily 
basis for �15–30 minutes. Lessons involve playing games, reading storybooks, 
and engaging in activities with children. They include many manipulatives and 
other ‘hands on’ materials for children to explore and manipulate, and many 
opportunities to interact with the other children in the classroom. The curricu-
lum provides explicit learning goals and outcomes, and suggestions for different 
ways that teachers can assess their children’s mathematical understanding.

The curriculum also aids in deepening children’s mathematical concepts by 
providing connections between language, literacy, and mathematics. Every 
activity has a list of mathematical terms that teachers should use and introduce 
to children, and each unit’s storybook helps to link literacy and mathematics by 
allowing children to explore mathematical concepts with characters in the story.

The program further attempts to foster language development by encouraging 
children to explain, justify, and communicate their mathematical ideas. Teachers 
have reported that this is one of their favorite parts of the curriculum (Cordero, 
2004). As one teacher stated ‘What’s so surprising is that kids use these words 
now… it’s part of their everyday vocabulary.’ Comments like these have led us 
to believe that BMLK is not just a mathematics curriculum but also a literacy 
curriculum ‘in disguise.’

PROFESSIONAL DEVELOPMENT WORKSHOPS 
FOR BMLK

Our workshops – developed and piloted over a 3-year period – begin in 
the summer with a one-day intensive introduction and include both teachers 
and administrators. This meeting is important for several reasons. First and 
foremost, it describes the overall structure of the program, allowing partici-
pants to become acquainted with the scope of the program and the expecta-
tions involved as they mentally prepare for the shifts in thinking that will be 
required. Secondly, some actual activities from each unit are covered, giv-
ing participants an idea of the kind of learning and teaching involved. This 
is particularly important in allowing both teachers and administrators to see 
how intentional mathematics teaching can be developmentally appropriate 
and enjoyable at the same time. Finally, it gives the participants an introduc-
tion to us, the people involved with creating and implementing the workshops, 
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 helping to create a community with a mutual interest in the improvement of 
 mathematics education for young children.

The eight workshops that follow the summer introduction are all conducted 
in a similar structure. They begin with a short conversation about the previous 
month’s workshop, to fi nd out how the teachers fared with the curriculum thus 
far. These conversations offer a kind of ‘warm-up’ for the conversations intended 
for the rest of the workshop and help to establish the kind of atmosphere we 
hope to engender. In our experience, we fi nd that treating these workshops less 
as lectures, and more as ‘conversations among colleagues,’ helps to make the 
experience more worthwhile and memorable for everyone involved. Not only 
do the teachers get a sense of self-importance from these interactions (which is 
so rare for most inner-city preschool teachers), but also we, the researchers, get 
a sense of their understanding of the content. In addition, this stylistic choice 
refl ects the BMLK curriculum itself; workshop leaders, in a sense, model for 
the teachers the kind of respect, group-learning, and open-ended questions with 
which we hope that they will engage their own students.

Following this ‘debriefi ng,’ teachers are presented with a ‘challenge question.’ 
Originally initiated as a simple form of evaluation of the teachers’ knowledge, 
each challenge question presents a mathematical scenario with various student 
responses, which teachers are asked to evaluate. The responses are designed to 
elicit many possible interpretations and provide insight into teachers’ knowledge 
of the mathematics, children’s understanding of the mathematics, and the assess-
ment and teaching of the mathematics. Surprisingly, the fi rst challenge question 
left a great impression on the workshop attendees. Given their embrace of this 
unintended learning experience, we received such strong positive feedback from 
the teachers that we decided to include similar ‘challenge questions’ followed by 
discussion as a regular part of the workshop structure.

Next we turn to the content of the current unit. Although each workshop is 
unique, each begins with a look at what young children already know and under-
stand about the math topics being presented. This is accomplished with exami-
nation of video clips of children in naturalistic play and exercises conducted to 
exemplify these ideas. For example, to demonstrate how diffi cult it is to memo-
rize the counting numbers from 1 to 20 in English, we ask the workshop attend-
ees to attempt to learn these counting words in a language such as Tagalog, from 
the Philippines. They fail. This kind of exercise offers insight into the nature of 
the challenge preschoolers face when they learn counting.

After considering what kind of knowledge the children might already have 
in the topic under consideration, we look at the mathematical content of the 
unit. This is where goals for the unit are covered, and we discuss the mathe-
matical ideas involved. While most who are unfamiliar with preschool math 
might assume that this part of the workshop is unnecessary because the math-
ematical content is trivial, the discussion often produces profound revelations 
for the teachers, many of whom have never considered the complexity of what 
is being taught. For example, many of the workshop attendees have never before 
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 considered that a square is actually a special type of rectangle. Content knowl-
edge like this is discussed and debated. In fact, some of these conversations have 
even forced us, the researchers, to debate and investigate some mathematical 
quandaries that arise. For example, we found it very diffi cult to defi ne clearly 
what a pattern is. Try it.

After an examination of the content, we discuss key unit activities (not all). 
They are addressed in a variety of ways: through role playing, discussions about 
various aspects of the activity, and examining video clip examples. Throughout 
these activities, we discuss issues of pedagogy, methods of assessment, grouping 
of children, and construction of materials. This allows teachers to get a realistic 
sense of the key activities, so that they leave with the confi dence to return to 
their classrooms and teach them.

WHAT WE HAVE LEARNED ABOUT PROFESSIONAL 
DEVELOPMENT

We constructed our workshops by following guidelines and principles of 
good professional development seen in the fi eld. But in the process of devel-
oping and implementing our workshops, we also discovered several additional 
guiding principles that we feel are key to successful professional development 
(Morgenlander & Manlapig, 2006).

Principle 1: Teachers are professionals and should be treated as such. In our 
workshop environment, we try to show professional respect for teachers 
and their knowledge. By purposefully setting up time for teachers to have 
conversations with one another regarding how to connect ideas from the 
presentation and actual classroom practice, we step back as experts and 
allow the teachers’ expertise to come to play.

Principle 2: Teachers may have a fear of math. Many of the teachers attending 
these workshops have confessed to a fear of teaching math prior to 
participating in these workshops. It is important to consider such fear when 
we design our workshops. Our hope is that the workshops give teachers a 
comfort zone by showing examples on video, by explaining and discussing 
math concepts, and by having them try out math activities in a peer-group 
setting. We believe that all this will help them overcome math phobias.

Principle 3: Teacher incentives help. Although the teachers who have 
attended these workshops have all chosen to be there – they want to learn 
how to teach mathematics to their preschoolers – we recognize that the 
time to attend competes with all of the other demands on their time. As 
such, we want to make attendance as worthwhile as possible by offering 
incentives. We offer breakfast, ‘on-time prize’ for those who arrive on 
time, and ‘take-away’ items that are useful for teaching the mathematics 
content of the unit. Offering these incentives serves to boost attendance 
and bolster relationships between workshop presenters and teachers, 
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both of which are important to the success of a long-term professional 
development program.

Principle 4: Allowing time for thoughtful discussions is important. Teachers 
often remark that one of the most helpful portions of each workshop is 
the discussion they have with other teachers. Our goal is to provide an 
environment where conversations about mathematics, children’s thinking, 
and the curriculum can occur. These discussions are helpful for working 
out connections between the workshop topics and the realities of the 
classroom. In addition, discussions can also serve to encourage teachers 
who are hesitant to implement change.

Principle 5: Thoughtful discussions result from constant facilitation. 
Although discussion time is important, it also requires facilitation, which 
presents many challenges and unknowns into each workshop. On one hand, 
teachers often have great advice, insight, and knowledge to offer both the 
workshop presenter and other teachers. On the other hand, some teachers 
may want to discuss topics that can detract from the primary goals of the 
workshops. It is the responsibility of the workshop leader to set up and 
direct the conversation so that deep and meaningful conversation related to 
the workshop’s goals occurs.

Principle 6. The use of video is crucial. Many workshops involve activities 
with hands-on manipulatives so that mathematics can be made concrete 
and ‘real.’ But videos offer other benefi ts. They can illustrate lessons 
in classrooms. They can show examples of children’s behavior and 
thinking. They can be played and replayed, argued, and interpreted. They 
are in effect another kind of ‘manipulative’ that can be used to promote 
understanding of teaching, lessons, and children.

Principle 7. Each workshop should cover the mathematics, the child, and 
the activities to be taught. We have found that our practice of covering 
each of these topics, and relating them to each other, provides a practical 
perspective on teaching. Teachers need to understand the mathematics 
to be taught, but often do not. They need to understand how the child 
thinks about specifi c mathematical ideas, but they often do not go beyond 
vague (and we think virtually useless) platitudes about constructivism or 
cognitive development, for example that children are ‘concrete.’ And they 
need to learn how knowledge of the mathematics and understanding of the 
children need to be embedded in the teaching of lessons.

Principle 8. Theoretically grounded specifi city is the key. Some workshops 
we have seen are mere collections of activities. They can be useful 
if teachers understand how and why to use them. But these ‘low-
level’ workshops seldom explore these matters in any depth; they 
lack a conceptual framework for understanding the activities to be 
undertaken. Other, ‘high-level’ workshops traffi c in abstract principles 
like constructivism or DAP. These principles can be useful if teachers 
understand how they relate to the teaching of specifi c activities. Yet the 
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high-level workshops seem disconnected to a signifi cant degree from the 
nitty-gritty of classroom practice.

We believe that teachers benefi t most from a kind of theoretically 
grounded specifi city. When covering the children, the mathematics, 
and the activities, the workshops need to be theoretically grounded, not 
intellectually vacuous, and at the same time not mindlessly empirical. For 
example, in introducing early addition, workshops need to help teachers 
understand that:

● Children often begin addition by combining two sets, counting them, 
and learning that order of objects counted and nature of objects counted 
is irrelevant to the result. In this case, both strategies and ideas are 
important features of children’s behavior. It is inaccurate to say that 
children’s thinking is mainly concrete.

● Addition of whole numbers can be considered to be a process of joining 
and enumerating elements of separate sets, in any order, regardless of 
the identity of the elements comprising the sets. These are the ideas and 
strategies to be learned, and in fact children often try to learn them on their 
own. Our teaching will be more effective to the extent that it recognizes 
what needs to be learned and what the children are trying to do.

● A particular activity, as fi guring out how many objects are in two cups 
altogether, tries to capitalize on children’s tendency to combine sets 
and on the mathematical concept that addition can be interpreted as the 
union of sets. The teacher needs to learn that it would be desirable in 
the activity to employ different items within each cup, so that children 
can learn that identity of the items is irrelevant. The teacher needs to 
learn that children should be encouraged to count the items in many 
different orders. The teacher needs to learn that systematic counting is 
to be encouraged, not discouraged in favor of helping the children to 
memorize the results. And the teacher needs to learn that children – 
who at this age are abstract thinkers – should not be discouraged from 
counting ‘in their heads,’ so long as they have ways to check the results.

All this is what we mean by theoretically grounded specifi city. It is a 
way to give teachers useful practitioner knowledge.

ASSESSING THE SUCCESS OF OUR WORKSHOPS

In the fi rst few years of doing workshops, we gave teachers written surveys 
at the end of the workshops to evaluate that day’s discussion, as well as at the 
beginning of the next workshop to elicit any reactions the workshop attendees 
may have had after letting the last workshop ‘sink in.’ It became clear that all 
this paperwork revealed very little; most of the responses were fl attery, and very 
little was learned.
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It was not until the end of each year, when we held an end-of-the year 
 celebration/debriefi ng workshop that interesting fi ndings became apparent. 
Teachers really opened up in these sessions, given that we were primarily there 
to listen to their refl ections on the year of undertaking this new curriculum. 
Some of these sessions have been videotaped and all analyzed (Cordero, 2004). 
Here are salient results.

First, we have learned that the workshops help teachers overcome their fears 
of teaching math. Many teachers recalled feeling apprehension or fear of math-
ematics at the beginning of the year. By the end of the year, though, the situation 
had changed. According to one teacher:

I had a real math phobia and if it hadn’t been for BMLK, I wouldn’t know how to begin, 
where to start teaching my kids math. Now I feel that I’m much more confi dent and I’m 
much better at implementing math.

Secondly, teachers usually began the year with a concern about how to fi t the 
curriculum into their already busy schedules. By the end of the year, teachers 
(and their students) were enjoying it so much that they had no problem fi nding 
the necessary time.

This fi nding is related to another one – teachers really enjoy teaching the 
activities by the end of the year. In part, this is because they see that their chil-
dren are enjoying them too. While we always stressed during workshops that 
teachers need to have fun while teaching, this is sometimes easier said than 
done, especially if the teacher comes to the workshops with a negative disposi-
tion toward teaching math. But the fears of teaching math tend to dissipate, and 
what replaces them is a real joy.

Finally, teachers reported that by the end of the year, their students both 
look smarter and feel smarter. This is a vital point, given that the curriculum is 
intended to increase the confi dence and abilities of some of our nations’ highest-
risk students. One teacher told us:

They want to be smart, they want to know these things and at the end of a lesson, they all 
get it and are happy about that. That’s the best thing about it; it makes their day because 
they know they are smart!

Stories like these indicate that not only does the curriculum work well, but 
so do our workshops for the teachers. We are very proud that our teachers can 
return to us with such positive results.

As the workshops progressed throughout the year and teachers were encour-
aged to share, discuss, and refl ect on their BMLK-related experiences at the 
sessions, they grew more enthusiastic about the program. They noted that the 
activities progress from simple to complex and that these lend themselves to 
individualization; they also observed that new math ideas build on previous ones 
and that important mathematical ideas are revisited again and again within dif-
ferent mathematical contexts. The value and signifi cance of a ‘sequenced and 
coherent’ math curriculum slowly became obvious. One teacher expressed her 
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appreciation that the curriculum provided her with a sequence of activities that 
she did not have to try to develop on her own.

Teachers seemed most convinced by what they observed in the classroom. 
Their animated discussions were replete with stories about how much their chil-
dren are enjoying the activities and how quickly they are learning new math 
skills, ideas, and language. These teachers became convinced of the value of the 
program and are its strongest advocates.

NEEDED SUPPORT FOR AN EME PROGRAM

Our BMLK professional development efforts at a publicly funded early 
care and education agency in New York City have proven to be both chal-
lenging and encouraging, and we anticipate that many more challenges lie 
ahead as the various education sectors attempt to close the achievement gap 
between disadvantaged and advantaged children. Our experience with BMLK 
also indicates that although essential, teacher training is not the only factor 
in play if city and state early care and education agencies intend to make a 
positive, system-wide, and sustainable impact on low-income children’s math 
achievement. We need to obtain support for fi ve constituencies that contribute 
to sustainable change.

TOP-LEVEL ADMINISTRATION

Top-level administrative offi cials in city and state early care and education 
agencies need to have a clear understanding of the ECE fi eld, the signifi cance 
of new research in education, and the vision, ability, commitment, and courage 
to make the necessary institutional changes that will support a plan for quality 
improvement. Not only will agency heads need to fi nd ways of obtaining addi-
tional funds and resources, but they may also have to develop an infrastructure 
that may require a reorganization of their agency. This is much easier said than 
done. Resistance to change is a ubiquitous force, and top-level city and state offi -
cials are not immune to it.

SUPERVISORY STAFF

Supervisory staff in local or regional offi ces also play a critical role in ena-
bling systemwide, sustainable change in ECE. These supervisors are usually 
expert teachers who have been in the system for a long time. Their major respon-
sibility consists of providing support and technical assistance to early childhood 
programs based on agency policies that often have not been updated to refl ect 
recent changes in the fi eld. For example in New York City, regional supervi-
sors provide technical assistance to childcare centers based on outdated program 
assessment tools. It is not uncommon for teachers to complain that regional 
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supervisors are critical of some of the BMLK activities. Consultants penalize 
teachers for  implementing activities that are considered too ‘teacher-directed’ in 
lieu of the more play-oriented, child-initiated approaches recommended by the 
out-dated program assessment protocol. The same holds true for using activities 
that involve written material that might superfi cially seem to resemble work-
sheets (in that writing is involved!), irrespective of their educational value or 
intention. And teachers are very much aware of these contradictions. As long 
as local or regional supervisors are not trained in the relevant mathematics pro-
gram, it is likely that they will subvert it.

PROGRAM SUPERVISORS

Program supervisors such as directors of centers and education directors 
also play a critical role in supporting their teachers’ professional development 
in an EME program and in ensuring the success of the program and the benefi ts 
for the children. Often, program supervisors are very eager to have their teach-
ers trained in new approaches and evidence-based curricula, but they do not 
undergo the training themselves. Hence, they are not in the position to super-
vise, guide, or support their teachers’ classroom practices. Furthermore, trained 
teachers will probably discontinue using BMLK over time if they do not
feel guided and supported by a knowledgeable program supervisor. It has
been our experience that when capable directors and teachers work in teams 
during the professional development phase, they report continued implementa-
tion of BMLK.

PARENTS

One of the most common concerns that low-income parents voice to pre-
school program directors and teachers is that they would much rather their 
children learn to read, write, and do mathematics than play. And although direc-
tors and teachers spend much time and energy trying to convince parents of 
the contrary, the latter are not easily dissuaded. And they have good reason to 
hold their ground; they know that their children are likely to fail in the schools 
as currently constituted and suspect that preschools do not offer adequate 
preparation.

Interestingly, teachers implementing BMLK report that parents very quickly 
respond with enthusiasm to the program. One program director recently reported 
that a group of parents decided not to transfer their children to another school at 
the end of the year when they found out that the children would continue with 
the BMLK program the following year. As this anecdote suggests, given the 
opportunity, low-income parents will place their children in high-quality early 
childhood programs. Parents vehemently want early childhood programs to pre-
pare their children for school. Their voice and support in the pursuit of quality 
education cannot be underestimated.
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CONCLUSION

Early math education is new and challenging. It involves deep mathematics 
and many different components, ranging from free play to an organized curricu-
lum. Teaching it is not easy and in fact may be similar to teaching mathematics 
at the elementary level. But we have some idea of how to help; we need to pro-
vide teachers with theoretically grounded and specifi c professional development 
opportunities. We need to help various constituencies to understand the need for 
EME and how to support it. The major question is not whether children can learn 
mathematics. It is whether we can help teachers to teach it. The unresolved issue 
is whether the political system will support the effort to provide all young chil-
dren with effective early education.
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BACKGROUND AND AIMS

This chapter reports on aspects of the work of the Leverhulme Numeracy 
Research Programme, a 5-year study funded in the UK during 1997–2002 by the 
Leverhulme Trust. Following disappointing English performances in numeracy 
in international surveys, the purpose of the Leverhulme Programme was:

● to take forward understanding of the nature and causes of low achievement 
in numeracy and provide insight into effective strategies for remedying the 
situation.

The Programme is unique in encompassing a large-scale longitudinal survey
and fi ve distinct projects linked into it which each take the form of mainly 
qualitative case studies relating to a particular factor which affects the teach-
ing and learning of numeracy in primary schools. This chapter focuses on
only one aspect of the Leverhulme Programme, that of progression in learning.
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It draws on longitudinal data from the large-scale survey and one of the case-
study projects. The objectives of the relevant parts of the Programme were:

● to inform knowledge about the progression in pupils’ learning of numeracy 
throughout the primary school years;

● to obtain a clear and detailed longitudinal picture of the numeracy 
development of a range of pupils taught in a varied set of schools and to 
examine this in the light of their classroom experiences, to ascertain what 
works, what goes wrong, and why.

The specifi c objective of this chapter is:

● to report on a progression model in relation to both items and children;
● to relate test data for some case-study children on repeated occasions to 

classroom observation and interview data.

During the Leverhulme Programme a systemic initiative was implemented in 
all English primary schools, the National Numeracy Strategy. The key curricu-
lum feature was an increased emphasis on number and on calculation, especially 
mental calculation, but there were also signifi cant changes in planning and peda-
gogy (National Numeracy Strategy, 1999). The National Numeracy Strategy will 
be referred to on occasion in order to explain some of the differences between 
comparable data gathered before and after its introduction in 1999/2000.

The meaning of numeracy which is preferred by the research team is that 
relating to social practices (Baker & Street, 1993), but for the purpose of this 
study the defi nition was taken pragmatically to be that of the National Numeracy 
Strategy, which regards numeracy as a ‘profi ciency’ which requires a combina-
tion of understanding, skills, and confi dence and includes the motivation to solve 
contextual problems (National Numeracy Strategy, 1999, p. 4). In the related 
documents it becomes clear that in the Strategy the emphasis is on decontextual-
ized calculations, with a minor inclusion of traditional word problems.

The perspective of learning adopted is broadly Vygotskian social con-
structivist and highlights the classroom negotiation of meaning (e.g., Cobb & 
Bauersfeld, 1995).

METHODS AND DATA SOURCES

SAMPLE

The data which informs the chapter derives from a longitudinal survey with 
over 2,000 children in each of two different age cohorts.

Only a small subsample of 188, from 10 different secondary schools, was fol-
lowed into year 7 since this extension required tracking children from primary 
into secondary schools.
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Table 5.1 shows that year 4 data is available from both cohorts, the older 
cohort in 1997/1998 and the younger cohort in 2001/2002. This data allows 
some evaluation of the effect of the National Numeracy Strategy which was 
implemented in 1999/2000, mid-way between these dates.

The pupils in the survey include all children in the two age cohorts in 40 
different primary schools, 10 in each of four varied local education authorities 
(LEAs) in different regions of England. By the fi fth year of the study 36 of the 
40 schools were still participating.

The 10 schools were selected by quota sampling using LEA data and the percep-
tions of local advisors to ensure a range according to fi ve variables (size, religious 
affi liation if any, socio-economic status (SES) of intake, attainment in national 
mathematics tests and value added). Thus the sample contains every type of school 
from small rural church schools to large inner city multi-ethnic schools. Although 
the sample is therefore technically neither random nor proportionately representa-
tive, the spread of schools and LEAs is such that the results are unlikely to deviate 
substantially from those of the whole English population in those cohorts (indeed 
the mean score on national tests at age 11 was within 1% of the national mean).

Although for each cohort there are over 2,000 children who at some time were 
members and are on the assessment data base, the numbers who completed any 
specifi c test vary between 1,500 and 1,700. This sample is generally used to cal-
culate the facility of items in each test administration. However in the case of the 
year 4 data in order to compare results from the two different cohorts, one tested 
in 1997/1998 and one in 2001/2002, we have included only children from the 35 
schools where the tests were fully completed at the start and end of year 4 for 
both cohorts, and within that group only children who were present at the testing 
at the start and end of the year. This reduces the sample size to 1,291 and 1,332, 
respectively for year 4. (This restriction of the year 4 sample to obtain compara-
bility has changed the item facilities from those which would be obtained using 
the full groups of children tested, but never by more than 3%.)

TEST DESIGN

Children were tested towards the beginning and end of each school year, within 
a designated 2 weeks towards the end of October and the beginning of June. The 

TABLE 5.1 The Cohorts in the Study and Their Progression Through School

Year 
group Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7

Age
(years)

5/6 6/7 7/8 8/9 9/10 10/11 11/12

Cohort 1 1998/1999 1999/2000 2000/2001 2001/2002

Cohort 2 1997/1998 1998/1999 1999/2000 2000/2001
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same test was used at the start and end of the year, and was orally administered 
by teachers from a provided script with pupils answering in specially designed 
booklets. (This was partly to avoid problems for children whose reading was 
poor, and partly to control the time available for each item.) For some test items 
(questions) teachers were asked to display a poster for a fi xed number of sec-
onds. The number of items in the test varied from 41 in year 1 to 75 in year 4 
and 81 in year 6. (The test used for year 7 was identical to that used in year 6.)

Tests were marked centrally by college students onto forms which were 
scanned into the computer. All questions were marked simply as correct, wrong 
or omitted, using a marking schedule. Various checks were made on the reliabil-
ity of this process.

The sequence of tests, one for each year group, was derived from instruments 
developed from earlier research by members of the team (Askew et al., 1997; 
Denvir & Brown, 1986; Hart, 1981).

The items had in most cases fi rst been designed for one-on-one diagnostic 
interviews and based on reviews of related research; Denvir and Bibby (2002) 
have updated in a format usable by teachers a diagnostic interview for low attain-
ing primary pupils from which many of the items were drawn. These items were 
later adapted for whole class settings, and were thus extensively trialed in both 
formats. A small number of items, all fully trialed, were added at various stages 
so as to extend the age range and to provide a better match with the changing 
curricula in schools. The form of the tests used in this research was also trialed 
and adjusted where necessary before being fi nalized.

The reliabilities (using Cronbach’s alpha) were found to be very high (of the 
order of 0.95). Denvir and Brown (1987) had earlier compared pupils’ perform-
ance on interviews and class tests using many of the items, and found in general 
a reasonable agreement, although children tended to perform better in interview 
since the presence of the interviewer encouraged them to persevere and to moni-
tor answers more carefully.

Items were designed to assess mainly conceptual understanding and cogni-
tively based skills, including mental calculation; some recall items (e.g., mul-
tiplication facts) were included but the time allowed was suffi cient to enable 
some children to derive these. The emphasis was on mental rather than writ-
ten processes, although children were able to write in their booklets whenever 
they wanted to. They include contextual as well as purely numerical items. 
Most items were quickly answered by short open written responses but a small 
number were in multiple choice format. Areas assessed were understanding of 
the number system, methods of computation, and solving numerical problems. 
All items were matched against the national curriculum level descriptions and 
the National Numeracy Framework in order to check the coverage both in the 
total bank and on each test.

The series of tests were designed to contain a large number of common items 
from one year to the next (including three items which were assessed in every 
year from year 1 to year 7). This was to enable individual children’s progress 
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TABLE 5.2 Proportion of the Total Bank of 159 Items Which Were Tested in More Than One 
Year-Group

Items tested 
in 7 years

Items tested 
in 6 years

Items tested 
in 5 years

Items tested 
in 4 years

Items tested 
in 3 years

Items tested 
in 2 years

Items tested 
in 1 years

3 10 19 16 49 34 28

(2%) (6%) (12%) (10%) (31%) (21%) (18%)

to be assessed from year to year. Table 5.2 shows the distribution of the number 
of tests on which items were included, for the total number of 159 items which 
were used on one or more of the tests.

Many of the items used only for 1 year group were those used for year 1, 
where it was important to ensure that there were enough relatively easy items. 
Sometimes an item was used only in one test to improve the distribution of
the item facilities in the test. In order to be able to monitor progress for
children at all levels of attainment, it was necessary to attempt to have a
uniform distribution of item facilities within each test (i.e., as many items with 
a facility in the range 0–10% as in the ranges 40–50% or 90–100%). Table 5.3 
shows the distribution of the facilities of the 85 items in the year 5 tests as an 
example.

TABLE 5.3 Distribution of Facilities (Percentage Correct) of the 85 Test Items in the Two 
1998/1999 Administrations of the Year 5 Test 

Item facility (%) 0–9% 10–19% 20–29% 30–39% 40–49%

Frequency of items
 in October

9 11 12 11 9

Frequency of items
 in June

5  5 10  8 8

Average frequency
(October and June)

7  8 11 10 9

Item facility (%) 50–59% 60–69% 70–79% 80–89% 90–100%

Frequency of items
 in October

10  7 6 4 6

Frequency of items
 in June

11 13 9 8 8

Average frequency
(October and June)

11 10 8 6 7
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In a perfect distribution there would be 8.5 items (10% of the total 85 items) 
in each part of the range. This was not completely achievable, partly because 
facilities were not completely predictable even though tests had been trialed on 
smaller samples. But more importantly there was a problem since each test was 
taken twice (and the year 6 test three times), with higher facilities on the later 
occasions, so that a perfect uniform distribution on each occasion was impos-
sible. In practice, as demonstrated in Table 5.3, although the tests are identical, 
more items predictably fall into the harder end of the range (0–30% success) in 
the October testing, and more into the easier end (70–100%) in the June testing. 
The combined mean of the October and June distribution is not biased towards 
either end and is more uniform, but with slightly more items in the center of the 
range than at the extremes.

These roughly uniform distributions of item diffi culty also meant that approx-
imately equal numerical gains could be made by children at different attainment 
levels between the October and June testing. The only exceptions to this were 
pupils who had either almost all items correct in October or who still had hardly 
any correct in June; but these ceiling and fl oor effects affected very few children 
(not more than 3%). Empirical checking confi rmed that mean gains were indeed 
roughly uniform for children of different attainments.

Many items were linked with others assessing similar concepts/skills but 
often with varying diffi culties. For example for each year group one set of
items contained number lines; children were asked both to write the numbers 
represented by intermediate points indicated by arrows, and to mark on the line 
the points representing specifi c numbers. The number lines became more com-
plex with older age groups.

In order to examine the overall progression of the cohort and of individual 
children a means had to be found of equating results of the same children over 
different tests taken in different years. An adaptation of the Rasch procedure 
was used, drawing on item response theory (Hambleton et al., 1991). First an 
index of diffi culty was calculated for each item which indicated the estimated 
age at which 50% of the cohort could succeed on it. (This could not be done 
for some items which occurred only in a few tests or for those at the extremes 
of diffi culty, i.e., those on which either more than 50% of the youngest children 
were successful or fewer than 50% of the oldest children were successful.) Then 
a sample of at least 100 pupils was taken for each test, with oversampling at 
the extremes to ensure full coverage. For each sampled pupil, a ‘mathematical 
age’ was then estimated at each test administration using a maximum likeli-
hood method, drawing on the data of the diffi culties of items on which they were
successful and those for which they were not. This was then plotted against
their test score. Since the plots obtained were reasonably linear, regression 
was then used to derive a linear relation between score and ‘mathematical age’
for each test. This allowed a conversion between test score on any test and 
‘mathematical age.’ It thus enabled all children in each cohort to be assigned a 
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‘mathematical age’ for each sitting of the test. However because of irregularities 
in the progression curves over the summer periods (to be discussed in the next 
section), this method, although believed to be the best available, produced results 
with some misleading features; the results therefore need to be interpreted with 
caution.

CASE-STUDY METHODS

Children were chosen for longitudinal case study from the 40 schools in the 
larger sample. Five schools were fi rst selected which were deemed to have inter-
esting features, relating to variety in their teaching methods, their results and
the SES of their intakes. The fi ve schools came from the three LEAs within easy 
traveling distance of London. One class from each cohort was selected from 
each of these schools, and within the class initially nine pupils were selected
by the teacher so that three were of above average attainment, three of aver-
age and three of below average attainment. After a year, 2 of the 3 children
from each attainment range were selected to be part of the fi nal sample. So 
far as possible the selection from each class was balanced for gender and
ethnicity. This gave a total of 30 children, 6 from each of 5 classes, in each
of the two cohorts. In some cases the initial assignment of attainment level 
changed during the study, and some children left the schools before the end of 
the study.

A pair of researchers was allocated to each school and each year observed 
between them fi ve consecutive lessons in the fi rst term and fi ve in the third term 
for each of the two cohorts. The case-study children were informally interviewed 
about their activity during these lessons and their written work was copied and 
collected. The test scripts for these children have been carefully analyzed and 
compared with their classroom performances, providing a unique source of data 
comparing performances in different contexts.

Each child had a formal extended interview, at the end of year 3 for cohort 1 
and at the end of year 6 for cohort 2. This included discussion of their progress, 
their observations on their teaching in each year and information on the math-
ematics they used or did at home and their home circumstances. Each child was 
asked to talk through a set of test items which had been judged from the results 
on a recent test to be near their threshold. Finally each teacher has been formally 
interviewed about the children and their progress, including any home or other 
factors which might affect it.

In the spring term each year, as with all remaining 40 schools, each school 
was visited on at least one occasion by a different member of the research team. 
This was to observe the teaching in each class which contained members of 
either of the two cohorts, interview the teachers, the mathematics co-ordinator 
(curriculum leader) and the head teacher.
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RESULTS AND DISCUSSION

1. Many items have a model of progression across years which follow a 
broadly similar model to a section of an idealized item characteristic curve, 
but with some key differences.

We examined the progression trajectory for each of the 159 test items by 
plotting the item facilities (percentage of pupils correct) across the different test 
administrations, at the beginning (October) and the end (June) of each school 
year. Most of these trajectories followed a broadly similar shape, but with some 
key differences to be discussed in the next sections. Generally they rose slowly 
from 0% to 10% or 20%, then more quickly, at a rate of 10%–20% per year, then 
gradually more slowly again, plateauing out towards 100%. To illustrate this, 
facilities (success rates) are given in Table 5.4 and in Figure 5.1 for one of the 
three items included in the tests for all 6 years.

In this item, denoted ‘1 � 200,’ children, having been asked to fi rst write 
down in a box provided in their answer booklet the number 200, were then asked 
to write, next to it, the number which was one less than 200.

Here and elsewhere, unless the year 4 results are being compared directly 
between the two cohorts, year 4 results are the average of the results of the 
two cohorts tested in 1997/1998 and 2001/2002, respectively. (Year 7 results 
are only shown where essential since they were on a much smaller sample of 
188 pupils and hence are not very reliable; the general trend will be discussed 
briefl y later.)

The data illustrated in Figure 5.1 suggest that a few months under 5 years 
would be a reasonable estimate for the number of years between the age at 
which 5% of the population can succeed on an item and the age when 95% can 
succeed. However the other item tested across this time has a trajectory where 

TABLE 5.4 Facilities (Percentage Correct) of ‘1 � 200’ item from Years 1 to 6 (n � 1300)

Year 1 Year 2 Year 3

Item description October June October June October June

Write 1 less than
two hundred

2 11 19 52 59 77

Year 4 Year 5 Year 6

Item description October June October June October June

Write 1 less than
two hundred

79 81 87 94 95 97
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the facility rises from 6% to 92% in 5 years and 7 months between the start 
of year 1 and the end of year 6 (see Table 5.6), suggesting that in this case the 
delay is nearer 6 years. But these estimates may only be valid for items where
children in years 1–3 have a reasonable chance of success. For more diffi cult 
items, estimates of this gap suggest something more like 6–8 years, which 
support the conjecture in the Cockcroft report (DES/WO, 1982) of a ‘7 year 
gap.’ The Rasch data, which were calculated to assign mathematical ages to
each child, illustrated later in Figure 5.4, interestingly suggest that in year 6 the 
gap between children at the 5th and 95th percentile is of the order of 7 years of 
mathematical age.

Figure 5.1 in fact slightly distorts the shapes of the item profi le since 
although the facilities for successive test administrations are shown at equal 
 horizontal intervals, there was actually about 7.5 months between the tests at the
start (October) and end (June) of each academic year (e.g., between 1O
and 1J) and only 4.5 months between the June test at the end of the year and
the October test at the start of the following year (e.g., between 1J and 2O).
This distortion affects the gradient; where these are positive, the curves will tend 
to become smoother, although not completely smooth for reasons explained 
below.

Using the appropriate utility on Datadesk software, we showed that these 
trajectories appeared to be close to the shape of a segment of a logistic curve. 
Logistic curves are used in item response theory as they provide models for 
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item characteristic curves. An item characteristic is the graph of the probabili-
ties of pupils being successful on an item (usually expressed as a percentage of 
the sample successful) against the relative attainment level of the pupils (usually 
measured by total score on the test). For example, Figure 5.2 shows the single 
parameter logistic curve modeling an item characteristic curve:

y
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b
�

�

�

�
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(

θ
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)
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where θ is a measure of ability and b the diffi culty of the item (Hambleton et al., 
1991). As already noted above, the diffi culty of an item was calculated as the 
estimated age at which 50% of the cohort could succeed on it.

The implication of noting that an item characteristic curve would be an 
acceptable model for our progression data is that attainment and age can be 
regarded as interchangeable variables along the horizontal axis; this means that a 
lower attaining pupil behaves mathematically like an average pupil at a younger 
age. (This assumption actually underpins the English national test reporting 
system, where, for example, a level 3, which is broadly criterion referenced, 
is above the national norm at age 7, on the national norm for age 9, below the 
national norm at age 11 and well below it at age 14.)

The empirical results in our data depart from such a logistic curve in three 
different ways, which will be described in the next three sections:

(a) Dips in facility sometimes occur between the end of one school year and 
the start of the next
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FIGURE 5.2 Idealized single parameter item characteristic curve for an item of diffi culty b.
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The trajectories for many items show one or more drops in facility over 
time (some examples can be seen in Figure 5.3 and Table 5.6). These all occur 
between a June testing and the following October and suggest that facility is 
sometimes but not consistently lost during the 6-week summer break. This is in 
spite of the fact that the October tests occur after 5/6 weeks of teaching in the 
new school year. In fact such ‘summer dips’ occur with all types of item, as will 
be seen in later sections. Table 5.5 below shows that the average rate of improve-
ment over the summer break from June to October is positive but much less than 
that during October to June even when the different lengths of the intermediate 
periods are allowed for. (It should be noted that in Table 5.5 the mean facility 
differences between October and the following June are calculated on the full 
set of items in the test for that year, whereas those for June and the following 
October are calculated only over those items which are common to the two tests 
for contiguous year groups.)

In Table 5.5 the year 7 results are shown as falling by 2%. (This is also the 
case when the difference is calculated over only the pupils present in both test-
ings.) Although the year 7 sample is small it was chosen to be broadly repre-
sentative and there is thus no reason to doubt that the decrease is of the correct 
order of magnitude. In fact it is fairly similar and in the same direction as
other data across the transfer from primary to secondary schools (e.g., 
Hargreaves & Galton, 2002). Ofsted (2002a), using national test data, suggests 
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the dip is nearer to 10%, but this may be because of infl ated test scores after 
focused coaching.

(b) Children appear to learn more quickly in the early years of primary 
school

A second way in which the curves differ from idealized item characteristic 
(logistic) curves is the tendency for larger mean annual increases in facility in 
the younger age groups. In fact as can be seen from Table 5.5, over those items 
common to successive years, the annual increments in facility between years 
1 and 2, or between years 2 and 3, are nearly 70% greater than those between 
years 4 and 5, or years 5 and 6.

It is not clear why this happens. One possible explanation is that as the math-
ematical ideas become more complex, more children take longer to learn them.
A second possible cause is that many children may have had the potential to 
learn these concepts and skills at a younger age and thus make especially fast 
progress in years 1 and 2 when they are fi rst exposed to numeracy ideas at 
school. It is of course also possible that there is some neurological reason for the 
more rapid development in younger pupils.

(c) School curricula affect item profi les; in particular the introduction of the 
National Numeracy Strategy is likely to have caused changes in facility where 
the data crosses from the younger cohort to the older one

TABLE 5.5 Mean Increase in Facility on Common Items 
Since the Previous Test (cohort 2 data in Italic) (* Year 7 Data 
Based on Small Sample Only)

From To Increase 

Year 1 October Year 1 June �20%

Year 1 June Year 2 October �5%

Year 2 October Year 2 June �20%

Year 2 June Year 3 October �2%

Year 3 October Year 3 June �13%

Year 3 June Year 4 October �2%

Year 4 October Year 4 June �10%

Year 4 October Year 4 June �10%

Year 4 June Year 5 October �5%

Year 5 October Year 5 June �11%

Year 5 June Year 6 October �4%

Year 6 October Year 6 June �11%

Year 6 June Year 7 June �2%*
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So far in this section we have averaged the results for the two cohorts where 
they overlap in year 4. Cohort 2 was tested in year 4 in 1997/1998, 2 years before 
the National Numeracy Strategy was implemented, and cohort 1 was tested in 
year 4 in 2001/2002, 2 years after the implementation. However there were dif-
ferences, in the case of some items quite large ones, which can be attributed to 
the Strategy. Curriculum effects will thus be discussed in the next section.

2. While there is clear evidence from some items that curriculum affects 
progression, a major and expensive process of systemic curriculum change 
has produced only very minor overall effects in attainment.

Results are given in Table 5.6 and in Figure 5.3 for the three items included
in the tests for all 6 years and for two of the items which were tested in 5 con-
secutive years, selected because of special features described later. (The data
for the item ‘1 � 200’ has already been displayed in Figure 5.1 and Table 5.4,
but here the two sets of year 4 results for the two different cohorts are 
disaggregated.)

In Figure 5.3 the facilities for each item in the two cohorts are shown
by the same icons. The descriptions of the items are somewhat cryptic in
Table 5.6 and especially in Figure 5.3, but will be elaborated when the items are 
discussed.

While some features already alluded to can again be seen, for example the 
occasional summer dip and high gradients for some items between years 1 and 
3 in comparison to between years 4 and 6, some new points emerge from these 
data relating to the curriculum:

(a) In some cases item profi les have very different gradients although in 
ranges where facility values are similar, sometimes leading to the profi les cross-
ing over

We will illustrate this fi rst by examining the two items described as 
‘4(10) � 3’ (shown on Figure 5.3 by triangular icons) and ‘1 � 200’ (shown by 
circle icons and dotted lines).

In the fi rst item the teacher fi rst showed the children a picture of a bag of 
apples and told them that it contained 10 apples. The teacher then told a story 
about a girl being given some apples and showed a picture of 4 bags of apples 
and three loose apples; the children were asked to write down how many apples 
the child received. In the item ‘1 � 200,’ as previously described, children were 
asked to fi rst write down in a box the number ‘two hundred’ and on the next 
space to write down the number that is one less than two hundred.

It is clear from Table 5.6 and Figure 5.3 that the ‘4(10) � 3’ item starts off as 
the easier of the two items, with higher facilities in years 1 and 2 and the begin-
ning of year 3. However during year 3 the relative position changes, and the item 
‘1 � 200’ has higher facilities from then until the end of year 4 for the younger 
cohort (cohort 1). For cohort 2, however, the switch in diffi culty between the 
two items does not take place until the start of year 5. This suggests that there 



TABLE 5.6 Progression in Facilities (Percentage Correct) for Selected Items Which Span Several Year Groups (Older Cohort in italics) (n � 1290)

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6

Item description October June October June October June October June October June October June

Write 200 34   67 79    89 93    96 98    99
97    93 97    99 100   98

Bags of 10 apples  4 bags
and 3  are ?

 6   28 35    59 62    75 72    83
80    85 77    80  81   92

Write 1 less than two
hundred

 2   11 19    52 59    77 82    91
76    82 87    94  95   97

Label �2 on number
line

 3    14 21    28 47    71
26    42 46    60  57   76

Select operation in
problem (�)

 8    16 11    20 20    30
19    25 37    45  49   64



Progression in Numeracy Ages 5–11 99

is no fi xed ordering in terms of diffi culty between these items. It seems possi-
ble that the item with the higher numbers is more diffi cult for younger children 
perhaps because they have less experience of such numbers; according to the 
National Numeracy Strategy (1999) this should happen in the year 2 curriculum. 
Once this experience is consolidated, the fact that the structure is simpler for
‘1 � 200’ (counting back 1 rather than composing tens and units), may render it 
the easier of the two items. It would therefore be possible to argue for an inher-
ent ordering by facility only once the necessary knowledge and experience have 
been gained.

It is not diffi cult to explain in curriculum terms why the crossover occurs later 
for the older pupils for whom the National Numeracy Strategy started in year 6, 
than for the younger pupils who encountered it fi rst in year 2. In the early years 
the Strategy emphasizes oral counting, forwards and backwards, at the cost of 
place value understanding which underlies the ‘4(10) � 3’ item. The early stress 
on place value work is now postponed as written methods are introduced later 
than was traditionally the case.

A crossover also apparently occurs between ‘Select �’ (an item with a word 
problem where children are told the number of miles for the whole car journey 
and the number of miles already covered and asked to select the ‘sum’ (expres-
sion) which they would need to perform to work out the number of miles still to 
drive) and ‘Label �2’ (a number line item showing marks from �10 to �10, 
with 0 and 10 labeled, on which children are asked to label the point which rep-
resents �2). However since the former is unusually a multiple choice item with a 
probability of 12.5% of obtaining the correct answer by guessing, it seems likely 
that the initially higher facility of the ‘Select �’ item is due to this chance factor 
and that when this is allowed for it is actually more diffi cult for all age groups.

There are also some large step changes in facility of around 40% per year, 
which is unusual even in the early years where the mean gain is about 20%. 
These large increases are particularly marked for the items designated ‘Write 
200,’ ‘1 � 200’ and ‘Label �2.’ For the ‘1 � 200’ item as already discussed this 
seems likely to be due to curriculum factors; this also seems likely to be the case 
for ‘Write 200’ and ‘Label �2,’ both of which depend strongly on knowledge of 
conventions of how to represent numbers rather than on reasoning ability. They 
are hence likely to increase in facility strongly at the time when the conventions 
are introduced in the classroom. There is a contrast between such patterns and 
the item which requires children to select the correct operation for a word prob-
lem (‘Select �’), where even allowing for a guessing correction of up to 12.5%, 
there is a very slow increase with no clear large jumps. This may characterize 
items where the demand is more in terms of understanding than taught conven-
tions or procedures, and for which there is little direct teaching in the current 
curriculum.

(b) Although the mean difference in item facility in year 4 before and after 
the implementation of the National Numeracy Strategy is only small, there is 
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considerable diversity in the magnitudes of the changes over the set of items, 
corresponding broadly to related curriculum changes

Table 5.7 shows the changes between 1997/1998 and 2001/2002 in mean 
item facility in relation to the year 4 items, for both October and June testings. 
These are fairly consistent and indicate mean increases of just over 3% points 
over the period of implementation of the National Numeracy Strategy, differ-
ences which are small but in statistical terms highly signifi cant (p � 0.01). At 
the time of testing in 2001/2002 the cohort 1 children had been following the 
National Numeracy Strategy for 3 years. (In our visits to the 35 schools included 
in the year 4 comparison we were able to observe that all schools and teachers 
were conscientiously implementing the Strategy, as indicated also by the offi cial 
evaluation by Earl et al., 2002 and Ofsted, 2002b).

The mean changes in facility between October and June testings of 9.8% and 
10.1% points in 1997/1998 and 2001/2002, respectively, indicated in Table 5.7, 
suggest that pupils learned more but not signifi cantly more over the course of 
the school year after the Strategy had been implemented. This also enables the 
3% point rise in facility values to be interpreted as the equivalent of just over 2 
months’ learning. The effect size is also low at 0.17/0.18, respectively, depend-
ing whether calculated in October or June.

These effects are in a numeracy test which closely refl ects the National 
Strategy emphases on mental calculation strategies, and not in a mathematics 
test sampling from the full curriculum. Given that the new emphasis on numer-
acy is at the expense of other parts of mathematics, such as geometry and data 
handling, there is a question as to whether an overall assessment of mathemat-
ics would have shown any signifi cant change at all. It should be noted that the 
Government, and following their lead other commentators, have repeatedly 
stated that the National Numeracy Strategy has been a great success; yet if 
changes for other year groups are of a similar size to those seen here for year 4, 
whether such a small change in numeracy attainment is worth the expenditure of 
more than £100 million must be open to doubt.

However the Leverhulme year 4 data does demonstrate large increases in 
facility for some items. The largest change is in the item referred to in Table 5.6

TABLE 5.7 Comparison of Mean Facility (Percentage Correct) for Year 4 
Items Between Cohort 2 in 1997/1998 and Cohort 1 in 2001/2002 (n � 1,290) 

October testing June testing

1997/1998 51.8 61.6

2001/2002 54.7 64.8

Rise  3.0  3.2

Equivalent  2.2 months  2.4 months

Effect size  0.17  0.18



Progression in Numeracy Ages 5–11 101

and Figure 5.3 above as ‘Label �2,’ which at fi rst appears strange since 
knowledge of negative numbers is not a priority of the Strategy. However the 
fact that one of the two items with the second largest increase (19% and 14% 
points, respectively in October and June testings) is also a number line item in 
which students are asked to identify the mark at 267, strongly suggests that it is
greater familiarity with the number line representation, particularly emphasized 
by the Strategy, which accounts for the change. Other items with especially
signifi cant increases include those dealing with counting and recording of 
large numbers, (some of these are similar to the ‘Write 200’ and ‘1 � 200’ 
items described earlier, but with larger numbers) and use of the inverse relation 
between addition and subtraction (deriving the answer to 143 � 86 quickly given 
that 86 � 57 � 143). All these ideas do indeed fi gure strongly in the Numeracy 
Strategy curriculum, which would seem to account for the difference between the 
cohorts.

Similarly in those items receiving less emphasis, such as word prob-
lem solving, the facilities have not increased signifi cantly and in some cases
have decreased (see the items ‘4(10) � 3’ and ‘Select �’ in Figure 5.3 and
Table 5.6).

The introduction of new representations, for example number lines, horizon-
tal recording, seems to have had signifi cant effects, whereas expected changes 
in some basic skills, for example knowledge of multiplication facts, have not 
emerged.

The overall summary of changes to items in specifi c areas of the curriculum 
is shown in Table 5.8.

Of course these results refer only to year 4, and may be different by the end 
of year 6.

Such discontinuities in item profi les which are clearly attributable to changes 
in the curriculum seem however to be quite short term; it is not clear whether 
there are any longer term effects of the curriculum change.

The relatively large differences between performance on some individual 
items between the year 4 cohorts, combined with the relatively small overall 

TABLE 5.8 Changes In Mean Year 4 Facilities for Groups of Items in Different Areas of the 
Numeracy Curriculum Between June 1998 and June 2002

Group Number of items 1998 2002 Difference

Number system 31 63 69 �6

Addition/subtraction 18 60 65 �4

Multiplication/division  9 72 68 �1

Fractions/decimals/ratio 13 41 42 �1

Solving real life problems 10 40 39 �1
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change, suggests that it is the curriculum changes in the National Numeracy 
Strategy rather than the teaching methods which have had an effect on the 
results.

3. Progression in learning for many individual children is not smooth 
and may include periods of stasis until new ideas are fully grasped

A study of the progress of individual children shows that some children at 
all ability levels appear to make steady progress over time and thus remain at 
roughly the same percentile with respect to the rest of the sample. Others vary 
considerably in their rates of progress, for example after a plateau they can make 
large jumps.

In this section examples will be given of three case-study pupils, Debbie, 
Joseph and Damien, whose progress is not steady; results from classroom obser-
vations and interview data will help to validate this data and indicate some fac-
tors which may explain these variations.

(a) Debbie
Debbie, in the older cohort (cohort 2) at Pinedene school, is a child whose 

test results oscillate considerably around the median, with no obvious long term 
trend. In Figure 5.4, Debbie’s mathematical age at each test administration is 
plotted against the distribution of mathematical ages for cohort 2 and the mean 
age of Debbie’s class.

Debbie’s score started at about the median in year 4, moving up to about the 
65th percentile at the end of the year but her performance dropped gradually 
through year 5 until it reached about the 35th percentile at the start of year 6. By 
the end of year 6 and again at the end of year 7 she was back at about the 60th 
percentile. Examining her test performance for reasons for her failure to progress 
in year 5, we noted that she made no progress on any items in the areas of place 
value and decimals between the end of year 4 and the start of year 6. However 
there was considerable improvement at the end of year 6. This improvement 
was maintained in year 7, although the year 7 data is not shown on Figure 5.4. 
However Debbie’s test performance was generally consistent, both within tests 
and between them.

Debbie was quiet in class but quite independent and determined. In year 4 
we saw her working confi dently with a partner, on one occasion to develop a 
good understanding of equivalent fractions in the context of pictures of multi-
paned windows. But in year 5 it was clear in class as well as on our test papers 
that more abstract equivalent fractions (e.g., changing tenths into hundredths), 
place value and decimals were all problematic for her. Debbie volunteered to us 
in class in year 5 that she did not understand these ideas and always got wrong 
answers in class tests. The teaching we observed on fractions in that year was 
not addressing her problems, and we observed that both she and other members 
of the class became frustrated. When we interviewed Debbie at the end of year 
6, she felt that she had learned a lot in year 4 but had found the teacher and the 
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work in year 5 diffi cult to understand. She felt, and we observed both in class 
and on our tests, that she had recovered in year 6 with a more supportive and 
more relaxed teacher who tried hard to assist the children in understanding the 
basis of the mathematics. (However his reassuring approach was perhaps not 
challenging enough for all children, as the class as a whole dropped during the 
year in relation to the rest of the sample.)

Thus Debbie’s performance, and her perceptions of the quality of the teach-
ing and of her reaction to it, correspond to our classroom observation data. This, 
and the fact that the changes in her performance are similar to, but more extreme 
than, the changes in the class performance over these years suggests that in her 
case the quality of teaching is a key factor and that Debbie was particularly sen-
sitive to it. (Some case-study children in that class did not follow the trend of 
class performance.) Debbie was keen to understand the basis of what she was 
doing, and once she had obtained a correct answer to a test item did not regress. 
She seemed to need teachers who could help her achieve this understanding, 
since she did not get much help at home, being the eldest of three girls with a 
single mother. (The fact that her parents split up in year 5 seem likely to have 
contributed to the problems that year.)
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(b) Joseph
Joseph, at St. Luke’s School and like Debbie in the older cohort, had a very 

different profi le. This is shown in Figure 5.5. (He was absent for the test in June 
1998.)

Joseph’s relative position in the whole cohort gradually declined from near 
the 80th percentile at the start of year 4 to about the 60th at the end of year 6 and 
year 7. When we examined his tests his performance seemed very inconsistent; 
unlike Debbie he quite often got questions wrong that he had answered correctly 
on earlier occasions, and within the same paper he made quite basic errors in 
place value while in more diffi cult areas like equivalent fractions he appeared to 
show quite sophisticated understanding. After a year in a high set at secondary 
school, Joseph’s performance in the test deteriorated, both on fractions and on 
place value questions.

Classroom observations of Joseph suggest that he tried to remember standard 
algorithms, rather than trusting to informal methods based on understanding, but 
he often became confused and had little basic knowledge of place value to fall 
back on when his memory was insuffi cient. Nor did he seem to have any belief 
that mathematics made sense, as he showed very little metacognitive inclination 
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to monitor and check his answers. He also appeared to be unwilling to make any 
cognitive effort and seemed to lack commitment to improving his own learning. 
These factors appear to explain his inconsistent results on specifi c items, with 
his success depending on whether he happened randomly to remember appropri-
ate knowledge.

Yet Joseph was the only child of caring and well-educated parents, who had 
made sure that he attended a prestigious Catholic primary school (mean attain-
ment for his class was the highest in the sample and in the top quartile for the 
whole pupil population). From here he gained entry to an even more prestig-
ious Catholic London secondary school. His parents were suffi ciently concerned 
about his mathematics to have arranged for a private tutor in year 3 (although 
Joseph said he did not fi nd this useful so asked to discontinue it). The primary 
school were keen to move children on fast and, prior to the introduction of the 
Numeracy Strategy, used textbooks intended for children a year older, start-
ing from reception (age 4–5). One possible explanation of Joseph’s results are 
that he was a victim of a procedural approach in both primary and secondary 
schools; his uncertain grasp of fundamental ideas had not been tackled by either 
his teacher or his private tutor. His own lethargy and disinclination to engage 
with mathematics, about which all his teachers complained, has also prevented 
him from sorting this out for himself. However he was not apparently lacking 
intelligence. He was generally characterized by teachers as ‘lazy’ but this did not 
seem to do justice to his complex perceptions and beliefs.

(c) Damien
Damien was in the younger cohort at Pinedene School. His progress is shown 

in Figure 5.6.
Damien was a direct contrast to Joseph. He was absent for the test at the start 

of year 1, but at the end of year 1 his test score was low, at about the 20th percen-
tile. His performance improved dramatically by the start of year 2, reaching the 
median, and continued to improve dramatically until it reached the 70th percentile 
by the end of year 3. Unfortunately he left the school at the end of year 3 to 
attend a private school some distance away so we lost contact with him in year 4. 
Damien’s performance both between and within tests was, like Debbie’s, much 
more consistent than that of Joseph.

Some of Damien’s dramatic improvements can also be attributed to his teach-
ers. In year 1 when his score was very low the whole class did very badly (the 
mean being below the 30th percentile for the pupil population. although later 
they rose to above the 60th percentile). The teacher was in her fi rst year of teach-
ing and subsequently left the profession. She found classroom organization dif-
fi cult (which may mean that test results at the end of year 1 are unreliable) and 
the teaching we observed was undemanding and sometimes the objectives were 
unclear. However Damien’s later progress was not only due to improved teach-
ing as his scores rose considerably faster than those for the rest of the class. He 
was diagnosed as dyslexic which explained why his reading and writing were 



106 Mathematical Diffi culties: Psychology and Intervention

poor, but he was very enthusiastic about mathematics and determined to do well. 
He spent a lot of time in his bedroom playing computer games involving num-
bers, and enjoyed discussing mathematics with a high attaining boy in his class. 
In an interview at the end of year 3 he showed a very mature appreciation of his 
abilities and a determination to do well in maths. However the school had always 
regarded him as naughty; sometimes his poor behavior in class seemed to refl ect 
his frustration that his language problems were impeding his progress.

CONCLUSIONS

These results confi rm that the generally smooth patterns of progression in the 
facility of items across the whole population contain much variation at the level 
of the individual child. While some children stayed at roughly the same percen-
tile over the course of 4 years, others shifted position radically, either moving up, 
moving down or oscillating.

The progress of individual children appeared to depend on many factors, 
relating to the child’s ability, personality and inclinations, the home circum-
stances, and on whether the teaching addressed their needs, especially in relation 
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FIGURE 5.6 Damien’s progression in terms of mathematical age, in relation to the whole
distribution and the mean for his class.
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to mathematical ideas which commonly cause problems. For different children 
the balance of importance of these factors is different, and is likely to change 
over time for any particular child. In spite of general trends, it therefore seems 
to be impossible to predict the future progress of any specifi c child from their 
earlier test results.

Although there are a number of key longitudinal intervention studies (e.g., 
Maher & Martino, 1996; Steffe & Cobb, 1988), there is a dearth of longitudi-
nal studies of children’s progress in learning mathematics in ordinary classrooms 
either on a large scale or as case studies.

The Leverhulme Programme fi lled this gap across the curriculum range 
of numeracy in the primary school and provided both a generic model of pro-
gression, and information about how and why both individual test items and
individual children depart from the generic model. Such information is impor-
tant as an evidence base for researchers, curriculum developers and teachers, 
allowing both a more precise picture of median attainment and of the attainment 
spread across each year group, and how this changes from one age group to
the next.

It also provided insight for each of these user groups into the idiosyncratic 
trajectories of individual students, and some factors which may contribute to 
these differences in progress.

Finally, the results highlighted the complex yet weak relationships between 
teaching and learning, and in particular that a major attempt at systemic change 
has had at most a small effect on attainment in most areas of numeracy.
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INTRODUCTION

When considering various cultures, human body parts have been used as aids 
to counting in the development of some number systems. Also, the signifi cance of 
fi ngers has been highlighted particularly in the context of early numerical devel-
opment from a neuropsychological perspective by Butterworth (1999). A variety 
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of functions have been associated with the fusiform gyrus which is a structure 
located in the superior temporal region of the brain. Recognition of Arabic 
numerals presented visually involves the fusiform gyrus, particularly the left as 
highlighted by Ramachandran and Hubbard (2005) with reference to Pesenti et al.
(2000) and Rickard et al. (2000). In relation to neuroimaging research fi ndings 
McCandliss et al. (2003) have suggested that the process of abstract visual word 
form perception is associated with a cortical area located within the left fusi-
form gyrus. Also, they note with reference to Haxby et al. (2000) that evidence 
has suggested there is activation in this area resulting from object and face rec-
ognition. Further discussions concerning the notion of a visual word form area 
and related issues have been given by Cohen and Dehaene (2004) and Price and 
Devlin (2003, 2004). For developmental perspectives in relation to facial percep-
tion and the fusiform gyrus reference could be made to Passarotti et al. (2003), 
Gathers et al. (2004), Aylward et al. (2005) and Scherf et al. (2007).

Facial features are some aspects of the body that have been noted in relation 
to number systems and they have been considered particularly by certain investi-
gators in connection with numerical disabilities. Badian (1983) considered that a 
defi cit in visual attention to exact detail as suggested in young children’s human 
fi gure drawings might provide information concerning later numerical abilities. 
In Badian’s discussion concerning those who might be described as dyscalculic, 
the omission of the nose was noted and sometimes the inclusion of an incorrect 
number of fi ngers.

Also, fi ndings from research by Lawson (2000c, 2001a) with fi rst-year junior-
aged children suggested that directing their attention to specifi c arithmetical 
details and associated numerical concepts or, alternatively, particular omissions 
and poorly depicted aspects concerning their drawings of people enhanced their 
development and performances in both areas. Additionally, in another study by 
Lawson (2001b), fi rst-year junior-aged pupils practised a task involving subi-
tizing which concerns the fast apprehension of small numerosities. The numer-
osities were associated with dots for some presentations and for others with 
schematic facial features. The results suggested a facilitative effect in relation to 
the inclusion of details in their human fi gure drawings as well as more realistic 
depictions.

The fi ndings presented by Noël (2005) indicated that in fi rst-grade children 
fi nger gnosia was a good predictor of numerical skills. Also, this occurred for 
left–right orientation. Finger gnosia predicted performance equally on numerical 
tasks whether or not they depended particularly on fi nger representation or on 
magnitude representation. Also, Rusconi et al. (2005) found that in adults repeti-
tive transcranial magnetic stimulation (rTMS) over the left angular gyrus dis-
rupted fi nger gnosis and number magnitude processing. ‘In a more recent study 
by Gracia-Bafalluy and Noël (2008) with fi rst grade children, it was suggested 
that fi nger differentiation training improved performances in fi nger gnosis, subi-
tizing, counting representations of raised fi ngers and ordinality involving Arabic 
digit processing. In the fi nger gnosis assessment the children were required to 
differentiate their fi ngers when touched and without visual cues. The specifi c 
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task had been used by Noël (2005). Also, as part of the fi nger gnosis assessment 
the children were involved in a ‘Draw a Man’ and a ‘Draw a Hand’ task. On 
the latter, participants in the fi nger differentiation training group demonstrated 
enhanced performances in comparison with those in the control group who 
had received story comprehension training, after individuals in each group had 
received their specifi c interventions. The possibility was considered of improve-
ments in internal representations concerning the fi ngers and hands but with no 
change for those involving the whole body.’

Additionally, Sato et al. (2007) used TMS to investigate changes in excit-
ability relating to hand muscles of right-handed adult participants during their 
involvement with a visual, odd or even parity judgment task. It concerned the 
Arabic numerals from 1 to 9, with the exclusion of 5 and there was not a require-
ment for counting. No modulation was indicated for the left-hand muscles, but an 
increase in amplitude concerning the motor-evoked potentials was demonstrated 
for the right-hand muscles. The increase was apparent only for the smaller 
 numbers from 1 to 4 as opposed to the larger numbers from 6 to 9. Hence a 
neural association was suggested between hand/fi nger and numerical representa-
tions. Also, in a study by Andres et al. (2007) right-handed adult female partici-
pants were involved with a counting task requiring the use of numbers or letters 
of the alphabet to enumerate items. Changes in corticospinal activity (CS) were 
assessed via TMS. The results indicated an increase in CS excitability relating to 
hand muscles when the participants were performing the task using numbers or 
letters. The increase in CS excitability was identical when the activity involved 
small arrays of dots from 1 to 4 as opposed to large arrays comprising 9 to 12 
dots. No changes were apparent in relation to the arm and foot muscles. Hence, 
the involvement of hand motor circuits was considered for tasks requiring items 
to be placed correspondingly with the elements of any ordered series.

In research by Riggs et al. (2006), subitizing was investigated in relation to 
tactile perception via the simultaneous stimulation of the fi ngertips on both hands 
of adult participants. A discontinuity in accuracy was shown with near perfec-
tion for one to three fi ngers and severe impairment for four to six fi ngers. Also, 
there was a discontinuity in the naming-times slope for one to six fi ngers. Hence 
it was concluded that subitizing was apparent in tactile perception within this 
context. In a different context but still involving touch, the results of research by 
Gallace et al. (2006) suggested that adults were able to discriminate to a certain 
extent between different numbers of tactile stimuli when multiple tactors were 
activated simultaneously across the surface of the body. However, the accuracy 
of tactile numerosity judgments decreased considerably with relatively modest 
increases in the number of activated tactors. The participants indicated the abil-
ity to estimate differences in the number of tactors comprising the pattern pre-
sented on the body, but this was less so for the correct perception of information 
concerning the actual quantity. There was no indication of a discontinuity in the 
slope corresponding to the reaction time or the error data, so subitizing was not 
suggested by the results. Also, reference could be made to Gallace et al. (2007a) 
in relation to numerosity judgments concerning visual and tactile stimuli and for 



detailed discussions of cutaneous tactile stimulation within a multisensory con-
text to Gallace and Spence (2008) and Gallace et al. (2007b).

In a functional magnetic resonance imaging (fMRI) study by Thompson et al. 
(2004), adult participants viewed videos of a hand with small numbers being rep-
resented by fi nger movements or faces where lip movements presented the same 
numerical information. Control stimuli comprised the same hand half opening 
and closing or the same mouth opening and closing for each comparable test 
item. Activation relating to lip reading of numbers was apparent in the left pos-
terior superior temporal sulcus (STS). Identifi cation of numbers conveyed by the 
fi ngers was indicated by preferential activation in the left inferior parietal region 
(IPR). Also, activation in relation to numbers via the presentation of fi nger stim-
uli was shown in the right IPR. This response was not specifi c to the number 
representation via fi nger stimuli, and there was a small area of common activa-
tion in the right IPR associated with the identifi cation of numbers in the fi nger 
and lip numerical presentations. In relation to their fi ndings the authors referred 
to an fMRI study by Eger et al. (2003). Adult participants were asked to respond 
to target items within each category of numerals, letters and colors presented in 
the visual and the auditory modalities. Specifi cally, this nonarithmetical process-
ing of numerals in comparison with letters and colors activated a bilateral region 
in the horizontal intraparietal sulcus for the visual and auditory modal presen-
tations. Thompson et al. (2004) noted that this supramodal number region as 
termed by Eger and colleagues was proximal to the intraparietal regions acti-
vated by fi ngers representing numerical information in their study.

As indicated below concerning the presentation here, the fi ngers were used 
particularly in relation to the tactile aspects of the remedial technique as the 
participants felt the shape of each solid Arabic numeral. Also, they might use 
fi ngers overtly or covertly for counting when necessary although the extent to 
which they were used varied as different strategies and direct recall became 
available increasingly during the development of their numerical abilities. Apart 
from moving their lips as they said the number words, they watched my lips 
move sometimes during the interactions and including the times when I spoke 
the number words. Also, there were no restrictions on the movement of the hands 
except for the specifi c application as described for the multisensory technique 
for learning the multiplication tables. The importance of the hands not only 
in relation to their use for the representation of the attentional and declarative 
aspects of cognitive activities but in terms of providing support within a dynamic 
context for the procedural aspects of these activities has been discussed in 
some detail by Carlson et al. (2007). Specifi cally they considered the use of 
the hands in elementary arithmetic tasks and emphasized the importance of 
studying the embodiment of cognition. For a specifi c discussion concerning the 
embodied mind and mathematics, reference could be made to Lakoff and Núñez 
(2000).

The angular gyrus which has been highlighted above is situated within the 
inferior parietal lobule and is located at the junctions of the temporal, parietal 
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and occipital lobes. Generally this region has been considered to be involved 
in the multisensory convergence of information from touch, hearing and vision 
to facilitate the construction of higher-level abstractions (Ramachandran and 
Hubbard, 2005). It would appear that at birth we are predisposed to manage 
multisensory input in an environment which provides information mainly of a 
multimodal nature. Also, multisensory processing and integration have been 
of particular interest in association with theories and interventions concerning 
some specifi c conditions such as those within the autism spectrum (Iarocci and 
McDonald, 2006). In relation to numerical development some studies, for exam-
ple, Kobayashi et al. (2005) and Jordan and Brannon (2006) have suggested that 
infants are able to relate sets with small numerosities when they are presented 
in different sensory modalities. Consequently, it would seem reasonable to con-
sider teaching/learning approaches that emphasize multisensory stimulation with 
the aim that compensatory mechanisms might be facilitated for those individuals 
who might experience diffi culties in certain areas.

The fi rst two children discussed here had been selected originally because they 
had experienced diffi culties in learning the multiplication tables. Before their 
involvement in a remedial program to help them overcome these specifi c prob-
lems and to promote more mature numerical development, they were assessed 
in terms of their levels of cognitive and psychosocial functioning as well as their 
attainments in literacy and numeracy. The third child given in this presentation 
had problems also in learning the multiplication tables so it was appropriate to 
involve him in a similar remedial program. However, because of social and com-
munication diffi culties he participated also in other assessments and interventions 
some of which had been designed specifi cally by the present author.

As part of the assessment, items were developed in relation to the Dyscalculia 
Test Battery described by Macaruso et al. (1992) and there were some specifi c 
additional tasks too. Their battery was based on the cognitive model of number 
processing and calculation suggested by McCloskey et al. (1985) and supported 
by evidence of specifi c defi ciencies in adults with acquired dyscalculia. In this 
model a number processing section comprised distinct components for compre-
hension and production, lexical and syntactical elements and separate Arabic and 
verbal number processes. Another aspect involved knowledge relating to number 
facts including the meaning of signs and knowledge of tables. Also, an area con-
cerned procedural knowledge including the necessary algorithms for carrying 
out exercises involving the four arithmetical operations.

Diffi culties might be experienced by individuals described as dyscalculic in 
any of the spheres concerning numerical processing, knowledge of number facts 
and procedural knowledge. Temple (1989, 1991, 1994a, b, 1997a, b) discussed 
the main characteristics of some young people who might be described as dys-
calculic within a developmental cognitive neuropsychological context and with 
some considerations support was given for the model proposed by McCloskey 
and his colleagues. Reference could be made to Campbell and Epp (2005) who 
have reviewed studies and considered challenges in relation to aspects of the 
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model and possible modifi cations. Additionally, Kaufmann and Nuerk (2005) 
have highlighted issues concerning the use of adult numerical cognitive models 
in relation to children and adolescents, and their discussion has included aspects 
relating to the model by McCloskey and his colleagues.

Also, a recent discussion concerning dyscalculia including developmental 
and acquired considerations associated with various hypotheses as well as impli-
cations for educational aspects and interventions has been presented by Wilson 
and Dehaene (2007). They highlight the signifi cance of the angular gyrus and 
a suggested impairment involving this region and associated with diffi culties 
in the learning and retrieval of arithmetical facts, especially relating to multi-
plication. Additionally, reference could be made to the various discussions con-
cerning mathematical learning diffi culties and disabilities in the book edited by 
Berch and Mazzocco (2007). Specifi cally, Simon and Rivera (2007) empha-
size caution concerning the fi ndings of neuroanatomical correlates relating to 
numerical cognition in neuroimaging studies involving adults and interpretations  
concerning children and adolescents as differences in neural activity might be 
found in young people with typical and atypical presentations at various stages 
in their development. Also, there are a limited number of published neuroim-
aging investigations concerning numerical development involving children and 
adolescents.

In an fMRI study by Kawashima et al. (2004), young people of both sexes, 
aged 9–14 years and adults, men and women aged 40–49 years were involved 
in mental calculation tasks concerning addition, subtraction and multiplication 
with single-digit operands. Brain activation was demonstrated in the prefrontal, 
intraparietal, occipital and occipito-temporal cortices for both groups of partici-
pants and in relation to when they performed each of the arithmetic operations. 
The young people who took part in my research were involved with learning 
items from the multiplication tables, and some of these had single-digit operands 
whereas others involved two-digits. Also, although the number of items that they 
could retrieve directly increased with training, if they were unable to recall an 
answer immediately they might recall another item and use mental addition or 
subtraction to obtain the correct answer. Additionally, because of their diffi cul-
ties and the nature of the training they experienced the multiplication items in 
a variety of modalities. In the study highlighted above the items were presented 
on a computer screen, and the participants were instructed to perform the tasks 
mentally and not to vocalize or move parts of their bodies.

Generally, I have noted the results of some studies with children, adolescents 
and adults which seemed of interest and relevance to the discussion presented 
here. Overall, assumptions have not been made in relation to these fi ndings and 
the location of neural activation in the young people who have participated in 
my projects. Also, I implemented items which I had developed in relation to a 
particular dyscalculia test battery as the resulting assessment tool was expected 
to be helpful in highlighting specifi c numerical diffi culties experienced by the 
young participants in my studies.
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In relation to some of the terms and ideas used by myself and in various 
studies, reference could be made to Shalev (2007) for a discussion of aspects 
concerning developmental dyscalculia in the context of defi nitions, assessments 
and prevalence. Shalev and Gross-Tsur (1993) considered a marked impairment 
of arithmetical skills combined with a lack of response to educational interven-
tions as the criteria for developmental dyscalculia in the children involved with 
their investigation. Specifi c arithmetical impairments had been noticed by staff 
or parents concerned with the young people described here, and they had not 
responded to remedial interventions or only to a limited extent. The case reports 
presented here give analyses of the diffi culties experienced by three boys. The 
fi ndings are related to other investigations concerning children’s numerical 
development, case studies of young people with developmental dyscalculia and 
research involving individuals or groups of adults with acquired dyscalculia.

Mainly, information obtained from the Dyscalculia Test Battery Assessment 
is presented here but a few points will be noted in relation to some specifi c 
numerical tasks which were administered to the children as part of the whole 
assessment. The fi rst two cases, namely Child A. and Child M., were involved 
with their assessments and remedial programs some time ago, whereas Child L. 
was seen more recently and he participated in other sessions concerned with dif-
ferent aspects of his development because of his disposition as indicated below. 
Consequently, some different tests or more revised versions of some assessments 
were used for Child L. as opposed to the other two boys. Detailed presentations 
of the programs for Child A. have been given by Lawson (1995b, 2000b) and for 
Child M. by Lawson (2000b) with summaries by Lawson (2001a). Also, certain 
aspects relating to these two children reported here were presented initially by 
Lawson (2002). A comprehensive presentation concerning the assessments and 
interventions for Child L. has been given by Lawson (2005).

Initially, a detailed description of the Dyscalculia Test Battery is given as well 
as the remedial technique used to help children who experienced diffi culty with 
certain types of addition problems. Also, a Multisensory Remedial Approach for 
Learning the Multiplication Tables developed by the present author is described 
here. This technique involved the visual, auditory, tactile and kinesthetic modali-
ties and is similar in certain respects to that described for reading and spelling by 
Bryant and Bradley (1985). Also, the modifi ed procedure for learning the opera-
tion names, words and symbols is given in this presentation.

As discussed by Fogassi and Gallese (2004), multisensory integration is a 
pervasive characteristic of cortical regions concerned with motor planning and 
control. Cortical premotor regions possess sensory features and posterior pari-
etal regions that have been considered association areas possess motor features. 
Parietal regions which are connected with frontal regions jointly comprise corti-
cal networks for the processing and integration of multisensory data for the exe-
cution of action and the representation of the environment in which the action 
occurs. The multisensory technique that I developed involved a motor compo-
nent and this aspect is a feature of other approaches described below.
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Specifi cally, my approach shares some similarities as well as differences 
with TouchMath (Bullock, 2002) which has been highlighted by Naglieri and 
Pickering (2003). This is a multisensory method for learning computation with 
applications in relation to all four arithmetical processes. Also, my approach has 
certain aspects in common with the ARROW technique (Lane & Chinn, 1986; 
Lane, 1992) and cited by Chinn and Ashcroft (1998). ARROW, which is an acro-
nym for Aural-Read-Respond-Oral-Written is a multisensory teaching/learning 
approach. The learner’s own voice is replayed on tape and connected with skills 
in writing, listening and speech in a set of processes concerning spelling, com-
prehension and reading books. Lane and Chinn (1986) and Chinn and Ashcroft 
(1998) describe the technique in relation specifi cally to learning the multiplica-
tion tables.

The author would like to emphasize that the relatively simple techniques 
concerning addition and multiplication discussed here were accompanied 
always by instructional support aimed at integrating and promoting the devel-
opment of numerical concepts and knowledge of arithmetical procedures with 
the  acquisition of number facts. The iterative nature of factual, procedural and 
conceptual knowledge concerning numbers has been emphasized in a devel-
opmental context by Baroody (2003) and highlighted in relation to the reha-
bilitation of acquired calculation and numerical processing disorders by Lochy 
et al. (2005). Also, Zamarian et al. (2007) have emphasized the infl uence of inter-
relationships concerning the different aspects of numerical knowledge in promot-
ing the development of meaningful and effi cient processing in this area. In relation 
to my participants, often the children offered comments and ideas spontaneously 
which indicated the nature of their understanding and these could be devel-
oped further. For those who were less forthcoming, they could be prompted to 
question and think about various aspects concerning the items that had been 
problematic.

Also, although I refer to Arabic numerals I do acknowledge consideration in 
relation to the Indian numerical symbolic notation as highlighted, for example, 
by Ifrah (1998). Additionally, McCloskey et al. (1985) refer to Arabic and ver-
bal numbers. The distinction between numbers and their symbolic representation 
via the use of the term ‘numerals’ has been highlighted by McCloskey (1992) 
in relation specifi cally to Arabic numerals for numbers represented symbolically 
in digit form as well as spoken and written verbal numerals for numbers repre-
sented as words. Hence, I have used the term ‘numerals’ in connection with the 
dyscalculia model which I have described here. However, in line with everyday 
usage of the term ‘number’ I might have used this terminology when making a 
request to a child, for example, to fi nd a number when referring to solid plastic 
numerals in Arabic form for the Tactile Recognition and Naming of Numerals 
task. Also when I refer to number(s) in the discussion, the exact representation 
and any conceptual associations should be clear from the context.



Dyscalculia Test Battery for Numerical Diffi culties 117

A DYSCALCULIA TEST BATTERY

NUMERAL PROCESSING TASKS

Magnitude Comparison
Arabic Magnitude Comparison. Two Arabic numerals were presented to the 

child who on request pointed to the larger or smaller number. The test items 
included units, tens, hundreds and thousands. There were 10 comparisons for the 
units with the numbers ranging from 0 to 9 and 10 comparisons each for the 
tens in the range 10–19 and in the range 20–99. For the hundreds and the thou-
sands there were fi ve comparisons each that were selected respectively within 
the ranges 9,999. The items were chosen so that a broad selection was offered 
and included odd and even numbers and those involving zeros. Also, they were 
written and presented on white cards.

Spoken Verbal Magnitude Comparison. Two verbal numerals were presented 
in spoken form and the child indicated which was larger. On a piece of white 
card, two squares had been drawn one above the other. The assessor pointed to 
the top square while reading the fi rst number and to the bottom square when 
reading the second number. When asked to respond to the larger or smaller 
number the child responded by pointing to the appropriate square. The test items 
were the same as those used for the Arabic Magnitude Comparison tasks.

Written Verbal Magnitude Comparison. Two written verbal numerals were 
presented to the child and he/she pointed to the larger or smaller number as 
requested. The test items were the same as those used for the Arabic Magnitude 
Comparison Tasks except that they were in written verbal form.

Transcoding Tasks
On these tasks the child was asked to perform six possible conversions among 

Arabic, spoken verbal and written verbal numerals. All of the test items used 
were the same as for the magnitude comparison tasks.

Transcoding Arabic Numerals to Spoken Verbal Numerals. Arabic numerals 
were presented visually and the child read each numeral aloud.

Transcoding Spoken Verbal Numerals to Written Verbal Numerals. Verbal 
numerals were dictated and the child wrote each numeral in verbal form.

Transcoding Spoken Verbal Numerals to Arabic Numerals. Verbal numerals 
were dictated and the child wrote each numeral in Arabic form.

Transcoding Arabic Numerals to Written Verbal Numerals. Arabic numerals 
were presented visually and the child wrote each numeral in verbal form.

Transcoding Written Verbal Numerals to Spoken Verbal Numerals. Written 
verbal numerals were presented and the child read each numeral aloud.

Transcoding Written Verbal Numerals to Arabic Numerals. Written verbal 
numerals were presented and the child wrote each numeral in Arabic form.
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Additional Item: Tactile Recognition and Naming of Numerals. Solid plastic 
Arabic numerals from 0 to 9 were placed under a cloth and the child was asked 
to fi nd individual numbers at random and to name them one at a time while they 
were under the cover. Also, the child was asked to retrieve named numbers that 
were chosen individually at random from under the cloth.

CALCULATION TASKS

Operation Symbol and Word Comprehension
Operation Symbol Comprehension. This task comprised items probing com-

prehension of the operation symbols for addition, subtraction, multiplication and 
division. For each item an operation name was presented visually and aurally. 
Arithmetic problems with identical operands but different operation symbols were 
presented visually. The child’s task was to point to the problem corresponding to 
the specifi ed operation. The test items included units, tens and hundreds. There 
were four items involving two numbers each in the units for assessing comprehen-
sion of the four arithmetical operations. Also, there were four items involving two 
numbers each, with a number in the 10–40 range and a number in the 1–9 range 
and another group of four items each involving two numbers where one number 
was in the range 100–400 and the other number was in the range 10–60.

Operation Word Comprehension. In this task, items were used which probed com-
prehension of the spoken operation words ‘plus’, ‘minus’, ‘times’ and ‘divided by’. 
An operation name was presented visually and aurally for each item. Then an arith-
metic problem was dictated and the child indicated whether or not the problem cor-
responded to the operation name. A yes/no procedure was used for the response. 
The test items were selected from the Operation Symbol Comprehension tasks.

Written Arithmetic Tasks
These tasks were used to investigate the retrieval of arithmetic facts and 

execution of the calculation procedures for addition, subtraction, multiplication 
and division. For Child A. and Child M. three arithmetic tests were adminis-
tered, specifi cally the fi rst 25 questions of the Graded Arithmetic–Mathematics 
Test (Junior) by Vernon and Miller (1976), the Basic Number Diagnostic Test 
by Gillham (1980) and the British Ability Scales (BAS)-Basic Number Skills 
by Elliot et al. (1983). Child L. was administered both sections of the Weschler 
Objective Numerical Dimension (WOND)-Mathematical Reasoning (MR) and 
Numerical Operations (NO) (Rust, 1996). For the MR section, the questions 
are seen visually by the child and they are read to the participant. Some items 
require a written answer but for many questions an oral response is required by 
the individual and a few items require the child to point in response to a ques-
tion. On the NO section the answers to all of the questions have to be written.

Additional Item: Specifi c Rectangular and Non-Rectangular Addition 
Exercises. The children were administered certain types of rectangular and 
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non-rectangular addition questions, groups (A, B) and (A1, B1) which I had 
prepared myself and the necessary teaching involving groups (A2, B2) and 
re-assessment with groups (C1, D1) as required if they experienced diffi culty 
with these exercises. The non-rectangular addition problems had been high-
lighted by Friend (1979) and confi rmed by Lawson (1986, 1989) as being a 
source of particular diffi culty for some children, and these studies had noted three 
specifi c types of errors. Examples of items in the different groups and particular 
errors are shown below. The terms rectangular and non-rectangular referred to 
the digital arrangement in the addends. The non-rectangular questions contained 
a single-digit in the far left column and there was no carry to be added into this 
column. I presented the children with rectangular exercises that matched the non-
rectangular questions in terms of the number of columns and rows and no carry-
ing was required in the calculations. The diffi culties concerning the non-rectangular 
problems had been considered in relation to conceptual issues concerning the join 
of a single set and the sum of a single number. The questions could be completed 
accurately after instruction with a simple technique involving a zero being placed 
in the space in the far left column and a discussion to clarify the associated con-
ceptual basis for the procedures (Lawson, 1990, 1995a, 2000a, 2001a).

Examples of the rectangular and non-rectangular addition exercises given in each 
of the groups:

A 4 3
2 1��

 B 3 1 2
4 3 4��

A1 6 3
2��

 B1 5 6 1
3 1��

A2 6 3
0 2��

 B2 5 6 1
0 3 1��

C1 3 1
6��

 D1 4 3 2
5 3��

Examples of the specifi c types of errors on the non-rectangular addition exercises:

Type 1: A number is added from another column e.g.

 6 3
2

8 5
��

 5 6 1
3 1

8 9 2
��

Type 2: The single digit is added into the column on the right e.g.

 6 3
2

1 1
��

 5 6 1
3 1

1 4 2
��
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Type 3: The odd digit is ignored e.g.

 6 3
2
5

��
 5 6 1

3 1
9 2

��

Oral Arithmetic Tasks
These tasks probed arithmetic fact retrieval and involved the four calculation 

procedures. Each problem was presented aurally and the child said the answer 
aloud. Five questions were presented with each item involving two numbers in 
the range 0–9 for the arithmetic operations addition, subtraction, multiplication 
and division. Also, Child A. and Child M. were administered the Arithmetic 
subtest of the Weschler Intelligence Scale for Children–Revised UK (WISC-R 
UK), Weschler (1976). Child L. was administered the Arithmetic subtest of the 
Weschler Intelligence Scale for Children–Third Edition UK (WISC-III UK). For 
both versions of the Arithmetic subtest, the children were administered aurally 
presented word problems requiring oral responses.

Additional Item: Recitation of Multiplication Tables. The child was asked to 
recite any of the multiplication tables or any items that he/she was able to recall.

It should be noted that division items were included in the calculation section 
here whereas they were not specifi ed in the dyscalculia test battery described by 
Macaruso et al. (1992).

A MULTISENSORY REMEDIAL APPROACH FOR 
LEARNING THE MULTIPLICATION TABLES

As indicated earlier the teaching approach used to help the children learn the 
multiplication tables involved a multisensory method with an emphasis on four 
different sensory modalities. Prior to the remedial sessions, cards had been pre-
pared on which there were written numerals in verbal and Arabic form. Also, 
there were cards for the four arithmetic operations and expression for equality 
in verbal and symbolic form. Plastic characters were available that represented 
Arabic numerals and the four arithmetic symbols and there was one for equal-
ity. For some multiplication items the children displayed the word and symbol 
cards and solid characters in an appropriate order. As they placed the items, they 
said the names of the numerals and arithmetic operations out aloud and similarly 
they acknowledged equality. The cards could be used as aids for those with lim-
ited literary skills or until the child became more profi cient at accessing items, 
but they were not implemented for every exercise. For all multiplication exer-
cises the children wrote the number words and the arithmetic operation words 
and they named them aloud as they wrote the items. Then they wrote out the 
numerals in Arabic form and the arithmetic operation symbols and again they 
said the names out aloud as they wrote the items. Also, the children placed solid 
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plastic characters under the written Arabic numerals and operation symbols or on 
a board if the characters were magnetic for each multiplication item and they said 
the names out aloud. Then they felt and named these solid characters with their 
eyes closed and with them open. When they repeated the procedure for other 
table entries they removed only the cards if used and the solid characters that 
were not needed to form the new items. If a child showed confusion particularly 
with arithmetic operation names, words and symbols a similar procedure was 
carried out using the same operands in each case but with different operations.

Example of the items and procedure used for learning the multiplication tables:

three times four equals twelve(written)
  3 � 4 � 12(written)
  3 � 4 � 12(solid characters)

Example of the items and procedure used for learning the operation names, 
words and symbols:

Multiplication: ten times fi ve equals fi fty(written)
 10 � 5 � 50(written)

 10 � 5 � 50(solid characters)

Addition: ten plus fi ve equals fi fteen(written)
 10 � 5 � 15(written)
 10 � 5 � 15(solid characters)

Subtraction: ten minus fi ve equals fi ve(written)
 10 � 5 � 5(written)
 10 � 5 � 5(solid characters)

Division: ten divided by fi ve equals two(written)
 10 � 5 � 2(written)
 10 � 5 � 2(solid characters)

CHILD A.

Initially when A. participated in the project he was aged 11 years 1 month 
and he was in the last year of his primary education. He was expecting to move 
on to secondary school for the next academic year and some of the comments 
made here relate to discussions that I had with A. during his fi rst year at second-
ary level. He had attended mainstream schools throughout his school life and
he had not received any form of specialist educational support. As indicated 
earlier, A. was involved with a variety of assessments but mainly information
is presented concerning the Dyscalculia Test Battery. However a few points 
involving specifi c numerical tasks are mentioned in relation to this. On the 
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WISC-R (UK), Weschler (1976) his performance was not strong on the 
Arithmetic subtest which involves aurally presented word problems with various 
arithmetical operations that have to be solved mentally by the child and require 
an oral response. Also, he showed particular diffi culty on Digit Span and this was 
refl ected by his limited performance both on the Forward and on the Backward 
Digit Span tasks. Hence, it was suggested that A. might have some diffi culties 
concerning the storage of numerical data and the manipulation of stored numeri-
cal information as discussed by Hoard et al. (1999) in relation particularly to per-
formances on Backward Digit Span within the context of working memory.

DYSCALCULIA TEST BATTERY ASSESSMENT

NUMERAL PROCESSING TASKS

Magnitude Comparison
Arabic Magnitude Comparison. All items were completed correctly.
Spoken Verbal Magnitude Comparison. All items were completed correctly.
Written Verbal Magnitude Comparison. All items were completed correctly.

Transcoding Tasks
Transcoding Arabic Numerals to Spoken Verbal Numerals. A. was required 

to read aloud each Arabic numeral presented in a visual format. This was a read-
ing task of a similar type to that used by Power and Dal Martello (1997) with 
Italian children aged 7 years. Various errors were made by these children who 
were much younger than A. whereas he was correct on all items.

Transcoding Spoken Verbal Numerals to Written Verbal Numerals. All items 
were completed correctly.

Transcoding Spoken Verbal Numerals to Arabic Numerals. A. made one error 
when he wrote 9,804 in response to the spoken numeral ‘nine thousand and thirty-
four’ (9,034). The dictation task used here was of a similar form to that used by 
Power and Dal Martello (1990) with Italian children aged 6–8 years. Generally in 
the area of numeral processing, the lexical processing component is concerned with 
the processing of individual number words and digits whereas syntactic process-
ing concerns the relationships among the elements that comprise a numeral. Hence, 
as highlighted by Power and Dal Martello (1990) in relation to a dictation task, a 
response for example to the spoken verbal numeral ‘three hundred and sixty-fi ve’ 
might involve a lexical error as apparent in 364 as opposed to the correct answer 
365. A syntactical error might involve an incorrect number of zeros as in responses 
such as 3,065 or 30,065 as opposed to the correct answer 365.

Following Power et al. (1978), the investigators gave a theoretical formula-
tion of these errors in which it was proposed that in the production of an Arabic 
numeral like 365, the numerals 300 and 65 need to be combined via a string 
operation which they termed ‘over-writing’. Children who had not yet acquired 



Dyscalculia Test Battery for Numerical Diffi culties 123

competence with this operation tended to rely on concatenation. Generally, they 
found that syntactical errors were much more frequent than lexical errors and 
when considering the types of syntactical errors the insertion of zeros was pre-
dominant as opposed to the incorrect ordering of digits, such as 563 or 653 instead 
of the correct response of 365, in the example given above. Also, the insertion 
of zeros was not apparent for numbers less than hundred. The error made by A. 
in response to a spoken verbal numeral, when he wrote 9,804 instead of 9,034, 
appeared to have both syntactical and lexical components as there seemed to be 
a reversal of two digits and then a digit was written incorrectly. Temple (1989, 
1997a, b) described an 11-year-old child who produced incorrect digits when he 
was required to read Arabic numerals or write Arabic numerals that had been dic-
tated but he demonstrated accurate syntactic processing. More errors were made 
in relation to reading number words in comparison with Arabic numerals but they 
were of a similar type. As indicated above and below respectively, A. did not make 
any errors when reading Arabic numerals or number words.

Transcoding Arabic Numerals to Written Verbal Numerals. A. made two errors 
when transcoding visually presented Arabic numerals to written verbal numerals 
with the written verbal response of ‘twelve thousand and seventy-eight’ being 
given instead of ‘one thousand two hundred and seventy-eight’ or ‘twelve hun-
dred and seventy-eight’ and ‘fi ve thousand and sixty-three’ being written instead 
of ‘fi ve thousand six hundred and three’. In the fi rst incorrect response written by 
A., he appeared to have transcoded erroneously the fi rst part of the numeral from 
‘twelve hundred’ to ‘twelve thousand’ so he made a ‘Stack’ error by retaining 
the 12th position within the stack but the information relative to the stack itself 
was altered, that is from the hundreds to the thousands. In the second case the 
information regarding the position within the stack, that is, the sixth position was 
preserved but the information relative to the stack itself was altered, that is from 
the hundreds to the tens. In a study by Seron and Deloche (1983) using a similar 
task, patients with Broca’s or Wernicke’s aphasia made both ‘Stack’ and ‘Stack 
Position’ errors with both groups making more stack than stack position errors. 
A stack position error occurs where there is erroneous information processing in 
relation to the position in the stack but with preservation of stack information. 
Also, both of these error types were found with a similar task in an investigation 
by Seron and Deloche (1984) involving a mixed group of adult aphasics.

Transcoding Written Verbal Numerals to Spoken Verbal Numerals. All items 
were completed correctly.

Transcoding Written Verbal Numerals to Arabic Numerals. A. was incorrect 
on one test item as he wrote 417 instead of 475 when presented with it in written 
verbal form as ‘four hundred and seventy-fi ve’. In this reading task A. appeared 
to have read incorrectly seventy as seventeen and then omitted the fi ve, so two 
types of error were made apparently by him. A. made these errors in a task where 
he had to read number words and then write them in Arabic notation which is a 
task described by Deloche and Seron (1982a) involving adult aphasics in which 
the fi rst type of error made by A. would have been termed a ‘Stack’ error and the 
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second error type would have been categorized by the term ‘Partial Processing of 
the Numeral’. In relation to the stack concept in neuropsycholinguistics, a stack 
is a fi le which contains elements in a serial order such as the names for num-
bers or for the days of the week (Deloche and Seron, 1984). As indicated earlier 
when considering numerical processing, a stack error occurs when the stack of a
lexical element of a numeral is incorrectly coded but there is preservation of 
information in relation to its position in the stack. For partial processing one of 
the elements is not processed and this might occur at the beginning, the middle 
or at the end of the presented item.

Additional Item: Tactile Recognition and Naming of Numerals. A. performed 
well on the task concerning the tactile recognition and naming of numerals as he 
responded quickly and correctly to all items on his fi rst attempts.

CALCULATION TASKS

Operation Symbol and Word Comprehension
Operation Symbol Comprehension. All items were completed correctly.
Operation Word Comprehension. A. showed confusion on several items. 

On the problems involving only units A. said that ‘Divided by’ and ‘Plus’ 
c orresponded to the operation name ‘Subtraction’. ‘Times’ did not but when 
given ‘Minus’ he was sure that this was the correct operation word. On the prob-
lems involving tens and units A. said that ‘Times’ corresponded and ‘Minus’ did 
not correspond to the operation name ‘Subtraction’. Also, ‘Divided by’ corre-
sponded but ‘Times’ did not correspond to the operation name ‘Multiplication’.

Written Arithmetic Tasks
A. made errors on basic subtraction questions and when presented with those 

that involved borrowing he added the numbers. Also, he responded to some mul-
tiplication questions as problems in addition. He could give correct answers only 
to the very simple multiplication and division questions.

Additional Item: Specifi c Rectangular and Non-Rectangular Addition 
Exercises. A. completed accurately the specifi c rectangular and non-rectangular 
addition exercises designed by the present author and he indicated an understand-
ing of the associated concepts.

Oral Arithmetic Tasks
A. was correct on the addition and subtraction questions used as oral arith-

metic tasks. He corrected himself quickly after giving two erroneous answers to 
multiplication exercises. A. was unable to complete any division problems pre-
sented orally. Also, as indicated above A. had experienced some diffi culties on 
the Arithmetic subtest of the WISC-R (UK) which involves an oral presentation 
and response although more verbal interpretation is involved than on the simple 
arithmetic tasks mentioned in this section.

Additional Item: Recitation of Multiplication Tables. A. showed very marked 
diffi culties in relation to remembering the multiplication tables. In an attempt to 
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recite them he tended to work out each answer by counting on from the previous 
response. Hence he was able to reply correctly on some items. Although he used 
this method frequently he was able to respond accurately sometimes using direct 
recall when smaller numbers were involved, for example, 2 � 3 � 6. Also, he 
was able to retrieve directly most of the items from the 10 and 11 times tables. 
Some of the inaccurate responses that A. made in the multiplication tables
were termed ‘Bond’ errors and ‘Shift’ errors by Temple (1991, 1997b). ‘Bond’ 
errors occur when an individual retrieves an answer which indicates that the cor-
rect table is being accessed for one of the numbers in the computation but the 
selection is incorrect, for example, 6 � 3 � 15(18). Hence, there was the consid-
eration of table entries being stored in an interconnected fashion and bond errors 
being categorized as semantic (Temple, 1997b). ‘Shift’ errors are described 
when erroneous responses are not alternative table values and they contain a 
single digit that is incorrect, for example, 9 � 3 � 37(27). The second digit is 
correct and the answer does not occur in the 9 or the 3 times tables. Also, A. 
made ‘Perseverative’ errors as described by Temple and Marriott (1998). These 
are inaccurate responses that have occurred previously in relation to other 
problems.

CHILD M.

M. was aged 10 years 6 months when he participated initially in the project 
and he was in a mainstream setting which had been the case for all of his pri-
mary education. Also, he had not received specialist educational support in any 
form before or during his school years. As indicated above, M. was involved 
with various assessments but mainly information is discussed here concerning 
the Dyscalculia Test Battery. However, a few aspects involving specifi c numeri-
cal tasks are mentioned in relation to this. On the WISC-R (UK) he did not per-
form well on the Arithmetic subtest. On Digit Span he showed some facility on 
the Forward Digit Span task which is a relatively simple short-term memory test. 
This is in contrast to his particularly weak performance on Backward Digit Span 
which as highlighted earlier is a more complex task. In fact he could repeat cor-
rectly only two numbers backwards for both trials on the fi rst item in this section. 
Hence, his diffi culties might be considered in terms of problems associated with 
aspects of working memory involving the manipulation of stored numerical data.

DYSCALCULIA TEST BATTERY ASSESSMENT

NUMERAL PROCESSING TASKS

Magnitude Comparison
Arabic Magnitude Comparison. All items were completed correctly.
Spoken Verbal Magnitude Comparison. All items were completed correctly.
Written Verbal Magnitude Comparison. All items were completed correctly.
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Transcoding Tasks
Transcoding Arabic Numerals to Spoken Verbal Numerals. M. was correct on 

all items. As noted earlier, this test was similar to the reading task used in the 
study described by Power and Dal Martello (1997) involving 7-year-old Italian 
children.

Transcoding Spoken Verbal Numerals to Written Verbal Numerals. M. made 
one error when he gave a written verbal response of ‘one thousand two hundred 
and thirty-eight’ instead of ‘one thousand two hundred and seventy-eight’ which 
was the correct response. This lexical error was termed a ‘Substitution’ error by 
Noël and Seron (1995) in relation to a neuropsychological investigation of an 
adult with a suggested diagnosis subsequently of Alzheimer’s disease. M. was 
able to correct himself on a second attempt.

Transcoding Spoken Verbal Numerals to Arabic Numerals. M. gave several 
erroneous answers when he was required to write Arabic numerals in response to 
spoken verbal numerals in a dictation task similar to that described in the study 
highlighted earlier by Power and Dal Martello (1990) involving 6–8-year-old 
Italian children. M.’s errors varied in type and in relation to the ease with which 
he was able to correct them himself. He made two syntactical errors where extra 
zeros were inserted, namely 10,016 instead of 116 but he was able to correct 
himself on a second attempt and in another case when he wrote 30,264 instead 
of 3,264. However, for this item he was incorrect more dramatically on a second 
attempt when he wrote an erroneous answer as 3,000 200 64 but 2 weeks later he 
was able to correct himself. Both of his responses are examples of a child resort-
ing to concatenation as opposed to applying the operation termed ‘over-writing’ 
by Power and Dal Martello (1990).

In a study by Seron and Fayol (1994), a similar task was presented to
7-year-old children from France and Wallonia, a region of Belgium. Some simi-
lar errors were made by these children and the investigators applied the terms 
‘Full Literal Transcoding’ errors to those such as 10,016 instead of 116 and 
‘Partial Literal Transcoding’ errors to those such as 30,264 instead of 3,264 in 
relation to M.’s errors mentioned above. It is interesting to note here also, that 
on a  second attempt M. made a full literal transcoding error when he wrote 
3,000 200 64 instead of 3,264. Also, M. made another syntactical error but of a
different type in which he reversed the order of two digits in a four-digit number, 
when he wrote 5,063 instead of 5,603 and in fact, he made the same error on a 
second attempt but 2 weeks later he corrected himself.

M. made one lexical error when he wrote 7,822 instead of 7,802 but he gave 
the correct answer on a second attempt. In the discussion concerning child A. 
reference was made to a case study described by Temple (1989, 1997a, b) con-
cerning an 11-year-old boy. An impairment in lexical processing was demon-
strated which resulted in the incorrect selection of digits when he was required to 
read Arabic numerals or to write Arabic numerals to dictation whereas there was 
accurate syntactic processing. Also, he made more errors when reading numeral 
words than when reading Arabic numerals but the errors were of a similar form. 
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As noted above, M. did make one lexical error when writing Arabic numerals to 
dictation but he was accurate on items in the tasks where he was required to read 
Arabic numerals or number words. All of the errors made by M. in the dicta-
tion task where he had to respond by writing Arabic numerals occurred toward 
the end of a session and he was incorrect on a second attempt for two of the test 
items which were corrected by him in a further session 2 weeks later. Hence, 
there is an indication perhaps of the amount of effort that some children have to 
make in order to develop their numerical skills.

Various error types that were demonstrated by M. and others have been high-
lighted in neuropsychological data from adult patients as discussed, for example, 
by Deloche and Seron (1982a, b, 1987), Seron and Deloche (1983, 1984) and 
McCloskey and Caramazza (1987). Specifi cally in this context is an interesting 
case study reported by Cipolotti et al. (1994) of an adult neurological patient 
with a non-fl uent aphasia and right arm weakness after his stroke involving the 
left parietal lobe. When he was seen for a neuropsychological assessment there 
was almost complete recovery in terms of his motor impairment and aphasia. 
A neuropsychological defi cit was demonstrated concerning a very weak per-
formance on the Arithmetic subtest on the WAIS and on the Graded Diffi culty 
Arithmetic Test (Jackson & Warrington, 1986). There was further investigation 
of his numerical processing and arithmetical skills and the results demonstrated 
unimpaired numeral reading and comprehension but a transient and selective 
syntactic impairment in numeral writing to dictated numerals. These errors 
were discussed in the context of a dissociation between the concatenation and 
the over-writing rules described in the theoretical formulation by Power and 
Dal Martello (1990) considered earlier. In line with the children in this study, 
the adult patient demonstrated syntactical errors involving too many zeros but 
whereas the children showed errors of this type for numbers above 100, the adult 
patient showed the errors for numerals with four or more digits on the fi rst day 
and fi ve or more digits on the second day.

Reference was made to research discussed by Seron et al. (1992) involving 
7- and 8-year-old pupils on tasks where they had to read aloud Arabic numer-
als and to write Arabic numerals after dictation. The children became compe-
tent with the over-writing rules with three-digit numbers before they reached the 
same level of competence with four-digit numbers. Hence, it seemed that the 
adult man had diffi culty with those numerals for which there would be a later 
application of the over-writing rules and for which there would be the require-
ment of more effort. Also, after he noticed his errors in writing Arabic numerals, 
he was able to write correctly all of the items. As indicated above, the boy M. 
who participated in my study inserted extra zeros in a three-digit number and a 
four-digit number. He was able to correct himself quite easily on the three-digit 
number where he had inserted two zeros in the hundred position. However, on 
the four-digit number he made an insertion of one zero in the thousand posi-
tion on the fi rst attempt and a combination of three and two zeros respectively 
for the thousand and hundred positions on the second attempt before giving a 
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correct answer 2 weeks later. Hence, M. demonstrated a very persistent weak-
ness which was refl ected in his continued use of concatenation with this higher-
order number but eventually with the necessary effort he was able to overcome 
his diffi culty and he could apply appropriately, the over-writing rule.

Transcoding Arabic Numerals to Written Verbal Numerals. Some of M.’s 
errors are interesting in relation to a case study described by Cohen et al. (1994) 
of a 43-year-old right-handed man who was severely aphasic after a left hemi-
spheric subdural hemorrhage. His performance on various word and non-word 
reading tasks indicated deep dyslexia. Specifi cally, he showed diffi culties read-
ing aloud non-words and unfamiliar Arabic numerals but there was a signifi cant 
improvement in relation to real words and familiar Arabic numerals. In read-
ing unfamiliar numerals the authors suggested that the man appeared to use his 
semantic route as he showed a tendency to decompose the unfamiliar numerals 
into meaningful sub-groups of familiar numerals. As an example, when pre-
sented with ‘726’ the patient responded with ‘seven, two, six’.

Some errors were made by M. concerning the transcoding of visually pre-
sented Arabic numerals to written verbal numerals. For 7,802 M. wrote ‘seven 
thousand eight hundred zero two’ and for 2,191 M. wrote ‘two thousand one 
ninety-one’. As suggested by Cohen et al. (1994) in consideration of the type of 
responses given by the man described above, a complex non-familiar numeral 
was fractionated into more simple and basic numerals. M. demonstrated an 
apparently similar process but concerning the transcoding of visually presented 
Arabic numerals to written verbal numerals as opposed to the transcoding of 
visually presented Arabic numerals to spoken verbal numerals. The examples 
described here by Cohen et al. (1994) and by myself in relation to M. were simi-
lar also to those described by Power and Dal Martello (1997) as ‘Fragmentation’ 
errors. In a particular instance, a child read the Arabic numeral 495 and gave a 
spoken response of ‘forty nine and fi ve’.

Also, when transcoding visually presented Arabic numerals to written ver-
bal numerals M. made a stack error as described by Seron and Deloche (1983) 
in relation to adults with Broca’s or Wernicke’s aphasia and noted by Seron 
and Deloche (1984) in a mixed group of adult aphasics, with both investiga-
tions involving the use of similar tasks. When M. was presented with 9,034 he 
responded with ‘nine thousand three hundred and four’ indicating the preserva-
tion of the third position within the stack but not in relation to the stack itself, 
with the hundreds replacing the tens in this example. As in the case of the erro-
neous responses mentioned earlier, these errors occurred toward the end of the 
assessment session and after a week he gave correct answers to the fi rst two 
questions but made the same mistake again for 9,034 although he corrected 
himself on a further attempt during the same session. Hence, again the specifi c 
nature of some errors was emphasized and their persistence as well as the effort 
required to overcome the diffi culties associated with their production.

Transcoding Written Verbal Numerals to Spoken Verbal Numerals. All items 
were completed correctly.
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Transcoding Written Verbal Numerals to Arabic Numerals. M. made two errors 
which involved the insertion of extra zeros. Specifi cally, for ‘three thousand two 
hundred and sixty-four’ he wrote 32,064 and for ‘two thousand three hundred 
and eleven’ he wrote 23,011. In a study mentioned earlier by Deloche and Seron 
(1982a) with adult aphasic patients from France and Wallonia in Belgium and 
involving a similar task, these types of errors were noted and they were classifi ed as 
‘Intra-item Perseveration’ errors. Again, these errors had been made by M. toward 
the end of a session but when re-tested after a 4-week break he wrote in response 
respectively to these two numbers, 31,264 and 21,311. Hence, M. made two errors 
again where the length of the numeral was increased and this was due to the inser-
tion of the digit ‘1’, as described for example by Deloche and Seron (1982a). As 
indicated, he wrote respectively ‘12’ instead of ‘2’ and ‘13’ instead of ‘3’ but when 
he was questioned about his answers he was able to give correct responses.

Additional Item: Tactile Recognition and Naming of Numerals. M. made sev-
eral errors when he was asked to fi nd numbers at random and then to name them 
while they were covered by a cloth after which they were checked for correct 
identifi cation. He found the task easier when specifi c numbers were requested 
and he made only one error in fi nding a 3 instead of a 5 but a correct number 
was found on a second attempt. Hence, M. experienced some diffi culty involving 
the tactile modality mainly for number naming more than recognition. However, 
when he was assessed in a later session in relation to the tactile naming of num-
bers he was able to perform accurately on this task.

CALCULATION TASKS

Operation Symbol and Word Comprehension
Operation Symbol Comprehension. When the operation name ‘Subtraction’ 

was presented M. identifi ed incorrectly the division symbol. When presented 
with the operation name ‘Division’ M. identifi ed correctly the division symbol. 
Later when presented with the operation name ‘Subtraction’ he identifi ed cor-
rectly the symbol for subtraction. These identifi cations occurred for items involv-
ing units, tens and hundreds.

Operation Word Comprehension. When presented with the operation name 
‘Subtraction’ M. identifi ed incorrectly ‘Divided by’. When presented with the 
operation name ‘Division’ M. was correct in identifying ‘Divided by’. These 
identifi cations occurred in relation to items involving units, tens and hundreds.

Written Arithmetic Tasks
M. managed some of the simpler exercises involving all four arithmetical 

operations but there were errors also on some of the very elementary questions. 
On one exercise he added the numbers when the required operation was subtrac-
tion. Also, he demonstrated diffi culties with carrying on the more complicated 
addition exercises and he showed a lack of understanding in relation to borrow-
ing for the more advanced subtraction problems.
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Additional Item: Specifi c Rectangular and Non-Rectangular Addition 
Exercises. M. demonstrated a particular diffi culty with the specifi c non-rectangular 
addition problems mentioned in the discussion on child A. He made errors of the 
fi rst specifi c type shown by some other children in studies by Friend (1979) and 
Lawson (1986, 1989) as he added a number from another column on to the sin-
gle digit in the far left column. M. did not appear to have understood concep-
tual issues concerning the join of a single set and the sum of a single number. 
However, he seemed to develop more understanding of these concepts and to 
answer related questions correctly after a relevant discussion and instruction with 
a simple technique presented in one teaching session and described by Lawson 
(1990, 1995a, 2000a, 2001a). When re-assessed he completed accurately all of 
the non-rectangular exercises.

Oral Arithmetic Tasks
M. made one error in each group of questions concerning addition, subtrac-

tion and multiplication but he was able to correct himself very quickly. He could 
not complete any of the division exercises presented in an oral form. Also, as 
indicated above his performance was not strong on the Arithmetic subtest of 
the WISC-R (UK) involving aurally presented word problems requiring oral 
responses.

Additional Item: Recitation of Multiplication Tables. M. demonstrated partic-
ular problems in remembering the multiplication tables. He was able to recall the 
answers sometimes when smaller numbers were involved and many items from 
the 2, 5 and 10 times tables. When M. attempted to recite the tables, if he could 
not retrieve an answer directly he tended to work out each item by counting on 
from the previous answer. He made some ‘Bond’, ‘Shift’ and ‘Perseverative’ 
errors that were noted earlier in the discussion concerning child A.

CHILD L.

Initially when L. participated in the program he was aged 8 years 5 months. 
He attended a mainstream primary school and prior to the interventions he had 
not received specialist support in any form. His presentation was characteristic 
of the autism spectrum, more precisely Asperger syndrome although he was 
making noticeable progress in coping with specifi c problematic aspects. Some 
relatively mild areas of concern were apparent in relation to particular tasks 
involving fi ne or gross motor skills associated respectively, with graphic and cer-
tain physical activities. Reference could be made to Dziuk et al. (2007) for a 
recent investigation and discussion involving basic motor coordination and dys-
praxic aspects concerning impairments in the performance of skilled gestures in 
relation to individuals on the autism spectrum. Generally L. was doing well in 
terms of his academic work at school but he had experienced considerable dif-
fi culty in learning the multiplication tables.
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As mentioned earlier, a more comprehensive discussion including the assess-
ments and interventions concerning aspects of L.’s disposition including his 
social and communication diffi culties as well as those relating to the multipli-
cation tables had been given in a presentation by Lawson (2005). In relation to 
the considerable controversy concerning diagnostic criteria I am sympathetic to 
Wing (2005) who favors a multidimensional as opposed to categorical approach 
to the study of the autism spectrum. In line with this perspective I tried to clarify 
and facilitate development in L.’s weaker areas with the support of his relative 
strengths in other aspects.

Only L.’s problems associated with learning the multiplication tables and 
the assessment and intervention are highlighted here. However, a few points 
will be mentioned in relation to these aspects as for the other two children in 
this presentation. Also, as indicated earlier this boy participated in the program 
more recently so he was administered some different or updated versions of 
tests. In particular, he was assessed on the Arithmetic subtest of the WISC-III 
UK, Weschler (1992) and this was not specifi cally problematic for him. Also, 
L. was presented with the Recall of Digits, Forward and Backward subtests on 
the British Ability Scales II (BAS II), Elliot et al. (1996). The digits on these 
 subtests are presented at a faster rate in comparison with similar tasks on the 
WISC-R. L. did not demonstrate diffi culties particularly with either section so 
within this context it was not suggested that the storage and manipulation of 
numerical information was problematic.

DYSCALCULIA TEST BATTERY ASSESSMENT

NUMERAL PROCESSING TASKS

Magnitude Comparison
Arabic Magnitude Comparison. All items were completed correctly.
Spoken Verbal Magnitude Comparison. All items were completed correctly.
Written Verbal Magnitude Comparison. All items were completed correctly.

Transcoding Tasks
Transcoding Arabic Numerals to Spoken Verbal Numerals. All items were 

completed correctly.
Transcoding Spoken Verbal Numerals to Written Verbal Numerals. All items 

were completed correctly.
Transcoding Spoken Verbal Numerals to Arabic Numerals. All items were 

completed correctly.
Transcoding Arabic Numerals to Written Verbal Numerals. All items were 

completed correctly.
Transcoding Written Verbal Numerals to Spoken Verbal Numerals. All items 

were completed correctly.
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Transcoding Written Verbal Numerals to Arabic Numerals. All items were 
completed correctly.

Additional Item: Tactile Recognition and Naming of Numerals. L. found both 
tactile tasks quite demanding and he responded slowly to each request. However, 
without any time constraints when he had to retrieve named numbers, he was 
incorrect on only one item. For the number ‘2’ his response was ‘8’ but he 
was correct on a second attempt. When he was asked to fi nd individual num-
bers at random and to name them one at a time he was incorrect on three items. 
Specifi cally, he responded with ‘3’ for a ‘2’, ‘8’ for a ‘3’ and ‘6’ for an ‘8’ but 
he gave correct responses on second attempts in each case.

CALCULATION TASKS

Operation Symbol and Word Comprehension
Operation Symbol Comprehension. All items were completed correctly.
Operation Word Comprehension. All items were completed correctly.

Written Arithmetic Tasks
These tasks were used to investigate the retrieval of arithmetic facts and 

execution of the calculation procedures for addition, subtraction, multiplication 
and division. As indicated earlier a standardized arithmetic test, the WOND was 
administered with the NO section requiring written answers.

The test results showed that L. could manage some arithmetic questions 
involving addition and subtraction. However, he added instead of subtracting for 
some questions whether presented horizontally or vertically. Some of his errors 
indicated diffi culties with carrying and borrowing. Also, he was correct on a very 
simple multiplication question but he could not attempt any division exercises. 
In relation to the multiplication exercises he made a ‘Shift’ error where one digit 
in the answer is incorrect and the erroneous response is not a table entry as noted 
earlier. On another question he added instead of multiplying.

Additional Item: Specifi c Rectangular and Non-Rectangular Addition Exercises. 
L. did not demonstrate any diffi culties with the exercises in groups (A1, B1) so he 
was not administered any other questions.

Oral Arithmetic Tasks
These tasks probed arithmetic fact retrieval and involved the four calculation 

procedures. Each problem was presented aurally and the child said the answer 
aloud. Five questions were presented with each item involving two numbers in 
the range 0–9 for the arithmetic operations addition, subtraction, multiplication 
and division.

L. made one error when he responded 7 � 7 � 56(49). However, soon he
corrected himself and gave the answer 1. He noted that he had multiplied instead of 
divided but he had given an incorrect table entry which was an adjacent answer in 
the same table, that is, a mistake termed a ‘Bond’ error as indicated above.
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Also, as mentioned earlier L. was administered the Arithmetic subtest on the 
WISC-III UK. He was presented aurally with questions that required only an 
oral response. He did not have to read any items. L. responded accurately until 
he could not give any more answers.

Additional Item: Recitation of Multiplication Tables. The child was asked to 
recite any of the multiplication tables or any items that he/she was able to recall. 
The results for the responses given by L. are presented below.

Table Incorrect Items (Correct)

 2 9 � 2 � 19(18)  Shift Error (Not a table
entry, one digit incorrect)

 3 5 � 3 � 16(15) Shift Error
 6,7,8,9 No Response
 4 6,7,8,9 No Response
 5 Correct responses on all items
 6 3 � 6 � 19(18) Shift Error
 7 2,3,4,5,6,7,8,9,12 No Response
 8 2,3,4,5,6,7,8,9,12 No Response
 9 8 � 9 � 62(72) Shift Error
10 Correct responses on all items
11 10 � 11 � 111(110) Shift Error
12 2,3,4,5,6,7,8,9,11,12 No Response

Recall of Items from the Multiplication Tables
As expected, when assessed initially L. showed some diffi culties in relation to 

remembering the multiplication tables. If he had diffi culty with recall he might 
work out an answer by counting on from the previous response. Hence he was 
able to reply correctly for some items. As shown above, for the initial assess-
ment L. gave correct replies, no responses or incorrect answers involving ‘Shift’ 
errors. During the remedial sessions he made ‘Bond’, ‘Shift’ and ‘Perseverative’ 
errors.

GENERAL DISCUSSION AND CONCLUSION

The children presented here demonstrated some diffi culties in all three areas 
concerning numerical processing and knowledge of number facts as well as pro-
cedures. In the studies discussed by Temple (1989, 1991, 1994a, b, 1997a, b), 
selective defi ciencies were highlighted in relation to lexical number process-
ing, number fact and procedural disorders. It was suggested that these different 
types of selective impairment in developmental dyscalculia indicated a modular 
organization of the developing arithmetical system. The perspective considered 
by Temple in relation to this system allowed for some communication between 
modules.
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More recently Kaufmann (2002) described an adolescent young man who was 
14 years of age initially when he participated in their investigation. His pres-
entation included severe developmental dyscalculia and problems with literacy 
including reading and writing as well as marked diffi culties with spelling. He 
had relatively preserved procedural skills and marked defi cits concerning number 
fact retrieval with particularly problematic areas relating to multiplication and 
division. Also, he performed poorly on Forward and Backward Digit Span tasks. 
As indicated above in my presentation here, Child A. experienced diffi culties 
on Forward and Backward Digit Span tasks and Child M. had problems specifi -
cally associated with Backward Digit Span. As noted earlier, the interpretations 
relating to their performances in this respect were considered in terms of impair-
ments concerning working memory involving numerical information. In the 
Kaufmann (2002) study it was suggested that the memory defi cit demonstrated 
by the young man was not just the result of poor numeric fact representations 
in long-term memory but there was a substantial contribution from a defi ciency 
specifi cally of a numerical nature relating to working memory. In a later investi-
gation concerning the same young man when he was 18 years of age, Kaufmann 
et al. (2004) emphasized the signifi cance of working memory in the activation of 
information from long-term memory. Numerical fact retrieval  diffi culties were 
considered in relation to a combined access and storage defi ciency.

As indicated earlier in the context of my own research, Child L. did not 
present with diffi culties particularly concerning the Forward and Backward 
Digit Span subtests. Also as noted above, the presentation rate for digits on these 
subtests was faster than the rate on similar tasks used with the other two partic-
ipants. Facilitation of working memory and its associations with long-term mem-
ory in relation to numerical development was promoted via the implementation 
of a specifi c multisensory technique within the context of a remedial approach 
involving the integration of factual, procedural and conceptual aspects of numer-
ical knowledge.

In my research presented here, the children had been highlighted by their 
teachers or parents because they had demonstrated a particular diffi culty in 
learning the multiplication tables. Other areas of numerical diffi culty were clari-
fi ed with the assistance of the dyscalculia test battery as well as some strengths. 
In the context of a fl exible and interconnected system, it should be possible to 
use strengths in various areas to compensate for weaknesses elsewhere or to pro-
mote development in weaker areas and to facilitate the maturation of numerical 
concepts and skills. The importance of associations and commonalities as well 
as dissociations and differences in relation to specifi c syndromes has been high-
lighted in the neuroconstructivist approach (Karmiloff-Smith, 1998; Oliver et al.,
2000) with increasingly specialized or modularized cortical pathways being 
produced by development. The teaching/learning approach suggested and imple-
mented by the present author (Lawson, 1995b, 2000b, 2001a) was aimed at using 
the various strengths of the children to infl uence their developmental courses 
in a positive direction with the assistance of a specifi c multisensory technique. 
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As indicated above, this involved the visual, auditory, tactile and kinesthetic 
modalities in relation to items in the multiplication tables. Also, a slightly modi-
fi ed approach was applied to assist the apprehension of arithmetical operation 
symbols, words and names but with the operation items being changed in the 
process as opposed to the operands.

The discussion presented here concerned information that had been obtained 
from an assessment involving a dyscalculia test battery. The aim of the project 
was to analyze the children’s numerical diffi culties and to provide a remedial 
approach that would help them to learn the multiplication tables. Also, the facili-
tation of more mature development was expected in relation to number concepts 
and numerical skills through the establishment of fl exible associations between 
specialized areas or modules as emphasized by Dehaene (1997). It is apparent 
from the results obtained that a detailed assessment with the aid of a dyscalcu-
lia test battery provided clear information concerning the numerical diffi culties 
experienced by the participants. After taking part in the remedial sessions, the 
children could access any item from the multiplication tables, obtain the answers 
more quickly and retrieve them more often by direct recall. Also, they could use 
other approaches such as locating an item near the correct answer as a cue and 
then recall the required item or count up or down in various ways to reach the 
appropriate answer. Alternatively, they might use some arithmetical knowledge 
involving addition or subtraction, perhaps that associated with doubles or make 
use of commutativity as an aid to retrieving the correct answer. Also, the three 
children discussed here noticed specifi c patterns in the 5, 10 and 11 times tables 
and the use of this knowledge was encouraged during the sessions to assist the 
retrieval of other items.

In a particular study by Krueger (1986) it was indicated that adults could use 
odd–even rules effi ciently, for example, if either multiplier is even the answer 
must be even, in a product verifi cation task. This was an aspect that I empha-
sized when teaching the multiplication tables and the children were encouraged 
to use this information to help them check and correct answers that they had 
retrieved. As the sessions progressed, use of this knowledge was demonstrated 
very clearly to some extent as it was used overtly. Hence, in addition to some 
strategies mentioned already the use of another mature strategy demonstrated in 
adults had been developed and was being used appropriately by these children.

Sherin and Fuson (2005) categorize multiplication strategies in relation to 
what they term as the number-specifi c computational resources that are used in 
their execution. The count-all strategy which involves counting from ‘1’ to the 
product is available to most individuals when they become involved with mul-
tiplication. Also, because of their experiences concerning addition the children 
have access to related strategies which these authors call additive calculations. 
When considering other categories, count-by strategies were discussed as pupils 
learn count-by sequences of numbers such as ‘4, 8, 12, 16, . . .’. Pattern-based 
strategies which might involve for example, 0’s, 1’s or 10’s are learnt often 
alongside count-by sequences. The learned product strategy involves many 
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number-specifi c resources, namely the multiplication triads. Also, hybrid strat-
egies might be used which involve various combinations of those noted above. 
As indicated earlier, the young people involved with the approach discussed 
here used various strategies and combinations which could be categorized in 
this way. Also, they could recognize a variety of applications as well as imple-
ment appropriately their newly acquired understanding and skills in different 
situations.

As suggested by Thelen and Smith (1994) while acknowledging the multimo-
dal nature of most of our experiences of objects and events, when considering 
perception and action in the real world, development might be concerned more 
with the selection than with the construction of the most relevant multimodal 
associations. The participants in my research discussed here had considerable 
diffi culties in accessing items from the multiplication tables and initially con-
struction of some numerical ideas was not easy. The aim of the teaching/learning 
approach used here was to help the children with the selection and integration of 
the most salient information from the stimuli which were presented simultane-
ously in various modalities. As they developed the ability to store and access 
suffi cient quantities of information and to form meaningful associations, newly 
acquired knowledge could be used in the construction of further  numerical 
 concepts and ideas given different applications. Hence, their numerical and 
certain other aspects of their mathematical development were enhanced by the 
careful analysis using the dyscalculia test battery and the multisensory remedial 
intervention presented here.

Generally the young people demonstrated substantial improvements in rela-
tion to their abilities to access items from the multiplication tables and in the 
development of their number concepts and arithmetical skills. Boys were selected 
here but the same approaches to assessment and remediation could be offered to 
girls. Also, the diffi culties demonstrated by the boys were related to the fi ndings 
in other studies concerning younger children, individuals in a developmental neu-
ropsychological context and adults with acquired neuropsychological disabilities. 
The successful remedial approach which was implemented after the assessment 
might be considered applicable to individuals with similar numerical diffi cul-
ties but generally of a different disposition. In fact, L. was much younger and as 
indicated above his overall presentation was quite different when compared with 
the other two boys. Apart from the recall of more items and the development of 
many strategies for accessing items from the multiplication tables, these children 
were able to apply their knowledge in various contexts, hence demonstrating 
their enhanced numerical understanding and ability to generalize.
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The study was designed to investigate the extent and character of differences 
between children with (MD children) and without diffi culties in mathemat-
ics (MN children) refl ected in their strategy use for solving basic fact and word 
problems. Particular concern was with accuracy and speed of professing differ-
ences, especially in light of measures indicating the developmental maturity of 
children’s strategy use. The sample included 32 MD children in grade 1, 33 MD 
children in grade 3, 36 MD children in grade 5 and a corresponding number of 
MN children in each of the grades. The children were observed systematically 
over a period of 2 years, that is, grade 1 children from the end of grade 1 to the 
end of grade 3, grade 3 children from the end of grade 3 to the end of grade 5, 
and grade 5 children from the end of grade 5 to the end of grade 7.

The study involved the close cooperation of 12 primary schools, that is, all 
primary schools in two Norwegian urban municipalities. The current presentation 
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has the intention to give an overview of this study and discuss the main results in 
general view.

Several investigators have determined that mathematical learning problems 
are relatively common (e.g., Badian, 1983; Kosc, 1974). More specifi cally, 
a more recent published study (Ostad, 1998a) shows that the schools’ support 
services had picked out about 10% of the children in some primary schools as 
needing remedial programs in mathematics when these children were in grade 2 
(e.g., 8–9 year old children). Nevertheless, mathematical learning problems 
remain relatively neglected in the research literature. Only few empirical stud-
ies of the cognitive mechanisms potentially contributing to mathematical learn-
ing problems have been conducted, even though much has been learned about 
the acquisition of basic mathematical concepts and procedures in mathemati-
cally normal children (Dowker, 2005; Robinson et al., 2002). Success or failure 
in mathematics has often been defi ned by performance on standardised achieve-
ment tests. These tests, however, do not provide information about the mental 
processes that are likely contributing to the children’s achievement. An alterna-
tive is to compare groups of children, who vary in achievement levels, on tasks 
for which a developmental progression of skills are differentiated. Simple basic 
fact problems1 and simple arithmetic word problems are examples of such tasks. 
The studies described in the current presentation followed this approach sug-
gesting that comparisons of developmental differences of MD and MN children 
of varying age levels might provide useful information about factors potentially 
contributing to mathematical learning problems.

It was suggested that the analysis of individual differences in strategy use 
might be useful for several general purposes, for example, getting acquainted 
with the problem-solving process to understand how children achieve scores in 
standardized tests. Thus, a substantial body of empirical work has been devoted 
to examining the acquisition and development of MN children’s strategy use. 
These include a focus on strategies as a function of subject characteristics.
A variety of earlier fi ndings have shown that children’s strategy use vary with age 
and ability, but also that a single child will often use different strategies on differ-
ent occasions. Developmental studies of MN children have revealed that a normal 
course of development indicate an obvious progression over time from immature, 
ineffi cient counting strategies, through verbal counting, and fi nally to arithmetic fact 
retrieval as children move through primary school (Ashcraft, 1992; Carpenter &
Moser, 1984; Siegler & Jenkins, 1989). Moreover, a growing body of research has 
provided valuable insight regarding the strategy use by MD children. As compared 
with that of their mathematically normal peers, these children are characterised 
by the use of developmentally immatureproblem-solving strategies. That is, these 
children often use strategies more commonly employed by younger MN children 
(Geary et al., 1987; Goldman et al., 1988).

Several earlier studies in this area had determined that, across development, 
performance of MN children as compared to their mathematically disabled peers 
has been shown to be generally more rapid and more accurate in producing 
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answers for basic fact problems (e.g., Geary et al., 1987; Russell & Ginsburg, 
1984; Svenson & Broquist, 1975). In summary, the MD children are character-
ised by a rather long solution time, and frequent computational and memory-
related errors (Garnett & Fleischner, 1983; Geary & Burlingham-Dubree, 1989; 
Geary et al., 1991). However, research studies are mixed with regard to the ques-
tion of speed of processing differences between MD and MN children (Geary, 
1990; Geary & Brown, 1991).

In general, the majority of studies that have been conducted on cognitive 
mechanisms potentially contributing to mathematical diffi culties have shown 
several methodological limitations. Probably because of the time and effort 
needed to study such mechanisms in a long-term perspective, few studies of 
developmental differences between MD and MN children have been carried 
out. For instance, most often the research on strategy use has focused on one 
single age level and on the youngest age groups in particular. Left unanswered, 
therefore, was whether the pattern of differences between MN and MD children 
could be found throughout the elementary school years. Perhaps even more sig-
nifi cantly, most often the starting point for the constitution of MD groups (sam-
ples) had been the children’s achievement on just one single mathematics test. It 
seems not enough consideration has been given to the fact that, for the youngest 
age groups, mathematical diffi culties encountered during the above mentioned 
test may have a relatively short duration. Thus, it was possible that the research-
ers may have operated with heterogeneous samples, composed partly of chil-
dren with temporary diffi culties and partly of children with diffi culties of a more 
permanent nature. Moreover, earlier studies of strategy use differences between 
MN and MD children have been dominated by chronometric procedures for the 
collection of data. Most commonly, the children have been instructed to solve 
simple addition basic fact problems using the strategy they themselves found 
most suitable for the case in hand, and also at the same time to respond as 
quickly as possible (e.g., Geary & Brown, 1991; Geary & Burlingham-Dubree, 
1989; Geary et al., 1987; Goldman et al., 1988). There are, I suggest, reasons for 
anticipating that this emphasis on speed might infl uence the strategy use.

The present study was designed to address some of the above mentioned 
limitations: First, it reports assessment of developmental differences between 
MD and MN children in a longitudinal perspective over an extended period of 
time: that is, the age range of 7 to 13(14) years. This made it possible to obtain 
an overview of the development differences throughout the elementary school. 
Second, the children who were unsuccessful in mathematics for less than 2 years 
were excluded from the group designated MD children in this project.2 Third, 
the samples of MD children were relatively large compared with the samples 
in earlier studies. Fourth, the strategy use research data were recorded without 
focusing on the time the children spent in solving the problem. Fifth, the study 
of strategy use differences between MD and MN children was carried out within 
a relatively broad frame of reference that included basic fact problems in addi-
tion, basic fact problems in subtraction, as well as arithmetic word problems.
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Four separate laboratory investigations were performed to investigate the 
extent and character of developmental differences between MN and MD chil-
dren refl ected respectively in strategy use for solving addition problems (Ostad, 
1997b), strategy use for solving subtraction problems (Ostad, 1999), strategy use 
for solving arithmetic word problems (Ostad, 1998a), and in accuracy and speed 
of processing for solving basic fact problems (Ostad, 2000).

RESULTS AND DISCUSSION

In general, across times of measurement the MN children showed an increased 
reliance on retrieval strategies, and a decreased reliance on backup strategies. This 
change was consistent with earlier research assessing the strategy use develop-
ment of basic arithmetic skills (e.g., Ashcraft, 1992; Geary et al., 1991; Goldman 
et al., 1988; Siegler & Jenkins, 1989). Nevertheless, the course of development 
clearly shows that backup strategies play a dominant role in the problem-solving 
process through the primary school stage. These fi ndings provide substantial sup-
port for arguments advanced by Siegler (1988) that children make use of a mix-
ture of strategies, usually combining counting with direct retrieval.

In contrast, the MD children characteristically used backup strategies almost 
exclusively throughout the same period. Earlier studies have already shown that 
MD children most frequently use reconstructive counting strategies and not 
retrieval strategies (Fleischner et al., 1982; Geary & Brown, 1991; Russell & 
Ginsburg, 1984). The present study documents that this applies to MD children 
year after year throughout the primary school stage. The MD children’s consist-
ent use of backup strategies might refl ect both fact retrieval problems and work-
ing memory problems (Garnett & Fleischner, 1983; Geary, 1990, 1993; Geary 
et al., 1992; Goldman et al., 1988). Since the data from this study showed that 
the typical MD children use backup strategies only during the whole phase of 
primary education, it would be a reasonable assumption that the exclusive use of 
backup strategies refl ects a critical factor for normal development.

Among the MN children the characteristic course of development shows the 
use of new strategies, both backup and retrieval strategies. In a longitudinal per-
spective, a course of development was observed involving an age-determined 
shift in strategy use, not only away from backup to retrieval, but also within the 
framework of the backup strategies themselves, that is, away from the most pri-
mary counting strategies, so that other backup strategies, especially verbal count-
ing, were used more frequently (Carpenter & Moser, 1984). It was suggested that 
the corresponding data for the MD children would refl ect a developmental delay 
model, establishing that the difference between the two ability groups would 
converge early in the elementary school years (Geary, 1993; Goldman et al., 
1988). Unexpectedly therefore, the typical MD children were characterised not 
only by little use of retrieval strategies but also by much more frequent use of 
the most primary backup strategies throughout the whole primary school stage. 
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These results seem to confl ict with the arguments proposed by Geary (1993) that 
the development of the procedural and memory-retrieval skills of MD children 
are largely modular; that is, functionally distinct. Consistent with the develop-
mental difference model (Goldman et al., 1988), the acquisition of strategy skills 
by MD children seemed to follow a sequence that is fundamentally different 
from that observed in normal achievers.

Earlier studies have shown that domain-specifi c knowledge, that is, sub-
stantial factual knowledge, is an important component in the effective strategy 
use (Ohlsson & Rees, 1991; Pressley et al., 1990). There is therefore reason to 
assume that the amount of domain-specifi c knowledge, that is, the amount of 
factual knowledge the child possesses about the various strategies and how and 
where to apply them, will be refl ected in problem solving through the range of 
variation in the strategies used.

Most frequent, when MN children were asked to solve basic fact problems 
and arithmetic word problems, they normally used several different strategy vari-
ants for this purpose. Thus, a course of development was observed which showed 
a gradual but marked increase in the number of strategy variants used as the chil-
dren became older. This result might indicate that these children have at their 
disposal a rich amount of domain-specifi c strategy knowledge, that is, substantial 
knowledge of various strategies and their areas of application. Consequently, the 
study confi rms the results of earlier studies (Ashcraft, 1992; Carpenter & Moser, 
1984; Geary & Burlingham-Dubree, 1989; Siegler & Shrager, 1984). The results 
further document that the number of different strategy variants used by the MN 
children increases as they move up through the primary school.

In the case of the MD child, however, the course of development showed far 
less frequent use of a large number of different strategies throughout the primary 
school. While a wealth of substantial strategy knowledge was typical of the MN 
children it seemed, on the other hand, that the MD children had a lack of strategies. 
As indicated above, the result of the present study gives argument to the suggestion 
that the MD children’s insuffi cient domain-specifi c strategy knowledge in itself 
limits the choices available to them. Accordingly, I suggest the existence of impor-
tant individual differences in the wealth of domain-specifi c strategy knowledge. 
More precisely, I argue that the amount of factual knowledge the child possesses 
about the various strategies, and how and where to apply them, might be refl ected 
in problem solving through the range of variation in the strategies used. If this sug-
gestion is valid, there are reasons to assume that the quantity of domain-specifi c 
strategy knowledge could be a critical factor for normal development.

When the research on the individual child’s strategy use was repeated 2 years 
after the fi rst time of measurement, the MN children, who had already used several 
different strategy variants 2 years before, continued to change their strategy use 
in the direction of new strategy variants. This result could refl ect an increase in 
the quantity of domain-specifi c strategy knowledge they possess, but could also 
relate to strategic fl exibility indicating that children have the ability to ‘call forth’ 
appropriate strategies by actively selecting and judging between the strategies at 
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their disposal (Ashcraft, 1992; Geary & Burlingham-Dubree, 1989; Siegler & 
Jenkins, 1989; Siegler & Shrager, 1984). The MD children, on the other hand, 
did not change their strategy use to nearly the same degree. The typical MD 
child seemed to use the same strategy variant(s) again and again, year after year, 
right through the entire primary school, which implies that their pattern of devel-
opment is characterised by strategic rigidity.

Thus, the results from the present study indicates that at an early stage, prob-
ably already in grade 1, the MD children seemed to adopt a characteristic pattern 
of development, featuring primary backup strategies, a minimum of strategies, 
and strategic rigidity. This pattern of development might provide substantial sup-
port for the suggestion that ineffi cient strategy use might be a consequence, in 
part, of persistent use of primary backup strategies (e.g., Goldman et al., 1988). 
Several years ago, Gestalt psychologists presented what may be a related phe-
nomenon, that is, functional fi xedness (Wertheimer, 1959). When a particular 
approach or procedure is practiced it can become fi xed, making it diffi cult to 
think of the problem situation in another way.

Moreover, the study examined the differences between MN and MD children 
in regard to the pattern of development that unfolds when the children move up 
through primary school, as refl ected in their level of performance, discrepancy 
between their performance on simple basic fact problems (the NF test) compared 
with simple word problems (the WP test), as well as in their use of task-specifi c 
strategies identifi ed as material, verbal, and mental strategies.

In contrast to the MN children, the MD children’s performance showed a 
course of development with a large and constant discrepancy, throughout the pri-
mary school period, between the levels of performance in the two tests. The level 
of performance for solving basic fact problems and arithmetic word problems as 
well as their characteristic strategy use seemed to have been almost permanently 
established by second grade (Ostad, 1998a).

According to the conceptual understanding hypothesis, strategies acquired in 
isolation from their conceptual basis tend to be error prone, and do not trans-
fer easily to novel problems (Hiebert & Lefevre, 1986; Ohlsson & Rees, 1991). 
Thus, when the MD children’s performance showed a course of development 
with a large and constant discrepancy, throughout the primary school period, 
between their level of performance for solving basic fact problems and arithme-
tic word problems it could be argued that these children do not have a good con-
ceptual understanding of arithmetic. That is, they approach simple arithmetic in 
a rather rigid, algorithmic manner, as they do counting.

MD children produced signifi cant more errors than the MN children on all the 
grade levels included in the study, and the younger produced more errors than 
the older ones. Furthermore, the results were also consistent with several other 
investigations showing that the MD children required more time to solve arithme-
tic problems than their normal peers (e.g., Garnett & Fleischner, 1983; Geary & 
Burlingham-Dubree, 1989; Geary et al., 1991). Thus, the results argue for Kirby 
and Becker’s (1988) position that MD children are consistently slower than normal 
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children at executing basic numerical operations. The mixed pattern of the results 
reported from earlier studies (e.g., Geary, 1990; Geary & Brown, 1991) and, which 
according to Geary probably refl ects the likely heterogeneity of MD groups, was 
not observed in the present study. It should be noted, however, that the overall error 
rate for the MD children was relatively low. However, analysis of the data of the 
present study did not suggest signifi cant relationship between accuracy and strat-
egy use for solving basic fact problems. There is evidence that the relatively low 
error rate produced by the MD children is consistent with the effect reported by 
Siegler and Jenkins (1989) suggesting that ‘back-up strategies can yield accurate 
performance on problems where retrieval cannot’ (p. 28). On the other hand, when 
the analysis of the results indicated that speed of processing were signifi cantly 
related to the developmental maturity of the children’s strategy use throughout the 
elementary grades, this result argues against Kirby and Becker (1988) suggestion 
that MD children use the same type of strategies as MN children to solve arithmetic 
problems but are slower at executing basic operations. An alternative explanation 
would be that MD and MN children use a different mix of problem-solving strate-
gies (Ostad, 1997a, b), which in turn leads to differences in overall solution times.

A number of earlier studies have, on the basis of different criteria, character-
ised MD children as a heterogeneous group. These children show different levels 
of intelligence, different language skills, etc. The results from the present study 
indicated that approximately half of the MD children, that is, about 5% of the 
children in the actual schools, also had language-based diffi culties. However, 
this observed comorbidity was primarily found among children who represented 
the most prevalent cases of language-based diffi culties (Ostad, 1998b). From this 
viewpoint, it would be a reasonable assumption that this observed heterogeneity 
within the group would be clearly refl ected in the pattern of strategy develop-
ment. Therefore, it may seem paradoxical that the present study documents sur-
prisingly little variability in strategy use for solving both basic fact problems and 
arithmetic word problems. When the MD children (supposedly including chil-
dren with different potentials for development) reach the end of grade 7, large 
deviations from the main pattern described above are a rare occurrence. Thus, 
the most striking feature of the pattern of strategy development, as is pictured 
in the results of this study, is the marked degree of similarity in the strategy use 
among the group of MD children as a whole. Perhaps even more signifi cant, 
this pattern of development seems to have been almost permanently established
early in primary school, probably at the end of fi rst grade. The early and striking 
convergence (fl atten) of the developmental curve is consistent with the develop-
mental difference model (Goldman et al., 1988).

In summary, the pattern strategy use presented the typical MD child as being 
characteristic of (a) use of backup strategies only, (b) use of the most primary 
backup strategies, (c) small degree of variation in the use of strategy variants and, 
(d) limited degree of change in the use of strategies from year to year through 
the primary school. Perhaps even more signifi cantly, this pattern of development 
seemed to have been almost permanently established at an early age level.
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EDUCATIONAL IMPLICATIONS AND 
RECOMMENDATIONS

In general, weak recall of basic facts is often cited as one of the most com-
mon characteristics seen in children with diffi culties in mathematics (e.g., Geary, 
1993, Grene, 1999; Ostad, 2000). Failure to acquire mastery of basic facts seems 
to create a ‘cascade’ of failure in mathematical learning, since fl uent recall of 
basic addition, multiplication, division, and subtraction facts makes it easier to 
solve more complex problems in which these basic mathematical operations are 
embedded (Robinson et al., 2002). The results of the present study have shown 
that weak recall of basic facts appears fairly early in the children’s mathematical 
development and thus can serve as an early warning sign to alert teachers to pos-
sible emergent diffi culties.

According to Ginsburg (1997), the most reasonable explanation for the 
MD children’s failure in mathematics is the conventional system of instruc-
tion. Several projects were initiated to address the need for better mathematics 
instruction. The importance of metacognition to mathematical problem solving 
is well acknowledged in the literature (Hiebert & Carpenter, 1992). Cognitive 
strategy instruction is a promising alternative to current approaches for teaching 
mathematics to students with learning diffi culties (Montague, 1997).

Teachers should bear in mind the suggestion that children can be channeled 
into inappropriate development patterns, for which the teaching itself might be 
partly responsible. The consistency with which some MD children used backup 
strategies could indicate that these strategies may very well have been restric-
tively taught. One could, for example, expect strategy variability to be infl u-
enced by the extent to which an individual’s school instruction had encouraged 
or discouraged such variability. If the above suggestion is valid, the character-
istic pattern of development of the MD children might have been created by 
excessive emphasis on teaching methods that invite the use of primary count-
ing procedures. This seems particularly relevant when teaching the youngest age 
groups (as in the schools included in the present study) is based to a large extent 
on ready-printed exercise books, often with concretes functioning as count-
ing instruments; ‘the main thing’ the pupil has to do is to count the concretes 
and write in the answers (Ostad, 1992). MD children require more than ready-
printed exercise books, concretes, or real-word practice in solving mathematical 
problems to become good problem solvers. By contrast, the results of the present 
study might suggest that remedy of mathematics diffi culties should include 
instruction on task-specifi c strategies involved in effi ciently solving of arithme-
tic word problems and arithmetic basic fact problems. To address the needs of 
the MD children, there is evidence that the instructional methods generally need 
to change focus, early in the elementary school years, from how to learn more 
mathematics to how to learn mathematics by means of appropriate approaches, 
that is, providing MD children with instruction to help them become good strat-
egy users and move beyond rote application of basic skills.
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The results of the present study suggest that good strategy users; (a) have 
available a knowledge base of task-specifi c strategies to perform a particular task 
or a particular problem type, (b) are fl exible in the use of particular strategies 
in specifi c situations, and (c) are actively engaged in monitoring the course of 
the solution and in evaluating of success. The basic question then becomes how 
individual differences in strategy use relate to the acquisition of the performance 
on simple arithmetic word problems and simple basic fact problems. But do the 
MD children have suffi cient knowledge of the different task-specifi c strategies 
available to them? It could well be that their knowledge in this respect is limited 
to backup strategies alone. The results of the study indicate a possible relation 
between children’s diffi culties and the absence of an adequate domain-specifi c 
knowledge base of task-specifi c strategies. However, to what degree early con-
vergence (fl atten) of the MD children’s developmental curves can be counter-
acted by extended strategy instruction in the early age groups focused directly on 
the above noted points remains an open question. More valid classroom research 
is needed to fi nd answer to this question.

In summary, the results of the present study presented the MD children by the 
use of developmentally immature strategies that is, characterized with the lack 
of movement through the typical chain of increasingly sophisticated strategies to 
achieve eventual retrieve upon request (Jordan & Montani, 1997). However, broad 
explanations such as ‘developmental immature strategies’ do not answer questions 
concerning the etiology of the children’s diffi culties. An important step further 
involves identifi cation of the defi cient cognitive processes that underlie the behav-
ioral manifestations of the diffi culties. Until now, there is not a research based 
agreed upon explanation for the diffi culties in mathematics in terms of weak-
nesses in specifi c cognitive processes. Actually, to go beyond general explana-
tions based on behavioral components of the diffi culties we need to search for the 
processing weaknesses that have a relatively focused impact on children’s think-
ing and learning ability. Adequate understanding of diffi culties in mathematics 
requires that these cognitive processing weaknesses be addressed and explained.
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NOTES

 1. The basic facts of arithmetic are the simple, closed number sentences we use when we compute. 
These number sentences involve two one-digit addends if they are basic addition or subtraction 
facts, or two one-digit factors if they are basic multiplication or division facts. Examples of basic 
facts include the following: 6 � 7 � 13, 12 � 8 � 4, 3 � 6 � 18, 27:9 � 3. Basic fact problem 
solving is to supply missing sums, addends, products, and factors for these basic facts.

 2. The children that were included in the samples of MD children were: (a) registered in the 
schools’ ordinary support services as in need of a special program of mathematics teaching, and 
(b) among the 14% bottom group in mathematics achievement tests taken with a 2 year interval.
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INTRODUCTION

How children develop competence with numbers and why they differ so much 
in their progress are important questions whether one is concerned with numer-
acy, the skills and knowledge for dealing with numerical information in everyday 
life, or mathematics, the sciences dealing with the logic of quantity, shape, and 
arrangement.

The study of number development in children with specifi c language impair-
ment (SLI) has the potential to contribute both to the understanding of the factors 
that infl uence children’s progress generally and to the knowledge base for pro-
fessionals working with these children.
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In this chapter we shall describe some further investigations of the group 
of children we have previously reported on (Cowan et al., 2005: Donlan et al., 
2007). These further studies involved assessing understanding of monetary 
value, ordinality, and small number quantifi cation.

MONETARY VALUE

Previous work on number in children with SLI (reviewed by Donlan, 1998, 
2003) had indicated selective impairments: children with SLI showed impaired 
procedural skills, particularly in counting, from an early age but less impaired 
understanding of number, for example counting principles. Our investigations of 
children with SLI provided ample evidence of the continuing defi cit in count-
ing and calculation (Cowan et al., 2005). Our sample of 7- to 9-year-olds with 
SLI performed substantially below a group matched in nonverbal reasoning
and age (AC) and not better than a language match group (LC), who were
2 years younger, on a test of count sequence recall and generation. The SLI and 
AC groups differed markedly on calculation problems. Only an SLI subgroup 
attending mainstream schools performed better than the LC group on addition 
and subtraction and this was limited to problems with sums and minuends less 
than 10.

In contrast both SLI subgroups were much more successful than the LC group 
on tests of numerical principles (Donlan et al., 2007). Their position relative to 
the AC group varied with principle. They performed substantially below their 
peers on a test of place value knowledge involving real multidigit numbers but 
did not differ on a commutativity test using ‘Martian’ numbers. The discrep-
ancy might result from the greater dependence of place value on knowledge of 
numbers obtained through familiarity with the count sequence. In contrast the 
commutativity test had been deliberately designed not to involve familiar num-
bers so that children’s application of the principle to addition in general might be 
assessed.

Another possibility is that commutativity in some form develops much earlier 
than place value and is less dependent on language. Comparisons of knowledge 
of principles and strategy use indicate children understand commutativity more 
than other principles and that understanding of commutativity precedes use of 
strategies that presuppose it, for example counting on from the second addend 
(min) (Canobi, 2004, 2005; Canobi et al., 1998, 2003). Siegler and Crowley’s 
(1994) study showed preschoolers who were yet to use min nevertheless judged 
it to be smart and differentiated it from illegitimate strategies that resembled it in 
yielding fast answers.

One early emerging competence that is related to place value is the under-
standing that the monetary value of a set of coins depends on both denomina-
tion and number of coins (Nunes & Bryant, 1996). We constructed a test of 
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children’s understanding of monetary value which is derived from Nunes and 
Bryant (1996)’s tests of relative value.

ORDINALITY

Ordinality is involved in being able to order a set of items and co-ordinate 
this with seriation of another set (Piaget, 1952) and knowing how to use ordinal 
number words to label items in a series (Beilin, 1975). Clearly, the acquisition 
of ordinal number words is likely to be affected by linguistic ability. Seriation 
seems inherently nonverbal and, indeed, monkeys are suggested to have some 
ability (McGonigle & Chalmers, 1992). Nevertheless, seriation ability in chil-
dren appears to be important in predicting number line and number language 
comprehension in the early years (Kingma, 1984; Kingma & Zumbo, 1987).
A previous study (Siegel et al., 1981) found preschoolers with linguistic impair-
ments performed less well on a seriation task than age- and ability-matched 
controls, even though a nonverbal version was used. Whether this resulted from 
linguistic or working memory defi cit is unknown. We devised three tasks: order-
ing, where the child arranged a set of objects in order; ordinal labeling, where 
they had to identify an object in a verbally specifi ed ordinal position; and seri-
ation, where they had to use the position of an object in one series to fi nd the 
corresponding object in another series.

SMALL NUMBER QUANTIFICATION

Dyscalculia is a specifi c problem with numbers that can have severe conse-
quences on children’s mathematical development. Butterworth (2005) has argued 
that defects in development of a module specifi c to small numbers can give rise 
to dyscalculia. He has drawn on evidence from studies of infant numerosity, ani-
mal studies, and neuropsychological cases. Landerl et al. (2004) described the 
number skills of a group of children identifi ed on the basis of extremely poor 
performance on mathematical tests. They were nevertheless of normal intelli-
gence and working memory and had no reading diffi culties.

Although the language problems of children with SLI are likely to impact 
on their number development, this does not entail that their language character-
istics are solely responsible for their diffi culties. We therefore devised a small 
number quantifi cation task and used data from it to compare the groups and also 
to reanalyze the data in Cowan et al. (2005) to determine whether small number 
quantifi cation explained additional variance between children after including the 
effects of working memory, reasoning, and language comprehension.

The aims of this study are (a) to investigate whether the number skills of 
children with SLI differ from those of their typically developing peers, matched 
in nonverbal reasoning, and a group of younger typically developing children 
matched on language comprehension; and (b) to assess whether small number 
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quantifi cation accuracy accounts for additional variation in number tasks beyond 
the other infl uences.

METHOD

PARTICIPANTS

The participants were the 167 children selected through the process described 
in Cowan et al. (2005). Descriptive statistics concerning the four groups (LC, chil-
dren with SLI attending special schools, children with SLI attending mainstream 
schools, and AC) are reported in Table 8.1 (reproduced from Cowan et al., 2005).

EXPERIMENTAL TASKS

Monetary value: This task assessed understanding of monetary value by 
requiring children to identify which of two cartoon characters had more money 
using British coins. The size order of British coins used is as follows, from 

TABLE 8.1 Descriptive Statistics for the Groups on Nonverbal Reasoning (Raven), Language, 
Working Memory, and Instruction

LC1 SLI Special2 SLI Mainstream3 AC4

Measure M (SD) M (SD) M (SD) M (SD)

Age (in years)  6.0a  (0.4)  8.2b (0.3)  8.2b  (0.5)  8.2b  (0.3)

Raven (standard) 106.6a (10.9) 102.3a (9.1) 103.2a (12.3) 105.0a (11.6)

Raven (raw score)  18.4a  (4.0)  23.6b (2.9)  24.3b  (4.8)  25.0b  (4.5)

Language

TROG (standard)  94.5a  (7.2)  80.4b (4.9)  80.9b  (6.5) 101.0c (11.6)

TROG (raw score)  11.7a  (1.7)  11.1a (1.4)  11.6a  (1.7)  16.0b  (1.8)

Working memory

Forward span  4.1a  (0.6)  3.6b (0.5)  3.7b  (0.8)  4.7c  (0.9)

Corsi span  3.3a  (0.7)  3.6ab (0.7)  3.6a  (1.0)  4.0b  (0.6)

Backward span  2.2a  (0.6)  2.2a (0.4)  2.2a  (0.7)  3.0b  (0.7)

Instruction  4.1a  (2.0)  3.8a (1.8)  7.8b  (3.1)  11.1c  (2.3)

Note: Means in the same row that do not share a subscript differ signifi cantly at p � 0.05 (Ryan-
Einot-Gabriel-Welsch post hoc comparisons). AC, age control group; LC, language control group; 
SLI, specifi c language impairment; TROG � Test for Reception of Grammar.

1 n � 55 (8 girls, 47 boys); 2 n � 11 (2 girls, 9 boys); 3 n � 44 (6 girls, 38 boys); 4n � 57
(8 girls, 49 boys).
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smallest to largest: 5p, 1p, 20p, 10p, 2p, and 50p. Following a practice session 
with feedback, the child received a series of trials. In a trial, each cartoon char-
acter had coins of only one denomination. In one subtask, both characters had 
the same number of coins but these differed in denomination. These assessed the 
child’s understanding that value was independent of size of coin: in fi ve trials, 
the larger coin was more valuable (e.g. 10p vs 5p), and in six trials, the smaller 
coin was more valuable (e.g. 2p vs 10p). In the second subtask, the characters 
differed both in the denominations of coins and in the numbers of coins. These 
assessed the child’s understanding that value was independent of number of 
coins and single coin denomination. In two trials, the character with the greater 
number of coins had more (e.g. three 5ps vs one 10p). In six trials, the character 
with fewer coins had more (e.g. one 10p vs four 2ps). The trials from both sub-
tasks were randomly presented. These items formed a reliable scale with a max-
imum score of 20 (Cronbach’s alpha � .79, item-to-scale correlations ranging 
from .08 to .62). Low correlations resulted from some items being particularly 
easy with facilities greater than 95%.

Ordering: The ordering task required children to arrange a family of fi ve car-
toon squirrels in order of size. The actual size order differed from chronologi-
cal age: the size order was, from largest to smallest, Daddy, Granddad, Mummy, 
Grandma (also called Nan), and Baby. Each squirrel was on a separate card. The 
experimenter introduced them in random order, named them and drew attention 
to their size. The child was then asked to place the squirrels in size order with 
the largest on the left. Children who were unsuccessful on the fi rst time were 
encouraged to try again. If the child was still unsuccessful, the experimenter 
arranged the squirrels in correct order. Scores out of two were derived by credit-
ing the child with two points if they correctly ordered the squirrels on the fi rst 
attempt, one point if they succeeded on the second attempt, and zero if they did 
not succeed on either attempt.

Ordinal labeling: The ordinal labeling task assessed understanding of ordi-
nal number words by requiring children to point to the squirrel in a particular 
ordinal position. Overall, there were eight items. After asking the child to point 
to the smallest and largest squirrels, the experimenter asked the child to identify 
the second, third, and fourth largest and smallest. The order in which these were 
requested was randomized with the constraint that the correct squirrel was never 
the same on consecutive trials, for example the request for the second largest 
was never adjacent to the request for the fourth smallest.

Seriation: This task assessed children’s ability to co-ordinate two series. With 
the squirrels arranged in order of size, the child was shown a series of pictures 
of items of clothing and asked to identify the item for particular squirrels. Each 
picture had fi ve items of clothing, identical except in size, for example fi ve pairs 
of socks. The items were not arranged in order of size on the pictures. The sizes 
of the items of clothing did not exactly correspond to the sizes of the squirrels 
to ensure successful matching was based on ordinal position. The experimenter 
would then point to a squirrel at one end, either Daddy or Baby, and ask the 
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child which would they wear. The second question for a particular item of cloth-
ing would be about one of the intermediate sized squirrels (Granddad, Mummy, 
or Grandma). Overall, there were six types of clothing, and so 12 questions.

Ordinality scale: Items at the endpoints for the labeling and seriation tasks 
were almost always correctly answered so these items were excluded from the 
scale that was constructed. The scale comprised the ordering score, the six ordi-
nal labeling items, and the six seriation items that did not involve endpoints. 
These items formed a reliable scale with a maximum score of 14 (Cronbach’s 
alpha � .71, item-to-scale correlations ranging from .12 to .45).

Small number: Children were asked to judge the numerosity of displays of 
dots varying in number from three to seven. The displays were presented using 
a Dell Latitude L400 laptop computer running custom software written in visual 
basic. Each trial began with the presentation of a ‘smiley face’ fi xation point in 
the centre of the screen, followed by a blank white screen for 500 m secs. The 
target display consisted of a number of dots simultaneously presented. Each 
dot appeared at 1 of 12 fi xed locations equidistant from the fi xation point. The 
duration of the display was 150 msecs. After presentation of the target dis-
play, a distractor screen of random ‘scribbles’ was shown for 1000 msecs. The 
screen cleared and a prompt asked ‘How many?’ This stayed on the screen until 
a number was entered via the keyboard. After two practice trials, there were 
20 trials, 4 of each numerosity, presented in a fi xed random order. The com-
puter recorded the response for each trial. The 20 items formed a reliable scale 
(Cronbach’s alpha � .74, item-to-scale correlations ranging from .07 to .48).

RESULTS

It was not possible to test one child with SLI on the monetary value task. 
Apart from that, data collection was complete. The groups differed in accu-
racy on every task and derived scale: monetary value, F(3,162) � 25.27, 
p � .0005, η2 � .32; ordering, F(3,163) � 6.68, p � .0005, η2 � .11; ordinal 
labeling, F(3,163) � 12.41, p � .0005, η2 � .19; seriation, F(3,163) � 10.43, 
p � 0.0005, η2 � .16; ordinality scale, F(3,163) � 22.03, p � .0005, η2 � .29;
small number three items, F(3,163) � 6.24, p � 0.0005, η2 � .10; small 
number four items, F(3,163) � 4.94, p � .005, η2 � .08; small number fi ve items, 
F(3,163) � 12.92, p � 0.0005, η2 � .19; small number six items: F(3,163) � 4.03, 
p � 0.001, η2 � .07; small number seven items, F(3,163) � 3.38, p � .05, η2 � .06; 
small number scale, F(3,163) � 14.11, p � .0005, η2 � .21. Table 8.2 reports task 
means and differences between groups.

We decided to use the scales for further analysis as they had reasonable reliabil-
ity. Although the ordinality scale combines both the labeling and the seriation items 
it does not appear that the position of the SLI groups varies much whether verbal or 
nonverbal items are used. As Table 8.2 shows, both SLI groups perform worse than 
the AC group on both tasks and neither group performs better than the LC group.
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TABLE 8.2 Number Task Performance by Group

Measure
Maximum 
possible LC SLI Special

SLI
Mainstream AC

Monetary value scale 20 15.62a (2.78) 15.18ab (4.09)  17.91b (2.26) 19.18c (1.32)

Ordering  2   1.42a (.83)    1.36a (.51)    1.61a (.75)   1.93b (.26)

Ordinal labeling  8  5.35a (1.48)   5.00a (1.26)   5.66a (1.49)  6.79b (1.28)

Seriation 12  9.44a (1.44)   9.73a (1.56)   9.84a (1.66) 10.96b (1.45)

Ordinality scale 14  8.40a (2.52)   8.18a (2.56)   9.16a (2.88) 11.82b (1.85)

Small number

3  4  2.87a (1.40)   3.36ab (.81)    3.39ab (.89)   3.68b (.54)

4  4  2.78a (1.12)    3.45ab (.69)   2.95ab (1.20)   3.47b (.85)

5  4  1.27a (1.01)  1.55ab (1.37)   2.09ab (1.49)  2.68b (1.17)

6  4  1.04a (1.05)     .82a (.87)   1.48ab (1.00)   1.56b (.91)

7  4     .56a (.71)     .55a (.52)    .59a (.82)    .98b (.88)

Small number scale 20  8.53a (3.32)  9.73ab (2.61) 10.50bc (3.68) 12.39c (2.62)

Note: For all groups, numbers entered are means with standard deviations in parentheses. Means 
in the same row that do not share a subscript differ signifi cantly at p � 0.05 (Games-Howell or 
Ryan-Einot-Gabriel-Welsch post hoc comparisons depending on heterogeneity of variance).

Table 8.3 shows the zero-order correlations between the background measures 
and the scales. The fi rst set of multiple regressions were undertaken to determine 
whether the performance of children with SLI differs from that of their chrono-
logical peers (AC group) when relations between performance and curriculum 
coverage, working memory, receptive grammar, and nonverbal reasoning are 
taken into account. In the multiple regressions, dummy variables are used which 
code the SLI Mainstream group as the reference group. The results are sum-
marized in Table 8.4. The regressions were repeated excluding the SLI Special 
school group, and the estimates of infl uence of the background measures were 
very similar.

To assess the contribution of small number ability to explaining variance on 
number tasks, the multiple regressions reported in Cowan et al. (2005) were 
rerun with the addition of the small number scale as a predictor. The results are 
summarized in Table 8.5.

DISCUSSION

The results provide mixed support for the expectations based on previous 
research. We shall discuss each one separately.
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TABLE 8.3 Correlations Between Measures

No. Variable 1 2 3 4 5 6 7 8 9

1. Nonverbal
reasoning

– .44 .21 .42 .36 .46 .53 .45 .42

2. Language 
comprehension

– .56 .35 .52 .56 .48 .57 .40

3. Forward span – .18 .46 .28 .26 .37 .27

4. Corsi span – .28 .32 .43 .38 .37

5. Backward span – .45 .37 .45 .39

6. Instruction – .51 .46 .40

7. Monetary value – .55 .45

8. Ordinality – .48

9. Small number –

Note: n � 167. Nonverbal reasoning is raw score on Raven’s. Language comprehension is 
raw score on TROG. For coeffi cients greater than .20, p � .01; for coeffi cients greater than .26, 
p � .001.

TABLE 8.4 Summary of Simultaneous Multiple Regression Analyses on Scales

Monetary value Ordinality Small number

β sr2 β sr2 β sr2

Nonverbal reasoning .24** .03 .19* .02 .15

Language comprehension .14 .23* .02 .06

Forward span .01 .04 .06

Corsi span .19** .03 .12 .17* .02

Backward span .06 .12 .15

Instruction .08 .06 .05

AC v SLI (M) �.03 .11 .02

LC v SLI (M) �.19* .01 .01 �.15

SLI (S) v SLI (M) �.21** .03 �.05 �.04

Note: n � 167. SLI (M) is SLI Mainstream School. SLI (S) is SLI Special School. R2 �.46 for 
Monetary value, .42 for Ordinality, and .31 for Small number.

* p � 0.05; ** p � 0.01.

MONETARY VALUE

The monetary value task was supposed to assess understanding of principles
and children with SLI were expected to outperform the younger LC group
and possibly approximate the level of the AC group. In fact both SLI groups 



TABLE 8.5  Summary of Multiple Regression Analyses of Number Tasks Reported in Cowan et al. (2005) Including Small Number Task as Predictor

Counting
Addition
combinations

Basic
calculation I

Basic
calculation II Story problems Transcoding Relative magnitude

β sr2 β sr2 β sr2 β sr2 β sr2 β sr2 β sr2

Nonverbal 
reasoning

  .16* .02   .04   .26** .04   .17* .02   .15* .01   .15** .01   .14

Language 
comprehension

  .22* .02   .02   .22* .02   .33*** .03   .28*** .02   .26*** .02   .11

Forward span   .11   .09   .09   .07   .12* .01 �.02 �.04

Corsi span �.04   .15** .02   .05   .02   .14** .01   .03   .15* .02

Backward span   .12 .01   .09   .13 .02   .18* .02   .03   .19*** .02   .18* .02

Instruction   .20* .02 �.02 �.06 �.08   .11   .20** .01   .12

AC vs SLI (M)   .25** .02   .28* .02 �.04 �.01   .18* .01   .17* .01   .10

LC vs SLI (M)   .16* �.21* .02 �.07 �.09   .03 �.02 �.08

SLI (S) vs
 SLI (M)

  .04 �.08 �.10 �.16* .02 �.06 �.05   .05

Small number
scale

  .17** .02   .17* .02   .18* .02   .20** .03   .12* .01   .14** .01   .17* .02

Note: n � 167. SLI (M) is SLI Mainstream School. SLI (S) is SLI Special School. Basic calculation I comprises addition and subtraction problems with sums and 
minuends less than 10. Basic calculation II consists of addition and subtraction problems with sums and minuends above 10 and less than 20. R2 � .65 for Counting, .53 
for Addition combinations, .45 for Basic calculation I, .55 for Basic calculation II, .67 for Story problems, .76 for Transcoding, and .50 for Relative magnitude.

p � .05; ** p � .01; *** p � .001.
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were less successful than the AC group and only the SLI Mainstream group
performed better than the LC group. It may be that variation in task perfor-
mance refl ected differences in calculation skill rather than appreciation of 
principles.

An alternative is that the presentation of the task caused diffi culties for the 
SLI groups due to the demands it made on visuospatial processing. Corsi spans 
are supposed to assess the visuospatial sketchpad component of working mem-
ory. The SLI samples had lower Corsi spans than the AC group. Corsi span cor-
related with success on the task, see Table 8.3, and in the multiple regression 
uniquely accounted for variance, see Table 8.4.

ORDINALITY

Results on the ordinal labeling and seriation tasks bore out expectations based 
on Siegel et al.’s (1981) study with younger children with SLI. The children with 
SLI showed defi cits compared to age-matched controls on all tasks whether or 
not these involved ordinal language. Almost all the AC group (53/57) success-
fully ordered the squirrels on their fi rst attempt. In contrast only a few (4/11) 
SLI Special group and about three quarters (34/44) of the SLI Mainstream group 
were right fi rst time. Even when the squirrels were correctly ordered for them, the 
groups differed substantially in identifying the squirrel corresponding to verbally 
specifi ed ordinal positions. Whereas most (50/57) in the AC group made two or 
fewer errors on this verbal task, few (3/11) SLI Special and just over half (25/44) 
SLI Mainstream achieved similar success. The pattern differed little on the nonver-
bal seriation task: most (49/57) of the AC group made two or fewer errors but only 
25/44 of the SLI Mainstream group did as well. The SLI Special group seemed to 
do better on this than the other tasks: 7/11 made 10 or more correct responses. The 
fl uctuations of this small group are, however, consistent with random fl uctuation.

The multiple regression for this task indicated both nonverbal reasoning 
and language comprehension uniquely accounted for variance on the overall 
scale though the amounts accounted for are small (2% each) both in absolute 
terms and in relation to the overall R2 (42%). The disadvantage shown by the 
SLI groups on the seriation task indicates that whatever the seriation capabili-
ties of nonverbal species, human seriation performance derives from linguistic 
resources. It is certainly more specifi c than ordering as all three working memory 
tasks require children to remember orders of stimuli and none of them accounted 
for as much variation.

SMALL NUMBER

Group differences on this task were small: only the LC and the AC groups differed 
reliability for every numerosity. SLI group performance was typically between the 
other groups. In contrast, variation within group was considerable. Despite several 
substantial zero-order correlations with the other variables, differences in this task 
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were not well accounted for by the variables entered in the multiple regression: the 
overall R2 was only 31%. Corsi span made a signifi cant unique contribution.

In the task children saw arrays for a very limited time, 150 msec, and this was 
followed by a distracting visual display. This was intended to prevent children 
from counting the objects during or after the presentation. It may be that this 
manipulation was unsuccessful. Inspecting the times taken by children who were 
successful indicated that correct answers to fi ve item displays were accompanied 
by longer response times, typically almost 2 seconds, than those to displays with 
fewer items, typically less than a second. So there is some uncertainty over the 
basis for children’s success on our small number task.

If the task procedure did succeed in discouraging counting then the processes 
might be subitizing and estimation. It is unlikely to be just subitizing because 
even in adults the upper limit is four items (Chi & Klahr, 1975). Also the 
increase in response times seems to argue against it. Some form of analog-based 
estimation might underlie success with larger numerosities, such as Huntley-
Fenner (2001) argued underlay the success of the children he studied on numer-
osities between 5 and 11.

Whatever the basis it would seem to be important. In the reanalyses of the 
data reported in Cowan et al. (2005), small number performance made small but 
signifi cant unique contributions to explaining variance on each skill.

Finally on many number tasks our samples of children with SLI were per-
forming very much below the level of their peers. Diversity within the samples 
was considerable with some performing at age appropriate levels but others very 
much below. It may turn out that SLI is a predictor of maths diffi culty as much 
as it is of reading diffi culty. In the US approximately 40% of children with SLI 
will meet the criteria for reading diffi culties (Catts et al., 2002). In contrast only 
8% of typically developing children with similar nonverbal ability will do so. As 
the best estimate of the incidence of SLI in US children is only 7.4% (Tomblin 
et al., 1997), this does not mean that most children with reading diffi culties will 
have SLI. It does indicate that children with SLI will be disproportionately rep-
resented in groups selected on the basis of reading diffi culty.

What our work suggests is that it would be a mistake to assume that children 
with SLI are only at risk for reading diffi culties. Some will feature in groups 
that combine both reading and maths diffi culties. It is even possible that oth-
ers may feature in groups with just maths diffi culties. Aram and Nation (1980) 
found maths skills were even more impaired than literacy skills in adolescents 
with SLI. Including assessments of linguistic skills in studies of low-attaining 
groups would help to establish this.
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INTRODUCTION

It is possible for those who are dyslexic to be extremely successful mathema-
ticians (Jansons, 1988). However, there is reason to believe that certain aspects 
of mathematics cause them problems. This has been found to be true in the expe-
rience of practising teachers (Chinn & Ashcroft, 1998; Henderson & Miles, E. 
2001) and the various contributors to Miles and Miles (2004). The same conclu-
sion is also supported by research of a more systematic kind. Thus Miles (1993) 
found that many of the dyslexics whom he assessed had diffi culty in compari-
son with controls over the subtraction and memorization of times tables. Miles 
et al. (2001) reported data based on the performance of some 12,000 10-year-old 
children on 72 mathematics items of many different kinds. Those with two or 
more dyslexia indicators out of a possible four consistently obtained lower scores 
than those with fewer such indicators despite no differences in scores on the 
Similarities and Matrices items of the British Ability Scales (Elliott et al., 1983).
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Turner Ellis (2002) made a study of both speed and correctness in the carry-
ing out of all four mathematical operations (multiplication, division, addition and 
subtraction). In the case of multiplication (Turner Ellis et al., 1996) it was found 
that dyslexic boys, aged between 9 and 16 years (though not the same boys as 
those in this study) were slower and more error prone than age-matched controls. 
A paper on subtraction and addition is in preparation; this chapter reports on the 
results for division.

There is now good evidence that dyslexics are slower than non-dyslexics at 
operating with and remembering any kind of symbolic information (Miles, 2006) 
but are unimpaired at ‘processing for meaning’ and recognizing regularities and 
patterns (Miles et al., 2006). Since division sums involve operating with and 
remembering symbols (numerals), our prediction was that the dyslexics in the 
study would make more errors and be slower than the controls. Also it seemed 
possible that their weak memorization skills might be compensated for if there 
were obvious algorithms to help them, such as division by 10 and division by 11. 
Here, the load on the memory is much less than it is for many of the other tables, 
since if one is dividing by 10 one simply has to remove the zero, while if one 
is dividing by 11 the correct answer is there in front of one. It seemed possible, 
therefore, that the presence of algorithms might lessen the differences between 
them and the controls.

As we had data relating to three different age bands (see below), we thought it 
would also be interesting to check if progress was made at a steady rate or if the 
differences in performance at the different age levels provided evidence of ‘spurts’ 
where speed of calculation improved rapidly, and plateaux, where it did not.

The aim of this chapter, therefore, is to provide evidence on the following fi ve 
questions:

1. Did some division sums present more problems than others?
2. Did the dyslexics make more errors than the controls?
3. Were they slower in carrying out the calculations?
4. Did the existence of an obvious algorithm affect the two groups 

differently?
5. Does performance improve in a steady fashion with age or are there spurts 

and plateaux?

PARTICIPANTS, APPARATUS AND METHOD

The participants were 30 dyslexic boys, aged between 9 years 5 months and 
15 years 4 months, and 30 non-dyslexic boys matched for age and score on the 
Raven Standard Progressive Matrices (Raven, 1958). All the children had to be at 
the 40th percentile or better for their age. A matched pairs design was achieved 
as follows: each control participant had to be aged within 2 months of their ‘pair’ 
if they were older and within 4 months if they were younger; the controls had to 
have the same score on the Matrices as their ‘pair’ within two points.
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The decision to limit the enquiry to males was made partly on grounds of con-
venience, given the greater availability of dyslexic males in the general population 
(Miles et al., 1998) and to avoid any complications which might arise from gen-
der differences.

All the children were holding their own in their school environment and, to 
the best of our knowledge, were free from any gross physical or emotional dis-
ability. They all came from private schools in the south of England and were 
therefore relatively homogenous in respect of social background. All the schools 
made provision for dyslexic children.

Because of the differences in age between the oldest and youngest partici-
pants and because performance was likely to change over time given the school’s 
general policy of helping dyslexics, it was decided to subdivide the participants 
into three age bands, (i) young (aged 9 years 5 months to 11 years 4 months), 
(ii) medium (aged 11 years 5 months to 13 years 4 months) and (iii) old (aged 13 
years 5 months to 15 years 4 months).

To qualify as a dyslexic those in the young age band had to have a spelling 
age on the Schonell S1 spelling test (Schonell & Schonell, 1952) of at least 18 
months below their chronological age, or 2 years below chronological age for 
participants over 13 years of age. All the controls had to have a spelling age at 
least as high as within 6 months of their chronological age, or a spelling age at 
least as high as within 15 months of their chronological age in the case of chil-
dren in the old age band.

A further qualifi cation was specifi ed for being dyslexic: it was necessary to 
have at least 3.5 positive indicators out of a possible 8 on the Bangor Dyslexia 
Test (Miles, 1997). In contrast, to qualify as a control it was necessary to have 
no more than 2.5 positive indicators. Eight items only out of the 10 available on 
the Bangor Dyslexia Test were used in this research because the remaining two, 
Subtraction and Tables, were relevant to calculation and their use would there-
fore have resulted in a circular argument.

By means of suitable technology a particular division sum appeared on a 
computer screen and the children were asked to type the answer on a keyboard 
as fast as they could. There were 144 different division sums, presented in ran-
dom order.

It was decided that if a participant failed to answer within 22 seconds the 
result should be scored as an error. For purposes of timing, each error was scored 
as having taken 22 seconds. Although this assumption is a somewhat arbitrary 
one, it had the advantage of making possible a workable system of scoring for 
both speed and correctness.

With regard to making comparisons between results where there was and was 
not an obvious algorithm, it was decided to compare the results for sums involv-
ing division by 10 and 11 with results from sums involving division by 7 and 8. 
We therefore compared the results in the case of 60 � 10, 70 � 10, 80 � 10, 90 � 10,
66 � 11, 77 � 11, 88 � 11 and 99 � 11 with the results for 42 � 7, 49 � 7, 
56 � 7, 63 � 7, 48 � 8, 56 � 8, 64 � 8, 72 � 8. It was hypothesized that the 
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algorithm condition (division by 10 and 11) might be differentially easier for the 
dyslexics than the non-algorithm condition (division by 7 or 8).

RESULTS

Note that two-tailed tests were used throughout.

1. Did some division sums present more problems than others?
2. Did the dyslexics make more errors?

Figure 9.1 shows the number of correct responses given by the dyslexics, 
broken down by divisor and age band. Figure 9.2 provides the same information 
in respect of the controls.

It will be seen that the dyslexics made more errors overall than the controls 
and that for both groups some divisors presented more problems than others. 
These tended to occur when the divisors were 4, 6, 7, 8, 9 and 12. This was true 
of both groups, though in the case of the dyslexics the effects were more marked. 
Later in the chapter an analysis will be presented which compares the results 
when the divisors are 10 and 11 with the results when they were 7 and 8.

Table 9.1 shows the proportion of correct responses for the dyslexics and the 
controls in each age band (means and standard deviations for the 10 children in 
each group).

Analysis of variance showed that there is an age effect [F(2, 54) � 16.930, 
p � 0.01], a group effect [F(1, 54) � 25.538, p � 0.001] and an age � group 
interaction [F(2, 54) � 5.536, p � 0.01].
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FIGURE 9.1 Number of correct responses made by the three age bands in the dyslexic group.
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Post hoc tests compared the groups in each age band. The results were young 
dyslexics vs young controls (t � 3.991, df � 18, p � 0.001), medium age 
dyslexics vs medium age controls (t � 1.799, df � 18, ns), old dyslexics vs old 
controls (t � 2.546, df � 18, p � 0.05).

Thus there were more errors on the part of the dyslexics in the young and old 
age bands but not in the medium age band. We will suggest possible reasons for 
this in the Discussion section.
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FIGURE 9.2 Number of correct responses made by the three age bands in the control group.

TABLE 9.1 Proportion1 of Correct Responses for the Dyslexics and 
the Controls in Each Age Band

Age Group Mean SD

Young Dyslexics 0.52 0.23

Controls 0.83 0.09

Medium Dyslexics 0.84 0.09

Controls 0.91 0.08

Old Dyslexics 0.82 0.13

Controls 0.93 0.04

1 The fi gures are expressed as a proportion so as to make possible a 
comparison with addition and subtraction, where the number of sums 
involved was not 144 but 150. Source: Turner Ellis (2002).
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3. Were the dyslexics slower?
Table 9.2 gives the mean, standard deviation and median response times in 

seconds for each group and age band. As a check against the decision to count 
an error as 22 seconds, medians have also been included.

It can be seen by inspection that there were no major differences between the 
means and the medians; from this it may be concluded that the decision to count 
a failed response as 22 seconds was not distorting the results.

Analysis of variance showed the following overall results: there is an age effect 
(F(2, 54) � 21.196, p � 0.001), a group effect (F(1, 54) � 35.913, p � 0.001) 
and there is an age � group interaction (F(2, 54) � 3.604, p � 0.05).

Post hoc tests compared the groups in each age band. The results were young 
dyslexics vs young controls (t � 4.673, df � 18, p � 0.001), medium age 
dyslexics vs medium age controls (t � 2.180, df � 18, p � 0.05), old dyslexics 
vs old controls (t � 3.289, df � 18, p � 0.01).

It will be seen that at all three age levels there are signifi cant differences 
between the dyslexics and the controls in the time taken to respond. As in the 
case of correctness, the lack of any increase in speed between the medium 
age dyslexics and the old dyslexics is puzzling and will be referred to in the 
Discussion section.

4. Does the existence of an obvious algorithm affect the two groups 
differently?

In what follows we shall refer to the division by 10 and 11 as the X-condition 
and the division by 7 and 8 as the Y-condition. Table 9.3 gives the number of 
correct and incorrect responses in the two conditions.

In the X condition there was a signifi cant difference in the number of correct 
responses between the young dyslexics and the young controls (Fisher’s exact 
probability test p � 0.001) but no difference between the medium age dyslexics
and medium age controls nor between the old dyslexics and the old controls
(p � 0.05). There appears here to be a ceiling effect.

In the Y condition the differences between dyslexics and controls in all three 
age groups were statistically signifi cant (Fisher’s exact probability test: young
p � 0.001, medium age p � 0.05 and old p � 0.001).

TABLE 9.2 Mean and Median Response Times (in seconds) and Standard Deviation by 
Group and Age on Division

Groups Age band Mean SD Median

Dyslexics Young 13.90 3.65 13.10

Medium  7.91 2.51  8.41

Old  7.58 2.76  7.15

Controls Young  7.69 2.08  8.01

Medium  5.67 2.06  5.35

Old  4.55 0.94  4.79
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Table 9.4 gives the results in the case of speed.
Post hoc t-tests showed that all six groups (dyslexics and controls, young, 

medium and old age bands) were slower in the Y condition than in the X condi-
tion. The t-values and signifi cance levels were:

Young controls t � 7.855, df � 9, p � 0.001
Young dyslexics t � 4.607, df � 9, p � 0.001
Medium age controls t � 3.791, df � 9, p � 0.01
Medium age dyslexics t � 6.185, df � 9, p � 0.001
Old controls t � 3.711, df � 9, p � 0.01
Old dyslexics t � 3.910, df � 9, p � 0.01

In addition the young dyslexics were slower than the young controls (p � 0.01 
for the X condition and p � 0.001 for the Y condition). In the case of the medium 
age dyslexics and the medium age controls, the differences in the X condition were 
very small, as was also the case when the old dyslexics were compared with the 

TABLE 9.3 Number of Correct and Incorrect Responses for the Two Groups and Three Age 
Bands in the X and Y Conditions

Group Age band
X-condition 
correct

X-condition 
incorrect

Y-condition 
correct

Y-condition 
incorrect

Dyslexics Young 55 25  8 72

Controls Young 79  1 41 39

Dyslexics Medium 76  4 46 34

Controls Medium 77  3 59 21

Dyslexics Old 77  3 51 29

Controls Old 77  3 70 10

TABLE 9.4 Mean Response Times (seconds) for the Three Groups 
and Age Bands in the X and Y Conditions

Groups and age bands X condition Y condition

Young age band

Dyslexics 10.32 20.73

Controls  3.42 14.68

Medium age band

Dyslexics  4.56 14.19

Controls  3.75 10.51

Old age band

Dyslexics  3.73 12.30

Controls  2.92  7.81
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old controls. In the Y condition the differences between medium age dyslexics and 
medium age controls and between old dyslexics and old controls were consider-
ably larger; however, although they were in the expected direction they did not 
reach an acceptable level of signifi cance, with t-values of 1.442 and 1.772 (1.772 
is marginally signifi cant if a one-tailed test is used).

5. Does performance improve in a steady fashion with age?
Both Tables 9.1 and 9.2 leave us with a puzzling phenomenon: there is no 

gain in respect of either correctness or speed between the medium age dyslexics 
and the old dyslexics: the fi gures for ‘proportion correct’ were 0.84 and 0.82, 
while the fi gures for ‘time taken’ were 7.91 and 7.58 seconds, respectively.

To gain further understanding we have presented the information in terms 
of topographical terrains shown in Figures 9.3 to 9.8. This is a visual way 
of showing the level of ease or diffi culty, as judged by speed of respond-
ing, encountered when working on a particular division table. The six ter-
rains presented have been key-coded with patterns according to mean response 
time in seconds. The terrain shows the 12 � 12 division grid presented in 
three-dimensional form. The dimensions represented are the divisor (divi-
sion table number), quotient and mean response time (in seconds). The 
higher the terrain, the longer the response time and therefore the harder the 
division sum.

The terrains have the following properties:

1. Pattern. The key-coding pattern indicates the time span within which the 
response is given. This coding is consistent across groups and age bands. From 
quickest to slowest response times the patterns are vertical lines, dark shade, 
white, slant lines and dots. Times given in the coding do not overlap.
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FIGURE 9.5 Mean response time for the medium age dyslexics.

2. Plains. These are fl atter expanses of faster response times. A good exam-
ple of this is found in Figure 9.8 for the old controls and the pattern for this is 
represented in vertical lines.

3. Foothills. These are areas of low-to-middle ground indicating response 
times of medium value.

4. Plateaux. These are fl atter expanses indicating division facts, which gained 
like-timed responses grouped together. Areas of the same pattern show these. 
A good example of this is seen with response times in the 10–15 seconds in 
Figure 9.5 with the results for the medium-age dyslexics.



176 Mathematical Diffi culties: Psychology and Intervention

4

1

7

10

0

5

10

15

Quotient
Table 5

Table 1

Table 3

Table 7
Table 9

Table 11T
im

e 
in

 s
ec

on
ds 10–15

5–10
0–5

Divi
so

r (
di

vis
io

n

ta
bl

e)

FIGURE 9.6 Mean response time for the medium age controls.
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FIGURE 9.7 Mean response time for the old dyslexics.

5. Valleys. The valleys in the topographical terrains are tracts of similar lower 
altitude that run like a track of the same pattern through the hills and mountains. 
These would indicate particular division tables that evoke similar response times 
throughout the majority of the division table, such as the �10 table. The valley 
stands out because it is bordered by higher land on either side. Here the adjoin-
ing division tables would take the participants longer to answer.

6. Mountain peaks. Peaks indicate a sudden climb of diffi culty shown by 
sharp pinnacles of highest ground within an area of the division tables.
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FIGURE 9.8 Mean response time for the old controls.

Inspection of the topographical terrains shows that the progress of the dyslex-
ics, unlike that of the controls, was by no means uniform. Possible reasons for 
this will be considered in the Discussion section.

DISCUSSION

We are now in a position to answer the fi ve questions posed earlier.

1. Did some division sums present more problems than others?
Not surprisingly, the answer to this question is ‘yes’. What emerges from our 

results is that there appears to be no difference between dyslexics and controls as 
regards order of diffi culty, but that if a task is hard for controls it is extra hard for 
dyslexics. This is a conclusion in respect of dyslexia which may well have wider 
applications than simply in the area of calculation.

2. Did the dyslexics make more errors than the controls?
The answer is, for the most part, ‘yes’, though the difference is most marked 

in the case of those in the young age band.

3. Were the dyslexics slower in carrying out the calculations?
Again the answer is ‘yes’, with the effect size, as judged by the confi dence 

levels, being greatest among the young age band. That both groups improved 
with age is not surprising, given that it was policy in all the schools to try to help 
dyslexics; without such a policy the improvement by the dyslexics could well 
have been much less. The fact that there was a small but signifi cant inter-action 
(p � 0.05) between age and group confi rms that even in a relatively favorable 
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environment progress for dyslexics remains slow. It is also worth noting that the 
old age-band dyslexics were only as fast as the young age-band controls. In gen-
eral, it seems that dyslexics improve their performance but do so at a slower pace 
than controls.

Why, then, given that the dyslexics were matched with the controls on 
the Raven Matrices, were they more error-prone and slower at division? Our 
results confi rm the widely held view that dyslexics tend to be strong at reason-
ing and pattern recognition but weak at memorization. Division requires hold-
ing a large amount of symbolic material in mind over a signifi cant period of 
time. This being so, there is less opportunity for knowledge of number facts 
relating to division (and, indeed, the other mathematical operations) to become 
automatic; and there is good evidence that, in general, dyslexics need more time 
than non-dyslexics before skills become automatic (Nicolson & Fawcett, 1990).

In contrast, the easier items on the Raven Matrices require primarily the abil-
ity to recognize patterns as similar or dissimilar; the more diffi cult ones require 
the ability to detect relationships. Here is an example based on one of the harder 
items. The patterns presented are circles arranged in a 3 � 3 format, all of them 
having up to fi ve smaller circles in the form of loops. These loops vary not only 
in number but also in whether they lie just inside or just outside the main circle. 
The person being tested has to choose one of the eight fi gures, the choice depend-
ing on the recognition of the combined relationships between number and inside-
outside. The patterns are present throughout, which means that no memorization 
is required; an awareness of numbers up to fi ve is required, although knowing the 
names of the numbers is unnecessary. In brief, the division task required memo-
rization and automaticity, which are areas of dyslexics’ weakness, whereas the 
Matrices task involves pattern recognition, at which dyslexics are strong.

4. Does the existence of an obvious algorithm affect the two groups 
differently?

Both dyslexics and controls at all ages made fewer errors and were quicker in 
the X condition than in the Y condition. The effect of the X condition was to nar-
row the gap between dyslexics and controls. Clearly all children do better when 
there are algorithms but the advantage to young dyslexics is particularly marked.

Our results provide further confi rmation that when dyslexics have the oppor-
tunity to use their reasoning powers rather than having to rely on their memories, 
the limitations arising from their dyslexia are much reduced.

5. Does performance improve in a steady fashion with age or are there spurts 
and plateaux?

In the case of the controls there is a reduction both in error rate and in speed 
as one progresses from the young age band to the medium to the old. This is not 
so, however, in the case of the dyslexics. There are, indeed, substantial differences 
both in correctness and in speed between the young age band and the medium age 
band, but no signifi cant improvement between the medium age band and the old 
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age band (proportions correct of 0.84 and 0.82 in the case of correctness and 
7.91 and 7.58 seconds in the case of speed).

It is hard to be sure of the reasons for these results. One possibility, however, 
is that not all members of the old age band continue to carry out calculations by 
hand, and it is possible, therefore, that because of dyslexics basic weakness over 
calculation, lack of practice may in some cases have caused their skills to have 
become ‘rusty’.

The most striking feature about the topographical terrains is that, while in 
the case of the controls, scores increase regularly with age, this is not so in the 
case of the dyslexics. We have already referred to a possible rustiness which may 
explain the relative lack of difference between the medium age dyslexics and the 
older dyslexics. But why are the terrains so different when the young dyslexics, 
aged between 9 years 5 months and 11 years 4 months, are compared with the 
medium age dyslexics?

It would accord with the experience of teachers that when dyslexics are in a 
favorable environment the time comes when they ‘take off’, when ‘things click 
into place’ and when they are set to ‘get over the hump’. Reading then ceases to 
be the daunting task which it seemed to be earlier, and the stage is set for further 
progress. Because of dyslexics’ special limitations it seems that they are later 
than non-dyslexics in gaining the appropriate insights, and that, when they do, 
they do so in more spectacular fashion. This suggestion is a speculative one, but 
in view of what we know about dyslexics it seems at least possible.

SOME PRACTICAL IMPLICATIONS

Some of the practical implications of these fi ndings are as follows:

1. Those who teach dyslexics should always allow them plenty of time in 
which to absorb the information presented; otherwise any dyslexic pupils in the 
class will ‘lose track’.

2. Memorization is much easier if algorithms and other mnemonics can be 
found.

3. One should not expect progress to take place at an even pace; there may 
be spurts forward and plateaux. This does not rule out the possibility of further 
spurts thereafter.

4. Dyslexics can learn correct answers, even though this may take them 
longer than their non-dyslexic peers. If they fail to do so it is important for the 
teacher to ask why.

CONCLUDING REMARKS

Success in teaching calculation to dyslexic pupils is possible provided the 
teacher works systematically and slowly. Moreover teachers should never forget 
that dyslexic pupils are likely to be strong on logic and pattern recognition but 
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weak at memorization. Setting them to memorize number facts etc. is likely to 
lead to frustration, whereas showing them logical patterns and helping them to 
discover these for themselves is likely to lead to success and improvement in 
self-esteem.
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Up till now, there has been much less research on mathematical development 
and diffi culties than on some other areas of development, such as language and 
literacy. However, there has recently been an increased emphasis on mathematics 
in cognitive developmental research (e.g., Baroody & Dowker, 2003; Campbell, 
2005; Royer, 2003); in neuroscience (Ansari et al., 2005; Butterworth, 1999; 
Dehaene, 1997); and in educational policy and practice in the UK and abroad 
(Askew & Brown, 2001; Kilpatrick et al., 2001).

In particular, there is by now overwhelming evidence that arithmetic is not 
a single unitary ability at which people are either ‘good’ or ‘bad. This evidence 
comes from many converging sources, including experimental, educational, and 
factor analytic studies of typically developing children and adults (e.g., Dowker, 
1998, 2005; Geary & Widaman, 1992; Ginsburg, 1977; Lefevre & Kulak, 1994; 
Siegler, 1988); studies of children with arithmetical defi cits (Butterworth, 2005; 
Dowker, 2005; Geary & Hoard, 2005; Ginsburg, 1977; Jordan et al., 2003; 
Mazzocco & Myers, 2003; Russell & Ginsburg, 1984; Shalev et al., 1997); stud-
ies of patients (Butterworth, 1999; Dehaene, 1997; Delazer, 2003; Warrington, 
1982); and functional brain imaging studies (Castelli et al., 2006; Dehaene et al., 
1999; Gruber et al., 2001; Rickard et al., 2000).
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The broad components of arithmetical ability include counting, memory 
for arithmetical facts, the understanding of concepts, and the ability to follow 
procedures. Each of these broad components has, in turn, a number of narrower 
components: for example, counting includes knowledge of the counting sequence, 
ability to follow counting procedures in counting sets of objects, and understanding 
of the principles of counting: for example, that the last number in a count sequence 
represents the number of objects in the set, and that counting a set of objects in dif-
ferent orders will give the same answer (Greeno et al., 1984; Munn, 1997).

Moreover, though the different components often correlate with one another, 
weaknesses in any one of them can occur relatively independently of weaknesses 
in the others. Weakness in even one component can ultimately take its toll on 
performance in other components, partly because diffi culty with one component 
may increase the risk of the child relying exclusively on another component, and 
failing to perceive and use relationships between different arithmetical processes 
and problems; and partly because when children fail at certain tasks, they may 
come to perceive themselves as ‘no good at maths’ and develop a negative atti-
tude to the subject. However, the components described here are not seen as a 
hierarchy. A child may perform well at an apparently diffi cult task (e.g., word 
problem solving) while performing poorly at an apparently easier component 
(e.g., remembering the counting word sequence). Though certain specifi c compo-
nents may frequently form the basis for learning other specifi c components, they 
need not always be prerequisites. Several studies (e.g., Denvir & Brown, 1986) 
have suggested that it is not possible to establish a strict hierarchy whereby any 
one component invariably precedes another component.

Many children have diffi culties with some or most aspects of arithmetic. It is 
hard to estimate the proportion who have diffi culties, since this depends on the 
criteria that are used. Moreover, as arithmetical thinking involves such a wide 
variety of components, there are many forms and causes of arithmetical diffi -
culty, which may assume different degrees of importance in different tasks and 
situations. It is likely that at least 15% to 20% of the population have diffi cul-
ties with certain aspects of arithmetic, which are suffi cient to cause signifi cant 
practical and educational problems for the individual (Bynner & Parsons, 1997) 
though the proportion describable as dyscalculic is much lower.

This chapter is divided into two parts. The fi rst part describes an intervention 
program, which is based on the fi ndings that suggest that arithmetic is made up 
of numerous components, and involves assessing and targeting individual chil-
dren’s specifi c weaknesses. The second part analyses a few specifi c components 
of arithmetic, and the relationships between them, in a group of children who 
were selected for having arithmetical diffi culties.

PART 1: NUMERACY RECOVERY SCHEME

The Numeracy Recovery scheme has been discussed earlier (e.g., Dowker, 2001, 
2005). It is being piloted with 6 and 7 year olds (mostly year 2) in some First 
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Schools in Oxford. It was initially funded by the Esmee Fairbairn Charitable 
Trust; and is currently about to undergo further development and evaluation as 
Catchup Maths, with funding from the Caxton Trust. Hundred and seventy fi ve 
children have so far entered the project.

The scheme, as developed up till now, has involved working with children 
who have been identifi ed by their teachers as having problems with arithmetic.

These children are assessed on nine components of early numeracy, which are 
summarized and described below. The children then receive weekly individual 
intervention (half an hour a week) in the particular components with which they 
have been found to have diffi culty. The interventions are carried out by the class-
room teachers, using techniques proposed by the researcher.

The teachers are released (each teacher for half a day weekly) for the inter-
vention, by the employment of supply teachers for classroom teaching. Each 
child remains in the program for 30 weeks, or until their teachers feel they no 
longer need intervention; whichever is shorter. New children join the project 
periodically.

COMPONENTS THAT ARE THE FOCUS OF THE PROJECT

(1) Counting Procedures
Arguably the most basic component of arithmetic is the ability to make appro-

priate use of counting. While most 6 year olds have achieved relatively effort-
less counting, a signifi cant number have not (Griffi n et al., 1994; Yeo, 2003). 
This may seriously impede their development of arithmetic, both because of the 
intrinsic logical relationships between counting and arithmetic, and because the 
effort of counting may distract attention from other aspect of arithmetic (Gray & 
Tall, 1994; Yeo, 2003).

In the pretest, children are tested for:

 (i) accuracy of counting sets of 5, 8, 10, 12 and 21 objects;
(ii) rote verbal counting to 10 and to 20.

Intervention

Children are given practice in counting sets of objects, ranging in number 
from 5 to 25.

(2) Counting-Related Principles and Their Application
[Originally, components (1) and (2) were grouped together on the assump-

tion that very few children as old as 6 or 7 would have diffi culty with counting. 
A higher proportion than expected had such diffi culties; so that different compo-
nents of counting – are here considered separately.]

Most counting principles are acquired before the age of 5 or 6, even in chil-
dren with some mathematical diffi culties. However, the order-irrelevance prin-
ciple (that counting the same set of items in different orders will result in the 
same number) is usually the latest of the main counting principles to be acquired 
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(Cowan et al., 1996); and is sometimes weak even in 6 year olds. Evidence sug-
gests that understanding the order-irrelevance principle is closely related to the 
ability to predict the result of adding or subtracting an item from a set (Cowan 
et al., 1996; Dowker, 2005).

In the pretest for the ‘counting principles’ component, children are 
assessed on:

   (i) The order-irrelevance principle: The children watch an adult count a set 
of objects, and are then asked to predict the result of further counts:

 (a) in the reverse order;
 (b) after the addition of an object;
 (c) after the subtraction of an object.

 (ii)  Repeated addition by 1: Children are shown a set of 5 items, and then 
shown one more item being added, and asked to say, without counting, 
how many there are now. This is repeated up to 15.

(iii)  Repeated subtraction by 1: Children are shown a set of 10 items, 
and then shown one item being subtracted, and asked to say, without 
counting, how many there are now. This is repeated down to zero.

Intervention

For the order-irrelevance principle, children practice counting and answer-
ing order-irrelevance questions about very small numbers of counters (up to 4), 
where the numerosity of the set is likely to be obvious to the child. During this 
practice, the adult makes statements such as, ‘It’s four this way, and four that 
way – it’s four whichever way you count it!’ The child is then given further prac-
tice with increasingly large sets.

For repeated addition by 1 and repeated subtraction by 1, children are given 
practice in observing and predicting the results of such repeated additions and 
subtractions with counters (up to 20). They are then given verbal ‘number after’ 
and ‘number before’ problems: ‘What is the number before 8?’, ‘What is the 
number after 14?’, etc. They are also given some worksheets devised for the 
project, including repeated addition and subtraction by 1 from a set of circles. 
They are encouraged to play ‘Number After Dominoes’ and ‘Number Before 
Dominoes’ (Wynroth, 1986; Baroody, 1992), which are played like dominoes 
except that the added domino must be the number after (or before) the end item, 
rather than the same number.

(3) Written Symbolism for Numbers
There is much evidence that children often experience diffi culties with writ-

ten arithmetical symbolism of all sorts, and in particular with representing quan-
tities as numerals (Ginsburg, 1977; Fuson, 1992). With regard to this component, 
children are asked to read aloud a set of single-digit and two-digit numbers. 
A similar set of numbers is dictated to them for writing.
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Intervention

Children practice reading and writing numbers. Children with diffi culties in 
reading or writing two-digit numbers (tens and units) are given practice in sort-
ing objects into groups of 10, and recording them as ‘20’, ‘30’, etc. They are 
then given such sorting and recording tasks where there are extra units as well as 
the groups of 10.

(4) Understanding the Role of Place Value in Number Operations 
and Arithmetic

This involves the ability to add 10s to units (20 � 3 � 23); the ability to add 
10s to 10s (20 � 30 � 50); and the ability to combine the two into one operation 
(20 � 33 � 53). A related task involves pointing to the larger number in pairs of 
two-digit numbers, that vary either just with regard to the units (e.g., 23 vs. 26); 
just with regard to the 10s (e.g., 41 vs. 51); or where both 10s and units vary in 
confl icting directions (e.g., 27 vs. 31; 52 vs. 48).

Intervention

Children are shown the addition of 10s to units and the addition of 10s to 
10s in several different forms: (i) written numerals; (ii) number line or number 
block; (iii) hands and fi ngers in pictures; (iv) 10-pence pieces and pennies; and 
(v) any apparatus (e.g., multilink or unifi x) with which the child is familiar. The 
fact that these give the same answers is emphasized.

Children whose diffi culties are more specifi c to the use of place value in 
arithmetic may be given practice with arithmetical patterns such as: ‘20 � 10; 
20 � 11; 20 � 12’, etc.; being encouraged to use apparatus when necessary.

(5) Word Problem Solving
There is a considerable body of evidence (Hughes, 1986; Mayer, 2003; Riley 

et al., 1983) that young children often experience diffi culty with word problems 
in arithmetic, even when they are capable of performing the necessary calcula-
tions. Indeed, some studies have suggested (e.g., Russell & Ginsburg, 1984) that 
performance on word problems is one of the tasks that most strongly defi nes 
the difference between mathematically normal and mathematically ‘disabled’ 
schoolchildren. It is important to take into account the nature of the problems, 
as their semantic nature has a strong infl uence on how easily they are solved. 
For example children tend to fi nd problems involving changes in quantity 
(‘Change’ problems) easier than those involving comparisons between quantities 
(‘Compare’ problems) (Riley et al., 1983; DeCorte & Verschaffel, 1987).

Pretest

Children are given the Word Problems Test devised by Griffi n et al. (1994) 
for addition and subtraction. This involves the presentation of ‘Change’ and 
‘Compare’ problems for addition and subtraction and of ‘Combine’ problems 
(combining two quantities) for addition.
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Intervention

Children who have diffi culties in understanding word problems are presented 
with short addition and subtraction word problems of ‘Change’, ‘Compare’ and 
‘Combine’ types (similar but not identical to those used in the assessments). The 
problems are discussed with them: ‘What are the numbers that we have to work 
with?’ ‘What do we have to do with the numbers?’ ‘Do you think that we have to 
do an adding sum or a taking-away sum?’ ‘Do you think that John has more 
sweets or fewer sweets than he used to have?’, etc. They are encouraged to use 
counters to represent the operations in the word problems, as well as writing 
the sums numerically.

(6) Translation Between Arithmetical Problems Presented in 
Concrete, Verbal and Numerical Formats

Several people have suggested that translation between concrete, verbal 
and numerical formats is a crucial area of diffi culty in children’s arithmetical 
development. For example, Hughes (1986) reported that many primary school 
children demonstrate diffi culty in translating between concrete and numerical 
formats (in either direction), even when they are reasonably profi cient at doing 
sums in either one of these formats and has suggested that this diffi culty in trans-
lation may be an important hindrance to children’s understanding of arithmetic.

The Translation pretest involves six types of task, for both addition and sub-
traction. This task will be described in more detail in Part 2. They involve:

(a)  Translation from numerical to concrete: Where children are presented 
with sums and are invited to ‘show how to do this sum with the counters’.

(b)  Translation from concrete to numerical: They watch the experimenter 
perform arithmetical operations with counters and are being asked to 
write down the sum that the experimenter did.

(c)  Translation from verbal to concrete: They are presented with word 
problems, and are invited to ‘show me this story with the counters’.

(d)  Translation from verbal to numerical: They are presented with word 
problems, and are asked to ‘write down the sum that goes with the story’.

(e)  Translation from numerical to verbal: They are shown written sums, and 
are asked to ‘tell me a story that can go with this sum’.

(f)  Translation from concrete to verbal: They watch the researcher perform 
arithmetical operations with counters, and are asked to ‘tell me a story to 
go with what I’m doing here’.

The children’s performance on this pretest is looked at in the context of their 
performance on the Written Symbolism and Word Problem pretests. If the chil-
dren perform particularly badly on translations that involve numerical material, 
and also perform poorly on the Written Symbolism pretest, then it is likely that 
their main problem is with written symbolism. If the children perform particularly 
badly on translations that involve verbal material, and also perform poorly on 
the Word Problems pretest, then it is likely that their main problem is with word 
problem comprehension. However, if they perform uniformly poorly on all parts 
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of the translation pretest, and/or if their performance on the translations involv-
ing numerical material is disproportionately worse than their performance on the 
Written Symbolism pretest, and/or if their performance on the translations involv-
ing the verbal material is disproportionately worse than their performance on the 
Word Problem pretest, then it is likely that the problem is with translation as such.

Intervention

Although the techniques used for some of the other components include ele-
ments of translation, the techniques involved in remediating this component 
focuses specifi cally on showing that the same arithmetical problem can be rep-
resented in different ways. The children are shown the same problems in differ-
ent forms (problems similar but not identical to those used in the pretest); and 
are shown that they give the same results. They are also encouraged to repre-
sent word problems and concrete problems by numerical sums, and to represent 
numerical problems and word problems by concrete objects.

They also play ‘Same or Different’ games, where the experimenter presents a 
problem in one form (e.g., ‘6 � 2’) and then demonstrates its correct representa-
tion (e.g., two counters being added to six counters) or incorrect representation 
(e.g., two counters being taken away from six counters). They are asked to say 
whether the second problem is the same or different from the fi rst problem.

(7) Derived Fact Strategies in Addition and Subtraction
One crucial aspect of arithmetical reasoning is the ability to derive and predict 
unknown arithmetical facts from known facts, for example by using arithmetical 
principles such as commutativity, associativity, the addition/subtraction inverse 
principle, etc. (Baroody et al., 1983; Canobi et al., 1998, 2003; Dowker, 1998). 
For example, if we know that 29 � 13 � 42, we can use the commutativity prin-
ciple to derive the fact that 13 � 29 is also 42.

In the pretest to assess this component, children are given the Addition and 
Subtraction Principles Test developed by Dowker (1998), and described in more 
detail in Part 2. In this test, they are given the answer to a problem and then asked 
them to solve another problem that could be solved quickly by the appropriate 
use of an arithmetical principle (e.g., they may be shown the sum ‘23 � 44 � 67’ 
and then asked to do the sum 23 � 45, or 44 � 23). Problems preceded by 
answers to numerically unrelated problems are given as controls. The children 
are asked whether ‘the top sum’ helps them to do ‘the bottom sum’, and why. 
The actual addition and subtraction problems involved vary in diffi culty, rang-
ing from those which the child can readily calculate mentally, through those just 
beyond the child’s calculation capacity, to those very much too diffi cult for the 
child to solve.

Intervention

Intervention techniques for this component involve training in the use and 
application of derived fact strategies. The children are presented with pairs of 
arithmetic problems similar to those used in the pretest. The ‘derived fact strategy’ 
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techniques are pointed out and explained to them; and they are invited to solve 
similar problems. If they fail to do so, the strategies are demonstrated to them 
for single-digit addition and subtraction problems, with the help of manipula-
ble objects, and of a number line; and they are again invited to carry out other 
derived fact strategy problems.

(8) Arithmetical Estimation
The ability to estimate an approximate answer to an arithmetic problem, and 

to evaluate the reasonableness of an arithmetical estimate, are important aspects 
of arithmetical reasoning (LeFevre et al., 1993; Siegler & Booth, 2005; Sowder & 
Wheeler, 1989).

Pretest

This involves the task previously used by Dowker (1997, 2003), and described 
in more detail in Part 2. Children are presented with a series of problems of vary-
ing degrees of diffi culty, and with estimates made for these problems by imagi-
nary characters (Tom and Mary). The children are asked (a) to evaluate ‘Tom 
and Mary’s’ estimates on a fi ve-point ‘smiley faces’ scale from ‘Very good’ to 
‘Very silly’; and (b) to suggest ‘Good guesses’ for these problems themselves. 
Once again, the actual addition and subtraction problems involved vary in dif-
fi culty, ranging where possible from those which the child can readily calculate 
mentally, through those just beyond the child’s calculation capacity, to those very 
much too diffi cult for the child to solve.

Intervention

Children are given additional ‘Tom and Mary’ evaluation tasks, and are asked 
to give reasons for their answers; and further practice in producing their own 
estimates. This is done under several conditions:

(a) Arithmetical problems similar to those used in the pretest.
(b)  Problems with small numbers using concrete objects. It has been found 

(Dowker, 1997, 1998) that young children perform signifi cantly better 
on estimation problems involving addition of concrete objects than those 
involving numerical problems.

(c)  Word problems that provide a realistic practical context for estimation.

Children are also encouraged to play ‘Twenty Questions’ type number-guessing 
games (cf. Holt, 1966), which involve focussing on the range within which a 
number lies.

(9) Number Fact Retrieval
Although most psychologists, educators and mathematicians agree that mem-

orization of facts is not the essence of arithmetic, knowledge of number facts 
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does contribute to effi ciency in calculation (Tronsky & Royer, 2003), and is a 
signifi cant factor in distinguishing between mathematically normal and math-
ematically ‘disabled’ children (Geary & Hoard, 2005; Jordan & Hanich, 2000; 
Ostad, 1998; Russell & Ginsburg, 1984).

Pretest

This is based on Russell and Ginsburg’s (1984) Number Facts Test, which 
assesses knowledge of basic addition facts. It has been expanded to include some 
subtraction facts as well.

Intervention

Children are presented with some of the basic addition and subtraction facts 
(e.g., 3 � 3 � 6; 6 � 6 � 12).

As suggested for example by Ginsburg (1977), the main technique is to ask 
the child to do the same sums repeatedly (during the same session, and in suc-
cessive sessions), in the hope that the repetition will lead to retention of the facts 
involved. If the child continues to carry out the same problem over and over 
again as though it were a new problem, the child is explicitly asked, ‘Have we 
done this sum before?’ ‘What did we get?’ ‘Do you think you can tell me what 
the answer will be, before you work it out.’

They also play ‘number games’ (e.g., some from Straker, 1996) that reinforce 
number fact knowledge.

EVALUATION OF EFFECTIVENESS

The children in the project, together with some of their classmates and chil-
dren are of comparable levels of arithmetical ability from similar schools in the 
area from other schools, are given three standardized arithmetic tests: the British 
Abilities Scales Basic Number Skills subtest (1995 revision), the Weschler 
Objective Numerical Dimension (WOND) Numerical Operations test, and the 
Weschler Intelligence Scale (WISC) Arithmetic subtest. The fi rst two place 
greatest emphasis on computation abilities and the latter on arithmetical reason-
ing. The children are retested at intervals of approximately 6 months.

The initial scores on standardized tests, and retest scores after 6 months, of 
the fi rst 146 children to take part in the project have now been analyzed. Not 
all of the data from ‘control’ children are yet available, but the fi rst 75 ‘control’ 
children to be retested showed no signifi cant improvement in standard (i.e., age 
corrected) scores on any of the tests. Moreover, as the tests are standardized, it is 
possible to estimate the extent to which children are or are not improving relative 
to others of their age in the general population.

The children in the intervention group have so far shown very signifi cant 
improvements on standardized tests. (Average standard scores are 100 for the 
British Ability Scales (BAS) Basic Number Skills subtest and the WOND 
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Numerical Operations subtest, and 10 for the WISC Arithmetic subtest.) The 
median standard scores on the BAS Basic Number Skills subtest were 96 ini-
tially and 100 after approximately 6 months. The median standard scores on the 
WOND Numerical Operations test were 91 initially and 94 after 6 months. The 
median standard scores on the WISC Arithmetic subtest were 7 initially, and 
8 after 6 months (the means were 6.8 initially and 8.45 after 6 months). Wilcoxon 
tests showed that all these improvements were signifi cant at the 0.01 level.

Out of the 146 children 101 have been retested over periods of at least a year, 
and have been maintaining their improvement.

FURTHER DEVELOPMENT

The project is undergoing further development and evaluation. In particular, a 
pilot project is currently ongoing, in collaboration with Graham Sigley, Julie Lawes 
and Wayne Holmes of the Catch Up Trust, to adapt the program (under the title 
Catch Up in Numeracy) for wider use. Training programs and materials have been 
developed for use by teachers and teaching assistants; and the program is now being 
piloted and tested with approximately 240 children in 40 schools in six local author-
ities. Further expansion of the program is planned. In each school, four children par-
ticipate fully in the intervention and two are controls. Within the control group, one 
pupil receives one-to-one support in mathematics, practicing work related to class-
room activities, but not the specifi c targeted program, while the other receives no 
specifi c mathematics intervention beyond what is already provided by the school.

The children are given the Basic Number Screening Tests (Basic Number 
Screening Tests A and B) at the start and end of intervention; and will also be 
given follow-up tests. So far, results are available for 85 children before and after 
a 4-month intervention period. The 54 who underwent the targeted intervention 
showed a mean gain in ‘mathematics age’ of 8.4 months in the 4-month period. 
The 19 who underwent matched time intervention showed a mean gain of 5.3 
months over the same time, and the 12 who had no intervention showed a mean 
gain of 4.3 months. An ANOVA showed difference between the targeted inter-
vention group and the controls was signifi cant. The control groups did not differ 
signifi cantly from one another. Moreover, t-tests showed that the targeted inter-
vention group’s improvement was very signifi cantly greater than the 4 months 
that would be expected just from their increase in age, while neither control 
group improved signifi cantly more than the expected 4 months.

PART 2: STUDY OF CHILDREN WITH 
ARITHMETICAL DIFFICULTIES*

The study examined the performance of a sample of children with arithmetical 
diffi culties on three selected components: derived fact strategy use, estimation 

*At the risk of some repetition, I am giving full details of the tasks used in the study described in 
Section 2, to avoid the reader’s need for constant cross-referencing to Section 1.



Numeracy Recovery with Children with Arithmetical Diffi culties 191

and translation, with respect to their arithmetical performance level and perform-
ance and improvement on standardized tests. These components were selected 
because they had already been studied in some detail with unselected groups of 
children (Dowker, 1997, 1998, 2005). The children were the 146 children who 
underwent both intervention and retesting in the Numeracy Recovery project 
described in Part 1.

One of the main aims of the study was to investigate whether there would be 
a close relationship between scores on the different components, or whether they 
would be relatively independent. Previous research, as summarized at the begin-
ning of this paper, has suggested some functional independence between these 
components. However, it appeared possible that different components would be 
more closely linked in children with mathematical diffi culties, due to diffi culties 
in one having an adverse effect on development of others, or due to the diffi cul-
ties sharing a common cause.

METHOD AND TECHNIQUES

In order to evaluate the children’s competence in addition calculations, a men-
tal calculation task was given to each child. It consisted of a list of 20 addition 
sums graduated in diffi culty from 4 � 5, 7 � 1, etc. to 235 � 349. These sums 
were simultaneously presented orally and visually in a horizontal format. The 
children’s answers were oral.

The sums were as follows:

  (1) 6 � 3 (11)  31 � 57
  (2) 4 � 5 (12)  68 � 21
  (3) 8 � 2 (13)  52 � 39
  (4) 7 � 1 (14)  45 � 28
  (5) 4 � 9 (15)  33 � 49
  (6) 7 � 5 (16)  26 � 67
  (7) 8 � 6 (17) 235 � 142
  (8) 9 � 8 (18) 613 � 324
  (9) 26 � 72 (19) 523 � 168
 (10) 23 � 44 (20) 349 � 234

Testing continued with each child until (s)he had failed to give a correct 
response to six successive items.

The children were then divided into fi ve levels according to their performance 
on the mental calculation task.

Table 10.1 gives brief descriptions of the levels, and examples of the prob-
lems that could and could not be solved at these levels. In practice, only the fi rst 
three levels were represented in the present group.

DERIVED FACT STRATEGY TASK (USE OF 
ARITHMETICAL PRINCIPLES)

The children were then given an arithmetical reasoning test involving use 
of arithmetical principles in derived fact strategies. The technique was used of 
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giving children the answer to a problem and then asking them to solve another 
problem that could be solved quickly by using this answer, together with the 
principle under consideration. Problems preceded by answers to numerically 
unrelated problems were given as controls. The exact arithmetic problems 
given varied according to the previously assessed calculation ability of the 
child, and were selected to be just a little too diffi cult for the child to solve 
unaided. Such a set of problems is referred to here, as in earlier studies (e.g., 
Dowker, 1998), as the child’s base corresponding set). Children of the highest 
(three-digit addition) level had no base corresponding set. They were given the 
same set as the next highest (two-digit addition; no carrying level). These were 
problems that they might have been able to solve by calculation, and this fact 
must be taken into account when considering the results obtained from children 
at this level.

Each child was shown the arithmetic problems, while the experimenter simul-
taneously read them to him/her. Children were asked to respond orally. The chil-
dren received three arithmetical problems per principle: on rare occasions, when 
there was serious ambiguity about the interpretation of their responses, they 
received a fourth problem.

The principles investigated were as follows, in order of their diffi culty for the 
children:

1. The identity principle (e.g., if one is told that 8 � 6 � 14, then one can 
automatically give the answer ‘14’, without calculating, if asked ‘What is 
8 � 6?’).

2. The commutativity principle (e.g., if 9 � 4 � 13, 4 � 9 must also be 13).
3. The n � 1 principle (e.g., if 23 � 44 � 67, 23 � 45 must be 68).
4. The n � 1 principle (e.g., if 9 � 8 � 17, 9 � 7 must be 17 � 1 or 16).
5. The addition/subtraction inverse principle (e.g., if 46 � 27 � 73, then 

73 � 27 must be 46).

A child was deemed to be able to use a principle if (s)he could explain it 
and/or used it to derive at least 2 out of 3 unknown arithmetical facts, while 
being unable to calculate any sums of similar diffi culty when there was no 
opportunity to use the principle.

TABLE 10.1 Levels of Arithmetical Performance in Addition

Level Problem just within range Problem outside range

Beginning arithmetic  2 � 2   5 � 3

Facts to 10  5 � 3   8 � 6

Simple facts  8 � 6  23 � 44

Two-digit (no carry) 23 � 44  52 � 39

Two-digit (carry) 52 � 39 523 � 168
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ESTIMATION TASK

The addition estimation task was that used in previous studies (Dowker, 1997, 
1998, 2003). In this study, each child was presented with a set of addition prob-
lems within their base correspondence as defi ned above. Each set included a 
group of nine sums to which a pair of imaginary characters (‘Tom and Mary’) 
estimated answers. Each set of ‘Tom and Mary’s’ estimates included three good 
estimates (e.g., ‘7 � 2 � 10’, ‘71 � 18 � 90’); three that were too small; and 
three that were too large. The children were asked to evaluate each guess on a 
fi ve-point scale from ‘Very good’ to ‘Very silly’, represented by a set of sche-
matic faces ranging from very smiling to very frowning, and were themselves 
asked to suggest ‘Good guesses’ to the sums. The Estimation score was the 
number of reasonable estimates, out of a maximum score of 9, within the base 
correspondence. Reasonable estimates were defi ned as those that were within 
30% of the correct answer, and were also larger than each of the addends.

TRANSLATION TASK

The children were given tasks involving translations between word problem, 
concrete and numerical formats for additions and subtractions. The concrete 
formats involved the use of counters. All six combinations of presentation and 
response domain were given, as demonstrated below. No sum in any of these 
translation tasks included a number greater than 10. The order of tasks was var-
ied systematically between participants.

(a) Translation from numerical to concrete (2 items)
 Children were presented with written sums (“2 � 5 � 7”; “6 � � 4”); 

and were invited to “show me how to do this sum with the counters”.
(b) Translation from concrete numerical to (2 items)
 They watched the researcher perform arithmetical operations with 

counters (adding 7 counters to 2 counters; subtracting 6 counters from 
9 counters) and then were then asked to “write down the sum that goes 
with what I did”.

(c) Translation from verbal to concrete (5 items)
 They were presented with word problems and asked to “show me this 

story with the counters”.
 Examples of items were:
 “Paul had 4 sweets; his mother gave him 3 more; so now he has 7 sweets”
 “Peter had 5 buns; he ate 3 buns; so now he has 2 chocolates.”
 “Farmer John has 7 pigs and 5 cows, so he has 2 more pigs than cows.” 

(Subtraction: ‘Compare’ semantic category)
(d) Translation from verbal to numerical (5 items)
 Children were presented with word problems (similar but not identical to 

those in ©), and asked to “write down the sum that goes with the story”
(e) Translation from numerical to verbal (2 items)
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 They were presented with written sums (“3 � 6 � 9”, “8 � 6 � 2”), and 
invited to “tell me a story that goes with this sum”.

(f) Translation from concrete to verbal (2 items)
 Children watched the researcher perform arithmetical operations with 

counters (e.g. adding 5 counters to 3 counters; subtracting 6 counters 
from 9 counters) and were then asked to “tell a story to go with what 
I just did with the counters.”

CLASSIFICATION OF RESPONSES 
TO TRANSLATION TASK

The Translation score was calculated by giving 3 for every fully complete 
response, 2 for every complete response, which involved inverting the opera-
tion (e.g., representing the story ‘Peter had 5 buns; he ate 3 buns; so now he has 
2 chocolates,’ as ‘3 � 2 � 5’ rather than ‘5 � 2 � 3’); 1 for every incomplete 
response and 0 for every incorrect response. As the total number of items was 
18, the maximum possible score was 54.

Complete responses involved representing the operation: for example, repre-
senting the story above by writing ‘5 � 2 � 3’, or putting out a set of 5 counters 
and removing 2 to leave 3. Incomplete responses involved representing one 
or more of the numbers within the problem, without showing the operation; 
for example representing the story above by writing ‘5 2 3’ or ‘3’, or showing 
3 counters, or separate sets of 5 counters, 2 counters and 3 counters. Incorrect 
responses involved the production of incorrect numbers or sums, irrelevant sto-
ries or comments, letters of the alphabet, or complete failure to answer.

Results
Table 10.2 gives the descriptive statistics for all the variables for all children.
Of these 146 children, 37 were initially at Addition Performance Level 1 

(Beginning Arithmetic); 86 at Level 2 (Facts to 10) and 23 at Level 3 (Facts to 25).
The mean number of derived fact strategies used for addition by the 

group as a whole was 1.05 (SD 1.13). When children were divided according 
to their addition performance level, the mean number of derived fact strate-
gies used by children at Level 1 (Beginning Arithmetic) was 0.3 (SD 0.55); the 
mean number used by children at Level 2 (Facts to 10) was 1.28 (SD 1.17); 
and the mean number used by children at Level 3 (Simple Facts) was 1.2 
(SD 1.06).

By comparison, the mean numbers of derived fact strategies used by unse-
lected children at the same levels (Dowker, 1998) were 0.72 at Level 1; 1.82 at 
Level 2; and 3.01 at Level 3.

The mean number of reasonable estimates (out of 9) by the group as a whole 
was 4.23 (SD 2.18). When children were divided according to their addition per-
formance level, the mean number of reasonable estimates provided by children 
at Level 1 (Beginning Arithmetic) was 3.00 (SD 1.73); the mean number used 
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by children at Level 2 (Facts to 10) was 4.47 (SD 2.28); and the mean number 
used by children at Level 3 (Simple Facts) was 4.33 (SD 2.16).

By comparison, the mean numbers of reasonable estimates provided used by 
unselected children at the same levels (Dowker, 1998) were 2.43 at Level 1; 5.4 
at Level 2; and 4.95 at Level 3.

The mean translation score of the group as a whole was 22.58 (SD 9.81). 
When children were divided according to their addition performance level, the 
mean translation score at Level 1 (Beginning Arithmetic) was 15.33 (SD 7.16); 
the mean score at Level 2 (Facts to 10) was 24.96 (SD 9.53); and the mean score 
at Level 3 (Simple Facts) was 25.89 (SD 8.4). The unselected children studied 
by Dowker et al. (2005) were not divided by performance levels in this way; but 
the overall average score obtained by 6 year olds was 32.

LACK OF GENDER DIFFERENCES

An analysis of covariance was carried out with gender as the factor, age (in 
months) as the covariate. The dependent variables were Addition Level, 
Addition Derived Fact Strategy Score, Subtraction Level, Subtraction Derived 
Fact Strategy Score, Estimation Score, Translation Score, and the (a) initial and 
(b) second scores and (c) extent of improvement on all three standardized tests: 
WOND Numerical Operations, BAS Basic Number Skills and WISC Arithmetic. 
None of the comparisons proved signifi cant.

TABLE 10.2 Means and Standard Deviations of Test Scores

n Mean Standard deviation Range

WOND (fi rst score) 175 90.32 10.99   62–123

WOND (second score) 146 92.79 12.34   68–126

WOND improvement 146 2.45 10.9 �23–33

BAS (fi rst score) 175 95.19 11.76   67–123

BAS (second score) 146 100.38 12.45   62–133

BAS improvement 146 5.11 11.87 �25–49

WISC (fi rst score) 175 6.86 2.87    2–17

WISC (second score) 146 8.33 2.5    2–15

WISC improvement 146 1.51 3.13  �8–11

Age at start (months) 175 80.7 6.05   66–97

Addition level 175 1.94 0.67    1–4

Addition derived fact strategies 175 1.05 1.13    0–5

Estimation 175 4.08 2.21    0–9

Translation 175 21.9 9.93    2–47
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RELATIONSHIPS BETWEEN DIFFERENT MEASURES

Table 10.3 shows the correlations between different measures.
In order to investigate the independent contributions of different factors to 

target measures, entry level multiple regressions were carried out on each of the 
measures as dependent variable, with the other measures as the predictors.

FACTORS CONTRIBUTING TO SCORES ON COMPONENTS 
OF ARITHMETICAL PERFORMANCE

An entry method linear multiple regression was carried out with Addition 
Derived Fact Strategies as the dependent variable and Age, Addition Level, 
Estimation, and Translation as the predictors. None of the predictors proved to 
be signifi cant.

An entry method linear multiple regression was carried out with Estimation 
as the dependent variable and Age, Addition Level, Addition Derived Fact 
Strategies and Translation as the predictors. None of the predictors proved to be 
signifi cant.

An entry method linear multiple regression was carried out with Translation 
as the dependent variable and Age, Addition Level, Addition Derived Fact 
Strategies and Estimation as the predictors. Age was a signifi cant positive predic-
tor (beta � 3.41; t � 3.21; p � 0.01) as was Addition Level (beta � 2.6; t � 2.4; 
p � 0.05).

Addition Level was included in the analyses because it was a determinant of 
the precise content of the derived fact strategy and estimation tasks, and it seemed 
desirable to control for it. As it is an ordinal rather than cardinal score, there could 
however be doubts as to the appropriateness of its inclusion in a regression. The 
same analyses were carried out with this variable omitted, and results were identi-
cal as regards the signifi cance of the other predictors, with the exception of the 
regression on Translation. Once Addition Level was removed from this regression, 
Age continued to be a signifi cant predictor (beta � 0.41; t � 3.82; p � 0.01), but 
Estimation also just reached signifi cance (beta � 0.22; t � 2.04; p � 0.05).

Estimation, and Translation as the predictors. Both Addition Level (beta � 
0.37; t � 3.2; p � 0.01) and Translation (beta � 0.27; t � 2.13; p � 0.05) were 
signifi cant positive predictors.

An entry method linear multiple regression was carried out with second WISC 
Arithmetic score as the dependent variable and fi rst Arithmetic score, Age, 
Addition Level, Addition Derived Fact Strategies, Estimation, and Translation as 
the predictors. None of the predictors proved to be signifi cant.

An entry method linear multiple regression was carried out with improve-
ment in WISC Arithmetic score as the dependent variable and fi rst Arithmetic 
score, Age, Addition Level, Addition Derived Fact Strategies, Estimation, and 
Translation as the predictors. Initial Arithmetic score was a signifi cant negative 
predictor (beta � �0.81; t � �7.91; p � 0.01). None of the other predictors 
proved to be signifi cant.



TABLE 10.3 Spearman Rank Correlations Between the Variables (* p � 0.05, ** p � 0.01) (n � 146)

Age
Addition 
level

Derived 
fact strategies Estimation Translation WOND 1 WOND 2

WOND 
improvement BAS 1 BAS 2

BAS 
Improvement WISC 1 WISC 2

WISC 
Improvement

Age 0.21** 0.05 0.08 0.29** �0.21** �0.22** �0.02 0.03 �0.15 �0.29**   0 �0.08 �0.05

Addition level 0.33** 0.2 0.43**   0.49**   0.32** �0.11 0.49**   0.38** �0.05   0.47** �0.23** �0.16*

Derived fact
strategies

0.15 0.27**   0.28**   0.09 �0.14 0.34**   0.12 �0.19*   0.25**   0.1   0.05

Estimation 0.3**   0.15   0.32** �0.02 0.23*   0.15 �0.29**   0.23*   0.18   0.01

Translation   0.23**   0.2** �0.36** 0.31**   0.2*   0.09   0.43**   0.22* �0.18*

WOND 1 – –   0.54** �0.34** 0.62**   0.46** �0.09   0.57**   0.42** �0.16*

WOND 2 – – –   0.53** 0.51**   0.72**   0.27**   0.44**   0.57**   0.06

WOND
improvement

�0.03   0.34*   0.4** �0.08   0.22*   0.23**

BAS 1   0.51** �0.41**   0.52**   0.44** �0.1

BAS 2   0.53**   0.37**   0.56**   0.13

BAS improvement �0.1   0.16*   0.22**

WISC 1   0.39** �0.6**

WISC 2   0.49**

WISC
improvements
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Addition Level was included in the analyses for reasons mentioned above; 
but as it is an ordinal rather than cardinal score, there could be doubts as to the 
appropriateness of its inclusion in a regression. The same analyses were carried 
out with this variable omitted, and results were identical as regards the signifi -
cance of the other predictors.

DISCUSSION

The children with arithmetical diffi culties appeared in general to show some 
weaknesses in the components investigated: derived fact strategies, estima-
tion and translation, as compared with unselected children in other studies. The 
groups may not be directly comparable, due to the time lapse and changes in the 
educational system since the studies of the unselected children; but the fi gures 
suggest that the children in the intervention group used on average somewhat 
fewer derived fact strategies and make fewer reasonable estimates than the unse-
lected children, and that this was especially true of those at the higher addition 
performance levels. Perhaps children at the higher addition performance levels 
were only regarded by their teachers as arithmetically weak and needing inter-
vention if they did have additional weaknesses in aspects of arithmetical reason-
ing. The study of unselected children’s translation (Dowker, 2005) did not assess 
the children’s addition performance level; but their translation performance as a 
group appeared to be somewhat better than that of the children with arithmetical 
diffi culties.

It should be noted, however, that not all children in the latter group performed 
poorly in the components investigated; that derived fact strategy use and esti-
mation were often quite good; and that their translation performance in particu-
lar seemed better than that which would have been predicted by Hughes (1986), 
who found extreme translation diffi culties even in unselected 9 year olds.

Standardized test scores are more related to some specifi c components of 
arithmetic than to others. Addition Level was a signifi cant independent predictor 
of the scores in all tests: not surprisingly, as all the standardized tests emphasized 
competence at calculation. Neither Estimation nor Derived Fact Strategies was 
an independent predictor of any test scores. Translation predicted performance 
in the WISC Arithmetic test, but not in the other tasks. This may be due to the 
fact that the WISC Arithmetic test places an emphasis on word problem solving, 
whereas the other tests place greater emphasis on calculation and on reading and 
writing numbers.

Thus, investigations revealed some general correlations between specifi c com-
ponents of arithmetic, but there were few signifi cant independent relationships 
between these components. It is possible that more such relationships would be 
found if a larger sample were studied. The results are, however, consistent with 
the view that arithmetic is made up of many components; that ‘there is no such 
thing as arithmetical ability; only arithmetical abilities’ (Dowker, 2005). Indeed, 
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they show rather less relationship between different components than was found 
in Dowker’s (1998) study of an unselected group of children. That study (which 
did not investigate translation) showed signifi cant independent effects of addi-
tion level on both estimation and derived fact strategies, and a particularly strong 
independent relationship between derived fact strategy use and estimation. By 
contrast, in the present study, derived fact strategy use and estimation not only 
did not show an independent relationship; they were not even correlated before 
other factors were partialled out.

It may be that in a group of children with arithmetical diffi culties, there is even 
less relationship between different arithmetical components than in a typical sam-
ple. Perhaps in completely typical mathematical development, different compo-
nents, though perhaps functionally separable, do inform and reinforce one another 
in the course of development (as Baroody & Ginsburg, 1986, propose for the devel-
opment of principles and procedures in younger children, in their ‘mutual develop-
ment’ theory). In children with arithmetical diffi culties, this integration may not 
occur to the same extent, either because it is impeded by marked weaknesses in 
individual components, or because of a failure in the integrative process itself.

However, another possible explanation for any differences found between 
Dowker’s (1998) study and the present one is that the fi ndings are linked to 
educational changes. There were crucial changes in British mathematics edu-
cation in 1998–1999, with the introduction of the National Numeracy Strategy 
(Department for Education and Employment, 1999). There is no transparently 
obvious reason why the changes in mathematics education at that time should 
have led to greater dissociation between different components of arithmetic. If 
anything, one might have expected that the more explicit structure of the math-
ematics curriculum, and the inclusion of derived fact strategies and estimation 
in primary mathematics instruction, might have led to the components becom-
ing more integrated with one another. However, curriculum changes sometimes 
have effects other than the predictable or intended ones. In any case, it is risky 
to assume that differences in fi ndings between groups are entirely the result of 
group characteristics, when there are also differences in the instruction that they 
have received. It would be desirable to compare the children in this group with 
unselected children undergoing similar mathematics instruction. Such a study is 
currently underway.

Thus, the fi ndings discussed in this paper strongly support the view that arith-
metic is made up of multiple components rather than being unitary; though fur-
ther research is necessary to establish how the relationships between components 
vary with ability level and with educational factors.

They also support the view that arithmetical diffi culties can be signifi cantly 
ameliorated by interventions targeting specifi c weaknesses. There is more 
research to be done on exactly how such interventions lead to improvement.

Moreover, further investigations are of course necessary to show whether and 
to what extent specifi c interventions in mathematics more effective in improv-
ing children’s mathematics than other interventions which provide children 
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with individual attention: for example, interventions in literacy. It is also desir-
able to investigate whether different approaches to such intervention (e.g., age 
when intervention starts; degree of intensiveness; degree of individualization; 
the particular components emphasized) may differ in general effectiveness and/
or differentially appropriate to different groups of children.

The present study also demonstrates the possibilities for bidirectional rela-
tionships between research and intervention. The project integrates the imple-
mentation and evaluation of the intervention scheme with the investigation of 
individual differences in, and relationships between, certain selected components 
of arithmetic. Thus, the intervention project, which was inspired by my earlier 
research and conclusions about the components of arithmetic, also serves to test 
theories about these components.
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Mathematics Recovery is an intensive intervention program in number 
learning for low-attaining fi rst-grade students, that is, students typically 
around 6 years of age. The program aims to advance children’s number knowl-
edge to a level at which they are likely to learn successfully in a regular class. 
Participating students are taught individually in daily sessions of about 25 min-
utes’ duration, for 4 or 5 days per week, for teaching cycles of 12 to 15 weeks’ 
duration. Mathematics Recovery is also an intensive and extensive program of 
teacher professional development. The main purpose of this chapter is to pro-
vide an overview of key aspects of Mathematics Recovery. The chapter does not 
include a general overview of issues related to intervention to address children’s 
diffi culties with mathematics. For a detailed overview of that topic the reader is 
referred to Dowker (2004).

AN ANECDOTE: THE CASE OF KIM

9 � 7: The setting: Kim is 6 years old and is a fi rst grader participating in a 
class lesson focusing on early number. In the current phase of the lesson, students 
are working at their desks, completing a worksheet of exercises involving addi-
tion and subtraction in the range 1 to 20. On the worksheet, the tasks are pre-
sented in horizontal written format. Kim is currently working on the task 9 � 7. 
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His task is to work out the answer and to write it to the right of the expression. 
Kim’s class teacher adheres to the principle that counters should be available to 
students who have diffi culty solving these exercises. On his desk, Kim has a pile 
of blue counters and a pile of red counters. As well, in a horizontal line across 
each student’s desk appears the numerals from ‘1’ to ‘20’ in sequence. Kim’s 
teacher is happy for this numeral sequence to be available to her students in this 
way because they seem to use it and to enjoy working with it.

Kim’s solution: In solving 9 � 7 Kim proceeds as follows. Looking at the 
numeral sequence on his desk, Kim says each of the number words from ‘one’ 
onward in coordination with pointing at each numeral in turn, from ‘1’ onward. 
When he gets to the numeral ‘9’ he says ‘nine’ and then stops. He then moves 
to the pile of blue counters and pulls out a counter, in coordination with saying 
each of the number words from ‘1’ to ‘9’. In this way he has made a group of 
9 blue counters on his desk. Kim again looks at the numeral sequence and as 
before, says the number words from ‘1’ onward in coordination with pointing 
at each numeral in turn. This time he gets to the numeral ‘7’, and says ‘seven’ 
and then stops. He then moves to the pile of red counters and pulls out a counter 
in coordination with saying each of the number words from ‘1’ to ‘7’. In this 
way he has made a group of 7 red counters on his desk. At this point Kim com-
bines the two groups of counters (9 blue and 7 red). He now moves each counter 
in turn in coordination with saying each of the number words from ‘1’ onward. 
When he moves the last counter he says ‘16’ and then stops. At this point Kim 
again looks at the numeral sequence and points to each numeral in turn, in coor-
dination with saying the words from ‘1’ onward. When he says ‘16’ he stops and 
looks intently at the numeral at which he is pointing. He then writes the numeral 
‘16’ to the right of the expression 9 � 7.

Discussion: The purpose of the above anecdote is to illustrate diffi culties and 
setbacks that can occur in children’s early number learning in the classroom. In 
order to support Kim in his number learning, his teacher has adopted two well-
established practices. One is to make counters available for Kim to use if he so 
chooses when solving addition tasks. The other is to provide a numeral sequence 
at the top of his desk. Kim has developed an algorithm for solving written addi-
tion tasks involving two one-digit addends. His algorithm as described in the 
anecdote above consists of seven steps. It is likely that he is quite skilled with 
this algorithm because he uses it very frequently. Nevertheless, skilfulness aside, 
because his algorithm is so complex, Kim takes a long time to solve each prob-
lem compared with the time most of his classmates take. Kim’s teacher might 
not be fully aware of the intricacies of Kim’s solution method. Nevertheless she 
fully realizes that, although he makes few errors, he takes a relatively long time 
to solve a set of tasks and persists with his strategy of using counters. Her hope 
is that, with continued practice, Kim will develop more advanced methods and 
will no longer need to use counters.

Two observations can be made about Kim’s number knowledge and in par-
ticular, his solution strategy. First, apparently he cannot or does not directly 
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read numerals such as ‘7’ and ‘9’. Rather, he uses a strategy of counting along 
a numeral sequence to generate the name of a given numeral. Second, appar-
ently his strategy for solving the addition tasks involves (a) counting-by-ones; 
(b) counting-from-one and (c) counting visible items (counters).

Later in this chapter I will return to the case of Kim, and draw on key notions 
described in the intervening section, to illustrate how approaches in Mathematics 
Recovery can be applied in Kim’s case, and the usefulness of these approaches.

THE LEARNING FRAMEWORK IN NUMBER

For teachers new to Mathematics Recovery (MR), coming to know the 
Learning Framework in Number (LFIN) is a major and core aspect of their pro-
fessional learning. In its basic form, LFIN is a set of fi ve tables, each of which 
contains up to six levels (see Figure 11.1). Each table in LFIN focuses on what 
is regarded in MR as a key aspect of early number knowledge. And in each table, 
the levels taken together, constitute a progression of student learning, that is, the 
levels set out the number knowledge to be acquired progressively by the student. 
The fi ve tables are referred to as models in the sense that each table models a 
progression of learning of a key aspect of number knowledge. In a more extended 

Stages:
Early Arithmetical Learning

0 – Emergent Counting
1 – Perceptual Counting
2 – Figurative Counting
3 – Initial Number Sequence
4 – Intermediate Number
      Sequence
5 – Facile Number Sequence

Levels
Base-Ten Arithmetical
Strategies

1 – Initial Concept of Ten
2 – Intermediate
      Concept of Ten
3 – Facile Concept of Ten

 Levels:  Forward Number Word Sequences (FNWS) &  
               Number Word After

0 – Emergent FNWS.  
1 – Initial FNWS up to 'ten'.   
2 – Intermediate FNWS up to 'ten'. 
3 – Facile with FNWSs up to 'ten'.   
4 – Facile with FNWSs up to 'thirty'.  
5 – Facile with FNWSs up to 'one hundred'.

Levels:  Backward Number Word Sequences
              (FNWS) & Number Word Before

0 – Emergent BNWS.  
1 – Initial BNWS up to 'ten'. 
2 – Intermediate BNWS up to 'ten'.  
3 – Facile with BNWSs up to 'ten'.  
4 – Facile with BNWSs up to 'thirty'.  
5 – Facile with BNWSs up to 'one
      hundred'. 

Levels:  Numeral Identification

0 – Emergent Numeral Identification.              
1 – Numerals to '10'
2 – Numerals to '20'
3 – Numerals to '100'
4 – Numerals to '1000'

FIGURE 11.1 Learning framework in number. Adapted from Wright et al. (2006a, p. 20).
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form, LFIN includes not only the fi ve models, but also an extended corpus of 
pedagogical knowledge about students’ learning of these aspects of early number 
knowledge. A detailed description of LFIN is available elsewhere (see Wright 
et al., 2006a), including a model of early multiplication and division knowledge 
also included in LFIN. Because multiplication and division is not a major focus 
of MR instruction, this model is not further discussed here. The focus here is to 
give a brief description and some insight into the characteristics and use of LFIN 
in Mathematics Recovery.

Understanding or knowledge: I use the term ‘the child’s early number knowl-
edge’ to refer to everything that the child knows about early number. In describ-
ing what a child knows about early number, I prefer to use the term knowledge 
rather than a term such as understanding. Thus I would prefer to refer to the 
child’s knowledge of addition, rather than to say that the child understands addi-
tion. My diffi culty with the latter is that there are many levels on which addi-
tion can be understood. What understanding the mathematical notion of addition 
might mean is very much dependant on the mathematical context. This context 
can range for example, from one of using counting to add whole numbers in the 
range 1 to 10, to addition involving decimals or algebraic expressions. So rather 
than talk about whether the child understands addition or not, and similarly with 
subtraction and so on, I fi nd it more helpful to try to document as comprehen-
sively as possible, the child’s early number knowledge. But what does it mean to 
do this and how can one go about it?

Domains or aspects: In trying to document a child’s early number knowledge, 
one can list important subtopics that taken together make up the topic of early 
number. This list might include counting, addition, subtraction and so on. One 
approach is to think of the task of documenting the child’s early number knowl-
edge as analogous to constructing a map consisting of domains in the sense of 
specifi c parts or regions that go to make up a larger territory. In accordance with 
the mapping analogy, the term domains is often used to refer to the subtopics of 
basic whole number arithmetic. Certainly the process of documenting in detail, 
the child’s current number knowledge is critical in Mathematics Recovery. This 
emphasis on the detailed documenting of the child’s knowledge has its origins in 
Steffe’s constructivist teaching experiments (e.g., Steffe & Cobb, 1988), and in 
doing so, my preference is to use the term aspect rather than domain to refer to 
what one might think of as the different subtopics of early number knowledge. 
The term aspect is used here in the sense of ‘a way in which a thing may be 
viewed or regarded [or] a view commanded’ (The Macquarie dictionary, 1981), 
and is meant to convey the notion that one is taking different views of an object, 
for example, a mountain. Typically, these different views are not disjoint. Rather, 
a given number of views overlap in complex ways. Taken together, the aspects 
can constitute a rich overall portrait of the child’s early number knowledge. 
I use the term portrait in the sense of a verbal picture. Each aspect and the overall 
portrait are constituted by the observer’s interpretation of the child’s responses, 
to groups of inter-related tasks.
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Models in the LFIN: Figure 11.1 sets out in brief summary form, fi ve of the 
models in LFIN. The assessment process in MR is crucial to the teacher’s use of 
LFIN and is described later in this chapter. One important outcome of the assess-
ment is for the teacher to determine the student’s current level of knowledge on 
each of the LFIN models. In this way the teacher builds a profi le of the student’s 
current knowledge in early number, across several key aspects. This profi le is 
critical in the teacher’s selection of specifi c instructional topics for the student. 
For each aspect, the profi le specifi es the student’s current level of knowledge and 
the next level to be attained. Thus LFIN enables the teacher to determine the new 
levels of knowledge that are the goal of MR instruction. But LFIN does not set 
out the specifi cs of instruction that is, instruction that has the purpose of advanc-
ing the student’s knowledge in terms of these levels. The specifi cs of instruction 
are set out in a second framework referred to as the Instructional Framework in 
Early Number (IFEN). Thus LFIN is a framework of student’s learning and is 
used in conjunction with the process of assessing and profi ling student’s knowl-
edge. The instructional framework is closely linked to LFIN but is of a different 
form because it sets out progressions of specifi c instructional topics. The instruc-
tional framework (IFEN) is overviewed later in this chapter.

FIVE ASPECTS OF THE LFIN

The fi ve aspects of LFIN described here are (a) the Stages of Early Arith-
metical Learning (SEAL); (a) Forward Number Word Sequences (FNWSs); 
(c) Backward Number Word Sequences (BNWSs); (d) Numeral Identifi cation 
and (e) Tens and Ones.

Stages of Early Arithmetical Learning: The primary and most important 
model in LFIN is the SEAL. This model is adapted from the work of Steffe (e.g., 
1992). This focus of this model is the progression in the ways young children 
use counting in problem-solving contexts, for example, to fi gure out how many 
items in a collection, or to solve simple addition or subtraction tasks. For the 
purpose of illustrating this progression, three of these stages are explained here 
and others are explained later in this chapter: The child at the Emergent Stage 
(Stage 0) cannot correctly count a collection of counters. The child at Stage 3 
will typically use counting-on and counting-back to solve simple additive and 
subtractive tasks. I refer to these as the advanced counting-by-ones strategies. 
The child at Stage 5 no longer relies on counting-by-ones. Rather, they have a 
range of facile strategies for solving additive tasks in the range 1 to 20.

Tens and Ones: The model of base-10 arithmetical strategies (Cobb & 
Wheatley, 1988) focuses on progressions in the ways young children reason in 
terms of tens and ones, in problem-solving contexts involving two-digit num-
bers. At Level 1, the child has diffi culty reasoning with 10 as a composite unit. 
For this child, 10 cannot simultaneously stand for one ten and ten ones. At Level 
2, the child can reason with 10 as a composite unit, in the context of base-10 
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materials. At Level 3, the child can reason skilfully with tens and ones, in the 
absence of any base-10 materials.

FNWSs, BNWSs and Numeral Identifi cation: The models of FNWSs and 
BNWSs focus on children’s facility with number word sequences. This includes 
saying sequences forward or backward and stating the number before or after a 
given number. The focus in this case is on the activity of saying the sequence per 
se rather than using the sequence in counting activity to solve a problem involv-
ing counting, adding or subtracting. The model of numeral identifi cation focuses 
on children’s facility in identifying (naming, reading) numerals.

Framework or trajectory?: In LFIN, I prefer the term framework rather than path 
or trajectory because those terms typically refer to progression of learning along a 
single path, that is the progressive learning of one topic or domain. Thus use of the 
term trajectory suggests a single, linear view of learning. The view underlying MR 
and LFIN is that learning can and should occur concurrently along several paths, 
the learning along each path has the potential to interact in a supportive way, with 
the learning along each of the other paths. Thus the student is simultaneously learn-
ing several key topics and hopefully, to a strong extent, the learning of each topic is 
supporting and supported by the learning of each of the other topics.

USING LFIN TO PROFILE STUDENT’S 
KNOWLEDGE

These models taken together enable the profi ling of the child’s knowledge. 
Figure 11.2 shows fi ve examples of such profi les. Figure 11.2 is adapted from 
Wright et al. (2006b) where this approach to profi ling children’s knowledge is 
described in detail and extensive descriptions are provided of the knowledge and 
strategies characteristic of each profi le. With appropriate training, practitioners 
fi nd this profi le approach not only easy to understand but extremely powerful as 
a model of the progression of early number learning for all learners.

The fi rst column of numbers (0, 1, 0, 0, 0) profi les a student who: (a) is an 
emergent counter, for example, the child can’t correctly count a collection of 15 
counters (SEAL � 0); (b) can say the number word sequence from 1 to at least 

 Examples of Profiles of 
Model Student's Knowledge

Stage of Early Arithmetical Learning (SEAL) 0 1 2 3 5

Level of Forward Number Word Sequences (FNWSs) 1 3 4 5 5

Level of Backward Number Word Sequences (BNWSs) 0 1 3 4 5

Level of Numeral Identification 0 1 2 3 4

Level of Tens and Ones Knowledge 0 0 0 1 2
FIGURE 11.2 Using the LFIN to profi le students’ knowledge. Adapted from Wright et al. 
(2006b, p. 67).
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10 but cannot, in at least some cases, say the number after a given number in
the range 1 to 10 (FNWS � 1); (c) cannot say the words from 10 back to 1 
(BNWS � 0); (d) has diffi culty identifying (reading) at least some of the numer-
als in the range 1 to 10 (Numeral Identifi cation � 0) and (e) cannot use notions 
of tens and ones to reason with two-digit numbers (Tens and ones � 0).

The third column of numbers (2, 4, 3, 2, 0) profi les a student who: (a) is a 
fi gurative counter, for example, the child can solve additive tasks involving two 
screened collections (7 blue counters screened and 4 red counters screened; how 
many altogether) but will typically count-from-one rather than count-on (SEAL � 2); 
(b) in the range 1 to 30, can say the number word sequence and state the number 
word after a given number word (FNWS � 4); (c) is facile with BNWSs in the 
range 1 to 10, that is can say the sequence from 10 to 1 and can say immediately, 
the number word before a given number word in the range 1 to 10 (BNWS � 3); 
(d) can read numerals in the range 1 to 20 but has some diffi culty reading numer-
als in the range 20 to 100 (Numeral Identifi cation � 2) and (e) cannot use notions 
of tens and ones to reason with two-digit numbers (Tens and ones � 0).

The fi fth column of numbers (5, 5, 5, 4, 2) profi les a student who: (a) can 
skillfully add and subtract in the range 1 to 20 without resorting to counting-by-
ones (SEAL � 5); (b) is facile with FNWSs in the range 1 to 100 (FNWS � 5); 
(c) is facile with BNWSs in the range one to 100 (BNWS � 5); (d) can read one-,
two- and three-digit numerals (Numeral Identifi cation � 4) and (e) can reason in 
tens and ones when adding or subtracting in contexts such as base-10 materials 
(Tens and ones � 2).

Profi le of a typical intervention student: Typically, an intervention student of 
6 or 7 years of age would have a profi le similar to the fi rst or second column 
from the left in Figure 11.2. The student’s profi le might be some combination 
of the two profi les shown. The level of attainment after successful intervention 
typically would be similar to the fourth or fi fth column or some combination of 
the two profi les shown.

Origins of profi ling number knowledge: LFIN was fi rst used to profi le stu-
dents’ knowledge in a research study I conducted in the early 1990s (Wright, 
1991, 1994). In that study, three cohorts of students were assessed on three occa-
sions (beginning, middle and end) over the course of a school year. The focus 
of the study was to document progressions in number knowledge typical of stu-
dents in the fi rst and second years of school. The study served to document that 
there was a relatively wide range of levels of number knowledge among children 
beginning their fi rst year of school and that this range was sustained or increased 
over the fi rst 2 years of school.

SOME IMPORTANT FEATURES OF THE LFIN

A point made earlier in this chapter is that LFIN takes two forms. First, it can be
regarded as the rather bare-boned table in Figure 11.1, consisting of fi ve models 
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with up to six levels in each model. Second, as well as that table of models, 
LFIN can be regarded as including a corpus of rich observations, descriptions 
and explanations of children’s early number knowledge. A further important 
point is that LFIN includes particular features relating to ways of conceptual-
izing and organizing children’s knowledge about early number learning that, in 
many cases are quite distinctive. I highlight these here because I believe doing 
so has the potential to provide a richer illustration of LFIN and greater insight 
into its usefulness. The signifi cance of these features usually becomes apparent 
to professionals as they undertake an extended program of professional develop-
ment related to MR. But their signifi cance is not necessarily apparent to the per-
son who reads a description of LFIN but might not be working with children and 
applying LFIN to assessment and instruction related to early number learning.

1. Counting: A critical and distinctive feature of LFIN is to hold as important, 
the distinction between, on one hand, a child saying a number word sequence and 
on the other hand, a child using counting as a problem-based activity. Thus in 
LFIN, the term counting is used in the sense developed by Steffe (Steffe, 1992; 
Steffe & Cobb, 1988; Steffe et al., 1983). In broad terms, we would label a child’s 
activity as counting when they use the number word sequence by ones, in solving 
tasks such as the following: (a) A collection of 15 counters is placed out and the 
child’s task is to fi gure out how many items in all. (b) A collection of 8 counters 
is briefl y displayed and then screened and similarly a collection of 4 counters 
and the child’s task is fi gure out how many in all. (c) A collection of 12 counters 
is briefl y displayed and then screened, and then three counters are removed and 
screened, and the child’s task is to fi gure out how many remain. Steffe observed 
that when children are engaged in solving tasks such as these, there is a range 
of levels of sophistication in the meanings children attach to the number words.
A detailed description of this topic is available (e.g. Wright et al., 2006a).

2. Counting vs. saying a number word sequence: As described in Point 
1 above, in the LFIN the term counting is associated with children’s problem-
based activity, in a context such as one or more collections of counters which 
may or may not be screened (concealed). This can be contrasted with tasks that 
focus specifi cally on a child’s facility with number word sequences per se, such 
as saying the sequence forward or backward from a given starting point, or say-
ing the word after or before a given number word. I regard this distinction as 
critically important in early number assessment and instruction. In the topic 
of early number, a very common assessment task is to ask the child to count 
forwards or backwards. Historically, the child’s activity in this case has been 
referred to as ‘rote counting’, and typically, this term is juxtaposed with the term 
‘rational counting’. My diffi culty is that the term ‘rote’ conjures a notion of rela-
tive incompetence that does not necessarily exist. Thus what I fi nd useful is to 
avoid the dichotomy of rote versus rational counting, and to regard on one hand, 
relative sophistication of counting, and on the other hand, facility with number 
word sequences as inter-related but distinct aspects of early number learning 
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(see Point 1 above). For young children, these are qualitatively different cogni-
tive activities and thus I regard it as important to both observe and document 
them separately.

3. Counting-from-one and counting-on: Typically, models of the development 
of early number learning highlight the development from counting-all to count-
ing-on in children’s problem-based counting activity. Indeed, the progression to 
counting-on is almost universally regarded as the major advancement in early 
number learning, in the fi rst 2 years of school. For virtually every child who has 
participated in Mathematics Recovery, progressing to at least the counting-on 
stage is a major goal of their intervention instruction. Typically, Mathematics 
Recovery participants are in their second year of school and their age is in the 
range 5 to 7 years. Further, the typical MR participant is either at a level that, in 
other models is referred to as counting-all to solve problems; or is at an earlier 
point – emergent – where they are unable to count a collection of counters. Thus 
the MR participant is what Steffe called prenumerical. In short, the progression 
from very early counting strategies, to having a numerical concept of number, 
is critically important in the number learning of 4 to 7 year olds. This serves 
to highlight the potential usefulness of an elaborated model of the prenumeri-
cal child’s counting activity. And my claim is that LFIN is such a model (see 
Point 4 below). According to Steffe, the prenumerical child in problem-based 
activity, counts from one in order to give meaning to the last number word in the 
count. Further, there are different levels of sophistication in the way children use 
counting-from-one. Presented with an additive task involving two collections (e.g.,
8 counters and 3 counters), the perceptual counter will not be able to solve the 
task unless both collections are unscreened. Further, the perceptual counter will 
count-from-one to fi gure out how many counters in all. By way of contrast, the 
fi gurative counter can solve an additive task involving two screened collections, 
but also will count-from-one rather than count-on. In describing the way prenu-
merical children solve additive tasks (tasks such as those just described) I prefer 
to use the term count-from-one rather than count-all because, from my perspec-
tive, the critical activity for the child is counting-from-one to give meaning to 
the last number word in the count. The numerical child, that is the child who 
counts-on to solve additive tasks, has the notion of cardinality, that is the child 
has learned ‘to attribute cardinal meaning to single number words’ (Steffe et al., 
1983, p. 29), and this can be contrasted with the child who needs to count-from-
one to attribute cardinal meaning to a number word. In my view, the critical 
behavior of the prenumerical child is counting-from-one rather than counting-all.

4. An elaborated model of prenumerical counting: As described in Point 3 
above, progression to counting-on and beyond, is a major focus of MR instruc-
tion. Steffe’s theory of early number development results in an elaborated model 
of this progression. In Steffe’s terms, the typical MR participant is prenumeri-
cal, that is emergent, perceptual or fi gurative (see Point 3). A distinctive char-
acteristic of this model is a coherence across these levels. Each progression 
in counting is described in terms of a qualitative change in the way the child 



212 Mathematical Diffi culties: Psychology and Intervention

ascribes meaning to number words when counting. In Mathematics Recovery, 
this coherent and elaborated model of early counting activity provides a critical 
basis for the detailed processes of assessing early number knowledge and plan-
ning instruction.

5. Separate focus on BNWS: In Point 2 above, I described the distinction 
in MR between counting as a problem-based activity and facility with number 
word sequences. Further, I claimed that this distinction is a distinctive feature of 
the LFIN. My assertion is that (a) the development of facility with number word 
sequences per se; (b) counting as a problem-based activity and (c) facility with 
numerals, constitute major areas (or aspects) of number learning of the prenu-
merical child. Also important is the child’s development of facility with ascrib-
ing number to spatial confi gurations of dots, in particular the common spatial 
patterns of dice, playing cards, etc. Underlying LFIN is the belief that the child’s 
acquisition of not only forward but also BNWSs is important. Thus in LFIN, 
development of knowledge of BNWSs has a focus separate from that of devel-
opment of FNWSs. This approach enables one to highlight both the similarities 
and differences in these two areas. One reason why facility with BNWSs is wor-
thy of a separate focus is because children frequently count back to solve various 
subtractive tasks, for example: I have 16 counters under this screen and I remove 
three, how many are left?

6. Facility with numerals: Another distinctive feature of LFIN relates to the 
model of children’s developing facility with numerals. Facility with numer-
als includes inter-related aspects such as identifying numerals, that is, nam-
ing or reading numerals, and recognizing numerals, that is, selecting a named 
numeral from a randomly arranged set of numerals. For example, the numerals 
from 1 to 10 are arranged randomly on the desk and the child is asked which is 
the number fi ve. In researching children’s learning about numerals I have come 
to regard numeral identifi cation as a reasonable marker of children’s developing 
facility with numerals. Thus ability to identify or name the numerals in a given 
range (1 to 10; 1 to 30, etc.) is easily assessed by having the child name numer-
als displayed one at a time in a random order. Thus in LFIN, on the model of 
Numeral Identifi cation, the child who can read all of the numerals in the range 1 
to 20 (when presented randomly) but cannot read some numerals beyond 20, is 
at Level 2. Similarly, a child who can read all two-digit numerals but cannot read 
some three-digit numerals is at Level 3, and so on.

7. Facility with numerals versus place value: For LFIN, a point of departure 
from some other models is to hold the development of facility with numerals 
quite separate from the development of place value knowledge. This follows from 
a belief that children can and should develop knowledge of multi-digit numer-
als long before they develop a sense of place value knowledge, corresponding to 
those numerals (e.g. numerals to 100, to 1,000, etc.). Models of the development 
of early number knowledge that couple on the one hand, numeral identifi cation 
and on the other hand, place value knowledge (sometimes referred to as inter-
preting numerals), seem to be oblivious to this fundamental point. A beginning 
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knowledge of place value of two-digit numbers derives from and builds on rela-
tively sophisticated concepts of composite units (tens) and addition. Typically, 
this knowledge is acquired long after a child has learned to read numerals in the 
range 1 to 100 and beyond. Related to this, the progression from reading two-
digit numerals to reading three- and four-digit numerals is relatively easy because 
of the very regular pattern beyond 100, in the system of naming numerals. Thus 
a model of children’s development of knowledge of numerals that, at each level, 
couples reading and interpreting is not useful in MR for at least two reasons. 
First, a summary statement that a child is at Level 2 (assuming for a moment 
that this refers to say, the numerals from 1 to 20), leaves unspecifi ed, whether or 
not the child cannot read or cannot interpret or both, numerals beyond 20, and 
therefore such a model would lack usefulness as a basis for focused instruction. 
Second, when naming and interpreting are coupled for each range (1 to 10, 1 to 
20, etc.) the obvious response from the point of view of instruction is to teach 
naming and interpreting concurrently across a given range (e.g., 1 to 100). Such 
an approach is quite at odds with the belief expressed above, that learning to 
name numerals should long precede the development of notions of place value. 
In LFIN, the overriding issues are that (a) children can learn to read numerals 
(far beyond a range of say 1 to 10 or 1 to 20) at a relatively early age in much 
the same way as they learn to identify letters and words; (b) children can learn 
the grammar of the numeral naming system and it is relatively easy for them to 
extend this to three- and four-digit numbers and (c) learning to read multi-digit 
numerals in this way, can provide a basis for the later learning of place value.

8. Facility with numeral sequences: In the two previous points (Points 6 
and 7), a case is argued for the importance of the development of facility with 
numerals and learning to read numerals in particular, as an aspect quite separate 
from place value. In MR, emphasis is placed on, not only numeral identifi cation, 
but also developing facility with numeral sequences. This occurs in the case of 
assessment tasks that involve arranging numerals (e.g., the numerals 1 to 10, the 
numerals from 46 to 55) in sequence. Numeral sequences also feature strongly in 
MR instruction. This is in the form of a setting (instructional device) known as a 
numeral track, which contains for example, the sequence from ‘1’ to ‘30’ with a 
lid for each numeral allowing numerals to be displayed or concealed according 
to the demands of particular instructional tasks. The use of numeral sequences as 
one important part of instruction seems to result in development of three mutu-
ally supportive facilities – number word sequence knowledge, numeral sequence 
knowledge and numeral identifi cation. Thus instruction involving use of numeral 
sequences seems to have an important role quite separate from the role of numer-
als when not presented in an extended sequence.

9. The inter-relatedness of addition and subtraction: In LFIN the topics 
of addition and subtraction are regarded as: (a) closely inter-related with each 
other and (b) closely inter-related with counting. MR adopts an approach which 
is common in theories and descriptions of early number learning, that is, to 
use terms such as additive thinking and additive reasoning to refer the child’s 
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learning of both addition and subtraction. Related to this, learning subtraction 
is seen as very closely aligned with, and a natural extension of learning addi-
tion. Initially, subtraction can be derived from addition by considering an addi-
tion situation where, instead of knowing the two addends and having the task of 
fi nding the sum, one knows one addend and the sum, and has the task of fi nd-
ing the other addend. This is commonly labeled as missing addend subtraction. 
Thus a focus on additive thinking as an important topic in early number learn-
ing, includes the implicit idea that teaching of addition and subtraction can occur 
almost concurrently and in a closely inter-related way. In similar vein, terms 
such as multiplicative thinking and multiplicative reasoning are used to refer to 
the child’s learning of both multiplication and division.

10. An integrated model of counting, addition and subtraction: In LFIN, addi-
tion and subtraction are regarded as closely inter-related (see Point 9) and taken 
together are regarded as constituting additive thinking (additive reasoning). Also 
in LFIN, addition and subtraction are regarded as arising in children’s develop-
ment of increasing sophisticated ways of counting in problem-based activity. 
Thus in LFIN, counting is not regarded as an aspect separate from or prelimi-
nary to addition and subtraction. Rather, counting, addition and subtraction are 
regarded as one aspect. This coupling of on one hand, counting and on the other 
hand, addition and subtraction, is a distinctive feature of LFIN. In my view there 
are two diffi culties with the alternative, that is, to separate counting from additive 
reasoning. First, the child’s development of counting is not suffi ciently differen-
tiated from the child’s development of facility with number word sequences. As 
described above (Point 2), such a differentiation is important. Second, counting 
is cast in a very limited (narrow) form, that is, perceptual counting (see above). 
In this approach the notion of counting is limited to the activity of counting 
items in a visible collection. This can be contrasted with the notion of counting 
in LFIN, that is, counting encompasses a progression in the sophistication of the 
child’s use of number word sequences in problem-based situations. This ranges 
from perceptual counting, to fi gurative counting, and from fi gurative counting to 
advanced counting-by-ones – counting forward or backward in problem-based 
situations. The critical point to realize is that these problem-based situations are 
additive and subtractive situations. To say it another way – the child’s progres-
sion along the path of learning to add and subtract, is one and the same as the 
child’s progression along the path of learning to use counting in more sophisti-
cated ways, to solve additive and subtractive tasks. Alternatively one might say, 
the development of counting constitutes the development of additive reasoning. 
The culmination of additive reasoning is when the child progresses from using 
advanced counting-by-ones (counting-on and counting-back) to additive reason-
ing that does not involve counting-by-ones. In summary, LFIN has an integrated 
model of counting, addition and subtraction because the development of count-
ing leads in a seamless way, to additive reasoning. Thus the child’s initial con-
cepts of addition and subtraction are the culmination of developing increasingly 
sophisticated strategies for counting.



Mathematics Recovery 215

PEDAGOGICAL TOOLS

I use the term pedagogical tools to refer to key resources that are used by the 
teacher in planning, monitoring or administering MR assessment and instruction. 
The LFIN (see Section 1) is an example of a pedagogical tool. The Mathematics 
Recovery intervention teacher draws on a set of pedagogical tools for assess-
ment and instruction. The main tools are (a) assessment schedules; (b) the LFIN; 
(c) the Instructional Framework for Early Number and (d) key topics and instruc-
tional procedures. The LFIN has already been described in detail earlier in this 
chapter. Descriptions of the other pedagogical tools are now given.

ASSESSMENT SCHEDULES

An assessment schedule consists of assessment tasks that are presented to the 
student during an assessment interview. An assessment interview is typically of 
20 to 30 minutes’ duration and has the purpose of enabling the teacher to com-
prehensively document the student’s current number knowledge. Documenting 
number knowledge includes determining the profi le (see earlier in this chapter) 
of the student’s early number knowledge and also obtaining specifi c information 
about the students’ current strategies and facility with number words and numer-
als. This is referred to as a portrait of the student’s number knowledge. Together, 
the profi le and portrait inform the planning of instruction.

Task groups: The assessment schedule consists of a series of task groups. Each 
task group is a set of closely related tasks that have the purpose of eliciting the stu-
dent’s knowledge of a specifi c number topic. In the case of each task group, there 
is fl exibility on the part of the teacher, concerning which tasks are presented. For 
example, as a result of the student’s response to an initial task, the teacher might 
choose to present easier tasks, more diffi cult tasks, or tasks which are similar in dif-
fi culty level. Figure 11.3 exemplifi es the notion of a task group. The focus of this 
task group is the child’s ability to state the number word before a given number.

The Instructional Framework in Early Number: The IFEN differs in form 
from the LFIN but is closely linked to the LFIN. IFEN sets out progressions 
of instructional topics for Mathematics Recovery. In summary form, this set of 

Number Word Before

Say the number that comes just before –.  
Example: Say the number just before 2.

(a) Entry task: 24 17 20 11 13 21 14 30

(b) Less advanced task: 7 10 4 8 3

(c) More advanced task: 67 50 38 100 83 41 99

FIGURE 11.3 Task group focusing on number word before. Adapted from Wright et al. 
(2006a, p. 161).
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progressions takes the form of a matrix consisting of three strands of instruc-
tion and fi ve phases of instruction (see below). The strands of instruction are 
(a) number words and numerals; (b) counting and (c) grouping. In the cases of 
the fi rst two of these, extensive descriptions have already been provided in this 
chapter. The third strand, that is grouping, includes instruction on learning to 
combine and partition small numbers without counting, and instruction aimed at 
developing a basis for multiplicative thinking.

Five phases of instruction: Each phase of instruction corresponds to one of the 
profi les shown in Figure 11.2. Thus the fi rst phase of instruction corresponds to a 
profi le of (a) SEAL Stage 0; (b) FNWSs Level 1; (c) BNWSs Level 0; (d) Numeral 
identifi cation Level 0 and (e) Tens and ones knowledge Level 0. Similarly, 
the fourth phase of instruction corresponds to a profi le of (a) SEAL Stage 3; 
(b) FNWSs Level 5; (c) BNWSs Level 4; (d) Numeral identifi cation Level 3 and 
(e) Tens and ones knowledge Level 0. The profi les shown in Figure 11.2 are 
intended as exemplars of proximal levels of student knowledge across the fi ve 
models. In practical terms, a child’s profi le will not necessarily match precisely 
with any of the profi les in Figure 11.2. What follows is that a child is not neces-
sarily in just one phase of instruction. For a given child, instructional procedures 
might be drawn from at least two of the phases.

Key topics and teaching procedures: The matrix of three strands and fi ve 
phases contains 15 cells (3 � 5). And each of the 15 cells in this matrix gives 
rise to two key topics of instruction. Thus the IFEN sets out a total of 30 key 
topics. Each of the 30 key teaching topics is elaborated in a set of teaching pro-
cedures. For each key topic, there are typically around six such procedures. In 
all, there are 182 procedures. The procedures in each key topic typically focus 
on a set of very specifi c topics that constitute a progression in instruction or are 
complementary with each other. Teaching procedures take the form of exemplars 
for teaching, and include descriptions of the teacher’s words and actions, the 
instructional setting (materials) and notes on purpose, teaching and children’s 
responses. Full details of all of the instructional procedures are available (see 
Wright et al., 2006b).

ASSESSMENT AND INSTRUCTION

In the previous sections I described and gave examples of the pedagogical 
tools used in MR. Learning to use these pedagogical tools constitutes a major 
part of the specialized learning of the MR teacher. Another major part of that 
learning is to learn the general approach to assessment and the general approach 
to instruction.

The general approach to assessment: The general approach to assessment in 
Mathematics Recovery has much in common with the approach called dynamic 
assessment (e.g. Lidz, 2003) and the clinical interview approach as described by 
Ginsburg (1997). Nevertheless, the approach used in Mathematics Recovery is 
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distinctive I believe, and I describe it as videotaped, interview-based assessment 
(VIBA). From the point of view of both teacher and student, this approach dif-
fers signifi cantly from the running record approach widely used in early literacy 
instruction and also used in some instructional programs in early years math-
ematics. The critical point of difference is that, in MR assessment, the teacher 
does not record any information during the course of the interview. Rather, the 
interview is videotaped. Subsequently, the teacher reviews in detail, the vide-
otaped record of the interview, and in doing so, a detailed written record is 
generated via a standard pro forma corresponding to the interview schedule. 
The process of generating the written record allows for (a) the categorizing 
of responses; (b) the recording of correct and incorrect responses and (c) the 
recording of observations of the child’s mathematical behavior and interpreta-
tions of that behavior. My experience is that, for the vast majority of teachers 
who undertake MR specialist training, learning to use the VIBA approach repre-
sents a major advancement in their professional knowledge.

THE GENERAL APPROACH INSTRUCTION

The Mathematics Recovery program incorporates a problem-based approach 
to instruction, that is, the student typically is engaged in solving arithmetic tasks 
which, for them are quite challenging. At the same time, tasks are carefully 
selected so that the student has a good chance of success. As well, instruction 
takes place in a cognitively supportive environment. There is an expectation on 
the part of the teacher that the student will work hard in attempting to solve the 
task. At the same time there is an expectation on the part of the student that the 
teacher will make adjustments to tasks which the student seems unable to solve 
after an extended period of attempting to solve the task. These expectations are 
largely implicit, and develop as a consequence of the teacher’s instructional 
approach. Thus instruction in Mathematics Recovery is characterized by: (a) hard 
thinking; (b) a good chance of success on the student’s part and (c) awareness 
that one is making progress in learning. The experience in the Program is that, 
by and large, students respond very positively to instruction of this kind.

Instructional tasks used in Mathematics Recovery are selected as being at or 
just beyond the cutting edge of the students’ current knowledge. Alternatively, 
one could say the instructional tasks are in the student’s zone of proximal devel-
opment in the sense of Vygotsky (Blanck, 1990; Vygotsky, 1978). In this sense, 
the tasks relate to knowledge that the student is capable of learning when the 
teacher provides scaffolding (Wood et al., 1976) to support their learning. Task 
selection in this kind of instruction involves moment to moment judgement and 
selection on the teacher’s part, and this constitutes an important part of the pro-
fessional learning of the Mathematics Recovery teacher.

Mathematics Recovery instruction for a particular student is based on the 
results of: (a) a comprehensive initial assessment and (b) on-going observational 
assessment during the instructional sessions. The initial assessment involves 
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the VIBA and has been described earlier in this chapter. The on-going assess-
ment arises from and is integral to the student’s problem-solving activity. In 
MR, instructional sessions (as well as assessment interviews) are routinely vide-
otaped. This enables the teacher to review the student’s responses to her instruc-
tion and in particular, the student’s advancements and diffi culties. As well, 
videotaped records can be the basis of discussions with the MR instructional 
leader, as well as colleagues, parents and so on.

The Mathematics Recovery program incorporates an elaborated approach to 
problem-based instruction. This approach is described via nine guiding princi-
ples that are central to the instructional approach, and 12 key elements that fur-
ther elaborate the approach. The approach also includes a focus on children’s 
responses to problem-based instruction via descriptions of nine characteristics 
of children’s problem solving in the intervention teaching sessions. A detailed 
description of this approach is available (Wright et al., 2006b, p. 26–31).

The guiding principles (Wright et al., 2006, p. 26–31) are:

1.  The teaching approach is enquiry based, that is problem based. Students 
routinely are engaged in thinking hard to solve numerical problems which 
for them, are quite challenging.

2. Teaching is informed by an initial, comprehensive assessment and on-
going assessment through teaching. The latter refers to the teacher’s 
informed understanding of students’ current knowledge and problem-
solving strategies, and continual revision of this understanding.

3. Teaching is focused just beyond the ‘cutting edge’ of students’ current 
knowledge.

4. Teachers exercise their professional judgment in selecting from a bank 
of teaching procedures each of which involves particular instructional 
settings and tasks, and varying this selection on the basis of on-going 
observations.

5. The teacher understands students’ numerical strategies and deliberately 
engenders the development of more sophisticated strategies.

6. Teaching involves intensive, on-going observation by the teacher and 
continual micro-adjusting or fi ne-tuning of teaching on the basis of her 
observation.

7. Teaching supports and builds on students’ intuitive, verbally based 
strategies and these are used as a basis for the development of written 
forms of arithmetic which accord with students’ verbally based strategies.

8. The teacher provides students with suffi cient time to solve a given 
problem. Consequently students are frequently engaged in episodes which 
involve; sustained thinking, refl ection on her or his thinking and refl ecting 
on the results of her or his thinking.

9. Students gain intrinsic satisfaction from their problem solving, their 
realization that they are making progress, and from the verifi cation 
methods they develop.
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THE CASE OF KIM: CONCLUSION

From the perspective of Mathematics Recovery, the critical fi rst step is to 
document as fully as possible, Kim’s current number knowledge. His solution 
of the written addition task provides potentially useful insights into his current 
strategies. Nevertheless, it is not suffi cient to conclude on the basis of observing 
his strategy in solving 9 � 7, that one fully understands his problem and further, 
one can devise an appropriate instructional response. What is needed now is a 
comprehensive assessment of key aspects of his number knowledge. In Kim’s 
case at least, the written task of 9 � 7 is of somewhat limited use for diagnosis. 
There is a sense in which the written addition task confl ates several aspects of 
early number knowledge which are problematic for Kim. These aspects need to 
be separately examined and understood. The resulting pedagogical knowledge 
should be the basis of several key hypotheses to be tested in instructional set-
tings with Kim and further refi ned if necessary. Potentially much more useful, 
are assessment tasks which are more elemental (in the sense of uncompounded).

One important assessment item for Kim, is that of numeral identifi cation. 
This involves presenting numerals for Kim to read (name), and presenting them 
one at a time and not in numerical order. By way of contrast, a task in which 
Kim is asked to read along a numeral sequence while interesting to observe 
(extending beyond 20, for example), would not serve to pinpoint Kim’s facil-
ity with numeral identifi cation. A second important assessment item for Kim 
involves simple addition and counting tasks presented verbally and with collec-
tions of counters. These tasks serve to sidestep Kim’s apparent diffi culty with 
reading numerals, and have the purpose of revealing the limit of sophistication 
of Kim’s counting in problem-based activity. When he solved the written task
9 � 7 his strategy resembles what I have called counting forward from one three 
times. Nevertheless, the counting and additive tasks involving counters can lead 
to a determination of whether Kim is at the perceptual, fi gurative or counting-on 
stage, as described earlier in this chapter. Also important is to assess Kim’s facility 
with forward and BNWSs as also described earlier.

The purpose of the approach to assessment just described is to comprehen-
sively document Kim’s current early number knowledge. When that is com-
pleted, an initial plan for instruction can be developed.

TEACHER DEVELOPMENT

Teacher development is a key ingredient of the Mathematics Recovery Program. 
The overview given here will draw on the teacher development program used 
in the US, the country in which MR is most extensively used. The program of 
teacher development is both intensive and extensive. Teachers new to MR under-
take a year-long training program with an accredited MR leader. This involves 
(a) an initial 5-day training program usually taken in the summer break; (b) over 
the course of the school year, an additional 5 days of training and a minimum of 
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three one-day, follow-up cohort meetings and (c) a minimum of three one-on-
one coaching sessions with an MR leader. Each teacher is required to (a) conduct 
pre- and post-assessments with at least 10 students, and using MR assessment 
schedules and (b) complete100 hours of one-on-one MR instruction.

The 5-day initial phase focuses on an introduction to the LFIN and involves 
(a) practicing assessment interviews and (b) using the LFIN in the process of 
analysis of videotaped records of assessment interviews. Typically, this process 
of learning is undertaken by a cohort of up to 12 teachers. Teachers work in tri-
ads to practice and administer the task groups on the assessment schedule, learn-
ing key steps in the process, for example, when to administer more advanced 
tasks. During this period, the instructing leader makes extensive use of video-
based resources which exemplify (a) the ways in which assessment tasks are 
administered and (b) the range of student responses to the assessment tasks.

During the fi rst 4 weeks of school, the teachers conduct assessment interviews 
with at least 10 students and analyze the videotaped interviews. The next phase 
of the training program focuses on learning to apply the results of assessment 
in the planning of instruction. This includes an introduction to the IFEN, and 
the planning and administering of appropriate instructional procedures. Again, 
video-based resources are used extensively to exemplify aspects of MR instruc-
tion. The teachers now undertake teaching cycles with an initial cohort, typically 
four students, taught individually four or fi ve times per week for teaching cycles 
of 12 to 15 weeks. The objective of the instructional program is for the student 
to attain a level at which they can learn successfully in their classroom. As each 
student graduates from the intervention program a new student takes their place 
in the cohort of four students receiving instruction.

During the course of the school year, there are two main avenues of support 
and further learning for the new MR teacher. First, three one-day cohort meet-
ings will be scheduled across the school calendar. The schedule for these meet-
ings focuses on each MR teacher presenting an overview of their instruction 
with at least one of their students. The teachers use video excerpts to illustrate 
students’ advancements and on-going and persistent diffi culties or challenges 
that arise in the course of the teaching cycle. The intention is that these one-day 
cohort meetings result in signifi cant professional development in a collaborative 
and supportive environment.

A second major avenue of support and further learning are one-on-one 
coaching sessions, typically of 2-hour duration and provided by the leader to 
each teacher in the cohort. At least three such sessions are held with scope for 
additional sessions in the case of teachers whose learning of the MR program 
has progressed at a slower rate than is typical. The sessions involve the leader 
observing an instructional session, and include pre- and post-conferences which 
focus on detailed aspects of both planning for and delivering MR instruction. 
Analysis of instruction involves the use of a rubric constructed from the nine 
guiding principles (listed above) and the 12 key elements of MR instruction 
which are referred to earlier.
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BRIEF HISTORY

The Mathematics Recovery intervention program was initially developed in 
the 1990s, in New South Wales, Australia. Development was via a 3-year research 
project funded by the Australian Research Council. The development project was 
undertaken in partnership with regional school systems. These systems contributed 
in a major way, to the funding of the project via allocation of signifi cant portions 
of participating teachers’ time. The development project involved 20 teachers in
18 schools and approximately 200 participating fi rst-grade students.

MR in the US: The program was fi rst used in the US in 1995. The initial use 
of the program was in school districts in the south-eastern region. In the period 
since 1995, the program has been used in school districts in approximately
25 states, and the program has extended to most regions of the US. In the last 
10 years, as part of the development of the program, an extensive network of 
specialist MR leaders has been developed. One of the main roles of MR leaders 
is to provide new implementations of MR in either the school district in which 
they are located or in school districts other than their own and which are new to 
Mathematics Recovery. School districts using Mathematics Recovery typically 
will monitor progress of their participating students via existing state testing 
regimes. In many cases the outcomes of the program as indicated by participating 
students’ performance on state tests, have resulted in extensions of the program 
to other districts in the same state or to districts in other states. Most recently the 
program has been used by a national center focused on improving literacy and 
mathematics learning in the primary years (kindergarten to year 4), in a tradition-
ally under-served population. As well, the program has been used in a state-wide 
initiative involving 40 schools, and focusing on mathematics intervention in the 
early years of school. Currently the program is the focus of a 2 year, nationally 
funded evaluation study focusing on student outcomes and teachers’ learning.

The program was fi rst used in England in 1996. The initial use was in three 
local education authorities in the north-west. In the period since 1996, use of the 
program has extended to other local education authorities in England and Wales. 
As well, the program has been used extensively in Scotland and most recently 
on a national scale in Ireland. The program has also been used in Canada and 
The Bahamas, and most recently there are plans to use the program in at least 
one country of language other than English. In Australia, key components of 
Mathematics Recovery, including the LFIN, the approaches to assessment and 
instruction, and the approaches to teacher development have been adapted as a 
major initiative focusing on classroom instruction across all attainment levels. 
This adaptation has been and continues to be widely used in Australia and New 
Zealand. In many of its implementations, use of the program has been extended 
to intervention for second- and third-grade students. Finally, a current project 
(2004–2008) is being undertaken to extend the scope of the program by the 
development of an additional range of pedagogical tools aims specifi cally at 8 to 
10 year olds (third- and fourth-grade levels).
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SOURCES OF ADDITIONAL INFORMATION

The overview presented above is complementary to two early overviews of 
Mathematics Recovery (Wright, 2000, 2003). As well, I am the fi rst author of 
three books on early number learning. Collectively these contain much of the 
detailed information on Mathematics Recovery pedagogy. The current versions 
of these three books were all published in 2006. Because this can result in con-
fusion, a short explanation about the focus and content of each book is provided 
here. The focus of Wright et al. (2006a) is a detailed explanation of assessment 
in Mathematics Recovery and includes the assessment schedules, the LFIN 
and the general approach to assessment. The focus of Wright et al. (2006b) is 
a detailed explanation of Mathematics Recovery instruction and includes the 
IFEN, details of key topics, extensive descriptions of exemplar teaching proce-
dures and a detailed description of the general approach to instruction. Wright
et al. (2006c) focuses more broadly on assessment and instruction in early 
number and is oriented to general classroom instruction. This book serves very 
well as an introduction to or primer for the other two books.
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INTRODUCTION

This chapter will briefl y describe the most common intervention programmes 
in numeracy currently adopted in English schools and considers their merits. It 
will then discuss the conceptual diffi culties most commonly seen in pupils and 
will argue that because of the nature of these diffi culties, numeracy interven-
tion programmes should be targeting pupils primarily in Key Stage 1. Finally, it 
will consider some resources commonly used in classrooms and suggest alterna-
tives which the author believes address the above diffi culties more effectively. 
These observations have not been based on any primary research, but are rather 
an accumulation of the author’s experiences in teaching maths in a variety of pri-
mary and secondary schools in both inner and outer London.

Any search for material on teaching special needs pupils will produce far more 
on teaching literacy skills than on numeracy skills. An obvious explanation for 
this is that literacy skills are considered to be the gateway to all learning. Why this 
is so is not clear – possibly literacy skills are considered, quite understandably, to 
be the gateway to all learning and consequently of more importance than numer-
acy skills. There is also the social element – When was the last time you heard 
anyone admit that they can’t read? I would guess that this has rarely happened 
whereas many people freely admit to being poor at maths. Anecdotal evidence 
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also suggests that many primary school teachers and a majority of learning sup-
port assistants feel more confi dent in teaching literacy than numeracy.

Happily, in recent years, we have seen an increase in research on the causes of 
maths diffi culties and how to deal with them, although we still have a long way 
to go if we are to catch up with literacy research. The advent of the Numeracy 
Strategy (now called the Renewed Framework) in English schools has trans-
formed maths teaching in both primary and lower secondary schools, especially 
for less confi dent teachers.

And while government statistics show that achievement levels in maths have 
been improving steadily, they are still below the levels of achievement in literacy. 
In 2007, percentages of pupils in local authorities gaining the expected Level 4 at 
the end of Key Stage 2 ranged from 70% to 88% in English and between 66% and 
84% in maths (DCSF, 2007). A more worrying statistic concerns the percentage of 
pupils who at the end of Key Stage 1 achieved level 2C but by the end of Key Stage 
2 had not made the expected 2 levels of progress. In 2007, this fi gure was 2% in 
English but in maths, it was 7%. (DCSF, 2008) Why did more than three times the 
number of pupils not reach the expected level in maths? Is it because of the impor-
tance placed on literacy skills over numeracy skills so that intervention in literacy 
was seen as a higher priority? Or if the pupils did receive numeracy intervention in 
Key Stage 2, are we to conclude that literacy intervention programmes are more 
effective than numeracy intervention programmes?

CURRENT INTERVENTION PROGRAMMES

Many schools arrange for pupils with mathematical diffi culties to have reg-
ular withdrawal sessions away from the classroom with either a learning sup-
port assistant or a special needs teacher. Pupils are usually taught in groups in 
order to maximise staff resources and time but can also be taught on an indi-
vidual basis. The content for these sessions can vary but usually follows either a 
published programme written specifi cally for pupils who are not achieving age 
expected goals or a programme devised by the school.

The Renewed Framework (formally the Numeracy Strategy) has produced a 
range of intervention programmes designed to help pupils achieve age expected 
goals. These have been categorised at three levels:

1. Effective differentiation within the classroom or quality fi rst teaching, 
designed to ensure that all children are included in the daily mathematics 
lesson (Wave 1 support);

2. Springboard programmes for years 3, 4, 5, 6 and 7, aimed at pupils just 
below age expected levels (Wave 2 support); (DfES, 2000)

3. ‘Supporting children with gaps in their mathematical understanding’ is for 
pupils in Key Stage 2 who continue to have signifi cant diffi culties despite 
Wave 1 and 2 interventions (Wave 3 support). (DfES, 2005)
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As Wave 1 intervention takes place within the classroom and is considered to be 
part of the daily mathematics lesson, it may not be regarded as an intervention pro-
gramme per se. This chapter will refer to only Wave 2 and 3 interventions which 
are seen to be additional to the daily mathematics lesson. Wave 2 ‘Springboard’ 
(DfES, 2000) programmes run for up to 20 weeks for groups of pupils and most 
are designed to be provided mainly by a teaching assistant with some input from a 
class teacher. Programmes consist of a series of lessons which follow the format of 
the Numeracy Hour lessons and focus on topics which are known to cause particu-
lar diffi culty for pupils. In contrast, Wave 3 support ‘Supporting children with gaps 
in their mathematical understanding’ (DfES, 2005) is not time limited and does not 
follow the usual lesson format, but consists of a number of short tasks or ‘spot-
lights’ which focus on very specifi c areas of diffi culty. Both Wave 2 and Wave 3 
materials are scripted, making them accessible and easy for any member of staff 
to deliver.

All of the maths intervention programmes mentioned above are aimed at 
pupils in Key Stage 2. This is in contrast to literacy intervention programmes 
which target pupils as early as year 1. It is interesting to note that although inde-
pendent organisations such as the Fischer Family Trust have developed an early 
intervention programme for Key Stage 1 pupils in literacy, to date, they do not 
have an equivalent in numeracy. (Fischer Family Trust, 1999)

Currently, the only published intervention programme specifi cally aimed 
at Key Stage 1 pupils is the Mathematics Recovery Programme (Wright et al., 
2000), which has originated in Australia and is based on the principles of early 
intervention.* It relies on a rigorous initial assessment to identify pupils’ diffi cul-
ties and ongoing assessment through teaching and observation, supported by a 
bank of graded tasks. Teaching is on an individual daily basis for 12–14 weeks. 
As the emphasis is on ongoing diagnostic observations, a considerable amount 
of training is required to implement it, depending on the knowledge and experi-
ence of the member of staff. It involves a thorough knowledge of the early stages 
of mathematics learning as well as an understanding of how to assess pupils’ 
mathematical diffi culties. Such training is costly and time consuming and many 
schools are reluctant or unable to invest in it. However, anecdotal evidence 
shows that time and resources spent undertaking such training brought signifi -
cant benefi ts, as both teachers and support assistants were able to transfer the 
skills learned to a wider group of pupils. This has had a positive effect on gen-
eral classroom practice.

Where no published programme is being used with groups or individuals, the 
content of the sessions can vary according to the adult taking the session but is often 
linked to recent work done in the daily mathematics lesson. While this can make for 
a more individual ‘personalised’ learning programme, the quality of teaching can 
vary enormously, according to the experience and expertise of the adult.

*Two other intervention programmes are currently in the pilot stage – Numeracy Recovery and 
Elite Maths – but at the time of writing these are not yet available to all schools.
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THE DIFFICULTY WITH MATHS

Much has been written about the reasons why mathematical skills are harder 
to acquire than literacy skills. For one thing, Maths is a more abstract subject so 
by its very nature will be more diffi cult to master. Other reasons why particular 
children will have diffi culty in learning maths include:

● Low cognitive ability: any abstract subject will be diffi cult for those with 
low cognitive ability.

● Specifi c learning diffi culties such as dyslexia, dyscalculia, dyspraxia, ASD, 
speech and language and ADHD: Children with any of these conditions 
often fi nd particular aspects of maths diffi cult.

● Behaviour diffi culties/absence from school through truancy or illness: 
Mathematical skills are progressive and cumulative. Furthermore, these 
skills are interrelated. Interruptions in schooling for whatever reason will 
impact on subsequent progress.

● Poor or inconsistent teaching: In recent years, the need to adapt teaching 
techniques to accommodate the different learning styles found in 
classrooms has become more widespread. Unfortunately, this is still 
more common in literacy than in numeracy. Added to this, there is a wide 
variation in mathematics teaching abilities, even within one school, so 
some children suffer from an inconsistent approach.

While we cannot eradicate all of the above causes, we can certainly do some-
thing to minimise their effects and many schools work very hard to achieve that. 
Unfortunately, many maths diffi culties are not identifi ed until Key Stage 2 – hence 
the Renewed Framework’s Wave 2 and 3 interventions. In the past, this was 
partly due to the assessment process which took place at the end of Key Stage 1. 
An analysis of questions on any of the previous Key Stage 1 SATS papers will 
show that a child could gain enough marks to achieve an age appropriate level 
without developing many of the strategies necessary for successful computation. 
Because of this, early misconceptions were not always apparent. Although in 
recent years, more emphasis is now put on teacher assessment at the end of Key 
Stage 1, I would argue that because schools tend to use one of the previous Key 
Stage 1 tests to inform part of their teacher assessment, some judgements may 
still be misleading.

From my experience in assessing and working with pupils who have maths 
diffi culties ranging from just below to severely below age expected levels, there 
are several particular problems which frequently arise. These are:

● Lack of memorised number facts;
● An insecure concept of place value;
● Diffi culty carrying out multi-step procedures;
● Diffi culty solving word problems.

Children can have one or more of these problems (and others, as well!) and 
the reasons can vary according to the particular diffi culties of the individual 



Making Interventon in Numeracy More Effective in Schools 229

child. Of the four identifi ed, the fi rst two – number facts and place value – both 
feature heavily in Key Stage 1. In fact, children are expected to have memorised 
many addition and subtraction facts by the end of Key Stage 1 as well as having 
an understanding of the place value of 2 digit numbers. A discrepancy in either 
often leads to use of ineffi cient calculation strategies and insecure methods later 
on. It is also reasonable to assume if insecure methods of calculations and/or 
poor number fact recall is evident, a child is likely to struggle with both word 
problems and multi-step procedures as an even greater burden will be placed on 
the working memory. There may of course be other reasons why some children 
have diffi culties with solving word problems or multi-step procedures, such as a 
speech and language impairment or organisational diffi culties.

Much of the teaching which takes place in Key Stage 2 assumes a profi ciency 
in number fact recall and place value, building on the skills acquired in Key 
Stage 1. As these skills are progressive and cumulative, if some of the earlier 
building blocks have been missed, the impact on subsequent maths achievement 
will be signifi cant. To extend the building metaphor, if some of the foundation 
blocks are missing, the wall will have some weak spots. If only a few blocks are 
missing, the wall may remain relatively stable but the more layers added to the 
top, the greater the chance of the wall becoming unstable. If enough foundation 
blocks are missing, the wall will collapse after only a few layers. Early identifi -
cation and intervention would therefore seem to be a crucial step in helping chil-
dren with mathematical diffi culties and I would argue that this should take place 
primarily in Key Stage 1.

MAKING INTERVENTION MORE EFFECTIVE

Ann Dowker (2004) identifi ed a number of important points in relation to 
numeracy intervention programmes:

● Children’s arithmetical diffi culties are highly susceptible to intervention.
● Individualised work with children who are falling behind in arithmetic has 

a signifi cant impact on their performance.
● Although intervention can take place at any age, it is desirable that 

programmes should focus on early intervention in order to prevent 
diffi culties from becoming entrenched.

● The time spent does not have to be great in order to be effective.

My own teaching experience would heartily support those points and I would 
also suggest three more:

1. Professional development is an important component in an effective 
intervention programme.

2. Intervention programmes should be an integral part of the maths curriculum
3. Using effective equipment makes a signifi cant difference to a successful 

outcome.
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PROFESSIONAL DEVELOPMENT

One of the disadvantages in my view of the Renewed Framework interven-
tion programmes mentioned above is often considered by schools to be an asset, 
namely the fact that they provide scripted lessons. This may lead schools to 
expect that any member of staff can run Springboard (Wave 2) or Wave 3 groups 
with minimal training as long as they have the folder of lessons. While this may 
seem acceptable on the surface, problems can arise when pupils do not respond 
as expected to the teaching strategies or techniques employed in these lessons. 
In most cases, the strategies are a repetition of what will have occurred in the 
daily mathematics lesson, but at an earlier level. This may be suffi cient for pupils 
who are behind due to previous absences or inconsistent teaching but will not 
necessarily help pupils whose diffi culties arise for other reasons. Training is an 
important part of the Mathematics Recovery programme but in my opinion is 
crucial to any successful intervention programme. Staff, whether they are quali-
fi ed teachers or learning support assistants, need to have an understanding of the 
importance played by the early building blocks in developing mathematical con-
cepts. This knowledge is essential if we are to successfully analyse the child’s 
diffi culties and remediate effectively. Intervention is more effective if there is the 
opportunity for ongoing assessment through observation, which in turn informs 
the next step of any teaching programme.

Staff also need to be aware of how specifi c learning diffi culties such as dyslexia 
or dyspraxia can affect the development of mathematical skills, and not just reading 
and writing skills. A child with co-ordination diffi culties may have missed opportu-
nities to practise counting in the early years so may not have developed one to one 
correspondence. Dyslexic children will often have problems memorising number 
facts and will need to develop strategies to compensate for this.

INTERVENTION AS AN INTEGRAL PART OF
THE MATHS CURRICULUM

Published programmes such as Springboard follow a series of lessons which 
do not always fi t with the topics being taught in the classroom. Because of this, 
children who have been taught effective strategies in an intervention programme 
may not have the opportunity to put these into practice immediately in the class-
room if the class mathematics lesson has moved on to a different topic. The pro-
gramme by its very nature cannot fi t in with the numeracy lesson in class – if it 
does, it moves on too quickly and the children face their original problem: no 
time to practise and consolidate what has been learned. In cases where pupils 
do not follow a published programme and the class teaching informs the inter-
vention programme, this also leads to a fragmented approach, with the same 
consequences. When the strategies or skills being targeted in the intervention 
programme are not followed up in class, the child defaults to previous ineffec-
tive and time consuming strategies. Teachers and teaching assistants involved in 
supporting special needs children know that repetition and consolidation are keys 
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to success. Careful attention needs to be paid to the content of any intervention 
programme so that it is an integral part of the child’s whole mathematics curricu-
lum, not just an ‘add-on’. An intervention programme should identify the child’s 
mathematical diffi culties through a detailed initial assessment and subsequent 
ongoing diagnostic observations. This information should in turn inform some of 
the differentiated teaching which takes place in class, so pupils use part of the daily 
mathematics lesson to practise the necessary skills. This coordinated approach to 
intervention will ensure that diffi culties are targeted and effective strategies are 
regularly practised by creating suitable opportunities for consolidation within the 
maths lesson. The format of the Wave 3 materials and the Mathematics Recovery 
programme are both more suitable to this way of working.

An additional diffi culty with ‘ready made’ programmes is that they dic-
tate how each topic is taught, regardless of the child’s particular diffi culties. A 
Springboard lesson on using number facts to develop effective strategies for 
calculations does not uncover the reason why a pupil has diffi culty remember-
ing number facts or why he/she fails to employ them in a meaningful way. This 
information is important because we may need to adapt our teaching style or 
adopt a different approach if we are to help that particular pupil overcome their 
diffi culties. There is greater fl exibility with Wave 3 materials, which includes 
some suggestions on what to do if a pupil gives an incorrect response. However, 
these materials are more often than not being used without an initial in depth 
analysis of the pupil’s diffi culties. Because of this, problems may not be ‘tracked 
back’ to an early enough level, so early misconceptions are in danger of being 
overlooked.

EFFECTIVE EQUIPMENT

If we are to intervene effectively in Key Stage 1 to prevent diffi culties from 
becoming entrenched, then the two areas mentioned earlier need to be tackled, 
namely, lack of memorised number facts and an insecure concept of place value. 
If children are secure in both of these areas by the end of Key Stage 1, many
of the subsequent diffi culties can be avoided. I believe that both problems
can be tackled in the same way by helping children to develop a strong visual 
image of number. The key to successful visual imagery is the resources or equip-
ment used.

First of all, let us explore the concept of visual imagery. Subitising is the abil-
ity to know how many units there are without counting (Mandler & Shebo, 1982) 
and this is a skill which Brian Butterworth believes our brains are hard-wired to 
do from infancy (Butterworth, 1999) with 4 as the maximum number of objects 
possible for most adults. Because they can subitise, children quickly develop a 
‘sense’ of the numbers up to 3 or 4 once they start matching the counting names 
with the relevant numerosities. As the counting range is extended and counting 
skills become more profi cient, children begin to develop an understanding for 
the remaining numbers, particularly up to 10. Yeo (2003) uses the term ‘number 



sense’ to describe the intuitive feel for numerosities and numbers, stating that 
it is generally acknowledged that good number sense plays ‘a signifi cant role 
in children’s general ability … to make confi dent progress in the early stages 
of primary school number-work.’ Butterworth (2005) suggests that progress in 
arithmetic is dependant on developing ‘an increasingly sophisticated understand-
ing’ of numerosities and an ‘increasing skill in manipulating’ them.

Butterworth’s research identifi es the inability to subitise as one of the 
characteristics of being dyscalculic. This affects the development and understand-
ing of numerosities, causing severe mathematical diffi culties. In this respect, dys-
calulics could be described as having very little number sense, or even none at 
all. Only a small minority of children with maths diffi culties are dyscalculic but 
there are other children who, although able to subitise, still have not developed 
‘good’ number sense. Admittedly this will not be nearly as severe as those with 
dyscalculia and, in common with many such learning diffi culties, will be on a 
continuum.

What has prevented these children from developing good number sense? The 
answer may lie in the way numbers have been presented to them. Young children 
are given many opportunities to match numerals to collections of objects – the 
symbol 4 matches 4 buttons. In this way, we teach children how each numeral 
relates to the number it represents. We assume that once a child can identify 
how many there are in a set by counting and matching it to the correct numeral, 
they have ‘understood’ that number and have formed an image of that number. 
However, things are not so simple. Being able to count four objects does not in 
itself tell us much about the number 4 and how it is constructed, other than it 
contains four units. There is certainly nothing in the symbol we use (4) to tell 
us anything about the number either. It is in itself an abstract symbol. What we 
need is a visual image for the number 4 in our minds. Luckily our ability to subi-
tise may help us here but this is more diffi cult, if not impossible, for higher num-
bers. Yeo remarks that children with poor number-sense often have a ‘very poor 
“fuzzy” sense of quantities and numbers between 5 and 10 and above’ (Yeo, 
2003). In other words, they have not developed a strong visual image of those 
numbers. Because of this, Fuson and other writers in the education fi eld believe 
that we should build on the brain’s natural ability to subitise by introducing to 
young children number representations using instantly recognisable patterns 
(Fuson, 1992; Sharma, 1981; Yeo, 2003).

Representing numbers in pattern form helps children to see each number as 
a whole with several different components. In this way, children will not only 
have a mental picture for each number but will also understand how each is con-
structed. From this comes an appreciation of how numbers relate to each other, 
particularly those on either side – for example, that 4 is one more than 3 and one 
less than 5. They will also learn that 4 can be subdivided into subsets 2 � 2 as 
well as 3 � 1. So if you take 1 away from 4, you will get 3. If you take 3 away 
from 4, you will be left with 1 and so on. At some point, they will discover that if 
you have 2 lots of four, you will get 8. The ability to fl exibly split 4 into different 
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subsets is the basis for calculating and inherent in this skill is the relationship
between addition and subtraction. By building up a strong visual image of each 
number and seeing how that number relates to other numbers around it, we have 
helped ourselves to learn some addition and subtraction facts, as well as learning 
the very important and useful concept about the relationship between addition 
and subtraction. We know these facts because we understand the links between 
the numbers. We do not have to rely on our memory to recall the facts. For chil-
dren who have weak memories – which incidentally includes the majority of 
special needs children I have met, including those with a specifi c learning dif-
fi culty – this is very powerful.

Children who have a weak visual image of number see each number as just 
a collection of ones – this limits their understanding and ability to manipulate 
numbers in an effi cient way. Seeing numbers as random collections of ones leads 
to ‘ones-based’ counting strategies to solve calculations, which is both time con-
suming, ineffi cient and open to error.

How can we help children develop good visual images of number? A glance 
through any major educational catalogue will show a bewildering array of equip-
ment available to support mathematics teaching and it is important here to dis-
tinguish two types of resources, ‘manipulative or concrete’ and ‘pictorial’. The 
former is generally taken to mean something that can be physically picked up 
and manipulated, such as cubes, counters, beads – in other words a real life 
representation of number. Pictorial resources include number lines, number 
squares and place value cards, as they all use the abstract symbols for number 
rather than the real life representations. Where children are given pictures of 
beads, cubes, counters or indeed any other object depicted on a worksheet, card 
or book to help them, these would also be considered pictorial. Both types are 
to be found in classrooms up and down the country with those in the manipu-
lative category being commonly used in early Key Stage 1, while the pictorial 
resources are to be found in upper Key Stage 1 and lower Key Stage 2. Although 
it is generally accepted in the teaching profession that a multi-sensory approach 
to any learning is best – seeing, doing, hearing and saying – one fi nds a wide 
variation in how schools use their maths equipment throughout the key stages. 
Furthermore, I have found that many pupils with maths diffi culties have had lim-
ited access to manipulative (as opposed to pictorial) resources or in some cases 
none at all. Thus, it seems reasonable to suggest that these pupils may have 
fared better if they had access to manipulative apparatus, especially in the early 
stages of mathematical development. There is no doubt that the introduction 
of the Renewed Framework (formerly the Numeracy Strategy) has encouraged 
teachers to use a variety of resources to aid understanding. However, if we are 
to effectively help children with mathematical diffi culties, we need to be more 
discerning in the resources we choose and to be clear about the fundamental dif-
ferences between manipulative and pictorial resources. Number lines and place 
value cards are excellent pictorial resources but due to their abstract nature will 
not provide a visual image of number. Children need opportunities to work with 
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manipulative resources fi rst to build up visual images before moving on to picto-
rial resources.

Choosing appropriate manipulative resources is our next task. Most Key Stage 
1 classrooms are equipped with manipulative resources such as linking cubes and 
Base 10 materials and these are commonly used both for addition and subtraction 
calculations and for demonstrating place value. Let us take the example of Ben 
faced with solving the calculation 4 � 3. He might be encouraged to get 4 cubes 
and then get 3 more and count to fi nd the total.

At fi rst, he would count all of the cubes once he had set out each subset. We 
would then encourage him to count on from one of the numbers, preferably 
the larger one. These are considered good strategies. He may then progress to 
carrying this out on a number line, or counting on using his fi ngers. However, 
the process is still the same – Ben has learned that in order to solve an addi-
tion calculation, you need to be able to count. At some point in this process, we 
expect Ben to memorise that 4 � 3 is 7 – for some reason we think that by hav-
ing lots of practice in counting sets of cubes, somehow the number facts will be 
absorbed, memorised and recalled the next time he needs them. Some children 
make this leap but many children like Ben do not. If for whatever reason children 
do not make this leap in year 1, when memorising a certain amount of number 
facts is expected, they have already started to fall behind in maths.

Let us look now at Amy. She can count to 20 and her teacher is introducing 
place value to her by using Base 10 equipment to show that 10 unit cubes are the 
same as a 10 stick. The teacher places the 10 unit cubes together in a line so that 
Amy can see that it is indeed the same as the 10 stick.
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Unfortunately, for some reason, Amy is not sure about this so she always 
counts the 10 stick each time she uses it. Teachers reading this will be only too 
familiar with the children like Amy, who despite being shown how 10 unit cubes 
match a 10 stick, carry on counting the sections in the 10 stick as if by some 
strange twist of fate, one day it might equal 10 but another day, it might not! 
There may be a number of reasons why Amy is not sure. Perhaps she is having 
diffi culty seeing 10 as a whole group because she is accustomed to seeing it as a 
random collection of ones. Perhaps she simply keeps forgetting how many unit 
cubes there were in the fi rst place – after all, you can’t tell by just looking that 
there are 10 cubes in the pile there could be 8 or 9 or even 11. As long as Amy is 
unsure of the value of the 10 stick, subsequent work on using Base 10 to show 2 
digit numbers will always be compromised for her because her concept of 10 as 
an important group in our number system is insecure.

Children like Ben and Amy have similar problems – their image of numbers 
is weak so they resort to the only thing they can confi dently do and that is count 
to get the answer. Eva Grauberg (1998) says that some children lack grouping 
strategies because there is a ‘primary weakness in perceiving structures’ which 
in turn is responsible for a ‘weakness in using structures’. Such children may 
have diffi culty in appreciating our number system where grouping in tens is cru-
cial to how we record magnitudes. Others may have problems seeing the rela-
tionship of component parts to the whole. For example, understanding that 8 can 
be made with 2 and 6 or 3 and 5 or even two sets of 4.

Sharma (1981) believes that children who only experience number represen-
tations in linear or non-uniform visual clusters continue to use ones based count-
ing strategies long after they are appropriate. Equipment like linking cubes or 
Base 10 present numbers either in a linear form as in a ‘stick’ or non-uniform 
visual clusters as in a random group. This limits their usefulness in helping chil-
dren develop visual imagery. Cubes linked together to show numbers over 5 
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are not immediately recognisable and the child has to resort to counting again. 
As regards Base 10, until children meet the 10 stick (usually when they begin to 
learn about partitioning 2 digit numbers), 10 (and most of the numbers below) 
is just a random collection of ones which you have to count each time, mainly 
because it is too big to subitise. What follows then is an insecure concept of 
teens numbers because the image of 10 itself is not a secure one.

Dice patterns are one of the most common number ‘shapes’ available to chil-
dren and most children can tell which number is represented by each pattern of 
dots. However, dice patterns are limiting in their ability to provide a useful vis-
ual representation of number. For one thing, the patterns for 3 and 4, although 
instantly recognisable, do not easily relate to each other – the shapes of each pat-
tern are not linked. In other words, it is not obvious that 4 is one more than 3.

Patterns for 7, 8, 9 and 10 are not commonly used and are also not consistent, 
as can be seen from these two patterns to represent the number 8.

Effective resources in maths are therefore those which promote a strong vis-
ual image of number in a structured way where the relationships between each 
of the numbers is obvious.

Two particularly effective models of number representation which fulfi l the 
criteria for strong visual imagery are:

● Numicon shapes which represent numbers up to 10 in arrays of 2. The shapes 
1–10 when set out in order form a staircase pattern with the odd numbers 
providing the ‘steps’ up. This mainstream resource was originally based on 
the number patterns devised by Catherine Stern and then further developed 
by practising teachers using government research money. The Numicon 
system promotes a multi-sensory approach to teaching maths and also 
places an emphasis on children understanding and using mathematical 
language.



Making Interventon in Numeracy More Effective in Schools 237

● Ten frames which use our ability to subitise for numbers up to 5 and for the 
numbers 6–10, use 5 as a benchmark. So 6 is seen as 5 � 1, 7 as 5 � 2,
8 as 5 � 3 (or 10 � 2) and 9 as 5 � 4 (or 1 less than 10) and 10 as 5 � 5. 
Ten frames are one of the resources used throughout the Mathematics 
Recovery programme and similar images have also been suggested in a few 
Wave 3 ‘spotlight’ activities.

Showing 8 on a 10 bead string

Showing 26 on a 100 bead string

The image of 5� numbers can also be seen elsewhere:

● In a 10-bead string using 2 colours of beads, 5 in one colour and 5 in 
another colour. While this is useful to depict the numbers up to 10, the 100 
bead string which has alternate decades in 2 different colours, is not as 
versatile for showing numbers above 10.
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● In the tallying system which represents numbers in groups of 5. I have 
found this useful with some secondary school special needs pupils who 
may have found other structured apparatus too infantile.

For both Numicon and ten frames, each number up to 10 has a particular pat-
tern and is therefore instantly recognisable. Because the patterns are consistent 
with each other, the relationship between each number is clear. It is generally 
accepted that memorising number facts in order to develop effective strategies 
for calculations is a particular stumbling block for pupils with mathematical dif-
fi culties. Weak memories for number facts can be supported by the visual images 
provided by structured apparatus. By depicting numbers through the imagery of 
pattern, we are exploiting one of children’s strengths: their love of pattern. By 
providing a visual image of each number up to 10, addition and subtraction facts 
can be seen and understood and as such do not rely on memory for recall. For 
example, Ben would be less likely to resort to counting if he was familiar with 
Numicon shapes – he would put a 4 shape and a 3 shape together and he would 
recognise that he had made a 7 shape. Or if his visual image of number was 
based on the ten frame model, he would know what shape would be made if he 
added 3 more counters to his 4 frame.

Eventually, he would be able to manipulate these images in his mind.
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Numbers over 10 are also quickly recognised by their component parts. 16 
has a 10 shape and a 6 shape – no counting required. 26 is two 10 shapes and a 
6 shape.

Representing numbers in this way provides a strong basis for understanding 
place value. Because Amy would know the image for 10 either through the ten 
frame or through the Numicon shape as soon as she could count to 10, she would 
know its value without having to count so her image of teens numbers would 
include 10 as their base, providing a strong foundation for her developing concept 
of place value. In turn, she would also be more confi dent in applying the number 
facts up to 10 that she has learned to bigger numbers, thus developing effective 
strategies for calculations.
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Although resources like Numicon and ten frames provide a more useful vis-
ual image of numbers, it is important to emphasise that a child’s visual image of 
number should not be confi ned to one representation. Because our experiences of 
number come from many sources, children need to see numbers represented in 
different ways, in different contexts and most importantly in how they relate to 
real life. However, in choosing particular equipment to support children’s devel-
oping mathematical concepts in key areas such as place value and calculations, 
it is important to understand what we want the equipment to do and how some 
equipment, because of its limitations, can lead to misconceptions.

It is also important to remember that however ‘good’ we believe the equip-
ment to be, it will only be of value to pupils if it is used by suitably trained staff 
who understand the rationale behind it.

CONCLUSION

By providing intervention at an earlier age and ensuring we help children to 
develop a strong visual image of number, we may be able to prevent a signifi cant 
number of children from falling even further behind when they move from Key 
Stage 1 to Key Stage 2.
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Afterword
Helping Children with 
Numeracy Diffi culties 

in School
 A Teacher’s Notes

Jill Hannington

St Ebbes’ Primary School, Oxford, UK

Mathematics intervention programs have become increasingly necessary, par-
ticularly in the past 10 years, or so it seems. My experience of nearly 30 years 
as a teacher has led me to consider mathematics intervention programs as very 
important.

Recently, Ann Dowker asked me to put together my view of intervention pro-
grams in primary schools, which gave me reason to refl ect on the past 30 odd 
years!

The importance of such interventions has been increasingly emphasized 
recently, because of concern to fi nd an antidote to problems arising from chil-
dren in danger of underachieving, i.e., not reaching the ‘national expectations’ 
for the end of a key stage.

Since the introduction of the national curriculum there now seem to be sev-
eral ‘best fi t answers’ to gaps in children’s learning – or at least those not likely 
to achieve these goals or targets set to maintain a school’s elevated position in 
the league tables. Before the establishment of an offi cial National Numeracy 
Strategy (NNS) in the UK, schools relied on a combination of strategies to teach 
mathematics: ‘gut feelings’, experience and ‘hard sell’ from publishers as to 
which ‘Maths Scheme’ suited their school. This often resulted in a mixture of 
several approaches; making it diffi cult to actually pinpoint where children were 
experiencing diffi culties.

Mathematical Diffi culties:  Copyright © 2008, Elsevier Inc.
Psychology and Intervention All rights of reproduction in any form reserved.



One good result of the National Numeracy Strategy has been the unifi cation 
of the key objectives loosely linked to age, making it slightly easier to diagnose 
where a student might be having diffi culties. Solving the problem then becomes 
the next issue. In school, once the issue was identifi ed we would then either take 
a child a step back in the key objectives or match a ‘Springboard’ (government-
sponsored small-group intervention program) to suit the child’s needs.

The next dilemma is when, how, and who should work with identifi ed stu-
dents. Working in the groups at the same time as the math lesson in the class, 
worked in some cases, but only if children were not missing the introduction of 
a topic. Withdrawing groups of children with diffi culties and working at a differ-
ent time (extra math) has also worked. Giving some of the tasks for homework, 
provided the student has been clear about what to do, has also worked.

The dilemma for teachers is always when and who should supervise, in effect 
teach these students. Often it comes to teaching assistants who may not have the 
confi dence or indeed the expertise to ‘teach’. In such cases, the teacher needs to 
fi nd the time to organize the class to leave with a teaching assistant whilst they 
themselves teach the intervention group.

In schools we have found the Wave 3 material, recently introduced by the 
Government for individualized interventions, excellent for diagnosing and track-
ing back to where problems may have initially began. When we fi nd time to plan 
with one of our experienced and confi dent Teaching Assistants in Mathematics 
using the Wave 3 intervention materials, we fi nd that this is the most success-
ful, whether used as a pre-teaching lesson, or with a small group working along-
side the whole class but using the materials separately under the support of the 
Teaching Assistant. Such materials are also used to give as homework or as the 
basis of a lesson; tracking back to revise and reinforce earlier learning; or as an 
additional supplementary approach to teaching a mathematical strategy.

Note: For further information about the details of the Springboard and Wave 
3 materials, and the ways in which these may be used in schools, the reader may 
refer to information on the British government’s ‘Standards Site’ website:

www.wave3.org.uk/pages/downloads/pns_wave3_108305_pub.pdf
www.standards.dfes.gov.uk/primary/features/mathematics/intervention/

springboard
www.standards.dfes.gov.uk/primary/features/inclusion/wave3feature/-
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