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   Preface 

 Infrared (IR) spectroscopy deals with the infrared part of the electromagnetic spec-
trum, it measures the absorption of different IR frequencies by a sample positioned 
in the path of an IR beam. Currently, infrared spectroscopy is one of the most com-
mon spectroscopic techniques used by the industry. With the rapid development in 
infrared spectroscopic instrumentation software and hardware, the application of 
this technique has expanded into many areas of food research. Infrared spectroscopy 
has become a powerful, fast and non-destructive tool for food quality analysis and 
control.  

 In order to refl ect this trend of rapid technology development, it is appropriate to 
publish  Infrared Spectroscopy for Food Quality Analysis and Control . The book is 
divided into two parts. Part I deals with principles and instruments including the-
ory, data treatment techniques and infrared spectroscopy instruments. Part II covers 
its applications in quality analysis and control for various foods, for example, meat 
and meat products, fi sh and related products, vegetables, fruits, dairy products and 
cereals. 

  Infrared Spectroscopy for Food Quality Analysis and Control  is written by inter-
national peers who have both academic and professional credentials, highlighting 
the truly international nature of the work. It aims to provide the engineer and tech-
nologist working in research, development, and operations in the food industry with 
critical and readily accessible information on the art and science of infrared spec-
troscopy technology. The book should also serve as an essential reference source to 
undergraduate and postgraduate students and researchers in universities and research 
institutions .
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    Introduction 

   The development of rapid analytical methods for food products relies mainly upon 
two approaches: the use of physical properties of substrates as an information sup-
ply and the automation of chemical methods. Most rapid analytical methods based 
on the physical properties of food products are spectroscopic methods. Spectroscopy 
can be split into two large groups ( Wilson, 1994 ): photonic spectroscopy, which is 
based on the study of the interaction of an electromagnetic wave with matter, and 
particle spectroscopy. The fi rst group comprises spectroscopic methods exhibiting an 
analytical potential for rapid control. The second group is represented by mass spec-
trometry and derived methods. 

   All the spectroscopic methods, except mass spectrometry, can be classifi ed according 
to the energy involved during measurement. Electromagnetic radiation, of which vis-
ible light forms a tiny part, exists as waves that are propagated from a source and move 
in a straight line if they are not refl ected or refracted. The undulatory phenomenon is a 
magnetic fi eld associated with an electric one. The speed of the electromagnetic wave 
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4 Principles of Infrared Spectroscopy

is a universal constant  “  c , ”  equal to 3      �      10 8        m/s. This wave can be represented as a 
sinusoidal function of time: 

  y A w t�  sin .  
 (1.1)

    

   where  A  is signal amplitude,  w  is the pulsation expressed in radians per second (rad/s), 
and  t  is the time in seconds. In a second, the shape of the wave is repeated  w /2 π  times. 
This value is the frequency,  υ , in cycles per second (s  � 1 , or Hertz, for which the sym-
bol is Hz). The above equation represents a wave as a temporal phenomenon. A wave 
can also be represented as a function of the covered distance,  x , expressed by the fol-
lowing equation, which takes into account the relation between time and distance:   

  x c t� .   (1.2)      

   Combining equations (1.1) and (1.2) gives: 

  y A t A x c� � sin  sin ( )/2 2πυ πυ  
 (1.3)

    

   Wave can then be characterized by another value, the wavelength, which is the dis-
tance covered by light during a full cycle. Considering that the speed of the wave is 
 “  c  ”  meters per second and that there are  “  υ  ”  cycles per second, we get the following 
relation:   

  λ υ� c/   (1.4)      

   In spectroscopy, the wavelengths are expressed using different units, aiming to 
avoid the manipulation of large number in the considered spectral region. Usually 
centimeter, millimeter, micrometer (1        μ m      �      10  � 6        m), nanometer (1       nm      �      10  � 9        m), 
angström (1Å      �      10  � 10        m) are used. Another unit is generally used in the mid-infra-
red spectral region, the wavenumber,  υ    . Wavenumber is defi ned as the inverse of the 
wavelength expressed in centimeters: 

  υ λ� 1/   (1.5)    

   As the wavenumber is proportional to the frequency:   

  υ υ� �c   (1.6)    

   The conversion relationship is  υ     (cm  � 1 )      �      10 7 / λ , with  λ  expressed in nanometers; 
and  λ  (nm)      �      10 7 / υ    , with  υ     expressed in centimeters  � 1 .   

   In this chapter, wavelength expressed in nanometers will be used for the near-infrared 
spectral region and wavenumber for the mid-infrared spectral region. Spectral 
regions, several of them being of interest for analytical purposes, can be defi ned as a 
function of wavelength ( Figure 1.1   ): 

      ●      X-ray region (wavelengths between 0.5 and 10       nm) is involved in energy 
changes of electrons of the internal layers of atoms and molecules.  

      ●      Far-ultraviolet region (10–200       nm) is the zone corresponding to electronic 
emission from valence orbitals. In the near-UV region (200–350       nm), electronic 
transitions of the energetic levels of valence orbitals are observed. This spectral 
region is characterized by the absorption of peptidic bonds in proteins and of 
molecules presenting conjugated double bonds such as aromatic amino acids 

              



of proteins or vitamins such as vitamins A and E. In this wavelength range, 
luminescence (fl uorescence and phosphorescence) may also be observed.  

      ●      The visible region (350–800       nm) is another zone where electronic transitions 
occur. Molecules exhibiting a large number of conjugated double bonds such 
as carotenoids, chlorophylls, and porphyrins absorb energy in this region. And 
their absorption properties may be used to evaluate the color of food products.  

      ●      The near-infrared (NIR) region (800–2500       nm or 12 500–4000       cm  � 1 ) is the fi rst 
spectral region exhibiting absorption bands related to molecule vibrations. This 
region is characterized by harmonics and combination bands and is widely 
used for composition analyses of food products.  

      ●      The mid-infrared (MIR) region (2500–25 000       nm or 4000–400       cm  � 1 ) is the 
main region of vibrational spectroscopy. This region retains information, allow-
ing organic molecules to be identifi ed and the structure and conformation of 
molecules such as proteins, polysaccharides, and lipids to be characterized. 
In general, the absorption of an infrared radiation corresponds to an energy 
change ranging between 2 and 10       kcal       mol  � 1 .  

      ●      In the microwave region (100        μ m–1       cm), absorbed energy is related to molecule 
rotation. The radiofrequency region (1       cm–10       m) is the region investigated by 
nuclear magnetic resonance (NMR) and electron spin resonance.     

    History of the analytical development of 
infrared spectroscopy 

   Before the beginning of the twentieth century, infrared spectroscopy and theoretical 
studies of light evolved in parallel. In the fi rst part of the twentieth century, spectros-
copy developed at a fundamental level. The development of analytical methods based 
on NIR spectroscopy starts in the 1960s with the work of Karl H Norris ( Norris, 
1992 ). During the 1970s, the number of publications on the application of NIR spec-
troscopy in agriculture and food sectors increased tremendously, and from this date, 

X-ray NIR MIR Far IRVisibleNear UVFar UV

Micro waves Radio frequencies (NMR) 

0.5 10 nm 350 nm 2500 nm200 800
4000 cm�1 400 cm�1 100 cm�1

25 �m 100 �m

100 �m 1 mm 1 cm 10 cm 1 m

Figure 1.1 Spectral regions of interest for analytical purposes.
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6 Principles of Infrared Spectroscopy

more and more NIR spectroscopy machines and applications for routine measure-
ments were put on the market. 

    Theories of light across the centuries 

   A good discussion of the theories of light up to the beginning of the twentieth cen-
tury is given by  Massain (1966) . In Ancient Greece, several theories of light were 
described. According to Democrite, for example, lighting bodies emit particles that 
interact with eyes. Before the seventeenth century, the hypothesis on the nature of 
light remained philosophical. In his essay  Dioptrique , published in 1637, René 
Descartes presents a correct mathematical equation for refraction, known as the law 
of sine. In about 1666, Isaac Newton showed interest in white light and its decom-
position by a prism. Newton was a supporter of the corpuscular theory of light, which 
was popular for a long time, despite several experimental results disagreeing with this 
theory. In his famous book published in 1690, C Huygens stated that light originating 
from a point is a vibration that spherically propagates in a milieu called  “ ether. ”  From 
this date, the undulatory theory and the corpuscular theory of light were in competi-
tion and gave different results for the speed of light in a refringent medium. However, 
the measurement of the speed of light became possible much more later. 

   In about 1800, T Young showed that light is an undulatory phenomena and, in 1862, 
L Foucault measured the speed of light in air and water. He obtained a good estimation 
of the speed of light, fi nding it to be 2.98      �      10 8        m/s. L Foucault also demonstrated that 
light travels faster in air than in water, confi rming the undulatory nature of light. 

   The modern theory of light based on the undulation of an electromagnetic fi eld was 
developed by JC Maxwell (1831–1879). If the undulatory theory of light was estab-
lished in about 1900, the development of quantum physics at the beginning of the 
twentieth century strongly suggests the dual nature—undulatory and corpuscular—
of light. Two fundamental studies performed by Planck on black-body radiation and 
Einstein on the photoelectric effect show the quantum nature of light energy. From 
the hypothesis of Planck, an oscillator of frequency,  υ , can give or receive energy 
only by quanta of amplitude  E       �       h  υ  ,  where  “  h  ”  is a new fundamental constant. The 
value of Planck’s constant,  h , is: 6.6268      �      10  � 34  joule seconds. In 1905, Einstein 
gave a simple explanation of this phenomenon in relation to Planck’s hypothesis. The 
energy of a light beam is formed of quanta with energy equal to  h  υ .  

    Theoretical bases of spectroscopy 

   Spectroscopy can be defi ned as the study of the interaction of an electromagnetic 
wave with matter. The fi rst spectroscopic studies dealt with emission spectra or 
atomic absorption. In 1885, JJ Balmer investigated the spectrum of the hydrogen 
atom. He observed four light lines in the spectrum located at 656, 486, 434, and 
410       nm. These wavelengths are related by the following equation: 

  1 1 2 12 2/ (( / ) ( / ))λ � �R n   (1.7)    

   where  n       �      3, 4,  …  with Rydberg constant  R       �      1.097      �      10 7        m  � 1 .   

              



   In fact, it was shown later that the Balmer series extends in the ultraviolet region 
to the wavelength of 365       nm. Other experiments have shown that additional series of 
light lines exist in the ultraviolet and infrared regions. 

   The discrete nature of the wavelengths of the atomic spectrum suggests that 
the quantum nature of light energy observed by Planck and Einstein is a universal 
law that applies to electrons and atoms. In about 1912, N Bohr hypothesized that 
electrons in atoms cannot lose or gain energy according to the continuous law, but 
only by quantum jumps. Bohr postulated that the electrons move around the atomic 
nucleus according to circular orbits, but only discrete orbits are allowed. 

   However, it was soon found that the Bohr model had some theoretical limits and 
could not be applied to atoms with several electrons. Several years after Bohr pro-
posed his model, E Schrödinger and W Heisenberg separately proposed a new theory, 
quantum mechanics. This corresponds to a new approach in physics in which newto-
nian determinism is replaced by a probabilistic approach. A quantum object (photon, 
electron, as an example) is totally described by a time and space function, the wave 
function,  Ψ , Quantum mechanics is the basis of modern physics and is considered to 
be the most satisfactory theory at the present time ( Feynman and Hibbs, 1965 ).  

    Development of spectroscopic techniques 

   In 1800, an astronomer, W Herschel, demonstrated the existence of infrared radia-
tion for the fi rst time. Later, in 1882, W Abney and ER Festing took pictures of the 
absorption spectra on 53 compounds and showed correlations between absorption 
bands and the presence of some chemical groups in the studied molecules. In about 
1890, WH Julius investigated the spectra of 20 organic molecules using a sodium 
chloride prism. He found that the methyl group absorbs at 3450       nm. The fi rst mod-
ern investigations were done by WW Coblentz in 1905. He recorded the spectra of 
19 compounds between 800 and 2800       nm with a spectrometer equipped with a quartz 
prism and a home-made radiometer. The motions of the radiometer were measured 
with a telescope located in a contiguous room. Most of the recorded spectra showed 
bands of low intensities between 840 and 1200       nm and an intense band at 1700       nm. 
Coblentz hypothesized that the bands between 840 and 1700       nm are harmonics of a 
series that goes to 13 700       nm and that the observed bands are related to CH group. 

   The fi rst experiments showed that each compound has a unique spectrum and that 
a given chemical group present in different molecules exhibited absorption bands 
grossly located at the same wavelength. 

   In 1922, JW Ellis investigated organic liquids using an NIR spectrometer. Most of 
these liquids showed bands located at 750, 820, 900, 1000, 1200, 1400, 1700, and 
2200       nm and Ellis assigned these band to CH bonds. Later, in 1927, he hypothesized 
that the band at 3400       nm (2940       cm  � 1 ) is a fundamental band, whereas bands at 1700 
and 1200       nm are fi rst and second harmonics, respectively. Then, the bands of pri-
mary and secondary amines at about 1000, 1500, and 2000       nm are identifi ed as har-
monics and combination of the two fundamentals located at 3000 and 6200       nm (3330 
and 1610       cm  � 1 ). In 1928, FS Brackett arrived to split the broad band located at about 
1200       nm into three absorption bands at 1190, 1220, and 1230       nm assigned to CH 3 , 
CH 2 , and CH groups, respectively. 

History of the analytical development of infrared spectroscopy 7

              



8 Principles of Infrared Spectroscopy

   The fi rst detectors with PbS sensitive in the NIR region were discovered in the 
early 1950s. As more and more spectrometers were developed, infrared spectros-
copy became a common method in the fi eld of chemistry, used mainly to identify 
organic molecules and to assess the purity of synthesized organic molecules. At 
the same time, several researchers also investigated the structure of polymers such 
as proteins found in food products.  Elliot and Ambrose (1950)  were the fi rst to 
demonstrate the correlation between the shape of the amide I and II bands and the 
structure of polypeptides. In the 1960s,  Miyazawa and Blout (1961)  showed from 
a detailed evaluation of amide I band that each type of secondary structure (helix, 
sheet, and random) is associated with one or more characteristic frequencies. 

   For a long time the low sensitivity of diffraction grating spectrometers and the dif-
fi culty of removing the water band in the amide I region limited the investigation of 
protein solutions. Then in the mid-1960s the fi rst spectrometers including an inter-
ferometer and using Fourier transform were launched on the market. The higher sen-
sitivity of these spectrometers made it possible to popularize the technique. 

   The development of analytical applications of infrared spectroscopy started in 
1949 when the US Department of Agriculture launched a research project to evalu-
ate the quality of eggs ( Norris, 1992 ). The fi rst study related to the quantitative anal-
ysis of a compound was published by  Hart  et al.  (1962) . In this study, the authors 
describe an analytical method based on infrared spectroscopy for the determination 
of seed moisture. 

   Over the past 20 years, the development of analytical methods has been strongly 
linked with the advance of computer technology and the progress in chemometrics. 
The history of the development of analytical applications based on infrared spectros-
copy has been reviewed by  Smith (1979) , Butler and Burns (1983),  Whetsel (1991) , 
 Burns and Margoshes (1992)  and  Bertrand (2006) .   

    Vibrational spectroscopy 

   Vibrational movements of molecules induce absorption in the infrared region. These 
absorption bands have been used for quantitative and qualitative analyses of numer-
ous molecules, and the identifi cation and the attribution of these bands to specifi c 
chemical groups give specifi c information on the investigated product. 

   Infrared radiation can also excite rotational movements of molecules, giving rota-
tion bands. These are generally superimposed on the vibration bands. They can be 
observed with high-resolution spectrometers and for gaseous molecules exhibiting 
sharp bands. 

   It appears important to model the vibrations of a given molecule, starting from a 
simple diatomic molecule. The simplest model corresponds to the harmonic oscillator. 
A slightly more complex model is the anharmonic oscillator. The approach based on 
classical mechanics is a good starting point to study vibrational spectroscopy. It allows 
the potential energy of this simple molecular system to be calculated and a Hamilton 
function built. These models can be improved by the introduction of quantum mechan-
ics, allowing the rough calculation of the position of the absorption bands. 

              



    Development of vibrational models 

   As a rough estimate, the vibrational movements of two atoms of a diatomic molecule 
can be considered to be like the compression and extension movements of a spring—
the atoms can attract or push away. 

    Harmonic oscillator 
   The simplest model corresponds to a mass,  m , bound to a spring with no mass. This 
model is defi ned by the strength constant,  k , measuring spring tightness, the displace-
ment of the molecule,  q       �       r      �      r0  ,  and the moving of the molecule from its equilib-
rium position,  r  0 . If the spring responds to Hooke’s law, the strength,  f , applied to the 
particle is proportional to the molecule movement according to: 

  f k r r k q� � � � �( )0 .   (1.8)    

   From this equation, it is possible to calculate the potential energy, and using 
Newton’s equations, the vibration frequency,  υ , can be determined since we have:   

  k m� 4 2 2π υ. .   (1.9)    

   It can be seen that the frequency is only dependent on  k  and  m . This simple model 
can be improved by using quantum mechanics. Vibrational energy, like all the ener-
gies of the molecule, is quantifi ed and can be calculated from the Schrödinger equa-
tion ( Herzberg, 1950 ;  Szymanski, 1964 ;  Colthup  et al. , 1990 ).   

   The harmonic model can be used to calculate the stretching vibration,  υ    , observed 
in a spectrum. Indeed, Hooke’s law can be transformed as follows: 

  υ π μ� �( / . ) ( / )1 2 c k√   (1.10)      

   where  μ       �      (( m  1 . m  2 )/( m  1       �       m  2 ))      �      (1/6.02      �      10 26 ), and  μ       �      reduced mass. For 
example, the strength constant is 480       N.m  � 1  and  μ  equals 0.98 for isotope 35 of 
the HCl molecule. From the above equation, the calculated stretching vibration is
υ       �      2900       cm  � 1 .  

    Anharmonic oscillator 
   The harmonic model is the simplest one and it can provide a rough idea about the 
location of the fundamental bands of very small model molecules. However it is not 
relevant for real molecules. The anharmonic model is much more complex and it 
will not be described here. For interested readers, this subject has been addressed by 
 Lachenal (2006) ,  Diem (1993) , and  Duncan (1991) .   

    Polyatomic molecules 

   Considering a molecule with  N  atoms, each atom can be located by three coordi-
nates:  x ,  y , and  z . The molecule consequently has 3 N  characteristic coordinates or 
3 N  degrees of freedom or 3 N  fundamental vibrations or 3 N  vibration modes. If the 
values of these coordinates were constants, the molecule would be  “ frozen ”  and the 
bond lengths and values for the stretching angles would be constant. However a mol-
ecule can move and deform in the space at room temperature. 

Vibrational spectroscopy 9

              



10 Principles of Infrared Spectroscopy

   The degrees of freedom are split in three groups corresponding to translation, 
vibration and rotation. A translation movement requires three degrees of freedom 
among the 3 N  ones, allowing 3 N      �   3 degrees. If the molecule is non-linear, three addi-
tional degrees of freedom, associated with the three orthogonal axes, are necessary to 
describe rotation movements, leading to 3 N      �   6 degrees or fundamental vibrations. 

   A normal mode of vibration of a polyatomic molecule can be defi ned as a state of 
vibration where each atom has a simple harmonic movement around its equilibrium 
position. Each atom of the molecule exhibits the same oscillation frequency and in 
general, the oscillations are in phase.  Figure 1.2    shows the vibration modes for a non-
linear molecule—water. And the vibrations of a CH 2  group are shown in  Figure 1.3   . 

   A molecule may exhibit one (or more) plane of symmetry (see  Szymanski, 1964  and 
 Colthup  et al. , 1990 , for more information on this subject). Water molecules present an 
axis of symmetry, C 2 , and two planes of symmetry ( Figure 1.4   ). A consequence of the 
plane of symmetry is the existence of symmetric and antisymmetric vibrations (       Figures 
1.2 and 1.3 ). By convention, the vibrations are classifi ed according to the wavenumber 
and as a function of their degrees of symmetry. In that way, the symmetric stretch-
ing vibration of water exhibiting the highest frequency (3652       cm  � 1 ) is called  ν  1 . The 
symmetric bending vibration observed at 1590       cm  � 1  is named  ν  2 , and the antisymmet-
ric bending vibration at 3755       cm  � 1  is called  ν  3 . These three frequencies, found in the 
infrared spectrum of water, are fundamental frequencies. 

   In general, the bonds between light atoms vibrate at higher frequencies than 
the bonds between heavy atoms. It is observed for carbon atom bound to another 

Symmetric stretching; 3657 cm�1

Antisymmetric stretching; 3756 cm�1

Bending; 1595 cm�1

Figure 1.2 Normal vibration modes for a water molecule.
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Figure 1.3 Wagging, twisting, and rocking vibrations of the CH2 group.

              



atom: when the reduced mass,  μ , increases, the frequency decreases. The frequencies of 
C–H, C–D, C–O, C–Cl, and C–Br bonds are 3000, 2280, 1100, 800, and 550       cm  � 1 , 
respectively. However the strength constant,  k , of the bond also has to be taken into 
account. For example, due to a higher strength constant, the H–F bond vibrates at a 
higher frequency than the C–H one. The strength constant also changes as a function 
of the type of bond: the value of the strength constant for the C�    C bond is about 
twice that of the C–C one. As a consequence, the vibration frequency of C  �  C is 
located at 1650       cm  � 1 , compared with 1200       cm  � 1  for C–C. It has also been demon-
strated that bending movements are less energetic than stretching ones. In that way, 
the bending frequency of C–H bond is close to 1340       cm  � 1 , whereas its stretching 
frequency is observed at about 3000       cm  � 1 . 

   The intensity of the bands is related to the nature and polarity of the bond. Indeed, 
the C�O bond, formed by different atoms and highly polarized, strongly absorbs in 
the MIR region, while C�    C bond absorbance in the MIR region is much weaker.   

    Assignment of spectral bands in near- and 
mid-infrared regions 

   Major food components are generally complex molecules resulting from the polym-
erization of monomers such as amino acids or carbohydrates. These monomers 
exhibit specifi c chemical groups such as carboxylic and amine functions in amino 
acids. As each chemical group may absorb in the infrared region, it appears useful 
in a fi rst step to clearly identify the characteristic absorption bands of these groups 
in the near- and mid-infrared regions. For further information on this subject, the 
reader may refer to  Robert and Dufour (2006) ,  Osborne and Fearn (1986) ,  Pavia  
et al.  (1979) ,  Williams and Norris (1987)  and  Wojtkowiak and Chabanel (1977) . 

    General rules of assignment 

    Aliphatic chain 
   C–H bonds, which are found in large quantities in organic molecules, show stretch-
ing vibrations between 2750 and 3320       cm  � 1  in the MIR region. The location of these 
bands is related to carbon hybridization. As saturated aliphatic molecules are charac-
terized by absorption bands at about 3000       cm  � 1 , vinylic and acetylenic groups present 

H

H

O
C2

Figure 1.4 Axes of symmetry and planes for water molecule.
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12 Principles of Infrared Spectroscopy

absorption bands at 3100       cm  � 1  and 3300       cm  � 1 , respectively. A fi ne investigation of 
stretching band location makes it possible to discriminate methyl groups from methyl-
ene and methyne ones. The presence of methyl or methylene function can be assessed 
by the observation between 1465 and 1370       cm  � 1  of the bending vibrations of C–H 
bonds. For alcenes, the deformation outside of the plan of the C–H bond is character-
ized by a relatively intense absorption band between 650 and 1000       cm  � 1 . The stretch-
ing vibration of the double bond C     �     C (non-conjugated) is observed between 1640 
and 1666       cm  � 1 . 

   In the NIR region, the fi rst and second harmonics for C–H stretching vibrations 
are observed at about 1700       nm and 1200       nm, respectively. Combination bands involv-
ing stretching and bending of the C–H bond may be identifi ed between 2000 and 
2500       nm and, with a lower intensity, between 1300 and 1440       nm. 

   The spectra of hexane and dodecane in the MIR region are shown in  Figure 1.5   . 
Stretching vibrations observed between 2850 and 2962       cm  � 1  are characteristic of 
 sp  3  carbons and allow the identifi cation of methyl and methylene groups. For methyl 
groups, the asymmetric vibration  ν  a  CH 3  is located at 2962       cm  � 1  for hexane and at 
2956       cm  � 1  for dodecane, whereas symmetric vibrations  ν  s  CH 3  are observed at 2876 
and 2872       cm  � 1 , respectively. The hexane methylene group shows an asymmetric 
stretching vibration  ν  a  CH 2  at 2926       cm  � 1  (2922       cm  � 1  for dodecane), as well as a sym-
metric vibration  ν  s CH 2  at 2864       cm  � 1  (2852       cm  � 1  for dodecane). Dodecane, exhibiting 
a larger number of methylene than hexane, presents a lower absorbance ratio,  A  CH3 /
 A  CH2 , than hexane. The asymmetric bending vibrations  δ  a  CH 3  of methyl groups, as 
well as the bending vibration of methylene group  δ  CH 2  are located at about 1466       cm  � 1 . 
An identifi cation of methyl groups can be performed by the analysis of the symmetric 
bending band at 1378       cm  � 1  ( δ  s  CH 3 ). For a number of CH 2  groups equal to or larger 
than 4, such as in hexane and dodecane, the methylene bending vibration in the plan, 
 δ  r  CH 2 , shows an intense absorption band at about 720       cm  � 1 . 

   In the NIR region ( Figure 1.5 ), the second harmonics assigned to the stretching 
of C–H bonds give a weak absorption band at about 1200       nm. In this region, hex-
ane shows two bands at 1186 and 1208       nm, whereas dodecane is characterized by a 
band at 1208       nm and a shoulder at 1186       nm. The stretching and bending combina-
tion bands of C–H groups are observed between 2250 and 2500       nm. In the 1400       nm 
region, weak combination bands are assigned to 2 ν  C–H      �       δ  C–H. 

   The MIR spectrum of 1-hexene shows characteristic absorption bands of C �     C 
double bond and of the terminal methylene group at 3084, 1642, 992, and 908       cm  � 1 . 
As the stretching vibrations  ν       �      C–H are observed at 3084       cm  � 1 , out of plan bend-
ing vibration ( δ  op ) of this chemical group are characterized by bands at 992 and 
908       cm  � 1 . In the near-infrared region, the fi rst harmonic located at 1628       nm is 
assigned to  � C–H vibrations. In the region of combination bands, three absorption 
bands at 2112, 2168, and 2228       nm involved stretching vibration of the C �     C double 
bond. While the band at 2112       nm is assigned to  ν       �      CH 2       �       ν  C     �     C, the ones at 2168 
and 2228       nm originate from  ν  a  CH      �       ν  C     �     C and  ν  s  CH      �       ν  C �   C, respectively.  

    Hydroxyl group 
   This chemical group, found in molecules such as alcohols, organic acids, or water, 
exhibits in the MIR region a strong absorption band between 3200 and 3600       cm  � 1 . 

              



When this chemical group is involved in hydrogen bonds with other molecules, a 
broad absorption band centered at about 3300       cm  � 1  is observed. The O–H groups 
without hydrogen bonding are characterized by a sharp band at about 3600       cm  � 1 . 
In addition, the position of this stretching band depends on temperature. In the NIR 
region, the fi rst harmonic of stretching vibration,  ν        OH, is located between 1400 and 
1500       nm. 

   The spectrum of 1-hexanol is characterized by a broad band  ν  OH at 3314       cm  � 1  
and by the asymmetric stretching of the C–O bond at 1056       cm  � 1 . This  ν  a  CO fre-
quency is typical of primary alcohol. In the NIR, the fi rst harmonic of the stretch-
ing vibration  ν  OH exhibits a broad band centered at 1500       nm. More specifi cally, the 
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Figure 1.5 (a) Mid-infrared and (b) near-infrared spectra of hexane (1) and dodecane (2).
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14 Principles of Infrared Spectroscopy

combination band  ν  OH      �       δ  OH is observed at 2086       nm. Surprisingly, the C–O bond 
does not exhibit absorption band in the NIR region. 

   Water is a molecule that strongly absorbs in the NIR and MIR regions. The spec-
trum of water exhibits a broad and intense band at 3300       cm  � 1  corresponding to  ν  OH 
( Figure 1.6   ). The  δ  OH bending band, less intense, is observed at 1638       cm  � 1 . 

   In the NIR region, the spectrum of water exhibits two strong bands at 1442 and 
1932       nm ( Figure 1.6 ). While the frequency at 1442       nm is typical of the fi rst har-
monic of  ν  OH vibration, the one at 1932       nm originates from the combination of 
 ν  OH      �       δ  OH.  
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Figure 1.6 (a) Mid-infrared and (b) near-infrared spectra of water.

              



    Carbonyl group 
   The carbonyl group, found in aldehydes, ketones, acids, esters, and amides, strongly 
absorbs in the MIR between 1650 and 1850       cm  � 1 . The precise location of the 
stretching vibration  ν  C     �   O depends on resonance effects and hydrogen bonding. In 
the NIR, harmonics associated with the carbonyl group are expected at about 1160, 
1450, and 1950       nm. Even if they have been observed for several molecules, the 
absorbance of these harmonics is generally so weak that it cannot be used for ana-
lytical purposes. 

   Hexanal MIR spectrum shows a stretching vibration of the carbonyl group at 
1724       cm  � 1  and the C–H bond of the aldehyde group is characterized by two bands 
(2820 and 2716       cm  � 1 ) resulting from Fermi resonance between  ν  CH and 2 δ  op  CH. In 
the NIR, the aldehyde group shows two combination bands  ν  CH      �       ν  C �   O at 2200 
and 2246       nm. The shoulder at 2130       nm is assigned to the combination  ν  CH      �       ν  C �     O 
for C–H groups which do not belong to the aldehyde group. 

   The aliphatic ketones, particularly 2-hexanone, show in the MIR a stretching 
vibration at 1714       cm  � 1  corresponding to the carbonyl group. The ketones absorb at a 
lower frequency than aldehydes since they incorporate a second acyl group donor of 
electrons. The absorption band at 1358       cm  � 1 , relatively intense, corresponds to the 
symmetric bending of the methyl group adjacent to the carbonyl group. Moreover, 
stretching and bending vibrations coupling of C–CO–C accounts for the absorption 
band at 1168       cm  � 1 . The NIR spectrum of 2-hexanone is similar to the hexanal spec-
trum, except for the combination bands specifi c to the aldehyde group. 2-Hexanone 
shows absorption bands at 1906, 1960, 2112, and 2150       nm. 

   The MIR spectrum of hexylacetate is characterized by two intense bands at 1738 
and 1232       cm  � 1 . The 1738       cm  � 1  vibration corresponds to  ν        C �   O stretching, whereas 
 ν  a        C–O–C is observed at 1232       cm  � 1 . In addition, the symmetric stretching vibration 
( ν  s ) of C–O–C shows a weak band at 1034       cm  � 1 . The NIR spectrum of the ester is 
similar to the hexane one, except for two weak absorption bands at 1926       nm and 
2126       nm corresponding to C     �     O second harmonic and  ν  CH      �       ν  C   �     O combination, 
respectively. 

   The hexanoamide carbonyl group absorbs in the MIR at about 1658       cm  � 1  
( ν  C   �     O). This absorption band is also found in peptide and protein spectra and 
is called amide I. In the NIR, the  ν  C     �     O second harmonic is predicted at about 
2010       nm. However, the band observed at this wavelength is assigned to a combina-
tion vibration involving N–H stretching vibration. Nevertheless, the band at 2210       nm 
corresponds to  ν  CH      �       ν  C   �   O combination.  

    Nitrogen group 
   The bands of N–H stretching vibrations, located between 3300 and 3500       cm  � 1 , are 
generally weaker and sharper than the O–H ones. Whereas the primary amines are 
characterized by asymmetric and symmetric vibrations at about 3400 and 3300       cm  � 1 , 
the secondary amines show only one band. The tertiary amines do not absorb 
in this spectral region. The bending vibration  δ  NH is expected between 1560 and 
1640       cm  � 1 , whereas the out-of-plan bending  δ  op  NH shows a broad band at about 
800       cm  � 1 . Finally, the stretching vibration of the C–N bond is observed between 1000 
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16 Principles of Infrared Spectroscopy

and 1350       cm  � 1 . In the NIR, the fi rst harmonic associated with NH groups shows 
an absorption band between 1500 and 1550       nm. Combination bands involving NH 
groups are also observed at 2000       nm. 

   The stretching vibrations,  ν  a  NH 2  and  ν  s  NH 2 , in the spectrum of 1-hexylamine 
are observed at 3370 and 3288       cm  � 1 , respectively. While the bending  δ  op  NH gives 
a broad band at 800       cm  � 1 , the bending vibration  δ  NH absorbs at 1604       cm  � 1 . 
Finally, the stretching vibration of the C–N bond is observed at 1070       cm  � 1 . In the 
NIR, the primary amine is particularly characterized by the fi rst harmonic of  ν  s  NH 
at 1524       nm, as well as by a combination band  ν  NH      �       δ  NH at 2018       nm. Two other 
combination bands are observed at 2108 and 2136       nm. 

   The NH 2  group of hexanoamide is characterized in the MIR by asymmet-
ric (3354       cm  � 1 ) and symmetric (3186       cm  � 1 ) stretching, as well as by out-of-plan 
bending (634       cm  � 1 ). The stretching associated with the C–N bond is observed at 
1414       cm  � 1 . In the NIR, combination bands involving N–H bond are located at 2010 
and 2074       nm. Considering the fi rst harmonics of  ν  N–H vibration, broad bands are 
observed between 1500 and 1600       nm. 

   The assignments performed on pure organic compounds are mostly transposable 
to the major components (protein, lipid, and carbohydrate) of food products. The fol-
lowing sections investigate these assignments.   

    Protein, lipid and carbohydrate absorption bands in the 
infrared region 

   With regard to food components such as triacylglycerides and proteins, the acyl 
chain of fatty acids is mainly responsible for the absorption observed between 3000 
and 2800       cm  � 1  ( Figure 1.7   ), whereas the peptidic bound C–NH is mainly responsi-
ble for the absorption occurring between 1700 and 1500       cm  � 1 . Most of the absorp-
tion bands in the MIR region, but not in the NIR region, have been identifi ed and 
attributed to chemical groups. The triacylglycerols ester linkage C–O ( � 1175       cm  � 1 ), 
C     �     O ( � 1750       cm  � 1 ) group, and acyl chain C–H (3000–2800       cm  � 1 ) stretch wave-
numbers are commonly used to determine fat ( Table 1.1   ). The infrared bands appear-
ing in the 3000–2800       cm  � 1  region are particularly useful because they are sensitive 
to the conformation and the packing of the phospholipid acyl chains ( Unemera  
et al. , 1980 ;  Casal and Mantsch, 1984 ;  Mendelsohn and Mantsch, 1986 ). For exam-
ple, the phase transition of phospholipids (sol to gel state transition) can be fol-
lowed by MIR spectroscopy: increasing temperature results in a shift of the bands 
associated with C–H ( � 2850, 2880, 2935, and 2960       cm  � 1 ) and carbonyl stretching 
mode of the phospholipids.  Table 1.2    presents the main bands of lipids in the NIR 
region. 

   The development of Fourier transform infrared (FTIR) spectroscopy in recent 
years also affords the possibility of obtaining unique information about protein 
structure and protein–protein and protein–lipid interactions without introducing per-
turbing probe molecules ( Casal and Mantsch, 1984 ). The amide I, II, and III bands 
(1700–1500       cm  � 1 ) are known to be sensitive to the conformation adopted by the 
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Figure 1.7 Spectra in the amides I and II region of Tris 50 mM (solid line), pH 7, buffer, of 
β-lactoglobulin dissolved in this buffer (dotted line) and of the protein (dashed line) after buffer subtraction.

Table 1.1 Assignment of spectral bands of stearic acid methyl ester in the mid-infrared region

Assignment Location (cm�1)

CH3 asymmetric stretching 2961
CH2 asymmetric stretching 2935
CH3 symmetric stretching 2880
CH2 symmetric stretching 2863
C�O ester stretching 1754
CH2 scissoring 1463
CH3 symmetric scissoring 1381
C–O ester symmetric stretching 1176
CH3 wagging 1123
CH2 wagging  727
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18 Principles of Infrared Spectroscopy

protein backbone ( Figure 1.8   ,  Table 1.3   ).  Figure 1.9    shows the spectra of  
β -lactoglobulin,  α -lactalbumin, and  β -casein, which are known to exhibit mainly  
β -sheet,  α -helix, and unordered secondary structures, respectively. 

   The secondary structures of proteins can be deduced from their FTIR spectra since 
there are good correlations between the amide I band (1700–1600       cm  � 1 ) ( Fox, 1989 ) 
and the levels of  α -helix,  β -sheet and unordered structure in proteins ( Dousseau and 
Pézolet, 1990 ). 

   Although the peptide bonds are essentially responsible for the absorbance of pro-
teins in the 1700–1500       cm  � 1  region, the side-chains of several amino acids (glutamic 

Table 1.2 Assignment of spectral bands of lipids in the near-infrared region

Assignment Location (nm)

C–H stretching of CH2, 2nd harmonic 1208
Combination: 2 � C–H stretching � C–H bending of CH2 1416
C–H stretching of CH2 group, 1st harmonic 1724
C–H stretching of CH2 group, 1st harmonic 1760
Combination: �C–H stretching � C�C stretching 2144
Combination: CH2 asymmetric stretching � C�C stretching 2190
Combination: C–H stretching � C–H bending of CH2 group 2304
Combination: C–H symmetric stretching of CH2 � �CH2 bending 2348
Combination: C–H stretching of CH2 group � C–C stretching 2380
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Figure 1.8 Mid-infrared spectrum of α-lactalbumin—amide I, II, and III bands.

              



Table 1.3 Amides bands of proteins in the mid-infrared region

Mode Frequency (cm�1)  Potential energy 
distributiona (%)

Amide I �1655 Stretching C–O 83
Stretching C–N 15
Bending C–C–N 11

Amide II �1560 Wagging N–H 49
Stretching C–N 33
Wagging C–O 12
Stretching C–C 10
Stretching N–Cα  9

Amide III �1300 Wagging N–H 52
Stretching C–C 18
Stretching C–N 14
Wagging C–O 11

Amide A �3300 Stretching N–H 95
Amide V �660 Twisting C–N 60
  Wagging N–H 30

aOnly contributions �5% are mentioned.
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Figure 1.9 Mid-infrared spectra of β-lactoglobulin (dashed line), α-lactalbumin (solid line), and casein β 
(dotted line).

              



20 Principles of Infrared Spectroscopy

acid, aspartic acid, glutamine, asparagine, lysine, arginine, and tyrosine) can contrib-
ute to the signal in the amide II region ( Table 1.4   ) ( Bellamy, 1975 ;  Goormaghtigh  
et al. , 1990 ). 

   The carboxylate groups of the side-chains of aspartic and glutamic acids absorb 
between 1580       cm  � 1  and 1520       cm  � 1 , the nature of the anion interacting with the car-
boxylate group determining the exact location of the band within this interval. Thus, 
 Byler and Farell (1989)  showed, by infrared spectroscopy, that the O–C–O stretching 
vibrations of glutamate and aspartate residues shifted from 1575 to 1565       cm  � 1  when 
potassium ions bound to the proteins are replaced by calcium ions. 

   The assignment of the main absorption bands of the polypeptidic chain in the 
NIR region remains critical. Indeed, there are mainly broad bands between 1100 
and 2500       nm. When second derivative is considered, the shapes of the spectra show 
differences for proteins exhibiting different secondary structure ( Figure 1.10   ). The 
main characteristic absorption bands of the peptidic bond are reported in  Table 1.5   . 
The water absorbs in this region and may affect the interpretation of the spectra. 
Water is a very strong infrared absorber with prominent bands centered at 3360       cm  � 1  
(H–O stretching band), at 2130       cm  � 1  (water association band) and at 1640       cm  � 1  
(the H–O–H bending vibration) ( Safar  et al. , 1994 ). Infrared spectroscopy can be 
used with proteins in aqueous solution. The subtraction of a large H 2 O band from 
a large absorbance spectrum of protein in H 2 O to get a small spectrum of protein 
was diffi cult using older dispersive infrared spectrometers ( Chittur, 1999 ). Precise 
subtractions of the H 2 O band are now possible because of the frequency precision 
achievable with FTIR ( Figure 1.11   ). 

   Due to the high absorbency of water at about 1640       cm  � 1  in the amide I and II 
region and to comply with the Beer–Lambert law ( Dousseau and Pézolet, 1990 ), the 
pathlength of the cuvette has to be in the 10        μ m range. The development of the atten-
uated total refl ectance (ATR) device allows the sampling problems encountered when 
collecting spectra from opaque and viscous samples to be overcome. This simple and 

Table 1.4 Characteristic bands between 1800 and 1400 cm�1 and molar extinction coeffi cients of 
amino acid side-chains in D2O

Amino acid  Frequency (cm�1) Absorbance 
(L/mol/cm)

Asp –COO� 1584 820
–COOH 1713 290

Glu –COO� 1567 830
–COOH 1706 280

Asn –C�O 1648 570
Gln –C�O 1635 550
Arg –CN3�H5 1608 500

1586 460
Tyr –OH 1615 160

1515 500
–O� 1603 350

1500 650
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Figure 1.10 Second derivative near-infrared spectra of β-lactoglobulin (dashed line), α-lactalbumin 
(solid line) and casein β (dotted line).

Table 1.5 Bands of polypeptidic skeleton of proteins in the near-infrared region

Harmonic/combination band Wavelength (nm)

Amide A, 1st harmonic 1523
Free NH stretching/amide II (1st harmonic), combination 1600
Amide A/amide I, combination 2050
Amide A:amide III, combination, or
Amide I (1st harmonic)/amide III, combination 2180
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Figure 1.11 Mid-infrared spectra (3000–2800 cm�1) of cheeses recorded at four different times during 
ripening: 1 day (___), 21 days ( __ __ ), 51 days (-—-) and 81 days ( _ . _ . ).
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22 Principles of Infrared Spectroscopy

reproducible method makes it possible to investigate the aggregation and gelation 
kinetics of  β -lactoglobulin at a molecular level ( Dufour  et al. , 1998 ). 

   Carbohydrates are other important molecules found in food products. As reported 
in  Table 1.6   , the MIR spectra of carbohydrates show four main zones of absorbance. 
At about 3220       cm  � 1 , an intense band resulting from the O–H bond stretching of glu-
cose is observed ( Figure 1.12   ). The C–H bond shows asymmetric and symmetric 

Table 1.6 Spectral bands characterizing carbohydrates in the mid-infrared region

Spectral region Observed vibrational modes

3600–2800 cm�1 O–H bond and C–H bond stretching
1500–1200 cm�1 Bending of symmetric bond (HCH) and of CH2OH
“local symmetric region”
1200–950 cm�1 C–O bond and C–C bond stretching
950–700 cm�1 COH, CCH and OCH bond bending
“fi ngerprint region” Anomeric bands between 930 and 840 cm�1

C–C bond stretching
Below 700 cm�1 Exocyclic bending of CCO bond
“carbon squeletal vibration” “crystalline region” (700 and 500 cm�1)
 Endocyclic bending of CCO and 

CCC bonds (	700 cm�1)

From Mathlouli and Koenig (1986).
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Figure 1.12 Mid-infrared spectra of glucose and fructose.

              



bending bands at 1470       cm  � 1  and 1380       cm  � 1  ( Table 1.7   ), respectively. Bands assigned 
to C–O and C–C vibrations are observed at about 1100       cm  � 1 . In the region close to 
920       cm  � 1  two vibrations of C–O–C asymmetric stretching corresponding to  α  and  β  
anomers are observed. The main bands observed in the MIR region for monosaccha-
rides, oligosaccharides, and polysaccharides are presented in  Table 1.8   .   

    Conclusions 

   For a long time, infrared spectroscopy was considered to be a method for fundamen-
tal research and characterization of the chemical structure of purifi ed molecules. 
In addition, due to the broad absorbance bands, the NIR region was considered to 
have poor potential until the early 1960s. With the development of electronics and 
computing, and the relative simplicity of NIR spectrometers, numerous applications 
based on NIR spectra have been developed over the last 30 years. The development 
of analytical methods has been made possible by the development of chemometrics. 
Indeed, the fi rst methods were based on multilinear regressions. By the 1980s, the 
global predictive methods became popular as PCs developed. They allow the iden-
tifi cation of absorption bands involved in the prediction. Predictive methods such as 
principal component regression and partial least squares are now widely used in the 
development of analytical methods for the prediction of foodstuff composition and 
quality. 

   Moreover, chemometrics makes it possible to extract relevant information from 
spectral databases related to the molecular structure of carbohydrates, proteins, and 
fats in food products, and to address the relation between their structure and tex-
ture ( Dufour  et al. , 2000 ;  Karoui and Dufour, 2006 ). In the coming years, the devel-
opment of spectroscopic methods coupled with chemometrics should increase our 
understanding of the determinants of food texture and may allow us to devise the 
structural engineering of foodstuffs.  

Table 1.7 Vibration frequencies of C–H bond in solid glucose

Assignment Location (cm�1)

CH2 1457
CH2 1337
CH2 1219
CH2 1011
CH2 1404
C1–H 1360
C1–H 1250
C1–H 1076
C1–H 1047
C1–H  911
C1–H  836

From Vasco et al. (1971).
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Table 1.8 Observed bands in the 1200–500 cm�1 region for different carbohydrates

Monosaccharides  Oligosaccharides  Polysaccharides  

Arabinose 1130 Lactose 1167 Starch 1148
1102 1139 1103
1089 1116 1077
1064 1093 1013
1047 1083  992
 992 1070

1058 Inulin 1197
Fructose 1176 1031 1162

1148 1018 1119
1133 1005 1023
1093  989  985
1075  932
1047 Maltose 1150
1029 1134
 975 1101

1070
Galactose 1151 1033

1138 1025
1102 1005
1077  989
1051
1043 Melibiose 1186
 995 1160
 975 1153
 955 1132

1122
Glucose 1145 1107

1105 1083
1077 1070
1047 1049
1017 1010
 992  971

Mannose 1166 Saccharose 1170
1118 1162
1084 1125
1070 1115
1058 1103
1033 1064
1006 1047

1037
Xylose 1190 1011

1147 1003
1125  989
1081
1053 Raffi nose 1192
1033 1152
1016 1127

1105
1077
1044
1028
1014
 995
 965
 935
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    Nomenclature 

      δ  op       out of plan bending vibration    
δ  s       symmetric bending    
h       Planck’s constant
    λ       wavelength    
R       Rydberg constant
   υ      frequency
    υ         wavenumber    
ν  a       asymmetric stretching vibration
    ν  s       symmetric stretching vibration    
Ψ       wave function
    μ       reduced mass     
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    Introduction 

   Pre-processing of spectral data is often of vital importance if reasonable results are 
to be obtained whether the analysis is concerned with exploratory data mining, clas-
sifi cation or building a good and robust prediction model. This chapter will focus 
on the pre-processing of near-infrared (NIR) data, but all the methods presented 
are applicable to mid-infrared (MIR) and infrared (IR) spectra as well. It should be 
noted, however, that the scatter phenomena mentioned regarding NIR spectroscopy 
are seldom observed in IR spectra of liquids; while in IR spectra of solid samples 
(e.g. using an ATR-IR probe) some of the same scatter effects might be present. 

   The main goal of pre-processing is to transform data in such a way that the (mul-
tivariate) signals will better adhere to Beer’s law, which states that absorbance and 
concentration are linearly correlated: 

  A lc= ε  
 (2.1)    

  2 

              



   where  �  is the molar absorptivity,  l  is the (effective) path length, and  c  is the concen-
tration of the constituent of interest. The estimation of  �  or the correct value of  l  is 
not important; what is aimed for is that the collective term  �       �       l  is constant for the 
data set, thus making the relationship between  A  and  c  linear.   

   Many physical and chemical phenomena can cause a deviation from this linear 
relationship, including scatter from particulates, interferents, molecular interactions, 
changes in refractive index at high concentrations, shifts in chemical equilibrium as 
a function of concentration, stray light, changes in sample size/path length, etc. By 
focusing on reference-independent methods (see below), two typical features of the 
spectra which have to be corrected for can be identifi ed. This is illustrated in  Figure 
2.1    showing the constant baseline offset and a curved/linear baseline. 

   Pre-processing techniques are designed to compensate for these deviations from 
linear relationships and thus to improve the linear relationship between the spec-
tral signals and analyte concentrations. Pre-processing techniques can be divided 
into two major groups: those which directly use available reference values for the 
pre-processing operation, and those that do not. The latter group is thus a reference-
independent pre-processing group, and as such provides more general tools suitable 
for studies such as exploratory studies, for example, where often no reference value 
is available. The reference-independent techniques can further be divided into two 
subgroups: scatter correction methods and derivation methods. Scatter correction 
methods include: multiplicative signal correction (MSC), also known as multipli-
cative scatter correction (including extended MSC, inverse MSC, inverse extended 
MSC and de-trending), standard normal variate (SNV) scaling, normalization and 
baseline correction. Derivation includes the following techniques: fi nite difference, 
Savitzky–Golay, and Norris–Williams. Only Savitzky–Golay derivatives will be 
discussed further in this work, as this is proven to be the most applied option. The 
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 Figure 2.1          The non-linearity in the spectra is in general caused by two scatter effects: offset and curved 
baseline.    
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reference-dependent pre-processing methods comprise primarily those techniques 
that orthogonalize the data with respect to a reference of interest ( Karstang and 
Manne, 1992 ;  Goicoechea and Olivieri, 2001 ;  Westerhuis  et al. , 2001 ). Such meth-
ods are not generally applicable and will require special attention as the response 
variables are used actively in the modeling. This chapter will therefore focus on the 
generally applicable reference-independent techniques. 

   In the following sections, data presented in  Figure 2.1  will be used as exam-
ples. The data were collected from a mixture of three sugars: fructose, glucose, and 
sucrose. There are a total of 231 samples, where the concentration of the three sugars 
ranges from 0% to 100% (w/w). The crystalline samples were all measured with an 
NIRS 6500 II instrument (Foss A/S, Denmark) over the VIS/NIR range 400–2498       nm 
with a 2       nm sampling interval. A small sample cup was used for the measurements. 
The data were obtained from a project conducted at the University of Copenhagen, 
Denmark, and have not been published before.  

    Overview of pre-processing techniques 

   As mentioned earlier, the pre-processing techniques can be divided into two main cat-
egories: reference-independent techniques and reference-dependent techniques. The 
reference-independent techniques will be discussed thoroughly, including fi gures of 
their application on the same data as shown in  Figure 2.1 . The reference-dependent 
techniques will be discussed only briefl y, including the necessary references 
appropriate to explore them further.  

    The multiplicative signal correction family 

   The multiplicative signal correction (MSC) technique was introduced by  Martens  et al. 
(1983)  and further elaborated on by  Geladi  et al.  (1985) . Originally MSC meant 
 “ multiplicative scatter correction ”  but the abbreviation has changed meaning over 
the years because it has been found to be useful for types of multiplicative problems 
other than those arising from scatter only. The basic concept of the MSC is to remove 
non-linearities in the data caused by scatter from particulates in the samples. The 
MSC operation is divided into two steps: estimation of the correction coeffi cients, 

  
x b b xorg ref  ref e= + +0 1,   

(2.2)
    

   and correction of the spectra   

  

x
x

corr
org=

-

,

b

bref

0

1   

(2.3)

    

   where the  b ’s are the correction coeffi cients,  e  is the unmodeled part, and  x org  ,  x ref  , 
and  x corr   are the original, reference, and corrected spectra, respectively. This can be 
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visualized in  Figure 2.2   , in which the slope of the curve is  b  ref,1 , while the intercept 
with the ordinate axis is the  b  0 .   

   In the original work ( Martens  et al. , 1983 ;  Geladi  et al.  1985 ) it was sug-
gested that the correction coeffi cients could be estimated from a smaller spectral 
range  containing no chemical information. This is indeed a useful approach, but it 
can be diffi cult, especially in NIR spectroscopy, to fi nd such an  “ empty ”  spectral range. 
In practise the  b -coeffi cients are often found using the entire spectrum in equation 
(2.2). Using MSC this way no subjective evaluation of the spectrum is required and any 
two users will get the same results from the MSC pre-processing. Another important 
aspect to be considered in MSC is the defi nition of the reference spectrum  x ref  . This 
can either be an a priori defi ned reference or the average spectra over a set of samples 
(e.g. the calibration set). Since it can be diffi cult to select one appropriate spectrum as 
the reference spectrum, the average over a set of samples is typically used. 

    Martens and Stark (1991)  later expanded MSC to include wavelength corrections 
and corrections for known spectra representing interferents or desired constituents. 
The fi rst expansion, inclusion of wavelength dependency, can be seen as a merging of 
the de-trending technique—fi rst introduced by Barnes  et al.  in 1989—with the MSC. 
The latter expansion is a novel idea, but with some resemblance to methods such as 
OSC, O-PLS, etc. The inclusion of the wavelength dependency in the MSC is called 
extended MSC (EMSC) in the literature, while the addition of the known spectra is 
named spectral interference subtraction (SIS) ( Martens and Stark, 1991 ). However, 
these two expansions can be readily included into one equation, thus  determining all 
the correction coeffi cients simultaneously: 

  
x x x x x b eorg ref ref known known= …⎡

⎣⎢
⎤
⎦⎥ +1 2 2

1 2λ λ , ,   (2.4)      

  
b x Xorg c= +

  (2.5)      
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 Figure 2.2          The estimation of the correction coeffi cients for multiplicative signal correction.    

              



  
b = …⎡

⎣⎢
⎤
⎦⎥b b b b b b bref ref k k0 1 2 1 2 1 2, , , , , ,λ λ   (2.6)    

   where the vector  b  holds the EMSC correction coeffi cients,  1  is a vector only 
 consisting of ones,   λ   is the wavelength axis and the  x known  ’s are the known spectra. 
 X c   in equation (2.5) denotes the entire correction matrix enclosed by brackets in 
equation (2.4), while the  “      �      ”  indicates that the so-called Moore–Penrose inverse is 
used to solve the system. Equation (2.6) indicates that the correction vector is built 
up from one coeffi cient per correction term in equation (2.4). As mentioned by 
 Martens and Stark (1991)  the different  x known   vectors should typically be orthogo-
nalized to make the computation of the matrix inverse in equation (2.5) numerically 
stable. In addition to the above-mentioned examples, it is also possible to add higher 
order wavelength dependencies or higher order reference dependencies. However, 
orders higher than the fi rst lead to two or more possible solutions for the correction 
(resulting from multiple roots for the polynomial expansion). The correct solution 
can be found as only one of the solutions gives physical/spectroscopic meaningful 
results. This can be seen from  Figure 2.3   , where the two solutions to the second-order
equation are shown for the sugar data. It becomes clear by looking at this fi gure that 
only the positive root gives physical/spectroscopic sensible result. Solving the equa-
tion for second- and third-order reference dependencies can be done mathematically, 
while higher order correction only can be solved numerically.   

   From equation (2.4) it can be seen that by removing everything but the two fi rst terms 
EMSC turns into the original MSC, while removing the reference  x ref   and the constituent 
correction  x known   the equation turns into the standard spectral dependent de-trending equa-
tion. Thus equation (2.4) summarizes a variety of pre-processing techniques, and for ease 
of use, it will be denoted simply the  “ MSC equation. ”  In some cases it is not so simple to 
obtain a known spectrum of interferences to use in the correction, as the samples are com-
plex (especially in food and feed analysis by NIR spectroscopy). Therefore the last part of 
equation (2.4) will not be available for many practical applications of MSC. 

   The effect of three variations of MSC is illustrated in  Figure 2.4   , where regular 
MSC (linear reference dependency), EMSC (linear reference plus fi rst- and second-
order wavelength dependency) and de-trending (fi rst- and second-order wavelength 
dependency) are compared. 

   As becomes apparent from  Figure 2.4 , inclusion of the reference spectra ( x ref  ) in 
the correction leads to only minor changes compared with the raw spectra. On the 
other hand, the addition of wavelength correction changes the pre-processed spec-
tra appearance considerably; spectra are positioned along the abscissa in contrast 
to along a diagonal. As can be seen for both MSC ( Figure 2.4b ) and EMSC ( Figure 
2.4c ) the pre-processing has led to a decrease in the offset between the three sam-
ples, and the data have become visibly more linear dependent on the concentration 
of the sugars. The peak around 1600       nm varies linearly with the concentration of 
fructose, while the smaller peak at 1500       nm is related linearly to the concentration 
of glucose. In the de-trending case ( Figure 2.4d ), the general slope in the spectra 
is removed, giving a nice fl at spectrum, but the  non-linearity between absorbance 
and concentration is still apparent. The offset however is somewhat reduced. 
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34 Data Pre-processing

   Inverse versions of both MSC and EMSC have also been presented in literature, 
named ISC ( Helland  et al. , 1995 ) and EISC ( Pedersen  et al. , 2002 ) respectively. The 
main difference between the  “ normal ”  signal correction and the inverse is that in the 
inverse the reference is regressed on the measured spectrum, while for the normal 
versions this is the opposite (i.e. the measured spectrum is regressed on the reference 
spectrum). Performing the inverse operation makes the scatter correction equations 
appear simpler and better conditioned as shown in the mentioned references ( Helland 
 et al. , 1995 ;  Pedersen  et al. , 2002 ). Apart from this the use of the inverse approach is 
only justifi ed if the reference spectrum contains more noise than the measured spec-
trum. This is normally not the case since the reference spectrum is often taken as the 
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 Figure 2.3          Solutions for the second-order reference correction. (a) Solution from the positive root and 
(b) solution from the negative root of the polynomial expansion.      

1100 1400 2200 2500Wavelength (nm)

30

20

�20

�30

A
bs

or
ba

nc
e

Glucose Fructose
25
50
75

75
50
25

(b)

              



 Figure 2.4          The effect of three variations of multiplicative signal correction (MSC) on the sugar-mixture spectra. (a) The raw data, 
(b) the MSC data: [ 1 x ref  ], (c) the extended MSC data: [ 1 x ref   λ   λ   2 ], and (d) the de-trended data: [ 1  λ   λ   2 ]. (The matrix brackets 
indicate which parts of equation (2.4) is included.)          
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average over a set of  N  samples, indicating that the noise level of the reference spec-
trum is of a magnitude  �  N  smaller than for the individual samples. Thus normally the 
original MSC should be preferred over the inverse versions.  

    Standard normal variate and normalization 

   The basic equation for standard normal variate (SNV) correction ( Barnes  et al. , 
1989 ) and normalization has the same form as equation (2.2) for MSC: 

  
x

x
corr

org=
- a

a
0

1
  (2.7)      

   For normalization,  a  0  will always equal zero, while  a  1  depends on the type of nor-
malization performed. There are two typical types of normalization used on spectral 
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data: total absolute sum (city-block or Taxicab norm) and square root of the total 
squared sum (Euclidean norm). 

   Taxicab norm: 
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   Euclidean norm: 
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   For the SNV technique the  a  0  is the average value of the spectrum, while  a  1  is the 
standard deviation of the spectrum: 
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   In comparison with MSC the SNV techniques do not need a reference spectrum, 
and thus no user decision for the computation. However, as there is no least squares 
step in the SNV solution, these operations are all more prone to noise than the 
more robust MSC. The technical similarities between SNV and the original MSC 
have been commented on by  Dhanoa  et al.  (1994)  and will not be discussed here 
any further. In general, SNV and the original MSC lead to very similar results (both 
 spectrally and regression-wise). 

    Figure 2.5    illustrates the application of SNV to the sugar data set. By comparison 
with  Figure 2.4 , it can be seen that the MSC and SNV corrected spectra are very 
similar, with the main difference being the ordinate axis scale. As in the case for 
MSC and EMSC, SNV has transformed the data in such a way that the corrected 
data generally have a more linear relationship between signal and concentration. The 
Euclidean base normalization often gives results similar to SNV (as is also clear in 
 Figure 2.5 ), since it is based on the square root of a squared sum as in SNV.  

    Baseline correction 

   The most common baseline correction technique used in NIR (and IR) is the de-
trending technique introduced by  Barnes  et al.  (1989) . However, more sophisticated 
methods to perform this operation exist, such as wavelets ( Schulze  et al. , 2005 ;  Davis 
 et al. , 2007 ) and iterative polynomial baseline fi tting (IPBF) ( Lieber and Mahadevan-
Jansen, 2003 ) to mention just two. 

              



   IPBF uses the same principle as de-trending and the basic difference is that in IPBF 
the fi tting of the baseline is done iteratively. First a baseline of a chosen polynomial 
order is fi tted to the sample spectrum. Then the measurement points lying above the 
estimated baseline are replaced by the predictions from the fi tted baseline. This new 
(artifi cial) baseline spectrum is then fi tted again with the same polynomial order, and 
this procedure is repeated until no new sample points are replaced. IPBF assumes 
that the baseline of the spectrum is given by the lowest points along the spectrum, 
which is not necessarily the case for NIR. However, for IR absorbance spectra this 
assumption is generally valid wherefore IR spectra could benefi t from IPBF. 

   Comparing IPBF in  Figure 2.6    with de-trending in  Figure 2.4 , it is quite clear 
that these two methods perform similarly. As for de-trending, IPBF has changed the 
 spectra, forcing them to have an almost zero baseline. The offset and spectral trend 
has been removed, but it is diffi cult to fi nd parts of the spectra that obey Beer’s law.  
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 Figure 2.5          Sugar data pre-processed by (a) standard normal variate and (b) Euclidean norm.      
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    Differentiation—Savitzky–Golay 

   The commonest technique of differentiation is the Savitzky–Golay (SG) routine 
( Savitzky and Golay, 1964 ;  Steinier  et al. , 1972 ). This routine can, in addition to 
estimating the derivative, also be used for smoothing/noise reduction. Estimation of 
the derivative is performed by running the data through a window-wise symmetric 
fi lter. This is done in order not to amplify high-frequency noise during the derivation 
process as is the case for fi nite difference derivation ( Brown  et al. , 2000 ). In SG the 
spectrum is convoluted with a window containing 2 g       �      1 points, where each win-
dow is used for the estimation of the center point (with  g  points on each side). These 
2 g       �      1 points are fi tted by a polynomial of a given order, and the coeffi cients found 
by this fi t are used for the estimation of the new value at this wavelength (either just 
smoothing or smoothing plus derivation). Thus  g  points at each end of the spectra 
will be lost.  Gorry (1990)  proposed a method to circumvent this problem of losing 
points using asymmetric windows. However, this method will probably lose fi ne 
structure at the ends of the spectra unless the polynomial fi t is of a high order. Unless 
the number of wavelengths is very limited and the loss of 2 g  points thus will be det-
rimental to subsequent analysis, this technique of circumventing the loss of points is 
not recommended. 

   The polynomial coeffi cient estimation is in principle only done once, as the coeffi -
cients will not change from one window to the next when the wavelengths are placed 
equidistant on the axis, meaning that the same vector of coeffi cients can be used 
throughout the spectra (minus the two sets of  g  points at the spectral ends), mak-
ing the computation effi cient. In the original article by  Savitzky and Golay (1964) , 
tables with the coeffi cients for various derivations and smoothing for many differ-
ent polynomial fi ttings were presented. However, there are errors in these tables, as 
pointed out and corrected by  Steinier  et al.  (1972) . Nowadays, there is no need for 
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 Figure 2.6          Iterative polynomial baseline fi tting with a second-order polynomial.    

              



these tables as the coeffi cients can be found easily through an inversion of a small 
matrix  C : 
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   where  i  is the polynomial order to which the points are fi tted. The size of this matrix 
will thus be (2 g       �      1)      �      ( i       �      1), and as such simple to compute.   

   As noted by  Wentzell and Brown (2000) , for example, matching pairs of polyno-
mials give the same estimate for the derivatives due to redundancy in the estima-
tion of the coeffi cients (i.e. linear and quadratic fi tting gives the same estimates for 
the fi rst derivative, while quadratic and cubic give the same estimate for the second 
derivative, etc.). 

   As can be seen for both of the derivative estimates in  Figure 2.7    the amount of 
noise, especially at the end of the spectra has increased. This can be countered by 
selecting a larger smoothing window, at the cost of a possible loss of important 
information at the spectral edges. Normally, using 7–11 points for smoothing and 
a second or fourth degree polynomial for the fi tting procedure is suffi cient for typi-
cal high-resolution spectra data. For the estimation of the second derivative, a higher 
number of smoothing points should in general be used, as this estimation is more 
prone to the amplifi cation of noise than the fi rst derivative, reducing the overall 
signal-to-noise ratio. The higher the degree of the derivative, the higher the number 
of points in the smoothing window is required. Even though the estimation of the 
second derivative looks quite noisy, there are areas of linearity in both the derivative 
estimations. The baseline effect has been removed in the second derivative, and the 
offset has been removed by both techniques as expected.  

    Alternative methods 

   Many alternatives to the pre-processing methods mentioned here exist, especially for 
normalization, baseline correction, and derivation. For normalization any pseudo-norm
could be used for correction such as the spectral median, interquartile range, and/
or median average deviation (MAD). Baseline correction can not only be done by 
de-trending (inside the MSC) or IPBF, but also via a wavelet transformation or a 
spline-based correction, to mention just some alternatives. For the derivative there are 
two main obvious alternative methods: fi nite differences and Norris–Williams deriva-
tion (NW) ( Norris, 1983 ;  Norris and Williams, 1984 ). The fi rst method calculates a 
simple difference spectrum between two adjacent points for the fi rst derivative and 
is therefore sensitive to high-frequency noise, making it inadequate for most spec-
troscopic data. NW is based on a simple moving average ( Massart  et al. , 1997 ) over 
points, followed by calculating the fi nite difference on this smoothed spectrum, but 
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 Figure 2.7          Savitzky–Golay (a) fi rst and (b) second derivative estimations of the sugar spectra. Both have 
been estimated by a 9-point second-order polynomial smoothing.      
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with a gap between the points used in the estimation of the derivative. The use of the 
smoothing and a gap-size makes NW less prone to high-frequency noise, as is the case 
for Savitzky–Golay derivatives, but it is diffi cult to defend the use of a gap on spectro-
scopic data (assuming that the spectra are not presented in the time domain). However, 
using the right settings, NW gives similar estimates of the  derivative as the SG.  

    Example of reference-independent methods 

   Until now only observations on the effect of reference-independent pre-processing tech-
niques on the raw spectra have been made. However, the user is often more interested 

              



in seeing how the pre-processing affects, for example, the performance and number 
of factors required in regression modeling. To illustrate this point  Table 2.1    presents 
different pre-processing schemes in combination with partial least squares (PLS) 
regression to the analyte concentration in the sugar mixture design data set. In order 
to get a good indication of the uncertainty, 1000 bootstrap samples have been drawn, 
and the remaining samples have been predicted. Thus the root mean squared error of 
prediction (RMSEP) values are an average over these bootstrap drawings (one stand-
ard deviation). 

   Four pre-processing methods all give similar, optimal RMSEP values, with MSC 
B and SNV giving near identical results and MSC C and SG1 showing even lower 
values. SG2 gives the lowest number of factors but suffers from a high RMSEP 
value. The SG2 is prone to the effect of high-frequency noise, and this starts to infl u-
ence the model already after fi ve factors indicated by overfi tting. Of the remaining 
pre-processing techniques, the MSC A, Raw, Normalization by Euclidean norm 
and especially IPBF give worse predictions than the best pre-processing methods. 
This does not come as a surprise as the latter pre-processing only showed a minor 
 linearization effect on the spectra. The fact that MSC B and SNV perform similarly 
is in accordance with observations made by  Dhanoa  et al.  (1994) . 

   It is possible to further evaluate the linearity in the data prior to and after pre-
processing by subtracting the sample with the average concentration for glucose and 
fructose from all the three spectra used in the fi gures so far. As can be seen from 
 Figure 2.8   , MSC B correction of the spectra succeeds in linearizing the data (the dis-
tance from the high glucose sample to the mean is close to equal to the distance from 
the mean to the low glucose sample), while this is not the case for the raw spectra. 
Overall, the MSC corrected multivariate signals adhere much closer to Beer’s law in 
equation (2.1).  

 Table 2.1          Prediction results for nine different pre-processing techniques  

   Method  No. of PLS factors  RMSEP (% w/w) 

   Raw  8  1.03 (0.08) 
   MSC A a : [ 1  λ   λ   2 ]  7  1.06 (0.09) 
   MSC B a : [ 1 x ref  ]  6  0.90 (0.07) 
   MSC C a : [ 1 x ref   λ   λ   2 ]  6  0.89 (0.05) 
   SNV  6  0.90 (0.09) 
   Normalization—Euclidean norm  6  1.25 (0.12) 
   IPBF—second-order polynomial  7  1.48 (0.10) 
   SG1—fi rst derivative, 9 point 
 window, second-order polynomial 

 8  0.80 (0.04) 

   SG2—second derivative, 
 9 point window, second-order 
 polynomial 

 5  1.25 (0.05) 

  RMSEP is root mean squared error of prediction reported with uncertainty intervals.    

  a  Indicates which part of equation (2.4) used in the correction.  

PLS, partial least squares; MSC, multiplicative signal correction; SNV, standard normal variate; IPBF, 
iterative polynomial baseline fi tting; SG, Savitzky–Golay.
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    Reference-dependent techniques 

   There are several reference-dependent techniques, but here we only focus on three of 
them: orthogonalization, optimized scaling, and net analyte pre-processing. 

   Orthogonalization is a group of methods and algorithms rather than one single pre-
processing technique. The goal of all the orthogonalization methods is to remove vari-
ability in the spectra which does not correlate to the reference value. The fi rst of these 
methods—orthogonal signal correction (OSC)—was introduced by  Wold  et al.  (1998) , 
which was quickly followed by several suggestions for improvement:  Sjöblom  et al.  
(1998) ,  Wise (1998) ,  Andersson (1999) , and  Fearn (2000) .  Westerhuis  et al.  (2001)  pro-
vided an excellent summary on how the different methods perform. A slightly different 
way of approaching the problem was suggested by  Trygg and Wold (2002) . 

 Figure 2.8          Difference spectra for (a) raw and (b) multiplicative signal correction B (the spectra are 
subtracted by the green spectrum).      
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   Optimized scaling (OS) was introduced by  Karstang and Manne (1992) , but has 
received limited attention.  Stordrange  et al.  (2002)  showed that it outperforms other 
pre-processing methods such as MSC, OSC, normalization, and derivation. Optimized 
scaling gives each calibration sample a different scaling in order to correct for non-
linearities which especially are present in closed data systems where the molar 
absorptivity of the different constituents of the sample may vary signifi cantly. 

   Net analyte pre-processing (NAP) was developed from the net analyte signal 
(NAS), a fi gure of merit for multivariate calibration, leading to prediction uncertainty 
estimation, etc.  Goicoechea and Olivieri (2001)  showed that it can also be used for 
pre-processing of data, much in the same way as OSC orthogonalization does.  

    Case study 

   Using a case study, we will demonstrate how the different pre-processing techniques 
affect the analysis of a real data set. The data are available from the Faculty of Life 
Sciences, University of Copenhagen ( http://models.life.ku.dk/ ), and have previously 
been reported by  Pedersen  et al.  (2002) . In this publication the data were analyzed 
with special regard to the effect of EISC pre-processing on the prediction of protein 
in single wheat kernels. Using this near-infrared transmittance (NIT) data set which 
includes a large number of samples measured over two periods we will demonstrate 
how the different pre-processing techniques perform. 

    Data 

   The data consists of 523 single wheat kernels measured by NIT in the wavelength 
range 850–1048       nm, measured every other nm. The protein content was provided by 
a reference method measured in the laboratory. It varied from 6.8 to 17.0% protein 
content in dry matter.  

    Methods 

   The PLS predictions are performed several times by randomly extracting bootstrap 
drawings from the total pool of 523 wheat samples. Each of the drawings contains 471 
measurements (90% of all data), and these samples make up the calibration set, while 
the remaining samples are used as the prediction set. Since each bootstrap drawing will 
contain more than one copy of a number of individual samples, the size of the prediction 
set varies from draw to draw. On average the prediction set contained 320 calibration 
independent measurements. A total of 1000 bootstrap draws were made, giving a good 
indication of the uncertainty in future predictions and the variation of the RMSEP value. 

   The pre-processing techniques tested are: raw spectra (no pre-processing), SNV, 
normalization by the Euclidean norm, SG with fi rst derivative, SG with second deri-
vative, fi ve types of MSC and IPBF with a second-degree polynomial fi tting. The 
polynomial fi tted for the SG was a second-degree polynomial for both fi rst and 
second derivatives. The smoothing window in SG was set to 7, 11, or 15 in order 
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to evaluate the effect of this parameter on the estimation of the derivative. The fi ve 
MSC variations are: linear reference, quadratic wavelength dependency, linear ref-
erence and up to quadratic wavelength dependency, up to quadratic reference, and 
quadratic reference and quadratic wavelength dependency. Mean-centering is per-
formed in all cases after the selected pre-processing. The number of factors in a 
model is based on the average RMSEP values from the bootstrap re-drawing, the 
standard deviation of the RMSEP, the shape of the regression coeffi cients (the vector 
should be relatively smooth), and the correlation between the dependent reference 
and the independent spectral scores in the PLS model.  

    Results and discussion 

   First it is of interest to view how the different pre-processing techniques affect the 
original spectra ( Figure 2.9   ). A Savitzky–Golay estimate of the fi rst derivative with 
7 points gave small oscillations at the end of the spectra, therefore a larger amount of 
points was required in the smoothing, in  Figure 2.9d  shown with 11 points. To fur-
ther appreciate this difference one should look at  Figure 2.9e  and  Figure 2.9f  show-
ing two different estimates of the second derivative by SG using 7 and 15 points in 
the smoothing. As shown in  Figure 2.9e , using only 7 points in the smoothing creates 
artifacts in the spectra, as oscillations are especially apparent at high wavelengths. By 
investigating the raw spectra, there is nothing indicating that such a fl uctuation is real. 
Thus the 15-point smoothing, showing a smooth second derivative, is probably a more 
accurate estimate of the true second derivative. This also indicates that it is of great 
importance to (visually) inspect the pre-processed spectra, since artifacts may pop up. 

    Figure 2.9  shows the effect all the 11 selected pre-processing techniques have 
on the spectra. The three samples shown are selected so that the relative distance 
between the spectra should be similar if Beer’s law is applicable to the protein con-
tent for these three multivariate signals. It is diffi cult to fully evaluate this by simple 
inspection of  Figure 2.9 , and even by zooming in on the MSC corrections, for exam-
ple, no obvious linear areas appear. This suggests that the number of factors should 
be quite high in this complex system. 

   These pre-processed samples were used in PLS models, and 1000 bootstrap draw-
ings were run as explained earlier. The RMSEP values given in  Table 2.2    are the 
mean bootstrap RMSEP and the standard deviation of the RMSEP values—an indi-
cation of how precise the models are. 

   By examining data in  Table 2.2 , it becomes apparent that the quadratic wavelength 
dependency correction is important in order to push the RMSEP below 0.5. A mini-
mal improvement can be achieved by adding the quadratic reference correction. The 
remaining nine methods all behave similarly, giving RMSEP values from 0.53 to 0.58. 

   The above case study shows that when dealing with real spectra, it is important 
not to look at the model’s predictive performance (RMSEP or RMSECV) only, but 
also to evaluate the appropriate character of the pre-processing in relation to the data 
recorded and the artifacts they contain. Inadequate pre-processing settings and/or 
techniques may lead to artifacts in the spectra, giving the potential of suboptimal 
correlation in the subsequent analysis.   

              



(a)
(b)

 Figure 2.9          The effect the 11 pre-processing techniques on three selected spectra from the raw data. The protein contents for the three 
spectra are shown in the fi gure of the raw data. (a) Raw data, (b) standard normal variate, (c) Euclidean norm, (d) Savitzky–Golay (SG) 
fi rst derivative with 11 points smoothing, (e) SG second derivative with 7 points smoothing, (f) SG second derivative with 15 points 
smoothing, (g) multiplicative signal correction (MSC): [ 1  λ   λ   2 ], (h) MSC: [ 1 x ref  ], (i) MSC: [ 1 x ref   λ   λ   2 ], (j) [ 1 x ref  x ref   2 ], (k) [ 1 x ref  x ref   2  
  λ   λ   2 ] and (l) IPBF with second-order polynomial fi tting. (The matrix brackets indicate which parts of equation (2.4) are included.)                          

(e) (f)

(c) (d)
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(g) (h)

(j)(i)

(l)(k)

 Figure 2.9          (Continued)  

              



    Conclusions 

   As shown and discussed previously, it is important to select the correct pre-processing 
technique for the data. In general, using MSC with linear reference and quadratic wave-
length correction leads to satisfying results. On the other hand, the use of baseline cor-
rection in general gives bad results. However, as mentioned above, this is a relevant 
technique for MIR and IR. This is of no surprise since these techniques correct for 
effects that are not normally observed in NIR/NIT spectroscopy; the baseline does 
not typically  “ move ”  with the spectra. 

   Although combining different pre-processing techniques is common in research 
and industry, it will rarely lead to signifi cant improvements to model simplicity or 
quantitative regression performance. On the other hand, from a pragmatic point of 
view the optimal pre-processing method for a given data analytical problem is the 
combination or single transformation that gives the best regression performance after 
rigorous validation for all possible variations in the data.  

    Nomenclature 

   Variables given as italic small letters (e.g.  a ) signify scalars, bold small letters (e.g.  a ) 
are vectors, and bold capital letters (e.g.  A ) are matrices. 

      1       Vector of ones
    a       Correction coeffi cients for SNV and normalization
   b      Correction coeffi cient for MSC    

 Table 2.2          The accuracy of the partial least squares (PLS) models calculated on the wheat kernels 
with different pre-processing techniques  

   Method  No. of PLS factors  RMSEP (% protein) 

   Raw  10  0.54 (0.01) 
   SNV   8  0.53 (0.01) 
   Euclidean norm   8  0.53 (0.01) 
   SG—fi rst derivative, 11 point window, 
 second-order polynomial 

  8  0.56 (0.01) 

   SG—second derivative, 15 point window, 
 second-order polynomial 

  7  0.54 (0.01) 

   MSC a :[ 1  λ   λ   2 ]   6  0.56 (0.01) 
   MSC a : [ 1 x ref  ]   7  0.58 (0.01) 
   MSC a : [ 1 x ref   λ   λ   2 ]   5  0.47 (0.01) 
   MSC a : [ 1 x ref  x ref   2 ]   9  0.54 (0.01) 
   MSC a : [ 1 x ref  x ref   λ   λ   2 ]   7  0.42 (0.01) 
   IPBF: second-order polynomial   9  0.56 (0.01) 

   a Indicates which part of equation (2.4) used in the correction.

RMSEP, root mean squared error of prediction; MSC, multiplicative signal correction; SNV, standard 
normal variate; IPBF, iterative polynomial baseline fi tting; SG, Savitzky–Golay.      
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b       Vector of correction coeffi cients for MSC
    C       Smoothing fi lter for Savitzky–Golay    
E       Unmodeled part    
g       Size of smoothing window for Savitzky–Golay    
i       Polynomial order     
λ        Vector for the wavelength axis    
m       Variable index    
M       Number of variables (or wavelengths)
    n       Sample index
    N       Number of samples    
s  x       Estimated standard deviation of the vector  x
     x          Estimated average of the vector x
      x corr        Corrected sample spectrum
    x known        A priori known constituent spectra (interferent or desired constituent)    
x org        Original sample spectrum
    x ref        Reference spectrum
    X C        Correction matrix for MSC   
x      Absolute value of x      
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    Introduction 

   Calibration is the process by which the mathematical relationship between the val-
ues provided by a measuring instrument or system and those known for the measured 

  3 

              



52 Multivariate Calibration for Quantitative Analysis

material object is established. The mathematical expression relating analytical responses 
or signals to concentrations is known as the calibration equation ( Mark and Workman, 
2003 ). Most analytical techniques use a straight line for calibration on account of its 
straightforward equation and its ability to illustrate a direct relationship between meas-
ured signals and concentrations (univariate calibration). However, a linear calibration 
model can only be useful for quantitation purposes if the analytical signal depends 
exclusively on the concentration of the specifi c analyte for which the model has been 
developed. Such exclusive dependence is the exception rather than the rule in the anal-
ysis of complex samples by spectroscopic techniques such as infrared and near-infrared 
(NIR) spectroscopies. Spectroscopic measurements are used to establish a linear rela-
tion between the absorbance (i.e. the inverse logarithm of the transmittance) or appar-
ent absorbance (viz. the inverse logarithm of the refl ectance) and concentration via 
the Beer–Lambert law ( Meehan, 1981 ). Calibration models for these techniques are 
usually constructed by least squares regression (LSR) of the absorbance (or apparent 
absorbance) values for a set of standards against their concentrations. 

   Most often, the analytical signal comprises contributions from several analytes or 
even the sample matrix, which precludes the use of models other than LSR (e.g. mul-
tivariate calibration) in order to accurately predict analyte concentrations. Multiple lin-
ear regression (MLR), which is an extension of linear regression, involves using more 
than one variable in order to predict the concentration of one or more analytes ( Mark, 
1991 ). Mathematically, MLR can be formulated as 

  y X b b 1 f� � � ��   (3.1)
    

   where  X  is the matrix containing the responses of the different variables considered 
and  b  the vector containing the regression coeffi cients for the variables.  X  and  b  can 
be expanded by including an offset term for the MLR coeffi cients. Such coeffi cients 
can be calculated by using least-squares methodology in the form   

  b̂ X X X y� �( )T T1   (3.2)
      

   Multiple linear regression is subject to two major restrictions. One is the dimen-
sion of matrix  X ; thus, the number of variables used cannot exceed that of sam-
ples. The other is that no two  X  variables should be mutually related; otherwise, 
the matrix  (X T X)  cannot be inverted. In real-world applications, where data are 
typically noisy, variables are highly unlikely to be fully correlated; however, a sub-
stantial degree of correlation between variables can lead to an unstable inverted 
matrix.  

    Multivariate calibration methods 

   A wide variety of multivariate calibration methods have now been reported, and can 
be classifi ed according to whether or not they possess a given property. Thus, an 

              



immediate distinction can be made between  linear methods  and  non-linear methods.  
Linear methods are formulated mathematically as 

  
Y b b xk k

k

K

� �
�

0
1

∑   (3.3)    

   where  b  0  and  b  k  are the target parameters,  y  is the dependent variable and  x  k  denotes 
the independent variables. Therefore, linearity here refers to the relationship between 
the dependent variable and regression parameters rather than to that between 
variables. Non-linear methods use a non-linear relationship between parameters. 
Thus, in   

  y x�α β   (3.4)
    

    α  and  β  are the target parameters. Although linear methods are more widely used, a 
number of determinations require non-linear methods.   

   Another classifi cation distinguishes between  direct methods  and  indirect methods . 
The former calculate the calibration parameters from the individually recorded sig-
nal for each analyte, whereas the latter use the analytical signals for mixtures of the 
analytes to obtain such parameters. 

   Depending on the specifi c quantity used as independent variable, calibration methods 
can be of the  classical  or  inverse  type. Classical calibration relies on a criterion directly 
related to the Beer–Lambert law and uses the analytical signal as a concentration-
dependent variable. Inverse calibration uses a more mathematical concept and, because 
the ultimate aim is to calculate a concentration, it uses concentration as a dependent 
variable and the analytical signal as the independent variable. 

   Yet another classifi cation of multivariate calibration methods distinguishes between 
 rigid methods  and  fl exible methods . The former use a preset number of terms in the 
regression equation, whereas the latter use the optimum number established by the 
method itself. Those methods using analytical information contained in a large, unre-
stricted number of variables are designated as  full-spectrum methods , whereas those 
reducing an initially large number of variables to a much smaller one without losing 
relevant analytical information are known as  variable-compression methods .  Table 3.1    
compares the characteristics of various calibration methods. 

   In  Table 3.1 , the fi rst four methods are all linear (i.e. they use a calibration model 
based on an MLR equation), whereas the fi fth, artifi cial neural networks (ANNs), 
can be applied to both linear and non-linear systems.  

    Advantages of multivariate calibration methods 

   Although multivariate calibration methods can obviously be applied to any analytical 
technique, the ease at which multi-parameter signals (e.g. the absorbance at several 
wavelengths) can be obtained in practice has facilitated its preferential expansion 
among spectroscopic techniques. The discussion that follows is therefore conducted 
in spectrophotometric terms, but can be extended to non-spectroscopic techniques. 

Advantages of multivariate calibration methods 53

              



54 Multivariate Calibration for Quantitative Analysis

   In conventional analytical methodology, analyte responses are made selective by 
using specifi c sensors or by physically isolating the analyte from its interferents. In 
many cases, however, isolating the analyte can be expensive or extremely diffi cult—
or even illogical if the interferents are to be determined as well. Multivariate calibra-
tion solves many determination problems arising from interferences or matrix effects. 

   Traditional methods for obtaining linear signals fail sometimes. For example, the 
analysis of highly absorbing samples with classical methodology requires their dilu-
tion or, alternatively, using cells of a shorter light path. Such seemingly simple opera-
tions, however, can be very diffi cult to perform or introduce new problems. Non-linear 
responses can be of instrumental, physical and/or chemical origin, and result in a 
curved response–concentration line by effect of a non-linear detector response, straight 
light generated at high optical densities, baseline drift (e.g. that caused by physical 
scattering of the light by solid particles), and shifts in the positions of bands or changes 
in their widths by effect of changes in temperature or the nature of the solvent. 

   Some spectral pre-treatments are effi cient in reducing, but not completely sup-
pressing, non-linearity. Also, occasionally, no theoretical ground for obtaining the 
signal–concentration relationship exists with which an appropriate prelinearizing 
treatment can be chosen. 

   Some slight deviations from linearity can be modeled with multivariate calibra-
tion methods at the expense of an increased complexity (e.g. by using principal com-
ponent regression (PCR) or partial least squares regression (PLSR) with additional 
principal components). Complex non-linear systems can be resolved by using non-
linear calibration methods including some PCR and PLSR variants, or intrinsically 
non-linear methods such as ANNs. 

   One major advantage of multivariate calibration methods is the reliability of their 
results for unknown samples. With univariate calibration, the presence of an uncon-
trolled interference in a sample will go undetected and invariably introduce an error 
in the results. With multivariate calibration, however, provided that a large number 
of variables are used for the analytical signal, examining the residuals can expose 
whether a given sample is  “ different ”  from those used for calibration and the result 
that it provides is thus unreliable.  

 Table 3.1          Comparison of various calibration methods  

   Calibration method  Characteristics 

   Classical least squares (CLS)  Rigid, full-spectrum method compatible with direct and 
 indirect calibration 

   Inverse least squares (ILS)  Flexible method indirect calibration only and unrestricted as 
 regards the number of variables 

   Principal component regression (PCR)  Flexible, full-spectrum, variable-compression method 
 compatible with inverse and indirect calibration 

   Partial least squares regression (PLSR)  Flexible, full-spectrum, variable-compression method 
 compatible with inverse and indirect calibration 

   Artifi cial neural networks (ANNs)  Flexible, compression method using a restricted number 
 of input variables and compatible with inverse and 
 indirect calibration 

              



    Stepwise multiple linear regression 

   The primary purpose of using a regression technique is constructing models allowing 
the value of the dependent variable,  Y , which is usually a concentration, to be pre-
dicted from experimental data (absorbance in our case) represented by the independ-
ent variable,  X  ( Kramer, 1998 ). The need to use  q  independent variables,  X q  , in order 
to explain the results entails using multiple linear regression models where each value 
of the dependent variable is expressed as a combination of polynomial terms: 

  
y a a x a x a x a x a a xi i i i q iq q iq i� � � � � � � � �0 1 1 2 2 3 3 0

. . .  ∑ ε   (3.5)      

   This general expression is substantially simpler in matrix form: 

  Y Xa� �ε   (3.6)      

   Usually, the target parameters are estimated by minimizing the summation of the 
squares of the errors ( Σ  ε   i   

2 ). 

    Classical least squares 

   This multivariate method was developed for processing spectroscopic data. As 
implied by its designation, it assumes fulfi llment of Beer’s law by each individual 
component of a mixture throughout the working range and additivity of individual 
absorbances in the mixture ( Coello and Maspoch, 2007 ). Errors in CLS models are 
assumed to be due to the spectral data used. 

   The absorbance at wavelength  j  of a mixture of  P  components can be expressed as 

  
x k c k c k c k c ej j j j jP P j� � � � � �1 1 2 2 3 3 ⋅ ⋅ ⋅   (3.7)    

   where  e j   is the random error in the measurement,  c i   the concentration of component 
 i , and  k ji   the product of the light path length (which will be constant at any wave-
length) by the absorptivity coeffi cient of component  i  at wavelength  j .   

   By making measurements at  K  different wavelengths such that  K       �       P , one can 
obtain a system of  K  equations that can be expressed in matrix form as 

  X CK E� �   (3.8)    

   where  X  ( K       �       N ) contains the spectra for  N  samples,  C  ( K       �       P ) the concentrations 
for  P  analytes in the  N  samples,  K  ( P       �       N ) the pure spectra for the  P  analytes and  
E  the error of the model.   

   The spectrum for any sample will simply be a linear combination of the spectra 
for the pure components and the error come from the spectroscopic data rather than 
the concentrations. Application of this model entails the prior knowledge of the total 
number of analytes present in the samples. 

   Depending on the way matrix  K  is calculated, calibration will be of the direct or 
indirect type. In the former case,  K  will be obtained by recording the spectra for the 
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pure components in the sample; in this way, if a constant light path length is used, 
then each column in  K  will represent the spectrum for the standard pure component 
concerned at unity concentration. 

    Indirect calibration  is done by using mixtures of all the components. With  M  
calibration standards of known concentration for the  P  analytes one can obtain an 
absorbance matrix  A  ( K       �       M ) and a concentration matrix  C  ( P       �       M ) allowing the 
previous equation to be rewritten as 

  A KC Est � �   (3.9)    

   where  E  ( K       �       M ) is the absorbance residuals matrix.   
   The values of matrix  K  ( K       �       P ) are estimated by minimizing the summation of 

the squares of the spectral errors using LSR. The solution thus obtained is 

  K̂ CC C Ast� �( )T T1   (3.10)    

   where the hat symbol denotes an estimated value of  K  and the superscript T the 
transpose of the matrix.   

   The estimated pure component spectra  K̂     (or the measured spectra for the pure 
compounds,  K ) constitute the parameters of the CLS model. 

   The concentration of each analyte in an unknown sample can be determined by 
applying the following equation to its spectrum: 

  ˆ
ˆ ˆ ˆc K K K x� �( )T T1   (3.11)    

   where  x  is the spectrum for the unknown sample.   
   Although indirect calibration has some advantages over direct calibration, it is 

much more time-consuming and less widely used as a result. On the other hand, the 
simplicity of calibration with direct CLS, which only requires recording the spec-
tra for the pure components, has made it a widespread choice, especially in UV-Vis 
spectrophotometry. For direct CLS to be applicable, the following two requirements 
must be met: (a) the components contributing to the analytical signal should all be 
known; and (b) the Beer–Lambert law should be obeyed (i.e. the absorbance of each 
component at any wavelength should be a linear function of its concentration and no 
interaction between analytes or with the sample matrix should exist). 

   Because it requires the knowledge of every possible contribution to the signal, 
direct CLS can only be used with samples of accurately known composition. Also, 
the spectra for the pure components should all be recordable and not altered by the 
presence of other components, which in practice is only the case with very dilute 
solutions. Many UV-Vis spectrophotometers come with control software including a 
 multicomponent analysis  routine based on this procedure. 

   Direct CLS has a number of advantages such as the following: 

    (a)     It allows multi-determinations to be accomplished in a simple manner.  
    (b)     All analyte responses are modeled simultaneously; as a result, predictions are 

independent of the light path length used and of multiplicative changes in the 
sample spectrum.  

              



    (c)     The use of the estimated spectra for the pure components,  K̂    , allows quali-
tative spectral information for the analytes or their mutual interactions to be 
extracted.  

    (d)     Because it is a full-spectrum method, CLS can provide increased precision 
relative to other methods using a limited number of variables.    

   However, some of these advantages depend on the precision in the calculated con-
centrations, which is obviously dictated by that in the measured absorbance, and also 
on the accuracy of the chosen model. Also infl uential is the  “ quality ”  of matrix  K , 
which is a function of spectral noise and the degree of similarity between spectra. 
Thus, very similar spectra can introduce high collinearity in the matrix columns (i.e. 
near-linear relationships between the absorbance at different wavelengths) and lead 
to spurious results in calculating the inverse of ( K  T  K ). 

   Increasing the precision of the results requires reducing spectral collinearity, and 
can be accomplished by appropriate selection of the variables or spectral mode 
(absorbance or  n th derivative mode). In fact, the selection process is the most crucial 
step in developing a CLS-based analytical procedure. The use of derivative spectra 
provides some advantages such as reduced spectral overlap and also reduced baseline 
shift and drift; however, it also reduces the signal-to-noise ratio, which can detract 
from precision. There are no universal rules for using derivative spectra in preference 
over absorbance spectra, so the choice is always necessarily empirical. 

   The analytical precision can be substantially improved by appropriate selection of 
variables. As a rule, the precision can be maximized by using a number of variables 
only slightly greater than that of analytes. However, using too few variables detracts 
from one of the principal advantages of multivariate calibration as applied to control 
analyses: the ability to detect samples departing from those used for calibration (i.e. 
samples containing uncontrolled interferences, which can be detected by examining 
the standard deviation of the spectral fi tting) (       Frans and Harris, 1985 ). 

   The CLS method performs poorly when the detector response or strong spectral 
interactions between analytes cause substantial deviations from linearity. Also, the 
method is rigid and limited in scope. In any case, it is used here as the background 
for discussion of other methods in the following sections.  

    Inverse least squares 

   When MLR is used to construct a predictive model based on signals from a multi-
analyzer (e.g. wavelengths) as inputs and a property of interest (e.g. the concentra-
tion of a component) as output, the method is referred to as  inverse linear regression  
(ILR) ( Barnett and Bartoli, 1960 ). The word  “ inverse ”  here signifi es that the model 
uses the inverse form of Beer’s law, where the concentration is expressed as a func-
tion of the absorbance: 

  Y b b x b x ei K K i� � � � �� �0 1 1 1 1⋅ ⋅ ⋅   (3.12)      
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   This equation can be expressed in matrix form as 

  Y XB E� �   (3.13)    

   where matrix  Y  ( M       �       P ) contains concentrations and matrix  X  ( M       �       K ) the body of 
spectroscopic data selected for calibration,  E  ( M       �       P ) is the matrix of the random 
residuals of the concentrations, and  B  ( K       �       P ) is the unknown matrix of regressors 
and can be calculated during calibration.   

   This model has the advantage that it requires no prior knowledge of all absorbing 
species present in the sample in order to quantify the  P  target analytes. However, 
those components not included in the quantitation process should be present in all 
samples and are implicitly modeled. This has made the ILS method widely popular, 
especially for IR spectroscopy; recently, however, it has been gradually superseded 
by variable-compression methods such as PCR and PLSR. 

   The regression coeffi cients can be calculated by least squares regression in the form 

  B̂ X X X Y� �( )T T1   (3.14)      

   Once matrix  ̂B    has been obtained, property  Y  (the analyte concentration) for a new, 
unknown sample can be estimated from the spectral data for the sample, x, as given 
below. 

  
ˆ ˆY �x BT   (3.15)

      

   The most salient implication of the ILS method is that it assumes the error of the 
model to be present in the data matrix  Y , and the method minimizes the square of 
the errors in the concentrations. Although this is not strictly true in practice (where 
the variables  X  inevitably contain some noise), it does not preclude analytical appli-
cation of the method. 

   The ILS method is probably the simplest of all analytically useful multivariate cal-
ibration methods and simplicity is a valuable asset when automation and reliability 
over time are sought. Its principal use is in the determination of a single component 
in a complex mixture. Although it could also be effective for the simultaneous deter-
mination of several components, the need to use an increased number of variables 
would detract from performance. Calibration with ILS is always of the indirect type 
and conducted with samples where the target parameter has previously been deter-
mined by using a reference method. 

   The greatest disadvantages of ILS are that it requires using a number of samples 
exceeding that of variables and that selecting the target variables is no easy task. In 
fact, ensuring acceptable results with ILS entails careful selection of the target wave-
lengths and using only a fairly small number—otherwise, the number of calibration 
samples to be analyzed with the reference method can go beyond practical limits. 

   In addition, using too many wavelengths can give rise to the typical collinearity 
problems of CLS and detract from precision. Therefore, ILS cannot benefi t from 
increased precision and the use of full spectra. 

   The ILS method has been the foundation for quantitative analyses with fi lter near-
infrared (NIR) photometers. The development of scanning instruments has facilitated 

              



the use of calibration techniques such as principal component regression (PCR) and 
partial least squares regression (PLRS), which are more robust and avoid the need 
for careful selection of the target wavelengths. 

   The procedure used to select wavelengths depends on the number of variables available. 
Today’s computers are fast enough to calculate every possible combination of up to 
six variables—using a greater number is discouraged as it considerably increases the 
risk of overfi tting. The aim is to select the calibration equation providing the closest 
fi tting. This is impossible with a large number of variables. In this situation, variables 
are selected by using the  stepwise ascending method , which compares all equations 
involving a single variable in order to select the most suitable among them. After the 
fi rst variable has been set, all binary combinations of the other variables are assayed; 
this is followed by ternary combinations and so on until the inclusion of a new term 
results in no signifi cantly improved fi tting ( Stenberg  et al. , 1960 ).   

    Calibration methods based on variable reduction 

   These methods combine the advantages of the two above-described least-squares 
methods. Because they are inverse, indirect methods, they allow individual analytes 
in mixtures to be quantifi ed without the need to know the other components. Also, 
they use the information contained in the whole spectrum, and  “ compress ”  it into 
a small number of variables. This avoids the need to select variables and facilitates 
detection of interferences and outliers. 

   The number of variables of a system can be reduced in various manners including 
the use of wavelets or Fourier coeffi cients, among others. Only the two most widely 
used for multivariate calibration in analytical chemistry are discussed here, namely: 
principal component regression (PCR) and partial least squares regression (PLSR). 
Both follow the principles of principal component regression. 

   Both PCR and PLSR assume that the information contained in the measured vari-
ables can be concentrated into a smaller number of variables in order to reduce sig-
nal to noise without losing relevant information. The two methods regress the new 
variables rather than the measured responses, and hence simplify construction of the 
calibration model and interpretation of the results. Their importance lies in the abil-
ity to solve—at least partly—typical problems such as the following: 

    (a)      Poor selectivity . Measurements of the variables  X  can be infl uenced by the 
presence of interferents accompanying the analyte. This requires using  x  vari-
ables to predict  y .  

    (b)      Collinearity.  The information contained in  X  can be redundant or even 
correlated.  

    (c)     The lack of an accurate knowledge of the infl uence of  Y  on  X . One may not 
know all sample components infl uencing  X  or their mutual interactions. Also, 
the instrument response may be impossible to linearize in full.    

   In addition to the typical features of variable reduction methods, PCR and PLSR use 
an orthogonal space for the regression, thereby avoiding the problems derived from 
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collinearity between variables. Interested readers can fi nd a comprehensive description 
of their principles, and a comparative study of their properties and results, elsewhere 
( Beebe and Kowalski, 1987 ;  Haaland and Thomas, 1988 ;  Martens and Naes, 1989 ; 
 Thomas and Haaland, 1990 ;  Thomas, 1994 ). 

   Briefl y, principal component regression (PCR) involves a principal component 
analysis (PCA) of the data matrix,  X , followed by least squares regression between 
the scores of the selected calibration samples and the reference values of the param-
eter to be modeled. The regression model is constructed similarly as in ILS except 
that PCR uses PCA scores rather than the original variables (viz. absorbance values 
at the target wavelengths). This entails previously subjecting the body of calibration 
spectra to PCA. Although Chapter 4 provides a more detailed description of PCA, 
the following section provides a brief introduction to the variable reduction process. 

    Principal component analysis 

   Principal component analysis is a variable compression method that reduces the data 
set of matrix  X  ( K       �       N ) to a much smaller number of  A  variables called principal 
components (PCs). The corresponding mathematical model is constructed from the 
expression 

  X TP E� �T   (3.16)    

   where  T  ( N       �       A ) is a matrix containing the  A  scores for the PCs,  P  ( K       �       A ) that con-
taining the  A  loadings for the PCs and  E  ( K       �       N ) the residuals matrix of the model. 
The scores are the intensities of the new  A  variables for the samples and the loadings 
the new variables obtained from the original ones. The PCs are orthogonal to each 
another, so both vectors are completely uncorrelated. One major consequence of the 
orthogonality in the PC vectors is that correlation is completely eliminated by using 
the new variables instead of the original  X .   

   The aim of PCA is to identify the directions, allowing the original data matrix to 
be reduced to a simpler one while deleting useless information. The mathematical 
algorithm used simply calculates the eigenvectors and eigenvalues of a matrix; as 
can be easily demonstrated, if the variables  X  are centered, then the vectors of the 
loadings  p a   (with  a        �       1, 2,  … ,   A  PCs) are the eigenvectors of the matrix ( X  T  X ) and 
those of the scores  t a   the eigenvalues of the matrix ( XX  T ). The most common among 
the computational algorithms available for this purpose calculate PCs in a sequential 
manner via an iterative least-squares process followed by subtraction of the contribu-
tion of each component. Each PC is determined in such a way that it will account for 
the residual variance in the data matrix  X  and the process is allowed to progress until 
the PCs equal the original variables in number and account for 100% of the variance 
in the data. 

   The algorithm initially determines the direction of maximum variability in the 
objects, then the next in signifi cance and so on. To this end, it uses any vector in the 
 K -dimensional space and rotates it about the origin in order to reach the position best 
fi tting the principal direction of the data. Points are projected onto the new,  P  1  axis, 
and their variance is calculated. An angle exists where the variance is maximal; in that 

              



position, vector  P  1  will be the fi rst PC (viz. the vector best describing the potential 
principal direction of variability in the points). The director cosines of the vector will 
be the loadings and refl ect the position of the new axis in the  K -dimensional space. By 
projecting the points in the space of  K  dimensions (the objects) onto this vector, one 
can calculate the coordinates of the points with respect to the fi rst PC (i.e. the scores). 
A simple PC computational example is described by  Massart  et al.  (1988) . 

   Multiplying the scores,  t  1 , by the loadings,  p  1  
T , allows the original matrix to be 

converted into a new matrix  X 1   such that 

  X t p1 1 1
T�   (3.17)

      

    X 1   will be different from the original matrix,  X , but constitute its best possible repro-
duction. A second PC can then be calculated from a loadings vector and its corre-
sponding scores vector: 

  X X t p t p1 1 1
T

2 2
T� � �   (3.18)      

   The process can be continued in this way until the whole original matrix has been 
resolved. 

   The product  TP  T  provides a better approximation to  X  than does that obtained in 
the previous step. Accurately reproducing  X  would in principle require using  K  load-
ings vectors and scores vectors; however, the original matrix can also be accurately 
represented by using a number of vectors  A  smaller than  K:  

  X t p t p t p E� � � � �1 1
T

2 2
T

A A
T⋅ ⋅ ⋅   (3.19)    

   since the relevant information is contained in the fi rst  A  components and the others 
only describe noise-related variations. In physical terms, the number of loadings vec-
tors will be the same as that of sources of systematic variation in the data.   

   However, the data are not compressed until the user chooses the number of PCs, 
which is much smaller than that of original variables ( A       �      �   K ). In practice, the 
choice is subjective and should rely on a balanced compromise between the need to 
explain the variance in the original data and that to avoid overfi tting.  

    Principal component regression 

   Principal component regression (PCR) performs multiple inverse regression (ILS) of 
the predictor variables against the scores rather than the original data. To this end, 
it uses the ability of PCA to resolve variability sources since the scores of matrix  X  
will contain the same information as the matrix itself. 

   The fi rst step in the process involves resolving matrix  X  into its PCs as described 
below: 

  
X TP E E� � � �

�

T Tt pa a
a

A

1
∑   (3.20)      
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   Once the optimum number  A  of PCs describing the original matrix has been cho-
sen,  X  can be represented by its scores matrix,  T : 

  T XP�   (3.21)    

   where the scores matrix,  T , and the loadings matrix,  P , are both obtained from the 
data matrix,  X .   

   Matrix  Y  can be calculated by regressing  Y  against  T : 

  Y TB E� �   (3.22)    

   where  B  is the regressors matrix and as in ILS can be calculated by least squares 
regression provided the values of  Y  in the calibration are known:   

  B̂ T T T Y� �( )T T1   (3.23)      

    T  T  T  can be easily inverted since, unlike with the original data, the scores are orthogonal. 
   Once a seemingly accurate model is developed, predicting the results for a set of new 

samples involves performing calculations similar to those used in its construction. First, 
the matrix containing the spectroscopic data for the samples in the prediction set (or the 
vector if only one sample is to be predicted),  X *  , is centered or autoscaled by using val-
ues calculated from the data matrix  X  used for calibration (the superscripted asterisk 
denotes new samples for prediction). The loadings matrix (with  A  optimum components) 
obtained in the calibration process is used to calculate the scores of the new samples: 

  T X P* *�   (3.24)    

   and the regressors matrix, also obtained during calibration, is used in combination 
with the scores for the new samples to calculate the corresponding concentrations:   

  Y T B*�   (3.25)      

   The greatest problem with PCR is that the principal components best describing the 
matrix of spectroscopic data,  X , may not be the optimum PCs for predicting new con-
centrations. Fairly often, the fi rst few PCs account for variations in the analytical sig-
nal that bears no relationship to the target analyte. This problem has been addressed 
by introducing an intermediate step involving estimating the correlation coeffi cient 
between the analyte concentrations and the scores for each component and using only 
those components exhibiting signifi cant correlation in the subsequent regression. 

   The most salient advantage of PCR over inverse MLR is that, because the former 
considers the variance between the different variables  X , it circumvents the potential 
problems arising in the mathematical calculations (viz. inverting the matrix  T  T  T ) and 
avoids the need to select variables suffi ciently independent of one another. However, 
one should always avoid the risk of  overfi tting  by using more factors than needed as 
this can lead to a model vulnerable to unexpected distortions.  Figure 3.1    depicts the 
calibration and prediction process as conducted by using a PCR algorithm. 

   Overfi tting PCR models can be avoided by using a number of techniques. Among 
them, one of the most widespread used involves choosing the number of PCs causing a 

              



change in the graph of per cent explained variance in the data against the number of PCs. 
It should be noted that PCR produces especially stable, user-friendly methods; however, 
the way PCs are obtained may not be the best with a view to constructing an appropri-
ate calibration model. In fact, the variance in  X  data that is relevant for predicting may 
constitute a small contribution to the total variance in  X  and could be lost if  “ weak ”  PCs 
are deleted.  

    Partial least squares regression 

   The PLSR method, which was introduced by  Wold (1975) , has been used as an alterna-
tive to ordinary least squares regression for solving problems involving high collinear-
ity or the need to calculate correlated  Y  variables. Since its original formulation, PLSR 
has been associated with other mathematical methods and algorithms. The algorithms 
most widely used to implement PLSR are non-linear iterative partial least squares 
(NIPALS) and SIMPLS. Some recent ones, however, depart from the classical iterative 
procedure and facilitate more global and faster regression. In any case, the variables 
 y  are related to the variables  x  via auxiliary variables called latent variables, or PLSR 
factors or components, which are linear combinations of the variables  x  1 ,  x  2 ,  … ,   x K  , 
and highly similar to the PCs calculated by PCA and used for PCR. A detailed descrip-
tion of this calibration method can be found elsewhere ( Geladi and Kowalski, 1986 ). 

   The difference from PCR is that PLSR aims at ensuring that the fi rst few latent 
variables will contain as much information of predictive use as possible. For this pur-
pose, the PLSR algorithm uses the information contained in both the spectroscopic 
data matrix,  X , and the concentration matrix,  Y , during calibration and compresses 
data in such a way that the most variance in both  X  and  Y  is explained. In this way, 
PLSR reduces the potential impact of large, though irrelevant, variations in  X  dur-
ing calibration. In PLSR, each component is obtained by maximizing the covariance 
between  y  and every possible linear function of  X . 
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 Figure 3.1          Schema for the calibration of a PCR model and the prediction of new samples. Steps: 
(1) Decomposition of calibration data matrix in scores and loadings matrix. (2) Calculation of regression 
vector. (3) Projection of prediction spectra into calibration space. (4) Prediction of the property of the new 
samples.    
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   As in PCA, matrices  X  and  Y  are centered or autoscaled prior to resolution into 
factors. Matrix  X  is used to extract a few latent variables ( a        �       1, 2,  … ,   A ). Thus, 
each matrix is resolved into a combination of  A  factors ( A       	       K ), which allows the 
simultaneous calculation of 

  
X TP E E� � � �

�

T Tt pa a
a

A

1
∑   (3.26)

      

  
Y UQ F F� � � �

�

T Tu qa a
a

A

1
∑   (3.27)      

   With  M  samples,  A  factors,  K  variables and  P  analytes, matrices  T  ( M       �       A ) and 
 U  ( M       �       A ) will be the scores matrices for blocks  X  and  Y , respectively; matrices 
 P  T  ( A       �       K ) and  Q  T  ( A       �       P ) the loadings matrices for blocks  X  and  Y , respectively; 
and  E  and  F  the residuals matrices for blocks  X  and  Y , respectively ( Kramer, 1998 ; 
 Martens and Martens, 2001 ;  Naes  et al. , 2002 ). 

   The process is started by calculating a small, though adequate, number of latent 
variables,  W ( X ) (loading weights), which are extracted from the variables in matrix 
 X ; the desired number of latent variables are stored in a scores matrix  T  which is 
used to iteratively model the variables in  X  and  Y  until convergence is reached. 
Similarly, the variables in  Y  can be modeled from those in  X  via the matrix of 
regression coeffi cients  B . The coeffi cients in  B  can be estimated as a function of the 
loadings of  X  and  Y , and  P  and  Q , respectively, in addition to  W ( X ): 

  B̂ W P W Q� �( )T T1   (3.28)      

   Unlike PCA, the loadings do not coincide fully with the direction of maximum 
variation since they have been corrected in order to maximize the predictive ability 
of matrix  Y . 

   If only the concentration of one of the components in  Y  is to be determined, even 
if all others are known, then the algorithm, PLS1, is a simplifi ed version of the com-
plete algorithm and is designated as PLS2. 

   For calibration, the regressors matrix  ̂B    allowing a sample to be predicted without 
the need to resolve it into scores and loadings matrices is calculated. Thus, if the 
spectrum for a given sample is defi ned by vector  x i  , the concentrations of the ana-
lytes  y  can be calculated from 

  ˆ
ˆy xi i� TB   (3.29)      

    Figure 3.2    depicts the calibration and prediction processes.   

    Artifi cial neural networks 

   Occasionally, the mathematical relationship between spectra and the variable to be 
modeled is non-linear. Non-linearity in a model can result from spectrum-related 

              



factors (e.g. deviations from the Beer–Lambert law at high analyte concentrations, 
a non-linear detector response). These deviations from linearity can be corrected by 
using an appropriate mathematical treatment. On the other hand, non-linearity aris-
ing from intrinsic characteristics of the target parameter can only be corrected by 
using non-linear calibration methods. A large number of methods for developing 
non-linear calibration models into especially prominents have been reported, among 
which are those based on  artifi cial neural networks  (ANNs). ANNs mimic the paral-
lel processing capabilities of the human brain: a series of processing units (neurons) 
are used to convert input variable responses into a concentration (or property) output. 
Neural networks span a very wide range of techniques that are also used for a wide 
range of applications. An ANN can be defi ned as an iterative computational method 
intended to reproduce, in a simple manner, the network connecting neurons in the 
human brain ( Zupan and Gasteiger, 1993 ). 

   Most quantitative applications of ANNs in chemical analysis rely on so-called 
 multilayer feed-forward networks  (MLFs), which use a back-propagation algorithm 
for learning. This type of algorithm is highly effective as it affords supervised learn-
ing (i.e. it can use a data set providing known responses to predict the responses of 
another data set). 

   The idea behind MLFs is very simple: a sample set for which the target parameter 
is known (calibration samples) is used to model the parameter as a function of the 
product of the measured variables by an appropriate statistical weight. Such a weight 
is iteratively calculated as the value minimizing the summation of the squares of the 
differences between the estimated and reference values. 
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 Figure 3.2          Schema for the calibration of a PLSR model and the prediction of new samples. Steps: 
(1) Simultaneous decomposition of  X  and  Y  matrix and calculation of weights matrix. (2) Calculation 
of regression matrix. (3) Prediction of new samples.    
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    Figure 3.3    depicts a typical artifi cial neuron in the form of a circle. The arrows 
(connections) converging on the circle represent input data (with their respec-
tive weights) received by the neuron and that departing from it represents the neu-
ron response, which can be transferred to neurons in the next layer or constitute the 
sought response if the neuron is in the output layer.  x i   denotes the different inputs for 
a neuron  j ,  w ij   the weight of the connection through which signal  x i   enters neuron  j  
and  o j   the neuron’s output. Because the neuron performs mathematical operations in 
two steps, it is often depicted with a horizontal line splitting it into two halves. In the 
fi rst step, the neuron evaluates the combination of all weighted signals reaching it in 
order to calculate a net summation: 

  
Net w xj ij

i
i j� �∑ θ   (3.30)      

   where parameter  θ   j   (bias) is a non-zero constant that is dealt with as another weight. 
Such a weight is also adjusted during the learning process and has a unity value for 
input data. The second step involves calculating the neuron output value,  o j  , which 
need not coincide with  Net j   and is related to it through a transfer function. 

    Architecture of neural networks 

   Neurons in an ANN are grouped into layers. The  J  neurons present in each layer 
receive an identical number of inputs  I  and hence possess an identical number of 
weights  w ij   (with  i        �       1, 2,  … ,   I  and  j        �       1, 2,  … ,   J ). All neurons in each layer 
receive a signal  X  ( x  1 ,  x  2,   … ,   x l  ) from a series of  I  neurons in the previous layer (the 
input layer receives the input data for the network and therefore contains one neuron 
per datum to be processed). The  Jo j   outputs of each layer are calculated simultane-
ously. In a multilayer architecture, the outputs are transferred to the next layer, which 
will contain  K  neurons each receiving  J  entries; therefore, the layer will have  J       �       K  
weights and provide  K  outputs (as many as neurons it contains) for transfer to the 
next layer. The output values from the last layer constitute the network output. The 
process is illustrated in  Figure 3.4   , which depicts an artifi cial neuron comprising an 
input layer, a hidden layer and an output layer. The input layer contains three neurons, 
which are depicted as squares rather than circles as they perform no computations, 
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 Figure 3.3          Schematic representation of a single neuron.    

              



the two hidden layers and the output layer a single one. In order to avoid confusion 
with the weights for the hidden layer,  w ij  , those for the output layer are denoted by 
 b j  . The optimum number of layers for network and that of neurons for each layer are 
dictated by the particular application. 

   A network architecture can be represented by ( i ,  hl ,  o ), with  i  being the number 
of neurons in the input layer,  hl  that in the fi rst hidden layer, and  o  that in the output 
layer. The network in  Figure 3.4  can thus be represented as (3, 2, 1). Some authors 
use an alternative description including the number of neurons in the hidden and out-
put layers, and stating the particular types of transfer functions used in both.  

    Transfer functions 

   The transfer functions used in ANNs can be linear or non-linear. Most often, they are 
of the sigmoidal (or logistic) type: 

  f x x( ) /( e )� � �1 1   (3.31)
      

   However, sine, hyperbolic tangent, and simple linear functions are also widely 
used. The only conditions to be met by the function of choice are as follows: 
(a) the function should be distinguishable at every point in its domain; and (b) it 
should grow monotonically (i.e. it should only increase or decrease throughout its 
domain). The use of non-linear transfer functions in a multilayer neural network ena-
bles the modeling of non-linear relationships; this makes them especially attractive 
for modeling signals, whose relationships with the target parameter (whether linear, 
logarithmic, sinusoidal) are unknown. Sigmoidal and hyperbolic-tangent functions, 
which allow non-linear relationships to be fi tted, are among the most widely used. 
The transfer functions applied to the output layer can also be linear or non-linear; 
however, the former are to be preferred as they possess a wider scope.  
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 Figure 3.4          Schema for a typical network with three input, two hidden, and one output layers (3, 2, 1).    
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    Back-propagation learning rule 

   Unlike other regression methods such as MLR, PCR, or PLSR, where the calibration 
equation can be obtained almost immediately, ANNs require subjection to a learning 
process in order to determine the target parameters. The best-known learning proce-
dure is the one based on back-propagation, by which a model equation is obtained 
and its weights are subsequently adjusted in order to reduce the prediction error in 
the output value. The process is repeated as many times as needed to achieve con-
vergence on the model parameters. The learning process is subject to specifi c rules 
intended to reduce the time needed to optimize the ANN, its complexity and the 
resulting error ( Wythoff, 1983 ). Although the learning process is intended to reduce 
the error of the model, the quality of an ANN should not be assessed in terms of the 
calibration error obtained from the training samples, but rather by analysing a set of 
samples not used in the training step (a validation set). 

   The calculated structure of an ANN tends to stabilize during the learning process; 
in fact, the calculated error for the model tends to decrease insignifi cantly, which can 
result in overfi tting (or overtraining) of the ANN. It is therefore essential to accurately 
identify the point in the learning process where the error is a minimum and stop it in 
order to avoid overfi tting. 

   The learning process is intended to produce the known output vector  Y  from an input 
signal vector  X.  This entails using a series of input–output pairs ( X h  ,  Y h  ), where  X h   can 
be a spectrum and  Y h   the concentration of one analyte or several, and subscript  h  denotes 
a specifi c sample. While learning, the network calculates an  Y 
  h   value for each  X h   and 
compares it with the known value,  Y h  ; based on this comparison, the weights are modi-
fi ed in order to improve the consistency between  Y h   and  Y 
  h .  Each iteration in the proc-
ess involves processing all ( X ,  Y ) pairs once and is repeated as many times as needed to 
ensure acceptable consistency of all ( X h  ,  Y h  ) pairs with the corresponding  Y 
  h   outputs. 

   Weight correction can be done in various ways, but is usually based on the gener-
alized delta rule: the correction  Δ  W  to be introduced is assumed to be proportional 
to a parameter  δ , which is in turn proportional to the error, and to the input vector  X.  
Once the weight vector has been corrected, the output signal for  X  should be closer 
to the correct (known) value. The delta rule is defi ned mathematically as 

  ΔW X�ηδ   (3.32)    

   where  η  is a proportionality constant known as the learning rate and dictates the rate 
at which weights are to be adjusted, and  δ  is the sought correction factor.   

   With the delta rule, a randomly chosen series of weights are used to calculate 
the outputs of the hidden layer from an input vector  X  ( x  1 ,  x  2,   … ,   x  l ) by using the 
following expression 

  
o f Netj j� ( )   (3.33)    

   where  f  can be a function of the sigmoidal or another type. Each  o j   value thus 
obtained is used as an input for the neurons in the next layer in order to calculate 
the output for such a layer and so on until the output for the last layer in the network 

              



has been obtained. The output from the last layer,  o j   
last , will be the network response. 

Once it is obtained, the error  δ  is calculated as the difference between the output 
( o j   

last ) and the known value ( y j  ). If a linear transfer function has been used—as is 
usually the case for the output layer—then the error will be given by   

  
δ j j jy olast last� �   (3.34)      

   If the transfer function is of the sigmoidal type, then the error will be the result of 
multiplying the previous one by the derivative of the sigmoidal function,  o j   

last (1      �       o j   
last ): 

  
δ j j j j jy o o olast last last last( ) ( )� � �1   (3.35)      

   With a non-sigmoidal function, the derivative will obviously be different ( Wythoff, 
1983 ). 

   Once the errors for all neurons in the last layer have been calculated, its weights, 
 w ij   

last , are calculated from 

  
Δ ΔW o Wij j j ij

last last last last(prev)� ��ηδ μ1   (3.36)      

   The above equation includes the output value for the last layer ( o j   
last , which is 

included in  δ   j   
last ) and that for the previous layer ( o i   

last � 1 , which is the input value for 
the last layer). This equation results from expanding the delta rule with a second term 
containing constant  μ  (momentum) multiplied by the weight correction calculated in 
the previous iteration (with the subscript prev in brackets); this is intended to prevent 
abrupt changes in the direction of the corrections and the model from stopping at a 
local minimum as a result. 

   The errors  δ  ij   
l   for each hidden layer from 1       �       (last      �      1) to 1       �       1 are then calcu-

lated, using the expression below: 
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   where  r  denotes the number of neurons in the (1      �      1) layer. At that point, all weights 
 w ij  

l   in layer 1 are corrected by using   

  
Δ ΔW o wij

l
j
l

j
l

ij
l� �ηδ μ1 (prev)   (3.38)

      

   The previous procedure is then repeated with each new ( X ,  Y ) pair. Interested read-
ers are referred to papers by  Zupan and Gasteiger (1993) ,  Despagne and Massart 
(1998) ,  Naes  et al.  (1993) , and  López (1997)  for a detailed description of the use of 
the delta rule. 

   The learning rate constant is very important as it dictates the rate at which weights 
are to be adjusted; the greater the constant is, the more often will weights have to be 
changed in each iteration. However, if weights vary too quickly, the process may stop 
at a local minimum or the prediction error oscillates or grows. On the other hand, too 
small changes can result in too slow learning by the network. No universal optimum 
value for this parameter exists as it depends on the particular network architecture 

Artifi cial neural networks 69

              



70 Multivariate Calibration for Quantitative Analysis

and number of samples, among other factors. Nor is there an optimum value for the 
constant as it depends on that of the learning rate. 

   Although the ANN is a powerful tool for developing quantitative models, it is 
more susceptible to overfi tting through the use of too many nodes in the hidden layer. 
Cross-validation techniques can be used to optimize the number of hidden nodes but 
this procedure is cumbersome because separate ANN models, with different number 
of hidden nodes, must be developed separately. 

   Finally, for the parameters of the ANN model there is very little or no interpreta-
tive value that eliminates any useful means for improving the confi dence of a predic-
tive model. These facts may explain why there are very few software packages for 
developing and implementing an ANN model.   

    Constructing multivariate calibration models 

   Because NIR spectroscopy is a relative technique, the samples used for calibration 
must be previously analyzed with adequate accuracy and precision. This entails using 
an instrument capable of remaining operational for a long time and a simple, robust 
enough model capable of retaining its predictive ability for new samples over long 
periods. 

   Constructing a multivariate calibration model is a complex, time-consuming proc-
ess that requires careful selection of variables in order to ensure accurate prediction 
of unknown samples. This requires knowledge not only of the target samples, but 
also of chemometric techniques in order to obtain a model retaining its predictive 
ability over time and amenable to easy updating. Because the model will usually be 
applied by unskilled operators, it should deliver analytical information in an easily 
interpreted manner. 

   The process of obtaining a robust model involves the following steps: choosing the 
samples for inclusion in the calibration set, determining the property to be predicted 
by using an appropriate method to measure such samples, obtaining the analytical 
spectral signal, constructing the model, validating it and, fi nally, using it to predict 
unknown samples. Below is described in detail each step involved in the modeling of 
analytical data. 

    Selection of calibration samples 

   This is one of the most important steps in constructing a calibration model and 
involves choosing a series of samples, which ideally should encompass all possible 
sources of physical and chemical variability in the samples to be subsequently pre-
dicted. The model will only operate accurately if both the calibration samples and 
the prediction samples belong to the same population. Usually, the body of avail-
able samples is split into two subsets, one of which is the training or calibration set 
and is used to construct the model; and the other is the validation set and is used 
for validation. Variability in the samples used to construct the model is due to the 
body of factors affecting some property of the samples in such a way as to refl ect in 

              



their spectra. Variability sources can be of diverse nature and origin. In any case, the 
samples included in the training set should be representative of the whole population 
and exhibit values of the target parameter uniformly spanning its potential range of 
variation. New samples will predict by interpolation within the model limits as no 
accurate prediction can be ensured by extrapolation. 

   One other key consideration in selecting samples to develop a calibration model 
is the potential presence of collinearity between the values of the parameters to be 
determined. Models established from collinear data are scarcely robust and can pro-
duce mathematical artifacts leading to spurious predictions ( Deming and Morgan, 
1987 ). Non-uniformity in some physical properties of the samples such as particle 
size or particle distribution may be an undesirable source of variability that can be 
corrected—but not suppressed—by spectral treatment. 

   Each sample is associated with two types of variables: independent (spectra) and 
dependent (the target parameter). The samples included in the calibration set should 
span the whole variability in both; thus, the selected samples should be uniformly 
distributed throughout the calibration range in the multidimensional space defi ned by 
spectral variability. One simple method for selecting samples based on spectral vari-
ability uses a scatter plot obtained from a PCA applied to the whole set of available 
spectra. Inspecting the most salient PCs in the graph allows one to clearly envisage 
the distribution of the sample spectra; those to be included in the calibration set are 
chosen from both the extremes and the middle of the score maps obtained and simul-
taneously checked to uniformly encompass the range spanned by the quantity to be 
determined. This method is effective when the fi rst two or three PCs contain a high 
proportion of the total variance ( Deming and Morgan, 1987 ). 

   A number of chemometric algorithms are currently available for selecting calibra-
tion samples in an effi cient manner in accordance with the previous criteria. Such 
algorithms include the D-optimal ( Ferré and Rius, 1997 ), Duplex ( Fearn, 1997 ), 
OptiSim ( Clark, 1997 ), Næs  et al.  (1990) and  Kennard and Stone (1969)  algorithms. 

   The Kennard–Stone algorithm, which aims at maximizing the Euclidian distance 
between the sample spectra, is probably the most popular one. The process is started 
by selecting a sample from the available set and then that exhibiting the greatest 
Euclidian distance from it. The process is repeated by using the second sample to 
calculate the distances from all others. The sample selected in each iteration should 
be at the maximum possible distance from those selected in all previous iterations. 

   The D-optimal algorithm selects samples in accordance with the particular calibra-
tion model to be used. To this end, it minimizes the variance of the regression coef-
fi cients. The optimum set will be that minimizing the determinant of matrix ( X T X )  � 1 . 
Unlike the Kennard–Stone algorithm, where samples are selected at random and the 
choice of the initial sample determines the composition of the fi nal set, the D-optimal 
algorithm selects samples in accordance with the equation of the particular model. 
However, this algorithm is much more complex in computational terms and a compro-
mise between the amount of information sought and its cost must inevitably be made. 

   The Duplex algorithm is a modifi ed version of the Kennard–Stone algorithm that 
allows both the calibration set and the prediction set to be established during the 
sample selection process. 

Constructing multivariate calibration models 71

              



72 Multivariate Calibration for Quantitative Analysis

   OptiSim also uses a threshold for the minimum distance between two samples in 
an iterative process. Finally, the Næs–Isaksson algorithm performs a cluster analy-
sis on the scores provided by a PCA for the spectra and selects as many samples as 
groups are defi ned in the clustering step. 

   The Kennard–Stone algorithm is among the most widely used and has been incor-
porated into some commercial software packages.  

    Reference methods and obtaining the analytical signal 

   Constructing a calibration model involves performing a multiple linear regression 
between the spectral target variables and those to be predicted, the value of which 
must be determined by using an appropriate reference method. The reference method 
used should provide accurate, precise values if the multivariate model fi nally devel-
oped is to be accurate as well. However, the precision of the model may be better 
than that of the reference values since regression averages random errors. 

   The analytical signal (viz. the body of spectra for the samples used to construct 
the model) should be obtained with the same instrument and under identical con-
ditions as those subsequently used for routine analysis in order to ensure that all 
spectral will contain the same sources of instrumental variability. To this end, if the 
target model is to be implemented in two or more different instruments, then one 
can record the spectra for the samples in each instrument and use all to construct the 
model. 

   The essential condition for spectra to be useful for constructing calibration models 
is that they should contain the information to be modeled, which is not always the 
case. Thus, the samples used to determine ash in fl our, total salts in aqueous solu-
tions, or metal ions in water typically possess properties that are not necessarily 
refl ected in their IR spectra; this precludes constructing accurate calibration models 
from IR spectral parameters. One should bear in mind that chemometrics can extract 
information present in a data set, but not create it from scratch. Also, the amount of 
information contained in the set should be large enough to allow the development of 
models with an adequate predictive ability for the target parameters.  

    Calculation of the calibration model 

   Calculating a calibration model involves processing the analytical signal in order to 
establish its most simple possible relationship with the target parameter (whether 
an analyte concentration or some physical property of the sample) ( Martens and 
Martens, 2001 ;  Naes  et al.,  2002 ). 

   The aim of calibrating is to calculate the parameters in an equation allowing a 
property in future, unknown samples to be accurately determined (i.e. with as small 
as possible a departure from the actual values). The quality of calibration models can 
be assessed via some statistical parameters, of which those allowing the mean error 
for the whole population rather than a single sample are to be preferred. The statis-
tics typically used to assess the quality of calibration models calculate the error of

              



prediction as the summation of the squares of the residuals, 
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   which is usually designated as the predicted residual error sum of squares (PRESS), 
or its mean value, which is obtained by dividing PRESS by the number of samples 
( n ) to obtain the mean square error (MSE):   
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   Some authors use the square root of MSE, which is called the root mean square 
error (RMSE), which is defi ned as 

  
RMSE

( )

�

�
�
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   or the relative standard error (RSE), defi ned as   
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   Calibration models are usually constructed from two sample sets (viz. a calibration 
set and a validation or test set) that are used to calculate MSEP or RMSEP for each 
principal component, or, alternatively, the equivalent parameters for the calibration 
set (MSEC and RMSEC). In some cases, MSE is calculated by dividing PRESS by 
the actual number of degrees of freedom,  n       �      1  �   a  (where  a  is the number of PCs 
for which the target parameter is calculated), rather than the number of samples in 
the calibration set. 

    Spectral scaling and pre-treatments 
   Pre-treating the analytical signal is intended to suppress the effect on contributions 
not associated with the information sought from the spectra in order to increase the 
accuracy and precision of the results. Although spectral signal pre-treatments reduce 
the contribution of noise, their effi ciency depends on the nature of the noise and the 
specifi c treatment used. Typical examples of signal processing methods include spec-
tral fi ltering by use of the Fourier transform and baseline correction methods. These 
pre-treatments are commonly used in IR spectroscopy, and are required in order to 
obtain simple, robust models with an acceptable predictive ability; however, the best 
choice in each situation must be chosen in an empirical manner, using a trial-and-
error approach, which is a major disadvantage. 
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   The data-processing treatments used in this context are essentially of two types: 
spectral pre-treatments (derivative spectra, standard normal variate, multiplicative 
scattering correction), which are applied to individual spectra; and spectral scaling 
(mean-centering, autoscaling), which are applied to each individual variable in all 
selected samples. The data to be used in order to construct a calibration model must 
almost inevitably be scaled; however, no universal arguments in favor of one specifi c 
treatment over the others have been formulated, so the choice is usually dictated by 
the quality of the resulting model and its predictive ability. 

   Below are briefl y outlined the spectral pre-treatments in widest use at present. A 
more detailed description is provided in Chapter 2. 

    Mean centering 
   This involves subtracting the average response from each individual response for the 
variable concerned: 

  
X X Xmc avg� �   (3.42)      

   This allows variables to be centered and constant effects suppressed as a result.  

    Autoscaling 
   This includes initial centering of the data and subsequent division of each centered 
variable by the standard deviation for the responses of the variable concerned: 

  
X

X X

Xauto
avg

sd

�
�

  (3.43)      

   Autoscaled variables are centered in zero and possess a unity standard deviation.  

    Derivation 
   Derivation of spectra exposes the variation of the absorbance with wavelength. This 
treatment suppresses constant offset and slope variations in spectra. The Savitzky–
Golay algorithm ( Savitzky and Golay, 1964 ), which is the most usual choice for this 
purpose, usually involves smoothing data by fi tting a polynomial expression to the 
data within the moving window selected for derivation. This entails previously defi n-
ing the number of points to be included in the window, and the order of the convolu-
tion polymer and that of the derivative to be obtained. The fi rst and second spectral 
derivatives reduce differences in baseline and slope, respectively, between spectra. 
Higher order derivatives are not recommended, however, as they increase noise in the 
signal and reduce its magnitude.  

    Multiplicative scattering correction (MSC) 
   MSC is used to minimize the additive and multiplicative effects of scatter arising 
mainly from differences in particle size between samples. This is done by calculating 

              



the slope,  a,  and offset,  b,  of the regression between each individual spectrum and a 
reference spectrum (usually, the average spectrum for the calibration set): 

  X aX b� �ref   (3.44)      

   Coeffi cients  a  and  b  are used to correct each spectrum by using the expression below: 

  
X

X b

acorr �
�   (3.45)       

    Standard normal variate (SNV) 
   SNV treatment autoscales each spectrum by calculating the mean and standard devi-
ation between the absorbances for the spectrum: 

  
X

X X

XSNV
avg

sd

�
�

  (3.46)      

   This pre-treatment also reduces the additive and multiplicative effects of scatter-
ing. The SNV and MSC treatments are linearly related and provide similar results. 
According to  Dhanoa  et al.  (1994) , the two are equivalent. However, while the output 
of MSC is infl uenced by the set of samples used for correction (i.e. it is set-dependent), 
that of SNV is not (i.e. it is set-independent).     

      Selection of the calibration method 
   Once the pre-treatment of choice has been applied, the calibration model is con-
structed on the grounds of the particular relationship between the analytical signal 
and the property to be determined (e.g. absorbance via the Beer–Lambert law) or of 
an empirical relationship. As stated above, a variety of mathematical algorithms are 
available for constructing models and a wide range of statistical techniques exist for 
their assessment and optimization. 

   Current spectrophotometers allow spectra containing thousands of variables for 
each sample to be obtained; this, together with the fact that samples are usually 
available in hundreds, makes variable-reduction calibration methods (PCR, PLSR, 
ANN) the best choices, not only because they reduce variables, but also because they 
suppress noise. However, fi ltering instruments that can record spectra at only a few 
wavelengths continue to be in use for which a calibration method involving no vari-
able reduction (e.g. MLR) may be more effective.  

    Selection of the spectral range 
   Choosing the most suitable spectral range for developing a calibration model is not 
an easy task and frequently it involves an endless sequence of trial-and-error runs 
until an adequate predictive ability is achieved. When the spectra for the target ana-
lyte and its potential interferents in pure form are available, one can choose the range 
where the analyte exhibits substantial bands and exclude those where the interferents 
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absorb. However, this approach is useless in the NIR region, where bands are typically 
narrow and strongly overlapped, and the analyte signal is therefore easily concealed 
by the signal for the sample matrix. In this situation, one can simply calculate the 
correlation between the absorbance at each wavelength and the target quantity in 
order to plot the resulting vector against the independent variable. Those intervals 
exhibiting the strongest correlation can be of help with a view to selecting an appro-
priate range to develop the model. This approach is used by some software pack-
ages to construct MLR models from continuous spectra ( Centner  et al.,  1996 ;  Xu 
and Schechter, 1996 ). 

   Some algorithms allow the most suitable spectral variables for modeling the inde-
pendent variable to be identifi ed. Specially effective for this purpose is the jack-knife 
algorithm ( Martens and Martens, 2000 ), which conducts successive computations in 
alternately suppressed and incorporated spectral subranges. The algorithm calculates 
the error of the model after each step and the spectral subrange used in each step is 
adopted or rejected depending on whether it substantially increases or decreases the 
quality of the model.  

    Selection of the number of factors (PCs or latent variables) 
   Choosing the optimum number of factors, principal components (PCR) or latent var-
iables (PLSR) for defi ning a model is a key step in any calibration process involving 
variable reduction. Such a number can be selected in various ways, most of which 
rely on the error of prediction obtained with variable numbers. Using a smaller than 
optimal value leads to underfi tting of the model and hence to large errors, whereas 
the opposite results in overfi tting and leads to increased noise and large errors as 
well. With small numbers of samples, the method of choice is usually cross-
validation, which uses samples from the calibration set to check the goodness of fi t 
of the model. Thus, the calibration set is split into several blocks or segments and the 
model is constructed as many times as segments are established, using a segment as 
data block in order to check the results and the other segments to develop the model; 
in this way, one segment is left out each time. The process is performed for each 
individual factor in order to calculate MSE for each segment and the output is accu-
mulated in order to obtain a reliable estimate of the predictive ability of the calibra-
tion samples. When the number of segments used equals that of calibration samples, 
the procedure is known as the  “ leave-one-out method. ”  In each run, one sample is 
left out and all others are used to construct the model, the process being repeated as 
many times as samples are in the calibration set. The resulting mean square error of 
prediction by cross-validation (MSECV) is calculated from 
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   One simple way of selecting the optimum number of factors involves plotting 
MSECV (or indeed any other error descriptor) against the number of factors and 
choosing the one corresponding to the minimum of the curve. This entails  assuming 

              



that the error decreases with increasing number of factors up to a point where fur-
ther factors contribute mainly to noise and MSECV rises by effect of overfi tting. 
Although in theory it seems reasonable, using a limited number of samples inevita-
bly introduces some error in the resulting model. 

    Figure 3.5    shows the evolution of the calibration error and two different cases of 
prediction error according to the number of factors used in the model. As can be 
seen, the calibration error decreases continuously as the number of factors increases. 
Case no. 1 of prediction error reveals that no minimum can be observed, however, 
the use of fi ve factors for case no. 2 is clearly justifi ed due to the presence of a mini-
mum of prediction error (i.e. the best predictive ability situation). 

   In the absence of a minimum, the optimum number of components can be cho-
sen by using the criterion of  Haaland and Thomas (1988) , which involves select-
ing the number of factors, with which MSECV is not signifi cantly different from 
the minimum value for the model. The minimum MSECV will be produced by a 
number of components  a  * , with the MSECV value obtained with a number of factors 
smaller than  a  *  being compared with the minimum value via an  F -test. This involves 
calculating 

  
F a

a

a
( )

MSECV( )

MSECV( )*
�   (3.48)

    

   for each component  a        �       1, 2,  … ,     a  *  and choosing as optimal the smallest number 
resulting in  F ( a )      �       F  crit , where  F  crit  is the value at a signifi cance level  α        �       0.25 for  a  
and  a  *  degrees of freedom. 

   Another recommended procedure, which is in fact the best if a large enough 
number of samples are available, involves using a set of validation samples not used 
to construct the model (i.e. test set) and predicting their values with models differing 
in the number of factors used. The number of choice will be that resulting in the low-
est RMSEP.  

1 2 3 4 5 6
# Factor

E
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Calibration

Prediction (case II)
Prediction (case I)

 Figure 3.5          Calibration and prediction errors versus number of factors for two current situations: 
case I, no minimum is observed in prediction error; case II, a clear minimum in prediction error.    
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    Outliers 
   An outlier can be defi ned as any observation not fi tting the model. One may encoun-
ter three different types of outliers in developing a multivariate calibration model, 
namely: (a)  X -sample outliers (viz. samples, for which the spectra depart markedly 
from those for the others); (b)  Y -sample outliers (viz. samples, for which the model 
provides a target value considerably different from the actual value); and (c)  X -variable 
outliers (viz. spectral variables that behave markedly differently from the others). 

   It should be noted that the word  “ outlier ”  need not be synonymous with  “ incor-
rect ” ; however, one should always ascertain whether an outlier is the result of an 
actual phenomenon or an artifact arising from some error while constructing the cal-
ibration model. In fact, identifying and suppressing outliers is of utmost importance 
since their presence can adversely affect the robustness and predictive ability of the 
resulting model. Outliers can be detected by using a number of available methods, 
and a detailed description is beyond the scope of this chapter ( Martens and Naes, 
1989 ;  Naes  et al.,  2002 ).  

      Validation of the model 

   Once the calibration model has been developed, its ability to predict unknown sam-
ples not present in the calibration set (i.e. not used to construct the model) should 
be assessed. This involves applying the model to a limited number of samples not 
included in the calibration set, for which the target property to be predicted by the 
model is previously known. The results provided by the model are directly compared 
with the reference values; if the two are essentially identical, the model will afford 
accurate predictions and be useful for determining the target property in future (i.e. 
unknown samples). The quality of the model can be assessed via the above-described 
statistics. Usually, a model is deemed accurate if it provides an RMSEP value not 
exceeding 1.4 times the standard error of the laboratory (SEL).  

    Routine analyses 

   A validated calibration model is fi t for use in routine analyses and can be used unal-
tered over long periods provided a reference method is used from time to time to 
analyze anecdotal samples in order to check whether it continues to produce accurate 
and precise results. Likewise, the instrument should be monitored over time in order 
to detect any alteration in its response or performance. 

   By using control graphs for the results obtained over time, one can detect deviations 
in the model or instrument and take appropriate corrective measures. If the instru-
ment is found to operate as scheduled, one can suspect deviations in the results to 
be due to some failure in the model, which can be checked by analyzing the samples 
concerned with the reference method, or due to a change in the target samples 
caused by the presence of a new source of variability, which will refl ect in an 
expanded confi dence range for the results and call for recalibration of the model. 
Recalibration can be done by expanding the calibration set with the samples used to 
expose the deviations.  

              



    Conclusions 

   IR spectroscopy, and particularly the NIR, presents doubtless advantages in relation 
to other spectroscopic techniques due to the ability to obtain the spectral data without 
the need of sample pre-treatment, and therefore provides fast and reproducible ana-
lytical methods. The spectrum not only includes chemical information of the sample 
components, but also its molecular interactions are revealed by physical properties of 
the sample; this characteristic does not allow to select individual wavelengths related 
to the parameters to be quantifi ed. Therefore the use of multivariate calibration tech-
niques is needed to extract the relevant chemical/physical information and obtain 
proper quantitative models. The multivariate calibration methods are more complex 
and demand a greater effort for their development in order to obtain chemometric 
models with a suitable predictive ability; nevertheless this diffi culty can be partly 
compensated by the doubtless advantages in the quality and reliability of the results 
that they provide. 

   A wide variety of mathematical algorithms for the development of calibration 
models are available, with different requirements of application but with also dif-
ferent capacity to model the independent variables, for the obtaining of models with 
a good predictive ability of external samples. The modern instrumentation incorpo-
rates software adapted for the construction of these models and its application to new 
samples through their spectra. The most important characteristics of these algorithms 
have been described in this chapter. 

   In relation to the characteristics of the obtained models, it is important to empha-
size that they should be robust, so that they can be used during long periods of time 
and to make the important effort done profi table. Therefore it is necessary to pro-
vide easy tools to update the models periodically (or when they show deviations) in a 
simple way, with the same samples used in the analytical control. Although it is dif-
fi cult to establish precise rules for the development of calibration models, the most 
important aspect to consider in their construction is the detection and elimination of 
outliers by their negative effect in the predictive capacity of the constructed models. 
A complete validation of the model is necessary to assure the quality before coming 
to its application in routine.  

    Nomenclature 

      ̂        means calculated term    
T       superscript symbol means transposed      
   �     1      superscript symbol means inversed    
*       superscript symbol means prediction set (independent of calibration set)    
X       matrix of the independent variables (e.g. spectra)    
x       vector of the independent variables (e.g. spectrum)    
Y  and  C       matrices of the dependent variables (e.g. concentrations)    
y  and  c       scalars of the dependent variable (e.g. concentration)
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    B       matrix of regression coeffi cients
    b       vector of regression coeffi cients    
T  and  U       scores matrices    
t  and  u       score vectors    
P  and  Q       loadings matrices    
p  and  q       loading vectors    
E  and  F       residual matrices    
e  and  f       residual vectors    
w       weights of neuron connection
    θ       bias
    Δ W      delta rule    
δ       correction factor
    o       output dependent value    
μ       momentum
    k       number of wavelengths
    a       number of principal components and/or latent variables
    n       number of samples    
P       number of mixture components
    i ,  j ,  k ,  1 ,  …       running indices     
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    Introduction 

   Classifi cation methods are fundamental chemometric techniques designed to fi nd math-
ematical models able to recognize the membership of each object to its proper class on 
the basis of a set of measurements. Once a classifi cation model has been obtained, the 
membership of unknown objects to one of the defi ned classes can be predicted. While 
regression methods model quantitative responses on the base of a set of explanatory vari-
ables, classifi cation techniques (classifi ers) are quantitative methods for the modeling of 
qualitative responses. In other words, classifi cation methods fi nd mathematical relation-
ships between a set of descriptive variables (e.g. chemical measurements) and a qualita-
tive variable (i.e. the membership to a defi ned category). 

   Classifi cation methods (also called  supervised pattern recognition  methods) are 
increasingly used in several fi elds, such as chemistry, process monitoring, medical 
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sciences, pharmaceutical chemistry, social and economic sciences. Of course, clas-
sifi cation is acquiring higher and higher importance in food science too; quality 
control of production systems and tipicity of products are of increasing interest in 
the food industry since they represent recent requirements needed to compete in the 
present-day market. There is a need in the food industry to rationalize and improve 
quality and process controls; modern production systems require rapid and automatic 
on-line monitoring, which should be able to extract the maximum amount of avail-
able information, in order to assure optimal system functioning. On the other hand, 
food products acquire a higher value when their tipicity is protected, controlled and 
assured. As a consequence, it is clear how the development of reliable methods for 
assuring authenticity is becoming very important and several efforts have been made 
to authenticate the origin of food products, with different chemical and  physical 
parameters and on several food matrices. 

   Classifi cation methods appear as optimal tools for facing these purposes, where a 
qualitative response is studied and modelled. For example, consider a process where 
different chemical parameters are monitored in order to check the fi nal product qual-
ity. Each product can be defi ned as acceptable or not acceptable on the basis of its 
chemical properties, i.e. each product (object) can be associated to a qualitative 
binary response (yes/no). A classifi cation model would be the best way to assign the 
process outcome to one of the defi ned classes (acceptable or not acceptable) by using 
the monitored parameters. Furthermore, consider a consortium that wants to char-
acterize a high-quality food product on the basis of different chemical and physi-
cal parameters, in order to assure geographical origin and uniqueness to the product. 
As before, a classifi cation model can be used in order to distinguish the considered 
food product from products belonging to other geographical areas. In this model, 
each object can be associated to a class on the basis of its provenience; when the 
model will be applied on unknown samples, each new object will be assigned to one 
of the considered geographical groups. Given these premises, in the following sec-
tions the best-known classifi cation techniques will be described, together with some 
 elucidations on the evaluation of classifi cation results.  

    Principles of classifi cation 

    The classes 

   Consider  n  objects, each described by  p  variables and divided into  G  categories 
(classes); in order to build classifi cation models, these data must be collected in a 
matrix  X , composed of  n  rows (the objects), and  p  columns (the explanatory vari-
ables). Each entry  x ij   represents the value of the  j -th variable for the  i -th object. The 
additional information concerning the class is collected into an  n -dimensional vector 
 c , constituted by  G  different labels or integers, each representing a class. In most 
cases, classifi cation methods directly use the class information collected in the  c  vec-
tor; however, in order to apply certain classifi cation methods, such as partial least
squares discriminant analysis and some artifi cial neural network (ANN) methods, 

              



the class vector  c  must be unfolded into a matrix  C,  with  n  rows (the objects) and  G  
columns (the unfolded class information); each entry  c ig   of  C  represents the mem-
bership of the  i -th object to the  g -th class expressed with a binary code (0 or 1). 
Basically, the class unfolding is a procedure transforming an  n -dimensional class 
vector representing  G  classes into a matrix constituted by  n  rows and  G  columns; an 
example of class unfolding is shown in  Table 4.1   . 

   Finally, note that the simplest representation of a single class is its centroid, which 
is a  p -dimensional vector defi ned as the point whose variables are the mean of the 
variables of all the objects belonging to the considered class.  

    Main categories of classifi cation methods 

   Statisticians and chemometricians have proposed several classifi ers, with different 
characteristics and properties. First, distinctions can be made among the different 
classifi cation techniques on the basis of the mathematical form of the decision bound-
ary, i.e. on the basis of the ability of the method to detect linear or non-linear bounda-
ries between classes. If a linear classifi cation method is used, the model calculates the 
best linear boundary for class discrimination, while non-linear classifi cation methods 
fi nd the best curve (non-linear boundary) for separating the classes. 

   Moreover, classifi cation techniques can be probabilistic, if they are based on 
 estimates of probability distributions, i.e. a specifi c underlying probability distribution 
in the data is assumed. Among probabilistic techniques, parametric and non-parametric 
methods can be distinguished, when probability distributions are characterized by loca-
tion and dispersion parameters (e.g. mean, variance,  covariance). Classifi cation meth-
ods can also be defi ned as distance-based, if they require the  calculation of distances 
between objects or between objects and models. 

   Another important distinction can be made between pure classifi cation and  class-
modeling methods . Pure classifi cation techniques separate the hyperspace in as many 
regions as the number of available classes. Each object is classifi ed as belonging to 
the category corresponding to the region of hyperspace where the object is placed. 
In this way, objects are always assigned to one of the defi ned classes. For example, 
in order to discriminate Italian and French wines on the basis of chemical spectra, 
a pure classifi cation method can be used to predict the origin of unknown wines. 

 Table 4.1          Example of class unfolding  

   Object    Class Class unfolding

 Class 1  Class 2  Class 3   …   Class  G  

   1  1  1  0  0   …   0 
   2  1  1  0  0   …   0 
   3  2  0  1  0   …   0 
   4  2  0  1  0   …   0 
    …    …    …    …    …    …    …  
    n    G   0  0  0   …   1 
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These new samples will be always recognized as Italian or French, even if they belong 
to other countries. As a consequence, when pure classifi cation techniques are applied, 
it is important to assure that the unknown objects to be predicted belong to one of the 
classes used in the model calculation. On the other hand, class-modeling techniques 
represent a different approach to classifi cation, since they focus on modeling the anal-
ogies among the objects of a class, defi ning a boundary to separate a specifi c class 
from the rest of the hyperspace. Each class is modeled separately and objects  fi tting 
the class model are considered element of the class, while objects that do not fi t are 
recognized as non-members of that class. As a consequence, a particular portion of 
the data hyperspace can be enclosed within the boundaries of more than one class or 
of none of the classes and three different situations can be encountered: objects can 
be assigned to a class, to more than one class or to none of the considered classes. 

   In  Figure 4.1   , an example of both pure classifi cation and class modeling is shown 
on a data set including 60 objects described by two variables and grouped into three 
classes (Circle, Diamond, and Square). When a pure classifi cation technique is applied 
( Figure 4.1a ), the whole data space is divided into three regions, each of them repre-
senting the space of a defi ned category. Consider now three new unknown objects (T1, 
T2, and T3) that must be classifi ed by means of this model. To do so, these objects 
are projected into the data space and assigned to the category corresponding to the 
region of hyperspace where they are placed. T1 and T2 will be assigned to class Circle, 
even if T1 is far from the Circle samples, while T3 will be recognized as a Diamond 
object, although it is equally distant from the centroids of the classes. In contrast, if a 
class-modeling method is applied, each class space is separated by a specifi c boundary 
from the rest of the data space, as shown in  Figure 4.1b . Of course, the classifi cation 
results will be different with respect to the previous model: the unknown object T2 
will be assigned to class Circle (as before); T1 will not be assigned at all, since it is not 
placed in a specifi c class space; T3 can be considered a confused object, since it can be 
assigned to more than one class (Diamond and Square). 

   With respect to pure classifi cation techniques, class-modeling methods have some 
advantages: it is possible to recognize objects that do not fall in any of the consid-
ered class spaces and consequently identify members of new classes not considered 
during the model calculation. Furthermore, as each class is modeled separately, any 
additional class can be added without recalculating the existing class models. 

   Finally, it should be noted that unsupervised pattern recognition methods, such as 
principal components analysis (PCA) ( Jolliffe, 1986 ) and cluster analysis ( Massart 
and Kaufman, 1983 ), must not be confounded with classifi cation methods (super-
vised pattern recognition). PCA is a well-known multivariate technique for explora-
tory data analysis, which projects the data in a reduced hyperspace, defi ned by the 
principal components. These are linear combinations of the original variables, with 
the fi rst principal component having the largest variance, the second principal com-
ponent having the second-largest variance, and so on. Cluster analysis differs from 
PCA in that the goal is to detect similarities between objects and fi nd groups in the 
data on the basis of calculated distances, whereas PCA does not focus on how many 
groups will be found. Consequently, both PCA and cluster analysis do not use infor-
mation related to predefi ned classes of objects. On the other hand, supervised pattern
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 Figure 4.1          Example of both pure classifi cation (a) and class modeling (b) on a data set including 60 
objects described by two variables and grouped into three classes (Circle, Diamond, and Square).      
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recognition requires a priori information on the set of samples that is used for 
 classifi cation purposes.  

    Validation and variable selection procedures 

   As well as for regression models, classifi ers require cross-validation procedures to ana-
lyze the predictive classifi cation capabilities on unknown objects. Obviously, the pre-
diction ability estimation of classifi cation models is performed on different parameters 
with respect to regression methods, since the modeled response here is qualitative 
and not quantitative. In any case, several parameters can be used, e.g. the percentage 
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of correctly classifi ed objects with respect to the total number of available objects or 
the percentage of correctly classifi ed objects of a category of interest. Even if these 
parameters can be calculated with the same procedures involved in the validation of 
regression models (single evaluation set, leave-one-out, leave-more-out, repeated 
training/test splitting, bootstrap), the percentage of objects retained in each cross-
validation group has to be considered, when classifi cation models are validated. 

   Consider a data set with two classes (A and B) and a cross-validation procedure, 
where groups of objects are removed from the training set, one group at a time, and 
used to test the classifi cation model. If the entire class A is removed from the data set 
during the validation (all the objects belonging to A are used to test the model), the 
validation result will be unsuccessful; in fact the model will be built without objects 
of the removed class (the model will not consider class A) and consequently will not 
recognize objects belonging to that class. In contrast, a correct validation procedure 
should at least retain objects of all the considered classes in each training group. 

   However, the number of objects used for building a classifi cation model is usually 
a critical issue, since few objects cannot represent all the factors involved in the class 
variability. On the other hand, some classifi cation techniques, such as discriminant 
analysis, can be used if the ratio between the number of objects and the number of vari-
ables is high. In these cases, if the number of objects cannot be augmented, the number 
of descriptors can be reduced by means of variable selection methods. In fact, clas-
sifi cation techniques can be coupled with variable selection tools, in order to improve 
classifi cation performances and select the most discriminating descriptors. The major-
ity of selection approaches for classifi cation are based on stepwise discriminant analy-
sis or similar schemes, even if more complex approaches, such as genetic algorithms, 
can be (and have been) applied. Usually, error percentages are used as an informal 
stopping rule in the stepwise analysis; if a subset of  s  variables out of  p  gives a lower 
error compared to the one for the full set of variables, the  s  variables can be consid-
ered to be enough for separating the classes. Then, several subsets of decreasing sizes 
can be evaluated by comparing their classifi cation performances. A common strategy 
for selecting the best subset of variables for separating groups is the application of the 
Wilks ’  lambda ( Mardia  et al. , 1979 ), which is defi ned as: 

  
Λ =

+

W

W B
  (4.1)

      

   where  W  and  B  are the within and between sum of squares, respectively. Wilks ’  
lambda ranges between 0 and 1, where values close to 0 indicate that the group 
means are different. Consequently, the variables with the lowest Wilks ’  lambda  values 
can be retained in the classifi cation model.   

    Evaluation of classifi cation performances 

   As explained before, several parameters can be used for the quality estimation of 
classifi cation models, both for fi tting and validation purposes ( Frank and Todeschini, 
1994 ). Of course, these parameters are related to the presence of errors in the results 

              



(objects assigned to the wrong classes), even if errors can be considered with different 
weights on the basis of the classifi cation aims. All the classifi cation indices can be 
derived from the  confusion matrix , which is a square matrix with dimensions  G       �       G , 
where  G  is the number of classes. A general representation of a confusion matrix is 
given in  Table 4.2   , where each entry  n  gk  represents the number of objects belonging to 
class g and assigned to class k. Consequently, the diagonal elements  n  gg  represent the 
correctly classifi ed objects, while the off-diagonal elements represent the objects erro-
neously classifi ed. Note that the confusion matrix is generally asymmetric since  n  gk  is 
different from  n  kg , i.e. the number of objects belonging to class g and assigned to class 
k is not usually equal to the number of objects belonging to k and assigned to g. 

   By looking at the confusion matrix (built on fi tting or validated outcomes), we 
can have an idea on how a classifi cation model is performing; of course, some more 
informative indices can be derived in order to synthesize this information. First, the 
 non-error rate  (NER) can be defi ned as follows: 

  
NER = =

∑ n

n

gg
g

G

1

  
(4.2)    

   where  n  is the total number of objects. The non-error rate (also called  accuracy  or  classifi -
cation rate ) is the simplest measure of the quality of a classifi cation model and represents 
the percentage of correctly assigned objects. The NER  complementary index is called the 
 error rate  (ER); it is the percentage of wrongly assigned objects and is defi ned as:   

  
ER NER= ==

∑n n

n

gg
g

G

-

-1 1
  

(4.3)    

   NER and ER can simply describe the performance of a model, but the result of a 
classifi cation tool should be considered suitable in a statistic point of view when the 
classifi cation ability is signifi cantly larger than that obtained by random assignments 
to the classes. Thus, the model effi ciency can be evaluated by comparing ER with the 
 no-model error rate  (NOMER), which represents the error rate obtained by assigning 
all the objects to the largest class and can be calculated as follows:   

  
NOMER =

n n

n
M-

  (4.4)    

 Table 4.2          General representation of a confusion matrix  

   Assigned class 

       1  2  3   …    G  

   True 
   class       

 1   n 11     n 12     n 13     …    n 1G   
 2   n 21     n 22     n 23     …    n 2G   
 3   n 31     n 32     n 33     …    n 3G   
  …    …    …    …    …    …  
  G    n G1     n G2     n G3     …    n GG   
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   where  n  M  is the number of objects belonging to the largest class. On the other hand, 
the error rate can also be compared with the error obtained with a random assigna-
tion to one of the defi ned classes:   

  
Random ER =
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   where  n g   is the number of objects belonging to the  g -th class:   

  
n ng gk

k

G

=
=

∑
1

  (4.6)    

   Moreover, a different weight can be assigned to each kind of error. Consider for 
example the quality control step of a generic food process, where acceptable and 
non-acceptable products are recognized by means of classifi cation and it is prefer-
able to classify acceptable products as non-acceptable rather than the opposite. In 
this case, a penalty matrix, called  loss matrix     L , can be defi ned. The loss matrix is a 
 G       �       G  matrix, with diagonal elements being equal to zero and off-diagonal elements 
representing the user-defi ned costs of classifi cation errors. Therefore, the  misclassi-
fi cation risk  (MR) can be defi ned as an estimate of the misclassifi cation probability 
that takes into account the error costs defi ned by the user: 
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  (4.7)    

   where  P  g  is the  prior class probability , usually defi ned as  P g        �      1/ G  or  P g        �       n g  / n .   
   There are also indices related to the classifi cation quality of a single class. The 

 sensitivity  ( Sn g  ) describes the model ability to correctly recognize objects belonging 
to the  g -th class and is defi ned as: 

  

Sn
n

ng
gg

g

=   (4.8)      

   If all the objects belonging to the  g -th class are correctly assigned ( n gg        �       n g  ),  Sn g   
is equal to 1. The  specifi city  ( Sp g  ) characterizes the ability of the  g -th class to reject 
the objects of all the other classes and is defi ned as: 

  

Sp

n n

n n
k gg

k gk
k

G

g

= ≠
′

=
∑ ( - )

-
1 for   (4.9)    

              



   where  nk′     is the total number of objects assigned to the  k -th class:   

  

n nk gk
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 (4.10)    

   If the objects not belonging to class  g  are never assigned to  g ,  Sp g   is equal to 1. 
Finally, the class  precision  ( Pr g  ) represents the capability of a classifi cation model 
not to include objects of other classes in the considered class. It can be measured 
as the ratio between the objects of the  g -th class correctly classifi ed and the total 
number of objects assigned to that class:   

  

Pr
n

ng
gg

g

=
′

  

(4.11)      

   If all the objects assigned to class  g  correspond to the objects belonging to class 
 g ,  Pr g   is maximum and is equal to 1. In  Table 4.3    an example of confusion matrix is 
shown, and  Table 4.4    shows the classifi cation parameters calculated on the example of 
 Table 4.3 . Objects are grouped in three classes (10 samples in class A, 12 in class B 
and 8 in class C). 

 Table 4.3          Example of confusion matrix  

   Assigned class 

       A  B  C   

       True 
   class

         
 A   9   1  0  10 
 B   2   8  2  12 
 C   1   2  5   8 
   12  11  7   n       �      30 
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 Table 4.4          Classifi cation parameters calculated on the example of Table 4.3  

   NER  0.73 
   ER  0.27 
   NOMER  0.60 
   Random ER  0.66 
   Sn(A)  0.90 
   Sn(B)  0.67 
   Sn(C)  0.63 
   Sp(A)  0.85 
   Sp(B)  0.83 
   Sp(C)  0.91 
   Pr(A)  0.75 
   Pr(B)  0.73 
   Pr(C)  0.71 
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   The parameters used for the evaluation of classifi cation models with  G  classes 
have been defi ned in the previous part of this section. However, it is common to 
fi nd with classifi cation tasks that a given set of objects is divided into two catego-
ries (binary classifi cation) on the basis of whether they cover some property or not. 
Common binary classifi cation tasks are quality monitoring, to establish if a new 
product is good enough to be placed on the market or not, and process monitor-
ing, where an outcome can be labeled as acceptable or not acceptable on the basis 
of defi ned  standards. Binary classifi cation thus takes into consideration only two 
classes, which can be labeled either as positive (P) or negative (N). Consequently 
there are four possible outcomes: true positives (TP) are the outcomes effectively 
recognized as positive, while if the outcome is N and the true value is P, then the out-
come is called false negative (FN); true negatives (TN) are the outcomes that occur 
when both the assigned class and the true class are N, and false positive (FP) when 
the outcome is P and the true value is N. The four outcomes can be arranged in a 
2      �      2 confusion matrix (or contingency table), as shown in  Table 4.5   . 

   In the case of binary classifi cation, the previously described parameters can be 
defi ned as follows: 
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+
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   Sensitivity and precision are also called true positive rate (TPR) and positive pre-
dictive value (PPV), respectively. Moreover, the false positive rate (FPR) can be 
derived: 
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FP

FP TN
=

+
= 1 - Sp   (4.17)    

   as well as the phi correlation coeffi cient (phi):   
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-
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   which takes values between  � 1 and  � 1, where 1 indicates perfect classifi cation, 0 
random prediction and values below 0 a classifi cation worse than random prediction.   

   Starting from a contingency table ( Table 4.5 ), graphical tools (such as receiver 
operating characteristics) for the analysis of classifi cation results and the selection 
of optimal models can be built. A receiver operating characteristic, or simply ROC 
curve, is a graphical plot of FPR and TPR as  x  and  y  axes respectively, for a binary 
classifi cation system as its discrimination threshold is changed. 

   A single value of FPR and TPR can be calculated from a contingency table and 
consequently each contingency table represents a single point in the ROC space. 
Some classifi cation methods produce probability values representing the degree to 
which class the objects belong. In this case, a threshold value should be defi ned to 
determine a classifi cation rule. For each threshold value, a classifi cation rule is cal-
culated and the respective contingency table is obtained. Consequently, by looking at 
the ROC curve, the optimal threshold value (i.e. the optimal classifi cation model) can 
be defi ned. The best possible classifi cation method would yield a point in the upper 
left corner of the ROC space, representing maximum sensitivity and specifi city, 
while a random classifi cation give points along the diagonal line from the left bottom 
to the top right corners. An example on the use of ROC curves is shown in        Figures 
4.2 and 4.3     . Consider a binary classifi cation task, where the classes (P and N) are 
normally distributed along a classifi cation score ( Figure 4.2 ). A threshold value ( t2 ) 

 Table 4.5          Confusion matrix for binary classifi cation (contingency table)  

        Assigned class  

       P  N 

   True  P   TP    FN  
   class  N   FP    TN  

t1 t2
Classification score

P N

TP TN

FN

FP

t3 t4

 Figure 4.2          Example of binary classifi cation: normal distribution of the classes (P and N) along a 
classifi cation score. The objects with a score lower than the threshold are assigned to P.    
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is set: all the objects with a score lower than  t2  are assigned to P, while objects with a 
score greater than  t2  are recognized as N. At this step, TP, FP, TN, and FN are calcu-
lated, giving TPR (sensitivity) equal to 0.58 and FPR (1  �  specifi city) equal to 0.1; 
the point representing this result is placed in the ROC space ( Figure 4.3 ) with these 
coordinates. Then, the threshold value can be decreased to  t1 : in this case another 
point in the ROC space (TPR equal to 0.06, FPR equal to 0) will be obtained, as well 
as for threshold values of  t3  and  t4.  The complete ROC curve explains how the model 
is working: in this case, the classifi cation model is performing better than a random 
classifi er, since the ROC curve is higher than the diagonal line; on the other hand, it 
is far from the best possible model, since the upper left corner of the ROC space is 
not reached. Finally, on the basis of the classifi cation aim, we can decide which is the 
optimal balance of sensitivity and specifi city and consequently set the best threshold 
value.  

    Classifi cation methods 

    Nearest mean classifi er and K-nearest neighbors 

   The nearest mean classifi er (NMC) is the simplest classifi cation method; it just con-
siders the centroid of each class and classifi es objects with the label of the nearest 
class centroid, where the centroid of a class is defi ned as the point whose parameter 
values are the mean of the parameter values of all the objects belonging to the con-
sidered class. NMC is a parametric, unbiased and probabilistic method; it is robust, 
since generally it has a high error on the training and test sets, but the error on the 
training data is a good prediction of the error on the test data. 
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 Figure 4.3          Example of binary classifi cation: ROC curve relative to class distribution and threshold values 
of  Figure 4.2 .    

              



   As well as the nearest mean classifi er, the K-nearest neighbor (KNN) classifi cation 
rule ( Cover and Hart, 1967 ) is conceptually quite simple: an object is classifi ed accord-
ing to the classes of the  K  closest objects, i.e. it is classifi ed according to the majority 
of its  K- nearest neighbors in the data space. In case of ties, the closer neighbors can 
acquire a greater weight. In a computational point of view, all that is necessary is to 
calculate and analyze a distance matrix. The distance of each object from all the other 
objects is computed, and the objects are then sorted according to this distance. KNN 
has other advantages: it does not assume a form of the underlying probability density 
functions (it is a non-parametric classifi cation method) and can handle multiclass prob-
lems. Another important advantage is that KNN is a non-linear classifi cation method, 
since the Euclidean distance between two objects in the data space is a non-linear 
function of the variables. Because of these characteristics, KNN has been suggested 
as a standard comparative method for more sophisticated classifi cation techniques 
( Kowalski and Bender, 1972 ), while, on the other hand, KNN can be considered very 
sensitive to the applied distance metric and scaling procedures ( Todeschini, 1989 ). 

   Of course, when applying KNN, the optimal value of  K  must be searched for. Even 
if the selection of the optimal  K  value can be based on a risk function, there are some 
practical aids for deciding the number of neighbors to be considered. First of all, dis-
tant neighbors (i.e. great values of  K ) are not useful for classifi cation, while the best 
empirical rule to follow is to use  K       �      1, if there is not considerable overlap between 
classes. However, the best way of selecting  K  is by means of cross-validation pro-
cedures, i.e. by testing a set of  K  values (e.g. from 1 to 10); then, the  K  giving the 
 lowest classifi cation error can be selected as the optimal one.  

    Discriminant analysis 

   Among traditional classifi ers, discriminant analysis is probably the most known 
method ( Fisher, 1936 ;  McLachlan, 1992 ) and can be considered the fi rst multivari-
ate classifi cation technique. Nowadays, several statistical software packages include 
procedures referred to by various names such as linear discriminant analysis and 
 canonical variate analysis. 

   Canononical variate analysis (CVA) separates objects into classes by  minimizing 
the within-class variance and maximizing the between-class variance. So, with 
respect to principal component analysis, the aim of CVA is to fi nd directions  (i.e. 
 linear combinations of the original variables) in the data space that maximize the 
ratio of the between-class to within-class variance, rather than maximizing the 
between-object variance without taking into account any information on the classes, 
as PCA does. These directions are called discriminant functions or canonical variates 
and are in number equal to the number of categories minus 1. Then, an object ( x ) is 
assigned to the class with the minimum discriminant score  d g  ( x ): 

  
d Pg g( ) ( - ) ( - ) ln - ln( )-x x x S x x Sg

T
g g g= +1 2   (4.19)    

   where  P g   is the prior class probability (usually defi ned as  P  g       �      1/ G  or  P  g       �       n  g / n ),  
xg    and  S g   are the centroid and the covariance matrix of the g-th class, respectively.
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The quantity  d g  ( x )      �      2 ln( P  g ) is referred to as discriminant function, while  
( - ) ( - )-x x S x xg

T
g g
1     is the Mahalanobis distance between  x  and  xg .       

   Quadratic discriminant analysis (QDA) is a probabilistic parametric classifi cation 
technique and is based on the classifi cation rule described above; basically, it sepa-
rates the class regions by quadratic boundaries and makes the assumption that each 
class has a multivariate normal distribution, while the dispersion (represented by the 
class covariance matrices,  S  g ) is different in the classes. 

   A special case, referred to as linear discriminant analysis (LDA), occurs if all the 
class covariance matrices are assumed to be identical 

  
S Sg p= ≤ ≤1 g G

 
 (4.20)

    

   where  S p   is the pooled covariance matrix, defi ned as:   
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   where  n  is the total number of objects,  G  the number of classes,  n g   the number of 
objects belonging to the  g -th class and  S g   is the covariance matrix of the  g -th class.   

   As well as QDA, LDA is a probabilistic parametric classifi cation technique and 
assumes that each class has a multivariate normal distribution, while the dispersion 
(covariance matrix) is the same for all the classes. 

   Consequently, both QDA and LDA are expected to work well if the class condi-
tional densities are approximately normal (i.e. data are multinormally distributed). 
In addition, when the class object sizes are small compared to the dimension of the 
measurement space (the number of variables), the inversion of covariance matrices 
became diffi cult. So, when applying LDA, the number of objects must be signifi -
cantly greater than the number of variables, while QDA requires a larger number of 
objects than LDA, since covariance matrices are calculated for each class. Moreover, 
when variables are highly correlated among them, i.e. in presence of multicolline-
arity, discriminant analysis runs the risk of overfi tting ( Hand, 1997 ). In order to 
overcome these problems, a fi rst approach is simply the reduction of the number of 
variables, by means of variable selection techniques: Stepwise discriminant  analysis 
(SWDA) has been proposed with this aim ( Jennrich, 1977 ). A second approach can 
be based on PCA: the classifi cation model is performed on the signifi cant scores 
 calculated by means of PCA (i.e. in a reduced hyperspace). Another solution can be 
the use of alternatives to the usual estimates for the covariance matrices, as proposed 
by Friedman for regularized discriminant analysis (RDA) ( Friedman, 1989 ). 

   As explained before, discriminant analysis classifi cation rules always assign 
objects to classes (i.e. discriminant analysis is not a class modeling technique). 
A modeling version of QDA has been proposed, known as UNEQ (unequal class 
modeling) ( Derde and Massart, 1986 ), which is based on the assumption of multi-
variate normality for each class population, as well as QDA; on the other hand, in 
UNEQ each class model is represented by the class centroid and the class space is 
defi ned on the basis of the Mahalanobis distance from this centroid.  

              



    Partial least squares-discriminant analysis (PLS-DA) 

   Partial least squares (PLS) was originally designed as a tool for statistical regression 
and nowadays is one of the most commonly used regression techniques in chemistry 
( Wold, 1966 ). It is a biased method and its algorithm can be considered as an evolu-
tion of the non-linear iterative partial least squares (NIPALS) algorithm. The PLS 
algorithm has been modifi ed for classifi cation purposes and widely applied in several 
fi elds, such as medical, environmental, social, and food sciences. Recently  Barker 
and Rayens (2003)  showed that partial least squares-discriminant analysis (PLS-DA) 
corresponds to the inverse-least-squares approach to LDA and produces essentially 
the same results but with the noise reduction and variable selection advantages of 
PLS. Therefore, if PLS is somehow related to LDA, it should be applied for dimen-
sion reduction aimed at discrimination of classes, instead of PCA. 

   The theory of PLS algorithms (PLS1 when dealing with one dependent  Y  vari-
able and PLS2 in presence of several dependent  Y  variables) has been extensively 
studied and explained in the literature: PLS-DA is essentially based on the PLS2 
algorithm that searches for latent variables with a maximum covariance with the  Y  
variables. Of course, the main difference is related to the dependent variables, since 
these represent qualitative (and not quantitative) values, when dealing with classifi -
cation. In PLS-DA the  Y -block describes which objects are in the classes of interest. 
In a binary classifi cation problem, the  Y  variable can be easily defi ned by setting 
its values to 1 if the objects are in the class and 0 if not. Then, the model will give 
a calculated  Y , in the same way as for a regression approach; the calculated  Y  will 
not have either 1 or 0 values perfectly, so a threshold (equal to 0.5, for example) can 
be defi ned to decide if an object is assigned to the class (calculated  Y  greater than 
0.5) or not (calculated  Y  lower than 0.5). When dealing with multiclass problems, 
the same approach cannot be used: if  Y  is defi ned with the class numbers (1, 2, 3, 
 …  ,  G ) this would mean that a mathematical relationship between the classes exists 
(for example, that class  g  is somehow in-between class  g      �       1 and class  g       �      1). The 
solution to this is to unfold the class vector and apply the PLS2 algorithm for mul-
tivariate qualitative responses (PLS-DA). For each object, PLS-DA will return the 
prediction as a vector of size  G , with values in-between 0 and 1: a g-th value closer 
to zero indicates that the object does not belong to the  g -th class, while a value closer 
to one the opposite. Since  predicted vectors will not have the form (0, 0,  …  , 1,  … ,  
0) but real values in the range between 0 and 1, a classifi cation rule must be applied; 
the object can be assigned to the class with the maximum value in the  Y  vector or, 
alternatively, a threshold between zero and one can be determined for each class. In 
this case, ROC curves can be used to assess and optimize the class specifi city and 
sensitivity with different thresholds.  

    Soft independent modeling of class analogy (SIMCA) 

   As explained before, PCA is not useful for differentiating defi ned classes, since 
the class information is not used in the construction of the model and PCA just 
describes the overall variation in the data. However PCA can be coupled with the 
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class information in order to give classifi cation models by means of soft independ-
ent modeling of class analogy (SIMCA) ( Wold, 1976 ). SIMCA was the fi rst class 
modeling technique introduced in chemistry and nowadays is one the best-known 
modeling classifi cation methods; it is defi ned  “ soft ”  since no hypothesis on the dis-
tribution of variables is made, and  “ independent ”  since the classes are modeled one 
at a time (i.e. each class model is developed independently). 

   Basically, a SIMCA model consists of a collection of  G  PCA models, one for each 
of  G  defi ned classes. Therefore, PCA is separately calculated on the objects of each 
class; since the number of signifi cant components can be different for each category, 
cross-validation has been proposed as a way of choosing the number of retained 
components of each class model. In this way, SIMCA defi nes  G  subspaces (class 
models); then, a new object is projected in each subspace and compared to it in order 
to assess its distance from the class. Finally, the object assignation is obtained by 
comparing the distances of the object from the class models. 

   Even if SIMCA is often a useful classifi cation method, it has also some disadvan-
tages. Primarily, the class models in SIMCA are calculated with the aim of describ-
ing variation within each class: when PCA is applied on each category, it fi nds the 
directions of maximum variance in the class space. Consequently, no attempt is made 
to fi nd directions that separate classes, on the opposite of, for example, PLS-DA, 
which directly models the classes on the basis of the descriptors.  

    Artifi cial neural networks 

   Artifi cial neural networks (ANNs) are increasing in uses related to several chemical 
applications and nowadays can be considered as one of the most important emerg-
ing tools in chemometrics. One of the reasons of their success can be related to the 
ability of solving both supervised and unsupervised problems, such as clustering and 
modeling of both qualitative and quantitative responses. Consequently, we have to 
initially consider the nature of the problem and then look for the best ANN strategy 
to solve it, since different ANN architectures and different ANN learning strategies 
have been proposed in literature ( Zupan, 1994 ). Basically, ANN is supposed to mimic 
the action of a biological network of neurons, where each neuron accepts  different 
signals from neighboring neurons and processes them. Consequently, depending on 
the outcome of this processing and on the nature of the network, each neuron can 
give an output signal. The function which calculates the output vector from the input 
vector is composed of two parts: the fi rst part evaluates the net input and is a linear 
combination of the input variables, multiplied by coeffi cients called weights, while 
the second part transfers the net input in a non-linear manner to the output vector. 

   Artifi cial neural networks can be composed of different numbers of neurons; 
moreover, these neurons can be placed into one or more layers. In chemical applica-
tions, the number of neurons changes on the basis of the analyzed data and can range 
from tens of thousands to as few as less than ten ( Zupan and Gasteiger, 1993 ). 

   The Kohonen and counterpropagation neural networks are two of the most pop-
ular ANN learning strategies ( Hecht-Nielsen, 1987 ;  Kohonen, 1988 ;  Zupan  et al. , 
1997 ). ANNs based on the Kohonen approach (Kohonen maps) are self-organizing 

              



systems which are capable of solving unsupervised rather than supervised problems. 
In Kohonen maps similar input objects are linked to topologically close neurons in 
the network (i.e. neurons that are located close to each other have similar reactions to 
similar inputs), while the neurons that are far apart have different reactions to simi-
lar inputs. In the Kohonen approach the neurons learn to identify the location in the 
ANN that is most similar to the input vectors. 

   Counterpropagation ANN is very similar to the Kohonen maps and is essentially 
based on the Kohonen approach, but it combines characteristics from both super-
vised and unsupervised learning. In fact, an output layer is added to the Kohonen 
map whose neurons have as many weights as the number of responses in the target 
vectors (the classes). The neuron of the output layer to be corrected is chosen on 
the basis of the neuron in the Kohonen layer that is more similar to the input vector; 
then, the weights of the output layer are adapted to the target values. In  Figure 4.4   , a 
representation of Kohonen and counterpropagation ANN is shown for a generic data 
set constituted by  p  variables and  G  classes. 

   Regarding classifi cation, ANNs work better if they deal with non-linear depend-
ence between input and output vectors and generally are effi cacious methods for 
modeling classes separated with non-linear boundaries. In general, since neural net-
works are non-parametric tools which have adaptable parameters (such as number of 
neurons, layers, and epochs), most learning schemes require the use of a test set to 
optimize the structure of the model; in fact one of the major disadvantages of ANNs 

Input

x1

x2

y1

yG

xp

Kohonen layer

Output layer

Output

 Figure 4.4          Representation of the structure of Kohonen and counterpropagation artifi cial neural network 
for a generic data set constituted by  p  variables and  G  classes.    
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is probably related to the optimization of the net, since this procedure suffers from 
some arbitrariness and can be time-consuming in some cases.  

    Support vector machines 

   Support vector machines (SVMs) work on binary classifi cation problems, even if 
they can be extended on multiclass problems, and have gained considerable atten-
tion due to their success in classifi cation problems in the last years. SVMs defi ne a 
function that describes the decision boundary that optimally separates two classes 
by maximizing the distance between them ( Burges, 1998 ;  Vapnik, 1999 ). Since 
SVMs are linear classifi ers in high-dimensional spaces, the decision boundary can 
be described as a hyperplane and is expressed in terms of a linear combination of 
functions parameterized by support vectors, which consist of a subset of training 
objects. In fact, SVMs select a subset of objects (known as support vectors) among 
the training objects, and derive the classifi cation rule using only this fraction of 
objects, which are usually those lying in the proximity of the boundary between the 
classes. Consequently, the fi nal solution is dependent on only a subset of objects and 
the removal of any other object (not included in the support vectors) does not change 
the classifi cation model. In fact SVM algorithms search for the support vectors that 
give the best separating hyperplane; to do so, during optimization, SVMs search the 
decision boundary with maximal margin among all possible hyperplanes, where the 
margin can be intended as the distance between the hyperplane and the closest point 
for both classes. 

   With regard to the determination of the parameters of the separating hyperplane, 
a major advantage of SVMs over other classifi ers is that this optimization is a deter-
minate operation where there is only one minimum solution and no local minima can 
be found. As explained before, SVMs are linear classifi ers, but when non-linearly 
separable classes are present, it is impossible to fi nd a linear boundary that separates 
all the objects. In this case, a trade-off between maximizing the margin between the 
classes and minimizing the number of misclassifi ed objects can be defi ned. On the 
other hand, it is also possible to improve SVMs by integrating non-linear kernel 
functions for defi ning non-linear separations. 

   Even if SVMs work on binary classifi cation problems, multiclass approaches can 
be solved combining binary classifi cation functions (e.g. by considering one class 
at a time and searching a classifi er for each class that separates the considered class 
from all the other classes). Then, an object is assigned to the nearest class, where the 
distance from each class can be formulated by means of a decision function.  

    Classifi cation and regression trees 

   Tree-based approaches have become increasingly popular in recent decades and their 
application has arisen in several fi elds. These methods consist of algorithms based 
on rule induction, which is a way of partitioning the data space into different class 
subspaces. Basically, the data set is recursively split into smaller subsets where each 
subset contains objects belonging to as few categories as possible. The purity of each 

              



subset can be measured by means of entropy: a subset consisting of objects from 
one single class has the highest possible purity (the lowest entropy), while the most 
impure subset is the one where classes are equally represented. Consequently, in each 
split (node), the partitioning is performed in such a way to reduce entropy (maximize 
purity) of the new subsets and the fi nal classifi cation model consists of a collection 
of nodes (tree) that defi ne the classifi cation rule. 

   Univariate and multivariate strategies for fi nding the best split can be distin-
guished; in the univariate approach the algorithm searches at each binary partitioning 
the single variable that gives the purest subsets; the partitioning can be formulated 
as a binary rule like  “ is  x ij        �       t k ,  ”  where  x ij   is the value of the  j -th variable for the 
 i -th object and  t k   is the threshold calculated in the  k -th node. All the objects that 
satisfy the rule are grouped in one subset, otherwise into another. This is the case 
of the classifi cation and regression trees (CART), which are a form of binary recur-
sive  partitioning based on univariate rule induction ( Breiman  et al. , 1984 ). A simple 
 classifi cation tree is shown in  Figure 4.5    as an example; it is made of just three nodes 
( t  1 ,  t  2 , and  t  3 ) and splits the objects into three classes (class 1, class 2, and class 3). 

   On the other hand, multivariate rule induction fi nds a partition of the data that is 
based on a linear combination of all the variables instead of just one variable and is 
useful if there are collinearities between the variables. Each partitioning searches for 
the vector that best separates the data into pure subsets and the separation rules corre-
spond to hyperplanes that increasingly isolate the class subspaces in the data space. 

   In realistic situations, both for univariate and multivariate approaches, the number 
of nodes in the tree can be very large; the solution to this can be a sort of optimi-
zation and simplifi cation of the tree (pruning) by reducing the number of rules 
(nodes) when a less than optimal purity is reached. However, CART analysis has 
several advantages over other classifi cation methods: it is scale-independent and 
non-parametric; it gives intuitive classifi cation models that consist of a graph where 

t3

t1

t2

Class 1

Class 2Class 3
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 Figure 4.5          Example of classifi cation tree made of three nodes ( t  1 ,  t  2 , and  t  3 ) for a generic data set 
comprising three classes (class 1, class 2, and class 3).    
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each node is represented, associated to the classifi cation rule of the node; moreover, 
CART identifi es splitting variables with an exhaustive search of all the possibilities. 
Consequently, the most discriminating variables can be easily recognized and a sort 
of variable selection is applied, since in order to assign new objects, only the splitting 
variables considered in the classifi cation rules will be used.  

    New classifi ers 

   Among new classifi cation approaches, we can cite extended canonical variate 
 analysis (ECVA), which has been recently proposed as a modifi cation of the stand-
ard canonical variate analysis method ( Nørgaard  et al. , 2007 ). The modifi ed CVA 
method forces the discriminative information into the fi rst canonical variates and the 
weight vectors found in the ECVA method hold the same properties as weight vec-
tors of the standard CVA method, but the combination of the suggested method with, 
for example, LDA as a classifi er gives an effi cient operational tool for classifi cation 
and discrimination of collinear data. 

   Classifi cation and infl uence matrix analysis (CAIMAN) is a new classifi er based 
on leverage-scaled functions ( Todeschini  et al. , 2007 ). The leverage of each object is a 
measure of the object distance from the model space of each class; consequently, exploit-
ing the leverage properties, CAIMAN models each class by means of the class leverage 
matrix and calculates the leverage of objects with respect to each class space. Moreover, 
in order to face non-linear boundaries between classes, the CAIMAN approach has been 
developed for defi ning a new mathematical concept called hyper-leverage, which basi-
cally extract information from the space defi ned by the leverages themselves.   

    Conclusions 

   Multivariate classifi cation is one of the basic methodologies in chemometrics and con-
sists in fi nding mathematical relationships between a set of descriptive variables and 
a qualitative variable (class membership). There are a huge number of applications of 
classifi cation methods in the literature, on different kind of data and with different aims, 
even if basically the fi nal goal of a classifi cation model is always the separation of two 
(or more) classes of objects and the assignation of new unknown objects in one of the 
defi ned classes (or none of the classes when class-modeling approaches are applied). 

   Several classifi cation techniques have been proposed, each of them with different 
properties and skills, offering to the scientist different approaches for solving clas-
sifi cation problems. However, classifi ers are sometime chosen just on the basis of a 
personal knowledge and preference of the user, while the best classifi cation approach 
should be preferred on the basis of data characteristics and goal of analysis.  

    Nomenclature 

      n       number of samples (objects)    
p       number of variables    

              



G       number of classes   
 X       data matrix ( n       �       p )
    x ij        element of  X , representing the value of the j-th variable for the i-th object    
c        class vector ( n       �      1), constituted by  G  different labels or integers, each rep-

resenting a class    
C       unfolded class matrix ( n       �       G )    
c ig         element of  C , representing the membership of the i-th object to the g-th 

class
    xg          centroid of the  g -th class
    S g        covariance matrix of the  g -th class    
S p        pooled covariance matrix
    n  g       number of objects belonging to the  g -th class
    n gk        number of objects belonging to class  g  and assigned to class  k 
    n M        number of objects belonging to the largest class
    P g        prior class probability
   Indices on  n ,  p ,  G  run as follows:
   i       �      1,  …  ,  n
    j       �      1,  …  ,  p    
g  or  k       �      1,  …  ,  G      
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    Introduction 

   The subject of calibration transfer methods in chemometric model building really 
falls under economics. Constructing a high-quality inverse multivariate calibration 
model such as partial least squares (PLS) in the presence of unknown interfering 
signals requires tens, hundreds or sometimes up to a thousand samples plus refer-
ence values collected over a long period of time. This is a big investment. Calibration 
transfer focuses on preserving this investment by keeping the model valid over time 
for the same instrument (model maintenance) or by sharing the cost where a model 
developed on one system (the primary or master (M) instrument) is applied to one or 
more other systems of a similar nature (the secondary or slave (S) instrument). 

   The relevance of this subject is emphasized by the fact that in 2007 over 70 refer-
ences with primary focus on calibration transfer appeared in the literature, and a rela-
tively large number of these indicate connections with industry. Most of these papers 
are found in the analytical chemistry/chemometric and spectroscopy literature focus-
ing on computational methodologies; two comprehensive reviews are available by 
 de Noord (1994)  and by  Feudale  et al.  (2002) . Moreover, just like chemometric data 
analysis in general, the potential of calibration transfer is being recognized by the out-
side world ( Park  et al. , 1999 ;  Duponchel  et al. , 1999 ;  Fontaine  et al. , 2004 ;  Bergman 
 et al. , 2006 ;  Alamar  et al. , 2007 ). 

   Economics also play a role in the reverse direction: since we are trying to 
minimize our expenses on the collection of sample and reference analysis, the model 
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will be suboptimal compared to full recalibration (e.g. on a secondary instrument) 
and, moreover, an independent evaluation via a test set or uncertainty estimation by 
resampling is typically not feasible due to the small number of samples involved. 
This makes an understanding of the mathematical operations involved in calibration 
transfer and the effects on spectroscopic data crucial for proper and safe use.  

    The transfer issue 

   A number of scenarios could result in a multivariate calibration model becoming 
invalid. This would occur, for instance, if the original instrument is replaced by a new 
one. The responses from two instruments for the same sample measured under the 
same conditions will be different and multivariate calibration models will thus not 
necessarily be valid for this new instrument. It must be stated that big improvements 
have been achieved by instrument manufacturers on hardware harmonization in recent 
years. Diode lasers for wavelength alignment, internal (refl ection) standards for inten-
sity corrections, and charged-coupled device (CCD) similarity matching in the factory 
by characteristics comparison are just a few measures on offer to improve instrument-
to-instrument compatibility. Nevertheless, the instability of one and the same unit 
over time is another problem which can seriously affect the performance of a model. 
Small continuous changes (instrumental drift) and sudden changes (response shifts 
caused by repairs or replacements, for example) in the instrument still cause signals 
to change, leading to increased prediction errors without proper model maintenance. 

   The most straightforward solution, of course, would be to re-calibrate for the all 
new measurement conditions or to expand the original model for the new situation. 
Unfortunately, this is also the most expensive solution and sometimes technically 
impossible. Standardization and calibration transfer methods have been developed 
aimed at eliminating the need for a full recalibration and to preserve the information 
collected in an existing model. 

   Even if instrumental hardware is matched well, sampling for in-process measure-
ments could still render the calibration model invalid. For example, interfacing to 
a process stream via different routes such as multiplexers and/or fi ber optics will not 
always be in the hands of the instrument manufacturer. Bend angles of the fi bers and 
optical components for different sampling points will differ, all infl uencing the detec-
tor responses in a unique way. This is precisely the direction where new developments 
in process monitoring and control on near-infrared (NIR) are heading: various meas-
urement points for similar streams in the factory based on multiplexers or a family of 
relatively cheap CCD-based systems that depend on one global calibration ( Bouveresse 
 et al. , 1998 ). The cost-saving aspect of calibration transfer is thus still very much active.  

    Data set and transfer set selection 

   To illustrate the model/calibration transfer concepts and methods, in this chapter we 
will use a well-established data set as an example. This data set, generated by  Wülfert 
 et al.  (1998) , consists of ternary mixtures with known concentrations expressed 

              



as molar fractions of ethanol (E), water (W) and 2-propanol (P), measuring the 
short-wave near-infrared spectra (SW-NIR;  Figure 5.1   ). The complete data set, 
available from the internet for non-commercial use, consists of 22 samples measured 
at fi ve temperatures. In this chapter we will only use three temperatures, assuming that 
the recordings at 30°C represent our standard calibration conditions (primary instru-
ment), the measurements at 40°C represent modest deviations in the signal (model 
maintenance), and those at 70°C represent considerable instrumental differences 
(secondary instrument). The corner points (pure components) will not be used in 
modeling. This leaves 19 samples for model building at 30°C. In this chapter we will 
focus on the prediction of ethanol concentration only. 

   The spectral range used in this chapter goes from 850 to 1050       nm; some example 
spectra of the three temperature/instrumental conditions are presented in  Figure 5.2   . 
As can be seen from  Figure 5.2 , the temperature has a profound effect on the signals. 
It is also observed that water is overall the strongest infl uence in this wavelength 
region with characteristics distinct from those of ethanol; the spectral characteristics 
of pure 2-propanol (not shown) are comparable to those of ethanol ( Wülfert  et al. , 
1998 ). In contrast to the original work, the only spectral correction applied in this 
chapter is a baseline/offset removal based on the average value for the fi rst 10 data 
points (850–860       nm) subtracted from each spectrum individually. 

   One could expect this ternary system to be of relative low complexity due to the 
closure relation for the molar fractions E      �      W  �  P      �      1. However, due to the chemical 
interactions (mainly hydrogen bonding) the chemical rank has been shown to be 
higher than three (or two after mean centering;        Wülfert  et al. , 2000a, 2000b ). 

Calibration/primary set 30°C
Transfer/secondary sets 40°C and 70°C
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(     ) Generic transfer sample
E � ethanol, W � water, P � 2-propanol

 Figure 5.1          Experimental design of ternary mixtures.    
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108 Calibration Transfer Methods

   It should be noted that our objective is not to fi nd the ultimate model performance 
at each condition/temperature. We use this data set as a general illustration of model/
calibration transfer concepts and methods. 

   An important step in calibration transfer can be, depending on the methodology 
employed, selection of samples that are measured in both conditions (e.g. primary 
and secondary instruments). From an operational point of view generic standards 
in the form of such as polystyrene standard materials, certifi ed sample materials, 
easily reproducible mixtures, etc. are preferred. However, it is essential that these 
generic standards are compatible with regular samples from an information point of 
view, both in desired (e.g. the concentration to be predicted) as well as undesired 
properties (e.g. scatter properties), which is not always a simple requirement. In 
this chapter we will try the corner point in the ternary mixture design as generic 
standards ( Figure 5.1 ). 

   A more practical approach is to select a number of regular samples to compute 
transfer functions, and the obvious choice for this would be a subset selected from 
the calibration set on the primary instrument. Subset selection algorithms are also 
of interest outside calibration transfer ( Allesø  et al. , 2007 ). The most often used 
algorithms in the literature are the leverage-based methods, the Kennard–Stone 
selection ( Kennard and Stone, 1969 ) algorithm and principal properties selection 
( Carlson  et al. , 2001 ). The Kennard–Stone algorithm adds samples that are farthest 
away from the previously selected set of points. It starts by selecting two samples 
that have the largest squared distance (e.g. the Euclidean norm) between them. 
In the next step an additional sample is selected based on maximizing the summed 
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 Figure 5.2          Short-wave near-infrared (SW-NIR) spectra for ethanol (top), water (middle) and mixture 10 
plus scaled partial least squares (PLS) regression vector (bottom), measured at three temperatures.    

              



distances towards all the previously selected samples. This procedure is continued 
until the desired number of objects is found. Hence, the Kennard–Stone algorithm 
is expected to initially select design points from the outer regions/periphery of the 
sample space, successively going to the inner regions, and may therefore be regarded 
as a peeling method, spanning the relevant chemical space in the data set. 

   Principal properties selection is based on principal component analysis (PCA) and 
defl ation of the data matrix  X  by orthogonal projection. The fi rst step is to perform 
PCA on the calibration set. The row-vector with the sample/spectrum  x  k  ( l       �       n ) 
being closest to the loading vector of the fi rst principal component—in this chapter 
expressed as the highest squared correlation coeffi cient between spectrum and loading 
vector—is selected as the fi rst sample in the subset. In the next step all samples  x  i  
are defl ated by a projection on this selected sample: 

  
ˆ -x x

x x

x x
xi i

k i
T

k k
T k=   (5.1)

    

   These two steps, i.e. PCA and defl ation, are repeated until the desired number of sam-
ples has been selected. Hence, the characteristics of each selected sample are given by 
the properties of the successive fi rst loading vectors in question, also denoted as the 
principal properties of the sample set. From the defi nition of PCA this loading basis 
is selected to describe the direction of maximum variance, which is approximated by 
the one sample best describing this variance. In the second step this variance direc-
tion is removed from the data via the defl ation step. It should be noted that the sample 
selected will be empty/all zero after defl ation ( x  k       �       x  i ) by equation (5.1), and will 
thus not play a role in future selections. Overall, it is expected that the uniqueness of 
the selected samples will again span the relevant chemical space in  X .   

   In this chapter we use the principal properties algorithm to determine a transfer sub-
set of seven samples based on the 30°C SW-NIR spectral data set, picking samples 13, 
19, 12, 17, 8, 7 and 1, in that order ( Figure 5.1 ). To simplify our study we will only work 
with this particular transfer set. However, the user should be aware that the number of 
samples in the transfer set and different selection criteria can have a profound effect 
on the results ( Siano and Goicoechea, 2007 ). Prediction of the ethanol contents in the 
remaining 12 samples at 40°C and 70°C will be used for performance evaluation. For 
the curious reader: the Kennard–Stone algorithm would pick samples  { 7, 8 } , 14, 17, 19, 
4 and 1.  

    Calibration transfer case study 

   In this section we will present and discuss a number of potential model transfer 
methods; the performance of the different trials is collected in  Table 5.1   .  Figure 5.3    
shows the model performance for the 30°C data set. If we apply no correction the 
model maintenance set at 40°C performs reasonably, while the model clearly under-
performs for the secondary instrument at 70°C, which is to be expected due to the 
spectral differences in  Figure 5.1 . 
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 Figure 5.3          Predicted versus reference value for ethanol concentration with no transfer.    

 Table 5.1          Comparison of the performance of different calibration transfer methods  

       Calibration transfer method  Ethanol 

 RMSP CV  30°C  RMSP p  40°C  RMSP p  70°C 

   (A) CS 30ºC, PLS,  F       �      4,  R  2       �      0.99   0.018      
             No transfer    0.042  0.151 

             Offset-and-slope correction based on TS    0.040  0.205 

   (B) CS 30ºC      �      TS 40ºC PLS,  F       �      5,  R  2       �      0.99  0.018  0.034   
   (B) CS 30ºC      �      TS 70ºC PLS,  F       �      3,  R  2       �      0.95  0.050    0.066 

   (C) CS 30°C 2 nd  derivative, PLS,  F       �      4,  R  2       �      0.99  0.017     
             No transfer    0.117  0.536 

             Offset-and-slope correction based on TS    0.009  0.020 

   (D      �      A) CS 30ºC, PLS,  F       �      4,  R  2       �      0.99  0.018     
             DS based on TS    0.013  0.022 

             DS based on GTS    0.189  0.194 

              PDS based on TS (window 40ºC      �      5, 70ºC      �      51)    0.018  0.033 

              PDS based on GTS (window 40ºC      �      1, 70ºC      �      47)    0.036   0.098 

  RMSP CV , root mean squared error, leave-one-out cross-validation; RMSP P , root mean squared error, 
prediction; CS, calibration set;  R  2 , squared correlation reference-predicted value;  F , factors in partial least 
squares; TS, seven-sample transfer set; PLS, partial least squares; GTS, three-sample generic transfer set.  

              



   An often applied correction principle in model maintenance is to compute a 
simple univariate  offset-and-slope correction   y  p       �       b  0       �       b  1   �   y  ref  between the pre-
dicted values and the determined reference values of control samples. New samples 
can be transferred by the simple operation  y  T       �      ( y  p       �       b  0 )  �   b  1  

 � 1 . It should be noticed 
that this correction can be based on any set of samples, e.g. quality control sam-
ples that are analyzed anyhow, which can be a considerable operational and fi nancial 
advantage, though care must be taken to have enough  span  in this ad-hoc transfer 
set to get a good estimate for the correction function. As seen from  Table 5.1(A)  
no gain is found in an offset-and-slope correction as expected from the results in 
 Figure 5.3 . 

   Another obvious tactic for instrument standardization is to include the transfer set 
in the calibration set in an attempt to expand the model to the new measurement 
conditions. This strategy requires that a limited number of samples are representa-
tive, a goal supported by the principal properties selection method (but notice that 
again it is not a requirement to have a transfer set based on calibration samples). 
From  Table 5.1(B)  it can be seen that this method works well for model maintenance 
but not so well for the primary–secondary instrument situation. 

   Data  pre-processing  by removing variation in the signal that is not constant or by 
carrying predictive information (Chapter 2) is (or should be) an integral part of cali-
bration transfer since the difference between primary and secondary instruments is 
by defi nition not useful ( Zachariassen  et al. , 2005 ). A simple trick to improve trans-
ferability of data is local centering, where the spectra are mean centered towards the 
average spectral response on the system itself rather than on the average of the cali-
bration set, thus removing the differences in the centers of gravity from multivariate 
signals stemming from different systems ( Bergman  et al. , 2006 ). Here we will test 
a 21-point symmetric window-wise second-order polynomial fi lter computing the 
smoothed second-order derivative to remove differences in baseline along the signals 
(so-called Savitzky–Golay method;  Table 5.1(C) ;  Figure 5.4   ). The predictive per-
formance is initially worse but, as is obvious from  Figure 5.4 , the offset-and-slope 
correction is very effi cient for the processed data for both transfers in our relatively 
simple data set. 

   To give the reader an impression of what is happening,  Figure 5.5    shows the fi rst 
two sample score values from a PCA on the master set, second derivative data. 
Projected on the loadings from this PCA model are the test sets for both secondary 
instruments and the generic sample sets. As can be seen from  Figure 5.5 , the ternary 
mixture triangle is easily recognized, despite some twists. It shows how the 40°C 
samples are close to but not overlapping with the calibration set (a typical model 
maintenance situation) while the 70°C set is far away and rotated but still in the 
same conformation. It also shows that direct transfer is not an easy task and that the 
generic standards used in this case study are probably not suitable for determining 
the correct transfer applicable to the real samples. 

   By far the greatest interest within the fi eld of chemometrics for the potential 
of calibration transfer methods for NIR spectrometry was raised by a series of 
studies conducted by Wang and co-authors ( Wang  et al. , 1991 ;        Wang and 
Kowalski, 1993a, 1993b ). They introduced the idea of  direct standardization  (DS) 
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 Figure 5.4          Predicted versus reference value for ethanol concentration—second-order derivative spectrum. 
Insert: second-order derivative for mixture 10 plus scaled partial least squares (PLS) regression vector, 
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and  piecewise direct standardization  (PDS). In DS a  transfer matrix   F  ( n       �       n ) is 
computed between the same samples measured on two systems ( Figure 5.6   ): 

  X X FP S= ⋅       

  F XS P= ⋅+X       

  x x FT S= ⋅   (5.2)    

   where  X  P  ( m       �       n ) is a transfer set measured on the primary instrument and  X  S  
( m       �       n ) is the same set measured on the secondary instrument. A new measure-
ment on the secondary instrument, row-vector  x  S  ( l       �       n ), can be transformed to 
resemble a measurement on the primary instrument and thus be employed in the original 
calibration model. To determine  F  the Moore–Penrose pseudo-inverse is applied 
(alternatively one could use PCR, PLS or any other stabilized regression method). 
This step can easily lead to numerical instabilities translating into poor results, especially 
if the number of transfer samples  m  is much smaller than the number of variables in the 
spectrum  n  and/or if generic samples are used. This observation led to the alterna-
tive model PDS where the transfer for each variable  i  in the spectrum of the primary 
instrument is estimated from a window  i      �      j  …  i  …  i       �       k  on the secondary instrument 
by a much smaller (and thus more stable) inversion step:   

  X fP S
T( ) ( - ) ( - )i i j i i k i j i i k= … … + ⋅ … … +       
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 Figure 5.6          Transferred spectra mixture 10 with direct standardization with transfer data set (top) and 
generic data set (middle); piecewise direct standardization prediction errors for different window sizes are 
shown (bottom).    
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  f XT
P P( - ) ) ( - ) ( )i j i i k i j i i k X i… … + = … … + ⋅+

      

  x x fT S
T( ) ( - ) ( - )i i j i i k i j i i k= … … + ⋅ … … +  

 (5.3)    

   If this operation is performed for each variable  i  a band diagonal transfer matrix 
 F  ( n       �       n ) will be formed that can be applied on new spectra just as in equation (5.2) 
( Figure 5.6 ). Issues and possible remedies have been reported concerning artifacts intro-
duced in the transferred spectra due to local rank differences ( Gemperline  et al. , 1996 ).   

    Figure 5.6  and  Table 5.1(D)  show the results of DS on our transfer problem using 
both the standard transfer set and the generic transfer samples. DS works very well 
for our seven samples transfer set, both for the 40°C and the 70°C transfer. This can 
be explained by the smooth transition going from one system to the other (comparable 
with the observations in  Figure 5.5 ). We also observe that our generic samples are 
not capable of estimating an appropriate transfer function because they are too far 
from the real samples, dominated by the water band (see        Figures 5.2 and 5.5 ). In 
testing the performance of PDS we compromised by evaluating the performance for 
each transfer with a symmetric window running from 1 point to 81 points (hence 
 j       �       k       �      40 in equation (5.3)). Evaluation of this important parameter in PDS would 
normally not be available in real use. As can be seen from  Figure 5.6  and  Table 
5.1(D) , where the best solution is included, none of the PDS models performed as 
well as DS; apparently the ethanol-specifi c information is not found in one smaller 
region of the spectrum and local differences in the spectral responses can be modeled 
from one global correction in our data set. 

   However, the data in our case study is just one example to illustrate some meth-
ods reported in literature. The performance of these methods might be completely 
different for other spectroscopic data problems. For example, PDS, one of the most 
widely used transfer methods, is often employed as a reference for other novel tech-
niques ( Feudale  et al. , 2002 ) in contrast with the results presented here. However, 
from  Figure 5.2  we can observe that the information in SW-NIR is distributed over 
the entire range and the noise level is low in these measurements (despite the limited 
signal-to-noise ratio). This makes our problem different from the conventional NIR 
(1100–2500       nm range) where the chemical rank can be quite different for different 
spectral regions and PDS is thus probably more successful. This is again different 
from fundamental IR spectroscopy with distinct spectral features. Therefore the 
fi rst step in any successful calibration transfer is to gain knowledge and insight on 
the data and the idea behind the methods (as in all data analysis questions).  

    Other calibration transfer methods 
from the literature 

   Several alternative methods for calibration transfer have been presented in the literature, 
some of which will be presented briefl y in this section. As stated before, spectral 
pre-processing can be of vital importance for achieving model maintenance and 
calibration transfer.  Swierenga  et al.  (1999)  took a different pre-processing approach 

              



by selecting variables in their Raman signal, using a simulated annealing algorithm 
that are least infl uenced by instrumental differences while maintaining a high predic-
tive ability. However this idea—the so-called robust multivariate calibration models in 
a subspace of the original full spectral domain ( Swierenga  et al. , 1998 )—requires 
samples measured on the secondary instrument, but not necessarily the samples as 
recorded on the primary instrument. 

   A simple univariate approach to standardization was developed and patented by 
 Shenk and Westerhaus (1989) . It involves a single correction factor at each wave-
length channel to adjust for intensity differences in the same spectra measured on 
two systems. In order to account for small wavelength shifts, a further local correc-
tion procedure was developed that performs a wavelength index conversion followed 
by a spectral intensity transformation at each wavelength. An alternative method by 
 Nørgaard (1995) , called single wavelength standardization, corrects for intensity dif-
ferences that vary across the wavelength axis by a simple linear regression correction 
of the responses of both instruments at each channel. 

   An alternative solution to transfer was formulated by  Blank  et al.  (1996)  
based on an idea positioned between signal pre-processing and a transfer algo-
rithm. They used a fi nite impulse response (FIR) fi lter to match a spectrum on the 
secondary instrument with the primary system (be aware that the concept of FIR 
here is slightly different from classical causal fi ltering theory in using a symmet-
ric window surrounding the target point). These two spectra do not have to be from 
the same sample, which leads to the idea of standard-less transfer. The authors sug-
gest fi ltering out the differences between spectral signals, leaving only the predictive 
information. 

    Duponchel  et al.  (1999)  use a window-wise approach similar to PDS, but they 
employ a single-hidden-layer feed-forward neural network to establish the local 
regression model. They achieve good results using just fi ve samples in the transfer set. 
Another promising approach combining DS and pre-processing (or rather domain 
transformation) was introduced by  Tan and Brown (2001) , who use discrete wavelet-
base decomposition on a transfer set on both instruments to split the original signal 
of length 2  N   into approximation spectra (also called the signal) and detail spectra (the 
noise) both of length 2  N �    1 . The next step is to compute DS transfers for the approxi-
mation and the detail blocks. These transfers can then be used on new samples from 
the secondary instrument. The authors selected an inverse wavelet transformation 
on the standardized approximation and detail to get back to an original spectrum of 
length 2  N   which can be employed in the master calibration model. 

   Orthogonal signal correction (OSC) is a data analytical method developed to remove 
variation by projection from a signal that has no predictive information for (is orthogo-
nal to) a reference value. The spectral differences between the primary and secondary 
instruments are precisely that the OSC has been successfully used in the calibration 
transfer issue ( Sjöblom  et al. , 1998 ), however the OSC does need reference measure-
ments on the secondary instrument, but not necessarily samples that were also meas-
ured on the primary instrument. A related method was used by  Andrew and Fearn 
(2004) , in which a so-called repeatability fi le containing the average of a number of 
samples measured on different instruments is used (note that this can also be generic 
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standards, but they have to be the same samples measured on each machine). A PCA 
on this repeatability fi le will thus show the differences between instruments and the 
data can be corrected for these disturbing spectral directions by projection.  

    Conclusions 

   Construction of a good multivariate calibration model requires a considerable amount 
of effort, time, and money. This fact makes calibration transfer methods a permanent 
subject of high relevance. Several strategies and methodologies are presented in this 
chapter for solving the standardization problem to a satisfactory degree. However, 
important aspects such as selection of transfer standards and the compatibility of 
the spectroscopic technique with the transfer algorithms do require input and under-
standing of the user for a successful calibration transfer implementation.  

    Nomenclature 

      b  0       offset in univariate correction
    b  1       slope in univariate correction
    f       one row in transfer matrix
    F       transfer matrix in DS and PDS
    x  i       row-vector with sample/spectrum i 
   X       matrix with samples/spectra as rows
    y       reference value/concentration   

Superscripts
  T      vector/matrix transpose
        �            Moore–Penrose pseudo-inverse of a matrix      
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    Introduction 

   Infrared spectroscopy (IR) is conventionally divided into three wavelength regions: 
the near-infrared (NIR: 750–2500       nm or 13       333–4000       cm  � 1 ), mid-infrared (MIR: 
2500–25       000       nm or 4000–400       cm  � 1 ), and far-infrared (25–1000        μ m or 400–10       cm  � 1 ). 
The distinction between these three regions can vary depending upon the type of 
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instrumentation used to acquire IR spectral information. Other distinctions are based 
upon radiation properties; for example, it is widely agreed that NIR covers electro-
magnetic radiation with the range between 750 and 2500       nm. However, some users 
defi ne NIR range as 650–2500       nm, which overlaps with part of the red light region 
of the visible spectrum (400–750       nm). In principle, the NIR region starts from where 
the human eye generates no visual response. With wavelengths of 650       nm and higher, 
the response of the human eye is so low that this tail end of the visible spectrum is 
often included as part of the NIR region ( Raghavachari, 2001 ). 

   In some publications, spectroscopy within the range of 600–2500       nm is referred to 
as  “ far-visible spectroscopy ”  and sometimes as  “ overtone vibrational spectroscopy. ”  
Also, because of the signifi cant number of applications within the wavelength range 
from 600 to 1100       nm, a new spectral region, the short-wavelength near-infrared region 
(SW-NIR) is separately designated. The American Society for Testing Materials defi nes 
short-wavelength near-infrared region (SW-NIR: 700–1100       nm) to include part of the 
visible light region (700–750       nm). This chapter will primarily focus on instrumenta-
tion for near-infrared spectroscopy and mid-infrared spectroscopy, including histori-
cal developments in IR instrumentation and how IR instruments were designed for 
applications in food quality analysis and control.  

    History of infrared instrumentation 

   Early interest in IR technology and instrumentation can be traced to the nineteenth 
century, when William Herschel fi rst observed IR radiation on a photographic plate. 
Herschel’s experiments were aimed at fi ltering the heat from a telescope but along 
with these developments he demonstrated that light radiation exists beyond the vis-
ible spectrum ( Ciurczak, 2001 ). 

   During the fi rst half of the twentieth century, interest in IR-based analytical 
methods developed and was mainly focused in the MIR region ( Rabkin, 1987 ). 
The fi rst custom-made IR instrument appeared in industrial laboratories during the 
1930s. During World War II, the development of photoelectric detectors, primarily 
lead sulfi de (PbS) detectors usable in the IR region, made it possible to record IR 
spectra. This advance revived scientifi c interest in IR and renewed research into IR 
spectroscopy. 

   The fi rst commercial IR instrument was the Beckman IR-1 marketed in 1942 for 
analyses in the rubber and petroleum fi elds. The Beckman IR-1 was both an infrared 
and visible spectrophotometer but it was not widely sold because of governmental 
restrictions. The IR-1 used spherical mirrors and had long focal lengths and optical 
paths to affect dispersion. In 1944, Perkin-Elmer Inc. introduced the Model 12 infrared 
spectrometer that used aspherical shaped mirrors, making this a more compact instru-
ment with higher resolution due to smaller focal lengths and shorter beam paths. The 
Model 12 was a single-beam instrument designed for point-by-point measurement. 
However, highly trained personnel were required for routine operation ( Rabkin, 1987 ). 

   The fi rst double-beam IR instrument, the Perkin-Elmer 21, was sold in 1947 and 
was the fi rst widely adopted IR spectrophotometer ( McClure, 2001 ). A double-beam 

              



optical system provided fl exibility, making it a versatile and popular analytical instru-
ment in almost every branch of analytical chemistry including applications in food 
and agriculture ( Beckman  et al. , 1977 ). In the mid-1950s, Wilbur Kaye of Beckman 
Instruments published two important papers demonstrating the underlying theoretical 
principles of IR spectroscopy and instrumental analysis ( Barton, 2002 ). 

   Later in the 1950s, NIR became recognized for its potential in quantitative analysis 
( Osborne and Fearn, 1986 ). In its very fi rst applications, NIR was simply employed 
as an accessory to other optical devices such as UV/Vis and MIR spectrometers. NIR 
instruments became differentiated from MIR when PerkinElmer and Cary manufac-
tured commercial visible and NIR instruments separately ( Barton, 2002 ). 

   A major breakthrough for NIR quantitative analysis of foods originated from the 
efforts of Karl Norris at the US Department of Agriculture (USDA) in the 1950s to 
develop a moisture meter for cereal products. Norris investigated the optical properties 
of dense, light-scattering materials. However, diffi culties were encountered from inter-
ference in the moisture measurements as a result of absorptions due to other constituents 
such as protein, starch, and oil. The problem was fi nally solved when computer-aided 
multivariate statistical regression methods were developed to correlate NIR spectral fea-
tures with reference values. This improvement not only made the water analysis pos-
sible, but also permitted the determination of other components such as protein, starch, 
and crude lipid simultaneously in grains and food products with relatively low moisture 
content ( Osborne and Fearn, 1986 ). In 1975, McClure and Shenk expanded these appli-
cations to other agricultural products, including tobacco and forages. 

   In the 1970s and 1980s, there was an explosion of agricultural applications for NIR 
developed through government and university research programs, with the fi rst offi -
cial NIR method being adopted by the Canadian Grain Commission for protein test-
ing in wheat. Another major development occurred when Dr Wetzel at Kansas State 
University developed a fi eld test instrument for wheat protein testing and quality eval-
uation of fl our that could be used at grain elevators and other remote locations. The 
American Association of Cereal Chemists (AACC) accepted NIR methods in 1982 for 
grain analysis ( Osborne and Fearn, 1986 ). The research of the following individuals 
was particularly important during this period: McClure (tobacco and forage), Norris 
(cereals, meats, and forage), Williams (cereals and pulses), Tkachuk (grain), Shenk 
(forage), Wetzel (cereals), Birth (corn, fruits, and vegetables), Murry (forage), Barton 
(forage), and Osborne (cereals) ( Osborne and Fearn, 1986 ;  McClure, 1994 ). 

   In the 1980s, simple, stand-alone NIR instruments for chemical analysis appeared 
in the market propelled by the introduction of light fi ber optics. Improved mono-
chromators and detectors fi nally made NIR a more practical technique for the 
 applications in agricultural and food science. For example, the forage industry fully 
adopted the NIR methods in the early 1980s ( McClure, 1994 ). 

   Prior to the 1980s, conventional MIR spectrometers were dispersive instruments 
that measured the amount of absorbed energy based upon the fact that the frequency 
of IR light varies when passing through a monochromator. Most of these early MIR 
instruments were double-beam dispersive grating systems similar to the systems 
used in UV/Vis spectroscopy. Starting in the late 1960s, an important technological 
advance occurred with Fourier transform infrared spectrometers (FTIR) becoming 
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popular. Some of the advantages of FTIR include speed of analysis, a high signal-
to-noise (S/N) ratio, sensitivity, cost, and precision ( Smith, 1996 ). Most modern MIR 
instruments are FTIR using interferometers instead of monochromators ( Coates, 
1997 ). As a result of this, the term  “ MIR spectroscopy ”  and  “ FTIR spectroscopy ”  are 
used interchangeably. MIR refers specifi cally to an electromagnetic spectral range of 
4000–400       cm  � 1  which is the typical range of FTIR instruments. Although not popu-
lar anymore, dispersive MIR instruments still remain on the market. 

   Currently, various techniques are used to separate polychromatic NIR light into 
monochromatic light for both qualitative and quantitative analysis of food samples, 
including light-emitting diode (LED), diffraction grating, interferometer, diode-array 
or acousto-optic tunable fi lter (AOTF), permitting expansion of IR analyses into 
new arenas. For example, in the mid-1990s, PerkinElmer introduced the fi rst Fourier 
transform near-infrared (FT-NIR) instrument, which produces better testing results 
than those obtained with traditional dispersive instruments. 

   With recent technological advances in both hardware and software design, much atten-
tion has been focused on developing more compact, portable, and robust NIR and MIR 
spectrometer systems with advanced and sophisticated software to support much faster 
spectral data processing and analysis. Improvements in microprocessors made it possible 
in recent years to analyze spectral data in seconds, a task that would have taken several 
hours in the 1990s. To date, NIR and MIR have become so popular that they have found 
practical applications in virtually all branches of agricultural and food industries.  

    Optical systems in infrared instruments 

   A typical NIR instrument consists of a radiation source, a wavelength selection 
device such as a monochromator, a sample holder, a photoelectric detector that meas-
ures the intensity of detected light and converts it to electrical signals, and a compu-
ter system that acquires and processes spectral data. Traditional dispersive grating 
MIR spectrometers had similar optical systems. An optical diagram of a traditional 
dispersive grating MIR apparatus is shown in  Figure 6.1   . The IR light emitted
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Detector Computer

Entrance slit 

Exit slit

Mirror 

Food
Sample 

Printout

Grating
or prism 

Monochromator 

 Figure 6.1          Dispersion of a single infrared beam by a diffracting grating. The angle of diffraction of lights 
depends on both the wavelength and the order of diffraction. Adapted from White (1990).  

              



from an IR source passes through a sample, then through a monochromator that con-
tains optical devices such as a prism or grating. The light is guided through the prism 
or grating and separated into a spectrum of different wavelengths. An exit slit is 
employed to allow light at specifi c wavelengths to be segmented into readily measur-
able components and pass through to reach the detector. In situations where a grating 
or prism is used, these can be rotated to allow the light at different wavelengths to 
pass through the exit slit ( Smith, 1996 ). 

    Radiation source 

   The requirements of an ideal radiation source for an IR instrument include a wide 
wavelength range preferably covering the whole NIR or MIR measurement range, 
a strong and stable intensity of light from the source at different wavelengths over a 
short and long period of time, and a power supply which provides consistent stable 
energy to the source. 

   Two major types of radiation sources are used in analytical spectroscopy, either a 
continuum source or a line source ( Table 6.1   ). Continuum sources emit light with a 
relatively stable and continuous intensity over a wide range of wavelengths and are 
most common for molecular absorption and fl uorescence spectrometric instrumenta-
tion. Line sources emit at only a few discrete wavelengths of light and the intensity 
of the emitted light varies at different wavelengths ( Robinson  et al. , 2005 ). 

   Continuum sources, such as tungsten halogen lamps and common incandescent 
radiation sources are widely employed in NIR spectrometers due to their low cost 
and high intensity. For example, many NIR instruments use quartz halogen lights as 
NIR radiation sources. A typical quartz halogen lamp consists of a tungsten wire fi la-
ment and iodine vapor that is enclosed in a quartz envelope or bulb. 

   Usually a tungsten lamp with a quartz bulb is satisfactory for NIR measurements in 
food analysis. In a standard tungsten fi lament lamp, the tungsten evaporates from the 
fi lament and then deposits itself on the wall of the lamp. Tungsten halogen lamps pro-
vide more stable performance and longer life than standard tungsten fi lament lamps 
( McClure, 2001 ). The halogen gas provides some cleaning action by removing the 
evaporated tungsten on the wall of the lamp and redepositing it back on the fi lament, 

 Table 6.1          Radiation sources used in analytical spectroscopy  

   Type  Source  Region 

   Continuum sources  Tungsten fi lament lamp  Visible light and NIR 
     The deuterium tungsten light  UV, NIR 
     High pressure mercury or xenon arc lamps  UV and visible 
     Heated solid ceramics or heated wires  MIR 

   Line sources  Hollow cathode lamps  UV and visible 
     Electrodeless discharge lamps  UV and visible 
     Light-emitting diode (LED)  UV and visible, IR 
     Sodium or mercury vapor lamps  UV and visible 
     Lasers  UV and visible, IR, Raman 

  From  Robinson  et al.  (2005) .  
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making the intensity of the source much higher and the output of the lamp more 
stable. The typical light range of these sources is between 400 and 5000       nm ( Robinson 
 et al. , 2005 ).  Figure 6.2    shows four commercial quartz tungsten halogen (QTH) 
lamps. However, tungsten halogen lamps have some major disadvantages, such as the 
large amount of heat generated, relatively short lifetime, and  “ drift ”  problems (e.g. the 
spectral content of the output drifts over time) ( Cen and He, 2007 ). 

   Line sources or such as lasers, laser diodes, and LEDs are commonly used in 
instruments dedicated to specifi c applications where full spectrum acquisition is not 
necessary and normally used for moisture and crude lipid measurements in grain 
and oilseed analysis. Using a line source makes it possible to develop portable and 
relatively inexpensive analytical devices ( McClure  et al. , 2002 ). Lasers are common 
sources that provide coherent line radiation for NIR and MIR instruments. A major 
advantage of laser sources is that they emit monochromatic radiation with high inten-
sity. Two types of IR laser sources are widely used in NIR spectroscopy: a gas phase 
laser and a solid-state laser. The tunable carbon dioxide laser is a gas laser while the 
diode laser is a solid-state source. The helium neon (HeNe) lasers ( Figure 6.3   ), for 
instance, emit highly monochromatic radiation and are widely used in red, infrared, 
and far-infrared regions. HeNe lasers have an emission that is determined by neon 
atoms by means of a resonant transfer of excitation of helium. LED is a semicon-
ductor diode that emits discrete, incoherent, and narrow spectral bands. LEDs and 
lasers differ in spot size. Different spot sizes of lasers can be achieved since lasers 
are inherently collimated; while LED light diverges as it leaves the source, making it 
diffi cult to focus all energy into a spot ( Bozkurt and Onaral, 2004 ). 

 Figure 6.2          Four quartz tungsten halogen (QTH) lamps for NIR instruments. QTH lamps are good visible/
NIR sources due to their smooth spectral curve and stable output. These lamps use a doped tungsten 
fi lament inside a quartz envelope and are fi lled with a rare gas and a small amount of halogen.  
Permission to use this photo has been granted by Newport Corporation. All rights reserved
( www.newport.com ).    

              



   Two common types of radiation sources used in many MIR instruments are electri-
cally heated rigid ceramic rods and coiled wires. Commercial MIR ceramic sources 
come with a variety of sizes and shapes, including different types of cylindrical rod or 
tubes (e.g. the Nernst glower and the Globar). The Nernst glower has been replaced 
by the Globar which is made of silicon carbide (SiC) that operates at about 1100°C. 
The shape of electrically heated coiled wires is similar to that of an incandescent light 
bulb fi lament. These coiled wires are heated electrically in air to a temperature of 
approximately 1100°C, which may result in a  “ burn out ”  problem as they age. To pro-
vide more uniform light output over time, in some cases, coiled wires are wrapped 
around a ceramic rod for support ( Robinson  et al. , 2005 ).  

    Wavelength selection devices 

   The mechanism of light separation plays an important role in IR instrumental design. 
Various types of NIR and MIR instruments are accordingly classifi ed as fi lter-based 
instruments, monochromator-based instruments, Fourier transform instruments, and 
other instruments ( Wetzel, 2001 ). 

    Filters 
   There are two major types of fi lters used in NIR to select wavelengths of the light: 
optical interference fi lters and electronically tunable fi lters. Interference fi lters consist 

 Figure 6.3          A helium neon (HeNe) laser.   Photo courtesy of Meredith Instruments (Glendale, AZ, USA).    
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of multiple thin layers of dielectric material with different refractive properties. They 
are simple and cheap choices for NIR light selection ( Wetzel, 2001 ). Electronically 
tunable fi lters are a group of devices whose spectral transmission can be electroni-
cally controlled by adjusting voltage, acoustic signal, and other parameters ( Gata, 
2000 ). Two prevailing electronically tunable fi lters are liquid crystal tunable fi lter 
(LCTF) and acousto-optical tunable fi lter (AOTF). A typical LCTF consists of a 
stack of polarizers and tunable retardation liquid crystal plates; while an AOTF uti-
lizes radio frequency (RF) acoustic waves to separate a single wavelength of light 
from a broadband radiation source through a crystal. The selected wavelength of light 
is dependent upon the frequency of the RF applied to the crystal. As a consequence, 
the wavelength of the fi ltered light can be selected by adjusting the frequency ( Gata, 
2000 ;  Workman and Burns, 2001 ).  

    Monochromator 
   A monochromator is an optical device used to disperse light with wide range of 
wavelengths into monochromatic light at different wavelengths. The word  “ mono-
chromator ”  is derived from the Greek roots of  “ mono- ”  which means single, 
 “ chroma ”  which means  “ color, ”  and the Latin suffi x  “ -ator ”  which means  “ an agent ” . 
In optics, dispersion is a phenomenon that results in the separation of light into spec-
tral components of different wavelengths, depending upon the speed of the light at 
each wavelength. In some cases, dispersion is referred to as chromatic dispersion 
because of its wavelength-dependent nature. 

    Prism 
   The most commonly used prisms are silicate glass for visible and NIR instru-
ments and prisms made of NaCl or potassium bromide (KBr) for MIR instruments. 
Historically, the prisms were the most widely used dispersion elements in a mono-
chromator. A glass prism can disperse IR light into a spectrum of light with different 
wavelengths ( Scotter, 1997 ). However, prisms have a major drawback in that their 
useful wavelength range is limited. Therefore, in modern NIR and MIR spectrom-
eters, prisms have been replaced by diffraction gratings or by interferometers that are 
used in Fourier transform systems because of their capacity for linear dispersion or 
their higher performance in terms of sensitivity and signal-to-noise ratio.  

    Diffraction grating 
   A diffraction grating is an optical element that disperses or separates light radiation 
into its constituent wavelengths of lights. Each wavelength of dispersed light occu-
pies a specifi c position in space ( Figure 6.4   ). The polychromatic IR light that hits the 

 Figure 6.4          A typical diffraction grating used in near-infrared instruments.    

              



grating is dispersed and each constituent light of different wavelength is refl ected 
from the grating at a slightly different angle. 

   A typical diffraction grating is a piece of substrate made of glass, metallic, or 
ceramic material the surface of which has been cut into closely spaced and replicated 
parallel grooves and coated with a refl ecting material such as aluminum. Diffraction 
gratings can be used to spatially disperse light of different wavelengths. The use 
of diffraction gratings can be traced back to the late eighteenth century. However, 
early diffraction gratings had the major limitation that they were relatively impre-
cise, yielding ghostlike spectra instead of distinctive spectral readings. In the later 
nineteenth century, Henry A Rowland, the fi rst physics professor at Johns Hopkins 
University, and one of the fi nest physicists of his day, became famous in part for 
building devices that could accurately engrave gratings, making the production of 
high-quality gratings possible. His contribution led to signifi cant advances in ana-
lytical spectroscopy ( Hendricks, 2000 ). Most modern diffraction gratings are molded 
from masters, producing replicate gratings, or manufactured with new technologies 
such as holographic engraving or semiconductor lithography. 

   The grooves on the diffraction grating are identical in size and the whole grating is 
relatively compact ( Figure 6.4 ). A typical grating for the IR region may have 50–200 
grooves per mm. The quality and uniformity of spacing of the grooves are critical to 
the performance of the grating. The dispersion effi ciency of a grating largely depends 
on the distance between adjacent grooves and the angle of the grooves. The spac-
ing is fi xed and cannot be altered without changing the grating. Diffraction gratings 
perform better and are more precise and effi cient than prisms because gratings pro-
vide a linear dispersion of wavelengths. However, diffraction gratings have a major 
limitation due to multiple order of diffraction, where light of different wavelengths 
may leave the grating at the same angle, travelling along the same light path without 
being separated by the grating. This can be minimized by using cut-off fi lters that 
eliminate higher order diffraction wavelengths ( White, 1990 ). 

   IR incident beam that hits the diffraction grating is dispersed on the diffraction 
grating ( Figure 6.5   ). Each wavelength of dispersed light bounces away from the grat-
ing at a specifi c angle. A small selected range of light with specifi c wavelengths at 
the correct angle will be allowed to pass the exit slit and strike the IR detector.  

IR incident
beam ν1

ν2 ν3

Diffraction grating 

 Figure 6.5          Dispersion of a single infrared beam by a diffraction grating. The angle of diffraction of lights 
depends on both the wavelength and the order of diffraction.   Adapted from  White (1990) .    
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    Monochromator 
   A monochromator is typically composed of a dispersion element, an entrance slit 
and an exit slit, and lenses or mirrors ( Figure 6.1 ). Prisms and gratings are widely 
used as dispersion elements to disperse or spread IR light radiation. Lenses and 
mirrors are used to focus the IR light. In a dispersive instrument, the IR light is 
emitted from the source, enters the monochromator through the entrance slit, and 
penetrates into the dispersion element such as a prism or grating. There, the light is 
dispersed into  different wavelengths. The exit slit allows a very narrow wavelength 
of dispersed light to pass through and hit the detector. One major advantage of the 
 monochromators is that they can be easily used to select a pure color of light over a 
wide wavelength range ( Osborne and Fearn, 1986 ). 

   A dispersive spectrometer is based upon a monochromator system. Some NIR 
instruments use stand-alone grating systems while some choose double-beam dis-
persive systems like UV/Vis systems. In some ways, NIR instrumentation is quite 
similar to that of UV/Vis systems. Many modern commercial UV/Vis instru-
ments extend their ability of spectral acquisition into the NIR range, with the same 
detector being used to collect spectral information from the entire UV/Vis and NIR 
range. Likewise, some MIR instruments also extend their detection range to the NIR 
range. 

   A major disadvantage of dispersive MIR instruments ( Figure 6.1 ) is that the exit 
slit restricts the range of possible wavenumbers that can be used, thus signifi cantly 
reducing the amount of IR light that reaches the detector. Besides, only a small 
amount of light can be measured at a time and each wavenumber is measured for 
only a small fraction of the total measurement time ( Smith, 1996 ). However, all 
these problems mentioned above have been well solved by FTIR-based systems 
that are based on a Michelson interferometer with a movable mirror to acquire an 
interferogram.     

          Interferometer 
   The interferometer was invented by Albert Abraham Michelson in the famous 
Michelson–Morley experiment ( Smith, 1996 ). FTIR and FT-NIR spectrometers 
operate by applying Fourier transform to interferograms obtained from a Michelson 
interferometer with a movable mirror. Most modern MIR instruments are FTIR 
instruments based on the Michelson interferometer. More details about FT systems 
are provided in Chapter 7.   

    Detectors 

   Detectors are optical devices designed to measure the intensity of the IR light that 
strikes them by converting radiation energy into electrical signals. The detector is 
usually placed inside the IR instrument. The performance of an IR detector is depend-
ent upon many factors, including speed of response, spectral response, limit of detec-
tion, and temperature of operation ( McClure, 2001 ). The selection of detectors used 
in different IR instruments depends on the range of wavelengths to be measured. 

              



   There are two major types of IR detectors classifi ed according to the princi-
ples of operation: thermal detectors and photon-sensitive detectors (photodiodes). 
Thermocouples, bolometers, thermistors, Golay cells, and pyroelectric devices such 
as those based on deuterated triglycine sulfate (DTGS) are examples of thermal 
detectors; while silicon photodiode, indium gallium arsenide (InGaAs), lead sele-
nide (PbSe), mercury cadmium telluride (MCT), and indium antimonide (InSb) are 
photon-sensitive semiconducting detectors ( Robinson  et al. , 2005 ). 

   Bolometers and microbolometers are very sensitive electrical thermometers that 
operate based upon changes in electrical resistance, making them very suitable for IR 
radiation detection. The modern microbolometers have dimensions of a few microm-
eters and respond quickly. They are widely used for far-IR detection. Thermocouples 
and thermistors are also based upon measurement of a thermoelectric effect while 
Golay detectors are based on the detection of thermal expansion of the material. 
Semiconductor detectors are very sensitive and can reach a steady electrical signal 
within a very short time, thus permitting the rapid scan of a series of wavelengths, 
which is important for gathering IR spectral information ( Robinson  et al. , 2005 ). 

   Photodetectors are more commonly used in NIR systems. A silicon photodi-
ode array detector works most effi ciently in the visible and SW-NIR range of 
16       700–9000       cm  � 1  ( Table 6.2   ). Other commonly used detectors in NIR instruments 
include InGaAs, DTGS, and PbSe devices. The response of InGaAs begins around 
12       000       cm  � 1  and ends around 6000       cm  � 1  depending upon the specifi c confi guration 
of the instrument. 

   For MIR instruments, pyroelectric detectors such as DTGS ( Figure 6.6   ) detec-
tors are the most widely used. For example, a DTGS detector with a cesium iodide 
window (DTGS/CsI) covers the wavenumber range from 6400 to 200       cm  � 1 , which 
includes part of the NIR range, the entire MIR region, and part of the far-IR range. 
The MCT detectors ( Figure 6.7   ) can dramatically improve the sensitivity, resulting in 
the recovery of high-resolution spectral information. This signifi cantly reduces the 
sampling time when IR throughput is low and sample measurements must be made 
at high speed ( www.newport.com ).  

 Table 6.2          Commonly used detectors in infrared instruments  

   NIR region  Responsivity range 
(cm  � 1 ) 

 MIR region  Responsivity range 
(cm  � 1 ) 

   Silicon  16       700–9      000  DTGS/KBr  12       000–350 
   InGaAs  12       000–6      000  DTGS/CsI  6       400–200 
   PbSe  11       000–2      000  MCT  11       700–400 
   InSb  115       000–1      850  Photoacoustic  10       000–400 
   MCT  117       000–400     
   DTGS/KBr  12       000–350     

  NIR, near-infrared; MIR, mid-infrared; DTGS, deuterated triglycine sulfate; InGaAs, indium gallium 
arsenide; PbSe, lead selenide; InSb, indium antimonide; MCT, mercury cadmium telluride.  
From Thermo Scientifi c, Madison, WI, USA; Newport Corporation, Irvine, CA, USA;  Robinson  et al.  
(2005) .  
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 Figure 6.6          A deuterated triglycine sulfate (DTGS) detector for a mid-infrared spectrometer that 
exhibits large and spontaneous electrical polarization signals when the incident infrared beam affects its 
polarization.  Permission to use this photo has been granted by Newport Corporation. All rights reserved 
( www.newport.com ).    

 Figure 6.7          A liquid nitrogen cooled mercury cadmium telluride (MCT) detector. It has a broad spectral 
response close to that of deuterated triglycine sulfate (DTGS) but acquires spectral data 8 times faster 
than DTGS.  Permission to use this photo has been granted by Newport Corporation. All rights reserved 
( www.newport.com ).    

    Single-beam and double-beam optics 

   IR optics consists of a specifi c arrangement of IR instrumental components such as 
single-beam or double-beam optics. A single-beam arrangement is used for all spec-
troscopic emission systems, while double-beam optics are common for spectroscopic 
absorption systems. 

    Figure 6.8    shows a diagram of a single-beam transmittance apparatus that is well 
suited for the reliable quantitative analysis of food samples. The PerkinElmer IR 
instrument model 12 was such a single-beam instrument. Single-beam IR instruments 

              



were quite popular until 1949 when double-beam instruments became available. 
A major problem associated with early single-beam systems was the fl uctuation of 
the intensity of the source radiation, which led to an analytical error called  “ drift. ”  
In addition, it required tedious manual replotting to obtain a standardized spectrum. 
These problems were solved by the use of double-beam systems ( Figure 6.9   ). In 
double-beam optics, the light intensity of the IR beam is measured before and after 
passing through a food sample by splitting the source radiation with the aid of a beam 
splitter (a half mirror). The light is usually split into two beams of equal energy, with 
one passing through the reference side called  “ the reference beam, ”  and the other pass-
ing through the sample called  “ the sample beam. ”  After passing through the sample, 
the sample beam merges with the reference beam and together they pass through a 
monochromator then to a detector. The ratio of the reference beam to the sample 
beam can be measured, and this ratio is not infl uenced by the fl uctuation of radia-
tion source intensity and other factors such as the drift. By constantly comparing 
the relative intensity of the sample and reference beams, the double-beam systems 
offer more stable and rapid measurements than single-beam systems ( Workman and 
Burns, 2001 ;  Robinson  et al. , 2005 ).  

    Software 

   IR spectral data acquired with computerized IR systems need to be processed and 
analyzed using software packages. In the early days of IR spectroscopy, IR instru-
ments were not well supported with computerized programs for data analysis such 
as those being used to today. Improvements in microprocessors made it possible to 
analyze sets of spectral data in seconds that had taken much longer time a few years 
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 Figure 6.8          A single-beam transmittance apparatus.    
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 Figure 6.9          A double-beam transmittance apparatus.    
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earlier. Currently, various types of user-friendly software have been developed for IR 
spectral data acquisition as well as for subsequent multivariate statistical analyses, 
providing powerful tools for solving practical problems in food analysis. 

   These commercial software packages offer various statistical and analytical func-
tions for the analysis of the spectral data, including binning, smoothing, derivative 
transformations, baseline correction, attenuated total refl ection (ATR) correction, 
normalization, and multivariate statistical tools such as principal component analy-
sis (PCA), principal component regression (PCR), partial least squares (PLS), soft 
independent modeling of class analogy (SIMCA), evolving factor analysis (EFA), 
two-dimensional (2D) correlation, etc. ( Martens and Naes, 1989 ). For example, a 
commercial software called DeLight, developed by D-Squared Development Inc. 
(La Grande, OR, USA), integrates IR data acquisition and data analysis that readily 
captures, organizes, and analyzes NIR spectral data in a fl awless and comprehensive 
manner. Neural networks have also been developed for spectral analyses ( Huang and 
Rasco, 2007 ), but applications are somewhat limited.  

    Commercial infrared instruments 

   Since the fi rst commercial IR instrument, the Beckman IR-1, was launched in 1942, 
many IR instruments have been manufactured and sold. With recent developments 
and advances in analytical chemistry and IR technologies, NIR and MIR instruments 
have been widely employed to meet the needs of the pharmaceutical, agricultural, 
food and beverage, chemical, and other industries. 

    Table 6.3    shows a list of the names and models of some major NIR instruments 
and their manufacturers, including Foss NIRSystems, Thermo Fisher Scientifi c, 
PerkinElmer, Hitachi High Technologies, Analytical Spectral Devices, and other 
companies. Most of these manufacturers exhibit their new IR instruments at inter-
national analytical conferences such as the Pittsburgh Conference (Pittcon), which 
focuses on analytical chemistry and applied spectroscopy and is held annually. Like 
other industrial sectors, analytical chemistry instrumentation has experienced several 
mergers over the past two decades. For instance, in 2007 Thermo Electron and Fisher 
Scientifi c combined to create Thermo Fisher Scientifi c, becoming a leading provider 
of instruments, equipment, reagents, software and services for research and analysis. 

   NIR instruments can be classifi ed into two major categories: laboratory analyzers 
for research purposes and process analyzers for use in the production lines or opera-
tion in harsh manufacturing conditions. Laboratory NIR analyzers generally come 
with broad scanning range and adjustable scanning rate for testing a variety of sam-
ples; while process analyzers are specifi cally optimized for defi ned applications. 

    Laboratory analyzers 
   NIR laboratory analyzers are widely used in research and development (R & D), qual-
ity control (QC), process control in food processing plants, and academic laboratories 
because they are simple, quick, reagentless, fl exible, and require little or no sample 
preparation. 

              



    Figure 6.10    shows a commercial laboratory NIR composition meter that is 
designed for desktop use. It can be used to measure one or multiple food compo-
nents depending on the number of measurement fi lters used in the instrument. 
The measurement of moisture content in a food product is conducted by focusing 
NIR light on the sample and determining how much light the sample absorbs. The 
properties of refl ected light are dependent upon the characteristics of food composi-
tion in the sample. The moisture content can therefore be determined by measuring 
the NIR light attenuation caused by the sample. For example, a food sample with a 
moisture content of 10% will absorb and refl ect NIR light differently from a sam-
ple with a moisture content of 15%. The NIR composition meter collects and meas-
ures this refl ected light and converts it to moisture content values using specialized 
software.  

    Process analyzer 
   NIR and MIR process analyzers have been widely used in food processing and
on-line quality control settings due to their heavy-duty and rugged design, high

 Table 6.3          Some major manufacturers and models of near-infrared instruments  

   Company  Products 

   Analytical Spectral Devices Inc (ASD)  QualitySpec® Pro, OSB, and iP; LabSpec® 5000/5100
 series 

   Axsun Technologies  IntegraSpec™ NIR Spectrometers 
   Brimrose Corporation  Luminar AOTF-NIR Spectrometers 
   Büchi Corporation  NIRFlex N-500; SpectraAlyzer 
   B & W Tek Inc.  BWS Series Pro UV-Vis-NIR Analyzer; i-Spec Series; portable

 NIR Spectrometer 
   Decagon Devices Inc.  AquaLab DA7200 NIR Analyzer 
   D-Squared Development  DPA20; Grain analyzer 
   Foss NIRSystems Inc  Infratec™ 1241 Grain Analyzer; NIRSystem model 6500; etc. 
   Hitachi High Technologies  U-4100 UV-Vis-NIR Spectrophotometer 
   Kett Corporation  KJT Series Near-infrared Analyzer 
   Jasco  The New V600 range of UV-Visible-NIR Spectrophotometers 
   LT Industries   LT-NIR 
   Malvern Instruments Ltd  The SyNIRgi Near Infrared Chemical Imaging (NIR-CI) 

 systems 
   m.u.t. GmbH  TRISTAN spectrometers 
   NIR Technology Australia  Benchtop NIR Analyzer; NIT-38 Analyzers; the Series 1000 

 Alcohol Analyzer 
   Ocean Optics Inc.  NIR 256, 512 Spectrometers 
   PerkinElmer Inc.  Lambda 25/35/45 UV/Vis Systems; Lambda 950, 850 and 

 650 UV/Vis/NIR 
   Perten Instruments  Diode Array 7200 Full-spectrum NIR instrument 
   Thermo Fisher Scientifi c Inc.  Antaris Near-Infrared Analyzers 
   Unity Scientifi c Inc.  SpectraStar™ Series Near Infrared Analyzers 
   Varian Inc.  Cary range of UV-Vis-NIR Spectrophotometers 
   Zeltex Inc.  ZX-440, 800 Near-Infrared Analyzer 
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performance and fl exibility. These IR process analyzers are specifi cally designed for 
routine analyses in production lines, factory fl oors, loading docks, warehouses, and 
manufacturing settings. Instead of being tested in the lab, samples in the production 
status are analyzed conveniently on-line and in real-time. 

   For example, recently, an on-line NIR testing system ( Figure 6.11   ) has been devel-
oped by Analytical Spectral Devices (ASD) together with the USDA to predict meat 
tenderness in real-time at the processing plant. This system allows meat processors 
to analyze the tenderness of beef carcasses non-destructively and at the grading 
stand. In addition, the US Meat Animal Research Center has developed a method 
with this technology to predict the shear force of longissimus muscle slice at 14-day 
postmortem in cattle ( Bos taurus ). This new method helps beef processors to predict 
beef tenderness more accurately on nearly 100% of the carcasses on-line, thus sig-
nifi cantly improving the quality of beef products ( www.asdi.com ). 

   The new Thermo Nicolet Antaris Near-infrared analyzer ( Figure 6.12   ) manufac-
tured by Thermo Fisher Scientifi c Inc. uses a unique method-development-sampling 
(MDS) system for solids, liquids, powders, pastes, and tablets analysis. Its hand-held 
diffuse refl ectance fi ber optic probe can take sample measurements directly in the 
production settings or can penetrate through packaging materials. This product line 
represents an industry-driven transfer of spectroscopy from laboratory to industry 
with fi t-for-purpose NIR analyzers.    

 Figure 6.10          A commercial lab NIR composition meter—KJT-270 (Kett Inc., Villa Park, CA, USA).    

              



 Figure 6.11          On-line testing for beef tenderness quality with the QualitySpec® BT system by ASD Inc.  
Photo courtesy of ASD Inc. ( www.asdi.com ).    

 Figure 6.12          Thermo Nicolet Antaris FT-NIR analyzers (Thermo Fisher Scientifi c, Inc. Waltham, MA, USA).    

    Sampling techniques of IR methods 

   Because NIR measurements are usually conducted on bulk, raw and untreated food 
samples, how to sample the food products and present them to IR instruments for 
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measurement becomes crucial. Two basic sampling methods are used for IR spec-
troscopy: transmission mode and diffuse refl ectance mode ( Rolfe, 2000 ). When light 
is incident on a sample it may be refl ected, absorbed, or transmitted. The sum of the 
refl ected, absorbed, and transmitted energy must be equal to the initial energy of 
the light ( Tuchin, 2000 ). Thus, the amount of radiation absorbed by the sample can 
be measured by detecting the amount of energy transmitted through the sample or 
refl ected from the sample. 

    Liquid samples 

   Liquids, gels, or solutions can be analyzed by NIR methods in the diffuse refl ectance 
mode or in transmission mode by pouring the sample into a transparent cuvette. NIR light 
from the instrument is usually transferred to the sample by a fi ber optic emitter. The length 
of the fi ber optic can be from 1       m up to 150       m ( www.foss.dk ). Thus, remote sampling is 
possible with an NIR fi ber optic probe connected to an NIR instrument. With a fi ber optic 
probe, many food samples can be conveniently measured by NIR technique with little or 
no sample preparation. Because quartz optical fi bers are transparent to NIR radiation, they 
are bundled together to acquire spectral information over a large area on food surfaces. 
The low OH-content quartz fi bers are single fi laments 100–600        μ m in diameter and are 
widely used for NIR applications ( Robinson  et al. , 2005 ). Because NIR signals travel at 
the speed of light along the fi ber optic probe, measurements are almost instantaneous. 

   For instance, a DPA-20 spectrophotometer (D-Squared Development Inc.) coupled with 
a fi ber optic probe can be used to acquire NIR spectra in the diffuse refl ectance mode. 
The probe ( Figure 6.13   ) contains 32 illumination fi bers (600       mm in diameter) arranged in 
concentric circles; each fi ber is 2       mm away from a central pickup fi ber. The diameter of the 
fi ber optic probe is about 1       cm. An internal tungsten bulb illuminates the fi bers. 

    Figure 6.14    shows a schematic representation of a fi ber optic probe connected to 
a DPA-20 in the test cell for NIR spectral acquisition of a gellan dispersion ( Huang 
 et al. , 2003 ). A gellan dispersion was transferred to a custom-built stainless steel test 
cell with a water jacket surrounding the sample holder of the cell. The fi ber optic probe 
was immersed into the gel dispersion from the top of the test cell to record NIR spectra.  

    Solid samples 

   Solid samples are analyzed by NIR methods with refl ectance measurements. The col-
lected radiation may be either produced by specular refl ectance or diffuse refl ectance.

Fiber probe end

32 Illumination fiber optics
(600 μm)

Radius (2 mm)

1 Collection fiber optic
(600 μm)

 Figure 6.13          Schematic of a fi ber optic probe used to acquire near-infrared spectra.    

              



Specular refl ectance occurs at the surface of a sample and the radiation does not 
penetrate the sample. The specular refl ectance in spectrophotometry is to be avoided 
since it provides no absorption information. Diffuse refl ectance radiation penetrates 
into the sample and interacts with the sample before being refl ected back to the sur-
face. When radiation encounters particles in the sample are much larger than the 
wavelength, the radiation will propagate in all directions—a phenomenon called 
 “ scattering. ”  Though scattering is generally a source of error in optical experiments, 
it may help enhance the weak absorption bands, thus providing useful diffuse refl ect-
ance spectra of biological samples since the actual path length is much larger than 
the sample thickness ( Osborne and Fearn, 1986 ). 

   In diffuse refl ectance mode, solid samples are usually placed in a sample cup for 
NIR measurement. Alternatively food samples are measured by placing the fi ber 
optic probe directly in contact with the sample. The light penetration depth in a spe-
cifi c sample is a function of the geometry of the optical probe and the scattering 
characteristics of the sample ( Birth and Hecht, 2001 ). 

   For example,  Figure 6.15    shows a powerful probe (D-Squared Development, Inc.) 
utilized for SW-NIR spectral acquisition on coho salmon tissue. SW-NIR spec-
tra were recorded with a probe of a customized spectrophotometer. The probe fea-
tures four tungsten bulbs placed concentrically around a central fi ber optic bundle. 
Compared with the fi ber optic probe shown in  Figure 6.13 , this customized probe is 
much larger and more powerful. For this experiment all spectral measurements were 
recorded in diffuse refl ectance mode. During the measurement, the probe was inde-
pendently positioned on top of the skin, scales, and muscle tissues of the coho sam-
ples to acquire diffuse refl ected signals. 

    Figure 6.16    illustrates a study where a diffuse refl ectance NIR method was used 
to measure the quality indices of apples. An intact apple was measured by a Vis/NIR 
system consisting of a quartz halogen light source, a fruit holder, and a non-scanning 
polychromatic/diode array spectrometer. The apple was placed on the holder and 
irradiated by the light from below. Light entered the fruit, diffused in the apple fl esh 
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 Figure 6.14          Schematic representation of positions of a fi ber optic probe and a thermocouple probe in 
the test cell for near-infrared spectral acquisition of a tested hydrocolloid ( Huang  et al. , 2003 ).    
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and then exited from the fruit. The light source and detector were on the same side, 
avoiding the measurement of surface refl ections and so allowing subsurface penetra-
tion of the light into the apple fl esh ( McGlone  et al. , 2002 ).  

    Gas samples 

   Traditionally, NIR technology was not widely used for gas analysis due to the low 
density of gas samples and the relatively weak overtone bands. However, recent 
developments of highly sensitive NIR instruments with tunable diode lasers could 
help to solve this problem. This new technique signifi cantly increases the source 
brightness and thus improves the spectral resolution. For example, gas samples 
are fi lled within gas cells for NIR measurements using long fi ber optic sample 
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 Figure 6.16          The visible/near-infrared (Vis/NIR) measurement system ( McGlone  et al. , 2002 ).    

 Figure 6.15          A powerful probe (D-Squared Development Inc.) utilized for short-wavelength near-infrared (SW-NIR) spectral 
acquisition on coho salmon muscle ( Oncorhynchus kisutch ) through skin and scales    .

              



cells ( www.goaxiom.com ). Fiber optic coupled low volume gas cells can provide 
extremely low volume and rapid sample exchange. The design was specifi cally used 
for NIR analysis of gas samples.   

    Infrared band and spectral interpretation 

   IR spectroscopy is a technique based upon the overtones and vibrations of the atoms 
of a molecule when passing IR radiation through a tested sample. The energy at 
which any peak in an absorption spectrum appears corresponds to the frequency 
of a vibration of a part of the sample molecule ( Stuart, 1997 ). In the IR region, 
various fundamental molecular vibrations, including those from C–H, O–H, N–
H, C     �     O, and other functional groups can be detected ( Weyer, 1985 ;  Murray and 
Williams, 2001 ). For example, when a food is irradiated with NIR light, it absorbs 
the light with frequencies matching characteristic vibrations of particular functional 
groups, whereas the light of other frequencies will be transmitted or refl ected ( Foley  
et al.,  1998 ). Therefore, the biochemical components of a food tissue determine the 
amount and frequency of absorbed light and the quantity of refl ected or transmitted 
light can be used to infer the chemical composition of that food tissue ( André and 
Lawler, 2003 ). 

   Representative SW-NIR spectra collected on hot smoked king salmon portions are 
shown in  Figure 6.17a   . The prominent water band at about 985       nm arises from the 
2 υ  1       �       υ  3  combination transition where  υ  1  is the symmetric O–H stretch,  υ  3  is the 
antisymmetric O–H stretch, and  υ  2  is the O–H bending mode. The second derivative 
spectra for hot smoked king salmon portions are shown in  Figure 6.17b . The peak at 
about 985       nm and weaker absorption bands arising from 2 υ  1       �       υ  2       �       υ  3  and 3 υ  1       �       υ  3  
observed near 840       nm and 750       nm can be assigned to the presence of water in the 
sample tissue ( Lin  et al. , 2003 ). 

   In the MIR region (4000–400       cm  � 1 ), there are many absorption bands arising 
from various biochemical functional groups such as those present in water, lipids, 
proteins, polysaccharides, and nucleic acids. The prominent absorption peaks around 
3400       cm  � 1  are primarily from water. The absorption peaks around 2960, 2929, and 
1740       cm  � 1  are from fatty acids ( Zeroual  et al. , 1994 ;  Kansiz  et al. , 1999 ). Peaks 
around 1650 and 1550       cm  � 1  are from amide I and II vibrations of protein or pep-
tides. The peaks between 1200 and 900       cm  � 1  are believed to correspond to stretching 
vibrations of the phosphate and the vibrations of polysaccharide moieties ( Schmitt 
and Flemming, 1998 ;  Lin  et al. , 2005 ). 

   Both NIR and MIR spectroscopy can be implemented as non-destructive and non-
invasive measurements, require minimal or no sample preparation, and only need a few 
seconds for spectral collection. A major advantage of NIR over MIR is that NIR light 
can penetrate much farther into a sample than MIR radiation.  Hampton  et al.  (2002–
2003)  showed that the maximum penetration depth of the DPA20 probe into fi sh tissue 
is 13       mm. Thus, NIR allows the use of long path length in spectral acquisition of sam-
ples in various packaging materials such as glass, plastic materials, fi lms, and others 
that are transparent to NIR light. Furthermore, the use of NIR spectroscopy with fi ber 
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 Figure 6.17          Original short-wavelength near-infrared (SW-NIR) refl ectance spectra (a) and 
second derivative transformation (b) for hot smoked king salmon ( Oncorhynchus tshawytscha ) 
( Lin  et al. , 2003 ).      
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optic probes permits users to collect full spectra of an intact food sample. For exam-
ple, NIR light can penetrate through fi sh skin and scale into muscle tissue, permitting 
analysis of intact whole fi sh and fi sh fi llet. In contrast, although MIR provides better 
specifi city, the radiation light of MIR has a very short penetration depth (usually a few 
micrometers) and cannot penetrate through the glass, plastics, and other materials. 

   Although NIR spectroscopy has longer penetration depth, it does not come without 
limitations. Most NIR instruments provide limited selectivity and cannot be used for 
accurate measurement for food components with content of less than 1%. Besides, 
NIR methods require data calibration using reference values collected by traditional 
chemical methods and each food component needs a separate calibration. In addi-
tion, chemometric analysis with complicated mathematical data processing tech-
niques is often regarded as a  “ black box approach ”  and is confusing to users who 
want to gain in-depth knowledge about NIR analytical techniques.  

    Conclusions 

   With technological advances in hardware and software design over the recent decades, 
NIR and MIR spectroscopy have been established as rapid, accurate, non-invasive, 
non-destructive, and environmentally friendly techniques and are increasingly used 
in food quality analysis and control. NIR and MIR technologies are among the most 
practicable and important analytical techniques to be implemented in the agricultural 
and food industries. Development of simple, rapid and non-invasive IR methods for 
safety and quality detection in foods will greatly assist food processors to produce 
safe and high-quality food products.   

Dedication

We would like to dedicate this chapter to the memory of our dear friend, 
colleague and long time collaborator, Dr David Mayes in recognition of his many 
important contributions to the fi eld. Dr Mayes developed the instrumentation, che-
mometric algorithms and analytical software used by many of us in the USA for IR 
spectroscopic analysis.
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    Introduction 

   The concept of Fourier transform infrared (FTIR) spectroscopy has been known 
about for more than a century. It began with the invention of the interferometer 
by Michelson in the 1880s (       Michelson, 1891, 1892 ). Soon after, Lord Rayleigh 
proposed that interference pattern produced by the interferometer could be converted 
into a spectrum using  Fourier transformation  ( Rayleigh, 1892 ). Despite these early 
inventions, it took more than 60 years for FTIR spectroscopy to gain recognition as 
a potent analytical tool. It attracted widespread interest and attention only after the 
years following World War II when several independent lines of development con-
verged, resulting in the emergence of FTIR spectroscopy as a useful tool. 

   Advances in FTIR instrumentation, mathematical transformations, sampling 
techniques and computer technology ensued in the following years. The invention 
of  fast Fourier transform  (FFT), an improvement over the discrete Fourier trans-
form, by  Cooley and Tukey (1965)  improved the performance of these early FTIR 
spectrometers. The fi rst commercial FTIR spectrometers were available in the late 
1960s. Dispersive instruments that had been widely used since the late 1940s were 
then slowly supplanted by FTIR spectroscopy. 

   Today, due to rapid commercial development and extensive research, FTIR 
spectroscopy is considered to be one of the most powerful techniques for chemical 
analysis. Because of its simplicity, sensitivity, versatility, and speed of analysis, its 
applications in biological analysis, including food, are growing at a rapid pace. The 
growing number of research papers on applications of FTIR spectroscopy in food is 
a testimony to this. FTIR spectroscopy has attracted tremendous attention in the last 
couple of decades in spite of tough competition from other spectroscopic techniques 
and mass spectroscopy. 

   FTIR spectroscopy is no longer restricted to chemists and spectroscopists. Many 
specialists and non-specialists from diverse disciplines are starting to adopt this 
technique. This chapter explains the concepts of FTIR spectroscopy, with emphasis 
on the history, principles and theories, instrumentation, and applications. Fourier 
transform near-infrared (FT-NIR) and Fourier transform mid-infrared (FT-MIR) 
spectroscopy are also explained with relevant examples. The primary aim of this 
chapter is to introduce the fundamentals of FTIR spectroscopy. While several 
chapters later in the book detail the applications of FTIR spectroscopy in animal and 
plant food products, in this chapter examples related to food safety are provided to 
support the discussions.  

    A brief history of Fourier transform 
infrared spectroscopy 

   Several publications and articles are available on the  history of FTIR spectroscopy . 
Most recently, Ferraro published a very detailed account ( Ferraro, 1999 ). In addition, 

              



several books and publications have discussed the history of FTIR spectroscopy in 
great detail ( Bell, 1972 ;  Griffi ths and de Haseth, 1986 ;  Johnston, 1991 ;  Christy  et al. , 
2001 ). All the publications agree that the root of IR spectroscopy is the discovery IR 
radiation by Sir William  Herschel (1800) . Herschel then developed prism-based tech-
niques for measuring IR spectra. The fi rst mid-infrared (MIR) spectrometer was con-
structed as early as 1833 by Melloni following his observation that NaCl is IR-transparent 
( Christy  et al. , 2001 ). FTIR spectroscopy was born with the invention of the interfer-
ometer by Michelson (       Michelson, 1891, 1892 ). He used the interferometer to measure 
accurately the wavelength of light, which earned him the Nobel Prize in Physics in 1907. 
Michelson also used the interferometer to collect several interferograms. Since then it has 
taken more than half a century for the technique to establish itself as an analytical tool. 

   Soon after the construction of the fi rst working interferometer by Michelson, 
 Rayleigh (1892) , who also worked on the development of interferometers at the 
same time as Michelson, recognized that by computing the Fourier transform (FT) of 
the interference pattern it may be possible to obtain a spectrum. He was the fi rst to 
relate an interference pattern to a spectrum through  Fourier transformation . However, 
calculation of FT was a complex task for Michelson. To accomplish it, he con-
structed a  harmonic analyzer  in the late 1890s. This was an analog device that could 
perform Fourier transform, as described elsewhere ( Michelson, 1898 ;  Johnston, 
1991 ). Despite these developments, FTIR spectroscopy saw a decline in the 
decades prior to World War II, mainly due to the lack of computing and instrumen-
tation technology. Many other competing techniques, including dispersive techniques 
were being investigated and developed. 

   Fortuitously, several streams of advancements converged after the War and 
combined to promote FTIR spectroscopy. By 1949, Claude Shannon of Bell 
Laboratories USA had developed  information theory  ( Shannon, 1948 ). This detailed 
the requirements of data sampling, which is very important to the data analysis 
methods of FTIR spectroscopy. Developments in instrumentation science occurred 
with the discovery of the  multiplex advantage  or  Fellgett advantage  of interferometers 
by Peter Fellgett in 1951 ( Fellgett, 1958 ) and the  throughput advantage  or  Jacquinot 
advantage  by Pierre Jacquinot in 1954 ( Jacquinot, 1954 ). These concepts revived 
the fi eld of FTIR spectroscopy. One of the major breakthroughs in the fi eld of FT 
computation occurred in 1965 with the invention of  FFT  or Cooley–Tukey 
algorithm by James Cooley and John Tukey ( Cooley and Tukey, 1965 ). This algorithm 
signifi cantly increased the resolution while reducing the analysis time. FTIR instru-
mentation also saw notable improvements in the 1960s with the introduction of helium-
neon (He-Ne) lasers, better IR detectors, and analog-to-digital converters. 

   The numerous developments that occurred in the decade following World War 
II spurred the commercialization of FTIR spectroscopy. Several researchers and 
companies worked on commercial applications for FTIR from the mid-1960s. Peter 
Griffi ths, Raul Curbelo, Lawrence Mertz, and many others were key contributors to 
this fi eld ( Mertz, 1965a ;  Griffi ths  et al. , 1972 ). The introduction of the fi rst commer-
cial FTIR spectrometer (FTS 14) by Biorad Company of Cambridge, MA, USA in 
1969 attracted widespread attention and generated considerable interest in the use 
of IR spectroscopy for analytical applications. In the following years many other 
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companies, including Nicolet Instruments (Madison, WI, USA), PerkinElmer Corp. 
(Norwalk, CT, USA), Bruker (Billerica, MA, USA), Mattson Instruments (Now 
Thermo Electron; Madison, WI, USA), and Midac (Irvine, CA, USA) began manu-
facturing and marketing FTIRs. 

   The development of  rapid scanning interferometers  by Mertz in the 1960s ( Mertz, 
1967a ) signifi cantly improved the speed of FTIRs. Various instrumental and com-
putational improvements, including digital signal processing, FTIR software, diag-
nostic features, etc., occurred in the following decades that improved the resolution, 
signal-to-noise ratio, sensitivity and speed of detection. The introduction of the 
IR microscope made microsampling and analysis possible. Developments of step 
scanning interferometers and dynamic alignment have now enabled kinetic studies, 
two-dimensional spectroscopy and photoacoustic depth profi ling. Miniaturization 
and the lower cost of production has extended its applications to industry and quality 
control labs. As a standalone technique, FTIR spectroscopy has established itself as a 
primary analytical tool and offers great potential for integration with other analytical 
techniques, providing new research opportunities as well as novel applications.  

    The interferometer 

   The  interferometer  was fi rst constructed by Albert Abraham Michelson ( Michelson, 
1891 ), the fi rst American to win the Nobel Prize. What started as a preparation for a 
class demonstration in 1878 at the American Naval Academy at Annapolis, resulted in 
the invention of the interferometer a couple of years later at the University of Berlin. 
Michelson designed the interferometer not to perform IR spectroscopy but to investi-
gate the existence of  “ luminiferous aether, ”  a medium that was thought to be essential 
for the propagation of light waves. In a famous experiment, known as the  “ Michelson–
Morley ”  experiment, it was shown that there is no evidence for the existence of 
luminiferous aether, a result that proved many previous conclusions wrong and raised 
several questions. Michelson also used the interferometer for many other purposes, 
including measuring the diameters of stars, developing standards for length measure-
ment, etc. Later in the nineteenth century Michelson and Lord Rayleigh ( Rayleigh, 
1892 ) recognized the potential of the interferometer to provide interference patterns of 
samples, which could then be converted to spectra. In the following decades, the use 
of interferometers to obtain spectra was commandeered into the development of FTIR 
spectroscopy. It is right to say that the invention of interferometers revolutionized the 
fi eld of IR spectroscopy. Although several other designs were developed and commer-
cialized, most modern interferometer designs are still based on the original interferom-
eter constructed by Michelson. 

    Construction and working principle 

   An interferometer is an optical device that allows the controlled generation of interfer-
ence patterns or interferograms. The construction and working of the interferometer 

              



have been explained in detail by several authors ( Griffi ths and de Haseth, 1986 ; 
 Johnston, 1991 ;  Smith, 1996 ). Briefl y, it consists of a source, beam splitter, a fi xed 
mirror, and a moving mirror as shown in  Figure 7.1   . The source emits light in the 
IR region when electricity is passed through it. The  beam splitter , as the name 
suggests, serves to split the incident IR light into two. The  mirrors  are aligned so as 
to refl ect the light waves in a direction that would allow recombination of the waves 
at the beam splitter. The  movable mirror  is capable of moving along the axis, away 
from and towards the beam splitter. One half of the light passes through the beam 
splitter and is refl ected by a  stationary mirror  back to the beam splitter. The other 
half of the light is refl ected on to the moving mirror, which in turn refl ects the light 
back to the beam splitter. The two refl ected beams from the mirrors recombine at the 
beam splitter. 

   The difference in distance travelled by the two light beams, created due to the 
movement of the mirror, is called the  optical path difference  (OPD) or optical retar-
dation. The recombined beam passes through the sample and is fi nally detected by 
the detector. 

   When the two mirrors are at the same distance ( zero path difference ; ZPD) the 
refl ected beams are in phase and hence interfere constructively. The intensity of the 
beam is the highest during  constructive interference . This occurs when the OPD 
between the two mirrors is an integer ( n ) multiple of the wavelength ( λ ). Conversely, 
when the two light beams from the mirrors are out of phase with each other, they 
interfere destructively, leading to a beam of low intensity. Complete  destructive inter-
ference  occurs when the path difference is a ( n       �      1/2) multiple of the wavelength. At 
other path differences both constructive and destructive interferences take place and 
the resulting light intensity varies in the form of a cosine wave. 

   The plot of the intensity of light (in volts) over the OPD is known as an 
 interferogram . In short, an interferogram is obtained by adding large number of 
sinusoidal waves of intensity at different wavelengths. A typical interferogram obtained 
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 Figure 7.1          Schematic diagram of a Michelson interferometer.    
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using an FTIR spectrometer is shown in  Figure 7.2   . An interferogram represents one 
forward motion of the mirror until the point of ZPD and backward motion to the 
initial position. The point of highest intensity, called the  centerburst , occurs at ZPD, 
where all waves constructively interfere. The centerburst provides information about 
the total amount of energy from the source. However, it does not contain any signal 
from the sample. The regions on either side of the centerburst are called the  wings  of 
the interferogram, where both constructive and destructive interference take place at 
varying levels. Ideally the wings, which carry the signal from the sample, should be 
identical on either side of the centerburst.  

    Advantages and disadvantages of interferometry 

   The advantages of an interferometer stem from two major concepts: (1) the 
multiplex advantage or the Fellgett advantage and (2) the throughput advantage or 
the Jacquinot advantage, and these in turn result in several other advantages that 
signifi cantly improve the effi ciency of a spectrometer. 

    Fellgett advantage 
   One of the most important practical advantages of FTIR spectroscopy is the mul-
tiplex or Fellgett advantage identifi ed by Peter Fellgett during his doctoral studies 
at Cambridge University, UK, between 1948 and 1951 ( Johnston, 1991 ). Fellgett’s 
attempts to measure the IR spectra of stars was limited by the poor sensitivity of the 
available detectors, which were capable of recording only a narrow band of wave-
lengths at a time. The long detection times directly infl uenced the  signal-to-noise 
ratio  (SNR). This problem prompted Fellgett to explore ways to detect multiple 
wavelengths simultaneously with the aim of reducing the detection time and hence 
the random noise. After investigating several different avenues, Fellgett heard about 
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 Figure 7.2          Typical interferogram of a modern FTIR spectrometer. The total intensity of the source is 
shown by the centerburst, which does not contain any signal from sample. The wings of the interferogram 
contain signal from the sample.    

              



interferometers and quickly recognized that they could be a solution to his problem. 
He then went on to show that, unlike a conventional dispersive instrument in which 
the spectrum is recorded one wavelength at a time, an interferometer can measure 
the whole interferogram at the same time. He also showed that the SNR, which is a 
measure of signal quality, at a particular wavenumber is proportional to the square 
root of the time spent observing that wavenumber. 

   Fellgett’s proposal to use an interferometer to simultaneously measure the whole 
wavelength range later gave rise to the necessity of Fourier transformation to 
convert the interferogram to an IR spectrum. Detailed literature on multiplexing were 
published by Fellgett in the 1950s ( Fellgett, 1958 ).  

    Jacquinot advantage 
   The second advantage of interferometry that contributes to the high SNR of FTIR 
spectroscopy is the throughput advantage or Jacquinot advantage discovered by Pierre 
Jacquinot in the late 1940s and published in 1954 ( Jacquinot, 1954 ). Jacquinot wanted 
to fi nd a cheaper means to perform high-resolution spectroscopy. He tried several types 
of interferometers to achieve higher resolution and throughput. He proposed that by 
producing only two interfering beams in the interferometer, a coded version of the 
spectrum could be produced, which on Fourier transformation would provide the actual 
spectrum. Thus, Jacquinot discovered the principle of interferometric spectroscopy. 

   The throughput advantage of interferometers is their ability to pass all the IR 
radiation through the sample and detect them at once. Unlike the dispersive 
instruments there are no slits to limit the wavenumber range or the intensity of IR 
radiation that strikes the detector. The circular aperture wheel in the interferometer 
does not signifi cantly change the amount of IR radiation passing through it. Thus 
Jacquinot identifi ed that quantitatively an interferometer can transmit a higher 
intensity IR radiation at high spectral resolution than a monochromator.  

    Other advantages 
   Another practical advantage of interferometry, called the  registration advantage , was 
identifi ed by Janine Connes. This explains the ability of the modern interferometers 
to accurately and precisely determine the sampling position using a He-Ne laser as a 
reference ( Connes and Connes, 1966 ). Several other advantages of the interferometer 
stem from this, including fast scan time, high resolution, high wavenumber accuracy, 
large scan range, and high sensitivity.  

    Disadvantages of interferometry 
   Despite its great potential and several advantages, interferometry does have a 
few limitations, although they are not considered major problems in recent times. 
Interferometric analysis requires the use of high-performance computers capable 
of performing complex calculations. Advancements in computer technology have 
helped in overcoming this limitation. The second limitation of interferometry is 
that certain interferograms are complex and cannot be interpreted visually. With the 
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advent of new mathematical spectral treatment procedures and multivariate statisti-
cal procedures, the interferogram can be transformed to a more interpretable form. 
Furthermore, many types of software are available today that can perform these 
operations in a few seconds.   

    Dispersive and multiple beam instruments 

   The fi eld of spectroscopy began with dispersive prism type instruments called  spec-
troscopes . These instruments consisted of a source, a slit to limit the radiation, a col-
limator to direct the beam, a prism to disperse the light to its component wavelengths, 
and a condenser to condense the beam onto the detector plate. Multiple prisms can 
be used to increase the dispersion.  Prism type spectrometers  were the instruments of 
choice for visible spectroscopy in the late nineteenth century. However they suffered 
from several disadvantages: the resolution of measurement varied across the spec-
trum and the slit assembly reduced the energy of the beam signifi cantly. 

    Diffraction gratings  were another category of dispersive instruments. They 
consisted of a transparent plate etched with densely packed parallel lines. The 
number of lines can range from a few dozens to several thousand lines per 
millimeter. Unlike prisms, which caused dispersion of light by refraction, diffraction 
gratings dispersed light by the process of diffraction from the fi ne lines on the 
plate. The diverging light waves from the lines interfere in the same way as in an 
interferometer. A diffraction grating produces a spectrum with a smooth change in 
wavelength but the intensity of the spectra is low due to loss of energy during dif-
fraction. Although the blazed diffraction grating introduced in the early twentieth 
century increased the intensity of the spectrum, the shortage of good diffraction 
gratings and narrow spectral range of gratings limited their development. 

   Both prism spectrometers and diffraction grating spectrometers were commonly 
used by analytical chemists during the 1920s and 1930s. 

   Several types of interferometers evolved at the beginning of the twentieth century 
due to the growing interest in spectroscopy. Michelson himself developed another type 
of interferometer ( Michelson, 1902 ), which he called the  “ echelon spectroscope, ”  to 
observe the structure of spectral lines directly and without any mathematical analysis. 
Interferometers with multiple beams were also becoming popular due to their abil-
ity to produce high-intensity and high-resolution spectra. The  Fabry–Pérot etalon  and 
 Lummer–Gehrcke interferometer  were two of the very famous multiple beam inter-
ferometers investigated and have been discussed in detail by  Johnston (1991) . These 
instruments produced a direct spectrum from an incoming beam of light that was rela-
tively straightforward and easy to interpret. However, they were limited by their nar-
row spectral range, the performance of the mirrors, and the precision of interferometer 
construction. 

   The Michelson interferometer, a two-beam interferometer, was complicated. 
However, it was very good in its resolving power and wavenumber-sorting ability 
over a broad range. A prism spectroscope produces an infi nite number of beams. 
As the number of beams reduces the energy throughput increases. With at least two 

              



beams required to produce an interference pattern, the Michelson interferometer has 
the highest effi ciency or throughput. It provides a more complicated spectrum than 
the other three types but it has the simplest sine or cosine Fourier transform.  

    Slow and rapid scan interferometers 

   The fi rst generation of commercial FTIRs produced in the late 1960s used a  slow 
scanning interferometer . The scan speeds were as low as 4        μ m/s ( Griffi ths and 
de Haseth, 1986 ). The scan mirror was moved at increments of OPD using a driv-
ing mechanism, stopped to allow mirror stabilization, and then scanned. These types 
of interferometers were well suited for weak or small signals. However, they had a 
very slow sampling rate, which not only slowed down the analysis but also added 
uncertainties in the spectra due to variations in the environment such as temperature 
change, electrical fl uctuations, etc. This spurred the development of  rapid scan inter-
ferometers . Pioneering work in rapid scanning interferometry was done by Lawrence 
Mertz at Block Engineering (Cambridge, MA, USA). Unlike slow scan interferom-
eters, in rapid scan interferometers the mirror velocity is high enough to enable each 
wavenumber to be modulated in the audio-frequency range. It does not have any 
auxiliary modulators or phase-sensitive amplifi ers. The reciprocal drive mechanism 
used in rapid scan interferometers provides reproducible interferograms. The mirror 
velocity is about 0.158       cm/s ( Griffi ths and de Haseth, 1986 ). All the modern rapid-
scanning interferometers are developments over the fi rst interferometer designed by 
 Mertz (1965b) . Rapid scan systems are suited for low- or medium-resolution MIR 
spectroscopy where the energy is high and slow scan interferometers work well in the 
far-infrared range ( Griffi ths and de Haseth, 1986 ;  Johnston, 1991 ).  

    Mathematical processing of interferograms 

   Because the Michelson interferometer yields a very complex interferogram,  mathemat-
ical transformations  are often needed to improve the characteristics of the spectra and 
make them more interpretable. There are numerous transformations that can be per-
formed on the interferograms and the details and the mathematics have been presented 
by many authors ( Bell, 1972 ;  Griffi ths and de Haseth, 1986 ;  Johnston, 1991 ). The two 
most common mathematical operations, apodization and phase correction, are briefl y 
discussed below. 

    Apodization 
   In order to perform FT properly and obtain a complete spectrum, an optical path 
length of infi nity should be used and infi nite data points should be collected. Since 
this is impossible, the interferogram is generally truncated and Fourier transformed 
over a fi nite limit. This causes oscillations to appear around the sharp spectral
features. These oscillations on either side of the sharp band are called side lobes or 
feet. The process of removing the side lobes or the feet around the spectral band is 
called  apodization  ( “ a podi ”  in Greek means  “ no feet ” ). The interferogram is multiplied 
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by an apodization function, which prevents the appearance of side lobes after Fourier 
transformation. A comparison of MIR spectra of corn oil without apodization (also 
called   “ Boxcar ”  apodization ) and with  triangular apodization  in the carbonyl region 
(1760–1740       cm  � 1 ) is shown in  Figure 7.3   . Many other apodization methods exist, 
such as Norton–Beer, Happ–Genzel, etc. and the use of a specifi c apodization 
function is interferogram- and application-dependent. The drawback of apodization 
is that it worsens the spectral resolution. Hence, apodization is actually a compro-
mise made to compensate for incomplete data.  

    Phase correction 
   Ideally an interferometer provides an interferogram that is symmetric on either side of 
the centerburst. Thus by measuring one side of the interferogram, the complete spec-
trum can be constructed. This process reduces the time signifi cantly. However, inter-
ferograms are almost always never symmetric due to imperfections and disturbances in 
the interferometer, especially in the beam splitter. The process of removing the asym-
metry in the interferogram is called  phase correction . It is generally done by apply-
ing a mathematical function to the single-sided interferogram. Algorithms developed 
by  Mertz (1967b)  and  Forman (1966)  are the two most popular phase correction pro-
cedures. Phase correction allows measurement of single-sided interferograms without 
any uncertainties due to asymmetry.    

    Fourier analysis 

   Interferogram obtained using an interferometer needs to be converted to a spectrum, 
which is a representation of the intensity over wavelength or frequency, to draw 
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 Figure 7.3          An illustration of the effect of triangular apodization on the spectra of corn oil in the carbonyl 
region.    

              



inferences about the sample. Fourier transformation (FT) is a mathematical pro- 
cedure that is applied to the interferograms to obtain the spectrum. Essentially, FT 
breaks down the interferogram provided by the interferometer into sine waves for 
each wavelength in the light. These sine waves are arranged over the wavelength to 
produce the conventional spectrum. In the early years of IR spectroscopy Michelson’s 
harmonic analyzer was the most convenient method to compute Fourier transforma-
tion. FTIR spectroscopy suffered due to the lack of proper instrumentation, compu-
tational problems, and long calculation times in transforming the interferogram to 
spectra. While making spectroscopic measurements took only a few minutes, decod-
ing the interferogram required hours or days. Even with the post-War developments 
in computer technology, performing FT was still limited by the slow speed of the 
computers as well as the complexity of the discrete FT procedure itself. Interference 
curves have been converted to spectrum by FT since the 1890s but the commerciali-
zation of FTIRs took root only after the discovery of fast Fourier transforms, which 
simplifi ed the calculations signifi cantly. 

    Fast Fourier transforms 

   Until the mid-twentieth century discrete FT was applied to interferograms to obtain the 
spectrum.  Discrete FT  is a complex mathematical procedure. In short, Fourier trans-
forming the interferogram involves integrating the interferogram between the limits of 
zero and maximum path difference. It converts a signal that was recorded as inten-
sity with respect to time (interferogram) into a plot showing intensity with respect to 
frequency (spectrum). This technique by itself was redundant and the long calcula-
tion times severely hampered the analysis. The discovery of FFT by  Cooley and Tukey 
(1965)  allowed a breakthrough in the application of interferometry to spectroscopy. An 
interferogram with  n  number of points can be represented in an FT as an  n -vector. This 
vector has to be multiplied using an  n       �       n  matrix, in which each row represents the 
sinusoidal function for each wavenumber, in order to obtain the transformed spectrum. 
This approach requires a total of  n  2  complex multiplication and addition operations. 
FFT takes advantage of the fact that the  n       �       n  matrix is ordered and cyclical and hence 
can be factored. Furthermore, if  n  is an integer power of 2, then the possibility of per-
forming FT on a computer adds signifi cant advantages. Additional information on FT, 
FFT and their application in spectroscopy can be found in many books ( Bell, 1972 ; 
 Duffi eux, 1983 ;  Brigham, 1988 ;  Bracewell, 2000 ). 

   FFT reduces the analysis time signifi cantly. For example, to Fourier transform an 
interferogram with 4096 data points, a total of 16       777       216 (i.e. 4096 2 ) multiplica-
tions and additions have to be performed. FFT reduces this to 14       796 (i.e. 4096      �      log 
4096) multiplications and additions. Apart from increasing the speed this also reduces 
amount of data to be handled. Thus, FFT simplifi ed the complex calculations and ena-
bled spectra with a million points to be obtained by the early 1970s. Real-time FFT has 
also enabled system adjustment and optimization before the actual experiment. 

   The intensity of calculations and time requirements aside, both discrete FT 
and FFT provide exactly the same results. FFT is limited by the requirement for 
 interferograms with numbers of points in the power of 2 due to the binary mode of 
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calculations in computers. Hence interferograms with 8, 16, 32,  …  2  n   points are best 
suited for performing FFT. Interferograms with different numbers of data points 
can also be Fourier transformed after the process of  “ zero-fi lling, ”  which involves 
extending the interferogram to the nearest 2  n   points by fi lling zeros.  

    Applications of FFT 

   Even after the publication of the FFT algorithm by  Cooley and Tukey (1965) , it 
was still unknown in the fi eld of spectroscopy. It was  Forman (1966)  who called the 
algorithm to the attention of Fourier transform spectroscopists in an article entitled 
 “ Fourier transform technique and its applications to Fourier spectroscopy. ”  Since 
then FFT has revolutionized not only spectroscopy but various other fi elds. Workers 
in the fi elds of instrumentation chromatography, microscopy, spectroscopy, X-ray 
diffraction, and electrochronography all use FFT. In spectroscopy FFT extended the 
applications of FTIR spectroscopy to near-infrared (NIR) regions and visible light 
regions. Prior to its development, due to the diffi culties in calculations at higher 
wavenumbers, high resolving power spectroscopy was limited to the far-infrared 
region ( Bell, 1972 ). 

   Today FFT is applied in virtually every fi eld in some form.  Brigham (1988)  
describes FFT as being ubiquitous because of the diversity of disciplines in which it 
is used, including mechanics, acoustics, signal processing, numerical methods, and 
electromagnetics.   

    Fourier transform infrared spectroscopy 

   The fundamentals of FTIR spectroscopy have been presented earlier in this chapter. 
This section explains the construction of FTIR hardware, the collection of spectra, 
the fundamentals of FT-NIR and FT-MIR and their applications. 

    FTIR hardware 

   FTIR hardware and instrumentation have changed signifi cantly over the years. Today 
several types and confi gurations of instruments are available, many of which have spe-
cifi c applications. It is essential to understand the basic construction of an FTIR. A 
schematic diagram of a FTIR spectrometer is shown in  Figure 7.4   . The major compo-
nents are the IR source, beam splitter, detector and reference laser. The setup includes 
refl ecting mirrors at various points to direct the path of IR light. The light from the 
source passes through the aperture wheel and hits a mirror that directs the light onto 
the beam splitter. The recombined light from the interferometer is then directed by mir-
rors into the sample compartment and is fi nally detected by the detector. 

   Many different types of materials and components are available for FTIR 
construction. This section briefl y describes most of the important components of an 
FTIR spectrometer, namely the interferometer, source, beam splitter, detector, and 
laser, along with their advantages and disadvantages. 

              



    Interferometers 
   The components of an interferometer and their functions were described in detail 
earlier in this chapter. One of the most important components is the moving 
mirror. It is essential to control its position precisely in order to obtain an accurate 
measurement of spectra. Two types of mechanisms are commonly used to move the 
mirror: (1) air bearings and (2) mechanical bearings. In air bearings the movement of 
the mirror is completely pneumatic. The mirror shaft fl oats in a stream of air, which 
moves the mirror. Air bearings are frictionless but expensive and require a constant 
source of clean and dry air. They are also prone to disturbance due to vibrations. 
The mechanical bearing system commonly uses a ball-bearing. This is relatively 
inexpensive but is susceptible to wear. It is important to note that despite the disad-
vantages mentioned above, modern FTIRs are very sturdy and can work very well 
for years in any type of confi guration.  

    Sources 
   The function of the IR source in the spectrometer is to emit IR radiation. Most IR 
sources work based on the generation of heat due to resistance of the source to 
conduction of current. The resistance heats up the source (to above 800°C) causing 
it to emit IR radiation. Because of the high operating temperatures a cooling system 
is needed. Based on the cooling system FT-MIR sources are of two types: water-
cooled or air-cooled. Water-cooled sources are called  globar sources  and are made of 
silicon carbide. These provide high throughput but require a constant fl ow of water for 
cooling and are expensive. The latest FTIRs use sources made of ceramic or 
nichrome wire. These are air-cooled and are relatively inexpensive. Normally, 
sources are mounted in front of a concave mirror in order to capture escaping light 
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 Figure 7.4          Optical layout of a typical FTIR spectrometer.    
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and direct it towards the samples. Another type of source that is not very commonly 
used in modern FTIRs is the  Nernst glower source . This is made of a mixture of 
yttrium and zirconium oxides. It has a short lifetime and is mechanically unstable. 

   For FT-NIR spectroscopy incandescent or quartz halogen bulbs in the power range 
5–50       W are used. These normally have to be operated at reduced voltage to extend 
the lifetime of the source.  

    Beam splitters 
   Beam splitters serve to split and recombine the IR light waves in the interferom-
eter. They are normally constructed by sandwiching a coating of a semi-transparent 
material between IR-transparent substrates. Three different types of substrates are com-
monly used in FT-MIR and FT-NIR instruments: quartz, calcium fl uoride (CaF 2 ) and 
potassium bromide (KBr). The coatings vary with the manufacturer and are proprietary. 
Potassium bromide substrate with germanium (Ge) coating is the most widely used 
beam splitter for FT-MIR measurements. The Ge-KBr beam splitter works very well in 
the MIR region (4000–400       cm  � 1 ). It is hard but hygroscopic. It is for this reason that 
many of the FTIR spectrometers require purging with moisture-free air or nitrogen. 
Cesium iodide (CsI), another substrate for FT-MIR beam splitters, has a wider range 
than KBr (4000–200       cm  � 1 ). However, it is soft and hygroscopic and hence its use is 
not encouraged. FT-NIR instruments commonly use quartz or CaF 2  substrates.  

    Detectors 
   The function of the detector is to transduce the light intensity received by it to 
electrical signal. Two most commonly used detectors in both FT-NIR and FT-MIR 
instruments are the  deuterated triglycine sulfate  (DTGS) detectors and the  mercury 
cadmium telluride  (MCT) detectors. In a DTGS detector a change in the intensity 
of IR radiation striking the detector will cause a proportional change in temperature. 
Change in temperature in turn will cause change in the dielectric constant of DTGS 
and hence its capacitance. This change in capacitance is measured as the detec-
tor response in voltage. DTGS detectors are very simple and inexpensive but have 
relatively slow response and low sensitivity. The MCT detector is a semiconductor 
and the electrons present in it absorb IR light and move from valence band to con-
duction band. These electrons in the conduction band generate an electrical current 
proportional to the IR intensity. MCT detectors are more sensitive and faster than 
DTGS detectors and hence provide a spectrum with higher SNR. 

   Disadvantages of MCT detectors are that most of them have a narrow bandwidth 
based on their composition and they saturate very easily. They are very sensitive to 
temperature and require cooling with liquid nitrogen. Improper cooling will result in 
a noisy signal. MCT detectors cost more than DTGS detectors. 

   Several other types of detectors are available for FT-NIR: PbSe (lead selenide), 
PbS (lead sulfi de), InSb (indium antimonide), and InGaAs (indium gallium arse-
nide). InGaAs detectors are very fast and have a very high sensitivity. PbSe and 
PbS fall between DTGS and InGaAs or MCT detectors. A table summarizing the 
speed of response and sensitivity of these detectors has been published by  McCarthy 

              



and Kemeny (2001) . The electrical signal produced by the detector is converted to 
voltage, amplifi ed, processed and converted from analog to digital using analog-to-
digital converters. The digitized signals are then Fourier transformed.  

    Laser 
   Modern FTIR instruments are equipped with a red  He-Ne laser . It gives off light at 
exactly 15       798.637       cm  � 1 . The laser serves two purposes. First, since its wavenumber is 
known precisely, it acts as an internal wavenumber standard based on which other wave-
numbers are measured. The wavenumber reproducibility of most FTIR spectrometers 
is  � 0.01       cm  � 1  or better. Second, it is used to determine the position of moving mirror 
and hence the OPD. The detector response is measured at every zero-crossing of the 
laser signal. It is also used for checking and aligning the optics in the interferometer.   

    Collection of spectra 

   Most FTIR instruments are single beam. The background and the spectrum are col-
lected at different times. The spectrum of the sample obtained by Fourier transform-
ing the interferogram is called the  single-beam spectrum  and represents the signal 
from the sample as well as from the instrument and environment. The single-beam 
spectrum is ratioed against the background spectrum obtained without the sample, 
to obtain the actual spectrum of the sample. A schematic diagram of the sequence of 
steps involved in obtaining a spectrum of a sample is shown in  Figure 7.5   . The SNR 
is directly proportional to the square root of the number of scans. Hence, typically 
multiple scans are added together. During  co-addition  noise, which is random posi-
tive and negative signals, cancels out while the signal intensity remains the same. 
 Smith (1996)  suggests that co-adding around 100 scans or more is in general enough 
to obtain a spectrum with good SNR. This depends, however, on the instrument. For 
example, an IR microscope, which is much more sensitive, may require co-adding 
more scans to obtain a good SNR.  

    Advantages and limitations 

   Modern FTIR instruments are very simple to use, rapid, very sensitive, and have 
a high throughput. They provide well-defi ned and consistent spectra with better 
wavelength accuracy than dispersive instruments or previous versions of FTIRs. 
Two primary reasons for these advantages are the Fellgett advantage and Jacquinot 
advantage, which were discussed in detail earlier in this chapter. Despite these advan-
tages the application of FTIR in analysis is limited by its shortcomings. Some of its 
disadvantages are as follows: 

      ●      FTIR cannot detect atoms and monatomic ions, elements, and inert gases such 
helium and argon.  

      ●      FTIR cannot detect diatomic molecules such as N 2  and O 2 . However, in certain 
cases this can be seen as an advantage as it eliminates the need for vacuum for 
analysis.  
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      ●      Biological samples including food are complex mixtures and hence their FTIR 
spectra are complicated with overlapping peaks and signal masking.  

      ●      Most biological samples contain water, which has a strong absorption band that 
can mask certain important signals. Often sample preparation procedures are 
required to reduce the effect of water.  

      ●      Since most FTIRs are single-beam instruments, a change in the environment 
(carbon dioxide and water vapor) can occur during the experiment, causing 
uncertainties in the spectra.      

    Fourier transform near-infrared spectroscopy 

   Near-infrared spectroscopy started almost at the same time as the fi eld of spec-
troscopy. In fact Sir William Herschel ( Herschel, 1800 ) discovered the heating 
effect of IR light in the NIR region. Over the past several decades development of 
improved NIR instrumentation and optics, diffuse refl ection technique, and advanced 
chemometric methods has resulted in the evolution of NIR spectroscopy as a routine 
laboratory technique. The history of NIR spectroscopy has been presented by 
several authors in the  Handbook of Near-Infrared Analysis  ( Burns and Ciurczak, 
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 Figure 7.5          An illustration of how a mid-infrared spectrum is obtained from the interferogram.    

              



2001 ). While FT-MIR was being widely investigated, the analytical applica-
tions of FT-NIR were virtually unexplored until Karl Norris used FT-NIR and 
chemometrics to characterize agricultural products ( Ben-Gera and Norris, 1968 ). Today 
FT-NIR spectroscopy is widely employed in various industries including chemical, 
pharmaceutical, food and beverage industries, for rapid analysis and quality control. 

   This section provides a brief discussion on the fundamentals and applications of 
FT-NIR spectroscopy with relevant examples in food safety. 

    Fundamentals of FT-NIR spectroscopy 

   NIR spectroscopy involves studying the absorption of compounds in the NIR range 
(10       000–4000       cm  � 1 ) of the electromagnetic spectrum. An FT-NIR spectrometer 
is very similar to an FT-MIR spectrometer and the minor differences in the hard-
ware were discussed in the previous section of this chapter. A typical NIR spectrum 
consists of overtone and combination bands of fundamental vibrations. A band can 
be produced at frequencies 2 to 3 times the fundamental frequency ( overtone ). The 
majority of the overtone peaks in a NIR spectrum are due to O–H, C–H, S–H, and 
N–H stretching modes. Two or more vibrations can combine through addition and 
subtraction of energies to give a single band (combination). 

   An NIR spectrum is complex and is marked by broad overlapping peaks and large 
baseline variations, which makes interpretation diffi cult. However, mathematical 
processing such as derivatization and deconvolution can be applied to improve spec-
tral characteristics. A typical FT-NIR absorbance spectrum of  Bacillus cereus  and 
its second derivative are shown in  Figure 7.6   . Derivatization of raw spectra removes 
baseline shifts, improves the peak resolution, and reduces variability between repli-
cates. Overtone bands of C–H groups of fatty acids appear in the regions 8600–8150 
(fi rst overtone) and 5950–5600       cm  � 1  (second overtone). The regions 7400–7000 and 
4350–4033       cm  � 1  can be attributed to combination bands of C–H, typically from 
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 Figure 7.6          Fourier transform near-infrared (FT-NIR) diffuse refl ectance absorbance raw (dotted line) 
and 2nd derivative (solid line) spectra of  Bacillus cereus .    
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fatty acids and carbohydrates. Bands of O–H groups have been identifi ed in the 
spectral regions 5200–5100 (fi rst overtone) and 5190       cm  � 1  (O–H stretch). Stretching 
and combination vibrations of N–H and C     �     O of amide A/I and amide B/II of pro-
teins absorb between 5000 and 4500       cm  � 1 . Several other overtone and combina-
tion bands have been identifi ed in the FT-NIR spectrum. A comprehensive list of 
vibration modes and band assignments of different functional groups related to agri-
cultural products can be found in the  Handbook of Near-Infrared Analysis  ( Shenk 
 et al. , 2001 ). 

   NIR spectroscopy is not as sensitive as MIR spectroscopy because NIR radia-
tion penetrates the sample more than MIR radiation. NIR bands are approximately 
10–100 times less intense than MIR bands. This can be very useful in direct anal-
ysis of highly absorbing bulk and porous samples with little or no sample prepa-
ration. The NIR region contains weak and broad overtone and combination bands 
that make it diffi cult to identify and associate IR frequencies with specifi c chemical 
group. Furthermore, very robust calibration techniques are often needed for accurate 
NIR analysis. Hence, analyzing NIR data often involves applying chemometrics and 
multivariate statistical techniques such as principal component analysis (PCA), 
including soft independent modeling of class analogy (SIMCA), and partial least 
squares (PLS) to draw interference about the composition of the sample. 

   Modern statistical software packages available for spectral analysis make it very 
simple to analyze complex spectra to draw meaningful information. The speed of IR 
spectroscopy, lower cost and simple procedure of FT-NIR spectroscopy and the user-
friendly analysis software packages available have made FT-NIR a preferred method 
for the rapid analysis of food composition and quality.  

    Applications of FT-NIR 

   FT-NIR spectroscopy is an appealing technology for the food industry because sim-
ple, rapid, and non-destructive measurements of chemical and physical components 
can be obtained. It offers versatility for remote measurements and convenient analy-
sis of different types and forms of samples. NIR instruments can be readily deployed 
to the fi eld or process lines for direct and simultaneous measurements of several con-
stituents in food matrices. Its non-destructive nature and the requirement for little or 
no sample preparation prior to measurement have also contributed to the widespread 
interest in FT-NIR as compared to FT-MIR. 

   Various food and chemical industries have quickly adopted the FT-NIR technology. 
In the food industry it is commonly used for composition analysis such as rapid meas-
urement of fat, protein, moisture, sugars, etc. Few specifi c applications of FT-NIR in 
food analysis include determination of cholesterol in dairy products ( Paradkar  et al. , 
2002 ) and analysis of edible oils and fats ( Yang  et al. , 2005 ). Numerous other advanced 
and specifi c applications of FT-NIR spectroscopy exist for different food products 
and these are discussed in other chapters. In addition, the  Handbook of Near-Infrared 
Analysis  edited by  Burns and Ciurczak (2001)  and books by Brian Osborne ( Osborne 
and Fearn, 1986 ;  Osborne  et al. , 1993 ) describe its application in diary products, baked 
products, beverages and several other non-food materials. 

              



   Another application of FT-NIR spectroscopy that has attracted the attention of a 
few researchers is the characterization of microorganisms. The spectra of bacteria 
show highly specifi c fi ngerprint patterns based on structural and biochemical compo-
nents, which can enable discrimination up to strain level. Research on the capability 
of FT-NIR to characterize and discriminate bacteria and other biomolecules has been 
limited compared with that using FT-MIR, probably because of the diffi culties in the 
interpretation of FT-NIR spectra. 

   One common and very important application from the food safety point of view 
is the rapid differentiation of bacterial species. FT-NIR spectra represent the ratio 
of various chemical groups present in the sample which enables subtle differences 
to be observed. Multivariate classifi cation methods such as SIMCA have enabled 
clustering of samples based on biochemical differences while reducing random 
noise. SIMCA creates a three-dimensional (3D) model of the samples over the fi rst 
three principal components that explain the most amount of differences in the sam-
ples. An example of the application of diffuse refl ectance FT-NIR spectroscopy to 
discriminate various bacterial species using SIMCA is shown in  Figure 7.7   . All the 
fi ve samples formed distinct clusters that were well separated from other clusters in 
3D space. With suitable sample preparation it is possible to push the limits further. 

   Rodriguez-Saona and co-workers have demonstrated that by treating the samples 
with ethanol and fi ltering the samples to eliminate food matrix effects bacteria can 
be differentiated to strain level (       Rodriguez-Saona  et al. , 2001, 2004 ). This technique 
could be used to develop bacterial IR fi ngerprint libraries that would enable rapid 
identifi cation of bacterial samples. It has great potential as a rapid tool to monitor 
the safety of food supply. One major limitation of FT-NIR in bacterial analysis is that 
it requires relatively large biomass to provide good spectra of the sample. This makes 
analysis of single colonies or cells diffi cult. Additional information on fundamental 
theory, instrumentation, and application of NIR spectroscopy is available in many 
books ( Osborne and Fearn, 1986 ;  Burns and Ciurczak, 2001 ;  Chalmers and Griffi ths, 
2002 ) and articles by NIR publications (www.nirpublications.com).   
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 Figure 7.7          Classifi cation of bacteria using Fourier transform near-infrared (FT-NIR) combined with soft 
independent modeling of class analogy multivariate analysis.    
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    Fourier transform mid-infrared spectroscopy 

   Since the beginning of spectroscopy, MIR spectroscopy has attracted tremendous 
interest due to its ability to provide information-rich spectra that enable structural 
characterization of molecules. Advances in FTIR instrumentation combined with 
the development of powerful multivariate data analysis makes this technology ideal 
for large-volume, rapid screening and characterization of minor food components at 
ppb levels. The detailed history of the discoveries and developments in FTIR spec-
troscopy presented earlier in this chapter mainly applied to MIR spectroscopy. This 
section briefl y discusses the fundamental principles that form the basis of FT-MIR 
spectroscopy and applications specifi cally in food safety. 

    Fundamentals of FT-MIR spectroscopy 

   FT-MIR spectroscopy monitors the fundamental vibrational and rotational 
stretching of molecules, which produces a chemical profi le of the sample. The MIR 
(4000–400       cm  � 1 ) is a very robust and reproducible region of the electromagnetic 
spectrum in which very small differences in composition of samples can be reliably 
measured. Molecules absorb MIR energy and exhibit stretching, bending, twisting, 
rocking, and scissoring motions at one or more locations in the spectra, depending 
on several factors including bond confi guration, location, etc. It is rich in information 
that helps in analyzing the composition and determining the structure of chemical 
molecules. As an example, a typical FT-MIR spectrum of  Salmonella  Enteritidis and 
its second derivative are shown in  Figure 7.8   . FT-MIR spectra refl ect the total bio-
chemical composition of the sample, with bands due to major cellular constituents 
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 Figure 7.8          Raw (dashed line) and 2nd derivative (solid line) mid-infrared (4000–700       cm  � 1 ) spectra of 
 Salmonella  Enteritidis prepared in distilled water and measured on a three-bounce zinc selenide attenuated 
total refl ectance crystal.    

              



such as water, lipids, polysaccharides, acids, etc. The region from 4000 to 3100       cm  � 1  
consists of absorbance from O–H and N–H stretching vibrations of hydroxyl groups 
and amide A of proteins, respectively. Protein bands also appear in the regions 
1700–1550       cm  � 1  (amide I and amide II) and 1310–1250       cm  � 1  (amide III). The 
C–H stretching vibrations of –CH 3  and      �      CH 2  functional groups appear between 
3100 and 2800       cm  � 1 . The spectral range 1250–800       cm  � 1  consists of signals from 
phosphodiesters and carbohydrates. The region from 1200 to 600       cm  � 1  is called the 
 “ fi ngerprint region ”  as it contains signals that are distinct between each sample and 
are highly conserved within each sample. An FT-MIR spectrum is easier to interpret 
than an FT-NIR spectrum. However, chemometric analysis may still be required to 
further its applications and draw meaningful information.  

    Applications of FT-MIR 

   MIR spectroscopy is the FTIR spectroscopic method of choice in applications 
dealing with structural characterization. Applications for FT-MIR spectroscopy in 
food analysis are diverse but FT-MIR is relatively recent to food analysis and is not 
as commonly used as FT-NIR. In the last couple of decades the number of researches 
on application of FT-MIR for food analysis has grown signifi cantly. Some of the gen-
eral areas of application include studying the interactions of food components, the 
quantifi cation of nutrients and several other specifi c compounds in foods, structural 
characterization of food molecules, determination of the quality of raw materials and 
additives, and detecting the adulteration or authenticity of foods. 

   Joseph Irudayaraj’s group has done extensive research on application of FT-MIR 
spectroscopy for the analysis of many food products including honey ( Sivakesava 
and Irudayaraj, 2002 ;  Tewari and Irudayaraj, 2004 ), maple syrup ( Paradkar  et al. , 
2002 ;  Paradkar  et al. , 2003 ), edible oils and fats ( Yang and Irudayaraj, 2001 ;  Yang 
 et al. , 2005 ). Applications of FT-MIR in different types of foods are presented in 
several chapters later in this book. 

   The ability of FT-MIR spectroscopy to detect, identify, and characterize bacteria was 
established by  Naumann (1984) . Bacteria have shown highly specifi c MIR spectral pat-
terns that may be unique for individual strains. The IR spectra are the result of bands 
of fundamental vibrational transitions associated mainly with functional groups. FTIR 
allows for the chemically based discrimination of intact microbial cells and produces 
complex biochemical fi ngerprints that are distinct and reproducible for different bacte-
ria. The complex FTIR spectra refl ect the total biochemical composition of the micro-
organism, with bands due to major cellular constituents such as lipids, proteins, nucleic 
acids, polysaccharides, and phosphate-carrying compounds.  Mariey  et al.  (2001)  and 
more recently  Burgula  et al.  (2007)  have reviewed the application of FT-MIR spec-
troscopy for bacterial detection. Detailed tables of major publications concerning the 
use of FTIR and various sampling techniques for the discrimination, classifi cation, and 
identifi cation of microorganisms were generated by both authors. 

   The potential of FT-MIR spectroscopy combined with multivariate analysis to 
predict viable spore concentrations in samples treated by pressure-assisted thermal 
processing (PATP) and thermal processing (TP) based on differences in biochemical 
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composition has been demonstrated ( Subramanian  et al. , 2006 ). Partial least squares 
regression (PLSR) models developed based on standard plate count data and FT-MIR 
spectra had correlation of coeffi cients  � 0.99 and standard errors of cross-validation 
ranging between 10 0.2  and 10 0.5  CFU/mL. A PLSR model for correlation between 
FT-MIR spectrum and standard plate count of  Bacillus amyloliquefaciens  Fad 82 
spores during heat inactivation is shown in  Figure 7.9   . Another recent publication by 
 Subramanian  et al.  (2007)  reported the possibility of discriminating bacterial spores 
to the strain level using FT-MIR spectroscopy and SIMCA procedure. FT-MIR spec-
tra and multivariate analyses were used to monitor biochemical changes in bacterial 
spores, especially in dipicolinic acid content during inactivation by PATP and TP. A 
few other researchers have attempted to extend this technique to monitor bacterial 
spores and their composition ( Thompson  et al. , 2003 ;        Perkins  et al. , 2004, 2005 ). 
In addition, a book by  Mantsch and Chapman (1996)  and numerous publications by 
Naumann and his group provide extensive information on bacterial identifi cation and 
characterization using FT-MIR spectroscopy (       Naumann  et al. , 1991, 1996 ;        Naumann, 
2000, 2001 ).   

    Comparison of FT-NIR and FT-MIR 

   FT-NIR and FT-MIR hardware is essentially the same. The main difference in the 
analysis is due to the difference in wavenumbers or the energy of the beam, which 
causes the molecules to respond differently. Unlike an  MIR spectrum  which 
consists of clear and strong signals in many cases, an  NIR spectrum  is complex with 
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weak and overlapping signals comprising of overtones and combination absorptions. 
Typical FT-NIR ( Figure 7.6 ) and FT-MIR ( Figure 7.8 ) spectra were shown earlier 
and some of the fundamental absorption bands were highlighted. NIR spectra have 
a relatively weak absorption due to the water overtones enabling analysis of high-
moisture foods. NIR is also less infl uenced by atmospheric carbon dioxide, allowing 
NIR instruments to be operated without any purging systems to create a moisture- 
and carbon dioxide-free environment inside the spectrometer. NIR bands are 10–100 
times less intense than their corresponding MIR bands. This provides a built-in dilu-
tion series that has enabled direct analysis of samples that are highly absorbing and 
strongly light scattering without dilution or extensive sample preparation. A few 
studies have compared FT-NIR and FT-MIR for specifi c applications; including dis-
crimination of edible oils and fats ( Yang  et al. , 2005 ), measurement of essentials 
oils ( Schulz  et al. , 2003 ), detection of adulteration in maple syrup ( Paradkar  et al. , 
2002 ), and adulteration of virgin olive oil ( Yang and Irudayaraj, 2001 ).  Sivakesava 
 et al.  (2004)  compared the use of MIR and NIR for the classifi cation of  Bacillus , 
 Lactobacillus ,  Saccharomyces ,  Micrococcus , and  Escherichia  and reported that NIR 
methods were easier to use, while MIR gave better discrimination between the tested 
samples. The choice between FT-MIR and FT-NIR is primarily dependent on the type 
of sample and analysis.  

    Sampling techniques 

   Many different  sampling methods  exist. Each technique has its own advantages and 
limitations and hence its use is application-specifi c. This section provides a brief 
description of the various sampling techniques available for use in both FT-NIR and 
FT-MIR. A few examples of applications in food safety for some of the sampling 
techniques are provided in  Table 7.1   . Further information on the sampling techniques 
is available in several basic FTIR text books ( Johnston, 1991 ;  Smith, 1996 ;  Stuart, 
2004 ). Many FTIR accessory manufacturers also provide technical notes on their 
website on various sampling techniques. 

    Transmittance 

    Transmittance  is probably the simplest of all sampling techniques. It involves passing 
the IR radiation directly through the sample and detecting on the other side ( Figure 
7.10a   ). It provides spectra with high SNR and is relatively cost effective. It is suited 
for analyzing solid, liquid, and gaseous samples. However, transmission technique is 
limited by the sample thickness. Samples within the range 1 to 20        μ g are suited for 
transmission analysis ( Smith, 1996 ). Transmission also involves careful and time-
consuming sample preparation. Generally, an IR-transparent material such as KBr is 
used as a substrate for the sample. Solid samples are mixed with KBr or mixed with 
a mulling agent such as Nujol (mineral oil). In the latter case mull (sample      �      oil) is 
ground and sandwiched between two KBr pallets for analysis. Another method of 
applying the sample is by casting fi lms on a KBr window. Samples prepared in a 
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solvent are applied on the KBr window and allowed to dry prior to analysis. Films 
can also be cast by applied heat and pressure. For liquid samples, special types of 
sealed liquid cells are available, which are typically made of KBr and create a very 
thin layer of liquid through which IR light is passed. Gas cells, usually 10       cm long, 
are available for analysis of gaseous samples. FTIRs with gas cells are now com-
monly used to monitor air quality and pollution.  

    Refl ectance 

    Refl ectance  is the reverse of transmittance in which IR light refl ected back from 
the sample is measured. Unlike transmittance, refl ectance involves easier and faster 
sample preparation. It is non-destructive and is not infl uenced by the sample thick-
ness. Frequently, special and expensive accessories are required for refl ectance, which 
limit its application. The SNR is typically lower than transmittance. Furthermore, 

 Table 7.1          Some recent examples of applications of different FTIR sampling techniques for analysis 
of microorganisms  

   Sampling technique  Application  Reference 

   Attenuated total refl ectance  Differentiation of  Salmonella enterica 
 serovars 

  Baldauf  et al. , 2007  

     Identifi cation and quantifi cation of
 food-borne pathogens 

  Gupta  et al. , 2006  

     Identifi cation of food-borne yeasts   Kümmerle  et al. , 1998  
     Quantitative detection of microbial 

 spoilage in beef 
  Ellis  et al. , 2004  

     Investigation of interactions between 
 antimicrobial agents and bacterial 
 biofi lms 

  Suci  et al. , 1998  

   Diffuse refl ectance  Discrimination of  Bacillus  species  Winder  et al. , 2004 
     Detection of the dipicolinic acid 

 biomarker in  Bacillus  spores 
  Goodacre  et al. , 2000  

     Detection and identifi cation of 
 bacteria in juice matrix 

  Rodriguez-Saona  et al. , 
2004  

   Transmittance  Differentiation of  Salmonella enterica 
 serovars 

  Baldauf  et al. , 2006  

     Identifi cation of sporulated and 
 vegetative bacteria 

  Foster  et al. , 2004  

     Identifi cation of lactic acid bacteria   Dziuba  et al. , 2006  

   Photoacoustic spectroscopy  Identifi cation of bacteria   Foster  et al. , 2003  
     Differentiation and detection of 

 microorganisms 
  Irudayaraj  et al. , 2002  

   Microspectroscopy  Characterization of microorganisms   Yu and Irudayaraj, 2005  
     Characterization and identifi cation 

 of microorganisms 
  Ngo-Thi  et al. , 2003  

     Species level analysis of food-borne 
 microbial communities 

  Wenning  et al. , 2006  

     Identifi cation of yeasts   Wenning  et al. , 2002  

              



the depth of penetration into the sample is not exactly known and the surface of the 
sample infl uences the spectra more than the interior. These disadvantages are nor-
mally shadowed by the simplicity and speed of this technique. Based on the type of 
refl ectance from the sample, refl ectance technique also includes specular refl ectance, 
diffused refl ectance, and attenuated total refl ectance.  

    Attenuated total refl ectance 

    Attenuated total refl ectance  (ATR) is one of the most commonly used sampling 
techniques in recent times. When an IR beam travels from a medium of high refrac-
tive index (e.g. zinc selenide crystal) to a medium of low refractive index (sample), 
some amount of the light is refl ected back into the low refractive index medium. 
At a particular angle of incidence, almost all of the light waves are refl ected back. 
This phenomenon is called  total internal refl ection . In this condition, some amount 
of the light energy escapes the crystal and extends a small distance (0.1–5        μ m) 
beyond the surface in the form of waves. This invisible wave is called  evanescent 
wave . The intensity of the refl ected light reduces at this point. This phenomenon is 
called attenuated total refl ectance. When the sample is applied on the crystal some 
amount of the IR radiation penetrating beyond the crystal is absorbed by the sample. 
This absorbance is translated into the IR spectrum of the sample. A clean, empty 
crystal is normally used for collection of background spectrum. An illustration of 
a multi-bounce ATR accessory with sample is shown in  Figure 7.10b . An example 
FT-MIR spectrum of  Salmonella  Enteritidis obtained using a zinc selenide (ZnSe) 
ATR crystal was shown earlier ( Figure 7.8 ). ATR is very commonly used for food 
analysis. Some examples of its food safety applications are listed in  Table 7.1 . 

   Several different ATR confi gurations are available with different crystal materi-
als. Commonly used materials for crystals include zinc selenide, germanium, sili-
con, diamond, and KRS-5 (thallium iodide or thallium bromide). The properties of 
each material and its applications are available from most FTIR accessory manu-
facturers. A list of FTIR accessory companies and their web addresses is given in  
Table 7.2   . ATR enables analysis of solid and liquid samples. Unlike transmittance it is 
not infl uenced by sample thickness. It is very convenient and simple to use and hence 
is widely applied in food analysis. Since ATR spectra are from the surface of the 
sample, this technique is limited by homogeneity and thickness of the sample. With 
suitable sample preparation, ATR can provide spectra with well-defi ned features.  

    Diffuse refl ectance 

    Diffuse refl ectance  occurs when the IR beam is refl ected back from the sample sur-
face in random direction. It involves both absorption and scattering. The scattering 
is due to the rough sample surface, which is the category that most foods belong to. 
Diffuse refl ectance is well suited for solid and powder materials. A diffuse refl ect-
ance accessory employs two fl at mirrors to direct the light and one concave focusing 
mirror exactly above the sample cup to concentrate the IR beam on to the sample. 
The sample is mixed with KBr and placed in a sample cup. A spectrum of pure KBr 
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powder serves as the background. The packing density and particle size infl uence 
the intensity of the output beam and hence the spectral intensity. Diffuse refl ectance 
offers a simple and quick method for analysis of bulk and coarse samples. 

   The  integrating sphere , a diffuse refl ectance accessory, improves diffuse refl ect-
ance analysis further. It consists of a highly refl ective spherical enclosure that 
includes a mirror to direct the IR beam onto the sample. The sample is normally 
separated from the sphere by a thin IR-transparent plate or it could be open, allowing 
the IR beam to interact directly with the sample. The refl ected light bounces many 
times before reaching the detector. The sphere enables spatial integration of the light 
refl ected from the sample, hence the name integrating sphere. A baffl e is placed 
between the sample and the detector to avoid the fi rst refl ection of the sample from 
directly reaching the detector. A schematic diagram of an integrating sphere is shown 
in  Figure 7.10c and a  detailed description is provided by  Hanssen and Snail (2001) . 

   Integrating spheres are available for both FT-MIR and FT-NIR applications from 
many FTIR accessories manufacturers. It is an expensive accessory but offers advan-
tages such as the combined measurement of diffuse and specular refl ectance and the 
analysis of inhomogeneous samples as is frequently used for analysis of solid, bulky, 
rough, or powdery food material.  

    Specular refl ectance 

    Specular refl ectance  is a type of refl ectance technique that occurs when the angle of 
incidence of the IR radiation incident on the sample is equal to the angle at which it is 
refl ected back ( Figure 7.10d ). Refl ectance on a mirror surface is a typical example of 
specular refl ectance. A classic specular refl ectance accessory consists of mirrors that 
direct the light onto the sample. The IR radiation refl ected from the sample surface

 Figure 7.10          Schematic diagram of various FTIR sampling techniques: (a) transmission, (b) attenuated 
total refl ectance, (c) diffuse refl ectance in an integrating sphere, and (d) specular refl ectance.          
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is directed towards the detector by another mirror. A refl ective surface such as gold is 
normally used to obtain the background spectrum. Sample preparation for specular 
refl ectance is very simple. However, this technique requires a sample with a smooth 
surface. Some samples have a coating on the surface. In such cases the light beam 
passes through the coating and is refl ected off the surface, involving both absorbance 
and refl ectance. This phenomenon is called  double transmission . 

   Specular refl ectance is mainly used in analyzing polymers and its applications in 
food analysis are limited.  

    Photoacoustic spectroscopy 

   The  photoacoustic effect  was observed by Alexander Graham Bell almost at the 
same time as the invention of the Michelson interferometer ( Bell, 1880 ). However, 
its application in FTIR evolved only in the last two decades. In a photoacoustic 
accessory the sample is placed in a cup and covered with an IR-transparent window. 
The accessory is then fi lled with helium or air. The IR beam is then directed on to 
the sample, which heats up the sample. Helium absorbs the heat from the sample 
and expands, causing increase in pressure and creating currents. The movement of 
helium within the sample cell causes sounds that are transduced into electrical signal 
using a microphone. The microphone signal is plotted against the path difference to 

 Table 7.2          Some FTIR and FTIR accessory manufacturing companies  

   Manufacturer  Website 

   FTIR manufacturers   

   Applied Instrument Technologies   www.orbital-ait.com/  

   Aspectrics   www.aspectrics.com  
   Block Engineering   www.blockeng.com/  
   Bruker Optics   www.bruker.com  
   Hamilton Sundstrand   www.hs-ait.com/  
   Jasco Inc.   www.jascoinc.com/  
   Midac Corporation   www.midac.com/  
   PerkinElmer Inc.   www.perkinelmer.com/  
   Shimadzu   www.shimadzu.com/  
   Thermo Scientifi c   www.thermo.com/  
   Varian Inc.   www.varianinc.com/  

   Accessory manufacturers   

   Axiom Analytical   www.goaxiom.com  
   CIC Photonics   www.cicp.com  
   Harrick Scientifi c   www.harricksci.com/  
   MTEC Photoacoustics   www.mtecpas.com/  
   Newport Corporation   www.newport.com  
   Pike Technologies   www.piketech.com/  
   Remspec Corporation   www.remspec.com/  
   Resultec Analytic Equipment   www.resultec.de/  
   Smiths Detection   www.smithsdetection.com/  
   Specac   www.specac.com/  
   S.T. Japan   www.stjapan.de/  
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obtain the interferogram. The spectrum of carbon black is used as a background. The 
interferogram is Fourier-transformed to get the spectra. 

    Photoacoustic spectroscopy  (PAS) can be applied to solids, liquids, and gases. It 
is a non-destructive technique which requires little or no sample preparation. PAS 
is affected by the size of the sample. The sensitivity reduces with increase in sample 
size. Several other factors such as the instrument optics, sample properties (thick-
ness, preparation, transparency, etc.), and composition of the food sample infl uence 
PAS analysis. Applications of PAS in food are very scarce. A couple of research-
ers have attempted to detect and identify bacteria using PAS. These applications are 
listed in  Table 7.1 .  

    FTIR microspectroscopy 

   The introduction of the  IR microscope  by Digilab and Spectra-Tech in the early 
1980s pushed the capabilities of FTIR further by enabling visual and IR analysis of 
micron level samples ( Messerschmidt and Harthcock, 1988 ). Today, the IR micro-
scope has gained wide acceptance as a very effi cient microanalytical tool for identi-
fying and characterizing chemical and biological samples. 

   The construction of an IR microscope in principle is the same as most optical 
microscopes. IR radiation from the spectrometer is directed onto the sample through 
a series of mirrors and lenses. The light emerging from the sample is channeled 
into a detector. The detector in most modern microscopes is an MCT detector, as 
described earlier in this chapter. The IR microscope is a very expensive accessory. 
However, it has diversifi ed the possible applications of FTIR spectroscopy by ena-
bling microanalysis, and increasing the sensitivity and speed of detection. Modern 
microscopes allow both transmission and refl ectance studies. Applications of FTIR 
microspectroscopy in food are still evolving and so are its applications in food safety 
or microbial characterization. A few examples of its applications in microbial detec-
tion and characterization are listed in  Table 7.1 . 

   New sampling techniques have also been developed for bacterial analysis. 
 Ngo-Thi  et al.  (2000)  used a novel stamping technique to prepare the samples for 
microspectroscopy. The stamping tool enabled transfer for a few cells from the 
colonies on agar plate onto an IR-transparent plate for microscopic analysis. FTIR 
microspectroscopy with its unique advantages has great potential as analytical tool 
and has opened up a new area of research. More information on the growth, devel-
opments, fundamentals, and applications of FTIR microspectroscopy can be found 
elsewhere ( Katon, 1996 ;  Smith, 1996 ).   

    Factors affecting FTIR spectroscopy 

   Obtaining the highest possible SNR and a good enough resolution for a specifi c anal-
ysis are important factors while using FTIR spectroscopy for analysis. Several fac-
tors contribute to acquiring a good FTIR spectrum. The SNR is the ratio of the height 
of a band in the spectrum to the height of the noise at some point on the baseline of 

              



the spectrum. As said before, the SNR is directly proportional to the square root of 
the number of scans. Hence, by  co-adding  several scans it is possible to achieve high 
SNR. SNR is also directly proportional to the square of the time spent for measur-
ing a data point. Modern rapid scanning spectrometers are extremely quick thereby 
increasing the SNR.  Spectral resolution  is a property of the instrument and it is its 
ability to distinguish closely positioned features in the spectra. The greater the OPD, 
the greater the spectral resolution. During our research on food analysis using FTIR 
we have found 8       cm  � 1  or 4       cm  � 1  to be good resolutions to use. The SNR and reso-
lution themselves are directly related. High-resolution spectra will have more noise 
due to the divergence of light in the optics, electronic noise, and use of apertures. 
Another factor to be considered is that co-adding scans and obtaining high-resolution 
spectra improve the quality of the spectra at the cost of time. Hence it is essential to 
collect a few trial spectra before actual experiment to optimize the parameters.  

    Commercial FTIR instruments and accessories 

   Since the introduction of the fi rst commercial FTIR spectrometer by Biorad in 
1969 ( Christy  et al. , 2001 ), several companies started manufacturing FTIRs. A 
fi eld that was mainly composed of physicists diversifi ed following commercializa-
tion of FTIRs. Several analytical chemists adopted FTIR spectroscopy by the 1970s. 
Soon FTIR spectroscopy became a very popular and convenient laboratory tool. 
Today many companies manufacture fast, robust, sensitive, and user-friendly FTIR 
spectrometers that work for a relatively long with minimal maintenance. A few of the 
FTIR manufacturing companies and their web addresses are listed in  Table 7.2 . 

   With time, FTIR spectroscopy started to be employed in numerous disciplines of 
science and engineering. As the samples diversifi ed the demand for special FTIR 
accessories grew. In the last couple of decades several companies have begun man-
ufacturing accessories that are designed to perform specifi c types of analysis. The 
names and websites of the major companies manufacturing accessories for wide 
brands of FTIR spectrometers are provided in  Table 7.2 .  

    Conclusions 

   FTIR and sampling instrumentation have been constantly evolving over the years. 
Special heated crystals (FatIR  ™   from Harrick Scientifi c) are now available for 
analysis of fats and oils. ATR accessories have been further improved by incorpo-
rating multi-bounce crystals in which the light bounces on the sample many times, 
thereby increasing absorbance. Remote sampling and analysis is now possible with 
the advent of fi ber optic probes. The FTIR microscope has developed signifi cantly 
in the last two decades. It is now widely recognized as a multifunctional acces-
sory that allows sampling by transmission, refl ectance, ATR, and grazing angle. 
FTIR software interface has also improved signifi cantly. Almost all data acquisition 
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softwares allow the manipulation of the optics such as auto-alignment and self-diag-
nostics. They also allow spectral processing such as subtractions, differentiation, 
deconvolution, etc. Many manufacturers are developing FTIR spectrometers dedi-
cated for specifi c applications such as moisture measurement. Such initiatives are on 
the rise due to the increasing demand for rapid and online food quality monitoring. 

    Technology integration  is another area that is receiving widespread attention in 
recent times. FTIR spectroscopy has been successfully coupled with other analytical 
techniques, such as gas chromatography, liquid chromatography, and thermogravi-
metric analysis. Such integrations have extended the analytical capabilities of FTIR. 
Infrared imaging or spectrochemical imaging is another evolving technology. It uses 
an IR microscope to construct a complete image of the sample in the MCT detec-
tor. At each array element a complete IR spectrum of the sample is acquired. Thus 
each point in the image can be used to extract a complete spectrum. With its speed 
of data collection, improved spatial resolution and SNR, FTIR imaging potentially 
has a very wide range of applications and can offer signifi cant advantages to the ana-
lyst. These new technologies are information rich investigative techniques. They fi nd 
application in many branches of the physical science but are still foreign to analy-
sis of food samples. Tremendous growth and diversifi cation of FTIR technology has 
increased the versatility of the technique. With this great potential and still much to 
be explored in food analysis and control, the future of FTIR spectroscopy in the food 
sciences is very promising.  
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    Introduction 

   Meat is a premium, high-demand food throughout the world. Meats have high-quality 
proteins, which contain essential amino acids, and are a very good source of vitamin B, 
dietary iron, and zinc. The meat-processing industry is one of the largest agricul-
tural and food-processing industries in the world and infrared (IR) spectroscopy can 
play an important role in maintaining consistent product quality. For example, deter-
mination of fat content is an important quality factor that can be measured quickly 
by Fourier transform infrared spectroscopy (FTIR). A typical fat measurement by a 
chemical extraction takes 3–4       h, and is laborious and off-line, involving toxic and 
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hazardous chemicals. With the use of rapid spectroscopic methods, the same results 
could be obtained in 2–5       minutes. In addition, other characteristics of the sample 
can be determined simultaneously. Although, IR spectroscopic methods are just one 
of many spectroscopic methods, IR-based methods are well accepted due to their 
versatility in predicting multiple attributes accurately and precisely in processing 
plants and laboratories. 

   Infrared spectroscopy involves absorption of a certain wavelength of IR radiation by 
the specifi c chemical functional groups, based on their dipole moment. The advan-
tages of using IR spectroscopy for meat and meat product quality and control are its 
simplicity (does not require sample preparation) and speed, it is non-destructive to 
the sample, and it is non-invasive. It can also be used as an online, at-line, and inline 
process analyzer with additional fi ber-optic capability, the cost of analysis is low per 
sample, it is non-ionizing, non-chemical reaction inducing, non-heating, and safe 
(low intensity of energy), and it does not require hazardous gas cylinders or toxic 
chemicals (i.e. it is green technology). Most IR instruments are bench top with some 
models being portable. 

   IR refl ectance spectroscopy has the limitation that it is a surface analysis 
technique, with little depth penetration into the sample, it is affected by high 
moisture content, which absorbs IR radiation and by the surface free water, due to 
specular refl ectance from refl ective surfaces and high absorption. Although near-
infrared (NIR) transmittance has better penetration, it is also affected by the higher 
depth, high moisture content, and less energy transmission due to refl ectance from 
partially transparent meat matrices. 

   Near-infrared (0.7–2.5        μ m; 12       900–4000       cm  � 1 ) spectroscopy is often coupled with 
visible spectroscopy (0.38–0.7        μ m) to measure the components and quality attributes 
of meat and meat products. It is further classifi ed into NIR refl ectance spectroscopy 
and NIR transmission spectroscopy. NIR can be non-dispersive (fi lter-based instru-
mentation), dispersive and use Fourier transform-based instrumentation. Mid-infrared 
(MIR) (2.5–50        μ m; 4000–200       cm  � 1 ) spectroscopy, on the other hand, is generally 
used with Fourier transformation, a complex mathematical technique converting 
time domain data into frequency domain, and refl ectance-based techniques, dif-
fuse refl ectance and attenuated total refl ectance; and very rarely with dispersive and 
non-dispersive instrumentation. Most recent advanced instrumentation involves 
combining mid- and near-infrared spectroscopy (FTIR and FT-NIR). Fourier transform 
and dispersive, NIR and MIR spectroscopy often require the application of chemo-
metrics (multivariate statistics) to extract the spectral information for qualitative and 
quantitative analysis. NIR and MIR spectroscopy is often complemented with visible 
spectroscopy, nuclear magnetic resonance spectroscopy, Raman spectroscopy and 
gas chromatography for specifi c applications. 

   Far-infrared (2.5–50        μ m; 200–10       cm  � 1 ) radiation is used for the processing and 
cooking of meat and food products and has very limited practical spectroscopic 
application. 

   Infrared spectroscopy is utilized for proximate analysis of meat and meat products, 
mainly moisture, fat, and protein, and in some cases minerals. It has been used to deter-
mine meat quality, pH, fatty acid profi le, appearance and color, muscle characteristics, 

              



such as water-holding capacity, intramuscular fat, tenderness, and microbial spoilage. 
In addition, it has been used to detect the adulteration of low-cost meat in premium 
meat, such as adulteration of beef with kangaroo and pork or skeletal muscle with 
organ meat, and to identify fresh meats from frozen-then thawed meats, adulteration 
with non-meat protein (e.g. from vegetable and dairy origin) and fecal contamina-
tion. It has also been used to detect spinal cord, which is a central nervous system 
tissue and is prohibited in meat due to concerns about the transmission of bovine 
spongiform encephalopathy (BSE). Proximate and quality attributes of meats from 
other species have also been analyzed with IR spectroscopy. 

   It is beyond the scope of this chapter to include all the meat-related applications 
of IR. However, an effort has been made to include the common applications and 
solutions to the problems. Most of the IR meat applications are tabulated for quick 
reference. Thermo Fisher Scientifi c Inc. is not responsible for the contents in this 
chapter. NIR refl ectance and NIR transmission spectroscopy instruments were from 
NIR Systems Inc. (Silver Springs, Maryland, USA), unless mentioned otherwise.  

    Beef and beef products 

    Proximate composition 

   Norris’s group demonstrated the applicability of NIR transmission spectroscopy to 
the measurement of the fat, protein, water content in  emulsifi ed meats  ( Ben-Gera 
and Norris, 1968 ). This work was further advanced by  Kruggel  et al.  (1981)  in 
emulsifi ed and ground meats; and by  Lanza (1983)  in ground and homogenized 
meats with NIR refl ectance spectroscopy. Moisture was predicted using multiple 
linear regression with 1732, 1700, 1990, and 1218       nm with an  r      �       0.985 and 
standard error of prediction (SEP) of 0.48%. Similarly protein (1376, 1772, 1524, 
1804       nm) was predicted with an  r      �       0.899 and SEP of 0.53%, and fat content (1720, 
1308, 2388, 1890       nm) was predicted with an  r   �          0.998 and SEP of 0.23% ( Lanza, 
1983 ). Since the moisture and fat content were predicted with a low error compared 
with the protein content, it would be advantageous to measure the protein from mois-
ture and fat. 

    Packaged beef 
   Much of the meat in grocery stores is packaged with polyethylene and related mate-
rials to prevent oxygen from interacting with the meat, to hold meat odors within 
the package, and to provide a clear view of the meat.  Isaksson  et al.  (1992)  used 
NIR (1100–2500       nm) and NIR transmission spectroscopy (850–1100       nm) to meas-
ure the protein, fat, and water content in packaged homogenized beef. The  laminate  
of  polyamide  (PA)/ethylenevinyl alcohol (EVOH)/PA/ polyethylene  (PE) was applied 
to the beef that was 85        μ m thick. The PE layer was in contact with the beef whereas 
the PA layer was in contact with the atmosphere. The thickness of the beef sam-
ples without laminates was ~14       mm. A lean beef with 6% fat and a fatty beef with 
14% fat were used in the study. Also products with 33% lean beef in fatty beef and 
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67% lean beef in fatty beef were prepared for a total of 100 samples. The spectra 
were collected at room temperature of 22°C.  Principal component regression  (PCR) 
analysis was used as the statistical technique. Fat was measured with a very high 
degree of accuracy and was least affected by the laminate despite having the 
common –CH 2  chemical groups. The laminate packaging marginally affected the 
water and protein measurements, probably due to the refractive index and the pres-
ence of amides in the laminate, but the accuracy of the measurement was good. 

   NIR refl ectance and NIR transmission spectroscopy can be used to measure mois-
ture, protein and fat content at room temperature. Laminate –CH 2  bands were found 
at 1200, 1700–1750, and 2300–2400       nm and were least affected by the presence of 
the meat. Based on this study, NIR refl ectance spectroscopy could be used for other 
laminate packaged meat and meat products with thickness greater than 14       mm.  

    Online NIR spectroscopy for beef analysis 
   Lean meat is blended with tallow or fatty beef to obtain beef with various fat 
contents. An online NIR instrument at the blender would provide an accurate meas-
urement of fat content.  Tøgersen  et al.  (1999)  adapted the work of  Isaksson  et al.  
(1996)  for the measurement of water and fat content, and calculated protein con-
tent from the total, fat, and moisture values by using fi ve fi lters (1441, 1510, 1655, 
1728, 1810       nm) with an NIR online spectrometer. The 1441 and 1510       nm fi lters were 
used for moisture measurement, the 1728       nm fi lter for fat measurement and the low-
absorbing 1655 and 1810       nm were used as references. The beef samples with fat 
(7–26%), moisture (58–75%), and protein (15–21%) were analyzed by NIR at the 
beef grinder outlet. Fat and moisture content values were determined with multiple 
linear regression. The prediction error for fat was 0.82–1.49%, water was 0.94–
1.33%, and protein was 0.35–0.70%.  Figure 8.1    shows a typical fi lter based online 
NIR gauge. The specifi c fi ltered NIR wavelength from sensor (A) is directed onto the 
sample (B) and the refl ected light from the sample is detected by the NIR- sensitive 
lead sulfi de detector in the sensor. The source (a quartz-halogen lamp), the wheel 
containing wavelength-specifi c fi lters, the optics to direct the light onto the sample 
and gather and then direct the light refl ected from the sample to the detector, and the 
electronic circuits to process the detector signal are all in the sensor ( Carlson, 1978 ). 
The electronically processed response from the sensor can be digitally displayed in a 
remote box (C)100 or on an optional computer (D).  

    Semi-frozen beef 
   A great deal of beef is frozen post mortem to prevent microbial growth and chilled 
to age or tenderize the beef. Continuing earlier work with fresh beef analysis at 
room temperature,  Tøgersen  et al.  (2003)  utilized an NIR spectrometer for the 
measurement of the fat, moisture, and protein in semi-frozen meat. Frozen meat at 
 � 7°C was placed in a refrigerator/freezer combination to obtain beef at tempera-
tures of  � 5,  � 2, 0, 2, and 10°C. The beef samples had fat ranges of 7.66–22.91%, 
moisture ranges of 59.36–71.48%, and protein ranges of 17.04–20.76%. A scanning 
NIR spectrometer (1100–2500       nm) was used to select the wavelengths appropriate 

              



to the measurement of fat and moisture, and in addition that would be least 
infl uenced by the crystallization of the water. The O–H sensitive ranges (1400–1600 
and 1900–2050       nm) were excluded from the fi lter selection range. The fi lter wave-
lengths of 1630, 1728, 1810, 2100 and 2180       nm were selected. Using partial least 
squares regression 2 (PLS2) on the fi lter data, an error of 0.48–1.11% for fat, 0.43–
0.97% for moisture, and 0.41–0.47% for protein were observed. The errors are similar 
to those for the room temperature measurements of fat, moisture, and protein.  

    Compensation for temperature fl uctuation and water phase shifts 
   Temperature variation is known to affect spectral data either in terms of spectral 
shifts or in spectral intensity. It is therefore very important to develop models or 
methods that are not infl uenced by temperature fl uctuation.  Segtnan  et al.  (2005)  
used beef samples ( n      �       100) at  � 1,  � 1, and      �     3°C, and NIR refl ectance spectros-
copy (1100–2350       nm) to correct for temperature variation. Homogenized meat sam-
ples were placed in the polythene bag and then in the NIR sample holder cell. Four 
additional samples were selected with the constituent variation in the entire range; 
and the spectra of each of the four samples were collected at  � 1,      �     1, and      � 3°C. 
The difference spectra of  � 1°C is calculated by subtracting the spectrum at      � 1°C 
from the spectrum of the middle temperature, i.e.  � 1°C. Similarly, the difference 
spectra is calculated for      � 3°C; and the difference spectra are computed for each of 
the four additional samples. The difference spectra when incorporated with a com-
plex simulation into the 100 spectra gave similar results to that of the model utiliz-
ing all the 100 sample spectra at all three temperatures. This modeling was found 
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Figure 8.1 Thermo Scientifi c Spectra-Quad™ (A), a rugged at-line and online fi lter wheel-based industrial 
near-infrared gauge, analyzing meat sample (B), with remote display (C), and optional remote computer 
display (D). (Photo printed with permission from Thermo Fisher Scientifi c Inc., Minneapolis, MN, USA.)

              



186 Meat and Meat Products

to be better than random addition of noise to the data to compensate for extraneous 
variables, such as temperature, not related to the response variables, such as mois-
ture, fat, and protein content. The procedure not only compensated for the temperature 
fl uctuation but also for the change of state from frozen, semi-frozen, and unfrozen in the 
measurement of protein, fat, and water content. 

   A robust method would be to develop a model with as many extraneous variations 
for the same response variable. This approach minimizes the error in an unstable and 
unpredictable environment. However it requires a large data set and also requires 
additional factors or latent vectors in the multivariate statistical model development. 
This work could be applied to other meats and meat products.   

    Quality attributes 

    Intramuscular fat or marbling 
   Beef grade classifi cations are based on appearance, which is mostly infl uenced by 
the intramuscular fat. In a novel NIR application,  Rødbotten  et al.  (2000)  used NIR 
refl ectance spectroscopy to measure intramuscular fat in intact muscle. The longis-
simus dorsi muscles of 127 carcasses with a fat content of 1–14% were analyzed 
by NIR refl ectance spectroscopy between 1100 and 2500       nm at 4       nm resolution. 
A slice of 4–5       cm diameter and 1.5       cm thickness was placed in the sample holder, 
and a 1       cm 2  area was exposed to the radiation. Partial least squares (PLS) models 
were developed with leave-one-out cross-validation and the data prior to the PLS 
modeling, multiplicative scatter correction was performed. Multiplicative scatter cor-
rection corrects for multiplicative and additive scatter related affects. The correlation 
for pre-rigor and post-rigor samples ranged from 0.76 to 0.84 and root mean square 
error of prediction (RMSEP) was 1.2%. The results were signifi cant as the data was 
collected on heterogeneous intact muscle, and in earlier studies the fat content of 
homogenous ground beef was predicted with an accuracy greater than 0.98 ( R  2 ). The 
absorbance wavelengths of 1152–1248, 1376–1460, 1676–1776, and 2248–2440       nm 
were prominent in the measurement of fat content.  

    Sensory meat tenderness determination 
   Tenderness is the most important beef sensory quality.  Naes and Hildrum (1997)  
used NIR refl ectance spectroscopy to classify the meat samples based on tender-
ness (very tender, intermediate, or tough), which were determined by the sen-
sory panel. Ten minutes post mortem, carcasses were given low-voltage electrical 
stimulation (80  V      , 14Hz, 32s) and other carcasses were not given electrical stimulation. 
Longissimus dorsi muscle was chilled at 4°C for 26h to prevent cold shortening and 
later NIR spectra were collected on 4.5-cm-diameter slices with an InfraAnalyzer 500 
(Norderstedt, Germany) NIR refl ectance spectrometer between 1100 and 2500       nm. 
The samples were stored at      �     40°C after NIR analysis and later heated at 70°C for 
50       min or 75       min and were presented to a 12-member sensory panel at 20°C. Prior 
to sensory analysis, some samples were aged at 4°C for 7 and 14 days. NIR spectra 
were collected and sensory panel responses were recorded on these  samples as well. 
Approximately 67, 47, and 55% of the samples were correctly classifi ed by NIR as 

              



tough, intermediate, and tender. With only two tough and tender degrees, 100% of 
the samples were classifi ed correctly, however the large proportion of intermediate 
samples were classifi ed as tender or tough. 

   This approach is a rapid, simple, low-cost approach to predict the tenderness. 
However, the method would need to be improved to enhance the accuracy of the 
PCR model. Furthermore when tenderness was predicted a correlation of 0.65 and 
an error of 1.2% were observed for a scale of 1–9, with 1 being most tough and 9 
being the most tender. The application of FTIR and its derivatives may improve the 
results in some cases.  

    Instrumental beef tenderness determination 
    Park  et al.  (1998)  used NIR refl ectance spectroscopy to determine the Warner–
Bratzler shear force (WBSF) of longissimus thoracis steaks with 79% correct clas-
sifi cation based on  � 6       kg (tender) and  � 6       kg (tough). A 2.5-cm-thick longissimus 
thoracis steak was used for the WBSF measurement and another similar steak 
was used for NIR analysis. The steaks were thawed for 24       h at 4°C, broiled to ini-
tial temperature of 40°C on one side, turned and broiled to a fi nal temperature of 
70°C. Steaks were cooled and stored at 4°C and six cores of 1.27       cm diameter paral-
lel to the longitudinal orientation of the muscles were prepared. A core was sheared 
perpendicular to the muscle fi ber orientation with Instron Universal Testing Machine 
(Instron Corp., Canton, MA, USA). For NIR spectral data collection, initially a 
38-mm-diameter core was obtained and from that 8-mm-diameter circular slices 
were obtained. The NIR spectra were obtained between 1100 and 2498       nm with 
2       nm resolution. PLS regression analysis was performed on the calibration, cross-
validation with leave-one-out approach was used, and then the model was tested with 
external validation samples. Multiple linear regression analysis was also performed 
to identify important spectral peaks related to the WBSF. 

   The WBSF values had a range of 2–11.7       kg, with a mean of 5.5 and a standard 
deviation of 2.2       kg. Tough steaks absorbed radiation between 1100 and 1350       nm. 
A PLS calibration model with six PLS factors predicted WBSF with an  R  2  of 0.67 
and an SEP of 1.2       kg, and validation  R  2  of 0.63 and SEP of 1.3       kg. Eighty-three 
per cent of the samples were correctly predicted as tender and 75% of the samples 
were correctly predicted as tough with an overall accuracy of 79% for tough and 
tender samples, assuming the steaks with shear force      � 6       kg were classed as tender 
and      �     6       kg as tough. Multiple linear regression identifi ed 1854, 1688, 1592, and 
2140       nm as the prominent wavelengths for the prediction of WBSF and  R  2  of the 
model was 0.67 with 89% of the samples were correctly classifi ed. Similar results 
were also found by  Byrne  et al.  (1998) ,  Liu  et al.  (2003a) ,  Rødbotten  et al.  (2000) ; 
however  Leroy  et al.  (2003)  and  Tornberg  et al.  (2000)  did not fi nd a signifi cant 
relationship between NIR refl ectance spectroscopy and WBSF.  

    Cooking end-point temperature 
   The processing or cooking end-point temperature is critical for the safe consumption 
of the cooked beef. Higher cooking temperatures and longer cooking times lower the 
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palatability of the beef; while lower temperatures and shorter times increase the risk of 
food poisoning. Therefore an optimum time–temperature combination is required for 
the production of safe and acceptable beef.  Thyholt and Isaksson (1998)  used offl ine 
chemical extraction based on  dry extract spectroscopy by infrared refl ection  (DESIR) in 
the visible/near-infrared region (400–2500       nm) with multivariate statistical analysis in 
the determination of the  end-point temperature  (EPT). Longissimus lumborum muscle 
1.5       h post mortem was stored for 26       h at 15°C and then frozen at      � 40°C. The muscle 
was thawed at 4°C for 24       h and visible fat was removed, ground with 5       mm plate diam-
eter and a sample of 100       g at 8       mm thickness was packed in the polythene bag. Samples 
were placed in a water bath and heated at 1°C/min to temperatures between 65.6 and 
75.6°C. The sample was kept at the fi nal temperature (EPT) for 4       min. The cooked meat 
with the juices was centrifuged for 30       min at 6750       g at 10°C and later fi ltered and vac-
uum dried at 20°C. The dried material was analyzed with NIR refl ectance spectroscopy. 
The EPT was predicted with correlation of 0.965, and an RMSEP error of 0.74°C, with 
8 PLS factors and in the Vis-NIR region of (400–2500       nm). The bands at 2270, 2304, 
and 2500       nm were the most infl uential and these represent the protein. There were also 
less signifi cant bands at 940, 2242, 2304, and 2490       nm, which represent amine, amide, 
and proteins. Because of the heat treatment, the water-holding capacity of the meat was 
reduced due to the denaturation of the sarcoplasmic and myofi brillar proteins.   

    Detection of adulteration and contamination 

    Spinal cord contamination 
   Proctor’s group ( Gangidi  et al. , 2003 ) used  attenuated total refl ectance  (ATR)-FTIR 
(4000–700       cm  � 1 ) to detect spinal cord contamination in ground beef ( Figure 8.2   ). 
Spinal cord and other central nervous system tissues are prohibited in beef due to 
concerns about the transmission of bovine spongiform encephalopathy (USDA/FSIS, 
2004). The phosphates (P–O–C) at 1050       cm  � 1  and amide (N–H) stretches at 3400–
3600       cm  � 1  of sphingomyelin, a major amino lipid present in spinal cord, contributed 
to the detection ( Figure 8.3   ). Spinal cord at levels of 20–100       ppm were added to the 
beef and was mixed thoroughly. Ground beef without the spinal cord was used as con-
trol. An ATR-FTIR spectrum at 8       cm  � 1  resolution was collected with Impact 410 FTIR 
(Thermo Fisher Scientifi c, Madison, WI, USA) ( Figure 8.2 ). The developed model had 
an  R -value ranging from 0.87 to 0.94 and an error of 16–23       ppm. Ninety per cent of 
spinal cord-containing samples were correctly identifi ed and none of the samples not 
having spinal cord were identifi ed as having spinal cord, when predicted spinal cord at 
levels less than 23       ppm were considered as not having spinal cord ( Gangidi, 2005 ). 

   A similar study was conducted with the Nexus 670 Infrared spectrometer (Thermo 
Fisher Scientifi c, Madison, WI, USA) in the NIR region (5400–10000       cm  � 1 ). Second 
derivatives of the spectral data were used and the correlation between predicted and 
added spinal cord content was 0.90–0.94 and the detection limit was between 19 and 
21       ppm ( Gangidi  et al.,  2005 ). When predicted samples with less than 21       ppm were 
considered as not having spinal cord, 87% of the samples were correctly classifi ed as 
having the spinal cord content, and 33% of the samples were misclassifi ed as having 
spinal cord when they did not ( Gangidi, 2005 ).  
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Figure 8.2 Ground beef and bovine spinal cord attenuated total refl ectance Fourier transform infrared 
(ATR-FTIR) spectra (800–4000 cm�1) obtained at 8 cm�1 resolution (Gangidi et al., 2003). Copyright 
permission obtained from Wiley-Blackwell Publishing Ltd.

Figure 8.3 Beef spectrum in the mid-infrared region (4000–750 cm�1) is collected with Impact 410 FTIR. 
(Courtesy of Thermo Fisher Scientifi c, Inc.; Jonietz, 2003.) Permission obtained from Copyright Clearence 
Center/Technology Review.
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    Beef adulteration with offal or organ meat 
    Al-Jowder  et al.  (1999)  utilized MIR spectroscopy to identify low-cost offal meat 
(e.g. liver and kidney) adulteration in beef. Silverside, brisket, and beef neck were 
used as beef samples. In addition, each beef muscle sample was mixed with 10–90% 
liver and 10–90% kidney meat. The work reported here showed that MIR spectros-
copy is useful for a variety of different analyses of minced beef, ox kidney, and ox 
liver. Upon application of principal component analysis (PCA) and canonical variate 
analysis (CVA), muscle and offal tissues can be readily distinguished. It was diffi cult 
to distinguish between silverside and brisket, but neck muscle, possibly due to its 
lower fat content, can be easily distinguished. PLS regression was used to quantify 
the amount of added kidney and liver separately in two calibrations. The SEP values 
were between 4.8% for the kidney and 4.0% for the liver. 

   Later,  Al-Jowder  et al.  (2002)  extended their earlier work to include heart and 
tripe meat in addition to liver and kidney. Silverside meat was adulterated with 20% 
of each of the offal meats – heart, tripe, kidney and liver. The samples were either 
raw or cooked thoroughly. Water loss (decrease in 1650       cm  � 1 ) was prominent in the 
cooked meats and hence higher levels of cooking decreased the statistical models 
ability to identify the offal meat. PLS with linear discriminate analysis can correctly 
distinguish offal-adulterated meat from unadulterated meat in raw and cooked meats 
96% of the time.   

    Beef adulteration with other meat 

    McElhinney  et al.  (1999b)  used NIR (1100–2498       nm) and MIR spectroscopy to 
identify and quantify beef adulterated with low-cost lamb. Longissimus dorsi mus-
cle of lamb and beef semimembranous muscle were utilized in the study. In an 
earlier study ( Al-Jowder  et al. , 1999 ), it was found that different muscles from the 
same animal species were indistinguishable. Homogeneous 100% beef, 5, 10, 20% 
lamb in beef and 100% lamb were prepared. The Vis-NIR spectra were collected 
at 400–2500       nm and MIR spectra were collected in the 800–2000       cm  � 1  region. 
Using the NIR and MIR raw spectral data an error of 4.1% was observed and with 
second derivative NIR and MIR data an eight component model showed an error of 
0.91% lamb. 

    Ding and Xu (2000)  utilized Vis-NIR spectroscopy to identify hamburger 
adulteration. The adulterants were low-cost mutton, pork, skim milk powder, and 
wheat fl our. Butter, salt, white pepper powder, and water were added to minced beef 
and 5-mm-thick raw hamburger was prepared, which was cooked later. A 30% skim 
milk powder and wheat fl our paste were added to the water to prepare skim milk and 
wheat fl our paste. Additions of 5, 15, and 25% minced pork, mutton, and pastes of 
skim milk and wheat fl our were added to the hamburger prior to cooking. Canonical 
discriminate analysis and  K  nearest numbers identifi ed adulterated hamburgers 
from unadulterated hamburgers 90 and 92.7% of the time, respectively. With PLS 
regression, wheat fl our and skim milk powder can easily be determined with an error 
of 0.5–1.7% when compared to the mutton or pork, which were determined with an 
error of 2.9–4.6%.  

              



    Distinguishing fresh from frozen-then-thawed beef 

   Frozen-then-thawed meat has poorer texture and fl avor than fresh meat and it is 
diffi cult to identify fresh from thawed meat when it is homogenized or minced. 
 Downey and Beauchêne (1997)  attempted to identify fresh meat from frozen-
then-thawed meat. Longissimus dorsi muscle was frozen to      � 18°C and thawed by 
placing the sample for 8       h at room temperature and later at      �     4°C for 18       h. The unfro-
zen samples were stored at 4°C. The samples were analyzed in the Vis-NIR spectral 
region (650–1100       nm) and with a fi ber-optic probe. The samples were scanned close 
to 4°C. Overall 61–64% of the samples were correctly classifi ed. However, when 
spectral data with multiplicative scatter correction was used along with PCA factorial 
discriminate analysis, none of the frozen samples were classifi ed as fresh and only 
19% of the fresh samples were misclassifi ed as frozen.  

    Microbial spoilage 

   In a novel study,  Ellis  et al.  (2004)  used  horizontal attenuated total refl ectance  
(HATR)-FTIR to determine microbial spoilage in homogenized ground beef. 
The beef FTIR microbial detection study was based on a similar study on homog-
enized chicken meat ( Ellis  et al. , 2002 ). Beef obtained from a grocery store was 
blended with a homogenizer  “ as is ”  (i.e. collagen and fatty material were not 
removed). The beef was uniformly pressed to a thickness of  � 5       mm and exposed 
to open air at room temperature (22°C) on a Petri dish for 24       h. HATR-FTIR spec-
tra of the sample were collected every hour for 24       h (i.e. 0–24       h) with an IFS28 
spectrometer (Bruker Ltd, Coventry, UK) with a deuterated triglycine sulfate detector 
at 16       cm  � 1  resolution and 256 scans were co-added/averaged. The zinc selenide crys-
tal had 10 internal refl ections and with sample penetrative depth of approximately 
1        μ m. Six replicated spectra were collected. The bacterial counts were determined 
every hour for 24       h. The spectral preprocessing procedure, scaling to maximum 
absorbance, was conducted with the MATLAB software (The MathWorks Inc., 
Natick, MA, USA). A variable selection procedure of a genetic algorithm coupled to 
multiple linear regression was performed. 

   The initial total viable count was 2      �      10 5  CFU cm  � 2  (5.31 log 10 TVC), and the 
microbial count after 24       h was 2      �      10 7  CFU cm −2  (7.31 log 10 TVC). FTIR/PLS 
data predicted with an error of 0.4–0.6 log 10 TVC. The genetic algorithm identifi ed 
the 1413 and 1405       cm  � 1  peaks as infl uencing microbial detection; these peaks are 
indicative of amide–CN due to protein degradation by microorganisms. Initial and 
fi nal pH of the beef was 5.43 and the pH is known to infl uence microbial growth. 
The study determined microbial counts based on the extent of microbial spoilage 
of the substrate (i.e. biochemical changes in the meat). However, studies address-
ing detection of microbial population independent of spoilage would be useful. 
This could be done by adding microorganism to fresh meat and then immediately 
investigating the feasibility of obtaining a microbial count by FTIR. This would 
minimize the dependency on microbial spoilage to determine microbial count, and 
would be useful in addressing bioterrorism issues. 
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   FTIR in transmission mode and with classifi cation statistics was found to be a 
rapid and inexpensive technique for identifying and classifying  Staphylococcus  
species and  Pseudomonas  species grown in culture media ( Naumann  et al. , 1991 ). 
In addition to total microbial counts, identifying the specifi c species and classes of 
microbes directly on the meat would be an excellent spectroscopic technique for 
protecting consumers from harmful microorganisms and meat processors from 
expensive meat recalls. 

    Table 8.1    lists some infrared spectroscopic applications suitable for beef and beef 
products.   

Table 8.1 Near- and mid-infrared spectroscopy to determine beef and beef product quality

Instrumental method Quality attribute Reference

FTIR/Machine learning Microbial spoilage; Total viable counts Ellis et al., 2004
MIR and chemometrics Identifi cation offal meat—heart, kidney, liver in beef muscle Al-Jowder et al., 1999
FTIR Quantitation of lamb in beef minced meat McElhinney et al., 1999a
FTIR Spinal cord detection in ground meat Gangidi et al., 2003
FTIR Monitoring tenderization process Iizuka and Aishima, 1999
IR refl ection/Dry extracts Non-bovine meat in beef patties Thyholt and Isaksson, 1998
FTIR/Microscopy/
 preprocessing

Separation and characterization of physical scatter and 
 chemical constituent information with extended 
 multiplicative scatter correction

Kohler et al., 2005

FTIR/ATR Monitor enzyme-based proteolysis and tenderization in beef Iizuka and Aishima, 2000
NIR Differentiation of frozen and unfrozen beef Thyholt and Isaksson, 1997
Vis/NIR Kangaroo meat identifi cation in beef Ding and Xu, 1999
NIR refl ectance/Dry extract Identifi cation pork, chicken and mutton in minced beef Thyholt et al., 1997
NIR Beef hamburger adulteration Ding and Xu, 2000
NIIRS Tenderness of ground meat Prieto et al., 2007
NIR transmittance Free fatty acid composition Sierra et al., 2007
Vis/NIR Beef muscle characterization Xia et al., 2007
NIR Oxen chemical composition Prieto et al., 2006
Vis/NIR Beef muscle quality attributes—pH 24, L0, L60 color values; 

 pH 3, sarcomere length, cooking loss, Warner Bratzler shear 
 force

Andrés et al., 2008

Vis/NIR online Beef longissimus tenderness Shackelford et al., 2005
NIR refl ectance Fatty acid composition Realini et al., 2004
NIR refl ectance and 
 transmittance

Technological and organoleptic properties Leroy et al., 2003

NIR refl ectance/Vis Color, texture and sensory characteristics of steaks Liu et al., 2003a
NIR refl ectance Muscle type identifi cation, dry matter, crude protein, ash Alomar et al., 2003
NIR refl ectance Chemical composition of semi-frozen ground beef Tøgersen et al., 2003
NIR refl ectance Quality attributes—sensory and instrumental tenderness, 

 fl avor and organoleptic acceptability
Byrne et al., 1998

NIR/Vis Discrimination between fresh and frozen-then-
 thawed beef

Downey and Beauchêne, 1997

NIR Fat, protein and moisture measurement in meat patties Oh and Großklaus, 1995
NIR Sensory characteristics Hildrum et al., 1994
Vis/NIR Quantization of lamb in beef minced meat McElhinney et al., 1999b
NIR Moisture, protein, fat and calories in ground beef Lanza, 1983
NIR Physical and chemical characteristics of beef cuts Mitsumoto et al., 1991
FT-NIR Spinal cord detection in ground meat Gangidi et al., 2005
NIR Pre-rigor conditions Tornberg et al., 2000

              



    Pork and pork products 

    Proximate composition 

   The proximate analysis of pork produces results similar to those obtained by IR-
based methods used on beef as described earlier ( Lanza, 1983 ).  Ortiz-Somovilla  et al.  
(2007)  utilized NIR refl ectance spectroscopy to successfully measure fat, protein and 
moisture contents in pork sausages. Lean pork meat from Iberian and Landrace, which 
is a standard breed, were frozen and later thawed. The standard pork at levels of 0, 25, 
50, 75, and 100% was added to the Iberian pork, and later sausage ingredients—fi ne 
salt (400       g), dextrose (18       g), thyme (36       g), nitrifi er (36       g), wine (0.35       L), garlic (90       g), 
ground black pepper (45       g), polyphosphate (18       g), and ascorbic acid (9       g), were added 
to minced pork (18       kg). The mixed sausage is left to stay or ripen at 4°C for 24       h. One 
hundred samples (300       g each) were obtained. The samples were homogenized, result-
ing in homogenized samples made from minced samples prior to the collection of the 
NIR spectral data. 

   The samples were analyzed with Perten 7000 NIR/Vis spectrometer (Perten 
Instrument, Huddinge, Sweden) that can collect data between 400 and 1700       nm. 
Eighty of the 100 samples were used in the calibration and the remaining samples 
were utilized as external validation data set. Modifi ed PLS with cross-validation 
in groups was performed. The fat content in samples varied from 8 to 31.7%, with 

Table 8.1 Continued

Instrumental method Quality attribute Reference

NIR pH Tornberg et al., 2000
NIR refl ectance Beef quality attributes Rødbotten et al., 2000
NIR Intramuscular fat content Prevolnik et al., 2005
NIR/Online Proximate composition in ground beef Westad et al., 2004
NIR/Inline Proximal composition of ground beef Hildrum et al., 2004
Vis/NIR Pasture- or corn silage-fed cattle 

 by meat analysis
Cozzolino, 2002

NIR refl ectance Moisture, crude protein, intramuscular fat Cozzolino and Murray, 2002
NIR/Diode array Tenderness classifi cation Rødbotten et al., 2001
NIR refl ectance Tenderness and other quality attributes Venel et al., 2001
NIR/NIT Fat, protein moisture in polythene-wrapped beef Isaksson et al., 1992
NIR refl ectance Low cost temperature and moisture state (frozen, 

 semi-frozen) in homogenized beef
Segtnan et al., 2005

NIT Identifying undesirable heterogeneity in 
 homogeneous meat along with measurement of 
 moisture, fat and protein content

Davies et al., 1998

NIR Maximum temperature of previous heat 
 treatment in beef

Isaksson et al., 1989

NIR/NIT Maximum temperature of previous heat treatment in beef in 
 wet and freeze-dried meat

Ellekjaer and Isaksson, 1992

NIR Hardness, tenderness, juiciness in fresh and frozen-then-
 thawed beef

Hildrum et al., 1995

NIR refl ectance Fatty acid content in beef neck lean Windham and Morrison, 1998

NIR, near-infrared; NIT, near-infrared transmittance; FTIR, Fourier transform infrared spectroscopy; ATR, attenuated total refl ectance.
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mean of 20.27% and a standard deviation of 7.31%; protein content varied from 12.7 
to 20.5%, with a mean of 16.7% and a standard deviation of 2%; and moisture range 
of 50.2 to 68.4% with a mean at 58.9% and a standard deviation of 5.3%. The PLS 
model can predict fat, protein and moisture with an  R  2  of approximately 0.98, 0.90, 
and 0.97 and SEP of 1.2, 0.85, and 0.9%, respectively.  Residual predictive devia-
tion  was greater than 3 in most cases, suggesting very good predictability of the 
PLS model. Residual predictive deviation is the relationship between the standard 
deviation of reference samples and standard error of cross-validation. In a related 
study,  Gaitán-Jurado  et al.  (2007)  observed similar results for the intact sliced and 
homogenized pork dry-cured sausages.  

    Quality attributes 

    Fatty acid composition 
   In pork, saturated fatty acids are preferred to the unsaturated fatty acids, as they are 
more oxidatively stable. Furthermore, unsaturated fatty acids may cause undesira-
ble softness in meat.  Ripoche and Guillard (2001)  used FTIR and FT-NIR to meas-
ure pork fatty acid content. Meat from pigs fed with variable amounts of sunfl ower 
oil or no sunfl ower oil was studied for variations in pork fat content in the samples. 
Back fat and breast fat were analyzed. A 2-mm-thick back fat sample and a breast fat 
sample were frozen and placed in polythene bags and later thawed at 2°C. Diffuse 
refl ectance NIR spectra were directly collected on the samples in polythene bags. 
Lipids were extracted with 2:1 chloroform/methanol solvent. Infrared spectra were 
collected with BOMEM MB100 spectrophotometer. Diffuse refl ectance and trans-
mission NIR spectra were collected between 11000 and 4000       cm  � 1  (900–2500       nm) 
with a resolution of 8       cm  � 1 . Diffuse refl ectance NIR spectra were directly collected 
on the samples in polythene bags. 

   Lipids were extracted with 2:1 chloroform/methanol solvent and transmission 
spectra collected by placing in the 0.5       cm thermostatic cell. FTIR spectra (6000–
900       cm  � 1 ) were collected at 4       cm  � 1  resolution with zinc selenide ATR crystal. Fatty 
acid composition of the samples was measured by gas chromatography with a fl ame 
ionization detector. PLS regression analysis was performed between the spectral 
data and the fatty acids concentration. A FTIR band between 2825 and 3967       cm  � 1  
(characteristic of CH 2 , CH 3  stretches, and CH stretches, as in  cis  HC      �      CH) and 
711–1853       cm  � 1  stretches (characteristic of C      �      O stretch and CH stretch as in  trans  
HC      �      CH) were used to predict fatty acid composition. Transmission NIR bands 
between 1362 and 1480       nm (7342–6756       cm  � 1 ) (characteristic of CH 3  and CH 2  
stretches), 1687–1855       nm (5927–5390       cm  � 1 ) (characteristic of CH stretch), and 
2115–2172       nm (4728–4604       cm  � 1 ) (characteristic of HC       �       CH bands) showed 
prominent peaks or bands related to the fat. CH 3 , CH 2 , CH, and –HC      �      CH– bands 
are commonly found, but may not be specifi c to fat. The saturated fatty acid (SFA) 
content ranged from 29.9 to 45.9%, with a mean of 38.6%; monounsaturated fatty 
acid (MUFA) content varied from 38.9 to 58.4%, with a mean of 49.9%; polyunsatu-
rated fatty acid content (PUFA) varied from 7.9 to 20.4% with a mean of 11.6; C16:0 
ranged from 20.4 to 27.6, with a mean of 23.8%; C18:0 ranged from 8.3 to 17.8%, 

              



with a mean of 13.3%; C18:1 ranged from 37.2 to 55.2%, with a mean of 46.9%; 
and C18:2 ranged from 7.1 to 19.3%, with a mean of 10.6%. 

   The ATR-FTIR prediction of calibration and external validation samples was 
approximately 0.90 ( R  2 ) and the error was between 0.5 and 0.7%. Individual satu-
rated fatty acids, such as C16:0 and C18:0 prediction were less accurate. A simi-
lar trend was also observed with transmission NIR, except for higher calibration 
errors of 1.14% and 1.17% with MUFA and C18:1, respectively. Diffuse refl ectance 
NIR predicted SFA, PUFA, and oleic acid (C18:1) and linoleic acid (C18:2), with 
an accuracy of 0.67, 0.62, 0.72, and 0.79 and an error of 3.1, 3.6, 4.3, and 2.7%, 
respectively. This could be probably due to interference from heterogeneous com-
pounds present in the slice of the back fat. Nine PLS factors were utilized for SFA, 
MUFA, and PUFA and individual fatty acids required 11–15 PLS factors. However, 
when NIR refl ectance predicted values were utilized to classify back fat into good, 
medium, or bad categories, PUFA and C18:2 values could be used to identify good 
and medium samples from bad samples with 100% accuracy. Similar results were 
found with intramuscular fat of pork loins (González-Martín  et al. , 2005) and sub-
cutaneous fat of Iberian breeds (González-Martín  et al. , 2003) with fi ber-optic NIR 
refl ectance spectroscopy.  

    Meat pH 
   The pH is known to affect the meat quality, with higher pH resulting in dark, fi rm, 
dry (DFD) meat, whereas lower pH results in pale, soft, exudative (PSE) meat due 
to denaturation of the proteins.  Andersen  et al.  (1999)  used NIR refl ectance spec-
troscopy to measure pH in pork. Forty-nine longissimus dorsi and semimembranous 
muscles were analyzed for pH. Unhomogenized longissimus dorsi pH ranged from 
6.67 to 5.37, with a mean of 5.69 and standard deviation of 0.25       units. Samples were 
utilized  “ as is ”  or ground twice through plate with 2-mm holes. The pH was meas-
ured the day after slaughter. The unhomogenized semimembranous muscle pH was 
6.97–5.47, with a mean of 5.77 and standard deviation of 0.27. Homogenized muscles 
had approximately the same range, mean, and standard deviation as that of unhomog-
enized muscles. The NIR spectra between 1000 and 2630       nm were collected with an 
MB series 160 FT-NIR instrument with a diffuse IR sample compartment made by the 
BOMEM (Quebec City, Canada) with 4       cm  � 1  resolution and surface measure area of 
approximately 13       cm 2 . A single 5177       cm  � 1  peak predicted pH with an  R -value of 0.5. 
The homogeneous longissimus dorsi gave a slightly better result of  r      �       0.55. 

   The pH of the pork could be determined for the following reasons: (1) Longer 
wavelengths are more sensitive to pH mainly because of the lower availability of 
surface free water at high pH compared with at low pH. In addition, at lower ener-
gies or shorter wavelengths, the water refl ects less light or absorbs more light than 
at low pH. A negative correlation between absorbance and pH is observed for high 
pH at longer wavelengths. (2) In the high energy or shorter wavelength region, less 
light is absorbed by the water in meat. This is advantageous as higher surface free 
water is available at lower pH as meat denatures at low pH. Furthermore, denatured 
muscle at low pH is known to inhibit light penetration and thus enhance the amount 
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of refl ected light. In contrast, longer wavelengths are refl ected less, or not at all, from 
samples with high surface free moisture. 

   A multiplicative scatter correction was performed on the data, prior to the PLS 
regression analysis and the model was cross-validated using the leave-one-sample-out 
methodology. For unhomogenized longissimus dorsi, homogenized longissimus 
dorsi, unhomogenized semimembranous and homogenized semimembranous muscle 
samples, an  R -value of 0.73, 0.77, 0.79, and 0.73 and RMSEP of 0.10, 0.10, 0.08, 
0.09, respectively, were observed. Three PLS factors were utilized for the unhomog-
enized longissimus dorsi and for other samples a single PLS factor was utilized. 
The predicted RMSEP values for the muscle tissue are comparable to that of the 
reference values, i.e. 0.1       units, irrespective of unimpressive  r -values, which could be 
due to the narrow range of pH values of the muscles. The NIR refl ectance spectroscopy 
method precisely predicted pH.  

    Water-holding capacity 
   Pork with a high water-holding capacity (WHC) has better appearance and higher 
yield than pork with a low water-holding capacity. 

    Fourier transform infrared spectroscopy 
    Pedersen  et al.  (2003)  utilized FTIR to study the water-holding capacity of pork. 
A wide range of pork water-holding capacities, initial pH and post-mortem pH  values 
were obtained by giving pigs 0.3       mg adrenaline/kg live weight, 16       h prior to slaugh-
ter, or exercising on a treadmill for 14–20       min prior to slaughter. Control  animals 
were also used (i.e. without any treatment). Adrenaline is known to affect glyco-
genolysis and thus infl uences the ultimate pH. At 45       min post mortem, the carcasses 
were chilled at 4°C. FTIR spectra and drip loss were recorded on longissimus dorsi 
muscle. Drip loss was measured by placing a 2.5-cm-thick slice of muscle taken 
24       h post mortem and placed in a water-permeable holder or net in a plastic bag for 
48       h at      �     4°C. Percentage loss of weight is drip loss. A zinc selenide ATR system 
was used to collect the spectral data using 4000–750       cm  � 1 . PCA, PLSR, and inter-
val-PLSR (IPLSR) were utilized to develop regression models to determine the drip 
loss. IPLSR is similar to PLSR and is performed only on sections of FTIR spectra 
compared to the entire FTIR spectrum in PLSR. 

   Myofi brillar protein showed a peak at 3300       cm  � 1  due to O–H group adsorbed to 
myofi brillar protein and N–H groups of polypeptides. Specifi c peaks of myofi brillar 
protein due to amide I carbonyl can be observed at 1650       cm  � 1  and NH vibrations due 
to amide II can be observed at 1540       cm  � 1 . The bands between 1160 and 1080       cm  � 1  
are due to glycogen. A plot of PC1 vs. PC4 with 900–1800       cm  � 1  spectral region iden-
tifi ed adrenaline-injected meats from control and exercised meats. These results sug-
gest that FTIR can provide early identifi cation of undesirable low-quality PSE meat. 

   The spectral regions of 1396–1317       cm  � 1  and 1072–993       cm  � 1  predicted WHC with 
an  r -value of 0.89 and an error of 0.85, and showed a WHC range of 0.7–8%. In addi-
tion, the spectral region of 1800–900       cm  � 1  predicted WHC with an  r -value of 0.89 

              



and an RMSEP error of 0.86%. The IR region at 1360       cm  � 1  (due to de-protonated 
carboxylic group and thus related to pH) and the spectral region at 1020       cm  � 1  (due 
to CO stretching of glycogen, which could be comparatively high 45       min post mor-
tem) are probably the bands best related to predicting WHC. However, the entire 
MIR spectral region provided less accurate and precise results. Therefore, WHC can 
be measured by FTIR with pH- and glycogen-specifi c spectral regions.  

    Near-infrared spectroscopy 
    Forrest  et al.  (2000)  used NIR to measure the drip loss in the pork and WHC by a 
combination of NIR data in the 900–1800       nm region and PLS. They predicted WHC 
with an  r -value of 0.84 and RMSEP error of 1.8%. The wavelengths 1792, 1704, 
1356, 1597, 1473, 1425, 1693, 1536, and 951       nm were prominent in WHC measure-
ment.  Geesink  et al.  (2003)  used NIR refl ectance spectroscopy to classify pork samples 
as less than 5% or higher than 7% WHC with 100% correct classifi cation.   

    The Rendement Napole (RN) gene 
   Pork derived from pigs carrying the RN gene has lower pH and low protein content, 
resulting in lower meat yields due to the minimal water-holding capacity ( Josell  et 
al. , 2000 ). Pork from RN gene carrier pigs can be identifi ed by Vis-NIR spectros-
copy coupled with PLS and neural networks. The pork from RN gene carriers and 
non-carriers has been analyzed using NIR. Spectral differences at 1430–1462       nm 
and 1880–2000       nm were seen in pork from RN gene carriers and non-carriers, when 
spectra were collected 30       min post mortem. Similarly, halothane gene-containing 
carcasses could also be identifi ed by NIR. 

    Table 8.2    lists some infrared spectroscopic methods applied to pork and pork products.    

    Chicken and chicken products 

    Proximate composition 

   Proximate analysis of chicken and chicken products is similar to that described for 
beef and pork meat and meat products ( Kruggel  et al. , 1981 ;  Lanza, 1983 ;  Isaksson 
 et al. , 1992 ).  

    Quality attributes 

    Chilled and frozen storage effects 
   Appropriate time–temperature combination storage is necessary for safe and qualitative 
meat.  Liu  et al.  (2004a)  continued their earlier work ( Liu  et al. , 2000 ) with chilled or 
frozen stored samples, and used two-dimensional (2D) Vis-NIR spectroscopy to meas-
ure the quality of chilled or frozen meats. In 2D correlation, both  x  and  y  axes are wave-
lengths and usually describe the same spectrum; in some cases different but related 
spectra are used. The spectra chosen would summarize the variations due to an attribute 
or attributes, for example intra- and inter-spectral variations due to temperature changes. 
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Table 8.2 Infrared spectroscopy techniques. Near and mid-infrared spectroscopy to determine pork 
and pork product quality

Instrumental method Quality attribute Reference

FTIR C22:5, C22:6 marine fatty acids 
 in pork fat

Flåtten et al., 2005

FTIR Monitoring lipid oxidation in fat Guillen and Cabo, 2004
FTIR Fatty acid composition of pork fat Ripoche and Guillard, 2001
FTIR Intramuscular fat variability Geers et al., 1995
NIR refl ectance Moisture, fat and protein content in intact 

 and homogenized sausages
Gaitán-Jurado, 2007

IR Characterization of nitrosyl heme pigments, 
 produced in heat-processed cured ham

Burge and Smith, 1992

NIR/Vis pH, intramuscular fat, drip loss, CIE L, a, b 
 values

Savenije et al., 2006

NIR/Vis and fi ber optics Texture and color of dry cured ham Garcia-Rey et al., 2005
NIR refl ectance Monitor pork quality changes early 

 postmortem, drip loss, muscle metabolism. 
 Intramuscular fat measurement

Hoving-Bolink et al., 2005

NIR/Fiber optic Intramuscular fatty acid in Iberian pork González-Martín, 2005
NIRS/Fiber optic Fatty acids in subcutaneous fat of Iberian 

 swine
González-Martín et al., 2003

NIR refl ectance Classifi cation of meats based on 
 water-holding capacity

Geesink et al., 2003

Vis/NIR refl ectance RN-phenotype identifi cation in pig carcasses Josell et al., 2000
NIR Moisture, protein, fat and calories Lanza, 1983
NIR/AOTF/Online Moisture Kestens et al., 2007
NIR refl ectance Proximate analysis of pork sausages Ortiz-Somovilla et al., 2007
NIR pH after 24 h post mortem, L, a, b, drip loss 

 after 24 and 48 h in minced and intact 
 muscles

Čandek-Potokar et al., 2006

NIR Intramuscular fat content Prevolnik et al., 2005
NIR/InfraAnalyzer 260 Moisture and fat Czarnik-Matusewicz and 

 Korniewicz, 1998
NIR Sodium chloride content in sausages Ellekjaer et al., 1993
Vis/NIR Chemical composition and genotype 

 identifi cation
McDevitt et al., 2005

Vis/NIR Water-holding capacity and warmed 
 over fl avor

Brøndum et al., 2000a, 
 2000b.

NIT Identifying undesirable heterogeneity in 
 homogeneous meat along with measurement 
 of moisture, fat and protein content

Davies et al., 1998

NIR, near-infrared; NIT, near-infrared transmittance; FTIR, Fourier transform infrared spectroscopy; 
ATR, attenuated total refl ectance; AOTF, acoustic-optical tunable fi lter.

   Five hundred and twenty-fi ve poultry carcasses were put in three treatment groups 
( Liu  et al. , 2004b ). In the fi rst treatment the carcasses were stored at 4, 0,  � 3,  � 12, 
and  � 25°C for 2 days, in the second treatment the carcasses were stored for 7 days, 
and in the third treatment, which is similar to second treatment, carcasses were stored 
at  � 18°C for an additional 7 days. The right breasts were used for NIR spectral 
analysis and left breasts for sensory and cooking analysis. The spectra for each 
treatment–temperature combination were used to give 15 averaged spectra, which 

              



were analyzed by 2D correlation. The samples aged at 4°C had greater tenderness, 
probably because the protein denaturation within the myofi bril enzymes had 
increased N–H/O–H interactions as shown by increased spectral intensities at 1400 
to 1600       nm, or because of the loss of moisture from melting of ice during the freeze–
thaw cycle. Asynchronous 2D spectra changes with cooking, chilling, and freezing 
resulted in degradation of the C–H peak at 1200 and 1330       nm from the destruction of 
heme pigments at higher temperature. Increased absorption at 1465 and 1960       nm due 
to O–H/N–H vibrations from protein and water interactions showed protein denatura-
tion. These results suggest that the temperature profi le of the chicken products, such 
as maximum cooking temperature or frozen or chilled product can be determined 
with NIR refl ectance spectroscopy and 2D correlation spectroscopy, in addition to 
the wavelength selection for these particular attributes. 

   Tender and tough meat has been identifi ed with NIR refl ectance spectroscopy and 
2D correlation spectroscopy. Tender meat, exhibiting less than 8       kg shear pressure, 
was prominent at 1120, 1275, 1450, 2000, and 2230       nm. Tougher meat, with greater 
than 8       kg shear pressure, was identifi ed by bands at 1440, 1860, and 2300       nm. 

    Synchronous two-dimensional correlation spectroscopy 
   Two-dimensional (2D) correlation spectroscopy is also used for quality inspection 
and consists of synchronous and asynchronous spectra. A synchronous 2D correla-
tion spectra characterizes similar variations in both the spectral data (i.e. variations 
being consistently negative or positive in both cases). Autopeaks appear at the 
diagonal position, which represents dynamic variations in the spectral data. The syn-
chronous off-peaks or cross-peaks appear at off-diagonal positions. These peaks 
occur when spectral intensities at two different wavelengths (or resonant wave-
lengths) have similar trends. The positive cross-peaks appear when the intensities 
at the two wavelengths have similar trends (i.e. either decreasing or increasing). 
The negative cross-peaks occur when the spectral intensities at the two wavelengths 
are dissimilar (i.e. when the spectral intensity at one wavelength is increasing while 
the spectral intensity at the other wavelength is decreasing).  

    Asynchronous two-dimensional correlation spectroscopy 
   An asynchronous 2D correlation spectrum comprises exclusively off-diagonal 
cross-peaks that are entirely a result of effects related to perturbation or in this case 
time-dependent systematic variations in spectral intensities at different wavelengths. 
These intensities are not the same as spectral intensities that are resonance peaks 
observed as diagonal peaks in synchronous 2D correlation spectrum. They only 
show up when the spectral intensities are dissimilar, and a positive peak indicates 
that the peak in wavelength 1 occurs after the event occurred at wavelength 2. A pos-
itive asynchronous cross-peak occurs when the peak at wavelength 2 appears after 
the event occurred at wavelength 1.  

    Advantages and limitations of two-dimensional correlation spectroscopy 
   One of the advantages of 2D correlation is that the interaction between different spectral 
regions can be effortlessly observed which is not possible with typical intensity vs. wave-
length spectra. Even in 3D spectra of time, intensity, and wavelength, spectral variations 
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with time for a particular wavelength can only be clearly observed and analyzing 
changes within a spectrum would be diffi cult. However 2D correlation spectroscopy 
requires a sophisticated chemometrics package and results in two plots—synchro-
nous and asynchronous—which are diffi cult to analyze due to the complex contours. 
Nevertheless, 2D spectral analysis is a required and important method in understanding 
biochemical changes and in variable selection for statistical modeling ( Liu  et al. , 2000 ).   

    Thermal processing 
   Proper heat treatment is vital for the meat processors to provide safe and nutritious 
products.  Liu  et al.  (2000)  used Vis-NIR spectroscopy and 2D correlation spectroscopy 
to understand the spectral changes due to thermal cooking treatments. Fresh thin slices 
(1       cm thick and 3.8       cm diameter) were obtained from a healthy, wholesome chicken 
carcass. The uncooked slice was cut to fi t into a quartz window-clad cylindrical cup. 
The slices were stored at 0°C in a polythene bag and then cooked at a constant air tem-
perature of 150°C for 3, 6, 9, 12, 15, and 18       min. The sample was immediately removed 
from the oven once the set time was reached and the surface temperature measured 
with a J-type thermocouple. It was then stored in a polythene bag and cooled to room 
temperature for subsequent analysis. The spectra were collected with NIR refl ectance 
spectroscopy from 400 to 2500       nm with 2       nm resolution on a rotating sample holder. 
With increasing cooking time a higher surface temperature was observed. The spectra 
were subtracted from an average spectrum as data in the 2D correlation analysis in 
both  x  and  y  dimensions. The spectral analysis was performed with the KG2D corre-
lation program (School of Science, Kwansei-Gakuin University, Nishinomiya, Japan) 
installed in Grams/32 software (Thermo Fisher Scientifi c, Waltham, MA, USA). A 2D 
correlation spectroscopy threshold of 30% of the maximum point in the contour map 
was selected. Too high a threshold resulted in non-selection of the information fi lled 
fi ner details; and too low a threshold results in minor features resulting from noise and 
baseline distortion to be included in the contour map. 

   Cooking resulted in a decrease in spectral intensities due to fi rst and second over-
tones of C–H stretching and combination of C–H stretching at 1655, 1195, and 
1360       nm, respectively. Spectral variations at these wavelengths are different in water, 
suggesting that the C–H variations are from heme groups in deoxymyoglobin and 
oxymyoglobin. The early changes in these peaks coincide with the denaturation of 
the meat heme myoglobin protein pigments.  

    Processing parameters— T  max ,  C  and  F  
   The  T  max ,  F , and  C  values are indicators of cooking and processing quality of the 
processed meats.  T  max , is the maximum internal meat cooking temperature; The  ‘  F  ’  
is the equivalent process temperature at 121°C and is defi ned as the time-based inte-
gral function of the temperature of the sample and  Z  f . The  ‘  C  ’  value is the cooking 
value of equivalent process temperature at 100°C. It is a time-based integral function 
of temperature and  Z  c . A higher  C  value indicated greater cooking temperature and/
or a longer cooking time.  Z  f  and  Z  c  are the required rise in temperature for ten-fold 
decrease in microbial content and increase in reaction rate, respectively. 

              



    Chen and Marks (1997)  used NIR refl ectance spectroscopy to predict  C  (minutes), 
 F  (minutes) and  T  max  (°C) values related to the cooking profi le of chicken patties. 
 Z  f  values ranged from 7 to 13°C. A temperature of 10°C was selected for predictive 
modeling. The values range from 24 to 30°C and 26°C was selected for predictions. 
Ninety-eight ground, formed, and frozen, thick, 6.2       cm diameter chicken breast pat-
ties were placed in a polythene bag and thawed overnight at 3°C and stored at 25°C 
for 120       min. The samples were cooked in a convection oven at air temperatures of 
135, 149, 163, 177, 191, 204 and 218°C at end-point temperatures of 50, 55, 60, 65, 
70, 75, and 80°C for a total of 49 air–product temperature combinations. The end-
point temperature was measured with a T-type thermocouple which was placed half-
way between the top and bottom of each sample in a radial direction. After the set 
temperature was reached, samples were immediately removed, weighed, and resealed 
in polythene bags and then cooled with running water. The sample was cut with a 
diameter of 3.2       cm and placed in a NIR refl ectance spectroscopy sample holder and 
data collected between 400 and 2500       nm with 2       nm resolution. 

   The  C  and  F  values were found to be non-linear; hence log( C ) and log( F ) 
values were used to produce linearity in data to develop predictive statistical 
modeling. The  C -values (minutes) ranged from 0.02 to 1.69 with a mean of 0.28 and 
a standard deviation of 0.32. The computed log( C ) values then ranged from  � 1.62 
to 0.23 with a mean of  � 0.79 and standard deviation of 0.48. Similarly  F -values 
(minutes) ranged from 9.42      �      10  � 8  to 1.77      �      10  � 4 , with a mean and standard devia-
tion of 7.24      �      10  � 5 . The corresponding computed log( F ) values ranged from  � 7.03 
to  � 2.75, with a mean of  � 5.23 and stand deviation of 1.10.  T  max  (°C) values ranged 
from 50.4 to 91.4, with a mean of 67.4 and standard deviation of 10.9. The tempera-
ture variation between top and bottom of the patty was less than 6°C. 

   A modifi ed PLS in the Vis-NIR region was used for multivariate prediction of the 
 T  max ,  C , and  F  values. A modifi ed PLS standardizes the residual after each factor is 
calculated.  R  2  values were 0.97, 0.97, 0.97, and standard error of calibration (SEC) 
were 0.08, 0.19 and 1.95 for log( C ), log( F ) and  T  max , respectively. Preprocessing 
steps such as mulitiplicative scatter correction and standard normal variate gave simi-
lar or slightly more accurate results. Similarly, performing fi rst and second derivatives
on the raw data gave similar results or slightly less accurate results. Cooking 
value, processing time, and maximum internal temperature of the meat can be 
predicted accurately and precisely with NIR refl ectance spectroscopy. 

   Another 33 validation samples not included in the calibration samples were pre-
dicted with modifi ed PLS models and it was found that SEP values were slightly 
higher at 1.38, 1.32, and 1.30 times the SEC values for log( C ), log( F ), and  T  max . 
These results suggest that the end-point temperature can be determined non-
destructively and non-invasively with Vis-NIR spectroscopy and hence it has great 
potential in online process analysis.  

    Texture measurement 
    Chen and Marks (1998)  continued their earlier work by using NIR refl ectance 
spectroscopy to measure cooking loss and Kramer shear properties—yield loss, yield 
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deformation, and yield energy, of chicken patties, which were measured after various 
degrees of cooking as described earlier ( Chen and Marks, 1997 ). Cooking loss was 
simply measured by subtracting the cooked weight from pre-cooked weight and is 
reported as percentage weight loss. 

   A modifi ed Vis-NIR PLS was utilized on the fi rst derivative to predict cooking 
loss, yield force, deformation, and energy. A Kramer shear press, with multiple 
blades and a cell, was attached to a compression testing machine (Instron model 
1011, with Series IX control software; Instron Corp., Canton, MA, USA), and 
tests were conducted with a cross-head speed of 100       mm/s. A sample was placed 
inside and sheared. Yield force and deformation were computed. Yield energy was 
computed by integrating the yield force vs. deformation. The yield point was deter-
mined as the point of maximum force ( Lyon and Lyon, 1996 ). The  T  max  and log( C ) 
values were similar to those observed in the earlier study ( Chen and Marks, 1997 ). 
The cooking loss values ranged from 4.1 to 18.6, with a mean of 10.8 and standard 
deviation of 3.66. The yield force (newtons) ranged from 60 to 430, with a mean of 
263 and a standard deviation of 104. The yield deformation (mm) values ranged from 
3.95 to 6.30, with a mean of 4.88 and standard deviation of 0.51; and yield energy 
values (Nm) ranged from 0.13 to 0.96 with a mean of 0.55 and a standard devia-
tion of 0.21. Cooking loss, yield force, yield deformation, and yield energy predic-
tion showed  R  2  of 0.91, 0.97, 0.53, and 0.90 and SEP of 1.28, 30.44, 0.32, and 0.11, 
respectively. Except the yield deformation, the other parameters could be predicted 
with a high accuracy. In addition, cooking loss was highly correlated ( r      �       0.91) to 
log( C ) and yield force and energy were highly correlated (0.83–0.86) to both  T  max  
and log( C ). Physical changes due to mass or water loss and denaturation of proteins 
in the patties during thermal processing (50–80°C) were observed as good predictors 
of cooking loss and texture.  

    Liver analysis of unhealthy carcasses 
   An abnormal liver is a good indicator of an unhealthy chicken.  Dey  et al.  (2003)  
utilized NIR refl ectance spectroscopy to identify normal and abnormal or septi-
cemic chicken carcasses. Abnormal chicken carcasses are dark red or bluish in color, 
dehydrated and stunted, and very high speeds of poultry processing may not allow 
a thorough visual inspection. However NIR refl ectance spectroscopy can identify 
abnormal chicken carcasses with 94% correct predictability. In this study ( Dey  et al. , 
2003 ), 100 each of normal and abnormal livers were procured, and NIR refl ectance 
spectroscopy spectral data were collected between 400 and 2500       nm. Another 50 
livers each of normal and abnormal carcasses were selected for external validation. 
PCA coupled to neural network classifi cation analysis was used to classify the chicken 
carcasses. Three out of 50 carcasses were misclassifi ed as normal when abnormal 
chicken carcasses were identifi ed by visual observation of the livers. However with 
histopathological examination of the livers, 100% of the abnormal livers were identi-
fi ed correctly. NIR refl ectance spectroscopy with PCA and neural networks could be 
utilized as a rapid technique to identify abnormal from normal chicken carcasses 
based on the liver spectral data.   

              



    Microbial spoilage 

    Ellis  et al.  (2002)  utilized FTIR and machine learning, a combination of variable 
selection and classifi cation multivariate statistical methods, to detect microbial count 
in homogenized chicken breast meat. The microbial content was determined accu-
rately and precisely with FTIR. In an investigation similar to the beef study discussed 
earlier ( Ellis  et al. , 2004 ), homogenized chicken breast meat was exposed to air at 
room temperature for 24       h and samples analyzed every hour for the 24       h. The total 
viable count of microbials was conducted with the Lab M Blood agar base method, 
in which 50        μ L of the sample is incubated at 25°C for 48       h. 

   Amide I at 1640       cm  � 1 , amide II at 1550       cm  � 1 , and amines at 1240 and 1088       cm  � 1  
due to proteolysis were the most signifi cant peaks in the determination of the TVC 
counts. A PLS model based on the spectral data predicted with a low error of 0.15 
to 0.27 log 10 TVC units. The microbial TVC values ranged from 7      �      10 6  CFU g  � 1  
(6.85 log 10 TVC) to 2      �      10 9  CFU g  � 1  (9.31 log 10 TVC) and the pH values were 5.87 
and 6.67, respectively, initially and after 24       h. 

    Table 8.3    lists some infrared spectroscopic applications for chicken meat and 
chicken products.   

    Miscellaneous applications 

    Bone adulteration of meat 

   Adulteration of meat with bone can affect fat, protein, and moisture measure-
ments but can be corrected.  Crane and Duganzich (1986)  emulsifi ed meat samples 
with alkaline reagents. Fat, protein, moisture, and carbohydrate content were measured 
with an NIR spectrometer (Super Scan type 10600, Foss, Hillerod, Denmark). 
Carbohydrate content was most affected by the presence of bone in meat and this 
was confi rmed with additional studies with added tricalcium phosphate (Ca 3 (PO 4 ) 2 ), 
which is similar to hydroxylapatite (Ca 5 (PO 4 ) 3 (OH)), a major bone constituent. Fat, 
protein, and water data had to be corrected by a multiplying factor of 0.96, 1.05, 
and 0.97, respectively, when 3.6% of the tricalcium phosphate, which is similar to 
the phosphate amount present in the intact bone-in-meat carcass, was added to boneless 
meat. This study could be further extended to detect and measure the bone content 
in meat and corrected for the measurement in fat, protein, and water content online, 
i.e. without requiring chemical extraction prior to the NIR measurements.  

    Dimensions of the NIR fi ber-optic refl ectance probe 

    Shackelford  et al.  (2004)  found that the size of the probe affects repeatability of 
the data when 35-mm and 3-mm-diameter probes were utilized for lamb longis-
simus muscle analysis. Spectral data were collected with Model A108310 LabSpec 
Pro portable spectrophotometer (Analytical Spectral Devices, Inc.; Boulder, CO, 
USA) in the range of 450–2500       nm range. The 35-mm probe had a greater precision 
( � 0.88) between 660 and 1326       nm than the 3-mm probe ( � 0.55). This could be due 
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Table 8.3 Near- and mid-infrared spectroscopic utilization on chicken and chicken products

Instrumental method Quality attribute Reference

FTIR/Machine learning Microbial spoilage; total viable counts Ellis et al., 2002
FTIR/Microscope Myowater and protein secondary structure 

 changes
Wu et al., 2007

Visible/NIR Moisture, fat and protein in breast and
 thigh muscle

Chen and Massie, 1993

IR Lard content in meat and meat products Kamal et al., 1988
Vis/NIR Color change in cooked chicken muscles Swatland, 1983
Vis/NIR Identifi cation of minced and intact broiler

 meat from non-broiler meat
Ding et al., 1999

Vis/NIR 2D correlation 
 spectroscopy

Monitor thawing frozen chickens Liu and Chen, 2001

NIR refl ectance Fat content in broiler chickens based on 
 freeze-dried breast muscle

Abeni and Bergoglio, 2001

Vis/NIR Previous thermal treatments on patties Chen and Marks, 1997
NIR Chill storage effects on breast meat Lyon et al., 2001
NIR refl ectance Tenderness of pectoralis major or breast 

 muscle
Meullenet et al., 2004

Vis/NIR Monitoring chicken carcass in storage Chen et al., 1996
Vis/NIR refl ectance Chicken carcass inspection system Chen et al., 2000
Vis/NIR 2D spectroscopy Monitor thermal treatments of chicken Liu et al., 2000
Vis/NIR 2D spectroscopy Monitor frozen and chilled storage of

 chicken
Liu et al., 2004a

Vis/NIR pH, color, shear force, tough and 
 tender classifi cation of cooked and raw 
 muscles

Liu et al., 2004b

NIR Authentication Fumière et al., 2000
Vis/NIR refl ectance Moisture, fat and protein in breast and

 thigh muscle
Cozzolino et al., 1996

Vis/NIR 2D spectroscopy Monitor meat quality in cold storage Liu and Chen, 2000
NIR/Chemometrics Classifi cation of meat based on 

 tenderness
Naes and Hildrum, 1997

NIR/NIT Protein, fat, and water in plastic-wrapped 
 homogenized meat

Isaksson et al., 1992

Vis/NIR Fecal contamination on chicken skins Liu et al., 2003b
NIR Moisture, fat, protein, identifi cation of 

 carcasses fed n-3 fatty acids enriched diet 
 over normal diet

Berzaghi et al., 2005

Vis/NIR Cooking loss, instrumental tenderness 
 yield force, yield energy of cooked chicken 
 patties

Chen and Marks, 1998

NIR, near-infrared; NIT, near-infrared transmittance; FTIR, Fourier transform infrared spectroscopy.

to the larger surface area analyzed with the 35-mm diameter probe. The repeatability 
was low, with both probes in the 1326–2500       nm spectral region but the 35-mm probe 
provided better precision in the short-wave NIR region than the 3-mm probe.  

    FTIR-photoacoustic spectroscopy 

   Fat, protein, and moisture content in beef and pork were analyzed with a novel FTIR-
photoacoustic spectroscopy ( Hong and Irudayaraj, 2001 ). In this spectroscopic technique, 

              



a sample is exposed to IR radiation and the sound waves generated by the heating due 
to molecular IR absorption are measured as well as subsequent temperature fl uctuations 
and pressure oscillations in a helium-sealed chamber. The sound waves are recorded 
with a sensitive microphone and then converted to an electrical signal. In addition, this 
technique can be used to analyze depth profi les between 7 and 64        μ m, which is a sub-
surface analysis only. FTIR-photoacoustic spectroscopy was a better technique than the 
ATR method in high moisture containing meat samples. The technique may not have 
practical online applications, due to its complicated instrumentation. 

    Table 8.4    lists some IR spectroscopic applications for miscellaneous products.   
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Table 8.4 Near- and mid-infrared spectroscopy to determine miscellaneous meat quality

Instrumental method Quality attribute Reference

FTIR Phospholipid content Villé et al., 1995
FTIR Species identifi cation in raw

 homogenized meats
Downey et al., 2000

NIR Lamb sensory characteristics Andrés et al., 2007
FTIR Meat water-holding capacity Pedersen et al., 2003
MIR spectroscopy/Transmission Fat and protein in prepared milk 

 like meat emulsion
Mills et al., 1984

NIR refl ectance Chemical composition of freeze-dried 
 ostrich meat

Viljoen et al., 2005

NIR refl ectance NIR refl ectance probe dimensions Shackelford et al., 2005
NIR/Online Protein, fat, water Tøgersen et al., 1999
NIR Sensory quality of meat sausages Ellekjaer et al., 1994
NIR Collagen solubility and concentration 

 measurement
Young et al., 1996

NIR refl ectance Fatty acid content in rabbit meat Pla et al., 2007
NIR refl ectance Discrimination between conventional 

 and organic rabbit production 
 systems

Pla et al., 2007

NIR Tenderness, post-rigor and water- 
 holding status

McGlone et al., 2005

NIR Intramuscular fat content Prevolnik et al., 2005
Vis/NIR Species identifi cation in raw meat Arnalds et al., 2004
NIR refl ectance Species identifi cation in raw 

 homogenized meats
McElhinney et al., 1999a

NIR Sample heterogeneity Martínez et al., 1998
NIR refl ectance/Dry extract Meat speciation Thyholt et al., 1997
NIR Fat quantization Afseth et al., 2005
NIR Heme and non-heme iron content 

 measurement in raw meat
Hong and Yasumoto, 1996

NIR Multivariate scatter correction, inverse 
 kubelka-munk transformation in high 
 prediction of fat content

Geladi et al., 1985

NIR Total lipid content, oleic and 
 palmitic acids, dry matter or moisture
 in goose fatty livers

Molette et al., 2001

Vis/NIR Meat tenderness Aignel et al., 2003
NIR/NIT Meat composition and grading Marno, 2007

NIR, near-infrared; MIR, mid-infrared; NIT, near-infrared transmittance; FTIR, Fourier transform infrared 
spectroscopy.
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    Conclusions 

   Meat proximate analysis and quality can be readily measured with IR spectroscopy. 
However the accuracy and precision of quality attributes, such as tenderness and pH, 
could be improved. Proximate composition and quality attributes of unconventional 
meats such as kangaroo, camel, bison, and game fowls could be measured with mini-
mal modifi cations to the existing techniques. There are opportunities and a need to 
develop rapid online IR techniques for microbial spoilage analysis, total microbial 
count measurement, and the identifi cation of specifi c microbial species.  
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    Introduction 

   Infrared (IR) spectroscopy is the subset of spectroscopy that deals with the infra-
red region of the electromagnetic (EM) spectrum. IR spectroscopy covers a range 
of techniques, the most common being a form of absorption spectroscopy. As with 
all spectroscopic techniques, it can be used to identify compounds or investigate the 
composition of samples. The IR portion of the EM spectrum is divided into three 
regions; the near-, mid-, and far-infrared, named after their relation to the visible 
spectrum. The far-infrared, lying adjacent to the microwave region, has a low energy 
and is used for rotational spectroscopy. The mid-infrared is used to study fundamen-
tal vibrations and the associated rotational–vibrational structure. The higher energy 
near-infrared can excite overtone or harmonic vibrations. The names and classi-
fi cations of these subregions are merely conventions, being neither strict divisions 
nor based on exact molecular or electromagnetic properties. In the seafood indus-
try, near-infrared (NIR) spectroscopy is the widely used region for quantitative and 
qualitative analysis of fi sh and related products. 

   NIR spectroscopy has become established during the last decade as one of the 
most important tools of modern industrial analysis, especially for online and inline 
analysis. The reasons for this are that it yields essentially real-time results, is 
reagent-less and non-destructive, and can yield information about model compliance. 

  9 
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NIR light is defi ned as the wavelength region from 750 to 2500       nm, lying between 
the visible and IR regions. The use of NIR spectroscopy has allowed the develop-
ment of a non-destructive, rapid, and sensitive method for the analysis of organic 
materials with little or no sample preparation. The method is based on the simple 
fact that organic molecules absorb light. 

   The absorption bands are the result of  overtones  or combinations of overtones 
originating in the fundamental MIR region of the spectrum. Overtones are especially 
common due to hydrogenic stretching vibrations or combinations involving stretch-
ing and bending modes of C–H, O–H, N–H or C     �     O groups ( Osborne  et al. , 1993 ; 
 Williams and Norris, 2001 ). As a result, NIR spectra are complex, and any peak of 
interest is typically overlapped by one or more interfering peaks. In order to han-
dle this complexity, multivariate data analysis is used to calibrate the spectra and to 
rapidly identify and test quality or quantify constituent levels in samples. 

   In the ultraviolet (UV) and the visible (Vis) spectral regions electronic transitions 
are induced; in the IR spectral region molecules can be excited by light absorption 
of distinct wavelengths to rotate and vibrate (normal modes) as well as to form com-
bination and higher harmonic (overtone) vibrations. In the NIR region combination 
vibrations of different basic oscillations or higher harmonics with double, triple, 
etc. the frequency of fundamental oscillations are observed. The overtone spectra 
obtained are typical of a molecule or a characteristic molecular group. Therefore, 
by suitable selection of the wavelength of the irradiating light traces of gases in 
mixtures can be selectively detected. 

   Another rapid method, called Fourier transform infrared (FTIR) spectros-
copy, allows rapid analysis like NIR spectroscopy, but the wavelengths are longer. 
Fundamental chemical bonding can be more specifi cally determined in NIR spectro-
scopic analysis. In some instruments NIR spectroscopy and FTIR can be perfomed 
together using the same instrument. Also the development of several chemomet-
ric software programs have made it easy to analyze correctly complex data. The 
Unscrambler, Vision, NSAS (Near-Infrared Spectral Analysis Software), and MatLab 
are the major chemometric software packages for data analysis of NIR spectra. 

   Recently, NIR spectroscopy has become a well-accepted method for the analysis 
of the chemical constituents of food ( Osborne  et al. , 1993 ;  Kays  et al. , 2005 ). NIR 
spectroscopy has also gained a foothold as a quantitative method in food analysis, 
although comparatively little is known concerning its applicability to seafood. In this 
chapter we provide a summary of studies on seafood quality evaluation using NIR 
spectroscopy. Future prospects for this method are also discussed.  

    Quantitative analysis 

    Chemical composition of fi sh 

   Applications of NIR spectroscopy in the seafood industry are focused mainly on 
quantitative analysis rather than qualitative aspects. Determinations of the chemical 
composition of fi sh or fi shery products have been reported by various researchers, 
the evaluation of fat content being one of the prime targets. Chemical composition 

              



and freshness are key parameters of fi sh quality as well as raw materials for feed for 
aquaculture. However, the fat content is the most important subject in this regard. 
Quality assurance programs require methods for the simple and rapid analysis of raw 
materials and fi nal products. Therefore, evaluation of the fat content by non-destructive 
analysis is required for quick estimation and avoidance of damage in commercial 
fi sh. Most commercially important fi sh have already been examined by NIR spec-
troscopy and the results are promising, therefore NIR spectroscopy has become a 
common technique in the seafood industry. Atlantic salmon, for example, is one of 
the most commercially important fi sh studied extensively by NIR spectroscopy for 
chemical composition analysis ( Isaksson  et al. , 1995 ). 

   NIR transmittance spectroscopy was used to determine the average fat content in 
farmed Atlantic salmon fi llets with skin and scales by  Downey (1996)  and  Wold  et 
al.  (1996) , who used a wide range of fi sh where the fat content was 5.7–17.6% and 
weight range 1.0–5.4       kg. A partial least squares (PLS) regression resulted in a multi-
variate prediction correlation of 0.97 and a root mean square error of cross-validation 
(RMSECV) of 0.75%. Results showed that NIR transmittance is suited to the deter-
mination of the fat content non-destructively in whole salmon fi llets with skin and 
scales.  Wold and Isaksson (1997)  evaluated the average crude fat and moisture con-
tent in the muscle of whole Atlantic salmon ( Salmo salar ) rather then fi llets. Using the 
same PLS regression technique for the 49 whole salmon resulted in an RMSECV of 
1.12% fat ( R       �      0.87) and 0.98% moisture ( R       �      0.86). Several studies have revealed 
the analytical accuracy of the chemical composition for Atlantic salmon using refl ect-
ance, interactance, or transfl ectance NIR spectroscopy ( Sollid and Solberg, 1992 ; 
 Huang  et al. , 2002 ). Determination of fat in live Atlantic salmon using non-invasive 
NIR spectroscopy is one of the biggest successes in this fi eld ( Solberg  et al. , 2003 ). 

   In contrast, several Asian scientists have evaluated NIR spectroscopy as a rapid 
technique to determine the chemical composition of various fi sh species (especially 
the fat content) other than salmon.          Shimamoto  et al.  (2003a, 2003b, 2004)  reported 
a series of studies of fat content determination in fresh and frozen skipjack tuna, 
glazed and thawed bigeye tuna, and mackerel using both standard and portable NIR 
spectrophotometers. Accurate data analysis was obtained for all types of fi sh exam-
ined using both NIR instruments. However, almost no attempts have been made to 
determine the fat content of small pelagic fi shes which form a large part of fi shery 
products and also are an important part of the by-catch or underutilized fi sh ( Peng 
 et al. , 2004 ;  Christos  et al. , 2005 ). It should be noted that sardine, a pelagic fi sh, is 
an important fi sh species as a feed material in aquaculture as well as being an impor-
tant human food source. In modern tuna fi sh culture the use of sardine as a food is 
common practise. Various types of canned food, sausages, fi shcakes, and other fi sh 
meat gel products are also prepared using sardine species. 

   In our study ( Uddin  et al. , 2007 ), a surface interactance fi ber-optic accessory 
with a 9-mm-diameter probe was designed to analyze the chemical constituents 
of small pelagic fi sh species over a wide range of sizes and weights. One hundred 
and sixty fresh sardine ( Sardinops melanostictus ) samples were used in this study 
and the fat content of the samples was found to range between 2.64 and 25.52%. 
In this study ( Uddin  et al. , 2007 ), NIR spectra of the intact sardine samples were 
collected in transmittance mode from 400 to 1100       nm with a scanning monochromator 
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NIRSystems 6500 at 2-nm spectral increments equipped with a surface interactance 
fi ber-optic accessory. All of the subsequent operations were carried out at 5°C. 
Predictive equations for fat were developed by PLS regression with leave-one-out 
cross-validation to avoid overfi tting of the model. 

   Two different methods of spectral treatment were considered: multiplicative scat-
ter correction (MSC) ( Geladi  et al. , 1985 ) combined with smoothing and Savitzky–
Golay ( Savitzky and Golay, 1964 ) second derivative with second-order polynomials 
or smoothing with the derivative only.  Figure 9.1    shows the original sardine spectra 
for all samples, while  Figure 9.2    shows the corresponding second derivative spectra. 
The original spectra are rather featureless, possess signifi cant baseline shifts, and the 
absorbance values show a decreasing trend as a function of increasing wavelength. 
Some of the spectra have a less steep run-off, being almost parallel with the wave-
length axis. There is only one weak peak centered in the NIR region around 964       nm, 
which is the absorption band of water ( Williams, 1996 ;  Williams and Norris, 2001 ; 
           Uddin  et al. , 2005b, 2006a, 2007 ;  Okazaki and Uddin, 2006a ). To resolve these 
spectra and cancel out the baseline shifts second derivatives were applied. By this 
treatment, the baseline shift was eliminated; however, spectra are still spaced far apart. 
The reason for this is a phenomenon called scattering, which alters the effective path-
length signifi cantly, thereby increasing the sample absorbance. In general, the spectra 
show a high level of noise despite the smoothing applied, but there are two peaks that 
became clearly visible, the fi rst one at 926       nm and the second one at 964       nm, which 
are absorption bands for fat and water, respectively ( Williams and Norris, 2001 ). 

   To reduce scattering, MSC treatment was applied to the spectra as can be seen in 
 Figure 9.3   . Scattering was removed to some extent and the water peak, now appear-
ing at 968       nm, has become more intensive, whereas the 926       nm peak for fat became 
smaller. 
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 Figure 9.1          Original spectra of intact sardine samples.    
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 Figure 9.3          Multiplicative scatter correction-treated second derivative spectra of intact sardine samples.    

   Regression results for fat with and without MSC treatment are shown in  Table 9.1    
and the corresponding scatter plots are displayed in        Figures 9.4 and 9.5     . Both models 
show relatively good performances with regression coeffi cients higher than 0.9 and 
errors less than 1% on a fresh weight basis. Therefore, a valid case of non-destructive 
fat determination of intact sardines has been demonstrated with fi ber optics that 
makes non-invasive on-site measurements possible. This rapid technique could allow 
fat content measurement of small pelagic fi sh, enabling several applications. 
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 Table 9.1          Regression results for fat with and without multiplicative scatter correction treatment  

   Treatment  Spectral range (nm)  N  F  R  R 2   SEC (g/100       g)  RMSECV 

   sm      �       d  2       800–1000  160  4  0.92  0.85  0.74  0.82 
MSC      �      sm      �       d  2  800–1100  160  5  0.92  0.85  0.76  0.96 

  MSC, multiplicative scatter correction; sm, smoothing;  d  2 , second derivative;  N , sample number; 
 F , number of factors in the model;  R , correlation coeffi cient;  R  2 , coeffi cient of determination; 
SEC, standard error of calibration; RMSECV, root mean square error of cross-validation.  

   A rapid method is also required for determination of the iodine value (IV) and 
saponifi cation value (SV) of fi sh oils in the food industry and recently  Endo  et al.  
(2005)  minimized this requirement by using NIR spectroscopy. In this technique, a 
PLS regression calibration model is developed based on a spectral range due to the 
C–H bond. The model is validated by comparing the IV and SV of a series of fi sh 
oils predicted by the PLS model with the values obtained by titration methods ( Endo  
et al. , 2005 ) of the Japan Oil Chemists ’  Society. Predicted IV and SV were completely 
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derivative as spectral transformation.    

              



consistent with chemically determined IV and SV. Moreover, the NIR technique 
showed higher accuracy and reproducibility than the titration method. According to 
their conclusions, the NIR technique is suitable for IV and SV determination of fi sh 
oils as well as vegetable oils and can be carried out within 2       min.  

    Surimi and minced fi sh 

    “ Surimi ”  is an intermediate fi sh product, used primarily for the preparation of the 
traditional gel food called  “ Kamaboko ”  and more recently used for the production 
of seafood analogs (fabricated food). Surimi is gaining more prominence worldwide, 
because of its high protein quality, low fat content, and convenience for consumers. 
Surimi gelation is associated with temperature-induced structural changes of the 
protein; however, water which comprises about 73–80% of surimi plays a vital 
role in gel formation ( Luo  et al. , 2001 ). Recently  Uddin  et al.  (2006b)  employed 
NIR spectroscopy (400–1100       nm) directly on surimi using a surface interactance 
fi ber-optic accessory to determine the water and protein contents. This was a model 
experiment where imitated surimi samples were used. Different types (percentage 
of water and protein content) of surimi were prepared by the addition of appropri-
ate amount of water. The reason why NIR spectroscopy is well suited for assess-
ing the presence of water or protein is due to the specifi city of the O–H and N–H 
or C–H bondings. Predictive equations were developed using PLS regression with 
excellent predictions for protein and water. Regression coeffi cients were higher than 
0.98, errors were small and RPD (ratio of the standard deviation in the reference 
data for the validation set to the RMSECV) value for protein was well over 8 and 
that for water was 7.6, which can therefore be used for analytical purposes. In this 
study imitated thawed surimi samples were used for the water and protein analysis, 
however, surimi blocks were stored in a frozen state and there is a need to determine 
those constituents rapidly in commercial frozen surimi. From this point of view, 
we (Okazaki and Uddin, 2006b) performed a complete study on frozen and thawed 
blocks of surimi. In this study 52 blocks of commercial SA (fi nest grade surimi) 
grade walleye pollack ( Theragra chalcogramma ) frozen surimi from different lots 
were collected from Maruha Co., Tokyo, Japan, and upon arrival at the laboratory 
were stored at  � 20°C until analysis. Water and crude protein were determined in 
triplicate for each sample using accepted reference methods. Chemical values were 
averaged, resulting in 52 values for the surimi samples ( Table 9.2   ). 

   Compared with previous reports ( Uddin  et al. , 2006b ), where imitated surimi 
samples were used, the main difference is that the standard deviation of crude protein 

 Table 9.2          Statistical characteristics for water and crude protein reference data of the surimi samples  

   Constituent  N  Max  Min  Mean  SD  Units 

   Crude protein  52  17.57  13.71  15.87  0.85  g/100       g 
   Water  52  77.19  73.17  74.82  0.66  g/100       g 

   N , number of samples; SD, standard deviation.  
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and water in this sample set is much smaller. The reason for this is because of the 
manufacturing process, where both values are controlled to be within specifi ed lim-
its. Samples were measured according to the procedure described by  Uddin  et al.  
(2006b) . Before scanning each sample, a ceramic tile was measured as a reference. 
Care was taken to exclude stray light and to remove excess water from the surface 
of the thawed samples. Two spectra were recorded for each sample and were aver-
aged for subsequent analysis. Thus 52 spectra were available for calculations. There 
were two sample sets for spectral measurements; one for frozen and one for thawed 
samples. Spectra of the frozen samples were recorded with samples frozen, whereas 
thawed samples were measured only after the appropriate thawing time. Spectra were 
stored as optical density units (log 1/ R ), where  R  represents the percent refl ected 
radiation. Operation of the spectrometer and collection of spectra were performed 
using the  “ VISION ”  software package (NIRSystems, MD, USA). Predictive equations 
for water and crude protein were developed by PLS regression with leave-one-out 
cross-validation to avoid overfi tting of the model. Application of representative and 
separate validation sample sets was not possible due to the relatively small number 
of samples and large spectral variation. Two different methods of spectral treat-
ments were considered: MSC ( Geladi  et al. , 1985 ) combined with Savitzky–Golay 
( Savitzky and Golay, 1964 ) fi rst or second derivative with second-order polynomials 
or with the derivative only. For frozen samples the MSC treatment and a derivative 
(second order) window of 10 left and 10 right points (20–20       nm) from the center 
point of the derivative window produced the clearest results. In the case of thawed 
samples, only the size of the derivative window was different, which was set at 
15 left and 15 right side points (30–30       nm) from the center point of the derivative 
window. 

   As a fi rst step, the 400       nm to 698       nm region was cut off as spectra in this wave-
length region displayed noisy features, which reduced calibration accuracy. This 
smaller region was then further optimized for frozen thawed samples and water and 
crude protein calibrations made separately to retain the most relevant information 
for these constituents. Calibration statistics included the standard error of calibration 
(SEC), correlation coeffi cient ( R ), coeffi cient of determination ( R  2 ) and RMSECV. 
Optimum calibrations were selected by minimizing RMSECV. 

   The absorbance values of log 1/ R  spectra in  Figure 9.6a    spread from 0.17 OD to 
0.37 OD value at 700       nm. This difference is maintained along the entire spectral 
range up to 1098       nm. Some spectra deviate from being parallel with the majority, 
especially below 850       nm. Two regions of interest can be distinguished, the fi rst one 
being around 912       nm and the second one around 1026       nm. The fi rst of these bands 
is associated with protein absorptions and can be assigned to C–H stretching third 
overtone. The second band, however, is a bit more ambiguous to assign, and will be 
discussed in more detail later. After MSC treatment and second derivative transfor-
mation, the set of spectra shown in  Figure 9.7a    was obtained, which possesses more 
features. They are, in order of increasing wavelength as follows: 760       nm absorption 
of water due to O–H stretching third overtone ( Osborne  et al. , 1993 ), around 798       nm 
a weak absorption band which will be assigned later (see below), and around 904       nm 
again protein absorption becomes apparent, with somewhat shifted wavelength owing 

              



to properties of the derivative treatment. The band at 1026       nm features strongly just 
like in the original spectra. Also, there are four spectra, which show a different pat-
tern around the 904       nm and 1024       nm bands. This difference is attributable to the 
MSC treatment, which changed the pattern of the above four spectra, resulting in 
higher values around the absorption bands stated above, which in turn became more 
negative after the second derivative transformation. 

   To investigate the origin of the 1024       nm band, spectra of freeze-dried surimi 
and surimi with 40% and 75% water content were recorded. If the second deriva-
tive absorption spectra of freeze-dried surimi (about 8% water content) and those 
containing 40% and 75% water ( Figure 9.8   ) can be examined, respectively, some 
information can then be revealed about the origin of the 1024       nm band. All spectra 
were measured in the frozen state, and several important areas were distinguished. 
The fi rst one, in increasing order of wavelengths, is a weak band near 800       nm. This 
band has an increasing intensity as the water content in the samples increases. This is 
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 Figure 9.6          Absorbance spectra of all surimi samples (a) in frozen and (b) in thawed states.    
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followed by the 906–912       nm band intervals. This band has already been assigned to 
protein previously, however, it should be mentioned that in freeze-dried surimi, which 
has more than a 6% carbohydrate content, the contribution to this band becomes 
more pronounced, since CH vibrations are abundant in carbohydrates. As the water 
content increases, the intensity of this band decreases and the center wavelength is 
shifted to smaller wavelengths. The most intensive band is seen around 1024       nm. In 
the case of freeze-dried surimi, there is a small, fl at peak, whose intensity becomes 
bigger with the higher water content. Therefore, this band is due to absorption by 
frozen water. 

   In thawed surimi spectra ( Figure 9.6b ) some major differences are displayed com-
pared with frozen ones. First, absorption values are much higher and the spread of 
spectra at the beginning and at the end of the spectral region is considerably greater, 
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 Figure 9.7          Second derivative spectra after multiplicative scatter correction treatment of all surimi samples 
(a) in frozen and (b) in thawed states.    

              



being 0.38 OD and 0.50 OD value, respectively. This phenomenon can be explained 
by the fact that in thawed samples the penetration depth of the light beam is deeper, 
so more light is absorbed, which results in increased OD values. This is in contrast to 
the frozen sample spectra, where the icy surface refl ects more light. In addition, the 
higher difference and the increase of difference with wavelength indicate higher levels 
of scattering. Unlike frozen sample spectra, the major informative region is centered 
on the water band at approximately 982       nm. The spectra are shown in  Figure 9.7b  
after scattering treatment and second derivative transformation. In these spectra, 
information related to protein is not visible at all. Only water shows two weaker 
and one stronger absorption bands near 752       nm, 846       nm, and 970       nm, respectively 
( Golic  et al. , 2003 ). The fi rst of these wavelengths appears at a smaller wavelength 
compared with frozen state surimi. 

   Regression results for crude protein and water in frozen and thawed surimi sam-
ples are summarized in  Table 9.3   . All results in this table were achieved using spectra 
after MSC and the second derivative treatment described previously. The number of 
factors in the models varies greatly depending on the constituents and the state 
of the surimi. Correlation coeffi cients are in the range of 0.90 to 0.98, indicating 
good linear relationships between spectra and chemical data, as indicated in        Figures 9.9 
and 9.10     . Coeffi cients of determination values are more different. Since they indicate 
the variance explained by the model, they are a good measure of the goodness of the 
calibration. As can be seen, calibration with the frozen samples produced much 
higher values than the thawed samples, and protein calibrations explain more vari-
ance than calibrations for water. This means that these frozen models describe the 
relationship better, therefore, are more suitable for determination of protein and 
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water in commercial surimi samples. The performance advantage is clear from the 
SEC, RMSECV, and RPD values as well, the fi rst two being smaller and the last 
one being higher for the frozen samples. Another important point is the difference 
between the calibration and the validation error. When frozen state surimi was measured 
the differences between the calibration and the validation errors were smaller. RPD 
values below 4 are generally considered as not so good, however, it is important to 
remark that this particular fi gure is heavily dependent on the standard deviation of 
the chemical data. As mentioned previously, the standard deviation is much smaller 
in these data sets compared to the previous work ( Uddin  et al. , 2006b ), in which 
the standard deviation for protein and water was 1.35% and 2.90%, respectively. 
Moreover, the RMSECV for water was almost the same with 0.38. The RMSECV 
value in this experiment for water in the frozen state was 0.22, which is consider-
ably smaller. With regards to this low RMSECV value, the results in this work are 
promising. The reason for the higher errors in thawed state surimi for water cali-
bration and validation, besides the higher range, might be that the distribution of 
water across the measured sample is not uniform, resulting in local highs and lows 
randomly occurring in each sample. This could affect the spectra, which implies that 

 Table 9.3          Regression statistics for protein and water in frozen and thawed state surimi  

   Constituent
 

 State
 

 Spectral 
range (nm) 

 N  F  R  R 2   SEC 
(g/100       g) 

 RMSECV 
(g/100       g) 

 RPD 

   Crude protein  FR  750–1050  52  9  0.98  0.96  0.16  0.22  3.50 
     TH  800–1098  52  4  0.92  0.85  0.30  0.37  2.16 
   Water  FR  700–1000  52  6  0.96  0.92  0.18  0.22  3.09 
       TH  750–1050  52  7  0.90  0.81  0.28  0.37  2.16 

  FR, frozen; TH, thawed;  N , number of samples;  R , correlation coeffi cient;  R  2 , coeffi cient of 
determination; SEC, standard error of calibration; RMSECV, root mean square error of cross-validation; 
RPD, ratio of standard deviation in the chemical data to RMSECV.  
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 Figure 9.9          Scatter plot for crude protein in frozen state surimi in the validation phase.    

              



errors will increase. On the other hand, frozen samples are not affected by this 
problem, if good manufacturing processes are applied and fast freezing occurs. 
In the case of protein, which forms the matrix-like structure where water molecules 
are entrapped, the distribution is more even. Applicability of NIR spectroscopy to 
the determination of water and protein content in commercial surimi samples has 
been demonstrated. Results suggest that frozen samples are better media to use for 
these determinations. 

   NIR spectroscopy was also applied to determine the chemical composition in 
minced raw fi sh samples used to make fi shmeal ( Cozzolino  et al. , 2002 ).  Kaneko 
and Lawler (2006)  investigated the utility of NIR spectroscopy as a means to 
quantify the diet of seals via analysis of feces. Five of the six calibrations could 
accurately and precisely quantify how much of a given dietary component the seal had 
eaten the previous day from an NIR scan of the feces. NIR spectroscopy is therefore 
potentially a viable way to quantify seal diets.  Kaneko and Lawler (2006)  discussed the 
logistical requirements for the development of calibration equations for application 
to a fi eld study. The adoption of NIR spectroscopy may confer signifi cant benefi ts for 
such studies. NIR spectroscopy is also successfully employed to determine moisture 
and sodium chloride in cured and cold smoked Atlantic salmon (       Huang  et al. , 2002, 
2003 ). NIR refl ectance spectroscopy in the spectral range of 1000–2500       nm, was 
also measured directly for brine from barrel-salted herring, to investigate the poten-
tial of NIR as a rapid method to determine the protein content. A PLS regression 
model between selected regions of the NIR spectra and the protein content yielded 
a correlation coeffi cient of 0.93 and a prediction error of 0.25       g/100       g ( Svensson 
 et al. , 2004 ). The fi ndings may be used as an indicator for the ripening quality of 
barrel-salted herring. The oxidative and hydrolytic degradation of lipids in fi sh 
oil was monitored using PLS regression and NIR refl ectance spectroscopy. Fish oil 
hydrolytic degradation of lipids which seriously affects oil use and storage under 
industrial conditions can be successfully monitored using PLS regression and NIR 
spectroscopy in the fi shmeal industry ( Cozzolino  et al. , 2005 ).   
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 Figure 9.10          Scatter plot for water in frozen state surimi in the validation phase.    
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    Qualitative analysis 

    Fish freshness 

   The quality of fi shery products has always been diffi cult to defi ne, and is typically 
based on the general perception of the consumer evaluating the product. With the 
increasing globalization of fi shery product sales, processors, consumers, and regu-
latory offi cials have been seeking improved methods for determining the freshness 
and quality. Quality measurements are usually defi ned by examining the microbial 
count, sensory panel scores, and chemical indicators. Although these methods all 
show some overlap, there are differences between the quality levels that each method 
indicates. Currently one of the most reliable and straightforward ways of describ-
ing freshness is a standardized sensory assessment method, i.e. the quality index 
method (QIM). The disadvantage of sensory panels is that they require highly trained 
personnel who can be expensive to train and employ. Microbial quality can show 
contamination in meat; however it is possible for meat to be spoiled or be unfi t for 
consumption with no sign of microbial activity. Sensory panel scores, while often 
repeatable when using a trained panel, are time-consuming and expensive, making 
them cost prohibitive for most food manufacturers. Sensory panels are also imprac-
tical for use on a large scale, such as at a processing plant where many lots of food 
need to be tested. Chemical analysis, which measures the chemical breakdown in a 
food product, may not correlate with sensory scores. While chemical indicators pro-
vide a good overall measurement of food quality, the chemical makeup of each food 
material is different, so it is diffi cult to establish a standard chemical indicator ( Dodd 
 et al.,  2004 ). A rapid, non-destructive method to ascertain fi sh quality would be of 
great benefi t to both the industry that is eager to provide its consumers with a fresh, 
safe product and to consumers who are increasingly looking for a reliable guarantee 
of food quality. 

   In order to evaluate new technologies that could improve quality determination of 
fi shery products, several researchers have investigated the application of NIR spec-
troscopy as a possible sensing and rapid technique ( Bechmann and Jørgensen, 1998 ; 
 Lin  et al. , 2006 ). Determination of freshness of fi sh, which is a very complex prob-
lem, is the prime concern in this regard. The freshness as storage time (two weeks) 
in ice of cod ( Gadus morhua ) and salmon ( Salmo salar ) was estimated by visible/
NIR spectroscopy ( Nilsen  et al. , 2002 ). According to this study the best-fi t model 
was found by using the visible wavelength range, giving a correlation of prediction 
value of 0.97 with an error value of 1.04 day, however, for salmon, NIR range giving 
a correlation of prediction value of 0.98 and an error value of 1.2 day. NIR spec-
troscopic measurements provided promising results for evaluation of freshness for 
thawed–chilled modifi ed atmosphere packed (MAP) cod fi llets ( Bøknæs  et al. , 2002 ). 
However, it is necessary to study for example the effect of sample preparation, sea-
son, fi shing ground and cod size together with more sophisticated pre-treatments of 
NIR spectra before the NIR method can be integrated as a method for evaluation 
of thawed–chilled MAP cod fi llets. NIR diffuse refl ectance spectroscopy was also 
evaluated as a rapid technique to assess quality parameters (water-holding capacity, 

              



concentration of total volatile nitrogen bases, dimethylamine, and formaldehyde) of 
frozen cod ( Bechmann and Jørgensen, 1998 ). A principal component analysis (PCA) 
showed that these four quality parameters were strongly correlated with each other. It 
was found that the high water content in fi sh is a major limitation in the use of NIR 
analysis for the determination of chemical quality parameters in fi sh tissue. However, 
NIR refl ectance measurements provide an acceptable determination of these four 
quality parameters. 

   The possibility of using visible and short-wavelength NIR spectroscopy to detect 
the onset of spoilage and to quantify microbial loads in rainbow trout ( Oncorhynchus 
mykiss ) was investigated by  Lin  et al.  (2006) . Spectra were acquired for the skin and 
fl esh side of intact trout fi llet portions and for minced trout muscle samples stored at 
4°C for up to 8 days or at room temperature (21°C) for 24       h. PCA and PLS regression 
chemometric models were developed to predict the onset and degree of spoilage. PCA 
results showed clear segregation between the control (day 1) and the samples held 
4 days or longer at 4°C. Clear segregation was observed for samples stored 10       h or 
longer at 21°C compared with the control (0       h), indicating that the onset of spoilage 
could be detected with this method. Quantitative PLS prediction models for micro-
bial loads were also established. This report demonstrated that NIR in combination 
with multivariate statistical methods can be used to detect and monitor the spoilage 
process in rainbow trout and quantify microbial loads rapidly and accurately.  

    Process verifi cation 

   Inadequate cooking of food products and use of improper holding times are common 
causes of food-borne disease outbreaks ( Walton and McCarthy, 1999 ;  Uddin  et al. , 
2000 ). The NIR technique has been successfully applied to investigate heat treated 
fi sh and shellfi sh ( Uddin  et al. , 2002 ). Fish-meat gels are gaining popularity in recent 
years as a good protein source, therefore, non-destructive NIR spectroscopy would be 
benefi cial to ensure proper heat treatment of fi sh-meat gels since the optimum heat 
treatment of food products is important not only for reducing the risk of infection by 
pathogens but also for improving the shelf-life, producing a palatable product, and 
maintaining the optimum food quality. To assess the heat treatment (end-point tem-
perature, EPT) of fi sh-meat gels, i.e. kamaboko, using NIR spectroscopy, kamaboko 
gels were prepared by pressing salt-ground surimi into a polyvinylidene chloride cas-
ing measuring 48       mm in circumference and approximately 100       mm in length. Both 
ends of each tube casing were tied with cotton thread and incubated at 10°C intervals 
between 30 and 90°C for 30       min in water-bath incubators then cooled immediately 
in ice-cold water and kept at 4°C overnight before NIR spectroscopic measurement. 
Thermocouples were inserted through the side edge of a separate sample into the 
geometric center and the temperature was monitored using a recorder. NIR spectra 
were collected from 1100 to 2498       nm at 2-nm intervals. Only a single spectrum 
was taken from each individual sample therefore 70 spectra were used to develop a 
calibration and the remaining 70 spectra were used for validation. Multiple linear 
regression (MLR) and PLS regression techniques were used to develop the calibration 
model and validation set. 
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   Spectral changes upon heat treatment might be related to the changes in the 
secondary structure due to the denaturation of proteins, and to changes in the state of 
water ( Ellekjaer and Isaksson, 1992 ;  Uddin  et al. , 2006a ). The second derivative 
spectra of kamaboko gels heated between 30 and 90°C showed systematic differences 
in absorbance related to the heat treatment at different wavelengths throughout the 
spectra and these differences were more evident between 1300 and 1600       nm where 
the main absorbance band of proteins occurs ( Figure 9.11   ). It is well established 
that NIR spectra are affected by sample temperature. Since protein conformations, 
protein water interactions, or their combination might depend on the variation of 
water content, the heating process could also affect the NIR refl ectance spectra of a 
heated sample. The kamaboko gels used in this study were heat-treated in a stirred-
water bath. The water content was constant before and after the heat treatment which 
allowed minimizing the differences in water contents between samples heat-treated 
at different temperatures. In MLR analysis, the wavelengths selected by a step 
forward–step reverse regression provide the calibration equations with the lowest 
SEC and highest correlation coeffi cients of calibration. It is suggested that the wave-
length region selected by MLR could be used as a good indicator for selection of 
the wavelength region in the PLS calibration ( Saranwong  et al. , 2003 ). Therefore, the 
wavelength region selected by MLR was used for PLS regression. It was found that 
the selected MLR wavelength region improved the accuracy of the PLS calibration 
( Table 9.4   ). 

    Figure 9.12    depicts scatter plots of NIR predicted end-point temperature (EPT), 
obtained by MLR and PLS calibration sets against the actual heating temperatures 
for the kamaboko gels (Uddin et al., 2005c)  . A comparison of the NIR-predicted 
EPT with actual heating temperatures showed close agreement. The MLR and PLS 
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 Figure 9.11          Second derivative magnifi ed spectra of kamaboko gels between 30 and 90°C    .

              



calibration had a similar performance for determining EPT of kamaboko gel if the 
appropriate wavelengths or wavelength region were selected. The  R  was greater than 
0.98 indicating a good model structure. The results discussed above demonstrate the 
potential of NIR-refl ectance spectroscopy for determining EPT of kamaboko gels in 
a rapid and non-invasive manner. Once perfected, this technique will have several 
advantages over other techniques in that it will take the least time for analysis and 
will not require any consumable or supporting equipment nor sample preparation. 
The most promising future use for this NIR spectroscopy application is for online 
processing control in the food industry.  

    Differentiation between fresh and frozen–thawed fi sh 

   Given the perishable nature of fi sh, extension of its shelf-life is benefi cial for normal 
trading. However, frozen fi sh usually have a much lower market price than fresh fi sh 
therefore the substitution of frozen–thawed for fresh fi sh is a signifi cant authentic-
ity issue. In practise, a considerable number of frozen fi sh are thawed in fi sh shops, 
stored on ice and sold as unfrozen fi sh without being labeled as such prior to retail. 
To differentiate fresh and frozen–thawed fi sh, various techniques have been proposed 

 Table 9.4          Calibration and validation results of partial least squares regression using whole-spectrum 
and selected region obtained by multiple linear regression  

   Regression  Wavelength region  F  R  SEC (°C)  SEP (°C)  Bias (°C) 

   PLS  1100–2500  10  0.98  2.25  2.21   � 0.31 
     1300–1600   5  0.98  1.97  2.09   � 0.17 
   MLR  1650–1580   4  0.98  2.04  2.16   � 0.11 

   F , number of factors in the model;  R , multiple correlation coeffi cient; SEC, standard error of calibration; 
SEP, bias-corrected standard error of prediction; Bias, the average of difference beteen actual value and 
NIR value; PLS, partial least squares; MLR, multiple linear regression.  
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 Figure 9.12          Near-infrared-predicted end-point temperatures (EPT) obtained by (a) multiple linear 
regression and (b) partial least squares calibration sets of kamaboko gels plotted against the actual 
heating temperatures.    
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by several researchers ( Rehbein, 1992 ;  Rehbein and Cakli, 2000 ;  Uddin  et al. , 
2005a ), however, all the methods reported are either time-consuming, destructive or 
have limitations for practical use. Therefore, the need exists for a method which is 
capable of differentiating between fresh and frozen–thawed fi sh or fi llets. Ideally, any 
such method should be non-destructive and rapid as well as reliable. 

   Dry extract spectroscopy by infrared refl ection (DESIR) of fresh and frozen–
thawed fi sh was performed on extracted meat juices then fresh and frozen–thawed 
fi sh differentiated ( Uddin and Okazaki, 2004 ). 

    Uddin  et al.  (2005b)  proposed non-destructive visible/NIR spectroscopy to 
investigate whether fi sh have been frozen–thawed. Compared with DESIR, no 
extraction is needed and no wastes are produced in Vis/NIR spectroscopy using 
a fi ber-optic probe, which would be an eco-friendly instrumental technique. In 
this study, 108 fresh red sea bream ( Pagrus major ) were transported in seawa-
ter to the National Research Institute of Fisheries Science, Yokohama, Japan. Fish 
used for this study were between 416       and 1307g and fork length between 23.2       
and 34.9       cm. Fish were divided into two equal groups and used for further evalu-
ation. For fresh and unfrozen fi sh, 54 samples were used soon after arrival while 
the second lot of 54 fi sh was kept at  � 40°C. After 30 days of frozen storage, the 
fi sh were removed and thawed overnight at 5°C then evaluated as frozen–thawed 
samples. The fi sh samples were scanned using a NIRSystems 6500 spectropho-
tometer equipped with a surface interactance fi ber-optic accessory. The fi sh were 
measured at a location just behind the dorsal fi n, midway on the epaxial part. Spectra 
were recorded in the wavelength range 400–1100       nm at 2-nm intervals. The spectra 
were stored in optical density units log(1/ T ), where  T  represents the percent of energy 
transmitted. 

   Among the total of 108 samples, 54 of them fresh and 54 of them frozen-
then-thawed, the fi sh were then divided into a modeling set and a prediction set. The 
modeling set contained 35 samples for the fresh and 35 for the frozen fi sh. Twenty-
seven of these samples were picked as each odd numbered sample in the order of 
recording, and the remaining 8 samples were selected randomly. Thus, a total of 38 
samples for both fresh and frozen fi sh (19 samples each) were allocated to the pre-
diction set. Sample spectra for both sets were treated in exactly the same way with 
second derivative or MSC, or no treatment was applied at all. 

   There are many ways to explore data structures, recognize patterns and classify 
samples according to some distance measures. In the study by  Uddin  et al.  (2005b) , 
the classifi cation methods called soft independent modeling of class analogy 
(SIMCA) as defi ned by  Wold (1976)  and linear discriminant analysis (LDA) using 
PCA scores ( McLachlan, 1992 ) were used. The former method is based on disjoint 
PCA models where for each group an independent PCA model is constructed which 
is then used to classify new, unknown samples. The latter one, in our case, uses the 
so-called scores values of PCA results as input variables to the LDA. By performing 
PCA fi rst, the number of variables is reduced and the variables become independ-
ent. By doing so, only a small fraction of the information is lost. This is important, 
since LDA requires the number of samples to be considerably higher than number of 
variables to have a statistically meaningful classifi cation. 

              



   For a classifi cation to be successful, two things are needed. First, the number of 
samples belonging to the same group should be as similar as possible and second, the 
groups should be as far away from each other as possible. The major effect of freeze–
thawing treatment involves a gross change in the total absorbance after freezing and 
thawing; this arises from changes in light scatter presumably arising from alterations 
in the physical structure of at least the surface layer of fi sh ( Uddin  et al. , 2005b ). 
In  Figure 9.13     t he PCA score plot clearly shows that the fresh (right side) and the 
frozen–thawed (left side) samples are well separated. For this model, only one factor 
was enough to separate the two groups. As it can also be seen that the frozen–thawed 
samples have a more compact structure, i.e. data points are closer to each other while 
in the fresh samples, the group is not so well defi ned (larger spread of data points). 
A similar separation was also observed in DESIR analysis of fresh and frozen–thawed 
fi sh that was performed on the sample juices ( Uddin and Okazaki, 2004 ). Using the 
results of this exploratory stage for all the spectral treatments applied, two independ-
ent PCA models (900–1098       nm wavelength range with original absorbance spectra) 
were generated with the modeling sets and then were used to build SIMCA models. 

   There are several powerful advantages of the SIMCA approach compared with 
methods such as cluster analysis. First, SIMCA is not restricted to situations in 
which the number of objects is signifi cantly larger than the number or variables as 
is invariably the case with classical statistical techniques. This is not so with the 
present bilinear methods, which are stable with respect to any signifi cant imbalance 
in the ratio of objects/variables, be it either many objects with respect to variables—
or vice versa. Because of the score-loading outer product nature of bilinear models, 
the entire data structure in a particular data matrix will be well modeled even in the 
case where one dimension of the data matrix in much smaller than the other. Another 
advantage is that all the pertinent results can be displayed graphically, allowing 
exceptional insight regarding the specifi c data structure behind the modeled patterns. 
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 Figure 9.13          Two-dimensional principal components analysis score plot of all 108 red sea bream samples. 
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   SIMCA models were applied to the prediction set and results of the prediction can 
be best visualized by plotting the sample-to-model distances for all samples as shown 
in        Figures 9.14 and 9.15     . These plots are called Coomans plots ( Uddin  et al. , 2005b ), 
which show orthogonal (transverse) distances from all new objects (samples) to two 
selected models (classes) at the same time. In  Figure 9.14 , the two groups are well 
defi ned and separated. All prediction samples are close to the group that they should 
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 Figure 9.14          Coomans plot for discrimination between fresh and frozen–thawed red sea bream. Spectra 
were submitted to SIMCA without any treatment. Circles, fresh modeling samples; squares, frozen–thawed 
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 Figure 9.15          Coomans plot for discrimination between fresh and frozen–thawed red sea bream. Spectra 
were multiplicative scatter correction treated. Circles, fresh modeling samples; squares, frozen–thawed 
modeling samples; crosses, fresh prediction samples; and triangles frozen–thawed prediction samples. 
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belong to. However, not every sample is within the membership limits for both the 
modeling and the prediction samples. As can be seen, some samples are located in 
the upper right quadrant, indicating that they are not included in the defi ned models. 
No sample is in the lower left quadrant, meaning that no sample was classifi ed to both 
groups simultaneously. The upper left and lower right quadrants defi ne samples which 
belong to a specifi c group. In  Figure 9.15 , however, where the sample spectra were 
subjected to MSC transformation, modeling and classifi cation seem much less clear. 

   The two groups are very close; in fact, they almost overlap even at the modeling 
stage. This means that the MSC transformation removed information (i.e. scatter-
ing) on which the previous model is based, therefore models are not that far apart. 
However, the units in  Figure 9.15  are by one to two orders of magnitude smaller 
than those of  Figure 9.14 , which explains why samples of the two groups are closer 
and more scattered. The sample distance, which is by an order of magnitude smaller 
compared to the previous model, between groups is important in terms of reliability 
or robustness of the model. 

   This does not necessarily mean that the classifi cation accuracy is worse, as indi-
cated in  Table 9.5   , where results are summarized for models with original absorb-
ance and MSC-transformed spectra. The same proportions of samples to none or to 
both groups are classifi ed correctly, meaning that the classifi cation accuracy is the 
same for both models; however, the model using original absorbance spectra has a 
higher reliability. This is also an important model feature, since the model is more 
stable against random errors or interferences from any source. 

   With regard to LDA, the results are much more clear-cut as seen in  Table 9.6   . 
To perform modeling and classifi cation in the same wavelength range (900–1098       nm), 
spectral transformation and prediction samples were used for LDA analysis as well. It 
is clear from Table 9.6 that the model using the original absorbance spectra achieved 
much better classifi cation accuracy (100%) for the prediction samples, but the results 
obtained using the MSC-treated spectra are considerably worse, indicating again that 

 Table 9.5          Discrimination results between fresh and frozen–thawed prediction for red sea bream 
samples using the SIMCA method  

   Spectral 
transformation 

 Kind of 
sample 

 Classifi ed 
correctly a  

 Classifi ed 
to none b  

 Classifi ed 
to both c  

 No. of PCs d

  

   None  Fresh  63  37  0  1 
     Frozen  84  16  0  1 
     Totale  73  27  0  – 
   MSC  Fresh  63  37  0  1 
     Frozen  84  16  0  3 
     Total e   73  27  0  – 

  MSC, multiplicative scatter correction.  
  a  Proportion (%) of samples which were classifi ed to the correct model at the 5% signifi cance level.  
  b  Proportion of samples which were classifi ed to none of the models at the 5% signifi cance level.  
  c  Proportion of samples which were classifi ed to both models at the 5% signifi cance level.  
  d  Number of PCs which were used for making class model.  
  e  Proportion of fresh and frozen samples combined.  
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scattering is the information that makes classifi cation work. For fresh fi sh, as the cel-
lular structure is intact when NIR light enters the fresh fi sh, cells not only absorb the 
light but change its direction until the light reaches the next cell. This process may 
continue until all light is absorbed or until the light emerges at the other side of the 
sample. This multiple change in the direction of light is called scattering, which 
increases the distance that the light travels from the entry point to the exit point of 
the sample. On the other hand, when freezing and thawing is done, the cell membrane 
may be damaged, causing the leakage of the intracellular contents into the extracel-
lular space. Thus, there is a much smaller number of cells that can scatter light as it 
travels through the sample, reducing the distance that the light has to cover. 

   It is interesting to note that frozen–thawed samples were slightly better classifi ed 
than fresh ones, but as the number of samples is limited the drawing of conclusions 
is as yet premature. This method maximizes the ratio of between-class variance to 
the within-class variance in any particular data set, thereby guaranteeing maxi-
mal separability. It is possible to achieve better accuracy and reliability by using a 
custom-made fi ber-optic probe or improved sample presentation. Nevertheless, the 
results are promising that a rapid measurement method can be developed to detect 
practises such as the selling of frozen–thawed fi sh as fresh fi sh.   

    Conclusions 

   Although variable in results, studies dealing with the predicting ability of NIR spec-
troscopy to determine sample chemical properties show good potential to replace 
analytical procedures, which can be time-consuming, expensive and sometimes 
hazardous to operator health or the environment. NIR technology incorporates all 
the benefi ts brought by the evolution of related fi elds such as chemometrics, new 
materials for optical components, new sensors and sensor arrays, microcomputers 
and microelectronics. The development in the technology for providing better infor-
mation on raw materials, manufacturing parameters and their impact on fi nished 

 Table 9.6          Discrimination results between fresh and frozen–thawed prediction for red sea bream 
using linear discriminant analysis with principal component analysis scores as input variables  

   Spectral 
transformation 

 N correct in groups a   Group proportion 
correct 

 Overall proportion 
correct 

     Type of fi sh  Type of fi sh   

     Fresh  Frozen  Fresh  Frozen   

   None  19  19  100%  100%  100% 
   MSC  15  16   79%   84%   81% 

  MSC, multiplicative scatter correction.  
  a   The number of correctly classifi ed samples out of the 19 prediction samples for the fresh and 
frozen–thawed red sea bream groups, respectively.  

              



product quality will result in more robust processes, better products, more uniform 
results, and potential cost savings for the manufacturer. In spite of its great potential, 
the practical use of NIR spectroscopy however may be limited by the requirement for 
laborious calibration for each purpose. On the other hand, by considering the uni-
versal, non-invasive and non-destructive nature of the NIR spectroscopy, its speed, 
and the robustness of the NIR spectrophotometers commercially available today, the 
disadvantages indicated above may be overcome in the near future. 

   The number of scientifi c papers and the successes of international congresses on 
this theme is evidence of this fact especially in seafood analysis. As mentioned ear-
lier, the safety and quality of seafood has been of particular concern in recent years, 
NIR spectroscopy could be a non-destructive testing method allowing reproducible 
and rapid assessment, something that has not been available in the past.  
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    Introduction 

   Acquiring information on the quantitative and qualitative properties of raw materials, 
intermediate and fi nal products is currently gaining more and more importance. This 
is primarily due to the economic benefi ts which can be achieved by utilizing this 
information. Near-infrared (NIR) and mid-infrared (MIR) spectroscopy have both 
been investigated to determine their potential in a range of applications in the dairy 
industry. This has included process monitoring, determination of quality, geographi-
cal origin, and adulteration of dairy products in processes such as milk, milk powder, 
butter, and cheese production. Therefore infrared (IR) spectroscopy has a role to play 
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in producing dairy products of high quality and consistency from farm to fi nal prod-
uct. The vast majority of published reports, however, relate to studies carried out at 
laboratory or pilot scale. 

   Production facilities are growing in scale due to the merging of companies. By 
their nature the successful operation of large production lines, with high outputs, is 
critical. In such situations large economic losses could occur in a short period of 
time if the process runs  “ out of control ”  or the produced product does not conform 
to set specifi cations. IR spectroscopy allows rapid analysis of a large volume of sam-
ples in the production line. Due to the effort involved in calibrating an IR spectrom-
eter, however, this technique is only worthwhile if there is a fi nancial benefi t. This 
benefi t can include but is not limited to an increase in the product yield. 

   This chapter describes applications of IR spectroscopy in the dairy industry, 
including the application of IR spectroscopy in process control through to the analy-
sis of the fi nal product, and its use in helping to produce good food at reasonable 
production costs.  

    Milk production 

   Milk production involves a number of stages including herd management, milking, 
bulk storage, collection, transportation, reception, storage, and processing. The use 
of NIR spectroscopy to facilitate the production of high-quality milk has been inves-
tigated in applications ranging from monitoring rumen metabolism through to the 
standardization of milk in the milk-processing plant. 

   The by-products of fermentation in the rumen are precursors for milk production in 
dairy cows; hence rumen metabolism should be controlled in order to obtain produc-
tion of a high quality and quantity of milk.  Turza  et al.  (2002)  suggested that this could 
be achieved by using NIR spectroscopy to determining the composition of the rumen 
fl uid as it is an important indicator of the state of rumen metabolism. They developed 
a technique for online monitoring of rumen fl uid, which involved inserting the head of 
a fi ber-optic measuring device through a fi stula into the rumen of the cow. Using trans-
mittance spectra in the range 1100–1046       nm and 1550–1860       nm in conjunction with 
partial least squares (PLS) regression,  Turza  et al.  (2002)  predicted a number of rumen 
fl uid constituents including acetic, butyric, propionic, and isovaleric acids. 

   IR spectroscopy has been widely used to determine the composition of milk prod-
ucts ( Carl, 1991 ;  Luinge  et al. , 1993 ;  Nathier-Dufour  et al. , 1995 ;  Lefi er  et al. , 1996 ; 
 Albanell  et al. , 1999 ).  Carl (1991)  used NIR spectra and PLS regression to predict 
the total fat content of milk with a relative standard deviation of 2% while  Luinge
 et al.  (1993)  and  Van de Voort (1992)  reported on a Fourier transform infrared (FTIR)
method that utilizes the MIR region of the electromagnetic spectrum, for an easy and 
fast determination of the total fat content in milk. FTIR spectroscopy has also been 
investigated for the compositional analysis of sweetened condensed milk ( Nathier-
Dufour  et al. , 1995 ). Fat and total solids content were predicted with accuracy in the 
order of  � 0.09 and  � 0.55 for fat and total solids respectively. They concluded that 
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with the standardization of the sample preparation protocol, the method produced 
good results and offered both ease of sample handling and rapid sample processing. 
Subsequently, predictions of the fat, crude protein, true protein, and lactose  content 
of raw milk by FTIR spectroscopy and a traditional fi lter-based milk analyzer were 
assessed ( Lefi er  et al. , 1996 ). They concluded that because the FTIR instrument pro-
vided more spectral information related to milk composition than the fi lter instrument, 
the single-calibration FTIR analysis of milk samples collected in different seasons was 
more accurate ( Lefi er  et al. , 1996 ). Due to the success of the FTIR measuring princi-
ple for the analysis of milk this technology has been successfully commercialized 
with products such as the MilkoScan ™  FT 120 (Foss, Denmark;  www.foss.dk ) which 
employs this principle in compliance with IDF and AOAC standards. 

   Milk composition is an important factor in all stages of milk production, therefore the 
use of IR technology in determining milk composition has been employed in a variety 
of situations. Determining milk composition is essential for the effi cient management of 
dairy herds. It has been stated that milk fat content could be used to regulate the diet for-
age concentration ratio, protein content could be used as an indicator of adequate dietary 
energy supply, and that lactose content could be used to detect mastitis ( Tsenkova  et al. , 
2000 ). The implementation of an online IR sensing system which would allow determi-
nation of milk composition of individual cows during milking at farm level would assist 
in the management of dairy herds. In recent years a number of studies have examined the 
potential of NIR spectroscopy in such an application (       Tsenkova  et al. , 1999, 2000 ;  Woo 
 et al. , 2002 ;  Kawamura  et al. , 2007 ). If NIR spectroscopy is to be employed for online 
determination of milk composition during milking then the technique must be suitable 
for determining the composition of unhomogenized milk.        Tsenkova  et al.  (2000, 1999)  
investigated the potential of NIR spectroscopy to measure milk fat, total protein, and 
lactose content of unhomogenized milk samples taken during milking.  Tsenkova  et al.  
(1999)  found that NIR spectroscopy was adequate for determining the composition of 
unhomogenized cows ’  milk over one lactation. They also found that the most important 
region for predicting composition was 1100–2400       nm, with fat, lactose, and total protein 
predicted with standard errors of 0.11%, 0.082%, and 0.096%, respectively. 

    Tsenkova  et al.  (2000)  further investigated the 1100–2400       nm range to predict fat, 
total solids, and lactose contents in milk from three different cows. They found that 
prediction accuracy was improved when individual calibration models for each cow 
were developed. 

   Recently  Kawamura  et al.  (2007)  constructed a sensing system which consisted 
of an NIR instrument, a milk fl ow meter and a milk sampler, to monitor milk qual-
ity during milking. They installed the system between the teatcup cluster and the 
milk bucket of the milking machine, which allowed a continuous fl ow of milk by 
the NIR sensor during milking. Calibration models were then developed using PLS 
regression to predict fat, protein, lactose, somatic cell count, and milk urea nitrogen. 
They found the calibrations had  R  2 -values between 0.82 and 0.95 and standard error 
between 0.05 and 1.33 units ( Kawamura  et al. , 2007 ). The implementation of such 
IR-based systems will assist in the transition to precision dairy farming based on the 
data gathered from each individual cow.  
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    Incoming product control 

   Considering a medium size dairy, with approximately 10       000 farmers, 10       000 sam-
ples have to be analyzed every day or every second day depending on the collection 
of the raw milk. The fat, protein, and lactose contents are determined for each sam-
ple using MIR instruments. These parameters are used for the payment of the farm-
ers. The average fat content is approximately 4.3%, the protein around 3.3%, and 
the lactose around 4.7%. The accuracy is approximately  � 0.03% abs. for these con-
stituents. It is also possible to separate the total protein content into levels of casein 
and whey protein using IR spectroscopy. At present discussions are on-going as to 
whether citrate can also be determined using this technique. 

   Food manufacturers are required to demonstrate the authenticity of their products. 
The rights of consumers and genuine food processors in terms of food adulteration and 
fraudulent or deceptive practices in food processing are set out in a recent European 
Union regulation regarding food safety and traceability ( European Commission, 
2002 ). Detection of milk adulterated with synthetic milk using NIR spectroscopy has 
been studied by  Jha and Matsuoka (2004) . They found that NIR spectroscopy in the 
range 700–1124.8       nm was capable of predicting the level of adulterants such as urea, 
sodium hydroxide, oil, and shampoo in milk with low standard errors. 

   Some dairy products require additives (e.g. stabilizers in yoghurt or dessert prod-
ucts). Due to time constraints, testing of the incoming additives is often limited to 
an inspection of the loading paper and a sensory test. In some cases the additives 
are brought into the store and used in the production after further investigation. Both 
situations have drawbacks: in the fi rst case the sensory test is not suffi cient to detect 
specifi c problems with the additive. In the second situation if the load does not ful-
fi l the requirements the load must be reshipped following the failed test. A robust 
method is necessary which is fast enough so that it can be performed during the time 
when the truck is standing at the manufacturing site and which can give more infor-
mation than a sensory test alone. An application based on an NIR instrument with 
fi ber optics, for instance, is able to do this task at the entrance to the plant. Having a 
spectral library of correct additives one compares the spectrum of the delivered addi-
tive with the spectra in the library. A hit-list will show the classifi cation result. Using 
a spectral library for additives a classifi cation report (fi rst place in the hit-list) shows 
the following information: 

      ●      Name of the substance: sorbic acid  
      ●      Sum formula: C 6 H 8 O 2   
      ●      Molecule weight: 112  
      ●      CAS number: 110-44-1  
      ●      Hit quality: 915    

   Using products from different manufacturers qualitative information can be impor-
tant for further processing: What is the dominant modifi cation of the lactose because 
the different modifi cations ( α ,  β , or amorphous) behave differently in the production

              



process? In the case of fat, knowing the ratio of  cis - and  trans -fatty acids is worth-
while from a nutritional standpoint. There exists an international standard (ISO 
Standard 13884:2003, 2003) allowing the determination of  trans -fatty acids by MIR 
spectroscopy. 

   One should be aware, however, that IR spectroscopy is not a method with which 
one can solve everything. The limitations of the method must be recognized. 
Detecting or identifying small concentrations of constituents in complex matrices is 
always a problem!  

    Process control 

   To control a process it is necessary to have the appropriate information just-in-time. 
Traditional chemical analysis of constituent concentrations is very time consum-
ing. Therefore by the time the result is available it may not be possible to take suit-
able corrective action if the test results are out of specifi cation. IR spectroscopy can 
potentially fulfi ll this task almost simultaneously to the production process. 

   There are three possibilities: off-line, at-line, and in-line analysis. 

    Off-line analysis 

   The IR analysis can be performed in the industrial laboratory. This means that a 
 sample has to be taken out of the process and sent to the laboratory. There the IR 
 analysis is performed and the result is sent back to the process operator. This pro-
cedure is called  off-line  analysis because it is carried out away from the processing 
line. Using IR spectroscopy in this way also results in a short lag period prior to the 
test results being available.  

    At-line analysis 

   In at-line analysis the IR spectrometers are standing beside the production lines. The 
process operator takes a sample and performs the analysis personally. Therefore the 
results are available more rapidly and the operator can quickly take corrective action 
if necessary. Furthermore, process operators can perform the analysis whenever they 
deem it necessary. 

    Table 10.1    shows a list of calibrations for the major constituents of dairy  products 
which is continuously growing. The accuracy, defi ned as the difference between 
IR prediction and value according to the reference method, is approximately of the 
order of the repeatability limit of the reference method. The repeatability limit  r  
of a reference method is defi ned in such a way that the absolute difference of two 
analyses under repeatability conditions is smaller than  r  with 95% probability. (Note: 
Repeatability conditions are that the same person performs the analysis several times 
using the same material, the same chemicals, and the same instruments shortly after 
another.  r  is determined by a profi ciency test.) In principle, one cannot do better 
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than this because the reference values that are needed for the calibration procedure 
include this error. On the other hand, comparing different methods  (reference method 
with IR prediction) the reproducibility limit  R  is the measure for the judgment. 
(Note:  R  has the same meaning as  r.  The difference is that reproducibility conditions 
are applied. Beside the same material, these conditions are given if one or more of 
the repeatability conditions are violated or a different method has been used.) A good 
empirical approximation for  R  is 2* r.  The experience with the mentioned calibrations 
shows that 90–95% of the differences between reference value and the IR prediction 
of independent samples fall within  R.  

   Several calibrations are not based on the reference method because some compa-
nies do not use the reference method for process control due to the lengthy time they 
take to perform. In these cases the calibration is based on the individual method. 
Checking the IR prediction with the result of the individual method from time to 
time has the advantage that all errors are handled on the same basis, which is a great 
help in the case of deviations. 

 Table 10.1          Constituents of dairy products determined by infrared spectroscopy  

   Product  Constituents 

   Liquid   
   Raw milk  Fat, protein, casein, whey protein, lactose, dry matter 
   Skim milk  Dry matter, protein, casein 
   Market milk  Fat, protein, dry matter 
   Coffee cream  Dry matter, fat 
   Evaporated milk  Dry matter, fat 
   Whipped cream  Dry matter, fat 
   UHT-Cream  Dry matter, fat 
   Cocoa concentrate  Dry matter 

   Viscous   
   Low fat curd cheese  Dry matter, protein 
   Modifi ed curd cheese  Dry matter 
   Curd cheese  Dry matter, fat, protein 
   Fruit curd cheese  Dry matter, fat 
   Yoghurt  Dry matter, fat 
   Butter  Water, salt 
   Cheese  Dry matter, fat 
   Hard cheese   
   Slicing cheese   
   Semi-solid slicing cheese   
   Soft cheese   
   Processed cheese   

   Powder   
   Skim milk powder  Water, fat, protein 
   Milk powder  Water, fat, protein, lactose 
   Coffee creamer  Water, fat, protein 
   Capuccino  Water, fat 
   Yeast autolyzate  Water, salt 
   Creamer  Water, fat 

   Others   
   Ice cream mix  Dry matter, fat 

              



   Beside the quantitative predictions of the major constituents, qualitative aspects 
of the products are becoming more important. More insight into the changes of the 
microstructure during the processing is required to optimize the process. For exam-
ple, the conformation of the protein ( α -helix or  β -sheet) infl uences the properties of 
the product very strongly. The amide I band at approximately 1650       cm  � 1  is the best 
investigated structure for the determination of protein conformation. 

   It is also useful to be able to measure qualitative product characteristics at the end 
of shelf life during manufacturing so that action can be taken if the product does not 
fulfi ll the specifi cations. In the case of whipped cream the IR spectra during manufac-
ture has been related to the product characteristic (volume increase by whipping, fi rm-
ness) at the end of shelf life via discriminating analysis.  Figure 10.1    shows that there 
are two distinct clusters. One cluster represents the samples where the  properties are 
within specifi cation, while the samples in the other cluster do not fulfi ll the set specifi -
cation. If this is done during manufacturing it is possible to modify the recipe.  

    In-line analysis 

   IR spectroscopy also allows measurement of the quantity of interest directly in the 
process line (in-line measurement). Mixing and separating are important process 
operations in which the control of constituent concentrations infl uences product 
quality and economy. The following applications exist in the dairy industry: 

      ●      The water content of milk powder is measured directly after the drying tower 
with a NIR spectrometer. Having this information, one can regulate the con-
centrate feed to the tower.  

      ●      The water content of butter can be measured at the end of the butter-making machine 
with an NIR spectrometer. This can be used to infl uence the water content.  

      ●      To standardize fat and protein for cheese milk or fat for market milk a MIR 
spectrometer may be used to determine these quantities for process control.  

      ●      The dry matter content of curd cheese is determined by an NIR spectrometer 
with fi ber optics. The feeding of the separator is modifi ed according to the dry 
matter of the curd cheese.  
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 Figure 10.1          Absorption at wavelength 2336       nm vs. absorption at wavelength 1445       nm measured during 
the production of whipped cream to predict the quality at the end of the shelf life.    
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      ●      The dry matter content of soft cheese curd is measured right before the fi ller to 
control the fi lling.  

      ●      The formation of the coagulum during the cheese-making process is monitored 
with NIR diffuse refl ectance spectroscopy with fi ber optics to optimize the curd 
cutting.  

      ●      Mozzarella cheese production is controlled by a NIR refl ectance measurement 
to control the qualities of interest.    

   All in-line applications will be discussed in some detail because this is where the 
future of process control lies.   

    Milk powder production 

   The water content of powder (milk powder, skim milk powder, whey powder and 
other special powder) is important because the economy is dependent on the water 
content and usually there are specifi cations with respect to the maximum amount of 
water. Powder will mainly be produced by spray drying ( Figure 10.2   ). The concentrate
is pumped to the top of the spray dryer. A nozzle sprays the product, which then
falls down. During the fall hot air, which is tangentially fed into the chamber, causes 

Milk

Spray dryer with fluid bed
attachment (two-stage drying).

1  Indirect heater
2  Drying chamber
3  Vibrating fluid bed
4  Heater for fluid bed air
5  Ambient cooling air for fluid bed
6  Dehumidified cooling air for fluid bed
7  Sieve
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 Figure 10.2          Powder production with a spray dryer with fl uid bed. ( Tetra Pak, 1995 )    

              



the product and air to circle. The product leaves the dryer with a water content
of 5–10%. 

   Two positions exist to install an in-line device. One is at the outlet of the dryer, 
another is the end of the vibrating fl uid bed.  Figure 10.3    shows a realization based 
on a single refl ectance probe inserted into an automatic sampler close to the outlet 
of the drying chamber. The sampler uses a pneumatic ram to take subsamples into 
a pipe in which the probe is located. The scanned sample is then returned into the 
product stream or can be pulled out for reference analysis which is a great advan-
tage. Another advantage of the sampler is that the measuring conditions can be well 
defi ned so that the prediction accuracy is high. The same accuracy is obtained as 
with laboratory IR measurement. Having information about water content allows the 
drying conditions in the chamber to be changed by altering the feed of concentrate or 
modifying the air temperature. 

   Using an in-line measurement at the end of the vibrating fl uid bed it is also 
 possible to extract the mean diameter of the powder particles with IR spectroscopy. 
The basis for this is that different particle size distributions cause a shift in absorp-
tion due to the scattering of IR light. Knowing the mean diameter ( Frake  et al. , 
1997 ;  Goebel and Steffens, 1998 ) the particle size distribution can be infl uenced by 
 modifying the drying conditions in the fl uid bed. 

 Figure 10.3          In-line measuring device at the end of a spray dryer. (A Niemoeller, 2007, personal 
communication)    
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   It must also be taken into account that process control is getting more complicated 
and the actions must be very smooth if the measuring place is further away from the 
component to be infl uenced. In the case of the drying chamber there is the additional 
problem that the component reacts very slowly with respect to changes. 

   Infrared spectroscopy has been studied as a rapid method to determine the com-
position and adulteration of milk powder. In fact milk powder is particularly suited 
to NIR spectroscopic analysis as the particles are uniform in size and shape and the 
small particle size negates any requirement for grinding. 

    Mendenhall and Brown (1991)  investigated the potential of MIR spectra in the 
range 1200–1400       cm  � 1  to predict whey protein concentration in non-fat dry milk 
(NDM). Whey protein and NDM powder were mixed in varying proportions and 
reconstituted to a constant total solids content prior to analysis. They found that 
the PLS regression model successfully predicted the concentration of whey protein 
in adulterated samples ( R       �      0.99) and that accuracy was not affected by process-
ing conditions, source of NDM, or origin of whey protein concentrate powder 
( Mendenhall and Brown, 1991 ). More recently, NIR spectroscopy also in conjunc-
tion with PLS regression successfully determined the protein content of milk powder 
with a root mean square error of prediction of 0.687% ( Chang  et al. , 2007 ). 

   As previously mentioned, the water content of milk powder is very important as it 
will infl uence the physico-chemical stability of milk powder during both storage and 
distribution.  Reh  et al.  (2004)  compared a number of different methods for deter-
mining the moisture content of milk powders, which included analyzing the powders 
using NIR spectroscopy (400–2500       nm). They found that there was a very good cor-
relation between the moisture content of the milk powder and absorbance at 1940       nm 
with an  R  2  of 0.94 and a standard deviation of differences of 0.07wt%. It was also 
stated that the major advantage of NIR absorbance at 1940       nm was that it was almost 
completely absence of interference from other food ingredients. Another study also 
investigated the potential of NIR spectroscopy to predict the moisture content of 
milk powder ( Nagarajan  et al. , 2006 ). They developed models for predicting mois-
ture content using two spectral ranges (i.e. 1900–1950       nm and 1425–1475       nm) using 
PLS regression. They found that the 1900–1950       nm region was superior at predicting 
milk powder moisture content with the validation model, having an  R  2  of 0.98. 

   Studies have also highlighted that IR spectroscopy may have a role in determining 
milk powder quality and process control during manufacture ( Downey  et al. , 1990 ; 
 Koc  et al. , 2002 ;  Qin  et al. , 2004 ;  Deng  et al. , 2005 ; Cen  et al. , 2006;  Zhou  et al. , 
2006 ;  Huang  et al. , 2007 ). While  Downey  et al.  (1990)  found it was possible to dif-
ferentiate between milk powder based on heat treatment using NIR spectroscopy, 
 Deng  et al.  (2005)  utilized FTIR spectroscopy to identify 11 kinds of milk powder 
based on variations in the main nutritious components. Powdered infant milk formula 
is another important milk powder product which has been investigated using NIR 
spectroscopy. Cen  et al.  (2006) used NIR and visible spectroscopy (400–1000       nm) 
to successfully distinguish between nine different varieties of powdered infant milk 
formula ( R  2       �      0.98). Using a similar spectral region  Huang  et al.  (2007)  developed a 
back propagation neural network, which with proper training could achieve a recog-
nition accuracy of 100%. 

              



   NIR technology has also been used in a study in which fuzzy logic was applied to 
real-time control of a spray-dried whole milk powder processing system in order to 
achieve a product of consistent quality ( Koc  et al. , 2002 ). The NIR measurements 
were employed to determine product color and the study found that the developed 
algorithm controlled the process at  � 0.074       kW of the desired power consumption 
and provided a whole milk product within  � 3.0 units of the desired color value. 

   NIR spectroscopy has also been demonstrated as an effective technique for detect-
ing milk powders adulterated with 0–5% vegetables protein ( R  2       �      0.99, standard 
error of prediction      �      0.23%) ( Maraboli  et al. , 2002 ).  

    Oil and fat production 

   One of the earliest studies examining the use of IR spectroscopy in the analysis of oils 
and fats was by  Kliman and Pallansch (1965) . They found that the water content of but-
ter oil was relative to the absorption at 1900       nm. In more recent times IR spectroscopy 
has been utilized for the rapid assessment of authenticity and composition of butter. 

    Van de voort  et al.  (1992)  used MIR spectroscopy to determine the fat and mois-
ture content of butter samples. They found that the MIR technique produced compo-
sitional values comparable to those obtained by conventional wet chemical methods. 
 Safar  et al.  (1994)  studied 27 commercial samples of oils, butters, and margarines 
and determined that as MIR spectra contained information regarding carbonyl 
groups and double bonds, the samples were classifi ed on the basis of their degree of 
esterifi cation and their degree of unsaturation. MIR spectroscopy has also been used 
for the quantitative analysis of edible  trans  fats in butter ( Dupuy  et al. , 1996 ), and 
the characterization of butter, soybean oil, and lard ( Yang and Irudayaraj, 2000 ). 

    Sato  et al.  (1990)  studied the detection of foreign fat in butter using NIR spectroscopy 
and found that it was capable of detecting as little as 3% foreign fat in butter and mar-
garine mixtures. NIR spectroscopy has also been used for determining the  composition 
of butter, with  Hermida  et al.  (2001)  predicting moisture ( R  2       �      0.83), solids-non-fat 
( R  2       �      0.94) and fat ( R  2       �      0.72) in butter without any previous sample treatment. 

   The role of IR analyzers for the at-line analysis of butter during manufacture has also 
been recently examined by ( Meagher  et al. , 2007 ), who studied the potential of NIR 
spectroscopy to predict the solid fat content of milk fat extracted from butter during 
manufacture. The solid fat content was successfully predicted ( R  2       �      0.92–0.98) using 
NIR spectroscopy and PLS regression and the method had the added advantage of not 
requiring a 16       h delay period for sample preparation as is currently required in the   at-
line determination of solid fat content by nuclear magnetic resonance spectroscopy. 

    Figure 10.4    shows schematically a butter-making machine. Cream is churned so 
that pieces of butter and buttermilk will be produced. In the following section pieces 
of butter (nearly pure fat) and the buttermilk are separated from each other. In the 
squeeze drying section some amount of buttermilk is worked into the pieces of butter 
to form butter. A moisture content limit for butter exists as a product called  “ butter ”  
may not have a water content of more than 16%. Due to the fact that water is cheaper 
than fat the producer wants to keep the water content as high and close as possible to 
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 Figure 10.4          Butter-making machine. ( Tetra Pak, 1995 )    

16%. The second working section is a new development which is not very often real-
ized to soften the butter. 

   The water content is measured by IR spectroscopy in the squeeze drying section. 
There are two different applications: (a) One is based on a single refl ectance probe 
a little bit downstream of this section. A sampling valve is located close by allow-
ing the extraction of the scanned representative sample. (b) Another option ( Figure 
10.5   ) is to measure the water content with a transmission device directly in this sec-
tion. The representative sample can be collected at the outlet. Both calibrations have 
accuracies close to the reference method because water content determination with 
IR spectroscopy is straightforward due to the large electrical dipole moment of the 
water molecule. If the separation or the squeezing are changed the water content of 
butter can be modifi ed. Due to the location of the measuring device a direct control 
is possible, giving an almost constant water content. 

    Cheese production 

   Process milk is usually standardized in the following way ( Figure 10.6   ): The milk is 
completely or partly separated into cream and skim milk which are then recombined 
to achieve the desired fat content. Furthermore, products such as fat and protein are 
often recovered from whey, a by-product of cheese production. Such products can 
be added to the process milk to ensure maximum cheese-making effi ciency. These 
products normally change the concentration of other constituents. There are two pos-
sibilities to solve the problem: (1) The mixture can be poured into a process tank 

              



 Figure 10.5          Transmission measuring device at the end of the butter-making machine. (M Sievers, 2007, 
personal communication)    
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 Figure 10.6          Traditional milk standardization by separation and mixing via density and fl ow 
measurement. ( Tetra Pak, 1995 )    
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and analyzed by the laboratory. The constituent concentration is then corrected by add-
ing the appropriate component. This is very time consuming because the laboratory 
must analyze the mixture again after the corrective action. (2) The mixture can be ana-
lyzed at the inlet of the tank during the fi lling and the different fl ows adjusted to obtain 
the correct concentrations. This is a better solution. To achieve excellent IR predictions 
this analysis is done using an MIR spectrometer which can only be operated in bypass 
mode ( Figure 10.7   ). In addition, protein and/or carbohydrate standardization is possible. 
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 Figure 10.7          Mid-infrared measurement of fat, protein, lactose and dry matter content via a bypass.
(M Sievers, 2007, personal communication)    

The MIR spectrometer is also used to monitor the fi ltration processes, for example, 
the production of whey protein concentrates. 

    Figure 10.8    shows the production line for curd cheese. The milk is coagulated 
in the tank (1), pumped through a heater (2) and feeding pipe (3) to the separator
(4), where it is separated into whey and curd cheese. A pump (5) brings the curd 
through the transmission in-line device (6) and a cooler (8) to the packaging unit. 
The protein-rich curd (12–13% protein) causes the building of layers at the windows 
of the in-line device so that only a transmission measurement can give reliable pre-
dictions.  Figure 10.9    shows the installed device in the process line. 

   This process has been studied extensively. The process standard deviation of the 
dry matter content is 0.24% using traditional process control. This means that a sam-
ple is taken out of the process and analyzed in the laboratory by a routine method 
similar to the reference method (drying by 102°C). Having arranged the in-line meas-
urement so that the process operator gets the IR predictions directly to their desk,
the standard deviation is reduced to 0.12% (i.e. the standard deviation is reduced 
by a factor 2). The last step is to operate the separation process as a closed loop, 
meaning that the IR predictions are directly used to automatically control the feed of 
the separator. In this case the standard deviation is brought down to 0.07%. Standard 
low fat curd cheese has a minimum dry matter content of 18%. Producing this curd 
cheese using traditional process control the target dry matter is 18.3%. In the auto-
matic case the target value will be 18.1%, saving a lot of raw material. In a medium-
sized company the pay-back period of the investigation is approximately a year. 
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 Figure 10.8          Schematic showing process line with in-line transmission device. (Pos. 6)    

 Figure 10.9          In-line transmission device in a quarg production line behind the separator.    
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   Infrared spectroscopy has been employed in several stages of cheese production. 
These include the monitoring of milk coagulation, syneresis and ripening and the 
determination of composition, texture, and authenticity. 

   In cheese production the cheese milk is poured into a cheese vat ( Figure 10.10   ) 
and enzyme is added. The splitting of casein, a protein component, causes the 
casein micelles to be destabilized, allowing them to be linked together and form the 
coagulum. Subsequently the coagulum is cut so that whey can be expelled and then 
removed. The correct cutting time is necessary to reduce the loss of constituents 
through the whey. In fact the importance of obtaining objective online measurements 
for monitoring gel time, coagulum fi rmness and cutting point during cheese manu-
facture, in order to obtain high-quality and consistent cheese products is well known 
( Payne  et al. , 1993a ). This has resulted in the development of a number of online 
sensors, which can be used to successfully monitor milk coagulation.  O’Callaghan 
 et al.  (2002)  comprehensively reviewed a number of systems (optical, thermal, 
 mechanical, and vibrational) for monitoring curd setting during cheese making. 
 McMahon  et al.  (1984)  found that the absorbance of light during milk coagulation 
resulted from changes in the molecular weight, size, and number of colloidal casein 
micelle aggregates. 

   Developments in fi ber optics have assisted the development of NIR refl ectance 
and transmission sensors.  Payne  et al.  (1993a)  developed a method based on changes 
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 Figure 10.10          Cheese vat with cutting and stirring tools. ( Tetra Pak, 1995 )    

              



in diffuse refl ectance at 940       nm during milk coagulation. The time to the infl ection 
point ( t  max ) was determined from the fi rst derivative and was found to correlate well 
with Formograph cutting times. In further work by  Payne  et al.  (1993b) , a sensor 
operating at 950       nm was developed and  t  max  was again found to be well correlated 
with the observed cutting time. Linear prediction equations, which were considered 
to be of the form required for predicting cutting time, were also developed using 
 t  max . These equations had standard errors of between 1.5 and 2.4       min. 

   These studies only monitored coagulation at one wavelength, however, and so 
 Laporte  et al.  (1998)  used full spectrum information and PLS regression. Refl ectance 
was monitored during coagulation and spectra collected between 1100 and 2500       nm 
with a resolution of 2       nm. This method was found to be reliable in monitoring milk 
coagulation. 

    O’Callaghan  et al.  (2000)  compared the response of three NIR sensors (two trans-
mission and one refl ectance) to the response of thermal and vibrational sensors 
where protein and enzyme concentration was varied. While they found that all sen-
sors were sensitive to changes in enzyme concentration, the NIR sensors were more 
sensitive to changes in the rate of curd fi rming due to varying protein levels than 
the hot wire and torsional vibrational systems. Indeed the NIR sensors predicted the 
curd-fi rming time with a standard error less than 100       s. However  O’Callaghan  et al.  
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 Figure 10.11          Infrared measuring device in a cheese vat. View through the manhole. (A Niemoeller, 2007, 
personal communication)    
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(2000)  also stated that an algorithm combining the output of an NIR sensor as well 
as protein level was required to accurately predict curd-fi rming times. 

    Figure 10.11    shows an example of a measuring device that is put into the cheese 
vat through a manhole. In this example the sensor must be removed prior to cutting 
due to the action of cutting and stirring tools. However other NIR cutting time sen-
sors, such as the CoAguLite™ (Refl ectronics, Lexington KY, USA), which do not 
require removal prior to cutting are commercially available. 

   Development of a syneresis control technology is another emerging area of 
research due to its signifi cant impact on cheese quality and yield. Currently only 
regions of the NIR spectra have been investigated as a technology for monitoring 
syneresis ( Guillemin  et al. , 2006 ;        Fagan  et al. , 2007b, 2007e ). 

    Fagan  et al.  (2007b)  proposed that a sensor detecting NIR light backscatter 
(300–1100       nm) in a cheese vat and with a large fi eld of view (LFV) relative to 
curd particle size would have potential for monitoring both milk coagulation and 
curd syneresis.  Fagan  et al.  (2007b)  reported that the response of the prototype 
sensor was affected by temperature and that the sensor showed potential for pre-
dicting whey fat content, curd moisture content, and curd yield. Further work by 
 Fagan  et al.  (2007e)  found that the LFV optical sensor provided the information 
on gel assembly and curd shrinkage kinetics required for accurate predictions of 
whey fat losses and curd yield prediction as well as for curd moisture control. 
Fat losses, curd yield, and moisture content at 85       min from cutting were predicted 
using a combination of independent variables, milk compositional parameters and 
LFV light backscatter parameters with SEP of 2.37       g, 0.91% and 1.28%, respec-
tively ( Fagan  et al. , 2007a ). Curd moisture as a function of processing time was 
predicted with a SEP of 1.27% over the range of 50–90% curd moisture content. 
 Guillemin  et al.  (2006)  modifi ed an NIR (700       nm) milk coagulation sensor to 
investigate its potential for the online determination of casein particle size dis-
tribution and of the volume fraction relative to the whey as a function of time. It 
was found that utilizing multiple thresholds of the optical signal associated with 
data processing using neural networks provided useful results. The casein parti-
cle volume fraction was estimated with a relative error of 23%, and the casein 
particle size distribution was estimated with a maximum relative error of 7.5% 
( Guillemin  et al. , 2006 ). 

   The determination of the dry matter content in soft cheese before pouring into the 
cheese mold is another example. This is of interest because it is necessary to stand-
ardize the dry matter content of the product to be poured. The soft cheese is produced 
with a coagulator (Pos. 4.1–4.4 in  Figure 10.12   ). The measurement device is installed 
on top of the whey removal drum (Pos. 6) before the fi lling machine (Pos. 7).
 Figure 10.13    shows the product (curd). The surface is very rough, deep, and structured 
so that one needs a good averaging. This can be achieved in two ways: (a) The IR
refl ectance measurement device ( Figure 10.14   ) measures an area of approximately 
200       cm 2 . (b) During multiple IR scans the product is continuously moving. 

   The accuracy of the dry matter calibration is of the order of the repeatability of the 
reference method. The prediction is used to infl uence the stirring at the end of the 
coagulator as well as the amount of fi lling in the next process step. 
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 Figure 10.13          Picture of the curd on top of the whey removal drum.    
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 Figure 10.12          Soft cheese production process via coagulator (Pos. 4.1–4.4). ( ALPMA, 1998 )    
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 Figure 10.15          Mozzarella cheese production process with cocker/stretcher (Pos. 4). ( Tetra Pak, 1995 )    

   A refl ection measurement with a single fi ber has also been used to determine 
qualities of interest in mozzarella cheese after stretching.  Figure 10.15    schematically 
shows the production process. After the cooker/stretcher the in-line device ( Figure 
10.16   ) is located to infl uence the previous production steps. 

 Figure 10.14          Infrared measuring device on top of the whey removal drum. Product is coming from the 
left side.    

              



    Irudayaraj  et al.  (1999)  investigated the use of MIR spectroscopy to follow texture 
development in Cheddar cheese during ripening. They demonstrated that springi-
ness could be successfully correlated with a number of bands in the MIR spectra. 
The development of cheese microfl ora during ripening is extremely important in 
the development of fl avor and texture and  Lefi er  et al.  (2000)  demonstrated that 
FTIR spectroscopy could be used as a rapid and robust method for the qualitative 
analysis of cheese fl ora, while  Lucia  et al.  (2001)  found signifi cant differences dur-
ing ripening in the region of the MIR spectra associated with amides I and II, of 
cheeses produced using different starter cultures. Further studies have also shown 
that MIR spectroscopy is a useful technique for characterizing changes in proteins 
during cheese ripening ( Mazerolles  et al. , 2001 ) as well as having the potential to 
 differentiate between cheeses of different age ( Dufour  et al. , 2000 ). As the level of 
water-soluble nitrogen (WSN) is as an indicator of cheese ripening, some attempts 
have also been made to predict the level of WSN in cheese with some success 
( R  2       �      0.80) (       Karoui  et al. , 2006a, 2006b ). 

   More recently a number of studies have assessed IR spectroscopy to predict 
cheese sensory and rheological properties. MIR spectroscopy has been applied to 

 Figure 10.16          In-line measuring device after the cocker/stretcher. (M Sievers, 2007, personal 
communication)    
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the prediction of processed cheese texture and meltability attributes (       Fagan  et al. , 
2007c, 2007d ). Models predicting hardness, springiness, massforming, and mass-
coating gave approximate quantitative results ( R  2       �      0.66–0.81), models predicting 
 cohesiveness, Olson and Price meltability, fi rmness, rubberiness, creaminess, and 
chewiness gave good prediction results ( R  2       �      0.81–0.90), while only the fragment-
able model provided excellent predictions ( R  2       �      0.91).  Blazquez  et al.  (2006)  also 
predicted these attributes in processed cheese; however in this study NIR spectros-
copy was utilized. In general, NIR spectroscopy predicted each of the attributes with 
a similar or better accuracy than MIR spectroscopy, with  Blazquez  et al.  (2006)  
reporting models with excellent prediction accuracies for chewiness, meltability, 
creaminess, springiness and hardness attributes ( R  2       �      0.94).  Downey  et al.  (2005)  
also predicted crumbly, rubbery, and chewy attributes in Cheddar cheese using NIR 
spectroscopy and the reported models gave approximate quantitative results. 

   Analysis of the shelf-life period in which freshness is maintained in Crescenza cheese 
has also been examined using MIR spectroscopy ( Cattaneo  et al. , 2005 ). They found 
that using principal component analysis (PCA) of the spectra it was possible to detect 
the decrease of Crescenza freshness and to defi ne the critical day during shelf life. 

   Many processes can be monitored by IR spectroscopy and their applications in the 
dairy industry, while in its early stages, is growing. Beside its quantitative applica-
tion, qualitative in-line analysis will become more important in the future.   

    Final product control 

   Nearly all major constituents of dairy products (see  Table 10.1 ) can be determined 
with IR spectroscopy with suffi cient accuracy. The composition and texture of cheese 
is intrinsically linked with its quality. Infrared spectroscopy therefore has been con-
sidered for predicting both the composition and textural attributes of cheese. NIR 
spectroscopy ( Rodriguez Otero  et al. , 1994 ;  Lee  et al. , 1997 ;  Wittrup and Nørgaard, 
1998 ;  McKenna, 2001 ; Pérez-Marín  et al. , 2001;  Blazquez  et al. , 2004 ; Č urda and 
Kukačková, 2004 ;        Karoui  et al. , 2006c, 2007 ) has probably been more widely utilized 
than MIR spectroscopy for cheese composition determination ( McQueen  et al. , 1995 ; 
 Chen and Irudayaraj, 1998 ).  McQueen  et al.  (1995)  used FTIR spectroscopy to pre-
dict protein, fat, and moisture content of cheese ( R       �      0.81–0.92).  Chen and Irudayaraj 
(1998) , also using FTIR spectroscopy, found that the intensity of certain bands in the 
MIR spectra increased with increasing fat and protein contents.  McKenna (2001)  
stated that published data demonstrated that NIR transmittance spectroscopy is more 
accurate than NIR refl ectance spectroscopy for the  determination of cheese moisture 
content. However NIR refl ectance spectroscopy is the more widely used mode of NIR 
spectroscopy in cheese compositional analysis ( Rodriguez Otero  et al. , 1994 ;  Lee
 et al. , 1997 ; Pérez-Marín  et al. , 2001;  Blazquez  et al. , 2004 ;  da Costa Filho and 
Volery, 2005 ;  Karoui  et al. , 2006c ;  Skeie  et al. , 2006 ). These authors report predic-
tions with varying degrees of accuracy, but overall the results are extremely accurate. 

    Pillonel  et al.  (2003)  used MIR spectroscopy in combination with chemometrics to 
investigate the potential for discriminating Emmental cheeses of various geographic 
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origins. The normalized spectra were analyzed by PCA and linear discriminant analy-
sis (LDA) of the PCA scores and Swiss Emmental was correctly classifi ed 100% of 
the time.  Karoui  et al.  (2004)  also investigated the potential of MIR spectroscopy to 
discriminate between Emmental cheeses produced during the summer and winter and 
from fi ve European countries: Germany, Austria, Finland, France, and Switzerland. 
Using PCA and PLS regression they found that it was possible to distinguish between 
cheeses according to the season of production, the treatment of the milk and the geo-
graphic origin. The same research group have also investigated the potential of com-
bining MIR and fl uorescence spectroscopy for determining the geographic origin 
of experimental French Jura hard cheeses and Swiss Gruyère and L’Etivaz cheeses 
( Karoui  et al. , 2005a ). Although it was possible to discriminate between the samples 
based on origin it was found that fl uorescence spectra produced better results than 
the MIR spectra.  Karoui  et al.  (2005b)  also compared the potential of NIR, MIR, and 
front-face fl uorescence spectroscopy to discriminate Emmental cheeses from different 
European geographic origins. Almost 90% of cheese samples were classifi ed by facto-
rial discriminant analysis using either MIR or NIR spectra. However in this case the 
classifi cation obtained with the fl uorescence spectra was considerably lower. 

   The microbiology of the product is a major issue because it takes a long time to per-
form traditional microbial analysis. Infrared spectroscopy has the potential to reduce 
the time required for analysis and therefore the product can be delivered earlier and 
hence more cost effi ciently. Infrared spectroscopy is used to identify microorganisms in 
a routine laboratory. The method, based on MIR spectroscopy, has been developed by 
Naumann and co-workers ( Naumann  et al. , 1988 ;  Helm  et al. , 1991 ). After a cultivation 
step and extraction of a single colony the spectrum of the unknown species is compared 
with the spectra of a library. A dendrogram ( Figure 10.17   ) helps to identify the unknown 
species. The advantage of the method is that it can reduce the time for analysis by 2–3 
days. The microbiological department of the Wissenschaftszentrum Weihenstephan 
( Kummerle  et al. , 1998 ;  Oberreuter  et al. , 2002 ) has developed huge libraries of micro-
organisms and applies this qualitative method to identify microorganisms in dairy sam-
ples. This method has also been developed as a routine method within large hospitals and 
other industrial facilities (e.g. pharmaceutical industry and breweries). 

   To ensure the correct operation of the calibrations one must arrange a monitor-
ing system to check the performance of the IR method. In the following section the 
 “ Good Laboratory Practice ”  (GLP) procedure for IR calibrations will be described.  

    Good Laboratory Practice for IR calibrations 

   Like all chemical analysis methods one must check the performance of the method 
regularly. Due to the fact that the IR method is an indirect method (calibration step) 
one must establish a monitoring routine which tests for the three following types of 
potential problems: 

      ●      One must ensure that the instrument operates well. This can be done by taking 
the IR spectra of inert standards and comparing the spectra over time, setting 
appropriate limits.  
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 Figure 10.17          Infrared identifi cation of microorganisms via dendrogram. A heterogeneity of zero means 
that the spectra of the microorganisms are identical.    

      ●      If sample preparation is a necessary step for the IR technique it must be tested 
whether the operating personnel fulfi ll the demands of the appropriate stand-
ard operating procedure. This can be evaluated by preparing the same material 
several times and predicting the constituent concentrations. Limits will help to 
clarify this step.  

      ●      The performance of the calibration must be monitored. This is not always pos-
sible because certifi ed material may not be available in all cases (e.g. having a 
calibration for fat in yoghurt, i.e. no yoghurt exists which can be bought as certi-
fi ed material). The only way is to analyze the corresponding sample by reference 

              



analysis and to compare the difference between reference value and IR prediction 
over time. Limits of the difference can help to defi ne warning and action levels.    

   The last point is of special importance because changes in the recipe can infl u-
ence the IR spectrum. If constant difference between the predictions and the refer-
ence values or a drift over a period of time is observed then the development of a 
new calibration may be necessary. To visualize the performance in an effective way a 
plot of the difference vs. time is the optimal presentation. These tasks can be done by 
control charts also showing the warning and action limits. 

   Having established such a system it can be shown that the IR method gives more 
constant values than the reference method when performing multiple analyses of the 
same inert material. The IR predictions have smaller variations than the reference 
values. It is believed that the IR predictions are more accurate. This is reasonable but 
cannot be proven because the reference methods are required to judge this. 

   To establish such a GLP system much experience is necessary. The quickest and 
most effi cient way is to operate a network so that many instrument performances can 
contribute to the defi nition of the Good Laboratory Practice (GLP) arrangements. 

    Networking 

   For process control of multiple dairy plants, networking can be used so that NIR 
instruments in individual plants can be connected to headquarters. An example 
employed by the Ahlemer Institute of the Landwirtschaftskammer, Hannover in 
Germany is discussed below.  

    Service network 

   Since 1988 the Ahlemer Institute of the Landwirtschaftskammer, Hannover (now 
LUFA Nord-West, Agricultural Chamber Lower Saxony) has operated a service net-
work which has been accredited by the German Accreditation Council (DAP). There 
are fi ve dairies with 12 NIR instruments connected by phone and modem to the 
headquarters in Oldenburg (Lower Saxony, Germany). The institute performs feasi-
bility studies and develops new applications as well as GLP procedures. The advan-
tage is that the individual dairies do not need to employ highly qualifi ed staff with 
specialized training in the area of IR spectroscopy. Furthermore staff members with 
different scientifi c backgrounds work together in the institute so that problems can 
be solved very effi ciently. Today businesses tend to concentrate on their key areas of 
expertise and therefore are outsourcing their other activities.  

    Surveillance network 

   The institute has been given the responsibility by the government of Lower Saxony 
to check MIR instruments that are used for the prediction of various constituents in 
raw milk for the farmers ’  payment. This is done in the following manner: 

      ●      On a weekly basis specifi c samples are sent to the laboratories to test the per-
formance of instrument and calibration. After approximately 200 raw milk 
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samples one of the specifi c samples has to be analyzed. This procedure is 
repeated after each 200 raw milk samples. The results of these specifi c samples 
are transferred by modem to the institute for further evaluation.  

      ●      Each month a series of samples are prepared artifi cially to check the calibration 
over a larger concentration range. These results are also transferred to the institute.    

   The advantages of this network are that the calibration is monitored more often 
and the inspection is completed without the necessity of traveling and is thus less 
time intensive. The controller is also able to use his or her experience to assist. The 
network also serves to build confi dence between farmers and laboratories.   

    Harmonization network 

   Harmonization of analytical results is an important issue for two reasons: 

      ●      Large dairies with more production sites that ship milk or products from one 
production site to another would like all measurements performed on the same 
product at different locations to be the same or at least in good agreement. 
Otherwise the use of mass balance procedures creates problems.  

      ●      Exported products need to be analyzed in such a way that the results of differ-
ent laboratories are in good agreement.    

   With respect to chemical methods of analysis, standard operating procedures 
are defi ned as well as precision parameters (used for the comparison of the results). 
However the results are strongly dependent upon the laboratory technician. Within a 
research and development project funded by the European Union it has been shown 
that this harmonization goal could be achieved for IR spectroscopy. The method is 
based on the concept of  “ matching instruments, ”  where one instrument is used as the 
master instrument. Having determined the characteristic between master and the other 
instrument ( Wang  et al. , 1991 ), the spectra of the other instrument is transformed in a 
mathematical way. In doing so spectra are obtained which look as if they were recorded 
using the master instrument. Using the calibration of the master instrument the appro-
priate constituent concentration is predicted. This ensures that all predictions include 
the same information and therefore all instruments behave in the same manner.  

    Future trends 

   Infrared spectra are dominated by the water content of the product and nearly all dairy 
products, with the exception of powder products, have high moisture levels. Spectra 
of water and milk, for example, look very similar. Only statistical methods are able to 
extract the information out of the spectra. Usually the information is extracted on a direct 
and fundamental basis because experience shows that better prediction accuracy can 
be achieved. If Raman spectroscopy is applied, water hardly disturbs the measurement 

              



results. Based on this complementary information in some cases a more precise deter-
mination of constituents may be possible.  Figure 10.18    shows the result of a calibra-
tion where the hardness of fat is predicted by Raman spectroscopy. The hardness is 
measured by a penetration method in which a cone penetrates a block of fat. Fat is 
soft if it has a lot of unsaturated carbon–carbon bonds. Due to the fact that Raman 
spectroscopy is sensitive to non-polar molecular binding the unsaturated carbon–
carbon bonds can be correlated to the hardness of fat. By measuring only a small 
amount of the product Raman spectroscopy still has to prove that the measurement can 
also be done quantitatively. Raman imaging may be the way to overcome this. A com-
bination of both vibration and excitation mechanisms combined with the appropriate 
statistical methods and in-line devices will boost the industrial possibilities.  

    Conclusions 

   Infrared spectroscopy is a powerful tool to determine constituent concentrations and 
qualitative characteristics of dairy products. Many examples and applications show 
that the technique is accurate and fast and can be used for process control. To ensure 
proper performance it is necessary to establish GLP guidelines. Within these guide-
lines the main issue is monitoring of the calibration performance. This includes the 
adjustment of the existing calibrations or the generation of new calibrations. Some 
dairies use the services of a network, thus outsourcing the calibration and application 
work. This type of measurement is moving into the process line. With the  appropriate 
process control strategy the payback period of the investment will be between one 
and two years, suggesting that it is a worthwhile investment.  
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    Introduction 

   Although early in the twentieth century emission spectroscopy played a crucial role 
in implementing atomic theory, nobody could have forecast the present widespread 
practical use of diffuse near-infrared (NIR) spectroscopy for the identifi cation of the 
more mundane components of foods. Spectra from NIR spectroscopy multi-meters 
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were chemically evaluated by spectral inspection. Spectral data were correlated to 
predict specifi c chemical analytes by classical statistics and pattern recognition data 
models (chemometrics) such as partial least squares (PLS) regression and artifi cial 
neural networks (ANN). 

   Nowadays, NIR spectroscopy analyses have replaced wet analyses in the industry 
to a great extent. There is a rich literature that is mainly focused on the prediction of 
specifi c analytes by more or less global calibration models that have great commer-
cial and technical value as indicators for food functionality. Details can be found in 
textbooks by  Osborne  et al.  (1993) ,  Burns and Ciurczak (2001) ,  Williams and Norris 
(2001) ,  Siesler  et al.  (2002) , and  Ozaki  et al.  (2007) . In order to widen the perspec-
tive on NIR spectroscopy applications, this chapter will mainly focus on other less 
exploited applications such as differential spectral analysis ( Jacobsen  et al. , 2005 ; 
         Munck, 2005, 2006, 2008 ) and batch classifi cation through discriminate princi-
pal component analysis (PCA) for food functionality ( Mark, 2001 ;  Munck, 2005 ; 
 Williams, 2007 ), which is also used for industrial single seed NIR spectroscopy sort-
ing for quality. These explorative applications, whereby unknown phenomena can be 
detected and physiochemically explored, are available for any owner of an NIR spec-
trometer without the need for specifi c commercial calibration software. 

   In a global context, cereals are the most important food crops in the world with a 
combined yearly production in excess of 2 billion tons of grains. Quality character-
istics are important in both national and international trade and will become even 
more important in the future as markets become more competitive due to increasing 
demand and prices for food, non-food, and energy ( Munck, 2004 ). After the end of 
World War II in 1945 the large-scale international industrialization of the cereal pro-
duction chains for food and feed raised demands for screening for physical, chem-
ical, and technical quality as well as for healthy grains free from microbiological 
contamination. As an example, a malting company in Canada ( Pitz, 1990 ) producing 
375       000 tons of malt a year will require about 500       000 tons of barley. 

   If the average size of a barley unload from one farmer is about 75 tons, the yearly 
intake would represent about 6700 permits. On average for three samples offered, 
two samples are rejected because they do not fulfi ll quality specifi cations. A grain 
inspector should therefore visually evaluate, test for germination energy, and chemi-
cally analyze about 20       000 submitted samples each year. There is therefore a need 
for almost instant physicochemical and functional at-line or online analyses, which 
in the case of barley should combine analyses of moisture, protein, starch (extract), 
germination energy, and beta-glucan (malting resistance). Prior to the 1980s it was 
beyond common belief that such a multi-tasking endeavor could ever be possible 
through just one kind of an instrument for all cereals.  

    Comparison of mid-infrared (MIR) and 
near-infrared (NIR) spectroscopy 

   In analyzing solid and semi-solid samples from cereal grain and grain products by 
diffuse refl ection, near-infrared (NIR) spectroscopy has a clear advantage in sam-
pling over mid-infrared (MIR) spectroscopy because of the more effective sample 

              



penetration by light at shorter wavelengths. Sampling is less important in liquid 
matrices such as milk and brewers ’  wort, which are collected in transmission cells as 
short as 0.025       mm for MIR spectroscopy, compared with in the order of 1       cm for NIR 
spectroscopy ( Meurens and Yan, 2002 ). Samples are most conveniently recorded dry 
either fi nely milled in an attenuated total refl ection diamond attachment ( Tønning, 
2007 ,  Figure 11.1b   ) or analyzed on a barium mineral plate in an infrared transmis-
sion microscope ( Chen  et al. , 1998 ;  Philippe  et al. , 2006 ). The mass of the involved 
atom in infrared spectroscopy determines the response absorption frequency of light, 
including the fundamental functions of vibration, symmetric stretching, asymmetric 
stretching, bending, rocking, wagging, and twisting ( Miller, 2001 ). MIR spectra con-
tain bands of all the fundamental vibrations. However, NIR spectra include only pure 
overtones of the stretching vibrations. The remaining vibration types are represented 
here only as combination tones of the most anharmonic vibrations mediated by the 
C–H, N–H, O–H, and SH bonds. 

   In  Figure 11.1a, b  NIR is compared with MIR spectroscopy by measuring a wheat 
fl our sample in the refl ection mode ( Tønning, 2007 ). The information from an MIR 
spectrum at 4000–400       cm  � 1  (2500       nm–25        μ m) in  Figure 11.1b  is refl ected as a holo-
gram in the NIR spectrum at 700–2500       nm in  Figure 11.1a . The 1st and 2nd over-
tones of the fundamental overlapping stretching vibration of O–H and N–H in the IR 
spectrum around 3300       cm  � 1  (peak 1,  Figure 11.1b ) correspond to the NIR bands at 
1465 and 1000       nm ( Figure 11.1a ). The 1st, 2nd, and 3rd overtones of the fundamental 
stretching vibration of C–H in the MIR spectrum around 2927       cm  � 1  (peak 2,  Figure 
11.1b ) are refl ected in the NIR at 1780, 1200, and 920       nm ( Figure 11.1a ). 

   The fi ngerprint region in MIR ( Figure 11.1b ) from 1900 to 700       cm  � 1  contains the 
amide I and II bands (peaks 3 and 4) and the characteristic C–O and C–N stretch-
ing bands (peak 5). These bonds are represented in NIR spectroscopy ( Figure 11.1a ) 

 Figure 11.1          Near-infrared (NIR) spectrum and its corresponding infrared spectrum of a typical bread wheat fl our ( Tønning, 2007 ). 
(a) NIR refl ectance spectrum (log(1/ R ) MSC) of typical bread wheat fl our; (b) the corresponding IR spectrum of the same wheat fl our 
sample. Selected vibrational bands in (a) and (b) assigned to:  1 : O–H and N–H stretch,  2 : C–H stretch,  3 : amide I at 1540–1660       cm  � 1  
(C–N      �      C   �   O stretch),  4 : amide II at 1530–1540       cm  � 1  (N–H bend      �      C–N stretch),  5 : C–O and C–N stretch,  6 : O–H combinations and 
N–H combinations,  8 : C–H combinations.      
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as combination overtone bands such as for amide at 2100       nm (peak 7) and for C–H 
stretching from 2280 to 2330       nm (peak 8). The overtone bands dominate the NIR spec-
trum from 1900       nm and also include those of O–H and N–H at 1934       nm (peak 6). 

   Because of a more straightforward relationship between peaks and bonds in MIR 
compared with NIR, the fi rst alternative is preferred for structural elucidation of 
purifi ed components such as in the investigations on carbohydrates by  Kacurakova 
and Wilson (2001)  or those on arabinoxylanes from wheat endosperm by  Robert  
et al.  (2005) .  Chen  et al.  (1998)  used an IR microscope in transmission mode to iden-
tify cell-wall mutants from lyophilized dry leaves of  Arabidopsis  and fl ax. However, 
 Burns and Schultz (2001)  found in a lignocellulose material that NIR spectroscopy 
had  “ an edge ”  over Fourier transform infrared (FTIR) spectroscopy on all counts: the 
correlation was better, the equations were more robust, and there were fewer errors.  

    Current practice in NIR spectroscopy 
for cereals and cereal products 

    Instrumentation 

   Modern NIR spectroscopy technology started in the 1950s when it was applied to 
cereals by its founding father, Karl Norris, at the USDA laboratory in Beltsville, USA 
( Hindle, 2001 ). Norris was probably the fi rst to realize the practical potential of NIR 
spectroscopy, using the primitive instrumentation and computer technology available 
at that time, for developing moisture and protein determination in wheat. In the early 
1970s reproducible NIR fi lter instruments became available ( Williams, 1975 ). It is now 
possible to apply full-scale NIR spectroscopy, so that in principle the wet laboratory 
could be replaced, making dry instant analyses available in an instrument box, which 
can drastically reduce the time taken. In the 1980s the fi rst version of the extremely 
reliable scanning near-infrared refl ectance spectrometers for milled samples and that 
of near-infrared transmittance (NIT) spectrometers for whole grains appeared. 

   In this chapter we will use two NIR spectroscopy instruments, one for NIR refl ect-
ance on fl our (Foss-NIR-systems 6500, Foss A/S, Hillerød, Denmark) and one for 
NIT transmission on whole seeds (Foss-Infratech). In addition the Grain Check (now 
Cervitech) single-seed image analysis instrument (Foss Tecator, Höganäs, Sweden) 
and the Single Kernel Characterization System (SKGS) 4100 for seed hardness 
(Perten Instruments Inc., Reno, USA) are employed. For data visualization we use 
the  “ Latentix ”  color staining software (see  Figure 11.3 ,  www.Latentix.com ) and for 
chemometric PCA and PLS evaluation of spectra the  “ Unscrambler ”  data program 
package (Camo A/S, Oslo, Norway) is employed.  

    Variables affecting NIR spectroscopy prediction 

   As outlined by  Williams and Norris (2001)  there is a need for a strictly defi ned 
standardization routine for NIR spectroscopy measurements to be successful. The 
 measurements are dependent on the reproducibility of the instrument with regard to 

              



slit, wavelength, and photometric scale, the instrument temperature control and the rel-
ative humidity.  Williams (2001)  identifi ed over 50 variables that infl uenced NIR spec-
tra in a complex way and documented 24 of them in spectral plots ( Williams, 2007 ). 

   Over a period of 10 years we have had positive experience with the very high 
reproducibility over time with our Near Infrared Refl ection Instrument NIR-Systems 
6500 (Foss A/S, Hillerød, Denmark) that is used in applications in this chapter. The 
fi nely milled seed samples are measured through a quartz window with a rotary 
cup at 16 references and 32 sample scans with the reference setting at 0.09691. 
Temperature in the laboratory is between 23.5 and 24.5 ° C and every second wave-
length in a scan 400–2500       nm is retained. There is no spectral smoothing. To check 
the quality of the light source to indicate when a change of lamp is necessary, a pec-
tin standard is measured before each measurement at 1934       nm and the height of the 
peak is noted. Deviations on the third decimal are typically log(1/ R ) 0.516–0.518. 
In addition a measurement cell with a permanent barley sample is measured regu-
larly several times during each experiment. After measurement the reproducibility of 
the barley standard is checked in a PCA score plot for sample classifi cation together 
with the other measurements. The standard measurements should then occupy a nar-
row overlapping circle in the plot where the standards overlap. 

   In our laboratory we condition all the whole grain samples to the ambient rela-
tive humidity of the air in the laboratory by open storage for a few days. In this way 
moisture in a sample within an experiment is a specifi c expression of its water activ-
ity, which is of great importance in interpreting NIR data. The samples have a water 
content of typically 9–11% for barley.  

    Spectral pre-treatment 

   A minor part of the stochastic noise in NIR data is due to instrumental noise. The 
major part is due to physical scatter ( Dahm and Dahm, 2001 ). Variables related to the 
hardness of the seed infl uence both whole seed transmission (NIT) spectra and refl ec-
tion (NIR) through the particle distribution of the milled seed sample. Thus NIR 
allows effective calibrations for hardness in milled wheat samples ( Williams, 2002 ). 
As shown earlier it is not a problem to reduce the stochastic variation in log(1/ R ) NIR 
spectra by the classical fi rst and second derivative pre-treatment techniques, or by 
chemometric methods such as multiple scatter correction (MSC) ( Martens and Næs, 
2001 ) and the extended inverted signal correction (EISC) used on NIT spectra of sin-
gle wheat seeds by  Pedersen  et al.  (2002) . It is possible to separate the chemical infor-
mation from the physical by the difference between raw and pre-treated (e.g. MSC) 
spectra ( Jacobsen  et al. , 2005 ). The extended multivariate scatter correction (EMSC) 
( Martens  et al. , 2003 ) allows a further more sharp separation and quantifi cation of 
the chemical and physical infl uences in NIR spectra. EMSC works through prior 
knowledge of the specifi c patterns of spectra from the pure chemical components.  

    NIR spectra as a reproducible physiochemical fi ngerprint 

   In order to empirically demonstrate the relative specifi city of chemical informa-
tion in NIR spectra, it is important to span the variation in chemical composition. 
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Table 11.1 Chemical composition (% dry matter of the barley mutant material) (Munck et al., 2004) used in the near-infrared 
(NIR) spectral studies in Figures 11.2–11.4 and 11.10–11.17. C � carbohydrate mutants; P � protein, high-lysine mutants; 
N � normal barley cultivars. The mutants are listed in Figure 11.14

Dry matter Protein Amide A/P BG Fat Starch

All n 92 84 81 81 88 20 35
Mean 90.66 � 0.97 16.08 � 2.22  0.4 � 0.2 15.19 � 2.22  8.06 � 4.79  2.48 � 0.76 45.18 � 8.78
Max 93.02  9.7  0.2  9.46  2.2  1.66 27.3
Min 88.91 22.28  0.6 18.58 20  3.77 60.4

Greenhouse n 69 69 69 69 69 15 25
Mean  9.71 � 0.996 16.85 � 1.48  0.42 � 0.07 15.44 � 2.20  8.45 � 4.91  2.36 � 0.68 42.85 � 8.24

Field n 23 15 12 12 23  6 10
Mean 90.42 � 0.86 12.53 � 1.43  0.28 � 0.05 13.71 � 1.78  6.95 � 4.36  2.77 � 0.92 51.01 � 7.55

C n 29 26 25 25 29  9  7
Mean 91.62 � 0.75 16.98 � 2.13  0.42 � 0.06 15.32 � 0.81 14.21 � 2.9  2.71 � 0.76 32.1 � 5.8

P n 23 23 18 18 23  3 15
Mean 90.18 � 0.49 15.77 � 2.33  0.29 � 0.05 11.67 � 1.54  3.79 � 1.36  3.5 � 0.06 44.75 � 4.81

N n 40 40 37 37 40  9 14
Mean 90.22 � 0.79 15.64 � 2.09  0.42 � 0.07 16.77 � 0.78  5.72 � 0.99  1.91 � 0.16 52.16 � 4.25

An example on barley endosperm mutants is described in  Table 11.1    ( Munck  et al. , 
2004 ), where all chemical variables except dry matter have a very wide range. The 
variation is caused by both genetics and environment. Carbohydrate C (high beta-
glucan, low starch) and protein P (low prolamine/amide, high lysine, low beta-
glucan) endosperm mutants and normal N barley controls are grown in two extreme 
environments: fi eld F (low protein, high starch) and greenhouse G (high protein and 
beta-glucan, low starch). In  Figure 11.2a    log(1/ R ) MSC corrected NIR spectra of 
milled seeds from four barley genotypes selected from  Table 11.1  grown in the fi eld, 
are displayed for the complex C–H part of the fi rst overtone region 1680–1810       nm. 
They represent genotypes from the classes C (mutant  lys5f ), N (Bomi), and P ( lys3a ). 
Spectra from the latter genotype are replicated from separate plots to check repro-
ducibility. The 1680–1810       nm region was selected because it could perfectly clas-
sify the genotypes (C, N, P) as described above. The positive and negative standard 
correlation coeffi cients ( r ) for every second wavelength to the protein, amide, starch 
and beta-glucan analyses for the whole material listed in  Table 11.1  are displayed 
as curves in  Figure 11.2b  at 1680–1810       nm. The wavelength-dependent correlation 
curves verify empirically the fi nely tuned specifi c chemical information that is avail-
able in NIR spectroscopy. 

   Spectral assignments selected from the literature ( Osborne  et al. , 1993 ;  Williams, 
2001 ) are displayed in  Figure 11.2b . Starch gives high correlations in the 1750–1780       nm 
range while those for protein peak at 1685–1705       nm and at 1710 and 1734       nm, 
for amide at 1690 and 1745       nm and fi nally for beta-glucan at 1683, 1705, and 
1735       nm. The protein band at 1734       nm ( Williams, 2001 ) was confi rmed. The C and 
the P mutants are high in oil ( Table 11.1 ). The oil peaks at 1724 and 1762       nm are 
confi rmed in  Figure 11.2a  for the  lys5f  sample that has 50% more oil than Bomi. 
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 Figure 11.2          Mutant-specifi c near-infrared (NIR) spectra and correlation coeffi cients for barley material in  Table 11.1 . (a) Examples 
of mutant-specifi c NIR spectra (log(1/ R ) MSC) 1700–1810       nm from the barley material in  Table 11.1  (fi eld): Normal N Barley, cv. Bomi 
and its P (protein) mutant 3a ( n       �      2,  lys3a ) and C (carbohydrate) mutant 5f ( lys5f ). The peaks at 1724 and 1762       nm of the 5f and 3a 
spectra indicates the high oil (fat) content in the C and P mutants described in  Table 11.1 . (b) Simple correlation coeffi cients ( r ) between 
every second NIR wavelength in the 1680–1820       nm area and four chemical analyses from the whole barley material in  Table 11.1 . 
BG      �      beta-glucan. Assignments of wavelengths according to the literature ( Osborne  et al. , 1993 ;  Williams, 2001 ) for comparison to the 
mutant-specifi c spectra in  Figure 11.2a  are given at the bottom of the fi gure. (see Plate 11.1 for colour version)      
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   In  Figure 11.3a    all the 92 NIR refl ection 1100–2500       nm spectra of the barley lines 
grown in the greenhouse ( n       �      69) and in the fi eld ( n       �      23) from  Table 11.1  are dis-
played ( Munck, 2007 ). They are colored green for the normal (N), red for the carbo-
hydrate mutants (C) and blue for the protein mutants (P) genotypes. It is clear that 
each of these spectral categories displays genotype specifi c patterns for N, C and P 
all over the spectral range and that the genetic differences dominate over the envi-
ronmental ones (fi eld versus greenhouse). In  Figure 11.3e  the spectra are stained 
by a beta-glucan color gradient (2–19%) by the Latentix software visualizing the 
carbohydrate mutant category that is high in beta-glucan. Similarly a low amide/
protein (A/P) index (9–19 units) is visualized by color in  Figure 11.3f , indicating the 
specifi c spectral pattern of the protein P mutants. The versatility of the fi nely tuned 
NIR spectral information that represents physiochemical fi ngerprints is evident by 
the examples from        Figures 11.2 and 11.3 .  

    Spectral interval selection for simple and complex traits 

   In NIR spectroscopy it is essential to explore the sequential information on chemical 
bonds and components given in local bands in the spectra from a specifi c experiment 
in a pragmatic dialogue with prior general knowledge from assignment tables ( Shenk 
 et al. , 2001 ). Interval partial least squares regression (iPLS) ( Nørgaard  et al. , 2000 ) 
at different intervals (5–35       nm) is employed because of a graphic interface that is 
especially useful in visualizing the  “ hot spots ”  in collection of spectra for the high-
est correlation and lowest error. The log(1/ R ) MSC 1100–2500       nm NIR spectra in  
Figure 11.3a  and the chemical analyses in  Table 11.1  were used in a 30-nm iPLS 
regression analysis to predict dry matter (water). The iPLS plot for dry matter in 
 Figure 11.4    depicts the root mean squared error of cross-validation (RMSECV) for 
the 47 local PLS models. The error is especially low in the intervals of 8, 10, and 
25–27. We will here focus on the combination band interval no. 27 (1890–1920       nm). 
This band was identifi ed by  Gergely and Salgo (2003)  as a sensitive indicator for 
bound water in a study on maturing wheat kernels. It is remarkable that the cross-val-
idated PLS correlation plot in  Figure 11.5    features a correlation coeffi cient  r       �      0.96 
(at one principal component and seven outliers) within a range of dry matter 88.91–
93.02%. Such a narrow range in measurement puts high demands on the precision of 
the dry matter (y) analysis as indicated by the seven outliers. By inspecting the indi-
vidual 92 barley spectra in the region 1890–1920       nm it was found in  Figure 11.3c  
( Munck, 2007 ) that there was no overlap between C spectra and P      �      N spectra in 
the region 1890–1900       nm. The outliers were thus caused by errors in the dry matter 
analysis and not by the NIR instrument. 

   The spectral classifi cation for dry matter is verifi ed by the Latentix software in 
a dry matter gradient from 89 to 93% in  Figure 11.3d . The feasibility of the vis-
ual classifi cation of spectra explains that there is only need for a simple PLS model 
with one principal component (PC). It is amazing to fi nd by inspection (see insert 
in  Figure 11.5 ) that the total mean spectral response C versus P      �      N spectra at 
1905       nm is only 4      �      10  � 4  log(1/ R ) and that the mean difference in dry matter analy-
sis between the C samples on one side and the P      �      N samples on the other is as low 
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 Figure 11.3          Near-infrared (NIR) spectral information representing physiochemical fi ngerprints of barley. (a) Mean centered log(1/ R ) 
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as an absolute percentage of 1.5. This example verifi es that water can be sensitively 
detected by NIR due to its dipolar qualities ( Miller, 2001 ) that also play a fundamen-
tal role in the chemistry of biological networks. Water binding, detected and studied 
by NIR spectroscopy was thus named aqua-photomics by  Tsenkova (2007) . 

   Spectral ranges in the barley mutant material can, in analogy with iPLS, be clas-
sifi ed by interval extended canonical variate analysis (iECVA) ( Nørgaard  et al. , 
2006 ;  Munck, 2007 ) for genotype (C, N, and P) and for environment greenhouse 
(G) and fi eld (F) as demonstrated in the iECVAs in  Figure 11.6a, b   . The  y -axis 
depicts the number of misclassifi cations at 35       nm spectral intervals along the  x -axis 
1100–2500       nm. It can be seen that there are broad areas from zero to a few misclas-
sifi cations of the genotype, which are all associated in a remarkable way to vibrations 
from C–H bonds. First, around 2280–2330       nm in  Figure 11.6a  the combination over-
tone area ( Figure 11.1a ) represents the fi ngerprinting region in MIR 1900–700       cm  � 1  
( Figure 11.1b ). Second, the second overtone stretch area 1130–1300       nm and the second 
part of the fi rst overtone stretch region 1675–1800       nm in  Figure 11.6a  refl ect the fun-
damental C–H stretch vibrations around 2927       cm  � 1  in MIRS as shown in  Figure 11.1b . 
The  “ hot ”  area for genetic classifi cation 1680–1810       nm was chemically validated with 
success by the correlations in  Figure 11.2b . The fi nely tuned genotype specifi c spectra 
in        Figures 11.2a and 11.3a  thus have a solid chemical signifi cance. 

   The iECVA classifi cation in  Figure 11.6b  for the environmental differences (G, F) 
demonstrates large differences between intervals. The area with the best result is six 
intervals from four to zero misclassifi cation around 2200       nm. The iECVA approach 
can also be used for spectral classifi cation of complex traits other than mutant gen-
otypes such as food functionality, e.g. baking volume to identify the spectral  “ hot 
spots .”   

    NIR seed batch analytical applications 

    Prediction of single analytes 

    Wheat 
   NIR spectroscopy application pioneer Phil Williams at the Canadian Grain 
Commission introduced large-scale analysis of ground wheat and soybeans for mois-
ture, protein and oil in the early 1970s ( Williams, 1975 ). The commercial market 
in the world trade of grain raw materials needs global calibration models for spe-
cifi c analytes such as water (%) and protein (%) that are included in trade contracts. 
However, the disadvantage is that there is a need for a separate calibration for each 
commodity and constituent in a calibration set of thousands of samples. This is an 
expensive and tedious affair ( Buchmann  et al. , 2001 ;  Williams, 2007 ). Calibration 
models are therefore often developed by the instrument manufacturers ( Buchmann 
 et al. , 2001 ) and included as an essential, however, quite costly part of NIR spec-
troscopy instrument packages that are tailored to the specifi c needs of traders, plant 
breeders, and the cereal industry. Alternatively the instrument maker can associate 
with a network of users such as in the Danish Near-Infrared Transmission (NIT) 
calibration network for wheat and barley ( Buchmann  et al. , 2001 ) for providing the 
calibration models. 
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   For wheat processing, the Australian scientist Brian Osborne ( Osborne  et al. , 1993 ) 
has pioneered many NIR spectroscopy applications summarized in reviews on wheat 
milling ( Osborne, 2007 ) and bread making ( Osborne, 2001 ). The ability of NIR 
spectroscopy to measure protein level, hardness and starch damage by estimating 
free and bound hydroxyl groups in starch and water in fl our may explain the abil-
ity of NIR spectroscopy to predict water absorption in fl our ( Delwiche and Weaver, 
1994 ). NIR spectroscopy is used to discriminate between amylopectin (waxy) starch 
and amylose ( Delwiche and Graybosch, 2002 ). An in-depth NIR spectroscopic study 
on the chemical aspects of gluten in relation to water uptake has recently been pub-
lished by        Bruun  et al.  (2007a, 2007b) .  

    Barley 
    Meurens and Yan (2002)  has given a thorough overview of the use of NIR refl ectance 
and NIT spectroscopy in the brewing industry with regard to barley, malt, hops, and 
yeast raw materials, and also in the mashing and fermentation processes. The hard-
ness, protein, starch, and beta-glucan parameters are important parameters to predict 
malt quality, e.g. in pilot maltings where extract yield and wort viscosity (high beta-
glucan) are most important ( Pram Nielsen, 2002 ;  Møller, 2004b ). Malting quality is 
greatly infl uenced by the physiological aspects of germination such as the viability 
(live or dead) and vigor (potential growth rate) of the germ, which are diffi cult to 
predict by NIR spectroscopy from the ungerminated kernel. Speed of germination is 
an essential marker for enzyme production triggered by the excretion of plant hor-
mones from the germ. Beta-glucanases break down the endosperm cell walls in the 
process of malt modifi cation ( Nielsen and Munck, 2003 ;  Munck and Møller, 2004 ) 
and alpha amylase is produced to be exploited in the brewhouse in breaking down 
starch to produce wort with a high extract yield.  

    Rice 
   Rice is mainly used for cooking after de-hulling the seed into brown rice that is 
polished to white rice, with a yield of about 67% ( Bergman  et al. , 2003 ). Rice fat 
from bran and testa may produce taste problems with rancidity. Starch constitutes 
about 90% of the milled rice. The amylopectin (glutinous) and amylose (fi rm and 
non-sticky) components in starch determine cooking quality and gelatinization tem-
perature. The sensory attributes of cooked rice such as smell, mouth feel, and fl a-
vor are of great practical importance. NIR spectroscopy is used in rice in general, 
e.g. for moisture and protein ( Natsuga, 1999 ), to predict rice lipid acitivity and sur-
face lipid content ( Chen  et al. , 1997 ;  Li and Shaw, 1997 ) as well as grain cooking 
quality. Prediction of the important amylose component for cooking quality has 
been reported ( Delwiche  et al. , 1995 ;  Shimizu  et al. , 1999 ) with varying degree of 
success. 

   According to  Bergman  et al.  (2003) , NIR spectroscopy for selection of rice 
by cooking quality is practised by rice breeders with a defi ned breeding material, 
however, large-scale genetically broad evaluation programs by NIR in the US and 
Australia have stopped. In the Japanese rice industry ( Tanaka  et al. , 1999 ) special 
NIR spectroscopy rice  “ taste analyzers ”  have been developed to produce test scores 
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related to a combination of the parameters of amylose, protein, moisture, and lipid 
activity. However, these NIR spectroscopy  “ tasters ”  are designed to measure the rice 
preference of Japanese consumers and are thus unsuited for use in other markets 
( Champagne  et al. , 1996 ).  

    Maize 
   NIT and NIR refl ectance spectrometers are widely used in the industry to measure 
moisture, protein, starch, and fi ber content in whole maize and in maize products 
( Paulsen  et al. , 2003 ). NIR spectroscopy prediction models are available for the esti-
mation of extractable starch for the wet milling industry and for predicting true den-
sity, seed breakage susceptibility and kernel density in maize. Quality in maize is 
mainly associated with the handling of the seed to avoid cracks during drying, which 
infl uence the ability to store, and to avoid mold and insects that are related to seed 
size and hardness. There are a wide range of starch and protein mutants in the dip-
loid maize species in analogy with barley, some of which are exploited in the indus-
try (e.g. waxy and high amylose maize).   

    Use of NIR spectrometers independent of commercial calibration models 
   It is remarkable that the overwhelming majority of NIR spectrometer owners are not 
aware of that their instruments can be used in a great many applications for both 
prediction and classifi cation ( Williams, 2007 ;  Munck, 2008 ) without commercial 
software. The instrument industry has been reluctant in promoting such an oppor-
tunity, probably because they do not want to distract their customers from using the 
commercial calibration models. However, there should be no confl ict but instead an 
expansion in the use of NIR instruments for the new classifi cation applications. As 
pointed out by  Williams (2007) , the manufacturers should benefi t in sales by market-
ing the whole technology instead of focusing on instruments and calibration software 
for limited uses. 

    Prediction models for food functionality in local cereal laboratories 
   The Kjeldahl protein analysis has had a dominating economic importance in trade 
contracts in the last 100 years as an indicator for high gluten content in wheat and for 
low extract in malting barley. However, high protein content in a wheat variety does 
not always imply high baking performance because baking functionality depends on 
many other factors besides protein. Plant breeders have now developed environmen-
tally improved wheat varieties that need less nitrogen fertilizers in spite of having an 
excellent baking performance and yield at low protein content. However, remarkably, 
these varieties cannot be offi cially acknowledged (e.g. in Germany) because they do 
not live up to the required standard protein level of premium wheat that is needed in 
offi cial testing and by the market. 

   Wet gluten, dough performance, and baking volume can now be estimated by NIR 
spectroscopy (       Williams, 2002, 2007 ). These functional analyses by NIR spectros-
copy, where wavelengths for the protein contribution are included as an integrated 
part in the spectral signatures for complex quality should now substitute for crude 

              



protein as a standard for quality in wheat. There are no established global calibra-
tions available yet for the more complex quality parameters to be used in trade. Until 
such calibrations are obtained the individual industrial laboratory should be trained 
in making local calibrations that are continuously improved ( Munck, 2008 ) to be 
used to upgrade quality control within the company.  

    Spectral classifi cation with reference samples independent on commercial 
calibration data 
   The French chemometrician Dominique Bertrand from Nantes and his group proba-
bly are the fi rst to apply the explorative NIR classifi cation (discriminant analysis) for 
wheat variety identifi cation ( Bertrand  et al. , 1985 ).  Kim  et al.  (2003)  used a modi-
fi ed least squares regression analysis of NIR spectroscopy to check the authenticity 
of Korean grown rice versus imported rice for short and medium long grains. 

    Strategy in the physiochemical validation of classifi cation         While many represent-
ative samples in calibrations and in test sets are needed to get reliable predictions 
of single analytes by PLS and ANN, there is another situation if one just wants to 
verify differences between (seed) samples. For classifi cation of NIR spectra, a PCA 
score plot ( Martens and Martens, 2000 ) will be able to differentiate between classes 
of samples with different chemical composition as demonstrated in the following 
examples. There are two options for validation that can be used separately or com-
bined. The fi rst is to introduce extreme control samples with known quality in the 
material to be tested. They should all be grown together in the same fi eld. In select-
ing unknown samples, the low- and high-quality variants will then appear near to 
the high and low calibration sample respectively in a PCA score plot. As a second 
alternative, validation of NIR spectroscopy data from a PCA score plot is made in a 
separate PCA bi-plot, on physical and chemical laboratory analyses from the same 
samples. The discrimination ability of the two PCA plots is then compared, followed 
by integration in a PLS-2 NIR spectroscopy prediction ( x ) of all the physiochemi-
cal parameters as dependent variable ( y ). Here the aim is to explore the combined 
data-structure in a PLS score plot and to validate the signifi cance of the  y -parameters 
by Jack-knifi ng ( Martens and Martens, 2000 ) after the most obvious outliers have 
been identifi ed and removed in leverage and residual plots ( Munck and Møller, 2004 ; 
 Jacobsen  et al. , 2005 ).  

    Classifi cation example by NIR spectroscopy for understanding quality con-
cept in malting barley         In malting barley production, climatic differences between 
years infl uence malting quality as much as variety. This was investigated by        Møller 
(2004a, 2004b)  in the PCAs in        Figures 11.7 and 11.8      comprising intact seed sam-
ples of the barley varieties A (Alexis), B (Blenheim), and M (Meltan) grown in 
1993–1998 marked  3  to  8  (       Figures 11.7a, b and 11.8 ). A PCA ( Figure 11.7a ) on the 
63 NIT (850–1150       nm) for whole seed spectra by the Foss Infratech 1255 Analyzer 
is clearly discriminating between two groups of barley grown in 1996, 1997, 1998, 
and 1993 versus those grown in 1994 and 1995. There was a general consensus in 
Denmark that the malting barley harvest in 1994–1995 was diffi cult to modify into 
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malts. The NIR results in  Figure 11.7a  were now validated as suggested above by 
19 physiochemical variables including 10 seed form and hardness (HI) parameters 
from the single seed grain analyzers as well as germination percentage for 1–3 days 
(i.e. g%1–g%3), germination index (GI) and homogeneity (GH), water uptake (steep) 
and by extract percentage and beta-glucan in wort (BGwort) and beta-glucan in 
barley (BG) that require pilot maltings. 

   From the cross-validated PCA bi-plot on these 19 parameters displayed in 
 Figure 11.7b  it can be seen that samples from the favorable malting quality year 1998 
form a cluster (encircled) standing out as an independent verifi cation of the pattern 
of NIR spectroscopy data displayed in the separate PCA in  Figure 11.7a . Near to the 
encircled 1998 samples to the right in  Figure 11.7b  we fi nd the parameters ROUND, 
VOLUME, WIDTH, TKW, and EXTRACT, all associated with fast malting verifi ed 
by the adjacent germination parameters g%1–g%3, GI, and GH. The slower germi-
nating barleys from 1994–1995 to the left are associated with the negative param-
eters longer (LENGTH), harder seeds (HI) and Bgwort, all inversely correlated to 
the favorable quality characters to the right. 

   It was surprising to fi nd that NIT spectroscopy could predict germination rate 
g%1 by PLS (       Møller, 2004a, 2004b ). A physiological variable would not be expected 
to be predicted by NIT data from the ungerminated kernel, bearing in mind that 
germ weight constitutes only 2% of the seed. Vigor as well as malt modifi cation 
is dependent on the substrate availability that is needed for the emerging plant to 
grow. However, seed hardness and beta-glucan resistance to break down (BG wort) 
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are variables that should be related to the digestibility of the barley endosperm tis-
sue mediated by hormones and enzymes excreted by the germ. We then raised the 
hypothesis ( Munck and Møller, 2004 ) that vigor g%1 could be predicted by NIT 
through endosperm digestibility. This was indicated by the negative correlation 
between HI together with BGwort to the left in the PCA bi-plot ( Figure 11.7b ) ver-
sus g%1 together with EXTRACT to the right as discussed above. 

   For validation, the g%1 result for each sample was predicted by two separate PLS 
models, one for NIT spectroscopy and the other for the physiochemical parameters. 
The two separately predicted values for each sample were plotted against each in 
an  x–y  plot ( Figure 11.8 ). This reveals a correlation coeffi cient of  r       �      0.90 (       Møller, 
2004a, 2004b ) confi rming the hypothesis that NIT spectroscopy on the basis of the 
intact seed can indirectly model the physiological parameter g%1 by predicting 
the endosperm digestibility for the germ from the set of physiochemical analyses 
including the hardness parameter.   

    NIR spectroscopy as a key element in process analytical technology 
   Today, at-line and online NIR spectroscopy technology ( Kemeny, 2001 ;  Lee, 2007 ) in 
cereal industrial process control has replaced wet chemical analyses to a large extent, 
reducing the need for a laboratory. In the grain and feed industry there are now inline 
NIT analyzers that can continuously evaluate moisture and protein, as well as NIR 
spectroscopy equipment for online control of, for example, extract and alcohol dur-
ing brewing and fermentation. In principle, the development of a spectral fi ngerprint 
from a window in a process can be followed as a trajectory by the self-modeling 
PCA algorithm without a standard ( Munck  et al. , 1998 ). The integration among NIR 
spectroscopy instruments, chemometrics, and knowledge about processes is now tak-
ing place as  “ process analytical technology ”  (PAT) with multi-way ( Smilde  et al. , 
2004 ) chemometric models including the time dimension built on  n -way PLS ( Bro, 
1996 ) and PARAllel FACtor analysis (PARAFAC).  Allosio  et al.  (1997)  demonstrated 
the use of NIR spectroscopy in the refl ectance mode (1100–2500       nm)  evaluated by 
PARAFAC in the transformation from barley to malt. 

   As an example, the process control in a wheat fl ourmill by multi-block modeling 
of NIR spectroscopy data is discussed below. The wheat fl our data set ( Nielsen  
et al. , 2001 ) is modeled in a multi-block PLS analysis (Berg, 2001;  Bro  et al.,  2002 ) 
as displayed in  Figure 11.9a, b   . Flour samples from six different positions in the mill 
marked 1–6 were sieved into six fractions marked with a–f, making a total of 42 
fl our fractions including the origin. The samples were analyzed by NIR at 1100–
2500       nm. The NIR information ( Figure 11.9a ) was included in two blocks: the origi-
nal information in the upper block to the left and in a second SNV block below, to 
emphasize chemical information over scatter by the standard normal variates (SNV) 
transformation. These two NIR blocks are now used as predictors for the two blocks 
to the right in  Figure 11.9a , i.e. chemical composition including damaged starch (fi ve 
variables upper block) and for particle distribution as analyzed in the laboratory by laser-
scatter size distribution (lower block). 
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   The aim is to build a monitoring map that will show the physiochemical position 
of future mill samples only by using the NIR spectra. For this purpose a multi-block 
PLS model is constructed that seeks to predict the two blocks of chemical and particle 
distribution data to the right from the two blocks of NIR data to the left. The model is 
shown in  Figure 11.9b  as a multi-block visualization of the 1437 variables organized 
in the four different blocks in terms of samples marked by their labels. Samples that 
lie close to each other are similar in composition while samples that are distant are 
dissimilar. It is seen that the horizontal axis is dominated by the fi rst NIR block and 
the laser particle data that primarily explains the particle size distribution. The sec-
ond axis is dominated by the chemical SNV-NIR block and the chemical data blocks, 
splitting up samples for position 6 down from left to right that is known to be chemi-
cally different in composition ( Nielsen  et al. , 2001 ). All the samples from the  “ f  ”  
sieving fraction are contained within the ellipse to the right as a separate cluster.  Bro 
 et al.  (2002)  explains that the essence of the multi-block method is to perform  “ data 
analysis, thinking in terms of building blocks rather than of individual variables. This 
signifi cantly reduces the risk of being over-whelmed even when a lot of different data 
related to the same set of objects has to be analyzed. ”  However, a dialogue with an 
experienced open-minded miller who knows his process is still needed to gain the 
full advantage of such a complex multi-block evaluation by chemometrics.    

    Exploiting the variation in single seed quality 
by NIR spectroscopy sorting 

    Variation in physiochemical seed composition evaluated by NIR spectroscopy 
   From a physiological and sampling point of view, size, shape, and physiochemical 
composition of the individual seed should be considered as the ultimate biological 
unit behind a NIR spectroscopy measurement ( Munck, 2008 ). Stephen Delwiche 
( Delwiche, 1998 ) who continued Karl Norris ’  work ( Hindle, 2001 ) on NIR spec-
troscopy at the USDA-ARS laboratory Beltsville, USA, developed measurement 
techniques for single wheat kernel protein for NIT at 850–1050       nm ( Delwiche, 1995 ) 
and for NIR at 1100–2498       nm ( Delwiche and Hruschka, 2000 ). The spectral inter-
val between 1100 and 1400       nm gave the best predictions in NIR measurements. PLS 
regression correlation coeffi cients varied between 0.85 and 0.93 for NIT and 0.90 
and 0.96 for NIR refl ectance. 

   Jesper  Pram Nielsen (2002)  from our group confi rmed and expanded Delwiche’s 
work ( Delwiche, 1995 ) on the variation of quality of single seeds by a multivari-
ate approach. There was a huge variation in protein content up to 6–20% even among 
wheat seeds from the same genetically homozygous variety from the same fi eld. In an 
elaborate experiment, Pram Nielsen measured 15 different quality parameters on each 
of 523 wheat kernels collected from 43 different wheats grown at two locations in 
Denmark (Pram Nielsen  et al. , 2003). Single seed laboratory Kjeldahl protein and den-
sity measurements for reference were combined with single seed measurements with 
the Infratech instrument (850–1050       nm), the Grain Check single seed imaging analyzer, 
and the Perten SKCS 4100 single seed hardness meter. There was a great variation in 
single seed hardness (from 28.8 to 101.5 hardness units), protein (6.8–17.0%), and 

              



density (0.99–1.25       g/cm 3 ). The PLS regression correlation coeffi cients were 0.98 for 
protein, 0.76 for virtuousness, 0.70 for density, and 0.59 for hardness.  

    Development of automated single seed NIR spectroscopy sorters 
   A commercial laboratory single seed sorter Luminar 3076 ( “ Seed Meister ”  NIR 
analyzer, Brimrose, MD, USA) for plant breeding use was launched in 1996. NIR 
devices for laboratory single seed sorting work for moisture and protein in maize 
and soybean ( Armstrong, 2006 ) and in rice ( Rittiron  et al. , 2004 ) have also been 
developed. Recently  Dowell  et al.  (2006)  have published data on sorting by another 
automated NIR system for selecting individual kernels in a laboratory scale, based 
on PLS calibrations. The seed-sorting system was designed for plant breeders. It 
is able to differentiate and sort between 100% amylopectin (waxy)- and amylose-
containing kernels in a segregating seed population for the waxy gene in proso millet. 
The protein content in a batch of wheat seeds could be increased by 3.1 absolute per-
centage points higher than the low protein fraction. In sorting for hardness the hard-
ness index was 29.4 hardness units higher in the hardest fraction than in the fraction 
with the softest kernels.  Delwiche  et al.  (2005)  in single grains confi rmed  Williams 
(2002)  indication in bulk wheat that it is possible to obtain a considerable reduction 
of deoxynivalenol by sorting  Fusarium -infested grains. 

   It should be attractive in plant breeding and industry to exploit the extreme single 
seed variation in quality for sorting that has been shown for univariate variables in 
the NIR spectroscopy literature by PLS prediction. However, it is now possible to 
advance a step further by the pilot scale NIR/NIT TriQ single seed sorter (Bomill 
AB, Lund, Sweden) (Löfqvist and Pram Nielsen, 2003;  Munck, 2008 ). The TriQ 
machine sorts directly for complex functional traits such as baking quality in wheat 
by classifi cation without the elaborate data model development needed for univariate 
parameters such as protein. The pilot machine with a capacity of 2–500       kg/h shown 
in  Figure 11.10a    is based on a cylinder indent machine with pockets ( Figure 11.10b ) 
that position the seeds for individual NIR analysis. The NIR spectroscopy informa-
tion is then classifi ed according to the functional trait by the data program and con-
nected for sorting to an air jet ejector. 

   Results for a batch of seeds from the spring wheat variety Vinjett are shown in 
 Table 11.2   . These were fractionated on a single seed basis into these fractions and 
were analyzed for fl our dough and baking quality parameters ( Tønning  et al. , 2007 ). 
The fractionation difference in quality from F1 (yield: 30.4%), F2 (33.3%) to F3 
(36.3%) demonstrates a signifi cant systematic increase in falling number, water 
absorption, Zeleny value, wet gluten, fl our protein, bulk grain density, and baking 
volume, confi rming the data from another single seed wheat fractionation experi-
ment by the same manufacturer published by  Munck (2008) . There is now indus-
trial-scale single seed quality classifi cation capacity ( Figure 11.10c ) (Pram Nielsen 
and Löfqvist, 2006) for complex functional characteristics such as malting quality, 
baking quality, and  Fusarium  infection with the full-scale TriQ-20 single seed NIR/
NIT (2 tons per hour) sorter module from Bomill A/B as shown in  Figure 11.10b . 
By integrating fi ve TriQ-20 units in one machine a stunning single seed NIR sorting 
capacity of 10 tons per hour can be obtained.    
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(a)

(b)

(c)

Figure 11.10         Single seed near-infrared (NIR) spectroscopy sorters. (a) Bomill pilot (2–500       kg h  � 1 ) TriQ single seed NIR spectroscopy 
sorting machine (Bomill AB, Lund, Sweden) used in single seed sorting in wheat in  Table 11.2   . (b) Close-up of cylinder of machine in 
 Figure 11.10a  showing pockets to position the seeds before NIR measurement. (c) The industrial-scale 2       tons h  � 1  TriQ-20 single seed NIR 
spectroscopy sorter unit (Bomill AB, Lund, Sweden). The door is open to show the cylinder.    

Table 11.2 The quality of three fractions (F1–F3) from single seed sorting of wheat by 
the pilot near-infrared (NIR) TriQ sorter (Bomill AB, Lund, Sweden) shown in Figure 
11.10 (Tønning et al., 2007). Flour quality analyses are based on 14% moisture

F1 F2 F3

Bread volume   2.6   2.7   3.1
Bulk grain density  80.2  81.1  81.3
Flour protein (dry matter)   9.5  10.4  11.9
Wet gluten (%)  20.2  21.3  26.5
Zeleny number  26.0  28.8  30.5
Water absorption (%)  51.1  51.5  53.5
Falling number seconds 372 404 404

    Reproducibility of NIR spectra from 
multi-grain samples as infl uenced by 
genotype and environment 

   It is not yet known how precisely one can select for complex traits in early sin-
gle seed generation breeding with the new equipment. Careful seed sampling is of 

              



paramount importance ( Tønning  et al. , 2006 ) in order to obtain a representative sam-
ple to estimate the correct protein value for the batch. However, sampling is getting 
another edge when moving from the univariate (protein) to the multivariate (e.g. bak-
ing quality) perspectives on single kernels compared with those on seed batches. 
A whole NIR spectroscopy fi ngerprint of a seed sample is much better in repre-
senting the intrinsic quality of identity (the origin      �      genetics      �      environment) than 
a single chemical component. Thus a NIR spectroscopy fi ngerprint can be used to 
ascertain homogeneity regarding origin when delivering from a silo that is supposed 
to contain many loads from one variety grown in the same area. 

   In measuring seed batches with NIR refl ectance spectroscopy, the environment tends 
to infl uence spectral offset to a higher degree than genetics that seems to be more pat-
tern-specifi c ( Munck  et al. , 2001 ). The single seeds within an advanced barley or wheat 
line that are naturally inbred should be homozygous and almost 100% genetically uni-
form. As shown above, the seed batches from the barley mutant material in  Table 11.1  
can be classifi ed by 35       nm iECVAs on NIR 1100–2500       nm both for genetic ( Figure 
11.6a ) and for environmental differences ( Figure 11.6b ). The underlying single seed 
composition within each batch must be extremely variable. The crucial step to be taken 
to relate single seed NIR pattern with those from the bulk is to defi ne the consistent 
spectral patterns for origin (genotype      �      environment) in single seeds from a seed sam-
ple and to prove how they are reproduced in bulk. It was shown that contamination of 
normal seeds in a mutant line detected in a PCA on NIR spectroscopy data from bulk 
could be verifi ed by visual inspection of the spectra and seeds ( Munck  et al. , 2001 ). 

   As demonstrated in  Figure 11.11a, b   , we were impressed by the extremely high 
reproducibility of NIR refl ectance spectra (1680–1810       nm) from milled batches 
of seeds, here exemplifi ed by two lines 0404 and 1105 of the homozygous barley 
mutant  lys5g  grown in the greenhouse and in the fi eld. The two lines were propa-
gated separately in over 10 generations. The two overlapping spectra to the left in 
 Figure 11.11a  (enlarged in  Figure 11.11b ) demonstrate the extreme reproducibility 
of the greenhouse environment displaying line 0404 grown in 1998 and in 1999. The 
two lines of mutant  lys5g  0404 and 1105 (below to the right) grown outdoors in the 
same fi eld in 2000 also closely reproduce each other’s spectrum. Because of uncon-
trolled climate, it is impossible to reproduce spectra from different years in fi eld tri-
als as for greenhouse. In spite of that, as seen in the color graph in  Figure 11.3a  
( Munck, 2007 ) of all 92 barley spectra (1100–2500       nm) from the material in  Table 
11.1 , the barley genotype N, P, C specifi c patterns dominate over the fi eld/green-
house environment effect. To demonstrate the genotypic reproducibility of spectra 
from mutants lys3a (P mutant), lys5f (C mutant) and parent variety Bomi (N normal) 
over three greenhouse cultivations in 1998, 1999 and 2000, Figure 11.12 focuses on 
the spectral region 2260–2380nm (Munck, 2006). The spectra  are normalized to the 
control genotype lys5g set equal to zero. The high reproducibility of the spectra from 
the three barley genotypes is evident. 

   It is now clear that spectral patterns in bulk samples grown in a controlled envi-
ronment are specifi c for each homozygote barley genotype and mutant. The complex 
morphological and physiochemical seed emergence that is behind each population of 
seeds seems to have an almost computational signifi cance as documented by the high 

Reproducibility of NIR spectra from multi-grain samples  297

              



298 Cereals and Cereal Products

0.186

(a)

0.188

0.190

0.192

0.194

0.196

0.198

0.200

1690 1700 1710 1720 1730 1740 1750 1760 1770 1780 1790 1800 1810

Figure 11.11b

0404 GH1998

0404 GH1999

0404 Field2000

1105 Field2000

0404 GH1998

0404 GH1999

0404 Field2000

(b) 1105 Field2000

Figure 11.11       Four near-infrared (NIR) spectra 1690–1810       nm (log(1/ R ) MSC) for two parallel lines 
(0404 and 1105) with the  lys5g  carbohydrate C mutant included in the barley material in  Table 11.1 . To the 
left above line 0404 grown in greenhouse (GH) in 1998 and 1999. To the left below line 0404 and 1105 
grown in the fi eld in 2000. (a) Whole spectra; (b) enlargement of the four spectra within the square in 
 Figure 11.11a  to show reproducibility within environment.

              



reproducibility of the NIR spectra from the genotypes in            Figures 11.2a, 11.3a, 11.11 
and 11.12   . In analysis it requires that sampling is correct.  

    Classifi cation of NIR spectroscopy data 
by principal component analysis 

    Explorative classifi cation of NIR spectroscopy data 

   The traditional role of the plant breeder in selecting cereal lines is to optimize 
the performance pattern of the whole plant, using the tools of visual observa-
tion. However, in the last 50 years science, technology, and trade have increasingly 
focused on causal relationships for economic value, with univariate variables as 
indicators for quality as discussed for plant breeding by  Osborne (2006) . In the NIR 
literature before 2001 there were few publications that used classifi cation.  Delwiche 
 et al.  (1995)  used NIR refl ectance spectroscopy and PCA to classify amylose content 
in rice and  Campbell  et al.  (2000)  employed the same approach by NIT for maize 
endosperm mutants. However, two-way causal analysis by PLS was used by  Wang  et 
al.  (1999)  to predict by NIR the number of dominant  R  alleles for color in wheat, and 
by  Delwiche  et al.  (1999)  to identify wheat translocations from NIR spectra, as well as 
by  Kim  et al.  (2003)  for the authentication of Korean rice. The PLS correlation coef-
fi cients were used for discrimination between categories. The informative score plot 
option in PCA is also available in PLS for classifi cation as shown in  Figure 11.9b  on 
wheat milling. This option was not used, however, in the examples discussed above.  
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Figure 11.12         Differential (log(1/ R ) MSC) spectra 2260–2380       nm featuring a normal (N) control 
(cv. Bomi) and three barley endosperm mutants 3a ( lys3a ), 5f ( lys5f ) and 5       g ( lys5g ) grown in three years 
(1998–2000) in the greenhouse environment ( Munck, 2006 ). The mean spectrum of 5      g spectra is the 
reference equal to zero in the plot subtracted from the other spectra. (see Plate 11.3 for colour version)    
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    Example of NIR spectroscopy and PCA as an interface 
by data breeding 

   As described by  Munck (2008)  a range of barley endosperm mutants ( Table 11.1 ) 
were selected for lysine by a dye-binding method in the 1960s and 1970s in order to 
improve nutritional quality in barley. One of those, the P mutant  lys3a  (Risø mutant 
1508), had an improved amino acid (lysine) composition with a nutritive value near to 
that of animal proteins. However, the original mutant was lower in yield, seed quality, 
and starch content but had a higher oil percentage compared with its parent variety 
Bomi ( Munck  et al. , 2004 ). A 15-year breeding program was started at the Carlsberg 
Research Center in 1975. This material will here be used to test the effi ciency of NIR 
spectroscopy in breeding. The barley lines in  Table 11.3    ( n       �      15) grown in the same 
fi eld are divided into four groups      �      normal controls with respect to improvement in 
starch content, seed quality, and yield. There is an increase in starch content from the 
original mutants in group 4 to the commercial varieties in group 1, which is due to 
selection for plump seeds.  Figure 11.13a    displays a PCA score plot on the 15 NIR 
spectra (1100–2500       nm) using Foss-NIR systems 6500 from whole-milled fl our of 
the samples in  Table 11.3 . The original  lys3  mutants (3a, 3       m, group 4, 48.7% starch) 
in the third quadrant have been improved in starch as represented by the movement of 
the recombinants Lysimax and Lysiba (group 1, 52.6% starch) in the plot towards the 
high starch variety Triumph down to the left (normal group 54.6% starch). 

   The PCA classifi cation of NIR spectroscopy data ( Figure 11.13a ) is verifi ed by a 
separate PCA bi-plot ( Figure 11.13b ) on the chemical data from  Table 11.3  as sug-
gested earlier. The variable  “ starch ”  that is situated near to the Triumph and Lysiba 
and Lysimax samples in  Figure 11.13b  indicates a relatively high starch content in 
these samples. In a second validation step the NIR spectroscopy ( x ) and starch ( y ) 
data are combined in a cross-validated PLS starch prediction plot as shown in 
 Figure 11.14a   . The starch-improved Lysimax and Lysiba in the circle are displayed 
as intermediate in starch between the  lys3  genotypes to the left and the normal con-
trols to the right, including a Triumph outlier. In  Figure 11.14b  the advantage of a 
PLS score plot is demonstrated. Here the starch and NIR spectroscopy information is 
integrated to obtain a more subtle classifi cation of the samples than in the correlation 

Table 11.3 Average and standard deviation of chemical data from 15 lines from the Carlsberg lys3a 
starch improvement breeding programs discussed in conjunction with Figures 11.13 and 11.14 
(Møller, 2004b)

Normal 
(n � 6)

Group 1 Group 2 Group 3 Group 4

Protein (P) 11.3 � 0.4 11.7 � 0.1 11.7 � 0.1 12.6 � 0.2 12.5 � 0.2
Amide (A) 0.28 � 0.03 0.21 � 0.007 0.21 � 0.007 0.22 � 0.02 0.23
A/P 15.5 � 0.9 11.0 � 0.3 10.9 � 0.4 10.7 � 0.8 11.4
Starch 54.6 � 2.5 52.6 � 0.5 50.0 � 0.1 49.4 � 1.5 48.7 � 0.2
β-glucan (BG)  4.7 � 1.1  3.1 � 0.1  3.1 � 0.2  3.1 � 0.3  2.8 � 0.5
Rest (100 � P � S � BG) 29.5 � 1.8 32.7 � 0.5 35.3 � 0.3 34.9 � 1.8 36.1 � 0.5

Group 1 � Lysiba, Lysimax; Group 2 � 502, 556; Group 3 � 505, 531, 538; Group 4 � lys3a, lys3m.
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Figure 11.13 Near-infrared (NIR) single spectra 2260–2380 nm for barley samples (Møller, 2004b). (a) PCA cross-validated score plot 
of 15 NIR spectra (400–2500 nm, log(1/R) MSC) from the material in Table 11.3 featuring normal barley (Bomi, Minerva, Triumph), 
original mutants (lys3a, lys3m) as well as high-lysine recombinant lines from the Carlsberg material (0502, 0505, 0531, 0538, 0556, 
Lysiba, Lysimax); (b) a PCA cross-validated bi-plot on chemical data (protein, beta-glucan, amide (A), protein (P), A/P index, starch) 
from Table 11.3; (c) log(1/R) MSC NIR single spectra 2260–2380 nm for barley samples Triumph N, the P mutant lys3a, and its starch-
improved recombinants by cross-breeding Lysiba and Lysimax from Table 11.3.
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plot where the positions of the original  lys3  mutants are clearly differentiated from 
those of the high and low starch recombinants. 

   The reproducibility of the classifi cation by PCA and PLS score plots and by direct 
inspection of log(1/ R ) MSC spectra of the improved  lys3a  genotypes ( Table 11.3 ) is 
also confi rmed by PCAs on NIR for the whole mutant material ( Table 11.1 ) for the 
fi eld material in  Figure 11.3g  and for the greenhouse material in  Figure 11.15   . The 
improved  lys3a  recombinants Piggy, Lysimax, and Lysiba have also moved in these 
PCAs according to the arrows from the original  lys3a  position in the P category 
towards the normal barley’s (N). However, as demonstrated for four genotypes in 
 Figure 11.13c  in the log(1/ R ) MSC-treated interval 2270–2380       nm, a spectral inspection 
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Figure 11.14 Partial least squares (PLS) prediction and score plots of starch (Møller, 2004b). 
(a) PLS prediction plot of starch (y) by near-infrared (NIR) measurements (x) from the samples set in 
Figure 11.13 and Table 11.2. (b) PLS score plot of NIR spectra from Figure 11.14a with the Triumph 
outlier sample in Figure 11.14a being removed.

              



is necessary to give the fi nely tuned reproducible spectra full justice. This is not pos-
sible by data compression by a PCA score plot, even if selection of wavelengths from 
the PCA loadings plot is a valuable compliment. The plateau at 2290       nm (arrow 1, 
 Figure 11.13c ) in the spectrum from the high starch cultivar Triumph is indicative for 
starch. This plateau is a slope in the low-starch  lys3a  mutant that is approaching the 
plateau of the starch-rich Triumph control when transferred to the improved gene back-
grounds of Lysiba and Lysimax by breeding. The  lys3a  mutant spectrum brings inter-
pretable information on fat content ( Munck  et al. , 2004 ). There is an increase in oil 
content in mutant  lys3a  compared to Triumph from about 2 to 3 absolute percentage 
that is refl ected in the bulb in the  lys3a  spectrum at 2347       nm ( Figure 11.3h)  indica-
tive for fat ( Figure 11.13c , arrow 2). This bulb is signifi cantly reduced (as well as the 
fat content) in the two improved  lys3a  lines Lysimax and Lysiba as shown in the same 
fi gure. 

   It is impressive that the small relative changes in physiochemical composition can 
be traced back to subtle but quite reproducible changes in NIR spectra. The use of 
existing NIR spectroscopy instruments can now be expanded by classifi cation and 
selection for complex functional traits such as baking and malting quality through 
 “ data breeding ”  without the need for specifi c commercial calibrations ( Munck  et al. , 
2000 ;  Munck and Møller, 2005 ;  Munck, 2008 ).   
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    The NIR endosperm model as a tool 
to overview the phenome 

   The realization of the fact that NIR spectroscopy represents fi nely tuned physiochem-
ical fi ngerprints ( Figure 11.2b ) has a profound genetic and environmental signifi cance 
(         Munck, 2005, 2007, 2008 ). An NIR spectrum from a cereal seed is highly repre-
sentative of the phenotype of one tissue—the endosperm—that constitutes between 
70 and 90% of the seed. In homozygous seeds from lines from self-fertilizing 
species such as wheat and barley the (endosperm) phenome and  “ environome ”  can 
now be defi ned by NIR fi ngerprints. 

   The  “ environome ”  ( Munck, 2008 ) of a homozygous line can be defi ned by dif-
ferential spectra between environments within a cultivar or by mean spectra of many 
cultivars with one environment as a reference ( Munck, 2008 ). For the fi rst time it 
is now possible to compare the total physiochemical effect of a mutant gene on the 
expression of all other genes (pleiotropy) with a differential NIR spectroscopy fi n-
gerprint (         Munck, 2005, 2006, 2008 ). 

    Figure 11.15  demonstrates a PCA score plot for 69 barley NIR spectra 1100–
2500       nm (Foss NIR-systems 6500) from material grown in a greenhouse that is 
described with regard to chemical composition in  Table 11.1 . It was fi rst realized in 
2004 ( Munck  et al. , 2004 ), that barley mutants (and their cross-bread genotypes, indi-
cated with a line in  Figure 11.15 ) were classifi ed into two groups: regulative protein 
P mutants (large change in lysine/amino acids with moderate decrease in starch) and 
structural carbohydrate C mutants (small change in lysine/amino acids with large to 
moderate decrease in starch). The C mutants  lys5f ,  lys5g , and mutant 16 have success-
fully been used by molecular biologists to investigate the starch synthesis pathway 
(see review by  Rudi  et al. , 2006 ). The function of the mutant genes is precisely doc-
umented in the literature as defaults for specifi c isoenzymes in the synthesis and 
transport of ADP-glucose. It was surprising when it was found (       Figures 11.3g and 
11.15 ) that nearly all the C mutants had compensated for the decrease in starch with 
beta-glucan that reached up to 20% d.m. for mutant  lys5f.  A new regulative pathway 
involving beta-glucan was detected ( Munck  et al. , 2004 ). 

   The differential spectra 1100–2500       nm between the spectrum from the isogenic 
background (Bomi) and those of the P mutants  lys4d  and  lys3  and the C mutants 
 lys5f  and mutant 16 are outlined in  Figure 11.16a   . The two fi nely tuned differential 
spectra from each of the mutant pairs follow their respective P and C patterns with 
small but chemically interpretable differences. Such an interpretation is demonstrated 
for the  lys3  locus in  Figure 11.16b , which shows the analog differential spectra at 
2200–2500       nm for the three mutant alleles in Bomi—the  lys3  locus:  lys3a ,  lys3b , 
and  lys3c . These closely follow each other except for  lys3c , which is an outlier above 
in the 2425–2500       nm area indicative of beta-glucan. It was verifi ed ( Munck  et al. , 
2004 ) that the  lys3c  mutant has a normal content of beta-glucan (6.1%), compared 
with  lys3a  (4.7%) and  lys3b  (3.1%), which have lower values than normal lines. 

   The effect of the changed background of the  lys3a  gene obtained by breeding for 
plump seeds (starch) is shown in  Figure 11.16b  as the mean differential spectrum 
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to Bomi of two improved commercial  lys3a  genotypes. The distance to the original 
mutant  lys3a  marked by the arrows indicates the effect of the changed genetic back-
ground obtained by breeding. The result is seen as a fl attening out of the mean 
spectrum of the starch-improved  lys3a  lines that approaches the straight line of the 
reference Bomi. The spectral change obtained by breeding is chemically evaluated in 
       Figures 11.13b and 11.14a,b . 

   The pleiotropic side-effects of mutations and genetic engineering of genes have 
been highly underestimated by geneticists and molecular biologists. While the DNA 
sequence of a mutation can be exactly described, the effect of its expression on the 
whole cell (tissue) has to be tested ( Munck, 2007 ). The primary causes of C mutants 
such as  lys5f ,  lys5g , and mutant 16 are described only as related to specifi c enzymes 
in starch synthesis ( Rudi  et al. , 2006 ). Their massive pleiotropic side-effects have not 
been considered. The total effect of each mutant can now for the fi rst time be over-
viewed on the phenome level by a mathematically unreduced, highly reproducible 
NIR refl ectance spectrum (         Munck, 2005, 2006, 2007 ;  Munck  et al. , 2007 ). 

   There are a great number of pleiotropic changes in gene expression that can be 
followed by NIR spectroscopy and interpreted by chemical analyses. In barley, carbo-
hydrate C mutants result in increased levels of beta-glucan, fat and water percentages 
and activity ( Munck  et al. , 2004 ) and in a marked change in the proteome pattern 
as well as in a small adjustment in amino acid composition ( Jacobsen  et al. , 2005 ). 
Recently, drastic pleiotropic changes in the vitamin E pattern relative to Bomi for 
these mutants have been analyzed in our laboratory for  lys5f  and  lys3a.  We concluded 
(         Munck, 2005, 2006, 2007 ) that in detecting new mutants almost any  x – y  plot between 
even randomly selected chemical variables would have a high likelihood of classify-
ing a mutation event. One of the most obvious combinations is the beta-glucan ( x )–
amide/protein index ( y ) plot in  Figure 11.17    that is as effi cient as the corresponding 
PCA plot on NIR 700 wavelength variables in  Figure 11.15  in classifying the N, P, 
and C genotypes. The fact that  x – y  plots and ratios between variables are  “ rational ”  in 
classifying natural phenomen reveals that data sets gained from metabolic networks 
are indeed highly compressible and interpretable, while evaluations of single vari-
ables one by one are overwhelming and confusing. Endosperm mutants also cause 
more or less drastic morphological changes such as changes in the protein bodies 
in the  lys3a  mutant (Munck and von Wettstein, 1976) that should now be studied by 
combining IR microscopy and image analysis as described by  Lewis  et al.  (2007) .  

    The unreasonable effi ciency of infrared 
spectroscopy 

   The mathematician Eugene Wigner was intrigued by  “ The unreasonable effective-
ness of mathematics in natural sciences ”  ( Wigner, 1960 ). The reproducible patterns 
of chemical bonds from seeds in approximately identical initial conditions as read 
by NIR spectroscopy discussed above creates highly structured data material. Our 
spectral and mathematical interpretation of these data supports Wigner’s statement 

              



on  “ unreasonable effi ciency, ”  although it is now attributed to the NIR spectra and 
explained by self-organization. 

    Finely tuned reproducible NIR spectra from seeds 

   The amazing reproducibility of the fi nely tuned NIR spectra between replicated 
experiments on genetics and environment demonstrated in            Figures 11.2a, 11.3a, 
11.11, and 11.12  gives associations to a biological networking computer (         Munck, 
2005, 2006, 2007 ) that introduces a stabilizing performance due to self-organiza-
tion that is refl ected in the NIR measurements. DNA and environment is the input 
to the dynamic  “ plant–seed (endosperm) computer ”  and the fi nal output is recorded 
after  “ computation ”  as patterns of chemical bonds of the ripe endosperm that is 
read by NIR spectroscopy as a strip code. The stunning ability of the integrated 
plant–seed–spectrograph system to reproduce NIR spectra under identical condi-
tions (           Munck, 2005, 2006, 2007, 2008 ) must also involve the dynamic development 
behind seed populations from each genotype. This involves parameters such as earli-
ness, plant leaf area, number of tillers, number of seeds per spike, seed weight, form, 
and hardness and chemical composition. The fi nely tuned changes in the spectra 
from the individual samples that make genetic and chemical sense (e.g. in  Figure 
11.13c ) can neither be modeled in detail by the PCA on NIR data in  Figure 11.13a  
nor by the PLS NIR predictions for starch in  Figures 11.14a,b . One has then to 
revive the skills of the classical spectroscopists supplemented by new data visuali-
zation programs in color (e.g. Latentix at www.latentix.com as in  Figures 11.3a–f ) 
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to explore and deduce information directly from spectra. The fi nely tuned spectra 
in                Figures 11.2a, 11.3, 11.11, 11.12, 11.13c, and 11.16a,b  look deterministic in 
their reproducibility and interpretability although they are based on probabilistic 
self-organizing chemical reactions ( Munck, 2007 ). Now the terrain—the spectral 
phenome—is equal to the map and new gentle, less destructive mathematical models 
must be developed for spectral interpretation such as fi ne-tuned interval versions of 
PLS regression analysis (ftiPLS) ( Munck  et al. , 2007 ).  

    Self-organization in seed synthesis for classifi cation by NIR 

   It is generally acknowledged in forensic science that it is possible to differentiate 
between two human individuals by just two high-quality fi ngerprints. Only two 
carefully measured spectra are needed to investigate the difference in composition 
between two samples. This principle of classifi cation (Chapter 4) can now be used in 
plant breeding, in process control, and in single seed NIR spectroscopy sorting for 
quality at an industrial scale. An explorative classifi cation (discriminant analysis) of 
NIR spectra is able to give easy and clear-cut results without elaborate hypotheses to 
fi nd unexpected surprises. In today’s focus on causation this option has been too lit-
tle used in industry and science up till now. 

   The sharp view of the DNA sequence of a gene as the primary cause in genet-
ics is now dominating in biology. The secondary (pleiotropic) causes of a gene in 
the whole biological network (phenotype) have hereto been highly underesti-
mated due to the lack of methods for an overview. As demonstrated here, NIR 
spectroscopy can now supply such an overview.  Figure 11.18    ( Munck, 2008 ) 
is an attempt to visualize how the endosperm tissue is working as a  “ biologi-
cal computer ”  in  “ calculating ”  the physiochemical composition in the synthesis 
of endosperm of the  lys5f  mutation from the Bomi parent line ( Munck, 2007 ). The 
mutant has a lesion in the DNA sequence for one of the ADP-glucose transport-
ers needed for starch synthesis. This primary cause (position  1  to the left in  Figure 
11.18 ) that reduces starch with 50%, now starts a cascade of secondary metabolic 
events, leading to a regulative compensation in beta-glucan ( Munck  et al. , 2004 ) 
that increases from 6% (in Bomi) to 20% in  lys5f  ( 2   Figure 11.18 ). Our research 
group has recently verifi ed that the increased synthesis of beta-glucan in  lys5f  
endosperms peaks at day 20 post anthesis and that the synthesis is combined with 
a rise in water content from 68.2% in the normal control to 73.1% in  lys5f.  During 
seed synthesis water content in the seeds of the lys5f mutant relative to the mutant 
control increases by 10%. Water activity is related to moisture content in a non-
linear relationship known as a moisture sorption isotherm curve, which was studied 
in dry seeds in the passive moisture conditioning experiment described above. It is 
not possible to study water activity in the same way as in an actively growing tissue. 
The chemical structure of crystalline starch versus beta-glucan and the above-veri-
fi ed difference in water content and in beta-glucan due to the  lys5f  mutation makes it 
likely that a drastic change in water activity in the endosperm cells takes place at day 
20. This change should have the potential to change the performance of any enzyme 
( 2   Figure 11.18  )  that is active in the cell during seed synthesis. It may partly explain 

              



the multifaceted change (relative to Bomi) in the pattern of the water-soluble pro-
teome (including the total amino acid composition), which was observed in the ripe 
seeds of  lys5f  by  Jacobsen  et al.  (2005)  ( 3   Figure 11.18 ). The likely change in water 
activity in the cell will also give a feedback to the enzyme-driven structural path-
ways in the metabolome and may be involved in the increases in oil content in  lys5f  
by 50% ( 4   Figure 11.18  ,   Munck  et al. , 2004 ) and in the drastically changed vitamin 
E pattern ( 5   Figure 11.18 ). 

   The described change in the internal environment of the cell has a probabilistic 
character including a component of biological indeterminacy ( Munck, 2007 ) that can-
not be amended by causal path modeling. However, the probabilistic effect of changed 
water activity in the cell due to beta-glucan produced by the mutation is included in 
the fi nal physiochemical composition of the seed ( 6   Figure 11.18 ) as a whole inte-
grated reproducible spectral response ( Figure 11.16a ) together with information on 
structural changes in pathways (e.g. increase in beta-glucan). The total effect of the 
mutation on the physiochemical composition as measured by NIR spectroscopy ( 7  
 Figure 11.18 ) is reproducible and supports the genetic and environmental classifi ca-
tion by PCA of NIR spectra demonstrated in          Figures 11.3g, 11.6a,b, and 11.15 .  
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    Causality as destructive surgery in networks 

   As discussed by  Munck (2007) , J Pearl in his book  Causality  describes causation, math-
ematics, and statistics as man-made  “ surgery ”  in networks. The molecular biologists 
mentioned above did  “ cut ”  out the primary causal effect on starch synthesis of the  lys5f  
mutation by way of  “ surgery ”  on the metabolic network. They had no interest in and 
no methods for overviewing the pleiotropic secondary abundant effects of the mutant. 
A  “ global analysis ”  of the outcome of the  lys5f  mutant in the endosperm  “ computed ”  
by self-organization is now possible by NIR spectroscopy. As proposed by  Munck 
(2007) , causality in nature’s sense can be defi ned as the effect of a cause (e.g. a muta-
tion in DNA) in the whole self-organized network. This can now be overviewed as a 
consistent change in the pattern of chemical bonds by NIR spectroscopy. Self-organized 
networks are as self-modeling as the PCA and PLS algorithms. A change (mutation) 
infl uences in principle more or less all parameters in a way that cannot be anticipated in 
detail beforehand but has to be explored by spectroscopy (         Munck, 2005, 2006, 2007 ). 

   When the classical NIR spectroscopy spectroscopist builds a model to predict pro-
tein in wheat by MLR, he or she uses prior knowledge to  “ cut out ”  by causation the 
most signifi cant wavelengths for protein based on analysis of pure substances. This 
strategy seems to function in spite of the fact that one knows that there are other 
infl uences confounded in spectra. The empirical litmus test is to apply several cali-
bration and test set cycles using chemical protein analyses for confi rmation. 

   A chemometrician also works destructively by data compression when establish-
ing a PLS or ANN model based on NIR spectroscopy for protein prediction in wheat. 
These models simulate wavelength log(1/ R ) absorption interaction (covariance) and are 
less destructive than MLR, however, still destructive enough. The advantage with the 
self-modeling chemometric algorithms is that it is possible with a minimum of prior 
spectroscopic knowledge to manage a global overview of the pattern of thousands of 
variables that is not amendable in classical statistics because of distributional assump-
tions. The chemometric model is 100% empirical. It completely ignores whether or not 
the wavelengths that are used in the calibrations have a direct causal relation to the 
protein that was assigned by measurement of pure substances. It just cuts out  “ quick 
and dirty ”  patterns of covariance, including the wavelengths that directly or indirectly 
give any strong positive or negative correlations for the best prediction of protein as 
in  Figure 11.2b . The correlations are therefore highly infl uenced by the  “ biological 
networking computer ”  guided by genetics and environment that has  “ computed ”  the 
physiochemical composition during plant growth and seed synthesis beforehand. This 
information is now included as physiochemical fi ngerprints in the NIR spectroscopy 
library of wheat. Consequently one has to respect nature’s way of  “ computing ”  in a dif-
ferent way when including new unknown samples that are registered as outliers in NIR 
spectroscopy and contemplate whether this new  “ experience ”  should be included in the 
global prediction model to serve as a representative source of artifi cial intelligence.  

    Physiochemical fi ngerprint observable by NIR spectroscopy 

   As discussed by  Miller (2001) , the physical NIR spectral theory explains why 
 “ vibrational spectroscopy made complicated is NIR made possible. ”  However, we 

              



can now conclude that the built in  “ biological computer ”  is assisting more than 
complicating. In understanding the theory behind the effi cacy of NIR spectroscopy 
in cereals one has to consider the physical/measurement/biological/physiochemical/
self-organized/plant/endosperm system as a whole dynamic entity. The output should 
be preliminarily evaluated by spectral inspection and self-modeling chemometric 
algorithms and supported by prior physiochemical and biological knowledge. This 
also explains why  “ there is no defi nitive theory for diffuse refl ectance NIR spectro-
scopy ”  as claimed by Karl Norris in 1996 ( Davis, 1996 ). 

   This notion is still more valid when applying NIR spectroscopy to complex bio-
logical systems such as cereals. In the quest for a theory, the answer is that the result 
is already computed out there in the form of a physiochemical fi ngerprint. All the 
details of the computation are not and will never be available to us because of the 
probabilistic indeterminacy that is intrinsic to the system ( Munck, 2007 ), which also 
applies to quantum physics ( Dahm and Dahm, 2001 ;  Miller, 2001 ). 

   Causal deterministic practice based on  “ surgery in networks ”  either in physics, chem-
istry, molecular biology, or in engineering has severe limitations in a self-organized 
world that is built on networks. The latter are driven by probability in self-organization. 
The reproducible results look deterministic to us, far from the arbitrary probabilistic 
world of pure chance ( Munck, 2007 ). However, so far spectroscopy is the only way 
to achieve the coarse-grained physiochemical overview that is an absolutely neces-
sary compliment to the causal strategy. It is needed to explore new surprising ele-
ments ( Munck  et al. , 1998 ). The advice from nature’s own calculations should always 
be requested as when  “ global ”  specifi c chemometric NIR spectroscopy calibrations 
have to be upgraded as cereal varieties, climate, and food processes change. Self-
organization and amplifi cation of gene expression also explains why NIR spectros-
copy and classifi cation software is effective in exploring genetic manipulated plants, 
as well as in fi nding human cell mutations that cause cancer ( Munck, 2007 ).   

    Future development 

   Today there is a major increase in global cereal commodity prices that is favoring 
analysis for quality. The increasing purchase power of the Asian developing econo-
mies is leading to increased meat consumption that supports the demand for cere-
als for feed. This request has now to compete with the use of cereals for non-food 
purposes, including energy, due to the very high world market prices of fuel. The 
result is the rapidly increasing prices that make quality diversifi cation by NIR 
spectroscopy economic both for sorting in bulk and on a single seed basis. This is 
because it is now possible to sell the low-quality fraction for a high price for energy 
production. 

   The variation in quality between single seeds even from the same fi eld is stunning. 
It will always be sensible to sort toxic fungal-infected seeds from non-infected and 
use them for energy (e.g. ethanol) and feed respectively. It will not, however, be possi-
ble to use a major portion of the world cereal seed production for non-food purposes 
( Munck, 2004 ) when the present world storage supply of cereals for food security 
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is almost down to zero. New worldwide trade regulations for securing cereals 
for food and feed will therefore be necessary if the current trends are sustained, 
which seems to be likely. 

   The sorting of seeds for optimal food and feed quality should be feasible in the 
future using the new industrial-scale NIR seed sorters. We can envisage a new area 
of single seed research and technological development based on NIR spectroscopy 
technology, which is presently at an embryonic stage. In the future the quality sort-
ing profi le of a cereal seed batch for optimized diversifi ed use will probably have a 
greater impact on the price than its quality measurement in the non-separated bulk. 

   Current NIR spectroscopy quality control technology including chemometrics to 
 “ cut out ”  correlations for prediction of specifi c quality criteria of economical impor-
tance such as protein in wheat is now at its almost fully developed stage. Its motiva-
tion is the causal relation between the price and protein content established by the 
market. A less-destructive NIR spectroscopy fi ngerprint should provide a much bet-
ter summary of functional criteria as a whole, evaluated by visual inspection and dis-
criminative analysis, and should represent a much better indicator for baking quality 
and economic value than the old indication by protein. The deciding question that 
has not yet been solved is how a multivariate NIR spectroscopy calibration to bak-
ing quality could be standardized as a basis for trade contracts. While waiting for the 
problem to be solved, it should be economic to upgrade the internal management of 
quality in a cereal company by local calibrations, e.g. to baking and malting quality 
or even less destructively by sample classifi cation and selection for physiochemical 
composition with high- and low-quality cultivars as standards ( “ data breeding ” ). 

   The present rapid change in environment is to a large extent due to human selection 
on a focused, limited cause–effect, cost–benefi t basis, resulting in unexpected second-
ary environmental side-effects. Causality in nature’s sense that not only involves the 
primary cause but also the effects on the whole network must be acknowledged in an 
exploratory strategy with any global screening method (e.g. NIR spectroscopy measur-
ing fi rst and hypothesizing afterwards) ( Munck  et al. , 1998 ;  Munck, 2007 ). The neces-
sary overview given by the endosperm/NIR spectroscopy/chemometric model creates 
a unique window in understanding gene–environment interaction and the possibilities 
and limits of human intervention by technology. The supremacy of self-organization in 
nature has to be respected in a dialogue through exploratory inventories by NIR spec-
troscopy to fi nd and defi ne the new surprising elements that cannot be predicted by 
limited causal path modeling. Global tools have to be developed to explore the total 
effects of human causal interventions in biological and environmental networks. 

   The endosperm is not only relevant as the most important food source for the 
human population, which amounts to more than 1.6 billion tons per year. It is also 
unique as a cast global model for the phenome in systems biology to be used in 
molecular biology with the potential to inspire medical research. The holistic spectral 
overview by chemometrics and spectral inspection also provides a unique opportu-
nity in using human blood serum as a mirror for modeling health as a whole concept 
for individual patients. Spectroscopy and chemometrics have great potential in serv-
ing as a training ground for students to develop a new science in a  “ Global Data 
Modeling University, ”  which is urgently needed.  

              



    Conclusions 

   NIR spectroscopy technology is an extremely successful tool in the cereal industry, 
allowing fast screening methods for the prediction of specifi c analytes. NIR spec-
troscopy analyses make quality control instant and move it from the laboratory to the 
production line. This review focuses on the next step in NIR spectroscopy technology—
spectral classifi cation—which promises new, challenging options in identifying func-
tional factors in plant breeding, single seed sorting, process control as well as in food 
production and design. Single seed industrial-scale sorting by NIR spectroscopy will 
have a future great potential in using the huge variation in quality within the same seed 
batch for added value. The ability of NIR spectra under controlled conditions to rep-
resent the effects of genes and environment of cereal seeds at batch level is stunning. 
The high reproducibility can be interpreted as the output from a built-in networking 
endosperm computer based on self-organization that is read like a strip code by NIR. 
Mathematical models cannot do justice to the fi nely tuned specifi c NIR spectra by data 
reduction. A transfer of the skills in spectral chemical evaluation by inspection from 
the classical spectroscopists to biologists has great potential in realizing the spectral 
phenome in molecular biology. In the near future the Vis/NIR–IR–Fluorescence–NMR 
spectroscopic tools will prove to have signifi cant theoretical and practical impact on 
the biological, molecular, and medical sciences as that of emission spectroscopy in the 
history of atomic physics and astronomy.  
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    Introduction 

   In comparison to near-infrared (NIR) refl ectance spectroscopy, which has been used 
extensively for food authentication and quantifi cation of various components in fruits 
and vegetables as well as medicinal and spice plants ( Kawano, 2002 ; Slaughter and 
Abbott, 2004;  Schulz, 2004 ), the use of mid-infrared (MIR) spectroscopy for the same 
purposes has been more limited. Until recently, MIR spectroscopy was primarily used 
in agricultural research as a qualitative technique for identifi cation and verifi cation of 
unknown pure substances isolated from extracts or distillates ( Colthup  et al. , 1990 ). 
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   Usually infrared (IR) spectra obtained from plant samples are very complex 
because each functional group in a molecule contributes more or less to the spec-
tral output. The net result is a spectrum in which band assignments may be diffi cult 
due to the fact that overlapping and mixing of various vibrational modes occur. 
Early attempts to combine IR spectroscopy with gas chromatography (GC) allowing 
volatile fl avor substances released from fruits or vegetables to be analyzed directly 
were only partly successful. First developments using dispersive IR units suffered 
mainly because of their comparatively low sensitivity. The introduction of gas chro-
matography combined with Fourier transform infrared spectroscopy (GC-FTIR) 
provided better signal-to-noise ratio and spectra could be obtained in a shorter 
time. Applications of these techniques for the analysis of plant volatiles have been 
reviewed by Herres (1984) as well as  David and Sandra (1992) . 

   More recently, a matrix isolation interface has been developed for IR measurements. 
Here one part of the chromatographic effl uent is trapped in an argon matrix onto a 
cylinder. This approach leads to signifi cantly higher sensivity, sometimes rivaling that 
of gas chromatography-mass spectrometry (GC-MS) measurements. Due to the fact 
that band widths are usually very sharp for matrix-isolated substances, high spectral 
resolution can be obtained using this technique. In general, the additional spectral 
information obtained by GC-FTIR provides very important data, especially for a reli-
able characterization of complex fl avor mixtures and discrimination of isomeric com-
pounds. Nevertheless, it should be noted that spectra measured in the cryogenic state 
are different from those obtained from the condensed or vapor phase. Today GC-FTIR 
systems use a heated gas cell for measuring the spectra in the vapor state. 

   The comparatively new approach to use MIR spectra for the analysis of plant 
samples in the same fashion as NIR spectra brought the added advantage of spectral 
interpretability. It has recently been shown that the application of MIR leads to analy-
sis results with an accuracy equal to or better than that found using NIR spectroscopy 
(       Reeves, 1994, 1996 ;  Briandet  et al. , 1996 ;  Downey  et al. , 1997 ). 

   FTIR spectroscopy has become a powerful tool for elucidating the structure, physical 
properties, and interactions of various carbohydrates, including commercial sugars, 
cellulose, pectins, starch, hemicellulose, carrageenans and others. Applications in the 
area of systematic fi ngerprinting, quantifi cation, as well as IR microspectroscopy to 
monitor cell wall constituents such as pectins, proteins, aromatic phenols, cellulose, 
and hemicellulose have been reviewed by Kačuraková  et al.  (2001). 

   Several attempts have also been made to correlate MIR spectra with NIR spectra 
to improve the interpretation of NIR data ( Barton and Himmelsbach, 1993 ;  Noda 
and Ozaki, 2004 ;  Schulz  et al. , 2007 ;  Westad  et al. , 2007 ).  

    Fruits 

    Apple 

   Soluble solid content (SSC) is a major characteristic used for assessing apple fruit 
quality and normally is performed destructively on juice. Non-destructive determination 

              



of SSC in apple fruits has been performed by the use of a portable fi ber-optic NIR 
spectrometer ( Ventura  et al.,  1998 ). A total of 340 apples of cv. Golden Delicious 
and cv. Jonagol were analyzed and a multiple linear regression (MLR) equation was 
applied to calculate the °Brix value in the prediction data set. The most signifi cant 
prediction quality ( R  2       �      0.56) was found with the fi rst derivative of log(1/ R ) (where 
 R  is refl ectance), but when MLR was carried out separately on each cultivar, the 
reliability of the NIR method could be improved for  “ Golden Delicious ”  ( R  2       �      0.65). 

   Recently, important applications of NIR spectroscopy in determining quality 
parameters of apples such as acids, sugars, moisture, soluble solids, nitrogen, maturity 
and fi rmness have been reviewed by  Slaughter and Abbott (2004) . 

   A hyperspectral imaging system was developed by  Nicolaï  et al.  (2006)  to identify 
a bitter pit lesion on apples. A PLS calibration model was constructed to discriminate 
between pixels of unaffected and bitter pit lesions. The obtained calibration model 
was successfully validated on different apples. The system was able to identify bitter 
pit lesions even when they were not visible, but could not discriminate between bitter 
pit lesion and corky tissue. 

   The surface of apples has been characterized by FTIR-photoacoustic spectros-
copy (FTIR-PAS) in order to identify contamination by food microorganisms ( Yang 
 et al. , 2001 ). In the experiment described by the authors, suspensions containing 
test microorganisms ( Saccharomyces cerevisiae ,  Lactobacillus casei ,  Escherichia 
coli ,  Staphylococcus aureus ) were placed at the surface of the apple skin and dried 
at room temperature for 12       h before spectroscopic measurements. Five regions in 
the spectrum were found to be relevant for discrimination and classifi cation of the 
individual microorganisms (3050–2800       cm  � 1  corresponding to CH 2  and CH 3  groups; 
1750–1500       cm  � 1  due to protein and peptide bands;1500–1200       cm  � 1  presenting bands 
of fatty acids, proteins and polysaccharides; 1200–900       cm  � 1  dominated by polysac-
charide peaks; 900–700       cm  � 1  showing mainly deformation vibrational modes). 
In general, this new approach demonstrates that the FTIR-PAS technique can be effec-
tively used to distinguish the coating surface of fruit species and to detect the presence 
of microorganisms. In this context two-dimensional correlation spectroscopy was 
extremely helpful in identifying coinciding vibrational bands.  

    Citrus fruits 

   The essential oils of various citrus species was studied by attenuated total refl ectance 
(ATR)-FTIR spectroscopy by  Schulz  et al.  (2002) . They reported the application of 
this technique for classifi cation and quantitative analysis of orange, grapefruit, man-
darin, lemon, and lime oils. The most relevant monoterpene components occurring 
in these oils are limonene and  γ -terpinene, but  α - and  β -pinene, myrcene, sabinene, 
octanal, decanal, citral, sinensal, and nootkatone can also be present. In grapefruit, 
orange, and bitter orange oils limonene occurs at levels of approximately 95% and 
in other citrus oils at 50–78%. It is therefore not surprising that the IR spectra of 
these oils are mainly characterized by limonene vibrational modes to be seen at 
886       cm  � 1  (out-of-plane bending of the terminal methylene group), 1436/1453       cm  � 1  
( δ  CH2 ) and 1644       cm  � 1  ( ν  C � C ) ( Lin-Vien  et al. , 1991 ; Schulz and Baranksa, 2005, 
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2007). The stretching mode of cyclohexene C     �     C can be hardly recognized in the IR 
spectrum, but demonstrates a strong Raman band. Myrcene, which is the only acy-
clic substance of the six main monoterpene compounds, presents specifi c absorption 
bands of the vinyl substituent at 1637       cm  � 1  and two characteristic out-of-plane 
C–H bending vibrations at 989 and 890       cm  � 1 . The narrow band seen at 1595       cm  � 1  is 
assigned to the vibration of the double bond, which is conjugated with the terminal 
methylene group of the molecule. The spectra of  α - and  β -pinene differ from each 
other, especially in the region of 750–900       cm  � 1 . Whereas  α -pinene presents the char-
acteristic signal of the  ω (C–H) at 787       cm  � 1 ,  β -pinene shows the absorption band of 
the terminal methylene group at 873       cm  � 1  and of the cyclohexane ring at 853       cm  � 1 . 
The corresponding cyclohexane vibration of  α -pinene occurs at 886       cm  � 1 . The indi-
vidual  ν  (C     �     C) stretching vibrations of both monoterpenes are found at 1658       cm  � 1  
( α -pinene) and 1640       cm  � 1  ( β -pinene), respectively. The IR spectra of most important 
monoterpene substances occurring in citrus oils are presented in  Figure 12.1   . 
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 Figure 12.1          Mid-infrared spectra of pure monoterpene substances representing the main components in 
commercially used citrus oils. A:  α -pinene, B:  β -pinene, C: limonene, D: myrcene, E: sabinene, F:  γ -terpinene.    

              



   In general, most of the discussed compounds show characteristic signals in the 
ATR-IR spectrum due to wagging vibrations of CH and CH 2  groups between 800 
and 950       cm  � 1  (see  Table 12.1   ), but by using Raman spectroscopy the differentia-
tion between these groups is more clear ( Daferera  et al. , 2002 ;        Schulz  et al. , 2004, 
2005a ;  Baranska  et al. , 2005 ). Among monoterpenes, numerous aldehyde deriva-
tives can be well recognized by IR spectroscopy where the intense IR band due to the 
C     �     O stretching mode is seen in the area of 1740–1750       cm  � 1 .  Schulz  et al.  (2002)  
have reported that this key signal can be used to discriminate between cold-pressed
and distilled lime oil. Whereas cold-pressed lime oil shows a relatively intense carbonyl 
signal at 1744       cm  � 1 , this band is completely missing in the IR spectrum of distilled oil. 

   In the range between 2000 and 3000       cm  � 1  bands associated with the C–H stretch-
ing vibrations of the volatile terpenoids as well as wax esters of the citrus peel can 
be found. Other signifi cant signals resulting from  ν (CH � CH) vibrations can be 
observed between 3020 and 3090       cm  � 1 . 

   Quantitative analysis of citrus oils based on ATR-IR spectroscopy achieved a bet-
ter prediction quality than NIR refl ectance spectroscopy, in terms of higher  R  2  values 
for some parameters (e.g. myrcene and aldehyde) ( Steuer  et al. , 2001 ;  Schulz  et al.,  
2002 ). Also the standard error of cross-validation (SECV) values, calculated from 

 Table 12.1          Assignment for the most characteristic infrared bands of some terpene 
compounds occurring in citrus oils  

   Terpene  Wavenumber (cm  � 1 )  Assignment 

   Myrcene  1637   ν (C     �     C) 
     1595   ν (C–C) 
     989   ω (CH 2 ) 
     890   ω (C–H) 

    p -Cymene  1515   ν (ring) 
     813   ω (C–H) 

   Limonene  1678 a    ν (cyclohexene C     �     C) 
     1644   ν (ethylene C �     C) 
     886   ω (C–H) 

    α -Terpinene  823   ω (C–H) 

    γ -Terpinene  947   ω (CH 2 ) 
     781   ω (C–H) 

    α -Pinene  1658   ν (C     � C) 
     886   ω (CH 2 ) 
     787   ω (C–H) 

    β -Pinene  1640   ν (C     �     C) 
     873   ω (CH 2 ) 
     853   ω (C–H) 

   Sabinene      1653   ν (C �     C) 
 861   ω (CH 2 ) 

  From  Baranska  et al.  (2005) ,        Schulz  et al.  (2004, 2005b) ,        Schulz and Baranska (2005, 2007) .  
  a  Weak band.  
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the PLS calibrations of the IR validation sets, are in most cases a little bit lower in 
comparison to the related NIR chemometrical results. This is mainly due to the fact 
that the IR spectra generally have larger signal intensities and higher resolution of 
the characteristic (fundamental) vibrations than NIR transfl ection spectroscopy. 

   IR spectroscopy can also be used for investigation of the aging of citrus oils by 
following the (per)oxidation of  γ -terpinene and formation of  p -cymene ( Lösing  et al. , 
1998 ). Because of its characteristic wavelength in the IR spectrum, the occurrence of 
 p -cymene is easy to observe. Its two intense IR bands at 1515 and 815       cm  � 1  can be 
assigned to the aromatic skeleton resonance and C–H out-of-plane vibration of  para -
disubstituted benzene ring, respectively. These bands do not overlap with those of other 
essential oil components. The concentration of  p -cymene has been used as an indicator 
for the advancing aging process of citrus oils and the formation of off-fl avors. 

   Some fl avones occurring in green tangerine peel have been isolated and characterized 
using spectroscopic technique ( Dandan  et al. , 2007 ). The system of bonded rings char-
acteristic of fl avones can be identifi ed in the IR spectrum between 1570 and 1600       cm  � 1 . 

   It is well known that FTIR spectroscopy is an excellent tool for structural and 
quantitative analysis of polysaccharides, including pectins ( Kačuraková  et al. , 
2001 ;  Schulz and Baranska, 2007 ) (see  Table 12.2    for details). Citrus pectin and its 
various carboxylic forms (i.e. pectinic acid, potassium pectinate, pectic acid, potassium 
pectate and pectinamides) were analyzed by  Synytsya  et al.  (2003)  by the use of 
diffuse refl ectance FTIR. Spectra of these compounds demonstrated strong signals in 
the region of carbonyl stretching vibrations (1500–1800       cm  � 1 ), which were sensitive 
to any chemical changes (e.g. bands of methyl ester group near 1750       cm  � 1 ) and were 
decreased after alkali hydrolysis. 

    Steuer  et al.  (2001)  have analyzed various citrus oils by the use of NIR spectros-
copy. The measured citrus oils obtained from grapefruit, orange, mandarin, lemon, 
bitter orange, and lime could be distinguished on the basis of their individual spectral 
data using principal component analysis (PCA) by the fi rst three PCA factors (98.3% 

 Table 12.2          Assignment for the most characteristic infrared bands of pectin  

   Wavenumber (cm  � 1 )  Assignment 

   1745   ν (C �     O) 
   1605   ν  as (COO  �  ) 
   1444   δ (CH) 
   1419   ν  s (COO  �  ) 
   1368   δ (CH 2 ),  ν (CC) 
   1335   δ (CH), ring 
   1150   ν (C–O–C), ring 
   1107   ν (CO),  ν (CC), ring 
   1055   ν (CO),  ν (CC),  δ (OCH) 
   1033   ν (CO),  ν (CC),  ν (CCO) 
   1018   ν (CO),  ν (CC),  δ (OCH), ring 
   1008   ν (CO),  ν (CC),  δ (OCH), ring 

   972  OCH 3  
   963   δ  (C     �     O) 

  According to  Schulz and Baranska (2007) .  

              



of the variation explained). The highest infl uence was found for factor 1 in accordance 
to high (orange, grapefruit) or low (lime) limonene contents. Discrimination 
between cold-pressed and distilled lime oil was also achieved. Since the optical 
rotation is strongly correlated with the limonene content, this physical parameter 
was also predicted precisely in all citrus oils. Not only were the individual terpe-
noid components (e.g. limonene, myrcene,  α -pinene,  β -pinene, sabinene,  γ -terpinene 
and terpinolene) determined, but also the total aldehyde content (ranging from 0.3 to 
3.2       g       100       g  � 1 ). 

   In order to develop calibration equations for the two key fl avor substances decanal 
and nootkatone, synthetic mixtures have been produced by diluting both components 
in orange oil terpenes and grapefruit oil, respectively. A high weight is observed at 
2202       nm for decanal by the combination of the C     �     O and C–H stretching frequencies 
of the aldehyde group. Negative bands in the fi rst loadings are observed according to 
the infl uence of limonene in the synthetic mixture.  

    Banana 

   The principal component of green bananas is starch that changes during fruit ripening. 
The retrogradation of starch isolated from banana has been studied using diverse 
techniques, including FTIR spectroscopy. Short-range order measurement has been 
performed with ATR-IR using a Golden Gate cell sealed with a sapphire anvil from 
the atmosphere. The applied vibrational method showed the structural changes in the 
starch during banana storage at the molecular level ( Bello-Pérez, 2005 ). 

   To analyze the carbohydrate region of the starch spectra (800–1200       cm  � 1 ), base-
line correction was applied using a single point at 1900       cm  � 1 . The spectra were 
then deconvoluted in the above-mentioned region, where the assumed line shape 
was Lorentzian, with a deconvolution factor of 750 and a noise reduction factor of 
0.2. After deconvolution, the 800–1200       cm  � 1  region consisted of a series of bands, 
mostly of C–O and C–C stretching vibrations that were reported to be very sensi-
tive to the physical state of carbohydrates ( Ottenhof  et al. , 2003 ). The bands at 1045 
and 1022       cm  � 1  are sensitive to the amounts of ordered and amorphous starch forms, 
respectively. The band at 1151       cm  � 1  was used as an internal correction standard. 
The ratio of the bands at 1045 and 1151       cm  � 1  was taken to follow the change in a 
short-range order during the banana starch retrogradation. This ratio increases with 
increasing storage times, reaching a plateau after approximately 11       h, a value that 
agrees with the results obtained by differential scanning calorimetry measurements 
( Bello-Pérez, 2005 ). To monitor the moisture loss occurring during the experiment, 
the ratio of the bands at 1635 and 1151       cm  � 1  from the deconvoluted spectra were 
correlated against time. The band at 1635       cm  � 1  was assigned to the O–H deforma-
tion and therefore it could directly be used to determine the moisture content in the 
sample. It has been found that a linear correlation exists between the moisture 
content of a retrograded starch sample and the band ratio of 1635:1151       cm  � 1 . The 
decrease of this ratio corresponds to the loss in moisture from the sample that would 
decrease the retrogradation kinetics, as was also observed to be the case for waxy 
maize starch ( Farhart  et al. , 2000 ).  
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    Pear 

   The sun-dried pear possesses a unique organoleptic characteristic. In order to under-
stand the modifi cations that occur during the drying process, cell wall extracts from 
dried and fresh tissue were prepared and measured by vibrational spectroscopy. The 
polysaccharides present in different extracts were characterized by FTIR spectroscopy 
in the region between 1200 and 850       cm  � 1 . The analysis of the obtained spectra using 
different chemometric algorithms allowed fresh and sun-dried pear extracts to be 
distinguished. Components that contribute to this distinction are the pectic and 
hemicellulosic polysaccharides rich in galacturonic acid (GalA) and xylose (Xyl), 
respectively ( Ferreira  et al. , 2001 ). Hemicellulosic extracts were characterized mainly 
by the peak located at 1041       cm  � 1  ( Coimbra  et al. , 1999 ) whereas pectic polysac-
charide extracts showed absorbances at 1106, 1014, and 914       cm  � 1 . The absorbance 
bands detected at 1106 and 1014       cm  � 1  are due to the galacturonic acid (       Coimbra 
 et al. , 1998, 1999 ) and the peak located at 914       cm  � 1  is related to the non-dialyzable 
1,2- trans -diaminocyclohexan- N , N , N ’  ,N ’ -tetraacetate (CDTA) salt (the extracts were 
precipitated in CDTA).  

    Papaya 

   During the post-harvest ripening of fruits signifi cant textural changes occur due to 
modifi cation of the structure and composition of cell wall polysaccharides, mainly 
pectins and hemicelluloses ( Melford and Prakash, 1986 ;  Fry, 1995 ). It has been dem-
onstrated that during fruit softening pectins undergo solubilization and depolymeriza-
tion ( Brady, 1987 ;  Fischer and Bennett, 1991 ). It has been suggested that the methyl 
esterifi cation degree (MED) of pectins in particular could be a parameter that would 
be useful to study some aspects of the fruit-softening mechanism ( Bartley and Knee, 
1982 ;  Melford and Prakash, 1986 ). Several methods are available for measuring pec-
tin MED, including the titration of carboxyl groups, the measurement of galacturonic 
acid in native pectin or measurement of galactose derived from selective esterifi ed 
galacturonic acid reduction. The MED of pectins can also be determined by means 
of instrumental methods, such as high-performance liquid chromatography (HPLC) 
( Plöger, 1992 ) or  1 H-NMR spectroscopy ( Grasdalen  et al. , 1988 ). 

   A direct method using FTIR spectroscopy for the determination of MED of papaya 
pectins was applied by  Guillermo and Lajolo (2002) . The method was used to measure 
the methylation level of different pectin fractions isolated from papaya fruit at three 
ripening stages as well as of bulk pectin without isolation from the cell wall. 
The carbohydrates show high absorbances between 1200 and 950       cm  � 1  constituting the 
 “ fi ngerprint ”  region, specifi c for each polysaccharide. However, the assignment of 
bands in this region to a specifi c atom group vibration is ambiguous. MED values 
were calculated from absorbance spectra of the samples, using a relationship of the 
intensities for 1630 and 1740       cm  � 1  bands ( A  1740 /( A  1740       �       A  1630 ), that are intense and 
well separated. The signal at 1630       cm  � 1  has been assigned to the stretching frequency 
for the carbonyl groups of galacturonic acid whereas the band at 1745       cm  � 1  has been 
associated with its methyl ester. The obtained results were in agreement with those 
achieved using an established method.  

              



    Peach 

   As already mentioned, FTIR spectroscopy is a method suitable for monitoring chem-
ical properties of cell walls and more specifi cally changes in the degree of esteri-
fi cation. The degree of esterifi cation, defi ned as  “ number of esterifi ed carboxylic 
groups/number of total carboxylic groups      �      100, ”  is one of the most important prop-
erties for characterization of the pectic molecules, which represent macromolecular 
constituents occurring in the cell wall. 

   FTIR spectra obtained from the cell walls of cv. Redhaven peaches immediately 
after harvest demonstrate several bands, which occur in a few wavenumber regions. 
The region between 3500 and 1800       cm  � 1  presents two major peaks centered at 
3455       cm  � 1  (due to stretching of the hydroxyl groups) and at 2920       cm  � 1  (correspond-
ing to the C–H stretching of CH 2  groups). The region between 1800 and 1500       cm  � 1  
is of special interest with regard to the evaluation of the degree of esterifi cation, since 
it allows the observation of IR absorption by the carboxylic acid and the carboxy-
lic ester groups of the pectin molecules ( Stewart and Morison, 1992 ). FTIR spec-
tra of peach cell walls in the above-mentioned range revealed the existence of two 
peaks absorbing at 1749 and 1630       cm  � 1  assigned to the esterifi ed and non-esterifi ed 
carboxyl groups of pectin molecules, respectively ( Chatjigakis  et al. , 1998 ). A lin-
ear relationship between the degree of esterifi cation and the ratio of the area under-
neath the peak at 1749       cm  � 1  over the sum of the areas underneath the two peaks at 
1749 and 1630       cm  � 1  was established. The analysis was performed by the use of the 
second derivative and curve-fi tting technique that allowed the elimination of spectral 
interferences from other cell wall components.  

    Strawberry 

   Different chemical components and their location in strawberry achene, vascular bun-
dles, and cortical cell walls were studied by means of FTIR spectroscopy ( Suutarinen 
 et al. , 1998 ). First, the spectra of commercial pectin, protein, lignin, and cellulose 
were measured in the 700 – 4000       cm  � 1  range and compared with the spectra obtained 
from the different strawberry tissues. Spectra of the commercial compounds were 
obtained using the DRIFT (diffuse refl ectance infrared Fourier transform) technique, 
whereas the sections of frozen strawberries cut in a cryostat were analyzed with 
FTIR microspectroscopy. Lignin is well known as an important component of achene 
and vascular bundles, whereas the cortical cell walls contain mainly pectin and 
cellulose in the middle lamella, and protein as deposits in the outer layer. The struc-
ture of all the walls was complicated and consisted of several compounds. The same 
samples have been examined by bright-fi eld microscopy using different staining 
systems and the two methods gave comparable results. 

   A low-resolution gas phase FTIR analyzer was applied to the analysis of volatile 
compounds present in strawberry ( Hakala  et al. , 2001 ). The frozen fruit was thawed, 
mashed, and transformed into glass mounted to a sampling system. Volatile sam-
ples were collected by gently heating in a vacuum and then removed into the sample
cell of the gas analyzer at atmospheric pressure. The quantitative analyses of 14
compounds were performed by multicomponent analysis. The main volatiles were 
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esters, alcohols, and aldehydes. The highest proportions were measured for acetone 
and 2,5-dimethyl-4-hydroxy-3(2H)-furanone. Signifi cant differences between straw-
berry varieties were noticed. 

   FTIR spectroscopy and chemometrics have been combined to detect adulteration 
in strawberry purées ( Holland  et al. , 1998 ). The MIR spectra of 983 fruit purées 
were used as raw data for PLS regression. After chemometric calculation, 94.3% of 
the samples were correctly classifi ed by the applied model.  

    Grape 

   Phenols contribute in an important manner to the taste, bitterness, and bacteriologi-
cal effects of grape wines. These compounds include catechins, leucoanthocyani-
dins, fl avonols, fl avonol glycosides, tannins, proanthocyanidins and anthocyanidins, 
phenolic benzoic and phenolic cinnamic acids ( Spanos and Wrolstad, 1990 ;  Cartoni 
 et al. , 1991 ). High levels of polyphenols increase susceptibility to oxidation, leading 
to decreased visual and organoleptic qualities. To study the effect of wine process-
ing on phenolic composition spectroscopic analysis was used. Various classes of 
phenolic compounds were detected and characterized by IR spectroscopy in white 
grapes of cv. Sauvignon Blanc and cv. French Colombard, as well as in wines 
prepared from these grape cultivars ( Gorinstein  et al. , 1993 ). 

   Comparisons of the polyphenol compositions of wines made from the same grape 
variety grown in different locations of the same vintage and between two vintages 
were reported. In general, the phenolic O–H stretch is observed at 3705–3125       cm  � 1  
for phenols, catechols and resorcinols, and at 3335–2500       cm  � 1  for aromatic carboxy-
lic acids. The IR spectra of some investigated polyphenols resulted in the following 
peaks: 2643, 2746, 2849, 2937, 3106       cm  � 1  for catechin, 2541, 3210       cm  � 1  for caf-
feic acid, 2875, 3132, 3544       cm  � 1  for gallic acid and 3232, 3441       cm  � 1  for tannic acid. 
FTIR spectra of standards and wine samples were totally consistent with one another 
in the O–H stretch region and the following bands were observed in samples of wine 
treated with bentonite and egg albumin at 2515, 3081, 3389, 3492, 3544       cm  � 1  and 
for samples of wine treated with bentonite, egg albumin, and polyclar at 2566, 2721, 
2926, 3184, 3284, 3441, 3698       cm  � 1 . 

   Furthermore, IR spectroscopy has been successfully used to monitor wine fermen-
tation ( Urtubia  et al. , 2004 ) as well as the quality of the fi nal product, since many 
compounds can be measured quickly from a single sample without prior treatment 
( Coimbra  et al. , 2002 ;  Patz  et al.  2004 ). The calibration model obtained by  Urtubia  et 
al.  (2004)  with a multivariable PLS algorithm proved to be effective for analyzing cv. 
Cabernet Sauvignon fermentation for glucose, fructose, glycerol, and ethanol as well 
as malic acid, succinic acid, lactic acid, acetic acid, and citric acid. Upon external 
validation an average relative predictive error of 4.8% has been found; in this context 
malic acid showed the largest relative predictive error (8.7%). A good calibration has 
been obtained for all investigated compounds, with the lowest value of  R  2  for acids 
(about 0.98) and the highest for glucose and fructose (0.994). 

   Sugars in grapes were also determined by using NIR technology ( Jarén  et al. , 2001 ). 
NIR (800–2500       nm) refl ectance spectra of 30 hand-harvested samples (cv. Garnacha 

              



and cv. Viura) were registered and analyzed using SPSS and SAS. It was possible to 
fi nd a correlation between NIR data and sugar content in the analyzed grapes (°Brix). 
The calibration model obtained for cv. Viura ( R  2       �      0.925, SEE      �      1.0446) was slightly 
better than for cv. Garnacha ( R  2       �      0.89, SEE      �      1.0508). 

   NIR spectroscopy and the semi-parametric modeling technique least-squared 
support vector machine (LS-SVM), were used to predict the acidity of different 
grape varieties ( Chauchard  et al. , 2004 ). The performances of LS-SVM was found to 
be better than that of the classical linear methods (i.e. partial least square regression 
(PLSR) and multivariate linear regression (MLR)). 

   An innovative FTIR method coupled with thin layer chromatography (TLC) for 
the identifi cation of pigments extracted from different red wine cultivars has been 
presented by  Cserháti  et al.  (2000) . The measurements prove that off-line TLC-FTIR 
can be successfully used for the determination of individual substances occurring 
in the main pigment fraction, whereas on-line TLC-FTIR failed to provide suitable 
results because of the strong background absorbance caused by the stationary TLC 
phase.  

    Paprika and chilli fruits 

   The widespread use of capsainoid extracts in fl avorings make the quantitative analysis 
of these compounds of great importance. Five different capsainoids compounds have 
so far been found in paprika and chilli fruits, of which capsaicin is one of the most 
important ( Schulz, 2004 ). 

   A new NIR method has been established for the determination of capsaicin 
content in red paprika and related extracts ( Iwamoto  et al. , 1984 ). The spec-
tra of the solvent organic residues were recorded in the region between 1100 and 
2500       nm using a single-beam spectrophotometer. The strong bands observed in the 
second derivative spectra between 2250 and 2350, 1700 and 1760 and at 1200       nm 
were assigned to the combination vibration, the fi rst overtone and the second over-
tone vibrations of the individual C–H groups, respectively. The bands near 1950 
and 2200       nm were interpreted as combination vibrations of N–H and O–H groups 
in the capsaicin molecule. A stepwise MLR analysis was performed to select the 
fi ve most suitable absorption wavenumbers. The chemometric results ( R  2       �      0.993, 
SEE      �      0.0036       g       100       g  � 1 , calibration range 0.05–0.13       g       100       g  � 1 ) led to the conclusion 
that NIR refl ectance spectroscopy is applicable to the determination of capsaicin 
content in red paprika.  

    Melon 

   Different melon genotypes have been distinguished by  Seregely  et al.  (2004)  using 
NIR spectroscopy. First, a hybrid cultivar with its two parent lines were examined 
and bulk-seed samples of four muskmelon and fi ve watermelon varieties were also 
examined. As a quantitative evaluation method, the polar qualifi cation system (PQS) 
was used. For the hybrid lines, the value of sensitivity expressing the effectiveness 
of the classifi cation was found to be 12.32. For classifi cation of the muskmelon 
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varieties, the sensitivity was between 1.35 and 3.37 among the different varieties. 
For watermelon samples, slightly lower values were received for sensitivity. The 
results achieved by PQS were comparable with the results obtained by classical 
 evaluation methods (PCA, linear discrimination analysis).   

    Vegetables 

    Potato and cassava 

   The main signals to be observed in the IR spectra of potato and cassava are related 
to starch, representing a mixture of amylose and amylopectin ( Figure 12.2   ). Amylose 
is essentially linear, whereas amylopectin is a highly branched polymer.  Santha 
 et al.  (1990)  measured the IR spectra of sweet potato and cassava in order to fi nd key 
bands for amylose and its branched counterpart. In the fi ngerprint region the signal at 
1263       cm  � 1  is assigned as a complex mode involving the CH 2 OH side-chain in amy-
lose. A band near 946       cm  � 1  is interpreted as a skeletal mode indicating the  α -1,4 link-
age of glucose molecules in potato amylose. Another signal observed at 943       cm  � 1  has 
been found to represent linkages in both amylose and amylopectin. 

   Two absorption bands at 861 and 840       cm  � 1 , formerly identifi ed in potato ( Cael
 et al. , 1974 ), do not occur in the IR spectra of sweet potato and cassava starch; only a 
small band around 870       cm  � 1  can be seen. It is assumed that this effect is mainly caused 
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 Figure 12.2          Attenuated total ref lectance infrared spectrum obtained from pure amylose.    

              



by lack of crystallinity in the measured starch samples. Similar experiments study-
ing the change from semi-crystalline to amorphous starch by ATR-IR spectroscopy 
have been performed by  van Soest  et al.  (1995) . They found that the IR absorbance 
band at 1047       cm  � 1  is sensitive to the amount of crystalline starch whereas the band at 
1022       cm  � 1  is characteristic of amorphous starch. The IR spectra obtained from native 
potato starch showed intensive CH stretching vibrations in the region 2900–3000       cm  � 1  
and at 1150, 1124, and 1103       cm  � 1  (CO, CC stretching with some COH contributions), 
1077, 1047, 1022, 994, and 928       cm  � 1  (COH bending and CH 2 -related modes) and 
861       cm  � 1  (COC symmetrical stretching and CH deformation). Signal assignment was 
generally limited due to overlapping and poor resolution of the detected bands. In some 
cases enhanced resolution of overlapped bands could be achieved by deconvolution. 

    Capron  et al.  (2007)  studied the variation in powders of starch materials at vari-
ous controlled hydrations using ATR-FTIR spectroscopy. An intense IR absorp-
tion at 1000       cm  � 1  was assigned to hydrated crystalline domains whereas the signal 
at 1022       cm  � 1  revealed the spectral contribution of amorphous starch. A sample set 
varying in structure, crystalline type, amylose content, and botanical origin presented 
a major contribution of the 1000/1022       cm  � 1  ratio. 

   These studies illustrate that FTIR spectroscopic data can be used to describe phase 
transitions on biopolymers such as starch. The kinetics of conformational changes 
due to retrogradation during storage of potato and maize starch was monitored by 
ATR-FTIR ( van Soest  et al. , 1994 ). In this context a starch–water system (10% 
w/w gel) was used as a model to distinguish differences on a structural level in vari-
ous starch materials. The authors showed that major contributions in the IR spectra 
(800–1300       cm  � 1 ) were obtained on gelatinization and subsequent retrogradation of 
waxy maize and potato starch/water systems. 

   It has also been shown that FTIR spectroscopy can be successfully applied to 
follow the gelatinization of starch granules  in situ  under high pressure ( Rubens  et al. , 
1999 ). During this process the spectra showed characteristic changes in bandwidth, 
increasing absorption intensities, and frequency shifts in the wavenumber range 
900–1300       cm  � 1 . These spectral changes could be successfully used to determine the 
individual midpoint of gelatinization for various starch materials ( Table 12.3   ). 
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 Table 12.3          Determination of midpoint of gelatinization p½ based on infrared absorption ratio and 
frequency shift  

   Starch type   p ½ a   Frequency shift b  

   Rice  430      �    6  390    �  10 
   Waxy corn  440    �    10  420      �  20 
   Corn  520      �      2  510      �  4 
   Tapioca  440      �      6  410    �      9 
   Pea  460      �      20  370  �    10 
   Potato  650    �      9  480      �      30 

  From  Stute  et al.  (1996) .  
  a  Calculated from the absorbance ratio 1017/1047           cm  � 1 .  
  b  Calculated from the frequency shift of the 1080       cm  � 1  band.  
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   ATR-FTIR spectroscopy combined with procedures for spectrum deconvolution has 
also been used to investigate the external regions of starch granules. The IR spectra 
of potato and amylomaize starches were found to be closer to those of highly ordered 
acid-hydrolyzed starch than the spectra obtained from wheat, maize, and waxy maize 
( Sevenou  et al. , 2002 ). 

   The absorptions at 1047, 1022, and 995       cm  � 1  were recorded from the indi-
vidual starch samples and the ratio of absorbances 1047/1022 and 1022/995       cm  � 1  
was calculated. Based on these data a clear discrimination between potato, wheat, 
and different maize starches could be achieved. It has been found that the band at 
1022       cm  � 1  was generally less pronounced in potato and amylomaize than in wheat 
maize and waxy maize. From these results the authors reason that potato and 
amylomaize exhibit a higher level of organization in their external region compared 
with the other starch types; this also illustrates that potato and amylomaize starch 
granules show better resistance to amylase hydrolysis. 

   Various chemical modifi cations of starch are known to improve its technological 
properties such as mechanical stability, crystallinity, or water absorption. Several 
approaches exist to follow the chemical modifi cation of starch by using IR spectros-
copy. Acetylation and maleinization reactions have been investigated by  Cyras  et al.  
(2006) . They found that the signal at 2933       cm  � 1  corresponding to the absorption of 
the CH 2  groups remains unchanged during chemical modifi cation, which is why they 
used this band as internal standard. Peaks observed at 1740       cm  � 1  (C �     O stretching 
band) and 1240       cm  � 1  (C–O stretching band) confi rmed the acetylating of starch. 
Similar results could be seen during maleinization of starch: a peak at 1703       cm  � 1  
(C     �     O) indicates the presence of an ester maleic group and allows following the 
modifi cation of starch. 

   Cassava starch samples including native, fermented, and sun-dried, chemically 
treated with lactic acid, and native starch oxidized in presence of KMnO 4  solution were 
also characterized by FTIR spectroscopy and subsequent chemometric interpretation 
( Demiate  et al. , 2000 ). In order to reduce infl uences of the starch’s inhomogeneity, 
the fi rst derivative of the spectra in the region 1800–1540       cm  � 1  was measured. 
Attempts to predict the baking behavior from the IR data were only partly successful.
The best correlation to baking properties was observed in the region around 
1600       cm  � 1 , which is associated with the appearance of carboxylate groups. 

   Because of the use of fl avorings in the food industry there is increasing interest in 
the study of the interaction between polysaccharides and aroma substances. In this 
context the formation of complexes of homologs of  γ - and  δ -lactones with polysac-
charides of corn and potato starches has been analyzed by IR spectroscopy 
( Misharina  et al. , 2002 ). It could be observed, that in the IR spectrum of  γ -decalactone 
adsorbed by starch, the intensity of CH 3  stretching bands (2931–2959       cm  � 1 ) 
decreased signifi cantly in comparison to those occurring in the IR spectrum of pure 
lactone standard. Also CH 2  deformation bands decreased by 5–11 times, indicating 
that the conformational mobility of aroma substances is reduced after their adsorption 
by starch polysaccharides. 

   The effect of deep-freezing on the surface of potato starch granule was also evalu-
ated by FTIR spectroscopy ( Szymońska  et al. , 2000 ). Several changes occur in the IR 

              



spectra when samples of oven-dried, air-dried, moisturized potato starch are frozen 
in liquid nitrogen. It can be observed that some peaks shift to other wavenumbers or 
they are overlapped by adjacent signals which proves that deep-freezing somehow 
affects the internal structure of the potato starch granules. 

   Important results concerning the IR characterization of neutral polysaccharides 
(pullulan and dextran) have been presented by  Shingel (2002) . In particular, the 
mobility and conformation of the carbohydrate chains as well as the molecular inter-
actions of these polysaccharides could be successfully characterized by means of IR 
spectroscopy. The main signals observed in the deconvoluted spectra of pullulan and 
dextrans at 1155, 1107, 1080, 1020, and 1000       cm  � 1  are assigned as C–O and C–C 
stretching vibrational modes and deformational vibrations of CCH, COH, and HCO 
bonds. Variations in the profi le of certain IR bands at 1040, 1020 and in the case of 
pullutan also at 996       cm  � 1  were found to correlate with changes in conformation and 
short-range interactions of the polysaccharides. It was also shown that the band at 
1080       cm  � 1  indirectly indicates a number of  α -(1,6) linkages in the polysaccharide 
structure. 

   In the past, numerous studies have been performed to describe oil uptake during 
deep-fat frying of potatoes, but so far no satisfactory quantitative predictive model 
exists for this process. In order to get a better understanding of the chemical changes 
occurring on the surface of cut potatoes a special IR microspectroscopy apparatus 
has been applied ( Bouchon  et al. , 2001 ). Two distinct spectroscopic features were 
used to monitor oil penetration into the freshly fried potato samples. Based on the 
stretching vibration band at 1745       cm  � 1  (due to ester group of triglycerides) a clear 
identifi cation of oil location across sections of the fried potato cylinders could be 
performed. In addition, the core region of the potato sample was measured to get a ref-
erence spectrum for the oil-free area. The total oil adsorbed was estimated by summing 
the contribution of each analyzed layer. The results of the study prove that the oil 
uptake is mainly a surface phenomenon and that the oil distribution is predominantly 
determined by the developed crust microstructure. 

    Vicentini  et al.  (2005)  compared the FTIR spectra of raw cassava starch with edible 
cassava fi lms prepared by casting technique. In general, they did not fi nd signifi cant 
differences in the spectral pattern. However, by applying PCA in the fi ngerprint region 
(1300–800       cm  � 1 ) a separation into three different groups was successfully achieved, 
which can be correlated with the starch concentration in the fi lmogenic solution. This 
chemometric analysis proves that the functional properties of cassava starch are mainly 
related to spectral contributions observed around 1000       cm  � 1  (change from crystal-
line to amorphous state). Furthermore, a comparatively large infl uence of the band at 
1240       cm  � 1  was seen, representing the intermolecular cohesion of cassava fi lms. 

   The potential of FTIR spectroscopy in combination with photoacoustic detec-
tion for the rapid analytical characterization of potato chips has been demonstrated 
by  Sivakesava and Irudayaraj (2000) . The authors measured the samples in sealed 
cells and purged with helium. IR radiation striking the sample surface generated 
acoustic waves which could be detected by a very sensitive microphone. Beside 
moisture bands (3700–3100       cm  � 1  and 1640       cm  � 1 ), amide A (3380       cm  � 1 ), amide I 
(1645       cm  � 1 ), and amide II (1450       cm  � 1 ) absorption bands were identifi ed. In addition, 
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the spectra show key bands of sugars, oils, and fats in the range between 950 and 
1153       cm  � 1 . A strong peak at 1748       cm  � 1  (ester carbonyl group of triglycerides) and 
a small peak at 3005       cm  � 1  ( cis -double bond stretching) represent marker bands for 
oil to be found in potato chips. Hydroperoxides formed during the oxidation proc-
esses were detected by a peak around 3380       cm  � 1  due to OH stretching vibration 
of this molecule. At the same time, a decrease of the  cis -C     �     C stretching vibration 
at 3005       cm  � 1  was observed. Non-oxidized chips also show a very weak band at 
1652       cm  � 1  which is associated with  cis -C     �     C of olefi ns. The authors also found that 
the intensity of the band at 1099       cm  � 1  decreased with proceeding oxidation. 

   Transmission IR microspectroscopy was successfully applied to study the infec-
tion of potato tubers by  Erwinia carotovora  ssp.  carotovora  (a widespread bacterium 
causing soft rot in potato tubers) in aerobic and anaerobic conditions ( Steward, 1996 ). 
This sophisticated technique generally permits the study of localized changes occur-
ring in cell wall composition and structure. According to present knowledge the bac-
teria degrade the starch granules, which is associated with a signifi cant decrease of 
polysaccharide C–O stretching vibrations in the region 1150–980       cm  � 1 . Furthermore, 
a slight increase of protein bands can be seen which may be due to cell wall hydrolases 
secreted by the pathogenic bacteria. The author ( Steward, 1996 ) observed that IR spec-
tra obtained from potato tissue infected in anaerobic conditions show clearly higher 
degradation of cell walls than that infected in aerobic conditions. This is related to 
the fact that increased absorbances at 1650       cm  � 1  (protein) and 1710       cm  � 1  (fatty acid) 
occur, indicating higher degradation during anaerobic infection ( Steward  et al. , 1994 ). 

   A fi rst attempt tentatively to analyze contamination with certain pesticides of 
potato tubers using ATR-IR was made in 1975 ( Copin  et al. , 1975 ). This method 
clearly lacks sensitivity and selectivity, however, and therefore has only limited 
application in practise.  

    Tomato 

   ATR-IR spectroscopy has been used for  in situ  analysis of naturally occurring caro-
tenoids in tomato fruits and tomato products ( Baranska  et al. , 2006 ). The principal 
pigments of red tomato fruits are lycopene and  β -carotene, which are 11- and 
9-conjugated carotenes, respectively. IR spectra obtained from tomato samples 
show no visual evidence of the presence of lycopene and  β -carotene ( Figure 12.3   ). 
Most intense signals observed in the spectra of isolated carotenoids ( Figure 12.3 ) 
due to wagging vibration ((RH)–C     �     C–(RH)) can be seen at 965 and 960       cm  � 1  for 
 β -carotene and lycopene, respectively. An additional satellite band at 950       cm  � 1  
indicates that the standard of  β -carotene used for measurement was not pure and con-
tained small amounts of another carotenoid. At about 1370       cm  � 1  both investigated 
pigments show a vibrational mode due to symmetric deformation  δ  sym  (CH 3 ), whereas 
near 1450       cm  � 1  a deformation vibration  δ  (CH 2 ) is observed. None of these bands can 
be noticed in the spectrum obtained from tomato purée ( Figure 12.3 ), which is domi-
nated by signals to be seen at 1635 and 1060       cm  � 1  that are due to vibrational modes 
of water. This is not surprising, since water molecules have high dipole moment and 
their IR bands coincide with signals from other plant constituents. 

              



   For IR spectra, vector normalization and baseline correction followed by mean 
centering was applied. A reasonable model was obtained by using the full wavenum-
ber range ( R  2       �      0.95, SECV      �      0.21 for  β -carotene and 0.97, SECV      �      37.23 for lyc-
opene), however the best model was obtained when the spectral range was limited to 
650–1800       cm  � 1  ( R  2       �      0.97, SECV      �      0.16 for  β -carotene and 0.98, SECV      �      33.20 
for lycopene). This narrow wavenumber range was more convenient since above 
1800       cm  � 1  IR spectra are disturbed by CO 2  absorption. Some other methods of pre-
processing data such as multiple scatter correction (MSC) also resulted in satisfactory 
prediction quality. In contrast, second-derivative pre-processing contributed considera-
ble noise to the spectra and consequently gave very poor calibration models. Similar 
observations were made when MSC was applied to the calibration of NIR spectra 
obtained from tomato products ( Pedro and Ferreira, 2005 ). NIR spectroscopy, which 
has been used for quantifi cation purposes in the agricultural sector for several dec-
ades, showed the worst prediction quality ( R  2       �      0.85 and 0.80, SECV      �      91.19 
and 0.41 for lycopene and  β -carotene, respectively) in the study by  Baranska  et al.  
(2006) . 

   A similar approach to detect and to quantify lycopene in tomatoes was performed 
by  Halim and Schwartz (2006) . They used the CH deformation vibration at 957       cm  � 1  
as a marker band and successfully developed calibration models for the accurate 
prediction of unknown lycopene levels in tomatoes and tomato products by ATR-IR 
spectroscopy ( R       �      0.96, SECV      �      0.80       mg       100       g  � 1 ). 

1500 1000 
Wavenumber (cm�1)

14
44

B

13
81

96
0

14
54

96
5

lo
g 

(1
/R

)

A

14
10

13
70

C

95
0

13
67

13
79

16
35

10
60

 Figure 12.3          Attenuated total reflectance infrared spectra of tomato purée (A), lycopene (B) and  
β -carotene (C).    
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   In combination with the so-called  “ electronic tongue ”  ATR-IR has been used to 
determine the sugar and acid profi le of four different tomato cultivars (cv. Aranka, 
cv. Climaks, cv. Clotilde, cv. DRW 73–29) ( Beullens  et al. , 2006 ). The tomato cultivars 
could be successfully classifi ed according to their individual sugar and acid profi les, 
previously determined by HPLC. It was found that the discrimination between culti-
vars is comparable to the results obtained with HPLC (correlation of 98% with the 
reference method). Furthermore ATR-FTIR could be successfully used for reliable 
prediction of fumaric acid and malic acid content, as well as glucose, fructose, and 
sucrose. However, the prediction of other organic acids did not result in satisfactory 
prediction quality. 

   Cuticles isolated from tomato leaves were analyzed by FTIR spectroscopy to 
determine their chemical composition (cellulose, pectin, fatty acids, phenolics, and 
waxes) ( Luque  et al. , 1993 ). Because the cuticle represents the fi rst barrier that 
must be overcome before entering the plant, it is of major interest to get a better 
understanding of the molecular structure of this biological polymer. 

   Furthermore, the interaction of NO 2 , an air pollutant from diverse combustion proc-
esses, with the cuticles of mature tomato fruits was investigated using IR spectroscopy 
in the range between 1800 and 600       cm  � 1 . In this context characteristic absorption bands 
assigned to different NO 2  vibrations were registered at 1631, 1278, and 860       cm  � 1 . 

   It is well known that increasing salinity levels have negative effects on germina-
tion, plant growth, and fruit yield of tomatoes. Furthermore, salinization also results 
in an increase of various physiological disorders such as  “ blossom end rot ”  ( Brown 
and Ho, 1993 ), which is related to a decrease in the absorption and translocation of 
calcium ions to the fruit ( Franco  et al. , 1994 ). In order to get a rapid classifi cation of 
tomato fruits grown in saline conditions GC-MS is usually applied to obtain meta-
bolic fi ngerprints of the analyzed plant tissues ( Fiehn, 2001 ). 

   Applying FTIR spectroscopy, the interaction between cellulose and non-cellulosic 
polysaccharides in tomato fruits during cell elongation has been investigated in 
detail ( Wilson  et al. , 2000 ). Based on these experiments the authors found that pectin 
chains respond faster to oscillation than the more rigid cellulose. Another research 
group analyzed whole fruit fl esh extracts obtained from salt-grown tomatoes using 
FTIR spectroscopy ( Johnson  et al. , 2003 ). Applying PCA, no discrimination between 
control samples and the individual salt-treated tomato varieties could be achieved. 
However discriminant function analysis (DFA) was able to classify the control group 
as well as salt-treated fruits correctly. Furthermore, a genetic algorithm (GA) was 
used as a variable selection method prior to discriminant multiple linear regression 
(D-MLR) to deconvolve hyperspectral data sets in order to identify discriminatory 
biomarkers for susceptible and salt-tolerant tomato varieties. Based on GA results 
two regions (2300–2100       cm  � 1  and 900–800       cm  � 1 ) were selected for discrimination 
between control and salt-treated tomatoes. The fi rst region corresponds to saturated 
and unsaturated nitrile compounds. The increased occurrence of these substances is 
attributed to the detoxifi cation of hydrogen cyanide, a by-product produced during 
the biosynthesis of ethylene, which is enhanced in response to stress conditions, such 
as salinity ( Mizrahi, 1982 ). The other key region at lower wavenumbers is mainly 
associated with absorption of amino radicals and other nitrogen compounds. 

              



   The structure of tomato cell walls comprising two independent but co-extensive 
networks (cellulose/hemicellulose and pectin) has also been characterized by FTIR 
microspectroscopy ( Wells  et al. , 1994 ). Applying the cellulose-synthesis inhibitor 
2,6-dichlorobenzonitrile (DCB), the formation of the pectin network could be studied 
independently from the cellulose/hemicellulose network. The FTIR spectra obtained 
from cell walls of DCB-nonadapted cells were found to be very similar to those 
from onion parenchyma cell walls, showing most intense absorbances at 1550 and 
1650       cm  � 1  (amide stretches), indicating a much larger protein content than in onion 
cells. In contrast, spectra obtained from walls of DCB-adapted tomato cells are very 
similar to purifi ed pectin or a commercially available polygalacturonic acid standard.  

    Sugar beet 

   For several years NIR and FTIR spectroscopy have been presented as suitable for 
the analysis of various quality parameters in sugar beet extracts or pressed juice 
( Vaccari  et al. , 1987 ;  Huijbregts  et al. , 1996 ). Reliable NIR spectroscopy calibration 
equations have been developed for the prediction of total sugars, potassium, sodium, 
and glucose ( Huijbregts  et al. , 2006 ). Comparable results were obtained for FTIR 
calibration models using the same sample set. A rapid ATR-FTIR method for the 
direct determination of sucrose in beet root has been proposed by  Garrigues  et al.  
(2000) . The characteristic sugar band at 1056       cm  � 1  was selected for analytical meas-
urements, with a baseline correction established between 1187 and 887       cm  � 1 . For 
measurements the cooked red beet root samples were directly crushed and placed on 
the ZnSe crystal of the ATR cell. It has been proved that the described method is free 
from matrix effects and from interferences with other sugar components occurring at 
lower concentration levels. 

   Other applications of IR spectroscopy methods are focused on the characteriza-
tion of hemicellulose and cellulose fraction obtained from sugar beet pulp ( Sun and 
Hughes, 1998 ). Furthermore, the degradation of beet pulps in the rumens of fi stu-
lated goats has been investigated ( Robert  et al. , 1989 ). In this context the absorption 
band at 1740       cm  � 1  decreased when the pulps were degraded, indicating that pectins 
were highly digestible. At the same time the protein content increased visibly by the 
evolution of the amide II band. 

   ATR-IR spectroscopy has also been used to detect beet invert sugar adulteration in 
various honey varieties ( Sivakesava and Irudayaraj, 2001 ). Using the data in the wave-
number range 950–1500       cm  � 1 , best predictive values for adulterated honey samples 
were achieved with canonical variate analysis, which successfully classifi ed 88–94% 
of the validation set. 

   The same authors also successfully developed predictive models for adultera-
tion with glucose, fructose, sucrose as well as cane invert sugar ( Sivakesava and 
Irudayaraj, 2002 ). The spectral region between 800 and 1500       cm  � 1  corresponding to 
sugar vibrational modes was selected for chemometric calculations and discriminant 
analysis was applied to identify the adulterated honey samples. A similar approach 
has been performed to classify adulterants in maple syrup ( Paradkar  et al. , 2002 ). 
Both, NIR and FTIR spectroscopic techniques have been used to detect adulterants 
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such as cane and beet invert sugars in maple syrup. In general, FTIR led to more 
accuracy in predicting adulterations compared with NIR analyses. The absorption 
band at 991       cm  � 1  (C–O stretching in the C–OH group) was found to be the dominant 
signal in the spectra obtained from maple syrup, beet sugar, and cane sugar, whereas 
this peak is mostly absent in invert syrups. 

   Two-dimensional spectroscopy has been applied to assign overtones and combina-
tion bands of NIR absorbances ( Maalouly  et al. , 2004 ). Thus characteristic peaks of 
sugar in the MIR region (1056 and 995       cm  � 1 ) were positively correlated with sugar 
bands in the NIR region (4808       cm  � 1 ). In the same way, the water peak at 1610       cm  � 1  
was related to corresponding bands occurring in the NIR region (5150       cm  � 1  and 
7200       cm  � 1 ).  

    Legume species 

   Whereas most legume species (e.g. soya and pea beans) are cultivated for animal nutri-
tion, these raw materials are also used to isolate protein, starch, and fi ber for food pro-
duction. In order to check the chemical composition of legume species as well as related 
isolates, several vibrational spectroscopy methods have been developed within recent 
years ( Jones  et al. , 1995 ). FTIR in conjunction with photoacoustic detection and PLS 
interpretation has proved to be a reliable tool to predict major components (starch, pro-
tein, lipids) occurring in single pea seeds ( Letzelter and Wilson, 1995 ). Linear regres-
sion of protein content calculated on the individual peak height measured at 1666       cm  � 1  
provided a correlation coeffi cient of 0.99. Furthermore, it was also possible to achieve 
reliable predictions of the lipid content using the signal intensity at 1744       cm  � 1 . 

   Microspectroscopy using the light from a synchrotron, which is 2–3 orders of 
magnitude brighter than conventional IR light sources, provided valuable chemical 
information on the composition of the root zone of mung beans ( Raab and Martin, 
2001 ). The studies demonstrate that the roots of mung bean plants exposed to either 
low-phosphorus or nutrient-suffi cient conditions can be clearly discriminated. 
Nutrient-suffi cient plants showed very strong absorbance features at 1627, 1399, 
and 1269       cm  � 1  and weaker signals at 1003 and 775       cm  � 1 . In contrast, mung beans 
in low-phosphorus conditions had stronger aliphatic bands in the wavenumber range 
between 2950 and 2850       cm  � 1  and an isolated absorbance band at 1729       cm  � 1 . 

   Modifi cations occurring in the cell walls of beans ( Phaseolus vulgaris ) because of 
a habituation program to the herbicide dichlobenil have been characterized by FTIR 
spectroscopy ( Alonso-Simón  et al. , 2004 ). Applying various multivariate analyses 
to the obtained spectral data some changes in polysaccharide composition could be 
measured, which is mainly related to the interaction with the herbicide. 

   Other studies performed with common beans aimed to describe the so-called 
 “ hard-to-cook ”  (HTC) phenomenon, which occurs when the seeds are stored under 
adverse conditions of high temperature and high humidity ( Maurer  et al. , 2004 ). 
The authors showed that HTC beans contain higher concentrations of phenolic com-
pounds (indicated by higher absorbances in the region between 1708 and 1581       cm  � 1 ) 
which may have an effect on cell wall separation and cause HTC beans to take longer 
to cook to the same tenderness. 

              



   The secondary structure of legumin, a globular protein present in pea seeds, was 
also successfully characterized on the basis of FTIR data. Furthermore, the location 
of the structured regions along the primary sequence of legumin has been examined 
by cluster analysis ( Subirade  et al. , 1994 ). More recently, FTIR spectroscopy was 
used to study the conformation of red bean globulin under the infl uence of changing 
pH values, protein structure pertubants, and various heating treatments ( Meng and 
Ma, 2001 ). The authors proved that FTIR spectroscopy, similar to differential scan-
ning calorimetry and Raman spectroscopy, is an appropriate technique for studying 
conformational changes of plant proteins.  

    Carrots 

   Some attempts have been made to measure the carotenoids, sugars, and dry 
matter content of carrot roots using various NIR and IR methods ( Schulz  et al. , 1998 ; 
 Quilitzsch  et al. , 2005a ). Whereas the calibrations for dry matter as well as  α - and 
 β -carotene content provide reliable data, the prediction quality of sugars occurring 
in carrot roots (fructose, glucose, sucrose) is comparatively low. That is the reason 
why the same authors applied ATR-IR spectroscopy in the wavenumber range from 
850 to 2000       cm  � 1  in order to develop precise calibration models for these important 
quality parameters. As can be seen from  Table 12.4   , apart from sucrose the individ-
ual sugar substances can be successfully predicted resulting in high determination 
coeffi cients. 

   In general,  Schulz  et al.  (1998)  and  Quilitzsch  et al.  (2005a)  found that compared 
with NIR spectroscopy measurements, the MIR range clearly provides more spectral 
information of the analyte. For MIR analyses a portable FTIR spectrometer with a 
fi xed mounted diamond-ATR unit accessory was used, allowing a very good interac-
tion with the sample in the interface of the crystal to be obtained. 

   FTIR spectroscopy was also used to measure changes in the chemical composition 
of carrot cell walls during treatment with auxin, causing a signifi cant cell elongation 
( McCann  et al. , 1993 ). The described studies show that the walls of round carrot 
cells contain more protein, esters, and phenolics in a given area than the walls of 
elongated carrot cells. 

    In situ  FTIR measurements have been used to study the heat stability of proteins 
and properties of glassy matrix in slowly dried, desiccation-tolerant and rapidly 
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 Table 12.4          Cross-validation results for the prediction of sugar contents in carrot roots based on 
infrared spectra obtained from 260 different carrot juice samples  

   Component  Range (g     100           g  � 1 )   R  2   RMSECV 
(g     100     g  � 1 ) 

   Fructose  0.00–7.72  0.94  0.39 
   Glucose  0.00–6.90  0.94  0.38 
   Sucrose  0.07–2.60  0.62  0.30 
   Total sugars  0.74–16.17  0.91  0.95 

  From  Quilitzsch  et al.  (2005a) .  
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dried, desiccation-sensitive carrot somatic embryos. Slight but consistent differences 
were observed between the amide I bands of both carrot types. The amide I band of 
slowly dried embryos was seen around 1654       cm  � 1  whereas in rapidly dried carrots 
this band was shifted to lower wavenumbers (around 1632       cm  � 1 ).  

    Brassica species 

   Applying NIR refl ectance spectroscopy, a number of species belonging to the 
 Brassicaceae  family have been analyzed for their total glucosinolates content ( Salgo 
 et al. , 1992 ;  Velasco and Becker, 1998 ). Recently, even the individual glucosinolates 
occurring in  Brassica juncea  (sinigrin),  Raphanus sativus  (glucoerysolin, gluco-
brassicin, glucoraphenin), and  Brassica oleracea  (glucobrassicin, sinigrin) have 
been successfully predicted using reliable NIR correlation equations ( Quilitzsch
 et al. , 2005b ). Enzymatic degradation of glucosinolates results in the formation of 
a number of substances such as isothiocyanate, which can be used as substitutes 
for several synthetic organic pesticides. IR spectroscopy was found to be a conven-
ient method to measure the release of isothiocyanate from plant glucosinolates in 
the soil ( Brown  et al. , 1991 ). The characteristic –N     �     C � S functional group in the 
region between 2174 and 2041       cm  � 1  could be successfully used for detection of 
isothiocyanates extracted from soil which has been amended with winter rapeseed 
meal before. In order to select  Brassica  genotypes with exceptionally high con-
tents of individual glucosinolates a special FTIR method has been developed by 
 Schütze  et al.  (2004) . The authors applied the freeze-dried powder obtained from the 
freshly harvested plants directly to a diamond-ATR accessory and got acceptable 
predictions for individual glucosinolates and total glucosinolates content. Based on 
the results of this IR analysis special genotypes with high glucosinolates content 
could be clearly identifi ed and these selected plants are now available as natural 
soil fumigants to reduce damage from pests and diseases in both agricultural and 
horticultural crops.  

    Cucumber 

   A non-destructive method to evaluate the quality parameters of pickling cucumbers 
was developed by  Miller  et al.  (1995) . In this context the relative amount of Vis-
IR light passing through the longitudinal midsection of whole cucumber fruit was 
quantifi ed on a unitless sigmoid scale from 1 to 10. Cucumbers measured directly 
after harvest exhibited transmission values between 2 and 3, regardless of the indi-
vidual cultivar. Mechanical-stress treatment (e.g. bruising of the fruits) resulted 
in an increase in light transmission to a value of 6. Light transmission values also 
increased as fruit diameter decreased, but values within a particular size class of 
undamaged, hand-harvested fruit were found to be consistent. 

   FTIR spectroscopy was used to investigate the secondary structure of cucumber 
mosaic virus (CMV) which occurs worldwide in an array of host organisms and 
infects a diverse group of plants, including vegetables such as tomatoes and cucum-
bers as well as some other agricultural crops ( Renugopalakrishnan  et al. , 1998 ). 

              



In order to isolate the IR bands arising from the protein backbone of CMV, the FTIR 
spectra of purifi ed and precipitated RNA was obtained separately and digitally 
subtracted from the intact CMV spectra. The resulting spectra show two bands at 
1682       cm  � 1  and 1644       cm  � 1  which are assigned to amide I vibrational modes ( β -sheet 
structure). Amide II absorption band can be seen at 1546       cm  � 1 , whereas amide III 
band in the coat protein is registered at 1239       cm  � 1 , reaffi rming the presence of  β -
sheet as the major conformational feature of the coat protein occurring in CMV.  

    Allium species 

   Onion oil, obtained by steam distillation of onion bulbs ( Allium cepa ), is well known 
as an important raw material used for various purposes in the fl avor industry. Because 
of its high price there exists substantial incentive for adulteration with nature-identical 
fl avoring substances or to offer a nature-identical substitute as genuine onion oil on 
the market. Usually, such adulterations are identifi ed by GC-MS analysis, but IR 
spectroscopy has also been successfully applied to guarantee the authenticity of com-
mercial onion oil ( Lösing, 1999 ). Beside various dialk(en)yl(poly)sulfi des, genuine 
onion oils contain 2- n -hexyl-5-methyl-3(2       H)furanone, which is well known in the 
literature as so-called  “ onion-furanone ”  ( Thomas and Damm, 1986 ). This substance, 
which occurs in higher amounts in authentic onion oils, presents an intensive absorp-
tion band at 1720       cm  � 1  in the IR spectrum ( Figure 12.4   ). Nature-identical substitutes
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 Figure 12.4          Attenuated total ref lectance infrared spectrum obtained from onion oil.    

              



344 Fruits and Vegetables

30
81

29
78

16
34 14

22
13

98

12
17

10
74

98
5

91
5

85
8

72
0

1000150020002500300035004000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

A
bs

or
ba

nc
e

Wavenumber (cm�1)

 Figure 12.5          Attenuated total ref lectance infrared spectrum obtained from garlic oil.    

or adulterated oils consist mainly of dialk(en)ylsulfi des and consequently the 
furanone marker band is completely missing or shows signifi cantly lower intensity. 

   The volatile sulfur components that occur in the essential oil of garlic ( Allium sati-
vum ) have been characterized by  Jirovetz  et al.  (1992)  using GC-IR. Diallyltrisulfi de 
was found to be the main constituent of the oil; the corresponding IR spectrum 
shows characteristic deformation vibration of the sulfur bridge ( Figure 12.5   ). 

   Onion bulbs have also been used as a model to perform detailed studies of paren-
chyma cell walls using IR microspectroscopy. Most absorption bands were found 
in the region between 2000 and 900       cm  � 1 : at approximately 1740       cm  � 1  carboxy-
lic ester groups were detected, amide-stretching bands of protein occur at 1650 and 
1550       cm  � 1 , carboxylic acid groups related to pectin absorb at 1610       cm  � 1 , pheno-
lics are observed at 1600 and 1500       cm  � 1 , and carbohydrate bands are seen between 
1200 and 900       cm  � 1  ( McCann  et al. , 1992 ). The authors demonstrated that FTIR 
microspectroscopy could be successfully used to detect large conformational changes 
in pectic polymers on removal from the cell walls and on drying. A decrease in the 
proportion of unesterifi ed pectin between maximal cell division and maximal cell 
elongation was found in every cell wall. By using polarized light, IR spectros-
copy was also used to investigate single onion cells under different hydration condi-
tions ( Chen  et al. , 1997 ). In this context it was observed that bands associated with 
pectin were stronger with polarization perpendicular to the direction of cell 
elongation. On the other hand, bands associated with cellulose were more intense with 
polarization parallel to the direction of cell elongation. Therefore, in contrast to the 

              



earlier opinion that pectin does not play any structural role in cell walls, it can be assumed 
that it contributes to the mechanical and structural properties of the cell network.   

    Conclusions 

   In recent years, vibrational spectroscopy methods have become attractive and 
promising analytical tools extensively applied in basic research, product development, 
and quality control for various agricultural crops and related products. Whereas the 
fi rst NIR refl ectance spectroscopy applications in the agricultural section appeared 
over 40 years ago, the use of MIR spectroscopy has been more limited. A general 
advantage of MIR over NIR spectroscopy is that absorption bands are usually well 
resolved and can be assigned to vibrational modes of specifi c chemical groups. 
Furthermore, the possibility of coupling NIR spectrometers with suitable, compar-
atively low-cost fi ber optics opens numerous  “ in-line ”  and  “ on-line ”  commercial 
applications. Although special fi ber-optics materials have been developed for MIR 
(e.g. ZrF 4  and AgCl), because of the signal attenuation and high costs at present their 
use is restricted to lengths of 2       m. 

   Today NIR and MIR spectroscopies are widely used to determine fats, proteins, 
and carbohydrates, but numerous secondary plant substances occurring in agri-
cultural products can also be reliably predicted. For authentication purposes both 
spectroscopy techniques can provide in a few minutes valuable data allowing the 
discrimination of different agro-food samples. Quantitative analyses need accurate 
development of calibration equations based on reference data, therefore the world-
wide trend (especially for NIR spectroscopy) is to use more and more private and 
public networks in this context. 

   In the past 20 years the development of NIR and MIR microscopes has considerably 
extended the fi eld of application. These sophisticated techniques allow point by point 
measurements (mapping) to be performed or simultaneous spectra (imaging) from a 
small sample area to be obtained. Thus MIR and NIR spectra can be obtained non-
destructively from the surface of plant samples, allowing the detection of, for example, 
the distribution of waxes, pesticide residues, or contamination by microorganisms. 
Moreover, sections of different parts of plants can be analyzed regarding their chemical 
composition on the cellular level.  
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    Introduction 

   Fruit juices are an important food category in the USA, with an average consumption 
of over 8 gallons per capita since 1992, not including the use of juice as an ingredi-
ent in other food items ( Pollack and Perez, 2006 ). Orange and apple juices are the 
primary fruit juices consumed in the USA, accounting for 57% and 25% of total 
consumption in 2005/2006 ( Pollack and Perez, 2006 ). As the consumption of non-
citrus fruit juices has slowly increased from 2.51 gallons since 1997/1998 to 2.91 
gallons per capita in 2005/2006, the consumption of total citrus juices has con-
tinuously declined from 6.48 gallons in 1997/1998 to 4.67 gallons per capita in 
2005/2006 ( Figure 13.1   ). Although orange juice still accounts for more than half of 
the total fruit juice consumed, particularly as fresh pasteurized juices have gained 
popularity, grape juice has replaced grapefruit juice in popularity as of 2003/2004 
and has become the third most widely consumed juice. In recent years, mixtures of 
tropical fruit juices, including blends with pineapple, mango, papaya, and banana, 
and more recently with carrot (although it is not a tropical fruit), are gaining 
popularity around the world. Juice blends of white grape juice, which has replaced 
apple juice as a base in many juice blends, are increasing in volume. These bases 
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are blended with juices, juice concentrates or fl avors (e.g. cranberry, strawberry, rasp-
berry, tropical extracts) to make juice drinks directed towards the children’s market. 

   Fruit juice is fl uid extracted from fruits and is not fermented. Its basic process 
involves pre-treatment, juice extraction and post-pressing treatment. Pre-treatment 
mainly includes sorting, cleaning, and inspection. Pre-treatment with pectolytic 
enzymes may be required to help release juice from some fruits, such as strawberries 
and raspberries. Post-pressing involves clarifi cation, adjustment and standardizing of 
solids content, sweetness and acid levels, addition of vitamins, antioxidants, extracts, 
fl avors and/or colors, pasteurization, and packaging. 

   Fruit juices may be clarifi ed, or not clarifi ed (cloudy and pulpy), although clear 
juices are the most popular. The exception to this would be citrus juices that are 
now being produced with varying levels of pulp depending upon market demand. 
Also popular are juice products called  “ fl oats ”  in Asian and Middle Eastern markets, 
which are juices or juice blend with suspended large particles of fruit. 

   Fruit juices are often concentrated to reduce the cost of transportation as well as to 
stabilize the product. Concentrates are often a more convenient form for products that 
use juice as an ingredient, since less water is added, providing greater fl exibility in prod-
uct formulations. Concentrated juice can be diluted back to reconstitute the initial sin-
gle strength juice (100% juice). Market and regulatory standards are set to control the 
amount of water added to constitute single strength juice, but these standards vary in 
different countries. For example, according to US regulations, a minimum of 11.8° Brix 
(soluble solids concentration) is required for reconstituted orange juice and 10.5° Brix for 
pasteurized orange juice ( Food and Drug Administration, 2002 ; 21 CFR 146.140), but the 
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Figure 13.1 Per capita consumption of total and selected fruit juices in the USA since 1997/1998 
(Pollack and Perez, 2006).

              



European Union allows a minimum of 11° Brix and 10 °  Brix for reconstituted and fresh-
pressed orange juices, respectively ( Fry, 1990 ). Different juices may also have different 
minimum requirements for soluble solids concentration ( Table 13.1   ). For example, the 
minimum requirement of soluble solids content in reconstituted fruit juices could be as
low as 4.5° Brix, such as in lemon and lime juice, and up to 22° Brix as in banana juice. 

   There are various juice products on the market that are standardized based upon 
the type of fruit from which the juice is made, such as apple, orange, and mango 
juice, and the processing methods. For example, orange juice products are defi ned 
and standardized based upon processing methods under the Federal Food, Drug, and 
Cosmetic Act in the USA as follows: pasteurized orange juice (21 CFR 146.140), 
canned orange juice (21 CFR 146.141), orange juice from concentrate (21 CFR 
146.145), frozen concentrated orange juice (21 CFR 146.146), reduced acid fro-
zen concentrated orange juice (21 CFR 146.148), canned concentrated orange juice 
(21 CFR 146.150), and concentrated orange juice for manufacturing (21 CFR 146.153 
and 21 CFR 146.154) ( USDA, 1982 ). It is therefore a topic of continuing impor-
tance to develop rapid and inexpensive analytical methods for online monitoring and 
control of the safety and quality of a large variety of juice products during process-
ing, transportation, and storage. The use of spectroscopic methods is particularly 
important for online and continuous quality monitoring applications.  

Table 13.1 Minimum brix levels for single strength fruit juices in the USA

Fruit Juice °Brixa

Orange
Grapefruit

11.8
10.0

Citrus fruit Lemon
Lime
Tangerine
Apple

4.5
4.5

11.8
11.5

Pome fruit Pear
Quince
Banana
Kiwi

12.0
13.3
22.0
15.4

Tropical fruit Mango
Papaya
Passion fruit
Pineapple
Grape
Peach

13.0
11.5
14.0
12.8
16.0
10.5

Other juices Black currant
Red currant
Strawberry
Blueberry
Raspberry (black)

11.0
10.5

8.0
10.0
11.1

aData were from 21 CFR 101.30 (FDA, 2002).
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    Basic components of fruit juices 

    Water 

   Water is the primary component of fruit juice and represents about 90% of the total 
weight of juice ( Table 13.1 ). Water content is generally not directly used as a qual-
ity indicator for fruit juice. Instead, the total soluble solids content of juice is used. 
In clear fruit juice, the sum of water and soluble solids content is 100%. The use 
of total soluble solids as quality indicator is partially to control the water content. 
The amount of soluble solids in juice is normally referred as a Brix value and is 
determined by a Brix hydrometer or a refractometer. The measurement of soluble 
solids with a refractometer is based upon the assumption that all soluble ingredi-
ents have the same refractive index as sucrose. The refractometric solids content is 
normally corrected based upon acidity and temperature.  

    Sugars 

   Sugars in juice provide a sweet sensation and a viscous mouth-feel. The presence of 
sugars helps to increase the shelf-life of fruit juices, particularly concentrated fruit 
juices, by increasing the osmotic pressure of the aqueous environment. Since sug-
ars contribute to the high caloric density of juice, there is a tendency to reduce the 
total content of sugars, and produce reduced calorie or  “ lite ”  juices by substituting 
non-nutritive sweeteners such as aspartame or sucralose for some of the soluble 
solids in the juice. Nevertheless, the functional properties, particularly the sensory 
properties of the sugars, must be considered to produce acceptable fruit juice. 

   Sugars account for about 75–85% of total soluble solids in fruit juices. Sugars, 
particularly sucrose, glucose, and fructose, are the major soluble solids in fruit juice. 
The ratio of each sugar varies in different fruit juices. Therefore, determining the 
ratio of sugars in a juice is a way to determine whether sugar has been added to 
adulterate and dilute expensive fruit juices and whether the composition of a juice 
is as it is represented. For example, fructose is the primary sugar in apple juice, and 
normally accounts for more than 50% of the total sugar. In orange juice, the ratio of 
sucrose, glucose and fructose is 1:1:1, as found in juice from Israel and Brazil, or 
2:1:1, as found in juice from North America ( Fry, 1990 ). The sugars in grape juice 
are mainly fructose and glucose, and the content of sucrose is less than 10% of total 
sugar ( McLellan and Race, 1990 ). 

   Although sucrose, glucose, and fructose are major sugars found in fruit, a large 
variety of other sugars and sugar alcohols, such as maltose, xylose, and sorbitol, 
are also present in fruit juices. Some juices, such as pear juice, contain signifi cant 
amounts of sorbitol, a sugar alcohol. One method commonly used to determine if 
more expensive apple juice has been  “ cut ”  with pear juice is to assay for sorbitol, 
since this component is not present in apple juice.  

    Organic acids 

   Organic acids are the second most abundant soluble solids component in fruit juices, 
and are typically present at about 1% of the total weight of a fruit juice. Citric and malic 

              



acids are the primary organic acids found in fruit juices. Citric acid accounts for about 
90% of the total organic acids in orange juice, while malic acid is the main organic acid 
in apple juice. However, the tartness of grape juice is mostly caused by tartaric acid. 
A small amount of other acids including ascorbic, isocitric, citramalic, galacturonic, 
shikimic, lactic, quinic, succinic, and fumaric acids are also present in fruit juices. 

   Organic acids provide tartness, and the amount of organic acids is commonly 
represented as total acidity. Acidity, as a key quality indicator for fruit juice, is 
generally determined by a titration method using a standard sodium hydroxide 
solution and phenolphthalein indicator. The result is calculated as citric acid for 
orange juice, malic acid for apple juice, or tartaric acid for grape juice. The amount 
of acid and/or the brix-acid ratio is standardized for commercial juice, and must be 
within a certain range. Too high or too low an acid content or brix-acid ratio results 
in unacceptable product. Juice can have a relatively high concentration of organic 
acids, or a high titratable acidity, but not have a low pH ( �       �     log10[H � ]). The 
pH of fruit juice is generally tied to the safety of fruit juice during storage, since 
certain types of microfl ora including pathogens may survive in juice of a lower 
pH but fail to grow unless the pH of the juice is slightly higher. Pasteurization 
conditions, such as heating temperature and time, are dependent upon the pH and 
juice solids concentration. 

   The types of acids as well as the amount of acids in fruit juices are rather 
variable, depending upon variety, season, processing methods, and storage time. The 
profi les of organic acids can be used for juice authentication, juice classifi cation, in 
addition to predicting the safety and quality of fruit juices. For example, the ratio of 
citric acid to isocitric acid has been used as an indicator for orange juice authenticity 
to identify whether citric acid has been added to the juice ( Fry, 1990 ). The ratio of 
citric acid to isocitric acid is around 100 for orange juice. Since isocitric acid is very 
costly and is unlikely to be added to adulterated fruit juice, a high ratio of citric acid 
to isocitric acid in orange juice indicates addition of citric acid, a common method 
for fruit juice fraud. As discussed later in this chapter another method, carbon 
isotope ratio of a specifi c organic acid, has also been used as an indicator for fruit 
juice authentication ( Doner, 1985 ;  Jamin  et al. , 2005 ).  

    Other fruit juice components 

   Fruit juice contains lower levels of free amino acids compared to sugars and organic 
acids. Although the amount of free amino acids in orange juice is relatively high, 
typically around 0.3–0.4%, in other juices, such as apple juice, the level may be as 
low as 10       ppm ( Fry, 1990 ;  Lea, 1990 ). The amino acid profi le differs among different 
fruit juices. For example, the most abundant amino acid in orange juice is proline, 
but in apple juice it is asparagine. The composition of amino acids in fruit juices is 
well documented ( Fry, 1990 ;  Lea, 1990 ). Amino acid analysis using column chroma-
tography is a common method for the analysis of fruit juice. 

   Fruit juice is not a major source of dietary vitamins and minerals, although orange 
juice is rich in vitamin C.  Table 13.2    shows the mineral content of some common 
fruit juices. The major inorganic ion is potassium.The mineral content may change 
during fruit juice processing and storage. For example, iron content may be higher in 
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canned juice than fresh juice. The mineral content of reconstituted juice may differ 
from fresh juice, since the water used for juice reconstitution may add some minerals 
to the product. The profi le of minerals in fruit juice can be used for juice authentica-
tion ( Fry, 1990 ). New juice based drinks are appearing on the market which have 
been fortifi ed with calcium, specifi cally citrus juices. Also, vitamins, dietary essential 
fatty acids, phytochemicals, antioxidants, and proteins are added to increase the 
nutritional functionality of juices. Other ingredients, such as pigments, phenolics, 
and volatile compounds also contribute to the sensory and nutritional qualities of 
fruit juices. The level of endogenous antioxidants and bioactive compounds is a cur-
rent area of interest and much work is being conducted to determine what the profi le 
of juice pigments and antioxidants is and how this may be nutritionally benefi cial. 
The juice making process may or may not result in a loss of phenolic antioxidants. 
Biological variability between cultivars of fruit, as well as length of time in storage, 
cultivation conditions, and extraction methods can all affect the level of bioactive 
components in juice.   

    Application of infrared technology 
to juice analyses 

   Infrared technology has been applied to almost every aspect of agricultural and food 
science for the past four decades. The wide application of infrared (IR) technology 
in the area of food science is greatly attributed to Karl Norris ’  efforts to develop a 
rapid method for moisture determination in cereal products ( McClure, 2003 ). Norris 
successfully integrated chemometrics with the analysis of near-infrared (NIR) spec-
tral data to predict moisture, and later proximate composition of grain products. This 
led to a breakthrough in the use of NIR for both qualitative and quantitative analysis. 
Absorptions in the NIR region are mainly comprised of overtones and combinations 
bands, which allow the use of much longer path lengths than in the mid-infrared (MIR) 

Table 13.2 Mineral content (mg/L) of some fruit juicesa

 Orange, fresh Orange, canned Orangeb Grapefruit, fresh Apple juiceb Grape 
juiceb

Na 8 21 8 8 29 33
Ca 113 83 92 92 71 96
Mg 113 113 104 125 29 104
Zn 0.50 0.71 0.50 0.50 0.29 0.54
Mn 0.15 0.15 0.15 0.21 1 4
K 2067 1817 1971 1667 1229 1392
P 175 146 1667 154 71 117
Fe 2 5 1 2 4 2.5
Cu 0.45 0.59 0.46 0.34 0.23 3

aAdapted from Pennington (1997).
bFrom concentrated/bottled.

              



region, and thus signifi cantly simplify sample preparation and spectral acquisi-
tion. Furthermore, the application of chemometrics to spectral data analysis makes 
it possible to simultaneously analyze multiple food components in a few minutes. 
Although, initially, the NIR region drew the most attention in food analysis, particularly 
for rapid and/or non-destructive analysis of low and intermediate moisture food, with 
the development of new sampling accessories for the MIR region, such as attenuated
total refl ectance (ATR), the use of MIR and chemometrics in food analysis is 
gaining increasing interest since spectral features in MIR are more distinct, making 
data interpretation easier. 

   Because of the numerous components in a food, most of the time it is diffi cult to 
identify the absorption bands caused by a particular compound of interest. 
Chemometric techniques, such as PLS regression ( Geladi and Kowalski, 1986 ), 
which can make use of full spectral data, can be effectively applied to correlate spec-
tral features with the concentration of an analyte. Unlike traditional IR techniques, 
most of the current research on food analysis using IR spectroscopy involves chemo-
metric methods, in which a mathematical model is devised to correlate absorbance 
or transmittance values at different wavelengths with a known concentration of an 
analyte. This model is used to predict the concentration of analyte in samples of the 
same or similar food items with unknown composition. Although the approaches 
to acquire spectra, as well as the discrete chemical information obtained from the 
spectra are quite different between NIR and MIR, the chemometric techniques used 
for NIR and MIR are basically the same. 

   Since the 1960s, consistent efforts have been made to seek powerful mathematical 
methods to interpret spectral data information. Stepwise multiple linear regression, 
the oldest data analysis method, is still used widely for spectral data analysis. Partial 
least squares regression (PLS) has become one of the most popular methods since 
the late 1980s. More and more mathematical methods, such as artifi cial neural net-
works, are being applied to IR data calibration to solve both linear and non-linear 
changes in spectral features (       Gestal  et al. , 2004, 2005 ;  Huang  et al. , 2007a ). 

   Infrared methods have been applied for both qualitative and quantitative analyses 
to ensure food safety and quality. The application areas can be classifi ed as follows: 

      ●      Determination of food components. Food components can be macronutrients 
(e.g. protein, fat, and carbohydrate) and micronutrients or non-nutritional (e.g. 
pigments). Some of the components, such as salt and minerals, have no specifi c 
absorption bands in the IR region; however, since the presence of these compo-
nents affects the shape and position of water bands or other molecular bands in 
the IR region, it is possible to detect and quantify these components in a food 
( Huang  et al. , 2003a ).  

      ●      Determination of important quality indicators or parameters. Quality indi-
cators cover both chemical (e.g. pH and acidity) and physical characteristics 
(e.g. hardness and viscosity). Although IR spectral features are essentially tied 
to the chemical properties of a food, some physical properties of the food may 
be closely related (in either a linear or non-linear fashion) to its chemical prop-
erties that are detectable in the IR region, thus making it possible to predict 
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the physical properties of a material ( Lundin  et al. , 1998 ;  Segtnan  et al. , 2003 ; 
       Huang  et al. , 2003b, 2007b ).  

      ●      Detection or determination of toxicants (e.g. pesticides and myotoxins) and 
biological contaminants (e.g. pathogens). The amount of a contaminant may 
be very small, such as 100       ppb afl atoxin, and beyond the detection limit of an 
IR spectrometer, but if the level of contaminant is highly correlated with some 
other IR-sensitive components (e.g. protein and fat) in the same food, then it 
may be possible to devise a reliable correlation between the two components. 
Often, it is possible to predict the level of a contaminant, or its presence or 
absence by using multivariate analytical methods ( Pearson  et al. , 2001 ).  

      ●      Grading, classifi cation, or authentication of food. This typically requires deter-
mination of more than one quality indicator. For example, acidity, brix value, 
brix-acid ratio are required for the grading of orange juice. Since IR methods 
can simultaneously determine several ingredients, or directly predict a quality 
attribute (e.g. its grade or compliance with a commercial or market specifi ca-
tion), these methods can signifi cantly save time and cost for this type of appli-
cation ( Twomey  et al. , 1995 ;  Gestal  et al. , 2004 ).    

   Since physical and chemical properties, as well as the quality standard for fruit 
juices are different from other food categories (e.g. meat products), fruit juice analy-
sis using IR methods has its own characteristics. For example, penetration depth is 
less of an impediment to the use of spectral methods for the analysis of juices com-
pared to solid foods that have a well-defi ned tissue structure where it is often diffi cult 
to obtain spectra that are representative of the bulk properties of the food. 

    Basic spectral features of fruit juices 

    Water 
   Water is the principal component in food, particularly in liquid foods such as fruit 
juice. Water molecules have strong absorption bands in the IR region. The pres-
ence of water in food affects the determination or detection of other components, 
which requires mathematical approaches to overcome the interference from water 
molecules. 

   Water bands are dominant in a typical IR spectrum of fruit juice ( Figure 13.2 ). 
In  Figure 13.2 , three water bands around 3328       cm  � 1  (OH-stretching,  υ 1,3), 2115       cm  � 1  
(combination band,  υ 2      �       υ L), and 1634       cm  � 1  (OH-bending,  υ 2) are the primary 
absorption bands in the mid-IR region for fruit juices ( Libnau  et al. , 1994 ). In addi-
tion, three small water bands can be found around 5200       cm  � 1  (1923       nm,  υ 1,3      �       υ 2), 
7000       cm  � 1  (1429       nm, fi rst overtone of the OH-stretching band, 2 υ 1,3), 8500       cm  � 1  
(1176       nm, 2 υ 1,3      �       υ 2) in the NIR region, which are the combinations of OH-bending, 
OH-stretching and/or the fi rst overtone of the OH-stretching ( Libnau  et al. , 1994 ). 
The strength of these absorption bands is very small compared to the three water 
bands in the MIR region, and normally should be observed with a NIR spectrom-
eter. In an even shorter wavelength NIR region (700–1100       nm), in which absorp-
tions are comprised of third and fourth overtones and combination bands with very 

              



small absorptivity coeffi cients, water bands at about 970       nm, 840       nm and 750       nm are 
reported ( McClure and Standfi eld, 2002 ;  Huang  et al. , 2007c ). 

   The hydrogen bonds of water are highly temperature-dependent. Various stud-
ies have been conducted to study the hydrogen bond systems of water and their 
temperature-dependent behaviors. According to these studies, liquid water contains at 
least three components or classes with different structures, and the proportion of each 
class changes with temperature, which therefore affects the spectral features of water 
( Lin and Brown, 1992 ;  Libnau  et al. , 1994 ;  McClure and Standfi eld, 2002 ). 
In both MIR and NIR regions, an increase in temperature results in an increase in 
the intensity of water bands due to the larger energy of hydrogen bonding ( Finch and 
Lippincott, 1956 ). Temperature also affects the position of the water bands. Whether 
a water band shifts towards a lower or higher wavenumber as temperature increases, 
depends on the wavenumber at which the water band appears. In the MIR region, 
when temperature increases, the water band at 3328       cm  � 1  shifts to higher wavenum-
ber, but those at 2115       cm  � 1  (combination band,  υ 2      �       υ L), and 1634       cm  � 1  shift to 
lower wavenumber ( Finch and Lippincott, 1956 ;  Libnau  et al. , 1994 ). In the NIR 
regions, three major bands at 5200       cm  � 1 , 7000       cm  � 1 , and 8500 cm  � 1  shift to higher 
wavenumber with an increase of temperature ( Libnau  et al. , 1994 ). 

   Because the spectral features of water, the dominant spectral features for juice, 
strongly depends upon temperature, the accuracy of using IR methods for fruit juice 
analysis can be affected by sample or environmental temperature fl uctuations dur-
ing measurements. It is important to keep the temperature consistent  during spectral 
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Figure 13.2 Fourier transform infrared spectra of water, orange juice, red grape juice, and apple juice. 
Spectra were recorded using an attenuated total refl ectance through top plate at room temperature.
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acquisition. A calibration model based upon sample spectra collected at a specifi c 
temperature range should not be used to predict a sample composition when spectra 
are collected beyond that temperature range. This is of particular concern as there 
is a great deal of interest in implementing non-invasive IR methods to analyze fruit 
juice held or processed at refrigerated temperatures or at room temperature to ensure 
that the foods are safe and meet regulatory requirements. Different techniques have 
been applied to correct the temperature effects on IR measurements, which involves 
simply applying a correction factor on the IR model prediction results ( Williams 
 et al. , 1982 ;  Huang  et al. , 2007c ), or complicated mathematical approaches to 
pre-process spectral data before using them for chemometrics model development 
( Wülfert  et al. , 2000 ).  

    Sugars 
   Sugars are the most abundant soluble solids in fruit juice. Because of a relatively 
large amount of sugars in fruit juices, the effect of sugars on IR spectra of juice is 
obvious, particularly around the fi ngerprint region (1450–600       cm  � 1 ), although water 
bands remain the dominant features (       Figures 13.2 and 13.3     ). 

    Figure 13.3  shows the Fourier transform infrared (FTIR) spectra of 10% (w/v) 
aqueous solutions of fructose, glucose, and sucrose from 10       000 to 600       cm  � 1 . 
The 10% sugar solutions were used to approximate the sugar content in fruit juice. 
The absorption bands around 1100–1000       cm  � 1  are mainly due to the C  –H and 
C–  O stretch vibrations, and the spectral signatures among sugars are somewhat 
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Figure 13.3 Fourier transform infrared spectra of water, 10% (w/v) water solutions of fructose, glucose 
and sucrose. Spectra were recorded using an attenuated total refl ectance through top plate at room 
temperature.

              



different from one another ( Max and Chapados, 2007 ). For example, aqueous glu-
cose has a strong C–  O stretch vibration at around 1030       cm  � 1 , while for fructose, the 
C  –O stretch vibration band is around 1060       cm  � 1 , and for sucrose, around 1055       cm  � 1 . 
In addition, there are some low intensity bands around 1400       cm  � 1  caused by C – C  –H 
and C  –O  –H deformation modes. Unlike other simple molecules, sugars have endo-
cyclic and exocyclic C–  O bonds, such as around 995       cm  � 1  (exocyclic) for sucrose, 
and around 1080       cm  � 1  (endocyclic) for glucose and fructose. 

   Sucrose, glucose, and fructose aqueous solutions have more than one hydrate 
form.  Max and Chapados (2007)  identifi ed pentahydrate (sugar–5H2O) and dihy-
drate (sugar–2H2O) for D-glucose and sucrose, and pentahydrate and monohydrate 
(sugar–H2O) for D-fructose using FTIR spectrophotometry with factor analysis. The 
existence of multiple hydrates further complicates the IR spectra of sugar solutions 
as well as fruit juices containing multiple sugars. This makes it diffi cult if not almost 
impossible to assign absorption bands in the fi ngerprint region for specifi c sugars in 
fruit juice. 

   Overall, sugar molecules in fruit juice not only have their own spectral signatures in 
the IR region, but also affect the shape and position of the water bands in this region. 
Sugars affect the shape and intensity of the absorption bands due to OH stretching 
vibration, such as at around 3300       cm  � 1 , although most of the time it is diffi cult to 
separate the OH stretch vibrations of water from those of sugars. Furthermore, the 
existence of sugar molecules changes the ratio of water components or classes (water 
contains at least three components with different molecular structures), and thus 
affects the water bands, such as the one at around 1640       cm  � 1  ( Lin and Brown, 1992 ; 
 McClure and Standfi eld, 2002 ).  

    Organic acids and other components 
   After sugars, organic acids are the major soluble solids in fruit juice. Organic acids 
in fruit juice contain C�  O, C–  O, O–  H, C–  H functional groups. The presence of 
these functional groups adds more spectral features to the water–sugar system. Since 
the amount of organic acids in fruit juice is relatively small (about 1%), the effects 
of these acids to the IR spectrum of a juice, most of the time, cannot be discerned by 
visual examination of the spectra. Nevertheless, these organic acids play an impor-
tant role in analyzing fruit juice via IR methods, due to their spectral signatures as 
well as their effects on water or sugar bands in the IR region that can be ascertained 
from chemometric models. Furthermore, because of the important role of organic 
acids to the safety and quality control of fruit juices, the analysis of organic acids in 
fruit juice by IR methods remains an active area of research. 

   The concentrations of other components, such as minerals, vitamins, and polyphe-
nols, tend to be very small in fruit juice. To eliminate the interference of the water 
band, small samples of juice are commonly applied to a fi lter fi rst, then when the 
water has evaporated, sample spectra are acquired from the dehydrated sample. This 
technique is effective in MIR (FTIR) but is less so in the shorter wavelength NIR 
region. In addition, small amounts of components may have no absorption bands 
in the IR region (e.g. minerals), or even if they are absorptive (e.g. vitamin C), the 
effects of these components on the spectral features dominated by the water–sugars 
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system are very limited. Detection of these components is largely due to their cor-
relation with other molecules that can be directly detected in the IR region. This 
implies a relatively large error for analyzing small amounts of components or 
components with no absorption bands in the IR region by using IR techniques. 
Nevertheless, because it is time-consuming and/or costly to determine these compo-
nents using current methods, the application of IR techniques is always attractive to 
both the research community and the food industry.   

    Analyses of composition and quality parameters 

   Sugars and organic acids are major soluble solids in fruit juices. The amount and 
composition of sugars and organic acids largely decide the sensory properties of fruit 
juices. On the other hand, total soluble solids (expressed as brix value), acids, and 
brix-acid ratio are the key quality indicators for fruit juices. Therefore, determination 
of total soluble solids, sugars, acidity, and organic acids of fruit juices are routine 
tests and represent the major areas of research applying IR technology to fruit juice 
analyses. 

   Routine analyses of total soluble solids and acidity of fruit juices are simple tasks, 
using a refractometer and a titration method, respectively. However, determinations 
of each individual sugar or organic acid is often a complicated task, normally requir-
ing enzymatic analysis, or high-performance liquid chromatography (HPLC). The 
methodologies for either simple or complicated conventional tasks are similar for IR 
analysis, although it is more costly and time-consuming to develop a chemometric 
model for complicated tasks, since it is more diffi cult to obtain the reference values, 
such as organic acid profi le vs. titratable acidity. Yet, once the models are built, they 
would be equally convenient to predict simple and complicated conventional tasks. 

   The study of  Lanza and Li (1984)  is among the earliest applications of IR tech-
nology in fruit juice analysis. Lanza and Li used NIR (1100–2500       nm) in the trans-
mittance mode to predict the sugar content in 11 different types of fruit juices. Fruit 
juices were centrifuged to remove pulp before samples were transferred by pipette 
into a quartz transmission cell (path length      �      2.2       mm) for NIR analysis. A step-
forward multiple linear regression method was used to correlate the NIR spectral data 
with total sugar and individual sugars separately. This study indicated the potential of 
applying a NIR method for the analysis of total sugars in fruit juices in routine quality 
control, though it could not achieve ideal accuracy for individual sugar determina-
tion. With the improvement in IR instrumentation and development of more sophis-
ticated mathematical models, the subsequent studies using NIR to determine total 
sugar and individual sugars in fruit juices or fruit juice model systems with minimal 
sample preparation or using dry extract of fruit juices gained acceptable accuracy and 
precision ( Li  et al. , 1996 ;        Rambla  et al. , 1997, 1998 ;  Segtnan and Isaksson, 2000 ; 
Rodriguez-Saona  et al. , 2001). Similarly, studies indicated that NIR methods have the 
potential for determination of acidity, organic acid profi les, pH, and even total calories 
of fruit juices ( Li  et al. , 1996 ;  Moros  et al, , 2005 ;  Cen  et al. , 2006 ;  Chen  et al. , 2006 ). 

   Since the strong absorption of water molecules in fruit juice makes it diffi -
cult for sampling in the MIR region, the spectrometers used for fruit juice analysis 

              



were exclusively dispersive NIR spectrometers until the late 1990s, when FT-NIR 
spectrometers and FTIR with attenuated total refl ectance (ATR) became available 
and were applied to the analysis of fruit juices ( Rambla  et al. , 1998 ; Rodriguez-
Saona  et al. , 2001;  Duarte  et al. , 2002 ;  Moros  et al. , 2005 ). The application of 
FT-NIR spectrometers to fruit juices helps improve the quality of NIR spectra 
(Rodriguez-Saona  et al. , 2001). On the other hand, the emergence of the ATR acces-
sory has greatly simplifi ed the sampling process when using MIR spectrometer, and 
allows the wider use of the MIR region for rapid and non-destructive analysis of both 
liquid and solid food samples. The ATR accessory is mainly made of a crystal with 
much higher refractive index than the sample. When an IR beam incides on an ATR 
plate, it causes total internal refl ection. The internal refl ectance creates an evanes-
cent wave that extends into the sample for a few micrometers. The attenuated energy 
(due to the absorption by the sample in the IR region) from the evanescent wave is 
passed back to the IR beam and then to the detector. With the use of both NIR and IR 
techniques, we can foresee that the accuracy and precision of IR methods for compo-
sitional analysis of fruit juice will be much improved.  

    Detection and determination of biological contaminants 

   Both qualitative and quantitative analyses of biological contaminants, such as pathogens 
and spoilage bacteria, in foods are daunting tasks, because of the existence of numer-
ous microorganisms with various growth patterns and complex biological responses 
to extrinsic factors, and also because of the complicated chemical and physical 
nature of a food. However, this complexity stimulates the interest in fi nding inno-
vative approaches to replace the typically expensive and time-consuming microbial 
testing, such as microbial enumeration techniques which take days, or the intricate 
multi-step DNA-based methods which take several hours. Application of IR technology 
to directly detect microorganisms is a fairly recent development and is based on the 
pioneering study of Naumann and his colleagues ( Naumann  et al. , 1991 ). 

    Naumann  et al . (1991)  indicated that FTIR could be highly selective in differentiating 
microorganisms to the subspecies, strain, or even serotype levels. The possibility of 
using IR methods to characterize microorganisms is due to its ability to detect the 
small biochemical differences among the cellular components of microbes, such 
as polysaccharides, proteins, lipids, and nucleic acids, while these cell components 
depend upon the expression of the genomes of an organism.  Naumann  et al . (1991)  
transferred pure bacteria cells (about 10–60        μ g) into a sample holder, dried them and 
then acquired IR spectra directly. Each spectrum was then analyzed to extract specifi c 
chemical information, and compared with a reference database for characterization 
purposes. By 1991, Naumann and his colleagues had built a database comprised of 
FTIR spectra for more than 300 bacterial strains. 

   The initial study involving the application of FTIR to characterize microorganisms 
used pure microbial cultures. Applications of FTIR techniques to detect microor-
ganisms in foods basically follow the same methodology. The study of  Lin  et al ., 
(2005)  is typical and involves the detection of bacteria in fruit juices.  Lin  et al . 
(2005)  inoculated each of the eight selected strains of the spore forming spoilage 
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 Alicyclobacillus  strains into pasteurized apple juices separately, then incubated the 
juice at 43°C for 7 days until the cell numbers were about 106–108       CFU/mL. The 
bacterial cells were harvested by centrifuging, resuspending in 0.9% saline solution 
three times. The fi nal bacteria saline solution was fi ltered through an aluminum oxide 
membrane. The membrane with bacteria was air-dried to obtain a bacteria cell fi lm, 
and then placed on an ATR zinc selenide (ZnSe) crystal to acquire FTIR spectra. 
The spectra were smoothed, transformed to second derivative, and then analyzed 
with principal component analysis and soft independent modeling of class analogy. 
The study identifi ed some important peaks that may distinguish one  Alicyclobacillus  
strain distinct from the other in the fi ngerprint region, and revealed the possibility of 
using FTIR to detect  Alicyclobacillus  spoilage strains. 

   Other representative studies on the detection of bacteria in fruit juices included 
 Yu  et al.  (2004) , Rodriguez-Saona  et al.  (2004), Al-Qadiri  et al.  (2006), and Al-Holy 
 et al.  (2006).  Yu  et al.  (2004)  used FTIR with ATR to analyze apple juices con-
taminated with eight bacteria at different concentrations (103–108       CFU/mL). 
Contaminated apple juice was used directly for spectral acquisition. The studies 
showed that FTIR can differentiate apple juice contaminated with bacteria at a con-
centration level of 103       CFU/mL. Rodriguez-Saona  et al.  (2004) used FT-NIR instead 
of FTIR to differentiate pathogenic strains and apple juices contaminated with  E. coli  
strains. Bacteria were concentrated on an aluminum oxide membrane for NIR analy-
sis, and the study results were promising. Al-Qadiri  et al.  (2006) and Al-Holy  et al.  
(2006) successfully applied FTIR to differentiate  E. coli  0157:H7 from other bacteria 
in apple juice, using methodologies similar to those of  Lin  et al.  (2005) . 

   To apply IR technology for microorganism identifi cation and/or determination, two 
basic conditions must be met. First, a purifi ed or semi-purifi ed single species, instead 
of a mixture of microorganisms, should be used for IR spectral acquisition, at least 
initially when sensitivities within a specifi c matrix are to be determined. Second, a 
database containing FTIR or FT-NIR spectra of microorganisms of interest should 
be available or should be developed. A spectrum should be collected under the same 
experimental conditions using the same instrumentation and setup as that used for 
the database spectra. 

   The greatest advantage of IR methods is that they require minimum sample prepa-
ration, but this may not be obvious for directly identifying bacteria in foods, since 
bacteria usually have to be extracted and purifi ed from a food at least to some extent, 
before being subjected to IR analysis. Although some studies used IR methods to 
directly determine microorganisms in a food matrix with favorable results, more 
work needs to be done and the method may have practical limitations in the long 
term, unless the specifi c analysis needed for determining food safety in a particular 
food system is always tied to one or a few microorganisms. 

   Fortunately, directly identifying microorganisms is not the only approach to 
detect microbial contamination in foods. Most of the time, determination of the 
metabolites from microorganism growth is a viable alternative. For example, some 
 Alicyclobacillus  spp. produce guaiacol which causes off-fl avor in fruit juice, so 
detection of guaiacol would indicate the contamination of  Alicyclobacillus  spp. 
Determination of a specifi c biochemical compound instead of the actual level of 

              



microorganisms is certainly an easier task, and can follow the routine for composi-
tional analysis as discussed earlier in this chapter.  

    Authentication and classifi cation of fruit juices 

    Commonly used methods for authentication 
   Falsifi cation of juice composition not only affects the quality of fruit juices, it deceives 
consumers who pay more for a product with false claims on its ingredient statement. 
It is diffi cult to estimate the amount of adulterated fruit juices in the global food 
market, but there is no doubt that with an increased globalization, the impact of 
single events of food adulterations will affect a larger and wider population than 
ever. Fruit juice falsifi cations involve simple adulteration by adding water, sugar, 
and organic acids, or more complicated approaches by using fruit products, such as 
pulpwash, peel, and other fruit constituents ( Fry  et al. , 2005 ). Since the major compo-
nents of fruit juices are water, sugars, and organic acids with lesser amounts of amino 
acids, vitamins, minerals, and phenolic compounds, detection and quantifi cation of 
these components as well as determining their profi le provide the basis for detection of 
adulteration. The soluble solid content is one of the two major quality indicators (the 
other is titratable acidity) for fruit juices, and is also used as an indicator to detect 
whether the juice has been diluted with water. Since the levels of soluble solids of 
fruit juices are regulated by government, international trade standard (e.g. codex 
standards) and industry specifi cation, and at the same time the soluble solids of fruit 
juices are easy to measure, simply diluting fruit juices with water is not as common 
an adulteration practice as it has been in the past ( Ashurst, 2005 ). 

   Detecting or determining whether unauthorized carbohydrates have been added is 
widely used for fruit juice authentication. Analytical methods for sugars vary from 
determining the stable oxygen and carbon isotope ratio of a selected sugar ( Jamin 
 et al. , 1997 ;  Simpkins  et al. , 1999 ;  Antolovich  et al. , 2001 ;  Jamin  et al. , 2003 ), to 
evaluating oligosaccharide profi les or sugar profi les of fructose, glucose, and sucrose 
( González  et al. , 1999 ). Similarly, the addition of unauthorized organic acids in fruit 
juices can be detected or determined by stable isotope ratio and by HPLC organic 
acid profi le ( Doner, 1985 ;  Jezek and Suhaj, 2001 ;  Jamin  et al. , 2005 ). 

   Measurement of minerals such as sodium, calcium, magnesium, and potassium is 
used together with other methods, or by itself, for fruit juice authentication. Recently, 
the evaluation of the polyphenol profi le of fruit juice has also been used ( Ooghe 
 et al. , 1994 ;  Mouly  et al. , 1997 ). 

   To detect fruit juice adulteration, the test results of a juice need to be compared 
with that of authentic juice standards. This requires a database for the juices from 
various varieties and geographical origins, and it may become more diffi cult to 
obtain reliable standards as the sources of the juices become increasingly global. 

   Although some of the methods, such as determination of soluble solids and miner-
als, are relatively simple, other methods, such as stable isotope ratio or sugar and acid 
profi le, are complicated and require expensive instruments, such as a mass spectrome-
ter for stable isotope ratio and HPLC for sugar profi les. In addition, to combat sophis-
ticated juice adulteration schemes, several different tests may be required to detect 
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falsifi cation of juice composition, which further increases the cost and complexity of 
the test.  

    Infrared methods for authentication and classifi cation 
   Infrared spectroscopy methods are relatively simple and potentially less costly than the 
methods mentioned above. Being able to simultaneously determine multiple components 
in a few minutes fi ts the urgent need to combat sophisticated fruit juice adulteration. 
There are few studies on using IR spectroscopy methods for fruit juice authentication, 
and these studies are still at the laboratory stage, but results to date indicate the potential 
of applying IR techniques for fruit juice authentication in the near future. 

   With the limited reports available using IR spectroscopy for fruit juice authentication, 
the methods applied in these studies varied in every stage from sample preparation, selec-
tion of spectrometer, to chemometric techniques. Fruit juices were either directly 
used with no sample preparation, or with simple sample preparation such as fi ltra-
tion for IR analysis. Both NIR and FTIR involving refl ectance and transmittance 
modes have been reported to detect adulterated fruit juices. The mathematical tech-
niques used included principal component analysis, factorial discriminant analysis, 
linear discriminant and canonical variate analysis, neural networks, and PLS. A brief 
review of some representative studies follows. 

    Twomey  et al.  (1995)  applied NIR (1100–2498       nm) with refl ectance mode to 
detect concentrated orange juice adulteration that involved a total of 65 authentic 
concentrated orange juice samples and their adulterated samples with 5% or 10% 
addition of orange pulpwash, grapefruit, and sugar/acid mixture. The juices were 
vacuum-dried and ground to fi ne powder before analysis with a NIR spectrometer in 
a powder cell. The NIR spectral data were compressed to 20 principal components 
by principal component analysis, and then classifi ed by factorial discriminant analysis. 
The method had about 90% accuracy with no false positive authentication. 

    Leon  et al.  (2005)  applied NIR  “ transfl ectance ”  spectroscopy (400–2498       nm) and 
PLS to detect fresh apple juice adulterated with 10 – 40% of high fructose corn syrup 
(45% fructose and 55% glucose) or sugar solution (60% fructose, 25% glucose, and 
15% sucrose). To acquire spectra, each juice sample was placed in a 0.2-mm-deep 
cell with a gold-plated backing plate to refl ect light back. A total of 450 samples, 
including 150 authentic samples from 19 varieties, were used with an accuracy of 
over 90%. 

    Kelly and Downey (2005)  used FTIR with ATR (800–4000       cm  � 1 ) to detect sugar 
adulterants in apple juice. The study involved a total of 224 apple samples from 19 
varieties, and 480 of their adulterated counterparts containing 10–40% solution of 
a mixture of sugars. Sample spectra and their second derivative spectra were com-
pressed by using principal component analysis to eight principal components, respec-
tively. A total of 16 principal components were then used for PLS regression and 
 k -nearest neighbor (kNN) method to detect and quantify adulteration. FTIR could 
detect apple juices adulterated with sucrose at more than 80% accuracy, but there 
was greater diffi culty on identifying apple juice adulterated with high fructose corn 
syrup (61–100% accuracy), or with a mixture of fructose, glucose, and sugar solution 
(76–97% accuracy), particularly at a low adulteration level. At 10% adulteration level, 

              



the PLS method used correctly classifi ed 61% and 49% for apple juice adulterated 
with high fructose corn syrup and with a mixture of three single sugars, respectively, 
similar to the use of the kNN method (the corresponding data were 54% and 78% 
accurate). 

   Fruit juice classifi cation or differentiation is to a large extent synonymous with 
authentication. Typical applications include classifi cation of juice with different levels 
of adulteration, and differentiation of fresh-pressed juice from that from concentrated 
juices, which is in line with the application of NIR techniques for authentication. 

   Similar to other analytical techniques, the successful application of IR methods 
for fruit juice authentication requires a large database with spectral information 
of authentic juices from different varieties and geographic origins. This is further 
complicated by an increasing use of mixtures of fruit juice from different varieties or 
origins, and what is more, the increasing popularity of mixed fruit juices, for example, 
a tropical punch containing pineapple, orange, and banana juice. 

   The application of NIR or FTIR for relatively simple fruit juice authentication is 
very promising, but it is still diffi cult to detect complicated juice adulteration, such as 
only adding 10% of a mixture of sugar solution, using IR and any other techniques. 
The primary advantages of FTIR or NIR may be as a screening tool. However, most 
of the current studies using NIR or FTIR are non-invasive, which do not involve any 
sample preparation; while the use of other analysis methods, such as HPLC and sta-
ble isotope ratio, require complicated sample preparation, and yield similar results 
for complicated fruit juice adulteration. In addition, IR methods allow the use of full 
spectra that are composed of signals from all ingredients in a juice. These chemical 
signals together with more sophisticated mathematical approaches provide a potentially 
very powerful tool for the authentication of fruit juices.    

    Conclusions 

   Fruit juice products are an important food category, with a diversity of choices in the 
commercial market. Economic fraud is rampant in the juice trade, and because of the 
risk of juices being adulterated or misbranded, having analytical methods to authen-
ticate juices is important. Infrared spectroscopy with multivariate analyses offers an 
approach for detecting juice adulteration, and is also a practical approach for online 
monitoring the safety and quality of various fruit juice products. 

   Infrared spectroscopy methods are relatively inexpensive to establish and relatively 
simple to use after analysts are properly trained. These spectroscopic methods can 
simultaneously determine multiple components within a few minutes. Analyses of 
full spectral data provide enormous potential for compositional analysis, classifi cation, 
and authentication. 

   Currently, the major applications of IR technology for fruit juice analysis involve 
the determinations of components (e.g. sugar and acid content) and quality param-
eters (e.g. brix to acid ratio). It is also applied to detect biological contaminants 
in fruit juices, although this may have practical limitations for directly identifying 
microorganisms with sensitivities in the range of 100       CFU/mL. Finally, IR methods 
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show great promise for combating fruit juice adulteration, since it would be diffi -
cult to fabricate a juice blend that would have the spectral features of a pure juice, 
which makes it possible to detect economic fraud. The successful applications of 
IR methods for fruit juice analyses very often requires that a large database with 
spectral information of juices from different varieties and geographic origins be 
included within a chemometric model to provide the greatest applicability.  

Dedication

We would like to dedicate this chapter to the memory of our dear friend, colleague and 
long time collaborator, Dr David Mayes in recognition of his many important contribu-
tions to the fi eld. Dr Mayes developed the instrumentation, chemometric algorithms and 
analytical software used by many of us in the USA for IR spectroscopic analysis.
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    Introduction 

   Spectroscopic techniques using the infrared wavelength region of the electromag-
netic spectrum have been used in the food industry to monitor and assess the com-
position and quality value of foods produced. As in other food industries, the wine 
and beer industries have a clear need for simple, rapid, and cost-effective techniques 
for objectively evaluating the quality of grapes, wine and spirits. The use of near-
infrared (NIR) spectroscopy in the wine industry dates back to some early work by 
 Kaffka and Norris (1976) . Their preliminary work was performed on a relatively 
small number of test samples prepared by standard addition of some of the main 
components of interest (viz. ethanol, fructose, and tartaric acid) to a red and a white 
wine, and analyzed in transmission using various path lengths ( Kaffka and Norris, 
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1976 ). Although these samples represented alterations within the same two basic 
wine matrices, they allowed the identifi cation of critical wavelengths that could be 
utilized for multiple linear regression (MLR) analysis. 

   Since the early work of  Kaffka and Norris (1976)  the main application of NIR 
spectroscopy in the beer and wine industries was the measurement of ethanol using 
fi lter instruments with two or three wavelengths ( Osborne  et al. , 1993 ;  Cozzolino 
 et al. , 2006a ). 

   With the availability of new instruments and the development of software for 
chemometric/multivariate analysis that allows better interpretation of the spectra, 
new applications have been developed, such as online and process analysis ( Gishen 
 et al. , 2005 ;  Cozzolino  et al. , 2006a ). This chapter aims to present the application 
of infrared, both NIR and mid-infrared (MIR), in different steps of wine and beer 
production.  

    Wine 

    Wine grapes 

   Grape composition at harvest is one of the most important factors that determine the 
future quality of the wine ( Gishen  et al. , 2005 ;  Cozzolino  et al. , 2006a ; Dambergs 
 et al. , 2007). The prediction of quality parameters in red grapes using NIR spectros-
copy is usually conducted by scanning homogenized grape samples, whole grapes, 
or single berries using an NIR spectrophotometer ( Gishen  et al. , 2005 ;        Cozzolino 
 et al. , 2005, 2006a ; Dambergs  et al. , 2007). It has been reported that grape total 
anthocyanin concentration (color) is a good predictor of red wine composition and 
quality and is widely used by the Australian wine industry ( Gishen  et al. , 2000, 2005 ; 
 Dambergs  et al. , 2003, 2007 ). It has been demonstrated that total anthocyanins, 
TSS, and pH can be measured with partial least squares (PLS) regression using 
refl ectance spectra of homogenates of red grape berries scanned over the wavelength 
range of 400–2500       nm (       Dambergs  et al. , 2003, 2006, 2007 ). With calibrations for total 
anthocyanins in red grapes, it has been observed that for large data sets incorporat-
ing many vintages, regions, and grape varieties, PLS calibrations show pronounced 
non-linearity (       Dambergs  et al. , 2003, 2006, 2007 ). The standard error of prediction 
(SEP) for total anthocyanins varied from 0.05 to 0.18       mg/g, and it increased with 
diverse sample sets in comparison to sample sets restricted on the basis of growing 
region and/or variety (       Dambergs  et al. , 2003, 2006, 2007 ). The prediction accuracy 
using calibrations derived from restricted sample sets approached that of the reference 
methods for total anthocyanins and pH. An alternative strategy to mitigate the effects 
of non-linearity on the NIR calibrations for total anthocyanins is to use LOCAL 
regression (       Dambergs  et al. , 2003, 2006, 2007 ). 

   The use of NIR spectroscopy has now been put into practise by several large 
Australian wine companies for determination of the concentration of total anthocy-
anins (color) in red grapes for payment purposes or for streaming grapes before 
crushing ( Cozzolino  et al. , 2006a ). Similar NIR applications have been reported 

              



by private wineries and research groups in Chile, Spain, and Portugal ( Arana  et al.  
2005 ;  Jaren  et al. , 2001 ;  Herrera  et al. , 2003 ). The possibility of simplifying the sam-
ple presentation (e.g. using whole grapes instead of homogenates) could dramatically 
increase sample throughput in the winery ( Cozzolino  et al. , 2004a ). 

   Investigations of whole grape berry presentation using a diode array spectropho-
tometer indicated that NIR may have potential for use at the weighbridge or for in-fi eld 
analysis of total anthocyanins, TSS, and pH ( Cozzolino  et al. , 2004a ). The use of a 
diode array instrument to predict total acidity (measured by high-performance liquid 
chromatography as malic and tartaric acid) in a set of white grape varieties has also 
been reported by researchers in France ( Chauchard  et al. , 2004 ). As well as measur-
ing grape quality, there is also a need for objective measurements of negative quality 
parameters such as the degree of mold contamination, particularly with mechani-
cally harvested grapes, where visual assessment can be diffi cult ( Gishen  et al. , 2005 ; 
 Cozzolino  et al. , 2006a ). 

   Grape assessment for fungal infection at the weighbridge would normally be done 
by visual inspection, but this can be diffi cult with mechanically harvested fruit. The 
use of Vis/NIR spectroscopy was reported for the detection of powdery mildew 
( Erysiphe necator ) in wine grapes ( Gishen  et al. , 2005 ;  Cozzolino  et al. , 2006a ; 
Dambergs  et al. , 2007). The implication of this work is that it might be possible to dis-
criminate infected fruit at the weighbridge to provide a  “ go/no-go ”  test to highlight 
suspect fruit for further detailed analysis to determine suitability for winemaking.  

    Wine composition 

   A large amount of the NIR work in the wine industry has concentrated on the 
measurement of ethanol ( Osborne  et al. , 1993 ;  Cozzolino  et al. , 2006a ). Currently 
there are a number of dedicated NIR-based alcohol analyzers in the wine labs, and 
this technique has become a routine analysis method for alcohol content in wine. 
Ethanol has a strong NIR absorbance signal in alcoholic beverages (see  Figure 14.1   ), 
usually second only to water, but accuracy and robustness of calibrations can be 
limited by matrix variations, particularly variations in sugar concentration ( Kemeny 
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 Figure 14.1          Spectra of ethanol, methanol and toluene in the NIR region between 1900 and 2500       nm. 
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 et al. , 1983 ;  Davenel  et al. , 1991 ;  Dumoulin  et al. , 1987 ).  Medrano  et al.  (1995)  
examined the use of NIR spectroscopy and the use of a sample presentation method 
called dry extract system for infrared refl ectance (DESIR) ( Meurens  et al. , 1987 ) to 
measure total phenolics, in addition to ethanol and sugar, in fortifi ed wines. 

   More recently the use of NIR has been reported to measure several chemical 
parameters in wine such as volatile acidity, organic acids, malic acid, tartaric acid, 
lactic acid, reducing sugars, and sulfur dioxide (Urbano- Cuadrado  et al. , 2004, 2005 ). 
However, only accurate determination of alcohol ( R  2       �      0.98, SEP      �      0.24% v/v), 
pH (R 2       �      0.81, SEP      �      0.07), reducing sugars ( R  2       �      0.71, SEP      �      0.33       g/L), sulfur 
dioxide ( R  2       �      0.57, SEP      �      23.5       mg/L) and lactic acid ( R  2       �      0.81, SEP      �      0.41       mg/
L) were obtained (Urbano- Cuadrado  et al.,  2004, 2005 ). The comparison of NIR 
and Fourier transform-MIR (FT-MIR) to measure several wine parameters was also 
reported ( Cuadrado  et al. , 2005 ). 

   The use of NIR spectroscopy has also been reported to measure sodium (Na), 
potassium (K), magnesium (Mg), calcium (Ca), iron (Fe), and copper (Cu) in white 
and red wines ( Sauvage  et al. , 2002 ). Metal ions do not absorb in the NIR region, 
therefore the measurement of such elements is made indirectly, for example by inter-
action of metal ions with water, or other organic constituents ( Sauvage  et al. , 2002 ). 

   Sweet wines made from botrytized-grapes represent a complex matrix in that they 
have very high sugar, acid, and glycerol content in comparison with standard wines. 
 Garcia-Jares and Medina (1997)  examined a number of multivariate calibration 
routines such as MLR, stepwise regression (SWR), principal components regression 
(PCR), and PLS regression for the analysis of ethanol, glycerol, glucose, and fructose 
in botrytis-affected style wines, using NIR spectroscopy. Both PLS and SWR regres-
sion gave the best performance, in terms of the lowest SEP relative to mean values, 
but glycerol and glucose had high percentage errors with all calibration routines 
( Garcia-Jares and Medina, 1997 ). 

    Manley  et al.  (2001)  attempted NIR calibrations to measure free amino nitrogen (FAN) 
in grape must and to monitor malolactic fermentation status of wines. Although 
calibrations could not accurately quantify the concentrations of the compounds 
of interest (malic acid, lactic acid, FAN), the development of a soft independent 
modeling by class analogy (SIMCA) routine could distinguish between groups of 
high, medium and low concentration. 

   The use of NIR has the longest history for wine analysis, but the NIR sig-
nal arises from overtones of fundamental bond vibrations in the mid-infrared 
(MIR) region of the electromagnetic spectrum (see        Figures 14.2 and 14.3     ) (       Patz 
 et al. , 1999, 2004 ;  Gishen and Holdstock, 2000 ;  Gishen  et al. , 2005 ;  Cuadrado  et al. , 
2005 ;  Bevin  et al. , 2006 ). With more recent developments in instrument design and 
sample presentation modes (e.g. short pathlength transmission cells, attenuated total 
refl ectance (ATR) cells) (       Edelmann  et al. , 2001, 2003 ) the use of Fourier transformed 
mid-infrared (FT-MIR or FTIR) has been implemented for routine analysis of a large 
number of wine parameters such as alcohol, volatile acidity, pH, tartaric acid, lactic 
acid, glucose plus fructose, acetic acid, glycerol, anthocyanins, polyphenols, and 
polysaccharides and reported by several authors (       Patz  et al. , 1999, 2004 ;  Coimbra 
 et al. , 2002 ;  Kupina and Shrikhande, 2003 ;  Mendes  et al. , 2003 ;          Cozzolino  et al. , 

              



2004b, 2006a ;  Moreira and Santos, 2004 ,  Nieuwoudt  et al. , 2004 ;  Urbano-Cuadrado 
 et al. , 2004 ,  Cocciardi  et al. , 2005 ;  Lletí  et al. , 2005 ,  Sáiz-Abajo  et al. , 2006 ;  Versari 
 et al. , 2006 ;  Boulet  et al. , 2007 ;  Lachenmeier, 2007 ;  Soriano  et al. , 2007 ) and 
glycosylated compounds (G-G) in juice ( Cynkar  et al. , 2007 ). The application of 
FT-MIR rather than NIR in wine analysis was of special interest due to the presence 
of sharp and specifi c absorption bands for the wine constituents ( McClure, 2003 ). 
Nowadays MIR spectroscopy is commonly used by the wine industry worldwide 
(       Patz  et al. , 1999, 2004 ;  Kupina and Shrikhande, 2003 ;  Gishen  et al. , 2005 ; 
 Cuadrado  et al. , 2005 ;  Bevin  et al. , 2006 ;  Versari  et al. , 2006 ). Quality control labs 
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use several types of commercially available instruments to measure ethanol, pH, 
volatile acidity, glucose, and fructose.  

    Online analysis and process control 

   Modern available NIR instrumentation offers opportunities for online measurement 
and subsequent process control ( Varadi  et al. , 1992 ).  Buchanan  et al.  (1988)  pre-
pared PLS regression-based calibrations for ethanol in table wine, fortifi ed wine, 
champagne, and beer using a fi ber optic transmission probe; however, accuracy was 
limited due to hardware limitations—telecommunications-grade fi ber optics was 
used, with high intrinsic absorbance and high noise in a critical part of the spectrum. 
The relatively high SEP may also have been due to the large range of matrix types, in 
terms of ethanol and sugar concentrations, represented by the samples used. 

   The use of NIR spectroscopy for process control for wine fermentation was also 
examined by  Bouvier (1988) . This study described a fermenter sampling system, 
with temperature equilibration, linked to a fi lter-based transfl ectance instrument. 
Wavelength selection was confi rmed by examining spectra from a scanning instru-
ment and calibrations suitable for determining sugar (glucose plus fructose) in 
fermenting grape must were utilized using two wavelengths (2139 and 2230       nm). 
Davenel and collaborators (1991) later compared a fi lter-based NIR instrument with 
an FT-NIR scanning instrument on the same application and found accuracy to be 
similar at medium to high sugar levels. However, the use of an FT-NIR scanning 
instrument offered better precision at the low sugar levels encountered near the end 
of fermentation. The same authors also noted that calibrations for sugar determination 
in individual ferments had better accuracy than calibrations based on combined data 
from different ferments. This calibration specifi city may be related to the possibility 
that although the sample matrix changes during the fermentation process, the base 
spectrum is likely to be similar, with the major changes being in the most abundant 
constituents of interest, sugar and ethanol. 

   Recently, investigations of process-scale red wine fermentation showed the poten-
tial of NIR spectroscopy to predict the concentration of and monitor the extraction 
and evolution of phenolic compounds during red wine fermentation (       Cozzolino 
 et al. , 2004b, 2006b ). These results showed that NIR spectroscopy could predict 
the concentration of major anthocyanins such as malvidin-3-glucoside ( R  2       �      0.91 
and standard error of cross-validation (SECV)      �      28.0       mg/L), pigmented polymers 
( R  2       �      0.87 and SECV      �      5.9       mg/L), and tannins ( R  2       �      0.83 and SECV      �      131.1       mg/L), 
in Cabernet Sauvignon and Shiraz wines during fermentation.  Urtubia  et al.  (2004)  
reported the use of FT-MIR to monitor red wine fermentation.  Zeaiter  et al.  (2006)  
tested the robustness of dynamic orthogonal projection as a method to maintain the 
robustness of calibration during the online monitoring of wine fermentation.  

    Wine quality grading 

   The ability accurately to assess wine quality is an important part of the winemak-
ing process ( Figure 14.4   ), particularly when allocating batches of wines to styles 

              



determined by consumer requirements. Grape pricing is often determined by the qual-
ity category of the resulting wine—so-called  “ end use ”  payment (Gishen  et al. , 2000). 
Wine quality, in terms of sensory characteristics, is normally a subjective measure, 
performed by experienced winemakers, wine competition judges, or wine tasting pan-
ellists. By nature, such assessments can be biased by individual preferences and may 
be subject to day-to-day variation. An objective quality grading method would there-
fore be of great assistance in the wine industry. Flavor compounds are often present in 
concentrations below the detection limit of NIR spectroscopy but the more abundant 
organic compounds offer potential for objective quality grading by this technique. 
It has also been demonstrated that wine quality rankings (as the score or allocation 
assigned to wines by sensory panels) for red and fortifi ed wines could be discrimi-
nated by visible (Vis) and NIR spectroscopy (Gishen  et al. , 2000; Dambergs  et al. , 
2001). Furthermore, it has been demonstrated that Vis/NIR spectroscopy can predict 
wine quality as judged by both commercial wine quality rankings and wine show 
scores (Gishen  et al. , 2000; Dambergs  et al. , 2001, 2007). 

   This application could provide a rapid assessment or pre-screening tool to allow 
preliminary blend allocation of large numbers of batches of wines prior to sen-
sory assessment. Winemakers may be able to develop  “ profi les ”  for their blends as 
in-house NIR calibrations. NIR calibrations based on sensory scores will tend to be 
diffi cult to obtain due to variation between individual wine tasters and may not pick 
up compounds that are present at low concentrations, yet have strong sensory proper-
ties. Nevertheless, interpretation of spectral data may provide valuable insight into the 
more abundant parameters affecting wine quality and highlight the interactions that 

Grape production

Fermentation

bottlingconsumers

 Figure 14.4          All parts of the winemaking process can be monitored by infrared spectroscopy.    
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occur within the complex wine matrix in governing sensory properties ( Dambergs 
 et al. , 2001, 2004, 2007 ;  Gishen  et al. , 2005 ;  Cozzolino  et al. , 2006a ). 

   Correlations between NIR spectra and sensory data obtained using wine show 
samples were less signifi cant in general, in comparison with the commercial grad-
ing data (Dambergs  et al. , 2001). The commercial samples were all from one major 
producer, from one growing area and were graded immediately ex-vintage, with 
minimal oak treatment. With most dry red classes in the wine show, the samples may 
span vintages, growing areas and winemaking styles, even though they may be made 
from only one grape variety. For dry red wines, the best calibrations were obtained 
with a class of Pinot Noir—a variety that tends to be produced in limited areas in 
Australia and would represent the least matrix variation ( Dambergs  et al. , 2001, 
2004 ;  Gishen  et al. , 2005 ;  Cozzolino  et al. , 2006b ). 

   Similar to red wines, commercially available bottles of Australian Riesling were 
sourced from a broader wine fl avor study and analyzed both by a trained panel for 
honey, estery, lemon, caramel, toasty, perfumed fl oral and passionfruit aroma prop-
erties, and overall fl avor and sweetness palate properties in white wines as assessed 
by a trained sensory panel and scanned using Vis/NIR spectroscopy (       Cozzolino 
 et al. , 2003, 2005 ). PLS calibration models developed between sensory attributes 
and Vis/NIR spectra using different wavelength regions were developed. The results 
showed good correlation between spectra and sensory properties ( R       �      0.70) for 
estery, honey, toasty, caramel, perfumed fl oral, and lemon, while poor correlations 
( R         �    about 0.55) were found in most of the cases for passionfruit, sweetness and 
overall fl avor, respectively.  

    Distillation 

   Grape spirit is produced by distillation of wine or wine/grape-derived process 
waste, and is used in the production of fortifi ed wines. Methanol concentrations 
in grape marc, one of the major sources distillation raw materials, can be high due 
to the action of mold and bacteria in the raw product ( Dambergs  et al. , 2002 ). The 
methanol concentration in the fi nal product must be minimized to comply with food 
regulations and operating continuous stills can be diffi cult without rapid methanol 
analysis to allow fi ne-tuning of the stills in a timely manner. In comparison to wine, 
the distillation process streams represent relatively simple matrices consisting of 
predominantly ethanol, water, and minor quantities of other volatile organic 
compounds. Two key analytes that are routinely monitored during the distillation 
process are ethanol and methanol, which have characteristic NIR spectra based 
on differences in relative concentrations of CH 3  groups, wavelength shifts for OH 
groups and a CH 2  group unique to ethanol ( Figure 14.1 ). NIR calibrations have been 
developed for both compounds use PLS and MLR methods with transmission spectra 
of wine fortifying spirit using gas chromatography as the reference method. The PLS 
calibrations approached the accuracy of the reference methods, with an  R  2  of 0.998 
and a SECV of 0.06       g/L for methanol and an  R  2  of 0.96 and SECV of 0.08% v/v for 
ethanol. The calibrations were very robust as indicated by high values for the ratio of 
the standard deviation of the reference data to the SEP of the calibration. 

              



    Despagne  et al.  (2000)  compared PLS, locally weighted regression (LWR), and 
artifi cial neural network (ANN) in a model distillation system, where water content 
was monitored. Locally weighted regression outperformed PLS in that it could over-
come concentration-related non-linearity but was prone to overfi tting. ANN algorithms 
gave the best overall performance and with the appropriate training set, spanning a 
range of sample matrices, may represent the best calibration method for the distilla-
tion application. The applicability of NIR-based distillation process monitoring has 
also been demonstrated in a solvent recovery plant application separating, ethanol, 
methanol, ethyl acetate, acetone, toluene, dichloromethane, and water. The system 
used an instrument with acoustic-optic tunable fi lter technology (AOTF) to provide 
fast scanning over an 1100–2300       nm range, via an eight-channel multiplexer with 
fi ber optics up to 75       m in length, allowing collection of transmission spectra at vari-
ous key points of the distillation plant. 

   Another aspect of the distilled beverage industry is the blending and bottling of 
the fi nal product. Rapid analysis is required for monitoring such operations and NIR-
based analysis may offer some potential. However, considerable challenges might be 
expected with the large range of matrices likely to be encountered in most packag-
ing plants, particularly in relation to ethanol and sugar concentration.  Vandenberg 
 et al.  (1997)  approached this problem with the analysis of spirit-based beverages that 
ranged in ethanol content from 20 to 40% v/v and in sugar content from 0.6 to 375       g/L.
By using continuous spectral data rather than discrete wavelengths from a fi lter-
based machine and using careful selection of wavelength regions simultaneously 
with the use of second derivative spectra and smoothing, they were able to prepare 
calibrations for ethanol, sugar, and density of suffi cient accuracy for commercial use.  

    Yeast identifi cation 

   Yeast identifi cation is an important issue in process-scale (industrial) fermentations, 
where contamination with wild strains may introduce undesirable traits. As well as 
looking at yeast in various growth stages and after heat shock damage,  Halasz  et al.  
(1997)  examined the possibility of discrimination between yeast strains with NIRS 
spectra of yeast slurries, prepared from yeast grown in synthetic media. Differences 
in protein profi les could be seen with electrophoresis methods and this was corre-
lated with second derivative refl ectance spectra at longer NIR wavelengths (2000–
2500       nm). Sample sets were limited in size, but PCA plots clearly discriminated 
yeast growth phase yeast strain and could detect 10% cross-contamination of one 
strain with another. 

   In the last few years, both microbial and plant metabolite analysis has shifted 
from specifi c assays toward methods offering both high accuracy and sensitivity in 
highly complex mixtures of compounds. Large-scale metabolomic analysis is based 
on the use of gas chromatography mass spectroscopy (GC/MS) and liquid chro-
matography-MS (LC/MS) ( Sweetlove  et al. , 2004 ). Both NIR and FT-NIR spectro-
scopy have been examined to assess their suitability as a tool for yeast identifi cation 
( Halasz  et al. , 1997 ), yeast protein measurement ( Majara  et al. , 1998 ), and detection 
and identifi cation of bacterial strains ( Kansiz  et al. , 1999 ;  Rodriguez-Saona  et al. , 
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2001 ;  Irudayaraj  et al. , 2002 ). The potential of NIR spectroscopy and multivariate 
analysis as a rapid screening technique to discriminate different yeast strains with 
particular metabolic profi les has been reported ( Cozzolino  et al. , 2007 ). The results 
showed that deletion strains were correctly classifi ed as different from the wild-
type laboratory strains and demonstrated the potential of combining NIR spectros-
copy and multivariate techniques to enable the rapid selection of yeast strains with 
similar metabolic profi les. The use of FT-MIR was also explored as a rapid method 
of screening of the fermentation profi les of wine yeast ( Nieuwoudt  et al. , 2006 ).   

    Beer 

    Hops 

          Axcell  et al.  (1981a, 1981b)  reported the use of NIR spectroscopy for the measure-
ment of hop  α -acids. Kiln-dried samples were ground and scanned in refl ectance 
mode using an instrument with 19 fi lters covering the 1445–2348       nm wavelength 
range. Calibrations were prepared by stepwise multiple linear regression and the fi nal 
calibrations used six fi lters over the 1680–2348       nm range. Samples were ground to 
varying degrees, and it was found that better reproducibility was obtained with more 
fi nely ground, sieved samples. The same study also demonstrated the feasibility of using 
NIR for measurement of residual moisture in the kiln-dried samples. Calibrations 
were also developed for hop  β -acids and hop storage index. 

    Chandley (1993)  achieved better accuracy with refl ectance spectra of ground hops 
by using standard normal variate (SNV) and de-trend transformations to minimize the 
effects of particle size. The SEP values for NIR measurement of hop acids, moisture, 
and oil were lower than inter-laboratory errors for the reference methods and NIR 
analytical data correlated with commercial hop grading based on aroma and appear-
ance.  Garden and Freeman (1998)  segregated samples from a large data set into high, 
medium, and low range for hop acids and storage index. For  α -acids in particular, the 
reference data indicated three clusters of analyte concentration and it was found that 
the best performing calibrations were obtained with the low concentration samples. 
Segregation by analyte concentration did not improve performance of calibrations 
for  β -acids and storage index.  

    Malt and wort analysis 

    Henry (1999)  examined the ability of NIR spectroscopy to analyze  β -glucans in 
barley. Standard preparations of glucan, starch, inulin, and various monosaccharides 
were used to identify spectral differences in the 1600–1800       nm region, where a three-
wavelength calibration was used to predict  β -glucan in ground barley, using an enzy-
matic procedure as the reference method.              Halsey (1985, 1986, 1987a, 1987b, 1987c)  
scanned whole, malted grain with a sample transport module and prepared calibrations 
for moisture, total soluble nitrogen (TSN), FAN, friability, hot wort extract (HWE), total 
carbohydrates, fermentable sugars, and fermentability. The prediction error was high 

              



for the physical parameter, friability. The prediction error for FAN was higher than for 
TSN and it was suggested that the error with FAN calibrations was due to an unreli-
able reference method. Not withstanding prediction error, a comparison of repeatability 
of the NIR method and reference methods revealed equal if not better performance by 
the NIR method.  Allison (1989)  and co-workers ( Allison  et al. , 1978 ) used PCR to pre-
pare calibrations for hot water extracts of unmalted barley fl our, scanned over a range of 
1100–2500       nm and used spectral information derived from the principal components to 
demonstrate a positive effect of starch on extract value and negative effects of  β -glucan 
and protein content. PCA of spectra over the same wavelength range was also used to 
identify chemical changes occurring during the time course of the malting process. 

   In an attempt to improve  β -glucan analysis by NIR spectroscopy,  Czuchajowska 
 et al.  (1992)  examined spectra of hull-less and covered barleys, meals of regular, high 
amylose and high amylo-pectin barleys, isolated starches and  β -glucans. The 2000–
2500       nm region showed the best discrimination and was used to prepare a calibra-
tion for  β -glucan. This calibration was however affected by kernel size, hardness and 
protein content. 

    Garden and Freeman (1998)  made an attempt at NIR analysis of diastatic power 
of malt (the potential for enzymatic conversion of starch to sugars). Whole malt 
samples were scanned and average spectra from three subsamples were used for 
calibration development. Calibrations for moisture and protein had low prediction 
error but the diastatic power calibration had high prediction error. The inability of NIR 
spectroscopy to predict diastatic power could be related to the fact that a diversity of 
factors may infl uence this parameter, some possibly related to compounds occurring 
at low concentrations.  Halsey (1987c)  evaluated the use of NIR spectroscopy for the 
analysis of HWE, total carbohydrates, fermentable sugars, fermentability, FAN, and 
TSN in malted and mashed barley. Samples were scanned by transmittance between 
1100 and 2500       nm. To aid the choice of wavelengths for an MLR calibration, 
solutions of sugars, dextrins, amino acids, and polypeptides were also scanned. 
The precision of the reference and NIR methods were compared and other than for 
TSN the precision of the NIR method was adequate—in fact, in the case of sugars 
and carbohydrates, the precision of the NIR method exceeded the reference method. 
The SEP for HWE was relatively high and was infl uenced by the geographical origin 
of the samples. 

   The HWE reference method is relatively non-specifi c: better NIR results were 
obtained if the value was calculated from the NIR values for total carbohydrate and 
sugars, the compounds of interest.  Sjoholm  et al.  (1996)  investigated the use of 
NIR for analysis of HWE and fermentability. Calibrations for extract approached the 
precision of the reference method but although adequate, fermentability calibrations 
had higher error, particularly with varying sample matrix.  

    Beer composition 

   The potential for NIR analysis of a primary analyte in beer, alcohol (ethanol), was 
demonstrated by  Coventry and Hunston (1984) , using transfl ectance in the 1100–
2500       nm range.  Halsey (1987c)  used an MLR model with two to three wavelengths 
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to calibrate for alcohol and original gravity in fi nished beers. Better results were 
obtained with transmission compared with transfl ectance spectra. The original grav-
ity calibration had high error, particularly with beers primed with low molecular 
weight sugars. It was pointed out that original gravity is an empirically derived measure 
and a good direct calibration may not be expected.        Gallignani  et al.  (1993, 1994)  
examined the effect of maltose on ethanol calibration models and demonstrated a 
bias. A simple correction could be made by using a maltose solution or ethanol-free 
beer as the reference solution, resulting in good agreement of NIR-predicted alcohol 
with reference data.  Chandley (1993)  dried beer samples onto glass fi ber fi lters and 
scanned in refl ectance mode the dry extract system for infrared refl ectance (DESIR) 
technique. Good calibrations were obtained for free amino nitrogen and total soluble 
nitrogen, but poor correlations of spectral data with bitterness values were observed. 
Similarly, Maudoux  et al.  (1997) scanned liquid beer samples in transmission mode 
and by refl ectance with samples dried onto fi lters: better results for total nitrogen and 
polyphenols were obtained with the dried samples. 

   Although improvements in calibrations may be obtained by drying the samples, 
this must be balanced against the extra sample preparation complexity introduced 
and the fact that this technique limits the opportunity for simultaneous analysis of 
volatile compounds. Recently, the use of NIR, FT-MIR spectroscopy, and ATR cells 
were used to quantify ethanol and other compositional parameters in beer ( Li  et al. , 
1999 ;  Schropp  et al.  2002 ;  Kington and Jones, 2001 ;  Engelhard  et al. , 2004 ;        Inon 
 et al. , 2005, 2006 ;  Llario  et al. , 2006 ).  

    Process control 

   Inline and online monitoring and process control is seen as one of the poten-
tial strengths of NIR spectroscopy: this was demonstrated in an early application 
relating to blending of beer ( Coventry and Hunston, 1984 ). A sampling system drew 
beer from a large diameter product line, temperature-equilibrated the product from 
the original  � 1°C to 20°C and applied pressure control to prevent out-gassing of 
carbon dioxide. The sample was passed through a pressure-resistant sample cell 
and scanned by transfl ectance to measure original gravity. A feedback system was 
set up to control the blending, based on the analytical data obtained from the online 
measurements. With this system, blending was achieved to well within specifi ed 
tolerances. Petersen  et al.  (1992) prepared calibration models for online measure-
ment of alcohol and original extract in beer (using a sampling system) and converted 
the calibration models for use with an inline probe with the aid of reference sam-
ples. Beer is relatively clear, so a transmission probe was used and scans collected 
over a 700–2100       nm wavelength range. Individual calibration models were prepared 
for specifi c beers and it was pointed out that although the equipment was simple to 
use and reliable, the calibration maintenance required expertise. An issue with a 
process-control instrument is the possibility of calibration drift when components of 
the probe or spectrometer are changed. 

    McDermott (1992)  addressed this problem with an algorithm to match water ref-
erence spectra before and after changes. The system used a fi ber optic probe with 
a sapphire rod and refl ective tip separated by a 2.5       mm transmission gap, attached 

              



to a monochromator instrument scanning in the 1200–2400       nm range. Calibrations 
for ethanol, calories, and original gravity were prepared from fi rst derivative spec-
tra, using PLS regression. Fermentation monitoring is another potential applica-
tion of NIR spectroscopy in the brewing process.  Cavinato  et al.  (1990)  described a 
system using a fi ber optic refl ectance probe placed in the side of fermentation 
vessel, feeding the back-scattered signal to a diode array spectrometer. The absorp-
tion band at 905       nm (third overtone CH stretch band from the methyl group) was 
used to prepare a calibration for ethanol, initially using ethanol and water, then etha-
nol, water and yeast mixtures. Ferments had the lowest signal-to-noise ratio, resulting 
in a calibration with low accuracy. Calibration problems may be encountered with 
ferments as they represent a shifting matrix, with progressive and large changes in 
turbidity, yeast content, sugar, and ethanol content. 

    Coventry (1994)  increased the signal-to-noise ratio of the NIR spectra by using a 
double beam instrument with a reference cell. They demonstrated high precision eth-
anol and original gravity measurement in ferments with both an inline probe and a 
sampling system, using transmission spectra in the range of 750–3000       nm. This study 
demonstrated that short wavelengths (near the visible region) were prone to error pro-
duced by sample color and the long wavelengths were affected by sample temperature. 
The culmination of the early development work was a commercially available inline 
beer monitoring system. Calibration models for ethanol were insensitive to beer color, 
turbidity, and sugar concentration and were linear over the critical 0–8% ethanol range 
( Halsey, 1985 ;  Gallignani  et al. , 1993 ). Some more recent innovations have been the 
investigation of the use of ATR probes to produce spectra equivalent to those from 
short pathlength transmission probes, without the fouling issues often encountered in 
the crude beer mash (       Inon  et al. , 2005, 2006 ;  Llario  et al. , 2006 ). 

    Nørgaard  et al.  (2000)  recognized the problems of covariance in fermentation 
systems, where a large number of dramatic matrix changes occur progressively 
and simultaneously. They discussed a model described as interval PLS (iPLS), for 
the systematic selection of optimal wavelengths to make a more robust calibration 
model with less factors and a lower SEP.  Li  et al.  (1999)  used an ANN algorithm to 
overcome non-linearity problems encountered with the wide range of sugar 
concentrations observed during fermentation and demonstrated signifi cantly reduced 
SEP for sugar and ethanol measurement in comparison with a PLS model.  

    Yeast analysis and identifi cation 

   A very early application of NIR spectroscopy in the beverage industry was in the 
monitoring of yeast concentration during beer brewing using a single wavelength 
(1000       nm) calibration for yeast count ( Dambergs  et al. , 2004 ). The calibration was 
non-linear but although it was derived from only one beer type was able to predict 
yeast counts in three other beer types in the normal working concentration range. 
This concept has been developed into a commercial inline monitoring device and has 
culminated in the development of an instrument that is unaffected by the presence of 
carbon dioxide bubbles, will discriminate yeast from smaller non-yeast particles, is 
unaffected by the turbidity of fermenting wort, and operates successfully in the high 
cell concentration range of the primary yeast inoculum ( Dambergs  et al. , 2004 ). 
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    Mochaba  et al.  (1994)  tested the ability of NIR spectroscopy to determine levels 
of glycogen, a major yeast storage carbohydrate. Yeast samples were microwave-
dried and ground, in preparation for refl ectance scanning. PLS calibrations were 
prepared from fi rst derivative spectra: the SEP for glycogen was high, relative to the 
average value of samples measured, but the authors pointed out that the reference 
method also had relatively high error, and that the NIR method offered the advan-
tage of speed. Better results were achieved by  Moonsamy  et al.  (1995) , who pre-
pared NIR calibrations for glycogen and trehalose, the other major yeast storage 
carbohydrate. Spectra were acquired in refl ectance mode over a more extended wave-
length range and had more spectral data points than the previous study ( Mochaba 
 et al. , 1994 ). Calibrations for trehalose developed from scans of the dried samples had 
relatively high error, but it was found that scanning of wet yeast slurries gave better 
accuracy for trehalose and glycogen, implying that the drying method introduced 
errors. Scanning of slurries was also considered preferable since it would be more 
convenient for potential online monitoring applications. 

   Protein content of yeast is also an important physiological parameter and is used 
to determine payment in the sale of spent brewery yeast by-product.  Majara  et al.  
(1998)  reported high accuracy of PLS calibrations for protein in dried yeast samples 
scanned in refl ectance mode. The authors noted that to obtain a high degree of accu-
racy with the NIR method, care must be taken with the reference method to ensure 
complete and reproducible protein extraction. Yeast identifi cation is an important 
issue in process-scale (industrial) fermentations, where contamination with wild 
strains may introduce undesirable traits.   

    Conclusions 

   Spectroscopy combined with multivariate methods has the potential to be a powerful 
tool for the assessment of beer and wine composition. Recent advances in chemomet-
rics software and computing power have greatly enhanced the development of rapid 
analytical methods based on spectroscopic data and their subsequent application in 
a wide range of agricultural industries. Although the instrumentation may require a 
large capital outlay and can be reasonably complex to calibrate and maintain, but 
with more research, it is possible that more cost effective, simple instruments could 
be developed for general use by the beer and wine industry. Near-infrared (NIR) and 
mid-infrared (MIR) spectroscopy analytical techniques are beginning to gain accept-
ance in the beer and wine industry. As the technology of spectroscopic instrumenta-
tion and chemometrics advances further, the resulting spin-offs may further assist 
the industry in its quest to defi ne and objectively measure product quality and to 
effi ciently monitor the industrial process.  
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    Introduction 

   By nature, avian eggs are vehicles for reproduction and form the basis of the incu-
bation and poultry meat industry ( Kemps, 2006 ). They are also an important food 
within the human diet. From a nutritional point of view, eggs are one of the most 
complete foods since they are rich in protein, lipid, and carbohydrates which are 
essential for a good diet; eggs also contain vitamins and mineral elements that are 
necessary for the development of young and elderly people. A large quantity of eggs 
are sold as intact eggs, but many are also used in the food industry. Indeed, egg white 
and egg yolk are extensively used as ingredients because of their unique functional 
properties, such as gelling and foaming. Foams are used in the food industry for 
manufacturing bread, cakes, crackers, ice creams, etc. Hen egg yolk has good emul-
sifying properties. The foaming and emulsifying properties of albumen and yolk are 
affected respectively by protein concentration, pH, ionic strength, among others. 

   The changes that occur in eggs during storage are many and complex and affect the 
functional properties of both egg yolk and egg albumen. These changes include: thinning 
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of albumen, increase of pH value, weakening and stretching of the vitelline membrane, 
and increase in water content of the yolk. Furthermore,  Hardy (1995)  and  Stevens (1991)  
reported that eggs could provide active substances that can be used for therapeutic and 
diagnostic uses. 

   Several analytical techniques are available to quantify important constituents that 
are found in eggs and egg products such as proteins and amino acids, essential fats, 
sugars, vitamins, and minerals. These techniques include chromatographic and enzy-
matic techniques, atomic absorption spectroscopy, immunochemical assays, and 
mass spectrometry. Almost all the analytical methodologies that are based on these 
techniques require a number of manipulations to make sample properties suitable for 
the fi nal quantitative measurements; these manipulations often require multiple steps, 
including treatment with chemicals and enzymes, isolation, thermal treatment, 
homogenization, fi ltration, etc. Although these analytical techniques have proven their 
validity under laboratory circumstances, their widespread industrial application for 
determining the nutritional quality of eggs and egg products is currently very limited. 

   Moreover, most of these techniques are characterized as relatively expensive, time-
consuming, and labor-intensive and require highly skilled operators. As a result, there 
is a clear need for simple-in-use, rapid, non-destructive, and relatively low-cost ana-
lytical tools that can be utilized in both fundamental research and industrial applica-
tions. The present chapter provides the reader with an overview of the use of visible 
(Vis)/near-infrared (NIR) spectroscopy to assess the quality of egg and egg products.  

    Egg composition 

   The composition of an egg is depicted in  Figure 15.1    and will be described briefl y in 
the following paragraphs. 

    Eggshell 

   The eggshell has an average thickness of about 300        μ m ( Freeman and Vince, 1974 ) 
and accounts for about 9–12% of the total egg weight depending on egg size. It com-
prises about 94% calcium carbonate (in the shape of calcite crystals) with small 
amounts of magnesium carbonate, calcium, phosphate, and other organic matter 
including protein. These crystals are organized in pillars and form the palisade layer. 
In between this structure an organic matrix of proteins and collagen fi bers are found. 
The organic matrix contains 0.63% of uronic acid and 0.48% of sialic acid as reported 
by  Nakano  et al.  (2003) . The same research group pointed out the presence of amino 
acids such as glycine, alanine, valanine, threonine, and lysine among others. 

   Shell strength is infl uenced by two factors: (1) the hen’s diet, particularly its 
calcium, phosphorus, manganese, and vitamin D intake and (2) egg size, which 
increases as the hen ages, while the mass of shell material remains stable. Hence the 
shell is thinner on larger eggs. 

   Between 7000 and 17       000 tiny pores are distributed over the shell surface ( Kemps, 
2006 ). As the egg ages, moisture and carbon dioxide (CO 2 ) diffuses out and air dif-
fuses in, inducing a growth in the air cell and a decrease in the net mass. 

400 Eggs and Egg Products

              



   Brown-shelled eggs tend to be more expensive than white-shelled eggs. This could 
be explained by the fact that the former come from larger birds, which are more 
costly to feed. The brown color is mostly due to the presence of a substance called 
protoporphyrin, which is present at different concentrations in eggshell, even if eggs 
look white to the human eye ( Solomon, 1976 ).  

    Cuticle 

   The shell is covered with a protective coating called the cuticle. By blocking the 
pores, the cuticle helps to preserve freshness and prevent microbial contamination of 
the egg contents. This is why, according to US advise, good-quality eggs (e.g. class 
A) should not be washed, which removes the cuticle, until immediately before they 
are to be used; this recommendation is under debate in Europe. As explained above, 
although some pigmentation can be found within the shell, the majority is present in 
the cuticle ( Tullet, 1987 ). The cuticle was found to be composed of 85–87% protein, 
3.5–4.4% carbohydrates, 2.5–3.5 fat, and 3.5% ash ( Wedral  et al. , 1974 ). The same 
research group reported the presence of amino acids such as aspartic and glutamic 
acids and glycine on one hand and carbohydrates such as glucose, galactose, man-
nose, and xylulose on the other hand.  

    Shell membranes 

   Between the shell and the albumen there are two shell membranes (outer and inner). 
The outer membrane consists of three layers of fi bers, whereas the inner one contains 
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 Figure 15.1          Composition of an egg. (From  Allcroft, 1964 .)    
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only two distinct layers. These membranes are composed of keratin ( Simkiss, 1958 ). 
Recently, the level of uronic acid was found to be 5 times lower in shells than in the 
organic matrix of the shell, whereas a similar level of amino acids was found in shell 
membrane and the organic matrix of the shell ( Nakano  et al. , 2003 ).  

    White (albumen) 

   Albumen accounts for most of an egg’s liquid weight, about 67%. It consists of four 
opalescent layers of alternately thick and thin consistencies. The white of a freshly 
laid egg has a pH of 7.6–7.9 and an opalescent (cloudy) appearance due to the pres-
ence of CO 2 . As the egg ages, CO 2  escapes and the pH increases, resulting in thinning 
of the egg white because of changes in protein conformation. This is why fresh eggs 
broken onto a plate sit up tall and fi rm, while older ones tend to spread out, being the 
measurement principle of the Haugh unit ( Haugh, 1937 ). The albumen of older eggs 
is more transparent than that of fresher eggs. Fresh egg whites coagulate in the range 
62–65°C; this temperatures decrease with increasing pH and hence with age. 

   Water represents the majority (88.5%) of an egg composition, while the total solid 
ranges from 11 to 13% as stated by  Powrie and Nakai (1986) . Protein levels repre-
sent approximately 10% of the albumen, whereas lipids, carbohydrates, and ash only 
represent 0.03%, 0.9%, and 0.5%, respectively. 

   The albumen of a newly laid egg consists of a gel (thick albumen) interposed 
between two liquid fractions called the outer thin and the inner thin albumen. The 
protein compositions of thick and thin albumen are similar except for the ovomucin 
content, which is 4 times higher in thick than in thin albumen ( Brooks and Hale, 
1959 ;  Baliga  et al. , 1968 ). However, discussion on albumen quality invariably centers 
on the characteristics of the thick albumen and there seems to be virtually no infor-
mation available on the characteristics of thin albumen ( Leeson and Caston, 1997 ).  

    Yolk 

   The yolk (yellow portion) represents approximately 33% of the liquid weight of an 
egg. It contains all of the fat in the egg and slightly less than half of the protein. 
With the exception of ribofl avin and niacin, the yolk contains a higher proportion of 
the egg’s vitamins than the white. All of the egg’s vitamins A, D, and E are situated 
in the yolk. Egg yolks are one of the few foods naturally containing vitamin D. The 
yolk also contains more phosphorus, manganese, iron, iodine, copper, and calcium 
than the egg white, and it contains all of the zinc. Egg yolks have a pH of about 6.0, 
which stays relatively constant during aging, as there is no CO 2  loss.   

    Application of Vis/NIR in egg and egg products 

    Albumen quality 

   Freshness is the most important criterion to classify whole eggs, together with shell 
integrity. The most common quantitative parameters used to evaluate egg freshness are 

              



air cell height, which is affected by egg weight and storage relative humidity ( Sauveur 
and De Reviers, 1988 ;  Kessler  et al. , 1990 ;  Rossi  et al. , 1995 ), and Haugh unit (HU) 
measurement. The HU is infl uenced by hen age ( Eisen  et al. , 1962 ;  Sauveur and De 
Reviers, 1988 ;  Silversides  et al. , 1993 ;  Silversides and Villeneuve, 1994 ). The charac-
teristic of fresh eggs changes during aging, being infl uenced by both storage tempera-
ture and environmental conditions ( Burley and Vadehra, 1989 ;  Lucisano  et al. , 1996 ; 
 Rossi  et al. , 2001 ). During storage, some well-known physical and chemical modifi ca-
tions caused by a loss of CO 2  from the egg through the pores in the shell are mainly the 
thinning of thick albumen ( Kato  et al. , 1981 ) and the increase of pH albumen ( Hill and 
Hall, 1980 ). The pH of the albumen depends on the equilibrium between dissolved CO 2 , 
bicarbonate ions, carbonate ions, and proteins. 

   Recently, new chemical indices that vary during the storage of eggs have been 
considered as descriptors of shell egg freshness ( Rossi  et al. , 1995 ). Among these 
chemical indices there is the determination of uridine and pyroglutamic acid concen-
tration. Their increase in the albumen as well as in the yolk during the storage of eggs 
depends on the temperature at which eggs are stored. Furosine,  � - N -(2-furoylmethyl-
 L -lysine), an indicator of the Maillard reaction, was also used as an index that deter-
mine the shell egg freshness. Amadori products are formed during the early stages of 
the Maillard reaction between reducing sugars and proteins. The formation of these 
products decreases the nutritional value because it reduces the biological availabil-
ity of lysine in the fi nal product as shown in milk ( Erbersdobler, 1986 ;  Erbersdobler  
et al. , 1987 ). Since lysine and glucose are present in whole egg at a level of 0.82% and 
0.34% respectively ( Posati and Orr, 1976 ), the Maillard reaction could occur during 
the aging of shell eggs. In this sense, furosine, which is a product of Maillard reac-
tion, was successfully used for the evaluation of egg freshness (       Hidalgo  et al. , 1995, 
2006 ;  Lucisano  et al. , 1996 ;  Rossi  et al. , 2001 ).  Hidalgo  et al.  (2006)  confi rmed the 
possibility of expressing shell egg freshness as equivalent egg age using furosine as 
a reference index. Indeed, several papers reported that furosine content showed high 
repeatability and low natural variability in fresh eggs and moreover, it is independent 
from egg weight, hen age, and storage relative humidity (       Hidalgo  et al. , 1995, 2006 ). 

   Although these methods provide useful information on the evaluation of egg fresh-
ness, they require sophisticated analytical equipment and skilled operators; they 
are also time-consuming and both necessitate the purchase and disposal of chem-
ical reagents. The physicochemical methods are not effective enough to cover the 
growing demand for listing that the food industry must comply with. A number of 
non-invasive and non-destructive instrumental techniques such as optical methods in 
visual range could be used to fulfi ll these requirements. Infrared and fl uorescence 
spectroscopic techniques have been used for the determination of egg freshness 
( Schmilovitch  et al. , 2002 ;  Bamelis, 2003 ;  De Ketelaere  et al. , 2004 ;  Kemps  et al. , 
2006 ;            Karoui  et al. , 2006a, 2006b, 2007a, 2007b ). These new analytical techniques 
are relatively low cost and can be applied in both fundamental research and in the 
factory as online sensors for monitoring egg products. 

    Norris (1996)  investigated the usefulness of NIR spectroscopy in determining egg 
quality during storage. The authors reported some changes in the spectral data that 
occurred in eggs after lay. However, no relationship between these changes and the 
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internal egg quality was given. One explanation could arise from the fact that eggs 
were stored for only few hours. In another study,  Schmilovitch  et al.  (2002)  used 
near-near-infrared spectroscopy (NNIR) in the transmittance mode (530–1130       nm) 
for the estimation of some quality parameters: storage days, pH, weight, air  chamber 
size, relative loss of weight, and relative air chamber size. The authors applied par-
tial least squares (PLS) regression to the NNIR data and the results obtained showed 
that days after hatching, air chamber size, weight loss, and pH could be predicted by 
NNIR with a determination coeffi cient ( R  2 ) varying from 0.90 to 0.92. The authors 
suggested the development of a designated sensor to facilitate rapid testing of large 
egg samples, which could lead to improvement in the marketed produce and to the 
extension of egg shelf-life. The most critical point of this study is that these high cor-
relations refer to group means rather than to individual eggs. In order to avoid this 
problem,  Bamelis (2003)  continued this work and used Vis/NIR to monitor quality 
changes in eggs stored at 18°C in an air-conditioned room over 21 days. Transmission 
spectra were acquired daily (except weekends) on egg samples, giving a total number 
of 16 spectra for each egg. The spectra were scanned between 500 and 880       nm, 
with an integration time of 250       ms. An increase and a decrease around 674       nm and 
663       nm, respectively was observed when the storage time of eggs increased ( Figure 
15.2   ). However, a large variation between eggs presenting the same age was noticed, 
in agreement with the fi ndings of  Kemps  et al.  (2007) . This variation was ascribed to 
the measurement errors, egg-dependent effects and different times. 

    Bamelis (2003)  used another indicator for the evaluation of egg freshness and 
found that the 674       nm/663       nm ratios could be more suitable indicators for the deter-
mination of egg freshness. This work was continued by the same research group 
( Kemps  et al. , 2006 ) by recording the transmission spectra of 600 eggs stored for 
0, 2, 4, 6, 8, 10, 12, 14, 16, and 18 days at 18°C and relative humidity (RH) 55%; 

500
0

0.01

0.02

0.03

0.04

0.06

0.07

0.05

600 700

N
or

m
al

iz
ed

 tr
an

sm
is

si
on

 s
pe

ct
ra

Wavelength (nm)

800

Lowest 10% haugh (32–45)
Middle 10% haugh (62–66)
Highest 10% haugh (80–97)

900 1000

 Figure 15.2          Changes in optical transmission during aging of eggs. An increase and a decrease around 674       nm 
and 663       nm, respectively can be observed when the storage time of eggs increases and Haugh units decrease.    

              



the Vis/NIR spectra obtained on intact eggs showed large variation in proportional 
 transmission values between eggs with a comparable albumen quality, confi rming 
those obtained previously by  Bamelis (2003) . 

   In order to eliminate this problem,  Kemps (2006)  pointed out the necessity for 
spectral pre-treatment in order to assess the quality of albumen quality. Thus, multi-
plicative scatter correction (MSC) was applied for each spectrum recorded on intact 
eggs and the results obtained showed that the main changes in transmission spectra 
that occurred during storage of eggs was in the 500–750       nm spectral region. In addi-
tion, an increase around 630       nm and a decrease around 655       nm of the transmission 
values were observed during egg storage. 

   In order to assess the ability of Vis/NIR to determine egg quality non-destructively, 
PLS regression was applied ( Kemps  et al. , 2006 ). The results showed that the corre-
lation coeffi cient between the measured and the predicted HU was 0.84 and 0.82 for 
the calibration and validation set, respectively. Better results were obtained for the 
pH since the correlation coeffi cient between the measured and the predicted pH was 
0.87 and 0.86 for the calibration and validation set, respectively. 

   In order to interpret at the molecular level, regression coeffi cients of the PLS 
models of both pH and HU were studied ( Kemps  et al. , 2006 ). The most informa-
tion was found between 570 and 750       nm. The researchers attributed these bands to 
the Maillard reaction with products inducing the formation of melanoidins ( Burley 
and Vadehra, 1989 ), which absorbs visible light notably between 600 and 700       nm. 
However, the authors gave no more information about this phenomenon. 

   To determine the effect of the color of the eggshell,  Kemps (2006)  measured trans-
mission and refl ection spectra of brown and white eggs between 500 and 1150       nm. 
Considerably more light in the visible part of the spectrum passes through white-
shelled eggs. This difference was attributed to the shell pigmentation, which is 
present at high levels in the case of brown-shelled eggs. Indeed, brown-shelled egg 
spectra showed a peak around 643       nm, which is caused by shell pigmentation. Above 
750       nm, the transmission spectra of brown and white eggs showed a similar trend. 
Indeed, for both groups of eggs, peaks located at 760 and 960       nm were observed and 
were attributed to water (O–H) ( Matcher  et al. , 1994 ). 

   Recently,  Liu  et al.  (2007)  pointed out that the major changes in the spectra were 
in the range 400–520       nm and the transmittance decreased with increased storage 
time. A high correlation between Vis/NIR spectra, and HU and yolk coeffi cient was 
found. The main conclusion of this study is that chicken egg internal quality inspec-
tion could be investigated by Vis/NIR spectroscopy. However, in their experiment, 
only one kind of chicken egg in the spectral range 200–580       nm was investigated. 
Thus, more research is needed and should include controlled storage experiments 
(temperature, RH, etc.) for different strains and ages of hens, to obtain valid param-
eters for use in more generally used mathematical models.  

    Shell pigmentation 

   The eggshell color has no infl uence on the nutritional value of the egg, but it has 
an important impact on consumer preferences, making the color of the eggshell an 
important quality among other parameters ( Wei and Bitgood, 1989 ). The color of 
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an eggshell is determined by the presence of a pigment called protoporphyrin in the 
eggshell as pointed out by  Lang and Wells (1987) ; another pigment called biliverdin 
also contributes to eggshell color ( Kennedy and Vevers, 1973 ). Both pigments have 
different absorption peaks in the NIR.  De Ketelaere  et al.  (2004)  reported that for 
measuring shell color only refl ected light and not transmitted light should be inves-
tigated, since pigments inside the egg may disturb transmitted light. Indeed,  Wei and 
Bitgood (1989)  determined eggshell color by measuring the refl ected light at three 
specifi c wavelength bands, characteristic of red, green, and blue light. For table eggs, 
 De Ketelaere  et al.  (2004)  reported that shells must be strong enough to prevent fail-
ure during packing and/or transportation. Thus, the detection of eggs that have unfi t 
shells should be removed for incubation, processing, and/or transportation. 

    Narushin  et al.  (2004)  used mid-infrared spectroscopy (MIR) as a rapid technique 
for the determination of eggshell quality. The authors reported that MIR gave better 
results than egg size parameters. In addition, fracture force, maximal deformation, 
and shell stiffness were found to be predicted with comparable accuracy by both 
MIR and egg size parameters. Because the investigated correlations are only moder-
ate, further research is needed to make the proposed technology useful for practical 
implementation.  

    Blood and meat spots 

   Blood and meat spots are considered to be the most common defects found in eggs 
( De Ketelaere  et al. , 2004 ). These defects could infl uence the choice of the consumer 
in a range varying from 1% to nearly 100%. Eggs are usually given a lowered grade 
or declared inedible when a spot is detected in a whole egg by candling. However, 
the candling operation is an imperfect method of detecting blood and meat spots and 
could induce a monetary loss to the industry through consumer dissatisfaction with 
defective eggs. It could also result in a considerable loss to producers and handlers 
of eggs when non-defective eggs are mistakenly candled out ( De Ketelaere  et al. , 
2004 ). Candling accuracy with respect to blood and meat spot detection reported in 
the literature indicates a range of accuracies varying from 20 to 90%. 

   Spectroscopic technique such as Vis/NIR could be used to avoid this problem, 
since  De Ketelaere  et al.  (2004)  showed that the presence of blood in the albumen 
produced absorption bands located at 415, 541, and 577       nm. 

    Brant  et al.  (1953)  suggested that as the calciferous shell of the egg absorbs all 
transmitted light under 550       nm, only the 577       nm absorption peak could be used to 
detect the presence of blood in eggs. The above-mentioned authors showed a clear 
difference between eggs containing no blood and the others, since an accuracy of 
99.7% was found. 

    De Ketelaere  et al.  (2004)  continued this work and showed a difference between 
the transmission spectra of blanco and blood-containing eggs. The authors divided 
the transmission at 577       nm by the transmission at a reference wavelength in order to 
correct for eggshell thickness, egg size, and other non-hemoglobin-related charac-
teristics.  Gielen  et al.  (1979)  suggested that a wavelength between 585 and 610       nm 

              



should be chosen. The ratio between the two transmission values is called the  “ blood 
value ”  and is used as an index. Unpublished results at the laboratory showed that 
a small amount of blood in the albumen could only be detected when part of it is 
diffused in the albumen, while very small bloodspots are often not accompanied 
by dispersed blood and, consequently, are hard to detect. On the other hand, a small 
amount of dispersed blood without the presence of a bloodspot cannot be seen with 
the human eye, but is recognized by the detecting mechanism and these are often 
classifi ed as false rejects. 

   The detection success of blood spots in eggs is highly dependent on shell color. 
A higher detection rate of blood in white eggs could be achieved when compared 
with brown-colored shells. Indeed, the brown pigment of the eggshell (protoporphy-
rin) has optical properties that are closely related to those of hemoglobin. It shows 
a band located around 589       nm, which is very close to the absorption peak of hemo-
globin (577       nm). This phenomenon makes the detection of blood in brown-shelled 
eggs diffi cult; even the use of a reference wavelength cannot solve this problem 
( Gielen   et al. , 1979 ).  

    Hatching eggs 

   When an embryo develops in the egg, blood formation takes place from day 2 of 
development onwards ( Romanoff, 1960 ;  Bodemer, 1970 ). Initially, blood is formed 
on the surface of the yolk sac, close to the embryo on the upper side of the yolk 
( Romanoff, 1960 ) and not in the albumen. 

   The blood value mentioned, previously presents a means for monitoring the growth 
of the embryo, and had been thoroughly described by  Bamelis  et al.  (2004) , who fol-
lowed individual eggs during incubation, and showed that the blood value suddenly 
decreases after about 72       h of incubation. Although blood is already formed more than 
20       h before, it stays obscure for more than 20       h. Research has provided a plausible 
explanation of this fi nding. Since the initial formation of blood is situated at the sur-
face of the yolk, it could be obscured by the yolk because of its high optical density 
( Williams and Norris, 1987 ). 

   After the second day of incubation, however, ion pumps become active and trans-
port Na  �   ions from the albumen into the yolk sac ( Babiker and Baggott, 1995 ), 
followed by a passive accumulation of water beneath the developing embryo (subem-
bryonic fl uid or SEF) ( Adolph, 1967 ;  Simkiss, 1980 ;  Deeming  et al. , 1987 ). Because 
of this movement of water into the yolk sac, it becomes optically transparent allow-
ing the detection of blood attached to it. 

   The use of such non-destructive techniques is not only of great interest for the 
industry in detecting fertile eggs, but also for fundamental research. By monitor-
ing a batch of eggs over a critical period, the exact time point at which any physi-
ological event is happening (such as SEF initiation) can accurately be determined. 
These time points are more appropriate than the incubation time in determining the 
developmental phase of an embryo because growth rates vary. Since the technique 
is non-invasive, the development of the measured egg will not be disturbed enabling 
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extra-embryonic growth factors during the very early stages of incubation to be 
linked with pre-incubation characteristics (e.g. storage time, age of the parent fl ock) 
and post-natal performance ( Bamelis  et al. , 2004 ).  

    Compositional analysis of egg products 

   Most analytical methods currently available for accurately determining moisture, 
fat, protein, and other major constituents in eggs and egg products are quite time-
consuming. Therefore, the development of more rapid procedures is desirable. NIR 
refl ectance, among other spectroscopic techniques, was used for the determination of 
moisture, fat, and protein in spray-dried whole egg ( Wehling  et al. , 1988 ). A standard 
error of performance of 0.15%, 0.20%, and 0.28% was obtained for moisture, pro-
tein, and fat, respectively, using a calibration based on three wavelengths. However, 
the authors suggested that it was necessary to use additional wavelengths to ade-
quately measure these constituents in samples with particle size variability. 

   Liquid egg products are usually traded on a total solid content specifi cation. In 
commercial egg breaking operation, there is often an imperfect separation of the yolk 
from the albumen; the total solids of these products and blends made from them will 
vary somewhat between batches. Therefore, in order to maintain consistent product 
quality, a rapid control procedure for this constituent would be advantageous. In this 
context,  Osborne and Barrett (1984)  used NIR transmission for the measurement of 
protein, total lipid, and total solid contents of liquid egg products. An  R  2  of 0.96, 
0.98, and 0.99 and residual standard deviation (RSD) of 0.37%, 0.66%, and 1.06% 
for protein, total lipid, and total solid contents, respectively, was obtained for NIR 
transmission compared with standard procedures. Although this feasibility study 
was performed on a relatively small number of samples ( n       �      32), the research-
ers suggested that NIR could be successfully applied to the determination of these 
 parameters in liquid egg products. 

   In another study, NIR refl ectance was used to assess its ability for the prediction 
of the physicochemical composition of freeze-dried egg yolk samples from laying 
hens fed with four different diets enriched with different sources of  n -3 polyunsatu-
rated fatty acids ( Dalle Zotte  et al. , 2006 ). NIR spectra were scanned between 1100 
and 2498       nm on 365 yolk samples. The calibration results showed that NIR spectra 
could be used to predict their chemical composition, but also highlighted some limita-
tions, which were related by the researchers to the measurement realized by reference 
method. The pH, cholesterol, and CIE color parameters were not successfully pre-
dicted. An explanation of the low accuracy of NIR in predicting color was attributed 
to the fact that the Vis region was not scanned, which suggested that color attributes 
could not be predicted from NIR spectra alone. The prediction of polyunsaturated 
fatty acid content was found to be accurate. By using partial least squares discrimi-
nant analysis (PLSDA), yolks from hens fed with the commercial diet and from hens 
fed commercial diet supplemented with marine origin were classifi ed with 100% 
accuracy. From the obtained results, the researchers concluded that NIR could be used 
as a rapid screening of egg yolk samples originating from different feeding systems. 

              



   However, further studies should investigate the accuracy of NIR in the prediction 
of macronutrients (fat, protein, and ash) at highly accurate analytical values used in 
calibration. So far, egg product manufacturers are missing possibilities for fast raw 
material control because the usual refraction measurements do not allow for conclu-
sions about the actual composition of egg products. 

   Büning-Pfaue et al. (2004) used NIR refl ection spectra on liquid shell egg samples 
and sample mixtures from yolk, egg white, and water. By applying cluster analysis, 
no clear difference was obtained between the investigated samples. However, using 
PLS regression on the NIR spectra and physicochemical parameters, a good correla-
tion was found for dry matter, crude protein, total fat, cholesterol, and lecithin phos-
phate contents since the  R  2  was higher than 0.98, except for that of crude protein 
amount, which was equal to 0.79. 

   Thermal treatment could lead to a reduction in the nutritional value of the food 
as a result of the Maillard reaction, which makes amino compounds biologically 
unavailable. The  F  70  10  parameter is generally calculated from processing data in 
order to evaluate the thermal treatment to compare different time–temperature 
processing combinations and to calculate the effectiveness of the thermal proc-
ess on pathogenic and spoilage organisms. The temperature in the center of the 
product that corresponds to each time interval must be obtained from the penetra-
tion heat curve, and a  F  70  10  value defi ned by the Bigelow law calculated. In gen-
eral, the  F  70  10  is calculated from processing data in order to: (1) evaluate thermal 
treatment, (2) compare different time–temperature processing combinations, and 
(3) calculate the effectiveness of the thermal process on pathogenic and spoilage 
organisms. 

   Recently, NIR spectroscopy was used to evaluate the thermal treatment of fresh 
egg pasta ( Zardetto, 2005 ). Eighty-seven fresh egg pasta samples were scanned 
by refl ectance spectroscopy in the range 1000–2500       nm. The models predicted the 
 F  70  

10  values with a standard error of prediction (SEP) of 0.16 and an  R  of 0.91. 
The researchers concluded that NIR spectroscopy could be used as a rapid tool for 
the determination for this parameter. Also, the examination of loading vectors sug-
gested that NIR could be used to monitor physical changes that occurred during heat 
treatment. 

   Nowadays, there is an increasing consumer demand for high-quality and micro-
biologically safe foods. Non-thermal food-processing techniques such as ultra-high 
hydrostatic pressure and gamma irradiation leave the remaining sensory and nutri-
tional qualities unaffected. In this sector, NIR was used to investigate the properties 
of egg white pasteurized by ultra-high hydrostatic pressure and gamma irradiation 
by using both NIR and chemo-sensor array sensor signal response ( Seregély  et al. , 
2006 ). The researchers applied multivariate statistical analysis in order to test if there 
was a difference between the two techniques used for the pasteurization of egg white. 
Based on the presented results, they concluded that irradiation causes more drastic 
changes in the volatiles compounds and in the NIR properties than the ultra-high 
hydrostatic pressure. However, no explanation about the chemical compounds that 
are involved in this difference was given.   
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    Conclusion 

   It is clear that Vis/NIR spectroscopy recorded on egg and egg products contains 
 valuable information about the quality of these products. The Vis/NIR spectra have 
shown to provide information about the quality of egg and egg products, including 
the detection of blood and meat spots and hatching as well as the composition of egg 
products. The present chapter has revealed the large amount of research in the fi eld 
that has occurred within the past decade facilitated by the widespread use of chemo-
metric tools. The increasing research activities can, it is hoped, address some of the 
challenges of Vis/NIR measurements of intact eggs and further explore the chemical 
systems and causality, which in many cases are not fully understood, as indicated by 
the tentative assignments of several peaks in egg studies. 

   Vis/NIR spectroscopy may be suited for online measurements because it is multi-
dimensional, selective, and sensitive and because industrial online sensors are highly 
feasible. It is therefore expected that in the coming years, Vis/NIR spectroscopy 
combined with chemometric tools will be a reliable tool for understanding the basics 
of the quality of egg products.  
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