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CHAPTER 0

Preface

PHILOSOPHY

The evolution of differential equations courses I described in the Preface to the first edition
of this book has progressed nicely. In particular, the quantitative, graphical, and qualita-
tive aspects of the subject have been receiving increased attention, due in large part to the
availability of technology in the classroom and at home.

As before, this text presents a solid yet highly accessible introduction to differential equations,
developing the concepts from a dynamical systems perspective and employing technology to
treat topics graphically, numerically, and analytically. In particular, the book acknowledges
that most differential equations cannot be solved in closed form and makes extensive use of
qualitative and numerical methods to analyze solutions.

The text includes discussions of several significant mathematical models, although there is
no systematic attempt to teach the art of modeling. Similarly, the text introduces only the
minimal amount of linear algebra necessary for an analysis of systems.

This book is intended to be the text for the one-semester ordinary differential equations course
that is typically offered at the sophomore–junior level, but with some differences. The prereq-
uisite for the course is two semesters of calculus. No prior knowledge of multivariable calculus
and linear algebra is needed, because essential concepts from these subjects are developed
within the text itself. This book is aimed primarily at students majoring in mathematics, the
natural sciences, and engineering. However, students in economics, business, and the social
sciences who have the necessary background should also benefit.

USE OF TECHNOLOGY

This text assumes that the student has access to a computer algebra system (CAS) or perhaps
some specialized software that will enable him or her to construct the required graphs (solu-
tion curves, phase planes, etc.) and numerical approximations. For example, a spreadsheet
program can be used effectively to implement Euler’s method of approximating solutions.
Although I use Maple® in my own course, no specific software or hardware platform is assumed
for this book. To a large extent, even a graphing calculator will suffice. xi
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PEDAGOGICAL FEATURES AND WRITING STYLE

This book is truly meant to be read by the students. The style is accessible without excessive
mathematical formality and extraneous material, although it does provide a solid foundation
upon which individual teachers can build according to their taste and the students’ needs.
(Feedback from users of the first edition suggests that students find the book easy to read.) Every
chapter has an informal Introduction that sets the tone and motivates the material to come.
I have tried to motivate the introduction of new concepts in various ways, including refer-
ences to earlier, more elementary mathematics courses taken by the student. Each chapter
concludes with a narrative Summary reminding the reader of the important concepts in the
chapter. Within sections there are figures and tables to help students visualize or summarize
concepts. There are many worked-out examples and exercises taken from biology, chem-
istry, and economics, as well as from traditional pure mathematics, physics, and engineering.
In the text itself, I lead the student through qualitative and numerical analyses of problems
that would have been difficult to handle before the ubiquitous presence of graphing calcula-
tors and computers. The exercises that appear at the end of each content section range from
the routine to the challenging, the latter problems often requiring some exploration and/or
theoretical justification (“proof”). Some exercises introduce students to supplementary con-
cepts. I have provided answers to odd-numbered problems at the back of the book, with more
detailed solutions to these problems in the separate Student Solutions Manual. Every chapter
has at least one project following the Summary.

I have written the book the way I teach the course, using a colloquial and interactive style.
The student is frequently urged to “Think about this,” “Check this,” or “Make sure you under-
stand.” In general there are no proofs of theorems except for those mathematical statements
that can be justified by a sequence of fairly obvious calculations/algebraic manipulations.
In fact, there is no general labeling of facts as theorems, although some definitions are stated
formally and key results are italicized within the text or emphasized in other ways. Also,
brief historical remarks related to a particular concept or result are placed throughout the text
without obstructing the flow. This is not a mathematical treatise but a friendly, informative,
modern introduction to tools needed by students in many disciplines. I have enjoyed teaching
such a course, and I believe my students have benefited from the experience. I sincerely hope
that the user of this book also gains some insight into the modern theory and applications
of differential equations.

KEY CONTENT FEATURES

Chapters 1–3 introduce the basic concepts of differential equations and focus on the analytical,
graphical, and numerical aspects of first-order equations, including slope fields and phase lines.
In later chapters, these aspects (including the Superposition Principle) are generalized in natural
ways to higher-order equations and systems of equations.

Chapter 4 starts with methods of solving important second-order homogeneous and nonhomoge-
neous linear equations with constant coefficients and introduces applications to electrical circuits
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and spring-mass problems. The theoretical high point of the chapter is the demonstration
that any higher-order differential equation is equivalent to a system of first-order equations.
The student is introduced to the qualitative analysis of systems (phase portraits), the existence
and uniqueness of solutions of systems, and the extension of numerical methods for first-order
equations to systems of first-order equations. Among the examples treated in this chapter
are predator-prey systems, an arms race illustration, and spring-mass systems (including one
showing resonance).

Chapter 5 begins with a brief introduction to the matrix algebra concepts needed for the sys-
tematic exposition of two-dimensional systems of autonomous linear equations. (This treatment
is supplemented by Appendix B.) The importance of linearity is emphasized, and the Super-
position Principle is discussed again. The stability of such systems is completely characterized
by means of the eigenvalues of the matrix of coefficients. Spring-mass systems are discussed in
terms of their eigenvalues. There is also a brief introduction to the complexities of nonhomo-
geneous systems. Finally, via 3 × 3 and 4 × 4 examples, the student is shown how the ideas
previously developed can be extended to nth-order equations and their equivalent systems.

Chapter 6 reveals the Laplace transform and its applications to the solution of differential
equations and systems of differential equations. This is perhaps the most traditional topic
in the book; it is included because of its usefulness in many applied areas. In particular,
students can deal with nonhomogeneous linear equations and systems more easily and handle
discontinuous driving forces. The Laplace transform is applied to electric circuit problems, the
deflection of beams (a boundary-value problem), and spring-mass systems. However, in the
spirit of the rest of the book, Section 6.6 shows the applicability of the Laplace transform
to a qualitative analysis of linear differential equations (transfer functions, impulse response
functions).

Chapter 7 presents systems of nonlinear equations in a systematic way. The stability of non-
linear systems is analyzed. The important notion of a linear approximation to a nonlinear
equation or system is developed, including the use of a qualitative result due to Poincaré and
Lyapunov. Some important examples of nonlinear systems are treated in detail, including the
Lotka-Volterra equations, the undamped pendulum, and the van der Pol oscillator. Limit cycles are
discussed.

Appendices A–C present important prerequisite/corequisite material from calculus (single-
variable and multivariable), vector/matrix algebra, and complex numbers, respectively. Appendix
D supplements the text by introducing the series solutions of ordinary differential equations.

SECOND EDITION FEATURES

■ Overall, there has been a strengthening of the exposition, ranging from individual
words to entire paragraphs. The result is increased clarity.

■ First-order initial-value and boundary-value problems are now in a section of their own.
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■ The discussion of compartment problems has been expanded and appears in a separate
section.

■ To improve the flow of the exposition, some text material on error in numerical
approximation has been removed to Section A.3.

■ The treatments of undetermined coefficients and variation of parameters have been
expanded, and each topic has a section of its own, with helpful tables and examples.

■ Spring-mass problems are now in a separate section.

■ There are new examples and figures in this edition.

■ Many new exercises have been added (with a few culled). All exercises are now divided
into A, B, and C problems, and the range of problems from drill exercises (A) to
challenging problems (C) has been increased.

■ One project has been replaced.

SUPPLEMENTS

■ Instructor’s Solutions Manual Contains solutions to all exercises in the text. This is
available free to instructors who adopt the text.

■ Student Solutions Manual Provides complete solutions to every odd-numbered
exercise in the text.
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CHAPTER 1

Introduction to Differential Equations

INTRODUCTION

What do the following situations have in common?

■ An arms race between nations

■ Tracking of the rate at which HIV-positive patients come to exhibit AIDS

■ The dynamics of supply and demand in an economy

■ The interaction between two or more species of animals on an island

The answer is that each of these areas of investigation can be modeled with differential
equations. This means that the essential features of these problems can be represented using
one or several differential equations, and the solutions of the mathematical problems provide
insights into the future behavior of the systems being studied.

This book deals with change, with flux, with flow, and, in particular, with the rate at which
change takes place. Every living thing changes. The tides fluctuate over the course of a day.
Countries increase and diminish their stockpiles of weapons. The price of oil rises and falls.
The proper framework of this course is dynamics—the study of systems that evolve over time.

The origin of dynamics (originally an area of physics) and of differential equations lies in
the earliest work by the English scientist and mathematician Sir Isaac Newton (1642–1727)
and the German philosopher and mathematician Gottfried Wilhelm Leibniz (1646–1716) in
developing the new science of calculus in the seventeenth century. Newton in particular was
concerned with determining the laws governing motion, whether of an apple falling from a
tree or of the planets moving in their orbits. He was concerned with rates of change. However,
you mustn’t think that the subject of differential equations is all about physics. The same types
of equations and the same kind of analysis of dynamical systems can be used to model and
understand situations in biology, economics, military strategy, and chemistry, for example.
Applications of this sort will be found throughout this book.

Copyright © 2009, Elsevier Inc. 1



2 CHAPTER 1: Introduction to Differential Equations

In the next section, we will introduce the language of differential equations and discuss some
applications.

1.1 BASIC TERMINOLOGY
1.1.1 Ordinary and Partial Differential Equations
Ordinary Differential Equations

Definition 1.1.1

An ordinary differential equation (ODE) is an equation that involves an unknown function of a single

variable, its independent variable, and one or more of its derivatives.

■ Example 1.1.1 An Ordinary Differential Equation
Here’s a typical elementary ODE, with some of its components indicated:

unknown function, y ↓

3
dy
dt

= y

independent variable, t ↑ .

This equation describes an unknown function of t that is equal to three times its own deriva-
tive. Expressed another way, the differential equation describes a function whose rate of
change is proportional to its size (value) at any given time, with constant of proportionality
one-third. ■

The Leibniz notation for a derivative, d( )
d( )

, is helpful because the independent variable (the
fundamental quantity whose change is causing other changes) appears in the denominator,
the dependent variable in the numerator. The three equations

dy
dx

+ 2xy = e−x2

x′′(t) − 5x′(t) + 6x(t) = 0

dx
dt

= 3t2 + 4t + 2
2(x − 1)

leave no doubt about the relationship between independent and dependent variables. But in
an equation such as (w′)2 + 2t3w′ − 4t2w = 0, we must infer that the unknown function w is
really w(t), a function of the independent variable t.
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In many dynamical applications, the independent variable is time, represented by t, and
we may denote the function’s derivative using Newton’s dot notation,1 as in the equation
ẍ+3tẋ+2x = sin(ωt). You should be able to recognize a differential equation no matter what
letters are used for the independent and dependent variables and no matter what derivative
notation is employed. The context will determine what the various letters mean, and it’s the
form of the equation that should be recognized. For example, you should be able to see that
the two ordinary differential equations

(A)
d2u
dt2 − 3

du
dt

+ 7u = 0 and (B)
d2y
dx2 = 3

dy
dx

− 7y

are the same—that is, they are describing the same mathematical or physical behavior. In
Equation (A) the unknown function u depends on t, whereas in Equation (B) the function y is a
function of the independent variable x, but both equations describe the same relationship that
involves the unknown function, its derivatives, and the independent variable. Each equation
is describing a function whose second derivative equals three times its first derivative minus
seven times itself.

The Order of an Ordinary Differential Equation
One way to classify differential equations is by their order.

Definition 1.1.2

An ordinary differential equation is of order n, or is an nth-order equation, if the highest derivative of the

unknown function in the equation is the nth derivative.

The equations

dy
dx

+ 2xy = e−x2

(w′)2 + 2t3w′ − 4t2w = 0

dx
dt

= 3t2 + 4t + 2
2(x − 1)

are all first-order differential equations because the highest derivative in each equation is the
first derivative. The equations

x′′(t) − 5x′(t) + 6x(t) = 0

1 In this notation, ẋ = dx/dt, ẍ = d2x/dt2, and
...
x = d3x/dt3.
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and

ẍ + 3t ẋ + 2x = sin(ωt)

are second-order equations, and e−xy(5) + (sin x)y′′′ = 3ex is of order 5.

A General Form for an Ordinary Differential Equation
If y is the unknown function with a single independent variable x, and y(k) denotes the kth
derivative of y, we can express an nth-order differential equation in a concise mathematical
form as the relation

F
(
x, y, y′, y′′, y′′′, . . . , y(n−1), y(n)

) = 0

or often as

y(n) = G
(
x, y, y′, y′′, y′′′, . . . , y(n−1)

)
.

The next example shows what these forms look like in practice.

■ Example 1.1.2 General Form for a Second-Order ODE
If y is an unknown function of x, then the second-order ordinary differential equation 2 d2y

dx2 +
ex dy

dx = y + sin x can be written as 2 d2y
dx2 + ex dy

dx − y − sin x = 0 or as

2y′′ + exy′ − y − sin x︸ ︷︷ ︸
F(x,y,y′,y′′)

= 0.

■

Note that F denotes a mathematical expression involving the independent variable x, the
unknown function y, and the first and second derivatives of y.

Alternatively, in this last example we could use ordinary algebra to solve the original differen-

tial equation for its highest derivative and write the equation as y′′ = 1
2

sin x + 1
2

y − 1
2

exy′︸ ︷︷ ︸
G(x,y,y′)

.

Partial Differential Equations
If we are dealing with functions of several variables and the derivatives involved are partial
derivatives, then we have a partial differential equation (PDE). (See Section A.7 if you are not
familiar with partial derivatives.) For example, the partial differential equation ∂2u

∂x2 − 1
c2

∂2u
∂t2 = 0,

which is called the wave equation, is of fundamental importance in many areas of physics
and engineering. In this equation we are assuming that u = u(x, t), a function of the two
variables x and t. However, in this text, when we use the term differential equation, we’ll mean
an ordinary differential equation. Often we’ll just write equation, if the context makes it clear
that an ordinary differential equation is intended.
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Linear and Nonlinear Ordinary Differential Equations
Another important way to categorize differential equations is in terms of whether they are
linear or nonlinear.

Definition 1.1.3

If y is a function of x, then the general form of a linear ordinary differential equation of order n is

an(x)y(n) + an−1(x)y(n−1) + · · · + a2(x)y′′ + a1(x)y′ + a0(x)y = f (x). (1.1.1)

What is important here is that each coefficient function ai, as well as f , depends on the
independent variable x alone and doesn’t have the dependent variable y or any of its deriva-
tives in it. In particular, Equation (1.1.1) involves no products or quotients of y and/or its
derivatives.

■ Example 1.1.3 A Second-Order Linear Equation
The equation x′′ + 3tx′ + 2x = sin(ωt), where ω is a constant, is linear. We can see the form
of this equation as follows:

a2(t)︷︸︸︷
1 · x′′ +

a1(t)︷︸︸︷
3t · x′ +

a0(t)︷︸︸︷
2 · x =

f (t)︷ ︸︸ ︷
sin(ωt) .

The coefficients of the various derivatives of the unknown function x are functions (some-
times constant) of the independent variable t alone. ■

The next example shows that not all first-order equations are linear.

■ Example 1.1.4 A First-Order Nonlinear Equation (an HIV
Infection Model)

The equation dT
dt = s+ rT

(
1 − T

Tmax

)
−μT models the growth and death of T cells, an impor-

tant component of the immune system.2 Here T(t) is the number of T cells present at time

t. If we rewrite the equation by removing parentheses, we get dT
dt = s + rT −

(
r

Tmax

)
T2 − μT ,

and we see that there is a term involving the square of the unknown function. Therefore, the
equation is not linear. ■

In general, there are more systematic ways to analyze linear equations than to analyze non-
linear equations, and we’ll see some of these methods in Chapters 2, 5, and 6. However,
nonlinear equations are important and appear throughout this book. In particular, Chapter 7
is devoted to their analysis.

2 E. K. Yeargers, R. W. Shonkwiler, and J. V. Herod, An Introduction to the Mathematics of Biology: With Computer Algebra Models (Boston:
Birkhäuser, 1996): 341.
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1.1.2 Systems of Ordinary Differential Equations
In earlier mathematics courses, you have had to deal with systems of algebraic equations,
such as

3x − 4y = −2

−5x + 2y = 7.

Similarly, in working with differential equations, you may find yourself confronting systems
of differential equations, such as

dx
dt

= −3x + y

dy
dt

= x − 3y

or

ẋ = −sx + sy

ẏ = −xz + rx − y

ż = xy − bz

where b, r, and s are constants. (Recall that ẋ = dx
dt , ẏ = dy

dt , and ż = dz
dt .) The last system arose

in a famous study of meteorological conditions.

Note that each of these systems of differential equations has a different number of equations
and that each equation in the first system is linear, whereas the last two equations in the second
system are nonlinear because they contain products—xz in the second equation and xy in the
third—of some of the unknown functions. Naturally, we’ll call a system in which all equations
are linear a linear system, and we’ll refer to a system with at least one nonlinear equation as a
nonlinear system. In Chapters 4, 5, 6, and 7, we’ll see how systems of differential equations
arise and learn how to analyze them. For now, just try to understand the idea of a system of
differential equations.

Exercises 1.1
A

In Problems 1–12, (a) identify the independent variable and the dependent variable of each
equation; (b) give the order of each differential equation; and (c) state whether the equation
is linear or nonlinear. If your answer to (c) is nonlinear, explain why this is true.

1. y′ = y − x2

2. xy′ = 2y
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3. x′′ + 5x = e−x

4. (y′)2 + x = 3y
5. xy′(xy′ + y) = 2y2

6.
d2r

dt2 = 3
dr
dt

+ sin t

7. y(4) + xy′′′ + ex = 0

8. y′′ + ky′(y2 − 1) + 3y = −2 cos t

9.
...
x −2 ẍ + 4tẋ − etx = t + 1

10. x(7) + t2x(5) = xet

11. ey′ + 3xy = 0

12. t2R′′′ − 4tR′′ + R′ + 3R = et

13. Classify each of the following systems as linear or nonlinear:

a.
dy
dt

= x − 4xy

dx
dt

= −3x + y

b. Q′ = tQ − 3t2R
R′ = 3Q + 5R

c. ẋ = x − xy + z
ẏ = −2x + y − yz
ż = 3x − y + z

d. ẋ = 2x − ty + t2z
ẏ = −2tx + y − z
ż = 3x − t3y + z

B

1. For what value(s) of the constant a is the differential equation

d2x

dt2 + (a2 − a)x
dx
dt

= te(a−1)x

a linear equation?
2. Rewrite the following equations as linear equations, if possible.

a.
dx
dt

= ln(2x)

b. x′ =
⎧⎨
⎩

x2−1
x−1 for x 	= 1

2 for x = 1

c. x′ =
⎧⎨
⎩

x4−1
x2−1

for x 	= 1

2 for x = 1.
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1.2 SOLUTIONS OF DIFFERENTIAL EQUATIONS
1.2.1 Basic Notions
In past mathematics courses, whenever you encountered an equation, you were probably
asked to solve it, or find a solution. Simply put, a solution of a differential equation is a function
that satisfies the equation: When you substitute this function into the differential equation,
you get a true mathematical statement—an identity.

Definition 1.2.1

A solution of an nth-order differential equation F(x, y, y′, y′′, y′′′, . . . , y(n−1), y(n)) = 0, or y(n) = G(x, y, y′, y′′,
y′′′, . . . , y(n−1)), on an interval (a, b) is a real-valued function y = y(x) such that all the necessary derivatives of

y(x) exist on the interval and y(x) satisfies the equation for every value of x in the interval. Solving a differential

equation means finding all possible solutions of a given equation.

Even before we begin learning formal solution methods in Chapter 2, we can guess the
solutions of some simple differential equations. The next example shows how to guess
intelligently.

■ Example 1.2.1 Guessing and Verifying a Solution to an ODE
The first-order linear differential equation dB

dt = kB, where k is a given positive constant, is a
simple model of a bank balance, B(t), under continuous compounding t years after the initial
deposit. The rate of change of B at any instant is proportional to the size of B at that instant,
with k as the constant of proportionality. This equation expresses the fact that the larger the
bank balance at any time t, the faster it will grow.

You can guess what kind of function describes B(t) if you think about the elementary functions
you know and their derivatives. What kind of function has a derivative that is a constant
multiple of itself? You should be able to see why B(t) must be an exponential function of the
form aekt , where a is any constant. By substituting B(t) = aekt into the original differential
equation, you can verify that you have guessed correctly. The left-hand side of the equation

becomes d(aekt )
dt , which equals kaekt , and the right-hand side of the equation is k(aekt). The

left-hand side equals the right-hand side for all values of t, giving us an identity.

Anticipating an idea we’ll discuss later in this section, we can let t = 0 in our solution
function to conclude that B(0) = aek(0) = a—that is, the constant a must equal the initial
deposit. Finally, we can express the solution as B(t) = B(0)ekt . ■

Note that in Definition 1.2.1 we say “a” solution rather than “the” solution. A differential
equation, if it has a solution at all, usually has more than one solution. Also, we should pay
attention to the interval on which the solution may be defined. Later in this section and in
Section 2.8, we will discuss in more detail the question of the existence and uniqueness of
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solutions. For now, let’s just learn to recognize when a function is a solution of a differential
equation, as in the next example.

■ Example 1.2.2 Verifying a Solution of a Second-Order Equation
Suppose that someone claims that x(t) = 5e3t − 7e2t is a solution of the second-order linear
equation x′′ − 5x′ + 6x = 0 on the whole real line—that is, for all values of t in the interval
(−∞, ∞). You can prove that this claim is correct by calculating x′(t) = 15e3t − 14e2t and
x′′(t) = 45e3t − 28e2t and then substituting these expressions into the original equation:

x′′(t) − 5x′(t) + 6x(t) =
x′′(t)︷ ︸︸ ︷

(45e3t − 28e2t) − 5

x′(t)︷ ︸︸ ︷
(15e3t − 14e2t) + 6

x(t)︷ ︸︸ ︷
(5e3t − 7e2t)

= 45e3t − 28e2t − 75e3t + 70e2t + 30e3t − 42e2t

= −30e3t + 42e2t + 30e3t − 42e2t = 0.

Because x(t) = 5e3t − 7e2t satisfies the original equation, we see that x(t) is a solution. But
this is not the only solution of the given differential equation. For example, you can check
that x2(t) = −πe3t + 2

3 e2t is also a solution. We’ll discuss this kind of situation in more detail
a little later. ■

Implicit Solutions
Think back to the concept of implicit functions in calculus. The idea here is that sometimes
functions are not defined cleanly (explicitly) by a formula in which the dependent variable
(on one side) is expressed in terms of the independent variable and some constants (on
the other side), as in the solution x = x(t) = 5e3t − 7e2t of Example 1.2.2. For instance,
you may be given the relation x2 + y2 = 5, which can be written in the form G(x, y) = 0,
where G(x, y) = x2 + y2 − 5. The graph of this relation is a circle of radius

√
5 centered at

the origin, and this graph does not represent a function. (Why?) However, this relation does
define two functions implicitly: y1(x) = √

5 − x2 and y2(x) = −√
5 − x2, both having domains

[−√
5,

√
5]. More advanced courses in analysis discuss when a relation actually defines one or

more implicit functions. For now, just remember that even if you can’t untangle a relation to
get an explicit formula for a function, you can use implicit differentiation to find derivatives
of any differentiable functions that may be buried in the relation.

In trying to solve differential equations, often we can’t find an explicit solution and must be
content with a solution defined implicitly.

■ Example 1.2.3 Verifying an Implicit Solution
We want to show that any function y that satisfies the relation G(x, y) = x2 + y2 − 5 = 0 is a
solution of the differential equation dy

dx = − x
y .
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First, we differentiate the relation implicitly, treating y as y(x), an implicitly defined function
of the independent variable x:

(1)
d
dx

G(x, y) = d
dx

(x2 + y2 − 5) = d
dx

(0) = 0

(2) 2x +

Chain Rule︷ ︸︸ ︷
2y

dy
dx

− d
dx

(5) = 0

(3) 2x + 2y
dy
dx

= 0.

Now we solve Equation (3) for dy
dx , getting dy

dx = −2x
2y = − x

y and proving that any function
defined implicitly by the relation above is a solution of our differential equation. ■

1.2.2 Families of Solutions I
Next, we want to discuss how many solutions a differential equation could have. For example,
the equation (y′)2 +1 = 0 has no real-valued solution (think about this), whereas the equation
|y′| + |y| = 0 has exactly one solution, the function y ≡ 0. (Why?) As we saw in Example 1.2.2,
the differential equation x′′ − 5x′ + 6x = 0 has at least two solutions.

The situation gets more complicated, as the next example shows.

■ Example 1.2.4 An Infinite Family of Solutions
Suppose two students, Lenston and Cindy, look at the simple first-order differential equation
dy
dx = f (x) = x2 − 2x + 7. A solution of this equation is a function of x whose first derivative

equals x2 − 2x + 7. Lenston thinks the solution is x3

3 − x2 + 7x, and Cindy thinks the solution

is x3

3 − x2 + 7x − 10. Both answers seem to be correct.

Solving this problem is simply a matter of integrating both sides of the differential equation:

y =
∫

dy =
∫

dy
dx

dx =
∫

x2 − 2x + 7dx.

Because we are using an indefinite integral, there is always a constant of integration that we
mustn’t forget. The solution to our problem is actually an infinite family of solutions, y(x) =
x3

3 − x2 + 7x + C, where C is any real constant. Every particular value of C gives us another
member of the family. We have just solved our first differential equation in this course without
guessing! Every time we performed an indefinite integration (found an antiderivative) in
calculus class, we were solving a simple differential equation. ■

When describing the set of solutions of a first-order differential equation such as the one in the
previous example, we usually refer to it as a one-parameter family of solutions. The parameter
is the constant C. Each definite value of C gives us what is called a particular solution of
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FIGURE 1.1
Integral curves of dy

dx = x2 − 2x + 7 with parameters 15, 0, and −10

the differential equation. In the preceding example, Lenston and Cindy produced particular
solutions, one with C = 0 and the other with C = −10. A particular solution is sometimes
called an integral of the equation, and its graph is called an integral curve or a solution
curve.

Figure 1.1 shows three of the integral curves of the equation dy
dx = x2−2x+7, where C = 15, 0,

and −10 (from top to bottom).

The curve passing through the origin is Lenston’s particular solution; the solution curve
passing through the point (0, −10) is Cindy’s.

Exercises 1.2

In Problems 1–10, verify that the indicated function is a solution of the given differential
equation. The letters a, b, c, and d denote constants.

A

1. y′′ + y = 0; y = sin x

2. x′′ − 5x′ + 6x = 0; x = −πe3t + 2
3 e2t

3.
1
4

(
dy
dx

)2
− x

dy
dx

+ y = 0; y = x2

4. t
dR
dt

− R = t2 sin t; R = t(c − cos t)

5.
d4y

dt4 = 0; y = at3 + bt2 + ct + d

6.
dr
dt

= at + br; r = cebt − a
b t − a

b2

7. xy′ − 2 = 0; y = ln(x2)

8. y′′ = a
√

1 + (y′)2; y = eax + e−ax

2a
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9. xy′ − sin x = 0; y = ∫ x
1

sin t
T

dt [Think of the Fundamental Theorem of Calculus. See Section A.4]

10. y′′ + 2xy′ = 0; y = ∫ x
3 e−t2

dt [Think of the Fundamental Theorem of Calculus. See Section A.4]

11. For each function, find a differential equation satisfied by that function:

a. y = c + x
c

, where c is a constant

b. y = eax sin bx, where a and b are constants
c. y = (A + Bt)et , where A and B are constants
d. y(t) = e−3t + ∫ t

1 uy(u)du

In each of Problems 12–15, assume that the function y is defined implicitly as a function of
x by the given equation, where C is a constant. In each case, use the technique of implicit
differentiation to find a differential equation for which y is a solution.

12. xy − ln y = C
13. y + arctan y = x + arctan x + C
14. y3 − 3x + 3y = 5
15. 1 + x2y + 4y = 0
16. Is a function y satisfying x2 + y2 − 6x + 10y + 34 = 0 a solution of the differential equation

dy
dx

= 3 − x
y + 5

? Explain your answer.

B

1. Verify that y = x2

2
+ x

2

√
x2 + 1 + ln

√
x +

√
x2 + 1 is a solution of the equation

2y = xy′ + ln(y′).
2. Write a paragraph explaining why B(t) in Example 1.2.1—a solution of the differential equation

dB
dt

= kB—can’t be a polynomial, trigonometric, or logarithmic function.

3. a. Why does the equation (y′)2 + 1 = 0 have no real-valued solution?

b. Why does the equation |y′| + |y| = 0 have only one solution? What is the solution?

4. Explain why the equation
dx
dt

= √−|x − t| has no real-valued solution.

5. If c is a positive constant, show that the two functions y =
√

c2 − x2 and y = −
√

c2 − x2 are both

solutions of the nonlinear equation y
dy
dx

+ x = 0 on the interval −c < x < c. Explain why the

solutions are not valid outside the open interval (−c, c).

6. a. Verify that the function y = ln(|C1x|) + C2 is a solution of the differential equation y′ = 1
x

for

each value of the parameters C1 and C2 and x in the interval (0, ∞).

b. Show that there is only one genuine parameter needed for y. In other words, write
y = ln(|C1x|) + C2 using only one parameter C.

7. Find a solution of
dy
dx

+ y = sin x of the form y(x) = c1 sin x + c2 cos x, where c1 and c2 are
constants.

8. Find a second degree polynomial y(x) that is a (particular) solution of the linear differential
equation 2y′ − y = 3x2 − 13x + 7.
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9. Show that the first-order nonlinear equation (xy′ − y)2 − (y′)2 − 1 = 0 has a one-parameter family
of solutions given by y = Cx ±

√
C2 + 1, but that any function y defined implicitly by the relation

x2 + y2 = 1 is also a solution—one that does not correspond to a particular value of C in the
one-parameter solution formula.

10. Find a differential equation satisfied by the function

y(t) = cos t +
∫ t

0
(t − u)y(u)du.

C

1. Consider the equation xy′′ − (x + n)y′ + ny = 0, where n is a nonnegative integer.

a. Show that y = ex is a solution.

b. Show that y = 1 + x + x2

2! + x3

3! + · · · + xn

n! is a solution.

1.3 INITIAL-VALUE PROBLEMS AND BOUNDARY-VALUE
PROBLEMS

Now suppose that we want to solve a first-order differential equation for y, a function of
the independent variable t, and we specify that one of its integral curves must pass through
a particular point (t0, y0) in the plane. We are imposing the condition y(t0) = y0, which is
called an initial condition, and the problem is then called an initial-value problem (IVP).
Note that we are trying to pin down a particular solution this way. We find this solution by
choosing a specific value of the constant of integration (the parameter).

Next, we will see how to solve a simple initial-value problem.

■ Example 1.3.1 A First-Order Initial-Value Problem
Suppose that an object is moving along the x-axis in such a way that its instantaneous velocity
at time t is given by v(t) = 12 − t2. First, we will find the position x of the object measured
from the origin at any time t > 0.

Because the velocity function is the derivative of the position function, we can set up the
first-order differential equation dx

dt = 12 − t2 to describe our problem.

Simple integration of both sides yields

x(t) =
∫

dx =
∫

dx
dt

dt =
∫

12 − t2dt = 12t − t3

3
+ C.

This last result tells us that the position of the object at an arbitrary time t > 0 can be described
by any member of the one-parameter family 12t − t3

3 + C, which is not a very satisfactory
conclusion. But if we have some additional information, we can find a definite value for C
and end the uncertainty.
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Suppose we know, for example, that the object is located at x = −5 when t = 1. Then we can
use this initial condition to get

−5 = x(1) = 12(1) − 13

3
+ C, or − 5 = 35

3
+ C.

This last equation implies that C = −50
3 , so the position of the object at time t is given by the

particular function x(t) = 12t − t3

3 − 50
3 = 12t − (t3+50)

3 .

We selected the initial condition x(1) = −5 randomly. Any other choice x(t0) = x0 would
have led to a definite value for C and a particular solution of our problem. ■

1.3.1 An Integral Form of an IVP Solution
If a first-order equation can be written in the form y′ = f (x)—that is, if the right-hand side
is a continuous (or piecewise continuous) function of the independent variable alone—then
we can always express the solution to the IVP y′ = f (x), y(x0) = y0 on an interval (a, b) as

y(x) =
x∫

x0

f (t)dt + y0 (1.3.1)

for x in (a, b). Note that we use the x value of the initial condition as the lower limit of
integration and the y value of the initial condition as a particular constant of integration. We
use t as a dummy variable. Given Equation (1.3.1), the Fundamental Theorem of Calculus (FTC)
(Section A.4) implies that y′ = f (x), and we see that y(x0) = ∫ x0

x0
f (t)dt + y0 = 0 + y0 = y0,

which is what we want. This way of handling certain types of IVPs is common in physics
and engineering texts. In Example 1.2.4, the solution of the equation with y(−1) = 2, for
example, is

y(x) =
x∫

−1

t2 − 2t + 7dt + 2

=
(

t3

3
− t2 + 7t

)∣∣∣∣
t=x

−
(

t3

3
− t2 + 7t

)∣∣∣∣
t=−1

+ 2

=
(

x3

3
− x2 + 7x

)
−
(−25

3

)
+ 2 = x3

3
− x2 + 7x + 31

3
.

You should also solve this problem the way we did in Example 1.3.1—that is, without using
a definite integral formula.

1.3.2 Families of Solutions II
Although we have seen examples of first-order equations that have no solution or only one
solution, in general we should expect a first-order differential equation to have an infinite set
of solutions, described by a single parameter.

Extending the discussion in Section 1.2, we state that an nth-order differential equation may
have an n-parameter family of solutions, involving n arbitrary constants C1, C2, C3, . . . , Cn
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(the parameters). For example, a solution of a second-order equation y′′ = g(t, y, y′) may have
two arbitrary constants. By prescribing the initial conditions y(t0) = y0 and y′(t0) = y1, we
can determine specific values for these two constants and obtain a particular solution. Note
that we use the same value, t0, of the independent variable for each condition.

The next example shows how to deal with a second-order IVP.

■ Example 1.3.2 A Second-Order IVP
We will show in Section 4.1 that any solution of the second-order linear equation y′′ + y = 0
has the form y(t) = A cos t+B sin t for arbitrary constants A and B. (You should verify that any
function having the form indicated in the preceding sentence is a solution of the differential
equation.) If a solution of this equation represents the position of a moving object relative to
some fixed location, then the derivative of the solution represents the velocity of the particle
at time t. If we specify, for example, the initial conditions y(0) = 1 and y′(0) = 0, we are
saying that we want the position of the particle when we begin our study to be 1 unit in a
positive direction from the fixed location and we want the velocity to be 0. In other words,
our particle starts out at rest 1 unit (in a positive direction) from the fixed location.

We can use these initial conditions to find a particular solution of the original differential
equation:

1. y(0) = 1 implies that 1 = y(0) = A cos(0) + B sin(0) = A.

2. y′(0) = 0 implies that 0 = y′(0) = −A sin(0) + B cos(0) = B.

Combining the results of (1) and (2), we find the particular solution y(t) = cos t. ■

Definition 1.3.1

Finding the particular solution of the nth degree equation

F
(
t, y, y′, y′′, y′′′, . . . , y(n−1), y(n)

) = 0

such that y(t0) = y0, y′(t0) = y1, y′′(t0) = y2, . . . , and y(n−1)(t0) = yn−1, where y0, y1, . . . , yn−1 are arbitrary

real constants, is called solving an initial-value problem (IVP). The n specified values y(t0) = y0, y′(t0) = y1,

y′′(t0) = y2, . . . , and y(n−1)(t0) = yn−1 are called initial conditions.

Right now we can’t be sure of the circumstances under which we can solve such an
initial-value problem. We will discuss the existence and uniqueness of solutions of single
equations in Section 2.8. Then in Section 4.9 we will consider IVPs for systems of differential
equations.

Boundary-Value Problems
For second- and higher-order differential equations, we can also determine a particular solu-
tion by specifying what are called boundary conditions. The idea here is to give conditions
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that must be satisfied by the solution function and/or its derivatives at two different points of
the domain of the solution.

Definition 1.3.2

A boundary-value problem (BVP) is a problem of determining a solution to a differential equation subject to

conditions on the unknown function specified at two or more values of the independent variable. Such conditions

are called boundary conditions.

The points chosen depend on the nature of the problem we are trying to solve and on the
data we are given about the problem. For example, if you are analyzing the stresses on a
steel girder of length L whose ends are imbedded in concrete, you may want to find y(x),
the bend or “give” at a point x units from one end if a load is placed somewhere on the
beam (Figure 1.2). Note that the domain of y is [0, L]. In this problem it is natural to specify
y(0) = 0 and y(L) = 0, reasonable values at the endpoints, or boundaries, of the solution
interval. Graphically, we are requiring the solution y to pass through the points (0, 0) and
(L, 0). (See Problem C2 in Exercises 1.3 for an applied problem of this type.)

The next example shows that, just as in the case of an initial-value problem, without further
analysis we can’t be sure whether there are solutions of a particular BVP or whether any
solution we find is unique. In general, BVPs are harder to solve than IVPs. Although BVPs
will appear in this book from time to time, we’ll focus most of our attention on initial-value
problems.

As the next example shows, some boundary-value problems have no solution, others have
one solution, and some have (infinitely) many solutions.

■ Example 1.3.3 A BVP Can Have Many, One, or No Solutions
We’ll use the second-order differential equation from Example 1.3.2, y′′ + y = 0, which has
the two-parameter family of solutions y(t) = c1 cos t + c2 sin t.

Now let’s see what happens if we impose the boundary conditions y(0) = 1, y(π) = 1. The
first condition implies that 1 = y(0) = c1 cos(0) + c2 sin(0) = c1, and the second condition
tells us that 1 = y(π) = c1 cos(π) + c2 sin(π) = −c1. Because we can’t have c1 equaling 1 and
−1 at the same time, this contradiction says that the boundary-value problem has no solution.

0 x

Beam

L

y (x)

FIGURE 1.2
A solution y(x) satisfying the boundary conditions y(0) = 0 and y(L) = 0
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On the other hand, the boundary conditions y(0) = 1, y(2π) = 1 lead to a different conclu-
sion. If we use the first condition, we get 1 = y(0) = c1 cos(0) + c2 sin(0) = c1. The second
condition yields the result 1 = y(2π) = c1 cos(2π)+c2 sin(2π) = c1. The fact that we can’t pin
down the value of c2 tells us that any value is all right. In other words, the BVP has infinitely
many solutions of the form y(t) = cos t + c2 sin t.

Finally, if we demand that y(0) = 1 and y(π/4) = 1, we find that 1 = y(0) = c1 cos(0) +
c2 sin(0) = c1 and

1 = y
(π

4

)
= c1 cos(π/4) + c2 sin

(π

4

)
= c1

(√
2

2

)
+ c2

(√
2

2

)

=
√

2
2

+ c2

(√
2

2

)

which implies that c2 = √
2 − 1. Therefore, this BVP has the unique solution y(t) = cos t +

(
√

2 − 1) sin t. ■

You should realize that for a general nth-order equation (or for a system of equations), there are
many possible ways to specify boundary conditions, not always at the endpoints of solution
intervals. The idea is to have a number of conditions that will enable us to solve for (specify)
the appropriate number of arbitrary constants.

The following example shows how boundary conditions occur naturally in the solution of an
interesting problem.

■ Example 1.3.4 A Practical BVP
The Car and Driver magazine website (January 23, 2005) reports that the two-passenger Ferrari
F430 will go from 0 to 60 (mph) in 3.5 seconds. Assuming constant acceleration, we ask how
far the car travels before it reaches 60 mph.

If s(t) denotes the position of the car after t seconds, then we must calculate s(3.5) − s(0), the
total distance covered by the car in the 3.5-second interval. We know the acceleration can be
described as a(t) = d2s

dt2 , which in this problem equals some constant C; and we know that
s(0) = s′(0) = 0—that is, our initial position is considered 0, and the velocity when we first
put our foot on the gas pedal is also 0. The last bit of information we have is that s′(3.5),
the velocity at the end of 3.5 seconds, is 60 mph. Thus, we have a second-order differential
equation d2s

dt2 = C, initial conditions, and some boundary conditions, and we must solve for
the unknown function s(t).

Now the basic rules of integral calculus tell us that when we find the antiderivative of each
side of the differential equation in the last paragraph, we get∫

d2s
dt2 dt =

∫
Cdt = Ct + C1,
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where C1 is a constant of integration. But
∫ d2s

dt2 dt = ds
dt , so ds

dt = Ct + C1. Integrating each side
of this last equation gives us

s(t) = Ct2

2
+ C1t + C2.

Thus, we have an expression for s(t), but it contains three arbitrary constants. Now we can
use the condition s(0) = 0 to write

0 = s(0) = C(0)2

2
+ C1(0) + C2,

which boils down to 0 = C2, so we can say

s(t) = Ct2

2
+ C1t.

Because s′(0) = 0, we can see that 0 = s′(0) = (Ct + C1)|t=0 = C1, and thus s(t) = Ct2

2 .

We still have one unknown constant, C, in our formula, but we know that at the end of
3.5 seconds, the velocity is 60 miles per hour. We have to be careful of our units here. We don’t
want to mix seconds and hours. To make all our units consistent, we’ll convert 3.5 seconds
to 7/7200(= 3.5/3600) of an hour. Then we can claim that 60 = s′(7/7200) = C · (7/7200),
so we have

C = 60(7200)

7
= 61,714.3 (miles/hr2),

s(t) = Ct2

2
= 30,857.2t2,

and

s
(

7
7200

)
= 30,857.2

(
7

7200

)2

= 0.291667 . . . mile ≈ 154 feet.

We have shown that in going from 0 to 60, the 2005 Ferrari F430 will travel approximately
154 feet. ■

General Solutions
If every solution of an nth-order differential equation F

(
x, y, y′, y′′, y′′′, . . . , y(n−1), y(n)

) = 0 on
an interval (a, b) can be obtained from an n-parameter family by choosing appropriate values
for the n constants, we say that the family is the general solution of the differential equation.
In this case, we will need n initial conditions or n boundary conditions (or a combination of
n conditions) to determine the constants.

Sometimes, however, we can’t find every solution somewhere among the members of an
n-parameter family. For example, you should verify that the first-order nonlinear differential
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equation 2xy′ + y2 = 1 has a one-parameter family of solutions given by y = Cx−1
Cx+1 . However,

for all values of x, the constant function y ≡ 1 is also a solution, but it can’t be obtained from
the family by choosing a particular value of the parameter C. Suppose we could find a value
of C such that Cx−1

Cx+1 = 1. Cross-multiplication gives us Cx − 1 = Cx + 1, so that −1 = 1!

Also, y(x) = kx2 is a solution of x2y′′ − 3xy′ + 4y = 0 for any constant k and for all values of
x, but y(x) = x2 ln |x| is also a solution for all x. (Check these claims.) Of course, because the
equation is second-order, we should realize that a one-parameter family can’t be the general
solution.

A solution of an nth-order differential equation that can’t be obtained by picking particular
values of the parameters in an n-parameter family of solutions is called a singular solution.
We’ll see in Chapter 2 that some of these singular solutions are created when we perform
certain algebraic manipulations on differential equations.

1.3.3 Solutions of Systems of Odes
For a system of two equations with unknown functions x(t) and y(t), a solution on an interval
(a, b) consists of a pair of differentiable functions x(t), y(t) satisfying both equations that
make up the system at all points of the interval. Initial conditions are given as x(t0) = x0 and
y(t0) = y0.

■ Example 1.3.5 A System IVP
In Section 4.9, we will see why the only solution of the linear system

dx
dt

= −3x + y

dy
dt

= x − 3y

satisfying the conditions x(0) = 0 and y(0) = 7 is
{
x(t) = 7

2 e−2t − 7
2 e−4t , y(t) = 7

2 e−2t

+ 7
2 e−4t

}
.

Verify that these functions constitute a solution and accept the uniqueness as a fact for
now. ■

You can think of the solution pair in the preceding example as coordinates of a point (x(t), y(t))
in two-dimensional space, R2. As the independent variable t changes, the points trace out a
curve in the x-y plane called a trajectory. The positive direction of the curve is the direction it
takes as t increases. Figure 1.3a shows the curve in the x-y plane corresponding to the system
solution in Example 1.3.5, together with arrows indicating its direction. The initial point
(x(0), y(0)) = (0, 7) is indicated. Looking at the solution formulas for x(t) and y(t), we see
that lim

t→∞ x(t) = 0 = lim
t→∞ y(t), so that the curve tends toward the origin as t increases.

Figure 1.3b shows x plotted against t, and Figure 1.3c shows y plotted against t.
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A very important, dynamical way of looking at the situation in the preceding example is to
think of the curve in Figure 1.3a as the path (or trajectory) of an object or quantity whose
motion or change is governed by the system of differential equations. Initial conditions specify
the behavior (the value, rate of change, and so on) at a single point on the path of the moving
object or changing quantity. The proper graph of the solution of the system in Example 1.3.5
is a space curve, the set of points (t, x(t), y(t)). We’ll see further graphical interpretations of
system solutions in Chapter 4. Boundary conditions also determine certain aspects of the
path of the phenomenon under study.

Similarly, each solution of the nonlinear system

ẋ = −sx + sy

ẏ = −xz + rx − y

ż = xy − bz

where b, r, and s are constants, is an ordered triple (x(t), y(t), z(t)), and initial conditions have
the form x(t0) = x0, y(t0) = y0, and z(t0) = z0. Boundary conditions in this situation can take
various forms. The trajectory in this case is a space curve, a path in three-dimensional space.
The true graph of the solution is the set of points (t, x(t), y(t), z(t)) in four-dimensional space.
These points of view, especially the idea of a trajectory, are very useful, and we’ll follow up
on these concepts in Chapters 4, 5, and 7.

Exercises 1.3

A
1. Consider the equation and solution in Problem A4 in Exercises 1.2. Find the particular solution

that satisfies the initial condition R(π) = 0.
2. Consider the equation and solution in Problem A5 in Exercises 1.2. Find the particular solution

that satisfies the initial conditions y(0) = 1, y′(0) = 0, y′′(0) = 1, and y′′′(0) = 6. [Hint : Use the
initial conditions one at a time, beginning from the left.]

3. Consider the equation and solution in Problem A6 in Exercises 1.2. Find the particular solution
that satisfies the initial condition r(0) = 0. (Your answer should involve only the constants a
and b.)

4. Consider the equation and solution in Problem A8 in Exercises 1.2. Find the particular solution
that satisfies the initial conditions y(0) = 2, y′(0) = 0.

5. Find constants A, B, and C such that 1
8 − 1

4 x + 11
296 e6x + Ax2 + B sin x + C cos x is a solution of the

IVP y′′′ − 6y′′ = 3 − cos x, y(0) = 0, y′(0) = 0, y′′(0) = 1.

B

1. A particle moves along the x-axis so that its velocity at any time t ≥ 0 is given by
v(t) = 1/(t2 + 1). Assuming that the particle is at the origin initially, show that it will never get
past x = π/2.
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2. Show that the functions y1(x) ≡ 0 and y2(x) = (x − x0)3, each defined for −∞ < x < ∞, are both
solutions of the initial-value problem

dy
dx

= 3y2/3, y(x0) = 0.

3. Show that y = ex2∫ x
1 e−t2

dt is a solution of the IVP y′ = 1 + 2xy, y(1) = 0.
4. The differential equation of a family of curves in the x-y plane is given by

y′′′ = −24 cos(πx/2).

a. Find an equation for the family and give the number of parameters involved.
b. Find a member of the family that passes through the points (0, −4) and (1, 0) and that has a

slope of 6 at the point where x = 1.

5. Is it possible for the differential equation corresponding to a three-parameter family of solutions to
be of order four? Explain.

6. Barry leaves his home at noon and drives to his aunt’s house, arriving at 3:20 P.M. He started from
a parked position and steadily increased his speed in such a way that when he reached his aunt’s
house he was driving at 60 miles per hour. (The house had been repainted recently, and Barry
didn’t recognize it.) How far is it from Barry’s home to his aunt’s house?

7. A 727 jet needs to be flying 200 mph to take off. If the plane can accelerate from 0 to 200 mph in
30 seconds, how long must the runway be, assuming constant acceleration?

8. An automobile website reports that a 2008 Mercedes-Benz SLR McLaren will go from 0 to 62
(mph) in 3.8 seconds.

a. Assuming constant acceleration, how far will the car travel before it reaches 60 mph?
b. The car’s “carbon ceramic” brakes are applied when the car is going 62 mph. Assuming

constant deceleration, how long will it take the car to stop if it stops (according to the report)
in 114 feet?

9. a. Show that the functions x(t) = (A + Bt)e3t and y(t) = (3A + B + 3Bt)e3t are solutions of the
system

x′ = y

y′ = −9x + 6y

for all values of the parameters A and B .
b. Find the solution to the system in part (a) with x(0) = 1 and y(0) = 0.

10. Show that the functions x(t) = e−t/10 sin t and y(t) = 1
10 e−t/10(−10 cos t + sin t) are solutions of

the initial value problem

dx
dt

= −y

dy
dt

= (1.01)x − (0.2)y; x(0) = 0, y(0) = −1.
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11. A mathematical model of an idealized company consists of the equations

du
dt

= kau, u(0) = A

dw
dt

= a(1 − k)u, w(0) = 0.

Here u(t) represents the capital invested in the company at time t, w(t) denotes the total dividend
paid to shareholders in the period [0, t], and a and k are constants with 0 ≤ k ≤ 1.

a. Solve the first equation for u(t). (See Example 1.2.1.)

b. Substitute your answer for part (a) in the differential equation for w and integrate to find w(t).
(Distinguish between w(t) for 0 < k ≤ 1 and for k = 0.)

C

1. Let W = W(t) denote your weight on day t of a diet. If you eat C calories per day and your body
burns EW calories per day, where E represents calories per pound, then the equation
dW
dt = k(C − EW) models your change of weight.3 (This equation says that your change of

weight is proportional to the difference between calories eaten and calories burnt off, with
constant of proportionality k.)

a. Show that W = C
E +

(
W0 − C

E

)
e−kEt is a solution of the equation, where W0 = W(0), your

weight at the beginning of the diet.

b. Given the solution in part (a), what happens to W(t) as t → ∞?

c. If W0 = 180 lb, E = 20 cal/lb, and k = 1/3500 lb/cal, then how long will it take to lose 20 lb?
How long for 30 lb? 35 lb? What do your answers seem to say about the process of weight
loss?

2. Solve the equation EI d4y
dx4 = −W

L , with the boundary conditions y(0) = 0, y′(0) = 0; y(L) = 0,
y′(L) = 0. (This problem arises in the analysis of the stresses on a uniform beam of length L and
weight W , both of whose ends are fixed in concrete. The solution y describes the shape of the
beam when a certain type of load is placed on it. Here, E and I are constants, and the product E I
is a constant called the flexural rigidity of the beam.) [Hint : Integrate successively, introducing a
constant of integration at each stage. Then use the boundary conditions to evaluate these
constants of integration.]

3. The logistic equation dy
dt = ky(t)

(
1 − y(t)

M

)
is used to describe the growth of certain kinds of

human and animal populations. Here, k and M denote constants describing characteristics of the
population being modeled.

a. Show that the function y(t) = M
1+Ae−kt satisfies the logistic equation with y(0) = M

1+A .

3 A. C. Segal, “A Linear Diet Model,” College Mathematics Journal 18 (1987): 44–45.
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b. A study of U.S. population data4 indicates that the solution given in part (a) provides a good fit
if M = 387.9802, A = 54.0812, and k = 0.0270347. Using technology, plot the graph of y(t)
using these values of M, A, and k. (Here, t denotes the time in years since 1790, the year of the
first U.S. census.)

c. In 1790, the U.S. population was 3,929,214. In 1980, the figure was 226,545,805; while for 1990,
the population was 248,709,873. By evaluating the function plotted in part (b) at t = 0, 90, and
100, compare the values (in millions) given by y(t) to the actual populations. [Check the official
website of the Bureau of the Census for additional information: www.census.gov.]

d. According to the model with parameters as given in part (b), what happens to the population
of the U.S. as t → ∞?

4. The equations

dT∗
dt

= kV1T0 − δT∗

dV1

dt
= −cV1

are used in modeling HIV-1 infections.5 Here, T∗ = T∗(t) denotes the number of infected cells,
T0 = T(0) is the number of potentially infected cells at the time therapy is begun, V1 = V1(t) is
the concentration of viral particles in plasma, k is the rate of infection, c is the rate constant for
viral particle clearance, and δ is the rate of loss of virus-producing cells.

a. Imitate the analysis shown in Example 1.2.1 and solve the second equation for V1(t),
expressing your solution in terms of V0 = V1(0).

b. Using the solution found in part (a), show that the solution of the differential equation for T∗
can be written as

T∗(t) = T∗(0)e−δt + kT0V0

c − δ
(e−ct − e−δt).

c. What does the solution in part (a) say about the number of infected cells as t → ∞?

5. Consider the linear equation x2y′′ + xy′ − 4y = x3 (∗). Let yGR be the general solution of the
“reduced” (or “complementary”) equation x2y′′ + xy′ − 4y = 0 and let yP be a particular solution
of (∗). Show that yGR + yP is the general solution of (∗). [For this problem, define the general
solution of a second-order ODE as a solution having two arbitrary constants. A particular solution,
of course, has no arbitrary constants.]

4 E. K. Yeargers, R. W. Shonkwiler, and J. V. Herod, An Introduction to the Mathematics of Biology: With Computer Algebra Models (Boston:
Birkhäuser, 1996): 117.
5 A. S. Perelson, A. U. Neumann, M. Markowitz, J. M Leonard, and D. D. Ho, “HIV-1 Dynamics in Vivo: Virion Clearance Rate, Infected Cell
Life-Span, and Viral Generation Time,” Science 271 (1996): 1582–1586.
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SUMMARY

The study of differential equations is as old as the development of calculus by Newton and
Leibniz in the late seventeenth century. Motivation was provided by important questions
about change and motion on earth and in the heavens.

An ordinary differential equation (ODE) is an equation that involves an unknown function,
its independent variable, and one or more of its derivatives:

F
(
x, y, y′, y′′, y′′′, . . . , y(n−1), y(n)

) = 0.

Such an equation can be described in terms of its order, the order of the highest derivative of
the unknown function in the equation.

Differential equations can also be classified as either linear or nonlinear. Linear equations
can be written in the form

an(x)y(n) + an−1(x)y(n−1) + · · · + a2(x)y′′ + a1(x)y′ + a0(x)y = f (x)

where each coefficient function ai(x) depends on x alone and doesn’t involve y or any of
its derivatives. Nonlinear equations usually contain products, quotients, or more elaborate
combinations of the unknown function and its derivatives.

A solution of an ODE is a real-valued function that, when substituted in the equation, makes
the equation valid on some interval. A given nth-order ODE may have no solutions, only one
solution, or infinitely many solutions. An infinite family of solutions may be characterized by n
constants (parameters). These arbitrary constants, if present, may be evaluated by imposing
appropriate initial conditions (usually n of them, involving behavior of the solution at a
single point of its domain) or boundary conditions (at two or more points). Solving a
differential equation with initial conditions is referred to as solving an initial-value problem
(IVP). Solving a differential equation with boundary conditions is referred to as solving a
boundary-value problem (BVP). In general, BVPs are harder to solve than IVPs. The result of
solving either an IVP or a BVP is called a particular solution of the equation or an integral of
the equation. The graph of a particular solution is called an integral curve or solution curve.
In Chapters 2 and 3, we’ll discuss the question of existence and uniqueness for IVPs: Does the
equation or system have a solution that satisfies the initial conditions? If so, is there only one
solution?

If every solution of an nth-order ODE on an interval can be obtained from an n-parameter
family by choosing appropriate values for the n constants, then we say that the fam-
ily is the general solution of the differential equation. In this case we need n initial
conditions or n boundary conditions to determine the constants. However, sometimes
there are singular solutions that can’t be found just by choosing particular values of the
constants.
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Just as high school or college algebra introduces systems of algebraic equations, the study
of certain problems often leads to systems of differential equations. These, in turn, can be
classified as either linear systems or nonlinear systems. We can specify initial or boundary
conditions for systems. Whether we’re considering single equations or systems of equations we
are dealing with dynamical situations—situations in which objects and quantities are moving
and changing. In such a dynamical situation, it is often useful to focus on a trajectory—
for a single equation, a curve made up of points (x(t), x′(t)), where x is a solution; for a
system of two equations, the set of points (x(t), y(t)), where x and y are solutions of the
system.

PROJECT 1-1
Draw Your Own Conclusions
Even before you learn techniques for solving differential equations, you may be able to ana-
lyze equations qualitatively. As an example, look at the nonlinear equation dy

dt = y(1 − y).
You are going to analyze the solutions, y, of this equation without actually finding
them.

In what follows, picture the t-axis running horizontally and the y-axis running vertically.

a. For what values of y is the graph of y as a function of t increasing? For what values of
y is it decreasing?

b. For what values of y is the graph of y concave up? For what values of y is it concave
down? (What information do you need to answer a question about concavity?
Remember that y is an implicit function of t.)

c. Say you are given the initial condition y(0) = 0.5. Use the information found in parts
(a) and (b) to sketch the graph of y. What is the long-term behavior of y(t)? That is,
what is lim

t→∞ y(t)?

d. Say you are given the initial condition y(0) = 1.5. Use the information found in parts
(a) and (b) to sketch the graph of y. What is the long-term behavior of y(t)? That is,
what is lim

t→∞ y(t)?

e. Sketch the graph of y if y(0) = 1. (Look at the original equation.)

f. If y(t) represents the population of some animal species, and if units on the y-axis are
in thousands, interpret the results of parts (c), (d), and (e).



CHAPTER 2

First-Order Differential Equations

INTRODUCTION

The various examples in the preceding chapter should have convinced you that there are
different possible answers to the question of what the solution or solutions to a differential
equation look like. In this chapter, we’ll examine first-order differential equations from both
the analytic and the qualitative point of view.

First, we’ll learn analytic solution techniques for two important types of first-order equa-
tions. For these kinds of equations, we’ll come up with explicit or implicit formulas for
their solution curves. This method of solution is often referred to as integrating a differential
equation.

Next, there is a qualitative way of viewing differential equations. This is a neat geometrical way
of studying the behavior of solutions without actually solving the differential equation. The
idea is to examine certain pictures or graphs derived from differential equations. Although
we can do some of this work by hand, computer algebra systems and many graphing calcu-
lators can produce these graphs, and you’ll be expected to use technology when appropriate.
There are also specialized programs just for doing this sort of thing. (Follow your instructor’s
guidance in using technology.)

After the analytic and qualitative treatments in this chapter, Chapter 3 will focus on some
numerical solution methods concerned with approximating values of solutions. As we’ll
see, both qualitative and numerical methods are necessary, because it is often impossible
to represent the solutions of differential equations—even first-order equations—by formulas
involving elementary functions.1

1 In general, “elementary functions” are finite combinations of integer powers of the independent variable, roots, exponential functions,
logarithmic functions, trigonometric functions, and inverse trigonometric functions.

Copyright © 2009, Elsevier Inc. 27
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2.1 SEPARABLE EQUATIONS
The simplest type of differential equation to solve is one in which the variables are separable.
Formally, a first-order differential equation dy

dx = F(x, y) is called separable if it can be written

in the form dy
dx = f (x)g(y), where f denotes a function of the independent variable x alone and

g denotes a function of the dependent variable y alone. For example, the equation dy
dx = exy2

is separable.

If y(x) is a nonconstant solution of the equation dy
dx = f (x)g(y) and g(y(x)) is nonzero on an

interval (a, b), we can divide both sides of the equation by g(y(x)) (a process called separating
variables) to get

1
g(y(x))

dy
dx

= f (x).

If F(x) is an antiderivative of f (x) and G(y) is an antiderivative of 1
g(y) , we can integrate both

sides of the preceding equation to obtain∫
1

g(y(x))
dy
dx

dx =
∫

1
g(y)

dy =
∫

f (x)dx,

or G(y(x)) = F(x) + C, where the constants of integration associated with G and F have been
combined in the single constant C (note how we have used the Chain Rule in working with
G(y(x))):

d
dx

G(y(x)) = G′(y(x))dy
dx

= 1
g(y(x))

dy
dx

.

There are three things to be careful about: (1) Not every first-order differential equation
is separable; (2) even after you have separated the variables and integrated, it may not be
possible to solve for one variable (say y) in terms of the other (say x); you may have to express
your answer implicitly; (3) you may not be able to carry out the integration(s) in terms of
elementary functions. We’ll see examples of these situations.

Also, note that in a separable equation y′ = f (x)g(y), a solution of g(y) ≡ 0 is also a solution
of the differential equation—possibly a singular solution (see Section 1.2). If g(y) = 0, then
y′ = 0, implying that y is a constant. Conversely, if y(x) = c is a constant solution, then y′ = 0,
which implies that g(y) = 0 because f (x) = 0 is unlikely in a physical problem. This says that
the zeros of g are constant solutions; and, in general, they are the only constant solutions.

The preceding analysis can be refined by considering three cases for a separable differential
equation dy

dx = f (x) g(y): (1) g(y) ≡ 1; (2) f (x) ≡ 1; (3) neither (1) nor (2). In case 1, the

equation takes the simple form dy
dx = f (x). If f (x) is continuous on some interval a < x < b,

then the IVP dy
dx = f (x), y(x0) = y0 has a unique solution on (a, b) given by y(x) = y0 + ∫ x

x0
f (r)dr. [See Equation (1.2.1). The uniqueness of this solution will be discussed in Section 2.8.]
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■ Example 2.1.1 A Separable Equation: Case 1
The initial-value problem dy

dx = −x3 + cos x, y(1)= 1 is a case 1 situation with f (x) = −x3 +
cos x, a continuous function for all real values of x. We can solve the IVP by integrating both
sides of the equation to obtain the general solution and then substituting the initial condition.
Alternatively, we can use the simple solution formula

y(x) = 1 +
∫ x

1
(−r3 + cos r) dr = −x4

4
+ sin x +

(
5
4

− sin 1
)

.

In case 2, we have dy
dx = g(y). We can rewrite the equation as 1

g(y)
dy
dx = 1, or more accurately as

1
g(y(x))

dy
dx = 1. Integrating both sides with respect to x, we get

∫ 1
g(y(x))

dy
dx dx = ∫

1 dx. If we make

the substitution y = y(x), then dy = y′(x) dx = dy
dx dx, and we have

∫ 1
g(y) dy = ∫

1 dx = x + C.
This gives us a solution (possibly implicit) of our case 2 ordinary differential equation (ODE).
Letting G(y) = ∫ 1

g(y) dy, we can express the solution of the ODE in the form G(y) = x + C.
If we are given the initial condition y(x0) = y0, we choose the constant of integration C
so that G(y0) = x0 + C. Finally, if G has an inverse, we can write y(x) = G−1(x + C) =
G−1(x + G(y0) − x0). ■

The next example—so basic, yet so important in many applications—is one we’ve seen before.
Back in Chapter 1, we guessed at the solution and then verified that our guess was correct. Note
that in this example we use the fact that the logarithmic and exponential functions are inverses
of each other.

■ Example 2.1.2 Solving a Separable Equation, Case 2—Example
1.2.1 Revisited

The way the balance B(t) of a bank account grows under continuous compounding demon-
strates the “snowball effect”: The larger the balance at a given time, the more rapid the
growth—that is, the greater the rate of growth. In the language of differential equations,
this becomes dB

dt = rB, where r, the constant of proportionality, is the annual interest rate
(expressed as a decimal). If the initial balance (the principal at t = 0) is positive, we want to
find the balance at time t.

Separating the variables, we can write dB
B = r dt, so that

∫ dB
B = ∫

r dt and ln |B| = rt +C. Then
we exponentiate: eln |B| = ert+C = erteC, or |B| = Kert , where K = eC, a positive constant.
Given that the initial balance was positive, we realize that B must be positive, so that we
can just write B(t) = Kert , with K > 0. Finally, we can bring in the positive initial balance
to write B(0) = Ke0 = K , so that our final formula is B = B(t) = B(0)ert . For example,
if we invest $1000.00 at 4% interest compounded continuously for 6 years, we will have
(1000)e(0.04)6 ≈ $1271.25 in our account. (You should use your calculator or CAS to verify
this.) ■

Of course, there is another way to do the preceding problem, but you have to know the
formula for the balance Bn(t) if you invest P dollars at interest rate r compounded n times a
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year for t years. This formula is

Bn(t) = P
(

1 + r
n

)nt
.

Continuous compounding involves compounding infinitely often, compounding at every
instant of the year. Mathematically, we want

lim
n→∞ Bn(t) = lim

n→∞ P
(

1 + r
n

)nt = P · lim
n→∞

(
1 + r

n

)nt = P ·
{

lim
n→∞

(
1 + r

n

)n}t

= P · {er}t = Pert = B(0)ert .

You may have seen this derivation in calculus class, as well as the fact that if you invest $1.00
for 1 year at 100% interest compounded continuously, you will have $e(≈ $2.72) at the end
of the year.

Case 3— dy
dx = f (x)g(y), where neither f nor g is a constant function—is the most interesting

case. Now we can separate variables to write

1
g(y)

dy
dx

= f (x),
∫

1
g(y(x))

dy
dx

dx =
∫

f (x)dx, and
∫

1
g(y)

dy =
∫

f (x)dx.

The case 3 example that follows adds the use of technology.

■ Example 2.1.3 A Separable Equation and the Graph of a Solution
Suppose that an insect population P shows seasonal growth modeled by the differential
equation dP

dt = kP cos(ωt), where k and ω are positive constants. (The cosine factor suggests
periodic fluctuation.)

You should be able to see that the equation is separable: dP
dt = f (P)g(t), where f (P) = P and

g(t) = k cos(ωt). (We could have stuck the constant k with the factor P, but if we think ahead,
we’ll realize that there’s one less algebraic step if we keep the constant with the cosine term.)
Separating the variables, we get dP

P = k cos(ωt)dt, so that
∫ dP

P = k
∫

cos(ωt)dt, or ln |P| =
k
ω

sin(ωt) + C.

Exponentiating, we see that P(t) = Re
k
ω

sin(ωt), where R > 0. (This is a population problem,
so R > 0 is a realistic assumption.) Letting P0 = P(0) denote the initial insect population, we

have P(t) = P0e
k
ω

sin(ωt) as the solution.

Graphing the solution curve for P0 = 100, k = 2, and ω = π (Figure 2.1), we can see that the
population varies periodically, fluctuating from a minimum value of 100e− 2

π (approximately
53) to a maximum value of 100e

2
π (approximately 189). ■
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FIGURE 2.1
The solution of the IVP dP

dt = 2P cos(πt); P(0) = 100

Sometimes, as the next example shows, it may not be easy to find an explicit solution for a
separable differential equation.

■ Example 2.1.4 A Separable Equation with Implicit Solutions
The equation dy

dx = x2

1+y2 can be written as dy
dx = f (x)g(y), where f (x) = x2 and g(y) = 1

1+y2 .

Separating the variables, we get (1 + y2)dy = x2dx.

Integrating both sides, we find that y + y3

3 = x3

3 + C, or x3

3 −
(
y + y3

3

)
= C. This gives the

solution implicitly. (See Chapter 1, right after Example 1.2.2.) To get an explicit solution, we
must solve this last equation for y in terms of x or for x in terms of y. Either way is acceptable,
although solving for x as a function of y is easier algebraically. But even if we don’t find an
explicit solution, we can plot solution curves for different values of the constant C. (This may
be a good time to find out how to graph implicit functions using your available technology.)
In Figure 2.2 we use (from top to bottom) C = −7, −5, −3, 0, 3, 5, and 7.

y

x

4

2

2 424 22

22

24

FIGURE 2.2

Implicit solutions of dy
dx = x2

1+y2 : the curves x3

3 −
(

y + y3

3

)
= C

C = −7, −5, −3, 0, 3, 5, and 7; −4 ≤ x ≤ 4, −4 ≤ y ≤ 4 ■
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The third concern we mentioned earlier is that you may not be able to integrate one or
both of the sides after you have separated the variables. We will address this problem
next.

■ Example 2.1.5 A Function with No Explicit Integral
The differential equation dy

dt = ey2
t is clearly separable—we can write e−y2

dy = t dt. However,

we can’t carry out the integration
∫
e−y2

dy on the left-hand side because there is no combination

of elementary functions whose derivative is e−y2
. Consequently, we are forced to write the

family of solutions as

∫
e−y2

dy = t2

2
+ C, or 2

∫
e−y2

dy = t2 + K ,

where K = 2C. ■

Integrals of the form
∫ b

a e−y
2
dy have many applications in mathematics and science, especially

in problems dealing with probability and statistics. For instance, the error function erf (x) =
2√
π

∫ x
0 e−y2

dy appears in many applied problems and can be evaluated easily by any CAS.

Dealing with separable equations often requires some algebraic skills and some integration
intuition, although technology can help in tough situations. The next example introduces a
common algebraic problem.

■ Example 2.1.6 Using Partial Fractions
The equation dz

dt + 1 = z2 looks simple enough but requires some algebraic manipulation
to get a neat solution. Separating variables, we get dz

z2−1 = dt. Using the method of par-

tial fractions (see Section A.5), we can write 1
z2−1 as 1

2

(
1

z−1 − 1
z+1

)
, so integration gives us∫ 1

2

(
1

z−1 − 1
z+1

)
dz = ∫

1dt, or 1
2 (ln |z − 1| − ln |z + 1|) = t+C1. Multiplying both sides of this

last equation by 2 and then simplifying the logarithmic expression, we get ln
∣∣∣ z−1

z+1

∣∣∣ = 2t +C2.

Exponentiating, we find that z−1
z+1 = Ke2t . Finally, solving this last equation for z (a bit

tricky—so do it), we conclude that z = 1+Ke2t

1−Ke2t , a one-parameter family of solutions.

Note that in going through the process of separating variables, we divided by z2 −1, implicitly
assuming that this expression was not zero. Going back to this, we see that the constant
function z≡1 corresponds to K = 0 in our one-parameter family, whereas z≡−1 is a singular
solution. (Why?). ■

As simple as separable equations may seem, they have some very important applications. The
calculations and manipulations involved in the next example may seem tedious, but they
should remind you of things you have seen in previous classes. The analysis at the end of the
example should convince you that a graphical approach can be enlightening.
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■ Example 2.1.7 A Model of a Bimolecular Chemical Reaction
Most chemical reactions can be viewed as interactions between two molecules that undergo a
change and result in a new product. The rate of a reaction, therefore, depends on the number
of interactions or collisions, which in turn depends on the concentrations (in moles per liter)
of both types of molecules. Consider the simple (bimolecular) reaction A + B → X, in which
molecules of substance A collide with molecules of substance B to create substance X.

Let’s designate the concentrations at time 0 of A and B by α and β, respectively. We’ll assume
that the concentration of X at the beginning is 0 and that at time t it is x = x(t). The con-
centrations of A and B at time t are, correspondingly, α − x and β − x. Note that α − x > 0
and β − x > 0 (Why?). The rate of formation (the velocity of reaction or reaction rate) is given
by the differential equation dx

dt = k(α − x)(β − x), where k is a positive number called the
velocity constant. The product on the right-hand side of the equation reflects the interactions
or collisions between the two kinds of molecules. We want to determine x(t).

Separating variables and integrating, we get∫
dx

(α − x)(β − x)
=
∫

k dt.

To simplify the integrand 1
(α−x)(β−x) , we use the technique of partial fractions so that we can

write ∫
dx

(α − x)(β − x)
= 1

β − α

∫
dx

α − x
+ 1

α − β

∫
dx

β − x
=
∫

k dt

or

− 1
β − α

ln(α − x) − 1
α − β

ln(β − x) = k t + C,

which simplifies to

1
α − β

ln
(

α − x
β − x

)
= k t + C.

The initial condition x(0) = 0 leads us to conclude that

C = 1
α − β

ln
(

α

β

)
.

Then

1
α − β

ln
(

α − x
β − x

)
= k t + 1

α − β
ln
(

α

β

)
,

so

ln
(

α − x
β − x

)
= (α − β)k t + ln

(
α

β

)
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FIGURE 2.3
Solution of the IVP dx

dt = 0.0006(250 − x)(40 − x); x(0) = 0
0 ≤ t ≤ 35, 0 ≤ x ≤ 40

or
α − x
β − x

= α

β
e(α−β)k t .

A few more algebraic manipulations lead to the solution

x = x(t) = αβ
(
1 − e(α−β)k t

)
β − αe(α−β)k t

. (2.1.1)

Formula (2.1.1) does not seem very informative as far as understanding the nature of the
chemical reaction goes, but Problem B9 of Exercises 2.1 suggests some useful ways of ana-
lyzing the formula. A CAS-generated graph of a solution (Figure 2.3) of the equation with
α = 250, β = 40 and k = 0.0006 is more informative, showing the steady rise in the
concentration of molecule X to what is called an equilibrium value of 40. (We’ll explore the
idea of an equilibrium value in Section 2.6.) The particular solution shown corresponds to
x(0) = 0.

Of course, as we’ve noted previously, the right-hand side of the original differential equation
is positive, so we know ahead of time that the concentration function is increasing. Also, you
can calculate d2x

dt2 from the original differential equation to see why the graph of x is concave
down. Remember that k > 0 and 0 ≤ x < α, 0 ≤ x < β. ■

Exercises 2.1

A

Solve the equations or IVPs in Problems 1–9 by separating variables. Be sure to describe any
singular solutions where appropriate.

1.
dy
dx

= A − 2y
x

, where A is a constant

2.
dy
dx

= −xy
x + 1
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3. y′ = 3 3
√

y2; y(2) = 0

4.
dy
dx

= (y − 1)(y − 2)

x

5. (cot x)y′ + y = 2; y(0) = −1

6. x′ = − sin t cos2 x

cos2 t
; x(0) = 0

7. x2y2y′ + 1 = y

8. xy′ + y = y2; y(1) = 0.5

9. z′ = 10x+z

10. Solve the equation y′ = 1 + x + y2 + xy2. [Hint : Factor cleverly.]
11. Solve the equation (y′)2 + (x + y)y′ + xy = 0. [Hint : Solve this quadratic equation for y′ by

factoring or by using the quadratic formula, and then solve the two resulting differential equations
separately.]

An equation of the form dy/dx = f (ax + by) can be transformed into an equation with separable
variables by making the substitution z = ax + by or z = ax + by + c, where c is an arbitrary
constant. For example, the equation y′ = (y − x)2 is not separable, but the substitution z = y − x
leads to the separable equation z′ + 1 = z2, which was solved as Example 2.1.6. Then substitute
the original variables for z. Use this technique to solve the equations in Problems 12–14.

12. y′ − y = 2x − 3

13. (x + 2y)y′ = 1; y(0) = −1

14. y′ = √
4x + 2y − 1

A homogeneous equation has the form dy/dx = f (x, y), where f (x, y) can be expressed in the
form g(y/x) or g(x/y)—that is, as a function of the quotient y/x or the quotient x/y alone. For

example, by dividing numerator and denominator by x2, we can write the equation dy
dx = 2x2−y2

3xy in

the form dy
dx = 2−(y/x)2

3(y/x) = g
( y

x
)
. Any such equation can be changed into a separable equation by

making the substitution z = y/x (or z = x/y). Making the substitution z = y/x in our example, we

have dy
dx = d

dx (x z)
(Product Rule)= 1 · z + x

(
dz
dx

)
, so that our equation becomes x dz

dx + z = 2−z2

3z or,

separating variables,
(

3z
2−4z2

)
dz = 1

x dx. After integrating, remember to replace z by y/x (or x/y).
Use this technique to solve the equations in Problems 15–18.

15. y′ = x + y
x − y

16. ẋ = t − 3x
3t + x

17. y′ = x
y

+ y
x

18.
dy
dx

= y2 + 2xy − x2

x2 + 2xy − y2
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B

1. Suppose that f is a function such that f (x) = ∫ x
0 f (t)dt for all real numbers x. Show that f (x) ≡ 0.

[Hint : Use the Fundamental Theorem of Calculus to get a differential equation. Then think of an
appropriate initial condition.]

2. Consider the equation ẋ = x2 + x
t

.

a. Find a one-parameter family of solutions.
b. Can you find a solution satisfying the initial condition x(0) = −1? If so, give it. If not, give a

reason.
c. Find a singular solution.

3. a. Solve the initial value problem ẋ = x2, x(1) = 1.
b. If the solution in part (a) is valid over an interval I, how large can I be?
c. Use technology to draw the graph of the solution x(t) found in part (a).
d. Solve the initial value problem ẋ = x2, x(0) = 0.

4. The equation

dQ
dP

= − cQ
1 + cP

is one model used to estimate the cost of national health insurance,2 where Q(P) represents the
quantity of health services performed at price P, P represents the proportion of the total cost of
health services that an individual pays directly (“out of pocket expenses,” or coinsurance), and c is
a constant.

a. Solve the equation for Q.
b. If Q(0)/Q(1) is approximately 2, what is the value of c?
c. Using the value of c found in part (b), determine Q(0.20) in terms of Q(0). What does your

answer tell you about the effect of a 20% coinsurance (versus no coinsurance)?

5. A quantity y varies in such a way that dy
dt = − ln 2

30 (y − 20). If y = 60 when t = 30, find the value of
t for which y = 40.

6. In analyzing the change in the percentage of red blood cells in a hospital patient undergoing
surgery, the following equation has been used3

dH
dVL

= − H
EBV

,

where H denotes the hematocrit (percentage of red blood cells in the total volume of blood), VL

represents the volume of blood loss, and EBV is the patient’s estimated total blood volume.

a. Solve the differential equation for H.

2 A. J. Kroopnick, “Estimating the Cost of National Health Insurance Using Three Simple Models,” Math. and Comp. Ed. 30 (1996): 267–271.
3 M. E. Brecher and M. Rosenfeld, “Mathematical and Computer Modeling of Acute Normovolemic Hemodilution,” Transfusion 34 (1994):
176–179. Also see “Calculus in the Operating Room” by P. Toy and S. Wagon, Amer. Math. Monthly 102 (1995): 101.
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b. If the patient’s total blood volume of 5 liters is maintained throughout surgery via the injection
of saline solution, and the initial value of H is 0.40, what is the patient’s volume of red blood
cells at the end of the operation?

7. The volume V of water in a particular container is related to the depth h of the water by the
equation dV

dh = 16
√

4 − (h − 2)2. If V = 0 when h = 0, find V when h = 4.

8. The slope m of a curve is 0 where the curve crosses the y-axis, and dm
dx =

√
1 + m2. Find m as a

function of x.
9. Consider Formula (2.1.1), the solution to Example 2.1.7.

a. If α > β, factor e(α−β)kt from the numerator and denominator and show that x(t) → β as
t → ∞.

b. If α < β, explain what happens to e(α−β)k t as t → ∞ and show that x(t) → α as t → ∞.

10. Solve the initial value problem dQ
dt = Q3+2Q

t2+3t
, Q(1) = 1 explicitly for Q(t) and state the interval for

which the solution is valid.

C

1. A police department forensics expert checks a gun by firing a bullet into a bale of cotton. The
friction force resulting from the passage of the bullet through the cotton causes the bullet to slow
down at a rate proportional to the square root of its velocity. It stopped in 0.1 second and
penetrated 10 feet into the bale of cotton. How fast was the bullet going when it hit the bale?

2. The relationship between the velocity v of a rifle bullet and the distance L traveled by it in the
barrel of the gun is established in ballistics by the equation v = aLn

b+Ln , where v = dL
dt and n < 1.

Find the relationship between the time t during which the bullet moves in the barrel and the
distance L covered.

3. In trying to determine the shape of a flexible nonstretching cable suspended between two points
A and B of equal height, we can analyze the forces acting on the cable and get the differential
equation

d2y

dx2 = k

[
1 +

(
dy
dx

)2
]1/2

,

where k > 0 is a constant.

a. Use the substitution p(x) = dy/dx to reduce the second-order equation to a separable
first-order equation.

b. Express the general solution of the equation in terms of exponential functions. (You may need
a table of integrals here. Your CAS may evaluate the more difficult integral in an awkward way.)

4. When the drug Theophyllin is administered for asthma, a concentration in the blood below
5 mg/liter of blood has little effect, while undesirable side effects appear if the concentration
exceeds 20 mg/liter. Suppose a dose corresponding to 14 mg/liter of blood is administered
initially. The concentration satisfies the differential equation dC

dt = −C
6 , where the time t is

measured in hours.
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a. Find the concentration at time t.
b. Show that a second injection will need to be given after about 6 hours to prevent the

concentration becoming ineffective.
c. Given that the second injection also increases the concentration by 14 mg/liter, how long is it

before another injection is necessary?
d. What is the shortest safe time that a second injection may be given so that side effects do not

occur?
e. Sketch graphs of the situations in parts (b), (c), and (d).

5. One method of administering a drug is to feed it continuously into the bloodstream by a process
called intravenous infusion. This process may be modeled by the separable (and linear)
differential equation dC

dt = −μC + D, where C is the concentration in the blood at time t, μ is a
positive constant , and D is also a positive constant, the rate at which the drug is administered.

a. Find the equilibrium solution of the differential equation, the solution such that dC
dt = 0.

b. Given C = C0 when t = 0, find the concentration at time t. What limit does the concentration
approach as t → ∞? Compare with your answer to part (a).

c. Sketch the graph of a typical solution.

6. Let dP
dt = P(1 − P).

a. Find all solutions by separating variables. (You will have to integrate by using partial fractions.)
b. Let P(0) = P0. Suppose 0 < P0 < 1. What happens to P(t) as t → ∞?
c. Let P(0) = P0. Suppose P0 > 1. What happens to P(t) as t → ∞?

2.2 LINEAR EQUATIONS
We introduced the idea of a linear differential equation in Section 1.1. Now let’s see what we
can do when the order of the differential equation is 1.

Definition 2.2.1

A linear first-order differential equation is an equation of the form

a1(x)
dy
dx

+ a0(x)y = f (x),

where a1, a0, and f are functions of the independent variable alone.

After dividing through by a1(x)—being careful to note where this function is zero—we can
write the equation in the standard form

dy
dx

+ P(x)y = Q(x), (2.2.1)

where P and Q are functions of x alone. In this standard form, if the function Q(x) is the zero
function, we call Equation (2.2.1) homogeneous. Otherwise, we say that the equation is
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nonhomogeneous. (Don’t confuse this terminology with the use of the term homogeneous as
explained before Problems A15–A18 in Exercises 2.1.) In certain applied problems, Q(x) 	=
0 may be referred to as the forcing term, the driving term, or the input, as we’ll see in
Example 2.2.5, for instance. The solution y can be called the output.

For example, dy
dx + sin(x)y = e−x is linear with P(x) = sin x and Q(x) = e−x. The equation

x dy
dx + y2 = 0 is not linear, because even when we divide by x (assuming that x is nonzero),

we get dy
dx + ( y

x

)
y = 0. The function Q(x) can be taken as Q(x) ≡ 0, but the coefficient of y, y

x ,
is not a function of x alone.

However, even the complicated-looking equation 2tz3 + 3t2z2 dz
dt = t5z2 can be made linear.

Just divide by 3t2z2 to get dz
dt + ( 2

3t

)
z = 1

3 t3, so that P(t) = 2
3t and Q(t) = 1

3 t3. Of course, we
must consider the cases t = 0 and z ≡ 0 separately.

2.2.1 The Superposition Principle
In some applications, it is useful to think of a linear first-order equation in terms of an
operator, or transformation, L, that changes a differentiable function y into the left-hand
side of Equation (2.2.1): L(y) = dy

dx + P(x)y. Then Equation (2.2.1) can be expressed simply
as L(y) = Q(x). For example, if the nonhomogeneous linear equation in standard form is
dy
dx − y = x, then we have the operator L defined as L(y) = dy

dx − y. If y(x) = x2, for instance,

then L(y) = 2x − x2. A solution y of the differential equation dy
dx − y = x would have to satisfy

L(y) = x. (We can see that y = x2 is not a solution.)

In this general context, suppose y1 is a solution of L(y) = Q1(x), y2 is a solution of L(y) =
Q2(x), and c1, c2 are arbitrary constants. Then c1y1 + c2y2 is called a linear combination of
y1 and y2, and we have

L(c1y1 + c2y2) = d
dx

(c1y1 + c2y2) + P(x)
(
c1y1 + c2y2

)
= c1

d
dx

y1 + c2
d
dx

y2 + c1P(x)y1 + c2P(x)y2

= c1

(
d
dx

y1 + P(x)y1

)
+ c2

(
d
dx

y2 + P(x)y2

)
= c1Q1 + c2Q2 = c1L(y1) + c2L(y2).

Any operator that satisfies the condition L(c1y1 + c2y2) = c1L(y1) + c2L(y2) is called a linear
operator. Otherwise, it is called nonlinear. We can describe this situation by saying that
adding two inputs (Q1 and Q2) of a linear equation gives us an output that is the sum
(y1 + y2) of the individual outputs.

The general form of this last observation is called the Superposition Principle and, as we
will see later, it applies to linear equations of any order. In particular, when f (x) ≡ 0, we see
that any linear combination of solutions to a homogeneous linear equation is also a solution.
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SUPERPOSITION PRINCIPLE FOR HOMOGENEOUS EQUATIONS
Suppose y1 and y2 are solutions of the homogeneous linear first-order differential equation

a1(x)
dy
dx

+ a0(x)y = 0

on an interval (a, b). Then the linear combination c1y1(x) + c2y2(x), where c1 and c2 are arbitrary
constants, is also a solution on this interval.

The next two examples should clarify the difference between linear and nonlinear operators.

■ Example 2.2.1 A Linear Operator
We can check that y1 = e−x is a solution of the homogeneous linear equation L(y) = y′ + y =
0 = Q1 and that y2 = sin x is a solution of L(y) = y′ + y = cos x + sin x = Q2. (Note: The
same left-hand side but different right-hand sides.) You should see that y1 + y2 = e−x + sin x
is a solution of the equation y′ + y = Q1 + Q2 = 0 + cos x + sin x = cos x + sin x—that is,
that L(y1 + y2) = Q1 + Q2 = L(y1) + L(y2). ■

However, not every operator defined by a first-order equation is linear.

■ Example 2.2.2 A Nonlinear Operator
Now consider the operator defined as T(y) = xy′ + y2 and suppose that T(y1) = 0 and
T(y2) = 0. Then

T
(
y1 + y2

) = x
(
y1 + y2

)′ + (
y1 + y2

)2

= xy′
1 + xy′

2 + y2
1 + y2

2 + 2y1y2

=
T(y1)︷ ︸︸ ︷(

xy′
1 + y2

1
)+

T(y2)︷ ︸︸ ︷(
xy′

2 + y2
2
)+2y1y2

= 0 + 0 + 2y1y2 = 2y1y2 	= T
(
y1
) + T

(
y2
)

.

The equation T(y) = xy′ + y2 = 0 is nonlinear, and the operator T is not a linear operator. ■

2.2.2 The Integrating Factor
Note that if the equation dy

dx + P(x)y = Q(x) is homogeneous, then the equation is separable.
(Do you see why?) Clearly, the more interesting problems are those for which Q(x) is not
the zero function. In addition to their applicability to significant problems, linear first-order
equations are nice because you can always solve them explicitly and find the general solution.
This is done by a clever technique, the use of something called an integrating factor—a
special multiplier function that has been used to solve first-order linear equations since the
late 1600s.
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We will demonstrate the method in the next example, at the same time explaining its
effectiveness.

■ Example 2.2.3 Using an Integrating Factor
Suppose we want to solve the linear nonhomogeneous equation y′ +xy = 2x. One way would
be to reach into our sleeve and pluck out the magic function μ(x) = ex2/2, an integrating factor
for this equation. Now we get an equivalent differential equation by multiplying each side of
the original equation by μ(x):

ex2/2y′ + xex2/2y = 2xex2/2.

“Why would we do such a crazy thing?” you’re probably asking yourself. Well, just notice that

if we assume that y = y(x), an implicit function of x, the Product Rule gives us
(
ex2/2y

)′=
xex2/2y + ex2/2y′, the left-hand side of our new differential equation. This observation tells us
that the left side is an exact derivative and enables us to write the differential equation in a

more compact form:
(
ex2/2y

)′ = 2xex2/2. (Be sure that you see this.) Now we can integrate each

side with respect to x to get ex2/2y = ∫
2xex2/2dx = 2ex2/2 + C. Solving for y by multiplying

each side of this last equation by e−x2/2, we get y(x) = 2 + Ce−x2/2, valid for −∞ < x < ∞.

We see from the closed-form solution that all solutions approach 2 as x → ±∞: If y(x) is any
solution of the differential equation y′ + xy = 2x, then lim

x→∞ y(x) = 2 = lim
x→−∞ y(x). Figure 2.4

shows five solutions of this linear equation.

From top to bottom, the five particular solutions plotted correspond to C = 4, 2, 0, −2, and
−4, respectively. The choice C = 0 gives us the asymptotic solution y ≡ 2.

Finally, you may have recognized that our original equation is actually a separable equation.
You should solve by separating variables and then compare your solution to the one we have
given.

6
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2 4 6

22

222426

y

x

FIGURE 2.4
Solutions of the IVP y′ + xy = 2x; y(0) = −2, 0, 2, 4, and 6
−6 ≤ x ≤ 6, −2 ≤ y ≤ 6 ■
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Rationale
Now let’s step back and look at this integrating-factor technique in more generality. Suppose
we have written a linear first-order differential equation in the standard form dy

dx + P(x)y =
Q(x). Let’s take P(x), the coefficient of y in the equation, and form the new function μ(x) =
e
∫

P(x)dx. (Note that in Example 2.2.3, P(x) = x and e
∫

P(x)dx = e
∫

x dx = ex2/2+K , where we
chose K = 0 for convenience.) The Chain Rule and the Fundamental Theorem of Calculus tell
us that

d
dx

(
e
∫

P(x)dx
)

= e
∫

P(x)dx · d
dx

(∫
P(x)dx

)
= e

∫
P(x)dxP(x).

Then, if we multiply each side of the standard form equation by μ(x) = e
∫
P(x)dx, we have

e
∫

P(x)dx dy
dx

+ e
∫

P(x)dxP(x)y = e
∫

P(x)dxQ(x)

and we can rewrite the last line as

d
dx

(
e
∫

P(x)dxy
)

= e
∫

P(x)dxQ(x).

If we integrate both sides of this equation, we get

e
∫

P(x)dxy =
∫

e
∫

P(x)dxQ(x)dx + C

so we can multiply each side by e−∫
P(x)dx to find that

y = e− ∫
P(x)dx ·

∫
e
∫

P(x)dxQ(x)dx + Ce− ∫
P(x)dx. (2.2.2)

This is an explicit formula for the general solution of any first-order linear differential equation
in standard form. Even if the integrals involved can’t be evaluated in closed form, they can
still be approximated by numerical methods usually learned in a calculus course. (Try out
the formula on Example 2.2.3.) Do not bother memorizing this formula. Just remember that
any linear first-order equation has an explicit general solution and understand how to find the
appropriate integrating factor.

Technically, there is an infinite family of integrating factors for a given linear equation (so
we should say an integrating factor, rather than the integrating factor), but we can always
take the family member with K = 0: If R(x) is an antiderivative of P(x) (so that R′(x) = P(x)),
then μ(x) = e

∫
P(x)dx = eR(x)+K = eR(x)eK , and μ(x) dy

dx + μ(x) P(x)y = μ(x)Q(x) has the form

eK
{
eR(x) dy

dx + eR(x)P(x)y
}

= eK
{
eR(x)Q(x)

}
. Because eK is always positive, we can cancel it out

in the last equation to get d
dx

(
eR(x)y

) = eR(x)Q(x), and we can continue to the solution as
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before. The constant K disappears and plays no part in the final stage of the solution, so we
can take its value to be 0 from the very beginning.

Now that we know how to choose an integrating factor and find an explicit solution, let’s
practice.

■ Example 2.2.4 Using an Integrating Factor
Let’s try the integrating-factor technique on the linear equation x dy

dx − 2y = x3e−2x. The

standard form of the equation is dy
dx −(2

x

)
y = x2e−2x. Our integrating factor is μ(x) = e

∫− 2
x dx =

e−2 ln |x| = x−2.

Multiplying both sides of the equation in standard form by this factor, we get x−2 dy
dx −2x−3y =

e−2x. Recognizing the left side as the derivative of the product μ(x)y = x−2y, we can write the
differential equation as d

dx

(
x−2y

) = e−2x.

Integrating both sides, we find that x−2y = ∫
e−2xdx = −1

2 e−2x + C. Now we can solve for y
and see that y = −1

2 x2e−2x + Cx2. ■

The next example, an important application of linear differential equations to electrical
network theory, shows that the details of using an integrating factor may get messy.

■ Example 2.2.5 A Circuit Problem
As a consequence of one of Kirchhoff ’s laws in physics, suppose we know that the current
I flowing in a particular electrical circuit satisfies the first-order linear differential equation
L dI

dt +RI = v0 sin(ωt), where L, R, v0, and ω are positive constants that give information about
the circuit. (See Problems B9–B11 of Exercises 2.2 for related problems.) Let’s try to find the
current I(t) at time t, for t > 0, given that I(0) = 0. This initial condition says that at the
beginning of our analysis (t = 0), there is no current flowing in the circuit.

First, we divide both sides of the differential equation by L to get our equation in standard
form: dI

dt + (R
L

)
I = ( v0

L

)
sin(ωt). Now, in terms of the standard form [Equation (2.2.1)], we

make the identifications P(t) ≡ R/L, a constant function, and Q(t) = (v0/L) sin(ωt). In this
problem, the forcing term Q(t) represents an (alternating) electromotive force supplied by a
generator. Next, we compute the integrating factor

μ(t) = e
∫

P(t)dt = e
∫ R

L dt = e
R
L t .

Multiplying each side of the equation in standard form by μ(t), we get

e
R
L t dI

dt
+ e

R
L t
(

R
L

)
I =

(v0

L

)
e

R
L t sin(ωt), or

d
dt

(
e

R
L t I

)
=
(v0

L

)
e

R
L t sin(ωt).

Integrating each side yields e
R
L t I = ( v0

L

) ∫
e

R
L t sin(ωt) dt.
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To evaluate this last integral, we have three choices: (1) integrate by parts twice, (2) use a table
of integrals, or (3) submit the integral to a computer algebra system capable of integration.
In any case, we get

e
R
L t I =

(v0

L

)⎡⎣Re
R
L t sin(ωt)

L
(

R2

L2 + ω2
) − ωe

R
L t cos(ωt)(
R2

L2 + ω2
)
⎤
⎦ + C

=
(v0

L

) e
R
L t(

R2

L2 + ω2
) ·

[
R
L

sin(ωt) − ω cos(ωt)
]

+ C.

To find the general solution, we multiply each side of this last equation by e− R
L t to get

I(t) =
(v0

L

)
(

R2

L2 + ω2
) ·

[
R
L

sin(ωt) − ω cos(ωt)
]

+ Ce− R
L t .

Now we use the initial condition I(0) = 0:

0 = I(0) =
(v0

L

)
(

R2

L2 + ω2

) ·
[

R
L

sin(ω · 0) − ω cos(ω · 0)

]
+ Ce0

=
−ω

(v0

L

)
(

R2

L2 + ω2

) + C

so that C =
ω
(v0

L

)
(

R2

L2 + ω2

) , and we have (finally!)

I(t) =
(v0

L

)
(

R2

L2 + ω2

) ·
[

R
L

sin(ωt) − ω cos(ωt)
]

+ ω
( v0

L

)(
R2

L2 + ω2
)e− R

L t

=
( v0

L

)(
R2

L2 + ω2
) ·

[
R
L

sin(ωt) − ω cos(ωt) + ωe− R
L t
]

.

■
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In the preceding example, we call the term ωe− R
L t (or its constant multiple) in the formula

for I(t) a transient term because it eventually goes to 0. “Eventually” means as t → ∞. The
trigonometric terms make up the steady-state part of the solution and have the same period
as the original forcing term. (Can you see that this last claim is true?)

Exercises 2.2
A

For Problems 1–18, solve each equation or initial value problem.

1. y′ + 2y = 4x

2. y′ + 2xy = xe−x2

3. ẋ + 2tx = t3

4. y′ + y = cos x

5. ty′ = −3y + t3 − t2

6.
dx
ds

= x
s

− s2

7. y = x(y′ − x cos x)

8. (1 + x2)y′ − 2xy = (1 + x2)2

9. t(x′ − x) = (1 + t2)et

10. Q′ − (tan t)Q = sec t; Q(0) = 0

11. xy′ + y − ex = 0; y(a) = b [a and b are constants.]
12. (xy′ − 1) ln x = 2y

13. y′ + ay = emx [Consider two cases: m 	= −a and m = −a.]
14. y′ +

(
1 − 2x

x2

)
y = 1

15. tx′ −
(

x
t + 1

)
= t; x(1) = 0

16. y = (2x + y3)y′ [Hint : Think of y as the independent variable, x as the dependent variable, and
rewrite the equation in terms of dx/dy.]

17. x(ey − y′) = 2 [Use the hint from Problem 16.]

18. y(x) = ∫ x
0 y(t)dt + x + 1 [Use the Fundamental Theorem of Calculus to get an ODE.]

B

An equation of the form y′ + a(x)y = b(x)yn is called a Bernoulli equation (named for Jakob
Bernoulli, 1654–1705, one of a family of noted Swiss scientists/mathematicians). Notice that
if n = 0 or n = 1, we just have a linear equation. Now if n is not equal to 0 or 1 and we
divide both sides of the equation by yn, we can let z = y1−n and get a linear equation in the
variable z. We solve the linear equation for z in terms of x and then return to the original
variables x and y. This substitution method was found by Leibniz in 1696. For example,
y′ − y = xy2 is a Bernoulli equation with a(x) ≡ −1, b(x) = x, and n = 2. Divide by y2 and the
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equation becomes y−2 y′ − y−1 = x. Letting z = y−1, we get the linear equation −z′ − z = x,
or z′ + z = −x. Solving for z, we find that z = 1 − x + ce−x. Since z = y−1, we conclude that
y = (

1 − x + ce−x
)−1. Note that we divided by y2 and that y ≡ 0 is a singular solution. Find

all solutions of each Bernoulli equation in Problems 1–6.

1. y′ = 4
t

y − 6ty2

2. ẋ = 1
t

x + √
x

3.
dy
dx

+ y = xy3

4. y′ + xy = √
y

5. y′ = 2ty + ty2

6. y′ = x3y2 + xy [Hint : Consider x as the dependent variable.]

7. In trying to regulate fishing in the oceans, international commissions have been set up to
implement controls. To understand the effect of such controls, mathematical models of fish
populations have been constructed. One stage in this modeling effort involves predicting the
growth of an individual fish. The von Bertalanffy growth model is reflected in the Bernoulli
equation (see above):

dW
dt

= αW2/3 − βW ,

where W = W(t) denotes the weight of a fish and α, β are positive constants.

a. Find the general solution of the equation.
b. Calculate W∞ = lim

t→∞ W(t), the limiting weight of the fish.

c. Using the answer to part (b) and the initial condition W(0) = 0, write the formula for W(t) free
of any arbitrary constants.

d. Sketch a graph of W against t.

8. Show that if a linear first-order differential equation is homogeneous, then the equation is
separable.

9. When a switch is closed in a circuit containing a resistance R, an inductance L, and a battery that
supplies a constant voltage E, the current I builds up at a rate described by the equation
L dI

dt + RI = E. [In Example 2.2.5, the electromotive force on the right-hand side of the equation is
not constant. Instead of a battery, there is a generator supplying an alternating voltage equal to
(v0/L) sin(ωt).]

a. Find the current I as a function of time.
b. Evaluate lim

t→∞ I(t).

c. How long will I take to reach one-half its “final” value?
d. Find I if I0 = I(0) = E/R.

10. In an electrical circuit, when a capacitor of capacitance C is being charged through a resistance R
by a battery which supplies a constant voltage E, the instantaneous charge Q on the capacitor
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satisfies the differential equation

R
dQ
dt

+ Q
C

= E.

a. Find Q as a function of time if the capacitor is initially uncharged—that is, if Q0 = Q(0) = 0.

b. How long will it be before the charge on the capacitor is one-half its “final” value?

11. In Problem 10, determine Q if Q0 = 0 and if the battery is replaced by a generator that supplies an
alternating voltage equal to E0 sin(ωt).

12. In analyzing the effect of advertising on the sales of a product, we can extract the following model
from work done by the economists Vidale and Wolf 4:

dS
dt

+
(

rA
M

+ λ

)
S = rA.

Here, S = S(t) denotes sales, A = A(t) indicates the amount of advertising, M is the saturation
level of the product (the practical limit of sales that can be generated), and r and λ are positive
constants. Clearly, the solution of this linear equation depends on the form of the advertising
function A.

a. Solve the equation if A is constant over a particular time interval and zero after this:

A(t) =
{

A for 0 < t < T

0 for t > T .

(You really have to solve two equations and then combine the solutions appropriately.)

b. Sketch a typical graph of S against t. (Choose reasonable values for any constants in your
solution.)

13. In the study of population genetics, biological units called genes determine what characteristics
living things inherit from their parents. Suppose we look at a gene with two “flavors” A and a that
occur in the proportions p(t) and q(t) = 1 − p(t), respectively, at time t in a particular population.
Suppose that we have the relation dp

dt = ν − (μ + ν)p, where μ is a constant describing a “forward
mutation rate” and ν is another constant representing the “backward mutation rate.”

a. Determine p(t) and q(t) in terms of p(0), q(0), μ, and ν.

b. Show that lim
t→∞ p(t) = ν/(μ + ν) and lim

t→∞ q(t) = μ/(μ + ν). These are called the equilibrium

gene frequencies.

14. If V = V(t) represents the value of a bond at time t, r(t) is the interest rate, and K(t) is the coupon
payment, then dV

dt + K(t) = r(t)V describes the value of the bond at a time before maturity.

4 M. L. Vidale and H. B. Wolfe, “Response of Sales to Advertising,” in Mathematical Models in Marketing, ed. Robert G. Murdick (Scranton, PA:
Intext Educational Publishers, 1971): 249–256.
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a. If T is the time of the bond’s maturity and V(T) = Z, show that

V(t) = e− ∫ T
t r(x)dx

(
Z +

∫ T

t
K(u)e

∫ T
u r(x)dxdu

)
.

b. What does V(t) look like if you have a zero-coupon bond—that is, if K(t) ≡ 0?

C

1. Prove that any Bernoulli differential equation y′ + a(x)y = b(x)yn, where n 	= 0, 1, can be converted
into a linear equation by the special substitution y = u1/(1−n). (See the paragraph at the
beginning of the B exercises.)

2. A disease has spread throughout a community. The number of infected individuals I in the
community at any time t > 0 is given by dI

dt − k(P0 + rt)I = −kI2, where I(0) = I0, P0 is the
population of the community at t = 0, r is the constant growth rate of the community, and k is a
constant. Show that

I = ekP0t+(1/2)krt2
[

1
I0

+ k
∫ t

0
ekP0u+(1/2)kru2

du
]−1

.

[Hint : The differential equation is a Bernoulli equation, as discussed in Problem C1.]
3. Suppose you have a linear first-order differential equation in the standard form dy

dx + P(x)y = Q(x),
where Q(x) is not the zero function.

a. Looking at the general solution given by Equation (2.2.2), show that the term Ce− ∫
P(x)dx is the

general solution, yGH, of the homogeneous equation you get by setting Q(x) ≡ 0.
b. Show that the term e− ∫

P(x)dx · ∫e
∫
P(x)dxQ(x)dx is a particular solution, yPNH, of the original

nonhomogeneous equation. (Thus, we can express the general solution, yGNH, of the
nonhomogeneous equation as follows: yGNH = yGH + yPNH.) (See Problem C5 of Exercises 1.3.)

c.. Examine the result of part (b) in light of the Superposition Principle.

2.3 COMPARTMENT PROBLEMS
In analyzing certain systems in biology and chemical engineering, researchers encounter a
class of problems called mixing problems or compartment problems.

Suppose we have a single container, or compartment, containing some substance. Now think
of some other substance entering the compartment at a certain rate, and imagine that a
mixture of the two substances leaves the compartment at another rate. For example, we could
be talking about a tank of water into which some chemical is introduced via a pipe. What
emerges from the tank through another pipe will be a mixture of the water and the chemical.
In biology and physiology, the compartment may be the bloodstream or a particular organ,
such as the kidneys. In fact, mathematical analyses in these research fields often regard the
organism under study as a whole collection of individual components (compartments). In
the human body, these could be different organs or groups of cells, for example.
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FIGURE 2.5
A one-compartment model

To get our bearings, we can start with a simple one-compartment model (Figure 2.5).

We have a single tank with a certain amount of material in it. The amount of substance (or
the concentration of the substance) that is added to the tank is called the inflow, and the
amount (or concentration) of substance leaving the tank is called the outflow. We assume
that there is a thorough mixing process taking place in the tank—an almost instantaneous
uniform blending of the two substances. To model this process using a differential equation,
it is important to focus on three different rates associated with this situation: (1) the rate of
inflow, (2) the net rate at which some aspect of the mixture in the tank is changing, and (3)
the rate of outflow of the mixture.

The basic principle we will use in solving compartment problems is the Balance Law (or
Balance Equation):

Net Rate of Change = Rate of Inflow − Rate of Outflow. (2.3.1)

As our first example, let’s look at a simple model of medicine in the bloodstream.

■ Example 2.3.1 Medicine in the Bloodstream
Intravenous infusion is the process of administering a substance into the veins at a steady rate.
(See Problem C5 of Exercises 2.1.) Suppose a patient in a hospital is receiving medication
through an intravenous tube that drips the substance into the bloodstream at a constant rate
of I milligrams (mg) per minute. Also suppose that the medication is dispersed through the
body and eliminated at a rate proportional to the concentration of the medication at the time.
In this problem, concentration is defined to be

Quantity of medication
Volume of blood plus medication

,

where we assume that the volume V of blood plus medication remains constant. The problem
is to find the concentration of the medication in the body at any time t. To do this, we can
consider the bloodstream as a single compartment and examine a differential equation that
models the process.
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If we let C = C(t) denote the concentration of the medication at time t (in mg/cm3), then
the Balance Law (2.3.1) leads us to the relation

V
dC
dt

= I − kC,

where k is a positive constant of proportionality that depends on the specific medication and
the physiological characteristics of the patient.

Note that the left-hand side of the differential equation is in units of cm3×
mg

cm3
min = mg

min and
that the right-hand term I is also in mg/min. Because C is expressed in units of mg

cm3 , we see
that the appropriate unit for k, representing a removal rate, must be cm3/min. (Be sure that
you understand this “dimensional analysis.”)

This is a linear equation that we can write in the standard form

dC
dt

+
(

k
V

)
C = I

V
.

An integrating factor for this equation is μ = e
∫ kt

V dt = e
k t
V . Multiplying each side of this last

differential equation by μ gives us

e
k t
V

dC
dt

+ k
V

e
k t
V C =

(
I
V

)
e

k t
V

or
d
dt

(
e

k t
V C

)
=
(

I
V

)
e

k t
V ,

so that integrating each side gives us

e
k t
V C =

∫ (
I
V

)
e

k t
V dt

and

C(t) = e− k t
V

∫ (
I
V

)
e

k t
V dt = e− k t

V

[
V
k

(
I
V

)
e

k t
V + α

]
= I

k
+ αe− k t

V .

Using the implied initial condition C(0) = 0, we find that α = − I
k , so that we can write our

solution as

C(t) = I
k

− I
k

e− k t
V = I

k

(
1 − e− k t

V

)
.

Note what happens as time goes by. Analytically, lim
t→∞ C(t) = I

k . This says that the concentra-

tion of medication in the patient’s body reaches a threshold, or saturation level, of I
k . Figure 2.6
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FIGURE 2.6
C(t) = 20

(
1 − e−0.2t) , 0 ≤ t ≤ 30, 0 ≤ C ≤ 20

is a graph of the concentration when I = 4, V = 1, and k = 0.2, showing a saturation level
of 20 mg/cm3.

■

In compartment model problems, it is often important to determine how long it may take for
a certain result to occur.

■ Example 2.3.2 Air Pollution
By 10:00 P.M. on a lively Friday night, a club of dimensions 30 feet by 50 feet by 10 feet is
full of customers. Sadly, many of these customers are smokers, so cigarette smoke containing
4% carbon monoxide is introduced into the room at a rate of 0.15 cubic foot per minute.
Suppose that this rate does not vary significantly during the evening. Before 10:00 there is
no trace of carbon monoxide in the club; and, fortunately, this club is equipped with good
ventilators. These ventilators allow the formation of a uniform smoke-air mixture in the room,
and they provide for the ejection of this mixture to the outside at the rate of 1.5 cubic feet per
minute—that is, at a rate 10 times greater than that of the arrival of pollutants.

You want to dance and socialize, but you also want to preserve your health. A prolonged
exposure to a concentration of carbon monoxide greater than or equal to 0.012% is considered
dangerous by the Health Department. Knowing that the club closes its doors at 3 A.M., will
you allow yourself to stay until the end? To be more precise, you want to find the time when
the concentration of carbon monoxide reaches the critical concentration of 0.012%.

The key to this type of single-compartment problem is the fundamental relation we saw used
in the preceding example:

Net rate of change = rate of inflow − rate of outflow.

Let C(t) be the concentration of carbon monoxide in the club (the grams of carbon monoxide
per cubic foot of air, abbreviated g/ft3) at any time t, where t = 0 represents 10 P.M.
Then Q(t), the amount of pollutant in the room at time t, is described by the equation
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Q(t) = (volume of room) × C(t). Because the room is 30 × 50 × 10 = 15,000 cubic feet, this
expression for the amount of monoxide in the room at time t becomes Q(t) = 15,000 C(t).

Now the rate at which carbon monoxide is entering the room is given by(
0.15

ft3

min

)(
0.04

g

ft3

)
= 0.006

g
min

.

Similarly, the rate at which carbon monoxide is leaving the room (via the ventilators) is(
1.5 ft3

min

)
· C(t).

The Relationship (2.3.1) tells us that the rate of change of the amount of carbon monoxide
in the room is equal to the rate at which the pollutant is introduced minus the rate at which
it leaves:

dQ(t)
dt

= d
dt

{15,000 C(t)} = rate of inflow − rate of outflow

=
(

0.15
ft3

min

)(
0.04

g

ft3

)
−
(

1.5
ft3

min

)
C(t)

= 0.006 − 1.5C(t) g/ min

so we have the differential equation

15,000
d
dt

C(t) = 0.006 − 1.5 C(t).

This is a linear equation, and we can write it in the form

d
dt

C(t) + (0.0001)C(t) = (
4 × 10−7).

An integrating factor is μ(t) = e
∫
(0.0001) dt = e0.0001t , so the last equation has the form

d
dt

{
e0.0001tC(t)

} = (
4 × 10−7) e0.0001t .

Integrating, we find that

C(t) = (
4 × 10−7) e−0.0001t

∫
e0.0001tdt

= (
4 × 10−7) e−0.0001t

(
e0.0001t

0.0001
+ k

)
= 0.004 + α · e−0.0001t

where α = (
4 × 10−7

)
k.
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Because we are told that C(0)=0, we have 0=C(0)=0.004+α, which gives us the information
that α = −0.004. Therefore, we can write the solution of our differential equation as

C(t) = 0.004
(
1 − e−0.0001t) .

Because we want to know the time t at which the concentration equals 0.012%, we must solve
the equation C(t) = 0.00012 for t. Hence, we must have

0.00012 = 0.004
(
1 − e−0.0001t)

0.03 = 1 − e−0.0001t

e−0.0001t = 1 − 0.03 = 0.97

−0.0001t = ln(0.97)

t = ln(0.97)

(−0.0001)

so t = 304.59 minutes ≈ 5.08 hours ≈ 5 hours, 5 minutes. Therefore, the critical concentration
of carbon monoxide is reached at 3:05 A.M. That’s cutting it too close! ■

The next example shows a different sort of compartment and alerts us to the fact that not all
compartments have constant “volumes.”

■ Example 2.3.3 Fairness in Employment
Suppose that a government agency has a current staff of 6000, of whom 25% are women.
Employees are quitting randomly at the rate of 100 per week. If we know that replacements
are being hired at the rate of 50 per week, with the requirement that half be women, what is
the size of the agency staff in 40 weeks, and what percentage is then female?

This is a compartment problem, with the agency as the compartment. We note that, in contrast
to the previous examples, our compartment size (agency staff size) varies with time. Let W(t)
be the number of women at time t, with W(0)=25% of 6000=1500. Now the net change in
total staff is 50 − 100=−50 people/week, so that the staff size at time t is 6000 − 50t people.
Summarizing this information, we have

dW
dt︸︷︷︸

rate of change
in no. of women

= 25 women/week︸ ︷︷ ︸
rate of inflow of women= 50% of all replacements

−

⎛
⎜⎜⎜⎜⎜⎜⎝100 people/week︸ ︷︷ ︸

rate of people leaving

· W(t)
6000 − 50 t

women/people︸ ︷︷ ︸
proportion of women on staff
at time of leaving

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
rate of women leaving
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or

dW
dt

+
(

100
6000 − 50 t

)
W = 25.

The integrating factor is μ(t) = (6000−50 t)−2, so we get W(t) = 1
2 (6000−50 t)+C(6000−

50 t)2. Because W(0) = 1500, we find that C = −1/24, 000. Thus, W(t) = 1
2 (6000 − 50 t) −

1
24,000 (6000−50 t)2; and when t = 40 we get a staff total equal to 6000−50(40) = 4000 and

W(40) = 2000 − 2000/3, so that the staff is about (2000 − 2000/3)/4000 = 1/3 or 331
3 %

female. ■

After we’ve treated systems of equations in Chapter 5, we’ll be able to solve multicompartment
problems.

Exercises 2.3
A

1. Suppose a population has a constant per capita birth rate b > 0 and a constant per capita death
rate d > 0. Using the balance Equation (2.3.1), write a differential equation for the population p(t) at
time t. (Do not solve this equation.)

2. In Problem 1, suppose the per capita death rate d is not constant, but is instead proportional to the
population p(t). Write (but do not solve) a differential equation for the population p(t).

3. In Problem 1, suppose the per capita birth rate b is not constant, but is instead proportional to the
population p(t). Write (but do not solve) a differential equation for the population p(t).

4. Suppose a country with constant per capita birth and death rates b and d, respectively, has an
influx of immigrants at a constant rate I (not a per capita rate, but a constant rate). Write a
differential equation for the size of the population p(t).

B

1. A study of the population of Botswana from 1975 to 1990 leads to the following model for the
country’s growth rate: dP

dt = kP − αt, where t denotes time in years with 1990 corresponding to
t = 0, P(0) = 1.285 (million), k = 0.0355, and α = 1.60625 × 10−3. (The term kP reflects births
and immigration, while the term αt captures deaths and emigration.)

a. Find a formula for P(t).
b. Estimate Botswana’s population in the year 2010.

2. A tank with a capacity of 100 gallons is half full of fresh water. A pipe is opened which lets treated
sewage enter the tank at the rate of 4 gal/min. At the same time, a drain is opened to allow 3
gal/min of the mixture to leave the tank. If the treated sewage contains 10 grams per gallon of
usable potassium, what is the concentration of potassium in the tank when it is full? (Be careful of
your units!)

3. A tank having a capacity of 100 gallons is initially full of water. Pure water is allowed to run into the
tank at the rate of 1 gallon per minute. At the same time, brine (a mixture of salt and water)
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containing 1/4 pound of salt per gallon flows into the tank at the rate of 1 gallon per minute.
(Assume that there is perfect mixing.) The mixture flows out at the rate of 2 gallons per minute.
Find the amount of salt in the tank after t minutes.

4. Suppose you have a 200-gallon tank full of fresh water. A drain is opened that removes 3 gal/sec
from the tank and, at the same moment, a valve is opened that lets in a 1% solution (a 1%
concentration) of chlorine at 2 gal/sec.

a. When is the tank half full and what is the concentration of chlorine then?
b. If the drain is closed when the tank is half full and the tank is allowed to fill, what will be the

final concentration of chlorine in the tank?

5. A tank contains 50 gallons of fresh water. Brine (see Problem 3) at a concentration of 2 lbs/gal (that
is, 2 lbs of salt per gallon) starts to run into the tank at 3 gal/min. At the same time, the mixture of
fresh water and brine runs out at 2 gal/min.

a. How much liquid is there in the tank after 50 minutes?
b. How many pounds of dissolved salt is in the tank then?

6. In a large tank are 100 gallons of brine containing 75 pounds of dissolved salt. Water runs into the
tank at the rate of 3 gal/min, and the mixture runs out at the rate of 2 gal/min. The concentration is
kept uniform by stirring. How much salt is there in the solution after 1.5 hours?

7. A swimming pool holds 10,000 gallons of water. It can be filled at the rate of 100 gal/min and
emptied at the same rate. Right now, the pool is filled, but there are 20 pounds of an impurity
dissolved in the water. For the safety of the swimmers, this must be reduced to less than 1 pound.
It would take 200 minutes to empty the pool completely and refill it, but during part of this time the
pool could not be used. How long will it take to restore the pool to a safe condition if at all times the
pool must be at least half full?

8. Assuming the information in Example 2.3.3, what would have been the percentage of female staff
members after 40 weeks if it had been required that all new employees were women?

C

1. Suppose that the maximum concentration of a drug present in a given organ of constant volume V
must be cmax . Assuming that the organ does not contain the drug initially, that the liquid carrying
the drug into the organ has constant concentration c > cmax , and that the inflow and outflow rates
are both equal to r, show that the liquid must not be allowed to enter for a time longer than

V
r

ln
(

c
c − cmax

)
.

2. A tank that holds 100 gallons is half full of a brine solution with a concentration of 1
3 pound of salt

per gallon. Two pipes lead into it at the top, one supplying a brine solution of 1
2 lb/gal and the other

pure water. Each pipe has a flow of 4 gal/min. One pipe leads out at the bottom and removes the
mixture at 3 gal/min. What is the concentration of the mixture that first flows out the overflow pipe
at the top? Assume uniform mixing.
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2.4 SLOPE FIELDS
Now that we have become familiar with the basic concepts of ordinary differential equations
(ODEs) and have learned how to solve separable and linear equations, we can consider a
qualitative approach to understanding solutions of first-order equations. This is a graphical
approach to an equation that provides insights into the behavior of solutions, even when we
may not know the techniques for solving the equation.

Let’s look at first-order equations of the general form

dy
dx

= y′ = f (x, y).

Many equations can be written in this way, with the derivative isolated. For example, we could
have dy

dx = f (x, y) = 3y − 4x, y′ = g(x, y) = √
xy, y′ = F(x) = 2x3 − 1, or y′ = G(y) = 2 − y2.

Now remember what a first derivative tells us. One interpretation of a derivative is as the slope
of the tangent line drawn to a curve at a particular point. The equation y′ = f (x, y) means that
at the point (x, y) of any solution curve of the differential equation, the slope of the tangent
line is given by the value of the function f at that point—that is, the slope is given by f (x, y).
Remember that there may be a whole family of solution curves as well as singular solutions.

For a first-order differential equation, a set of possible tangent line segments (sometimes
called lineal elements), whose slopes at (x, y) are given by f (x, y), is called a slope field (or
direction field) of the equation. Visually, this establishes a flow pattern for solutions of the
equation. A slope field includes tangent line segments for many solutions of the equation, but
the general shapes of the integral curves should be clear. You can think of these outlines as the
“ghosts” of solution curves, and they may reveal certain qualitative aspects of the solutions,
even if a closed form solution is difficult or impossible to find.

Our first example will indicate how to generate a slope field.

■ Example 2.4.1 A Slope Field
To get a feeling for these ideas, let’s get a piece of graph paper and plot some tangent line
segments for the first-order linear equation y′− y = x, which we can write as y′ = f (x, y) = x+y.
To make things a bit easier, we can construct a table (Table 2.1).

We’ve made things even easier for ourselves by choosing points at which the slopes are 0,
1, and −1. Now we can draw some tangent line segments corresponding to these slopes
(Figure 2.7a).

Note that we have drawn the little tangent line segments so that the midpoint of each segment
is the point (x, y). We have used portions of the slope field given by f (x, y) = 0 and f (x, y) =
±1. Figure 2.7b is a computer-drawn direction field for the same ODE, with some solution
curves superimposed on the slope field.

Note that as x → −∞, the solution curves seem to be approaching a straight line as an
asymptote. The solution curves seem to be veering away from this line as x → +∞. If you
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Table 2.1 Slopes at Points (x, y)
for y′ = x + y

Point y′ = x + y

x y (x, y) Slope at (x, y)

−3 3 (−3, 3) 0

1 −1 (1, −1) 0

0 0 (0, 0) 0

0 1 (0, 1) 1

1 0 (1, 0) 1

2 −1 (2, −1) 1

−1 2 (−1, 2) 1

0 −1 (0, −1) −1

−1 0 (−1, 0) −1

2 −3 (2, −3) −1

...
...

...
...

look very closely, you may be able to guess that the straight line is x+y = −1, or y = −1−x. In
Section 2.2 we learned how to find the general solution, y = −x−1+Cex, for this linear equa-
tion. The straight line y = −1−x is the particular solution of the ODE corresponding to C = 0,
a solution of the initial-value problem (IVP) y′ − y = x, y(0) = −1. Also note that if y is the
general solution and C 	= 0, then lim

x→+∞ y(x) = ∞ if C > 0 and lim
x→+∞ y(x) = −∞ if C < 0. ■

Although the slope field suggests some features of the solution curves, we have to be careful
not to read too much into it. In the preceding example, without the analytic form of the
general solution or some sound numerical evidence, we can’t be sure that y doesn’t have
vertical asymptotes, so that y → ±∞ as x approaches some finite value x0.

Note that in Example 2.4.1 we used portions of the slope field given by f (x, y) = 0 and
(x, y) = ±1. For any first-order equation y′ = f (x, y), if we look at the set of points (x, y)
such that f (x, y) = C, a constant, we get an isocline—a curve along which the slopes of
the tangent lines are all the same. (The word isocline is made up of parts that mean “equal”
and “inclination” or “slope.”) Isoclines are used to simplify the construction of a slope field
because once you draw the isoclines, you can quickly and easily draw, for each C, a series
of parallel line segments of slope C, all having their midpoints on the curve f (x, y) = C. In
Example 2.4.1 the isoclines are the curves x + y = C, which are straight lines through (0, C)

and (C, 0) with slope −1.
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FIGURE 2.7a
Some lineal elements for y′ − x + y
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FIGURE 2.7b
Slope field for y′ = x + y, −6 ≤ x ≤ 6, −10 ≤ y ≤ 10 and five computer-generated solution curves
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It is important to realize that an isocline is usually not a solution curve but that through any
point on an isocline, a solution to the differential equation passes with slope C. However, as
we’ll see in Section 2.5, isoclines corresponding to C = 0—called nullclines—turn out to be
important solutions (equilibrium solutions) of equations in which the independent variable
does not appear explicitly—that is, equations of the form y′ = f (y).

The next example has something important to say about the difference between equations of
the general form y′ = f (x, y) and equations of the special form y′ = f (y).

■ Example 2.4.2 A Special Slope Field
The slope field (Figure 2.8) corresponding to the equation x′ = f (x) = −2x reveals something
interesting about certain kinds of equations and their corresponding slope fields. (Don’t be
confused by the labeling of the axes. Here, we are assuming that t is the independent variable
and x is the dependent variable: x = x(t).) First of all, note that algebraically we can write the
equation in the form F(x, x′) = x′ + 2x = 0, or x′ = f (x) = −2x. In other words, we have a
first-order equation in which the independent variable t does not appear explicitly. This says
that the slopes of the tangent line segments making up the slope field of this equation depend
only on the values of x.

In the slope field plot given in Figure 2.8, if you fix the value of x by drawing a horizontal
line x = C for any constant C, you will see that all the tangent line segments along this line
have the same slope, no matter what the value of t. Another way to look at this is to realize
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FIGURE 2.8
Slope field for x′ = −2x, −4 ≤ t ≤ 4, −6 ≤ x ≤ 6
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that you can generate infinitely many solutions by taking any one solution and translating
(shifting) its graph left or right. (See Problem C1 of Exercises 2.4.) ■

2.4.1 Autonomous and Nonautonomous Equations
A differential equation, such as the one in the preceding example, in which the independent
variable does not appear explicitly is called an autonomous equation. If the independent
variable does appear, the equation is called nonautonomous. This definition is valid for an
equation of any order.

For example, y′ = y2 − t2 is nonautonomous because the independent variable t appears
explicitly, whereas y′ = 3y4 + 2 sin(y) is autonomous because the independent variable (t, x,
or whatever) is missing. Note that the independent variable is always present implicitly (in the
background), but if you don’t see it “up front,” the equation is autonomous. Example 2.3.1
discusses a nonautonomous equation. If we look carefully at its slope field (Figure 2.7b), we
see that the slopes change as we move along any horizontal line.

Autonomous equations arise frequently in physical problems because the physical compo-
nents generally depend on the state of the system, but not on the actual time. We can define the
state of a system loosely as the set of values of the dependent variables in the system. For exam-
ple, according to Newton’s Second Law of Motion (to be discussed and applied to spring-mass
problems in Chapter 4), an object of mass m falling under the influence of gravity satisfies
the autonomous equation ẍ = −g, where x(t) is the position of the mass measured from the
earth’s surface and g is the acceleration due to gravity. Gravity is considered time-independent
because the mass follows the same path no matter when the mass is dropped.

Now let’s see how to recognize the correspondence between first-order differential equations
and their slope fields.

■ Example 2.4.3 Matching Equations and Slope Fields

(A)
dx
dt

= x2 − t2 and (B)
dx
dt

= x2 − 1

Looking at the two differential equations and the accompanying slope fields 1–4, let’s try to
match each equation with exactly one of the slope fields (Figures 2.9a–d).

We can start with Equation (A) and note that it is a nonautonomous equation. This tells us that
we should not expect equal slopes along horizontal lines. As we move horizontally—that is,
if we fix the value of x and vary the value of t—the value of the slope changes according to
the formula x2 − t2. This analysis eliminates slope fields 2 and 3 because the inclinations
of the tangent line segments clearly remain constant along horizontal lines. Now if we write
Equation (A) in factored form, dx

dt = (x + t)(x − t), we can see that the tangent line segments
must be horizontal where x = t or x = −t because that’s where the slope dx

dt equals 0. (These
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Slope field 1
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Slope field 2

are the nullclines—isoclines corresponding to C = 0.) Looking carefully at slope fields 1 and
4, we see that field 4 exhibits a series of horizontal “steps” forming an X through the origin. If
we look closely, it seems that these horizontal line segments lie on the lines x = t and x = −t,
so we conclude that Equation (A) corresponds to slope field 4.
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FIGURE 2.9d
Slope field 4

Equation (B) is autonomous because the independent variable t does not appear explicitly. The
corresponding slope field must show equal slopes along any horizontal line. Only fields 2
and 3 exhibit this behavior. What else can we look for? Well, if we factor Equation (B) to get
dx
dt = (x + 1)(x − 1), we realize that the slope field must show horizontal line segments when
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dx
dt equals 0—that is, where x = 1 or x = −1. Slope field 2 has horizontal tangents at x = 1
but doesn’t have them at x = −1. Only slope field 3 shows zero slopes along both horizontal
lines x = 1 and x = −1, so we conclude that Equation (B) must match up with slope
field 3. ■

The next example shows an advantage—and a possible drawback—of using slope fields.

■ Example 2.4.4 A Slope Field for an Autonomous Equation
The first-order nonlinear autonomous equation y′ = y4 + 1 looks innocent, but (surprise!) it
has the one-parameter family of implicit solutions:

√
2

8
ln

(
y2 + √

2y + 1

y2 − √
2y + 1

)
+

√
2

4

{
arctan

(
y
√

2 + 1
)

+ arctan
(
y
√

2 − 1
)}

= t + C.

(The equation is separable, but the integration required to solve it is tricky. Use your CAS
to evaluate the integral, but don’t be surprised if your answer doesn’t look exactly like the
one given here.) Without looking at the solution formula, you can see immediately that the
differential equation has no constant function as a solution: If y is constant, then y′ = 0; but
the right-hand side of the differential equation, y4 + 1, can never be zero. In fact, this simple
analysis shows that any solution y must be an increasing function. (Why?)

The fearsome formula describing a family of implicit solutions gives little useful infor-
mation. However, let’s take a look at the equation’s slope field (Figure 2.10). First of all,
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FIGURE 2.10
Slope field for y′ = y4 + 1, −4 ≤ t ≤ 4, −3 ≤ y ≤ 3
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the autonomous nature of the equation is clear from the fact that along any horizontal line,
the inclinations of the tangent line segments are equal.

Furthermore, it should be evident that any solution curve is increasing. In fact, any solution
curve has vertical asymptotes holding it in on the left and on the right. Of course, we can’t
tell whether this last statement is true by merely looking at the slope field. A purely graphical
analysis can’t reveal this. But the slope field does give us an idea of what to expect when we
try to solve the equation analytically or to approximate a solution numerically. ■

As we will see in later chapters, a type of slope field can help us analyze certain systems of
differential equations as well.

Exercises 2.4

A

In Problems 1–15, first sketch the slope field for the given equation by hand, and then try
using a computer or graphing calculator to generate the slope field. Sketch several possible
solution curves for each equation. (Your graphing calculator or CAS may have trouble with
Problems 5 and 10.)

1. y′ = x

2.
dx
dt

= t

3.
dr
dt

= t − 2r

4.
dx
dt

= 1 − 0.01x

5. Q′ = |Q|
6. y′ = y − x

7. r
dr
dt

= −t

8.
dy
dx

= 1
y

9.
dy
dx

= 2y
x

10. y′ = max(x, y), the larger of the two values x and y
11. y′ = x2 + y2

12. x′ = 1 − tx

13.
dy
dt

= ty

t2 − 1

14.
dP
dt

= 2P(1 − P)

15. Use technology to determine the slope field for the equation y′ = cos x
cos y . Describe the nullclines of

the equation.
16. In any way your instructor tells you, manually or using technology, sketch the slope field for each

of the following equations and then sketch the solution curve that passes through the given point
(x0, y0).
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a.
dy
dx

= x2; (x0, y0) = (0, −2)

b.
dy
dx

= −xy; (x0, y0) = (0, 3)

17. The German physiologist Gustav Fechner (1801–1887) devised the model expressed as dR
dS = k

S ,
where k is a constant, to describe the response, R, to a stimulus, S. Use technology to sketch the
slope field for k = 0.1.

18. Describe the isoclines of the equation dy
dt = y+t

y−t .

19. Which of the equations in Problems 1–15 are autonomous? If you have done some of these
problems, look at their slope fields to confirm your answers.

B
1. A bimolecular chemical reaction is one in which molecules of substance A collide with molecules

of substance B to create substance X. The rate of formation (the velocity of reaction) is given by a
differential equation of the form dx

dt = k(α − x)(β − x), where α and β represent the initial amounts
of substances A and B, respectively, and x(t) denotes the amount of substance X present at time t.
(See Example 2.1.7.)

a. Use technology to plot the slope field when α = 250, β = 40, and k = 0.0006.

b. If x(0) = 0, what seems to be the behavior of x as t → ∞?

2. The one-parameter family y = c
t represents a solution of dy

dt = f (t, y). Sketch (by hand) the slope
field of the differential equation.

3. Describe the isoclines of the equation y′ = 1√
1+t2+y2

.

4. Describe the nullclines of the equation xy dy
dx = y2 − x2.

5. Describe the nullclines of the equation in Problem B1.

6. In your own words, explain the important differences in the slope fields for the following forms of
first-order differential equations:

a. y′ = f (t, y)
b. y′ = f (t)
c. y′ = f (y)

7. Match each of the Equations (1)–(3) with one of the accompanying slope fields.

a.
dy
dt

= y + 1

b.
dy
dt

= y − t

c.
dy
dt

= t + 1
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8. By looking at the slope field for each of the following equations, describe the behavior of solutions
of each equation as t → ∞. How do your answers seem to depend on initial conditions in each
case?

a. y′ = 3y

b.
dP
dt

= P(1 − P)

c. y′ = e−t + y
d. y′ = 3 sin t + 1 + y

9. Examine the slope field for the first-order nonlinear equation dy
dx = e−2xy . Based on this

examination, what can you say about the solutions to this equation? (You may want to look at
parts of various quadrants more closely.) In particular, what can you say about the behavior of
solutions as x →±∞? (Be careful: Some solutions become infinite as x approaches finite values.)

10. Consider the autonomous equation dx
dt = x(1 − x)(x + 1).

a. Use technology to determine the slope field of this equation.

b. Describe the behavior of a solution satisfying x(0) = 0.7.

c. Describe the behavior of a solution satisfying x(0) = 1.3.

d. Describe the behavior of a solution satisfying x(0) = −0.7.

e. Describe the behavior of a solution satisfying x(0) = −1.3.

C

1. If ϕ(t) is a solution of an autonomous differential equation x′ = f (x) and k is any real number, show
that ϕ(t + k) is also a solution. [Hint : Use the Chain Rule.]

2. Use the result of Problem C1 to show that if sin t is a solution of an autonomous differential equation
x′ = f (x), then cos t is also a solution. [Hint : How are the graphs of sine and cosine related?]

2.5 PHASE LINES AND PHASE PORTRAITS
2.5.1 The Logistic Equation
When we are dealing with an autonomous first-order equation, a qualitative analysis can be
used quite effectively to provide useful information about solution curves.

We’ll begin to examine this new analysis technique by using an important population
growth model, first studied by the Belgian mathematician Pierre Verhulst in 1838 and later
rediscovered independently by the American scientists Raymond Pearl and Lowell Reed
in the 1920s.

■ Example 2.5.1 The Qualitative Analysis of the Logistic Equation
The autonomous differential equation dP

dt = P(1 − P), a particular example of something
called a logistic equation, is useful, for instance, in analyzing such phenomena as epidemics.
(We dealt with this equation in another way in part (b) of Problem B8 in Exercises 2.4.) In
an epidemiological situation, P could represent the infected population (or the percentage of
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the total population that is infected) as a function of time. We’ll work more with this kind
of model later, but for now let’s ignore the fact that this is a separable equation that we can
solve explicitly and see what basic calculus can tell us.

First of all, the right-hand side represents a derivative, the instantaneous rate at which P is
changing with respect to time. From calculus, we know that if the derivative is positive, then P
is increasing, and if the derivative is negative, then P is decreasing. Now when is dP/dt positive?
The answer is when P(1 − P) is greater than zero. Similarly, dP/dt is negative when P(1 − P)

is less than zero. Finally, we see that dP/dt = 0 when P(1 − P) = 0—that is, when P = 0 or
P = 1. These two critical points split the P-axis into three pieces (Figure 2.11): −∞ < P < 0,
0 < P < 1, and 1 < P < ∞.

What is the sign of dP/dt when P satisfies −∞ < P < 0? Well, for these values of P, P is
negative and 1−P is positive, making the product dP/dt = P(1−P) negative. This means that
P is decreasing. When P is between 0 and 1, we see that P is positive and 1 − P is positive, so
dP/dt is positive and P is increasing. Finally, when P is greater than 1, we see that P is positive
and 1 − P is negative, so dP/dt is negative and P is decreasing.

We can redraw Figure 2.11 with arrows indicating whether P is increasing or decreasing on
a particular interval for P. The direction of any arrow shows the algebraic sign of dP/dt in a
subinterval and so indicates whether P is increasing or decreasing: → means “positive deriva-
tive/increasing P” and ← means “negative derivative/decreasing P.” Figure 2.12 is called the
(one-dimensional) phase portrait of the differential equation dP

dt = P(1−P). The horizontal
line itself is called the phase line.

We can actually do a little more in this situation. If we differentiate each side of our original
differential equation with respect to t, we get

d2P
dt2 = dP

dt
· (1 − 2P) = P(1 − P)(1 − 2P),

where we have replaced dP/dt by the right-hand side of the original differential equation.
(Check all this!) Remember that the second derivative of a function tells us about the concavity
of the function: P is concave up when d2P/dt2 > 0 and P is concave down when d2P/dt2 < 0.

0 1
P

1, P ,`0 , P , 12`, P , 0

FIGURE 2.11
P-axis divided by critical points

0 1
P

FIGURE 2.12
Phase portrait of dP

dt = P(1 − P)
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Table 2.2 Table of Signs

P Interval P 1 − P 1 − 2P P′′ = P(1 − P)(1 − 2P) Concavity

(−∞, 0) − + + − Down(
0, 1

2

) + + + + Up( 1
2 , 1

) + + − − Down

(1, ∞) + − − + Up

P P

1

0
t

5

4

3

2

1

1 2 3 4

1
2

FIGURE 2.13
Sketch of three solutions of dP

dt = P(1 − P), based on the phase portrait and concavity
Initial conditions are P(0) = 0.2, 2, and 5; 0 ≤ t ≤ 4, 0 ≤ P ≤ 5

Using the critical points 0, 1
2 , and 1 of d2P

dt2 as a guide, we can construct the table of signs
(Table 2.2).

We have to remember that t is the independent variable in this problem and P is the dependent
variable. It’s easy to lose sight of this because the (autonomous) form of this differential
equation makes us focus on P alone.

On the basis of our analysis of dP
dt and d2P

dt2 , let’s take a look at what the graph of P could look
like in the t −P coordinate plane (Figure 2.13). We’ll focus on the first quadrant because t ≥ 0
and P ≥ 0 are realistic assumptions when one is dealing with a population growth model.
Note that the phase line (representing the P-axis) is now drawn vertically and placed next to
the graph and that we’ve marked the important values from our previous investigation of dP

dt

and d2P
dt2 .
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The graph indicates the change of concavity at P = 1
2 . Notice how the three solutions we

have sketched seem to approach P = 1 as an asymptote as t increases. In terms of a realistic
scenario, this says that if the initial population is below 1 (the unit could be thousands or
millions), the population will increase to 1 asymptotically. On the other hand, any population
starting above 1 will eventually decrease toward 1. If we had drawn the rest of the phase line
(for P < 0) and solutions in the fourth quadrant (t ≥ 0, P < 0), we would have seen these
solutions moving away from the t-axis. We’ll say more about this phenomenon in the next
section. ■

The logistic equation, which is commonly used to model population growth when resources
(such as food) are limited, is usually written as dP

dt = rP(1 − P
k ), where r is a per capita growth

rate balancing births and deaths and k represents the theoretical maximum population that
a given environment (forest, petri dish, etc.) can sustain. The value k is called the carrying
capacity. This model will reappear from time to time in this text.

Sometimes an autonomous differential equation will contain a parameter whose possible
values affect the behavior of solutions.

■ Example 2.5.2 An Equation with a Parameter
Consider the equation x′ = x2 − ax = x(x − a), where a is a constant. There are two apparent
critical points: x = 0 and x = a. The first challenge is to position the critical points properly
on the x-axis.

First, let’s assume that a > 0. Then the phase line is

0 a
x

If x < 0, then x − a < 0 and x′ = x(x − a) > 0. If 0 < x < a, then x > 0 and x − a < 0, so
x(x − a) < 0. Finally, if x > a, we have x > 0 and x − a > 0, so x(x − a) > 0. Thus, if a > 0,
the phase portrait is as shown in Figure 2.14.

Now suppose a < 0. The phase line is

0a
x

If x < a, then x < 0 and x − a < 0, so x′ = x(x − a) > 0. When a < x < 0, we have x < 0 and
x − a > 0, so x(x − a) < 0. If x > 0, then x − a > 0, so x(x − a) > 0. For a < 0, the phase
portrait is as shown in Figure 2.15.

0 a
x

FIGURE 2.14
Phase portrait of x′ = x2 − ax, a > 0
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a 0
x

FIGURE 2.15
Phase portrait of x′ = x2 − ax, a < 0

0
x

FIGURE 2.16
Phase portrait of x′ = x2 − ax, a = 0

There is one last case, a = 0. Now there is only one critical point, and it is easy to see that the
phase portrait is as shown in Figure 2.16.

In summary, we see that the presence of parameters in a differential equation may affect the
behavior of its solutions. Sketches of typical solution curves corresponding to a > 0, a < 0,
and a = 0 are left as an exercise (see Problem A16 of Exercises 2.5). ■

Exercises 2.5
A

Draw phase portraits for each of the equations in Problems 1–13.

1.
dy
dt

= y2 − 1

2. y′ = y2(1 − y)2

3. x′ = (x + 1)(x − 3)

4. ẋ = cos x
5. y′ = ey − 1
6. y′ = y(1 − y)(2 − y)
7. ẏ = sin y

8. x′ = 1 − x
1 + x

9. y′ = yey−1

10. ẏ = sin y cos y
11. x′ = −3x(1 − x)(3 − x)
12. y′ = y(y2 − 4)

13. x′ = x(1 − ex)

14. The equation in Problem 11 could represent a model of a population that can become extinct if it
drops below a particular critical value. What is this critical value?

15. Consider the equation ẋ = 1 + 1
2 cos x.

a. Draw the phase portrait of this equation.
b. What does your qualitative analysis tell you about solutions of this equation?

16. Consider the equation x′ = x2 − ax of Example 2.5.2. For the cases a > 0, a < 0, and a = 0, sketch
solution curves that illustrate Figure 2.14, Figure 2.15, and Figure 2.16, respectively.
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B

1. Using one of Kirchhoff’s laws in physics, we find that the current, I, flowing in a particular electric
circuit satisfies the equation 0.5 dI

dt + 10I = 12. (The resistance is 10 ohms, the inductance is 0.5
henry, and there is a 12-volt battery.)

a. Sketch the phase portrait of the equation.
b. If the initial current, I(0), is 3 amps, use part (a) to describe the behavior of I for large values

of t.

2. Example 2.1.7 and Problem B1 of Exercises 2.4 indicated that a type of chemical reaction can be
modeled by the equation dx

dt = k(α − x)(β − x).

a. If α = 250, β = 40, and k is a positive constant, produce the phase portrait of the equation.
b. If x(0) = 0, how does x behave as t → ∞?

3. A skydiver’s velocity v ≥ 0 satisfies the equation dv
dt = 9.8 − c · v2, where c > 0 is the (per unit

mass) coefficient of friction.

a. Draw the phase portrait for v ≥ 0.
b. Find and classify the positive equilibrium solution.

4. Consider the equation
dy
dt

= (1 + y)2.

a. What happens to solutions with initial conditions y(0) > −1 as t increases?
b. Describe the behavior of solutions with initial conditions y(0) < −1 as t increases.

5. Consider the equation dP
dt =

(
1 − P

15

)3 (P
7 − 1

)
P5, with P(0) = 3.

a. Use the phase portrait for this equation to give a rough sketch of the solution P(t).
b. What happens to P(t) as t becomes very large?

6. For each of the phase portraits shown below, write down a corresponding first-order equation of
the form x′ = f (x).

a. 0 1
x

b. �5 5
x

c. 2 7
x

7. Given the following phase portrait for dy
dt = f (y), make a rough sketch of the graph of f (y),

assuming that y = 0 is in the center of the phase line.

0a b
y

c

8. Given the following phase portrait, find a first-order ODE that is consistent with this phase
portrait.

021
Q

2
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C

1. Consider the equation x′ = (2α − 1)x + 1, where α is a parameter. Describe the behavior of
solutions x(t) of this equation as t → ∞, noting how this behavior depends on the value of α.

2. Consider the equation x′ = (α2 − 1)x + 1 + α, where α is a parameter. Describe the behavior of
solutions x(t) of this equation as t → ∞, noting how this behavior depends on the value of α.

3. The Landau equation arises in the analysis of the dynamics of fluid flow. It is dx
dt = ax − bx3, where

a and b are positive real constants.

a. Draw the phase portrait of Landau’s equation.
b. What happens to x as t increases if x(0) =

√
a
b + ε, where ε is a small positive quantity?

c. What happens to x as t increases if x(0) = 0?
d. How does x behave as t increases if x(0) =

√
a
b − ε?

2.6 EQUILIBRIUM POINTS: SINKS, SOURCES, AND NODES
Let’s take another look at Figure 2.13 and focus on the critical points—the places where dP

dt =0.
Geometrically, these are the horizontal lines P = 0 and P = 1, which represent the functions
P(t) ≡ 0 and P(t) ≡ 1, constant solutions of the differential equation dP

dt = P(1 − P). These
values of P are called equilibrium points or stationary points of the autonomous differential
equation. We also say that P(t) ≡ 0 and P(t) ≡ 1 are equilibrium solutions or stationary
solutions of the equation. Assuming that the solutions of an autonomous differential equa-
tion describe some physical, economic, or biological system, we can conclude that if the
system actually reaches an equilibrium point P, it must always have been at P—and will
always remain at P. (Think about this. You have dP

dt = 0 at an equilibrium point.)

We can go further in this analysis and classify equilibrium points for autonomous first-order
differential equations. It turns out that there are only three basic kinds of equilibrium points:
sinks, sources, and nodes.

If we look at the equilibrium point P = 1 in Example 2.5.1, we see from Figure 2.13 that
the solution curves near the line P = 1 seem to swarm into (or converge to) the horizontal
line. We call P = 1 a sink. A little more accurately, an equilibrium solution P ≡ k is a sink if
solutions with initial conditions sufficiently close to P ≡ k are asymptotic to P ≡ k as t → ∞.
This idea of being “sufficiently close” can be made mathematically precise, but we will just
consider the situation intuitively. Sinks are also called attractors or asymptotically stable
solutions. The term sink is meant to suggest the drain of a bathroom or kitchen sink: Along
the sides, water that is close enough will flow into the drain.

On the other hand, we see different behavior near P = 0. As we look along solution curves
from left to right, they seem to be moving away from the line P = 0. The equilibrium point
P = 0 is called a source. In other words, an equilibrium solution P ≡ k is a source if solutions
with initial conditions sufficiently close to P ≡ k are asymptotic to P ≡ k as t → −∞—that
is, as we go backward in time. A source is also called a repeller or an unstable equilibrium
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solution. Here, we can think of a faucet discharging water or a hand-held hair dryer putting
out streams of hot air.

If we had another equilibrium point such that nearby solutions showed any other kind of
behavior—perhaps somewhat like a sink and somewhat like a source at the same time—
we would call that equilibrium point a node. (See Example 2.6.2 and Figure 2.16.) More
technically, we can refer to a node as a semistable equilibrium solution.

2.6.1 A Test for Equilibrium Points
We can test equilibrium points/solutions for autonomous first-order equations using a
criterion that should remind you of the First or Second Derivative Test from calculus:

2.6.2 Derivative Test
If x∗ is an equilibrium point for the autonomous equation dx

dt = f (x), it is true that (1) if
f ′ (x∗) > 0, then x∗ is a source; (2) if f ′ (x∗) < 0, then x∗ is a sink; and (3) if f ′(x∗) = 0, the
test fails—that is, we can’t tell what sort of equilibrium point x∗ may be without further
investigation.

In Example 2.5.1, we saw that P = 0 and P = 1 were equilibrium points. Because f (P) =
P(1 − P), we have f ′(P) = 1 − 2P, so f ′(0) = 1 > 0 indicates that P = 0 is a source and
f ′(1) = −1 < 0 shows that P = 1 is a sink.

We can understand why the Derivative Test works by using the concept of local linearity: Near
an equilibrium solution x∗, we can approximate f (x) by the equation of its tangent line at x∗.
(See Section A.1 if necessary.) Therefore, if x is close enough to x∗, we can write

dx
dt

= f (x) ≈ f (x∗) + f ′(x∗)(x − x∗) = f ′(x∗)(x − x∗)

because f (x∗) = 0 when x∗ is an equilibrium solution. Now use Table 2.3 to compare the
signs of f ′(x∗) and (x − x∗).

The first row of signs in Table 2.3, for example, tells us that if (x − x∗) is positive—so that
a solution x is slightly above the equilibrium solution—and f ′(x∗) > 0, then dx

dt > 0, which

Table 2.3 Signs of dx
dt

(x − x∗) f ′(x∗) dx
dt

+ + +
+ − −
− + −
− − +
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means that the solution x is moving away from x∗. This last statement says that x∗ must be a
source. Similarly, the third row of signs indicates that if x starts out below x∗ and f ′(x∗) > 0,
then x falls away from x∗ as t increases, so x∗ is a source. The remaining two rows describe a
sink.

The next two examples show us the power and the limitations of the Derivative Test.

■ Example 2.6.1 Using the Derivative Test
If we examine the autonomous equation dx

dt = x−x3 = x(1−x2), we see that the equilibrium
points are x = 0, x = −1, and x = 1. Can we determine what kinds of equilibrium points
these are without any kind of graph?

Yes, we just apply the Derivative Test given previously. First of all, we have dx
dt = f (x), where

f (x) = x − x3, so f ′(x) = 1 − 3x2. Because f ′(0) = 1 > 0, we know that x = 0 is a source. The
fact that f ′(−1) = −2 < 0 tells us that x = −1 is a sink. Finally, because f ′(1) = −2 < 0, we
see that x = 1 is another sink.

The phase portrait shown in Figure 2.17 reflects this information. Finally, the slope field
(Figure 2.18) confirms our analysis.

021
x

1

FIGURE 2.17
Phase portrait of dx

dt = x − x3
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FIGURE 2.18
Slope field for dx

dt = x − x3
■
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■ Example 2.6.2 Failure of the Derivative Test
Let’s look at the first-order nonlinear equation dx

dt = f (x) = (1 − x)2. The only equilibrium
solution is x ≡ 1, and we have f ′(x) = 2(1 − x)(−1) = 2(x − 1). Because f ′(1) = 0, our test
doesn’t allow us to draw any conclusion. However, we can examine the behavior of f ′(x) near
x = 1 to get an idea of what’s going on.

We can see that f ′(x) is greater than zero for values of x greater than 1, so x ≡ 1 looks like a
source; but values of x just below 1 give us negative values of the derivative, so x ≡ 1 looks like
a sink. This ambivalent behavior enables us to conclude that x ≡ 1 is a node. Figure 2.19 shows
the phase portrait of this equation. Figure 2.20 shows the slope field with some particular
solutions superimposed.

Notice that solution curves starting above the line x = 1 seem to flow away from the line
x = 1, whereas those starting below the equilibrium solution flow toward the line x = 1. In
other words, the point x = 1 is neither a sink nor a source. It is a node. ■

In analyzing an autonomous first-order differential equation dx
dt = f (x), it is useful to sketch

the phase line using the graph of f (x). First of all, equilibrium points are the zeros of f .
Furthermore, regions where f is positive and regions where f is negative correspond to parts
of the phase line where the arrows point to the right and to the left, respectively.

1
x

FIGURE 2.19
Phase portrait of dx

dt = (1 − x)2
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FIGURE 2.20
Solutions of dx

dt = (1 − x)2 : x(0) = −1
2 , 1

2 , and 2
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121 0

f (x)

x

21

1

FIGURE 2.21
f (x) = x − x3 compared to the phase line of dx

dt = x − x3

■ Example 2.6.3 Using the Graph of f (x) to Sketch the Phase Portrait
Let’s return to the equation in Example 2.6.1, dx

dt = x − x3, this time focusing on what the
graph of f (x) = x − x3 reveals. Figure 2.21 shows the graph of f (x) aligned with the phase
portrait of the differential equation.

Note the equivalence between equilibrium points and the zeros of f and the correspondence
between regions of positivity and negativity for f (x) and the directions of the arrows on the
phase line. ■

Equilibrium solutions and their nature will be particularly useful when we discuss qualitative
aspects of systems of linear and nonlinear equations in Chapters 4, 5, and 7.

Exercises 2.6

A

For Problems 1–15, find the equilibrium point(s) of each equation and classify it as sinks,
sources, or nodes.

1. y′ = y2(1 − y)2

2. ẋ = cos x

3. y′ = ey − 1

4. y′ = y2(y2 − 1)
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5. ẋ = ax + bx2, a > 0, b > 0

6. ẋ = x3 − 1

7. ẋ = x2 − x3

8. ẏ = 10 + 3y − y2

9. ẋ = x(2 − x)(4 − x)

10. ẋ = −x3

11. ẋ = x3

12. ẏ = y ln(y + 2)

13. ẋ = x − cos x [Hint : Either use technology to find the equilibrium point explicitly (via a solve
command) or graph y = x and y = cos x separately to estimate the graphs’ point of intersection.]

14. ẋ = x − e−x (Use technology—see the preceding exercise.)

15. x′ = x(x + 1)(x − 0.5)6

16. A lake has two rivers flowing into it, one discharging a certain amount of water containing a
concentration of pollutant and the other discharging an amount of clean water per day. Assuming
that the lake volume is constant, the total amount of pollution in the lake, Q(t), can be modeled by
the balance equation dQ

dt = D(Q∗ − Q), where D is a positive constant involving the two rates of
flow into the lake and the lake’s volume and Q∗ is a positive constant involving volume, rates of
flow, and the pollutant concentration.

a. What is the equilibrium solution of this equation?

b. Is the solution found in part (a) stable or unstable? (For example, a sink would indicate that
the clean river input reduces the long-term amount of pollution in the lake.)

B

1. The following equation has been proposed for determining the speed of a rowing boat5:
M du

dt = 8P
u − bSu2, where u(t) denotes the speed of the boat at time t; M, its mass; and P, S, and b

are positive constants describing various other aspects of the boat and the person rowing it.

a. Determine the equilibrium speed of the boat.

b. Determine whether the speed found in part (a) is a sink or a source.

c. Interpret the result of part (b) physically.

2. Given dx
dt = f (x) and the following graph of f (x),

a. Sketch the phase portrait of the equation.

b. Identify all equilibrium points and classify each as a sink, a source, or a node.

5 M. Mesterton-Gibbons, A Concrete Approach to Mathematical Modelling (New York: John Wiley & Sons, 1995): 32–34; 53–56; 130–132.
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x
a b0

f (x)

3. A population growth model that is fairly simple yet amazingly accurate in predicting tumor
growth is described by the Gompertz equation, dN

dt = −aN ln(bN), where N(t) > 0 is
proportional to the number of cells in the tumor and a, b > 0 are parameters that are determined
experimentally. [Benjamin Gompertz (1779–1865) was an English mathematician/actuary.]

a. Sketch the phase portrait for this equation.

b. Sketch the graph of f (N) against N.

c. Find and classify all equilibrium points for this equation.

d. For 0 < N ≤ 1, determine where the graph of N(t) against t is concave up and where it is
concave down. (You may want to review Example 2.5.1.)

e. Sketch N(t).

4. Find an equation ẋ = f (x) with the property that there are exactly 3 equilibrium points and all of
them are sinks.

C

1. A population of animals following the logistic growth pattern (see Section 2.5) is harvested at a
constant rate—that is, as long as the population size, P, is positive, a fixed number, h, of animals is
removed per unit of time. The equation modeling the dynamics of this situation is dP

dt = rP(1 − P
k )

− h for P > 0.

a. Show that if h < rk
4 , there are two nonzero equilibrium solutions.

b. Show that the smaller of the equilibrium solutions in part (a) is a source, whereas the larger of
the two is a sink.

2. Consider the equation ẋ = −x3 + (1 + α)x2 − αx, where α is a constant.

a. If α < 0, find all equilibrium solutions of this equation and classify them.
b. If 0 < α < 1, find all equilibrium solutions and classify them.
c. If α > 1, find all equilibrium solutions and classify them.
d. Describe the equilibrium solutions if α = 0.
e. Describe the equilibrium solutions if α = 1.
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∗2.7 BIFURCATIONS
2.7.1 Basic Concepts
To get an idea of what this topic is all about, let’s go back to elementary algebra and look at
the quadratic function f (x) = x2 + x + c, where c is a constant. We should realize that the
zeros of this function depend on the parameter c. To see this, let’s write

x2 + x + c =
(

x + 1
2

)2

+
(

c − 1
4

)
. (2.7.1)

Clearly, the term
(
x + 1

2

)2
is always nonnegative, so that if c > 1

4 , the expression (2.7.1) is
always strictly greater than zero, and the quadratic equation x2 +x+ c = 0 has no real solutions.
If c = 1

4 , then the equation has x = −1
2 as its only root, a repeated root. Finally, if c < 1

4 ,

we have two solutions, x = −1
2 ±

√
1
4 − c. Verify all the assertions in this paragraph. Figure 2.22

shows the graph of y = x2 + x + c for three values of c.

The important point in this example is that 1
4 is the value of the parameter c at which the

nature of the solutions of the quadratic equation changes. We say that c = 1
4 is a bifurcation

point because as c decreases through 1
4 , the solution x = 0 splits into two solutions. (The

word bifurcation refers to a splitting or branching.)

We can see the effect of the bifurcation most clearly by plotting the solution x against the

parameter c—in our example, showing the graph of the relationship x = −1
2 ±

√
1
4 − c

(Figure 2.23). This graph showing the dependence of a solution on a parameter is called
the bifurcation diagram for the equation x2 + x + c = 0. Be sure you understand what this
diagram tells you. Note, in particular, what happens as c passes through the value 1

4 .

2.7.2 Application to Differential Equations
This sort of qualitative change caused by a change of parameter value is particularly interesting
when we observe it in an autonomous differential equation. What changes for such an ODE
at a bifurcation point is the number and/or nature of the equilibrium solutions.

y

x121
c 5 0

22

y

x21c 5 1
2

y

x20.5c 5 1
4

FIGURE 2.22
Graphs of y = x2 + x + c

∗ Denotes an optional section.
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x

c1
4

FIGURE 2.23
Bifurcation diagram for x2 + x + c = 0

Definition 2.7.1

Given a family of autonomous differential equations dx
dt = f (x, λ) containing a parameter λ, a bifurcation point

(or bifurcation value) is a value λ0 of the parameter for which the qualitative nature of the equilibrium solutions

changes as λ passes through λ0. The actual change in the equilibrium solutions is called a bifurcation.

The real significance of bifurcations was first revealed in Euler’s 1744 work on the buckling of
an elastic straight beam or column under a compressive force. [The great Swiss mathematician
Leonhard Euler (1707–1783) has been called “the Shakespeare of mathematics.”] The normal
upright position represents an equilibrium position. The parameter here is the force F exerted
on the top of the column. For certain values of F, say F < F∗, the column maintains its vertical
position; but if the force is too great, say F > F∗, the vertical equilibrium position becomes
unstable, and the column may buckle. The critical force F∗ is the bifurcation point. The
equilibrium situation changes as the size of the force passes through the value F∗.

F < F*
F >F*

The next example reveals the bifurcation point for a simple first-order equation of a type we’ve
discussed before (Example 1.2.1).



∗2.7 Bifurcations 83

f ( y)

y

a > 0

f ( y)

y

a 5 0

f ( y)

y

a < 0

FIGURE 2.24
dy
dx = f (y) = ay vs. y

■ Example 2.7.1 A Bifurcation Point for a Linear Equation
The equation dy

dt = ay expresses the fact that at any time t, some quantity y grows at a rate
proportional to its size at time t. The parameter a is the constant of proportionality that
captures some growth characteristic of the quantity.

Setting dy
dt = 0, we find that the equilibrium solutions are described by ay = 0. If a = 0, then

every value of y is an equilibrium point. If a 	= 0, then y ≡ 0 is the only equilibrium point. For
the equation dy

dt = ay = f (y), we have f ′(y) ≡ a; and we use the Derivative Test of Section 2.6
to conclude that if a > 0, then y ≡ 0 is a source, and if a < 0, then y ≡ 0 is a sink. Clearly, a = 0
is a bifurcation point, because the number and nature of the equilibrium solutions change
as a passes through 0. Figure 2.24 shows graphs of f (y) against y for the three possibilities for
a and the corresponding phase portraits.

We can show the dependence of the equilibrium points on a by drawing a bifurcation diagram,
plotting y(t) against a (Figure 2.25). The y-axis itself represents all the solutions y = C, where
C is any constant, for a = 0. It is usual in bifurcation diagrams to use solid curves to indicate
stable equilibrium solutions (sinks) and dashed lines to denote unstable solutions (sources).
Arrows indicate the directions of change of some solutions with time.

y

0 a

FIGURE 2.25
Bifurcation diagram for dy

dt = ay ■
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■ Example 2.7.2 A Bifurcation Point for a Nonlinear Equation
Now let’s look at the first-order nonlinear equation dy

dx = αy−y3 = f (y). This is the Landau equa-
tion, which appeared in Problem C3 of Exercises 2.5; it arises in the study of one-dimensional
patterns in fluid systems. Here y = y(t) gives the amplitude of the patterns, and α is a small,
dimensionless parameter that measures the distance from the bifurcation. [L. D. Landau
(1908–1968) was a Russian physicist who won the Nobel Prize in 1962.]

We see that dy
dx = 0 implies that αy − y3 = y(α − y2) = 0, so y = 0, y = √

α, and y = −√
α are

the only equilibrium points. Looking at these points, we can see (because of the radical sign)
that we have three cases to consider: (1) α = 0, (2) α > 0, and (3) α < 0.

When α = 0, there is the single equilibrium point y = 0. Then we have f ′(y) = α−3y2 = −3y2,
so f ′(0) = 0 and we can’t determine the nature of the equilibrium solution y = 0 from the
Derivative Test. However, we can see that when α = 0, the differential equation is dy

dx = −y3,
whose solution tends to zero as x becomes infinite in the positive direction. (Look at the slope
field or a phase portrait.) Thus, y = 0 is a sink.

If α is less than zero, then y = 0 is the only equilibrium point because
√

α and −√
α are

imaginary numbers. For this case, we see that f ′(0) = α < 0, so y = 0 is a sink.

However, if α is greater than zero, then the equation has three distinct equilibrium points:
y = 0, y = √

α, and y = −√
α. We see that f ′(0) = α > 0, so y = 0 is a source; f ′(

√
α) = −2α <

0, so y = √
α is a sink; and f ′(−√

α) = −2α < 0, so y = −√
α is also a sink.

Note how the value of α determines the number and the nature of the equilibrium solutions of
our equation. Clearly, α = 0 is the only bifurcation point for our original equation. Figure 2.26
shows two representations of our situation: graphs of f (y) against y for the three descriptions
of α considered above and corresponding phase portraits.

We can also show this dependence of the equilibrium points on α by means of a bifurcation
diagram, in which we plot y against α (Figure 2.27).

�

f ( y)

y
0

� < 0

f ( y)

y
0

� � 0

f ( y)

y
0

� > 0

�� Ö
_

Ö
_

FIGURE 2.26
f (y) = αy − y3 vs. y
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FIGURE 2.27
Bifurcation diagram for dy

dx = αy − y3

There are different kinds of bifurcations. Figure 2.27 shows a pitchfork bifurcation,
named for obvious reasons. (See Problem C1 of Exercises 2.7 for a generalization of this
example.) ■

A laser—the word stands for light amplification by stimulated emission of radiation—is a
marvelous device that produces a beam of intense, concentrated pure light that can be used to
cut diamonds, destroy cancerous cells, perform eye surgery, and enhance telecommunications
when used in fiber optics. Basically, an external energy source is used to excite atoms and
produce photons (light particles) that have the same frequency and phase. A. Schawlow and
C. Townes received a patent for the invention of the laser in 1960, and the first laser was built
by the American physicist T. H. Maiman in the same year. The mathematical model of a laser
that follows is an important scientific example that illustrates another type of bifurcation. It is
more complicated than the previous two examples because the bifurcation behavior depends
on the values of two parameters.

■ Example 2.7.3 A Laser Model That Has a Transcritical Bifurcation
A simplified model of the basic physics behind a laser is given by the equation

ṅ = f (n) = Gn(N0 − n) − kn = (GN0 − k)n − Gn2.

In this equation, n = n(t) represents the number of photons at time t, N0 is the (constant)
number of “excited” atoms (in the absence of laser action), and G and k are positive param-
eters related to the gain and loss, respectively, of photons that have the same frequency and
phase. We emphasize that we have two parameters in our equation, and we will see that our
bifurcation analysis depends on the value of N0 in relationship to them.

We can write the equation as ṅ=n(GN0 − k − Gn), so setting ṅ equal to zero gives us n≡0 or
GN0−k−Gn ≡0. This tells us that the equilibrium solutions are n ≡ 0 and n = (GN0 − k)/G =
N0 − (k/G), where N0 	= k/G.
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Looking at the first equilibrium solution, n ≡ 0, we will see that this equilibrium solution
is a sink when N0 < k/G—that is, when GN0 − k < 0. From the original equation, we have
f (n) = (GN0 − k)n − Gn2, so f ′(n) = (GN0 − k) − 2Gn. Then f ′(0) = GN0 − k < 0, so
n ≡ 0 is indeed a sink by the Derivative Test. Physically, this means that there is no stimulated
emission and no photons are produced that have the same frequency and phase. The laser
device functions like a light bulb. Similarly, we can determine that n ≡ 0 is a source when
N0 > k/G.

Focusing on the second equilibrium point, n = N0 − (k/G), where N0 	= k/G, we see that

f ′
(

N0 − k
G

)
= (GN0 − k) − 2G

(
N0 − k

G

)
= −GN0 + k.

If N0 < k/G, then −GN0 + k > 0 and therefore n = N0 − (k/G) is a source. If N0 > k/G,
then −GN0 + k < 0 and therefore n = N0 − (k/G) is a sink. The physical interpretation
of this last fact is that the external energy source has excited the atoms enough so that some
atoms produce photons that have the same frequency and phase. The device is now producing
coherent light.

Finally, if N0 = k/G, then our original equation reduces to ṅ = −Gn2, so we get only one
equilibrium solution, n ≡ 0, which is a sink if we consider only positive values of n. Because
of this change in the nature and number of equilibrium solutions, we can interpret N0 = k/G
as our bifurcation point (called the laser threshold). The bifurcation diagram (Figure 2.28)
summarizes this model.

The physical interpretation is that when the amount of energy supplied to the laser exceeds a
certain threshold—that is, when N0 > k/G—the “light bulb” has turned into a laser. Notice
that at the bifurcation value N0 = k/G, the two equilibrium solutions merge, and when
they split apart, they have interchanged stability. Such a bifurcation is called a transcritical

Light bulb

Laser

n

k/G N0

FIGURE 2.28
Bifurcation diagram for the laser model 6

6 Adapted from Figure 3.3.3 in S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and
Engineering (Reading, MA: Addison-Wesley, 1994): 55.
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bifurcation. For N0 > k/G, the equilibrium solution n ≡ 0 becomes unstable by transferring
its stability to another equilibrium solution, n = N0 − (k/G), the straight line with slope 1 in
Figure 2.27. ■

Exercises 2.7

A

For each of the following equations in Problems 1–6, (1) sketch all the qualitatively different
graphs of f (x) against x as the parameter c is varied; (2) determine the bifurcation point(s);
and (3) sketch the bifurcation diagram of equilibrium solutions against c.

1.
dx
dt

= x2 − c

2.
dx
dt

= 1 + cx + x2

3.
dx
dt

= x − cx(1 − x)

4.
dx
dt

= x2 − 2x + c

5.
dx
dt

= x(x − c)

6.
dx
dt

= cx − x2

B

1. Consider the logistic equation (see Example 2.5.1) with a constant harvesting (hunting, fishing,

reaping, etc.) rate h :
dP
dt

= P(5 − P) − h. Does there exist a maximum harvest rate h∗ beyond

which the population will become extinct for every initial population P0 = P(0)?
2. Construct the bifurcation diagram for the equation x′ = α − e−x2

, where α > 0.

3. Construct the bifurcation diagram for
dx
dt

= x(c − x2), where c is a parameter.

4. Construct the bifurcation diagram for
dx
dt

= x(x2 − 1 − α), −∞ < α < ∞.

5. Construct the bifurcation diagram for the equation x′ = 3x − x3 − α, where α is a parameter.

C

1. The Landau equation ẋ = (R − Rc)x − kx3, where k and Rc are positive constants and R is a
parameter that may take on various values, is important in the field of fluid mechanics.

a. If R < Rc , show that there is only the equilibrium solution x = 0 and it is a sink.
b. If R > Rc , show that there are three equilibrium solutions, x = 0, x = √

(R − Rc)/k, and
x = √

(R − Rc)/k, and that the first solution is a source while the other two are sinks.
c. Sketch a graph in the R-x plane showing all equilibrium solutions and label each one as a sink or

a source. How would you describe the bifurcation point R = Rc?

2. The following equation occurs in the study of gene activation:

dx
dt

= α − x + 4x2

1 + x2 .
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Here x(t) is the concentration of gene product at time t.

a. Sketch the phase portrait for α = 1.
b. There is a small value of α, say α0, where a bifurcation occurs. Estimate α0 and sketch the

phase portrait for some α in the open interval (0, α0).
c. Draw the bifurcation diagram for this differential equation.

∗2.8 EXISTENCE AND UNIQUENESS OF SOLUTIONS
This is the time to acknowledge that we have been avoiding a very important question: When
we’re trying to solve a differential equation, how do we know whether there is a solution? We
could be looking for something that doesn’t exist—a waste of time, effort, and (these days)
computer resources.

We’ve already noted in Section 1.2 that the equation (y′)2 +1 = 0 has no real-valued solution.
You can easily check that the IVP y′ = 3

2 y1/3, y(0) = 0 has three distinct solutions: y ≡ 0, y =
−x3/2, and y = x3/2.

Calculators and computers can mislead. They may present us with a solution where there
is none. If there are several possible solutions, our user-friendly device may make its own
selection, whether or not it is the one that we want for our problem. A skeptical attitude and
a knowledge of mathematical theory will protect us against inappropriate answers.

First, let’s look at what can happen when we try to solve first-order initial-value problems.
Then we’ll discuss an important result guaranteeing when such IVPs have one and only one
solution.

■ Example 2.8.1 An IVP with a Unique Solution on a
Restricted Domain

We’ll see that for each value of x0, the initial-value problem x′ = 1 + x2, x(0) = x0 has a
unique solution but that this solution does not exist for all values of the independent variable
t. The slope field for this equation (Figure 2.29) gives us some clues.

To see things clearly, we can focus on the initial condition x(0) = 0. There seems to be only
one solution satisfying this condition, but the direction field suggests that the solution curve

may have vertical asymptotes. Separating variables, we see that
∫ dx

1 + x2 = ∫
dt, which gives

us arctan x = t + C, or x(t) = tan(t + C). The initial condition x(0) = 0 implies that C = 0,
so that the solution of the IVP is x(t) = tan t. But this solution’s domain is the open interval
(−π/2, π/2). Recall that the function approaches ±∞ as t → ±π/2. (We say the function
“blows up in finite time.”) Therefore, the unique solution of our IVP doesn’t exist outside the
(time) interval (−π/2, π/2). ■

∗ Denotes an optional section.
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FIGURE 2.29
Slope field for x′ = 1 + x2; −3 ≤ t ≤ 3, −3 ≤ x ≤ 3

Now even if we have determined that a given equation has a solution, a second important
concern is whether there is only one solution. This question is usually asked about solutions
to initial-value problems.

■ Example 2.8.2 An IVP with Infinitely Many Solutions
The nonlinear separable differential equation x′ = x2/3 has infinitely many solutions satisfying
x(0) = 0 on every interval [0, β]. To prove this claim, we actually construct the family of
solutions of the IVP.

For each number c such that 0 < c < β, we can define the function

xc(t) =
⎧⎨
⎩

0 for 0 ≤ t ≤ c

1
27

(t − c)3 c ≤ t ≤ β.

You should verify that each such function satisfies the differential equation with x(0)= 0.
(You should even be able to show that such a function is differentiable at the break point c.)
Because there are infinitely many values of the parameter c, our IVP has infinitely many
solutions. Figure 2.30 shows a few of these solutions with β = 7. ■

2.8.1 An Existence and Uniqueness Theorem
For first-order differential equations, the answers to the existence and uniqueness questions
we have just posed are fairly easy. We have an Existence and Uniqueness Theorem—simple
conditions that guarantee one and only one solution of an initial-value problem.
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Existence and Uniqueness Theorem
Let R be a rectangular region in the x-y plane described by the two inequalities a ≤ x ≤ b
and c ≤ y ≤ d. Suppose that the point (x0, y0) is inside R. Then if f (x, y) and the partial

derivative
∂f
∂y

(x, y) are continuous functions on R, there is an interval I centered at x = x0

and a unique function y(x) defined on I such that y is a solution of the initial-value
problem y′ = f (x, y), y(x0) = y0.
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Figure 2.30
Solutions of the IVP x′ = x2/3, x(0) = 0
The functions xc(t)forc = 1

2 , 1
4 , 1, 2, and

3β = 7, −1 ≤ t ≤ 7

The preceding statement may look a bit abstract, but it is the simplest and probably the
most widely used result that guarantees the existence and uniqueness of a solution of a first-
order initial-value problem. Using this theorem is simple. Take your IVP, write it in the form
y′ = f (x, y), y(x0) = y0, and then examine the functions f (x, y) and ∂f

∂y , the partial derivative of
f with respect to the dependent variable y. (If you don’t know about partial derivatives, see
Section A.7 for a quick introduction.)

Figure 2.31 gives an idea of what such a region R and interval I in the Existence and Uniqueness
Theorem may look like.

y

d

R
a b

c

y (x)

x0
x

I

(x0, y0)

FIGURE 2.31
Region of existence and uniqueness: R = {

(x, y)|a ≤ x ≤ b, c ≤ y ≤ d
}
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It’s important to make the following comments about this fundamental theorem:

1. If the conditions of our result are satisfied, then solution curves for the IVP can never
intersect. (Do you see why?)

2. If f (x, y) and ∂f /∂y happen to be continuous for all values of x and y, our result does
not say that the unique solution must be valid for all values of x and y.

3. The continuity of f (x, y) and ∂f /∂y are sufficient for the existence of solutions, but they
may not be necessary to guarantee existence. This means that you may have solutions
even if the continuity condition is not satisfied.

4. Note that this is an existence theorem, which means that if the right conditions are
satisfied, you can find a solution, but you are not told how to find it. In particular,
you may not be able to describe the interval I without actually solving the differential
equation.

The significance of these remarks will be explored in some of the following examples and in
some of the problems in Exercises 2.8. First, let’s apply the Existence and Uniqueness Theorem
to IVPs involving first-order linear ODEs.

■ Example 2.8.3 Any “Nice” Linear IVP Has a Unique Solution
Because linear equations model many important physical situations, it’s important to know
when such equations have unique solutions. We show that if P(x) and Q(x) are continu-

ous (“nice”) on an interval (a, b) containing x0, then any IVP of the form
dy
dx

+ P(x)y =
Q(x), y(x0) = y0, has one and only one solution on (a, b).

In terms of the Existence and Uniqueness Theorem, we have

f (x, y) = −P(x)y + Q(x) and
∂f
∂y

(x, y) = −P(x).

But both P(x) and Q(x) are assumed continuous on the rectangle R = {
(x, y)|a ≤ x ≤ b,

c ≤ y ≤ d
}

for any values of c and d, and f (x, y) is a combination of continuous functions.
(There are no values of x and y that give us division by zero or an even root of a negative
number, for example.) The conditions of the theorem are satisfied, and so any IVP of the form
described previously has a unique solution.

In Section 2.2 we showed how to find a solution of a linear differential equation explicitly.
Now we see that, given an appropriate initial condition, we have learned how to find the
unique solution. ■

Now let’s go back to re-examine examples we discussed earlier.

■ Example 2.8.4 Example 2.8.1 Revisited
Assume that x is a function of the independent variable t. If we look at the IVP x′ = 1+x2,
x(0) = x0, in light of the Existence and Uniqueness Theorem, we see that f (t, x) = 1 + x2, a
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function of x alone that is clearly continuous at all points (t, x), and
∂f
∂x

= 2x, also continuous

for all (t, x).

The conditions of the theorem are satisfied, and so the IVP has a unique solution. But even

though both f (t, x) and
∂f
∂x

are continuous for all values of t and x, we know that any unique

solution is limited to an interval(
(2n − 1)π

2
,
(2n + 1)π

2

)
, n = 0, ±1, ±2, ±3, . . . ,

separating consecutive vertical asymptotes of the tangent function. (Go back to look at the
one-parameter family of solutions for the equation, and see comment 2 that follows the
statement of the Existence and Uniqueness Theorem.) ■

Next, we scrutinize Example 2.8.2 in light of the Existence and Uniqueness Theorem.

■ Example 2.8.5 Example 2.8.2 Revisited
Here, we have the form x′ = x2/3 = f (x), with x(0) = 0, so we must look at f (x) and ∂f

∂x .

But ∂f
∂x = f ′(x) = 2

3 x−1/3 = 2
3 3√x

, which is not continuous in any rectangle in the t-x plane

that includes x = 0 (that is, any part of the t-axis). Therefore, we shouldn’t expect to have
both existence and uniqueness on an interval of the form [0, β]—and in fact we don’t have
uniqueness, as we saw.

However, if we avoid the t-axis—that is, if we choose an initial condition x(t0) = x0 	= 0—
then the Existence and Uniqueness Theorem guarantees that there will be a unique solution
for the IVP. Figure 2.32a shows the slope field for the autonomous equation x′ = x2/3 in the
rectangle −1 ≤ t ≤ 5, 0 ≤ x ≤ 3. This rectangle includes part of the t-axis, and it is easy to
visualize many solutions starting at the origin, gliding along the t-axis for a little while, and
then taking off. Figure 2.30 shows some of these solution curves.
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FIGURE 2.32a
Slope field for x′ = x2/3, −1 ≤ t ≤ 5, 0 ≤ x ≤ 3
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FIGURE 2.32b
Slope field for x′ = x2/3, −1 ≤ t ≤ 5, 1 ≤ x ≤ 3
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Figure 2.32b, on the other hand, shows what happens if we choose a rectangle that avoids
the t-axis. It should be clear that if we pick any point (t0, x0) in this rectangle, there will be
one and only one solution of the equation that passes through this point. ■

Exercises 2.8

A

For each of the following initial value Problems 1–8, determine a rectangle R in the appropriate
plane (x-y, t-x, etc.) for which the given differential equation would have a unique solution
through a point in the rectangle. Do not solve the equations.

1.
d x
d t

= 1
x

, x(0) = 3

2.
d y
d t

= 5
4

y1/5, y(0) = 0

3. t
dx
dt

= x, x(0) = 0

4. y′ = − t
y

, y(0) = 0.2

5. y′ = t
1 + t + y

, y(−2) = 1

6. x′ = tan x, x(0) = π

2

7. (1 + t)
dy
dt

= 1 − y

8. y′ = x + y
x − y

9. What is the length of the largest interval I on which the IVP y′ = 1 + y2, y(0) = 0 has a solution?
10. Show that y ≡ −1 is the only solution of the IVP y′ = t (1 + y), y(0) = −1.

11. What is the solution to the IVP
dx
dt

= x2/3, x(0) = x0 if x0 < 0? Compare your answer to the

answer(s) in Example 2.8.2. What has changed?

B

1. Look at the IVP Q′ = |Q − 1|, Q(0) = 1.

a. Explain why the conditions of the Existence and Uniqueness Theorem do not hold for this
equation.

b. Guess at a solution of this initial value problem.

c. Explain why the solution you found in part (b) is unique.

2. Consider the equation ẏ = √|y| + k, where k is a positive constant.

a. Solve the equation. (You will get an implicit solution.)

b. For what initial values (t0, y0) does the equation have a unique solution?

c. For what values of k ≤ 0 does the equation have unique solutions?



94 CHAPTER 2: First-Order Differential Equations

3. The parabola y = x2 and the line y = 2x − 1 are both solutions of the equation y′ = 2 x − 2
√

x2 − y
and satisfy the initial condition y(1) = 1. Does this contradict the Existence and Uniqueness
Theorem?

4. Consider the equation
dy
dx

+ x2y3 = cos x.

a. Does this equation have a unique solution passing through any point (x0, y0)?

b. Try to solve the equation using the ODE solver in your CAS. Comment on the result.

C

1. Consider the initial value problem
dy
dx

= P(x)y2 + Q(x)y, y(2) = 5, where P(x) and Q(x) are

third-degree polynomials in x. Does this problem have a unique solution on some interval
|x − 2| ≤ h around x = 2? Explain why or why not.

2. Consider the nonlinear equation
dx
dt

= (α − x)(β − x), where α and β are positive constants. (See

Example 2.1.7.) Without solving the equation, show that the solution of any IVP involving this
equation is unique.

3. Consider the equilibrium solution P ≡ b of the logistic equation (Section 2.5)
dP
dt

= k P(b − P),

where k and b are positive constants. Is it possible for a solution near P ≡ b to reach (i.e., equal) this
solution for a finite value of x? [Hint : Use the uniqueness part of the Existence and Uniqueness
Theorem.]

4. Why can’t the family of curves shown in the following be the solution curves for the differential
equation y′ = f (t, y), where f is a polynomial in t and y?

t

y

5. Example 2.8.3 indicates that the linear IVP y′ = y, y(0) = 1 has a unique solution. Ignoring the fact
that you can actually solve this equation, prove the following properties of y(t):

a. For all real values of t, y(t) y(−t) = 1.
b. y(t) > 0 for all real numbers t.
c. For all real numbers t1 and t2, y(t1 + t2) = y(t1) · y(t2).

6. Suppose that a differential equation is a model for a certain type of chemical reaction. Could the
fact that the equation does not have a solution indicate that the reaction cannot take place? Would
the fact that the equation has a solution guarantee that the reaction does take place?
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SUMMARY

Perhaps the easiest type of first-order ODE to solve is a separable equation, one that can be

written in the form
dy
dx

= f (x)g(y), where f denotes a function of x alone and g denotes a

function of y alone. “Separating the variables” leads to the equation
∫ dy

g(y)
= ∫

f (x)dx. It is

possible that you cannot carry out one of the integrations in terms of elementary functions or
you may wind up with an implicit solution. Furthermore, the process of separating variables
may introduce singular solutions.

Another important type of first-order ODE is a linear equation, one that can be written in the
form a1(x)y′ + a0(x)y = f (x), where a1(x), a0(x), and f (x) are functions of the independent

variable x alone. The standard form of such an equation is
dy
dx

+ P(x)y = Q(x). The equation

is called homogeneous if Q(x) ≡ 0 and nonhomogeneous otherwise. Any homogeneous
linear equation is separable.

After writing a first-order linear equation in the standard form
dy
dx

+P(x)y = Q(x), we introduce

an integrating factor, μ(x) = e
∫
P(x)dx, multiply each side of the equation by μ(x), and see that

the equation can be written as
d
dx

(e
∫
P(x)dx y) = e

∫
P(x)dxQ(x). Integrating each side and then

multiplying by e− ∫
P(x)dx, we get an explicit formula:

y = e− ∫
P(x)dx ·

∫
e
∫

P(x)dxQ(x)dx + Ce− ∫
P(x)dx.

A typical first-order differential equation can be written in the form
dy
dx

= f (x, y). Graphically,

this tells us that at any point (x, y) on a solution curve of the equation, the slope of the tangent
line is given by the value of the function f at that point. We can outline the solution curves
by using possible tangent line segments. Such a collection of tangent line segments is called
a direction field or slope field of the equation. The set of points (x, y) such that f (x, y)=C,
a constant, defines an isocline, a curve along which the slopes of the tangent lines are all the
same (namely, C). In particular, the nullcline (or zero isocline) is a curve consisting of points
at which the slopes of solution curves are zero. A differential equation in which the indepen-
dent variable does not appear explicitly is called an autonomous equation. If the independent
variable does appear, the equation is called nonautonomous. For an autonomous equation,
the slopes of the tangent line segments that make up the slope field depend only on the values
of the dependent variable. Graphically, if we fix the value of the dependent variable, say x, by
drawing a horizontal line x = C for any constant C, we see that all the tangent line segments
along this line have the same slope, no matter what the value of the independent variable,
say t. Another way to look at this is to realize that we can generate infinitely many solutions
by taking any one solution and translating (shifting) its graph left or right. Even when we
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can’t solve an equation, an analysis of its slope field can be very instructive. However, such a
graphical analysis may miss certain important features of the integral curves, such as vertical
asymptotes.

An autonomous first-order equation can be analyzed qualitatively by using a phase line or
phase portrait. For an autonomous equation, the points x such that dy

dx = f (x) = 0 are
called critical points. We also use the terms equilibrium points, equilibrium solutions, and
stationary points to describe these key values. There are three kinds of equilibrium points for
an autonomous first-order equation: sinks, sources, and nodes. An equilibrium solution y
is a sink (or asymptotically stable solution) if solutions with initial conditions “sufficiently
close” to y are asymptotic to y as the independent variable tends to infinity. On the other
hand, if solutions “sufficiently close” to an equilibrium solution y are asymptotic to y as
the independent variable tends to negative infinity, then we call y a source (or unstable
equilibrium solution). An equilibrium solution that shows any other kind of behavior is
called a node (or semistable equilibrium solution). A simple (but not always conclusive)
test is as follows:

If x∗ is an equilibrium point for the equation dx
dt = f (x), it is true that (1) if f ′(x∗) > 0,

then x∗ is a source; (2) if f ′(x∗) < 0, then x∗ is a sink; and (3) if f ′(x∗) = 0, then we can’t
tell what sort of equilibrium point x∗ may be without further investigation.

Suppose that we have an autonomous differential equation with a parameter α. A bifurcation
point α0 is a value that causes a change in the nature of the equation’s equilibrium solutions
as α passes through the value α0.

When we are trying to solve a differential equation, especially an initial-value problem, it is
important to understand whether the problem has a solution and whether any solution is
unique. There are simple conditions that guarantee that there is one and only one solution of
an initial-value problem:

Let R be a rectangular region in the x-y plane described by the two inequalities a ≤
x ≤ b, c ≤ y ≤ d. Suppose that the point (x0, y0) is inside R. Then, if f (x, y) and ∂f

∂y are
continuous functions on R, there is an interval I centered at x = x0 and a unique function
y(x) defined on I such that y is a solution of the initial-value problem y′ = f (x, y), y(x0) = y0.

PROJECT 2-1
The Price Is Right
Let p(t), s(t), and d(t) denote the price, supply, and demand of a commodity at time t. Allen’s
Speculative Model in economics assumes that s and d are linear functions in p(t) and p′(t):

s(t) = a1p(t) + a2p′(t) + a3 (*)

d(t) = b1p(t) + b2p′(t) + b3, (**)
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where the a′
is and b′

is are constants.

The Economic Principle of Supply and Demand, which guarantees a state of dynamic
equilibrium, is

d(t) = s(t). (***)

a. By combining (*), (* *), and (* * *), find a single linear differential equation
involving p(t).

b. Assuming that a1 	= b1, a2 	= b2, and a3 	= b3, solve the equation you found in part
(a) with the initial condition p(0) = p0.

c. Interpret the solution in economic terms if p0 = a3 − b3

b1 − a1
.

d. Suppose that
b1 − a1

b2 − a2
> 0. What happens to the price as t increases without bound?

e. Suppose that
b1 − a1

b2 − a2
< 0. Now what happens to the price as t increases without

bound?

f. Suppose that s(t) = 30 + p(t) + 4p′(t) and d(t) = 48 − 2p(t) + 3p′(t), where s and d
are given in thousands of units. If p(0) = 10 monetary units, find the price at any later
time t. What happens to the price as t increases?

PROJECT 2-2
Cultured Perils
A continuous culture device, or chemostat, is a well-stirred vessel that contains microorgan-
isms and into which fresh medium (nutrient) is pumped at a constant rate F. The contents
of the growth vessel are pumped out at the same rate, so the volume V remains constant.
Microbiologists and ecologists use the chemostat as a laboratory simulation of an aquatic
environment, and it has also been used to model the waste water treatment process. (See the
accompanying schematic diagram.)

Growth
vessel

Volume V
Nutrient
reservoir F

F
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Around 1950, the biologist Jacob Monod developed a mathematical model7 for the contin-
uous culture of a single species of microorganism whose growth is dependent solely on a
single nutrient supplied at a constant rate via the input to the growth vessel.

Chemostat experiments8 with a certain strain of Escherichia coli (E. coli) led to the particular
equation

dx
dt

=
(

0.81(10 − x)
3 + (10 − x)

− D
)

x (*)

where x(t) denotes the concentration of the organism at time t; and D = F
V , the pump rate

divided by the volume, is a parameter under control of the experimenter.

We want to study the effects of varying D. Intuition suggests that if the pump is allowed to
run too fast, then the E. coli will eventually approach extinction in the chemostat because
they are being pumped out at a faster rate than they can grow and reproduce. On the other
hand, if the pump is run slowly enough, the E. coli should be able to grow at a rate sufficient
to overcome washout and should be able to thrive in the growth vessel indefinitely.

Our problem is to determine which values of D result in extinction and which result in
survival. This can be done by studying Equation (*), treating D as a bifurcation parameter
(see Section ∗2.7).

a. Using technology, study solutions to Equation (*) for parameter values of 0.8, 0.7,
0.4, and 0.5. For each choice of D, use several different initial conditions x0. What are
your observations?

b. Find the equilibrium solutions x̂ as a function of the parameter D and determine
whether they are sinks, sources, or nodes. (Assume that the only meaningful
equilibrium solutions are those for which 0 ≤ x̂ ≤ 10.) Construct the bifurcation
diagram for Equation (*). (See Section ∗2.7.) At what value of D does a bifurcation
occur? Explain the significance of this bifurcation with regard to the fate of the E. coli.

c. Use technology to test the validity of your bifurcation analysis in part (b) by
examining the solutions of Equation (*) again, choosing various values of D very
close to the bifurcation value you found in part (b). Are your observations as
expected?

d. Assuming that the growth vessel is kept at a volume of 20 liters, at what speed should
the chemostat pump be run in order to maintain a steady-state E. coli population of
8μg/liter? A population of 4.5μg/liter?

7 J. Monod, “La technique de culture continue: Théorie et applications,” Annales de L’Institut Pasteur 79 (1950): 390–410.
8 S. R. Hansen and S. P. Hubbell, “Single Nutrient Microbial Competition: Agreement Between Experimental and Theoretically Forecast
Outcomes,” Science 20 (1980): 1491–1493.



CHAPTER 3

The Numerical Approximation of Solutions

INTRODUCTION

Historically, numerical methods of working with differential equations were developed when
some equations could not be solved analytically—that is, with their solutions expressed in
terms of elementary functions. Over the past 300 years, mathematicians and scientists have
learned to solve more and more types of differential equations. However, today there are still
equations that are impossible to solve in closed form (for instance, Example 2.1.5). In fact,
very few differential equations that arise in applications can be solved exactly; and, perhaps
more important, even solution formulas often express the solutions implicitly via complicated
combinations of the solution and the independent variable that are difficult to work with. Take
a look back at the solution in Example 2.4.4, for instance. In this chapter we will describe some
ways of getting an approximate numerical solution of a first-order IVP y′ = f (x, y), y(x0) = y0.
This means being able to calculate approximate values of the solution function y by some
process requiring a finite number of steps, so that at the end of this step-by-step process we are
reasonably close to the “true” answer. Graphically, we are trying to approximate the solution
curve with a simpler curve, usually a curve made up of straight line segments.

The very nature of what we will be trying to do contains the notion of error, the discrepancy
between a true value and its approximate value. Error is what stands between reality and
perfection. It is the static in our telephone line, the wobble in a kitchen chair, a slip of the
tongue. Although there are various ways to measure error, we will focus on absolute error,
which is defined by the quantity |true value − approximation|, the absolute value of the
difference between the exact value and the approximate value. We’ll have more to say about
error in the following sections.

Let’s see how all this applies to a first-order IVP y′ = f (x, y), y(x0) = y0.

3.1 EULER’S METHOD
One of the easiest methods of obtaining an approximation to a solution curve is attributed to
the mathematician Euler. He used this approach to solve differential equations around 1768.

Copyright © 2009, Elsevier Inc. 99
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A modern way of expressing his idea is to say that he used local linearity. Geometrically, this
simply refers to the fact that if a function F is differentiable at x = x0 and we “zoom” in on the
point (x0, F(x0)) lying on the curve y = F(x), then we will think we’re looking at a straight line
segment. Numerically, we’re saying that if we have a straight line tangent to a curve y = F(x) at
a point (x0, F(x0)) = (x0, y0), then for a value of x close to x0, the corresponding value on the
tangent line is approximately equal to the value on the curve. In other words, we can avoid
the complexity of dealing with values on what may be a complicated curve by dealing with
values on a straight line. (See Section A.1 for more details on this topic.)

Using the familiar “point-slope” formula for the equation of a straight line, we can derive the
equation of the line T tangent to the curve y = F(x) at the point (x0, y0):

T(x) = F′(x0)(x − x0) + F(x0) = y′(x0)(x − x0) + y0. (3.1.1)

Now we can express the idea of local linearity by writing

y(x)︸︷︷︸
value on the curve

≈ y′(x0)(x − x0) + y0︸ ︷︷ ︸
value on the tangent line

where the symbol ≈ means “is approximately equal to.” Figure 3.1 shows what we are saying.

Note that because the curve we’re using as an illustration is concave down near the point
(x0, y0), the tangent line lies above the curve here, so the value T(x) given by the tangent line
is greater than the true value y(x) for x near x0.

Now let’s look at an IVP y′ = f (x, y), y(x0) = y0 so that we can write y′
0 = y′(x0) = f (x0, y0).

In what follows, we assume that there is a unique solution ϕ in some interval containing
x0. Suppose we want to know the height of the solution curve corresponding to a value x1

that is close to x0, but to the right of x0. We can describe such a new value of the independent
variable as x1 = x0 + h, where h > 0 is the size of a small “step.” Now let’s try to approximate

y

xx

(x, T (x))

(x, F (x))

T (x) 5 y

y 5 F (x)

x0

Error

( x0, y0 )

FIGURE 3.1
Local linearity
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ϕ(x1), a value on the actual solution curve, by some value y1 on the tangent line to y = ϕ(x)
at x0:

ϕ(x1) ≈ y1 = ϕ′(x0)(x1 − x0) + y0

= f (x0, y0)(x0 + h − x0) + y0

= f (x0, y0) · h + y0.

Therefore, we can write

ϕ(x1) ≈ y1 = f (x0, y0) · h + y0

and we have a good local linear approximation of ϕ(x) at x = x1 if we choose h small enough.
Figure 3.2 illustrates what’s going on.

We can repeat the process using (x1, y1) as our jumping-off point, realizing that the value y1

is only an approximation. Using Equation (3.1.1) again, with (x0, y0) replaced by (x1, y1), we
see that the line through (x1, y1) with slope equal to f (x1, y1) has y values given by

f (x1, y1)(x − x1) + y1. (3.1.2)

We should realize that the point (x1, y1) is not expected to be on the actual solution curve, so
in general f (x1, y1) 	= f (x1, ϕ(x1)), the slope of the actual solution at x1.

For convenience, suppose that we want to approximate the solution curve’s height corre-
sponding to a value x2 that is the same distance from x1 as x1 is from x0. That is, we take a
step to the right of size h : x2 = x1 + h = (x0 + h) + h = x0 + 2h. We can approximate ϕ(x2),
the actual value of the solution function at x = x2, by using Equation (3.1.2):

ϕ(x2) ≈ y2 = f (x1, y1) · h + y1.

Similarly, for x3 = x2 + h = (x0 + 2h) + h = x0 + 3h, we approximate ϕ(x3) as follows:

ϕ(x3) ≈ y3 = f (x2, y2) · h + y2.

y

x

( x1, y1 ) 5 ( x1, y' (x0 ) h1y0 )

x15 x01hx0

y 5�(x)

( x1, �(x1 ))
( x0, y0 )

Error

h

FIGURE 3.2
A local linear approximation of a solution
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y

xx0 x1 x2 x3

slope � f ( x0, y0 )

slope � f ( x1, y1 )
slope � f ( x3, y3 )

Actual
solution

( x1, y1 )

( x2, y2 )
( x3, y3 )

( x3, �(x3 ))
( x2, �(x2 ))

( x1, �(x1 ))

( x0, y0 )

y ��(x)

hh h

FIGURE 3.3
A three-step linear approximation

Figure 3.3 shows what we are doing.

Continuing in this way, we generate a sequence of approximate values y1, y2, y3, . . . , yn for the
solution function ϕ at various equally spaced points x1, x2, x3, . . . , xn:

yk+1︸︷︷︸
new approx. value

= yk︸︷︷︸
old approx. value

+ h︸︷︷︸
step size

·f (xk, yk), (3.1.3)

where xk = x0 + kh, k = 0, 1, . . . , n. If you go back through the derivation, you’ll realize that
Formula (3.1.3) is valid for h < 0 also. Note that if the points xk are equally spaced with step
size h and we want to get from (x0, y0) to (x∗, y∗) along the approximating polygonal curve,
then we must have n = x∗−x0

h steps. For example, if we start at x0 = 2 and want to approximate
ϕ(2.7) using steps of size h = 0.1, we can reach x∗ = 2.7 by taking n = 2.7−2

0.1 = 7 steps. In
practice, once we have chosen the step size h, the number of steps needed, n, will be obvious.

If we stand back from all these equations and look at Figures 3.2 and 3.3 again, we can
see that what we are doing is using the slope field for our IVP as a set of stepping stones.
We “walk” on a tangent line segment for a short distance, stop to look forward for the next
step, jump to that step, and so on. We are approximating the flow of the solution curve
by using flat rocks set into the “stream.” If you play “connect the dots” with the points
(x0, y0), (x1, y1), (x2, y2), . . . , (xn, yn), you see a polygonal line (called the Euler polygon or the
Cauchy-Euler polygon) that approximates the actual solution curve. Figure 3.4 shows this
for the initial-value problem y′ = x2 + y, y(0) = 1, where we try to approximate y(1) with
different step sizes h = 1, 0.5, and 0.25.

We can look at this approximation process, Formula (3.1.3), in another geometrical way.
Suppose we have the differential equation y′ = f (x, y). Then the Fundamental Theorem of
Calculus tells us that

yk+1 − yk ≈ y(xk+1) − y(xk) =
xk+1∫
xk

y′(x)dx =
xk+1∫
xk

f (x, y)dx.
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x

y (x)

h 5 0.25

h 5 0.5

h 5 1

y

0.2

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3

10.4 0.6 0.8

FIGURE 3.4
The actual solution of the IVP y′ = x2 + y, y(0) = 1, and three Euler approximations (h = 1, 0.5, and 0.25) on the
interval [0, 1]

Y

xxk xk11

yk

f (xk’ yk)

Y 5 f (x, y (x))

h

FIGURE 3.5
Approximation of an integral by a rectangular area

But Formula (3.1.3) requires us to replace yk+1 − yk by h · f (xk, yk). This means that we are
approximating

∫ xk+1
xk

f (x, y)dx by h · f (xk, yk). Figure 3.5 shows the geometry of the situation
in the interval [xk, xk+1].
We have approximated the area under the curve Y = f (x, y(x)) by the area of the shaded
rectangle—a rectangle formed by using the height of the curve at the left-hand endpoint of
the interval. Thus, Euler’s method amounts to using a (left-hand) Riemann sum approximation
to the area under a curve.

If y is the solution of the equation y′ = f (x, y), we can view Euler’s method in yet another way
by considering the Taylor expansion of y(x) about x = xk (see Section A.3):

y(xk+1) = y(xk) + y′(xk)h + y′′(ξk)
h2

2
= y(xk) + f (xk, y(xk))h︸ ︷︷ ︸

yk+1

+y′′(ξk)
h2

2

with xk < ξk < xk+1. Assuming that y(x) has a bounded second derivative and realizing that
h2 < h for small values of h, we see that Euler’s method is essentially using a first-degree
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Taylor polynomial to approximate the solution curve:

y(xk+1) ≈ y(xk) + f (xk, y(xk))h.

The approximation processes we have been describing (and will describe later in this chapter)
are subject to two basic kinds of error: truncation error, which occurs when we stop (or
truncate) an approximation process after a certain number of steps, and propagated error,
the accumulated error resulting from many calculations with rounded values. (See Section A.3
for further remarks about these types of errors.) We must be aware that there is usually a trade-
off in dealing with error. If we try to reduce the truncation error and increase the accuracy
of our approximation by carrying out more steps (for example, by taking more terms of a
Taylor series or more steps in Euler’s method), we are increasing our calculation load and
consequently running the risk of increasing propagated error. Figure 3.6 shows the trade-off in
general terms.

Clearly, at each stage of Euler’s method, we choose to round off entries in a certain way.
Even if we assume for the sake of simplicity that round-off error is negligible, our use of
local linearity—using straight lines to approximate curves—introduces truncation error. Now
suppose that we are given the value, y(x0), of a solution at an initial point and want to
approximate the value, y(b), at some later point b = x0 + nh. First, there is local truncation
error at each step, defined as y(xk+1) − yk+1 for each k(k = 0, 1, 2, . . . , n − 1). This is the error
introduced in computing the value yk+1 from the value yk, assuming that yk is exact. Then we
have the cumulative truncation error, defined as y(b) − yn = y(xn) − yn which is the (total)
actual error in the value of y(x0+nh), or y(b), caused by all the previous approximations—that
is, by the cumulative effect after n steps of the local errors from previous steps. (This is not
just the sum of all the local truncation errors. Life isn’t that simple.)

In any case, a mathematically rigorous analysis of the errors produced shows that the local
truncation error at any step of Euler’s method behaves like a constant multiple of h2, which is smaller
than h when h is small:

|local truncation error at step k| = |y(xk+1) − yk+1| ≤ M
2

h2,

Total error

Round-o

ff
er

ro
r

Truncation error

Number of steps or terms

Error

FIGURE 3.6
Total error = round-off error + truncation error
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where M = max
xk<x<xk+1

|y′′(x)|. This follows easily from the Taylor series expansion

y(xk+1) = y(xk) + f (xk, y(xk))h︸ ︷︷ ︸
yk+1

+y′′(ξk)
h2

2

given previously.

It is also true that for Euler’s method, the cumulative truncation error is no greater than a
constant multiple of the step size h:

|true value − approximation| = |y(b) − yn| ≤ K · h,

where K is independent of h but depends on |y′′(x)| and the interval [x0, b]. Because the
cumulative error is bounded by a constant multiple of the first power of the step size h, we say
that Euler’s method is a first-order method. (The number K is a maximum bound. In practice,
the actual error incurred in a problem will usually be less than this bound.) Intuitively, we can
reason as follows: There are n = b−x0

h steps in the Euler method approximation, each having
a local error less than or equal to some multiple of h2. If K∗ is the largest of the multipliers,
then the cumulative error is less than or equal to b−x0

h · K∗h2 = Kh.

Therefore, if we ignore round-off error as essentially a statistical problem outside our range of
interest right now, we can make the total error as small as we wish by making h “sufficiently
small”—that is, by making the number of steps “sufficiently large.” This is not very satisfactory
because a larger number of steps does require more calculating time by hand or by computer,
and in real-life problems, the larger number of steps often leads to a “snowballing” of round-
off error. Take another look at Figure 3.6.

If you want to understand and improve the accuracy of your approximations, here are two
rules of thumb you can use: (1) Start your calculations with many more decimal places than
you need. (2) Keep on redoing your calculations with a step size h equal to one-half its
previous value. If you reach a stage at which the new result agrees with the previous one to
d decimal places after appropriate rounding, then you can assume that you have d decimal
place accuracy. (Look at Example 3.1.4 for a slight variation of this rule.)

Euler’s method is not very accurate and is not used widely in practice. But the method is
simple and displays the essential characteristics of more sophisticated methods. In the next
section we discuss an improved method, one that uses Euler’s basic idea in a more efficient
way.

This is enough theory for now. Let’s see how this “method of tangents” works with a simple
initial-value problem.

■ Example 3.1.1 Euler’s Method with Error Analysis
Suppose we’re given the IVP dx

dt = t2 + x, x(1) = 3. We want to use Euler’s method to
approximate x(1.5).
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This is a first-order linear equation whose particular solution for the initial condition x(1) = 3
is x(t) = −t2 −2t −2+8et−1. (Verify this.) Thus, the actual value of x(1.5) is −(1.5)2 −2(1.5)−
2 + 8e(1.5)−1 = 5.939770 . . . . We’ll use the actual value to see how good an approximation
Euler’s method gives us.

In our problem, f (t, x) = t2 + x, so Euler’s formula (3.1.3) becomes

xk+1 = xk + h · (t2
k + xk), (3.1.4)

where tk = t0 + kh, k = 0, . . . , n, t0 = 1, and x0 = 3. (By now you should be comfortable
with the switch from the traditional x-y coordinates to t-x coordinates.) Suppose we take
h = 0.1—that is, our step size is one-tenth of a unit. Because our target t = 1.5 is 0.5 unit
away from our initial point t = 1, we’ll need n = 5 steps of size h = 0.1 to reach this with
Euler’s process (Figure 3.7).

Using Formula (3.1.4), let’s generate our approximate values, stepping from t = 1 to t = 1.5:

x1 = x0 + (0.1)(t2
0 + x0) = 3 + (0.1)(12 + 3) = 3.40

x2 = x1 + (0.1)(t2
1 + x1) = 3.40 + (0.1)(1.12 + 3.4) = 3.861

x3 = x2 + (0.1)(t2
2 + x2) = 3.861 + (0.1)(1.22 + 3.861) = 4.3911

x4 = x3 + (0.1)(t2
3 + x3) = 4.3911 + (0.1)(1.32 + 4.3911) = 4.99921

x5 = x4 + (0.1)(t2
4 + x4) = 4.99921 + (0.1)(1.42 + 4.99921) = 5.695131.

Thus, Euler’s method gives the approximation 5.695131 for the value x(1.5). In this example,
the absolute error is |true value − approximation| = |5.939770 − 5.695131| = 0.244639.

x

t0 5 1

(1, 3)

(1.1, x(1.1))
(1.2, x(1.2))

(1.3, x(1.3))
(1.4, x(1.4))

(1.5, x(1.5))

Actual
solution x(t)

t1 5 1.1 t2 5 1.2 t3 5 1.3 t4 5 1.4 t5 5 1.5 t

(1.1, x1)
(1.2, x2)

(1.3, x3)
(1.4, x4)

(1.5, x5)

FIGURE 3.7
A five-step approximation
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Table 3.1 Euler’s Method for dx
dt = t2 + x, x(1) = 3,

with h = 0.05

k tk xk True Value Absolute Error

0 1 3.000000 3.000000 0.00000

1 1.05 3.200000 3.207669 0.00767

2 1.1 3.415125 3.431367 0.01624

3 1.15 3.646381 3.672174 0.02579

4 1.2 3.894825 3.931222 0.03640

5 1.25 4.161567 4.209703 0.04814

6 1.3 4.447770 4.508870 0.06110

7 1.35 4.754658 4.830040 0.07538

8 1.4 5.083516 5.174598 0.09108

9 1.45 5.435692 5.543997 0.10831

10 1.5 5.812602 5.939770 0.12717

If we try again, using a step size only half the size of the step we used before—that is, using a
step size h = 0.05—it will take twice as many steps to bridge the gap between the initial value
t = 1 and the final value t = 1.5. Table 3.1 shows the result of a spreadsheet calculation of
Euler’s method for this new sequence of steps. If you have access to a spreadsheet program,
you’ll find it fairly easy to use it to set up Euler’s method.

Note that the number of calculations (steps) has doubled, but the absolute error has been
cut almost in half. Also note the cumulative growth of the error in the last column.

If we cut the step size in half again, working with h = 0.025 this time, we can see a pattern
emerging (Table 3.2).

Note that the absolute error increases as a function of k, the number of steps. Furthermore, the
differences between successive errors are increasing slightly. For example, if you subtract the
error for k = 9 from the error corresponding to k = 10, you get 0.0030, whereas subtracting
the k = 10 error from the k = 11 error yields 0.0032.

If this error pattern seems vaguely familiar, it may be because you have seen error analysis
applied to left- and right-hand Riemann sum approximations in calculus. ■

Let’s try another problem. Practice makes perfect—or at least we can approximate perfection.
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Table 3.2 Euler’s Method for dx
dt = t2+x, x(1) = 3, with

h = 0.025

k tk xk True Value Absolute Error

0 1 3.000000 3.000000 0.0000

1 1.025 3.100000 3.101896 0.0019

2 1.05 3.203766 3.207669 0.0039

3 1.075 3.311422 3.317448 0.0060

4 1.1 3.423098 3.431367 0.0083

5 1.125 3.538926 3.549563 0.0106

6 1.15 3.65904 3.672174 0.0131

7 1.175 3.783578 3.799345 0.0158

8 1.2 3.912683 3.931222 0.0185

9 1.225 4.046500 4.067957 0.0215

10 1.25 4.185178 4.209703 0.0245

11 1.275 4.32887 4.356620 0.0277

12 1.3 4.477733 4.508870 0.0311

13 1.325 4.631926 4.666620 0.0347

14 1.35 4.791615 4.830040 0.0384

15 1.375 4.956968 4.999306 0.0423

16 1.4 5.128158 5.174598 0.0464

17 1.425 5.305362 5.356098 0.0507

18 1.45 5.488761 5.543997 0.0552

19 1.475 5.678543 5.738489 0.0599

20 1.5 5.874897 5.939770 0.0649

■ Example 3.1.2 Euler’s Method with Error Analysis
Consider the IVP dy

dt = 1
t , y(1) = 0, and suppose we want to approximate y(2).

You should recognize the solution of this IVP as y = ln t, so we’re really trying to approxi-
mate ln 2 = 0.69314718056 . . . . (Hint: If you check this “exact” answer on your calculator
or CAS, realize that these devices are using very sophisticated approximation methods
themselves!)
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If we take h = 0.05, we’ll need 20 steps to stretch from t = 1 to t = 2. In our example, Euler’s
method gives us the formula

yk+1 = yk + 0.05
tk

for tk = 1 + 0.05 k(k = 0, . . . , 20). Table 3.3 gives the results.

Table 3.3 Euler’s Method for dy
dt = 1

t , y(1) = 0, with h =
0.05

k tk yk True Value Absolute Error

0 1 0.000000 0.000000 0.00000

1 1.05 0.050000 0.048790 0.00121

2 1.1 0.097619 0.095310 0.00231

3 1.15 0.143074 0.139762 0.00331

4 1.2 0.186552 0.182322 0.00423

5 1.25 0.228219 0.223144 0.00507

6 1.3 0.268219 0.262364 0.00585

7 1.35 0.306680 0.300105 0.00658

8 1.4 0.343717 0.336472 0.00724

9 1.45 0.379431 0.371564 0.00787

10 1.5 0.413914 0.405465 0.00845

11 1.55 0.447247 0.438255 0.00899

12 1.6 0.479506 0.470004 0.00950

13 1.65 0.510756 0.500775 0.00998

14 1.7 0.541059 0.530628 0.01043

15 1.75 0.570470 0.559616 0.01085

16 1.8 0.599042 0.587787 0.01126

17 1.85 0.626820 0.615186 0.01163

18 1.9 0.653847 0.641854 0.01199

19 1.95 0.680162 0.667829 0.01233

20 2 0.705803 0.693147 0.01266
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The solution curve y = ln t is concave down, so the approximating tangent lines all lie
above the solution curve, leading to an approximation of ln 2 that’s too large. Just as in
Example 3.1.1, the errors increase with the value of k, but this time, if you subtract suc-
cessive errors (corresponding to successive values of k), you’ll see that the differences are
decreasing. (To gain some insight into this phenomenon, compare f (x, y) in Examples 3.1.1
and 3.1.2.)

Changing to h = 0.025 and n = 40 yields the approximate value 0.699436, whereas set-
ting h = 0.01 and n = 100 gives us an approximation of 0.695653. Of course, technology
(a spreadsheet) was used to obtain the last two approximations. ■

Next, we’ll see what happens when we are given an equation whose solution we
don’t know.

■ Example 3.1.3 Euler’s Method—Unknown Exact Solution
Suppose we’re given the IVP y′ = √

x + y, y(5) = 4, and we want to find y(4).

The first thought that should occur to us is that the equation is neither separable nor linear.
Are we in trouble here? No, not if we understand Euler’s method.

In our problem, f (x, y) = √
x + y, so Formula (3.1.3) takes the form

yk+1 = yk + h
√

xk + yk,

where xk = 5 + kh, k = 0, 1, . . . , n. As usual, n denotes the number of steps we choose.

Let’s start off by choosing five steps to get us from the initial point x = 5 to our destination
x = 4. Each step has to have length 0.2, and because we are moving backward from the initial
point, we must take h = −0.2 in the formula. We’ll carry out this first attempt at approximation
by hand and then use a spreadsheet when the calculations become more numerous (and
more tedious).

The formula gives us

y1 = y0 + h
√

x0 + y0 = 4 + (−0.2)
√

5 + 4 = 3.4

y2 = y1 + h
√

x1 + y1 = 3.4 + (−0.2)
√

4.8 + 3.4 = 2.82728716

y3 = y2 + h
√

x2 + y2 = 2.82728716 + (−0.2)
√

4.6 + 2.82728716 = 2.28222616

y4 = y3 + h
√

x3 + y3 = 2.28222616 + (−0.2)
√

4.4 + 2.28222616 = 1.76522612

y5 = y4 + h
√

x4 + y4 = 1.76522612 + (−0.2)
√

4.2 + 1.76522612 = 1.27674987.
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These calculations tell us that y(4) ≈ 1.27674987. The true answer is 1.34042895566892. . . .1

Therefore, when we round the “true” answer to eight places, the absolute error is
|1.34042896 − 1.27674987| = 0.06367909. If we choose h = − 0.01 and use 100 steps, a
spreadsheet calculation gives us an approximation of 1.337296, with an absolute error of
0.0031. ■

So far we’ve been cheating a bit, discussing the numerical solutions of equations for which
we could find an analytic solution (even if implicit). Knowing the exact solution enabled us
to analyze the error—the gap between the true solution value and the approximate value of
a solution at a point. However, it’s time that we consider a more typical example.

■ Example 3.1.4 Euler’s Method—A Completely Unknown
Solution

The initial-value problem dy
dt = y2 − t2, y(0) = 1

2 , cannot be solved by any of the methods we
have discussed so far, although this special type of Riccati equation2 does have a series solution
in terms of Bessel functions (see Section D.3). Nevertheless, we can approximate the solution
at t = 1 (for example) so that it is accurate to, say, three decimal places.

“Without the exact answer as a guide, how do we know that these three decimal places are
accurate?” you may be asking. Let’s skip the detailed formula and see what happens for
different step sizes (Table 3.4). We have rounded the approximations in the last column to
six decimal places.

Table 3.4 The IVP dy
dt = y2 − t2, y(0) = 1

2 : Ap-
proximate Values of y(1) for Various Step Sizes

Step Size Number of Steps Approximate Value

1/100 100 0.512113

1/1000 1000 0.506106

1/2000 2000 0.505769

1/4000 4000 0.505600

1/8000 8000 0.505515

1/16,000 16,000 0.505473

1/20,000 20,000 0.505464

1 This answer is obtained by making a substitution to transform the given equation into a separable equation (see the explanation that
precedes Problems A12–A14 of Exercises 2.1), solving the equation to get an implicitly defined solution to the IVP, and then solving for the
value of y when x = 4. Solving the implicit relation for y requires a calculator or CAS with a “solve” function for general equations. Even this
“true” answer is only an approximation (although presumably a very accurate one) because the algebraic equation can’t be solved exactly.
2 See Chapter 2, Section 5 of Ordinary Differential Equations: A Brief Eclectic Tour by David Sánchez (MAA, 2002) for an informative discussion
of this important class of differential equations.
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We have reached a stage at which the first three digits of the approximate values do not seem to
be changing. The last approximate value agrees with the previous one to three decimal places
after appropriate rounding, so we can assume that the approximation is 0.505, accurate to
three significant digits. The idea—a rule of thumb based on mathematical analysis—is to keep
on using smaller step sizes until there are changes only past the decimal place in which we
are interested. Then we can be sure of those decimal places that do not change. ■

*3.1.1 Stiff Differential Equations
We can encounter difficulty in applying Euler’s method (and some other methods) to approx-
imate solutions when these solutions have components whose time scales differ widely. For
instance, the solution of the circuit problem in Example 2.2.5 had two components: (1) a
transient term of the form Ce−at , with C > 0 and a > 0, that decreased rapidly to zero as t → ∞
and (2) a steady-state term of the form A sin(ωt) + B cos(ωt) that oscillated with time. Instead
of approximating the steady-state part of the solution, Euler’s method may allow the error
associated with the transient part to dominate, producing meaningless results.

Equations exhibiting this characteristic behavior include many that arise in electrical circuit
theory and in the study of chemical reactions. The term stiff is used because these numerical
difficulties occur in analyzing the motion of spring-mass systems with large spring constants—
that is, systems with “stiff” springs. (The stiffness of a spring depends on the materials of which
it is made and on the specific manufacturing processes used.) In Chapters 4 and 5, we’ll discuss
spring-mass problems in greater detail.

For now, let’s look at an example that highlights the difficulty.

■ Example 3.1.5 A Stiff Differential Equation
Suppose we look at the IVP dI

dt + 50I = sin(πt), I(0) = 0, which is just the equation in
Example 2.2.5 with L = 1, R = 50, ν0 = 1, and ω = π. According to that example, the solution is

I(t) = 1(
2500 + π2

) {50 sin(πt) − π cos(πt) + πe−50t} .

(Check this for yourself.) Note both the transient component and the steady-state part.

Now suppose that we want to approximate the solution at t = 2. To understand the accuracy
of the approximation, we can first use the solution formula to find the exact answer,

I(2) = −π

2500 + π2

(
1 − 1

e100

)
= −0.001251695566 . . . .

For further comparison with approximations, here are some actual values of I at intermediate
points between 0 and 2:

I(0.5) = 0.01992135365 . . . I(1.0) = 0.001251695566 . . .

I(1.5) = −0.1992135365 . . . .

∗ Denotes an optional section.
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Table 3.5a h = 0.1

k tk ik

0 0 0

5 0.5 −1.26575

10 1.0 1316.73504

15 1.5 −0.13483 × 107

20 2.0 0.13807 × 1010

Table 3.5b h = 0.05

k tk ik

0 0 0

10 0.5 0.09262

20 1.0 4.18748

30 1.5 241.37834

40 2.0 13,920.24471

Table 3.5c h = 0.01

k tk ik

0 0 0

50 0.5 0.01994

100 1.0 0.00125396

150 1.5 −0.01994

200 2.0 −0.00125396

Euler’s method yields the formula ik+1 = ik + h(sin(πtk) − 50ik). Table 3.5a displays the
results of using Euler’s method with h = 0.1, Table 3.5b shows the results when h = 0.05,
and Table 3.5c shows what happens when h = 0.01. We omit the error column in each table
because the discrepancies or agreements between actual values of I and approximate values
are fairly obvious in each table.
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FIGURE 3.8c
h = 0.01

You can see that the errors in approximating I(2) are horribly large for h = 0.1 and h = 0.05,
whereas there is very little error when we have reduced h to 0.01. Comparing the graph of
the actual solution curve for I(t) with the graphs of the approximation curves given by Euler’s
method for these three values of h is a real eye-opener (see Figures 3.8a, 3.8b, and 3.8c). In
each graph, the blue line is the actual solution curve, and the black line is the approximation.
Note that the scales are different from graph to graph.

Figure 3.8c shows that you can hardly distinguish between the actual solution curve and
its Euler method approximation when h = 0.01. The choice of the interval [0, 0.35] for t
was made after some experimentation. Using the technology available to you, you should
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look at the graphs of the approximations on larger intervals. For larger values of t, beginning
around t = 1, you will find that the approximation curves are rather alarming distortions of
the steady-state solution. ■

See Section A.3 for a further discussion of approximation error. In subsequent sections of this
chapter, we will investigate improved algorithms.

Exercises 3.1

In the following problems, being asked to do a problem “by hand” or “manually” means that
each step should be written out and that, although calculators may be used to do arithmetic,
no calculator routine or CAS program for Euler’s method should be used. This is the opposite
of being allowed to “use technology.”

A

For each of Problems 1–3, use Euler’s method by hand with the given step sizes to approximate
the solution to the given initial value problem over the specified interval. Include a table
of values, and give a sketch of the approximate solution by plotting the values you have
calculated.

1.
dy
dt

= t2 − y2, y(0) = 1; 0 ≤ t ≤ 1, h = 0.25

2.
dy
dt

= e(2/y), y(0) = 2; 0 ≤ t ≤ 2, h = 0.5

3.
dy
dt

= e(2/y), y(1) = 2; 1 ≤ t ≤ 3, h = 0.5

4. Compare your answers to Problems 2 and 3 and explain what you see.

5. If y is the solution of the IVP dy
dt = cos t, y(0) = 0, use Euler’s method manually with h = π/10 to

approximate y(π/2). What is the absolute error?

6. Approximate y(1.4) by hand if y is the solution to the IVP dy
dx = x3, y(1) = 1. Use h = 0.1.

7. Given dy
dx = x

y , y(0) = 1, use h = 0.1 to approximate y(1) manually.

8. Given the IVP y′ = y sin 3t, y(0) = 1, use technology to approximate y(4) using 20 steps.

9. Given y′ = 1/(1 + x2), y(0) = 0, use h = 0.1 to approximate y(1) manually. How can you use your
result to compute π?

10. Consider the IVP y′ = x2 + y, y(0) = 1. By hand, approximate y(0.1), y(0.2), and y(0.3) using both
h = 0.1 and h = 0.05 for each approximation.

11. Consider the IVP y′ = y2, y(0) = 1.

a. Using h = 0.2, approximate the solution y over the interval [0, 1.2] by hand.
b. Show that the exact solution is given by y = 1

1−t .
c. Compare the values found in part (a) with values given by the formula in part (b). Explain any

strange numerical behavior. [Hint : A slope field or solution graph may help.]
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B

1. In Problem B1 of Exercises 2.3, you were given the following model for the population of Botswana:
dP
dt = 0.0355 P − 0.00160625 t, with P(0) = 1.285 (million). The value t = 0 corresponds to 1990.

a. Use technology and Euler’s method with h = 0.01 to approximate P(1), the population in 1991.
b. Using the approximation for P(1) found in part (a) as your starting point and h = −0.01,

approximate P(0).

2. In the area of pharmacokinetics, the Michaelis-Menten equation dx
dt = −Kx

A+x describes the rate at
which a body processes a drug. Here x(t) is the concentration of the drug in the body at time t,
and K and A are positive constants. [The equation was developed by the biochemical/medical
researchers Leonor Michaelis (1875–1949) and Maud Menten (1879–1960).]

a. For a particular controlled substance, let A = 6, K = 1, and x(0) = 0.0025. Use technology and
Euler’s method with h = 0.1 to evaluate x for t = 1, 2, 3, 10, and 20. Estimate how long it takes
for the concentration to be half of its initial value.

b. For alcohol, let A = 0.005, K = 1, and x(0) = 0.025. Use technology and Euler’s method with
h = 0.01 to evaluate x for t = 0.01, 0.02, 0.03, 0.04, and 0.05. Estimate how long it takes for the
concentration to be half its initial value.

3. In modeling aircraft speed and altitude loss in a pull-up from a dive, basic laws of physics yield the
differential equation

dV
dθ

= −gV sin θ

kV2 − g cos θ
,

where θ denotes the dive angle (in radians), V = V(θ) is the speed of the plane, g = 9.8 m/s2 is the
acceleration constant, and k is a constant related to the wing surface area. For a particular plane,
k = 0.00145, θ0 = −0.786, and V(θ0) = V0 = 150 m/s. Use h = 0.006 (which divides θ0 evenly)
and n = 131 to estimate V(0), the plane’s speed at the completion of its pull-up—that is, when it
levels out to θ = 0. (Of course, use technology!)

4. Consider the IVP y′ = 1 − t + 4y, y(0) = 1. Using technology and h = 0.1, approximate the
solution on the interval 0 ≤ t ≤ 1. What error is made at t = 1/2 and t = 1?

5. Use Euler’s method manually with both h = 0.5 and h = 0.25 to approximate x(2), where x(t) is
the solution of the IVP dx

dt = 3t2

2x , x(0) = 1. Solve the equation exactly and compare the absolute
errors you get with the different values of h.

6. Consider the IVP y′ = y(1 − y2), y(0) = 0.1. Note that the equation has three equilibrium
solutions.

a. Use a phase portrait analysis or a direction field to predict what should happen to the solution.
b. Use technology and Euler’s method with h = 0.1 to step out to x = 3. What happens to the

numerical solution?

7. Suppose x′ = x3.

a. Find an expression for x′′ in terms of x, assuming that x is a function of t.
b. Suppose x(0) = 1. Is the solution curve concave up or concave down? Use the result in part (a)

to justify your answer.
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c. Does Euler’s method overestimate or underestimate the true value of the solution at t = 0.1?
Explain. (Don’t actually carry out Euler’s method.)

8. Consider the IVP y′ = yα, α < 1, y(0) = 0.

a. Find the exact solution of the IVP.
b. Show that Euler’s method fails to determine an approximate solution to the IVP.
c. Show what happens if the initial condition is changed to y(0) = 0.01.

9. a. Sketch the direction field for y′ = √
1 − y2.

b. Verify that a solution for this equation satisfying the initial condition y(0) = 0 is given by

y =

⎧⎪⎨
⎪⎩

sin t 0 ≤ t < 1
2π

.

1 1
2π ≤ t

c. Describe the behavior of Euler’s method when h = 0.4. Could you have predicted this behavior
without any calculations?

C

1. Describe a class of differential equations for which Euler’s method gives a completely accurate
numerical solution—that is, for which yk exactly equals the true solution ϕ(xk) for every k.
[Hint : Try to think of differential equations for which all solution curves coincide with the tangent
line segments.]

2. Consider the stiff differential equation dy
dt = −100y + 1, with y(0) = 1.

a. Solve this IVP and calculate the exact value of y(1).
b. Use technology and Euler’s method to approximate y(1) with h = 0.1, 0.05, and 0.01.
c. Use technology to plot the exact solution and an approximate solution of the equation over the

interval [0, 0.03] on the same set of axes. Do this for each of the three values of h mentioned in
this problem.

3. The equation y′ = −50(y − cos x) is stiff.

a. Use software to solve the equation with the initial condition y(0) = 0. Then calculate the exact
value y(0.2).

b. Use Euler’s method and technology to approximate y(0.2) with step size h = 1.974/50. What
is the absolute error?

c. Use Euler’s method and technology to approximate y(0.2) with step size h = 1.875/50. What
is the absolute error?

d. Use Euler’s method and technology to approximate y(0.2) with step size h = 2.1/50. What is
the absolute error now?

e. Using technology, plot the three approximation curves found in parts (b), (c), and (d) on the
same axes. Use the interval [0, 1]. Would you call the Euler method solution of the equation
“sensitive to step size”?
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4. The second-order IVP y′′ = F(x, y, y′), y(a) = c1, y′(a) = c2 may be written as two simultaneous
first-order equations: y′ = u, u′ = F(x, y, u), where y(a) = c1, u(a) = c2.

a. Devise a procedure for approximating y and y′ when x = a + h.
b. Use the method found in part (a) to approximate the solution of the IVP

y′′ = x + y, y(0) = y′(0) = 0 at x = 1.
c. Given that the exact solution of the IVP in part (b) is y = 1

2 ex − 1
2 e−x − x, compare the

approximate value of x(1) found in part (b) to the exact value.

3.2 THE IMPROVED EULER METHOD
In Euler’s original method, the slope f (x, y) over any interval xk ≤ x ≤ xk+1 of length h is
replaced by f (xk, yk), so that x always takes the value of the left endpoint of the interval. (As
noted just before Example 3.1.1, if y′ = f (x), a function of x alone, then Euler’s method is
equivalent to using a left-hand Riemann sum to approximate a definite integral.)

Now instead of always using the slope at the left endpoint of the interval [xk, xk+1], we can
think of using an average derivative value over the interval. The improved Euler method
involves two stages that will be combined into one approximation formula. The first stage
involves moving tentatively across the interval [xk, xk+1] using Euler’s original method, thereby
producing a guess, or trial value, ŷk+1 = yk + h · f (xk, yk). Note that the values f (xk, yk) and
f (xk+1, ŷk+1) approximate the slopes of the solution curve at (xk, y(xk)) and (xk+1, y(xk+1)),
respectively. Now the second stage looks at the average of the derivative f (xk, yk) and the guess
f (xk+1, ŷk+1) = f (xk+1, yk + hf (xk, yk)) and uses this average to take the real step across the
interval.

Guess (tentative step): ŷk+1 = yk + h · f (xk, yk)

Real step: yk+1 = yk + h
{

f (xk, yk) + f (xk+1, ŷk+1)

2

}

= yk + h
{

f (xk, yk) + f (xk+1, yk + h · f (xk, yk))

2

}
(3.2.1)

= yk + h
2

{
f (xk, yk) + f (xk+1, yk + h · f (xk, yk))

}
.

Formula (3.2.1) describes the improved Euler method [or Heun’s method, named for Karl
Heun (1859–1929), a German applied mathematician who devised this scheme around
1900]. It is an example of a predictor-corrector method: We use ŷk+1 (via Euler’s method)
to predict a value of y(xk+1) and then use yk+1 to correct this value by averaging.

Look carefully at Equation (3.2.1). If f (x, y) is really just f (x), a function of x alone, then
solving the IVP y′ = f (x, y), y(x0) = x0, amounts to solving the equation y′ = f (x), which is
a matter of simple integration. In Section 1.3 [Equation (1.3.1)] we saw that we can write



3.2 The Improved Euler Method 119

the solution as

y(x) =
∫ x

x0

f (t)dt + y0 =
n−1∑
k=0

∫ xk+1

xk

f (t)dt + y0,

where xn = x. In this case, Formula (3.2.1) reduces to

yk+1 = yk + h
2

{
f (xk) + f (xk+1)

}
and the Fundamental Theorem of Calculus tells us that on the interval [xk, xk+1],

∫ xk+1

xk

y′︷︸︸︷
f (t) dt = y(xk+1) − y(xk) ≈ yk+1 − yk = h

2

{
f (xk) + f (xk+1)

}
.

In other words, in this situation we are using the Trapezoid Rule from calculus to approximate
each integral on [xk, xk+1].
Next, we see some illustrations of why this method is called “improved.”

■ Example 3.2.1 The Improved Euler Method
Let’s use the improved Euler formula, Equation (3.2.1), to calculate an approximate value of
the solution of the IVP y′ = y, y(0) = 1, at x = 1. Of course, you realize that this is just a
roundabout way of asking for an approximation of that important mathematical constant e.
(Right?)

Let’s start with h = 0.1, so we’ll need 10 steps to reach x = 1 from the initial point x = 0.
Thus, in Formula (3.2.1) we have x0 = 0, y0 = 1, h = 0.1, xk = 0 + kh = kh (k = 0, . . . , 10),
and f (x, y) = y. When we put all this information together, we see that the formula takes a
simplified form:

yk+1 = yk + h
2

{
yk + (yk + hyk)

}
= yk + h

2

{
(2 + h)yk

} = yk + (0.05)(2.1)yk = 1.105 yk.

Therefore, the calculations are

y1 = 1.105y0 = 1.105(1) = 1.105
y2 = 1.105y1 = (1.105)2 = 1.221025
y3 = 1.105y2 = (1.105)3 = 1.349232625
...

...
y10 = 1.105y9 = (1.105)10 = 2.71408084661.
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Comparing this approximation to the actual value 2.71828182846 (rounded to 11 decimal
places), we find that the absolute error is 0.00420098185. (In Problem A4 of Exercises 3.2,
you’ll be asked to try this with the original Euler method.)

Using 20 steps, a CAS gives the approximate value 2.71719105435, so the absolute error is
now 0.00109077410. Note that when we doubled the number of steps from 10 to 20, the
result was that the absolute error was roughly one-fourth what it was before. ■

Now let’s revisit Example 3.1.1 to see how the improved method compares with the original
process of approximation.

■ Example 3.2.2 The Improved Euler Method—Example 3.1.1
Revisited

We want to approximate x(1.5), given the IVP dx
dt = t2 + x, x(1) = 3. The actual value is

5.939770 . . . . We’ll start with h = 0.1, so we’ll need five steps to stretch between t = 1 and
t = 1.5.

For this problem, the improved Euler formula is

xk+1 = xk + h
2

{(
t2
k + xk

) + t2
k+1 + xk + h

(
t2
k + xk

)}
= xk + h

2

{
t2
k+1 + (1 + h)t2

k + (2 + h)xk
}

= xk + (0.05)
{
t2
k+1 + 1.1t2

k + 2.1xk
}

,

where t0 = 1, t1 = 1.1, t2 = 1.2, t3 = 1.3, t4 = 1.4, and t5 = 1.5. Therefore,

x1 = 3 + (0.05){(1.1)2 + 1.1(1)2 + 2.1(3)} = 3.4305

x2 = 3.4305 + (0.05){(1.2)2 + 1.1(1.1)2 + 2.1(3.4305)} = 3.9292525

x3 = 3.9292525 + (0.05){(1.3)2 + 1.1(1.2)2 + 2.1(3.9292525)}
= 4.5055240125

x4 = 4.5055240125 + (0.05){(1.4)2 + 1.1(1.3)2 + 2.1(4.5055240125)}
= 5.16955403381

x5 = 5.16955403381 + (0.05){(1.5)2 + 1.1(1.4)2 + 2.1(5.16955403381)}
= 5.93265720736.

To five decimal places, we have x(1.5) ≈ 5.93266. The absolute error is 0.00711. When we
employed Euler’s method in Example 3.1.1, the error was 0.244639.

If we use 10 steps in the improved Euler method, then we get x(1.5) ≈ 5.943455, with absolute
error 0.00369, compared to the Euler method’s error of 0.12717. ■

Now let’s go back and redo another earlier example with the new method.
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Table 3.6 Improved Euler Method with h = −0.2

k xk yk True Value Absolute Error

0 5.0 4.000000 4.000000 0.000000

1 4.8 3.413644 3.413384 0.000260

2 4.6 2.854277 2.853750 0.000527

3 4.4 2.322249 2.321444 0.000805

4 4.2 1.817952 1.816857 0.001100

5 4.0 1.341827 1.34043 0.00140

■ Example 3.2.3 Improved Euler Method—Example 3.1.3
Revisited

In Example 3.1.3 we discussed the IVP y′ = √
x + y, y(5) = 4, with the goal of approximating

y(4). If we apply the improved method to the problem, with five backward steps, each of
length 0.2—that is, with h = −0.2—we get the values shown in Table 3.6.

Thus, y(4) ≈ 1.341827 by the improved method, compared to the “true” answer
1.34042895566892 and the original Euler method approximate value 1.27674987. ■

An analysis of error shows that the local truncation error at any stage of the improved Euler
method behaves like a constant multiple of h3 and that the cumulative truncation error is no
greater than a constant multiple of the square of the step size h: |true value − approximation| ≤
K · h2, where K is a constant that depends on the function f (x, y), on its partial derivatives, and
on the interval involved but does not depend on h. We say that the improved Euler method
is a second-order method.

In the next section, we’ll look at a fourth-order method and a powerful combination of fourth-
and fifth-order techniques.

Exercises 3.2

A

Use the following table to enter the data from Problems 1 and 2.

TRUE Euler’s Absolute Improved Absolute
VALUE Method Error Euler Method Error

h = 0.1
h = 0.05
h = 0.025
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1. Use the improved Euler method to redo Example 3.1.1 with h = 0.1, 0.05, and 0.025.
2. Use the improved Euler method to redo Example 3.1.2 with h = 0.1, 0.05, and 0.025. (You’ll also

have to use Euler’s method for h = 0.1.)
3. a. Find the exact solution to the IVP dx

dt = t + x, x(0) = 1.
b. Apply the improved Euler method with step size h = 0.1 to approximate the value x(1).
c. Calculate the absolute error at each step of part (b).

4. Using technology, redo Example 3.2.1 with both Euler’s method and the improved Euler method,
using a step size of h = 0.01—that is, using 100 steps. For each method, calculate the absolute
errors incurred in approximating y(0.01), y(0.02), . . . , y(0.99), y(1.0). (A spreadsheet program can
be particularly useful here.)

B

1. Redo Problem B1 in Exercises 3.1 using the improved Euler method.
2. Redo Problem B3 in Exercises 3.1 using the improved Euler method.
3. Redo Problem B8 in Exercises 3.1 using the improved Euler method.

C

1. Redo Problem C2 in Exercises 3.1 using the improved Euler method.

3.3 MORE SOPHISTICATED NUMERICAL METHODS:
RUNGE-KUTTA AND OTHERS

Modern computers (and even hand-held calculators) have many algorithms for solving dif-
ferential equations numerically. Some of these are highly specialized and are meant to handle
very particular types of ODEs (such as stiff equations—see Section 3.1) and systems of ODEs.
Euler’s method and its improved version are useful for illustrating the idea behind numerical
approximation, but they are not very efficient in terms of approximating a solution of an IVP
very accurately and with a minimum number of steps.

A very good method, implemented in many computer algebra systems and in calculator
firmware, is the fourth-order Runge-Kutta method (RK4), which was developed in an 1895
paper by Carl Runge (1856–1927), a German applied mathematician, and was generalized
to systems of ODEs in 1901 by M. Wilhelm Kutta (1867–1944), a German mathematician and
aerodynamicist. As the description indicates, in this method the total accumulated error is
proportional to h4, so reducing the step size by a factor of 1

10 produces four more digits of
accuracy—for example, reducing the step size from h = 0.1 to h = 0.01 generally decreases
the total error by a factor of 0.0001. (The local truncation error behaves like h5.) There are
also second- and third-order Runge-Kutta methods. (Euler’s method can be called a first-order
Runge-Kutta method.)

Now suppose we have an IVP y′ = f (x, y), y(x0) = y0. The RK4 formula is a bit strange-looking,
but not if we realize that it is approximating the value y(xk+1) by a weighted average, yk+1,
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of values of f (x, y) calculated at different points in the interval [xk, xk+1]. For each interval
[xk, xk+1], we calculate the following slopes in the order given:

m1 = f (xk, yk)

m2 = f
(

xk + h
2

, yk + h
2

m1

)

m3 = f
(

xk + h
2

, yk + h
2

m2

)
m4 = f (xk + h, yk + hm3) = f (xk+1, yk + hm3). (3.3.1)

Then the classical fourth-order Runge-Kutta formula is

yk+1 = yk + h
6

(m1 + 2m2 + 2m3 + m4), (3.3.2)

where the sum (m1 + 2m2 + 2m3 + m4)/6 is a weighted average of slopes.

The value m1 is the slope at xk calculated by Euler’s method. Then m2 is an estimate of
the slope at the midpoint of the interval [xk, xk+1], where Euler’s method has been used to
estimate the y value there. Now m3 is a value for the slope at the midpoint of [xk, xk+1] using
the improved Euler’s method. Finally, m4 is the slope at xk+1 calculated by Euler’s method,
using the improved slope m3 at the midpoint to step to xk+1.

Perhaps this formula won’t be so alarming if we look at the simplified situation when f (x, y)
is independent of y in the equation y′ = f (x, y). If f (x, y) = g(x), then the Formula (3.3.1) for
m1, m2, m3, and m4 reduce to

m1 = g(xk)

m2 = g
(

xk + h
2

)

m3 = g
(

xk + h
2

)
m4 = g(xk + h) = g(xk+1)

so Formula (3.3.2) becomes

yk+1 = yk + h
6

{
g(xk) + 2g

(
xk + h

2

)
+ 2g

(
xk + h

2

)
+ g(xk+1)

}

= yk + h
6

{
g(xk) + 4g

(
xk + h

2

)
+ g(xk+1)

}
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and you may recognize the expression h
6

{
g(xk) + 4g

(
xk + h

2

)
+ g(xk+1)

}
as a form of Simpson’s

Rule for approximating
∫ xk+1

xk
g(x)dx. (Note that xk + h

2 in the expression is the midpoint of the
interval [xk, xk+1] because h = xk+1 − xk.)

To get a feel for the calculations, let’s choose an example that we’ve seen before.

■ Example 3.3.1 RK4—Example 3.1.1 Yet Again
Let’s approximate x(1.5) by the Runge-Kutta method if we are given the IVP dx

dt = t2 + x,
x(1) = 3. We’ll use h = 0.1, so we need five steps.

Just to get the idea, let’s focus on the interval [t0, t1] = [1, 1.1]. We calculate

m1 = f (t0, x0) = f (1, 3) = (12 + 3) = 4

m2 = f
(

t0 + h
2

, x0 + h
2

m1

)
= f (1 + 0.05, 3 + 0.05(4))

= 1.052 + 3.2 = 4.3025

m3 = f
(

t0 + h
2

, x0 + h
2

m2

)
= f (1 + 0.05, 3 + 0.4317625)

= 1.052 + 3.215125 = 4.317625

m4 = f (t0 + h, x0 + hm3) = f (t1, x0 + hm3) = f (1.1, 3 + 0.4317625)

= 1.12 + 3.4317625 = 4.6417625

so

x(1.1) ≈ x1 = 3 + 0.1
6

(4 + 2(4.3025) + 2(4.317625) + 4.6417625)

= 3 + 0.1
6

(25.8820125) = 3.431366875.

The actual value of x(1.1) (from the solution formula x(t) = − t2 − 2t − 2 + 8et−1) is
3.4313673446. . . . Here, the absolute error is 0.0000004696. (This is an amazingly close
approximation!)

Table 3.7 shows, for the same value h = 0.1, the exact values and the approximate values
given for this problem by Euler’s method, the improved Euler method, and the Runge-Kutta
method. We can see how accurate the Runge-Kutta method is at each step. ■

As accurate as the classical Runge-Kutta method is, improvements are possible. For example,
a very popular method, the Runge-Kutta-Fehlberg algorithm, combines fourth-order and
fifth-order methods in a clever way announced by E. Fehlberg in 1969. The rkf45 method, as
its computer implementation is known, uses variable step sizes, choosing the step size at each
stage to try to achieve a predetermined degree of accuracy. Such clever numerical techniques
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Table 3.7 Comparison of Methods with h = 0.1

tk True Value of Euler’s Improved Runge-Kutta

x(tk) Method Euler Method Method

1 3.00000 3.00000 3.00000 3.00000

1.1 3.43137 3.40000 3.43050 3.43137

1.2 3.93122 3.86100 3.92925 3.93122

1.3 4.50887 4.39110 4.50552 4.50887

1.4 5.17460 4.99921 5.16955 5.17460

1.5 5.93977 5.69513 5.93266 5.93977

are called adaptive methods. They may be useful, for example, in handling stiff differential
equations (Section 3.1).

A more dramatic problem that can be handled by adaptive methods is that of calculating
a flight path from the earth to the moon and back,3 which involves solving a system of
differential equations numerically. In deep space, the driving force (the gravitational potential
gradients of earth, Venus, and the sun) varies slowly, so a relatively large step size can be used
in solving the system. However, near the earth or the moon a relatively small step size is
needed to achieve the same accuracy. (If this small step size is used for the entire flight, the
calculation will be unnecessarily long; but if the spacecraft gets too close to the earth and the
step size is too large, the calculation results in giving the craft too great a kinetic energy and
the craft zips out of the earth-moon system at the speed of light.)

Exercises 3.3

In the problems that follow, it is assumed that you have versions of the Runge-Kutta Fourth-
Order method (RK4) and Runge-Kutta-Fehlberg (rkf45) method available to you. Use the
following table to enter the data from Problems 1 and 2. You may go back to earlier examples
to find needed values.

A

TRUE Euler’s Improved RK4
VALUE Method Euler Method Method

h = 0.1
h = 0.05
h = 0.025

3 The astronauts of Apollo 13, whose engine failed on the flight to the moon, had to follow such a flight path. The spacecraft had to be swung
around by the gravity of the moon and return to the vicinity of the earth without further thrust by its rocket motors.
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1. Use the RK4 method to redo Example 3.2.1 with h = 0.1, 0.05, and 0.025. (Using the improved Euler
method, the cases h = 0.1 and h = 0.05 have been done for you in the example.)

2. Use the RK4 method to redo Example 3.2.2 with h = 0.1, 0.05, and 0.025.
3. Use the rkf45 method to approximate the solution of y′ = y, y(0) = 1, at t = 1, with h = 0.1. (That is,

approximate the value of the constant e. See Example 3.3.1.)
4. a. Find the exact solution of the IVP dx

dt = t + x, x(0) = 1.
b. Apply the rkf45 method with step size h = 0.1 to approximate x(1), calculating the absolute

error at each step.
5. a. Find the closed-form solution of the equation dx

dt = −tx2.
b. Using the rkf45 method with h = 0.1, approximate the value x(1) if x is the solution of the IVP

dx
dt = −tx2, x(0) = 2.

6. Approximate y(0.8) using the rkf45 method with h = 0.01 if y is the solution of the IVP dy
dx = sin(xy),

y(0) = 0.

B

1. A daredevil named Patrice goes skydiving, jumping from a plane at an initial altitude of 10,000 feet.
At time t her velocity v(t) satisfies the initial value problem dv

dt = f (v), v(0) = 0, where

f (v) = 32 − (0.000025) · (100v + 10v2 + v3).

If she does not open her parachute, she will reach a terminal velocity when the forces of gravity and
air resistance balance.

a. Use the rkf45 method to approximate her velocity at times t = 5, 10, 15, 16, 17, 18, 19, and 20,
and so guess at her terminal velocity (accurate to three decimal places).

b. Use technology to graph Patrice’s velocity over the interval [0, 30].
2. In 1927, British scientists Kermack and McKendrick laid the foundations for the theory of

epidemiology by presenting data on the number of deaths resulting from a rat-spread plague in
Bombay (now Mumbai) during the period December 1905–July 1906. They gave the following
equation for the total number of deaths as of week t:

dR
dt

= 890 sech2(0.20t − 3.4),

where sech t denotes the hyperbolic secant function.

a. Assuming that R(0) = 0, use the rkf45 method to fill in the following table.

t (weeks) Actual Deaths Predicted Deaths
1 4
5 68
10 425
20 6339
30 9010
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b. According to the Kermack-McKendrick model, what is the asymptotic value of R—that is,
lim

t→∞ R(t)?

3. In using Runge-Kutta methods (including Euler’s method and Heun’s method), it is important to
realize that the error depends on the form of the equation as well as on the solution itself. To see an
example of this, note that y(x) = (x + 1)2 is the solution of each of the two problems

y′ = 2(x + 1), y(0) = 1

y′ = 2y/(x + 1), y(0) = 1.

a. Show that Heun’s method is exact for the first equation.
b. Show that the method is not exact when applied to the second equation, even though it has the

same solution as the first equation.

4. Consider the IVP dx
dt = x2, x(0) = 2.

a. Use Euler’s method with h = 0.1 to approximate x(1). Does your answer seem strange?
b. Use the rkf45 method with h = 0.1 to approximate x(1). Compare your answer to the answer in

part (a)—if your calculator or CAS gives you a meaningful answer in both cases.
c. To help explain your difficulties in parts (a) and (b), find the closed-form solution of the IVP.
d. Use your answer to part (c) to explain why your answers to parts (a) and (b) are both wrong.
e. How do you think you may be able to avoid the difficulty uncovered in part (d)? Maybe by

changing step size? Try to solve the problem again using the rkf45 method.

C

1. Consider the generalized logistic equation

dP
dt

= kPα

(
1 − Pβ

M

)
.

a. Let k = 1, M = 5, and P(0) = 1. Find numerical approximations to the solution in the range
0 ≤ t ≤ 10 for the parameter pairs (α, β) = (0.5, 1), (0.5, 2), (1.5, 1), (1.5, 2), (2, 2).

b. Estimate a parameter pair (r, q) that yields approximately the values P(0) = 1, P(2) = 2.4,
P(4) = 2.9.

SUMMARY

Even if we can solve a first-order differential equation, we may not be able to find a closed-form
solution. This difficulty has led to the development of numerical methods to approximate a
solution to any degree of accuracy. Leaving aside input error, there are two main sources of error
in numerical calculations done by hand, calculator, or computer: round-off error and truncation
error. Round-off error is the kind of inaccuracy we get by taking a certain number of decimal
places instead of taking the entire number. In particular, remember that our calculator or
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computer is limited in the number of decimal places it can handle. Truncation error occurs
when we stop (or truncate) an approximation process after a certain number of steps. Finally,
we must be aware that there is usually a trade-off in dealing with error. If we try to reduce the
truncation error and increase the accuracy of our approximation by carrying out more steps
(for example, by taking more terms of a Taylor series), we are increasing calculation load and
consequently running the risk of increasing propagated (cumulative) error. (See Section A.3.)

Euler’s method uses the idea that values near a point on a curve can be approximated by
values on the tangent line drawn to that point. If we want to approximate the solution of the
IVP y′ = f (x, y), y(x0) = y0 on an interval [a, b], we first partition [a, b] by using n + 1 equally
spaced points:

a = x0 < x1 < x2 < · · · < xn−1 < xn = b,

where xi+1 − xi = b−a
n = h for i = 0, 1, . . . , n − 1. Then, if yi is an approximate value for y(xi),

we can define the sequence of approximate solution values as follows: yk+1 = yk + hf (xk, yk).
Generally speaking, you can increase the accuracy of the approximation (reduce the error) by
making the step size h smaller—that is, by making the number of steps n larger. For Euler’s
method, a first-order method, the cumulative truncation error is bounded by a constant
multiple of the step size: |true value − approximation| ≤ K · h, where K is independent of
h but depends on |y′′(x)| and the interval [x0, b]. In practice, the actual error incurred in a
problem will usually be less than this bound.

An improvement of Euler’s method called Heun’s method guesses a value of y(xk) and then
uses yk to correct this guess by an averaging process. The algorithm can be expressed as follows:

Guess (tentative step): ŷk+1 = yk + h · f (xk, yk)

Real Step: yk+1 = yk + h
{

f (xk, yk) + f (xk+1, ŷk+1)

2

}

= yk + h
{

f (xk, yk) + f (xk+1, yk + h · f (xk, yk))

2

}

= yk + h
2

{
f (xk, yk) + f (xk+1, yk + h · f (xk, yk))

}
.

For the improved Euler method, the cumulative truncation error is no greater than a constant
multiple of the square of the step size h: |true value − approximation| ≤ K · h2, where K is
a constant that depends on the function f (x, y), on its partial derivatives, and on the interval
involved but not on h. We say that the improved Euler method is a second-order method.

There are many more sophisticated algorithms for solving differential equations numeri-
cally. Two very effective methods implemented in many computer algebra systems and even
some calculators are the fourth-order Runge-Kutta method and the Runge-Kutta-Fehlberg
algorithm. The rkf45 method, as the computer implementation of this last algorithm is
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known, uses variable step sizes, choosing the step size at each stage to try to achieve a
predetermined degree of accuracy. Such clever numerical techniques are called adaptive
methods.

PROJECT 3-1
Euler Backwards Is More Than reluE
A stiff differential equation, such as the one discussed in Example 3.1.5, does not respond
well to Euler’s method unless the step size is small, in which case the number of steps (and
the accumulated round-off error) may be large. The solution of a problem that is stiff is
impractical with numerical methods not designed specifically for such problems.

Suppose we have used the points t0, t1, . . . , tn = b to divide the interval from t0 to b into n equal
subintervals of length h, as we would for Euler’s method. Then the differential equation dy

dt =
f (t, y) at the point tk can be written in the form dy

dt (tk) = f (tk, y(tk)). Instead of approximating

the derivative in the last equation by the forward difference quotient y(tk+1)−y(tk)
h , as we did for

Euler’s method, we use the backward difference quotient y(tk)−y(tk−1)

h , so we get the formula

dy
dt

(tk) = f (tk, y(tk)) ≈ y(tk) − y(tk−1)

h

or y(tk) = y(tk−1) + hf (tk, y(tk)). Replacing k by k + 1, we get the backward Euler formula:

yk+1 = yk + hf (tk+1, yk+1).

This is also called the implicit Euler method because the quantity yk+1 appears on both sides
of the equation and has to be solved for.

a. By hand, use h = 0.1 in the backward Euler method on the stiff problem y′ = −2y,
y(0) = 3, to approximate y(1). Compare your values to those given by the usual Euler
method.

b. By hand, use h = 0.1 in the backward Euler method to approximate y(0.5) if
y′ = 25 cos(y), y(0) = 1. Use your calculator or CAS equation solver to find yk+1 at
each step, keeping all digits shown for use in the next step.

c. Find out whether you have the backward Euler method available on a computer. If
not, look for a numerical method described as being designed for stiff differential
equations (maybe under the name LSODE) or perhaps a “multi-step” algorithm. Use
such a method to check your answers to part (b).
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CHAPTER 4

Second- and Higher-Order Equations

INTRODUCTION

In Chapters 2 and 3, we analyzed first-order equations graphically, numerically, and
analytically and introduced qualitative concepts that will be useful in later chapters.

In this chapter, we will make the jump from first-order equations to higher-order equations,
especially second- and third-order equations. We’ll start by investigating types of second-order
equations that occur frequently in science and engineering applications. These equations have
a fully developed theory that generalizes to higher-order equations of the same type.

Most of the chapter, however, will be devoted to a systems approach to higher-order equations.
In particular, we will see how any higher-order differential equation can be written as a system of
first-order differential equations and then learn how to handle such systems qualitatively and
numerically. In fact, if we use a graphing calculator in our study of differential equations, this
device will require us to input a higher-order equation as a system of first-order equations.
As we’ll see in Section 4.10, the numerical methods studied in Sections 3.1, 3.2, and 3.3 can
be applied in a natural way to the systems representation of any higher-order differential
equation.

To illustrate the systems approach, we’ll analyze some very interesting and important examples
such as spring-mass problems, predator-prey relations, and arms races.

4.1 HOMOGENEOUS SECOND-ORDER LINEAR EQUATIONS
WITH CONSTANT COEFFICIENTS

A very important application of differential equations is the analysis of an RLC circuit con-
taining a resistance R, an inductance L, and a capacitance C. (We have already seen some
first-order examples in Chapter 2.) In electrical circuit theory, if I = I(t) represents the cur-
rent, Kirchhoff’s Voltage Law leads to the equation L d2I

dt2 + RdI
dt + 1

C I = 0 when the voltage applied
to the circuit is constant (for example, when a battery is used). We describe any equation of
the form ay′′ + by′ + cy = 0, where a, b, and c are constants, a 	= 0, as a homogeneous

Copyright © 2009, Elsevier Inc. 131
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second-order linear equation with constant coefficients. In this section, we are going to
develop a technique for solving any equation of this type.

Extending the way we considered a first-order linear equation in Section 2.2, we see that a
linear second-order equation with constant coefficients can be viewed in terms of an operator
L transforming functions that have two derivatives: L(y) = ay′′ + by′ + cy. To solve a homoge-
neous equation, we must find a function y such that L(y) = 0. There is a natural extension of
the Superposition Principle (see Section 2.2) for homogeneous equations:

SUPERPOSITION PRINCIPLE FOR HOMOGENEOUS EQUATIONS:
Suppose y1 and y2 are solutions of the homogeneous second-order linear differential equation

ay′′ + by′ + cy = 0

on an interval I. Then the linear combination c1y1(x) + c2y2(x), where c1 and c2 are arbitrary
constants, is also a solution on this interval.

(You’ll be asked to prove this in Problem B1 of Exercises 4.1.)

If we consider a homogeneous first-order linear equation with constant coefficients, ay′ +
by = 0, where a 	= 0, we know that the general solution is y = Ce− b

a t . In 1739, aware of this
solution, Euler1 thought of solving an nth-order homogeneous linear equation with con-
stant coefficients by looking for solutions of the form y = eλt , where λ is a constant to be
determined. Let’s see how this works for the equation

ay′′ + by′ + cy = 0, (4.1.1)

where a, b, and c are constants. But we should be aware that, although (for example) the
combination of exponentials y(t) = 3et − 2e−t is a solution of the equation y′′ − y = 0, the
similar equation y′′ +y = 0 has solutions that are combinations of sin t and cos t. As we’ll see,
if we start by focusing on exponential solutions, the trigonometric possibilities will appear
also. The exponential and trigonometric solutions are related in an important way, through
the use of complex numbers.

If we assume that y = eλt is a solution of Equation (4.1.1), then y′ = λeλt and y′′ = λ2eλt .
Substituting these derivatives into (4.1.1), we get a

(
λ2eλt

) + b
(
λeλt

) + c
(
eλt

) = 0, which
simplifies to

(
aλ2 + bλ + c

)
eλt = 0. Because the exponential factor is never zero, we must

have
(
aλ2 + bλ + c

) = 0.

4.1.1 The Characteristic Equation and Eigenvalues
We have just concluded that if y = eλt is a solution of Equation (4.1.1), then λ must satisfy
the equation aλ2 + bλ + c = 0, which is called the characteristic equation (or auxiliary

1 In a letter to John (Johannes) Bernoulli, who first solved the important type of differential equation devised by his brother Jakob. See the
start of the “B” problems in Exercises 2.2.
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equation) of the differential Equation (4.1.1). The roots of this characteristic equation will
reveal to us the nature of the solution(s) of (4.1.1). Note that we can go straight from the
ODE to the characteristic equation as follows:

ay′′︸︷︷︸
a·2nd derivative

+ by′︸︷︷︸
b·1st derivative

+ cy︸︷︷︸
c·0th derivative

= 0

� � �
a·2nd-degree term︷︸︸︷

aλ2 +
b·1st-degree term︷︸︸︷

bλ +
c·0th-degree term︷︸︸︷

c = 0

Because the characteristic equation of our second-order ODE is a quadratic equation, we know
that there are two roots, called characteristic values or eigenvalues,2 say λ and λ2. There are
only three possibilities for these eigenvalues: (1) The eigenvalues are both real numbers with
λ1 	= λ2; (2) the eigenvalues are real numbers with λ1 = λ2; or (3) the eigenvalues are complex
numbers: λ1 = p+qi and λ2 = p−qi, where p and q are real numbers (called the real part and
the imaginary part, respectively) and i = √−1. In possibility (3), we say that λ1 and λ2 are
complex conjugates of each other. (Now would be a good time to review the quadratic formula
and its implications. See Appendix C, especially Section C.3, for more information about
complex numbers.)

4.1.2 Real but Unequal Eigenvalues
In possibility (1), where λ1 and λ2 are unequal real numbers, then both y1(t) = eλ1t and
y2(t) = eλ2t are solutions of (4.1.1). By the extension of the Superposition Principle given
earlier in this section, any linear combination of the form y(t) = c1eλ1t + c2eλ2t is also a solution,
where c1 and c2 are arbitrary constants. It can be shown (see Section 4.2 for the details) that
this is the general solution of (4.1.1)—that is, if the eigenvalues of (4.1.1) are real and distinct,
then any solution of (4.1.1) must have the form y(t) = c1eλ1t + c2eλ2t for some constants c1

and c2. The next example shows how to solve equations of the form (4.1.1) using eigenvalues.

■ Example 4.1.1 The Characteristic Equation—Unequal
Eigenvalues

Let’s solve the homogeneous linear second-order equation with constant coefficients 6y′′ +
13y′ − 5y = 0. We find that the characteristic equation of this ODE is 6λ2 + 13λ − 5 = 0:

6y′′︸︷︷︸
6·2nd derivative

+ 13y′︸︷︷︸
13·1st derivative

+ −5y︸︷︷︸
−5·0th derivative

= 0

� � �
6·2nd-degree term︷︸︸︷

6λ2 +
13·1st-degree term︷︸︸︷

13λ +
−5·0th-degree term︷ ︸︸ ︷

(−5) = 0

2 In German, the word eigen means “own, proper, inherent, special, characteristic,” etc.
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Using the quadratic formula, we find

λ = −13 ± √
132 − 4(6)(−5)

2(6)
= −13 ± √

289
12

= −13 ± 17
12

= 1
3

or − 5
2

,

so that we have two distinct real eigenvalues, λ1 = 1
3 and λ2 = −5

2 , and we can write the

general solution of our equation as y(t) = c1e
t
3 + c2e− 5t

2 . ■

4.1.3 Real but Equal Eigenvalues
Next, we consider possibility (2), that the eigenvalues are real numbers with λ1 = λ2. In this
situation, we get only one solution, y = eλt , where λ is the value of the repeated eigenvalue.
To obtain the general solution in this case, we have to find another solution that is not merely
a constant multiple of eλt (or else the “two” solutions can be merged into a single solution
requiring only one arbitrary constant). Again, Euler comes to the rescue (this time in 1743),
suggesting that an independent3 second solution might be found by considering functions
of the form y2(t) = u(t)eλt , where u(t) is an unknown function that must be determined.

Rather than deriving the consequences of Euler’s assumption in the general case (see Problem
C3 in Exercises 4.1), we’ll illustrate his ingenious technique by an example.

■ Example 4.1.2 The Characteristic Equation—Equal Eigenvalues
The equation y′′ − 4y′ + 4y = 0 has the characteristic equation λ2 − 4λ + 4 = (λ − 2)2 = 0,
so λ = 2 is a repeated eigenvalue. We know that y1 = e2t is one solution of the differential
equation. Taking Euler’s advice, we consider y2(t) = u(t)e2t .

Now, by the Product Rule and the Chain Rule, y′
2 = 2ue2t + u′e2t and y′′

2 = 4ue2t + 4u′e2t +
u′′e2t . Substituting y2 and its derivatives into our original differential equation, we obtain

y′′
2 − 4y′

2 + 4y2 = (
4ue2t + 4u′e2t + u′′e2t) − 4

(
2ue2t + u′e2t) + 4

(
ue2t)

= u′′e2t = 0.

Therefore, we must have u′′(t) = 0, and two successive integrations give us u′(t) = A and u(t) =
At + B, where A and B are arbitrary constants. Our conclusion is that y2(t) = (At + B)e2t is a
solution of the original ODE that is not a constant multiple of y1 = e2t . The Superposition
Principle tells us that the general solution is given by

y(t) = c1y1(t) + c2y2(t) = c1e2t + c2(At + B)e2t = (C1t + C2) e2t ,

where C1 = c2A and C2 = c1 + c2B are arbitrary constants. ■

3 Two functions f1 and f2 are called (linearly) independent on an interval I if one is not a constant multiple of the other. Equivalently,
if c1 and c2 are constants, then the only way for c1 f1 + c2f2 to be the zero function on I is if c1 = c2 = 0. It can be shown that Euler’s
technique produces a new solution independent of the first.
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4.1.4 Complex Conjugate Eigenvalues
When the eigenvalues are complex numbers—λ1 = p + qi and λ2 = p − qi, where p and q are
real numbers—the two corresponding solutions of the differential equation ay′′ +by′ +cy = 0
are y1(t) = e(p+qi)t and y2(t) = e(p−qi)t . At this point, a crucial fact to know is Euler’s formula,4

which defines the exponential function for complex values of the argument (exponent):

ep+qi = ep(cos(q) + i sin(q)
)
.

(If we let p = 0 and q = π, we get a particularly elegant formula connecting five of the most
significant constants in all of mathematics: eπ i + 1 = 0. Also see Section C.4.)

Using Euler’s formula, we can write the solutions as

y1(t) = e(p+qi)t = epte(qt)i = ept(cos(qt) + i sin(qt)
)

and

y2(t) = e(p−qi)t = epte−(qt)i = ept(cos(−qt) + i sin(−qt)
)

= ept (cos(qt) − i sin(qt)
)

,

where we have simplified y2(t) by recognizing that the cosine is an even function and the sine
is an odd function. If we combine these complex-valued solutions carefully (see Problem C1
in Exercises 4.1), we find that

y(t) = ept (C1 cos(qt) + C2 sin(qt)
)

,

a real-valued function, is a solution of ay′′ + by′ + cy = 0 for all constants C1 and C2. In fact,
y(t) = e p t(C1 cos(qt) + C2 sin(qt)

)
is the general solution of the homogeneous equation

when the characteristic equation has complex conjugate roots p ± qi.

Now let’s practice with complex eigenvalues.

■ Example 4.1.3 Complex Conjugate Eigenvalues
The equation ẍ + 8ẋ + 25x = 0 models the motion of a steel ball suspended from a spring,
where x(t) is the ball’s distance (in feet) from its rest (equilibrium) position at time t seconds.
Distance below the rest position is considered positive, and distance above is considered
negative. We want to describe the motion of the ball by finding a formula for x(t).

The characteristic equation is λ2 + 8λ + 25 = 0. The quadratic formula gives us

λ = −8 ± √
82 − 4(1)(25)

2
= −8 ± √−36

2
= −8 ± 6i

2
= −4 ± 3i,

4 Euler discovered this formula in 1740, while investigating solutions of the equation y′′ + y = 0. For a marvelous account of this formula
and its consequences, see Dr. Euler’s Fabulous Formula: Cures Many Mathematical Ills by Paul J. Nahin (Princeton: Princeton University Press,
2006).
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FIGURE 4.1
Graph of 4

3 e−4t sin(3t), the solution of the IVP
ẍ + 8ẋ + 25x = 0; x(0) = 0, ẋ(0) = 4; 0 ≤ t ≤ 1.5

so the eigenvalues are λ1 = −4 + 3i and λ2 = −4 − 3i. Using the solution formula derived
previously, with p = −4 and q = 3, we see that x(t) = e−4t (C1 cos(3t) + C2 sin(3t)) for
arbitrary constants C1 and C2.

Suppose that we specify initial conditions, say x(0) = 0 and ẋ(0) = 4. These conditions say
that the ball is at its equilibrium position at the beginning of our investigation and that the
ball is started in motion from its equilibrium position with an initial velocity of 4 ft/sec in
the downward direction. Applying these conditions, we have

x(0) = e−4(0) (C1 cos(0) + C2 sin(0)) = C1 = 0

and

ẋ(0) = e−4(0) (−3C1 sin(0) + 3C2 cos(0)) − 4e−4(0) (C1 cos(0) + C2 sin(0))

= 3C2 − 4C1 = 4.

Therefore, C1 = 0, C2 = 4
3 , and the solution of our IVP is x(t) = 4

3 e−4t sin(3t). The graph of
this solution (Figure 4.1) shows that the motion is dying out as time passes—that is, x → 0
as t → ∞.

As we’ll see later in this chapter, the differential equation has a term in it that represents air
resistance, and this results in what is called damped motion. ■

4.1.5 The Amplitude-Phase Angle Form of a Solution
In working with a differential equation part of whose solution is a linear combination of
cos ωt and sin ωt, where ω is a parameter, we can use a basic identity to write the trigonometric
part of the solution as a single trigonometric function. This will enable us to “read” the
solution more clearly and visualize its graph more easily.

Specifically, we show that

c1 cos ωt + c2 sin ωt = M cos (ωt − φ), (4.1.2)
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Amplitude-phase angle

where M is a constant depending on c1 and c2 and φ is an angle depending on c1 and c2,
where not both c1 and c2 are zero. To see this, we write

c1 cos ωt + c2 sin ωt =
√

c2
1 + c2

2

⎡
⎢⎣ c 1√

c2
1 + c2

2

cos ωt + c2√
c2
1 + c2

2

sin ωt

⎤
⎥⎦. (4.1.3)

We note three things about the right-hand side of (4.1.3): (1)

∣∣∣∣ c1√
c2
1+c2

2

∣∣∣∣ ≤ 1 and

∣∣∣∣ c2√
c2
1+c2

2

∣∣∣∣ ≤ 1;

(2)
(

c1√
c2
1+c2

2

)2 +
(

c2√
c2
1+c2

2

)2 = 1; and (3) the right-hand side resembles the trigonometric

identity cos(A−B) = cos A cos B+ sin A sin B, where B = ωt. To see the similarity indicated in
(3) more clearly, we choose an angle φ (measured in radians) such that cos φ = c1√

c2
1+c2

2

and

sin φ = c2√
c2
1+c2

2

. We may be tempted to define φ = tan−1
(

c2
c1

)
, but as we’ll see in Example

4.1.4(b) the value of the quotient c2/c1 does not determine the quadrant in which φ lies.
The range of the inverse tangent is assumed to be the open interval (−π/2, π/2), which may
not be consistent with the true location of φ. The necessary adjustments are indicated in the
summary later in this section.

The angle φ, called the phase angle, always exists because of properties (1) and (2).

The quantity M =
√

c2
1 + c2

2 is the amplitude. The expression M cos(ωt − φ) is called the
amplitude-phase angle form of the solution c1 cos ωt +c2 sin ωt. We see that M cos(ωt −φ) =
M cos

(
ω
[
t − φ

ω

])
has period 2π/ω and that the graph of M cos(ωt − φ) is the graph of

M cos(ωt) shifted φ/ω units to the right.

Figure 4.2 illustrates the situation for a first-quadrant point (c1, c2).

■ Example 4.1.4 The Amplitude-Phase Angle Forms of Solutions
(a) The initial-value problem ẍ + 256x = 0, x(0) = 1/4, x′(0) = 1 has the solution
x(t) = 1

4 cos 16t + 1
16 sin 16t. To write this solution in the amplitude-phase angle form

M cos(16t − φ), we first calculate M =
√

c2
1 + c2

2 =
√(1

4

)2 + ( 1
16

)2 =
√

17
16 . Next, we note that
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(c1, c2) = (1/4, 1/16) is in the first quadrant, and we determine the phase angle φ by the equa-

tions cos φ = 1/4√
17/16

= 4
√

17
17 and sin φ = 1/16√

17/16
=

√
17

17 , which indicate that φ = 0.2450

radian. Therefore, we can write the solution as
√

17
16 cos(16t − 0.2450).

(b) The solution of the IVP y′′ + 9y = 0, y(0) = −0.3, y′(0) = 1.2 is y(t) = − 0.3 cos 3t +
0.4 sin 3t. The amplitude of this solution is M =

√
c2
1 + c2

2 =√
(−0.3)2 + (0.4)2 = 0.5. The

point (c1, c2) = (−0.3, 0.4) lies in the second quadrant, and the unique solution of the
equations cos φ = −0.3

0.5 = −0.6 and sin φ = 0.4
0.5 = 0.8 is approximately 2.2143 radi-

ans (= π − sin−1(0.8)). Thus, y(t) = 0.5 cos(3t − 0.2143). Note that in this example
tan−1 (c 2/c 1) = tan−1 (0.4/−0.3) = −0.9273, an incorrect answer that places φ in the fourth
quadrant. However, φ can be calculated correctly as tan−1 (0.4/ − 0.3) + π. ■

We can summarize the process of expressing a solution in amplitude-phase angle form as
follows.

AMPLITUDE-PHASE ANGLE FORM

c1 cos ωt + c2 sin ωt = M cos(ωt − φ)

M =
√

c2
1 + c2

2

tan φ = c2

c1

φ =
{

tan−1(c2/c1) if c1 ≥ 0

tan−1(c2/c1) + π if c1 < 0

4.1.6 Summary
We can summarize the situation for homogeneous linear second-order equations with constant
coefficients as follows:

Suppose that we have the equation ax′′ + bx′ + cx = 0, where a, b, and c are constants, a 	= 0,
and λ1 and λ2 are the zeros of the characteristic equation aλ2 + bλ + c = 0. Then

1. If there are two distinct real eigenvalues—λ1, λ2, with λ1 	= λ2—corresponding to our
equation, the general solution is

x(t) = c1eλ1t + c2eλ2t .

2. If there is a repeated real eigenvalue λ, the general solution has the form

x(t) = c1eλt + c2t eλt = (c1 + c2t) eλt .

3. If the eigenvalues form a complex conjugate pair p ± qi, then Euler’s formula can be
used to show that the (real-valued) general solution has the form

x(t) = ep t(c1 cos(qt) + c2 sin(qt)
)
.
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Exercises 4.1

A

Find the general solution of each of the equations in Problems 1–10.

1. y′′ − 4y′ + 4y = 0
2. ẍ + 4ẋ − 5x = 0
3. x′′ − 2x′ + 2x = 0
4. x′′ + 5x′ + 6x = 0
5. ẍ + 2ẋ = 0
6. ẍ − x = 0
7. y′′ + 4y = 0
8. 6ẍ − 11ẋ + 4x = 0
9. r̈ − 4ṙ + 20r = 0

10. y′′ + 4ky′ − 12k2y = 0 (k is a parameter)
11. Solve the IVP ẍ − 3ẋ + 2x = 0, x(0) = 1, ẋ(0) = 0.
12. Solve the IVP y′′ − 2y′ + y = 0, y(0) = 0, y′(0) = 0.
13. Solve the IVP y′′ − 4y′ + 20y = 0, y(π/2) = 0, y′(π/2) = 1.
14. Write each of the following functions in amplitude-phase angle form.

a. x(t) = 3 cos 5t − 7 sin 5t
b. y(t) = √

3 cos 14t + sin 14t
c. x(t) = −6 cos 5t + 6 sin 5t
d. y(t) = √

3 cos 6t − sin 6t

B

1. a. Show that if a, b, and c are constants and y is any function having at least two derivatives, then
the differential operator L defined by the relation L(y) = ay′′ + by′ + cy is linear : L

(
c1y1+

c2y2
) = c1L

(
y1
) + c2L

(
y2
)

for any twice-differentiable functions y1 and y2 and any constants
c1 and c2.

b. Show that if y1 and y2 are two solutions of L(y) = 0, then the function c1y1 + c2y2 is also a
solution of L(y) = 0.

As we noted at the beginning of Section 4.1, if I = I(t) represents the current in an electrical
circuit, then Kirchhoff’s Voltage Law gives us the equation L d2I

dt2 + RdI
dt + 1

C I = 0 when the voltage
applied to the circuit is constant. In this equation, L is the inductance, R is the resistance, and
C is the capacitance. Use this equation in Problems 2–3.

2. An RLC circuit with R = 10 ohms, L = 0.5 henry, and C = 0.01 farad has a constant voltage of
12 volts. Assume no initial current and that dI

dt = 60 when the voltage is first applied. Find an
expression for the current in the circuit at time t > 0.

3. An RLC circuit with R = 6 ohms, L = 0.1 henry, and C = 0.02 farad has a constant voltage of
6 volts. Assume no initial current and that dI

dt = 60 when the voltage is first applied.

a. Find an expression for the current in the circuit at time t > 0.
b. Use technology to graph the answer found in part (a) for 0 ≤ t ≤ 0.5.
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c. From the graph in part (b), estimate the maximum value of I and find the exact value by
calculus techniques applied to the expression found in part (a).

d. At what time is the maximum value found in part (c) achieved? (You can use a calculator or a
CAS for this.)

According to Newton’s Second Law of Motion (see Section 4.8 for a further discussion), if an
object with mass m is suspended from a spring attached to the ceiling, then the motion
of the object is governed by the equation mẍ + aẋ + kx = 0. In this equation, x(t) is the
object’s distance from its rest (equilibrium) position at time t seconds. Distance below the
rest position is considered positive, while distance above is considered negative. Also, a is
a constant representing the air resistance and/or friction present in the system and k is the
spring constant, describing the “give” in the spring. (Recall that mass = weight/g, where g is
the gravitational constant—32 ft/sec2 or 9.8 m/sec2.) Use this equation to do Problems 4–7.

4. An object of mass 4 slugs (= 128 lbs/32 ft/sec2) is suspended from a spring having spring constant
64 lbs/ft. The object is started in motion, with no initial velocity, by pulling it 6 inches (watch the
units!) below the equilibrium position and then releasing it. If there is no air resistance, find a
formula for the position of the object at any time t > 0. (Note that the problem statement contains
two initial conditions.)

5. A 20-g mass hangs from the end of a spring having a spring constant of 2880 dynes/cm and is
allowed to come to rest. It is then set in motion by stretching the spring 3 cm from its equilibrium
position and releasing the mass with an initial velocity of 10 cm/sec in the downward (positive)
direction. Find the position of the mass at time t > 0 if there is no air resistance.

6. A 1
2 -kg mass is attached to a spring having a spring constant of 6 lbs/ft. The mass is set in motion

by displacing it 6 inches below its equilibrium position with no initial velocity. Find the subsequent
motion of the mass if a, the constant representing air resistance, is 4 lbs.

7. A 1
2 -kg mass is attached to a spring having a spring constant of 8 Newtons/m. The mass is set in

motion by displacing it 10 cm above its equilibrium position with an initial velocity of 2 m/sec in
the upward direction.

a. Find the subsequent motion of the mass if the constant representing air resistance is 2 Newtons.
b. Graph the function x(t) found in part (a) for 0 ≤ t ≤ 3, 2 ≤ t ≤ 3, and 3 ≤ t ≤ 4. Describe the

motion of the mass in your own words.
c. Estimate the greatest distance of the mass above its equilibrium position.

8. The equation θ′′ = −4θ − 5θ′ represents the angle θ(t) made by a swinging door, where θ is
measured from the equilibrium position of the door, which is the closed position. The initial
conditions are θ(0) = π

3 and θ′(0) = 0.

a. Determine the angle θ(t) as a function of time (t > 0).
b. What does your solution tell you is going to happen as t becomes large?
c. Use technology to graph the solution θ(t) on the interval [0, 5].

C

1. We know that y1(t) = ept(cos(qt) + i sin(qt)) and y2(t) = ept(cos(qt) − i sin(qt)) are complex-valued
solutions of the homogeneous Equation (4.1.1) when the eigenvalues are complex conjugate
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numbers p ± qi. In what follows, you may assume that complex constants are valid in the
Superposition Principle.

a. Calculate Y1 = y1+y2
2 and show that Y1 is a real-valued solution of (4.1.1).

b. Calculate Y2 = y1−y2
2i and show that Y2 is a real-valued solution of (4.1.1).

c. Calculate Y = c1Y1 + c2Y2 and conclude that Y is a real-valued solution of (4.1.1) for arbitrary
real constants c1 and c2.

2. Given the equation L d2I
dt2 + R dI

dt + 1
C I = 0,

a. For what values of R will the current subside to zero without oscillating? [Hint : Oscillation is
equivalent to having trigonometric functions in the solution.]

b. For what values of R will the current oscillate before subsiding to zero?

3. Suppose that we have a constant-coefficient equation ay′′ + by′ + cy = 0 whose characteristic
equation has a repeated root r. Then we know that y1(t) = ert is a solution of the equation. If we
form the new function y2(t) = u(t)ert , where u(t) is unknown, we want to determine u(t) so that y2

is a solution of the differential equation, but is not a constant multiple of y1.

a. Show that any constant-coefficient equation ay′′ + by′ + cy = 0 whose characteristic equation
has a double root r must have the form y′′ − 2ry′ + r2y = 0.

b. Find y′
2 and y′′

2 and then substitute y2 and these derivatives into the equation y′′ − 2ry′+
r2y = 0. Simplify the result.

c. Solve the equation you get in part (b) for u(t).

4. Consider the equation ay′′ + by′ + cy = 0. Another approach (c. 1748) to the situation in which the
characteristic equation has a double real root λ∗ is due to the French mathematician d’Alembert
(1717–1783). He proposed splitting this root into two “neighboring” roots λ∗ and λ∗ + ε, where ε is
small.

a. Show that eλ∗t , e(λ
∗+ε)t , and also the combination yε(t) = e(λ

∗+ε)t−eλ∗t

ε are solutions of the
“perturbed” equation ay′′ + (

b − εa
)

y′ + (
c + εaλ∗) y = 0. [Use the result of Problem C3a.]

b. Show that as ε → 0, yε(t) becomes the function teλ∗t, which is a solution of the original equation.

4.2 NONHOMOGENEOUS SECOND-ORDER LINEAR
EQUATIONS WITH CONSTANT COEFFICIENTS

4.2.1 The Structure of Solutions
If we take the same RLC circuit that we considered at the beginning of the preceding section and
hook up a generator supplying alternating current to it, Kirchhoff’s Voltage Law will now take
the form L d2I

dt2 +RdI
dt + 1

C I = dE
dt , where E is the applied nonconstant voltage. Such an equation

is called a nonhomogeneous second-order linear equation with constant coefficients. (The
nonzero right-hand side of such an equation is often called the forcing function or the input.
The solution of the equation is the output. See Section 2.2.)

To get a handle on solving a nonhomogeneous linear equation, let’s think a bit about the
difference between a nonhomogeneous equation ay′′ + by′ + cy = f (t) and its associated
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homogeneous equation ay′′ + by′ + cy = 0. If y is the general solution of the homogeneous
system, then y doesn’t quite “reach” all the way to f (t) under the transformation ay′′ +by′ +cy.
It stops short at 0. Perhaps we could enhance the solution y in some way so that operating on
this new function does give us all of f . We have to be able to capture the “leftover” term f (t).

For nonhomogeneous second-order equations, the proper form of the Superposition Principle
is the following: If y1 is a solution of ay′′+by′+cy = f1(t) and y2 is a solution of ay′′+by′+cy =
f2(t), then y = c1y1 + c2y2 is a solution of ay′′ + by′ + cy = c1f1(t) + c2f2(t) for any constants
c1 and c2. (See Section 2.2 for the first-order Superposition Principle.)

Here’s a fundamental fact about linear equations:

The general solution, yGNH, of a linear nonhomogeneous equation ay′′ +by′ +cy = f (t)
is obtained by finding a particular solution, yPNH, of the nonhomogeneous equation
and adding it to the general solution, yGH, of the associated homogeneous equation.

We can prove this easily using operator notation, where L(y) = ay′′ + by′ + cy:

1. First note that L(yGH) = 0 and L(yPNH) = f (t) by definition.

2. Then if y = yGH + yPNH, we have L(y) = L(yGH + yPNH) = L(yGH) + L(yPNH) =
0 + f (t) = f (t), so y is a solution of the nonhomogeneous equation.

3. Now we must show that every solution of the nonhomogeneous equation has the
form y = yGH + yPNH. To do this, we assume that y* is any solution of L(y) = f (t) and
let z = y∗ − yPNH. Then

L(z) = L
(
y∗ − yPNH

) = L
(
y∗) − L

(
yPNH

) = f (t) − f (t) = 0,

which shows that z is a solution to the homogeneous equation L(y) = 0. Because
z = y∗ − yPNH, it follows that y∗ = z + yPNH, where z is a solution of L(y) = 0. (See
Problem C5 of Exercises 1.3 and Problem C3 of Exercises 2.2 for related results.)

Let’s go through some simple examples to get a feel for the solutions of nonhomogeneous
equations.

■ Example 4.2.1 Solving a Nonhomogeneous Equation
If we are given the nonhomogeneous equation y′′ + 4y′ + 5y = 10e−2x cos x, the general
solution will be made up of the general solution of the associated homogeneous equa-
tion and a particular solution of the nonhomogeneous equation: yGNH = yGH + yPNH.
The characteristic equation λ2 + 4λ + 5 = 0 has roots −2 ± i, so we know that yGH =
e−2x (c1 cos x + c2 sin x). We can verify that a particular solution of the nonhomogeneous
equation is 5xe−2x sin x. Therefore, the general solution of the nonhomogeneous equation is
y = e−2x (c1 cos x + c2 sin x) + 5xe−2x sin x. ■

In the preceding example, a particular solution appeared magically. The next example hints
at how we may find yPNH by examining the forcing function on the right-hand side of the
equation. Sections 4.3 and 4.4 will provide systematic procedures for determining a particular
solution of a nonhomogeneous equation.
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■ Example 4.2.2 Solving a Nonhomogeneous Equation
Suppose we want to find the general solution of y′′+3y′+2y = 12 et. Because the characteristic
equation of the associated homogeneous equation is λ2 +3λ+2 = 0, with roots −1 and −2,
we know that the general solution of the homogeneous equation is yGH = c1e−t + c2e−2t .

Now we look carefully at the form of the nonhomogeneous equation. In looking for a par-
ticular solution yPNH, we can ignore any terms of the form e−t or e−2t because these are part
of the homogeneous solution and won’t contribute anything new. But somehow, after dif-
ferentiations and additions, we have to wind up with the term 12et . We guess that y = cet

for some undetermined constant c. Substituting this expression into the left-hand side of the
nonhomogeneous equation, we get (cet) + 3(cet) + 2(cet) = 6cet . If we choose c = 2, then
yPNH = 2et is a particular solution of the nonhomogeneous equation.

Putting these two components together, we can write the general solution of the nonhomo-
geneous equation as yGNH = yGH + yPNH = c1e−t + c2e−2t + 2et . ■

The intelligent guessing used in the preceding example can be formalized into the method of
undetermined coefficients, which will be discussed in the next section. But, as we’ll see, this
method is effective only when the forcing function f (t) in the equation ay′′ + by′ + cy = f (t)
is of a special type.

Exercises 4.2

A

For each of the nonhomogeneous differential equations in Problems 1–5, verify that the
given function yp is a particular solution.

1. y′′ + 3y′ + 4y = 3x + 2; yp = 3
4 x − 1

16

2. y′′ − 4y = 2e3x ; yp = 3
5 e3x

3. 3y′′ + y′ − 2y = 2 cos x; yp = − 5
13 cos x + 1

13 sin x

4. y′′ + 5y′ + 6y = x2 + 2x; yp = 1
6 x2 + 1

18 x − 11
108

5. y′′ + y = sin x; yp = −1
2 x cos x

6. If x1(t) = 1
2 et is a solution of ẍ + ẋ = et and x2(t) = −te−t is a solution of ẍ + ẋ = e−t , find a

particular solution of ẍ + ẋ = et + e−t and verify that your solution is correct.

7. Given that yp = x2 is a solution of y′′ + y′ − 2y = 2
(
1 + x − x2), use the Superposition Principle to

find a particular solution of y′′ + y′ − 2y = 6
(
1 + x − x2) and verify the correctness of your solution.

8. If y1 = 1 + x is a solution of y′′ − y′ + y = x and y2 = e2x is a solution of y′′ − y′ + y = 3e2x , find a
particular solution of y′′ − y′ + y = −2x + 4e2x . Verify the correctness of your solution.

B
1. Find the general solution of the equation given in Problem A1.
2. Find the general solution of the equation given in Problem A2.
3. Find the general solution of the equation given in Problem A3.
4. Find the general solution of the equation given in Problem A4.
5. Find the general solution of the equation given in Problem A5.



144 CHAPTER 4: Second- and Higher-Order Equations

6. Find the general solution of the equation y′′ + y′ − 2y = 6
(
1 + x − x2) given in Problem A7.

7. Find the general solution of the equation ẍ + ẋ = et + e−t given in Problem A6.
8. Find the form of a particular solution of y′′ − y = x by intelligent guessing and use this information

to solve the IVP y′′ − y = x, y(0) = y′(0) = 0.

C

1. Suppose x(t) satisfies the initial-value problem

ẍ + π2x = f (t) =
{

π2, 0 ≤ t ≤ 1

0, t > 1

with x(0) = 1 and ẋ(0) = 0. Determine the continuously differentiable solution for t ≥ 0. (This
means that the solution has a continuous derivative function. Note that it will have a discontinuous
second derivative at t = 1.)

4.3 THE METHOD OF UNDETERMINED COEFFICIENTS
As we saw in Section 4.2, to find the general solution of a linear nonhomogeneous equation
with constant coefficients ay′′ + by′ + cy = f (t), we must find a particular solution yPNH of
this equation and add it to the general solution yGH of the associated homogeneous equation
ay′′ + by′ + cy = 0.

The method of undetermined coefficients is the systematic version of the “intelligent guess-
ing” discussed in the preceding section. It was developed by Euler in his 1753 study of the
motion of the moon. This technique uses the forcing function f (t) on the right-hand side of
the differential equation to suggest a form for yPNH. This trial solution (guess) will contain
undetermined constants that can be evaluated by substituting the suggested function yPNH

into the nonhomogeneous equation. (Look back at Example 4.2.1 and Example 4.2.2.)

For example, if the forcing function f (t) is a polynomial of degree n, it is reasonable to suspect
that yPNH is also an nth degree polynomial antn +an−1tn−1 +· · ·+a1t +a0 whose coefficients
an, an−1, . . . , a1, a0 we must determine. As we’ll see, sometimes it’s more intelligent to assume
the degree of the trial solution is n + 1 or n + 2.

■ Example 4.3.1 Finding yPNH by the Method of Undetermined
Coefficients

Consider the equation y′′ − y′ − 2y = 3x2 − 2x + 1. The characteristic equation of the asso-
ciated homogeneous equation is λ2 − λ − 2 = 0, with roots λ1 = − 1 and λ2 = 2, so yGH is
c1e−x + c2e2x. Because the forcing function is 3x2 − 2x + 1, we guess that

yPNH = a2x2 + a1x + a0.

Then we calculate y′
PNH = 2a2x + a1 and y′′

PNH = 2a2. Substituting these derivatives into the
differential equation, we get

2a2 − (2a2x + a1) − 2
(
a2x2 + a1x + a0

) = 3x2 − 2x + 1,
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or, after collecting like terms,

−2a2x2 + (−2a2 − 2a1) x + (2a2 − a1 − 2a0) = 3x2 − 2x + 1.

Equating the coefficients of like powers of x, we find

−2a2 = 3, −2a2 − 2a1 = −3, 2a2 − a1 − 2a0 = 1.

The first equation yields a2 = −3/2. Substituting this value for a2 into the second equation
gives a1 = 5/2. Finally, we solve the third equation for a0 in terms of a1 and a2 to find
a0 = (1 + a1 − 2a2)/(−2) = −13/4.

Now that we have determined the coefficients of our polynomial yPNH, we see that yPNH =
−3

2 x2 + 5
2 x − 13

4 . Thus, the general solution of the nonhomogeneous equation is

yGH + yPNH = c1e−x + c2e2 x − 3
2

x2 + 5
2

x − 13
4

.

■

The guesswork involved in the preceding example was a bit misleading. We assumed that the
degree of the undetermined polynomial was less than or equal to the degree of the polynomial
on the right-hand side of the equation. (It is possible that some of the coefficients were
zero.) This assumption was valid in this example because the left-hand side of the differential
equation y′′ − y′ − 2y = 3x2 − 2x + 1 contained a term of the form cy. If we suppose that y
is an nth degree polynomial, then the calculation of y′′ reduces the degree of y by 2, but the
term −2y restores a polynomial of degree n to the result. However, if this constant multiple
of y were missing (that is, if c = 0), we should guess that y is a polynomial of degree n + 1. If
the y′ term were also missing, then the degree of our trial solution should be n + 2.

If the equation is ay′′ + by′ + cy = antn + an−1tn−1 + · · · + a1t + a0, assuming that a 	= 0,
Table 4.1 summarizes our choice of a polynomial trial solution.

Table 4.1 Degree of Polynomial Trial Solutions

Degree of Trial Solution

b 	= 0, c 	= 0 n

b = 0, c 	= 0 n

b 	= 0, c = 0 n + 1

b = 0, c = 0 n + 2

■ Example 4.3.2 A Particular Solution of ay′′ + by′ + cy = f (t)
When c = 0

If we want to find a particular solution of the equation y′′ − 7y′ = t2 + 2t + 3, we realize that
choosing a trial solution of the form a2t2 + a1t + a0 won’t work: Substituting such a second-
degree polynomial into the left-hand side of the equation yields a linear result because of the
differentiations. Therefore, we guess (see Table 4.1) that yPNH = a3t3 + a2t2 + a1t + a0. Then
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y′
PNH = 3a3t2 + 2a2t + a 1 and y′′

PNH = 6a3t + 2a2. Substituting yPNH into the equation and
collecting terms, we find

−21a3t2 + (6a3 − 14a2)t + (2a2 − 7a1) = t2 + 2t + 3.

Equating coefficients of equal powers of t, we have

−21a3 = 1, 6a3 − 14a2 = 2, 2a2 − 7a1 = 3.

Solving this system of equations, we conclude that a3 = −1/21, a2 = −8/49, and a 1 =
−163/343, so yPNH = − 1

21 t3 − 8
49 t2 − 163

343 t. We can take a0 to be zero because it is a “free”
variable and cannot be determined. (Also, noting that yGH = c1e7t + c2, we see that any
nonzero value of a0 would be absorbed by c2 in assembling yGNH.) ■

In general, the key idea behind the method of undetermined coefficients is that all the deriva-
tives of the forcing function f (t) should have the same form as f (t) itself. If this is true, the
method will work. If this is not true, we should not use the method.

If we think about functions whose derivatives have the same forms as themselves, we realize
that we are limited to polynomials, exponential functions, linear combinations of sines and
cosines, or combinations of sums and products of these functions. For example, the method
of undetermined coefficients applies to equations whose forcing terms are

−3,

−2 t5 − 6 t3 + 4,

2 cos 4t − 7
3

sin 4t,

25et sin t,

t2e3t + (1 − t3) cos 5t.

Table 4.2 provides suggestions for forms of particular solutions.

By the Superposition Principle (see Section 4.2), forcing functions that are linear combina-
tions of the forms on the left side of Table 4.2 require the same linear combinations of the

Table 4.2 Trial Particular Solutions for Nonhomogeneous Equations

f (t) Form of Trial Solution

c 	= 0, a constant K , a constant

Pn(t) = antn + an−1tn−1 + · · · + a1t + a0 Qm(t) = cmtm + cm−1tm−1 + · · · + c1t + c0

(See Table 4.1)

ceat K ea t

a cos rt + b sin rt α cos rt + β sin rt

eRt
(
a cos rt + b sin rt

)
eRt (α cos rt + β sin rt)

Pn(t)eat Qm(t)eat
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corresponding trial solutions: If forcing function f1(t) suggests a trial solution of form F1(t)
and forcing function f2(t) suggests a trial solution of form F2(t), then a forcing function
of the form c1f1(t) + c2f2(t) requires a trial solution of the form c1F1(t) + c2F2(t). This
result generalizes to any finite linear combination c1f1(t) + c2f2(t) + · · · + ckfk(t) of forcing
functions.

■ Example 4.3.3 Undetermined Coefficients with an Exponential
Forcing Function

We can easily verify that xGH = c1 cos 2t + c2 sin 2t for the equation ẍ + 4x = 3e2t . To find
a particular solution of the nonhomogeneous equation, we choose a function of the form
x = Ke2t , where K is an undetermined constant. We calculate ẋ = 2Ke2t , ẍ = 4Ke2t ; and
substitution into the nonhomogeneous equation gives us 4Ke2t + 4Ke2t = 4e2t , or 8Ke2t =
4e2t , so K = 1/2.

Thus, a particular solution is xp(t) = 1
2 e2t , and the general solution of the nonhomogeneous

equation is x(t) = c1 cos 2t + c2 sin 2t + 1
2 e2t . ■

■ Example 4.3.4 Undetermined Coefficients with a Trigonometric
Forcing Function

A 2560 lb car supported by a MacPherson strut (a particular type of shock absorbing system)
is traveling over a bumpy road at a constant velocity v. The equation modeling the motion is

80ẍ + 10,000x = 2500 cos
(

πvt
6

)
,

where x represents the vertical position of the car’s axle relative to its equilibrium position,
and the basic units of measurement are feet and feet per second where appropriate. (Note that
the coefficient of ẍ is 2560/g = 2560/32 = 80, the mass of the car.) We want to determine
how the velocity affects the way the car vibrates.

The general solution of the associated homogeneous equation is xGH = c1 sin
(

5
√

5t
)

+
c2 cos

(
5
√

5t
)

. Table 4.2 suggests we choose a trial solution of the form xP = A sin
(

πvt
6

) +
B cos

(
πvt
6

)
. If we examine the left-hand side of the differential equation, we can simplify

our work. We notice that if the trial solution x contains a sine term, then ẍ yields a sine
term and 10,000x contributes another sine. Because there is no multiple of sin

(
πvt
6

)
in

the forcing function, we conclude that A = 0, giving the trial solution the simpler form
B cos

(
πvt
6

)
.

Now ẋP = −πv
6 B sin

(
πvt
6

)
and ẍP = − (

πv
6

)2 B cos
(

πvt
6

)
. Substituting these derivatives into the

nonhomogeneous equations and collecting terms, we find

[
10,000 − 80

(πv
6

)2
]

B cos
(

πvt
6

)
= 2500 cos

(
πvt
6

)
,
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FIGURE 4.3
x(t) = c1 sin

(
5
√

5t
)

+ c2 cos
(

5
√

5t
)

+ 2500
10,000−80

(
πv
6

)2 cos
(
πvt
6
)

; x(0) = 0, ẋ(0) = 0; 0 ≤ t ≤ 5

v = 15 (solid curve); v = 21 (dashed curve)

so B = 2500/
[
10,000 − 80

(
πv
6

)2
]
. Therefore, xPNH = 2500

10,000−80( πv
6 )2 cos

(
πvt
6

)
and the general

solution of our equation of motion is

x(t) = c1 sin
(

5
√

5t
)

+ c2 cos
(

5
√

5t
)

+ 2500

10,000 − 80
(

πv
6

)2 cos
(

πvt
6

)
.

Clearly, the first two trigonometric terms help describe the bumpy ride, but they have fixed
amplitudes |c1| and |c2|, so the ride can’t get alarmingly bumpy. However, the amplitude of
the last term is given by 2500

10,000−80( πv
6 )2 , which grows larger and larger as the denominator

expression 10,000−80
(

πv
6

)2 gets closer and closer to zero. Thus, we get unbounded vibrations

when 10,000 − 80
(

πv
6

)2 = 0—that is, when v =
√

4500
π2 ≈ 21.35 ft/sec. The dimensional

equation miles
hr = miles

ft · ft
sec · sec

hr allows us to express our answer as 1
5280 · 21.35

1 · 3600
1 ≈ 14.56

miles per hour.

Assuming the initial conditions x(0) = 0 and ẋ(0) = 0, Figure 4.3 shows two graphs of x(t)
against t, the solid graph having v = 15 ft/sec and the dashed line graph using v = 21 ft/sec.
You can see that the car’s vibrations become wilder over time for a speed close to 21.35 feet
per second. ■

The preceding example illustrates the phenomenon of resonance, the presence of oscillations
of unbounded amplitude. We will encounter resonance again in Example 4.8.4 and discuss
it further in the section following that example.

As indicated earlier, the Superposition Principle allows us to handle more complicated
combinations of basic forcing functions.

■ Example 4.3.5 Undetermined Coefficients with a Linear
Combination of Forcing Functions

Suppose we have the equation y′′ + y′ −2y = x2 +2 sin x − cos x + e3x. In this case, the forcing
function is a linear combination of familiar terms from the left-hand side of Table 4.2, so
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we choose a trial solution yp that is a combination of the second, third, and fourth entries of
Table 4.2 (second column):

yP = (Ax2 + Bx + C) + (D sin x + E cos x) + Fe3x.

Consequently, y′
P = 2 Ax + B + D cos x −E sin x +3F e3x and y′′

P = 2A+B−D sin x −E cos x +
9F e3x. When we substitute these derivatives in the nonhomogeneous equation and collect
terms, we get the equation

−2Ax2 + (2A − 2B)x + (2A + B − 2C) + (−3D − E) sin x + (−3E + D) cos x + 10F e3x

= x2 + 2 sin x − cos x + e3x.

Matching the coefficients of like terms on each side, we get the system

1. −2 A = 1 [The coefficients of x2 must be equal.]

2. 2(A − B) = 0 [The coefficients of x must be equal.]

3. 2A + B − 2C = 0 [The constant terms must be equal.]

4. −3D − E = 2 [The coefficients of sin x must be equal.]

5. −3E + D = −1 [The coefficients of cos x must be equal.]

6. 10F = 1 [The coefficients of e3 x must be equal.]

Working from the top down, we find A = −1/2, B = A = −1/2, C = −3/4, D = −7/10, E =
1/10, and F = 1/10. Therefore,

yPNH = −1
2

x2 − 1
2

x − 3
4

− 7
10

sin x + 1
10

cos x + 1
10

e3x.

The general solution of the associated homogeneous equation is c1ex + c2e3x, so the general
solution of the nonhomogeneous equation is

y(x) = c1ex + c2e3x − 1
2

x2 − 1
2

x − 3
4

− 7
10

sin x + 1
10

cos x + 1
10

e3x.

■

There is an exception to the neatness of Table 4.2, however. If any term of the initial trial
solution is also a term (or a multiple of a term) of yGH(t), then the trial solution must be
modified by multiplying it by tm, where m is the smallest positive integer such that the product
of tm and the trial solution has no terms in common with yGH(t). The next example illustrates
this change of strategy.

■ Example 4.3.6 Undetermined Coefficients—An Exception to the
General Rule

Let’s solve the equation y′′ + 4y = 3 cos 2x + 2x2. The general solution of the homogeneous
equation y′′ + 4y = 0 is c1 sin 2x + c2 cos 2x. Ordinarily, we would choose a trial solution
of the form A sin 2x + B cos 2x + Cx2 + Dx + E. However, the expression A sin 2x + B cos 2x
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duplicates the terms of yGH. To deal with this, we choose a modified trial solution of the
form

yP = x (A sin 2x + B cos 2x) + Cx2 + Dx + E,

noting that the second-degree polynomial does not have to be changed. Then y′
P =

x (2A cos 2x − 2B sin 2x) + (A sin 2x + B cos 2x) + 2Cx + D and

y′′
P = x (−4A sin 2x − 4B cos 2x) + (2A cos 2x − 2B sin 2x)

+ (2A cos 2x − 2B sin 2x) + 2C.

Substituting these derivatives in the nonhomogeneous equation and collecting terms, we get

−4B sin 2x + 4A cos 2x + 4Cx2 + 4Dx + (4E + 2C) = 3 cos 2x + 2x2.

Equating coefficients of equal terms give us the equations −4B = 0, 4A = 3, 4C = 2, 4D = 0,
and 4E + 2C = 0, with solutions A = 3/4, B = 0, C = 1/2, D = 0, and E = −1/4. Therefore,
after some simplification, yPNH = 3

4 x sin 2x + 1
2 x2 − 1

4 and yGNH = c1 sin 2x + c2 cos 2x +
3
4 x sin 2x + 1

2 x2 − 1
4 . ■

Exercises 4.3

A

For each of the equations in Problems 1–10, find yGH and the expression in terms of undeter-
mined coefficients that you would use to find yPNH. Do not actually determine the
coefficients.

1. y′′ + 3y′ = 3
2. y′′ − 7y′ = (x − 1)2

3. y′′ + 7y′ = e−7x

4. y′′ − 8y′ + 16y = (1 − x)e4x

5. y′′ + 25y = cos 5x
6. y′′ + y = xe−x

7. y′′ + 6y′ + 13y = e−3x cos 2x
8. y′′ − 4y′ + 3y = 3ex + 2e−x + x3e−x

9. y′′ + k2y = k, where k is a parameter
10. 4 y′′ + 8 y′ = x sin x

Find the general solution of each of the equations in Problems 11–20 by using the method
of undetermined coefficients.

11. y′′ − 2y′ − 3y = e4t

12. ẍ − 3ẋ + 2x = sin t
13. x′′ − 2x′ + 2x = et + t cos t
14. x′′ + x′ = 4t2et

15. ẍ + ẋ = 4 sin t
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16. ẍ − x = 2et − t2

17. y′′ + 10y′ + 25y = 4e−5x

18. 6ẍ − 11ẋ + 4x = t
19. ẍ + 3ẋ + 2x = t sin t
20. y′′ + 5y′ + 6y = 10(1 − x)e−2x

B

1. Solve the IVP y′′ − 3y′ − 4y = 3e4x ; y(0) = 0, y′(0) = 0.
2. Solve the IVP y′′ + ω2y = t (sin ωt + cos ωt) ; y(0) = 0, y′(0) = 0.
3. Solve the IVP y′′ + y′ + y = t2e− t cos t, y(0) = 1, y′(0) = 0 using a CAS. [Warning : Serious mental

injury may result from attempting to do this manually.]

As mentioned at the beginning of Section 4.2, if I = I(t) represents the current in an
electrical circuit, then Kirchhoff’s Voltage Law gives us the nonhomogeneous equation
L d2I

dt2 + RdI
dt + 1

C I = dE
dt , where E is the applied nonconstant voltage. In this equation, L is

the inductance, R is the resistance, and C is the capacitance. Use this equation in Problems
4–6.

4. An RLC circuit has a resistance of 5 ohms, an inductance of 0.05 henry, a capacitor of 0.0004 farad,
and an applied alternating voltage of 200 cos(100 t) volts.

a. Without using technology, find an expression for the current flowing through this circuit if the
initial current is zero and dI

dt (0) is 4000.
b. Check your answer to part (a) by using technology.

5. Look for a particular solution of y′′ + 0.2y′ + y = sin(ωx) and investigate its amplitude as a function
of ω. Use technology to graph the particular solution for values of ω that seem significant to you
and describe the behavior of this solution.

6. In her dorm room, a student attaches a weight to a spring hanging from the ceiling. She starts the
mass in motion from the equilibrium position with an initial velocity in the upward direction. But
during this experiment, there is rhythmic stomping (dancing or pest control?) from the student
upstairs that causes the ceiling and the entire spring-mass system to vibrate. Taking into account
air resistance and this “external force,” she determines that the equation of motion is ẍ + 9ẋ + 14x =
1
2 sin t, with x(0) = 0 and ẋ(0) = −1.

a. Solve this equation for x(t), the position of the weight relative to its rest position.
b. Use technology to graph x(t) for 0 ≤ t ≤ 10.

7. Consider the equation

y′′ + y = F(t), where F(t) =
⎧⎨
⎩t 0 ≤ t ≤ π,

0 t > π

y(0) = y′(0) = 0, and y and y′ are continuous at π.

a. Plot the forcing function against t.
b. Solve the initial-value problem for 0 ≤ t ≤ π.
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c. Solve the initial-value problem for t > π, determining the constants from the continuity
conditions at t = π.

d. Combine your answers to parts (b) and (c) into a single solution Y to the original IVP and plot Y
against t.

C

1. Find the general solution of y′′ − 3y′ + 2y = 4 sin3 3x. [Hint : Use trigonometric identities to reduce
the forcing function to a linear combination of functions in Table 4.2.]

2. Find the general solution of y′′ + 4y = sin4 x. (See the hint for the preceding problem.)
3. Find the general solution of y′′ + 4y = cos x cos 2x cos 3x. (See the hint for Problem C1.)
4. Find the general solution of y′′ + λ2y = ∑N

k=1 ak sin kπt, where λ > 0 and λ 	= kπ for
k = 1, 2, . . . , N.

5. Consider the equation ay′′ + by′ + cy = g(t), where a, b, and c are positive constants.

a. If Y1(t) and Y2(t) are solutions of the given equation, show that Y1(t) − Y2(t) → 0 as t → ∞.
[Hint : Show that

√
b2 − 4ac ≤ b.]

b. Is the result of part (a) true if b = 0?
c. If g(t) = K , a constant, show that every solution of the given equation approaches K/c as

t → ∞. What happens if c = 0? What if b = 0 also?

A special type of second-order differential equation with variable coefficients is the Cauchy-
Euler equation (or Euler’s differential equation): x2y′′ + axy′ + by = 0, where a and b are
real constants. The substitution x = ez reduces the equation to a second-order linear ODE
with constant coefficients. Use this method to transform each of the following equations and
then solve the resulting constant-coefficient equation.

6. x2y′′ + xy′ + 4y = 1
7. x2y′′ + 5xy′ − 6y = 4

x2 − 12

4.4 VARIATION OF PARAMETERS
There are various techniques for finding a particular solution of the nonhomogeneous equa-
tion. The method of variation of parameters (or variation of constants) was developed by
the French-Italian mathematician Joseph Louis Lagrange (1736–1813) in 1775.

Let’s look at the nonhomogeneous equation ay′′ + by′ + cy = f (t) and assume that y1(t)
and y2(t) are two known solutions of the homogeneous equation ay′′ + by′ + cy = 0 that
are independent of each other. Then we know that c1y1(t) + c2y2(t) is also a solution of the
homogeneous equation for any constants c1 and c2. Lagrange’s idea was to look for a particular
solution of the nonhomogeneous equation of the form c1(t)y1(t) + c2(t)y2(t), where c1(t) and
c2(t) are unknown functions that must be determined. By substituting this trial solution into
the original nonhomogeneous differential equation, we will obtain one equation that must be
satisfied by c1(t) and c2(t); but, because we have two unknown functions, this single equation is
not enough. We need two equations to determine these functions completely, and Lagrange’s
method imposes an additional condition, one chosen to simplify the calculations involved.
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Rather than go through this method in complete generality, we’ll illustrate the technique in
specific examples.

■ Example 4.4.1 Using Variation of Parameters
Suppose we want to solve y′′+3y′+2y = 3e−2x+x. The characteristic equation of the associated
homogeneous equation is λ2 + 3λ + 2 = 0, with roots −2 and −1. Then y1(x) = e−2x and
y2(x) = e−x are two independent solutions of the homogeneous equation, and the general
solution of the homogeneous equation is yGH = c1e−2x + c2e−x, where c1 and c2 are arbitrary
constants. Now assume that y = C1y1 + C2y2 = C1e−2x + C2e−x is a particular solution of
the nonhomogeneous equation, where C1 = C1(x) and C2 = C2(x) are unknown functions.
Differentiating, we obtain

y′ = −2C1e−2x + C′
1e−2x − C2e−x + C′

2e−x

= (−2C1e−2x − C2e−x) + (
C′

1e−2x + C′
2e−x).

To avoid messy higher derivatives (and being aware that we’re looking for a particular solution),
Lagrange’s method requires that we impose the condition

C′
1e−2x + C′

2e−x = 0. (*)

Accepting this condition, we have y′ = −2C1e−2x − C2e−x, from which we calculate y′′ =
4C1e−2x − 2C′

1e−2x + C2e−x − C′
2e−x. Substituting these expressions for y, y′, and y′′ into the

equation y′′ + 3y′ + 2y = 3e−2x + x, we find that(
4C1e−2x − 2C′

1e−2x +C2e−x − C′
2e−x) + 3

(−2C1e−2x − C2e−x) + 2
(
C1e−2x + C2e−x)

= 3e−2x + x,

or

−2C′
1e−2x − C′

2e−x = 3e−2x + x. (**)

Equations (*) and (* *) form a system of equations that we must solve for C′
1 and C′

2:

C′
1e−2x + C′

2e−x = 0 (*)

−2C′
1e−2x − C′

2e−x = 3e−2x + x. (**)

Adding (*) and (* *) gives us −C′
1e−2x = 3e−2x + x, so that C′

1 = −3 − xe2x.

Integration (by parts, manually, or by CAS) yields C1(x) = −3x− x
2 e2x+ 1

4 e2x. In using variation
of parameters, we make all constants of integration 0 because we want only a particular
solution. Next, we use (*) to find that C′

2 = ex
(−C′

1e−2x
) = ex

(
3e−2x + x

) = 3e−x + xex.
Integration gives us C2(x) = −3e−x + xex − ex.

Finally,

yPNH = C1y1 + C2y2 =
(

−3x − x
2

e2x + 1
4

e2x
) (

e−2x) + (−3e−x + xex − ex) (e−x)
= −3xe−2x − x

2
+ 1

4
− 3e−2x + x − 1 = −3xe−2x − 3e−2x + x

2
− 3

4
,
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so that yGNH = c1e−2x + c2e−x + x
2 − 3

4 − 3xe−2x is the general solution of the original
nonhomogeneous equation. (Note that the term −3e−2x in yPNH has been absorbed by the
term c1e−2x in yGH.) ■

■ Example 4.4.2 Using Variation of Parameters
The equation ẍ+x = tan t cannot be solved by using the method of undetermined coefficients
because the forcing function f (t) = tan t cannot be expressed as a linear combination of one
of the basic forms given in Table 4.2. However, Lagrange’s method works.

The general solution of the associated homogeneous equation ẍ + x = 0 is yGH(t) = c1 sin t +
c2 cos t, where c1 and c2 are arbitrary constants. Therefore, we try to find functions C1 = C1(t)
and C2 = C2(t) such that xP(t) = C1(t) sin t + C2(t) cos t is a particular solution of the
nonhomogeneous equation. To do this, we must first calculate

ẋ = C1 cos t + Ċ1 sin t − C2 sin t + Ċ2 cos t

= (C1 cos t − C2 sin t) + (
Ċ1 sin t + Ċ2 cos t

)
.

Before calculating ẍ and increasing the complexity of the expressions we have to use, we
impose the condition

Ċ1 sin t + Ċ2 cos t = 0. (*)

In particular, this condition ensures that ẍ will contain no second derivatives of C1 or C2.

Now differentiating the simplified expression for ẋ gives us ẍ = −C1 sin t+Ċ1 cos t−C2 cos t−
Ċ2 sin t. Substituting for x and ẍ in our original equation yields

ẍ + x = (−C1 sin t + Ċ1 cos t − C2 cos t − Ċ2 sin t
) + (C1 sin t + C 2 cos t) = tan t,

or

Ċ1 cos t − Ċ2 sin t = tan t. (**)

Now (*) and (**) give us a system of simultaneous equations for Ċ1 and Ċ2:{
Ċ1 sin t + Ċ2 cos t = 0
Ċ1 cos t − Ċ2 sin t = tan t

}
.

Multiplying the first equation by sin t and the second by cos t and then adding, we find
Ċ1

(
sin2 t + cos2 t

) = tan t cos t, or Ċ1 = sin t. Thus, because we need only a particular solu-
tion, we can take the constant of integration to be zero and get C1 = − cos t. Using Equation
(*), we derive Ċ2 = −Ċ1 sin t/cos t = −sin2 t/cos t = (

cos2 t − 1
)
/cos t = cos t − 1/cos t.

Then C2 = ∫
(cos t − 1/cos t) dt = sin t − ∫

sec t dt = sin t − ln |sec t + tan t|.
Therefore, a particular solution of our original nonhomogeneous equation is given by
xPNH = C1(t) sin t +C2(t) cos t = − cos t sin t +(

sin t − ln |sec t + tan t|) cos t = − cos t sin t+(
sin t − ln |sec t + tan t|) cos t = − ln |sec t + tan t| cos t, and yGNH(t) = c1 sin t + c2 cos t −
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ln |sec t + tan t| cos t. (Note that because the last term is not a constant multiple of cos t, it
doesn’t get absorbed by the term c2 cos t.) ■

■ Example 4.4.3 Using Variation of Parameters
We cannot use the method of undetermined coefficients to solve the equation y′′ −3y′ +2y =
sin

(
e−x

)
because the forcing function f (x) = sin

(
e−x

)
does not fit any of the patterns in

Table 4.2. So we try variation of parameters.

We find that yGH = c1ex + c2e2x, so we assume that a particular solution of the nonhomoge-
neous equation has the form yP = C1ex +C2e2x, where C1 and C2 are undetermined functions
of x. Then y′

P = (
C1ex + 2C2e2x

) + (
C′

1ex + C′
2e2x

)
and, assuming

C′
1ex + C′

2e2x = 0, (*)

y′′
P = C1ex + C′

1ex + 4C2e2x + 2C′
2e2x. Substituting in the nonhomogeneous equation, we get

[(
C1 + C′

1
)

ex + (
4C2 + 2C′

2
)

e2x] − 3
[
C1ex + 2C2e2x]

+ 2
[
C1ex + C2e2x] = sin

(
e−x)

or, simplifying,

exC′
1 + 2e2xC′

2 = sin
(
e−x). (**)

Subtracting Equation (*) from (**) gives us e2xC′
2 = sin

(
e−x

)
, or C′

2 =; e−2x sin
(
e−x

)
.

Then, from Equation (*), C′
1 = e−x

(−e2xC′
2

) = −ex
(
e−2x sin

(
e−x

)) = −e−x sin
(
e−x

)
.

Therefore, C1 = ∫
sin

(
e−x

) (−e−x
)

dx and C2 = − ∫
e−x sin

(
e−x

) (−e−x
)

dx. Making the
substitutions u = e−x, du = −e−xdx in each integral, we find C1 = − cos

(
e−x

)
and

C2 = − sin
(
e−x

) + e−x cos
(
e−x

)
. Therefore, yPNH = C1ex + C2e2x = [− cos

(
e−x

)]
ex +[− sin

(
e−x

) + e−x cos
(
e−x

)]
e2x = −e2x sin

(
e−x

)
, and the general solution is

yGNH = yGH + yPNH = c1ex + c2e2x − e2x sin
(
e−x) .

■

The preceding three examples involved quite a bit of algebra and calculus, but the method
of variation of parameters is guaranteed to work. Even if the integrations of C′

1(x) and
C′

2(x) can’t be done in closed form, we can still use numerical methods such as Simp-
son’s Rule to approximate the solution. The next example illustrates this kind of integration
difficulty.

■ Example 4.4.4 Variation of Parameters—No Closed Form Solution
Let’s solve the equation y′′ + y′ − 2y = ln x. The characteristic equation of the associated
homogeneous equation is λ2 + λ − 2 = 0, with roots −2 and 1, so we know that yGH =
c1e−2x + c2ex, where c1 and c2 are constants.
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Next, we consider y = C1e−2x + C2ex, where C1 and C2 are unknown functions of x.
Differentiating, we get

y′ = (−2C1e−2x + C2ex) + (
C′

1e−2x + C′
2ex) = −2C1e−2x + C2ex

because we must assume that

C′
1 e−2x + C′

2ex = 0. (#)

Then y′′ = 4C1e−2x − 2C′
1e−2x + C2ex + C′

2ex.

After substituting these expressions for y, y′, and y′′ into the equation y′′ + y′ − 2y = ln x,
we get

−2C′
1e−2x + C′

2ex = ln x. (##)

Now we must solve the following system for C′
1 and C′

2:

C′
1e−2x + C′

2ex = 0 (#)

−2C′
1e−2x + C′

2ex = ln x. (##)

Subtracting (# #) from (#) gives us 3C′
1e−2x = − ln x, so that C′

1 = −1
3 e2x ln x and C1(x) =

−1
3

∫
e2x ln x dx = −1

6 e2x ln x + 1
6

∫ e2x

x dx. This integration was done manually (integration by
parts: u = ln x, dv = e2xdx, etc.). A CAS might give an answer in terms of the “exponential
integral,” which you may not recognize. In any case, the integral

∫ e2x

x dx cannot be expressed
in closed form.

Equation (#) tells us that C′
2 = e−x

(−C′
1e−2x

) = −e−3x
(−1

3 e2x ln x
) = 1

3 e−x ln x, and an

integration by parts leads to the conclusion that C2(x) = −1
3 e−x ln x + 1

3

∫ e−x

x dx.

The next to the last step is to calculate

yPNH = c1y1 + c2y2 =
(

−1
6

e2x ln x + 1
6

∫
e2x

x
dx
) (

e−2x)
+
(

−1
3

e−x ln x + 1
3

∫
e−x

x
dx
) (

ex)
= − ln x

2
+ e−2x

6

∫
e2x

x
dx + ex

3

∫
e−x

x
dx.

Finally, the general solution is given by the formula

yGNH = yGH + yPNH = c1e−2x + c2ex − ln x
2

+ e−2x

6

∫
e2x

x
dx + ex

3

∫
e−x

x
dx.

■

Another important feature of variation of parameters is that the method remains valid for
a linear equation whose coefficients are continuous functions of the independent variable.
Specifically,
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Suppose p(t) and q(t) are continuous functions and f (t) is continuous or piecewise
continuous. If yGH = c1y1(t) + c2y2(t) is the general solution of y′′ + p(t)y′ + q(t)y = 0,
then we can express the general solution of y′′ + p(t)y′ + q(t)y = f (t) as y = yGH +
C1(t)y1(t) + C2(t)y2(t), where C1(t) and C2(t) can be found by the method of variation
of parameters.

Of course, in the context of an equation with nonconstant coefficients, finding linearly inde-
pendent functions such that yGH = c1y1(t) + c2y2(t) can be difficult. Rather than focus on
specialized techniques, we will be content to illustrate what to do once we have yGH.

■ Example 4.4.5 Variation of Parameters—Nonconstant
Coefficients

It is easy to see that y1(x) = x and y2(x) = 1/x are linearly independent solutions of the
differential equation x2y′′ + xy′ − y = 0. If we suppose the functions are not independent,
then x = c/x for some constant c and every x 	= 0. Now let x = 1 and x = 2, forcing the
contradiction that c must be equal to both 1 and 4. Thus, the functions are independent and
yGH = c1x + c2/x.

Now we use the method of variation of parameters to find the general solution of x2y′′ +xy′ −
y = x, x 	= 0.

We start with a trial solution yP = C1x + C2/x, where C1 = C1(x) and C2 = C2(x). Then
y′

P = C1 + C′
1x − C2/x2+C′

2/x = (
C1 − C2/x2

) + (
C′

1x + C′
2/x

)
, where we impose the

condition

C′
1x + C′

2

x
= 0 (*)

before calculating the next derivative.

Now y′′
P = C′

1 + 2C2/x3 − C′
2/x2. Substituting in the nonhomogeneous equation, we get

x2 [C′
1 + 2 C2/x3 − C′

2/x2] + x
[
C1 − C2/x2] − [C1x + C2/x] = x,

or

x2C′
1 − C′

2 = x. (**)

Equations (*) and (**) must be solved for C′
1 and C′

2: Multiplying (*) by x gives us x2C′
1+C′

2 =
0, and adding this result to (**) yields 2x2C′

1 = x, from which it follows that C1(x) = 1
2 ln |x|.

Then Equation (**) yields C′
2 = x2C′

1 − x, or C′
2 = x2(1/(2x)) − x = −x/2, so C2 = −x2/4.

Therefore, yPNH = C1x +C2/x = (x/2) ln |x|−x/4 and yGNH = c1x + c2/x + (x/2) ln |x|, where
the term −x/4 of yPNH has been absorbed into the term c1x from yGH. ■

In summary, the method of variation of parameters works for all second-order linear differ-
ential equations provided that the coefficients are continuous functions of the independent
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variable. In those (limited) situations in which the method of undetermined coefficients can
be used (Section 4.3), that method is usually easier than variation of parameters.

Exercises 4.4

A

Find the general solution of each of the equations in Problems 1–10 by using the method of
variation of parameters.

1. x′′ − 2x′ + x = et

t
2. y′′ + 4y = 2 tan x
3. r̈ + r = 1

sin t

4. y′′ + 2y′ + y = e−x

x
5. y′′ + 4y′ + 4y = 3xe−2x

6. y′′ + y = sec x
7. y′′ + 2y′ + y = e−x ln x
8. y′′ − y = sin2 x
9. y′′ − 3y′ + 2y = cos

(
e−x)

10. y′′ + 3y′ + 2y = 1
1+ex

B

Find the general solution of each of the equations in Problems 1–5. Linearly independent
solutions for the associated homogeneous equation are shown next to each nonhomogeneous
equation.

1. x2y′′ − xy′ + y = x; y1 = x, y2 = x ln x
2. 2x2y′′ + 3xy′ − y = 1

x ; y1 = √
x, y2 = 1

x
3. y′′ − 2

x y′ + 2
x2 y = x ln x; y1 = x, y2 = x2

4. y′′ + 2
x y′ + y = 1

x , x 	= 0; y1 = sin x
x , y2 = cos x

x
5. y′′ − 2(tan x)y′ = 1; y1 = C(a constant), y2 = tan x
6. Consider the equation x2y′′ − 4xy′ + 6y = 0.

a. Show that the general solution of this equation is y = c1x3 + c2x2.
b. Use the result of part (a) to find the general solution of

x2y′′ − 4xy′ + 6y = x4.

7. Find the general solution of x2y′′ − 4xy′ + 6y = x4 [part (b) of the previous problem] by reducing
this Cauchy-Euler equation to one with constant coefficients via the substitution x = ez . (See
Section C of Exercises 4.3.)

C

1. Show that the solution of the IVP y′′ + a2y = F(x), y(0) = y′(0) = 0, is

y = 1
a

∫ x

0
F(u) sin a(x − u)du.
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2. Suppose y′′ + a(x)y′ + b(x)y = 0 has continuous coefficient functions a(x) and b(x) on an interval I.
Assume y1(x) is a solution of the equation and is nonzero on a subinterval J of I.

a. Let y2(x) = y1(x)u(x), where u(x) is a nonconstant function. Assuming that y2(x) is a solution of
the differential equation, show that

u(x) = c1

∫
e− ∫

a(x)dx

y2
1(x)

dx + c2,

where c1 and c2 are arbitrary constants.

b. Show that y2(x) = y1(x)
∫ e− ∫

a(x)dx

y2
1(x)

dx defines a solution on J that is independent of y1(x).

3. If the solution of y′′ + p(x)y′ + q(x)y = 0 is αy1(x) + βy2(x), show that the general solution of
y′′ + p(x)y′ + q(x)y = r(x) is

y = c1y1(x) + c2y2(x) + y2(x)
∫

r(x)y1(x)

W
(
y1, y2

)dx − y1(x)
∫

r(x)y2(x)

W
(
y1, y2

)dx,

where W
(
y1, y2

) = y1(x)y′
2(x) − y2(x)y′

1(x) is called the Wronskian of y1(x) and y2(x) and is not the
zero function. Discuss the case in which W

(
y1, y2

)
is identically equal to zero.

4. An alternative method of solving a Cauchy-Euler differential equation x2y′′ + axy′ + by = 0 (see
Section C of Exercises 4.3), where a and b are real constants, requires the substitution y = xr ,
where x > 0.

a. If y = xr , calculate y′ and y′′ and show that for y to be a solution of the Cauchy-Euler equation, r
must satisfy the indicial equation

r2 + (a − 1)r + b = 0.

b. Show that if the indicial equation has real roots r1 	= r2, then y1 = xr1 and y2 = xr2 are linearly
independent solutions of the differential equation.

c. Show that if the indicial equation has complex conjugate roots r1 = α + βi and r2 = α − βi, then
y1 = xα cos(β ln x) and y2 = xα sin(β ln x) are solutions. [Note: xα±βi = xαe±iβ ln x for x > 0.]

4.5 HIGHER-ORDER LINEAR EQUATIONS WITH CONSTANT
COEFFICIENTS

Linearity is such a marvelous property that we can generalize our work in the preceding few
sections in a very natural way. The details may get a bit complicated, but the theory is crisp
and clear.

If y is a function that is n-times differentiable and a0, a1, a2, . . . , an are constants, an 	= 0, then
we can define the nth-order linear operator L as follows:

L(y) = any(n) + an−1y(n−1) + · · · + a2y′′ + a1y′ + a0y.

Any nth-order linear differential equation with constant coefficients can be expressed con-
cisely as L(y) = f (t). If f (t) ≡ 0, then the equation is called a homogeneous nth-order
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linear equation with constant coefficients. If f (t) is not the zero function, then we have a
nonhomogeneous nth-order linear equation with constant coefficients.

An important property of such nth-order equations is the (extended) Superposition Principle:

Superposition Principle

If yj is a solution of L(y) = fj for j = 1, 2, . . . , n, and c1, c2, . . . , cn are arbitrary constants, then c1y1 + c2y2 + · · · +
cnyn is a solution of L(y) = c1f1 + c2f2 + · · · + cnfn—that is,

L
(
c1y1 + c2y2 + · · · + cnyn

) = c1L
(
y1
)+ c2L

(
y2
)+ · · · + cnL

(
yn
)

= c1f1 + c2f2 + · · · + cnfn.

First, let’s look at an nth-order homogeneous linear equation with constant coefficients

any(n) + an−1y(n−1) + · · · + a2y′′ + a1y′ + a0y = 0.

For such an equation, there’s a neat algorithm for finding the general solution, a generalization
of the procedure we’ve already seen: First, find the roots of the characteristic equation anλ

n +
an−1λn−1 + · · · + a1λ + a0 = 0. You should see how to form this equation.

Focus on the fact that the characteristic equation of an nth-order linear equation is an nth-
degree polynomial equation. Realize that once a polynomial has degree greater than or equal
to 5, there is no longer a general formula that gives the zeros. (Even the formulas that exist
for the zeros of third- and fourth-degree polynomials are very unwieldy.) In general, the
only practical way to tackle such equations is to use approximation methods. A CAS or a
graphing calculator should have various algorithms implemented to solve (or approximate
the solutions of) polynomial equations.

Next, group these roots as follows:

1. Distinct real roots

2. Distinct complex conjugate pairs p ± qi

3. Multiple real roots

4. Multiple complex roots

Then the general solution is a sum of n terms of the forms

1. cieλit for each distinct real root λi

2. ept
(
c1 cos qt + c2 sin qt

)
for each distinct complex pair p ± qi

3.
(
c1 + c2t + · · · + cktk−1

)
eλit for each multiple real root λi, where k is the multiplicity

of that root

4. ept
(
c1 cos qt + c2 sin qt

) + t ept
(
c3 cos qt + c4 sin qt

) + · · · + tk−1ept
(
c2k−1 cos qt + c2k

sin qt
)

for each multiple complex pair of roots p ± qi, where k is the multiplicity of
the pair p ± qi
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Now let’s see how to use this procedure to solve some higher-order homogeneous linear
equations with constant coefficients.

■ Example 4.5.1 Solving a Fourth-Order Homogeneous Linear
Equation

Let’s find the general solution of the fourth-order equation

x(4) − 3x′′ + 2x′ = 0.

The characteristic equation is λ4 −3λ2 +2λ = λ(λ3 −3λ+2) = 0, whose roots are 0, 1, 1, and
−2. (Verify this.) Thus, we have two distinct real roots and another real root of multiplicity 2.

According to the process described here, the general solution is

x = c1e0·t + c2e−2t + (c3 + c4t) e1·t = c1 + c2e−2t + (c3 + c4t) et .

(You should check that this is a solution, manually or by using a CAS.) ■

■ Example 4.5.2 Solving an Eighth-Order Homogeneous Linear
Equation

The equation 64y(8)+48y(6)+12y(4)+y′′ = 0 should be interesting to tackle. The characteristic
equation is 64λ8 + 48λ6 + 12λ4 + λ2 = 0. A CAS gives the roots 0, 0, i/2, −i/2, i/2, −i/2, i/2,
and −i/2. Grouping these, we see that 0 is a real root of multiplicity 2, whereas the complex
conjugate pair ±i/2 (= 0 ± i/2) has multiplicity 3. Therefore, the form of the general solution
of this eighth-order equation is

y(t) =(c1 + c2t) e0·t + e0·t
(

c3 cos
(

t
2

)
+ c4 sin

(
t
2

))
+ te0·t(

c5 cos
(

t
2

)
+ c6 sin

(
t
2

))
+ t2e0·t

(
c7 cos

(
t
2

)
+ c8 sin

(
t
2

))
= c1 + c2t + (

c3 + c5t + c7t2) cos
(

t
2

)
+ (

c4 + c6t + c8t2) sin
(

t
2

)
.

■

For the nonhomogeneous case, once again the theory is simple:

The general solution, yGNH, of an nth-order linear nonhomogeneous equation
any(n) + an−1y(n−1) + · · · + a2y′′ + a1y′ + a0y = f (t) is obtained by finding a partic-
ular solution, yPNH, of the nonhomogeneous equation and adding it to the general
solution, yGH, of the associated homogeneous equation: yGNH = yGH + yPNH.

As before, the challenge is to find a particular solution of the nonhomogeneous equation. But
once again we can use the method of variation of parameters or the method of undetermined
coefficients (“educated guessing”).

If we look back at Section 4.4 to see the number of calculations required to implement
variation of parameters, we realize that the work can be formidable for equations of order 3
and above. But there is no need to do problems of higher order manually because any CAS
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will use the appropriate method efficiently to give us a general solution or solve an IVP. (One
of the best methods for handling single linear equations and systems of linear equations is
the Laplace transform, which we’ll study in Chapter 6.) For now we’ll just give an example of
solving a higher-order linear equation, with some of the gory details left out.

■ Example 4.5.3 Solving a Nonhomogeneous Third-Order Equation
Suppose we want to find the general solution of y′′′ − y′′ − 6y′ = 3t2 + 2. The first thing to do
is to find the general solution of the associated homogeneous equation y′′′ −y′′ −6y′ = 0. The
characteristic equation is λ3 − λ2 − 6λ = λ(λ2 − λ − 6) = λ (λ − 3) (λ + 2) = 0, with roots
0, 3, and −2, so the general solution of the homogeneous equation is c1e0·t + c2e3t + c3e−2t ,
or c1 + c2e3t + c3e−2t .

Next, we look for a particular solution of the original nonhomogeneous equation. Examining
the right-hand side of the equation, we can guess that a particular solution will be a polynomial
in t. If the degree of this guessed-at polynomial is n, then the three individual derivative terms
making up the differential equation will leave behind polynomials of degrees n−3, n−2, and
n − 1. In order for the combination y′′′ − y′′ − 6y′ to produce the second-degree polynomial
3t2 + 2, we must have n − 1 = 2—that is, the polynomial we’re looking for must be a third-
degree polynomial, say y(t) = At3 + Bt2 + Ct + D, where A, B, C, and D are undetermined
coefficients. (Think about the reasoning that led to this form for y.)

Substituting this guess into the nonhomogeneous equation, we find that

−18At2 − (12B + 6A)t + (6A − 2B − 6C) = 3t2 + 2.

Equating coefficients of terms of equal degree on both sides, we get the algebraic equations

−18A = 3 [Second-degree terms must match.]
−(12B + 6A) = 0 [First-degree terms must match.]

6A − 2B − 6C = 2 [Constant terms must match.]

Starting from the top, we can solve the equations successively to obtain A = −1
6 , B = 1

12 , and
C = −19

36 .

Therefore, yPNH = −1
6 t3 + 1

12 t2 − 19
36 t and the general solution of the nonhomogeneous

equation is given by

y = yGNH = yGH + yPNH = c1 + c2e3t + c3e−2t − 1
6

t3 + 1
12

t2 − 19
36

t.

■

As we might suspect from the discussion at the end of Section 4.4, variation of parameters
can be used for all higher-order linear differential equations, provided that the coefficients
are continuous functions of the independent variable.
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Exercises 4.5

A

Find the general solution of each of the higher-order equations in Problems 1–10, using a
graphing calculator or CAS only to solve each characteristic equation.

1. y′′′ − 2y′′ − 3y′ = 0
2. y′′′ − 3y′′ + 3y′ − y = 0
3. y′′′ + 2y′′ + y′ = 0
4. y′′′ + 4y′′ + 13y′ = 0
5. y′′′ − 12y′′ + 22y′ − 20y = 0
6. y(4) + 2y′′ + y = 0
7. y(4) − 13y′′ + 36y = 0
8. y(4) + 13y′′ + 36y = 0
9. y(4) − 3y′′ + 2y′ = 0

10. y(5) + 2y′′′ + y′ = 0

B
1. Find the general solution of the following equation, using technology only to solve a

characteristic equation:

y(7) − 14y(6) + 80y(5) − 242y(4) + 419y(3) − 416y′′ + 220y′ − 48y = 0.

2. Apply your CAS solver to find the general solution of the equation in the preceding problem.
3. The author of a classic differential equations text5 once wrote

In preparing problems and examinations … teachers (including the author) must use some
restraint. It is not reasonable to expect students in this course to have computing skill and
equipment necessary for efficient solving of equations such as

4.317
d4y

dx4 + 2.179
d3y

dx3 + 1.416
d2y

dx2 + 1.295
dy
dx

+ 3.169y = 0.

Demonstrate that technology has advanced in the past five decades by feeding this equation into
your CAS and obtaining the general solution. (You may have to use some “simplify” commands to
get a neat answer.)

4. Solve the IVP 3y′′′ + 5y′′ + y′ − y = 0; y(0) = 0, y′(0) = 1, y′′(0) = −1.
5. A uniform horizontal beam sags by an amount y = y(x) at a distance x from one end. For a fairly

rigid beam with uniform loading, y(x) typically satisfies an equation of the form d4y/dx4 = R,
where R is a constant depending on the load being carried and on the characteristics of the beam
itself. If the ends of the beam are supported at x = 0 and x = L, then y(0) = y(L) = 0. The
extended beam also behaves as though its profile had an inflection point at each support so that

y′′(0) = y′′(L) = 0.

5 Ralph P. Agnew, Differential Equations, 2nd ed. (New York: McGraw-Hill, 1960): 176.
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a. Use the multiple eigenvalue of the associated homogeneous equation to find the general
solution of the homogeneous equation.

b. Show that the sag (vertical deflection) at point x is

1
24

R
(
x4 − 2Lx3 + L3x

)
, 0 ≤ x ≤ L.

6. Solve the IVP y(5) = y′; y(0) = 0, y′(0) = 1, y′′(0) = 0, y′′′(0) = 1, y(4)(0) = 2.
7. For all positive integers n ≥ 2, find the general solution of the equation x(n) = x(n−2).
8. Find the general solution of the equation y′′′ − 2y′′ − y′ + 2y = ex .
9. Find the general solution of the equation

...
y + 5ÿ − 6ẏ = 9e3t .

10. Find the general solution of the equation y′′′ + 6y′′ + 11y′ + 6y = 6x − 7.
11. Find the general solution of y′′′ − 5y′′ − 2y′ + 24y = x2e3x .
12. Solve the initial value problem y′′′ + 5y′′ − 6y′ = 3ex , y(0) = 1, y′(0) = 3/7, y′′(0) = 6/7.

C

1. Use the method of undetermined coefficients to solve the equation

y(4) + y′′ = 3x2 + 4 sin x − 2 cos x.

2. Consider the IVP y(4) + 8y′′ + 16y = 0, with y(k)(0) given for k = 0, 1, 2, 3. For what initial values
y′′(0) and y′′′(0) will solutions of this equation be periodic?

3. Consider a third-order differential equation y′′′ + p y′′ + q y′ + r y = g, where p, q, r, and g are
continuous functions. Suppose y GH = c1y1 + c2y2 + c3y3 is known.

a. Write down a form for yPNH in terms of the known solutions of the homogeneous problem and
unknown coefficient functions C1, C2, and C3.

b. Derive a system of equations that determines C1, C2, and C3. This system should involve
C′

1, C′
2, C′

3, yi, y′
i , and y′′

i , i = 1, 2, 3.
c. Solve y′′′ − 2y′′ − y′ + 2y = ex by using the results of parts (a) and (b).

4. Find a formula involving integrals for a particular solution of the equation

x3y′′′ − 3x2y′′ + 6xy′ − 6y = g(x), x > 0.

[Hint : Verify that x, x2, and x3 are solutions of the homogeneous equation.]

4.6 HIGHER-ORDER EQUATIONS AND THEIR
EQUIVALENT SYSTEMS

To see where we’re headed, think back to the first time you had to solve the following kind
of word problem:

Lenston has 21 coins, all nickels and dimes, in his pockets. They amount to $1.75.
How many dimes does he have?



4.6 Higher-Order Equations and Their Equivalent Systems 165

The first time you saw this problem, you were probably shown a solution like this one:

Let x be the number of dimes. Then the total amount corresponding to dimes is 10x
cents. The number of nickels must be 21 − x, so the amount corresponding to nickels is
5(21 − x) cents. Because the total amount of money in Lenston’s pockets is $1.75—or
175 cents—we have the equation 10x +5(21−x) = 175, equivalent to 5x +105 = 175,
which has the solution x = 14. Thus, Lenston has 14 dimes (and 21 − 14 = 7 nickels).

A bit later in your algebra course, you could have seen the same problem again, but this time
you were probably shown how to turn this problem into a system problem:

Let x be the number of dimes and let y be the number of nickels. Then the words of
the problem tell us two things, one fact about the number of coins and one fact about
the amount of money: (1) x + y = 21 and (2) 10x + 5y = 175. In other words, viewed
this way, the problem gives us the system of equations

x + y = 21

10x + 5y = 175.

This system can be solved by elimination (multiply the first equation by −5 and then
add the result to the second equation) or by substitution (solve the first equation for
x, for example, and then substitute for x in the second equation).

The most important consequence of looking at our problem as a system problem is that the
system has a very nice geometrical interpretation as a set of two straight lines (Figure 4.4).
The solution of the system (and of our original problem) is given by the coordinates of the
point where the lines intersect: x = 14, y = 7.

Similarly, for differential equations, a systems approach has certain advantages, especially the
graphical interpretation of a problem and its solution. Also, certain problems may naturally
occur in system form. For example, we may want to compute the trajectory of a baseball.

y

x
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40

210
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FIGURE 4.4
Graphs of x + y = 21 and 10x + 5y = 175
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In this case, it is natural to consider the components, u and v, of the ball’s velocity in
both its horizontal (x) and vertical (y) directions, respectively. A system6 arising from this
problem is

mu
du
dx

= −FL sin θ − FD cos θ

mv
dv
dy

= FL cos θ − FD sin θ − mg.

Similarly, in an ecological study, we may want to analyze the interaction of two or more
biological species, each of which needs its own equation to represent its growth rate and its
relationship to the other species.

4.6.1 Conversion Technique I: Converting a Higher-Order
Equation into a System

Now that our previous discussion has prepared us to see even simple problems as sys-
tems, we can tackle some higher-order differential equations. The key here is the following
result:

Any single nth-order differential equation can be converted into an equivalent system
of first-order equations. More precisely, any nth-order differential equation of the form

x(n) = F
(
t, x, x′, x′′, . . . , x(n−1)

)
can be converted into an equivalent system of n first-order equations by letting

x1 = x, x2 = x′, x3 = x′′, . . . , xn = x(n−1).

Here, equivalent means that a function x = u(t) is a solution of x(n) = F(t, x, x′, . . . , x(n−1))

if and only if the ordered n-tuple of functions
(
u(t), u′(t), . . . , u(n−1)(t)

)
is a solution of the

system x′
1 = x2, x′

2 = x3, . . . , x′
n = F (t, x1, x2, . . . , xn). In particular, our substitution scheme

indicates that any solution of the single nth-order equation is the first component of the
n-tuple that’s the solution of the system and vice versa.

After looking at some examples of how this conversion technique works, we’ll introduce the
geometric/graphical significance of this method.

■ Example 4.6.1 Converting a Second-Order Linear Equation
As we saw in Section 4.1 and will see again in Section 4.7 and its exercises, the second-order
linear equation 2 d2x

dt2 + 3 dx
dt + x = 0 could represent the motion of a weight attached to a

spring, the flow of electricity through a circuit, or other important phenomena.

6 Robert B. Banks, Towing Icebergs, Falling Dominoes, and Other Adventures in Applied Mathematics (Princeton, NJ: Princeton University
Press, 1998).
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Using the substitutions described previously, we introduce new variables x1 and x2: Let x1 = x
and x2 = dx

dt . Now isolate the highest derivative (the second) in the original equation, and
then substitute the new variables in the right-hand side:

(1)
d2x
dt2 + 3

2
dx
dt

+ 1
2

x = 0

(2)
d2x
dt2 = −3

2
dx
dt

− 1
2

x

(3)
d2x
dt2 = −3

2
x2 − 1

2
x1

In terms of the new variables, we see that dx1
dt = dx

dt = x2 and dx2
dt = d

dt

(
dx
dt

)
= d2x

dt2 = [from

step (3) above] − 3
2 x2 − 1

2 x1. From this, we see that our original second-order equation
leads to the following system of linear first-order equations in two unknown functions x1

and x2:

(A)
dx1

dt
= x2

(B)
dx2

dt
= −3

2
x2 − 1

2
x1

This system is equivalent to the original single differential equation in the sense that any
solution x(t) of the original equation yields solutions x1(t) = x(t) and x2(t) = d

dt x(t) of the
system, and any solution (x1(t), x2(t)) of the system gives us a solution x(t) = x1(t) of the
original equation.

Let’s follow up on the first part of that statement. From our work in Section 4.1, we know
that x(t) = e−t/2 + 2e−t is a solution of the original second-order equation. Then the pair
x1(t) = x(t) = e−t/2 + 2 e−t and x2(t) = d

dt x(t) = −1
2 e−t/2 − 2e−t constitutes a solution of

the system. (Verify this!) ■

Let’s look at a few more examples of this technique of converting a higher-order equation
into a system of first-order equations.

■ Example 4.6.2 Converting a Second-Order Nonlinear Equation
Suppose we have the second-order nonlinear equation y′′ = y3 + (y′)3. Let x1 = y and x2 = y′.
Then x′

1 = y′ = x2, y′′ = x′
2, y3 = x3

1, and (y′)3 = x3
2, so we can rewrite y′′ = y3 + (y′)3 as x′

2
= x3

1 + x3
2.

Finally, putting these pieces together, we can write the original equation as the following
equivalent nonlinear system in x1 and x2:

x′
1 = x2

x′
2 = x3

1 + x3
2.

■
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■ Example 4.6.3 Converting a Third-Order Equation
The nonautonomous third-order linear equation

d3x
dt3 − d2x

dt2 + 2t
dx
dt

− 3 x + 6 = 0

can be changed into a system of first-order equations as follows: Let x1 = x, x2 = dx
dt , and

x3 = d2x
dt2 . Then dx1

dt = dx
dt = x2, dx2

dt = d
dt

(
dx
dt

)
= d2x

dt2 = x3, and dx3
dt = d

dt

(
d2x
dt2

)
= d3x

dt3 .

Solving the original equation for d3x
dt3 and then substituting the new variables x1, x2, and x3,

we have

d3x
dt3 = d2x

dt2 − 2t
dx
dt

+ 3x − 6 = x3 − 2tx2 + 3x1 − 6.

Putting all the information together, we see that the original third-order equation is equivalent
to the system of three first-order equations

dx1

dt
= x2

dx2

dt
= x3

dx3

dt
= x3 − 2tx2 + 3x1 − 6.

To be mathematically precise, we can describe this system as a three-dimensional nonautonomous
linear system with independent variable t and dependent variables x1, x2, and x3. ■

As we’ll see later in this chapter, an autonomous system has a nice graphical interpreta-
tion that gives us a neat qualitative analysis. We lose some of this power when we are
dealing with a nonautonomous system. But even when we are confronted with a nonau-
tonomous equation, a simple variation of the conversion technique we’ve been illustrating
will allow us to transform the equation into an autonomous system. To convert a sin-
gle nonautonomous nth-order equation into an equivalent autonomous system (one whose
equations do not explicitly contain the independent variable t), we need n + 1 first-
order equations: x1 = x, x2 = x′, x3 = x′′, . . . , xn = x(n−1), xn+1 = t. We see this in the next
example.

■ Example 4.6.4 Converting a Nonautonomous Equation
into an Autonomous System

The nonautonomous second-order linear equation 2 d2x
dt2 +3 dx

dt +x = 50 sin t could be handled
in the same way as the equation in Example 4.6.3, but instead we’ll demonstrate the extension
of the conversion technique.
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Start by letting x1 = x and x2 = dx
dt as before, but also introduce x3 = t. Then

dx1

dt
= dx

dt
= x2,

dx2

dt
= d2x

dt2 = 1
2

(
−3

dx
dt

− x + 50 sin t
)

= 1
2

(−3x2 − x1 + 50 sin x3) ,

and

dx3

dt
= 1,

so the equivalent system is

dx1

dt
= x2

dx2

dt
= 1

2
(−x1 − 3 x2 + 50 sin x3)

dx3

dt
= 1.

Our second-order equation has been replaced by an equivalent autonomous three-dimensional
system. If we had not used the third variable x3 and had written our equation as a sys-
tem of two equations, the second equation would have been nonautonomous. We would
have had

dx1

dt
= x2 and

dx2

dt
= 1

2
(−x1 − 3x2 + 50 sin t)

as the system, with the explicit presence of t in the second equation making this equation
(and therefore the system) nonautonomous. ■

Of course, we should be able to convert an initial-value problem into a system IVP as well.
If you think about this, we would expect that the original initial conditions would have to
expand to cover each first-order equation in the system. The next example shows how this
works.

■ Example 4.6.5 Converting a Second-Order Initial-Value Problem
The nonautonomous second-order linear IVP y′′ − xy′ − x2y = 0; y(0) = 1, y′(0) = 2 can be
transformed into a system IVP as follows. Let u1 = y and u2 = y′. (We’re using a different
letter for the new variables to avoid confusion with the original independent variable x.) We
see that u′

1 = y′ = u2 and u′
2 = y′′ = xy′ + x2y = xu2 + x2u1. Then, because u1 = y, y(0) = 1

implies that u1(0) = 1; and y′(0) = 2 implies that u2(0) = 2 because u2 = y′. Therefore, the
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original IVP becomes the system IVP

u′
1 = u2

u′
2 = xu2 + x2u1; u1(0) = 1, u2(0) = 2.

Note that because each equation in the system is first-order, we need only one initial condition
for each new variable. What would the equivalent autonomous system look like? ■

4.6.2 Conversion Technique II: Converting a System into a
Higher-Order Equation

We showed in Examples 4.6.1–4.6.5 how higher-order equations can always be transformed
into equivalent first-order systems. However, the reverse process may be difficult or impossible
for some systems.7 The next example illustrates how a linear system can be represented by a
single higher-order equation.

■ Example 4.6.6 Converting a System into a Single Equation
Can you convert the system

(1) y′ = z

(2) z′ = w

(3) w′ = x − 3y − 6z − 3w,

where y, z, and w are functions of x, into an equivalent single higher-order equation?

Sure, you can. Just look back at what we did in our earlier examples, but start with the last
equation and work backward: Differentiating Equation (2) gives us z′′ = w′. But Equation
(1) says that z′′ = (y′)′′ = y′′′, so that w′ = y′′′. Now we use this last fact to rewrite Equation
(3) as

y′′′ = x − 3y − 6z − 3w

= x − 3y − 6y′ − 3z′ [from (1) and (2)]
= x − 3y − 6y′ − 3y′′ [from (1)]

or y′′′ + 3y′′ + 6y′ + 3y = x, a third-order linear nonautonomous differential equation. ■

4.6.3 Looking Ahead
Now that we’ve seen how to transform any differential equation of order greater than 1 into
a system of first-order equations, how can we use this information to gain insight into the
behavior of solutions of higher-order equations?

7 See, for example, Section 6.4 of Differential Equations: A Dynamical Systems Approach: Higher-Dimensional Systems by J. H. Hubbard and
B. H. West (New York: Springer-Verlag, 1995).
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The next section will exploit the geometric (graphical) aspects of an autonomous system of
equations and give us qualitative tools for analysis. We’ll see that the qualitative approach will
give us useful information not easily obtained otherwise. We’ll also discuss important applied
examples, both linear and nonlinear. Later in Chapter 4, we’ll deal with numerical approxi-
mations to solutions of systems of equations. Chapter 5 will explore linear autonomous
systems thoroughly, and Chapter 7 will introduce valuable methods for analyzing nonlinear
systems of equations.

Exercises 4.6

A

Write each of the higher-order ODEs or systems of ODEs in Problems 1–11 as a system of
first-order equations. If initial conditions are given, rewrite them in terms of the first-order
system.

1. d2x
dt2 − x = 1

2.
(
x′′)2 − (sin t)x′ = x cos t

3. x2y′′ − 3xy′ + 4y = 5 ln x
4. x··· + (ẋ)2 + x(x − 1) = 0
5. x′′′ − tx′′ + x′ − 5x + t2 = 0
6. y(4) + y = 0
7. w(4) − 2w′′′ + 5w′′ + 3w′ − 8w = 6 sin(4t)
8. ÿ + y = t; y(0) = 1, y′(0) = 0
9. x′′ + 3x′ + 2x = 1; x(0) = 1, x′(0) = 0

10. d2x
dt2 = −x, d2y

dt2 = y [Hint : Write each second-order equation as two first-order equations.]

11. x d2y
dt2 − y = 4t, 2 d2x

dt2 +
(

dy
dt

)2 = x

(Convert each second-order equation into two first-order equations.)

Write each of the systems of equations in Problems 12–16 as a single second-order
equation, rewriting any initial conditions as necessary.

12. dy
dt = x, dx

dt = −y; y(0) = 0, x(0) = 1

13. du
dx = 2v − 1, dv

dx = 1 + 2u
14. x′ = x + y, y′ = x − y
15. dx

dt = 7y − 4x − 13, dy
dt = 2x − 5y + 11; x(0) = 2, y(0) = 3

16. x′ = y + sin x, y′ = cos(x + y)

B

1. The equation d2x
dt2 + 4 dx

dt + 4 x = 0 describes the position, x(t), of a particular mass attached to a
spring and set in motion by pulling it down 2 ft below its equilibrium position (x = 0) and giving it
an initial velocity of 2 ft/sec in the upward direction. Some air resistance is assumed. Express this
equation as a system of first-order equations and describe what each equation of the system
represents.
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2. In electrical circuit theory, the current I is the derivative of the charge Q. By making this natural
substitution Q′ = I in the equation

LQ′′ + R Q′ + 1
C

Q = E(t),

transform the equation into an equivalent system of two first-order equations.
3. An object placed in water, pushed down a certain distance below the water and then released, has

its bobbing motion described by the equation

d2y

dt2 +
(

g
s0

)
y = 0,

where y is the vertical displacement from its equilibrium position, g is the acceleration due to
gravity, and s0 is the initial depth. Express this equation as a system of first-order equations.

4. The second-order nonlinear equation d2x
d t2 + g

L
sin x = 0 describes the swinging of a pendulum,

where x is the angle the pendulum makes with the vertical, g is the acceleration due to gravity, and
L is the pendulum’s length. Convert this equation into a nonlinear system of first-order equations.

5. The equation y′′′ + y′ − cos y = 0 describes a geometrical model of crystal growth. Express this
third-order equation as a system of three first-order equations.

6. The equation y(4) + λ(yy′′′ − y′y′′) − y′ = 0, where λ is a positive parameter, arises in a nonlinear
“boundary layer” problem in physical oceanography. Write this equation as a system of four
first-order equations.

7. Rewrite the system IVP given in Example 4.6.5 as an equivalent autonomous system.
8. Consider the equation y′′ + y = 0.

a. Convert this equation into a system with variables u and v.
b. Use the result of part (a) and the Chain Rule to conclude that u2 + v2 is a constant.

C

1. Write the following system of equations as a single fourth-order equation, with appropriate initial
conditions:

d2x

dt2 + 2
dy
dt

+ 8x = 32t

d2y

dt2 + 3
dx
dt

− 2y = 60e−t ; x(0) = 6, x′(0) = 8, y(0) = −24, and y′(0) = 0.

2. Suppose you are given the linear system of first-order equations

t
dx
dt

= −3x + 4y

t
dy
dt

= −2x + 3y.

Introduce a new independent variable w by the substitution w = ln t (or t = ew) and show that this
substitution allows you to write the system as a new system with constant coefficients.
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3. Consider the system

x′ = f (x, y)

y′ = g(x, y),

where x and y are functions of t. Assume you can use the first equation to express y explicitly as a
function of x and x′, say y = F(x, x′) for some function F(u, v) of two variables.

a. Find an expression for y′ = dy/dt by differentiating the equation y = F(x, x′) via the Chain Rule
for functions of two variables (see Section A.7).

b. Substitute the expression for y′ found in part (a) into the second equation of the original system
and set the right-hand side equal to g(x, y) = g(x, F(x, x′)).

c. Observe how the results of parts (a) and (b) yield a second-order equation solely in terms of x
and x′.

4.7 THE QUALITATIVE ANALYSIS OF AUTONOMOUS
SYSTEMS

In this section, we investigate the graphical representation of a system of first-order equations.
Because many systems—especially nonlinear systems—cannot be solved in closed form, the
ability to analyze systems graphically is very important. The first thing we have to realize is that
the very useful graphical tool of slope fields can’t be applied directly to higher-order equations;
this technique depends on a knowledge of the first derivative alone. However, there’s a clever
way of using our knowledge of first-order qualitative methods in the analysis of higher-order
differential equations.

For convenience, we’ll spend most of our time analyzing autonomous two-dimensional
systems, although we will also tackle some nonautonomous systems and some three-
dimensional systems toward the end of this section.

4.7.1 Phase Portraits for Systems of Equations
Suppose we have an autonomous system of the form

dx
dt

= f (x, y)

(4.7.1)
dy
dt

= g(x, y).

For example, let’s take the system

dx
dt

= y

dy
dt

= −17x − 2y

and work with it throughout our initial discussions.
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First, we can eliminate the variable t by dividing the second equation by the first equation:

dy
dx

= dy
dt

· dt
dx

=
dy
dt
dx
dt

= g(x, y)
f (x, y)

. (4.7.2)

(See Section A.2 for a reminder of the Chain Rule used in this process.) For our example,
g(x, y) = −17x − 2y and f (x, y) = y in (4.7.2), and we get

dy
dx

= −17x − 2y
y

.

Now we have a single first-order differential Equation dy
dx = g(x,y)

f (x,y) in the variables y and x.
If we could solve Equation (4.7.2) for y in terms of x, or even implicitly, we would have a
solution curve in the x-y plane. The plane of the variables x and y (with x- and y-axes) is called
the phase plane of the original system of differential equations. As we saw in Section 1.3,
each individual solution curve in the phase plane, x = x(t), y = y(t), is called a trajectory
(or orbit) of the system of equations. Although the independent variable t is not present
explicitly, the passage of time is represented by the direction that a point (x(t), y(t)) takes on
a particular trajectory. The way the curve is followed as the values of t increase (offstage) is
called the positive direction on the trajectory. The collection of plots of the trajectories is
called the system’s phase portrait or phase-plane diagram. (You may want to review the
qualitative analysis for first-order equations in Section 2.5.)

Even if we can’t solve the system, we can look at the slope field of the single Equation (4.7.2),
the outline of the phase portrait of the system. If we give some initial points

(
xi

0, yi
0

) =(
xi (t0) , yi (t0)

)
, i = 1, 2, . . . , n, through which we want the trajectories to pass, we can plot a

few specific trajectories and get a less complicated view of the phase plane. Let’s do this for
the system we’ve been discussing.

■ Example 4.7.1 Phase Portrait—One Trajectory
Our system is

dx
dt

= y

dy
dt

= −17x − 2y,

which gives us the first-order equation dy
dx = −17x−2y

y when we eliminate the variable t. Using
a calculator or CAS to draw a piece of the slope field for this first-order equation can result
in an erroneous plot (see Problem B5 in Exercises 4.7). Your technological device may have
a problem at points (x, y) with y = 0. If you draw the slope field by hand, be sure to place
vertical tangent line segments along the x-axis (where y = 0), corresponding to an undefined
(or infinite) slope when y = 0. It is better to use technology that takes the pair of equations
given previously as input.
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FIGURE 4.5a
Slope field for dy

dx = −17x−2y
y

0 ≤ t ≤ 5; −1 ≤ x ≤ 1, −4 ≤ y ≤ 4
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FIGURE 4.5b
Trajectory for

{
dx
dt = y, dy

dt = −17x − 2y; x(0) = 4, y(0) = 0
}

0 ≤ t ≤ 5; −2 ≤ x ≤ 4, −12 ≤ y ≤ 7

Figure 4.5a shows the slope field, and Figure 4.5b shows a single trajectory satisfying the
initial condition x(0) = 4, y(0) = 0—that is, a trajectory passing through the point (4, 0) in
the x-y (phase) plane—superimposed on the slope field.

Because the trajectory starts at (4, 0), you can see that the positive direction on the trajectory
is clockwise, and the curve seems to spiral into the origin. (Try using technology to draw the



176 CHAPTER 4: Second- and Higher-Order Equations

trajectory for 0 ≤ t ≤ b, letting b get larger and larger.) To get an accurate phase portrait, you
may want to use the slope field to suggest good initial points to use. Each dynamical system
has its own appropriate range for t. ■

Now let’s look at a more elaborate phase portrait, one showing several trajectories.

■ Example 4.7.2 Phase Portrait—Several Trajectories
The system consists of the two equations (1) dx

dt = x + y and (2) dy
dt = −x + y. Whatever

quantities these equations describe, certain facts should be obvious from the nature of the
equations. First of all, from Equation (1), the growth of quantity x depends on itself and on
the other quantity y in a positive way. On the other hand, Equation (2) indicates that quantity
y depends on itself positively, but its growth is hampered by the presence of quantity x—a
larger value of x leads to a slowdown in the growth of y.

Let’s look at the phase portrait corresponding to this problem. For our system, Equation (4.7.2)
looks like

dy
dx

=
dy
dt
dx
dt

= −x + y
x + y

.

This first-order equation is neither separable nor linear, but it is homogeneous and can be solved
implicitly. (See the explanation for Problems A15–A18 of Exercises 2.1.) Figure 4.6a shows
several trajectories, obtained by specifying nine initial points (x(0), y(0)), superimposed on
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FIGURE 4.6a
Trajectories for

{
dx
dt = x + y, dy

dt = −x + y
}

(x(0), y(0)) = (−1, −1), (−1, 0), (−1, 1), (0, −1), (0, 0), (0, 1), (1, −1), (1, 0), and (1, 1)

0 ≤ t ≤ 4
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FIGURE 4.6b
Trajectories for

{
dx
dt = x + y, dy

dt = −x + y
}

(x(0), y(0)) = (0, 60), (25, 100), (50, 140), and (0, 160)

0 ≤ t ≤ 1.2

the slope field for dy
dx = −x+y

x+y . Because points on a trajectory are calculated by numerical
methods, your CAS may allow you (or require you) to specify a step size and the actual
numerical approximation method to be used. Numerical methods for systems of differential
equations will be discussed in Section 4.10.

Each point on a particular curve in Figure 4.6a represents a state of the system: For each value
of t, the point (x(t), y(t)) on the curve provides a snapshot of this dynamical system. If the
variables x and y are supposed to represent animal or human populations, for example, then
the proper place to view the trajectories is the first quadrant. Figure 4.6b describes the first
quadrant of the phase plane for our problem, with four trajectories determined by four initial
points.

These trajectories tell us that for the initial points chosen, the quantity y increases to a maxi-
mum value and then decreases to zero, while the quantity x also increases until it reaches its
maximum level after quantity y has disappeared. ■

4.7.2 Other Graphical Representations
Using technology again in our preceding example, we can graph x(t) and y(t) in the t-x and
t-y planes, respectively. Figures 4.7a and 4.7b show solution curves with x(0) = 50 and
y(0) = 140, respectively.

These graphs show clearly that the quantity y reaches a maximum of about 164 when t ≈ 0.4
and that the x quantity hits a peak of about 800 when t ≈ 2. Note that the horizontal and
vertical scales are different for Figures 4.7a and 4.7b.
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x(t); x(0) = 50
0 ≤ t ≤ 2.355
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FIGURE 4.7b
y(t); y(0) = 140
0 ≤ t ≤ 1
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FIGURE 4.8
Solution of

{
dx
dt = x + y, dy

dt = −x + y; x(0) = 50, y(0) = 140
}

0 ≤ t ≤ 1

Viewed another way, the system in the preceding example had three variables—the indepen-
dent variable t and the dependent variables x and y. To be precise about all this, we state that
a solution of our system is a pair of functions x = x(t), y = y(t), and the graphical representation of
such a solution is a curve in three-dimensional t-x-y space—a set of points of the form (t, x(t), y(t)).
Figure 4.8 shows what the solution with initial point (0, 50, 140) looks like for our problem.
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Your CAS will probably allow you to manipulate the axes and get different views of this space
curve. Figure 4.6a represents the projection of several such space curves onto the x-y plane,
a much less confusing way of viewing the behavior of the system. These projections can be
thought of as the shadows that would be cast by the space curves if a very bright light were
shining on them from the front (the x-y face) of Figure 4.8.

Note that because the system we started with in the preceding example is autonomous, the
solution curves are independent of the starting time. This means that if you pick a starting point
(x*, y*) at time t*, then the path of a population starting at this point is the same as the path
of a population starting at the same point at any other time t**. Geometrically, this says that
there is only one path (trajectory) through each point of the x-y plane. This is a consequence
of an Existence and Uniqueness Theorem for systems that we’ll see in Section 4.9. (Look back
at Section 2.8 for the theorem that applies to first-order ODEs.)

From the slope field and phase portrait in Figure 4.6a, it seems clear that all trajectories
(solution curves of the single differential equation) are escaping from the origin as t increases.
The variable t is behind the scenes in a phase portrait, but you should experiment with
different ranges of t in your CAS or graphing calculator to verify the preceding statement. The
critical point or equilibrium point (0, 0)—where both dx/dt = 0 and dy/dt = 0—is called a
source in this case. We have used this terminology before (for the one-dimensional case, in
Section 2.6), we will use it in this chapter, and we’ll see it again as part of the discussion of
systems in Chapter 5.

The algebra of finding equilibrium points (or equilibrium solutions) is trickier now because
we must solve a system of equations. For example, if we want to find the equilibrium solutions
of the nonlinear system of differential equations {ẋ = x − y, ẏ = 1 − xy}, we must solve the
algebraic system

(1) x − y = 0

(2) 1 − xy = 0.

We can solve Equation (1) for y, finding that y = x, and then substitute for y in the second
equation. We get 1 − x2 = 0, which implies that x = ±1. Because y = x, the only equilibrium
points are (−1, −1) and (1, 1).

Before we move on, let’s look at the system
{
ẋ = 4 − 4x2 − y2, ẏ = 3xy

}
. Any equilibrium

solution has to satisfy the equations

(A) 4 − 4x2 − y2 = 0

(B) 3xy = 0.

Equation (B) tells us that we have two possibilities: (i) x = 0 or (ii) y = 0. [We can eliminate
x = y = 0 because (A) wouldn’t be satisfied with this choice.] If x = 0, substituting in (A)
gives us 4 − y2 = 0, so y = ±2. Then we have two equilibrium solutions, (0, 2) and (0, −2).
Alternatively, if y = 0, substituting in (A) yields 4 − 4x2 = 0, so x = ±1. Now we have the
remaining two equilibrium solutions, (1, 0) and (−1, 0).
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The next example presents a simple system model of an arms race. Models of this general
form were proposed by the English scientist Lewis F. Richardson (1881–1953) in the 1930s.
As a Quaker, he was greatly interested in the causes and avoidance of war. We’ll see how a
qualitative analysis helps us to understand the situation being modeled.

■ Example 4.7.3 An Arms Race Model
Let’s look at an autonomous linear system:

dx
dt

= 7y − 4x − 13

dy
dt

= 2x − 5y + 11.

The functions x(t) and y(t) could represent the readiness for war of two nations, X and Y,
respectively. This readiness might be measured, for example, in terms of the level of expendi-
tures for weapons for each country at time t. To get the first equation, this model assumes that
the rate of increase of x is a linear function of both x and y. In particular, if y increases, then
so does the rate at which x increases. This makes sense, doesn’t it? But the cost of building up
and maintaining a supply of weapons also puts the brakes on too much expansion. The term
−4x in the first equation suggests a sense of restraint proportional to the arms level of nation
X. Finally, the constant term −13 can represent some basic, constant relationship of nation
X to nation Y—probably some underlying feelings of good will that diminish the threat and
therefore decrease dependence on weaponry. The second equation can be interpreted in a
similar way, but here the positive constant 11 probably signifies a grievance by Y against X
that results in an accumulation of arms. Now what does this model tell us about the situation?
We don’t know how to solve such a system, but we can still learn a lot about the arms race
between the two nations.

As in Example 4.7.1, we can start constructing the phase portrait of the system by eliminating
the variable t:

dy
dx

=
dy
dt
dx
dt

= 2x − 5y + 11
7y − 4x − 13

.

Now we can look at the slope field and some trajectories corresponding to this single equation
(Figure 4.9). Several initial points were chosen. (Try a smaller set of initial points yourself.) For
this to be a realistic model of an arms race, the values of x and y should be positive; hence,
our focus on the first quadrant.

First of all, note that one solution of the system is the pair of functions x(t) ≡ 2, y(t) ≡ 3.
In this phase portrait, if we look hard enough, we may notice that the points (x(t), y(t)) on
every trajectory seem to be moving toward the point (2, 3) as t increases. (To verify this last
statement, you should plot the phase portrait for 0 ≤ t ≤ b and let b increase.) The point
(2, 3) is an equilibrium point—as we’ve seen previously, a point (x, y) at which both dx/dt
and dy/dt equal 0. The behavior of trajectories near this point entitles it to be called a sink. In
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FIGURE 4.9
Trajectories for

{
dx
dt = 7y − 4x − 13, dy

dt = 2x − 5y + 11
}

Initial points (i, j), i = 0, 1, 2, 3; j = 1, 2, 3, 4
0 ≤ t ≤ 5

real-life terms, this means that the arms race represented by this system would stabilize as time
passes, approaching a state in which the level of military expenditures for nation X would be
2 and the level for nation Y would be 3, where the units could be millions or billions. ■

4.7.3 A Predator-Prey Model: The Lotka-Volterra Equations
An important type of real-life problem that can be modeled by a system of differential equa-
tions is a predator-prey problem, in which we assume that there are two species of animals,
X and Y, in a small geographical region such as an island. One species (the predator) thinks
of the other species (the prey) as food and is very dependent on this food supply for survival.

Let x(t) and y(t) represent the populations of the two species at time t. We can make the
following reasonable assumptions:

1. If there are no predators, the prey species will grow at a rate proportional to its own
population (assuming an unlimited food supply).

2. If there are no prey, the predator species will decline at a rate proportional to the
predator population.

3. The presence of both predators and prey is beneficial to the growth of the predator
species and is harmful to the growth of the prey species.

The third assumption says that interactions (or close encounters of the hungry kind) between
the predator and prey lead to a decrease in the prey population and to a resulting increase
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in the predator population. As we will see, these contacts are indicated mathematically by a
multiplication of the variables that represent predator and prey. These assumptions lead to a
system of nonlinear first-order differential equations such as the following:

dx
dt

= 0.2x − 0.002xy,
dy
dt

= −0.1y + 0.001xy. (4.7.3)

For this system, how can we see that x(t) is the size of the prey population at any time t and
y(t) is the number of predators at time t?

First of all, note that if there are no predators—that is, if y is always 0—the system reduces
to dx/dt = 0.2x, dy/dt = 0. This says that the prey population would increase at a rate that
is proportional to the actual prey population at any time. Also, the predator population is
constant—at zero. This is realistic and consistent with assumption 1. Furthermore, if there are
no prey—that is, if x ≡ 0—the system becomes dx/dt = 0, dy/dt = −0.1y, which means that
the number of predators would decrease at a rate proportional to the predator population,
where 0.1 is the constant of proportionality, the predator’s intrinsic death rate. Again, this is
realistic because in the absence of a crucial food supply, the bottom line would be starvation
and a net decline in the predator population.

The intriguing terms in (4.7.3) are the terms involving the product xy. We’ve already sug-
gested that these terms represent the number of possible interactions between the two species. To
illustrate this point, suppose there were four foxes and three rabbits on an island. If we label
the foxes F1, F2, F3, and F4 and the rabbits R1, R2, and R3, then we have the following pos-
sible one-on-one encounters between foxes and rabbits: (F1, R1), (F1, R2), (F1, R3), (F2, R1),
(F2, R2), (F2, R3), (F3, R1), (F3, R2), (F3, R3), (F4, R1), (F4, R2), and (F4, R3). Note that there are
4 × 3 = 12, or x times y, possible interactions. Of course, we can have two foxes meeting
up with one rabbit or one fox coming upon three rabbits, and so on, but the idea is that
the number of interactions is proportional to the product of the two populations. The coefficient of
xy in the first equation, −0.002, is a measure of the predator’s effectiveness in terms of prey
capture, whereas the coefficient 0.001 in the second equation is an indicator of the predator’s
efficiency in terms of prey consumption.

This nonlinear system is a particular example of a system called the Lotka-Volterra
equations:

dx
dt

= a1x − a2xy

dy
dt

= −b1y + b2xy,

where a2 and b2 are positive constants. [Alfred Lotka (1880–1949) was a chemist and demog-
rapher and Vito Volterra (1860–1940) was a mathematical physicist. In the 1920s they derived
these equations independently—Lotka from a chemical reaction problem and Volterra from
a problem concerned with fish catches in the Adriatic Sea.] In general, there is no explicit solu-
tion of the Lotka-Volterra equations in terms of elementary functions. We’ll discuss numerical
solutions of systems in Section 4.10.
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However, as the next example shows, we can understand the relationship between the two
species by using a qualitative analysis.

■ Example 4.7.4 Qualitative Analysis of a Predator-Prey Model
Figure 4.10 shows the trajectory corresponding to our system

dx
dt

= 0.2x − 0.002xy

dy
dt

= −0.1y + 0.001xy,

with x(0) = 100, y(0) = 25, and 0 ≤ t ≤ 52. What does this picture tell us? First, realize that
the horizontal axis (x) represents the prey; the vertical axis (y), the predators. Our starting
point, corresponding to t = 0, is (100, 25), and the direction of the trajectory is counterclock-
wise. To see the direction, use technology to look at partial trajectories such as those given by
0 ≤ t ≤ 10, 0 ≤ t ≤ 15, or 0 ≤ t ≤ 25.

Figure 4.10 illustrates a cyclic behavior that seems a bit too neat to be found in the wild.
However, regular population cycles do seem to occur in nature.8 In our graph, both prey and
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FIGURE 4.10
Trajectory for

{
dx
dt = 0.2x − 0.002xy, dy

dt = −0.1y + 0.001xy; x(0) = 100, y(0) = 25
}

0 ≤ t ≤ 52

8 Examination of the records of the Hudson’s Bay Company, which trapped fur-bearing animals in Canada for almost 200 years, suggests a
periodic pattern in the number of lynx pelts harvested from about 1845 to the 1930s. The lynx, a cat-like predator, has the snowshoe hare as
its main prey. For an analysis of the data, see J. D. Murray, Mathematical Biology I: An Introduction (Third Edition) (New York: Springer-Verlag,
2002): 83–84.
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predator populations increase as the number of prey increases, but when the prey population
exceeds about 350, the predators seem to overwhelm their prey to the extent that there are
more and more predators but a declining prey population. The predators continue to increase
until their number is about 260, at which time the effect of a dwindling food supply catches
up to the predators and their population begins to decline. The predators may starve or start
killing each other as competition for diminishing resources grows fierce. Finally, the predator
population is low enough for the prey population to recover, and the cycle begins again.

Figure 4.10 highlights the point (100, 100) because x = 100, y = 100 is an equilibrium solution
of the system, called a center in this case. (Verify the preceding statement.) If this system were
to have initial point (100, 100), neither population would move from this state. The origin is
also an equilibrium point. ■

4.7.4 Other Graphical Representations
With the aid of technology, we can look at plots of x(t) against t and y(t) against t separately
(Figures 4.11a and 4.11b). Compare these graphs, noting the way in which one population
lags behind the other over time. The trajectory (Figure 4.10) gives the big picture, the state
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FIGURE 4.11a
x(t), prey population
x(0) = 100; 0 ≤ t ≤ 200
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FIGURE 4.11b
y(t), predator population
y(0) = 25; 0 ≤ t ≤ 220
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FIGURE 4.12
Predator and prey population vs. t

(x(t), y(t)) of the ecological system as time marches on, whereas Figures 4.11a and 4.11b show
the individual population fluctuations. Figure 4.12 exhibits the cyclic nature of the predator
fluctuation and that of the prey fluctuation on the same set of axes. Each graph in this example
was done by a CAS using a numerical approximation to the actual system solution.

4.7.5 Three-Dimensional Systems
We have been focusing on second-order equations and their equivalent systems, but the tech-
niques we have discussed apply to any differential equation of order greater than 1. The main
difficulty with equations of order 3 and higher is that we lose some aspects of the graphi-
cal interpretation of the solution. Let’s look at the next example, which presents us with a
three-dimensional system.

■ Example 4.7.5 A System of Three First-Order Equations
We want to examine the behavior of the three-dimensional system

ẋ = −0.1x − y

ẏ = x − 0.1y

ż = −0.2z.

A Three-Dimensional Trajectory
The complete picture of this linear system is given by the set of points (t, x(t), y(t), z(t)), a
four-dimensional situation. Assuming that x, y, and z are functions of the parameter t and that
we have the initial condition x(0) = 5, y(0) = 5, and z(0) = 10, we get the three-dimensional
trajectory shown in Figure 4.13. This is a projection of the four-dimensional picture onto
three-dimensional space, just as the two-dimensional phase portraits we’ve seen previously
are projections of three-dimensional curves onto two-dimensional planes.

By plotting this with your CAS and rotating the axes (if possible), you should be able to see
that the solution spirals into the origin in the x-y plane, while it moves toward the origin in
the variable z as well.
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FIGURE 4.13
An x-y-z plane trajectory for the system{
ẋ = −0.1x − y, ẏ = x − 0.1y, ż = −0.2z; x(0) = 5, y(0) = 5, z(0) = 10

}
0 ≤ t ≤ 15
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FIGURE 4.14
An x-y plane trajectory for the system{
ẋ = −0.1x − y, ẏ = x − 0.1y, ż = −0.2z; x(0) = 5, y(0) = 5, z(0) = 10

}
0 ≤ t ≤ 15

A Two-Dimensional Trajectory
Now we can, for example, project the three-dimensional spiral (in x-y-z space) onto the x-y
plane (Figure 4.14).

If you increase the range of t, you will get a tighter spiral and see that the origin is a sink for
this system. ■

In this section, we have seen how any differential equation of order greater than 1 can be
turned into an equivalent system of first-order equations. We’ve looked at different ways to
view such systems graphically. In later sections, we will discuss other aspects of first-order
equations that can be extended to systems. In particular, we’ll investigate questions of the
existence and uniqueness of solutions and the numerical approximation of solutions of
systems.
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Exercises 4.7

A

Assume that each function in Problems 1–7 is a function of time, t. For each of these initial
value problems, (a) convert to a system, (b) use technology to find the graph of the solution
in the phase plane, and (c) show a graph of the two components of the solution relative to
the t-axis.

1. x′′ + x′ = 0; x(0) = 1, x′(0) = 2
2. r̈ − r = 0; r(0) = 0, ṙ(0) = 1
3. ÿ + y = 0; y(0) = 2, ẏ(0) = 0
4. y′′ = −4; y(0) = y′(0) = 0
5. ẍ − ẋ = 0; x(0) = 1, ẋ(0) = 1
6. x′′ − 2x′ + x = 0; x(0) = −1, x′(0) = −1
7. x′′ = x − x3; x(0) = 0, x′(0) = 1

B
1. Read the explanation before Problem A15 of Exercises 2.1 and solve the equation

dy
dx

= −x + y
x + y

that arises in Example 4.7.2.
2. Consider the specific Lotka-Volterra Equations (4.7.3) in Example 4.7.4.

a. Find the first-order differential equation that defines the trajectories of this system in the phase
plane.

b. Solve this separable equation to find the implicit algebraic equation of the trajectories.

3. The equation Q̈ + 9Q̇ + 14 Q = 1
2 sin t models an electric circuit with resistance of 180 ohms,

capacitance of 1/280 farad, inductance of 20 henries, and an applied voltage given by E(t) = 10
sin t. Q = Q(t) denotes the capacitance, the charge on the capacitor at time t, and Q̇(t) denotes the
current in the circuit. Assume Q(0) = 0 and Q̇(0) = 0.1.

a. Express this IVP as a system of two first-order equations, with the appropriate initial conditions.
b. Use technology to graph the solution of the system in the phase plane, with 0 ≤ t ≤ 8.
c. Use technology to graph the solution of the original second-order equation relative to the t-axis,

considering first the interval 0 ≤ t ≤ 2 and then 0 ≤ t ≤ 8.
d. Describe the behavior of the capacitance as t → ∞.

4. Find all equilibrium solutions of each of the following systems.

a. ẋ = x − 3y, ẏ = 3x + y
b. x′ = 2x + 4y, y′ = 3x + 6y
c. ṙ = −2rs + 1, ṡ = 2rs − 3s
d. x′ = cos y, y′ = sin x − 1
e. ẋ = x − y2, ẏ = x2 − y
f. r ′ = 1 − s, s′ = r3 + s
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5. Find all the equilibrium points of the system

x′ = x2y3

y′ = −x3y2

and sketch the phase-plane diagram for this system.

C

1. Convert the equation x′′ + x′ − x + x3 = 0 to a system and find all equilibrium points.
2. The equation d2θ

dt2 + k2 sin θ = 0 describes the motion of an undamped pendulum, where θ is the
angle the pendulum makes with the vertical. Convert this equation to a system and describe all its
equilibrium points.

3. Consider the differential equation x′′ + λ − ex = 0, where λ is a parameter.

a. Sketch the phase-plane diagram for λ > 0.
b. Sketch the phase-plane diagram for λ < 0.
c. Describe the significance of the value λ = 0.

4.8 SPRING-MASS PROBLEMS
4.8.1 Simple Harmonic Motion
We have seen spring-mass problems before (for example, in the exercises for Section 4.1 and
Section 4.2). The treatment in this section represents a systematic exposition of this important
model and demonstrates the usefulness of a qualitative approach.

To start with, suppose we have a spring attached to the ceiling and a weight (mass) hanging
from the bottom of the spring, as in Figure 4.15a.

If we set the mass in motion by giving it an upward or downward push, we can use Newtonian
mechanics and the qualitative analysis of systems of ODEs to investigate the forces acting on
the mass during its motion. We want to describe the state of this system, giving the mass’s
position and velocity at any time t. First, we’ll assume that there’s no air resistance, friction,
or other impeding force. The resulting situation is called simple harmonic motion or free
undamped motion.

Equilibrium (rest) position

FIGURE 4.15a
Spring-mass system, mass in the equilibrium position
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Equilibrium position

F

x

FIGURE 4.15b
Spring-mass system, mass displaced from the equilibrium position

Fundamental to understanding the mass’s movement is Newton’s Second Law of Motion,
which can be stated as F = m · a, where F is a force (or sum of forces) acting on a body
(such as the weight hanging from the spring), m is the body’s mass, and a is the acceleration
of the body. If x denotes the displacement (distance) of the mass from its equilibrium (rest)
position, where a move downward is considered a positive displacement (Figure 4.15b), we
can write this expression for the force as m · d2x

dt2 .

Now note that if you pull down on the weight (stretching the spring in the process), you
can feel a certain tension—a tendency for the spring to pull the weight back up. Similarly,
if you push up on the weight, thereby compressing the spring, you feel a force that tends to
push the weight down. This behavior is described by Hooke’s Law: The force F (called the
restoring force) exerted by a spring, tending to restore the weight to the equilibrium position,
is proportional to the distance x of the weight from the equilibrium position. Stated simply,
force is proportional to stretch. Mathematically, we write F = −kx, where k is a positive constant
called the spring constant. Note that if x is positive, then the restoring force is negative, whereas
if x is negative, then F is positive.

Because we are ignoring any other kind of force acting on the weight, we can equate the two
expressions for the force to get

m · d2x
dt2 = −kx,

which we can write in the form

d2x
dt2 + βx = 0, where β = k

m
. (4.8.1)

We saw this kind of homogeneous second-order linear equation in Section 4.1; and from
our work in Section 4.6 we know how to convert this equation into an equivalent system
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of first-order equations. Earlier in this section, we learned how to understand what a phase
portrait is telling us. Now let’s analyze this problem qualitatively.

■ Example 4.8.1 A Spring-Mass System—Simple Harmonic Motion
Given the equation d2x

dt2 +βx = 0, where β = k
m , we let x1 = x and x2 = ẋ. We see that ẋ1 = ẋ = x2

and ẋ2 = ẍ = −βx (by solving the second-order equation for the second derivative) = −βx1,
so we have the two-dimensional system

ẋ1 = x2
(4.8.2)

ẋ2 = −βx1.

First of all, note that x2 represents the velocity of the mass: x2 = ẋ, the rate of change of the
position, or displacement of the mass. Using the language developed in Example 4.7.1, we
say that if we could solve the System (4.8.2) for x1 and x2, then the ordered pair (x1(t), x2(t)),
consisting of the mass’s current position and velocity, would give the state of the system at
time t.

Now we can look at some trajectories in the phase plane of (4.8.2)—that is, some solu-
tion curves in the x1-x2 plane. Using initial points (x1(0), x2(0)) = (1, 0), (0, 1), and (2, 0),
Figure 4.16 shows what these curves look like when β = 2

5 and we take the interval 0 ≤ t ≤ 10.
You should use technology to plot your own trajectories, with different initial points and
smaller ranges for t. ■

4.8.2 Analysis
Is this the behavior you would expect from a bouncing mass? First of all, note that the origin
is a special point, an equilibrium solution, because both equations of our system vanish at

1

1 2

0.5

20.5

21

22 21

x2

x1

FIGURE 4.16
Trajectories for

{
ẋ1 = x2, ẋ2 = −2

5 x1

}
, initial points (1, 0), (0, 1), (2, 0); 0 ≤ t ≤ 10
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(x1, x2) = (0, 0). Physically, this means that a mass-spring system that starts at its equilibrium
position (x(0) = 0) and has no initial push or pull (ẋ(0) = x2(0) = 0) will remain at rest
forever, which makes sense.

Now look closely at a typical closed orbit, as one of these elliptical trajectories is called.
Assume that x1 = 0 and x2 is positive—that is, the mass is at its equilibrium position and is
given an initial tug downward. When the mass is at rest (x1 = 0) and it is pushed or pulled in
a downward direction (dx1/dt = x2 > 0), the flow moves in a clockwise direction (note the
direction of the slope field arrows), with x2 decreasing and x1 increasing until the trajectory is
at the x1-axis. Physically, this means that the mass moves downward until the spring reaches
its maximum extension (x1 is at its most positive value), depending on how much force was
applied initially to pull the mass downward, at which time the mass has lost all its initial
velocity (that is, x2 = 0). Then the energy stored in the spring serves to pull the mass back
up toward its equilibrium position, so that x1 is decreasing at the same time that the velocity
x2 is increasing—but in a negative direction (upward). Graphically, this is taking place in the
fourth quadrant of the phase plane. When the flow has reached the state (0, x2), where x2 is
negative, the mass has reached its original position and has attained its maximum velocity
upward.

As the trajectory takes us into the third quadrant, the mass is overshooting its original position
but is slowing down: x1 < 0 and x2 < 0. When the trajectory has reached the point (x1, 0),
where x1 is negative, the spring is most compressed and the mass is (for an instant) not
moving.

As the trajectory moves through the second quadrant, the mass is headed back
toward its initial position with increasing velocity in a downward (positive) direction:
x1 < 0 and x2 > 0. Finally, the mass reaches its initial position with its initial veloc-
ity in the positive (downward) direction—x1 = 0, x2 > 0—and the cycle begins all over
again.

This analysis seems to say that the mass will never stop, bobbing up and down forever.
This apparently nonsensical conclusion is perfectly reasonable when you realize that a
real mass-spring system is always subject to some air resistance and some sort of friction
that slows the system down and eventually forces the mass to stop moving. Our analysis
assumes no such impeding force, so the conclusion is rational, even though the assumption is
unrealistic.

4.8.3 Another View—Solution Curves
As we did in Examples 4.7.1 and 4.7.3, we can use technology to plot each solution of our
system against t. Figures 4.17a and 4.17b show the solution with β = 2

5 , x1(0) = 1, and
x2(0) = 1, corresponding to a spring-mass system that starts 1 unit below its equilibrium
position and has been given an initial velocity of 1 in a downward direction. We should
not be surprised at the appearance of these solution curves. The closed orbits in Figure 4.16
reflect the periodic nature of the motion of the mass. Such motions are called oscillations.
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FIGURE 4.17a
x1(t), displacement
x1(0) = 1, 0 ≤ t ≤ 25
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FIGURE 4.17b
x2(t), velocity
x2(0) = 1, 0 ≤ t ≤ 25

Using methods that we saw in Section 4.1, we can determine that when β = 2
5 , the general

solution of System (4.8.2) is

x1(t) = C1

2

√
10 sin

(
1
5

√
10t

)
+ C2 cos

(
1
5

√
10t

)

x2 (t) = C1 cos
(

1
5

√
10t

)
− C2

5

√
10 sin

(
1
5

√
10t

)
,

and we can see that the explicit source of the oscillations is the trigonometric terms. The par-
ticular system solution shown in Figures 4.17a and 4.17b corresponds to the initial conditions
x1(0) = 1, x2(0) = 1, so C1 = C2 = 1. (Verify this.)

Remembering the discussion of the equivalence of a second-order equation and a system in
Example 4.6.1, we realize that

x1(t) = C1

2

√
10 sin

(
1
5

√
10t

)
+ C2 cos

(
1
5

√
10t

)



4.8 Spring-Mass Problems 193

is the general solution of the original single differential equation d2x
dt2 + βx = 0, where β = 2

5 .
(Review Section 4.1. It happens that x2(t) = dx1/dt is also a solution, but this is true only
because the equation is homogeneous.)

4.8.4 Free Damped Motion
Now let’s look at a more realistic version of a spring-mass system. This time we’ll assume
the existence of a combination of air resistance and some friction in the spring-mass sys-
tem, called a damping force, to slow the mass down. To dramatize the situation, you
may think of the mass as being immersed in a bucket of water, oil, or maple syrup, so
that any initial force imparted to the mass is opposed by a force in the opposite direction
as the mass meets resistance. The motion that results is called free damped motion. For
instance, the damping produced by automobile shock absorbers provides a more comfor-
table ride.

The damping force works against the motion of the mass, so when the mass is moving down
(the positive direction), the damping force acts in an upward direction, and when the mass
is moving up (the negative direction), the damping force acts in a downward direction. In
algebraic terms, this damping force’s sign must be opposite to the sign of the direction of the
velocity. For small velocities, experiments have shown that the damping force is proportional
to the velocity of the mass. We can express the last two sentences mathematically as F = −α dx

dt ,
where α is a positive constant of proportionality called the damping constant. Realizing that
both the spring’s restoring force and this damping force are opposed to the mass’s motion,
we can use Newton’s Second Law of Motion to derive the equation

m · d2x
dt2 = −α

dx
dt

− kx,

which we can write in the form

d2x
dt2 + b

dx
dt

+ cs = 0, where b = α

m
and c = k

m
. (4.8.3)

Now we can convert this second-order differential equation into a system and analyze our
problem qualitatively.

■ Example 4.8.2 A Spring-Mass System—Free Damped Motion
The second-order linear equation d2x

dt2 + b dx
dt + cx = 0 is equivalent to the two-dimensional

system

dx1

dt
= x2

(4.8.4)
dx2

dt
= −bx2 − cx1.
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FIGURE 4.18

Damped free motion

Trajectory for the system{
dx1

dt
= x2,

dx2

dt
= −1

4
x2 − 2x1; x1(0) = 1, x2(0) = 0

}
0 ≤ t ≤ 25

Phase Portrait Analysis
To understand the motion of the mass, we’ll look first at the trajectory we get when we
take b = 1

4 , c = 2, x1(0) = 1, and x2(0) = 0 (Figure 4.18). In particular, you should see
that the mass starts off 1 unit below its equilibrium position with no initial velocity in any
direction.

The direction of the trajectory in Figure 4.18 indicates very dramatically that the state of
the system is spiraling into the origin—that is, x1(t) → 0 and x2(t) → 0 as t → ∞. Every
time the spiral trajectory in Figure 4.18 crosses the x2-axis (so that x1 = 0), the mass is at its
equilibrium position—on its way up when the velocity x2 is negative and on its way down
when x2 is positive. (Remember our agreement on which direction is positive and which
direction is negative.) This type of spiral clearly indicates why we can say that the origin is a
sink for the system.

Another View
We can also look at the graphs of x1(t) against t (Figure 4.19a) and x2(t) against t (Figure 4.19b)
for the same system. The oscillations shown in Figures 4.17a and 4.17b reflect the behavior
of the system in a different way.

The mass reaches its equilibrium position when the x1(t) curve crosses the t-axis. If x1(t∗) = 0,
then look at Figure 4.19b to see what the value of x2(t∗) is. If x2(t∗) > 0, for example, the mass
is on its way down. Also note how Figures 4.18, 4.19a, and 4.19b show that the successive
rises and falls get progressively smaller.

The figures all reflect the initial conditions and seem to say that the mass eventually comes
to rest at its equilibrium position. If you were to hit a brass gong with a special ceremonial
hammer, the vibrations would be loud at the beginning but would gradually fade to nothing.
This is roughly what we are seeing here.
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FIGURE 4.19a
x1(t), displacement
x1(0) = 1
0 ≤ t ≤ 25
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FIGURE 4.19b
x2(t), velocity
x2(0) = 0
0 ≤ t ≤ 25

A Look at the Actual Solution
The curves in Figures 4.19a and 4.19b are not periodic, despite their resemblance to familiar
trigonometric curves that are. In Section 4.1 we saw how to determine that the solution of
our IVP d2x

dt2 + 1dx
4dt + 2x = 0, with x(0) = 1 and dx

dt (0) = 0, is given by

x(t) = e
(− 1

8 t
) (

cos
(

1
8

√
127t

)
+

√
127

127
sin

(
1
8

√
127t

))
,

which is not a pure trigonometric function because of the exponential factor. You should verify
that this is a solution. In terms of our System (4.8.4), we have x1(t) = x(t) and x2(t) = dx

dt .
(Do the differentiation to see what x2(t) looks like.)

The exponential factor e
(− 1

8 t
)
, called the time-varying amplitude, forces the decay of the

oscillations indicated by the trigonometric terms. Figure 4.20 shows the graph of the solution
x(t), together with the graphs of e

(− 1
8 t
)

and −e
(− 1

8 t
)
.
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■

4.8.5 Different Kinds of Damping
You should be aware that there are different kinds of damped motion. The behavior of a
damped system described by the equation md2x

dt2 + α dx
dt + kx = 0 depends on the relationship

among the three constants m, α, and k—the mass, the damping coefficient, and the spring
constant, respectively. The example we’ve just analyzed is a case of underdamped motion,
occurring when the damping coefficient is relatively small compared to the other constants:
α2 < 4mk, technically. The other two possibilities, overdamped motion (α2 > 4mk) and
critically damped motion (α2 = 4mk), are explored in Problems A1 and A2 in Exercises 4.8.
We’ll give a detailed explanation of the significance of the relationship among m, α, and k in
Chapter 5.

4.8.6 Forced Motion
Sometimes a physical system is subject to external forces, which must appear in its mathe-
matical representation. For example, the motion of an automobile (whose body-suspension
combination can be considered a spring-mass system) is influenced by irregularities in the
road surface. Similarly, a tall building may be subjected to strong winds that will cause it to
sway in an uncharacteristic way.

We’re going to look at an initial-value problem related to Example 2.2.5 and to Problems B9–
B11 in Exercises 2.2. This discussion will involve an important type of second-order linear
equation with a forcing term.

■ Example 4.8.3 Forced Damped Motion
Suppose we have an electrical circuit with an inductance of 0.5 henry, a resistance of 6 ohms,
a capacitance of 0.02 farad, and a generator providing alternating voltage given by 24 sin (10t)
for t ≥ 0. The alternating voltage is the external force applied to the circuit, and the resistance
is a damping coefficient. Then, letting Q denote the instantaneous charge on the capacitor,
Kirchhoff’s Law gives us the equation

0.5
d2Q
dt2 + 6

dQ
dt

+ 50Q = 24 sin 10t,

or

d2Q
dt2 + 12

dQ
dt

+ 100Q = 48 sin 10t.
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Let’s assume that Q(0) = 0 and dQ
dt (0) = 0.

This second-order nonhomogeneous equation is equivalent to the nonautonomous system

dx1

dt
= x2

dx2

dt
= 48 sin 10t − 12x2 − 100x1,

with initial conditions x1(0) = 0 and x2(0) = 0. (You should work this out for yourself.)

Phase Portrait
The phase portrait (Figure 4.21a) corresponding to this system, for 0 ≤ t ≤ 0.94, is inter-
esting. At first, we suspect that we may get a spiral opening outward. But with an expanded
range for t—say, from 0 to 5—the phase portrait resembles a closed orbit around the origin
(Figure 4.21b). We can understand the initial “blip” by using the explicit solution found by
the techniques discussed in Section 4.2:

Q(t) = 1
10

e−6t (4 cos 8t + 3 sin 8t) − 2
5

cos 10t.

As in Example 2.2.5, we see that there is a transient term, 1
10 e−6t(4 cos 8t + 3 sin 8t), that

becomes negligible as t grows large (Why?), and a steady-state term, 2
5 cos 10t, that controls

the behavior of Q(t)(= x1) eventually. This steady-state term is periodic with the same period(2π
10 = π

5

)
as the forcing term and has the amplitude 2

5 . The current in the circuit is given by

I = dQ
dt = x2. ■

Let’s look at one other example of a spring-mass system. First, we suppose that there is no
air resistance or friction. Next, we assume that the spring to which the mass is attached is
supported by a board. Now we set the mass into motion by moving the supporting board up
and down in a periodic manner. This situation is described as driven undamped motion or

2
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x2

FIGURE 4.21a
Trajectory for the system{

dx1
dt = x2, dx2

dt = 48 sin 10 t − 12x2 − 100x1; x1(0) = 0 = x2

}
0 ≤ t ≤ 0.94
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FIGURE 4.21b
Trajectory for the system{

dx1
dt = x2, dx2

dt = 48 sin 10 t − 12x2 − 100x1; x1(0) = 0 = x2(0)
}

0 ≤ t ≤ 5

forced undamped motion. As in the preceding example, a force external to the spring-mass
system itself is being applied to the system, and we want to understand the behavior of the
system.

When we apply Newton’s Second Law of Motion, an analysis similar to that provided in
Example 4.8.1 gives us the equation

m · d2x
dt2 = −kx + f (t),

which we can write as

d2x
dt2 + βx = F(t) where β = k

m
and F(t) = f (t)

m
. (4.8.5)

The forcing function f (t) (or F(t)) describes the external force that jiggles the supporting
board up and down rhythmically. Remember that we are assuming that this force is periodic,
so f (t) is sometimes positive and sometimes negative—that is, sometimes the board is moved
downward, and sometimes it is moved upward. (Did you ever see the toy consisting of a paddle
with a rubber ball attached to it by an elastic cord?)

The next example gives us the qualitative analysis of this problem.

■ Example 4.8.4 Forced Undamped Motion
The system equivalent to our problem is

dx1

dt
= x2

(4.8.6)
dx2

dt
= F(t) − βx1.
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Let’s take β = 4 and assume that the forcing function is F(t) = cos(2t). Furthermore, let’s
assume that the mass starts from its equilibrium position, x1(0) = x(0) = 0, and that it has
no initial motion before the external force is applied—that is, x2(0) = dx

dt (0) = 0. Figure 4.22
shows the phase portrait corresponding to this IVP for 0 ≤ t ≤ 20.

Analysis
Note that because the initial point is the origin, it is obvious that the spiral trajectory is
moving outward—that is, in a clockwise direction. (You should contrast this with Figure 4.18
in Example 4.8.2.) Figure 4.22 indicates that both the displacement of the mass and its
velocity are growing without bound. The graphs of x1(t) and x2(t) against t (Figures 4.23a
and b) confirm this.

The Actual Solution
The solution of the system we have chosen as an example is x1(t) = x(t) = t

4 sin(2t). (Check
that this is a solution of the IVP.) The sine term contributes an oscillation between −1 and 1,

422224 x1
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28

x2

FIGURE 4.22
Trajectory for the system{

dx1
dt = x2, dx2

dt = cos 2t − 4x1; x1(0) = 0 = x2(0)
}

0 ≤ t ≤ 20
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FIGURE 4.23a
x1(t), displacement
x1(t) in Example 4.8.4, 0 ≤ t ≤ 30
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FIGURE 4.23b
x2(t), velocity
x2(t) in Example 4.8.4, 0 ≤ t ≤ 30
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FIGURE 4.24
x1(t) = x(t) = t

4 sin(2t), 0 ≤ t ≤ 30

but the factor t
4 affects the amplitude of the oscillations: |x(t)| = ∣∣ t

4

∣∣ |sin (2t)|, so that − t
4 ≤

x(t) ≤ t
4 for t ≥ 0, and x(t) gets larger and larger in both the positive and negative directions

as t gets larger.

Figure 4.24 shows how the linear factor t
4 magnifies the oscillation caused by the trigonometric

factor. ■

4.8.7 Resonance
A situation in which we have unbounded oscillation, as shown in the preceding example, is
called resonance. This is particularly important because all mechanical systems have natural
or characteristic frequencies—that is, each atom making up the system is vibrating at a
particular frequency, and the composite system has its own characteristic frequency. Recall
that if a function g is periodic with period T (so that T is the smallest number for which
g(t + T) = g(t) for all t), then its frequency f is the number of cycles per unit of time: f =
1
T . Resonance occurs when the frequency of an external force coincides with the natural
frequency of the system, thereby amplifying it. You may have experienced having the windows
in your home rattle when a heavy vehicle drives by. Going faster than a certain speed in a
car may cause a disturbing rattling. In the preceding example, the natural frequency of the
system is 1

π
cycles per unit of time, which is equal to the frequency of the forcing function

F(t) = cos(2t).
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An unfortunately frequent physical consequence of such amplified vibration is the destruction
of the system. In a spring-mass system, the spring could break. A serious situation can occur
when numbers of people march in step over a bridge and the frequency of the vibrations set
up by the marching feet causes resonance and the collapse of the bridge. (This is why military
columns and parade marchers “break step” when crossing a bridge.) As another example, in
1959 and 1960, several models of the same plane crashed, seeming to explode in midair. The
Civil Aeronautics Board (CAB) determined that the disintegration of the planes was due to
mechanical resonance: A component within the planes, when not fastened securely, generated
oscillations that acted as an excessive external force on the wings, breaking them within
30 seconds.9 Similarly, resonance occurs when the ocean’s waves hit a human-made barrier
or when wind swirls around a bridge support or tower.

A less disastrous example of resonance is the shattering of a glass by a powerful singer hitting a
very high note. The external force here is the sound wave that amplifies the natural frequency
of the glass.

It should be pointed out, however, that resonance can also be our friend. The great scientist
Galileo (1564–1642) made the following observation about resonance used in the ringing
of heavy, free-swinging bells in a tower10:

Even as a boy, I observed that one man alone by giving these impulses at the right instant
was able to ring a bell so large that when four, or even six, men seized the rope and
tried to stop it they were lifted from the ground, all of them together being unable to
counterbalance the momentum which a single man, by properly timed pulls, had given it.

A parent pushing a child’s swing, timing the pushes to coincide with the swing’s motion, is
using resonance to increase the amplitude of each swing.11 A motorist rocking his or her car
to get it out of a muddy rut or a snow bank is applying an external force to amplify the car’s
natural frequency. Tuning a radio depends on resonance.

Exercises 4.8

A

1. The IVP ẍ + 20ẋ + 64x = 0, with x(0) = 1/3 and ẋ(0) = 0, models the motion of a spring-mass
system with a damping force. The initial conditions indicate that the mass has been pulled below
its equilibrium position and released.

a. Express this IVP as a system of two first-order equations, with the appropriate initial conditions.
b. Use technology to graph the solution of the system in the phase plane.

9 For examples of resonance, see Alice B. Dickinson, Differential Equations: Theory and Use in Time and Motion (Reading, MA: Addison-
Wesley, 1972): 100 ff.
10 Galileo Galilei, Dialogues Concerning Two New Sciences, translated by H. Crew and A. DeSalvio (New York: Macmillan, 1914), “First
Day,” 98.
11 See, for example, “How to Pump a Swing” by S. Wirkus, R. Rand, and A. Ruina, College Math. J. 29 (1998): 266–275.
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c. Use technology to graph the solution of the original second-order equation relative to the t-axis.
d. Comparing the results of parts (b) and (c) to the appropriate graphs in Examples 4.8.1 and 4.8.2,

why do you think that the motion shown in this problem should be called overdamped?

2. Consider the spring-mass system modeled by the IVP ẍ + cẋ + 0.25x = 0, with x(0) = 1
2 and

ẋ(0) = 7
4 . Here, c is a positive parameter.

a. Express the IVP in terms of a system of first-order equations, including initial conditions.
b. For each of the values c = 0.5, 1, and 1.5, use technology to graph the solution of the system in

the phase plane, 0 ≤ t ≤ 20.
c. For each of the values c = 0.5, 1, and 1.5, use technology to graph the solution of the original

equation with respect to t on the interval

0 ≤ t ≤ 20.

d. Based on your answers to parts (b) and (c), describe how the nature of the solution changes as
the value of c passes through the value 1? (When c = 1, the system is critically damped.)

3. Consider the following model of a spring-mass system: ẍ + 64x = 16 cos 8t, with x(0) = 0 and
ẋ(0) = 0.

a. Express the IVP in terms of a system of first-order equations, including initial conditions.
b. Use technology to graph the solution of the system in the phase plane.
c. Use technology to graph the solution of the original second-order equation relative to the t-axis.
d. What is the relationship of the graph in (c) to the two half-lines x = t and x = −t for t ≥ 0?

B

1. A spring having a spring constant of 250 is used in a simple set of scales to measure the weights of
objects placed on the pan. The pan (of mass 0.5 kg) rests on top of the spring (see the following
illustration).

M kg

A block of mass M kg is placed on the pan, causing the spring to oscillate. There is a damping force
of 10v Newtons, where v m/sec is the speed of the pan.

a. Determine the differential equation of motion for the subsequent damped oscillations.

b. Show that the general solution of the equation found in part (a) has the form x = A0e− 10t
2M+1

cos(nt + ε), where A0 is the initial amplitude. Hence, find an expression for n in terms of M.
c. Find, in terms of M, the time it takes for the system to settle down to oscillations of only 25% of

the initial amplitude.
d. What effect would removing the damping force have on the system?
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2. A particle is in simple harmonic motion along the y-axis. At t = 0, y = 3 and v = dy/dt = 0. Exactly
1/2 second later, these values repeat themselves. Find y(t) and v(t).

C

1. Convert each of the following systems to a single second-order equation. Then interpret each
equation to determine which (if any) cannot represent a spring-mass system. Explain your
reasoning.

a. Q′ = −6Q + 3R
R′ = −Q − 2R

b. ẋ = 3x − y
ẏ = x + 3y

*4.9 EXISTENCE AND UNIQUENESS
Now that we’ve learned how to convert higher-order equations to equivalent systems of first-
order equations and we’ve seen some qualitative analyses of these systems, it’s time to ask that
important question we first considered in Section 2.8 in the context of first-order equations:
How do we know that a given higher-order equation or equivalent system has a solution—and
do we know that any such solution is unique?

We don’t want to waste human and computer resources searching for a solution that may
not exist or that may merely be one of many solutions. For now we’ll focus on second-order
equations and their corresponding systems. In Chapter 5 we’ll look at generalizations to
higher-order equations and larger systems.

The first example shows that when there is one solution of a system, there may be many.

■ Example 4.9.1 A System IVP with Many Solutions
Let’s look at the initial-value problem

t2x′′ − 2tx′ + 2x = 0, with x(0) = 0 and x′(0) = 0.

This is equivalent to the system IVP

x′
1 = x2

x′
2 = 2

t
x2 − 2

t2 x1, with x1(0) = 0 = x2(0).

Then x(t) ≡ 0 and any function of the form x(t) = Kt2 (where K is any constant) are solutions
of the original IVP. (Verify this.) With respect to the equivalent system of equations, x1(t) ≡ 0,
x2(t) ≡ 0, is a solution, and any pair of functions x1(t) = Kt2, x2(t) = 2Kt is a solution. What
we are saying here is that our IVP has infinitely many solutions. ■

* Denotes an optional section.
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In contrast to the IVP in the preceding example, we can have a system of differential equations
with no solution.

■ Example 4.9.2 A System IVP with No Solution
Let’s look at the IVP

x′
1 = 1

x2
1

, x′
2 = 2x1 − x2, with x1(0) = 0 and x2(0) = 1.

When we examine this situation carefully, we see that if x1(t) is part of a solution pair for this
IVP, then x′

1 doesn’t exist for t = 0 because x′
1(0) = 1

[x1(0)]2 and x1(0) = 0. This says that there

is no solution to this IVP. ■

What we want in most real-life situations is one and only one solution to an initial-value
problem. The next example shows such a case.

■ Example 4.9.3 A System IVP with a Unique Solution
The IVP

{
dx
dt = y, dy

dt = x; x(0) = 1, y(0) = 0
}

has the unique solution x(t) = 1
2

(
et + e−t

)
,

y(t) = 1
2

(
et − e−t

)
. You may recognize x and y as the hyperbolic cosine (cosh) and hyperbolic

sine (sinh), respectively.

This system is equivalent to the single equation ẍ−x = 0, or ẍ = x, with x(0) = 1 and ẋ(0) = 0,
and it isn’t too difficult to guess what kind of function is equal to its own second derivative.
Problem A1 in Exercises 4.9 will ask you to explore this further. ■

4.9.1 An Existence and Uniqueness Theorem
At this point we have seen that the possibilities for second-order IVPs are similar to those we
saw in Section 2.8 for first-order IVPs. We can have no solution, infinitely many solutions, or
exactly one solution. Once again we would like to determine when there is one and only one
solution of an initial-value problem.

The simplest Existence and Uniqueness Theorem for second-order differential equations or
two-dimensional systems of first-order equations is one that is a natural extension of the
result we saw in Section 2.8. We’ll state two forms of this.

Existence and Uniqueness Theorem
Suppose we have a second-order IVP d2y

dt2 = f (t, y, ẏ), with y(t0) = y0 and ẏ(t0) = ẏ0. If f , ∂f
∂y ,

and ∂f
∂ẏ are continuous in a closed box B in three-dimensional space (t-y-ẏ space) and the

point (t0, y0, ẏ0) lies inside B, then the IVP has a unique solution y(t) on some t-interval
I containing t0.

Equivalently,
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Existence and Uniqueness Theorem
Suppose we have a two-dimensional system of first-order equations

dx1

dt
= f (t, x1, x2)

dx2

dt
= g(t, x1, x2),

where x1(t0) = x0
1 and x2(t0) = x0

2 . If f , g, ∂f
∂x1

, ∂g
∂x1

, ∂f
∂x2

, and ∂g
∂x2

are all continuous in a box

B in t-x1 − x2 space containing the point
(
t0, x0

1, x0
2
)
, then there is an interval I containing

t0 in which there exists a unique solution x1 = y1(t), x2 = y2(t) of the IVP.

4.9.2 Many Solutions
We can write the equation in Example 4.9.1 in the form ẍ = f (t, x, ẋ) = 2tẋ−2x

t2 , so we see
that f does not exist in any box in which t = 0. Therefore, we should not expect exactly one
solution, and, in fact, although there is a solution to the IVP with initial conditions x(0) = 0
and ẋ(0) = 0, any such solution is not unique.

4.9.3 No Solution
In Example 4.9.2, we can use the system form of our Existence and Uniqueness Theorem to
see that the function f (t, x1, x2) = 1/x2

1 does not exist at the point
(
t, x0

1, x0
2

) = (0, 0, 1), so
once again we are not guaranteed exactly one solution—and, in fact, there is no solution of
the IVP.

4.9.4 Exactly One Solution
Finally, if we examine the IVP in Example 4.9.3 from either the single-equation or the systems
point of view, we should see that in this situation we are guaranteed the existence of one and
only one solution of the initial-value problem. (Check this.)

The nice thing about these questions is that in most common applied problems, the functions
and their derivatives are well behaved (continuous, etc.), so that we do have both existence
and uniqueness.

Exercises 4.9

A

1. In Example 4.9.3 you saw an IVP for a system of equations that was equivalent to the single
equation IVP x′′ − x = 0, or x′′ = x, with x(0) = 1 and x′(0) = 0. Using the technique of Section 4.1,
show that x(t) = 1

2
(
et + e−t) is the solution of the IVP x′′ − x = 0 with x(0) = 1 and x′(0) = 0.

2. Verify that each of the following initial value problems has a solution that is guaranteed unique
everywhere in three-dimensional space.
a. x′

1 = x2, x′
2 = 3x1 − 5x2; x1(0) = 1, x2(0) = 0

b. x′
1 = x2

1, x′
2 = sin x1 − x2

2; x1(0) = 0, x2(0) = 0
c. x′

1 = x3
2, x′

2 = tx1 − x2; x1(0) = 0, x2(0) = 1
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3. For each of the following equations, determine intervals in which solutions are guaranteed to exist.

a. y(iv) + 4y′′′ + 3y = t
b. ty′′′ + (sin t)y′′ + 3y = cos t
c. t(t − 1)y(iv) + ety′′ + 4t2y = 0
d. y′′′ + ty′′ + t2y′ + t3y = ln t

B

1. Show that the initial value problem

{
yx′ = y − 4t, (x − 3)y′ = −4x + sin t; x(0) = 3, y(0) = 0

}
has no solution. Does this contradict the existence part of the result we have given in this section?
Explain.

2. a. Show that
{
x1(t) = e−t sin(3t), y1(t) = e−t cos(3t)

}
and{

x2(t) = e−(t−1) sin(3(t − 1)), y2(t) = e−(t−1) cos(3(t − 1))
}

are solutions of the system

dx
dt

= −x + 3y

dy
dt

= −3x − y.

b. Use technology to draw the graphs of each of the solutions in part (a) in the x-y phase plane.
c. Explain why the solutions in part (a) don’t contradict the uniqueness part of the result in this

section.

C

1. Consider the equation

5x2y(5) − (6 sin x)y′′′ + 2xy′′ + πx3y′ + (3x − 5)y = 0.

Suppose that Y(x) is a solution of this equation such that Y(1) = 0, Y ′(1) = 0, Y ′′(1) = 0,
Y ′′′(1) = 0, Y (4)(1) = 0, and Y (5)(1) = 0. Why must Y(x) be equal to 0 for all values of x?

2. Use technology to plot some trajectories of the nonautonomous system

dx
dt

= (1 − t)x − ty

dy
dt

= tx + (1 − t)y.

Your graph should show some intersecting curves. Does the graph contradict the existence and
uniqueness theorem? Explain.
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3. Consider the system

ẋ = y

ẏ = −x + (1 − x2 − y2)y.

a. Let D denote the region in the phase plane defined by x2 + y2 < 4. Verify that the given system
satisfies the hypotheses of the Existence and Uniqueness Theorem throughout D.

b. By substitution, show that x(t) = sin t, y(t) = cos t is a solution of the system.
c. Now consider a different solution, in this case starting from the initial conditions x(0) = 1/2,

y(0) = 0. Without doing any calculations, explain why this solution must satisfy x(t)2 +
y(t)2 < 1 for all real values of t.

4.10 NUMERICAL SOLUTIONS
The difficulty of finding closed-form solutions of single differential equations is compounded
when it comes to systems of equations. We’ve already seen some useful ways in which systems
are analyzed qualitatively. However, you should realize that a graphing calculator or computer
produces phase portraits by using numerical methods. As for any computer graph, individual
points are calculated and then connected by a series of small line segments that give the
impression of a continuous curve.

Now it is time to see that any of the numerical techniques introduced for first-order equations
in Sections 3.1, 3.2, and 3.3 can be extended to systems of first-order equations in a natural way.
In this section, we’ll work with two-dimensional systems, leaving the obvious generalizations
to Chapters 5 and 7. Even though it is important to be able to solve simple numerical prob-
lems by hand, most systems of differential equations are solved using numerical methods
implemented on computers.

4.10.1 Euler’s Method Applied to Systems
Let’s start by recalling Euler’s method for solving the first-order initial-value problem y′ =
f (x, y), y′(x0) = y0. This algorithm was originally given as Formula (3.1.3):

yk+1 = yk + h · f (xk, yk).

Here, h is the step size and yk denotes the approximate value of the solution at the point
xk = x0 + kh.

Now suppose we have a system of two first-order differential equations

dx
dt

= f (t, x, y)

dy
dt

= g(t, x, y),
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with x(t0) = x0 and y(t0) = y0. If we let tk = t0 + kh, xk ≈ x(tk), and yk ≈ y(tk), we can apply
Euler’s algorithm to each equation separately to get the result

xk+1 = xk + h · f (tk, xk, yk)

yk+1 = yk + h · f (tk, xk, yk). (4.10.1)

Let’s see how this method works on a system we’ve already seen.

■ Example 4.10.1 Euler’s Method for a System—by Hand
As a simple illustration of Euler’s method applied to a system, let’s approximate the solution
of the IVP of Example 4.9.3 at t = 0.5. The system, which we know has a unique solution, is

dx
dt

= y,
dy
dt

= x; x(0) = 1, y(0) = 0.

Equations
When we use a step size h = 0.1, the algorithm given by Equation (4.10.1) looks like

xk+1 = xk + (0.1)yk

yk+1 = yk + (0.1)xk,

where x0 = x(0) = 1 and y0 = y(0) = 0.

Calculation
We approximate the solution at t = 0.5 by taking five steps:

x1 = x0 + (0.1)y0 = 1 + (0.1)(0) = 1

y1 = y0 + (0.1)x0 = 0 + (0.1)(1) = 0.1

x2 = x1 + (0.1)y1 = 1 + (0.1)(0.1) = 1.01

y2 = y1 + (0.1)x1 = 0.1 + (0.1)(1) = 0.2

x3 = x2 + (0.1)y2 = 1.01 + (0.1)(0.2) = 1.03

y3 = y2 + (0.1)x2 = 0.2 + (0.1)(1.01) = 0.301

x4 = x3 + (0.1)y3 = 1.03 + (0.1)(0.301) = 1.0601

y4 = y3 + (0.1)x3 = 0.301 + (0.1)(1.03) = 0.404

x5 = x4 + (0.1)y4 = 1.0601 + (0.1)(0.404) = 1.1005

y5 = y4 + (0.1)x4 = 0.404 + (0.1)(1.0601) = 0.51001
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Result
These calculations indicate that x(0.5) ≈ 1.1005 and y(0.5) ≈ 0.5100. But to four decimal
places, the exact solution is x(0.5) = cosh(0.5) = (1

2

)
(exp(0.5) + exp(−0.5)) = 1.1276 and

y(0.5) = sinh(0.5) = (1
2

)
(exp(0.5) − exp(−0.5)) = 0.5211. Thus, the absolute error is 0.0271

for x and 0.0111 for y.

If we cut our step size in half, letting h = 0.05 and using technology, we need 10 steps and
find that our approximations are x(0.5) ≈ 1.1138 and y(0.5) ≈ 0.5151, to four decimal places.
Now the error—0.0130 for x and 0.006 for y—is roughly half of what these errors were when
h = 0.1. Having computer resources at our command, it’s hard to resist another run, this time
with h = 0.01. Taking 50 steps, we have x(0.5) ≈ 1.1248 and y(0.5) ≈ 0.5198, with errors
0.0028 and 0.0013 for x and y, respectively. You should experiment with a few other values
of h on your own CAS or graphing calculator. ■

Problem A1 in Exercises 4.10 asks you to write the system form of the improved Euler method
(Heun’s method).

4.10.2 The Fourth-Order Runge-Kutta Method for Systems
As an additional example, let’s look at the system form of the Runge-Kutta algorithm intro-
duced in Section 3.3. (As we mentioned in that discussion, it was Kutta who generalized the
basic method to systems of ODEs in 1901.)

We start with the same general first-order system we considered before:

dx
dt

= f (t, x, y)

dy
dt

= g(t, x, y),

with x(t0) = x0 and y(t0) = y0. Again, let tk = t0 + kh, xk ≈ x(tk), and yk ≈ y(tk). Then the
system version of the classic Runge-Kutta Formula (3.3.2) is

xk+1 = xk + 1
6

(m1 + 2m2 + 2m3 + m4)

yk+1 = yk + 1
6

(M1 + 2M2 + 2M3 + M4),

where

m1 = hf(tk, xk, yk)

m2 = hf
(

tk + h
2

, xk + m1

2
, yk + M1

2

)

m3 = hf
(

tk + h, xk + m2

2
, yk + M2

2

)
m4 = hf (tk + h, xk + m3, yk + M3) = hf (tk+1, xk + m3, yk + M3).
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and

M1 = hg(tk, xk, yk)

M2 = hg
(

tk + h
2

, xk + m1

2
, yk + M1

2

)

M3 = hg
(

tk + h
2

, xk + m2

2
, yk + M2

2

)
M4 = hg(tk + h, xk + m3, yk + M3) = hg(tk+1, xk + m3, yk + M3).

Now let’s put this algorithm to use—with the aid of technology, of course.

■ Example 4.10.2 Using Runge-Kutta (RK4) and a CAS
Let’s look again at the initial-value problem analyzed in Example 4.7.1. The system IVP is
dx
dt = y, dy

dt = x; x(0) = 1, y(0) = 0, and we want to approximate x(0.5) and y(0.5). Rather
than wearing ourselves out trying to implement the fourth-order Runge-Kutta method by
hand, we can enter the equations and initial conditions into our CAS, specify the method (in
whatever way you must describe the RK4 method), and choose a step size h = 0.1.

What we get is an approximation for x(0.5) of 1.1276 and an approximation for y(0.5) of
0.5211, both rounded to four decimal places. To four decimal places, the absolute error for
each approximation is 0! ■

Our final example shows how the Runge-Kutta-Fehlberg fourth- and fifth-order algorithm
works on an interesting system application.

■ Example 4.10.3 Using Runge-Kutta-Fehlberg (rkf45) and a CAS
The Japanese-born British mathematician E. C. Zeeman (1925– ) developed a simple
nonlinear model of the human heartbeat:

ε
dx
dt

= −(x3 − Ax + c)

dc
dt

= x,

where x(t) is the displacement from equilibrium of the heart’s muscle fiber, c = c(t) is the
concentration of a chemical control at time t, and ε and A are positive constants. Because the
levels of c determine the contraction and expansion (relaxation) of the muscle fibers, we can
think of c as a stimulus and of x as a response.

We want to investigate the nature of the model’s solution, and for convenience we’ll assume
that ε ≈ 1.0 and A ≈ 3. Also, let x(0) ≈ 1.7 and c(0) ≈ 0.3. (The initial conditions were deter-
mined after experimenting with various values on a CAS.) The calculations producing the
graphs and the values discussed next were carried out using the rkf45 method for the
system.
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FIGURE 4.25
Slope field and trajectory for the system IVP{

dx
dt = −(x3 − 3x + c), dc

dt = x; x(0) = 1.7, c(0) = 0.3
}

0 ≤ t ≤ 30

Table 4.3 Solution Values of
{

dx
dt = −(x3 − 3x + c) ,

dc
dt = x; x(0) = 1.7, c(0) = 0.3

}
t x(t) c(t)

0 1.7000 0.3000

2 0.7499 2.9990

4 −1.8417 0.4728

6 −1.1132 −2.5911

8 1.9436 −1.2862

10 1.3384 2.0618

Because one important feature of a heartbeat is that it is periodic (lub-dub, lub-dub, …), the
solution should reveal this in the x-c phase plane—and in fact it does (Figure 4.25). Both the
systole, corresponding to a fully relaxed heart muscle, and the diastole, indicating a state of full
contraction, are labeled on Figure 4.25.

We see that the heart muscle starts at (1.7, 0.3) and, under the influence of increasing c,
contracts until it is fully contracted at D. Then the muscle begins to relax until it attains
systole at S, returns to the initial point, and (we hope) begins the cycle again. Superimposing
the trajectory on the slope field makes it easy to see the direction of the trajectory, but the
numerical values in Table 4.3 also tell the story.
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FIGURE 4.26a
Graph of x(t) vs. t for the system IVP{

dx
dt = −(x3 − 3x + c), dc

dt = x; x(0) = 1.7, c(0) = 0.3
}

0 ≤ t ≤ 30, −2.5 ≤ x ≤ 2.5
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FIGURE 4.26b
Graph of c(t) vs. t for the system IVP{

dx
dt = − (

x3 − 3x + c
)

, dc
dt = x; x(0) = 1.7, c(0) = 0.3

}
0 ≤ t ≤ 30, −4 ≤ c ≤ 4

If we examine the signs of x and c as t increases, we see that the points (x, c) are moving
counterclockwise through the quadrants of the x-c plane. Looking carefully at the data in the
table, we can see that the trajectory returns to its initial point (1.7, 0.3) sometime between
8 and 10. In fact, a more detailed analysis reveals that the solution of our IVP has period
approximately equal to 8.88. (See Problem C2 in Exercises 4.10.)

Solving the system with rkf45 and then plotting x against t (Figure 4.26a), we see the peri-
odic nature of the heart muscle’s expansions and contractions. Figure 4.26b shows how the
electrochemical activity represented by the variable c also varies periodically.

We will investigate interesting nonlinear systems again in Chapter 7. ■

Just as for a single first-order equation, we can use spreadsheet commands to carry out the
calculations needed to approximate the solutions of systems. Systems versions of the standard
numerical techniques may be a bit more difficult to program, may require more intermediate
storage, and may take a little more time, but they work well. Graphing calculators also handle
systems of differential equations. In fact, as we remarked in the Introduction for this chapter,
they usually deal with a single higher-order equation by requiring the user to write it in terms
of a system and then solving the system numerically.
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Whatever technology you use, try to understand what methods have been implemented by
reading your documentation or checking out your software’s “Help” features.

Exercises 4.10

All problems are to be done using technology, unless otherwise indicated.

A

1. a. Extend the improved Euler method given by Formula (3.2.1) to a system of two first-order
equations.

b. By hand, re-do Example 4.10.1, using h = 0.1 to find approximations to x(0.5) and y(0.5).
c. Calculate the absolute error in part (b).
d. Use technology and the improved Euler method with h = 0.1 to check your answers to part (b).

2. Consider the system x′ = x − 4y, y′ = −x + y, with x(0) = 1 and y(0) = 0. The exact solution is
x(t) = (

e−t + e3t), y(t) = (
e−t − e3t).

a. Verify that the exact solution of the IVP is the solution given above.
b. Approximate the value of the solution at the point t = 0.2 using Euler’s method with h = 0.1.

Compare your result with the values of the exact solution, calculating the absolute error.
c. Approximate the value of the solution at the point t = 0.2 using a fourth-order Runge-Kutta

method with h = 0.2. Calculate the absolute error.

3. Consider the initial value problem y′′ + y′ − 2y = 2x, with y(0) = 1 and y′(0) = 1.

a. Convert this problem into a system of two first-order equations. (Choose your new variables
carefully.)

b. Determine approximate values of the solution at x = 0.5 and x = 1.0 by using Euler’s method
with h = 0.1.

c. Determine approximate values of the solution at x = 0.5 and x = 1.0 by using the fourth-order
Runge-Kutta method with h = 0.1.

4. In Example 4.8.2 you were told that the solution to the IVP

d2x

dt2 + 1
4

dx
dt

+ 2x = 0, with x(0) = 1, ẋ(0) = 0,

is

x(t) = 1
127

e
(− 1

8 t
) (

127 cos
(

1
8

√
127t

)
+ √

127 sin
(

1
8

√
127t

))
.

a. Convert this IVP into a system of first-order equations.
b. Determine the approximate value of the solution at t = 0.6 by using the Runge-Kutta-Fehlberg

method (rkf45 ), if available. Otherwise, use the highest-order Runge-Kutta method available to
you, with h = 0.01. Compare your values with the exact solution above.
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B

1. A particle moves in three-dimensional space according to the equations

dx
dt

= yz,
dy
dt

= zx,
dz
dt

= xy.

a. Assuming that x(0) = 0, y(0) = 5, and z(0) = 0, use the Runge-Kutta-Fehlberg method, if
available, to approximate the solution at t = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 5.0, and
37. (Otherwise use the highest-order Runge-Kutta method available to you, with h = 0.01.)
Describe what these values seem to be telling you about the motion of the particle.

b. Now assume that x(0) = y(0) = 1 and z(0) = 0. Approximate the solution at t = 0.1, 0.2, 0.3,
1.5, 1.6, 1.7, 1.8, and 1.9 using the same procedure you used in part (a). What seems to be
happening?

2. The system

dx
dt

= 7y − 4x − 13

dy
dt

= 2x − 5y + 11

appeared in Example 4.7.3, where it was described as a possible arms race model.

a. Suppose that x(0) = 1 and y(0) = 1. Use technology and the Runge-Kutta-Fehlberg
fourth-fifth-order method (or a reasonable substitute) to estimate x and y for
t = 1, 2, 3, 4, 5, 10, 15, and 20.

b. On the basis of the values found in part (a), guess at lim
t→∞ x(t) and lim

t→∞ y(t).

3. The Lotka-Volterra system (Section 4.7)

ẋ = 3x − 2xy

ẏ = 0.5xy − y

has solutions (x(t), y(t)) that are periodic because a given trajectory always returns to its initial
point in some finite time t∗ : x(t + t∗) = x(t) and y(t + t∗) = y(t). By using technology and the rkf45
method, estimate the smallest value of t∗ to two decimal places if x(0) = 3 and y(0) = 2. (Try
different values of t 	= 0 until you get x(t) ≈ 3 and y(t) ≈ 2.0.)

4. The equations

ẋ = y

ẏ = −0.25y − 2x; x(0) = 1, y(0) = 0

represent a certain spring-mass system with damping. As usual, assume that the positive direction
for x(t) and y(t) is downward and time is measured in seconds.

a. Using technology, approximate x(t) and y(t) for t = 1, 2, 3, 4 and interpret the position and
velocity in each case.

b. Estimate (to the nearest hundredth of a second) the time when the mass first reaches its
equilibrium position, x = 0.
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5. Emden’s equation d2y
dx2 + 2

x
dy
dx + yn = 0, where n is a parameter, has been used to model the

thermal behavior of a spherical cloud of gas.12 When the cloud of gas is a star, the first zero of the
solution, multiplied by 1010 cm, represents the radius of the star. In modeling the bright component
of Capella, the astrophysicist A. S. Eddington took n = 3 in Emden’s equation and used the initial
conditions y(0) = 1, y′(0) = 0.

a. Express Eddington’s version of Emden’s equation as an equivalent system of two first-order
equations in the variables u and v.

b. Approximate the radius of Capella by determining (approximating) the first value of x for which
y(x) = 0.

C

1. A famous model for the spread of a disease is the S-I-R model. At a given time t, S represents the
population of susceptibles, those who have never had the disease and can get it; I stands for the
infected, those who have the disease now and can give it to others; and R denotes the recovered,
people who have already had the disease and are immune. Suppose these populations are related
by the system

dS
dt

= (−0.00001)SI

dI
dt

= (0.00001)SI − I
14

dR
dt

= I
14

,

with S(0) = 45,400, I(0) = 2100, R(0) = 2500.

a. Add the three differential equations and interpret the result in terms of a population.
b. Use your CAS to plot S, I, and R as functions of t on separate graphs. [Warning : Some

mathematical software (such as Maple) may reserve the letter I for the imaginary unit
√−1.

If this is your situation, use IN to denote the infected population.]
c. Use your CAS to plot phase portraits in the S-I, S-R, and I-R planes.
d. Use a powerful numerical method (with h = 0.1 if appropriate) to approximate the values of S, I,

and R at t = 1, 2, 3, 10, 15, 16, and 17 days. What do you see?
e. Approximate the value of t at which I = 0.

2. Use the rkf45 method to show why the period of the trajectory in Figure 4.25 is approximately 8.88.
(Use the method suggested in Problem B3.)

3. Investigate the Zeeman heartbeat model in Example 4.10.3 with ε = 0.025, A = 0.1575, and
(x0, c0) = (0.45, −0.02025).

a. Use the rkf45 method to approximate x(t) and c(t) for t = 0.01, 0.02, . . . , 0.10 seconds. What do
your calculations tell you about the direction of the solution curve in the x-c plane?

b. Draw the trajectory corresponding to the initial conditions given above.

12 See H. T. Davis, Introduction to Nonlinear Differential Equations and Integral Equations (New York: Dover, 1962): 371ff.
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c. Approximate the period of the trajectory found in part (b).
d. Estimate the coordinates of the diastole and the systole.

4. A lunar lander is falling freely toward the surface of the moon. If x(t) represents the distance of the
lander from the center of the moon (in meters, with t in seconds), then x(t) satisfies the initial-value
problem

d2x

dt2 = 4 − 4.9044 × 1012

x2 ,

with x(0) = 1,781,870 and x′(0) = −450. (The value x(0) represents the fact that the retro rockets
are fired at t = 0—when the lander is at a height of 41,870 meters from the moon’s surface, or
1,781,870 meters from the moon’s center.)

a. Determine the value of t when x(t) = 1,740,000—that is, when the craft has landed on the
lunar surface.

b. What is the lunar lander’s velocity at touchdown?

SUMMARY

For second-order homogeneous linear equations with constant coefficients—equations of the
form

ax′′ + bx′ + cx = 0,

where a, b, and c are constants, a 	= 0—we can describe the solutions explicitly in terms of
the roots of the associated characteristic equation aλ2 + bλ + c = 0 as follows:

1. If there are two distinct real roots—λ1, λ2 with λ1 	= λ2—then the general solution is

x(t) = c1eλ1t + c2eλ2t .

2. If there is a repeated real root λ, then the general solution has the form

x(t) = c1eλt + c2teλt = (c1 + c2t) eλt .

3. If the roots form a complex conjugate pair p ± qi, then the (real) general solution has
the form x(t) = ept

(
c1 cos(qt) + c2 sin(qt)

)
. Here, we need Euler’s formula to deal with

complex exponentials.

The general solution, yGNH, of a linear nonhomogeneous system is obtained by find-
ing a particular solution, yPNH, of the nonhomogeneous system and adding it to the
general solution, yGH, of the homogeneous system: yGNH = yGH + yPNH. A particular
solution can be found using the method of undetermined coefficients or variation of
parameters.
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For a linear equation of any order, we have the Superposition Principle: If yj is a solution of
L(y) = fj for j = 1, 2, . . . , n, and c1, c2, . . . , cn are arbitrary constants, then c1y1+c2y2+· · ·+cnyn

is a solution of L(y) = c1f1 + c2f2 + · · · + cnfn. That is,

L
(
c1y1 + c2y2 + · · · + cnyn

) = c1L
(
y1
) + c2L

(
y2
) + · · · + cnL

(
yn
) = c1f1 + c2f2 + · · · + cnfn.

As a consequence of the Superposition Principle, the formula yGNH = yGH + yPNH is valid for
a linear equation of any order n. We have an algorithm to find the general solution yGH of the
associated nth-order homogeneous equation any(n) +an−1y(n−1) +· · ·+a2y′′ +a1y′ +a0y = 0,
where y is a function of the independent variable t and an, an−1, . . . , a1, a0 are constants.

First, find the roots of the characteristic equation

anλ
n + an−1λn−1 + · · · + a1λ + a0 = 0.

Use a CAS to solve the equation if n is greater than or equal to 3. Next, group these roots as
follows: (a) distinct real roots; (b) distinct complex conjugate pairs p ± qi; (c) multiple real
roots; (d) multiple complex roots. Then the general solution is a sum of n terms of the forms

1. cieλit for each distinct real root λi

2. ept
(
c1 cos qt + c2 sin qt

)
for each distinct complex pair p ± qi

3.
(
c1 + c2t + · · · + cktk−1

)
eλit for each multiple real root λ, where k is the multiplicity

of that root

4. ept
(
c1 cos qt + c2 sin qt

) + tept
(
c3 cos qt + c4 sin qt

) + · · · + tk−1ept
(
c2k−1 cos qt

+ c2k sin qt
)

for each multiple complex pair of roots p ± qi, where k is the multiplicity
of the pair p ± qi

To find a particular solution of the nth-order nonhomogeneous equation, we can use the
method of undetermined coefficients or variation of parameters as we did in the second-
order case (although more work is involved).

The most important fact in this chapter is that any single nth-order differential equation
can be converted into an equivalent system of first-order equations. More precisely, any
nth-order differential equation

x(n) = F
(

t, x, x′, x′′, . . . , x(n−1)
)

can be converted into an equivalent system of first-order equations by letting x1 = x,
x2 = x′, x3 = x′′, . . . , xn = x(n−1). However, to convert a single nonautonomous nth-order equa-
tion into an equivalent autonomous system (one whose equations do not explicitly contain the
independent variable t), we need n+1 first-order equations: x1 = x, x2 = x′, x3 = x′′, . . . , xn =
x(n−1), xn+1 = t. The system is linear or nonlinear, autonomous or nonautonomous, according
to the nature of the individual equations in the system. Linear systems are easier to calculate
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with and understand than nonlinear systems. Similarly, autonomous systems are nicer than
nonautonomous systems.

Converting a single higher-order equation to a system often provides graphical insights that
cannot be obtained from the one equation. This conversion also allows us to use the first-order
methods in Chapters 2 and 3 to understand higher-order equations.

A two-dimensional system has the form

x′ = F(t, x, y)

y′ = G(t, x, y).

A particular solution of such a system consists of a pair of functions x(t), y(t) that, when
substituted into the equations of the system, give true statements. The proper graphical rep-
resentation of a solution is a curve in three-dimensional t-x-y space, the set of points of the
form (t, x(t), y(t)); but often it is useful to think of the points (x(t), y(t)) as tracing out a
path (also called an orbit or a trajectory) in the x-y plane (called the phase plane) as the pa-
rameter t varies “offstage.” The positive direction of the path is the direction that corresponds
to increasing values of t. The collection of all trajectories is the phase portrait of the system.
Technology also enables us to study the graphs of x vs. t and y vs. t.

For autonomous systems x′ = f (x, y), y′ = g(x, y), we can eliminate any explicit reliance on the
parameter t by using the Chain Rule to form the first-order differential equation

dy
dx

= dy
dt

· dt
dx

=
dy
dt
dx
dt

= g(x, y)
f (x, y)

.

This gives the slope of the tangent line at points of the phase plane. The slope field of this
first-order equation outlines the phase portrait of the system.

Given any two-dimensional autonomous system x′ = f (x, y), y′ = g(x, y), an equilibrium point
is a point (x, y) such that f (x, y) = 0 = g(x, y). This means, for example, that a particle at this
point in the phase plane is not moving. The language of sinks and sources used in Section 2.6
can be extended to apply to equilibrium solutions of systems. The behavior of trajectories near
equilibrium points of linear systems will be discussed systematically in Chapter 5. Trajectories
for nonlinear systems are treated in Chapter 7.

As examples of these ideas, we discussed predator-prey systems, in particular the Lotka-
Volterra equations. Several examples of spring-mass problems were also analyzed, including
one exhibiting the phenomenon of resonance.

Before getting too immersed in trying to solve higher-order equations or their equivalent sys-
tems, we have to determine when solutions exist—and whether existing solutions are unique.

A useful result applies to a second-order IVP, d2y
dt2 = f

(
t, y, dy

dt

)
with y(t0) = y0 and dy

dt (t0) = ẏ0.

If f , ∂f
∂y1

, and ∂f
∂ẏ are continuous in a closed box B in three-dimensional space (t-y-ẏ space) and
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the point
(
t0, y0, ẏ0

)
lies inside B, then the IVP has a unique solution y(t) on some t-interval I

containing t0.

Equivalently, suppose we have a two-dimensional system of first-order equations

dx1

dt
= f (t, x1, x2)

dx2

dt
= g(t, x1, x2),

where x1(t0) = x0
1 and x2(t0) = x0

2. Then if f , g, ∂f
∂x1

, ∂g
∂x1

, ∂f
∂x2

, and ∂g
∂x2

are all continuous in a
box B in t − x1 − x2 space containing the point

(
t0, x0

1, x0
2

)
, there is an interval I containing t0

in which there exists a unique solution x1 = y1(t), x2 = y2(t) of the IVP.

Once we are confident that an IVP involving a higher-order equation or its system equivalent
has a unique solution, we can apply natural two-dimensional generalizations of the numeri-
cal solution methods introduced in Sections 3.1, 3.2, and 3.3: Euler’s method; the improved
Euler method; and higher-order techniques such as the fourth-order Runge-Kutta and Runge-
Kutta-Fehlberg methods. Technology is indispensable in the numerical solution of both
single equations and systems.

PROJECT 4-1
Get the Lead Out
In analyzing the flow of lead pollution in a human body among the three compartments
bone, blood, and tissue, the following system was developed13:

ẋ1 = − 65
1800

x1 + 1088
87,500

x2 + 7
200,000

x3 + 6162
125

ẋ2 = 20
1800

x1 − 20
700

x2

ẋ3 = 7
1800

x1 − 7
200,000

x3.

Here, x1(t) is the amount of lead in the blood at time t (in years), x2(t) is the amount of lead
in tissue, and x3(t) is the amount of lead in bone. Assume that x1(0) = x2(0) = x3(0) = 0.

a. Use technology to graph the three-dimensional trajectory in x1-x2-x3 space with
0 ≤ t ≤ 250. (Move the axes around to get a good view.)

b. Use technology to graph the solution in the t-x1 plane, 0 ≤ t ≤ 150. What seems to
be the equilibrium level of lead in the blood?

13 E. Batschelet, L. Brand, and A. Steiner, “On the Kinetics of Lead in the Human Body,” Journal of Mathematical Biology 8 (1979): 15–23.
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Lead

Blood
x1

Tissue
x2

Bone
x3

c. Use technology to graph the solution in the t-x2 plane, 0 ≤ t ≤ 250. What seems to
be the equilibrium level of lead in tissue?

d. Use technology to graph the solution in the t-x3 plane, 0 ≤ t ≤ 70,000. In your CAS,
specify a step size of 50 if you can. (Warning: It may take a long time for your CAS to
produce the graph.) What seems to be the equilibrium level of lead in bone?

e. What do the graphs in parts (b), (c), and (d) say about the comparative times it takes
blood, tissue, and bone to reach their equilibrium levels of lead?



CHAPTER 5

Systems of Linear Differential Equations

INTRODUCTION

In Chapter 4, we saw how any higher-order differential equation can be written as an equiva-
lent system of first-order differential equations. The examples we discussed introduced some
algebraic manipulations and some geometric aspects of second- and third-order systems such
as the phase plane, but there was no attempt to give a systematic approach.

In this chapter, we will explore (for the most part) autonomous systems of first-order linear
differential equations, for which the theory is neat and complete. An important component
of this theory is the Superposition Principle, which we discussed in Chapters 2 and 4 and
which is the distinguishing characteristic of linear systems, as we will see in the sections to
come. This fundamental principle will help us to determine the general solution of linear
systems in essentially the same way in which we solved single second-order linear equations
in Sections 4.1 and 4.2.

To understand the important ideas underlying the theory and application of linear systems,
we’ll introduce some of the language and concepts from the area of mathematics called linear
algebra without probing too deeply into the intricacies of this valuable and useful subject.
For the most part, we’ll stick to two-dimensional systems (two equations in two unknown
functions) for the sake of geometric intuition, but we will also look at some higher-order
systems. Chapter 6 will enhance our ability to handle linear systems, and in Chapter 7 we’ll
see how nonlinear systems can be analyzed in terms of certain related linear systems.

5.1 SYSTEMS AND MATRICES
5.1.1 Matrices and Vectors
Suppose we look at the linear system

ẋ = ax + by
(5.1.1)

ẏ = cx + dy,

where x and y are functions of t, and a, b, c, and d are constants.

Copyright © 2009, Elsevier Inc. 221
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There is a useful notation for linear systems that was invented by the English mathematician
Arthur Cayley and named by his fellow countryman James Sylvester around 1850. This nota-
tion allows us to pick out the coefficients a, b, c, and d in System (5.1.1) and write them in

a square array A =
[
a b
c d

]
called a matrix—in this case, the matrix of coefficients of the

linear system. (The plural of matrix is matrices.) In general, a matrix is just a rectangular array
of mathematical objects (numbers or functions in this book) and can describe linear systems
of all sizes. The size of a matrix is given in terms of the number of its rows and columns.

For example, A =
[
a b
c d

]
is described as a 2 × 2 matrix because it has two rows, (a b) and

(c d), and two columns,
[
a
c

]
and

[
b
d

]
. The matrix B =

⎡
⎣−4 0 1 5

2 6 7 −π

0
√

5 3 5/9

⎤
⎦ is a 3 × 4 matrix

because it has three rows and four columns.

In describing the linear System (5.1.1), we can also introduce a column matrix or vector

X =
[
x
y

]
. (This is a 2 × 1 matrix.) If x(t) and y(t) are solutions of the System (5.1.1), we call

X =
[
x
y

]
a solution vector of the system. We can view X as a point in the x-y plane, or phase

plane, whose coordinates are written vertically instead of in the usual horizontal ordered-pair
configuration. If a vector is made up of constants, then the direction of the vector is taken as
the direction of an arrow from the origin to the point (x, y) in the x-y plane. (See Section B.1
for more information.)

If A =
[
a b
c d

]
and B =

[
e f
g h

]
, then we say the matrices are equal and write A = B if a = e,

b = f , c = g, and d = h. We say that “corresponding elements must be equal.” Similarly, if

V =
[
x1

y1

]
and W =

[
x2

y2

]
, we say that V = W if and only if x1 = x2 and y1 = y2.

If a vector (or, more generally, a matrix) is made up of objects (elements or entries) that are
functions, we can define the derivative of such a vector as the vector whose elements are the
derivatives of the original elements, provided that all these individual derivatives exist. For

example, if X =
[−t2

sin t

]
, then

d
dt

X =
[

d
dt (−t2)

d
dt (sin t)

]
=
[

−2t

cos t

]
.

5.1.2 The Matrix Representation of a Linear System
We can write the system

ẋ = ax + by

ẏ = cx + dy



5.1 Systems and Matrices 223

compactly and symbolically as [
ẋ
ẏ

]
=
[
a b
c d

] [
x
y

]
,

or Ẋ = AX, where X =
[
x
y

]
and A =

[
a b
c d

]
. The juxtaposition (“product”)

[
a b
c d

] [
x
y

]
repre-

sents the vector
[
ax + by
cx + dy

]
. For example,

[
3 −2
1 4

] [
x
y

]
=
[

3x − 2y
x + 4y

]
. There is a way to define

and interpret this product of a matrix and a vector in the context of linear algebra (see Section
B.3 for details), but we will take this product as a symbolic representation of the system,
highlighting the matrix of coefficients and the solution vector. Soon we will see how a
linear system’s solutions—its behavior in the phase plane—are determined by the matrix of
coefficients. For now, let’s look at some examples of the use of matrix notation.

■ Example 5.1.1 Matrix Form of a Two-Dimensional Linear System
We can write the linear system of ODEs

ẋ = −3x + 5y

ẏ = x − 4y

in matrix terms as [
ẋ

ẏ

]
=
[−3 5

1 −4

][
x

y

]
.

■

The next example demonstrates how we have to be careful in extracting the right matrix of
coefficients from a linear system problem.

■ Example 5.1.2 Matrix Form of a Two-Dimensional Linear System
The linear system dx

dt = y, dy
dt = −x should be written as

dx
dt

= 0 · x + 1 · y

dy
dt

= −1 · x + 0 · y

first. Then it is clear that the matrix representation of the system is

d
dt

[
x
y

]
=
[ dx

dt
dy
dt

]
=
[

0 1
−1 0

] [
x
y

]
.

■
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5.1.3 Some Matrix Algebra
Before we continue, we should discuss some properties of matrix algebra that we’ll be using
in the rest of this chapter. For example, if we’re given the system

x′ = −4x + 6y = 2(−2x + 3y)

y′ = 2x − 8y = 2(x − 4y)

it is natural to write
[
x′
y′
]

=
[−4 6

2 −8

]
= 2

[−2 3
1 −4

]
, or X′ = 2AX, where A =

[−2 3
1 −4

]
.

More generally, if A =
[
a b
c d

]
and k is a constant (called a scalar to distinguish it from a vector

or a matrix), then kA = k
[
a b
c d

]
=
[
ka kb
kc kd

]
. In particular, for vectors, we have k

[
u
v

]
=
[
ku
kv

]
.

Put simply, multiplying a matrix by a number requires multiplying each element of that matrix by

the number. For example, if A =
[

2 −3
5 0

]
and k = −2, then

kA = −2A =
[−2(2) −2(−3)

−2(5) −2(0)

]
=
[ −4 6

−10 0

]
.

Two matrices, A and B, of the same size (that is, having the same number of rows and the
same number of columns) can be added in an element-by-element way. For example, if

A =
[−2 3

4 −1

]
and B =

[
1 2
3 4

]
, then

A + B =
[−2 + 1 3 + 2

4 + 3 (−1) + 4

]
=
[−1 5

7 3

]
and

A − B = A + (−1)B =
[−2 3

4 −1

]
+
[−1 −2

−3 −4

]
=
[−3 1

1 −5

]
.

Similarly, if V =
[
x1

y1

]
and W =

[
x2

y2

]
, then V + W =

[
x1 + x2

y1 + y2

]
. The vector defined as 0 =

[
0
0

]
,

which is called the zero vector, behaves in the world of vectors the way the number 0 acts in
arithmetic: V + 0 = V = 0 + V for any vector V . Similarly, we can define the zero matrix,

Z =
[

0 0
0 0

]
, having the same property for matrix addition. Note that X =

[
x
y

]
is an equilibrium

point for the system
[
ẋ
ẏ

]
=
[
a b
c d

] [
x
y

]
if and only if

[
a b
c d

] [
x
y

]
= 0—that is, if and only if X

is a solution of the matrix equation AX = 0.
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A particularly useful idea for our future work is a linear combination of vectors. Given two vectors

V =
[
x1

y1

]
and W =

[
x2

y2

]
, any vector of the form k1V + k2W , where k1 and k2 are scalars, is

called a linear combination of V and W . In terms of our given vectors, a linear combination

of V and W is any vector of the form k1V + k2W =
[
k1x1

k1y1

]
+
[
k2x2

k2y2

]
=
[
k1x1 + k2x2

k1y1 + k2y2

]
. As an

example, for the specific vectors V =
[

sin t
2

]
and W =

[
cos t

et

]
, a linear combination has the

form
[
k1 sin t + k2 cos t

2k1 + k2et

]
.

It is important to know that the associative and distributive rules of algebra hold for matrix
addition and the product of a matrix and a vector. For example, if A and B are matrices; V
and W are vectors; and k, k1, and k2 are scalars, then

A(kV) = k(AV)

A(V + W) = AV + AW ,

and

A(k1V + k2W) = A(k1V) + A(k2W) = k1(AV) + k2(AW).

These results are discussed further in Section B.3.

Finally, note that the matrix
[

1 0
0 1

]
acts as an identity for multiplication:

[
1 0
0 1

] [
x
y

]
=
[
x
y

]
for any vector

[
x
y

]
. In the context of two-dimensional systems, the matrix

[
1 0
0 1

]
is called the

identity matrix and is denoted by I.

In the next section we will see how matrix notation gives us insight into the nature of a system’s
solutions. To understand the solutions more fully, we will introduce some additional concepts
from linear algebra.

Exercises 5.1

A

1. Express each of the following systems of linear equations in matrix terms—that is, in the form
AX = B, where A, X, and B are matrices.

a. 3x + 4y = −7
−x − 2y = 5

b. πa − 3b = 4
5a + 2b = −3



226 CHAPTER 5: Systems of Linear Differential Equations

c. x − y + z = 7
−x + 2y − 3z = 9
2x − 3y + 5z = 11

[Think about what would make sense in (c).]

2. If A =
[

1 2
3 4

]
, B =

[
0 −2
3 1

]
, I =

[
1 0
0 1

]
, V =

[
2

−1

]
, and W =

[
3
2

]
, calculate each of the

following:

a. 2A − 3B
b. AV
c. BW
d. −2V + 5W
e. A(3V − 2W)

f. (A − 5I)W

3. If A =
[

1 2
3 4

]
and V =

[
x
y

]
, solve the equation AV =

[
1
3

]
for V (i.e., find values for x and y).

4. Find the derivative of each of the following vectors:

a. X(t) =
[

t3 − 2t2 + t
et sin t

]

b. V(x) =
[

2 cos x
−3e−2x

]

c. B(u) =
[

e−u + eu

2 cos u − 5 sin u

]

d. Y(t) =
[
(t2 + 1)e−t

t sin t

]

Convert each system of differential equations in Problems 5–10 to the matrix form Ẋ = AX.

5. ẋ = 2x + y
ẏ = 3x + 4y

6. ẋ = x − y
ẏ = y − 4x

7. ẋ = 2x + y
ẏ = 4y − x

8. ẋ = x
ẏ = y

9. ẋ = −2x + y
ẏ = −2y

10. ẋ − 8y + x = 0
ẏ − y − x = 0
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B

1. Using the technique shown in Section 4.6, write each of the following second-order equations as a
system of first-order equations and then express the system in matrix form.

a. y′′ − 3y′ + 2y = 0
b. 5y′′ + 3y′ − y = 0
c. y′′ + ω2y = 0, where ω is a constant.

2. Show that the origin is the only equilibrium point of the system

ẋ = ax + by

ẏ = cx + dy,

where a, b, c, and d are constants, with ad − bc 	= 0.

C

1. If A(t) =
(

a11(t) a12(t)
a21(t) a22(t)

)
and B(t) =

(
b11(t)
b21(t)

)
, both matrices having entries that are

differentiable functions of t, show that

d
dt

[A(t)B(t)] = dA(t)
dt

B(t) + A(t)
dB(t)

dt
.

5.2 TWO-DIMENSIONAL SYSTEMS OF FIRST-ORDER
LINEAR EQUATIONS

5.2.1 Eigenvalues and Eigenvectors
To get a handle on linear systems of ordinary differential equations, including their qualitative
behavior and their possible closed-form solutions, we will focus on linear two-dimensional
systems of the form

ẋ = ax + by
(5.2.1)

ẏ = cx + dy,

where x and y both depend on the variable t, and a, b, c, and d are constants. Our analysis of
such simple (but important) systems will prepare us to understand the treatment of higher-
order linear systems in Section 5.7.

First, let’s write the System (5.2.1) in matrix form:[
ẋ

ẏ

]
=
[

a b

c d

][
x

y

]
,
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or

d
dt

[
x

y

]
=
[

a b

c d

][
x

y

]
,

or

Ẋ = AX, (5.2.2)

where X =
[
x
y

]
and A =

[
a b
c d

]
. Ignoring the fact that the capital letters represent matrices,

what does the form of Equation (5.2.2) remind you of? Have you seen a differential equation
of this form before? If we use lowercase letters and write the equation as ẋ = ax, we get
a familiar separable equation representing exponential growth or decay. (See Section 2.1,
especially Example 2.1.1.) This observation suggests that the solution of System (5.2.1) or
the matrix Equation (5.2.2) may have something to do with exponentials.

Let’s make a shrewd guess and then examine the consequences of our guess. (This was Euler’s
strategy, described in Section 4.1.) In particular, let us assume that x(t) = c1eλt and y(t) = c2eλt

for constants λ, c1, and c2. (Stating that λ, the coefficient of t, is the same for both x and y is

a simplifying assumption.) Substituting
[
c1eλt

c2eλt

]
for X in (5.2.2), we get

[
c1λeλt

c2λeλt

]
=
[

a b

c d

][
c1eλt

c2eλt

]
=
[

a b

c d

]
eλt

[
c1

c2

]
,

or

λeλt

[
c1

c2

]
=
[

a b

c d

]
eλt

[
c1

c2

]
,

or (dividing out the exponential factor and switching right and left sides)

AX̃ = λX̃, (5.2.3)

where X̃ =
[
c1

c2

]
. Note that our reasonable guess about x and y has allowed us to replace our

original differential equation problem with a pure algebra problem. Equation (5.2.3) is in
matrix terms and has nothing (apparently) to do with differential equations. Given a 2 × 2
matrix A and a 2 × 1 column matrix X̃, we can try to solve (5.2.3) for the value or values
of λ, each called a characteristic value or eigenvalue of the matrix A. (Remember how we
first used this term in Sections 4.1–4.2. The connection between the earlier use of the term



5.2 Two-Dimensional Systems of First-Order Linear Equations 229

eigenvalue and the current use will be established shortly.) Eigenvalues will play an important
role in solving linear systems and in understanding the qualitative behavior of solutions.

Furthermore, if we have solved Equation (5.2.3) for its eigenvalues λ, then for each value of
λ we can solve (5.2.3) for the corresponding vector or vectors X̃. Each such nonzero vector X̃
is called an eigenvector (or characteristic vector) of the system. We see that if both entries
of X̃ are zero, then X̃ satisfies (5.2.3) for any value of λ, but this is the trivial case. In all the
discussion that follows, we will assume that c1 and c2 are not both zero—that is, at least
one of the two constants is not zero.

Before getting involved in symbolism, terminology, and the general problem of solving the
matrix equation AX̃ = λX̃, let’s look at a specific example in detail.

■ Example 5.2.1 Solving a Linear System with Eigenvalues
and Eigenvectors

Suppose we have the system

ẋ = −2x + y

ẏ = −4x + 3y, (*)

which we can write as Ẋ =
[
ẋ
ẏ

]
=
[−2 1
−4 3

] [
x
y

]
. We want to find the general solution of this

system.

Substitution
Assuming, say, that c1 	= 0, we substitute x = c1eλt and y = c2eλt into (*) and get λc1eλt =
−2c1eλt + c2eλt = eλt (−2c1 + c2) and λc2eλt = −4c1eλt + 3c2eλt = eλt (−4c1 + 3c2). If we
simplify each equation by dividing out the exponential term and moving all terms to the
left-hand side, we get

(A) (λ + 2)c1 − c2 = 0
(**)

(B) 4c1 + (λ − 3)c2 = 0.

Now we want to solve (**) for λ.

Solving for λ

If we multiply Equation (A) by (λ − 3) and then add the resulting equation to (B), we get
(λ−3)(λ+2)c1 +4c1 = 0, or (λ2 −λ−2)c1 = 0. Because we have assumed that c1 is not zero,
we must have λ2 −λ−2 = 0. This means that the eigenvalues of A are λ = 2 and λ = −1. (Go
through all the algebra carefully.) Note that we didn’t have to know c1 to find λ. We just had to
know that c1 was not zero. It is important that we could have assumed that c2 was not zero
and come to the same conclusion. (Check this.)
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Solving the System of ODEs

If we take the eigenvalue λ = 2, we have x(t) = c1e2t and y(t) = c2e2t , so that X1 =
[
x
y

]
=[

c1e2t

c2e2t

]
= e2t

[
c1

c2

]
. But when λ = 2, the equations in (**) both represent the single equation

4c1 − c2 = 0, so that we have the relation c2 = 4c1. Then we can write X1 = e2t
[
c1

c2

]
=

e2t
[

c1

4c1

]
= c1

[
1
4

]
e2t , which is a one-parameter family of solutions of the System (*). We’re

saying that the pair of functions x(t) = c1e2t and y(t) = 4c1e2t is a nontrivial solution of our
system for any nonzero constant c1.

Similarly, if we take the eigenvalue λ = −1, then the System (**) reduces to the single

equation c1 − c2 = 0 and we can define X2 = e−t
[
c1

c2

]
= e−t

[
c1

c2

]
= c1

[
1
1

]
e−t , which is

also a one-parameter family of solutions of the system. In other words, the pair of functions
x(t) = c1e−t and y(t) = c1e−t is also a nontrivial solution of our system for any nonzero
constant c1.

It is easy to see that the Superposition Principle we have been using since Chapter 2 allows
us to conclude that

X = k1X1 + k2X2 = k1

[
c1

[
1
4

]
e2t

]
+ k2

[
c1

[
1
1

]
e−t

]
= C1

[
1
4

]
e2t + C2

[
1
1

]
e−t

is the general solution of the system ẋ = −2x + y, ẏ = −4x + 3y. The constants C1 and C2 can
be chosen to match arbitrary initial data. ■

5.2.2 Geometric Interpretation of Eigenvectors

The vector
[

1
4

]
that appears in the preceding example is called an eigenvector (or characteristic

vector) corresponding to the eigenvalue (or characteristic value) λ = 2. This vector is a nonzero
solution, X̃, of AX̃ = λX̃ when λ = 2. This means that there are infinitely many eigenvectors

corresponding to the eigenvalue λ = 2—all the vectors
[
c1

c2

]
such that 4c1 − c2 = 0, or all

the nonzero vectors of the form
[

c1

4c1

]
are eigenvectors associated with λ = 2. Choosing

c1 = 1 gives us the simple particular vector V1 =
[

1
4

]
, which can be called the representative

eigenvector. Graphically, this eigenvector represents a straight line from the origin to the

point (1, 4) in the c1-c2 plane. Similarly, the vector V2 =
[

1
1

]
is the representative eigenvector

corresponding to the eigenvalue λ = −1 and can be interpreted as a straight line from (0, 0)
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Figure 5.1

Representative eigenvectors V1 =
[

1
4

]
and V2 =

[
1
1

]

to (1, 1) in the c1-c2 plane. (See the description of vectors in Section B.1.) Figure 5.1 shows
V1 and V2 in the c1-c2 plane.

5.2.3 The General Problem

Now let’s consider the equation AX̃ = λX̃, where A =
[
a b
c d

]
and X̃ =

[
c1

c2

]
and at least one

of the numbers c1 and c2 is nonzero. In the discussion that follows, we’ll assume that c1 	= 0.

Written out as individual equations, AX̃ = λX̃ has the form

ac1 + bc2 = λc1

cc1 + dc2 = λc2

or

(A) (a − λ)c1 + bc2 = 0

(B) cc1 + (d − λ)c2 = 0

and we want to determine λ.

We can solve this algebraic system by the method of elimination as follows:

1. Multiply Equation (A) by d − λ to obtain

(d − λ)(a − λ)c1 + b(d − λ)c2 = 0.

2. Multiply Equation (B) by −b to get

−bcc1 − b(d − λ)c2 = 0.
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3. Add the equations found in steps 1 and 2 to get

(d − λ)(a − λ)c1 − bcc1 = 0,

or [
λ2 − (a + d)λ + (ad − bc)

]
c1 = 0. (Check the algebra.)

4. Because we assumed that c1 	= 0 at the beginning of this discussion, we must have

λ2 − (a + d)λ + (ad − bc) = 0. (5.2.4)

This equation is called the characteristic equation of the matrix A, and its roots are the eigen-
values of A. We’ll see the connection between this equation and the characteristic equation
we introduced in Section 4.1 shortly.

Using the quadratic formula, we find that

λ = (a + d) ± √
(a + d)2 − 4(ad − bc)

2
.

If we had assumed that c2 	= 0 at the beginning, we would have found the same solution for
λ. Then for each distinct value of λ that we find, we can substitute that value into the system

(a − λ)c1 + bc2 = 0

cc1 + (d − λ)c2 = 0

and solve for X̃ =
[
c1

c2

]
, the corresponding eigenvector.

There are two things to notice about the characteristic equation of A,

λ2 − (a + d)λ + (ad − bc) = 0

and the resulting formula for λ:

1. The expression a + d is just the sum of the main diagonal (upper left, lower right)

elements of the matrix A =
[
a b
c d

]
. In linear algebra, this is called the trace of A. For

example, if A =
[−7 2

0 4

]
, then the trace of A is (−7) + 4 = −3.

2. The expression ad − bc is formed from the matrix of coefficients A =
[
a b
c d

]
as

follows: Multiply the main diagonal elements and then subtract the product of the
other diagonal elements (upper right, lower left). The number calculated this way is
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called the determinant of the coefficient matrix. Symbolically, det(A) = det
[
a b
c d

]
=

ad − bc. For example, if A =
[−7 −3

2 4

]
, then det(A) = (−7)(4) − (−3)(2) = −28 −

(−6) = −28 + 6 = −22. The determinant of a matrix A is often denoted by the
symbol |A|, so the rule for calculation in the 2 × 2 case can be given as

|A| =
∣∣∣∣a b
c d

∣∣∣∣ = ad − bc.

Observations 1 and 2 provide us with an alternative way of viewing the characteristic
equation:

λ2 − (trace of A)λ + det(A) = 0. (5.2.5)

The roots of the characteristic Equation (5.2.5)—the eigenvalues—lead to eigenvectors and
ultimately to the general solution of a linear system. Let’s look at an example using this
shortcut.

■ Example 5.2.2 Solving a Linear System with Eigenvalues and
Eigenvectors

The following equations constitute a simple model for detecting diabetes:

dg
dt

= −2.92g − 4.34h

dh
dt

= 0.208g − 0.780h,

where g(t) denotes excess glucose concentration in the bloodstream and h(t) represents excess
insulin concentration. “Excess” refers to concentrations above the equilibrium values. We want
to determine the solution at any time t.

Eigenvalues

The matrix form of our equations is d
dt X =

[
dg/dt
dh/dt

]
=

[−2.92 −4.34
0.208 −0.780

] [
g
h

]
, so that

the matrix of coefficients is A =
[−2.92 −4.34

0.208 −0.780

]
. We see that the trace of A is −2.92 +

(−0.780) = −3.7 and the determinant of A is −2.92(−0.780) − (−4.34)(0.208) = 3.18032.
We see that the characteristic equation is

λ2 − (trace of A)λ + det(A) = λ2 + 3.7λ + 3.18032 = 0.
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Solving this by calculator or CAS, we find that the eigenvalues are λ1 = −2.34212 and
λ2 = −1.35788, rounded to five decimal places.

Eigenvectors
Now we substitute each eigenvalue in the equations

(a − λ)c1 + bc2 = 0

cc1 + (d − λ)c2 = 0

and solve for the corresponding eigenvector X̃ =
[
c1

c2

]
. In our problem, we must substitute in

the equations

(−2.92 − λ)c1 − 4.34c2 = 0

0.208c1 + (−0.780 − λ)c2 = 0.

If λ = −2.34212, then the equations are

−0.57788c1 − 4.34c2 = 0

0.208c1 + 1.56212c2 = 0.

But these two equations are really only one distinct equation, c2 = −0.13315c1. (Solve
each equation for c2 and see for yourself.) Therefore, to ensure that at least one element
of the eigenvector is an integer, we can take c1 = 1 and c2 =− 0.13315, so that an eigenvector
corresponding to the eigenvalue λ = −2.34212 is

X̃1 =
[

1
−0.13315

]
.

Similarly, if we use the other eigenvalue, λ = − 1.35788, we can take the single equation
(−2.92 − λ)c1 − 4.34c2 = 0 and substitute the eigenvalue to get (−2.92 + 1.35788)c1 −
4.34c2 = 0, so that c2 = −0.35994c1. If we take c1 = 1, we must have c2 = − 0.35994, and
an eigenvector corresponding to the eigenvalue λ = −2.34212 is

X̃2 =
[

1
−0.35994

]
.

The Solution
The Superposition Principle gives the general solution as

X̃ = C1X̃1 + C2X̃2 = C1

[
1

−0.13315

]
e−2.34212t + C2

[
1

−0.35994

]
e−1.35788t .

If we were given initial concentrations of glucose and insulin, we could determine the
constants C1 and C2. (See Problem B2 in Exercises 5.2.) ■
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5.2.4 The Geometric Behavior of Solutions
In the next few examples, we will get a preview of how the behavior of a two-dimensional
system of linear differential equations with constant coefficients depends on the eigenvalues
and eigenvectors of its matrix of coefficients. We’ll illustrate some typical phase portraits.
Then, in Sections 5.3–5.5, we’ll give a systematic description of all possible behaviors of such
linear systems, using the nature of their eigenvalues and eigenvectors.

■ Example 5.2.3 Example 5.2.1 Revisited—A Saddle Point
Let’s look again at the system from Example 5.2.1:

ẋ = −2x + y

ẏ = −4x + 3y.

As we saw earlier, the eigenvalues of this system are λ1 = 2 and λ2 = −1, with corresponding

representative eigenvectors V1 =
[

1
4

]
and V2 =

[
1
1

]
. The general solution was given by

X = C1

[
1

4

]
e2t + C2

[
1

1

]
e−t =

[
C1e2t + C2e−t

4C1e2t + C2e−t

]
.

Figure 5.2 shows some trajectories for this system of linear equations. These are particular
solutions of dy

dx = dy/dt
dx/dt = −4x+3y

−2x+y . Note in particular that the lines y = 4x and y = x appear
as trajectories. These trajectories are actually four half-lines: y = 4x for x > 0, y = 4x for
x < 0, y = x for x > 0, and y = x for x < 0.

y
30

20

10

x210 25 5 10

210

220

230

FIGURE 5.2
Phase portrait of the system ẋ = −2x + y, ẏ = −4x + 3y
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A little basic algebra shows us that the origin is the only equilibrium point, and it is called
a saddle point in this situation. A saddle point is the two-dimensional version of the node
we discussed in Section 2.6. What characterizes a saddle point is that solutions can approach
the equilibrium point along one direction (as though it were a sink), yet move away from
the point in another direction (as though it were a source).1 In particular, it turns out that
one trajectory is the half-line y = 4x in the first quadrant, along which the motion is away
from the origin, and another trajectory is the line y = x also in the first quadrant, along which
the movement is toward the origin. The straight lines y = 4x and y = x are asymptotes for
the other trajectories (as t → ±∞). You may not be able to see this clearly from the phase
portrait that your graphing utility generates unless you play with the range of t and choose
initial values carefully, but you can see this and other behavior analytically (see Problem B3
in Exercises 5.2). ■

■ Example 5.2.4 A Source
Now let’s look at the system of differential equations

ẋ = 2x + y

ẏ = 3x + 4y.

First of all, note that the system’s only equilibrium point—where ẋ = 0 and ẏ = 0—is the
origin of the phase plane, (x, y) = (0, 0). (You should verify this using the ordinary algebra of
simultaneous equations.)

Using the formula given by Equation (5.2.5), we see that the characteristic equation of our
system is λ2 − (2 + 4)λ + ((2)(4) − (1)(3)) = 0, or λ2 − 6λ + 5 = 0, which has the roots
λ1 = 5 and λ2 = 1. To find the eigenvectors corresponding to these eigenvalues, we must

solve the matrix equation AX̃ = λX̃, where A =
[

2 1
3 4

]
, λ = 5 or 1, and X̃ =

[
c1

c2

]
. This

matrix equation is equivalent to the system

(1) (2 − λ)c1 + c2 = 0
(2) 3c1 + (4 − λ)c2 = 0.

(5.2.6)

Substituting the first eigenvalue, λ = 5, in (5.2.6) gives us

(1) −3c1 + c2 = 0

(2) 3c1 − c2 = 0.

1 This terminology is usually seen in a multivariable calculus course: If you look at a horse’s saddle in the tail-to-head direction, it appears
that the center of the saddle is lower than the front or back, so that the center seems to be a minimum point on the saddle’s surface. However,
if you look across the saddle from one side of the horse, it appears that the center is at the peak of a stirrup-to-stirrup curve, so the center
seems like a maximum point. In fact, a saddle point is neither a minimum nor a maximum.
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There is really only one equation here, and its solution is given by c2 = 3c1. Thus, the eigen-

vectors corresponding to the eigenvalue λ = 2 have the form
[

c1

3c1

]
, or c1

[
1
3

]
. If we let c1 = 1,

we get the “neat” representative eigenvector V1 =
[

1
3

]
.

When we use the other eigenvalue, λ = 1, in the System (5.2.6), we find that

(1) c1 + c2 = 0

(2) 3c1 + 3c2 = 0,

which has the solution c2 = −c1. Therefore, the eigenvectors in this case have the form
[

c1

−c1

]
,

or c1

[
1

−1

]
. Thus, our representative eigenvector can be V2 =

[
1

−1

]
.

Now let’s look at the phase portrait corresponding to the original system, a family of
trajectories corresponding to the first-order equation

dy
dx

=
dy
dt
dx
dt

= 3x + 4y
2x + y

.

This phase portrait is shown in Figure 5.3. The curves y = 3x and y = −x, which are straight-
line trajectories, are labeled so that we can see the significance of the eigenvectors.

If you look carefully (or find your own phase portrait), you may notice that the trajectories
shown are fleeing the origin (as t → ∞) in such a way that any trajectory is tangent to the line
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FIGURE 5.3
Phase portrait of the system ẋ = 2x + y, ẏ = 3x + 4y



238 CHAPTER 5: Systems of Linear Differential Equations

y = −x at the origin—that is, as t → −∞. In this situation, the origin is called an unstable
node (specifically, a source or repeller). We’ll come to a better understanding of this behavior
in Section 5.3. ■

The next example reveals another type of source for a two-dimensional system.

■ Example 5.2.5 A Spiral Source
Look at the system

dx
dt

= x + y

dy
dt

= −4x + y.

Note that once again the origin is this system’s only equilibrium point. (Check this for yourself.)
Because the matrix of coefficients has a = 1, b = 1, c = −4, and d = 1, we use Formula (5.2.4)
to determine that the characteristic equation of this system is λ2 −2λ+5 = 0, so the quadratic
formula gives us the eigenvalues λ1 = 1+2i and λ2 = 1−2i. When we get complex eigenvalues
such as this complex conjugate pair, the eigenvectors will turn out to have complex numbers
as entries and to have no useful direct geometric significance.2 We’ll deal with this situation
in more detail in Section 5.5. The phase portrait for this system is shown in Figure 5.4.
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FIGURE 5.4
Phase portrait of the system dx

dt = x + y, dy
dt = −4x + y

(x(0), y(0)) = (−4, 0), (−2, 0), (2, 0), (3, 0); −5 ≤ t ≤ 0.7

2 See Section 4.4 of Applied Linear Algebra by L. Sadun (Upper Saddle River, NJ: Prentice Hall, 2001).
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We can see that the trajectories are spirals that move outward, away from the equilibrium
point, in a clockwise direction. In this case, as in the previous example, the equilibrium point
is called a source (or a repeller). Other systems with complex eigenvalues may correspond to spi-
rals that move in a counterclockwise direction or to spirals that move in toward the equilibrium
point (clockwise or counterclockwise). ■

These examples should convince you that trajectories can behave quite differently near equi-
librium points. In the next section, we will examine how the trajectories of a two-dimensional
system can be classified.

Exercises 5.2
A

1. Calculate the determinant of each of the following matrices by hand:

a.

[
−3 5
−4 1

]

b.

[
4 2
10 5

]

c.

[
6t −4

sin t t3

]

d.

[
cos θ sin θ

− sin θ cos θ

]

2. Find the eigenvalues and eigenvectors of matrices (a) and (b) in Problem 1.
3. Find a 2 × 2 matrix with eigenvalues 1 and 3 and corresponding eigenvectors[

1
1

]
and

[
1
2

]
.

For each system in Problems 4–9, (a) convert to the matrix form Ẋ = AX; (b) find the
characteristic equation; (c) find all eigenvalues; (d) describe all eigenvectors corresponding
to each eigenvalue found in part (c). Parts (a)–(d) should be done without the aid of a
calculator or CAS.

4. ẋ = −x + 4y
ẏ = 2x − 3y

5. ẋ = x − y
ẏ = y − 4x

6. ẋ = −4x + 2y
ẏ = 2x − y

7. ẋ = x
ẏ = y

8. ẋ = −6x + 4y
ẏ = −3x + y
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9. ẋ = 5x − y
ẏ = 2x + y

B

1. Consider the system

ax + by = e

cx + dy = f ,

where a, b, c, d, e, and f are constants, with ad − bc 	= 0.

a. Show that the solution is given by x = de − bf
ad − bc

, y = af − ce
ad − bc

.

b. Express your solution in part (a) in terms of the determinants

∣∣∣∣∣a e

c f

∣∣∣∣∣,
∣∣∣∣∣a b

c d

∣∣∣∣∣, and

∣∣∣∣∣e b

f d

∣∣∣∣∣.
2. In Example 5.2.2, find the solution of the system satisfying the initial conditions g(0) = g0 and

h(0) = 0. (You may use technology to solve the resulting system of algebraic equations.)
3. In Example 5.2.3, the system ẋ = −2x + y, ẏ = −4x + 3y was shown to have the solution

X =
(

C1e2t + C2e−t

4C1e2t + C2e−t

)
.

a. Substitute for x(t) and y(t) in the right-hand side of the expression

dy
dx

= −4x + 3y
−2x + y

.

b. Use the result of part (a) to show that the slope of any trajectory not on either of the lines
determined by the eigenvectors approaches 4, the slope of the eigenvector corresponding to the
larger of the two distinct eigenvalues. [Hint : Factor out e2t , the dominant term for large positive
values of t.]

c. Use the result of part (a) to show that the slope of any trajectory not on either of the lines
determined by the eigenvectors approaches 1, the slope of the eigenvector corresponding to the
smaller of the two eigenvalues. [Hint : Factor out e−t , the dominant term for large negative
values of t.]

4. Use technology to sketch the phase portrait of the system in Problem B3. Then sketch in the
eigenvectors (getting them from the answers in the back of the book if necessary) and comment
on the behavior of the trajectories with respect to the origin. (Use both positive and negative
values of t.)
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5. Use technology to sketch the phase portrait of the system in Problem B4 . Then sketch in the
eigenvectors (using your CAS if necessary) and comment on the behavior of the trajectories with
respect to the origin. (Use both positive and negative values of t.)

6. A substance X decays into substance Y at rate k1 > 0, and Y in turn decays into another substance
at rate k2 > 0. The system

dx
dt

= −k1x

dy
dt

= k1x − k2y

describes the process, where x(t) and y(t) represent the amount of X and Y , respectively. Assume
that k1 	= k2.

a. Find the eigenvalues of the system.
b. Find the eigenvectors corresponding to each of the eigenvalues found in part (a).
c. Solve for x(t) and y(t) and then find lim

t→∞ x(t) and lim
t→∞ y(t), interpreting your answers in

physical terms.

7. The following system models the exchange of nutrients between mother and fetus in the
placenta:

dc1

dx
= −α1(c1 − c2)

dc2

dx
= −α2(c1 − c2),

where c1(x) is the concentration of nutrient in the maternal bloodstream at a distance x along the
placental membrane and c2(x) is the concentration of nutrient in the fetal bloodstream at a
distance x. Here, α1 and α2 are constants, α1 	= α2.

a. If c1(0) = c0 and c2(0) = C0, use eigenvalues and eigenvectors to solve the system for c1(x)
and c2(x).

b. Solve for c1(x) and c2(x) by converting the system into a single second-order differential
equation and using the techniques of Section 4.1.

8. Consider the spring-mass system described by ẍ + bẋ + kx = 0.

a. Find all values of b and k for which this system has real, distinct eigenvalues.
b. Find the general solution of the system for the values of b and k found in part (a).
c. Find the solution of the system that satisfies the initial condition x(0) = 1.
d. Describe the motion of the mass in the situation described in part (c).

9. The behavior of a damped pendulum is described near the lowest point of its trajectory by the
linear equation ẍ = −kẋ − gx/L, where k is the damping coefficient, g is the acceleration due to
gravity, and L is the length of the pendulum.

a. Express the differential equation as a linear system.
b. Find the characteristic equation of the system.
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c. Find all eigenvalues of the system.
d. Describe all eigenvectors.
e. If k2 > 4g/L, solve the system and state what happens as t → ∞.

C

1. Consider the system ẋ = Ax, where A =
[

a b
c d

]
. Suppose that the trajectories spiral as in

Example 5.2.5, possibly in the opposite direction. The polar form (Section B.1) of a spiral trajectory
provides the polar angle θ(t) = arctan

(
y(t)
x(t)

)
; and the direction of the spiral will be clockwise if

dθ/dt < 0 and counterclockwise if dθ/dt > 0. Show that the direction of a spiral trajectory depends
on the sign of c, the lower left-hand entry of the matrix A, as follows.

a. Show that det(A) = ad − bc > 0.
b. Show that (trace of A)2 < 4(det(A))—that is, (a + d)2 < 4(ad − bc).
c. Show that dθ/dt = (xẏ − yẋ)/(x2 + y2), and that the sign of dθ/dt equals the sign of xẏ − yẋ.
d. Show that

xẏ − yẋ = c
[
x +

(
d − a

2c

)
y
]2

+ y2

4c

[
4(ad − bc) − (a + d)2

]

and explain why the sign of dθ/dt equals the sign of c.

5.3 THE STABILITY OF HOMOGENEOUS LINEAR SYSTEMS:
UNEQUAL REAL EIGENVALUES

First of all, we should have guessed by now that a linear system Ẋ = AX of ordinary differential
equations, where det(A) 	= 0, has exactly one equilibrium point, (0, 0). (See Problem B2 of
Exercises 5.1.) If det(A) = 0, however, the system may have many other equilibrium solutions.
As promised in the preceding section, the stability of a system—the behavior of trajectories with
respect to the equilibrium point(s)—will be explained completely in terms of the eigenvalues
and eigenvectors of the matrix A.

Because the characteristic equation of a two-dimensional system is a quadratic equation, we
know that there are two eigenvalues, λ1 and λ2. There are only three possibilities for these
eigenvalues: (1) The eigenvalues are both real numbers with λ1 	= λ2; (2) the eigenvalues
are real numbers with λ1 = λ2; or (3) the eigenvalues are complex numbers: λ1 = p + qi and
λ2 = p − qi, where p and q are real numbers (called the real part and the imaginary part,
respectively) and i = √−1. In situation 3, we say that λ1 and λ2 are complex conjugates of each
other. (You may want to review Appendix C, especially Section C.3, for more information
about complex numbers.) The nature of the eigenvalues will play an important role in the
analysis of systems of linear equations, just as it did for second- and higher-order linear
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equations with constant coefficients in Sections 4.1–4.3. In this section we will deal with
possibility 1 in the foregoing list, leaving situations 2 and 3 for the next two sections.

5.3.1 Unequal Real Eigenvalues
First, suppose that the matrix A in the system Ẋ = AX has two real eigenvalues λ1 and λ2 with
λ1 	= λ2. Let V1 and V2 be the corresponding representative eigenvectors. Then we’ll show
that the general solution of the system is given by

X(t) = c1eλ1tV1 + c2eλ2tV2, (5.3.1)

where c1 and c2 are arbitrary constants.

Geometrically, the first term on the right-hand side of (5.3.1) represents a straight-line trajec-
tory parallel3 to V1, and the second term describes a line parallel to V2 (see Figure 5.5). Note
that these trajectories lie in the phase plane (the x-y plane).

If both c1 and c2 are nonzero, then the solution X(t) is a linear combination of the two basic
terms whose relative contributions change with time. In this situation, the trajectories curve
in a way that will be described later.

To see why (5.3.1) is the general solution, first note that each term is itself a solution
of the system. If, for example, we consider X1(t) = c1eλ1tV1, then Ẋ1(t) = c1λ1eλ1tV1 and
AX1 = A(c1eλ1tV1) = c1eλ1t(AV1) = c1eλ1t(λ1V1) = λ1c1eλ1tV1 because V1 is an eigenvector cor-
responding to λ1. (See Section 5.1 for properties of matrix multiplication.) Therefore,
Ẋ1(t) = AX1. Now let’s see that if X1 and X2 are any solutions of the system, then the linear

y
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[     ]6e
3e[   ]6

3

FIGURE 5.5
V = 3et

[
2
1

]
for t = 0, 1, and 2

3 Two vectors V and W are parallel if W = cV for some nonzero constant c. In other words, parallel vectors lie on the same straight line
through the origin, pointing in the same direction (if c > 0) or in opposite directions (if c < 0). See Section B.1.
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combination X = k1X1 + k2X2 is also a solution for any constants k1 and k2:

Ẋ =
•︷ ︸︸ ︷

(k1X1 + k2X2) = k1Ẋ1 + k2Ẋ2 = k1(AX1) + k2(AX2)

= A(k1X1) + A(k2X2)

= A(k1X1 + k2X2) = AX.

These steps follow from the algebraic properties of matrices (Section 5.1) and of deriva-
tives, and this property of solutions of linear systems is another version of the Superposition
Principle that we have encountered several times before. (For example, see Section 4.1.)

We can argue (somewhat loosely) that (5.3.1) represents a solution of a two-dimensional
system (or its equivalent second-order equation) and has two arbitrary constants and hence
is the general solution of the system Ẋ = AX. To be rigorous, we can use the fact that any initial

condition X0 = X(t0) =
[
x(t0)

y(t0)

]
=
[
x0

y0

]
for the system can be written as a linear combination

of the eigenvectors—X0 = k1V1+k2V2 for some constants k1 and k2—so a solution (5.3.1) can
be found to satisfy any initial condition X(t0) = X0. (You’ll be asked to prove these assertions
in Problems C2 and C3 in Exercises 5.3.) Finally, the Existence and Uniqueness Theorem of
Section 4.6 allows us to say that (5.3.1) is the only solution.

5.3.2 The Impossibility of Dependent Eigenvectors
If one of the eigenvectors is a scalar multiple of the other—say V2 is a multiple of V1—then
the expression in (5.3.1) collapses to a scalar multiple of V1 and there is only one arbitrary
constant. This expression can’t represent the general solution of a second-order equation.

Fortunately, this collapse can’t happen with our current assumption. It is easy to prove that if
a 2 × 2 matrix A has distinct eigenvalues λ1 and λ2 with corresponding eigenvectors V1 and
V2, then neither eigenvector is a scalar multiple of the other. Suppose that V2 = cV1, where c
is a nonzero scalar. Then V2 − cV1 = 0, the zero vector, and we must have

0 = A(V2 − cV1) = AV2 − c(AV1) = λ2V2 − c(λ1V1)

= λ2(cV1) − c(λ1V1) = c(λ2 − λ1)V1.

But then, because c 	= 0 and V1 (as an eigenvector) is nonzero, we must conclude that (λ2 −
λ1) = 0—contradicting the assumption that we have distinct eigenvalues.

5.3.3 Unequal Positive Eigenvalues
In the expression for the general solution, c1eλ1tV1+c2eλ2tV2, suppose that λ1 > λ2 > 0. First,
note that as t increases, both eigenvector multiples point away from the origin so all solutions
grow with time. (The algebraic signs of the constants c1 and c2 influence the quadrants in
which the solutions grow.) To understand the relative rates at which the individual terms
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grow, we can factor out the exponential corresponding to the larger eigenvalue and write
X(t) = eλ1t(c1V1 + c2e(λ2−λ1)tV2).

Note that e(λ2−λ1)t → 0 as t → +∞ because λ2 − λ1 < 0. Therefore, X(t) ≈ eλ1t c1V1 as t gets
larger and larger. Noting that eλ1t c1V1 is parallel to V1, we see that the slope of any trajectory
X(t) approaches the slope of the line determined by V1. This says that trajectories will curve
away from the origin and their slopes will approach the slope of the line determined by
the eigenvector V1, corresponding to the larger eigenvalue. In this situation, the equilibrium
point (0, 0) is called a source (unstable node, repeller). (Recall our discussions in Section 2.5.)
In “backward time,” as t → −∞, the trajectories will be asymptotic to the line determined by
the eigenvector V2 because then the first term in the linear combination c1eλ1tV1 + c2eλ2tV2

is approaching zero faster than the second term. This says that if we move backward, the
trajectories enter the origin tangent to the line determined by V2.

We are now ready to re-examine an earlier example in light of the preceding two paragraphs.

■ Example 5.3.1 Unequal Positive Eigenvalues: A Source
First of all, the system

ẋ = 2x + y

ẏ = 3x + 4y

that we saw in Example 5.2.4 has two positive unequal eigenvalues, λ1 = 5 and λ2 = 1, with

corresponding eigenvectors V1 =
[

1
3

]
and V2 =

[
1

−1

]
. Therefore, the general solution is

X(t) = c1e5t
[

1
3

]
+ c2et

[
1

−1

]
=
[

c1e5t + c2et

3c1e5t − c2et

]
=
[
x(t)
y(t)

]
.

Figure 5.6 is a more detailed version of Figure 5.3, the phase portrait of our system. The
new graph shows several trajectories and the way in which they curve away from the ori-

gin, their slopes approaching the slope of the line determined by the eigenvector V1 =
[

1
3

]
corresponding to the larger eigenvalue λ = 5.

Analytically, we can examine the equation dy
dx =

dy
dt
dx
dt

= 3x+4y
2x+y , whose solutions make up the

phase portrait—that is, the equation giving the slopes of trajectories in the x-y plane. Substi-
tuting x(t) = c1e5t + c2et and y(t) = 3c1e5t − c2et from the general solution given previously,

we get dy
dx = 15c1e5t−c2et

5c1e5t+c2et . For large values of t, the expression for dy
dx is dominated by the e5t

terms, which we can factor out:

dy
dx

= e5t(15c1 − c2e−4t)

e5t(5c1 + c2e−4t)
= 15c1 − c2e−4t

5c1 + c2e−4t .
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FIGURE 5.6
Trajectories of the system ẋ = 2x + y, ẏ = 3x + 4y
Bold points • indicate initial positions (t = 0) for trajectories

The condition c1 = 0 would mean that we are dealing with the straight-line trajectory deter-

mined by the eigenvector V2 =
[

1
−1

]
. But if c1 	= 0, as t → ∞, we see that the slope of any

trajectory tends to 15c1−0
5c1+0 = 3, the slope of the line determined by the eigenvector V1 =

[
1
3

]
.

If we consider large negative values of t—that is, if we run the trajectories backward in time—
then et is the dominant term in the expression for dy

dx and we can factor it out:

dy
dx

= 15c1e5t − c2et

5c1e5t + c2et = et
(
15c1e4t − c2

)
et
(
5c1e4t + c2

) = 15c1e4t − c2

5c1e4t + c2
.

The preceding expression tells us that if c2 	= 0, then as t → −∞, the slope of any trajectory

tends to 0−c2
0+c2

= −1, the slope of the line determined by the eigenvector V2 =
[

1
−1

]
. If we have

c2 = 0, we will be on the straight-line trajectory determined by the eigenvector V1 =
[

1
3

]
. We

conclude that if c2 	= 0, then any trajectory is tangent to the line y = −x at the origin—that is,
as t → −∞. ■

5.3.4 Unequal Negative Eigenvalues
If both eigenvalues are negative (say λ1 < λ2 < 0), then both eigenvector multiples point toward
the origin, and all solutions decrease or decay with time. To see this, write (5.3.1) in the
form

X(t) =
[ c1

e−λ1t

]
V1 +

[ c2

e−λ2t

]
V2 =

[ c1

eKt

]
V1 +

[ c2

eMt

]
V2,
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where K = −λ1 and M = −λ2 are positive constants. Then clearly, both terms of X(t) approach
the origin as t → +∞. Because λ1 < λ2 we have −λ1 > −λ2, or K > M, so the first term in the
expression for X(t) approaches the origin faster than the second term. We will see in the next
example that as t increases, trajectories curve toward the origin, closer to the eigenvector V2

(or its negative if c2 < 0), corresponding to the larger eigenvalue. Under these circumstances,
we say that (0, 0) is a stable node, or sink.

■ Example 5.3.2 Unequal Negative Eigenvalues: A Sink
Suppose we look at the system

ẋ = −4x + y

ẏ = 3x − 2y.

The characteristic equation is λ2 + 6λ + 5 = 0 and the eigenvalues are negative and unequal:
λ1 = − 5 and λ2 = − 1. Using the linear algebra capabilities of a CAS, we find that the

corresponding representative eigenvectors are V1 =
[−1

1

]
and V2 =

[
1
3

]
. (Don’t be disturbed

if your CAS produces eigenvectors that are different from the book’s—yours should lie on the
same line as the ones given here. Your slopes y/x should be −1 and 3.)

The general solution of our system is

X(t) = c1e−5t
[−1

1

]
+ c2e−t

[
1
3

]
=
[−c1e−5t + c2e−t

c1e−5t + 3c2e−t

]
.

It is clear from the negative exponents in the expression for X(t) that X(t) →
[

0
0

]
as t → ∞,

so the origin is a sink. Figure 5.7 shows some typical trajectories and seems to indicate that

the trajectories are tangent to the line determined by the eigenvector V2 =
[

1
3

]
.
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FIGURE 5.7
Trajectories for the system ẋ = −4x + y, ẏ = 3x − 2y
Bold points • indicate initial positions (t = 0) for trajectories
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Recognizing that e−t is larger than e−5t for large values of t, we look at

dy
dx

= 3x − 2y
−4x + y

= −5c1e−5t − 3c2e−t

5c1e−5t − c2e−t

= e−t
(−5c1e−4t − 3c2

)
e−t

(
5c1e−4t − c2

) = −5c1e−4t − 3c2

5c1e−4t − c2
.

If c2 	= 0, then dy
dx approaches −3c2−c2

= 3, the slope of the eigenvector V2 =
[

1
3

]
, as t → ∞. If

c2 = 0, then the trajectory is on the straight line determined by the eigenvector
[−1

1

]
. ■

5.3.5 Unequal Eigenvalues with Opposite Signs
If the eigenvalues have opposite signs (say λ1 < 0 < λ2), then look at the general solution
X(t) = c1eλ1tV1 + c2eλ2tV2 to see that the term c1eλ1tV1 (corresponding to the negative
eigenvalue λ1) points toward the origin, whereas c2eλ2tV points away from the origin
(Figure 5.8).

In this case, trajectories approach the origin along one direction and veer away from the origin
along another. In this situation we describe (0, 0) as a saddle point. Look back at Example 5.2.3,
especially Figure 5.2.

Let’s consider a new example of what happens when the eigenvalues of a system have opposite
signs.

(�2 � 0) (�1 � 0)

(�1 � 0) (�2 � 0)

y

x

FIGURE 5.8
Typical eigenvectors for the case λ1 < 0 < λ2
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■ Example 5.3.3 Unequal Eigenvalues with Opposite Signs:
A Saddle Point

Let’s investigate the system dx
dt = x+5y, dy

dt = x−3y. The characteristic equation is λ2+2λ−8 =
0. The eigenvalues and their corresponding eigenvectors are λ1 = −4, V1 =

[
1

−1

]
; λ2 = 2,

V2 =
[

5
1

]
. The general solution is

X(t) = c1e−4t
[

1
−1

]
+ c2e2t

[
5
1

]
=
[

c1e−4t + 5c2e2t

−c1e−4t + c2e2t

]
.

We can see that the straight-line trajectory c1e−4tV1 = c1e−4t
[

1
−1

]
=
[

c1e−4t

−c1e−4t

]
approaches

the origin as t → ∞. (There are actually two half-line trajectories, one for positive c1 and
one for negative c1. See Figure 5.9.) But the half-line trajectories corresponding to c2e2tV2 =
c2e2t

[
5
1

]
=
[

5c2e2t

c2e2t

]
for positive and negative values of c2 are clearly growing away from the

origin with increasing t.

Substituting the expressions for x(t) and y(t) in the formula for dy
dx and factoring out the

dominant term for large t, we get

dy
dx

= x − 3y
x + 5y

= 4c1e−4t + 2c2e2t

−4c1e−4t + 10c2e2t

= e2t
(
4c1e−6t + 2c2

)
e2t

(−4c1e−6t + 10c2
) = 4c1e−6t + 2c2

−4c1e−6t + 10c2
.

2V1

2V2

V2 5 [  ]

V1 5 [  ]

y

x

5
1

1
21

FIGURE 5.9
Trajectories for the system dx

dt = x + 5y, dy
dt = x − 3y
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If c2 	= 0, we see that as t → ∞, dy
dx tends to 2c2

10c2
= 1

5 , the slope of the eigenvector V2. This says
that the slopes of trajectories not on the straight lines determined by V1 and V2 approach the
slope of V2, the eigenvalue associated with the positive eigenvalue. As t → −∞, the slopes
of these trajectories tend to the slope of V1. Figure 5.9 shows this partial-source/partial-sink
behavior with respect to the origin, which is a saddle point. ■

5.3.6 Unequal Eigenvalues, One Eigenvalue Equal to Zero
Finally, we consider the situation in which we have two unequal eigenvalues, but one of
them is 0. Suppose that λ1 = 0 and λ2 	= 0. This means that the characteristic equation
can be written in the form 0 = (λ − 0)(λ − λ2) = λ2 − λ2λ. We know from Section 5.2 that
the constant term of the characteristic equation equals det(A). Clearly, in this case we have
det(A) = 0. Therefore, we should not expect the origin to be the only equilibrium point (see
Problem B2 of Exercises 5.1). In fact, every point (x, 0) of the horizontal axis may be an equilibrium
point for such a system. (Problem B9 in Exercises 5.3 asks for a proof of this assertion.) If V1 is
the eigenvector associated with λ1 = 0, we know that A(c1V1) = c1A(V1) = c1λ1V1 = 0—that
is, each point on the line determined by V1 is an equilibrium point.

The general solution in this situation has the form

X(t) = c1e(0)tV1 + c2eλ2tV2 = c1V1 + c2eλ2tV2.

Note that if λ2 > 0 and t → ∞, then X(t) grows without bound. But if t → −∞, so that
we are traveling backward along a trajectory, then the trajectory approaches c1V1, the line
determined by V1. Similarly, if λ2 < 0 and t → ∞, then X(t) approaches the line determined
by V1, whereas if t → −∞, then X(t) grows without bound. In any case, each trajectory
will be a half-line parallel (in the usual plane-geometry sense) to the eigenvector V2, with
one endpoint on the line determined by V1. (The constant vector c1V1 just shifts c2eλ2tV2

horizontally and vertically.)

The next example should explain the geometry of the trajectories when we have one eigenvalue
equal to 0.

■ Example 5.3.4 Unequal Eigenvalues, One Eigenvalue Equal to
Zero

Figure 5.10 shows the phase portrait for the system ẋ = y, ẏ = y, whose eigenvalues are 0 and

1 and whose corresponding eigenvectors are
[

1
0

]
and

[
1
1

]
, respectively.

Therefore, the equations of the trajectories are X(t) = c1

[
1
0

]
+ c2et

[
1
1

]
=

[
c1 + c2et

c2et

]
. This

says (Exercise C4) that any trajectory not on the line determined by V =
[

1
0

]
has the equation

y(t) = x(t) + k, so these trajectories form an infinite family of straight lines parallel to y = x.

Note that the eigenvector
[

1
0

]
corresponding to the zero eigenvalue determines two half-line

trajectories, the positive x-axis and the negative x-axis. In our example, it is easy to see that
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FIGURE 5.10
Phase portrait for the system ẋ = y, ẏ = y

every point (x, 0) of the horizontal axis is an equilibrium point: ẋ = y = 0 and ẏ = y = 0
imply that y = 0 and the x-coordinate is completely arbitrary. The fact that the nonzero
eigenvalue is positive makes the points on the x-axis sources. (If necessary, review the last full
paragraph before this example.) ■

By looking at Examples 5.2.3–5.2.5 and the examples in this section, we notice that a
solution starting in a direction different from those of the eigenvectors is curved, rep-
resenting [as we know from (5.3.1)] a linear combination, c1eλ1tV1 + c2eλ2tV2, of two
exponential solutions that have different rates of change (indicated by the eigenvalues).
If we look at enough phase portraits, we may also realize that there is a tendency for
the “fast” eigenvector (associated with the larger of two unequal eigenvalues) to have the
stronger influence on the solutions. Trajectories curve toward the direction of this eigenvector
as t → ∞.

In the next section, we’ll investigate what happens when there is a repeated real eigenvalue
and when there seems to be only one eigenvector corresponding to two real eigenvalues.

Exercises 5.3
A

For each of the Systems 1–11, (a) find the eigenvalues and their corresponding eigenvectors
and (b) sketch/plot a few trajectories and show the position(s) of the eigenvector(s). Do part
(a) manually, but if the eigenvalues are irrational numbers, you may use technology to find
the corresponding eigenvectors.

1. ẋ = 3x, ẏ = 2y
2. ẋ = −x, ẏ = −2y
3. x′ = −3x − y, y′ = 4x + 2y
4. ṙ = 5r + 4s, ṡ = −2r − s
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5. ẋ = x + 5y, ẏ = x − 3y
6. ẋ = 2x + 3y, ẏ = x + y
7. ẋ = −3x + y, ẏ = 4x − 2y
8. x′ = −4x + 2y, y′ = −3x + y
9. x′ = −2x − y, y′ = −x + 2y

10. ẋ = 3y, ẏ = −3x
11. ẋ = 3x + 6y, ẏ = −x − 2y

B

1. Consider the system ẋ = 4x − 3y, ẏ = 8x − 6y.

a. Find the eigenvalues of this system.
b. Find the eigenvectors corresponding to the eigenvalues in part (a).
c. Sketch/plot some trajectories and explain what you see.
d. Write the general solution of the system in the form X(t) = c1eλ1tV1 + c2eλ2tV2, and then

re-examine your explanation in part (c).

2. Show that if X is an eigenvector of A corresponding to eigenvalue λ, then any nonzero multiple of X
is also an eigenvector of A corresponding to λ.

3. Solve the initial-value problem X′ =
[
−2 1
−5 4

]
X, X(0) =

[
1
3

]
and describe the behavior of the

solution as t → ∞.

[
Here, X(t) =

[
x(t)
y(t)

]
.

]
4. Write a system of first-order linear equations whose trajectories show the following behaviors:

a. (0, 0) is a sink with eigenvalues λ1 = −3 and λ2 = −5.
b. (0, 0) is a saddle point with eigenvalues λ1 = −1 and λ2 = 4.
c. (0, 0) is a source with eigenvalues λ1 = 2 and λ2 = 3.

5. Consider the system ẋ = −x + αy, ẏ = −2y, where α is a constant.

a. Show that the origin is a sink regardless of the value of α.
b. Assume that X(t) is the solution vector of the system satisfying the initial condition

X(0) =
[

0
0.5

]
. Sketch the phase portrait for different values of α and describe how the

trajectory X(t), for t ≥ 0, depends on the value of α.

6. Consider the following circuit.

R1
R2

C

L
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The current I through the inductor and the voltage V across the capacitor satisfy the system

L
dI
dt

= −R1I − V

C
dV
dt

= I − V
R2

.

a. Find the general solution of the system if R1 = 1 ohm, R2 = 3
5 ohm, L = 2 henrys, and

C = 2
3 farad.

b. Show that I(t) → 0 and V(t) → 0 as t → ∞ regardless of the initial values I(0) and V(0).

7. Consider the system of differential equations in the preceding problem. Find a condition on R1, R2,
C, and L that must be satisfied if the eigenvalues of the coefficient matrix are to be real and distinct.

8. Two quantities of a chemical solution are separated by a membrane. If x(t) and y(t) represent the
amounts of the chemical at time t on each side of the membrane and V1 and V2 represent the
(constant) volume of each solution, respectively, then the diffusion problem can be modeled by the
system

ẋ = P
[

y
V2

− x
V1

]

ẏ = P
[

x
V1

− y
V2

]
,

where P is a positive constant called the permeability of the membrane. Note that x(t)
V1

and y(t)
V2

represent the concentrations of solution on each side.

a. Assuming that x(0) = x0 and y(0) = y0, find the solution of the system IVP without using
technology.

b. Calculate lim
t→∞ x(t) and lim

t→∞ y(t).

c. Using part (b), interpret the result lim
t→∞[x(t) + y(t)] physically.

d. Notice that if y
V2

> x
V1

, then ẋ > 0. Does this say that the chemical moves across the membrane
from the side with a lower concentration to the side with a higher concentration or vice versa?
Confirm your answer by considering what happens if x

V1
>

y
V2

in the second equation.

9. Consider the system

ẋ = ax + by

ẏ = cx + dy,

where a, b, c, and d are constants. Show that if ad − bc = 0, then every point (x, 0) of the horizontal
axis is an equilibrium point for the system. [Hint : Solve the system ax + by = 0, cx + dy = 0 for x.]

C

1. Consider the system

ṙ = −r − s

ṡ = −βr − s,

where β is a parameter.
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a. Find the general solution of the system when β = 0.5. Use the eigenvalues of the coefficient
matrix to determine what kind of equilibrium the system has at the origin.

b. Find the general solution of the system when β = 2. Use the eigenvalues of the coefficient
matrix to determine what kind of equilibrium the system has at the origin.

c. The solutions of the system show two rather different types of behavior for the two values of β

considered in parts (a) and (b). Find a formula for the eigenvalues in terms of β and determine
the value of β between 0.5 and 2 where the transition from one type of behavior to the other
occurs. (This critical value of the parameter is called a bifurcation point. See Section 2.7.)

2. Suppose that we have the system Ẋ = AX and that V1 and V2 are eigenvectors of A such that

neither V1 nor V2 is a scalar multiple of the other. Show that any initial condition X0 = X(0) =
[

x0

y0

]
can be written as a linear combination of V1 and V2. In other words, show that you can always

find scalars c1 and c2 so that X0 = c1V1 + c2V2. [Hint : Let V1 =
[

x1

y1

]
and V2 =

[
x2

y2

]
be the

eigenvectors, where you assume that x1, x2, y1, and y2 are known. Now convert the equation
X0 = c1V1 + c2V2 into a system of algebraic linear equations and go from there.]

3. If the system Ẋ = AX has two real eigenvalues λ1 and λ2, with λ1 	= λ2, and V1 and V2 are the
corresponding (distinct) eigenvectors, show that X(t) = c1eλ1tV1 + c2eλ2,tV2 satisfies the initial

condition X(0) = X0 =
[

x0

y0

]
= c1V1 + c2V2. (See the preceding problem for the justification of this

representation of X0 for some scalars c1 and c2.)

4. As indicated in Example 5.3.4, the system ẋ = y, ẏ = y has the solution X(t) =
[

c1 + c2et

c2et

]
. Show

that any trajectory not on the line determined by V =
[

1
0

]
satisfies the equation y(t) = x(t) + k (in

the phase plane) for some constant k. (This says that the trajectories form an infinite family of lines
parallel to y = x.)

5.4 THE STABILITY OF HOMOGENEOUS LINEAR SYSTEMS:
EQUAL REAL EIGENVALUES

Now let’s see what happens if both eigenvalues are real and equal. In other words, the char-
acteristic equation has a repeated root, or double root. (See Section 4.1 for the second-order
homogeneous linear equation case.) A full understanding of this situation requires more
linear algebra than we want to pursue right now. However, the following discussions and
examples should give us a good idea of what’s going on.

5.4.1 Equal Nonzero Eigenvalues, Two Independent Eigenvectors
First, suppose that λ1 = λ2 	= 0. If we can find distinct representative eigenvectors V1 and V2

that are not scalar multiples of each other, then we can still write the general solution of the
system using (5.3.1): X(t) = c1eλ1tV1 + c2eλ2tV2 = c1eλ1tV1 + c2eλ1tV2 = eλ1t(c1V1 + c2V2).
If we let t = 0, we see that X(0) = eλ1(0)(c1V1 + c2V2) = c1V1 + c2V2, so we can write
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y

x

FIGURE 5.11a
Source: λ > 0

y

x

FIGURE 5.11b
Sink: λ < 0

X(t) = eλ1tX0, where X0 = X(0). (See Problem C2 of Exercises 5.3.) Under these conditions,
all trajectories are straight lines through the origin because they are constant multiples of the
constant vector X0 = c1V1 + c2V2. The origin is called a star node in this case and will be a
source if λ1 > 0 and a sink if λ1 < 0. Figures 5.11a and 5.11b show possible trajectories for
various initial vectors X0.

Let’s examine a system for which the origin is a star node.

■ Example 5.4.1 The Origin as a Star Node (a Source)
Look at the system dx

dt = x, dy
dt = y. We can write this in matrix form as Ẋ = AX, where

A =
[

1 0
0 1

]
. It is easy to see that A has eigenvalues λ1 = 1 = λ2. (Check this.) By the way

we defined the product of a matrix and a vector in Section 5.1, we see that our matrix of coef-
ficients A is such that AV = V = 1 ·V = λ1V for every vector V . In particular, any nonzero vector
V is an eigenvector corresponding to the eigenvalue 1. Be sure you understand the preceding
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FIGURE 5.12
Phase portrait of the system dx

dt = x, dy
dt = y

statement. A particularly simple eigenvector to work with is V1 =
[

1
0

]
. It is easy to see that the

vector V2 =
[

0
1

]
is not a multiple of V1 because any scalar multiple of V1 would have the

form
[

c
0

]
, where c is a constant. Therefore, we can write the solution of our system as

X(t) = c1etV1 + c2etV2 = c1et
[

1
0

]
+ c2et

[
0
1

]
=
[
c1et

c2et

]
.

Of course, because each of our original (separable) differential equations contains only one
variable, we could solve each one separately to get the same result in the form x(t) = c1et ,
y(t) = c2et . As we indicated in the discussion right before this example, the trajectories are
straight lines through the origin, and Figure 5.12 shows that the origin, a star node, is a source.

■

5.4.2 Equal Nonzero Eigenvalues, Only One Independent
Eigenvector

Now suppose that λ1 = λ2 	= 0, but our single eigenvalue has only one distinct representative
eigenvector. What we mean is that all eigenvectors corresponding to the single distinct eigen-
value are scalar multiples of each other. Geometrically, this says that all eigenvectors lie on
the same straight line through the origin. Then if we tried to use the solution form (5.3.1),
we would get

X(t) = c1eλ1tV + c2eλ1tV = (c1 + c2)eλ1tV = keλ1tV .

But how can the general solution of a two-dimensional system or second-order equation have
only one arbitrary constant?
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What we have to do here is find another solution of the system that is independent of the
one solution we found using the single eigenvalue and its representative eigenvector. This is
similar to the technique we used in solving a second-order linear equation with a repeated
eigenvalue (see Section 4.1). In our situation, an independent solution is one that is not a
scalar multiple of the first solution. If we do find another eigenvector corresponding to the
single eigenvalue, but one that is independent of the original eigenvector, then the solution
can still be written in the form X(t) = c1eλ1tV1 + c2eλ2tV2.

It turns out that we can find a substitute for an independent eigenvector. Although we won’t
go into all the linear algebraic details here, we can at least try to explain the end result. Another
(independent) solution of the system must have the form

X2(t) = teλtV + eλtW , (5.4.1)

where V is the original eigenvector corresponding to the single eigenvalue λ, and where W ,
called a generalized eigenvector (of order 2), is a vector that satisfies the matrix equation

(A − λI)W = V . (5.4.2)

(See Problem B5 in Exercises 5.4.)

We can easily see that the vector defined by (5.4.1) is a solution of the system. If X(t) =
teλtV + eλtW , then Ẋ(t) = t(λeλtV) + eλtV + λeλtW = (λt + 1)eλtV + λeλtW and, because
(5.4.2) implies that AW = V + λW ,

AX = A(teλtV + eλtW) = teλt(AV) + eλt(AW) = teλt(λV) + eλt(V + λW)

= (λt + 1)eλtV + λeλtW .

Thus, Ẋ = AX—that is, (5.4.1) defines a solution of the system.

Next, we must solve Equation (5.4.2) for W , and then we can write the general solution of
the system as

X(t) = c1eλtV + c2
[
teλtV + eλtW

]
. (5.4.3)

(The theory of linear algebra shows that we can always solve for W in Equation (5.4.2) if V
is an eigenvector of A corresponding to eigenvalue λ.)

Now let’s look at an example in which we have equal nonzero eigenvalues but only one
distinct representative eigenvector.

■ Example 5.4.2 Equal Nonzero Eigenvalues, Only One
Distinct Eigenvector

Consider the system ẋ = −2x + y, ẏ = −2y. We can write this in matrix form as Ẋ = AX,

where A =
[−2 1

0 −2

]
. The characteristic polynomial of A is λ2 + 4λ + 4 = (λ + 2)2, so
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λ = −2 is a repeated root. Then the matrix equation AV = λV = −2V is equivalent to the
system

−2x + y = −2x

−2y = −2y,

or

y = 0

−2y = −2y.

From this we see that any eigenvector
[
x
y

]
must have the form

[
x
0

]
= x

[
1
0

]
for arbitrary values

of x. Therefore, we can take V =
[

1
0

]
as the only independent eigenvector that corresponds

to the eigenvalue −2. Now we must find a vector W =
[
r
s

]
satisfying (A − λI)W = V .

In our problem, (A − λI)W = V becomes{[−2 1
0 −2

]
− (−2)

[
1 0
0 1

]}[
r
s

]
=
[

1
0

]
,

{[−2 1
0 −2

]
+
[

2 0
0 2

]}[
r
s

]
=
[

1
0

]
,

or [
0 1
0 0

] [
r
s

]
=
[

1
0

]
,

which is equivalent to the algebraic system

0 · r + 1 · s = 1

0 · r + 0 · s = 0.

This tells us that s = 1 and r is a “free variable”—that is, r is completely arbitrary. For conve-

nience, let r = 0 so that our generalized eigenvector is W =
[

0
1

]
. Finally, we can write the

general solution of our system in the form (5.4.3):

X(t) = c1e−2t
[

1
0

]
+ c2

[
te−2t

[
1
0

]
+ e−2t

[
0
1

]]

=
[

c1e−2t + c2te−2t

c2e−2t

]
.
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FIGURE 5.13
Trajectories for the system ẋ = −2x + y, ẏ = −2y

Figure 5.13, generated by a CAS, shows that the trajectories spiral in toward the origin, in such

a way that they are tangent to the eigenvector V =
[

1
0

]
or its negative at the origin. (Note that

the vector V is part of the positive x-axis.) ■

Whenever we have a system with equal nonzero eigenvalues but only one distinct eigenvector,
the phase portrait will consist of spirals approaching the origin when the repeated eigenvalue
is negative, and the phase portrait will consist of spirals moving outward if the eigenvalue is
positive. A negative eigenvalue makes the origin a spiral sink; a positive eigenvalue makes the
origin a spiral source. Furthermore, if the eigenvalue is negative, the slopes of all trajectories
not on the line determined by the one eigenvector approach the slope of this line as t → ∞.
A positive eigenvalue indicates that the slopes of all trajectories not on the line determined by
the one eigenvector approach the slope of this line as t → −∞. (Problem B6 in Exercises 5.4
asks for a proof of the preceding two assertions.)

5.4.3 Both Eigenvalues Zero
Finally, let’s assume that λ1 = λ2 = 0. If there are two linearly independent eigenvectors V1

and V2, then the general solution is X(t) = c1e0·tV1 + c2e0·tV2 = c1V1 + c2V2, a single vector
of constants. If there is only one linearly independent eigenvector V corresponding to the
eigenvalue 0, then we can find a generalized eigenvector and use Formula (5.4.3):

X(t) = c1eλtV + c2
[
teλtV + eλtW

]
.
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For λ = 0, we get X(t) = c1V + c2[tV + W] = (c1 + c2t)V + c2W . In Exercise B7 you will
investigate a system that has both eigenvalues zero.

Exercises 5.4
A

For each of the Systems 1–8, (a) find the eigenvalues and their corresponding linearly inde-
pendent eigenvectors and (b) sketch/plot a few trajectories and show the position(s) of the
eigenvector(s)if they do not have complex entries. Do part (a) manually, but if the eigenvalues
are irrational numbers, you may use technology to find the corresponding eigenvectors.

1. ẋ = 3x, ẏ = 3y
2. ẋ = −4x, ẏ = x − 4y
3. ẋ = 2x + y, ẏ = 4y − x
4. ẋ = 3x − y, ẏ = 4x − y
5. ẋ = 2y − 3x, ẏ = y − 2x
6. ẋ = 5x + 3y, ẏ = −3x − y
7. ẋ = −3x − y, ẏ = x − y
8. ẋ = √

2x + 5y, ẏ = √
2y

B
1. Given a characteristic polynomial λ2 + αλ + β, what condition on α and β guarantees that there is

a repeated eigenvalue?

2. Let A =
[

a b
c d

]
. Show that A has only one eigenvalue if and only if [trace (A)]2 − 4 det(A) = 0.

3. Write a system of first-order linear equations for which (0, 0) is a sink with eigenvalues λ1 = −2
and λ2 = −2.

4. Write a system of first-order linear equations for which (0, 0) is a source with eigenvalues λ1 = 3
and λ2 = 3.

5. Show that if V is an eigenvector of a 2 × 2 matrix A corresponding to eigenvalue λ and vector W is
a solution of (A − λI)W = V , then V and W are linearly independent. [See Equations (5.4.2)–(5.4.3).]
[Hint : Suppose that W = cV for some scalar c. Then show that V must be the zero vector.]

6. Suppose that a system Ẋ = AX has only one eigenvalue λ, and that every eigenvector is a scalar
multiple of one fixed eigenvector, V . Then Equation (5.4.3) tells us that any trajectory has the form
X(t) = c1eλtV + c2

[
teλtV + eλtW

] = teλt
[

1
t (c1V + W) + c2V

]
.

a. If λ < 0, show that the slope of X(t) approaches the slope of the line determined by V as
t → ∞. [Hint : e−λt

t X(t), as a scalar multiple of X(t), is parallel to X(t).]
b. If λ < 0, show that the slope of X(t) approaches the slope of the line determined by V as

t → −∞.

7. Consider the system ẋ = 6x + 4y, ẏ = −9x − 6y.

a. Show that the only eigenvalue of the system is 0.
b. Find the single independent eigenvector V corresponding to λ = 0.



5.5 The Stability of Homogeneous Linear Systems: Complex Eigenvalues 261

c. Show that every trajectory of this system is a straight line parallel to V, with trajectories on
opposite sides of V moving in opposite directions. [Hint : First, for any trajectory not on the line
determined by V, look at its slope, dy/dx.]

C

1. Prove that c1eλt

[
1
0

]
+ c2eλt

[
t
1

]
is the general solution of Ẋ = AX,

where A =
[
λ 1
0 λ

]
.

2. Suppose the matrix A has repeated real eigenvalues λ and there exists a pair of linearly

independent eigenvectors associated with A. Prove that A =
[
λ 0
0 λ

]
.

3. A special case of the Cayley-Hamilton Theorem states that if λ2 + αλ + β = 0 is the characteristic
equation of a matrix A, then A2 + αA + βI is the zero matrix. (We say that a 2 × 2 matrix always
satisfies its own characteristic equation.) Using this result, show that if a 2 × 2 matrix A has a

repeated eigenvalue λ and V =
[

x
y

]
, then either V is an eigenvector of A or else (A − λI)V is an

eigenvector of A.

5.5 THE STABILITY OF HOMOGENEOUS LINEAR SYSTEMS:
COMPLEX EIGENVALUES

5.5.1 Complex Eigenvalues and Complex Eigenvectors
Now let’s examine what occurs when the matrix A in the system Ẋ = AX has complex eigen-
values. As we’ve already stated, any complex root λ of the quadratic characteristic equation
λ2 − (a + d)λ + (ad − bc) = 0 must occur as part of a complex conjugate pair: λ = p ± qi. As
we’ll see, the behavior of trajectories in the case of complex eigenvalues depends on the real
part, p, of the complex eigenvalues. When the eigenvalues of a matrix are complex numbers,
the eigenvectors will also have complex entries (see Appendix C), and therefore the algebra
of the situation will be slightly more complicated.

The most important point to realize is that when A has complex eigenvalues, the general
solution of Ẋ = AX has the same form as (5.3.1), X(t) = c 1eλ1tV1 + c2eλ2tV2. In other
words, the Superposition Principle holds, but we have to deal with the fact that this formula
will produce vectors whose elements are complex functions or numbers. For example, in the
context of the general solution formula, the phrase multiplying by a scalar refers to multiplying
vectors (whose entries may be complex numbers) by complex numbers.

Fortunately, there are some useful results that aid us in our work with complex eigenvalues
and eigenvectors:
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1. A crucial fact to recall is Euler’s formula, which we saw in Section 4.1:

ep+qi = ep(cos(q) + i sin(q)).

This result will be useful in simplifying complex-valued expressions and will show us
how to obtain real-valued solutions of Ẋ = AX.

2. Another important fact is that eigenvectors corresponding to complex conjugate
eigenvalues are conjugate to each other. If the eigenvalue λ1 = p + qi has a corresponding

eigenvector V1 =
[
a1 + b1i
a2 + b2i

]
=
[
a1

a2

]
+ i

[
b1

b2

]
= U + iW , then λ2 = λ1 = p − qi has a

corresponding eigenvector V2 = V1 =
[
a1 + b1i
a2 + b2i

]
=
[
a1 − b1i
a2 − b2i

]
=
[
a1

a2

]
− i

[
b1

b2

]
=

U − iW . The proof of this result follows from the properties of the conjugate: Suppose
that AV1 = λ1V1. Then (AV1) = (λ1V1), so A V1 = λ1V1, or (because all elements of A
are real) AV1 = λ1V1 = λ2V1. That is, V1 is an eigenvector corresponding to λ2 = λ1.
To see how valuable results 1 and 2 are, let’s suppose that λ = p + qi is an eigenvalue
of the matrix A and that V = U + iW is a corresponding eigenvector. If we define
X(t) = eλtV , then AX = A

(
eλtV

) = eλt(AV) = eλt(λV) = λeλtV = Ẋ, so X(t) is a
solution of Ẋ = AX. Using Euler’s formula and the properties of complex multi-
plication (see Section C.1), we have

X(t) = eλtV = e(p+qi)tV = ept(cos qt + i sin qt)(U + iW)

= ept {(cos qt)U − (sin qt)W
} + iept {(cos qt)W + (sin qt)U

}
.

Then the real part and the imaginary part of X(t) can be considered separately:

X1(t) = Re {X(t)} = ept {(cos qt)U − (sin qt)W
}

X2(t) = Im {X(t)} = ept {(cos qt)W + (sin qt)U
}
.

The important observation here is that X1(t) and X2(t) are real-valued linearly inde-
pendent solutions of the system Ẋ = AX. (Problem B3 in Exercises 5.5 asks for a proof
that the same two solutions result from taking the real and imaginary parts of eλtV .)

We will justify this observation for the real part of X(t), leaving the proof for the imaginary
part as Problem B4 in Exercises 5.5. First, we write XR = Re {X(t)} = X+X

2 (see Section C.1 if
necessary). Then

AXR = A

(
X + X

2

)
= 1

2 A
(
X + X

) = 1
2

(
AX + AX

)
= 1

2

(
Ẋ + (AX)

) = 1
2

(
Ẋ + Ẋ

)
= Re(Ẋ) = (Ẋ)R = ˙︷ ︸︸ ︷

(XR) .
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Now the Superposition Principle tells us that c1X1(t) + c2X2(t) is also a solution—in fact, it
is the general solution of the system. The proofs of this last fact in Section 5.3 are valid here.
We can take the scalars c1 and c2 to be real numbers.

As a first example of working with complex eigenvalues and eigenvectors, let’s look at the
equation d2θ

dt2 + k2 sin θ = 0, which describes the motion of an undamped pendulum. Here, θ

is the angle the pendulum makes with the vertical, and k2 = g
L , where g is the acceleration

due to gravity and L is the length of the pendulum. This famous equation is nonlinear and
will be treated fully in Section 7.4, but for small angles θ, sin θ ≈ θ, so we can consider
the linearized equation d2θ

dt2 + k2θ = 0. The system form of the linear pendulum equation has
complex eigenvalues.

Let’s see how to work with the complexities (pun intended) of this situation.

■ Example 5.5.1 A System with Complex Eigenvalues
First, we convert the linearized pendulum equation to a system (see Problem C2 of Exer-
cises 4.7 for the nonlinear case). Letting x = θ and y = dθ

dt = dx
dt , we convert our linear

second-order homogeneous equation into the system dx
dt = y, dy

dt = −k2x. (Be sure that you
remember how to carry out this conversion.)

In matrix form, we have the system d
dt

[
x
y

]
=
[

0 1
−k2 0

] [
x
y

]
, with characteristic equation λ2 +

k2 = 0 and complex conjugate eigenvalues λ1 = ki and λ2 = − ki. (Verify all the statements in

the preceding sentence.) The equation AV = λ1V has the form
[

0 1
−k2 0

] [
x
y

]
= ki

[
x
y

]
=
[
kix
kiy

]
,

which is equivalent to the algebraic system

y = kix

−k2x = kiy.

Because the second equation is just ki times the first, we see that we can take x as arbitrary

and y = kix, which gives us the eigenvector V =
[

x
kix

]
= x

[
1
ki

]
. Letting x = 1, we get the

representative eigenvector

V1 =
[

1

ki

]
=
[

1
0

]
+ i

[
0
k

]
.

From the discussion preceding this example, we realize that we don’t have to worry about
the second (conjugate) eigenvalue and its associated eigenvector. The general solution of our
original equation and its system version can be obtained from the information we already
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have. We start with the solution

X̂(t) = ekit
([

1
0

]
+ i

[
0
k

])
= (cos kt + i sin kt)

([
1
0

]
+ i

[
0
k

])

=
(

(cos kt)
[

1
0

]
− (sin kt)

[
0
k

])
+ i

(
(cos kt)

[
0
k

]
+ (sin kt)

[
1
0

])
.

Because the real and imaginary parts of the preceding expression are linearly independent
solutions of the system, the general solution is given by

X(t) = c1

(
(cos kt)

[
1
0

]
− (sin kt)

[
0
k

])
+ c2

(
(cos kt)

[
0
k

]
+ (sin kt)

[
1
0

])

= c1

[
cos kt

−k sin kt

]
+ c2

[
sin kt

k cos kt

]
=
[

c1 cos kt + c2 sin kt
−kc1 sin kt + kc2 cos kt

]
.

Figure 5.14 shows some trajectories for this system when k = 1. These curves are circles cen-
tered at the origin. We say that the origin is a center for the system. You should try to generate
your own phase portrait by choosing different values of k and various initial points for each
value of k.

0 0.5 1

y

0.5

1.0

x

21.0

20.5

21 20.5

FIGURE 5.14
Trajectories for the system dx

dt = y, dy
dt = −x, 0 ≤ t ≤ 7

Initial points: (x(0), y(0)) = (1, 0), (0.5, 0), (0, 0.8)

■
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The next example provides a more challenging problem algebraically.

■ Example 5.5.2 A System with Complex Eigenvalues
According to Kirchhoff’s Second Law, an electric circuit with resistance of 2 ohms, capacitance
of 0.5 farad, inductance of 1 henry, and no driving electromotive force can be modeled by the
second-order linear equation Q̈+2Q̇+2Q = 0, where Q = Q(t) is the charge on the capacitor
at time t. If Q(0) = 1 and Q̇(0) = 0, we want to determine the charge on the capacitor at time
t ≥ 0.

We write our second-order equation as a system of first-order equations by introducing new
variables: Let x = Q and y = ẋ = Q̇, so ẏ = Q̈ = −2Q − 2Q̇ = −2x − 2y. Then the original
second-order equation is equivalent to the system

ẋ = y

ẏ = −2x − 2y,

which can be written in matrix form as Ẋ =
[

0 1
−2 −2

] [
x
y

]
. The matrix of coefficients has

characteristic equation λ2 + 2λ + 2 = 0, with roots −1 + i and −1 − i. Working with the first
of these eigenvalues, we see that any eigenvector must satisfy the matrix equation

[
0 1

−2 −2

] [
x
y

]
= (−1 + i)

[
x
y

]
,

which is equivalent to the equations

y = −x + ix

−2x − 2y = −y + iy.

Substituting the first equation in the second equation, we get

−2x − 2[−x + ix] = −[−x + ix] + i[−x + ix]
−2x + 2x − 2ix = x − ix − ix − x (remembering that t2 = −1)

−2ix = −2ix.

The preceding equation, an identity, says that any value of x will be a solution. If we choose
x = 1 for convenience, then the first equation gives us y = −1 + i, so the representative
eigenvector is

V1 =
[

1
i − 1

]
=
[

1
−1

]
+ i ·

[
0
1

]
= U + iW .
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As in the previous example, we work with the solution provided by one of the complex
conjugate eigenvalues and its representative eigenvector:

X̂(t) = e(−1+i)t
([

1
−1

]
+ i

[
0
1

])
= e−t(cos t + i sin t)

([
1

−1

]
+ i

[
0
1

])

= e−t
(

(cos t)
[

1
−1

]
− (sin t)

[
0
1

])
+ ie−t

(
(cos t)

[
0
1

]
+ (sin t)

[
1

−1

])
.

Extracting the real and imaginary parts of this last complex-valued expression, we express the
general solution as

X(t) = c1e−t
(

(cos t)
[

1
−1

]
− (sin t)

[
0
1

])
+ c2e−t

(
(cos t)

[
0
1

]
+ (sin t)

[
1

−1

])

= c1

[
e−t cos t

−e−t cos t − e−t sin t

]
+ c2

[
e−t sin t

e−t cos t − e−t sin t

]

= e−t

[
c1 cos t + c2 sin t

(c2 − c1) cos t − (c2 + c1) sin t

]
=
[

x(t)

y(t)

]
.

Now, using the initial conditions x(0) = Q(0) = 1 and y(0) = Q̇(0) = 0 in the general solu-

tion just given, we get the condition
[

c1

c2 − c1

]
=
[

1
0

]
, which implies that c1 = 1 and c2 = 1.

Thus, the solution of our original initial-value problem is Q(t) = x(t) = e−t(cos t + sin t). (See
Figure 5.15.) Because the current, I, is defined as the rate of change of Q, we get a bonus:
I(t) = Q̇(t) = y(t) = −2e−t sin t.

As satisfying as this analytical solution may be, a natural question is what the trajectories
for this system look like. Figure 5.16 shows five trajectories, corresponding to different initial
conditions. The trajectory for the IVP we started with is second from the bottom.

1

0.2

0.4

0.6

0.8

1

2 4 5 6 t

x

3

FIGURE 5.15
Graph of x(t) = e−t(cos t + sin t), 0 ≤ t ≤ 6
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FIGURE 5.16
Trajectories for the system ẋ = y, ẏ = −2x − 2y, −0.3 ≤ t ≤ 4
Initial conditions: (x(0), y(0)) = (1, 0), (0.5, 0), (0, 0.8), (0, 1), (0.5, −0.8)

■

Note that in Figure 5.16 the trajectories are spirals moving toward the equilibrium solution,
the origin. We say that the origin is a spiral sink. If we examine the general solution, we can
see why the trajectories behave this way. First of all, there is no straight-line direction along
which the trajectories approach the origin. In the preceding example, the expressions for both
x(t) and y(t) have trigonometric terms that contribute oscillations, movements back and forth
across the x-axis. But in addition, each entry of the general solution has a factor of e−t , which
dampens these oscillations for positive values of t. Thus, as t increases in a positive direction,
the amplitudes of these oscillations tend to 0. A look at Euler’s formula explains the existence
of this decaying exponential: The real part, p, of the eigenvalue pair is negative. Figure 5.15 shows
a plot of x against t for the particular solution with x(0) = 1 and y(0) = 0.

The graph of y against t is similar. In terms of the spring-mass problems we analyzed in various
examples of Section 4.8, we can interpret our problem as representing a system with damped
oscillations. (See Example 4.8.2, especially Figure 4.19a.)

As we’ll see in some of the exercises following this section, if the eigenvalues are p ± qi and
p > 0, then we get spirals that wind away from (0, 0) as t increases. Here, we say that the
origin is a spiral source. This corresponds to oscillatory solutions with increasing amplitudes
and describes resonance. (See Example 4.8.4, especially Figure 4.22.)

The case where p = 0, so that we have pure imaginary eigenvalues, is interesting. Now the
trajectories are closed, nonintersecting curves that encircle the origin. This corresponds to the
situation in which we have undamped oscillations. (See Example 5.5.1 and Example 4.8.1,
especially Figure 4.16.)
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Table 5.1 Summary of Stability Criteria for Two-Dimensional Linear Systems

Eigenvalues Stability References

REAL
Unequal

Both > 0 Unstable node (source, repeller) Examples 5.2.4 and 5.3.1

Both < 0 Stable node (sink, attractor) Examples 5.2.2 and 5.3.2

Different signs Saddle point Examples 5.2.1, 5.2.3, and 5.3.3

One = 0, the other 	= 0 Whole line of equilibrium points Example 5.3.4 and Problem B9
of Exercises 5.3

Equal
Both > 0 Unstable node (source, repeller) Example 5.4.1

Both < 0 Stable node (sink, attractor) Example 5.4.2

Both = 0 “Algebraically unstable” Problem B7 of Exercises 5.4

COMPLEX

Real part > 0 Spiral source (unstable spiral, repeller) Example 5.2.5

Real part < 0 Spiral sink (stable spiral) Example 5.5.2

Real part = 0 Center (neutral center, stable center) Example 5.5.1

Now let us stand back and summarize all these cases. Table 5.1 categorizes the stability of
two-dimensional autonomous systems, referring to relevant examples or exercises.

Exercises 5.5
A

For each of the Systems 1–10, (a) find the eigenvalues and their corresponding eigenvectors
and (b) sketch/plot a few trajectories and show the position(s) of the eigenvector(s) if they
do not have complex entries.

1. ṙ = −r − 2s, ṡ = 2r − s
2. ẋ = 3x − 2y, ẏ = 2x + 3y
3. ẋ = −0.5x − y, ẏ = x − 0.5y
4. ẋ = x + y, ẏ = −3x − y
5. ẋ = 2x + y, ẏ = −3x − y
6. ẋ = −0.5x − y, ẏ = x − 0.5y
7. ẋ = y − 7x, ẏ = −2x − 5y
8. ẋ = x − 3y, ẏ = 3x + y
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9. ẋ = 6x − y, ẏ = 5x + 4y
10. ẋ + x + 5 y = 0, ẏ − x − y = 0

B

1. Write systems of first-order linear equations whose trajectories show the following behaviors:

a. (0, 0) is a spiral source with eigenvalues λ1 = 2 + 2i and λ2 = 2 − 2i.
b. (0, 0) is a stable center with eigenvalues λ1 = −3i and λ2 = 3i.
c. (0, 0) is a spiral sink with eigenvalues λ1 = −1 + 2i and λ2 = −1 − 2i.

2. Consider the system

ẋ = y

ẏ = −x − βy,

where β is a parameter.

a. By using technology to draw trajectories, examine the stability of the equilibrium solution for
β = −1, −0.1, 0, 0.1, and 1.

b. Does there seem to be a bifurcation point—that is, a critical value of β at which the stability
changes its nature? (Read/review Section 2.7.)

c. Find a formula for the eigenvalues of the system, showing their dependence on β.
d. Relate the information found in part (c) to the stability summary in Table 5.1 and answer the

question in part (b) with increased authority.

3. If λ is a complex eigenvalue of matrix A, V = U + iW is a corresponding eigenvector, and
X(t) = eλtV , then we have seen that

X1(t) = Re{X(t)} = ept{(cos qt)U − (sin qt)W}
X2(t) = Im{X(t)} = ept{(cos qt)W + (sin qt)U}

are real-valued linearly independent solutions of the system Ẋ = AX. Show that the same two
solutions can be obtained by taking the real and imaginary parts of eλtV . (Thus, the second term of
the familiar solution formula c1eλ1tV1 + c2eλ2tV2 = c1eλ1tV1 + c2eλ1tV1 is unnecessary.)

4. Show that if X(t) is a complex-valued solution of the system Ẋ = AX, then so is XI = Im(X) =
X−X

2i , the imaginary part of X(t).
5. The following two-loop electrical circuit illustration can be modeled by the system

di1
dt

= −
(

R1 + R2

L

)
i1 + R2

L
i2

di2
dt

= −
(

R1 + R2

L

)
i1 +

(
R2

L
− 1

R2C

)
i2.

Using eigenvalues and eigenvectors, solve the initial value problem i1(0) = 1, i2(0) = 0, when
R1 = R2 = 1, L = 1, and C = 3. (Use technology to find the eigenvectors.)
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i2R1

L

R2
i1 C

C

1. In Section 5.3, we used the result that the eigenvectors corresponding to distinct eigenvalues are
linearly independent. Use this result to show that the real and imaginary parts of complex
eigenvectors are linearly independent.

2. The change in the amounts x and y of two substances that enter a certain chemical reaction can be
described by the initial-value problem

ẋ = −3x + αy, ẏ = βx − 2y; x(0) = y(0) = 1,

where α and β are two parameters that depend on the conditions of reaction (temperature,
humidity, etc.). Are there values of α and β for which the solution of the initial-value problem is a
periodic function of time?

5.6 NONHOMOGENEOUS SYSTEMS
5.6.1 The General Solution
The linear systems we have been dealing with so far are called homogeneous systems. Basically,
this means that they can be expressed in the form Ẋ = AX with no “leftover” terms. If a linear

system has to be written as Ẋ = AX + B (t) , where B(t) is a vector of the form
[
b1(t)
b2(t)

]
,

then we say that the system is nonhomogeneous. For example, in matrix terms, the system

dx
dt = x + sin t, dy

dt = t − y must be written as
[
ẋ(t)
ẏ(t)

]
=

[
1 0
0 −1

] [
x
y

]
+
[

sin t
t

]
and so is

nonhomogeneous.

Don’t confuse the distinction between autonomous and nonautonomous with that between
homogeneous and nonhomogeneous. For example, if b1(t) and b2(t) are constant functions (not
both zero), then we have a system that is both autonomous and nonhomogeneous. (See, for
instance, Example 4.7.3.)

The techniques that were introduced in Section 4.2 for second-order nonhomogeneous equa-
tions generalize to systems, but the calculations are more complicated. To get a handle on
solving a nonhomogeneous linear system, we need a fundamental fact about linear systems:

The general solution, XGNH, of a linear nonhomogeneous system is obtained by finding
a particular solution, XPNH, of the nonhomogeneous system and adding it to the general
solution, XGH, of the associated homogeneous system.
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You should see this as an application of the Superposition Principle and as an extension of
the result we saw for single linear differential equations (Section 4.2). Symbolically, we can
write XGNH = XGH + XPNH. Using the definitions of these terms, we can see that this sum of
vectors is a solution of the nonhomogeneous system:

ẊGNH = ẊGH + ẊPNH = AXGH + {AXPNH + B(t)}
= A(XGH + XPNH) + B(t) = AXGNH + B(t).

(Be sure you follow this.) You should see that XGH, as a general solution, must contain two
arbitrary constants, so the expression for XGNH contains two arbitrary constants.

Let’s look at a simple example showing the structure of a nonhomogeneous system’s solution.

■ Example 5.6.1 The Solution of a Nonhomogeneous System
The system

ẋ = x + y + 2e−t

ẏ = 4x + y + 4e−t

can be written in the form Ẋ(t) =
[

1 1
4 1

]
X +

[
2e−t

4e−t

]
=

[
1 1
4 1

]
X + 2e−t

[
1
2

]
. The system

has eigenvalues λ1 = 3 and λ2 = −1, with corresponding eigenvectors V1 =
[

1
2

]
and V2 =[

1
−2

]
. (Check this.) Then the general solution of the associated homogeneous system Ẋ(t) =[

1 1
4 1

]
X is

XGH = c1e3t
[

1
2

]
+ c2e−t

[
1

−2

]
.

You should verify that a particular solution of the original nonhomogeneous system is given

by XPNH = e−t
[

0
−2

]
=

[
0

−2e−t

]
. Therefore, the general solution of the nonhomogeneous

system is

XGNH = XGH + XPNH = c1e3t

[
1

2

]
+ c2e−t

[
1

−2

]
+
[

0

−2e−t

]

=
[

c1e3t + c2e−t

2c1e3t − 2c2e−t − 2e−t

]
.

Check that this is the general solution of the original nonhomogeneous system. ■
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5.6.2 The Method of Undetermined Coefficients
The challenge in working with a nonhomogeneous system is to find a particular solution of
the nonhomogeneous system. There are various techniques for finding a particular solution.
We can use the variation of parameters technique of Section 4.4, but for systems the calculations
involved are very tedious. Therefore, we’ll restrict our attention to the method of undetermined
coefficients (Section 4.3), which is not so powerful but is easier to use. As we’ve seen in
Section 4.3 and Section 4.4, this method requires intelligent guessing. We have to ask ourselves
what terms are contained in B(t) but not in XGH—and then guess at the form of XPNH on the
basis of this information.

We should note that this method of undetermined coefficients can be used only when the

vector B(t) =
[
b1(t)
b2(t)

]
contains terms that are constants, exponential functions, sines, cosines,

polynomials, or any sum or product of such terms. For other kinds of functions making up
B(t), XPNH must be found using some other technique (for example, variation of parameters).

The next example illustrates the method with its resulting algebraic complexities.

■ Example 5.6.2 Using the Method of Undetermined Coefficients
Let’s consider the system dx

dt = x + sin t, dy
dt = t − y that we discussed at the beginning of this

section. We have Ẋ = AX + B(t), where A =
[

1 0
0 −1

]
and B(t) =

[
sin t

t

]
= sin t

[
1
0

]
+ t

[
0
1

]
.

The eigenvalues of A are 1 and −1, with corresponding eigenvectors

[
1
0

]
and

[
0
1

]
.

Thus, the general solution of the homogeneous system can be written as

XGH = c1et
[

1
0

]
+ c2e−t

[
0
1

]
.

(Verify the statements in this paragraph for yourself.)

Now we look for a particular solution of the original nonhomogeneous equation. First, we
compare the terms of B(t) with the terms of XGH to see whether there is any duplication. In
this case, we see that the terms sin t and t are not terms that can be obtained just from XGH.
Because our system is equivalent to a single second-order differential equation, we realize
that we must find a function that can combine with its own first and second derivatives to
yield B(t). We take a guess that XPNH must look like C sin t + D cos t + Et + F, where C, D, E,
and F are vectors of constants. Our trial solution for XPNH consists of a linear combination
of the functions sin t and t and their derivatives—a linear combination with undetermined
coefficients.
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Let’s substitute our guess into the nonhomogeneous system:

ẊPNH︷ ︸︸ ︷
C cos t − D sin t + E = A

⎛
⎝ XPNH︷ ︸︸ ︷

C sin t + D cos t + Et + F

⎞
⎠ +

B(t)︷ ︸︸ ︷
sin t

[
1
0

]
+ t

[
0
1

]

= AC sin t + AD cos t + AEt + AF + sin t
[

1
0

]
+ t

[
0
1

]
.

When we collect like terms, matching the coefficients of functions on each side, we get the
following system:

(1) C = AD [The coefficients of cos t must be equal.]

(2) −D = AC +
[

1
0

]
[The coefficients of sin t must be equal.]

(3) 0 = AE +
[

0
1

]
[The coefficients of t must be equal.]

(4) E = AF [The constant terms must be equal.]

Remembering that A =
[

1 0
0 −1

]
, we can solve Equation (3) for E:

AE = −
[

0
1

]
=
[

0
−1

]
, or

[
1 0
0 −1

] [
e1

e2

]
=
[

0
−1

]
,

so e1 = 0 and e2 = 1. (Check this.) Now that we know E, we can use Equation (4) to find F:[
0
1

]
=
[

1 0
0 −1

] [
f1
f2

]
,

so f1 = 0 and f2 = −1.

If we multiply both sides of (1) by A, we get AC = A2D = D (because A2 = I, the 2 × 2

identity matrix), which we can substitute into Equation (2): −D = D+
[

1
0

]
, or

[−1
0

]
= 2D =[

2d1

2d2

]
, so d1 = −1

2 and d2 = 0. (Make sure you follow all this.) Finally, we solve (1) for C:[
c1

c2

]
=
[

1 0
0 −1

] [−1/2
0

]
, so c1 = −1

2 and c2 = 0.

We have determined all the coefficients. Putting the pieces together, we have

XPNH =
[−1/2

0

]
sin t +

[−1/2
0

]
cos t +

[
0
1

]
t +

[
0

−1

]
=
[−1

2 (sin t + cos t)
t − 1

]
,
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and we finally obtain

XGNH = XGH + XPNH

= c1et

[
1

0

]
+ c2e−t

[
0

1

]
+
⎡
⎣−1

2
(sin t + cos t)

t − 1

⎤
⎦ =

⎡
⎣c1et − 1

2
(sin t + cos t)

t − 1 + c2e−t

⎤
⎦

as the general solution of the original nonhomogeneous equation.

Note that the system in this example is uncoupled—that is, each equation contains only one
unknown function. Problem B1 in Exercises 5.6 asks you to solve each equation separately
to obtain the same answer as the one shown here. ■

Practice in the technique of undetermined coefficients leads to a more systematic way of
guessing a possible solution of the nonhomogeneous system. The second column of Table 5.2
indicates the component of XPNH that corresponds to the matching component bi(t) of B(t).
If bi(t) is a sum of different functions, then it is a consequence of the Superposition Principle
that the matching component of XPNH is a sum of trial solutions.

There is an exception to the neatness of the table. If bi(t) contains terms that duplicate any
corresponding parts of XGH, then each corresponding trial term must be multiplied by tm,
where m is the smallest positive integer that eliminates the duplication.

In Example 5.6.2, we had b1(t) = sin t and b2(t) = t—a trigonometric function (a cos rt +
b sin rt, with a = 0, r = 1, and b = 1) and a first-degree polynomial (Pn(t) = antn+an−1tn−1+
· · · + a1t + a0, where n = 1, a1 = 1, and a0 = 0). There was no duplication between XGH

and B(t) because the terms making up XGH are exponential functions. Consequently, our
educated guess for XPNH consisted of a linear combination of sine and cosine plus a first-degree
polynomial.

Let’s use the instant wisdom conferred by Table 5.2 to solve the next problem.

Table 5.2 Trial Particular Solutions for Nonhomogeneous Systems

bi(t) Form of Trial Solution

c 	= 0, a constant K , a constant

Pn(t) = antn + an−1tn−1 + · · · + a1t + a0 Qn(t) = cntn + cn−1tn−1 + · · · + c1t + c0

ceat Keat

a cos rt + b sin rt α cos rt + β sin rt

eRt(a cos rt + b sin rt) eRt(α cos rt + β sin rt)

Pn(t)eat Qn(t)eat
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■ Example 5.6.3 Undetermined Coefficients
Suppose we try to solve the system dx

dt = y, dy
dt = 3y − 2x + 2t2 + 3e2t . We can write this system

as Ẋ = AX + B(t), where A =
[

0 1
−2 3

]
and B(t) =

[
0

2t2 + 3e2t

]
= (

2t2 + 3e2t
) [0

1

]
. The

eigenvalues of A are 1 and 2, with corresponding eigenvectors
[

1
1

]
and

[
1
2

]
. (Verify this.)

We know that the general solution of the homogeneous system is given by

XGH = c1et
[

1
1

]
+ c2e2t

[
1
2

]
.

To find a particular solution of the nonhomogeneous system, we compare the terms of B(t)
with the terms of XGH to see whether there is any duplication. In this example, ignoring
constants, we see that e2t appears in both XGH and B(t). We also recognize that the term t2

in B(t) is not found in XGH. Using Table 5.2 and the description of how to handle duplicate
terms, we guess that XPNH must look like

Ct2 + Dt + E + Fe2t + Gte2t ,

where C, D, E, F, and G are vectors of constants. Note that because there is a second-degree
term, our trial particular solution contains a full quadratic polynomial and multiplying e2t

by t eliminates the duplication.

If we substitute this guess into the nonhomogeneous system, we get

2Ct + D + 2Fe2t + Ge2t + 2Gte2t = A
(
Ct2 + Dt + E + Fe2 t + Gte2t) + (

2t2 + 3e2t) [0

1

]

= ACt2 + ADt + AE + AFe2t + AGte2t + (
2t2 + 3e2t) [0

1

]

=
(

AC +
[

0
2

])
t2 + ADt + AE +

(
AF +

[
0
3

])
e2t + AGte2t .

Matching the coefficients of like terms on each side, we get the system

(1) 0 = AC +
[

0
2

]
[The coefficients of t2 must be equal.]

(2) 2C = AD [The coefficients of t must be equal.]

(3) D = AE [The constant terms must be equal.]

(4) 2F + G = AF +
[

0
3

]
[The coefficients of e2t must be equal.]

(5) 2G = AG [The coefficients of te2t must be equal.]
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Working through these equations (see Problem B3 in Exercises 5.6), we find that

C =
[

1
0

]
, D =

[
3
2

]
, E =

[7
2
3

]
, F =

[
0
3

]
, and G =

[
3
6

]
.

Now that we’ve determined the coefficients C, D, E, F, and G, we can construct the particular
solution of the nonhomogeneous equation.

XPNH =
[

1
0

]
t2 +

[
3
2

]
t +

[7
2
3

]
+
[

0
3

]
e2t +

[
3
6

]
te2t .

Finally, we get the general solution of the nonhomogeneous equation:

XGNH = XGH + XPNH

= c1et
[

1
1

]
+ c2e2t

[
1
2

]
+
[

1
0

]
t2 +

[
3
2

]
t +

[7
2
3

]
+
[

0
3

]
e2t +

[
3
6

]
te2t

=
[

c1et + c2e2t + t2 + 3t + 7
2 + 3te2t

c1et + 2c2e2t + 2t + 3 + 3e2t + 6te2t

]

=
[

c1et + (c2 + 3t) e2t + t2 + 3t + 7
2

c1et + (2c2 + 3 + 6t) e2t + 2t + 3

]
.

Of course, this means that x(t) = c1et +(c2 +3t)e2t + t2 +3t +7/2 and y(t) = c1et +(2c2 +3+
6t)e2t + 2t + 3 are the solutions of our system. You should check to see that these functions
satisfy our original system. ■

When the nonhomogeneous system is also autonomous—that is, it has the form Ẋ = AX+B(t),
where the entries of B(t) are constants—we can analyze the stability of the system’s solutions
by finding the equilibrium point(s) (no longer the origin) and considering the eigenvalues
and eigenvectors of the matrix A.

■ Example 5.6.4 Stability of an Autonomous Nonhomogeneous
System

We return to the system of Example 4.7.3:

ẋ = 7y − 4x − 13

ẏ = 2x − 5y + 11.

To find the equilibrium point(s), we solve the algebraic system

−4x + 7y = 13

2x − 5y = −11
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to find that (2, 3) is the only equilibrium point. (The details in this example are left as parts
of Problem B5 in Exercises 5.6.)

We can write our system of differential equations in the form

Ẋ = AX + B(t) =
[−4 7

2 −5

][
x

y

]
+
[−13

11

]
.

Because the eigenvalues of A are λ1 =
(√

57 − 9
)
/2 and λ2 = −

(√
57 + 9

)
/2, both of which

are negative real numbers, Table 5.1 at the end of Section 5.5 tells us that the equilibrium
point (2, 3) is a sink. (Go back to take another look at Figure 4.9.) ■

Despite its limitations, the method of undetermined coefficients is very useful. In Chapter 6,
we’ll see another way of solving systems of nonhomogeneous linear equations, by means
of the Laplace transform. This transform method is particularly useful in solving initial-value
problems.

Exercises 5.6
A

1. Find the particular solution of the system in Example 5.6.2 that satisfies x(0) = 0, y(0) = 1.
2. Find the particular solution of the system in Example 5.6.3 that satisfies x(0) = −1, y(0) = 2.

Without using technology, find the general solution of each of the systems in Problems 3–15.
You may check your answers using a CAS.

3. ẋ = y + 2et , ẏ = x + t2

4. ẋ = y − 5 cos t, ẏ = 2x + y

5. ẋ = 3x + 2y + 4e5t , ẏ = x + 2y

6. ẋ = 3x − 4y + e−2t , ẏ = x − 2y − 3e−2t

7. ẋ = 4x + y − e2t , ẏ = y − 2x [Hint: Multiples of both e2t and te2t should appear in your guess for
XPNH.]

8. ẋ = 2y − x + 1, ẏ = 3y − 2x [Hint: Multiples of both et and tet should appear in your guess for
XPNH.]

9. ẋ = 5x − 3y + 2e3t , ẏ = x + y + 5e−t

10. ẋ = x + y + 1 + et , ẏ = 3x − y

11. ẋ = 2x − y, ẏ = 2y − x − 5et sin t

12. ẋ = x + 2y, ẏ = x − 5 sin t

13. ẋ = y, ẏ = −2x − 3y + sin t + et

14. ẋ = −2x + y + 2e−t , ẏ = x − 2y + 3t

15. ẋ = x + y + et , ẏ = y + e−t
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B
1. Consider each equation in Example 5.6.2 as a first-order linear equation and solve each equation

separately, confirming that you get the same answer as in the worked-out example. (You may
have to review Section 2.2 and the technique of integration by parts.)

2. a. Use technology to draw the phase portrait for the system in Example 5.6.2.
b. Draw a graph of x(t) vs. t.
c. Draw a graph of y(t) vs. t.

3. Assume that you have Equations (1)–(5) in Example 5.6.3. Let C =
[

c1

c2

]
, D =

[
d1

d2

]
, etc. Solve for

the vectors C, D, E, F, and G in the following order:

a. Use Equation (1) to show that C =
[

1
0

]
.

b. Use Equation (2) to show that D =
[

3
2

]
.

c. Use Equation (3) to show that E =
[

7/2
3

]
.

d. Assuming that G is not the zero vector, use Equation (5) to derive a general form for G. (There
is an arbitrary constant involved.)

e. Substitute the general form for G found in part (d) into Equation (4) to determine the concrete

form of G. Then use this information to see that a convenient form for F is

[
0
3

]
.

4. a. Use technology to draw the phase portrait for the system in Example 5.6.3.
b. Draw the graph of x(t) vs. t, assuming that x(0) = 50.
c. Draw the graph of y(t) vs. t, assuming that y(0) = 100.

5. Look at the system in Example 5.6.4.

a. Show that the only equilibrium point is (2, 3).
b. Show that the eigenvalues of the matrix of coefficients A are

λ1 =
(√

57 − 9
)
/2 and λ2 = −

(√
57 + 9

)
/2.

c. Find eigenvectors corresponding to λ1 and λ2.
d. Express the general solution of the homogeneous system in terms of the eigenvalues and

eigenvectors found in parts (b) and (c).
e. Find a particular solution of the nonhomogeneous system.
f. Put the answers to parts (d) and (e) together to get the general solution of the

nonhomogeneous system. Then determine what happens as t → ∞.

6. Newton’s laws of motion give the following system as a model for the motion of an object falling
under the influence of gravity:

dy
dt

= v(t)

dv
dt

= g − cv(t); y(0) = 0, v(0) = 0
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for 0 ≤ t ≤ T , where y(T) = H. Here, y(t) denotes the downward distance from the spot where
the object was dropped to the place where the falling object is at time t; v(t) is the velocity; g is
the gravitational constant; and c is the drag coefficient, representing air resistance.

a. Without using technology, solve this nonhomogeneous system for y(t) and v(t).
b. Find lim

t→∞ v(t) and interpret your answer in physical terms.

7. A cold medication moving through the body can be modeled4 by the IVP

ẋ = −k1x + I

ẏ = k1x − k2y; x(0) = 0, y(0) = 0,

where x(t) and y(t) are the amounts of medication in the GI tract and the bloodstream,
respectively, at time t measured in hours elapsed since the initial dosage. Here, I > 0 is the
constant dosage rate and k1, k2 are positive transfer rates (out of the GI tract and bloodstream,
respectively).

a. Without using technology, solve the nonhomogeneous system for x(t) and y(t).
b. Find lim

t→∞ x(t) and lim
t→∞ y(t).

c. Assume that the decongestant part of a continuous acting capsule (such as Contac�) has
k1 = 1.386/hr and k2 = 0.1386/hr and that the antihistamine portion has k1 = 0.6931/hr
and k2 = 0.0231/hr. Also assume that I = 1/6 (i.e., one unit per six hours). Use technology
to graph x(t) against t and y(t) against t for the decongestant on the same set of axes.

d. Assuming the data given in part (c), use technology to graph x(t) and y(t) for the antihi-
stamine on the same set of axes.

8. The buying behavior of the public toward a particular product can be modeled by

dB
dt

= b(M − βB)

dM
dt

= a(B − αM) + cA,

where B = B(t) is the level of buying, M = M(t) is a measure of the public’s motivation or attitude
toward the product, and A = A(t) is the advertising policy. The parameters a, b, c, α, and β are all
assumed positive.

a. Show that for constant advertising (i. e., A(t) is a constant function), the buying levels tend to a
limiting value over time.

b. If α = β = 2, a = b = c = 1, B(0) = M(0) = 0, and

A(t) =
{

100 units for 0 < t < 10

0 for t > 10

determine the complete forecast for the buying behavior—that is, find B(t).

4 This model is based on the work of Edward Spitznagel of Washington University and was first communicated to me by Courtney Coleman,
Harvey Mudd College.
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9. A political race between two candidates can be modeled by the system

dx
dt

= ax − by + e

dy
dt

= −cx + dy − e,

where x(t) and y(t) represent the number of supporters of the two candidates and e > 0 denotes a
gain in supporters for the first candidate based on contact between those committed to the first
candidate and those who are uncommitted. The parameters a, b, c, and d are positive.

a. Determine conditions involving a, b, and e guaranteeing that dx/dt > 0.
b. Determine conditions involving c, d, and e guaranteeing that dy/dt > 0.
c. Determine conditions guaranteeing equilibrium in the system.

10. Consider a closed, two-compartment model in which the initial concentrations of a dye are
2 mg/liter in Compartment 1 and 10 mg/liter in Compartment 2. The compartments have constant
volumes of 10 and 20 liters, respectively, and are separated by a permeable membrane that allows
transfer between the compartments at the rate of 0.25/hour.

a. Determine formulas for the concentrations of dye at any time t in each compartment.
b. Determine what happens to the concentrations in each compartment as t → ∞.

C

1. During World War I, the English scientist F. W. Lanchester (1868–1946) devised several mathe-
matical models for the new art of aerial combat. These models have since been extended and
applied to various modern conflicts. One model, describing the interaction of two conventional
armies (as opposed to guerrilla forces or a mixture of conventional and guerrilla forces), is given
by

dx
dt

= −ay + f (t) − c

dy
dt

= −bx + g(t) − d; x(0) = α, y(0) = β,

where x(t) and y(t) represent the strengths of the opposing forces at time t; a and b denote
nonnegative loss rates; c and d are constant noncombat losses per day; and f (t) and g(t) denote
reinforcement rates in number of combatants per day.

a. Assuming that f (t) = k and g(t) = l (k and l are constants) during a battle, determine the
strengths of each army at time t during the battle.

b. If α > l−d
b > 0 and β > k−c

a > 0, determine the conditions under which the y-force will be
wiped out.

c. Assume that a = 0.006, b = 0.008, c = d = 1000, k = 6000, l = 4000, α = 90,000, and
β = 200,000, where c, d, k, and l are measured in men per day. Use technology to graph x(t) and
y(t) for 0 ≤ t ≤ 50. Then use the graphs to determine the time t∗ when x(t∗) = y(t∗). Which
side is winning after 50 days?
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2. A two-compartment model for cholesterol flow yields the following nonhomogeneous system:

dx
dt

= −(α + β)x + γy + K1 + K2

dy
dt

= βx − γy + K3,

where x and y denote the amounts of cholesterol in the two compartments, β and γ represent rates
at which cholesterol moves from one compartment to the other, α represents a rate of excretion,
and K1, K2, K3 denote the rates at which cholesterol flows into the compartments.

a. Solve the system, using technology for lengthy algebraic calculations.
b. Describe the behavior of the solutions x(t) and y(t) over a long period of time.

5.7 GENERALIZATIONS: THE n × n CASE (n ≥ 3)
5.7.1 Matrix Representation
We are going to extend our previous analysis of systems, first to 3 × 3 systems and then to
nth-order linear systems. We can use matrix notation to represent a third-order system with
constant coefficients

ẋ1 = a11x1 + a12x2 + a13x3

ẋ2 = a21x1 + a22x2 + a23x3

ẋ3 = a31x1 + a32x2 + a33x3

symbolically, in the form Ẋ = AX, where

X =
⎡
⎣x1

x2

x3

⎤
⎦, Ẋ =

⎡
⎣ẋ1

ẋ2

ẋ3

⎤
⎦,

and

A =
⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦.

■ Example 5.7.1 Matrix Representation of a 3 × 3 System
The system ẋ = −2x + 4y − z, ẏ = 5x − y + 3z, ż = x + z can be written first in the usual verti-
cal way

ẋ = −2x + 4y − z ẋ = −2x + 4y − z
ẏ = 5x − y + 3z or ẏ = 5x − y + 3z
ż = x + z ż = x + 0y + z
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and then more compactly as ⎡
⎣ẋ

ẏ
ż

⎤
⎦ =

⎡
⎣−2 4 −1

5 −1 3
1 0 1

⎤
⎦
⎡
⎣x

y
z

⎤
⎦.

■

5.7.2 Eigenvalues and Eigenvectors
It is important to understand that the concepts of eigenvalue and eigenvector are valid for
any system of n equations in n unknowns (n ≥ 2). Specifically, given a system Ẋ = AX, where
X is a nonzero 3 × 1 column matrix (vector) and A is a 3 × 3 matrix, then an eigenvalue λ is a
solution of the equation AX = λX. Given an eigenvalue λ, an eigenvector associated with λ is
a nonzero vector V that satisfies the equation AV = λV .

The equation AX = λX can be expressed as AX − λX = 0, where 0 denotes the 3 × 1 vector
consisting entirely of zeros. This matrix equation is equivalent to the homogeneous algebraic
system

(a11 − λ) x1 + a12x2 + a13x3 = 0

a21x1 + (a22 − λ) x2 + a23x3 = 0

a31x1 + a32x2 + (a33 − λ) x3 = 0,

or ⎡
⎣a11 − λ a12 a13

a21 a22 − λ a23

a31 a32 a33 − λ

⎤
⎦
⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦. (5.7.1)

Now the matrix of coefficients in (5.7.1) can be expressed as⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦ −

⎡
⎣λ 0 0

0 λ 0
0 0 λ

⎤
⎦ =

⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦ − λ

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ = A − λI,

so the equation AX − λX = 0 can be written as (A − λI)X = 0, where I is the 3 × 3 identity
matrix consisting of ones down the main diagonal and zeros elsewhere. (The matrix I is such
that IX = X for any 3 × 1 vector X. See Section 5.1 for the 2 × 2 case.)

The equation (A − λI)X = 0 represents a homogeneous algebraic system of three linear equa-
tions in three unknowns, and the theory of linear algebra indicates that there is a number �

depending on the matrix of coefficients with the following important property:

The System (5.7.1) has only the zero solution x1 = x2 = x3 = 0 if � 	= 0. However, if � = 0,
then there is a solution x1, x2, x3 with at least one of the xi(i = 1, 2, 3) different from zero.



5.7 Generalizations: The n × n Case (n ≥ 3) 283

This number � is the determinant of the matrix of coefficients in (5.7.1), denoted by
det(A − λI), and it is the extension to three dimensions of the determinant introduced
in Section 5.2. (See Problem B2 of Exercises 5.1 and Problem B1 of Exercises 5.2 for the
significance of the 2 × 2 determinant in the solution of a system of equations.) Therefore,
(A − λI)X = 0 has a nonzero solution X only if det(A − λI) = 0. An important fact is that
det(A−λI) is a third-degree polynomial in λ, called the characteristic polynomial of A, so the
eigenvalues of A are the roots of the characteristic equation det(A − λI) = 0. There are algorithms
for calculating determinants of 3×3 systems, but they are tedious and any graphing calculator
or CAS can evaluate them. In particular, a CAS will provide characteristic polynomials, eigen-
values, and corresponding eigenvectors. Also, there are formulas for solving cubic equations,
but these methods are more complicated than the quadratic formula, and it is advisable to
use your calculator or computer to solve such equations.

Let’s use technology in the next example to calculate determinants, eigenvalues, and
eigenvectors for a three-dimensional system.

■ Example 5.7.2 Eigenvalues and Eigenvectors via a CAS
Let’s look at the matrix of coefficients in Example 5.7.1:

A =
⎡
⎣−2 4 −1

5 −1 3
1 0 1

⎤
⎦.

A computer algebra system provides the information that det(A) = − 7, the characteristic
equation is λ3 + 2λ2 − 20λ + 7 = 0, and the eigenvalues (rounded to four decimal places)
are λ1 = 3.3485, λ2 = −5.7143, and λ3 = 0.3658. The corresponding representative eigen-
vectors are

V1 =
⎡
⎣2.3485

3.3903
1

⎤
⎦, V2 =

⎡
⎣−6.7143

6.4848
1

⎤
⎦, and V3 =

⎡
⎣−0.6342

−0.1251
1

⎤
⎦.

Don’t be concerned if your CAS or calculator gives you eigenvectors that are different from
these. You should check to see that each eigenvector you find is a constant multiple of one of
the vectors V1, V2, and V3 given here. ■

5.7.3 Linear Independence and Linear Dependence
At this point you should be asking yourself, “What do these eigenvalues and eigenvectors tell
me about the system?” Just as in the 2 × 2 case, we can write the general solution of a 3 × 3
system in terms of the eigenvalues and eigenvectors of the matrix of coefficients. To see what’s
going on, we’ll need a few concepts that we have already seen in the 2 × 2 case. For example,
given a number of vectors v1, v2, . . . , vk, a linear combination of these vectors is a vector that
has the form a1v1 +a2v2 +· · ·+akvk for some choice of scalars a1, a2, . . . , ak. The collection of
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vectors is called linearly independent if the only way you can have a1v1+a2v2+· · ·+akvk = 0
(the zero vector) is to have a1 = a2 = · · · = ak = 0. If you could find scalars ai, not all zero, so
that a linear combination of the vectors vi was equal to the zero vector, then we say that the
collection of vectors is linearly dependent. To see what linear dependence means, suppose
that a1v1 + a2v2 + · · · + akvk = 0 and one of the scalars, say aj, is not zero. Then we can write

a1v1 + a2v2 + · · · + ajvj + · · · + akvk = 0,

ajvj = −a1v1 − a2v2 − · · · − aj−1vj−1 − aj+1vj+1 − · · · − akvk,

or

vj =
(

−a1

aj

)
v1 +

(
−a2

aj

)
v2 + · · · +

(
−aj−1

aj

)
vj−1

+
(

−aj+1

aj

)
vj+1 + · · · +

(
−ak

aj

)
vk.

This last line tells us that if a collection of vectors is linearly dependent, then at least one of
the vectors is a linear combination of the others.

Let’s see some examples of these concepts.

■ Example 5.7.3 Linearly Independent and Linearly Dependent
Vectors

The three vectors

⎡
⎣1

0
2

⎤
⎦,

⎡
⎣0

1
2

⎤
⎦, and

⎡
⎣1

2
0

⎤
⎦ are linearly independent because the equation

a1

⎡
⎣1

0
2

⎤
⎦ + a2

⎡
⎣0

1
2

⎤
⎦ + a3

⎡
⎣1

2
0

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦

is equivalent to the algebraic system

a1 + a3 = 0

a2 + 2a3 = 0

2a1 + 2a2 = 0,

which you can solve to find that a1 = a2 = a3 = 0. (Do the work!)

On the other hand, the collection of vectors

⎡
⎣ 3

4
−4

⎤
⎦,

⎡
⎣0

1
2

⎤
⎦, and

⎡
⎣1

2
0

⎤
⎦ is linearly dependent

because the vector equation

a1

⎡
⎣ 3

4
−4

⎤
⎦ + a2

⎡
⎣0

1
2

⎤
⎦ + a3

⎡
⎣1

2
0

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦
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is equivalent to the algebraic system

3a1 + a3 = 0

4a1 + a2 + 2a3 = 0

−4a1 + 2a2 = 0,

which has infinitely many solutions of the form a1 = K , a2 = 2K , and a3 = −3K . In particular,
we can let K = 1, so we have the nonzero solution a1 = 1, a2 = 2, and a3 = −3. Note, for
example, that we can write ⎡

⎣ 3
4

−4

⎤
⎦ = −2

⎡
⎣0

1
2

⎤
⎦ + 3

⎡
⎣1

2
0

⎤
⎦.

■

Now suppose that we have the system Ẋ = AX, where X is a 3×1 vector and A is a 3×3 matrix
of constants. If A has three distinct real eigenvalues λ1, λ2, λ3, then the theory of linear algebra
tells us that the corresponding eigenvectors V1, V2, V3 are linearly independent. Further-
more, the vectors eλ1tV1, eλ2tV2, eλ3tV3 are linearly independent, and the general solution of
Ẋ = AX is

X(t) = c1eλ1tV1 + c2eλ2tV2 + c3eλ3tV3, (5.7.2)

where c1, c2, and c3 are arbitrary constants. Compare this with (5.3.1).

■ Example 5.7.4 Solving a 3 × 3 System via Eigenvalues and
Eigenvectors

Consider the system

ẋ = 4x + z

ẏ = −2y

ż = −z.

The matrix of coefficients is A =
⎡
⎣4 0 1

0 −2 0
0 0 −1

⎤
⎦, and a CAS calculates the eigenvalues to be

λ1 = 4, λ2 = −1, and λ3 = −2, with corresponding eigenvectors

V1 =
⎡
⎣1

0
0

⎤
⎦, V2 =

⎡
⎣ 1

0
−5

⎤
⎦, and V3 =

⎡
⎣0

1
0

⎤
⎦.
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Note that these vectors must be linearly independent because the eigenvalues are distinct real
numbers. Thus, by (5.7.2), the general solution of our system is given by

X(t) = c1e4t

⎡
⎣1

0
0

⎤
⎦ + c2e−t

⎡
⎣ 1

0
−5

⎤
⎦ + c3e−2t

⎡
⎣0

1
0

⎤
⎦

=
⎡
⎣c1e4t + c2e−t

c3e−2 t

−5c2e−t

⎤
⎦.

In this example, we could have noticed that the second and third differential equations making
up our original system were separable. After solving each of these, we could have substituted
for z in the first equation, which would then be a simple linear equation in x. (Do this and
compare your answer with the one given previously.)

A trajectory in x-y-z space (corresponding to the initial conditions x(0) = 2, y(0) = 5, and
z(0) = −10) is shown in Figure 5.17, and the same trajectories in the t-z plane and the y-z
plane are shown in Figures 5.18a and 5.18b, respectively.

z

y x

22

1
2

3
4

5
1.5

0.5
1

24

26

28

210

FIGURE 5.17
Solution of ẋ = 4x + z, ẏ = −2y, ż = −z; x(0) = 2, y(0) = 5, z(0) = −10; 0 ≤ t ≤ 2

z

t

22

24

26

28

0.2 0.6 1 1.2 1.6 2
210

FIGURE 5.18a
Graph of z(t), 0 ≤ t ≤ 2
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z
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26

28

1 2 3 4 5
210

FIGURE 5.18b
Graph of z(t) vs. y(t), 0 ≤ t ≤ 2

Note that the graph of a solution of this system is really four-dimensional, a set of points
of the form (t, x(t), y(t), z(t)). Therefore, what Figure 5.17 is showing is a projection of a four-
dimensional curve onto three-dimensional x-y-z space. ■

Accepting the fact that a 3 × 3 matrix has a cubic characteristic equation, we realize that we
can have (1) three distinct real eigenvalues, (2) one distinct real eigenvalue and a different
repeated real eigenvalue, (3) one repeated real eigenvalue, or (4) one real eigenvalue and a
complex conjugate pair of eigenvalues. Possibilities 1 and 4 are handled easily by Formula
(5.7.2). However, when we have repeated eigenvalues, we must find linearly independent
eigenvectors, sometimes by calculating one or more generalized eigenvectors. (Go back to
Example 5.4.2 and the discussion preceding it. Also see Problem C4 in Exercises 5.7.)

It should be clear how important the theory of linear algebra is to a full understanding of
higher-order differential equations and their equivalent systems, but we will not investigate
that theory further in this book.

The next example shows how techniques that we developed for two-dimensional systems in
Section 5.5 can be extended to three-dimensional systems.

■ Example 5.7.5 Solving a 3 × 3 System—Complex Eigenvalues
Look at the system ẋ = x, ẏ = 2x + y − 2z, ż = 3x + 2y + z. The matrix of coefficients

is A =
⎡
⎣1 0 0

2 1 −2
3 2 1

⎤
⎦. A CAS provides the characteristic equation λ3 − 3λ2 + 7λ − 5 =

(λ − 1)(λ2 − 2λ + 5) = 0, which has roots λ1 = 1, λ2 = 1 + 2i, and λ3 = 1 − 2i. A CAS also

gives the corresponding eigenvectors V1 =
⎡
⎣ 2

−3
2

⎤
⎦ , V2 =

⎡
⎣0

i
1

⎤
⎦, and V3 =

⎡
⎣ 0

−i
1

⎤
⎦. (Remember

that your calculator or CAS may give you eigenvectors that look different from these. Just
check to see that yours are multiples of the ones used here. Also, note that V2 and V3 are
conjugates of each other.)
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Now we can use (5.7.2) to write the general solution in the form

X(t) = c1et

⎡
⎣ 2

−3
2

⎤
⎦ + c2e(1+2i)t

⎡
⎣0

i
1

⎤
⎦ + c3e(1−2i)t

⎡
⎣ 0

−i
1

⎤
⎦.

However, we realize that X1(t) = et

⎡
⎣ 2

−3
2

⎤
⎦ is a solution of the system by itself.

Furthermore, extending what we saw in Section 5.5, we know that we need work only with
the first complex eigenvalue-eigenvector pair, because the other eigenvalue and eigenvector
are conjugates that produce the same solutions (see Problem B3 of Exercises 5.5). Therefore,
we consider only

X̃(t) = e(1+2i)t

⎡
⎣0

i
1

⎤
⎦ = et(cos(2t) + i sin(2t))

⎡
⎣0

i
1

⎤
⎦

= et

⎡
⎣ 0

− sin(2t) + i cos(2t)
cos(2t) + i sin(2t)

⎤
⎦ = et

⎡
⎣ 0

− sin(2t)
cos(2t)

⎤
⎦ + iet

⎡
⎣ 0

cos(2t)
sin(2t)

⎤
⎦.

From the preceding expression, we derive two linearly independent real-valued solutions of
our system:

X2(t) = Re
{
X̃(t)

}
= et

⎡
⎣ 0

− sin(2t)
cos(2t)

⎤
⎦ and X3(t) = Im

{
X̃(t)

}
= et

⎡
⎣ 0

cos(2t)
sin(2t)

⎤
⎦.

Finally, the Superposition Principle tells us that

X(t) = c1X1 + c2X2 + c3X3

= c1et

⎡
⎢⎣

2

−3

2

⎤
⎥⎦ + c2et

⎡
⎢⎣

0

− sin(2t)

cos(2t)

⎤
⎥⎦ + c3et

⎡
⎢⎣

0

cos(2t)

sin(2t)

⎤
⎥⎦

=
⎡
⎢⎣

2c1et

−3c1et − c2et sin(2t) + c3et cos(2t)

2c1et + c2et cos(2t) + c3et sin(2t)

⎤
⎥⎦

= et

⎡
⎢⎣

2c1

−3c1 − c2 sin(2t) + c3 cos(2t)

2c1 + c2 cos(2t) + c3 sin(2t)

⎤
⎥⎦
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is the real-valued general solution of the original system. If you use technology to solve
this problem, be aware that your CAS may express the solution functions in a different but
equivalent way. ■

5.7.4 Nonhomogeneous Systems
It is important to realize that we can also handle larger nonhomogeneous systems in this way,
using the relationship explored in Section 5.6: XGNH = XGH + XPNH. The method of unde-
termined coefficients becomes algebraically messier as the size of the system increases, and
in Chapter 6 we’ll examine a better way of handling such systems.

5.7.5 Generalization to n × n Systems
Everything we’ve done with 2 × 2 and 3 × 3 systems of equations can be generalized to n × n
systems. We can express a homogeneous nth-order linear system with constant coefficients

ẋ1 = a11x1 + a12x2 + a13x3 + · · · + a1nxn

ẋ2 = a21x1 + a22x2 + a23x3 + · · · + a2nxn

ẋ3 = a31x1 + a32x2 + a33x3 + · · · + a3nxn

...
...

...

ẋn = an1x1 + an2x2 + an3x3 + · · · + annxn

as Ẋ = AX, where

X =

⎡
⎢⎢⎢⎢⎢⎣

x1

x2

x3
...

xn

⎤
⎥⎥⎥⎥⎥⎦, Ẋ =

⎡
⎢⎢⎢⎢⎢⎣

ẋ1

ẋ2

ẋ3
...

ẋn

⎤
⎥⎥⎥⎥⎥⎦, and A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n

...
...

...
...

...

an1 an2 an3 · · · ann

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

■ Example 5.7.6 Matrix Form of a Four-Dimensional System
A compartmental analysis (see Section 2.3) of the processes involved in protein synthesis
in animals and humans uses radioactive isotopes as tracers. A particular four-compartment
model of this situation could lead to a system such as

ẋ1 = −2x1 + x2

ẋ2 = x1 − 2x2

ẋ3 = x1 + x2 − x3

ẋ4 = x3,
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where xi(t) denotes the fraction of the total administered radioactivity attached to the mate-
rial (albumen) in compartment i(i = 1, 2, 3, 4). The coefficients indicate flow rates of the
radioactive material from compartment to compartment.

In matrix terms, we can express this system as

⎡
⎢⎢⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−2 1 0 0
1 −2 0 0
1 1 −1 0
0 0 1 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦.

■

Extending the theory underlying the solution of algebraic systems of three linear equations in
three unknowns to systems of n equations in n unknowns, we state that any n × n matrix has
a determinant and that eigenvalues and eigenvectors can be defined for such square matrices.
Specifically, given a system Ẋ = AX, where X is an n × 1 column matrix (vector) and A is an
n×n matrix, an eigenvalue λ is a solution of the equation det(A−λI) = 0, where I is the n×n
identity matrix consisting of ones down the main diagonal and zeros elsewhere. Given an
eigenvalue λ, an eigenvector associated with λ is a nonzero vector V satisfying the equation
AV = λV .

The characteristic equation of an n × n matrix is an nth-degree polynomial. However, once
a polynomial has degree greater than or equal to 5, there is no longer a general formula
that gives the zeros. In general, the only way to tackle such equations is to use approximation
methods. A CAS—or even a graphing calculator—has various algorithms to do this.

Now suppose that we have the system Ẋ = AX, where X is an n × 1 vector and A is an
n × n matrix of constants. If A has n distinct real eigenvalues λ1, λ2, . . . , λn, then the theory
of linear algebra guarantees that the corresponding eigenvectors V1, V2, . . . , Vn are linearly
independent. Furthermore, the vectors eλ1tV1, eλ2tV2, . . . , eλntVn are linearly independent, and
the general solution of Ẋ = AX is

X(t) = c1eλ1tV1 + c2eλ2tV2 + · · · + cneλntVn, (5.7.3)

where c1, c2, . . . , cn are arbitrary constants. You should expect the usual complications when
there are repeated real roots, complex conjugate pairs of roots, and so forth.

If we investigate a mechanical system (Figure 5.19) consisting of two springs attached to two
movable masses, the physics of the situation gives us a pair of second-order linear differential
equations. In turn, this system of two equations can be expressed as a system of four first-order
linear equations.

The following example assumes that we start from the equilibrium position by giving one
mass an initial velocity. Most of the computational work will be done by a CAS.
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Equilibrium positionEquilibrium position

M1

z1 z2

M2

FIGURE 5.19
The spring-mass system for Example 5.7.7

■ Example 5.7.7 A Four-Dimensional System from Mechanics
Let’s consider the system

d2z1

dt2 = −11z1 + 6z2

d2z2

dt2 = −6z2 + 6z1,

where z1 is the distance of mass 1 from its equilibrium position and z2 is the distance of mass
2 from equilibrium. We’ll assume the initial conditions z1(0) = 0, z′

1(0) = 0, z2(0) = 0, and
z′

2(0) = 1.

Representation as a First-Order System
Introducing the new variables x1 = z1, x2 = dz1

dt , x3 = z2, and x4 = dz2
dt , we convert our pair of

second-order equations into the four-dimensional system of first-order equations

dx1

dt
= x2

dx2

dt
= −11x1 + 6x3

dx3

dt
= x4

dx4

dt
= −6x3 + 6x1,

with x1(0) = x2(0) = x3(0) = 0 and x′
3(0) = x4(0) = 1.
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Matrix Representation, Eigenvalues, Eigenvectors

We can express the last system as d
dt X =

⎡
⎢⎢⎣

0 1 0 0
−11 0 6 0

0 0 0 1
6 0 −6 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ = AX. A CAS gives the

characteristic equation of matrix A as λ4 + 17λ2 + 30 = 0, which we can factor as (λ2 +
15)(λ2 + 2) = 0, so the eigenvalues are λ1 = √

15i, λ2 = −√
15i, λ3 = √

2i, and λ4 = −√
2i.

The corresponding eigenvectors are

V1 =

⎡
⎢⎢⎢⎢⎣

3

3
√

15i

−2

−2
√

15i

⎤
⎥⎥⎥⎥⎦, V2 =

⎡
⎢⎢⎢⎢⎣

3

−3
√

15i

−2

2
√

15i

⎤
⎥⎥⎥⎥⎦, V3 =

⎡
⎢⎢⎢⎢⎣

2

2
√

2i

3

3
√

2i

⎤
⎥⎥⎥⎥⎦, and V4 =

⎡
⎢⎢⎢⎢⎣

2

−2
√

2i

3

−3
√

2i

⎤
⎥⎥⎥⎥⎦.

If you check this with a CAS, remember that you may get a different (but equivalent) form
for the eigenvectors.

The General Solution
On the basis of our previous experience with complex conjugate pairs of eigenvalues and
eigenvectors, we can just work with the pairs λ1, V1 and λ3, V3. First, we know that

X̂(t) = eλ1tV1 = e
√

15it

⎡
⎢⎢⎢⎢⎣

3

3
√

15i

−2

−2
√

15i

⎤
⎥⎥⎥⎥⎦ =

(
cos

(√
15t

)
+ i sin

(√
15t

))
⎡
⎢⎢⎢⎢⎣

3

3
√

15i

−2

−2
√

15i

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

3 cos
(√

15t
)

−3
√

15 sin
(√

15t
)

−2 cos
(√

15t
)

2
√

15 sin
(√

15t
)

⎤
⎥⎥⎥⎥⎥⎥⎦ + i

⎡
⎢⎢⎢⎢⎢⎢⎣

3 sin
(√

15t
)

3
√

15 cos
(√

15t
)

−2 sin
(√

15t
)

−2
√

15 cos
(√

15t
)

⎤
⎥⎥⎥⎥⎥⎥⎦ = X1(t) + iX2(t),

where both X1(t) and X2(t) are linearly independent real-valued solutions of the system. Then
we have

X̃(t) = eλ3tV3 = e
√

2it

⎡
⎢⎢⎢⎢⎣

2

2
√

2i

3

3
√

2i

⎤
⎥⎥⎥⎥⎦ =

(
cos

(√
2t
)

+ i sin
(√

2t
))⎡⎢⎢⎣

2
2
√

2i
3

3
√

2i

⎤
⎥⎥⎦
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=

⎡
⎢⎢⎢⎢⎢⎢⎣

2 cos
(√

2t
)

−2
√

2 sin
(√

2t
)

3 cos
(√

2t
)

−3
√

2 sin
(√

2t
)

⎤
⎥⎥⎥⎥⎥⎥⎦ + i

⎡
⎢⎢⎢⎢⎢⎢⎣

2 sin
(√

2t
)

2
√

2 cos
(√

2t
)

3 sin
(√

2t
)

3
√

2 cos
(√

2t
)

⎤
⎥⎥⎥⎥⎥⎥⎦ = X3(t) + iX4(t),

where X3(t) and X4(t) are linearly independent real-valued solutions of the system. The general
solution is

X(t) = c1X1 + c2X2 + c3X3 + c4X4

= c1

⎡
⎢⎢⎢⎢⎢⎢⎣

3 cos
(√

15t
)

−3
√

15 sin
(√

15t
)

−2 cos
(√

15t
)

2
√

15 sin
(√

15t
)

⎤
⎥⎥⎥⎥⎥⎥⎦ + c2

⎡
⎢⎢⎢⎢⎢⎢⎣

3 sin
(√

15t
)

3
√

15 cos
(√

15t
)

−2 sin
(√

15t
)

−2
√

15 cos
(√

15t
)

⎤
⎥⎥⎥⎥⎥⎥⎦

+ c3

⎡
⎢⎢⎢⎢⎢⎢⎣

2 cos
(√

2t
)

−2
√

2 sin
(√

2t
)

3 cos
(√

2t
)

−3
√

2 sin
(√

2t
)

⎤
⎥⎥⎥⎥⎥⎥⎦ + c4

⎡
⎢⎢⎢⎢⎢⎢⎣

2 sin
(√

2t
)

2
√

2 cos
(√

2t
)

3 sin
(√

2t
)

3
√

2 cos
(√

2t
)

⎤
⎥⎥⎥⎥⎥⎥⎦ .

Particular Solutions
The initial conditions x1(0) = x2(0) = x3(0) = 0 and x′

3(0) = x4(0) = 1 imply (Problem B1
in Exercises 5.7) that c1 = c3 = 0 and c2 = −2

√
15/195, c4 = 3

√
2/26. Therefore,

z1(t) = x1(t) = 3
√

2
13

sin
(√

2t
)

− 2
√

15
65

sin
(√

15t
)

and

z2(t) = x3(t) = 9
√

2
26

sin
(√

2t
)

+ 4
√

15
195

sin
(√

15t
)

.

■

If we are interested in the stability of an n×n system rather than its exact solution, we can give
a simplified version of the results we have seen for 2×2 systems (see Table 5.1 in Section 5.5):
If A is an n×n matrix of constants, then the equilibrium solution X = 0 for the system Ẋ = AX
is asymptotically stable (that is, it is a sink) if every eigenvalue of A has a negative real part
and is unstable if A has at least one eigenvalue with a positive real part. Furthermore, if all
eigenvalues have positive real parts, the n-dimensional origin X = 0 is a source; and if some
eigenvalues have positive real parts and others have negative real parts, the equilibrium point
is called a saddle point.
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In the next chapter we’ll learn another way to handle initial-value problems involving systems
of linear equations. The method of Laplace transforms, especially when implemented by a CAS,
is a powerful tool for solving various applied problems.

Exercises 5.7
A

For each of the systems in Problems 1–6, (a) write the system in the form Ẋ = AX; (b) use
technology to find eigenvalues and representative eigenvectors; and (c) express the general
solution as a single real-valued vector of functions.

1.
dx
dt

= x − y + z

dy
dt

= x + y − z

dz
dt

= 2x − y

2.
dx
dt

= x − 2y − z

dy
dt

= −x + y + z

dz
dt

= x − z

3.
dx
dt

= 3x − y + z

dy
dx

= x + y + z

dz
dt

= 4x − y + 4z

4.
dx
dt

= 2x + y

dy
dt

= x + 3y − z

dz
dt

= 2y + 3z − x

5.
dx
dt

= 2x − y + z

dy
dt

= x + 2y − z

dz
dt

= x − y + 2z
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6.
dx
dt

= 2x + 2z − y

dy
dt

= x + 2z

dz
dt

= y − 2x − z

7. For the system in Problem 1, use your CAS to plot the x-y-z space trajectory passing through the
point (0, 1, 0) when t = 0.

8. For the system in Problem 4, use your CAS to plot the x-y-z space trajectory passing through the
point (1, 1, −1) when t = 0.

B

1. In Example 5.7.7, use the initial conditions to show that c1 = c3 = 0 and
c2 = −2

√
15/195, c4 = 3

√
2/26.

2. a. Solve the initial value problem

dx
dt

= z + y − x

dy
dt

= z + x − y

dz
dt

= x + y + z,

x(0) = 1, y(0) = −1/3, z(0) = 0.

b. Use the explicit solution found in part (a) to calculate x(0.5), y(0.5), and z(0.5).
c. Use two or more numerical methods found in your CAS to approximate x(0.5), y(0.5), and

z(0.5). Compare the answers to each other and to the exact answers in part (a).
3. Solve the initial value problem

dx
dt

= y + z

dy
dt

= z + x

dz
dt

= x + y

x(0) = −1, y(0) = 1, z(0) = 0.

4. Consider the system

ẍ = 2x + ẋ + y

ẏ = 4x + 2y.

a. Convert this system to a system of three first-order equations, Ẏ = AY .
b. Use technology to find the eigenvalues of the matrix A in part (a).
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c. Use technology to find two linearly independent eigenvectors corresponding to the eigenvalues
found in (b).

d. Take W =
⎡
⎢⎣ t

1
−1 − 2t

⎤
⎥⎦ as a third eigenvector that is independent of the two found in part (c)

and give the general solution of Ẏ = AY .
e. Find the general solution x(t), y(t) of the original system.

5. Consider the two-mass, three-spring system shown here.

M1

x1 x2

F1(t) F2(t)

M2

If there are no external forces, and if the masses and spring constants are equal and of unit
magnitude, then the equations of motion are

x′′
1 = −2x1 + x2, x′′

2 = x1 − 2x2.

a. Transform the system of equations into a system of four first-order equations by letting
y1 = x1, y2 = x′

1, y3 = x2, and y4 = x′
2.

b. Find the eigenvalues of the matrix of coefficients for the system in part (a).
c. Solve the system in part (a) subject to the initial conditions y1(0) = 2, y2(0) = 1, y3(0) = 2,

y4(0) = 1. Describe the physical motion of the spring-mass system corresponding to this
solution.

d. Solve the system in part (a) subject to the initial conditions y1(0) = 2, y2(0) = √
3, y3(0) = −2,

y4(0) = −√
3. Describe the physical motion of the spring-mass system corresponding to this

solution.
e. Observe that the spring-mass system has two natural modes of oscillation in this problem. How

are the natural frequencies related to the eigenvalues of the coefficient matrix? Do you think
that there might be a third natural mode of oscillation with a different frequency?

C

1. There are three tanks (see the following figure) that pump fluid back and forth in the following
way: Tank A pumps fluid into tank B at a rate of 1% of its volume per hour and also back into itself
at a rate of 1% of the volume per hour. Tank B pumps into itself, tank A, and tank C, all at a rate of
2% of its volume per hour. Tank C pumps into tank B at a rate of 2% of its volume per hour and back
into itself at the rate of 3% of its volume per hour. Assuming that the initial volumes in tanks A, B,
and C are 23,000, 1000, and 1000 liters, respectively, describe the changes in volume of fluid in
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each tank as functions of time. (Use technology only to find the eigenvalues and corresponding
eigenvectors.)

A

B C

2. Suppose that you have a double pendulum—that is, one pendulum suspended from another, as
shown in the following figure. The laws of physics, after a simplifying change of variables, give us
the following system as a model for small oscillations about the equilibrium position:

ẋ = y

ẏ = −x + αu

u̇ = v

v̇ = x − u.

Here, α = (m2/m1) (1 + m2/m1)−1 , x = θ1, u = θ2 and y and v are the angular velocities θ̇1 and θ̇2,
respectively. For this problem, let α = 0.3.

a. Express the system in matrix form.
b. Use technology to find the eigenvalues of the system.
c. Use technology to find eigenvectors corresponding to the eigenvalues found in part (b).
d. Find the general real-valued solution of the system.

L

L

m2

m1

�2

�1

3. Consider the pair of 50 gallon tanks shown here. Initially, tank I is full of compound B and tank II is
full of compound C. Start to introduce compound A into each tank at the rates shown in the figure.
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2 gal/min
A

6 gal/min

5 gal/min

1 gal/min

I
50 gal

II
50 gal

4 gal/min

a. Let x1(t) and x2(t) denote the amount of compound A in tanks I and II, respectively. Similarly,
define y1(t), y2(t), z1(t), and z2(t) for the amounts of compounds B and C in tanks I and II. Now
write a system of six nonhomogeneous differential equations describing the flow of the various
substances into and out of tanks I and II, expressing any fractions in decimal form. Be sure to
write initial conditions.

b. Use technology to solve the IVP expressed in part (a).
c. Use technology to graph x1(t), y1(t), and z1(t) against t, all on the same set of axes.
d. Use technology to graph x2(t), y2(t), and z2(t) against t, all on the same set of axes.

4. Suppose you have a system Ẋ = AX, where A is a 3 × 3 matrix that has an eigenvalue λ of
multiplicity 3 and corresponding eigenvector V . Then it can be shown that the general solution of
the system can be written as c1X1 + c2X2 + c3X3, where X1 = eλtV , X2 = eλt(W + tV),
X3 = eλt(U + tW + t2

2 V), W satisfies (A − λI)W = V , and U satisfies (A − λI)U = W .

a. Find the repeated eigenvalue and representative eigenvector for the system

x′ = x + y + z

y′ = 2x + y − z

z′ = −3x + 2y + 4z.

b. Use the method described above and technology to write the general solution of this system.

5. Find the general solution of the nonautonomous, nonhomogeneous system

dx
dt

= 2t

dy
dt

= 3x + 2t

dz
dt

= x + 4y + t

a. by using ideas from Problem C4, followed by the technique of undetermined coefficients. (See
Section 5.6.)
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b. by solving the first equation and then substituting this solution in the second equation, and so
forth.

SUMMARY

By using matrices and their properties, we can write any n × n autonomous system of linear
equations with constant coefficients

ẋ1 = a11x1 + a12x2 + a13x3 + · · · + a1nxn

ẋ2 = a21x1 + a22x2 + a23x3 + · · · + a2nxn

ẋ3 = a31x1 + a32x2 + a33x3 + · · · + a3nxn

...
...

...

ẋn = an1x1 + an2x2 + an3x3 + · · · + annxn

in the compact form Ẋ = AX, where

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

...

xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, Ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ẋ1

ẋ2

ẋ3

...

ẋn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, and A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n

...
...

...
...

...

an1 an2 an3 · · · ann

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

For two-dimensional systems in which the matrix of coefficients A has a nonzero determinant,
the origin is the only equilibrium point. The qualitative behavior (stability) of such a linear
system is completely determined by the eigenvalues and eigenvectors of A. If the system
has two real eigenvalues l1 and l2, with λ1 	= λ2, and V1 and V2 are the corresponding
(linearly independent) eigenvectors, then the general solution of the system is given by X(t) =
c1eλ1tV1 + c2eλ2tV2. If the system has two real and equal eigenvalues, we can try to find
two linearly independent eigenvectors corresponding to the single eigenvalue. If we can’t
find two such eigenvectors, we can start with one eigenvector V and calculate a generalized
eigenvector W so that the general solution of the system can be written in the form X(t) =
c1eλtV + c2

[
teλtV + eλtW

]
. Finally, if the system has a pair of complex conjugate eigenvalues,

we can still write the solution as X(t) = c1eλ1tV1 + c2eλ2tV2, but we have to use Euler’s formula,
ep+qi = ep(cos(q)+i sin(q)), to simplify this expression and wind up with real-valued solutions.
Specifically, first we get a solution of the form X(t) = X1(t)+ iX2(t), where X1(t) and X2(t) are
real-valued matrix (vector) functions called the real part and the imaginary part, respectively,
of X(t). Then the real-valued general solution is X(t) = C1X1(t) + C2X2(t), where C1 and C2

are real numbers. Using these forms for the general solution of our system, we can analyze
the stability of the system qualitatively in terms of eigenvalues and eigenvectors. These results
were summarized in Table 5.1 at the end of Section 5.5.
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We may have a nonhomogeneous system

ẋ1 = a11x1 + a12x2 + a13x3 + · · · + a1nxn + b1(t)

ẋ2 = a21x1 + a22x2 + a23x3 + · · · + a2nxn + b2(t)

ẋ3 = a31x1 + a32x2 + a33x3 + · · · + a3nxn + b3(t)

...
...

...

ẋn = an1x1 + an2x2 + an3x3 + · · · + annxn + bn(t),

which can be written as Ẋ = AX + B(t), with

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

...

xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, Ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ẋ1

ẋ2

ẋ3

...

ẋn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n

...
...

...
...

...

an1 an2 an3 · · · ann

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, and B(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b1(t)

b2(t)

b3(t)
...

bn(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

In this situation, we know that the general solution, XGNH, of a linear nonhomogeneous
system is obtained by finding a particular solution, XPNH, of the nonhomogeneous system
and adding it to the general solution, XGH, of the homogeneous system: XGNH = XGH +XPNH.
The method of undetermined coefficients can be used to make an intelligent guess about the
particular solution if the entries of vector B(t) contain terms that are constants, exponential
functions, sines, cosines, polynomials, or any sum or product of such terms. For other kinds
of functions making up B(t), XPNH must be found using some other technique (for example,
variation of parameters).

Although we started with a thorough analysis of the equilibrium points and the stability of the
system near these points for two-dimensional systems of equations with constant coefficients,
we saw eventually that the concepts of eigenvalue and eigenvector were meaningful for systems
of n equations. Specifically, given a system Ẋ = AX, where X is an n×1 column matrix (vector)
and A is an n×n matrix, an eigenvalue λ is a solution of the equation det(A−λI) = 0, where I
is the n×n identity matrix consisting of ones down the main diagonal and zeros elsewhere. We
know that det(A−λI) is an nth-degree polynomial in λ. Given an eigenvalue λ, an eigenvector
associated with λ is a nonzero vector V satisfying the equation AV = λV .
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For values of n greater than 3, we lose the ordinary intuitive geometric interpretation of our
results. Also, when n is greater than or equal to 5, there is no general procedure we can follow
to solve the characteristic equations. We must use approximation methods, and technology
becomes crucial here. The question of the multiplicity of eigenvalues leads to complicated
linear-algebra considerations, and the general vector form of the solution of a system is
difficult to describe without delving more deeply into linear algebra.

PROJECT 5-1
A Vicious Circle
There are three species of omnivores on an island: xaccoons, yadgers, and zoyotes. Xaccoons
eat zoyotes, zoyotes prey on yadgers, and yadgers find xaccoons delicious. Given the species’
individual birth rates and predation rates, we can set up the following system:

ẋ = 21x − 9y

ẏ = 2y − 4z

ż = 6z − 7x.

Here, x(t), y(t), and z(t) denote the populations of the three species (in an obvious way) at
time t, where t is in centuries.

Long before human beings arrived on the island, the three species lived in a state of equilib-
rium. At time t = 0, shortly after humans discovered the island and disrupted the equilibrium
by hunting, chopping down trees, and so on, there were 300 xaccoons, 598 yadgers, and 323
zoyotes. (This is no longer the equilibrium state.)

a. Write the system in matrix terms, and use technology to find the eigenvalues and
eigenvectors of the system.

b. Solve the system IVP manually, using the results of part (a). (You may use technology
to solve an algebraic system of three equations in three unknowns.)

c. What were the equilibrium populations before humans arrived on the scene? [Look
at the solution in part (b) as t → −∞.]

d. Substitute the answers found in part (c) into the three differential equations making
up the system. For each population, what does the result say about its birth rate
compared to its loss by predation during the period of equilibrium?

e. Graph x(t) against t, 0 ≤ t ≤ 0.1. Graph y(t) against t, for 0 ≤ t ≤ 0.1 and then for
0 ≤ t ≤ 0.2. Graph z(t) against t for 0 ≤ t ≤ 0.16. (Use technology to obtain these
graphs.)

f. Which is the most acutely endangered species? After how many years will it become
extinct? At the time of this species’ extinction, what will be the populations of the
surviving species?
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PROJECT 5-2
Go with the Flow
The setup for a complicated mixing system is shown in the accompanying figure. We have
three tanks interconnected as indicated by pipes whose capacity of flow is 5 gal/min. Initially,
tank I contains 20 gallons of red paint, tank II contains 30 gallons of yellow paint, and tank
III contains 40 gallons of blue paint. What will be the mixture of paints in each tank at the
end of 5 minutes? Use technology to solve this problem.

5 gal/min

I

II III
5 

ga
l/m

in 5 gal/m
in

Comments: Let xi = the amount of red paint in tank i at time t, yi = the amount of yellow
paint in tank i at time t, and zi = the amount of blue paint in tank i at time t. Then the initial
conditions say that at t = 0, x1 = 20, x2 = 0, x3 = 0; y1 = 0, y2 = 30, y3 = 0; and z1 = 0, z2 =
0, z3 = 40. Furthermore, the flow pattern in the diagram, together with the observation that
the total volume in each tank is constant—20, 30, and 40 gallons, respectively—leads to
a system of nine differential equations. However, the system of three equations containing the
variables x1, x2, and x3 is exactly the same as the system containing the yi and the system containing
the zi. The only difference lies in the initial conditions. Physically, the obvious symmetry
of the tanks and the flow pattern explain this. Therefore, you need solve only one of the
three-dimensional systems and use it to find all three sets of variables by varying the initial
conditions.



CHAPTER 6

The Laplace Transform

INTRODUCTION

The idea of a transform, or transformation, is a very important one in mathematics and problem
solving in general. When you are faced with a difficult problem, it is often a good idea to change
it in some way into an easier problem, solve that easier problem, and then take your solution
and apply it to your original problem. One of the first examples of this process that you have
seen involves the idea of a logarithm. When John Napier and others developed logarithms in
the early 1600s, they served as an aid to calculation. Given a difficult multiplication problem,
you could transform it into an addition problem, perform the addition, and then transform
the answer back into the answer to the original problem. For example, if you wanted to
multiply 8743 by 2591, you could apply the natural logarithm to this product, getting the
sum ln(8743) + ln(2591) = 9.07600865918 . . . + 7.85979918056 . . . = 16.9358078397 . . . .
Then you would reverse the process by determining the number whose natural logarithm is
16.9358078397 . . . . That number, 22,653,113, should be the original product. The process of
going from the sum of logs back to the original product is called an inverse transformation.
Of course, we recognize that the inverse of the logarithmic transformation is the exponential
transformation:

f

f 21

x y 5 loga x

ay 5alogax

In elementary calculus, you evaluated certain integrals by changing variables—transforming
an integral in terms of x, say, to what you hope is a simpler integral in another variable, say u.
Back in Section 2.2 you encountered a transformation when you introduced an integrating fac-
tor into a linear equation. By multiplying the equation by the appropriate exponential factor,
you transformed the left-hand side into an exact derivative, which could then be integrated
to yield the unknown function. You solved the equation by changing it into an equivalent

Copyright © 2009, Elsevier Inc. 303
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form that was easier to deal with. The entire philosophy of using transformations in solving
problems can be stated simply: I. TRANSFORM; II. SOLVE; and III. INVERT.

The important mathematical tool known as the Laplace transform is named for the great French
mathematician Pierre-Simon de Laplace (1749–1827) who studied its properties, but it was
probably used earlier by Euler. This transformation will be useful to us because it removes
derivatives from differential equations and replaces them with algebraic expressions. In this
way, differential equations are replaced by algebraic equations. This transformation turns
out to be particularly powerful when we are dealing with initial-value problems, nonhomo-
geneous equations with discontinuous forcing terms, and systems of differential equations.
The downside is that the use of the Laplace transform is restricted to the solution of linear
differential equations and linear systems of differential equations.

6.1 THE LAPLACE TRANSFORM OF SOME IMPORTANT
FUNCTIONS

We start by assuming that f (t) is a function that is defined for t ≥ 0. The Laplace transform
of this function, L[f (t)], is defined as

L [f (t)] =
∫ ∞

0
f (t)e−stdt, (6.1.1)

when this improper integral exists. Note that after you’ve integrated with respect to t, the
result will have the parameter s in it—that is, this integral is a function of the parameter s, so
we can write L[f (t)] = F(s). We have transformed our function in t to a function in s.

Before we give some examples, let’s just examine the integral in (6.1.1). From basic calculus,
we know that the improper integral is defined as lim

b→∞
∫ b

0 f (t)e−stdt when this limit exists.

There are two important requirements here. First, the ordinary Riemann integral
∫ b

0 f (t)e−stdt
must exist for every b > 0; and then the limit must exist as b → ∞. Both requirements are
taken care of if we stick to continuous or piecewise continuous functions f (t) for which there exist
positive constants M and K such that

∣∣ f (t)
∣∣ < eM t for all t ≥ K . This says that the function f

doesn’t grow faster than an exponential function, so the integrand f (t)e−st in (6.1.1) behaves
like the function eMt ·e−st = e−(s−M)t for values of s greater than M and for t large enough. The
improper integral of this kind of function converges. (See Section A.6 for basic definitions
and examples.)

Now suppose that f (t) ≡ 1. Then

F(s) = L[1]
∫ ∞

0
1 · e−stdt = lim

b→∞

∫ b

0
e−stdt = lim

b→∞
e−st

−s

∣∣∣∣b
0

= 1
−s

(
lim

b→∞

(
e−sb − 1

))
= 1

s
.
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From this you can see that the Laplace transform of a constant function f (t) ≡ C is C
s for

s > 0. (Yes?)

Next, we can find L[t] by using integration by parts and the value of L[1]. For s > 0,

L[t] =
∫ ∞

0
te−stdt = lim

b→∞

∫ b

0
te−stdt

= lim
b→∞

{
te−st

−s

∣∣∣∣b
0

−
∫ b

0

e−st

−s
dt

}
= 0 + 1

s
L[1] = 1

s2 .

Similarly, we can show that L[t2] = 2
s3 and L[t3] = 6

s4 for s > 0. (See Problems A1 and A3 in
Exercises 6.1.) In general, for all integers n ≥ 0, it can be shown that

L [tn] = n!
sn+1 (s > 0), (6.1.2)

where 0! is defined to be 1.

From the basic properties of integrals, we can see that

L [c · f (t)] = c L [f (t)],

where c is any real constant, and that

L [f (t) + g(t)] = L [f (t)] + L [g(t)],

whenever the Laplace transforms of both f and g exist. Any transformation that satisfies the
last two properties is called a linear operator or a linear transformation. (See Section 2.2.)
If c1 and c2 are constants, then we can combine the two properties to write

L [c1f (t) + c2g(t)] = c1L [f (t)] + c2L [g(t)] . (6.1.3)

Extending (6.1.3), we can see how to calculate the Laplace transform of any polynomial function:

L
[
c0 + c1t + c2t2 + · · · + cktk + · · · + cntn

]
= L [c0] + L [c1t] + L [

c2t2] + · · · + L
[
cktk

]
+ · · · + L [cntn]

= c0 L [1] + c1L [t] + c2L [
t2] + · · · + ckL

[
tk
]

+ · · · + cnL [tn]

= c0

s
+ c1

s2 + 2c2

s3 + 6c3

s4 + · · · + k!ck

sk+1
+ · · · + n!cn

sn+1 (s > 0).

If a is a real number, let us find the Laplace transform of f (t) = ea t , an important function
for us because of its frequent appearance in differential equations. By definition,
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L [
eat] =

∫ ∞

0
eate−stdt = lim

b→∞

∫ b

0
e(a−s)tdt

= lim
b→∞

e(a−s)t

(a − s)

∣∣∣∣
b

0
= 1

a − s

(
lim

b→∞

(
e(a−s)b − 1

))
= − 1

a − s

= 1
s − a

for s > a.

Why is this assumption about s needed? In what step is the assumption crucial?

To have tools with which to handle a variety of differential equations, we have to stock our
warehouse with different Laplace transforms. Another basic function we should deal with is
sin at, where a is a real number. This transform requires two integrations by parts:

For s > 0, L[sin at] =
∫ ∞

0
sin at e−stdt = lim

b→∞
sin at

e−st

−s

∣∣∣∣b
0

−
∫ ∞

0
a cos at

e−st

−s
dt = a

s

∫ ∞

0
cos at e−stdt

= a
s

(
lim

b→∞
cos at

e−st

−s

∣∣∣∣b
0

−
∫ ∞

0
−a sin at

e−st

−s
dt

)

= a
s

(
1
s

− a
s
L [sin at]

)
,

so that (
1 + a2

s2

)
L [sin at] = a

s2 and L [sin at] = a
s2 + a2 .

Using one of the steps from this result, we can easily show that L [cos at] = s
s2+a2 . (See

Problem A4 in Exercises 6.1.)

To help set the stage for a type of applied differential equation problem that can be handled
neatly by using the Laplace transform, let’s find L[ f (t)] for the piecewise continuous function
defined as follows:

f (t) =
⎡
⎢⎣

t for 0 ≤ t ≤ 2

4 − t for 2 ≤ t ≤ 4

0 for t ≥ 4.

You should sketch the graph of this function. All we have to do is split the integral in Definition
(6.1.1) into three pieces, one corresponding to the interval [0, 2], another corresponding to
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[2, 4], and the last matching [4, ∞):

L [ f (t)] =
∫ 2

0
te−stdt +

∫ 4

2
(4 − t)e−stdt+

∫ ∞

4
0 · e−stdt

= 1 − e−2s − 2se−2s

s2 + e−4s − e−2s + 2se−2s

s2 = 1 + e−4s − 2e−2s

s2

for s > 0. (Carry out all the integrations yourself!)

Finally, before we can apply Laplace transforms to the solution of differential equations, we
have to know the transforms of f ′, f ′′, and higher-order derivatives. So suppose that F(s) =
L[f (t)] exists for s > c. Then we have, for s > c,

L [
f ′(t)

] =
∫ ∞

0
f ′(t)e−stdt

= lim
b→∞

f (t)e−st
∣∣∣∣b
0

+
∫ ∞

0
s f (t)e−stdt = −f (0) + s L [f (t)] ,

which we can write as

L [
f ′(t)

] = s L [f (t)] − f (0). (6.1.4)

Note that in this derivation, we are assuming that f (b)e−sb → 0 as b → ∞.

Now if we assume that f
(
be−sb

)
also tends to 0 as b → ∞, we can apply Formula (6.1.4)

twice, first with f replaced by f ′, to get

L [
f ′′(t)

] = −f ′(0) + s L [
f ′(t)

] = −f ′(0) + s [s L [f (t)] − f (0)]

= −f ′ (0) + s2L [f (t)] − s f (0),

so we can write

L [
f ′′(t)

] = s2L [f (t)] − s f (0) − f ′(0)
(
for s > c

)
. (6.1.5)

In general, for any positive integer n, if the nth derivative is continuous (or piecewise contin-
uous), and all the lower-order derivatives are continuous and have the proper growth rate,
then

L [
f (n)(t)

] = snL [f (t)] −
n∑

i=1

sn−if (i−1)(0)

= snL [f (t)] − sn−1f (0) − sn−2f ′(0) − · · · − s f (n−2)(0) − f (n−1)(0). (6.1.6)



308 CHAPTER 6: The Laplace Transform

It is important to note that this last formula implies that a linear differential equation with
constant coefficients will be transformed into a purely algebraic equation—that is, an equation
without derivatives. (Recognize that f (k)(0) is a number for k ≥ 0.)

As a hint of what we’ll be doing in the next few sections, we’ll convert a differential equation
into an algebraic expression by using the Laplace transform.

■ Example 6.1.1 The Laplace Transform of a
Differential Equation

Let’s look at the initial-value problem

x′′ + 3x′ + 2x = 12e2t ; x(0) = 1, x′(0) = −1.

We’re going to apply the Laplace transform to both sides of the equation and substitute the
initial conditions where appropriate:

L [
x′′ + 3x′ + 2x

] = L [
12e2t] ,

or, using the linearity of the transform—(6.1.3),

L[x′′] + 3 L[x′] + 2 L[x] = 12 L [
e2t] .

We have already calculated the Laplace transform of an exponential function. This, together
with Formulas (6.1.4) and (6.1.5), allows us to write

{
s2L[x(t)] − sx(0) − x′(0)

} + 3 {s L[x(t)] − x(0)} + 2 L[x(t)] = 12
s − 2

.

Now we substitute the given initial conditions to get

{
s2L[x(t)] − s + 1

} + 3 {s L[x(t)] − 1} + 2 L[x(t)] = 12
s − 2

.

Finally, collecting like terms, we find that

(
s2 + 3s + 2

)L[x(t)] = 12
s − 2

+ s + 2 = s2 + 8
s − 2

,

so we can solve for L[x(t)]:

L[x(t)] = s2 + 8
s − 2

· 1
s2 + 3s + 2

= s2 + 8

(s − 2)
(
s2 + 3s + 2

)
= s2 + 8

(s − 2)(s + 2)(s + 1)
.

Now what? We have an unknown function, the solution of an IVP, whose Laplace transform is
known. If we can reverse the process and figure out what function has this Laplace transform,
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we can solve our original initial-value problem. This is what we’ll focus on in the next
section. ■

Exercises 6.1
A

Use the definition and properties of the Laplace transform to find the Laplace transform of
the functions in Problems 1–16 and specify the values of s for which each transform exists.

1. f (t) = t2

2. g(t) = t2 − t

3. f (t) = t3

4. h(t) = cos at, where a is a real number

5. F(t) = t ea t , where a is a real number

6. s(t) = 2 cos 3t

7. u(t) = 10 + 100 e2 t

8. G(t) = ea t − eb t

a − b
, where a and b are real numbers, a 	= b

9. H(t) = 2t3 − 7t2 + 5t − 17

10. r(t) = 3 sin 5t − 4 cos 5t

11. U(t) = 2et − 3e−t + 4t2

12. S(t) = 3 − 5e2t + 4 sin t − 7 cos 3t

13. F(t) =
{

t for 0 < t < 4

0 for t > 4

14. fa(t) =
{

t/a for t < a

1 for t ≥ a
, where a ≥ 0

15. A(t) =

⎧⎪⎪⎨
⎪⎪⎩

1 for 0 ≤ t ≤ 1

2 − t for 1 ≤ t < 2

0 for 2 ≤ t

16. B(t) =

⎧⎪⎪⎨
⎪⎪⎩

1 for 0 ≤ t ≤ 2π

cos t for 2π ≤ t ≤ 7π/2

0 for 7π/2 ≤ t < ∞

In Problems 17–25, find the Laplace transform of the solution of each initial value problem,
assuming that the Laplace transform exists in each case. (Do not try to solve the IVPs.)

17. y′ − y = 0; y(0) = 1
18. y′ + y = e−x ; y(0) = 1
19. y′ = −y + e−2t ; y(0) = 2
20. y′ = −y + t2; y(0) = 1
21. y′′ + y = 0; y(0) = 1, y′(0) = 0
22. y′′ + 4y′ + 4y = 0; y(0) = 1, y′(0) = 1
23. y′′ − y′ − 2y = 5 sin x; y(0) = 1, y′(0) = −1
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24. 2y′′ + 3y′ − 2y = 1; y(0) = 0, y′(0) = 1/2
25. y′′′ − 2y′′ + y′ = 2ex + 2x; y(0) = 0, y′(0) = 0, y′′(0) = 0

B

1. Recall that the hyperbolic sine and hyperbolic cosine are defined as sinh(at) = (eat − e−at)/2 and
cosh(at) = (eat + e−at)/2, respectively. Find the Laplace transform of these two functions and give
the values of s for which the transforms exist.

2. Consider the IVP y′′ + 3y = w(t) ; y(0) = 2, y′(0) = 0, where

w(t) =
⎧⎨
⎩

t for 0 ≤ t < 1

1 for t ≥ 1.

a. Find L[w(t)].
b. Find L[y(t)].

3. Find the Laplace transform of the following periodic function.

f (t)

t

1

a 2a 3a 4a

21

4. Determine L[sin a t] using the fact that sin a t satisfies the differential equation y′′ + a2y = 0. Do
the same for L[cos a t].

5. Apply Formula (6.1.5) to the function f ′′(t) to show that

L[ f ′′′(t)] = s3L[ f (t)] − s2f (0) − s f ′(0) − f ′′(0).

6. If L[ f (t)] exists for s = α, prove that it exists for all s > α.
7. If f (t) = et2

for t ≥ 0, show that there are no constants M and K such that
∣∣ f (t)

∣∣ < e M t for all

t ≥ K . Thus, show that the Laplace transform of f (t) doesn’t exist. [Hint : et2
<eM t implies that

t2 < M t for t large enough.]
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8. Prove that L
[
e

3√t
]

exists, but L
[
e e t

]
does not exist.

9. Show that f (t) = 1 for t > 0 and g(t) =
{

5 for t = 3
1 for t 	= 3

have the same Laplace transforms, namely

1/s for s > 0. Can you think of other functions with the same Laplace transform? Explain your
answer.

10. Define

f (t) =
⎧⎨
⎩

1 for t = 0

t for t > 0.

a. Find L[ f (t)] and L[ f ′(t)].
b. Is it true for this function that L[ f ′(t)] = s L[ f (t)] − f (0)? Explain.

C

1. Use Definition (6.1.1) and the fact that
∫∞

0 e−x2
dx =

√
π

2 to find the Laplace transform of

f (t) = 1√
t

= t− 1
2 . [Hint : Make the substitution t = u2

s .]

2. Suppose f (t) is a periodic function with period T—that is, f (t + T) = f (t) for all t—such that
L[ f (t)] exists.

a. Show that

L[f (t)] = 1

1 − e−sT

∫ T

0
f (t) e−s T dt.

[Hint : Make a substitution and recall geometric series.]
b. Use the result of part (a) to find the Laplace transform of the function given in Problem B3.

3. Suppose that a is any real number and that F(s) = L[ f (t)]. Show that

L [
ea t f (t)

] = F(s − a) for s > a.

[This is usually called the First Shift Formula. See Formulas (6.3.1a) and (6.3.1b) for the Second Shift
Formula.]

6.2 THE INVERSE TRANSFORM AND THE CONVOLUTION
6.2.1 The Inverse Laplace Transform
Recall that in Example 6.1.1 we took an initial-value problem, applied the Laplace transform,
and then wound up with the Laplace transform of the solution of the IVP. Now we would
like to reverse the transformation process so that, given L[f (t)] as a function of the parameter
s, we can find f (t). This involves the idea of the inverse Laplace transform, L−1.
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Now think back to the concept of inverse of a function. When you first encountered the
inverse in calculus or precalculus, you may have worked with both the formal definition and
the graphical interpretation in terms of a “horizontal line test.” In any case, the important idea
is that to have an inverse function f −1 we must guarantee that for any element in the range
of the original function f , there is one and only one corresponding element in the domain
of f . Another way of saying this is that a function has an inverse if and only if it is a one-to-one
function.

For our purposes, the important fact is that if the Laplace transforms of the continuous functions
f and g exist and are equal for s ≥ c (c,a constant), then f (t) = g(t) for all t ≥ 0. This says
that a continuous function can be uniquely recovered from its Laplace transform. (Compare
Problem B9 in Exercises 6.1.) Letting L[f (t)] = F(s), we can express the definition of the
inverse Laplace transform as follows:

L−1[F] = f if and only if L[f ] = F. (6.2.1)

We can easily verify (see Problem B1 in Exercises 6.1) that the inverse Laplace transform is a
linear transformation:

L−1 [c1F(t) + c2G(t)] = c1L−1[F(t)] + c2L−1[G(t)]. (6.2.2)

Now how do we find the inverse Laplace transform in practice? It turns out that the relationship
between calculating a Laplace transform and determining its inverse is similar to that between
differentiation and antidifferentiation.

This means that in calculus, the indefinite integral of a function f answers the question “What
is a function whose derivative is f ?” (Note that in calculus the answer to this question is not
unique.) Just as a list of differentiation formulas helps us to construct a list of antidifferenti-
ation formulas (indefinite integrals), so will a table of Laplace transforms aid us in finding
inverses. In the examples that follow, we will use the information in Table 6.1. Some of these
transforms were derived in Section 6.1; others were given as exercises.

Now let’s return to Example 6.1.1 and solve the initial-value problem using Laplace transforms
and the inverse Laplace transform.

■ Example 6.2.1 Solving an IVP Using the Inverse
Laplace Transform

The IVP was x′′ + 3x′ + 2x = 12e2t , x(0) = 1, x′(0) = −1, and we found that

L[x(t)] = s2 + 8
(s − 2)(s + 2)(s + 1)

.

If we try to work with the given expression for the transform (the single rational expression in
s), we would have a tough time figuring out what function x(t) might have this as its Laplace
transform. This expression doesn’t seem to correspond to any of the forms in the second
column of Table 6.1.
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Table 6.1 Some Laplace Transforms

f (t) F(s) = L[f (t)]

1 tn(n = 0, 1, 2, . . .)
n!

sn+1 , s > 0

2 eat 1
s − a

, s > a

3 sin at
a

s2 + a2 , s > 0

4 cos at
s

s2 + a2 , s > 0

5 eat sin bt
b

(s − a)2 + b2 , s > a

6 eat cos bt
s − a

(s − a)2 + b2 , s > a

7 t sin at
2as

(s2 + a2)2 , s > 0

8 t cos at
s2 − a2

(s2 + a2)2 , s > 0

9 f ′(t) sF(s) − f (0)

10 f ′′(t) s2F(s) − sf (0) − f ′(0)

11 eat f (t) F(s − a), s > a

However, we can use the partial-fractions technique to express the transform as the sum of
three simpler terms, each of which matches an entry in the table:

s2 + 8
(s − 2)(s + 2)(s + 1)

= 1
s − 2

+ 3
s + 2

− 3
s + 1

.

You should be able to see, for example, that the term 3
s+2

(
= 3

s−(−2)

)
is the Laplace transform

of 3e−2t . Applying the inverse transform to each side of

L[x(t)] = 1
s − 2

+ 3
s + 2

− 3
s + 1
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and using (6.2.1) and the linearity of L−1, we see that

x(t) = L−1[L[x(t)]] = L−1
[

1
s − 2

+ 3
s + 2

− 3
s + 1

]

= L−1
[

1
s − 2

]
+ 3L−1

[
1

s + 2

]
− 3L−1

[
1

s + 1

]
= e2t + 3e−2t − 3e−t ,

where we have used formula 2 from Table 6.1 three times. ■

The alternative to using the Laplace transform to solve the initial-value problem in the pre-
ceding example is to go back to the method first explained in Section 4.2: First find the
general solution of the homogeneous equation x′′ + 3x′ + 2x = 0; then find a particular
solution of the nonhomogeneous equation; x′′ + 3x′ + 2x = 12e2t ; finally, add these two
solutions together to get the general solution of the original nonhomogeneous equation. And
even then we would not be finished, because we would have to use the initial conditions to
determine the two arbitrary constants in the general solution. Note that the Laplace trans-
form method enables us to handle the nonhomogeneous equation and initial conditions all
at once.

Now let’s see what the Laplace transform method does in an important applied problem that
we first saw as Example 2.2.5. (Also see Problems B9–B11 in Exercises 2.2.)

■ Example 6.2.2 Solving a Circuit Problem via the
Laplace Transform

The current I flowing in a particular electrical circuit can be described by the initial-value
problem L dI

dt + RI = v0 sin(ωt), I(0) = 0. Here, L, R, v0, and ω are positive constants.

First, we apply the Laplace transform to each side of the differential equation:

L
[
L

dI
dt

+ R I
]

= L [v0 sin(ωt)]

L L
[

dI
dt

]
+ R L [I(t)] = v0 L [sin(ωt)]

s L L [I(t)] − L I(0) + R L [I(t)] = v0

(
ω

s2 + ω2

)

(L s + R) L [I(t)] − L I(0) = v0

(
ω

s2 + ω2

)

L
(

s + R
L

)
L [I (t)] = v0

(
ω

s2 + ω2

)
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so that we have L[I(t)] = ( v0
L

) · ω · 1(
s+ R

L

)
(s2+ω2)

. To find the inverse Laplace transform, we

have to use the method of partial fractions on the right-hand side:

1(
s + R

L

) (
s2 + ω2

) = A(
s + R

L

) + Bs + C
s2 + ω2 .

With a little effort, we find that

1(
s + R

L

) (
s2 + ω2

) =
1(

R2

L2 +ω2
)

s + R
L

+
− 1(

R2

L2 +ω2
) s +

(
R
L

)
(

R2

L2 +ω2
)

s2 + ω2

and

L [I(t)] =
(v0

L

)
· ω · 1(

s + R
L

) (
s2 + ω2

)
=
(v0

L

)
· ω(

R2

L2 + ω2
)
{

1

s + R
L

+ −s
s2 + ω2 +

R
L

s2 + ω2

}
.

Check the last three equalities. The final step is to apply the inverse Laplace transform to both
sides of this last equation and then use formulas 2, 3, and 4 from Table 6.1.

I(t) =
(v0

L

) ω(
R2

L2 + ω2
)
{

L−1

[
1

s + R
L

]
− L−1

[
s

s2 + ω2

]
+ R

L
L−1

[
1

s2 + ω2

]}

=
(v0

L

) ω(
R2

L2 + ω2
) {

e− R
L t − cos (ωt) + R

L
1
ω

sin (ωt)
}

=
(v0

L

) 1(
R2

L2 + ω2
) {

ωe− R
L t − ω cos (ωt) + R

L
sin (ωt)

}
.

Compare this solution to the one obtained in Example 2.2.5. ■

■ Example 6.2.3 Solving an IVP Using the Inverse
Laplace Transform

Let’s look at the initial-value problem ẍ − 2ẋ = et (t − 3), x(0) = 2 = ẋ(0). As before, we take
Laplace transforms of both sides and use the table. Letting L[x(t)] = X(s), we get{

s2X(s) − sx(0) − ẋ(0)
} − 2 {sX(s) − x(0)} = L [

et(t − 3)
]

. (#)
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To evaluate the right-hand side, first note that

L[t − 3] = 1
s2 − 3

s
= F(s),

so if we use entry 11 in Table 6.1 (with a = 1), we get

L [
et(t − 3)

] = F(s − 1) = 1
(s − 1)2 − 3

s − 1
= 4 − 3s

(s − 1)2 .

If we return to (#) and put in our initial conditions, we get

s(s − 2)X(s) = 2s − 2 + 4 − 3s
(s − 1)2

= 2(s − 1)3 + (4 − 3s)

(s − 1)2 = (s − 2)
(
2s2 − 2s − 1

)
(s − 1)2 .

Therefore, we conclude that

X(s) = 2s2 − 2s − 1
s(s − 1)2 = 3

s − 1
− 1

(s − 1)2 − 1
s

.

We go to the table to find the function x(t) = L−1[X(t)], where we have to use entries 1 and
11 for the second term. The solution of the IVP is x(t) = 3et − tet − 1. (Check that this is the
solution.) ■

6.2.2 The Convolution
In each of the preceding three examples, applying the Laplace transform yielded an expression
for L[f (t)] that seemed to involve the product of two or more transforms. Because we didn’t
know any way to find the inverse transform of such products, we had to resort to the messiness
of a partial-fraction decomposition. This, at least, enabled us to use the linearity of the inverse
transform.

There is, however, a way to deal with this problem—a method that involves a special product
of functions.

The convolution of two functions f and g is the integral

(f ∗ g)(t) =
∫ t

0
f (r)g(t − r)dr,

provided that the integral exists for t > 0.

For example, the convolution of cos t and t is

(cos t) ∗ t =
∫ t

0
(cos r) (t − r)dr =

∫ t

0
t cos r dr −

∫ t

0
r cos r dr

= t
∫ t

0
cos r dr −

∫ t

0
r cos r dr = 1 − cos t
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after using integration by parts for the last integral. For this example, you should verify that
(cos t) ∗ (t) = (t) ∗ (cos t).

Convolution has important algebraic properties (see Problem B5 in Exercises 6.2), but the
most significant property for us right now is that the Laplace transform of a convolution
of two functions is equal to the product of the Laplace transforms of these two functions.
More precisely, suppose that f and g are two functions whose Laplace transforms exist. Let
F(s) = L[f (t)] and G(s) = L[g(t)]. Then the Convolution Theorem says that

L [(f ∗ g)(t)] = L
[∫ t

0
f (r)g(t − r)dr

]
= L[f (t)] · L[g(t)] = F(s) · G(s).

Now let’s revisit part of Example 6.2.2 to see how the convolution property helps us.

■ Example 6.2.4 (Example 6.2.2 Revisited)

How can we find L−1

[
1(

s+ R
L

)
(s2+ω2)

]
?

The expression inside the brackets is the product of two transforms F and G:

F(s)G(s) =
[

1(
s + R

L

) (
s2 + ω2

)
]

,

where F(s) = 1(
s+ R

L

) and G(s) = 1
(s2+ω2)

. Entries 2 and 3 of Table 6.1 tell us that f (t) =

L−1[F(s)] = e− R
L t and g(t) = L−1[G(s)] = 1

ω
sin(ωt). Then the Convolution Theorem enables

us to conclude that

L−1 [F(s)G(s)] =
∫ t

0
f (r)g(t − r)dr,

or

L−1

[
1(

s + R
L

) (
s2 + ω2

)
]

=
∫ t

0
e− R

L r 1
ω

sin ω(t − r)dr

= 1
ω

∫ t

0
e− R

L r sin ω(t − r)dr.

A computer algebra system evaluates this integral as

L
(

ω L e

(
− LR

t

)
− ω L cos (ωt) + R sin (ωt)

)
(
R2 + ω2L2

)
ω

.
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A bit of algebra will show you that this corresponds to the inverse transform found in Example
6.2.2 via partial fractions. (Do the work.) ■

6.2.3 Integral Equations and Integro-Differential Equations
The Convolution Theorem is certainly useful in solving differential equations, but it can also
help us solve integral equations—equations involving an integral of the unknown function—
and integro-differential equations—those involving both a derivative and an integral of the
unknown function.

■ Example 6.2.5 The Convolution Theorem and an
Integral Equation

A store manager finds that the proportion of merchandise that remains unsold at time t after
she has bought the merchandise is given by f (t) = e−1.5t . She wants to find the rate at which
she should purchase the merchandise so that the stock in the store remains constant.

Suppose that the store starts off by buying an amount A of the merchandise at time t = 0 and
buys at a rate r(t) subsequently. Over a short time interval u ≤ t ≤ u+�u, an amount r(t) ·�u
is bought by the store, and at time t the portion of this remaining unsold is e−1.5(t−u)r(u)�u.
Then the amount of previously purchased merchandise remaining unsold at time t is given
by

Ae−1.5t +
∫ t

0
e−1.5(t−u)r(u)du.

Because this is the total stock of the store and the store manager wants it to remain constant
at its initial value, we must have

A = Ae−1.5t +
∫ t

0
e−1.5(t−u)r(u)du,

and the required restocking rate r(t) is the solution of this integral equation.

If we look carefully at the integral on the right-hand side of this last equation, we should
recognize something familiar about its form: It looks like a convolution—in fact, it is e−1.5t ∗
r(t). Now we can rewrite the integral equation in the form

A = Ae−1.5t + (
e−1.5t ∗ r(t)

)
.

Taking the Laplace transform of each side and letting R(s) = L[r(t)], we get

L[A] = A L [
e−1.5t] + L [

e−1.5t ∗ r(t)
] = A

s + 1.5
+ 1

s + 1.5
· R(s),

A
s

= A
s + 1.5

+ 1
s + 1.5

· R(s),
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(s + 1.5)

(
A
s

− A
s + 1.5

)
= R(s),

1.5A
s

= R(s).

Applying the inverse Laplace transform to each side, we find that r(t) = 1.5A. That is, the
restocking rate should be a constant one-and-a-half times the original amount bought. (Check
that this is a solution of our original integral equation.) ■

■ Example 6.2.6 An Integro-Differential Equation
The following integro-differential equation can also be solved using the properties of the
Laplace transform:

dx
dt

+ x(t) −
∫ t

0
x(r) sin(t − r)dr = − sin t, x(0) = 1.

As in the preceding example, we recognize that the integral in our equation represents a
convolution, this time (x ∗ sin)(t). Therefore, taking the Laplace transform of each side of the
equation, we get

L[dx/dt] + L[x(t)] − L [(x ∗ sin) (t)] = L[− sin t],
or, using formula 10 in Table 6.1 and the Convolution Theorem,

[s L [x(t)] − x(0)] + L[x(t)] − L[x(t)] · L[sin t] = − 1
s2 + 1

,

which becomes

[s L [x(t)] − 1] + L[x(t)] − L[x(t)] · 1
s2 + 1

= − 1
s2 + 1

.

This simplifies to (
s3 + s2 + s

s2 + 1

)
L[x(t)] = s2

s2 + 1
,

so we wind up with L [x(t)] = s2

s3 + s2 + s
= s

s2 + s + 1
.

A bit of clever algebra shows us that

s
s2 + s + 1

= s + 1
2(

s + 1
2

)2 +
(√

3
2

)2 −
1
2(

s + 1
2

)2 +
(√

3
2

)2
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= s − (−1
2

)
(
s − (−1

2

))2 +
(√

3
2

)2 − 1√
3

√
3

2(
s − (−1

2

))2 +
(√

3
2

)2 .

Using formulas 5 and 6 of Table 6.1 to invert this transform, we find that

x(t) = e−t/2 cos

(√
3t
2

)
− 1√

3
e−t/2 sin

(√
3t
2

)
.

(Checking that this is the solution involves a bit of work, but try it!) ■

6.2.4 The Laplace Transform and Technology
Most computer algebra systems have built-in Laplace transform and inverse transform capabil-
ities. In particular, some systems (for example, Maple) have sophisticated differential equation
solvers with a “laplace” option for initial-value problems. If you have such an option at your
command, learn to use it. However, realize that all the machinery is under the covers, so you
have to develop an understanding of what the system is really doing.

Be aware that some computer algebra systems (such as Mathematica and MATLAB) can find
Laplace transforms and their inverses but have no direct way of solving a linear IVP with
these tools. In this case, you have to apply the Laplace transform to the differential equation,
solve for the transform L[x(t)] of the solution algebraically (via a solve command or by hand),
use technology to find the inverse transform L−1[L[x(t)]], and finally substitute the initial
conditions.

Determine what your options are in using technology to solve IVPs via the Laplace transform.
Some of the exercises that follow will help you do this.

Exercises 6.2
A

1. Find the inverse Laplace transform of 1
s2+9

.

2. Find the inverse Laplace transform of s
s2−a2 .

3. Find the inverse Laplace transform of s
s2+2

.

4. Find the inverse Laplace transform of a
s2(s2+a2)

.

5. Find the inverse Laplace transform of 1
s(s2+2s+2)

.

6. Find the inverse Laplace transform of 2s−10
s2−4s+20

.

7. Find the inverse Laplace transform of 4
s−2 − 3s

s2+16
+ 5

s2+4
.
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8. Find the inverse Laplace transform of 3s+7
s2−2s−3

.

9. Find the inverse Laplace transform of 2s2−4
(s+1)(s−2)(s−3) .

B

1. If F(t) and G(t) are the Laplace transforms of f (t) and g(t), respectively, and c1 and c2 are
constants, show that

L−1[c1F(t) + c2G(t)] = c1L−1[F(t)] + c2L−1[G(t)].
2. Suppose y1(t) is the solution of the IVP

y′′ + ay′ + by = f1(t); y(0) = y′(0) = 0, where a and b are constants.

a. Compute an expression for L[y1].
b. Suppose y2(t) is the solution of the IVP

y′′ + a y′ + b y = f2(t); y(0) = y′(0) = 0

for a different forcing function f2(t). Show that

L [f2]
L [y2] = L [f1]

L [y 1] .

c. Show that L [y2] = L [f 2] · L [y 1]
L [f 1] . (This says that we can use the solution with any forcing

function and zero initial conditions to compute solutions for other forcing functions.)

3. a. Show that the Laplace transform of tnf (t) is (−1)nF(n)(s), where F(s) = L[f (t)].
b. Use the result of part (a) and the derivative of the function F(s) = ln(2 + 3

s ), s > 0, to find its
inverse Laplace transform.

4. Find the convolution f ∗ g of each of the following pairs of functions:

a. f (t) = t2, g(t) = 1

b. f (t) = t, g(t) = e−t for t ≥ 0

c. f (t) = t2, g(t) = (t2 + 1) for t ≥ 0

d. f (t) = e−at , g(t) = e−bt (a, b constants)

e. f (t) = cos t, g(t) = cos t

[Hint : For part (e) you need some trigonometric identities.]
5. Prove the following properties of the convolution of functions:

a. f ∗ g = g ∗ f [Commutativity]
b. ( f ∗ g) ∗ h = f ∗ ( g ∗ h) [Associativity]
c. f ∗ ( g + h) = f ∗ g + f ∗ h [Distributivity]
d. f ∗ 0 = 0, but f ∗ 1 	= f and f ∗ f 	= f 2 in general. (In particular, 1 ∗ 1 	= 1.)

6. a. Using property (b) of Problem B5, find 1 ∗ 1 ∗ 1.
b. Find 1 ∗ t ∗ t2.
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7. Use the Convolution Theorem to find the Laplace transform of

f (t) =
∫ t

0
cos(t − r) sin r dr.

8. Find the Laplace transform of

h(t) =
∫ t

0
et−v sin v dv.

9. Find the solution of the IVP y′′ + 3 y′ + 2 y = 4t2 ; y(0) = 0, y′(0) = 0.

10. Solve the IVP y′′ + 4 y′ + 4 y = e−2 x ; y(0) = 0, y′(0) = 1.

11. Solve the IVP y′′′ − 2 y′′ + y′ = 2 ex + 2 x; y(0) = 0, y′(0) = 0, y′′(0) = 0.

12. Solve the IVP y′′ + 6 y′ + 9 y = H(x); y(0) = 0, y′(0) = 0, where H(x) is a known function of x.
[Hint : Use the Convolution Theorem.]

13. An electrical circuit that is initially unforced but is plugged into a particular alternating voltage
source at time t = π can be modeled by the IVP

Q′′ + 2 Q′ + 2 Q =
{

0 for 0 ≤ t < π

− sin t for t ≥ π,

with Q(0) = 0 and Q′(0) = 1. Solve the IVP for Q(t), the charge on the capacitor at time t.
14. The equation v dv

ds = v cos(2 s) − v2 describes the velocity v of a piston moving into an oil-filled
cylinder under a variable force. Here, s is the distance moved in time t.

a. Rewrite the given equation as a linear equation with constant coefficients.
b. Assuming that v(0) = 0, use the Laplace transform to solve for v as a function of s. Is there a

singular solution?
c. Use technology to graph the nontrivial solution found in part (b) for 0 ≤ s ≤ 20.

15. Solve the integral equation for f : f (t) = 4t + ∫ t
0 f (t − r) sin r dr.

16. Solve for g : g(t) − t = − ∫ t
0(t − r) g(r) dr.

C

1. Solve for x : ẋ(t) = 1 − ∫ t
0 x(t − r) e−2 r dr, x(0) = 1.

2. Solve the integro-differential equation

ẏ + y +
∫ t

0
y(u) du = 1, with y(0) = 0.

3. Solve the equation ẋ − 4 x + 4
∫ t

0 x(u)du = t3 e2 t , with x(0) = 0.

4. Solve the equation f ′′(x) + ∫ x
0 e2 (x−y)f ′(y)dy = 1; f (0) = 0, f ′(0) = 0.
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6.3 TRANSFORMS OF DISCONTINUOUS FUNCTIONS
Differential equations are often used to model complex systems. In some situations, models
have to deal with abrupt changes in these systems. In the circuit problem described in Example
2.2.5 (or Example 6.2.2), we have the equation L dI

dt + RI = v0 sin(ωt), where the right-
hand side (the forcing term) represents a continuous alternating-current source. Now suppose
that the voltage E(t) were applied for only a short period of time and then discontinued.
Mathematically, this means that the forcing term would have the form

f (t) =
{

E(t) for 0 ≤ t ≤ a
0 for t > a.

Perhaps we have a switch that we can open and close so that the voltage is applied, removed,
and then applied again:

g(t) =
⎧⎨
⎩

E(t) for 0 ≤ t ≤ a
0 for a < t < b
E(t) for t ≥ b.

Problem B12 in Exercises 2.2, in which advertising expenditure is terminated after a certain
period of time, is another illustration of this kind of behavior. The common element here is
abrupt change. In mathematical terms, we are dealing with piecewise continuous functions.

6.3.1 The Heaviside (Unit Step) Function
In Section 6.1 we saw a simple example of the Laplace transform applied to a piecewise contin-
uous function. We computed the transform directly from the definition, breaking the integral
up into two parts. This can be tedious if there are several intervals involved in the definition
of the function. Now we are going to see how these kinds of functions can be expressed in
such a way that the Laplace transform method doesn’t have to consider separate intervals.

We start with the unit step function U defined by

U(t) =
{

0 if t < 0
1 if t ≥ 0.

(This is sometimes called the Heaviside (unit step) function for the English electrical engi-
neer Oliver Heaviside (1850–1925), who developed many of the applications of Laplace
transforms we will see.) We can say that the function U is “off” (= 0) for negative values of
t and “on” (= 1) for values of t greater than or equal to 0. This “switching” aspect makes U
an important building block in modeling abrupt changes.

It follows that

U(t − a) =
{

0 if t < a
1 if t ≥ a.
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1

3 5 t

FIGURE 6.1
Graph of U(t − 3), t ≥ 0

The function has a jump discontinuity at t = a. Figure 6.1 shows U(t − 3) for t ≥ 0.

The nice thing is that these step functions can be used to express a piecewise continuous
function in terms of a single formula. For example, if

f (t) =
{

A(t) for t < a
B(t) for t ≥ a,

then we can see that f (t) = A(t)+U(t−a)[B(t)−A(t)]: If t < a, then U(t−a) = 0, so f (t) = A(t);
whereas if t ≥ a, then we have U(t − a) = 1, so f (t) = A(t) + [B(t) − A(t)] = B(t). (Okay?)

This technique can be extended to functions such as

g(t) =
⎧⎨
⎩

A(t) for a ≤ t < b
B(t) for b ≤ t < c
C(t) for c ≤ t < d.

We can write g(t) = U(t − a)A(t) + U(t − b)[B(t) − A(t)] + U(t − c)[C(t) − B(t)]. You should
be sure that you see how this works.

When we are solving differential equations that model abrupt changes, the following result
comes in handy:

If L[ f (t)] exists for s > c and if a > 0, then
L [ f (t − a)U(t − a)] = e−asL[ f (t)] for s > c.

(6.3.1a)

This result is usually called the Second Shift Formula—see Problem C3 in Exercises 6.1 for the
First Shift Formula.

Alternatively, we can write (6.3.1a) as

f (t − a)U(t − a) = L−1 [e−a sL[ f (t)]] . (6.3.1b)
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Formula (6.3.1a) follows from a straightforward calculation:

L [f (t − a)U(t − a)] =
∫ ∞

0
f (t − a)U(t − a)e−s tdt =

∫ ∞

a
f (t − a)e−s tdt

=
∫ ∞

0
f (u)e−s (u+a)du = e−s a L[f (t)],

where we have made the substitution t − a = u in the last integral.

The next example shows how to use the Laplace transform of a unit step function to solve an
initial-value problem.

■ Example 6.3.1 An IVP with a Discontinuous Forcing Term
Let’s look at the initial-value problem

x′(t) + x =
{

t for 0 ≤ t < 4
1 for 4 ≤ t

x(0) = 1.

Using the unit step function, we can write the differential equation as

x′(t) + x = t + (1 − t)U(t − 4) = t − (t − 4)U(t − 4) − 3U(t − 4).

[Note that in order to use Formula (6.3.1b) later, we have to use algebra to convert the term
(1 − t)U(t − 4) into the form f (t − a)U(t − a).] Now we apply the Laplace transform to both
sides of the equation to get

L[x′(t)] + L[x(t)] = L[t] − L [(t − 4)U(t − 4)] − 3 L[U(t − 4)],
or, using (6.1.4), entry 1 in Table 6.1, and then Formula (6.3.1a) twice,

s L[x(t)] − 1 + L[x(t)] = 1
s2 − e−4 sL[t] − 3e−4 sL[1],

so

(s + 1)L[x(t)] = 1 + 1
s2 − e−4 s

(
1
s2 + 3

s

)
.

Therefore,

L [x(t)] = 1
s + 1

+ 1
s2(s + 1)

− e−4 s
(

3s + 1
s2(s + 1)

)

= [by partial fractions]
2

s + 1
− 1

s
+ 1

s2 − e−4 s
(

2
s

+ 1
s2 − 2

s + 1

)
.
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Finally, applying the inverse transform to both sides and using (6.3.1b), we get

x(t) = 2e−t − 1 + t − L−1
[
e−4 s

(
2
s

+ 1
s2 − 2

s + 1

)]

= 2e−t − 1 + t −
[
U(t)L−1

(
2
s

+ 1
s2 − 2

s + 1

)]

(where t must be replaced by t − 4 within the brackets before we’re finished)

= 2e−t − 1 + t − [
U(t)

(
2 + t − 2e−t)]

= 2e−t − 1 + t − U(t − 4)
(
t − 2 − 2e−t+4)

=
{

2e−t + t − 1 for 0 ≤ t < 4
2e−t + 2e−t+4 + 1 for 4 ≤ t.

■

The next example shows the application of the Laplace transform and the unit step function
to an important type of applied problem.

■ Example 6.3.2 A Cantilever Beam Problem
A wooden beam, the ends of which are considered to be at x = 0 and x = L on a horizontal
axis, will “give” (that is, bend) when a vertical load, given by W(x) per unit length, acts on
the beam (Figure 6.2). (Compare Problem C2 in Exercises 1.3.)

It is known that y(x), the amount of bending, or deflection, in the direction of the load force

at the point x, satisfies the differential equation
d4y
dx4 = W(x)

EI
for 0 < x < L.

Here, E and I are constants that describe characteristics of the beam. The graph of y(x) is called
the deflection curve or elastic curve.

Now suppose that we have a cantilever beam (such as a diving board)—one that is clamped
at the end x = 0 and free at the end x = L—and that this beam carries a load per unit length

x 5 0 x 5 Lx

y (x)

W

FIGURE 6.2
A loaded beam
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given by

W(x) =

⎧⎪⎨
⎪⎩

W0 for 0 < x <
L
2

0 for
L
2

< x < L.

Then engineering mechanics shows that finding the deflection amounts to solving the
boundary-value problem

d4y
dx4 = W(x)

EI

(
for 0 < x < L

)
; y(0) = 0, y′(0) = 0, y′′(L) = 0, y′′′(L) = 0.

(In physics terms, the quantities y′′(L) and y′′′(L) are called the bending moment and the shear
force, respectively.)

First of all, note that up to now we have applied the technique of Laplace transforms
only to initial-value problems, not to boundary-value problems (BVPs). Second, to use the
Laplace transform, we must assume that y(x) and W(x) are defined on the interval (0, ∞)

rather than just on (0, L). This means that we should extend the definition of W(x) as
follows:

W(x) =

⎧⎪⎨
⎪⎩

W0 for 0 < x <
L
2

0 for x >
L
2

.

We can write this function in terms of the unit step function as

W(x) = W0

{
U(x) − U

(
x − L

2

)}
.

Now take the Laplace transform of each side of our fourth-order equation, letting Y = Y(s) =
L[y(x)] for convenience. Using (6.1.6), we find that

s4Y − s3y(0) − s2y′(0) − sy′′(0) − y′′′(0) = W0

EI

{
1 − e−sL/2

s

}
.

Note that in Formula (6.1.6) the second and third derivatives of y are evaluated at 0. However,
our BVP gives us the values of these derivatives at L. Letting y′′(0) = C1 and y′′′(0) = C2,
we can use all the boundary conditions as given and solve the last equation for Y : Y =
C1

s3 + C2

s4 + W0

EIs5

{
1 − e2s L/2

}
. Using the inverse transform, we find that

y(x) = C1x2

2! + C2x3

3! + W0

EI
x4

4! − W0

EI

(
x − L

2

)4

4! U
(

x − L
2

)
,
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which is equivalent to

y(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C1x2

2
+ C2x3

6
+ W0

24EI
x4 for 0 ≤ x <

L
2

C1x2

2
+ C2x3

6
+ W0

24EI
x4 − W0

24EI

(
x − L

2

)4

for x ≥ L
2

.

Now we use the conditions y′′(L) = 0 and y′′′(L) = 0 to find that C1 = W0L2

8E I
and C2 = −W0L

2E I
.

(Be sure to go through the calculations for yourself.)

Finally, we can write our deflection function as

y(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

W0L2

16EI
x2 − W0L

12EI
x3 + W0

24EI
x4 for 0 ≤ x <

L
2

W0L2

16EI
x2 − W0L

12EI
x3 + W0

24EI
x4 − W0

24EI

(
x − L

2

)4

for
L
2

< x < L.

■

Exercises 6.3
A

In Problems 1–6, (a) sketch the graph of each function f (t) and (b) write each function as a
sum of multiples of the unit step function U(t).

1. f (t) =
{

1 for 1 ≤ t < 2
0 elsewhere

2. f (t) =
{

t2 for 0 < t < 2
4t for t > 2

3. f (t) =

⎧⎪⎨
⎪⎩

1 for 1 ≤ t < 2
−2 for 2 ≤ t < 3

0 elsewhere

4. f (t) =

⎧⎪⎨
⎪⎩

t for 0 ≤ t < 2
4 − t for 2 ≤ t < 4
0 elsewhere

5. f (t) =

⎧⎪⎨
⎪⎩

t for 0 ≤ t < 2
t − 2 for 2 ≤ t < 4
0 elsewhere

6. f (t) =

⎧⎪⎨
⎪⎩

sin t for 0 < t < π

sin 2t for π < t < 2π

sin 3t for t > 2π

7. Show that L [t U(t − a)] = (1 + a s) s−2e−as for a > 0.
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8. Calculate L [t2U(t − 1)].
9. Show that L [

t2 U(t − 2)
] = 2

s3 − 2 e−2s

s3

(
1 + 2 s + 2 s2

)
, s > 0.

10. Use Formula (6.3.1a-b) to compute the Laplace transform of the function in Problem 1.
11. Use Formula (6.3.1a-b) to compute the Laplace transform of the function in Problem 2.
12. Use Formula (6.3.1a-b) to compute the Laplace transform of the function in Problem 3.
13. Use Formula (6.3.1a-b) to compute the Laplace transform of the function in Problem 4.
14. Consider the function

F(t) =
{

e−t for 0 < t < 3
0 for t > 3.

a. Show that F(t) can be written as e−t [1 − U(t − 3)].
b. Use Formula (6.3.1a) to find L[F(t)].

B

1. Solve the IVP

y′′ + 4y = U(t − π) − U(t − 3 π); y(0) = 0, y′(0) = 0.

2. Solve the IVP

y(4) + 5y′′ + 4y = 1 − U(t − π) ; y(0) = y′(0) = y′′(0) = y′′′(0) = 0.

Solve each of the IVPs in Problems 3–10 by writing each discontinuous forcing function as a linear
combination of unit step functions and then using the Laplace transform.

3. 4y′ − 5y =

⎧⎪⎪⎨
⎪⎪⎩

0 for t < 0

−30t for 0 ≤ t < 1

0 for t ≥ 1

; y(0) = 2

4. 4y′ + 5y =

⎧⎪⎪⎨
⎪⎪⎩

0 for t < 0

sin 8t for 0 ≤ t ≤ 2

0 for t > 2

; y(0) = 1

5. y′′ + y =
{

1 for 0 ≤ t < π/2
0 for t ≥ π/2

; y(0) = 0, y′(0) = 1

6. y′′ + y =
{

t/2 for 0 ≤ t < 6
3 for t ≥ 6

; y(0) = 0, y′(0) = 1

7. y′′ + 5y′ + 2y =

⎧⎪⎨
⎪⎩

0 for t < 0
8 for 0 ≤ t ≤ 1
0 for t > 1

; y(0) = 0, y′(0) = 0

8. 3y′′ + 3y′ + 2y =

⎧⎪⎨
⎪⎩

0 for t < 0
5 for 0 ≤ t ≤ 5
0 for t > 5

; y(0) = 0, y′(0) = 0
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9. y′ − 3y = f (t); y(0) = 0, where the graph of f (t) is

f (t)

1

0.5

2 4 t

10. y′ + y = g(t); y(0) = 0, where the graph of g(t) is

g(t)

1

0.5

21 4 t

11. Suppose that the fish population in a large lake is growing too rapidly and the local authorities
decide to give out fishing licenses that allow a total of h fish to be caught per day over a 30-day
period. A model for such a situation could be

P′(t) = k P(t) −
{

h for 0 ≤ t ≤ 30
0 for t > 30

}

where P(t) denotes the number of fish in the lake at time t (in days) and k is a positive constant
describing the natural growth rate of the fish population.

a. Use technology and the Laplace transform to find an expression for P(t) if P(0) = A.
b. Find a relation among A, h, and k that guarantees that exactly 330 days after the end of the

30-day fishing season, the fish population will once more be at the level A.

12. Problem B1 of Exercises 2.3 concerns the population of Botswana from 1975 to 1990 under certain
basic assumptions. Now consider the situation that occurs if we start with a population of 0.755
million people in 1975 (t = 0) and assume that births and deaths, immigration and emigration
balance each other until 1977 (t = 2). In 1977, an emigration pattern begins in such a way that the
population P(t) can be described by the equation

P′ − k P =
{

0 if 0 < t < 2
−a(t − 2) if t ≥ 2
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with P(0) = 0.755, k = 0.0355, and a = 1.60625 × 10−3.

a. Express the discontinuous function on the right-hand side of the equation in terms of the unit
step function.

b. Use technology and the Laplace transform to solve for P(t), expressing the answer as a step
function.

c. Graph the solution on the interval 0 ≤ t ≤ 35 and explain what the graph means in terms of the
population of Botswana.

C

1. The IVP y′′ + 3y′ + 2y = W(t); y(0) = 0, y′(0) = 0 represents a damped spring-mass system
subjected to a square wave forcing term given by

W(t) = U(t − 1) − U(t − 2).

a. Graph W(t).
b. Without using technology, solve the IVP when W(t) is not present in the system. (That is, make

the right-hand side of the differential equation zero.)
c. Without using technology, solve the given IVP (that is, with W(t) as the forcing term).
d. Use technology to graph the solutions to parts (b) and (c) on the same set of axes. What

difference does the forcing term make?

6.4 TRANSFORMS OF IMPULSE FUNCTIONS—THE DIRAC
DELTA FUNCTION

In the preceding section we dealt with situations in which some abrupt change occurred. To
describe it in general terms, we were dealing with systems acted on by some external force
that was applied suddenly. But although the change was sudden, force was assumed to have
been applied for some measurable period of time. Now we want to examine problems in
which there is an external force of large magnitude applied suddenly for a very short period
of time. For example, think about a baseball being hit by a major-league player. The time of
contact of ball with bat is very brief, but enough force can be applied to send that horsehide
soaring into the stands. More dramatic instances of this phenomenon include an electrical
surge caused by a power line that is suddenly struck by lightning and a population that is
growing at a certain rate until some sudden disaster strikes the community.

Mathematically, we can start to approach this idea by considering a piecewise continuous
function that looks like

δb(t) =
{1

b for 0 ≤ t ≤ b
0 for t > b.

Here, we must assume that δb(t), which is pronounced “delta sub b of t,” does not exist if
b = 0. This function can represent a force of magnitude 1/b applied for a time period of
length b (see Figure 6.3).
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�b(t)

t

1
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1
b2

1
b3

FIGURE 6.3
The graph of δb(t)

First of all, note that
∫∞

0 δb(t)dt = ∫ b
0

1
b dt = 1 for all values of b > 0. Now look at what

happens as we allow the value of b to get smaller and smaller. This situation describes a
force whose magnitude 1/b is getting larger and larger over a shorter and shorter interval of
time (0, b). Can you see what’s going on? More precisely, the unusual nature of this discontin-
uous function led various physicists, mathematicians, and engineers to consider the limiting
behavior of δb(t) as b → 0. In particular, they defined δ(t) as follows:

δ(t) = lim
b→0

δb(t) =
{∞ for t = 0

0 for t 	= 0.

This “function” δ is called the unit impulse function or the Dirac delta function [named for
the English-Belgian theoretical physicist Paul A. M. Dirac (1902–1984), who won the Nobel
Prize in 1933 with E. Schrödinger for his work on quantum theory]. More generally, we can
define

δ(t − a) = lim
b→0

δb(t − a) =
{∞ for t = a

0 for t 	= a.

In the mathematically precise sense of the word, this limit does not exist and so does not
define a function. However, such generalized functions, or distributions, can be put on a firm
mathematical foundation and are very useful in modern physics and engineering theory.
Before we look at examples of the delta function’s use in solving differential equations, we
should try to calculate its Laplace transform. The only reasonable way to do this is to make
the formal assumption that

L [δ(t − a)] = lim
b→0

L [δb(t − a)] .

(Mathematically, this raises an important theoretical question of whether

lim
b→0

L [δb(t − a)] = L
[

lim
b→0

δb(t − a)

]
.
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This question is beyond the scope of this course and will be ignored.)

Now let’s write δb(t − a) in terms of the unit step function, as we did for functions in Section
6.3:

δb(t − a) = 1
b

[U(t − a) − U(t − (a + b))] .

If we use the linearity of the Laplace transform together with Formula (6.3.1a)—taking
f (t − a) ≡ 1—we get

L [δ(t − a)] = lim
b→0

L [δb(t − a)]

= lim
b→0

1
b

{
e−sa

s
− e−s(a+b)

s

}
= lim

b→0
e−sa

{
1 − e−s b

bs

}

= e−s a lim
b→0

{
1 − e−s b

bs

}
= e−s a,

where we have used L’Hôpital’s Rule to evaluate the indeterminate form in this last limit.
(Alternatively, we could have used the series expansion of

(
1 − e−sb

)
/b s about the point

b = 0.)

Because we have shown that

L [δ(t − a)] = e−s a, (6.4.1a)

it seems reasonable to take a = 0 and conclude that

L [δ(t)] = 1. (6.4.1b)

Now let’s see how to solve a differential equation involving an impulse function. You may
want to review the spring-mass problems in Section 4.8.

■ Example 6.4.1 Solving an ODE That Involves the Dirac
Delta Function

A mass attached to a spring is released from rest 1 meter below the equilibrium position
for the spring-mass system and begins to move up and down. After 3 seconds, the mass is
struck by a hammer in a downward direction. We suppose the undamped system is governed
by the IVP

d2x
dt2 + 9x = 3δ(t − 3); x(0) = 1,

dx
dt

(0) = 0,

where x(t) denotes the displacement from equilibrium at time t, and we want to determine
a formula for x(t). (Note that the impulse force applied at t = 3 has magnitude 3.)
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FIGURE 6.4

Graph of x(t) =
{

cos 3t for t < 3
cos 3t + sin 3(t − 3) for 3 ≤ t

Let X = X(s) = L [x(t)]. Then, taking the Laplace transform of both sides of our ODE and
using (6.1.5) and (6.4.1a) with a = 3, we get

s2X − s + 9X = 3e−3s,

so we can solve for X:

X = s
s2 + 9

+ e−3s 3
s2 + 9

.

Applying the inverse transform yields

x(t) = cos 3t + sin 3(t − 3)U(t − 3)

=
{

cos 3t for t < 3
cos 3t + sin 3(t − 3) for 3 ≤ t.

■

Figure 6.4 is the graph of x(t), where the solid curve shows the displacement of the mass if
the hammer had not hit it.

Exercises 6.4
A

1. Evaluate the integral
∫∞
−∞ δ(t − 3π/2) cos 2t dt.

2. Evaluate the integral
∫ 1

0 t3 δ
(
t + 1

3

)
dt.

3. Evaluate L [
δ(t − π) cos t3].

Solve the IVPs in Problems 4–13:

4. y′′ = δ(t − a); y(0) = 0, y′(0) = 0
5. y′ + 8y = δ(t − 1) + δ(t − 2); y(0) = 0
6. y′′ + y = δ(t − 2) ; y(0) = 0, y′(0) = 0
7. y′′ + 2y′ − 8y = δ(t) ; y(0) = 0, y′(0) = 0
8. 2y′′ + y′ + 2y = δ(t − 5); y(0) = 0, y′(0) = 0
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9. y′′ + 2y′ + y = 2δ(t − 1); y(0) = 1, y′(0) = 1
10. y′′ + 6y′ + 109y = δ(t − 1) − δ(t − 7); y(0) = 0, y′(0) = 0
11. y′′ + y = 1 + δ(t − 2π); y(0) = 1, y′(0) = 0
12. y′′ + y = 4δ

(
t − 3

2 π
)

; y(0) = 0, y′(0) = 1

13. y(i v) − y = δ(t − 1); y(0) = 0, y′(0) = 0, y′′(0) = 0, y′′′(0) = 0

B

1. A uniform beam of length L carries a load W concentrated at x = L/2. The beam is embedded at its

left end and is free at its right end. The deflection y(x) is governed by the equation E I d4y
dx4 = Wδ(

x − L
2

)
, where y(0) = 0, y′(0) = 0, y′′(L) = 0, and y′′′(L) = 0. Use the Laplace transform to

determine the deflection y(x).
2. If a, b, and c are constants, show that the solution x(t) of the linear IVP

x′′(t) + ax′(t) + b x(t) = δ(t − c); x(0) = 0, x′(0) = 0

is x(t) = k(t − c)U(t − c), where k(t) = L−1
[

1
s2+a s+b

]
.

3. Suppose we have the equation y′′ + ay′ + b y = f (t), where a and b are constants and f is a
piecewise continuous function whose Laplace transform exists. Show that the effect of replacing
f (t) by f (t) + c δ(t), where c is a constant, is the same as increasing the initial value of y′(0) by the
constant c.

4. a. Show that L[δ(t − a)f (t)] = e−a s f (a).
b. Use the result in part (a) and the result of Problem C2 to solve the IVP

y′′ + 2y′ + y = δ(t − 1) t ; y(0) = 0, y′(0) = 0.

C

1. If, at time t = a, the upper end of an undamped spring-mass system is jerked upward suddenly and
returned to its original position, the equation modeling the situation is mx′′ + k x = k H δ(t − a);
x(0) = x0, x′(0) = x1, where m is the mass, k is the spring constant, and H is a constant.

a. Solve the IVP manually, with x(0) = 0 = x′(0).

b. Use the solution found in part (a) to explain the significance of the constant H.

c. Choose a value for H so that the mass achieves a prescribed displacement from equilibrium A
for t ≥ a.

2. If the function g(t) is continuous at a, show that
∫∞

0 δ(t − a) g(t) dt = g(a). [Hint : Use the Mean
Value Theorem for integrals.]

3. Consider the IVP y′′ + 2y =
∞∑

n=1
δ(t − n) ; y(0) = 0, y′(0) = 0.

a. Find the Laplace transform of the solution of the IVP.

b. Solve the IVP.

c. What happens to the solution of the IVP as t → ∞?
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6.5 TRANSFORMS OF SYSTEMS OF LINEAR DIFFERENTIAL
EQUATIONS

We have seen what the Laplace transform does to a single linear equation with constant
coefficients. It should be easy to see that when initial conditions are given, the Laplace trans-
form converts a system of linear differential equations with constant coefficients into a system
of simultaneous algebraic equations. Then we can solve the algebraic equations for the trans-
formed solution functions. Finally, applying the inverse transform to these functions gives us
the solutions of the original system of linear ODEs.

Conceptually, this process is easy. The algebraic details, however, may be something else.
Problems of this kind make us appreciate the availability of technology.

■ Example 6.5.1 Solving a Linear System via the
Laplace Transform

Let’s start with the system

dx
dt

= −3x + y

dy
dt

= x − 3y,

where we want the solutions x(t) and y(t) that satisfy x(0) = 2 and y(0) = 3. (This system
was discussed briefly in Example 1.3.5.)

Applying the Laplace transform to each side of each equation gives us the system

sL[x(t)] − x(0) = −3L [x(t)] + L[y(t)]
sL[y(t)] − y(0) = L[x(t)] − 3L[y(t)].

Inserting the initial conditions and simplifying the resulting equations, we get the system

(s + 3)L[x(t)] − L[y(t)] = 2

(s + 3)L[y(t)] − L[x(t)] = 3.

Now we solve the preceding system for L[x(t)] and L[y(t)] just as we would solve any algebraic
system of two equations in two unknowns. (To simplify things, you could let L[x(t)] = X
and L[y(t)] = Y .) For instance, we can eliminate the variable L[y(t)] by multiplying the first
equation by (s + 3) and then adding the result to the second equation. When the dust settles,
we get {

(s + 3)2 − 1
}L[x(t)] = 2(s + 3) + 3,

so we find that

L[x(t)] = 2s + 9
(s + 3)2 − 1

= 2s + 9
[(s + 3) + 1][(s + 3) − 1]



6.5 Transforms of Systems of Linear Differential Equations 337

= 2s + 9
(s + 4)(s + 2)

= −1
2

s + 4
+

5
2

s + 2
= −1

2

s − (−4)
+

5
2

s − (−2)

and

x(t) = −1
2

L−1
[

1
s − (−4)

]
+ 5

2
L−1

[
1

s − (−2)

]

= −1
2

e−4t + 5
2

e−2t .

Now we could go through this process again to eliminate L[x(t)] and solve for y(t) this time
(see Problem A1 in Exercises 6.5)—or we could just substitute our solution for x(t) in the first
equation of our original system and solve for y:

y(t) = dx
dt

+ 3x = d
dx

(
−1

2
e−4t + 5

2
e−2t

)
+ 3

(
−1

2
e−4t + 5

2
e−2t

)

= 2e−4t − 5e−2t − 3
2

e−4t + 15
2

e−2t = 1
2

e−4t + 5
2

e−2t .

■

The next example shows how we can handle a system of two second-order linear equations.
In particular, note that we don’t have to write this as a system of four first-order equations. The
Laplace transform technique works directly on higher-order derivatives via Formula (6.1.6)
or, in this case, by (6.1.5).

■ Example 6.5.2 A System of Second-Order Equations
The system IVP we want to solve is

d2x
dt2 − 4x + dy

dt
= 0

−4
dx
dt

+ d2y
dt2 + 2y = 0,

with x(0) = 0, x′(0) = 1, y(0) = −1, and y′(0) = 2.

Applying the Laplace transform to each side of each equation, we get

L [
x′′(t)

] − 4L [x(t)] + L [
y′(t)

] = 0

−4L [
x′(t)

] + L [
y′′(t)

] + 2L [y(t)] = 0.

Using (6.1.4) and (6.1.5), we can write the preceding system as

s2L[x(t)] − x′(0) − sx(0) − 4L[x(t)] + sL [y(t)] − y(0) = 0

−4sL[x(t)] + 4x(0) + s2L[y(t)] − y′(0) − sy(0) + 2L[y(t)] = 0.
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Now we insert the initial conditions and simplify the resulting equations to get(
s2 − 4

)L[x(t)] + sL[y(t)] = 0
(*)−4sL[x(t)] + (

s2 + 2
)L[y(t)] = 2 − s.

As in the previous example, we can solve these equations by realizing that they constitute a
system of ordinary algebraic equations in the unknowns L[x(t)] and L[y(t)]. If we multiply
the first equation of (*) by 4s, multiply the second by s2 − 4, and then add the resulting
equations, we obtain (

s4 + 2s2 − 8
)L[y(t)] = −s3 + 2s2 + 4s − 8,

so

L[y(t)] = −s3 + 2s2 + 4s − 8
s4 + 2s2 − 8

= −s3 + 2s2 + 4s − 8(
s2 + 4

) (
s2 − 2

)
= −s3 + 2s2 + 4s − 8(

s2 + 4
) (

s + √
2
) (

s − √
2
)

(**)

= 1
6

[
1 + √

2

s + √
2

+ 1 − √
2

s − √
2

− 8(s − 2)

s2 + 4

]

= 1
6

[
1 + √

2

s + √
2

+ 1 − √
2

s − √
2

− 8
s

s2 + 22 + 8
2

s2 + 22

]
.

Using entries 2, 3, and 4 of the table of transforms (Table 6.1), we see that

y(t) = 1
6

[(
1 + √

2
)

e−√
2t +

(
1 − √

2
)

e
√

2t − 8 cos 2t + 8 sin 2t
]
.

To find L[x(t)], we can go back to System (*) and eliminate L[y(t)], or we can substitute
expression (* *) for L[y(t)] in either equation of (*) and solve for L[x(t)]. Let’s try the latter
method.

Using (* *) and the first equation in (*), we find that

(
s2 − 4

)L[x(t)] + s

(
−s3 + 2s2 + 4s − 8(

s2 + 4
) (

s2 − 2
)
)

= 0.

Solving for L[x(t)], we get

L[x(t)] = −s

(
−s3 + 2s2 + 4s − 8(

s2 − 4
) (

s2 + 4
) (

s2 − 2
)
)

= s(s − 2)2(s + 2)

(s − 2)(s + 2)
(
s2 + 4

) (
s2 − 2

)
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= s(s − 2)(
s2 + 4

) (
s + √

2
) (

s − √
2
)

= − 1
12

[
2 + √

2

s + √
2

+ 2 − √
2

s − √
2

− 4
(

s + 2
s2 + 4

)]

= − 1
12

[
2 + √

2

s + √
2

+ 2 − √
2

s − √
2

− 4
(

s
s2 + 22 + 2

s2 + 22

)]
.

Formulas 2, 3, and 4 from Table 6.1 tell us that

x(t) = − 1
12

[(
2 + √

2
)

e−√
2t +

(
2 − √

2
)

e
√

2t − 4 cos 2t − 4 sin 2t
]

.

■

You should confirm that these are the solutions to the original IVP.

Exercises 6.5

A
1. Eliminate L[x(t)] from the algebraic system

(s + 3)L[x(t)] − L[y(t)] = 2

(s + 3)L[y(t)] − L[x(t)] = 3

and then solve for y(t). (See Example 6.5.1.)
Solve the IVPs in Problems 2–13 by using the Laplace transform.

2.
{
x′ = y, y′ = −x

}
; x(0) = 2, y(0) = −1

3.
{
x′ = 2x − 3y, y′ = y − 2x

}
; x(0) = 8, y(0) = 3

4.
{
x′ = 12x + 5y, y′ = −6x + y

}
; x(0) = 0, y(0) = 1

5.
{
x′ = −2x + y, y′ = −9x + 4y

}
; x(0) = 5, y(0) = −3

6.
{
x′ = −6x + 2y, y′ = −7x + 3y

}
; x(0) = 1, y(0) = 0

7.
{
x′ = x + y, y′ = −4x + y

}
; x(0) = 1, y(0) = 3

8.
{
x′ = y′ + 6y, y′ = 3

2 x − 1
2 x′} ; x(0) = 2, y(0) = 3

9.
{
x′ + x − 5y = 0, y′ + 4x + 5y = 0

}
; x(0) = −1, y(0) = 2

10.
{
x′ + y′ = −3x − 2y + e−2t , 2x′ + y′ = −2x − y + 1

}
; x(0) = 0, y(0) = 0

11.
{
x′ = x − y − e−t , y′ = 2x + 3y + e−t} ; x(0) = 1, y(0) = 0

12.
{
x′ + y′ = x, y′ + z′ = x, z′ + x′ = x

}
; x(0) = 1, y(0) = 1, z(0) = 1

13.
{
x′ − 3x − 6y = 27t2, x′ + y′ − 3y = 5e t} ; x(0) = 5, y(0) = −1
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B
1. Solve the system IVP

{
x′′ + y′ = 4x, 4x′ − y′′ = 9y

}
; x(0) = 0, x′(0) = 1, y(0) = −1, y′(0) = 2 by

using the Laplace transform.
2. Solve the system IVP

{
x′′ − y′ = −t + 1, x′ − x + 2y′ = 4et} ; x(0) = 0, x′(0) = 1, y(0) = 0 by

using the Laplace transform.
3. The system

mx′′ = −k1(x − aθ) − k2(x + aθ)

mr2θ′′ = k1a(x − aθ) − k2 a (x + aθ)

models the motion of a slab of mass m mounted on two springs, as shown in the following figure.
Here, x is the vertical displacement of the center of mass and θ is the angle shown. The constant r
represents the radius of gyration of the slab about the appropriate axis through the center of mass.
Use the Laplace transform and technology to solve the system for x and θ if m = 1, k1 = 1, k2 = 2,
a = 1, r = 1, x(0) = 1, x′(0) = 0, θ(0) = 0.1, and θ′(0) = 0.

x

k2k1

a a

�

4. The system consisting of two pendulums connected by a spring (see the following figure) has its
motion approximated by the system of equations

mx′′ + mω2
0 x = −k(x − y)

my′′ + mω2
0 y = −k(y − x),

where L is the length of each pendulum, g is the gravitational constant, and ω2
0 = g/L. Use the

Laplace transform and technology to solve this system with m = 1, L = 5, g = 32, k = 2, and the
initial conditions x(0) = 0, x′(0) = 2, y(0) = 0, and y′(0) = 2.

x y

k

m m

5. The following circuit is described by the system

L1 İ1 + R1 (I1 − I2) = v(t)

L2 İ2 + R2I2 + R1 (I2 − I1) = 0.
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Determine I1 and I2 when the switch is closed if L1 = L2 = 2 henrys, R1 = 3 ohms, R2 = 8 ohms,
and v(t) = 6 volts. Assume that I1(0) = I2(0) = 0.

I1 R1 R2

L2L1

V(t) I2

Switch

1

2

C
1. Solve the system IVP

{
d2x
dt2 = y + 4e−2t , d2y

dt2 = x − e−2t
}

;

x(0) = y(0) = x′(0) = y′(0) = 0.

2. In determining the concentration of a chemical in a system consisting of two compartments
separated by a membrane, we get the system of equations

ẋ = ay − bx

ẏ = bx − ay − βy,

subject to the conditions x(0) = x∗ and y(0) = y∗, where x∗ and y∗ are constants. (Here, x and y
represent the masses of the chemical in compartments 1 and 2, respectively, at any time t, and the
constants a, b, and β are positive constants of proportionality related to the rate of flow of the
chemical from one compartment to another.)

a. Solve this system of equations using Laplace transforms.

b. Letting p = 1
2 (b + a + β) and q = 1

2

√
(b + a + β)2 − 4βb , show that q is a (positive) real

number and that p > q.

c. Using the solution found in part (a) and the results of part (b), show that the chemical masses x
and y approach zero steadily.

6.6 A QUALITATIVE ANALYSIS VIA THE LAPLACE
TRANSFORM

In Chapter 5 (specifically, in Sections 5.2–5.5), we analyzed autonomous two-dimensional
systems of linear equations and their equivalent single second-order homogeneous equa-
tions by means of eigenvalues and eigenvectors. This qualitative analysis, which was very
neat and very satisfying, depended on the roots of polynomial equations (the characteristic
equations). However, the eigenvalue method didn’t stretch quite far enough to handle general
nonhomogeneous systems (Section 5.6).
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6.6.1 Homogeneous Equations
Despite the emphasis on the Laplace transform as a tool for obtaining exact, closed-form
solutions, it turns out that the transform can provide insight into the qualitative nature of a
solution as well. In fact, because the Laplace transform treats nonhomogeneous equations in
essentially the same way as it treats homogeneous equations (with slightly messier algebra),
the Laplace transform in effect gives us an extension of eigenvalue analysis to nonhomoge-
neous equations. Let’s examine this by analyzing nonhomogeneous second-order equations
of the form

c2x′′ + c1x′ + c0x = f (t), (6.6.1)

where c2, c1, and c0 are constants and c2 	= 0. For the sake of simplicity and clarity, we’ll start
with f (t) ≡ 0, the homogeneous case.

Taking the Laplace transform of both sides of (6.6.1)—with f (t) ≡ 0—we get

c2L[x′′(t)] + c1L[x′(t)] + c0L[x(t)] = 0,

which becomes

c2
{
s2L[x(t)] − sx(0) − x′(0)

} + c1 {sL[x(t)] − x(0)} + c0L[x(t)] = 0,

or, after simplifying,(
c2s2 + c1s + c0

)L [x(t)] − (c2s + c1) x(0) − c2x′(0) = 0.

Solving, we find that

L[x(t)] = (c2s + c1) x(0)

c2s2 + c1s + c0
+ c2x′(0)

c2s2 + c1s + c0
. (6.6.2)

We should note something significant about the denominator, c2s2 + c1s + c0, of the Laplace
transform of the solution. It is the characteristic polynomial corresponding to the second-order
differential equation c2x′′ + c1x′ + c0x = 0 or to the equivalent system

x′
1 = x2

x′
2 =

(
− c0

c2

)
x1 −

(
c1

c2

)
x2.

Interesting! If the right-hand side of Equation (6.6.2) is expressed as a single fraction (rational
function) with no common factors in the numerator and denominator, then the zeros of the
characteristic polynomial—the values of s that make the denominator zero—are called the
poles, or singularities, of the transform L[x(t)].
Now suppose that λ1 and λ2 are the zeros of the characteristic polynomial—the eigenvalues
of the system. Let’s see what happens if both zeros are real numbers. For convenience, also
assume that λ1 	= λ2.
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First, we can divide through by c2 and write c2s2 + c1s + c0 = 0 in the equivalent form

s2 +
(

c1
c2

)
s+

(
c0
c2

)
= 0; then we can write s2 +

(
c1
c2

)
s+

(
c0
c2

)
= (s − λ1) (s − λ2) . Now, returning

to (6.6.2), we can apply the inverse transform to each side to get

x(t) = L−1
[

(c2s + c1) x(0)

c2s2 + c1s + c0

]
+ L−1

[
c2x′(0)

c2s2 + c1s + c0

]

= L−1

⎡
⎣ (c2s + c1) x(0)

c2

(
s2 +

(
c1
c2

)
s +

(
c0
c2

))
⎤
⎦ + L−1

⎡
⎣ c2x′(0)

c2

(
s2 +

(
c1
c2

)
s +

(
c0
c2

))
⎤
⎦

= L−1

⎡
⎣ 1

c2
(c2s + c1) x(0)(

s2 +
(

c1
c2

)
s +

(
c0
c2

))
⎤
⎦ + L−1

⎡
⎣ 1

c2
c2x′(0)(

s2 +
(

c1
c2

)
s +

(
c0
c2

))
⎤
⎦

= L−1

⎡
⎣

(
s + c1

c2

)
x(0)

(s − λ1) (s − λ2)

⎤
⎦ + L−1

[
x′(0)

(s − λ1) (s − λ2)

]

= x(0)L−1

⎡
⎣

(
s + c1

c2

)
(s − λ1) (s − λ2)

⎤
⎦ + x′(0)L−1

[
1

(s − λ1) (s − λ2)

]

= x(0)L−1

[ c1+c2λ1
c2(λ1−λ2)

s − λ1
−

c1+c2λ2
c2(λ1−λ2)

s − λ2

]
+ x′(0)L−1

[
1

λ1 − λ2

(
1

s − λ1
− 1

s − λ2

)]

= x(0)

λ1 − λ2
L−1

[
λ1 + c1

c2

s − λ1
− λ2 + c1

c2

s − λ2

]
+ x′(0)

λ1 − λ2
L−1

[
1

s − λ1
− 1

s − λ2

]

= AL−1
[

1
s − λ1

]
− BL−1

[
1

s − λ2

]
+ CL−1

[
1

s − λ1

]
− DL−1

[
1

s − λ2

]

= K1L−1
[

1
s − λ1

]
+ K2L−1

[
1

s − λ2

]
= K1eλ1 t + K2eλ2 t ,

where A, B, C, D, K1, and K2 are constants. (Check the last few lines carefully.)

Stability
Imitating the qualitative analysis we did in Chapter 5 for real eigenvalues (see Table 5.1 at
the end of Section 5.5 for a summary), we can see that if λ1 and λ2 are unequal and positive,
then the origin is a source. If λ1 and λ2 are unequal and negative, then the origin is a sink. If
λ1 and λ2 have different signs, then the origin is a saddle point.
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Now suppose that the zeros of our characteristic polynomial are complex numbers: λ1 =
p + qi, λ2 = p − qi. (Remember that complex roots of a quadratic equation occur in complex
conjugate pairs.) Then we can write

s2 +
(

c1

c2

)
s +

(
c0

c2

)
= (s − λ1) (s − λ2) = [s − (p + qi)][s − (p − qi)]

= [(s − p) − qi][(s − p) + qi] = (s − p)2 + q2.

Now when we express our solution x(t) in terms of the inverse Laplace transform of functions,
we will have (s − p)2 + q2 in all the denominators and either constants or constant multiples
of s in the numerators of these functions. Looking at entries 5 and 6 in the transform table
(Table 6.1, in Section 6.2), we realize that the inverse Laplace transforms we will get are
constant multiples of either ept sin qt or ept cos qt.

The next example will help us understand these ideas better.

■ Example 6.6.1 A Qualitative Analysis via the
Laplace Transform

Let’s look at the equation x′′ + 3x′ + 5x = 0. The Laplace transform of this equation is

L[x′′] + 3L[x′] + 5L[x] = 0{
s2L[x] − sx(0) − x′(0)

} + 3{sL[x] − x(0)} + 5L[x] = 0(
s2 + 3s + 5

)L[x] − (s + 3)x(0) − x′(0) = 0,

so

L[x] = (s + 3)x(0) + x′(0)

s2 + 3s + 5
= (s + 3)x(0)

s2 + 3s + 5
+ x′(0)

s2 + 3s + 5
.

The characteristic polynomial s2 + 3s + 5 has complex conjugate zeros −3
2 +

√
11
2 i and

−3
2 −

√
11
2 i. Because the real part is negative, we expect the solution to oscillate with decreasing

amplitude. Figure 6.5 shows x against t, with x(0) = 3 and x′(0) = 20. ■

6.6.2 Nonhomogeneous Equations
When we look at the nonhomogeneous version of (6.6.1), we find that

X(s) = L[x(t)] = L[f (t)]
P(s)

+ Q(s)
P(s)

= F(s)
P(s)

+ Q(s)
P(s)

, (6.6.3)

where P(s) is the characteristic polynomial c2s2 + c1s + c0 and Q(s) is the linear polynomial
{c2x(0)} s + {

c1x(0) + c2x′(0)
}
. (Verify this.)



6.6 A Qualitative Analysis via the Laplace Transform 345

x

6

5

4

3

2

1

1 2 3 4 t

FIGURE 6.5
Graph of x(t) = e−3t/2
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, 0 ≤ t ≤ 4

This observation can be expanded to the case of the general nth-order linear equation with
constant coefficients. In this situation, P(s) is the nth-degree characteristic polynomial and
Q(s) is a polynomial in s of degree n − 1. The coefficients of Q(s) consist of combinations of
products of the coefficients in the equation and the n initial conditions.

If we let W(s) = 1
P(s) , we can write (6.6.3) as

X(s) = W(s)F(s) + W(s)Q(s). (6.6.4)

Applying the inverse Laplace transform to each side of (6.6.4), we see that

x(t) = L−1[W(s)F(s)] + L−1[W(s)Q(s)],
which expresses the output x(t) of the system as a superposition of two outputs—the first due
to the input f (t) and the second due to the initial conditions.

Let’s look at a problem we’ve seen before, as Examples 6.1.1 and 6.2.1.

■ Example 6.6.2 Qualitative Analysis of a
Nonhomogeneous Equation

Consider the nonhomogeneous initial-value problem

x′′ + 3x′ + 2x = 12e2t ; x(0) = x0, x′(0) = x1.

The Laplace transform of this equation is

L[x′′] + 3L[x′] + 2L[x] = 12L [
e2t]

{
s2L[x] − sx(0) − x′(0)

} + 3
{
sL [x] − x(0)

} + 2L[x] = 12
s − 2(

s2 + 3s + 2
)L[x] − (s + 3)x0 − x1 = 12

s − 2
,
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FIGURE 6.6
Graph of x(t) = e2t + 3e−2t − 3e−t , −1 ≤ t ≤ 1

so

L[x] =
12

s−2

s2 + 3s + 2
+ (s + 3)x0 + x1

s2 + 3s + 2
,

the form indicated in (6.6.3).

The characteristic polynomial s2 + 3s + 2 has negative real zeros −1 and −2, so the second
term in the preceding equation contributes a part of the solution that decays (tends to 0)
as t → ∞. (Why?) The first term has an additional pole, at 2. If we imagine the partial-
fractions version of the Laplace transform of the solution, written with denominators s − 2
and s2 + 3s + 2, we realize that the only terms that appear in the solution are e2t , e−t , and
e−2t . Therefore, for increasing values of t, the solution is dominated by the term containing
e2t . Figure 6.6 shows x against t, with x(0) = x0 = 1 and x′(0) = x1 = −1, as in Examples
6.1.1 and 6.2.1. ■

Transfer Functions and Impulse Response Functions
If we consider the nonhomogeneous second-order Equation (6.6.1) with initial conditions
x(0) = 0, x′(0) = 0, then Equation (6.6.3) becomes

L[x(t)] = 1
c2s2 + c1s + c0

L[f (t)],

or
X(s)
F(s)

= 1
c2s2 + c1s + c0

, (6.6.5)

where F(s) = L[f (t)] and X(s) = L[x(t)]. A system with these initial conditions is sometimes
described as “relaxed” or at rest until t = 0.

In certain areas of engineering (for example, those dealing with feedback and control systems),
this ratio (6.6.5) of the Laplace transform of the output to the Laplace transform of the input is
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called the transfer function of the system modeled by Equation (6.6.1) with all initial values
zero. The inverse Laplace transform of the transfer function is called the impulse response
function for the system, because in physical terms, it describes (for example) the solution
when a spring-mass system is struck by a hammer. (See Example 6.4.1, for instance, and
Problem B3 of Exercises 6.6.) The analysis of this transfer function provides a picture of what
can be called the response of the system. The values of s that make the denominator of (6.6.5)
zero are called poles or singularities of the transfer function. On the basis of our analysis of
eigenvalues in Chapter 5 and our discussion in this section, you should see that the nature
of the poles (real, complex, positive, and so on) determines the behavior of the system. For
example, in this second-order situation, the system could be undamped, overdamped, or
underdamped, or the response of the system could grow without bound.

Exercises 6.6
A

Suppose X(s) = L[x(t)] is the Laplace transform of the solution of a linear differential
equation. For each transform in Problems 1–10, determine the qualitative behavior of x(t)
for large values of t without finding the inverse of the transform. (That is, determine if x(t)
oscillates, goes to zero, or becomes unbounded as t becomes large.) Note that “oscillates”
and “goes to zero” are not mutually exclusive answers, nor are the choices “oscillates” and
“becomes unbounded.”

1. X(s) = 2
3s + 5

2. X(s) = 4

s2 − 1

3. X(s) = s + 1

s2 + 1

4. X(s) = 1

s2 + 2s + 10

5. X(s) = s − 2

s2 − 2s + 1

6. X(s) = s + 2

s2 + 4

7. X(s) = 2s + 6

s2 + 6s + 18

8. X(s) = 2s + 5

s2 + 3s + 2

9. X(s) = s

s3 − 1
1

10. X(s) = s

s4 + 5s2 + 4

In Problems 11–14, (a) compute the Laplace transform of each solution, (b) find the poles of
the Laplace transform of the solution, and (c) discuss the behavior of the solution (oscillatory,
unbounded, etc.) without solving the equation.
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11. x′′ − x = 0; x(0) = 0, x′(0) = 1

12. ẍ + 2ẋ + 2x = e−t/10; x(0) = 4, ẋ(0) = 1

13. x′′ + 2x′ + 2x = e− 2 t sin 4t; x(0) = 2, x′(0) = −2

14. 2ẍ + 7ẋ + 3x = 2 cos t; x(0) = 1, x′(0) = 0

B

1. Suppose f (t) and x(t) are the input and output, respectively, of a linear second-order ODE with
constant coefficients.

a. Find the ODE if its transfer function is given by P(s) = 1
/(

s2 + s + 1
)
.

b. Find x(t) if f (t) = [sin 2(t − 1)]U(t − 1).

2. Find the output of the ODE with transfer function 1/(s + 1), given that the input f (t) has Laplace
transform F(s) = s e− 2 s

s2+4
.

3. Consider the initial value problem

c2x′′ + c1x′ + c0x = δ(t); x(0) = x′(0) = 0,

where δ(t) denotes the unit impulse function (Section 6.4). Show that the transfer function of the
system is X(s) = 1

c2s2+c1s+c0
.

4. Suppose that a linear system is described by the equation

ẍ + 2ẋ + 5x = f (t); x(0) = 2, ẋ(0) = −2.

a. Find the transfer function for the system.
b. Find the impulse response function.
c. Give a formula for the solution of the IVP. (Use the result of Problem C1 below. Your answer

should contain an integral.)

5. If a linear system is governed by the initial value problem

y′′ − y′ − 6y = g(t); y(0) = 1, y′(0) = 8,

a. Find the transfer function for the system.
b. Find the impulse response function.
c. Find a formula for the solution of the IVP. (Use the result of Problem C1 below. Your answer

should contain an integral.)

6. Consider the initial value problem

y′′ + 2y′ + 2y = sin(α t); y(0) = 0, y′(0) = 0.

a. Find the transfer function for the system.
b. Find the impulse response function.
c. Find a formula for the solution of the IVP. (Use the result of Problem C1 below. Your answer

should contain an integral.)
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7. Consider the first-order system a1x′ + a0x = f (t), where a1 and a0 are constants, a1 	= 0.

a. Find the transfer function of this system.
b. Show that the transfer function of a constant-coefficient first-order system can be written as

W(s) = c
1+Ts , where c is a constant and T is a constant related to the exponential function

component of the solution.

C

1. If I is an interval containing the origin and f is continuous on I, show that the unique solution to
the IVP

c2x′′ + c1x′ + c0x = f (t); x(0) = x0, x′(0) = x1

is given by (r * f )(t) + xH(t), where R = X(s)
F(s) , r = L−1[R](t) is the response function, and xH(t) is

the unique solution of the homogeneous equation c2x′′ + c1x′ + c0x = 0; x(0) = x0, x′(0) = x1. (Of
course, * denotes convolution.)

2. The Volterra integral equation is given by

x(t) = g(t) +
∫ t

0
k(t − τ) x(τ)dτ,

where g and k are known functions with Laplace transforms G = L [g] and K = L [k]. Show that
x(t) = L−1[ G(s)

1−K(s) ].

SUMMARY

Transformation methods are important examples of how we can change difficult problems
into problems that can be handled more easily. If f (t) is a function that is integrable for t ≥ 0,
then the Laplace transform of f is defined by L[f (t)] = ∫∞

0 f (t)e−stdt, when this improper
integral exists. The integral will exist if we stick to continuous or piecewise continuous functions
f (t) for which there exist positive constants M and K such that

∣∣f (t)∣∣ < eMt for all t ≥ K . Note
that this integral is a function of the parameter s, so we can write L[ f (t)] = F(s).

Using basic properties of integrals, we can see that L[c · f (t)] = c · L[f (t)], where c is any
real constant, and that L[f (t) + g(t)] = L[f (t)] + L[g(t)], whenever the Laplace transforms
of both f and g exist. Any transformation that satisfies the last two properties is called a
linear transformation. If c1 and c2 are constants, we can combine the two properties to write
L[c1f (t) + c2g(t)] = c1L[f (t)] + c2L[g(t)].
Table 6.1 in Section 6.2 gives the Laplace transform of some important classes of functions,
including power functions, exponentials, trigonometric functions, and multiples of these.
There are also important formulas for the Laplace transforms of f ′, f ′′, and higher derivatives.
The Laplace transform method enables us to handle a linear nonhomogeneous equation with
initial conditions all at once.
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Once we have calculated the Laplace transform of a function—in particular, once we have
transformed a differential equation into an algebraic equation—we have to be able to reverse
the process to gain information about the original problem. An important fact is that if the
Laplace transforms of the continuous functions f and g exist and are equal for s ≥ c (c a constant),
then f (t) = g(t) for all t ≥ 0. This says that a continuous function can be recovered uniquely
from its Laplace transform. Letting L[f (t)] = F(s), we can express the definition of the inverse
Laplace transform as follows:

L−1[F] = f if and only if L[f ] = F.

It can be shown that the inverse Laplace transform is a linear transformation:

L−1 [c1F(t) + c2G(t)] = c1L−1[F(t)] + c2L−1[G(t)].
In trying to find the inverse transform of an expression that is the product of two or more
transforms, we encounter the idea of the convolution of two functions. The convolution of
two functions f and g is the integral (f ∗ g)(t) = ∫ t

0 f (r)g(t − r)dr, provided that the integral
exists for t > 0. This product has important algebraic properties, and one of the most useful
is that the Laplace transform of a convolution of two functions is equal to the product of
the Laplace transforms of these two functions. More precisely, suppose that f and g are two
functions whose Laplace transforms exist. Let F(s) = L[f (t)] and G(s) = L[g(t)]. Then the
Convolution Theorem says that

L[(f ∗ g)(t)] = L
[∫ t

0
f (r)g(t − r)dr

]
= L[f (t)] · L[g(t)] = F(s) · G(s).

By using the unit step function (or Heaviside function) U, defined by

U(t) =
{

0 for t < 0
1 for t ≥ 0,

we can model systems in which there are abrupt changes. Mathematically, this means that we
can express piecewise continuous functions in a simple way, using U(t) as a basic building block.

When we are solving differential equations that model abrupt changes, the following result
comes in handy. If L[f (t)] exists for s > c and if a > 0, then

L[f (t − a)U(t − a)] = e−a sL[f (t)] for s > c.

Alternatively, we can write the preceding formula as

f (t − a)U(t − a) = L−1 [e−a sL[f (t)]] .

If we want to consider problems in which there is an external force of large magnitude applied
suddenly for a very short period of time, we need the idea of the unit impulse function, or
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Dirac delta function, defined as

δ(t) = lim
b→0

δb(t) =
{∞ for t = 0

0 for t 	= 0,

where

δb(t) =
{ 1

b
for 0 ≤ t ≤ b

0 for t > b.

We can show that L[δ(t − a)] = e−s a. In particular, L[δ(t)] = 1.

When initial conditions are given, the Laplace transform converts a system of linear differ-
ential equations with constant coefficients to a system of simultaneous algebraic equations.
Then we can solve the algebraic equations for the transformed solution functions. Finally,
applying the inverse transform to these functions gives us the solutions of the original system
of linear ODEs. However neat this sounds conceptually, the algebraic details are often quite
messy, and technology comes in handy.

Despite the emphasis on the Laplace transform as a tool for obtaining exact, closed-form
solutions, it turns out that the transform can provide insight into the qualitative nature of
a solution as well. In certain applied areas, when we are considering the important second-
order equation c2x′′ + c1x′ + c0x = f (t), the ratio X(s)

F(s) = 1
c2s2+c1s+c0

, where F(s) = L[f (t)] and
X(s) = L[x(t)], is called the transfer function of the system modeled by the equation with all
initial values zero. The inverse Laplace transform of the transfer function is called the impulse
response function for the system and describes the solution (and the system) in a way that is
similar to the qualitative techniques used in Chapter 5. The analysis of this transfer function
provides a picture of what can be called the response of the system. The values of s that
make the denominator of the transfer function zero are called poles or singularities of the
transfer function. On the basis of the analysis of eigenvalues in Chapter 5 and the discussion
in this section, we see that the algebraic nature of the poles determines the behavior of the
system.

PROJECT 6-1
Residential Segregation1

Suppose that two distinct cultural groups, the Yahoos and the Houyhnhnms (pronounced
’hwinems), live in the same city. Their cultural differences are such that one group may annoy
the other group so much that the one group may start moving out of the city, which results

1 This project is based on T. P. Dreyer’s treatment of a model developed by M. E. Gurtin in “Some Mathematical Models for Population
Dynamics that Lead to Segregation,” Quarterly of Applied Mathematics 32 (1974): 1–9.
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in segregation. This scenario leads to the initial-value problem

dY
dt = a Y(t) + b H(t) Y(0) = α

dH
dt = c Y(t) + d H(t) H(0) = β,

(*)

where Y(t) and H(t) denote the Yahoo and Houyhnhnm populations, respectively, at time t
and a, b, c, d, α, and β are constants.

The constants a and d denote the net growth rate per population, whereas b and c indicate,
respectively, the effect of the presence of the other group.

a. Given the assumption that for both groups the presence of the other group is
irritating and encourages emigration, what does this say about the signs of b and c?

b. Determine the Laplace transforms of Y(t) and H(t), assuming that these transforms
exist.

c. Making the substitutions γ = 1
2 (a + d)δ = 1

2 (a − d), and ω = √
δ2 + b c, rewrite the

transforms found in part (b) and then find the partial fraction decompositions of
L [Y(t)] and L [H(t)].

d. Use the inverse Laplace transform and the given initial conditions to find Y(t) and
H(t). (Assuming that Y(t) and H(t) have continuous first derivatives, the second form
of the Existence and Uniqueness Theorem in Section 4.9 guarantees that this solution
is unique.)

e. Complete segregation occurs when either Y(t) or H(t) is zero at some finite time t∗.
Explain why such a finite time exists for Y(t) if α/β < −b/(δ + ω) and such a time
exists for H(t) if α/β > −b/(δ + ω).

f. If α/β = −b/(δ + ω) (called the tipping ratio), why do the expressions for Y(t) and
H(t) found in part (d) indicate that complete segregation cannot occur? What is the
tipping ratio if a = d?

g. If b = 0 and c < 0 in System (*), investigate how many Yahoos and Houyhnhnms
will be living in the city eventually—that is, as t → ∞.



CHAPTER 7

Systems of Nonlinear Differential Equations

INTRODUCTION

We have discussed various nonlinear equations throughout previous chapters, especially in
Chapters 2 and 3, treating them numerically, graphically, and analytically. In general, we can’t
expect to find the explicit (closed-form) solution of a nonlinear equation, so we are forced to
rely on qualitative and computational methods rather than on purely analytical techniques.
This complexity is magnified when we address systems of nonlinear equations.

In Chapter 5 we analyzed the stability of systems of linear differential equations—that is,
the behavior of such systems near equilibrium points—and saw that this stability could be
described completely in terms of the eigenvalues and eigenvectors of the system. This kind of
analysis can be done for nonlinear systems, but it is not quite so satisfactory and complete.
One way of carrying out this study is to examine how closely we can approximate (in some
sense) a nonlinear system by a linear system and then apply the linear theory.

The modern qualitative theory of stability discussed in Chapter 5 and in this chapter originated
in the late 1800s with the work of the French mathematician Henri Poincaré (1854–1912),
who was studying nothing less than whether the solar system was a stable system. The equa-
tions involved in Poincaré’s study of celestial mechanics could not be solved explicitly, so
he and others developed implicit (qualitative) methods to deal with the complicated prob-
lems of planetary motion. [An excellent account of this work and its consequences is Celestial
Encounters: The Origins of Chaos and Stability by F. Diacu and P. Holmes (Princeton: Princeton
University Press, 1996).]

7.1 EQUILIBRIA OF NONLINEAR SYSTEMS
Recall that an equilibrium point of a differential equation or a system of differential equations
is a constant solution. If we look at the two (somewhat similar) equations (1) y′ = −y and
(2) y′ = −y(1 − y), we will see some important differences between linear and nonlinear
equations.

Copyright © 2009, Elsevier Inc. 353
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Equation (1) is linear but, more fundamentally, separable, so it is easy to find the general
solution: y = Ce−t , where C is an arbitrary constant. (We recognize that C = y(0), the initial
state of the system being modeled by the equation.)

Now Equation (2) is nonlinear and separable, and its general solution is y = Ce−t

1−C+Ce−t , where
C = y(0). (Verify the solutions to both equations.)

Let’s examine some typical solution curves for Equation (1). Figure 7.1 shows that there is
only one equilibrium solution, y ≡ 0, and this is a sink. (Review Section 2.6 if necessary.) If
an object described by the equation starts off at zero (that is, if C = 0), it remains at zero
for all time. If the object’s initial state is not zero, then the object will approach the solution
y ≡ 0 as its asymptotically stable solution (or sink).

On the other hand, Figure 7.2 shows the same kind of information for Equation (2). For such
a nonlinear equation there can be more than one equilibrium solution, in this case y ≡ 0
and y ≡ 1. Also note that some solutions of a nonlinear equation may “blow up in finite
time”—that is, become unbounded as t approaches some finite value.

(Where does the denominator of the general solution to Equation (2) vanish?) In contrast, all
solutions of a linear equation or a system of linear equations are defined for all values of the
independent variable. Finally, looking closely at the behavior of solutions of Equation (2)
with different initial values, we see that the solutions starting off above 1 behave differently

y
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FIGURE 7.1
Solutions of y′ = −y; y(0) = 5, 3, 1, −2, −4
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FIGURE 7.2
Solutions of y′ = −y(1 − y)



7.1 Equilibria of Nonlinear Systems 355

from those solutions with initial values less than 1. The equilibrium solution y ≡ 0 is a sink
if y(0) < 1 and y ≡ 1 is a source if y(0) > 1. Furthermore, for solutions with initial values C

greater than 1, the line t = ln
(

C
C−1

)
is a vertical asymptote. The last three types of behavior

cannot occur when we are dealing with a linear equation. You should expect that the situation
with nonlinear systems is appropriately complicated.

Let’s look at an example of a nonlinear system and its behavior near its equilibrium points.

■ Example 7.1.1 Stability of a Nonlinear System
The nonlinear system

x′ = x − x2 − xy

y′ = −y − y2 + 2xy

represents two populations interacting in a predator-prey relationship. This is essentially a
Lotka-Volterra system (see Section 4.7, especially Example 4.7.4) with “crowding” terms (the
squared terms) added for both species.

To calculate the equilibrium points of this system, we solve the system {x′ = 0, y′ = 0}, which
is the same as the nonlinear algebraic system

(A) x(1 − x − y) = 0

(B) y(−1 − y + 2x) = 0.

Clearly, the origin, x = y = 0, is an equilibrium point. Logically, there are only three other
cases to examine: (1) x = 0, y 	= 0; (2) x 	= 0, y = 0; and (3) x 	= 0, y 	= 0. Assuming case
1, we can eliminate Equation (A) and examine (B), which becomes y(−1 − y) = 0. Because
y 	= 0, we conclude that −1 − y = 0, or y = −1. Thus, our second equilibrium point is
(0, −1). Moving to case 2, we can ignore Equation (B) and focus on (A), which now looks
like x(1 − x) = 0. Because we are assuming in case 2 that x 	= 0, we can see that x = 1, which
gives us the third equilibrium point (1, 0). Finally, if x 	= 0 and y 	= 0, our system of algebraic
equations becomes

(A2) x + y = 1

(B2) y − 2x = −1.

(We have divided out x and y in (A) and (B) and then rearranged the terms of each
equation.) Subtracting (B2) from (A2) gives us 3x = 2, or x = 2

3 . Substituting this value of x
in (A2) yields y = 1

3 . Therefore, the last equilibrium point is
(2

3 , 1
3

)
.

In terms of a population problem, the only interesting equilibrium point is the last one
we found. (Why is this so?) If we look at a slope field for the original system of nonlinear
differential equations near the point

(2
3 , 1

3

)
, we see some interesting behavior (Figure 7.3a).
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FIGURE 7.3a
Slope field for x′ = x − x2 − xy, y′ = −y − y2 + 2xy near
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FIGURE 7.3b
Phase portrait for x′ = x − x2 − xy, y′ = −y − y2 + 2xy near

(
2
3 , 1
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)
(x(0), y(0)) = (0.2, 1), (0.8, 0.8), (0.8, 0.5), (1, 0.7), (1, 0.2), (0.5, 1)

The apparent spiraling of solutions into the equilibrium point can be seen more clearly if we
show some (numerically generated) solution curves (Figure 7.3b). Figure 7.3b represents a
predator-prey population that is stabilizing. If the units are thousands of creatures, then the
X population is heading for a steady population of about 667, whereas the Y population has
333 as its stable value.
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Mathematically, however, we should look at the entire phase portrait to understand
the complex behavior of nonlinear systems. We’ll return for a detailed analysis in
Example 7.3.1. ■

Exercises 7.1

A

Find all equilibrium points for each of the systems in Problems 1–14, using technology if
necessary.

1. x′ = −x + xy, y′ = −y + 2xy

2. x′ = x − xy, y′ = y − xy

3. x′ = x2 − y2, y′ = x − xy

4. x′ = 1 − y2, y′ = 1 − x2

5. x′ = x + y + 2xy, y′ = −2x + y + y3

6. x′ = y
(
1 − x2) , y′ = −x

(
1 − y2)

7. x′ = x − x2 − xy, y′ = 3y − xy − 2y2

8. x′ = 1 − y, y′ = x2 − y2

9. x′ = (1 + x) sin y, y′ = 1 − x − cos y [Hint : Graph the two equations on the same axes.]

10. x′ = 3y − ex , y′ = 2x − y [Hint : There are two equilibrium points. Use your CAS to approximate
these points.]

11. x′ = y2 − x2, y′ = x − 1

12. x′ = x2 − y, y′ = y2 − x

13. x′ = xy(1 − x), y′ = y
(
1 − y

x
)

14. x′ = y, y′ = − sin x − 3y

B

1. Use technology to find all equilibrium points of the system

x′ = −y, y′ =
(
x4 + 4x3 − x2 − 4x + y

)
/8.

2. A two-mode laser produces two different kinds of photons, whose numbers are n1 and n2. The
equations governing the rates of photon production are

ṅ1 = G1Nn1 − k1n1

ṅ2 = G2Nn2 − k2n2,

where N(t) = N0 − a1n1 − a2n2 is the number of excited atoms. The parameters G1, G2, k1, k2,
a1, a2, and N0 are all positive. Use a CAS “solve” command to find all equilibrium points of the
system.

3. A chemostat is a device for growing and studying bacteria by supplying nutrients and
maintaining convenient levels of the bacteria in a culture. (See Project 2-2 at the end of
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Chapter 2.) One model of a chemostat is the nonlinear system

dN
dt

= a1

(
C

1 + C

)
N − N

dC
dt

= −
(

C
1 + C

)
N − C + a2,

where N(t) denotes the bacterial density at time t, C(t) denotes the concentration of nutrient,
and a1, a2 are positive parameters. Use technology to find all equilibrium solutions (N∗, C∗) of the
system.

4. In the absence of damping and any external force, the motion of a pendulum is described by the
equation d2θ

dt2 + g
L sin θ = 0, where θ is the angle between the pendulum and the downward

vertical, g is the acceleration due to gravity, and L is the length of the pendulum.

a. Write this equation as a system of two first-order equations.
b. Describe all equilibrium points of the system.

C

1. Use technology to find all equilibrium solutions of the system

x′ = x − y2 + a + bxy, y′ = 0.2y − x + x3,

where a = 1.28 and b = 1.4. (Round to the nearest thousandth.)

7.2 LINEAR APPROXIMATION AT EQUILIBRIUM POINTS
One important aspect of linear systems is that the behavior of solutions near an equilibrium
point (“local” behavior) tells you the behavior of solutions in the entire phase plane. However,
even though most of the “nice” properties of linear systems are not present when we analyze
nonlinear systems, we may be able to understand the local behavior of nonlinear systems by
a process of linearization or linear approximation. This means that we try to replace the original
nonlinear system by a linear system that is “close” or near an equilibrium point. Remember
that in Section 3.1 we first discussed Euler’s method, which involved approximating solution
curves by tangent lines.

To see how this might work, let’s go back to the nonlinear equation y′ = −y(1 − y) = −y + y2

discussed in Section 7.1. We know that y = 0 is an equilibrium point. Now note that for values
of y close to zero, y2 is smaller than y. For example, if y = 0.00001, then y2 = 0.0000000001.
Then, dropping the squared (nonlinear) terms, we can guess that the linear equation y′ = −y
is a good approximation for the original equation and that the behavior of this last equation
near y = 0 should tell us how y′ = −y(1−y) behaves near y = 0. A comparison of the solution
curves near y = 0 in Figure 7.1 and Figure 7.2 shows us that this is true. However, it should also
be clear that we would be wrong to base our analysis of y′ = −y(1−y) on y′ = −y for all initial
values.
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If we want to analyze the behavior of y′ = − y(1 − y) near its other equilibrium point,
y = 1, we can use a simple change of variable: Let y = 1 + z, so that studying the behavior
of y′ = −y(1 − y) near y = 1 is the same as analyzing the behavior of the equation y = 1 + z
near z = 0. (Make sure you see this.) With this change of variable, we get the new equation
z′ = −y(1 − y) = (−1 − z)(−z) = z + z2. Using the same reasoning as before, we can take
z′ = z as a good linear approximation near z = 0. This last equation has the general solution
z = Cet , so solutions of z′ = z + z2 move away from z = 0 as t increases. But because y = 1+ z,
solutions of y′ = − y(1 − y) near y = 1 curve away from y = 1, behavior we can verify by
looking at Figure 7.2.

As another example, take the second-order nonlinear equation d2x
dt2 + g

L sin x = 0, which
describes the swinging of a pendulum (where x is the angle the pendulum makes with the
vertical, g is the acceleration due to gravity, and L is the pendulum’s length). This equation is
not easy to deal with analytically, so often the nonlinearity is removed by a substitution. For
small values of x (that is, for an oscillation of small amplitude), sin x ≈ x, so we can replace
our original nonlinear equation by the linear equation that approximates it: d2x

dt2 + g
L x = 0.

This approximate pendulum model has the same mathematical behavior as the undamped
spring-mass system; see Equation (4.8.1) in Section 4.8. Despite our success in approximating
a nonlinear equation by one that is linear, this is a limited victory. For example, the analysis
of the linear approximations implies that all solutions are defined for all values of t, but this
is clearly not the case for the nonlinear equation. The next example illustrates the failure of
linearization more dramatically.

■ Example 7.2.1 Linearization Can Mislead
Let’s look at the system

ẋ = y + ax
(
x2 + y2)

ẏ = −x + ay
(
x2 + y2) ,

where a is a given real number.

Clearly, the origin (x, y) = (0, 0) is an equilibrium point regardless of the value of the
parameter a. In our example the obvious linearized system is

ẋ = y

ẏ = −x.

(Look back at the spring-mass system analyzed in Example 4.8.1.) This can be written in

the form Ẋ = AX, where X =
[
x
y

]
and A =

[
0 1

−1 0

]
. The characteristic polynomial is

λ2 + 1 = 0, so that the eigenvalues of A are purely imaginary: i and −i. From Table 5.1
in Section 5.5, we conclude that the origin is a stable center of the linearized system. But
this is the wrong conclusion with respect to the original nonlinear system, as the phase portrait
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FIGURE 7.4
Trajectories of ẋ = y − x

(
x2 + y2), ẏ = −x − y

(
x2 + y2), 0 ≤ t ≤ 60

(x(0), y(0)) = (0, 1.5), (0, −1.5)

of the original nonlinear system near (0, 0) shows. This portrait (Figure 7.4) corresponds
to a = −1.

It seems that the trajectories spiral in toward the equilibrium point, indicating that the origin
is actually a spiral sink for the nonlinear system. However, appearances can be deceiving, and
Problem C1 in Exercises 7.2 suggests a way of proving this claim about the origin.

You should suspect that the stability of the original system depends on the value of the
parameter a. If a = 0, for example, then the nonlinear portion of the system disappears,
leaving us with a purely linear system—in fact, the same system analyzed in Example 4.8.1
(with β = 1). As we’ve said, the origin is a stable center for this linear system, every trajectory
closing perfectly after one cycle. Problem C1 asks you to explore these ideas further. ■

In summary, we can look at this last example as a linear system “perturbed” (disturbed or

knocked off kilter) by a nonlinear component. We can write this system as Ẋ =
[

0 1
−1 0

]
X +[

f (x, y)
g(x, y)

]
, where f and g are nonlinear functions of x and y. As we’ll see later, if the nonlinear

perturbation is “nice” enough, the behavior of the whole system can be predicted from the
behavior of its linear portion near equilibrium points.

7.2.1 Almost Linear Systems
If we want to make this discussion of linear approximation mathematically sound, we have to
remind ourselves of some basic calculus facts. (See Section A.1 for additional information.)
Back in Section 3.1 we discussed local linearity, the idea that if we “zoom” in on a point on
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a curve y = f (x), the curve looks like a straight line—in fact, like a piece of the tangent line
drawn to the curve at that point. More precisely, for values of the independent variable x close
to x = a, we can write f (x) ≈ f (a) + f ′(a)(x − a). You should recognize that this expression
consists of the first two terms of an nth-degree (n ≥ 1) Taylor polynomial approximation of f near
x = a—or, equivalently, the first two terms of the Taylor series expansion of f in a neighborhood
of x = a:

f (x) = f (a) + f ′(a)(x − a) + f ′′(a)

2! (x − a)2 + f ′′′(a)

3! (x − a)3 + · · ·

+ f (n)

n! (x − a)n + · · ·

= f (a) + f ′(a)(x − a) + (x − a)2
{

f ′′(a)

2! + f ′′′(a)

3! (x − a) + · · ·

+ f (n)

n! (x − a)n−2 + · · ·
}

.

We can write this last result as f (x) ≈ f (a) + f ′(a)(x − a) + O
(
(x − a)2

)
, where the notation

O
(
(x − a)2

)
represents the fact that if x is close to a (so that x − a is very small), then the

sum of all terms past the second will be bounded by some multiple of (x − a)2. (The series
in braces, {· · · }, converges to some constant value.)

Now assume that we have a general nonlinear autonomous system of the form

ẋ = F(x, y)

ẏ = G(x, y)
(7.2.1)

which has the origin as an equilibrium point—that is, F(0, 0) = 0 and G(0, 0) = 0. This last
assumption is just for convenience as we develop some methodology. If we can write F as
ax + by + f (x, y) and G as cx + dy + g(x, y), where f and g are nonlinear functions, then we can
express the system in the form

Ẋ =
[
a b
c d

]
X +

[
f (x, y)

g(x, y)

]
.

If the nonlinear functions f and g are “small enough” (in a sense to be explained later) that
their effect on the system is negligible, then we can call our system “almost linear.” Near the

origin, our nonlinear system behaves essentially like the linear system Ẋ =
[
a b
c d

]
X—that

is, like the system

ẋ = ax + by

ẏ = cx + dy.
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Earlier we recalled that the tangent line y = f (a)+ f ′(a)(x−a) gives the best linear approxima-
tion of a single-variable function f near x = a. For F(x, y), a function of two variables, the best
approximation near a point (a, b) is provided by the tangent plane given by the approximation
formula

F(x, y) ≈ F(a, b) + ∂F
∂x

(a, b)(x − a) + ∂F
∂y

(a, b)(y − b), (7.2.2)

where ∂F
∂x (a, b) and ∂F

∂y (a, b) denote the partial derivatives of F evaluated at the point (a, b). (See

Section A.8.) For example, if we want to approximate F(x, y) = x3 + y3 near the point (1, 1),
we calculate

F(1, 1) = 13 + 13 = 2

∂F
∂x

= 3x2,
∂F
∂x

(1, 1) = 3(1)2 = 3

∂F
∂y

= 3y2,
∂F
∂y

(1, 1) = 3(1)2 = 3,

so the equation of the tangent plane is z = 2 + 3(x − 1) + 3(y − 1).

You should think of the right-hand side of Equation (7.2.2) as the first-degree Taylor
polynomial approximation of F, the linear terms in x and y of the two-variable Taylor series
expansion of F. This approximation ignores the rest of the series consisting of the terms
in x and y of the second degree and higher, which we can denote by f (x, y). Thus, in our
last example, we can write x3 + y3 ≈ 2 + 3(x − 1) + 3(y − 1) near (1, 1) or x3 + y3 =
2 + 3(x − 1) + 3(y − 1) + f (x, y) near (1, 1). (See Section A.8 for more information on this
issue.)

If we choose the point (a, b) to be the origin, then we can rewrite (7.2.1) as

ẋ = F(0, 0) + ∂F
∂x

(0, 0)x + ∂F
∂y

(0, 0)y + f (x, y)

ẏ = G(0, 0) + ∂G
∂x

(0, 0)x + ∂G
∂y

(0, 0)y + g(x, y)

or (remembering that we have assumed F(0, 0) = G(0, 0) = 0), as

ẋ = ax + by + f (x, y)

ẏ = cx + dy + g(x, y), (7.2.3)

where a = ∂F
∂x (0, 0), b = ∂F

∂y (0, 0), c = ∂G
∂x (0, 0), and d = ∂G

∂y (0, 0).

The technical definition of the “smallness” of f and g near the origin is that

lim
(x,y)→(0,0)

f (x, y)√
x2 + y2

= lim
(x,y)→(0,0)

g(x, y)√
x2 + y2

= 0. (7.2.4)
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The limits in (7.2.4) just say that near the origin, f and g are small in comparison to r =√
x2 + y2, which is the radial distance of the point (x, y) from the origin.

We define an almost linear system as a nonlinear System (7.2.3) that satisfies (7.2.4). In this
situation, the linear part

ẋ = ax + by

ẏ = cx + dy (7.2.5)

is called the associated linear system or linear approximation about the equilibrium point
(0, 0).

■ Example 7.2.2 A Linear Approximation
Let’s examine the behavior of the following system near the origin:

ẋ = x + 2y + x cos y

ẏ = −y − sin y.

First of all, we can see that (0, 0) is an equilibrium point for the system. Now we must find
the associated linear system, which is not obvious because x cos y and − sin y actually contain
linear terms that must be combined with the linear terms already visible in the original system.

Substituting the Taylor (or Maclaurin) expansions for cos y and sin y in the given equations
and collecting terms, we have

ẋ = x + 2y + x
(

1 − y2

2! + y4

4! − · · ·
)

= 2x + 2y + x
(

−y2

2! + y4

4! − · · ·
)

ẏ = −y −
(

y − y3

3! + y5

5! − · · ·
)

= −2y −
(

−y3

3! + y5

5! − · · ·
)

.

Thus, the associated linear system is

ẋ = 2x + 2y

ẏ = −2y,

or

Ẋ =
[

2 2
0 −2

]
X = AX.

The characteristic equation of this linear system is given by λ2 − 4 = 0, so the eigenvalues are
λ = −2 and λ = 2.

Table 5.1 in Section 5.5 tells us that two real eigenvalues opposite in sign indicate that we
have a saddle point. Figure 7.5a shows the slope field for the system; Figure 7.5b shows some
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FIGURE 7.5b
Trajectories for ẋ = x + 2y + x cos y, ẏ = −y − sin y

trajectories for the nonlinear system around the origin. Figure 7.5c shows trajectories around
the origin for the associated linear system.

We can see from these phase portraits that the linear approximation captures the behavior of
the nonlinear system near the origin.
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Trajectories for ẋ = 2x + 2y, ẏ = −2y

■

In the next section, we’ll generalize our work with almost linear systems in the form of a
famous theorem.

Exercises 7.2

A

In Problems 1–15, (a) verify that (0, 0) is an equilibrium point of each system and (b) show
that each system is almost linear.

1. x′ = 3x + y + xy, y′ = 2x + 2y − 2xy2

2. x′ = x − y + x2, y′ = x + y
3. x′ = x − xy − 8x2, y′ = −y + xy
4. x′ = −4x + y − xy3, y′ = x − 2y + 3x2

5. x′ = 3 sin x + y, y′ = 4x + cos y − 1
6. x′ = x − y, y′ = 1 − ex

7. x′ = −3x − y − xy, y′ = 5x + y + xy3

8. x′ = y
(
1 − x2), y′ = −x

(
1 − y2)

9. x′ = −x + x3, y′ = −2y
10. x′ = −2x + 3y + xy, y′ = −x + y − 2xy2

11. x′ = (x − 2y)(y + 4), y′ = 2x − y
12. x′ = (x − 2)(y − 3), y′ = (x + 2y)(y − 1)

13. x′ = 5x − 14y + xy, y′ = 3x − 8y + x2 + y2

14. x′ = 9x + 5y + xy, y′ = −7x − 3y + x2

15. x′ = 1
2

(
1 − 1

2
x − 1

2
y
)

x, y′ = 1
4

(
1 − 1

3
x − 2

3
y
)

y
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B

1. A woman rows a boat across a river a units wide occupying the strip 0 ≤ x ≤ a in the x-y plane,
always rowing toward a fixed point on one bank, say (0, 0). She rows at a constant speed u relative
to the water, and the river flows at a constant speed v. The situation can be modeled by the
equations

ẋ = − ux√
x2 + y2

, ẏ = v − uy√
x2 + y2

,

where (x, y) are the coordinates of the boat.

a. Use technology to sketch the phase portrait of the system for u > v. (Pick some reasonable
values of u and v.) What happens to the boat over time?

b. Use technology to sketch the phase portrait of the system for u < v. [Just reverse the values of u
and v used in part (a).] What happens to the boat now?

2. Show that the system

x′ = −x + 3y + y cos
√

x2 + y2

y′ = −x − 5y + x cos
√

x2 + y2

is not almost linear.
3. Consider the second-order nonlinear equation ẍ + x − 0.25x2 = 0.

a. Convert this equation to a nonlinear system of two first-order equations.
b. Determine if (0, 0) is an equilibrium solution of the system found in part (a).
c. Determine the associated linear system.

C

1. Let’s return to the system in Example 7.2.1:

ẋ = y + ax
(
x2 + y2

)
ẏ = −x + ay

(
x2 + y2

)
.

a. Introduce polar coordinates defined by x = r(t) cos θ(t), y = r(t) sin θ(t). Note that x2 + y2 = r2

and use the Chain Rule to show that xẋ + yẏ = rṙ.
b. In the expression for rṙ found in part (a), substitute for ẋ and ẏ using the equations in the system

and show that ṙ = ar3 for r > 0.
c. Show that θ = arctan(y/x) and that θ̇ = xẏ−yẋ

r2 . Substitute for ẋ and ẏ in this last formula to see
that θ̇ = 1.

d. The results of parts (b) and (c) show that our original system is equivalent to the system{
ṙ = ar3, θ̇ = 1

}
. The second equation says that all trajectories rotate around the origin with

constant angular velocity 1. Recognizing that the first equation describes the radial distance
from the origin to a point on the trajectory (see the function d(t) introduced in Example 7.2.4),
examine what happens to r(t) as t → ∞ in the three cases a < 0, a = 0, and a > 0. What does
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this say about the nature of the equilibrium point at the origin? Sketch a trajectory (in the x − y
plane) for each of the three cases.

2. In Problem B1 above, show that the trajectories in the phase plane are given by
y + √

x2 + y2 = C x1−α, where α = v/u and C is an arbitrary constant.

7.3 THE POINCARÉ-LYAPUNOV THEOREM
In this section, we will expand (pun intended) our view of linear approximation as an aid
in understanding the stability of nonlinear systems. More generally, suppose that (a, b) is an
equilibrium point for the system

ẋ = F(x, y)

ẏ = G(x, y),

which means that F(a, b) = 0 = G(a, b). Using the tangent plane approximation Formula
(7.2.2), we can rewrite this system as

ẋ = F(a, b) + ∂F
∂x

(a, b)(x − a) + ∂F
∂y

(a, b)(y − b) + f (x, y)

ẏ = G(a, b) + ∂G
∂x

(a, b)(x − a) + ∂G
∂y

(a, b)(y − b) + g(x, y)

or (because F(a, b) = 0 = G(a, b)) as

ẋ = A(x − a) + B(y − b) + f (x, y)

ẏ = C(x − a) + D(y − b) + g(x, y), (7.3.1)

where A = ∂F
∂x (a, b), B = ∂F

∂y (a, b), C = ∂G
∂x (a, b), and D = ∂G

∂y (a, b). Another way to look at this
general situation is to realize that we are translating the equilibrium point (a, b) to the origin
by using the change of variables u = x − a and v = y − b. Of course, this means that x = u + a
and y = v + b, so that we can rewrite (7.3.1) as

u̇ = Au + Bv + f (u, v)

v̇ = Cu + Dv + g(u, v),

which has (0, 0) as an equilibrium point. Note that this says that any equilibrium point
(a∗, b∗) 	= (0, 0) can be transformed to the origin for the purpose of analyzing the stability
of the system. Therefore, we can state an important stability result for nonlinear systems in
terms of an equilibrium point at the origin.

Suppose we have the nonlinear autonomous system

ẋ = ax + by + f (x, y)

ẏ = cx + dy + g(x, y), (7.3.2)
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where ad−bc 	= 0, lim
(x,y)→(0,0)

f (x,y)√
x2+y2

= lim
(x,y)→(0,0)

g(x,y)√
x2+y2

= 0, and the origin is an equilibrium

point. If λ1 and λ2 are the eigenvalues of the associated linear system

ẏ = cx + dy, (7.3.3)

then the equilibrium points of the two systems, (7.3.2) and (7.3.3), are related as follows:

a. If the eigenvalues λ1 and λ2 are not equal real numbers or are not pure imaginary
numbers, then the trajectories of the almost linear System (7.3.2) near the
equilibrium point (0, 0) behave the same way as the trajectories of the associated
linear System (7.3.3) near the origin. That is, we can use the appropriate table entries
given in Section 5.5 to determine whether the origin is a node, a saddle point, or a
spiral point of both systems.

b. If λ1 and λ2 are real and equal, then the origin is either a node or a spiral point of
both systems. Furthermore, if λ1 = λ2 < 0, then the origin is asymptotically stable;
and if λ1 = λ2 > 0, then the origin is an unstable equilibrium point.

c. If λ1 and λ2 are pure imaginary numbers, then the equilibrium point (0, 0) is either a
center or a spiral point of the nonlinear system. Also, this spiral point may be
asymptotically stable, stable, or unstable.

This important result was discovered by Poincaré and the Russian mathematician
A. M. Lyapunov (1857–1918). The next example shows how to use the Poincaré-Lyapunov
theorem.

■ Example 7.3.1 An Application of the Poincaré-Lyapunov
Theorem

Let’s return to the system in Example 7.1.1:

x′ = x − x2 − xy

y′ = −y − y2 + 2xy.

We saw that there were four equilibrium points: (0, 0), (0, −1), (1, 0), and (2
3 , 1

3 ).

Near the origin, because the terms x2, y2, and xy are smaller than the terms x and y, we can
replace the nonlinear system by its associated linear system

x′ = x

y′ = −y.

The eigenvalues of this linear system are −1 and 1. According to part (a) of the Poincaré-
Lyapunov result, the trajectories of the nonlinear system should behave the same way as the
trajectories of this associated linear system. Table 5.1 in Section 5.5 tells us that the origin is
a saddle point for both systems.
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If we want to examine what happens near the equilibrium point (0, −1), we make the change
of variables u = x − 0 = x and v = y − (−1) = y + 1 so that we can rewrite the original
system as

u′ = x′ = u − u2 − u(v − 1) = 2u − u2 − uv

v′ = y′ = −(v − 1) − (v − 1)2 + 2u(v − 1) = −2u + v − v2 + 2uv.

Then the associated linear system is

u′ = 2u

v′ = −2u + v,

with eigenvalues 1 and 2. (Check this.) Now result (a) and the table in Section 5.5 tell us that
the equilibrium point (0, −1) is a source for the nonlinear system.

The equilibrium point (1, 0) leads us to make the change of variables u = x − 1 and v =
y − 0 = y, so that the nonlinear system is transformed into

u′ = −u − v − u2 − uv

v′ = v − v2 + 2uv,

with associated linear system

u′ = −u − v

v′ = v.

The eigenvalues for this last system are −1 and 1, so that (1, 0) is a saddle point for both the
nonlinear system and its associated linear system.

Finally, we look at the equilibrium point
(2

3 , 1
3

)
. The transformation u = x − 2

3 , v = y − 1
3

leads to the system

u′ = −2u
3

− 2v
3

− u2 − uv

v′ = 2u
3

− v
3

− v2 + 2uv.

The linear approximation is given by

u′ = −2u
3

− 2v
3

v′ = 2u
3

− v
3

,
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Trajectories of x′ = x − x2 − xy, y′ = −y − y2 + 2xy near the origin
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FIGURE 7.6b
Trajectories of x′ = x − x2 − xy, y′ = −y − y2 + 2xy near (0, −1)

which has eigenvalues −1
2 +

√
15
6 i and −1

2 −
√

15
6 i. Therefore, from result (a) and Table 5.1,

we know that
(2

3 , 1
3

)
is a spiral sink. Look back at Figures 7.3a and 7.3b to see this clearly.

Figure 7.6a shows some trajectories near the origin, a saddle point. Figure 7.6b illustrates the
behavior of the system near the equilibrium point (0, −1), a source. Finally, Figure 7.6c makes
it clear that (1, 0) is indeed a saddle point. ■
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FIGURE 7.6c
Trajectories of x′ = x − x2 − xy, y′ = −y − y2 + 2xy near (1, 0)

Now let’s examine a system whose stability is not so clear.

■ Example 7.3.2 Another Application of Poincaré-Lyapunov
The system we’ll investigate is

ẋ = −x3 − y

ẏ = x − y3.

Set ẋ = 0 and ẏ = 0 and then substitute y = − x3 from the first equation into the second
equation. We get x + x9 = 0, or x(1 + x8) = 0, so x = 0. It follows that (0, 0) is the only
equilibrium point of this system.

The linearized system is

ẋ = −y

ẏ = x,

with characteristic equation λ2 + 1 = 0 and eigenvalues −i and i. Because the eigenvalues are
pure imaginary numbers, case (c) of the Poincaré-Lyapunov result tells us that the origin is
either a center or a spiral point of the original nonlinear system. (Note that the origin is a
center of the associated linear system.) Figure 7.7 shows a typical trajectory, in this case with
initial state (x(0), y(0)) = (−0.5, 0) and t running from −9 to 100.
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FIGURE 7.7
Trajectories of ẋ = −x3 − y, ẏ = x − y3 near the origin

From this, we can see that the trajectory appears to spiral in toward the origin—that is, the
equilibrium point is asymptotically stable. We could have seen this analytically by defining the
function

d(t) =
√

x2(t) + y2(t),

which gives the distance from any point (x(t), y(t)) on a trajectory to (0, 0). Differentiating
this function and then substituting from our original equations, we get

ḋ(t) = 1
2

[
x2(t) + y2(t)

]−1/2 (
2x(t)ẋ(t) + 2y(t)ẏ(t)

)
= x(t)

(−x3(t) − y(t)
) + y(t)

(
x(t) − y3(t)

)√
x2(t) + y2(t)

= − x4(t) + y4(t)√
x2(t) + y2(t)

< 0.

This says that the distance between points on the trajectory and the origin is decreasing with
time—that is, the trajectory is always moving closer and closer to the origin. ■

The next example shows another type of behavior.

■ Example 7.3.3 Yet Another Application of
Poincaré-Lyapunov

The system

ẋ = 2x − 6x2y

ẏ = 2y + x
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FIGURE 7.8
Trajectories of ẋ = 2x − 6x2y, ẏ = 2y + x near the origin

has the origin as its only equilibrium point. Check this for yourself. The linearization of this
system is

ẋ = 2x

ẏ = 2y + x,

which has the characteristic equation λ2 − 4λ + 4 = (λ − 2)2 = 0. Because the eigenvalues
are positive and equal, we use result (b) to conclude that the origin is an unstable equilibrium
point, a source. Figure 7.8 shows this. ■

Exercises 7.3

A

Each of the almost linear systems in Problems 1–10 has (0, 0) as an equilibrium point.
Discuss the type and stability of the origin by examining the associated linear system in each
case.

1. x′ = x − y + x2, y′ = x + y

2. x′ = x − xy − 8x2, y′ = −y + xy

3. x′ = −4x + y − xy3, y′ = x − 2y + 3x2

4. x′ = 3 sin x + y, y′ = 4x + cos y − 1

5. x′ = x − y, y′ = 1 − ex

6. x′ = −3x − y − xy, y′ = 5x + y + xy3

7. x′ = y
(
1 − x2) , y′ = −x

(
1 − y2)
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8. x′ = −x + x3, y′ = −2y

9. x′ = −2x + 3y + xy, y′ = −x + y − 2xy2

10. x′ = 5x − 14y + xy, y′ = 3x − 8y + x2 + y2

B

1. Consider the nonlinear system

ẋ = −x + xy, ẏ = 2y − xy + 0.5x.

a. Find all equilibrium points.
b. Describe the type and stability of each equilibrium point found in part (a) by examining the

associated linear system in each case.

2. Consider the nonlinear system

ẋ = x − y + 5, ẏ = x2 + 6x + 8.

a. Find all equilibrium points.
b. Describe the type and stability of each equilibrium point found in part (a) by examining the

associated linear system in each case.

3. Consider the nonlinear system

ẋ = x(8 − 4x − y), ẏ = y(3 − 3x − y),

which describes the populations x(t) and y(t) of two species that are competing for the same
resources.

a. Find all equilibrium points of this system.
b. By linearizing about each equilibrium point found in part (a), determine the type and stability of

each equilibrium point.

C

1. The Brusselator is a simple model of a hypothetical chemical oscillator that first appeared in a 1968
paper by Belgian scientists I. Prigogine (a Nobel laureate) and R. Lefever and was named for the
capital of their home country. One version of the model is

ẋ = 1 − (a + 1)x + bx2y

ẏ = ax − bx2y,

where x and y are concentrations of chemicals and a, b are positive parameters.

a. Use technology, if necessary, to find the only equilibrium solution of this system.
b. Linearize the system about the equilibrium point found in part (a).
c. Find the eigenvalues of the associated linear system. (Technology could be useful here.)
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d. Using your answers from part (c) and the Poincaré-Lyapunov theorem, discuss the nature of the
equilibrium solutions for each of the following cases:

(1) a = 3, b = 1;

(2) a = 2, b = 7;

(3) a = 1, b = 4.

7.4 TWO IMPORTANT EXAMPLES OF NONLINEAR
EQUATIONS AND SYSTEMS

Now that we know something about the behavior of nonlinear systems, we can apply this
knowledge to the analysis of some important nonlinear equations and systems of nonlinear
equations.

7.4.1 The Lotka-Volterra Equations
As we stated in the discussion preceding Example 4.7.4, the nonlinear Lotka-Volterra equa-
tions describe a wide class of problems in mathematical ecology and cannot in general be
solved in closed form. Now we will look at this system from the Poincaré-Lyapunov point of
view.

■ Example 7.4.1 The Lotka-Volterra Equations Revisited
The Lotka-Volterra equations are

ẋ = ax − bxy

ẏ = −cy + dxy,

where a, b, c, and d are positive constants. The equilibrium points for this system are solutions
of the algebraic system

ax − bxy = x(a − by) = 0

−cy + dxy = y(−c + dx) = 0.

Clearly, x = y = 0 is a solution—that is, the origin (0, 0) is an equilibrium point. It should
also be clear from these last equations that if either x or y is zero, then the other variable must
also be zero. Therefore, if there are any other equilibrium points, we must have x 	= 0 and
y 	= 0. In the first algebraic equation, if x 	= 0, then we must have a − by = 0, so y = a/b.
From the second equation, we see that if y 	= 0, then −c + dx = 0, so x = c/d. Thus, the only
equilibrium points for the Lotka-Volterra system are (0, 0) and (c/d, a/b).
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Near the origin, we can replace our original system by the associated linear system

ẋ = ax

ẏ = −cy,

which can be written in matrix form as Ẋ = AX, where A =
[

a 0
0 −c

]
and X =

[
x
y

]
. Now

the characteristic equation of A is λ2 + (c − a)λ − ac = 0, so the eigenvalues are a and −c.
Because the eigenvalues are real and of opposite signs, Table 5.1 in Section 5.5 indicates that
the origin is a saddle point for the linearized system. The Poincaré-Lyapunov theorem tells us
that (0, 0) is also a saddle point for our original nonlinear system.

To study the behavior of the system near the equilibrium point (c/d, a/b), we trans-
form the system by defining u = x − c/d and v = y − a/b. Then our original system
becomes

u̇ = a
(
u + c

d

)
− b

(
u + c

d

) (
v + a

b

)

v̇ = −c
(
v + a

b

)
+ d

(
u + c

d

) (
v + a

b

)
,

which simplifies to

u̇ =
(

−bc
d

)
v − buv

v̇ =
(

ad
b

)
u + duv.

The associated linear system is given by Ẋ = AX, where A =
[

0 − bc
d

ad
b 0

]
. The characteristic

polynomial here is λ2 + ac = 0, so the eigenvalues are λ1 = √
aci and λ2 = −√

aci. Because
we have pure imaginary eigenvalues, part (C) of the Poincaré-Lyapunov result tells us that
(c/d, a/b) is either a center or a spiral point for the nonlinear system. (The table in Section 5.5
indicates that (c/d, a/b) is a stable center for the associated linear system, but this doesn’t have
to be true for our nonlinear system.) Let a = b = c = d = 1. Then Figure 7.9a shows the slope
field for the nonlinear system near the equilibrium point (c/d, a/b) = (1, 1), and Figure 7.9b
depicts some trajectories near (1, 1).

These figures suggest (but do not prove) that the equilibrium point (1, 1) is a stable center
for the nonlinear system. (Problem B1 in Exercises 7.4 proposes some investigations in this
direction.)
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FIGURE 7.9a
Slope field of ẋ = x − xy, ẏ = −y + xy near (1, 1)
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Trajectories of ẋ = x − xy, ẏ = −y + xy near (1, 1)

■

7.4.2 The Undamped Pendulum
After our ecological field trip, let’s return to the world of physics and look at the motion
of a simple pendulum. In Section 7.2, we saw that the second-order nonlinear equation
d2θ
dt2 + g

L sin θ = 0 describes the motion of an undamped pendulum—that is, a pendulum
under the influence of gravity with no friction or air resistance impeding its movement. Here,
θ is the angle the pendulum makes with the vertical, g is the acceleration due to gravity, and
L is the pendulum’s length (Figure 7.10).
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FIGURE 7.10
The undamped pendulum

■ Example 7.4.2 The Undamped Pendulum: A Poincaré-
Lyapunov Analysis

Letting x = θ and y = θ̇ = ẋ, we can express the single equation d2θ
dt2 + g

L sin θ = 0 as the
nonlinear system

ẋ = y

ẏ = − g
L

sin x.

The first thing we have to do is find the equilibrium points of this system. (This was Problem
C2 in Exercises 4.7.) Clearly, any equilibrium point (x, y) must have y = 0. The equation
− g

L sin x = 0 has solutions x = nπ, n = 0, ±1, ±2, . . . . Thus, all points of the form (nπ, 0)

for n = 0, ±1, ±2, . . . are equilibrium points for the system describing the pendulum’s swing.
Because the sine function has period 2π—that is, sin(x + 2kπ) = sin x for any integer k—the
second equation in the system remains the same for angles differing by integer multiples of
2π. Thus, there is no physical difference in the system for such angles. (Think about this in
physical terms.) Now all the equilibrium point first coordinates that are even multiples of π

differ from 0 by multiples of 2π, so we can just study what happens near (0, 0). (For example,
the point (−8π, 0) is the same as (0 + (−4) · 2π, 0).) Similarly, all the equilibrium point first
coordinates that are odd multiples of π differ from π by multiples of 2π, so we can just see
what happens to the system near (π, 0). (For example, (17π, 0) is the same as (π+(8) ·2π, 0).)
Therefore, by analyzing the behavior of the system near the points (0, 0) and (π, 0), we can
understand the behavior near any of the infinite number of equilibrium points.

Near the origin, we can replace sin x by its Taylor series expansion, so our system can be
written as

ẋ = y

ẏ = − g
L

sin x = − g
L

(
x − x3

3! + x5

5! − x7

7! + · · ·
)
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and we see that the linearization of our system is given by

ẋ = y

ẏ = − g
L

x.

In matrix form, this becomes Ẋ =
[

0 1
− g

L 0

]
X, with characteristic equation λ2 + g

L = 0 and

pure imaginary eigenvalues λ = ±√
g/Li. Once again, part (c) of the Poincaré-Lyapunov

theorem points to either a center or a spiral point. Intuitively, we should realize that this is like
the situation with the undamped spring-mass system: In the absence of any kind of resistance,
the object will continue to move periodically about its equilibrium state. In our case, we
would expect the pendulum to swing back and forth indefinitely. (Compare the pendulum’s
associated linear system with System (4.8.2) in Example 4.8.1.) Figure 7.11 shows the phase
portrait of the nonlinear system with g = L near the origin.

Note what the figure tells us. If the pendulum starts with x0 = θ0 anywhere between 0 and π

and we release the weight at the end (the bob), then the pendulum will swing in a clockwise
(negative) direction toward the vertical position and go past the vertical (x = θ = 0) until
it makes the same initial angle on the other side. At this point in time (x = x0 = − θ0), the
pendulum starts its journey back to the vertical position and then goes past it until x = θ0 once
more. The variable y represents the angular velocity, which is zero as we release the pendulum;
becomes negative as the velocity increases in a negative (clockwise) direction; attains its
maximum as the pendulum swings through the vertical position; and then decreases as the
pendulum approaches x = x0 = −θ0. At this point, the pendulum begins its swing back toward
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FIGURE 7.11
Trajectories of ẋ = y, ẏ = − sin x near the origin
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Trajectories of ẋ = y, ẏ = − sin x near (π, 0)

the center and ultimately back to its initial position, its velocity increasing and decreasing
appropriately. (We’ll deal with the curves at the top and bottom of Figure 7.11 shortly.)

Now let’s examine the pendulum’s behavior near the equilibrium point (π, 0). The transfor-
mation u = x − π, v = y − 0 results in the nonlinear system

u̇ = v

v̇ = − g
L

sin(u + π) = − g
L
(− sin u) = g

L
sin u,

with the associated linear system

u̇ = v

v̇ = g
L

u.

Make sure you understand how we arrived here. This linear system has the characteristic equation

λ2 − g
L = 0 and eigenvalues ±

√
g
L . We look to part (a) of our stability theorem (and Table

5.1 in Section 5.5) to see that the equilibrium point (π, 0) is a saddle point. Figure 7.12 (again
with g = L) focuses on the system’s behavior near this point.

As neat as this analysis seems to be, we’ve brushed past something we haven’t explained yet:
the strange curves at the top and bottom of Figure 7.11. If we step back and look at the entire
phase portrait (Figure 7.13), this strangeness becomes more evident.

Clearly, if the initial velocity imparted to the undamped pendulum is low enough, the pen-
dulum swings indefinitely back and forth about its equilibrium point (0, 0). Physically, this
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FIGURE 7.13
Phase portrait of ẋ = y, ẏ = − sin x

equilibrium position corresponds to the pendulum at rest (y = θ̇ = 0) and hanging straight
down (x = θ = 0). If we give the pendulum a high enough initial velocity, it will whirl up
and over the top—over and over again in the absence of any friction or air resistance. Its
velocity will vary periodically, attaining its minimum at odd multiples of π (when its posi-
tion is straight up) and its maximum at even multiples of π (when it is moving through the
straight-down position).

The curves joining the saddle points (odd multiples of π on the x-axis) need careful
explanation. Figure 7.14 focuses on the curves connecting the saddle points (−π, 0) and
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FIGURE 7.14
Separatrices connecting (−π, 0) and (π, 0)
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(π, 0). These are called separatrices (the plural of separatrix); they separate the regions
of “normal” behavior from each other. (More technically, they are called heteroclinic tra-
jectories or saddle connections.) As we’ve indicated before, the saddle points represent
a pendulum pointed straight up and at rest. Physically, then, these heteroclinic trajecto-
ries describe the fact that the pendulum slows down just as it approaches the upside-down
position.

Problems C1 and C2 in Exercises 7.4 suggest a more analytic way of understanding the
undamped pendulum’s behavior. ■

Exercises 7.4

A

Find the nontrivial equilibrium point for each of the Lotka-Volterra systems in Problems
1–6. You may need technology.

1. ẋ = 3x − 2xy, ẏ = −y + 4xy

2. ẋ = 0.1x − 0.2xy, ẏ = −0.5y + 0.3xy

3. ẋ = 0.005x − 0.02xy, ẏ = −0.3y + 0.4xy

4. ẋ = x − 2xy, ẏ = −3y + 4xy

5. ẋ = 0.2x − 0.2y, ẏ = −3y + xy

6. ẋ = 3x − 2xy, ẏ = −y + 1
2 xy

7. Consider the Lotka-Volterra equations (Example 7.4.1) for a = b = c = d = 1. To develop some
confidence in the power of numerical methods, use whatever Runge-Kutta algorithm and step size
your instructor suggests to approximate the solution to the initial value problem with x(0) = 1 and
y(0) = 2 over the interval [0, 1].

B

1. Consider the Lotka-Volterra equations for a = b = c = d = 1. Figure 7.9b shows some trajectories
corresponding to this situation. Without relying on the graph, we want to show that the trajectories
are closed curves—i.e., that the equilibrium point (1, 1) is a stable center.

a. Show that the slope field for dy
dx is symmetric about the line y = x. [Hint : Look at what happens

if you interchange x and y in the slope equation.]
b. Argue that if you start at some point P = (x, y) on the line y = x and travel along the trajectory

once around the point (1, 1), you wind up back at the same point P, so that the curve is
closed.

2. Consider the system first examined in Example 4.7.4:

ẋ = 0.2x − 0.002xy

ẏ = −0.1y + 0.001xy.
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a. Find the equilibrium points for the system.

b. Plot the trajectory corresponding to the initial conditions x(0) = 100 and y(0) = 300. Interpret
these initial values and the shape of the trajectory in terms of the predator and prey populations.
(Choose the interval [0, 55] for your independent variable t.)

c. Use the graph of the trajectory found in part (b) to estimate the maximum and minimum values
of the populations x and y.

d. Find the slope equation dy
dx and solve it (implicitly) using the initial conditions given in part (b).

e. Use technology to plot the solution found in part (d), using ranges for x and y consistent with
your answers to part (c).

3. Recall that the Lotka-Volterra system (Example 7.4.1) has the nontrivial equilibrium point
(c/d, a/b). To understand the direction of any trajectory for the Lotka-Volterra equations without
relying on a graph provided by technology, divide the first quadrant of the x-y plane into four
subquadrants via the lines x = c/d and y = a/b. (Sketch this situation.)

a. Show that for x > c/d and y > a/b, you have ẋ < 0 and ẏ > 0.

b. Show that for x < c/d and y > a/b, you have ẋ < 0 and ẏ < 0.

c. Show that for x < c/d and y < a/b, you have ẋ > 0 and ẏ < 0.

d. Show that for x > c/d and y < a/b, you have ẋ > 0 and ẏ > 0.

e. From the results of parts (a)–(d), conclude that any point (x(t), y(t)) on a trajectory for the
Lotka-Volterra equations moves in a counterclockwise direction.

4. Recall that in Example 7.4.1 the Lotka-Volterra equations ẋ = ax − bxy, ẏ = −cy + dxy were
linearized to u̇ = (−bc/d)v, v̇ = (ad/b)u near the equilibrium point (c/d, a/b).

a. Find the slope equation du
dv and conclude that the linear system has a solution satisfying

ad2u2 + b2cv2 = K , where K is a positive constant.

b. Rewrite the solution in part (a) in terms of the original variables x and y and show that you get
the equation of an ellipse with center at (c/d, a/b) and with axes parallel to the axes of the x-y
plane.

c. Compute the derivative of each equation of the linearized system to get the equations
ü = −acu, v̈ = −acv—uncoupled second-order linear equations of the form ẅ = −Rw.

d. Show that the solution of the linearized system is a pair of functions (u(t), v(t)) with the same
period 2π/

√
ac.

5. Focus on the equation for the predator population, dy
dt = −cy + dxy.

a. Divide the equation by y and integrate between the initial time t0 and some arbitrary time t.
b. Assuming that the predator population is periodic (see Figure 4.10 or 4.11b, for example) with

period T , let t = t1 in part (a), so that t1 − t0 = T and y(t1) = y(t0). Show that the average value
of the prey population is c/d, the same as the equilibrium population of the prey. (Recall that the
average value of a function f on the interval [a, b] is defined as 1

b−a

∫ b
a f (r)dr.) [Hint : Note that

ẏ/y = −c + dx and integrate from 0 to T , using the periodicity of ln |y(t)|.]
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6. Assuming the result of Problem B5b and that the average value of the predator population y(t) is
a/b, the equilibrium population of the predator, and also assuming that both the predator and prey
populations have the same period T , show that the average value of x(t)y(t) equals the average
value of x(t) times the average value of y(t). [Hint : (ẏ + cy)/d = xy.]

C

1. Consider the simplified pendulum equation used in Figure 7.11, Example 7.4.2: d2θ
dt2 + sin θ = 0.

You’re going to show (analytically) that this equation has periodic solutions—i.e., there are closed
trajectories in the phase plane corresponding to the system version of the equation.

a. Show that this equation is equivalent to the system

dx
dt

= y

dy
dt

= − sin x.

b. Show that any trajectory in the phase plane is a solution of dy
dx = − sin x

y .

c. Solve the equation in part (b).

d. Show that there are closed trajectories in the x-y plane and hence that the undamped
pendulum problem has periodic solutions. [Hint : Find suitable values of the constant of
integration you get in part (c).]

2. When you find the general solution of the equation dy
dx = − sin x

y [as in part (b) of the preceding
problem], you have an arbitrary constant C.

a. What values of C give the wavy trajectories at the top and bottom of Figure 7.13?

b. What values of C give the separatrices, as in Figure 7.14?

3. For small values of θ, sin θ ≈ θ, so that the linearized equation of the undamped pendulum is
θ̈ + g

L θ = 0. Work with this equation and the initial conditions θ(0) = 0, θ̇(0) = 2.

a. Find θ(t) if the length of the pendulum is 8 feet. (Take g = 32 ft/sec2.)

b. What is the period of the function found in part (a)?

c. If the pendulum is part of a clock that ticks once for each time the pendulum makes a complete
swing, how many ticks does the clock make in one minute?

d. How is the motion of the pendulum affected if the length is changed to L = 4?

4. The equation θ̈ + kθ̇ + sin θ = 0 describes a particular damped pendulum—i.e., a pendulum with
friction or air resistance. Here, k is a positive constant, the coefficient of friction.

a. Convert this second-order equation to a system of first-order equations.

b. Use technology to produce the phase portrait when k = 0.1.

c. Use technology to produce the phase portrait when k = 0.5.

d. Compare the phase portraits in parts (b) and (c) and give a physical interpretation of what
you see.
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∗7.5 VAN DER POL’S EQUATION AND LIMIT CYCLES
7.5.1 Van Der Pol’s Equation
The next example deals with a famous equation that arose when radios were first devel-
oped. The original context was the study of certain electrical circuits containing a vacuum
tube (“triode generator”), but the work also has had significant biological applications. The
pioneering experiments and the first theoretical analysis were conducted by Dutch electrical
engineer Balthasar van der Pol (1889–1959) and others in the 1920s.

■ Example 7.5.1 The Van Der Pol Equation
The van der Pol equation (or van der Pol oscillator)

x′′ + ε
(
x2 − 1

)
x′ + x = 0, (7.5.1)

where ε is a positive parameter, can also be interpreted in terms of a spring-mass system with
nonlinear resistance. (See Problem A1 in Exercises 7.5.) Equation (7.5.1) can be written as
the equivalent system

x′
1 = x2

x′
2 = −x1 + εx2

(
1 − x2

1
)

. (7.5.2)

The first thing we have to do is find the equilibrium points of (7.5.2). To get a sense of how
this system behaves, let’s assume that ε = 1. (See Problems A2 and A3 of Exercises 7.5, which
ask you to consider other values of ε.) The linearized version of the nonlinear System (7.5.2)
is then

x′
1 = x2

x′
2 = −x1 + x2

with characteristic equation λ2 − λ + 1 = 0 and eigenvalues (1 ± √
3i)/2. This implies that

both the nonlinear System (7.5.1) and its linear Approximation (7.5.2) have a spiral source
at the origin. (Why?) However, this particular system exhibits some new, characteristically
nonlinear behavior. Figure 7.15a shows the phase portrait of the nonlinear System (7.5.1)
near (0, 0).

What is happening here is that several paths starting near the origin spiral outward from
the origin (as expected) toward a particular closed curve, whereas other trajectories starting
farther away from (0, 0) also seem to be approaching this closed curve asymptotically (that is,
as t → ∞). Reasonably enough, such a closed trajectory is called a stable limit cycle. A stable
limit cycle can also be described as a periodic trajectory that attracts other nearby trajectories,

* Denotes an optional section.
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whereas an unstable limit cycle repels nearby trajectories. It is important to note that linear
systems never have limit cycles. (See the discussion of limit cycles following this example.)
Note that the phase portrait of the linearized system (Figure 7.15b) shows no limit cycle, only
the spiraling away from the origin.

Figure 7.15c shows a plot of x against t with the initial conditions x(0) = 0.5, x′(0) = −0.5.
This graph reflects the eventual periodicity of the solution and the fact that the spirals work
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FIGURE 7.15a
Phase portrait of x′

1 = x2, x′
2 = −x1 + x2
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near the origin
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FIGURE 7.15b
Phase portrait of x′

1 = x2, x′
2 = −x1 + x2 near the origin
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FIGURE 7.15c
Plot of x(t) against t, x(0) = x′(0) = 0.5, −6 ≤ t ≤ 26

4

2
x

1

21

22

23

8 12 16 20 24 t

FIGURE 7.15d
Plot of x(t) against t, x(0) = −3, x′(0) = −5, −0.6 ≤ t ≤ 26

their way outward (through increasing values of t) to the limit cycle. The solution shows
transient behavior (temporary or short-lived behavior) at the beginning, before settling into
its periodic pattern.

On the other hand, if we choose an initial point (x(0) = −3, x′(0) = −5) in a region that
appears to be outside the limit cycle shown in Figure 7.15a, we see the solution behavior
shown by Figure 7.15d. This illustrates how a spiral finds its way inward to the limit cycle.

Again, we can see that the solution eventually becomes periodic, after an initial transient
stage. ■

7.5.2 Limit Cycles
The Lotka-Volterra equations (Examples 4.7.4 and 7.4.1) and the undamped spring-mass
system (Example 4.8.1) show that autonomous systems sometimes have periodic solutions
whose trajectories are closed curves in the phase plane. As we have seen, the van der Pol
oscillator, which can be described as a negatively damped nonlinear oscillator (look at the
form of the equation), has solutions whose limiting behavior (as t → ∞) is that of a finite
periodic solution. Such a nontrivial isolated closed trajectory is called a limit cycle. Here,
“nontrivial” means that the solution curve is not a single point, and “isolated” refers to the
fact that no trajectory sufficiently near the limit cycle is also closed.
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In general, a linear system Ẋ = AX may have closed trajectories, but they won’t be isolated: If
X(t) is a periodic solution, then so is cX(t) for any nonzero constant c. (Can you show this?)
Therefore, for instance, by choosing c = (1 − 1/k)(k = 1, 2, 3, . . .), we see that X(t) is being
crowded by a one-parameter family of closed trajectories. (In this way the closed trajectories
shown in Figure 7.9b of Section 7.3 are not isolated and so could not possibly be limit cycles.
You can get trajectories as close to each other as you wish.)

Every trajectory that begins sufficiently near a limit cycle approaches it either for t → ∞ or for
t → −∞. Graphically, this means that such a trajectory either winds itself around the limit
cycle or unwinds from it. A limit cycle is called semistable if trajectories approach one side of
it while pulling away from the other side.

As one author has put it,

The stable limit cycle is the basic model for all self-sustained oscillators—those which
return, or recover, to some fundamental periodic orbit when perturbed from it. The sta-
ble oscillations, “beating” of the human heart (which returns to some normal rate after
we raise it by sprinting), cycles of predator-prey systems, and various electrical circuits
are three among myriad examples. Business cycles and certain periodic outbreaks of
social unrest . . . are, quite possibly, others.1

Let’s look at other examples of this important phenomenon, the limit cycle. Van der Pol’s
equation exhibited a stable limit cycle, but the next example shows a different type of
behavior.

■ Example 7.5.2 An Unstable Limit Cycle
Let’s examine the autonomous system

ẋ = −y + x
(
x2 + y2 − 1

)
ẏ = x + y

(
x2 + y2 − 1

)
.

The presence of the algebraic form x2 + y2, with its suggestion of circularity (rotation),
tips us off that we may be able to see things more clearly if we switch to polar coordinates
(see Section B.1). Making the substitutions r cos θ = r(t) cos θ, y = r sin θ = r(t) sin θ(t), and
θ = arctan(y/x), we have x2 + y2 = r2. (You may have seen this sort of substitution in evalu-
ating certain integrals in calculus class—or in Problem C1 of Exercises 7.2.) A few algebraic
manipulations (see Problem B1 of Exercises 7.5) give us the polar coordinate form of the
system we started with:

ṙ = (
r2 − 1

)
r (r ≥ 0)

θ̇ = 1.

1 J. M. Epstein, Nonlinear Dynamics, Mathematical Biology, and Social Science (Addison-Wesley, 1997): 121.
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FIGURE 7.16
Motion described in terms of radial distance and angular velocity
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FIGURE 7.17
Phase portrait of ṙ = (r2 − 1)r, r ≥ 0

This system describes the motion of an object in terms of its radial distance r = r(t) from
the origin and its (constant) angular velocity θ̇ in a counterclockwise direction. Figure 7.16
illustrates this in general.

Because the equations are independent (or uncoupled), each involving only one dependent
variable, we can analyze them separately. We can look at the first equation as a first-order
nonlinear equation and consider its phase portrait (Figure 7.17) in the manner of Section
2.5. Recalling that r is nonnegative, we see that the only equilibrium solutions are r ≡ 0 and
r ≡ 1. Note that the first equation tells us that if r < 1, then ṙ < 0, so the trajectory’s distance
from the origin is decreasing—that is, the trajectory is approaching the origin and moving
away from the unit circle (r ≡ 1, 0 ≤ θ ≤ 2π); whereas if r > 1, we have ṙ > 0, so trajectories
are also repelled by the unit circle.

From this phase portrait we can see that r ≡ 0 is a sink and r ≡ 1 is a source. We could have
used the Derivative Test of Section 2.6 to see this. (Also see Problem B2 in Exercises 7.5.)
In particular, the origin is a sink for the system in its original rectangular coordinate form.
Figure 7.18 shows the phase portrait in x-y space.

From this we see that the unit circle is an unstable limit cycle. ■
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FIGURE 7.18
Phase portrait of ṙ = (r2 − 1)r, r ≥ 0, in the x-y phase plane
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FIGURE 7.19
Phase portrait of ṙ = r(r − 1)(r − 2), r ≥ 0

Now we’re ready for something a bit more complicated, but rewarding.

■ Example 7.5.3 A System with Two Limit Cycles
Let’s look at the system

ṙ = r(r − 1)(r − 2), r > 0

θ̇ = 1.

As in the previous example, the system describes the motion of an object in terms of its radial
distance r = r(t) from the origin and its (constant) angular velocity θ̇ in a counterclockwise
direction. Let’s look at the phase portrait of the first equation (Figure 7.19), whose equilibrium
solutions are r ≡ 0, r ≡ 1, and r ≡ 2.

As we can see, r ≡ 0 is a source, r ≡ 1 is a sink, and r ≡ 2 is a source. This tells us that the
system has two circular limit cycles: one stable (r ≡ 1) and one unstable (r ≡ 2). Trajectories
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r
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FIGURE 7.20
Phase portrait of ṙ = r(r − 1)2, r ≥ 0

starting out inside the unit circle approach the unit circle as t → ∞, as do trajectories with
initial points inside the ring formed by the two circles r ≡ 1 and r ≡ 2. Any trajectory starting
outside the circle of radius 2 moves farther away as t → ∞. ■

The next example illustrates a third kind of limit cycle.

■ Example 7.5.4 A Semistable Limit Cycle
What kind of behavior is shown by the following system?

ṙ = r(r − 1)2, r > 0

θ̇ = 1.

The phase portrait for the first equation (Figure 7.20) tells the story.

The equilibrium point r ≡ 0 is a source, whereas r ≡ 1 is a node because ṙ > 0 for 0 < r < 1
and for r > 1 as well. The graphical interpretation of this fact is that the unit circle described
by r ≡ 1 is a semistable limit cycle. Trajectories approach the unit circle from inside it, whereas
trajectories that start outside escape the unit circle. ■

Of course, a nonlinear equation or system may have no limit cycles (isolated nonconstant
periodic solutions). Because nonlinear equations and systems are usually too difficult to
solve, other methods—qualitative methods—have been developed to determine the existence
or nonexistence of limit cycles. These methods involve advanced mathematical ideas that we
won’t discuss in this book. Problems B6–B11 of Exercises 7.5 illustrate a negative criterion due
to the Swedish mathematician Ivar Bendixson (1861–1935).

EXERCISES 7.5

A

1. In the discussion of the van der Pol Equation (7.5.1), the comment was made that it can be
interpreted as a spring-mass system with nonlinear resistance. Specifically, the term ε(x2 − 1)

represents a variable damping coefficient.
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a. Explain why ε(x2 − 1) < 0 when −1 < x < 1, so that damping is negative for the small
oscillations corresponding to −1 < x < 1. (This means that small-amplitude oscillations are
amplified if they become too small.)

b. Explain why ε(x2 − 1) > 0 when |x| > 1, so that damping is positive for the large oscillations
corresponding to |x| > 1. (This means that large-amplitude oscillations are made to decay if
they become too large.)

2. Use technology to draw phase portraits of the van der Pol equation for

ε = 1
4

,
3
2

, and 3.

3. Consider the van der Pol equation in the system form (7.5.2), where x1(0) = 1 and x2(0) = 0.

a. For ε = 1
4 , graph the trajectory in the x1-x2 plane. Then graph x1(t) against t and x2(t) against t

on different sets of axes. Use technology.
b. For ε = 4, graph the trajectory in the x1-x2 plane. Then graph x1(t) against t and x2(t) against t

on different sets of axes. Use technology.
c. Comment on the differences between the graphs in part (a) and the graphs in part (b).

B

1. Go back to Example 7.5.2 and look at the trigonometric substitutions suggested there. You’re
going to verify the polar coordinate form of the system equations.

a. Use the Chain Rule to show that rṙ = xẋ + yẏ.

b. Show that θ̇ = − 1
x2+y2

(
yẋ − xẏ

)
, or −r2θ̇ = (

yẋ − xẏ
)
.

c. Show that xẋ + yẏ = (
x2 + y2) (x2 + y2 − 1

) = r2 (r2 − 1
)
. [Hint : Multiply the first equation in

the system by x and the second equation by y and then add the results.]

d. Use part (a) and part (c) to conclude that ṙ = r
(
r2 − 1

)
.

e. Use part (b) and the general method in part (c) to show that θ̇ = 1.

2. Reconsider the uncoupled system (polar coordinate form) in Example 7.5.2.

a. Solve for r(t).
b. Solve for θ(t).
c. Use your answers to part (a) and part (b) to construct x(t) and y(t).

3. Follow the directions given in the preceding problem for the system in Example 7.5.3.
4. Consider the system

{
ṙ = r

(
1 − r2), θ̇ = 1

}
.

a. Show that this is equivalent to the system

ẋ = x − y − x
(
x2 + y2

)
ẏ = x + y − y

(
x2 + y2

)
,

where x = r(t) cos θ(t) and y = r(t) sin θ(t).
b. Use either form of the system to determine its unique limit cycle.
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5. Consider the system
{
ṙ = r

(
4 − r2), θ̇ = 1

}
, where x(t) = r(t) cos θ(t) and y = r(t) sin θ(t). Given

the initial conditions x(0) = 0.1, y(0) = 0, sketch the graph of x(t) without finding an explicit
expression for x(t). [Hint : Study Example 7.5.2 carefully.] Suppose we have an autonomous
system

{
ẋ = f (x, y), ẏ = g(x, y)

}
, where f and g have continuous first partial derivatives in some

region R of the phase plane that doesn’t have any “holes.”Then Bendixson’s Theorem (or Negative
Criterion) states that if ∂f

∂x + ∂g
∂y is always positive or always negative at points of R, then the

system has no periodic solutions in R. For example, the system
{
ẋ = xy2, ẏ = x2 + 8y

}
has no limit

cycles anywhere because
∂
(
xy2)
∂x + ∂

(
x2+8y

)
∂y = y2 + 8 > 0 for all values of x and y in the plane.

Use Bendixson’s criterion to show that the systems in Problems B6–B9 have no limit cycles
in the phase plane.

6.
{
ẋ = x + 2xy + x3, ẏ = −y2 + x2y

}
7.

{
ẋ = x3 + x + 7y, ẏ = x2y

}
8.

{
ẋ = −2x − x sin y, ẏ = −x2y3}

9.
{
ẋ = 2x3y4 − 3, ẏ = 2yex + x

}
10. Show that the system

ẋ = 12x + 10y + x2y + y sin y − x3

ẏ = x + 14y − xy2 − y3

has no periodic solution in the disk x2 + y2 ≤ 8.

11. A mechanical system with variable damping can be modeled by the equation

ẍ + a(x)ẋ + b(x) = 0,

where a(x) is a positive function.

a. Write this equation in system form.
b. Use the Bendixson criterion shown previously to show that this mechanical system has no

nonconstant periodic solution.

C

1. The system

ẋ = −y − y2

ẏ = 1
2

x − 1
5

y + xy − 6
5

y2

was discovered by the Chinese mathematician Tung Chin Chu in the late 1950s in his investigation
of a famous unsolved problem on limit cycles.

a. Find the equilibrium point(s) of this system.
b. Use technology to draw a phase portrait for each equilibrium point, focusing on the region

around that point. (It’s a bit tricky to get a good phase portrait for this problem. Be patient.)
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c. Using the phase portrait(s), identify and describe any limit cycle(s) you see with the term stable
or unstable.

2. Find all limit cycles of the system

ṙ = r(r − 1)(r − 2)2(r − 3)

θ̇ = 1

and identify them as stable, unstable, or semistable.

SUMMARY

Nonlinear differential equations and systems of nonlinear equations are rarely handled satis-
factorily by finding closed-form solutions. In particular, we can’t analyze the stability of systems
of nonlinear equations as easily as we analyzed the stability of linear systems in Chapter 5.
The modern study of nonlinear phenomena relies heavily on the qualitative methods pio-
neered by H. Poincaré and A. Lyapunov at the end of the nineteenth century and in the
beginning of the twentieth century. Current technology implements the power of these
qualitative techniques.

One of the differences between linear and nonlinear equations is that a nonlinear equation
may have more than one equilibrium solution. Another difference is that a solution of a
nonlinear equation may “blow up in finite time”—that is, become unbounded as t approaches
some finite value. A third difference is that a nonlinear equation or system may be extremely
sensitive to initial conditions. A slight change in an initial value may lead to drastic changes
in the behavior of the solution or solutions.

A point (a∗, b∗) is an equilibrium point of the general nonlinear autonomous system

ẋ = F(x, y)

ẏ = G(x, y)

if F(a∗, b∗) = 0 = G(a∗, b∗). If the origin is an equilibrium point, and the functions F and G
are “nice” enough, we may be able to write our system in the form

ẋ = ax + by + f (x, y)

ẏ = cx + dy + g(x, y),

where f and g are nonlinear functions and a = ∂F
∂x (0, 0), b = ∂F

∂y (0, 0), c = ∂G
∂x (0, 0), and

d = ∂G
∂y (0, 0). More generally, if (a, b) 	= (0, 0) is an equilibrium point for the system, we can

rewrite the system as

ẋ = A(x − a) + B(y − b) + f (x, y)

ẏ = C(x − a) + D(y − b) + g(x, y),

where f and g are nonlinear and A = ∂F
∂x (a, b), B = ∂F

∂y (a, b), C = ∂G
∂x (a, b), and D = ∂G

∂y (a, b).



Summary 395

Another way to look at this general situation is to realize that we are translating the equilibrium
point (a, b) to the origin by using the change of variables u = x − a and v = y − b. Of course,
this means that x = u + a and y = v + b, so we can rewrite the last system as

u̇ = Au + Bv + f (u, v)

v̇ = Cu + Dv + g(u, v),

which has (0, 0) as an equilibrium point. Note that this says that any equilibrium point
(a, b) 	= (0, 0) can be transformed to the origin for the purpose of analyzing the stability of
the system.

A nonlinear autonomous system

ẋ = ax + by + f (x, y)

ẏ = cx + dy + g(x, y),

where ad − bc 	= 0, lim
(x,y)→(0,0)

(
f (x,y)√
x2+y2

)
= lim

(x,y)→(0,0)

(
g(x,y)√
x2+y2

)
= 0, and the origin is an

equilibrium point, is called an almost linear system, and the reduced system

ẋ = ax + by

ẏ = cx + dy

is called the associated linear system (or linear approximation) about the origin.

An important qualitative result discovered by Poincaré and Lyapunov states that if λ1 and λ2

are the eigenvalues of the associated linear system, then the equilibrium points of the two
systems are related as follows:

a. If the eigenvalues λ1 and λ2 are not equal real numbers or are not pure imaginary
numbers, then the trajectories of the almost linear system near the equilibrium point
(0, 0) behave the same way as the trajectories of the associated linear system near the
origin. That is, we can use the appropriate entries given in Table 5.1 (Section 5.5) to
determine whether the origin is a node, a saddle point, or a spiral point of both
systems.

b. If λ1 and λ2 are real and equal, then the origin is either a node or a spiral point of
both systems. Furthermore, if λ1 = λ2 < 0, then the origin is asymptotically stable;
and if λ1 = λ2 > 0, then the origin is an unstable equilibrium point.

c. If λ1 and λ2 are pure imaginary numbers, then the equilibrium point (0, 0) is either a
center or a spiral point of the nonlinear system. Also, this spiral point may be
asymptotically stable, stable, or unstable.

In situations (b) and (c), further analysis is necessary to determine the nature of the
equilibrium points.
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The Lotka-Volterra equations, the undamped pendulum, and the van der Pol equation
provide important examples of nonlinear systems and their analyses. In particular, the van der
Pol oscillator exhibits uniquely nonlinear behavior in having a stable limit cycle, an isolated
closed trajectory that (in this case) serves as an asymptotic limit for all other trajectories as
t → ∞. Some limit cycles, called unstable limit cycles, repel nearby trajectories. Finally, if
trajectories near a limit cycle approach it from one side while being repelled from the other
side, the cycle is called semistable.

PROJECT 7-1

Butterflies in Space
In 1963, E. N. Lorenz, an MIT meteorology professor, published a report2 on the nonlinear
system

ẋ = −σx + σy

ẏ = rx − y − xz

ż = xy − bz,

where σ, r, and b are positive parameters.

The equations arose from a model of a layer in the earth’s atmosphere, heated from below
by the ground that has absorbed sunlight, and cooled from above as it loses heat into space.

a. Show that if 0 < r ≤ 1, then the only equilibrium point is (0, 0, 0).

b. Show that if r > 1, then there are three equilibrium points: (0, 0, 0),(√
b(r − 1),

√
b(r − 1), r − 1

)
, and

(
−
√

b(r − 1), −
√

b(r − 1), r − 1
)

.

c. Let b = 8
3 , r = 28, and σ = 10 (values used by Lorenz in his initial experiments). For

these values of b, r, and σ, linearize the system about the equilibrium points(
±
√

b(r − 1), ±
√

b(r − 1), r − 1
)

.

d. Use technology to show that the characteristic equation of the linearized system
found in part (c) is λ3 + (b + σ + 1)λ2 + b(r + σ)λ + 2σb(r − 1) = 0. Show that the
characteristic polynomial has a negative real root λ1 ≈ −13.85 and complex
conjugate roots with positive real parts ≈ 0.09.

2 E. N. Lorenz, “Deterministic Nonperiodic Flow,” J. Atmos. Sci. 20 (1963): 130–141.
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e. Use part (d) and the table at the end of Section 5.5 to conclude that the two nonzero
equilibrium points given in part (c) are saddle points of the system.

f. With b = 8
3 , r = 28, and σ = 10, use technology to plot x(t) against t, y(t) against t,

and z(t) against t for 0 ≤ t ≤ 10.

g. With b = 8
3 , r = 28, and σ = 10, use technology to plot y against x, z against y, and z

against x.
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APPENDIX A

Some Calculus Concepts and Results

Appendix A is intended to offer either a brief review of, or an introduction to, selected key
ideas of calculus.

A.1 LOCAL LINEARITY: THE TANGENT LINE
APPROXIMATION

The concept of local linearity says that if the function f is differentiable (that is, if it has a
derivative) at x = a and we “zoom in” on the point (a, f (a)) on the graph of y = f (x), then the
portion of the curve that surrounds the point looks very much like a straight line—at least to
the naked eye. Another way of saying this is to say that the tangent line at the point (a, f (a))

is a good approximation to the curve for values of x close to a. Figure A.1 illustrates this.

As x takes on values farther away from a, we expect the absolute error |E(x)| = ∣∣ f (x) −
f (a) − f ′(a)(x − a)

∣∣ to become larger.

Using the point-slope formula from algebra, we can write the equation of this tangent line
as y = f (a) + f ′(a)(x − a), so we can express this tangent line approximation as f (x) ≈
f (a) + f ′(a)(x − a) for x close to a.

y � f (x)

(a, f (a))

a x

y

FIGURE A.1
The tangent line approximation

Copyright © 2009, Elsevier Inc. 399
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For example, the equation of the tangent line drawn to the sine curve at the origin is y =
sin(0) + cos(0)(x − 0) = x. This says that near the origin, sin x ≈ x. One consequence of
this is that sin x

x ≈ 1 for values of x near (but not equal to) zero, so we get the famous result
lim
x→0

sin x
x = 1.

A.2 THE CHAIN RULE
You should know the rules for finding the derivatives of power functions, polynomials,
exponential functions, logarithms, and trigonometric and inverse trigonometric functions.
You may also have learned about differentiating certain combinations of exponential func-
tions called hyperbolic functions. You should know the Product Rule and the Quotient Rule for
differentiation, as well as how to deal with implicit functions.

The Chain Rule applies to composite functions. Suppose, for example, that a quantity z depends
on a quantity y and that the quantity y depends on the value of quantity x. Using function
notation, we can write this as follows: z = f (y), y = g(x), so z = f (g(x)). This says that, ulti-
mately, z depends on (is a function of) x. The Chain Rule tells us how a change in the value
of x affects the value of z. In Leibniz notation,

dz
dx

= dz
dy

· dy
dx

.

This form is useful in many applied problems and in Chapter 4, where the phase plane is
introduced.

■ Example
If z = y57 and y = sin x, then

dz
dx

= dz
dy

· dy
dx

= (
57y56) · cos x = 57 sin56 x cos x.

You may have learned another way to see the Chain Rule: If z = f (g(x)), then z′ = f ′(g(x))·g′(x).
This alternative point of view uses the idea of an “inside” function and an “outside” function.
Try this on the preceding example, where the 57th-power function is outside and the sine
function is inside. ■

A.3 THE TAYLOR POLYNOMIAL/TAYLOR SERIES
To extend the idea of the tangent line approximation, we look for a polynomial Pn of degree
n that approximates a function f as closely as possible on an interval about a point x = a.
What this means mathematically is that we want the polynomial to satisfy the following
closeness conditions: Pn(a) = f (a), P′

n(a) = f ′(a), P′′
n(a) = f ′′(a), P′′′

n (a) = f ′′′(a), . . . , and
P(n)

n (a) = f (n)(a). For a given function f , a point x = a, and degree n, the polynomial that
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satisfies all these conditions is given by the formula

Pn(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2! (x − a)2

+ f ′′′(a)

3! (x − a)3 + · · · + f (n)(a)

n! (x − a)n.

This is called the Taylor polynomial of degree n about x = a, and we can write f (x) ≈ Pn(x)
for x close to a. The closeness of the approximation depends on both the value of x and the
value of n. In general, the closer the value of x is to the value a and the higher the degree n,
the better the approximation.

If we consider what happens to a Taylor polynomial as we let n get larger and larger, we arrive
at the idea of the (infinite) Taylor series:

P(x) = lim
n→∞ Pn(x) = lim

n→∞

n∑
k=0

f (k)(a)

k! (x − a)k

= f (a) + f ′(a)(x − a) + f ′′(a)

2! (x − a)2

+ f ′′′(a)

3! (x − a)3 + · · · + f (n)(a)

n! (x − a)n + · · · .

More precisely, suppose that f is a function with derivatives of all order in some interval
(a − r, a + r). Then the Taylor series given previously represents the function f on the interval
(a − r, a + r) if and only if lim

n→∞ Rn(x) = 0, where Rn(x) is the remainder in Taylor’s formula:

Rn(x) = f (x) −
(

f (a) + f ′(a)(x − a) + f ′′(a)

2! (x − a)2

+ f ′′′(a)

3! (x − a)3 + · · · + f (n)(a)

n! (x − a)n
)

= f (n+1)(c)
(n + 1)! (x − a)n+1 for some point c in (a − r, a + r).

As we saw in Section A.1, any approximation process is subject to error. For example, when
working with π, which has an infinite, nonrepeating decimal representation, we lose accuracy
by using 3.14159 or even 3.14159265359 as its value. This, in turn, leads to what is called
propagated error, the accumulated error resulting from many calculations with rounded values.
If each item of data is inaccurate because of rounding of some sort, then the various steps in
a calculation process can compound the error. A useful approximation method guarantees
that the smaller the round-off error at each stage, the smaller the cumulative round-off error.
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Of course, it turns out that sometimes round-off errors cancel each other out to a certain
extent—approximate values that are too high may be balanced by values that are too low.

Truncation error occurs when we stop (or truncate) an approximation process after a certain
number of steps. For example, when we approximate the values of sin x near x = 0 by using
the first seven nonzero terms of its (infinite) Taylor series,

x − x3

3! + x5

5! − x7

7! + x9

9! − x11

11! + x13

13!
we are introducing truncation error. If we write sin x = T13(x) + R13(x), where T13(x) is the
13th-degree polynomial just given, a formula we know from calculus gives an upper bound
for the absolute truncation error

| sin x − T13(x)| = |R13(x)| = | sin c|
14! |x|14 ≤ |x|14

14! ,

where c is a positive number less than x. Even if we use the 1001st-degree Taylor polynomial,
we are still only approximating and will therefore have truncation error.

Here are some Taylor series that occur often in applications:

ex = 1 + x + x2

2! + x3

3! + x4

4! + · · · + xn

n! + · · ·

sin x = x − x3

3! + x5

5! − x7

7! + · · · + (−1)k x2k+1

(2k + 1)! + · · ·

cos x = 1 − x2

2! + x4

4! − x6

6! + · · · + (−1)k x2k

(2k)! + · · ·

ln(1 + x) = x − x2

2
+ x3

3
− x4

4
+ · · · + (−1)k+1 xk

k
+ · · ·

1
1 − x

= 1 + x + x2 + x3 + · · · + xn + · · · .

Although the first three series are valid (“converge”) for any value of x, the logarithmic series
is valid only on the interval (−1, 1). The last series, a geometric series, converges for |x| < 1.
In Section C.4, we’ll see how Euler used the exponential series to arrive at a formula for the
complex exponential function.

A Taylor series is a special type of power series. We can differentiate or integrate a power series
term by term for values of x within its interval of convergence. If the power series

∑∞
n=0 anxn

converges to S(x) for x in some interval I, then

S′(x) =
∞∑

n=0

nanxn−1 = a1 + 2a2x + 3a3x2 + · · · + nanxn−1 + · · ·



A.4 The Fundamental Theorem of Calculus (FTC) 403

and

x∫
0

S(t)dt =
x∫

0

( ∞∑
n=0

antn

)
dt =

∞∑
n=0

x∫
0

antndt =
∞∑

n=0

an

n + 1
xn+1

= a0x + a1

2
x2 + a2

3
x3 + · · · + an

n + 1
xn+1 + · · · ,

where both the differentiated and the integrated series converge for x in I.

In Appendix D, we will show how to solve certain differential equations using power series
methods.

A.4 THE FUNDAMENTAL THEOREM OF CALCULUS (FTC)
A function F is an antiderivative of the function f if F′(x) = f (x). A very important connection
between derivatives and integrals is expressed by the Fundamental Theorem of Calculus
(FTC). This result comes in two flavors:

A. If f (x) is continuous on the closed interval [a, b] and if F(x) is any antiderivative of
f (x) on this interval, then

b∫
a

f (x)dx = F(b) − F(a).

B. Let f (x) be defined and continuous on a closed interval [a, b] and define the function
G(x) on this interval:

G(x) =
x∫

a

f (t)dt.

Then G(x) is differentiable there with derivative f (x): G′(x) = f (x).

Version A simplifies the whole business of finding the value of a definite integral: Just find an
antiderivative of the integrand. Of course, as you know, this isn’t always as simple as it sounds.
At least half of your calculus course was probably devoted to techniques of substitution and
integration by parts, trying to recognize integrands as derivatives resulting from the Product
Rule, the Chain Rule, and so forth.

A slight twist on version A tells us that if we integrate f ′, the rate function over [a, b], we get
the total change in f , the amount function over the same interval. For example, if s(t), v(t), and
a(t) denote the position, velocity, and acceleration, respectively, of a moving object at time t,
then we have ∫

v(t)dt = s(t) + C and
∫

a(t)dt = v(t) + K ,
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where C and K denote arbitrary constants. Consequently, we can write

b∫
a

v(t)dt =
b∫

a

s′(t)dt = s(b) − s(a),

which says that if we integrate the velocity function, we get the total change in position of a
moving object as t changes from a to b. If we integrate the speed function—the absolute
value of the velocity—we get the total distance traveled by the object. (See Example 1.3.4 in
the text.)

As useful as version A is in solving differential equations, version B extends the notion of
differentiation (and therefore of integration) to functions defined by integrals. (See Problems
A9 and A10 in Exercises 1.2.)

■ Example
Suppose that Q(x) = ∫ x

−2 cos(u2)du. Then Q′(x) = cos(x2), Q′′(x) = −2x sin(x2), and
so on. ■

A.5 PARTIAL FRACTIONS
An important and useful result from algebra says that every rational function (quotient of
polynomial functions), no matter how complicated, comes from adding simpler fractions.
For example, the function

8x + 1
x2 − x − 6

comes from the following addition of simpler pieces:

3
x + 2

+ 5
x − 3

= 3(x − 3) + 5(x + 2)

(x + 2)(x − 3)
= 8x + 1

x2 − x − 6
.

In calculus, when we have an integrand that is a rational function, we can reverse this addi-
tion process to find the simpler fractions, fractions that we can integrate easily. Thus, for
example, ∫

8x + 1
x2 − x − 6

dx =
∫ (

3
x + 2

+ 5
x − 3

)
dx =

∫
3

x + 2
dx +

∫
5

x − 3
dx

= 3 ln |x + 2| + 5 ln |x − 3| + C.

In this example, the algebraic challenge is to find constants A and B such that

8x + 1
x2 − x − 6

= A
x + 2

+ B
x − 3

. (*)
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The fractions A/(x + 2) and B/(x − 3) are called partial fractions because each contributes a
piece of the whole. In particular, the denominators x + 2 and x − 3 are parts (factors) of the
original denominator x2 − x − 6. The numbers A and B are called undetermined coefficients
(see Section 4.3, Section 5.6, and Appendix D). To find A and B, we clear Equation (*) of
fractions by multiplying both sides by x2 − x − 6. The result is

8x + 1 = A(x − 3) + B(x + 2).

This is supposed to be an identity in x. If we let x = 3, we find that 8(3) + 1 = 0 + 5B, or
B = 5. Similarly, letting x = −2, we get 8(−2) + 1 = −5A + 0, so A = 3.

This technique works for a rational function in lowest terms whose denominator can be
factored into distinct linear factors. More complicated denominators can also be handled by
this kind of algebraic method, and you can find a more detailed discussion in your calculus
text. Most computer algebra systems can produce such “partial-fraction decompositions”
and can evaluate integrals with integrands that are rational functions. Partial fractions are
particularly useful in Section 2.1 and in Chapter 6.

A.6 IMPROPER INTEGRALS
In dealing with the definite (Riemann) integral

∫ b
a f (x)dx, we make two basic assumptions:

(1) The interval [a, b] is finite, and (2) the integrand f is bounded (that is, does not become
infinite) on the closed interval [a, b]. If we violate one or both of these assumptions, we
encounter a type of improper integral.

First, let us assume that we want to consider the interval [a, ∞) or (−∞, b], where a and b are
real numbers. We can define

∞∫
a

f (x)dx = lim
B→∞

B∫
a

f (x)dx or

b∫
−∞

f (x)dx = lim
A→∞

b∫
−A

f (x)dx

provided that each limit exists. If the limit exists, we say that the improper integral converges.
Otherwise, we say that the improper integral diverges. Finally,

∞∫
−∞

f (x)dx = lim
A→∞

c∫
−A

f (x)dx + lim
B→∞

B∫
c

f (x)dx

provided that each limit on the right-hand side exists individually. Here, c is an arbitrary real
number. It is not correct to define

∫∞
−∞ f (x)dx as lim

C→∞
∫ C
−C f (x)dx.

■ Example
∞∫

1

dx
1 + x2 = lim

B→∞ arctan x|B1 = lim
B→∞(arctan B − arctan 1)
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= lim
B→∞

(
arctan B − π

4

)
= lim

B→∞ arctan B − π

4

= π

2
− π

4
= π

4
.

■

■ Example
Consider

∫∞
0 sin xdx. The limit

lim
B→∞

B∫
0

sin xdx = lim
B→∞(− cos(B) + cos(0)) = − lim

B→∞ cos(B) + 1

doesn’t exist because cos(B) oscillates from −1 to 1 as B tends to infinity.

When we are dealing with this first type of improper integral, for which the interval is not
finite, sometimes a form of L’Hôpital’s Rule comes in handy: Suppose that as x → a, where a

is ±∞, f (x) → ±∞, and g(x) → ±∞. If lim
x→a

f ′(x)
g′(x) = L, where L is either a real number or ±∞,

then lim
x→a

f (x)
g(x) = L. ■

■ Example
Consider Euler’s gamma function, defined by �(x) = ∫∞

0 tx−1e−tdt. Integration by parts tells
us that

�(x) = −tx−1e−t]∞
0 −

∞∫
0

(x − 1)tx−2(−e−t)dt

= lim
c→∞

−tc−1

ec + (x − 1)

∞∫
0

tx−2e−tdt

= (x − 1) · �(x − 1),

where we have used L’Hôpital’s Rule several times in evaluating the limit. (Successive dif-
ferentiations of the numerator and denominator of −tc−1

ec eventually give us −(c − 1)!
in the numerator, whereas the denominator remains ec, so the limit of the quotient as
c tends to infinity is 0.) Note that because �(1) = �(2) = 1, we can conclude that
�(x + 1) = x · (x − 1) · (x − 2) · (x − 3) · · · 3 · 2 · 1 = x! when x is an integer, so the
gamma function provides a generalization of n! to the case in which n is not an integer. (See
Section D.3, especially footnote 4.)
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Now let’s suppose that f is defined and finite on the interval [a, b] except at the endpoint b.
Then the integral

∫ b
a f (x)dx is improper, and we define it as

b∫
a

f (x)dx = lim
B→b−

B∫
a

f (x)dx

provided that this left-hand limit (or limit from the left) exists. Similarly, if f is unbounded at
the endpoint a, then we define

b∫
a

f (x)dx = lim
A→a+

b∫
A

f (x)dx

provided that this right-hand limit (or limit from the right) exists. ■

■ Example
The function 1/

√
1 − x2 is unbounded at x = 1 (and at x = −1). The improper integral of

this function on the interval [0, 1] converges:

1∫
0

dx√
1 − x2

= lim
B→1−

B∫
0

dx√
1 − x2

= lim
B→1− arcsin(B) − arcsin(0) = π

2
.

Another possibility is that the function f is defined and finite on [a, b] except at a point ξ

inside the interval. The improper integral is then defined as

b∫
a

f (x)dx = lim
c→ξ−

c∫
a

f (x)dx + lim
d→ξ+

b∫
d

f (x)dx

provided that both one-sided limits exist. ■

■ Example
2∫

0

dx

(x − 1)
2/3

= lim
c→1−

c∫
0

dx

(x − 1)
2/3

+ lim
d→1+

2∫
d

dx

(x − 1)
2/3

= lim
c→1− 3(x − 1)

1/3

∣∣∣∣c
0

+ lim
d→1+ 3(x − 1)

1/3

∣∣∣∣2
d
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= lim
c→1−

[
3(c − 1)

1/3 − 3 (−1)
1/3
]

+ lim
d→1+

[
3 (1)

1/3 − 3
(
d − 1

)1/3
]

= 3 + 3 = 6. ■

A.7 FUNCTIONS OF SEVERAL VARIABLES/PARTIAL
DERIVATIVES

Sometimes we encounter functions that depend on more than one independent variable. For
example, the area of a rectangle depends on both its length and its width. We can express this
relationship as A = f (l, w) = l · w. In general, if there are two independent variables (x and
y) and one dependent variable (z), we can express this situation as z = f (x, y). In words, the
variable z depends on (is a function of) the variables x and y. This means that changes in the
value of either x or y (or both) will lead to changes in z. The instantaneous rate of change of z
with respect to x is given by the partial derivative of z with respect to x, which is defined by
the formula

∂z
∂x

= lim
h→0

f (x + h, y) − f (x, y)
h

.

Similarly, the instantaneous rate of change of z with respect to y is given by the partial derivative
of z with respect to y, which is defined by the formula

∂z
∂y

= lim
h→0

f (x, y + h) − f (x, y)
h

.

What this means in terms of practical calculation is that to find ∂z
∂x , you just treat y as a constant

and differentiate with respect to x as usual. For ∂z
∂y , you treat x as a constant and regard y as

the “live” variable.

The Chain Rule takes different forms in this multivariable environment, among them this
version: If x = f (t) and y = g(t), where f and g are differentiable and F is a function of x and
y, then dF

dt = ∂F
∂x

dx
dt + ∂F

∂y
dy
dt .

■ Example
If z = f (x, y) = x2y2 − 3xy3 + 5x4y2, then

∂z
∂x

= 2xy2 − 3y3 + 20x3y2 and
∂z
∂y

= 2x2y − 9xy2 + 10x4y.
■

■ Example
Suppose w = e2x+3y sin(xy). Then, using the Product Rule and the Chain Rule, we find that

∂w
∂x

= e2x+3y cos(xy)y + 2e2x+3y sin(xy)
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and

∂w
∂y

= e2x+3y cos(xy)x + 3e2x+3y sin(xy).
■

■ Example
Let F(x, y) = x2 + y2, with x = x(t) = cos t and y = y(t) = sin t. Then the multivariable Chain
Rule gives us dF

dt = ∂F
∂x

dx
dt + ∂F

∂y
dy
dt = (2x)(− sin t)+ (2y)(cos t) = −2 cos t sin t +2 sin t cos t = 0,

which is not surprising since F(x, y) = x2 + y2 = cos2 t + sin2 t ≡ 1.

In general, if you have a function of n variables, z = f (x1, x2, x3, . . . , xn), then you can define
the partial derivative of z with respect to xk and calculate it by treating xk as the only true
variable, the other xi(i 	= k) being treated as constants. You can define higher derivatives and
mixed derivatives in the obvious way: ∂2z

∂xi∂xk
, ∂nz

∂xn
k
, and so on. ■

■ Example
Using z = f (x, y) = x2y2 − 3xy3 + 5x4y2 and the results of the first example, we have

∂2z
∂x2 = ∂

∂x

(
∂z
∂x

)
= ∂

∂x

(
2xy2 − 3y3 + 20x3y2) = 2y2 + 60x2y2

∂2z
∂y2 = ∂

∂y

(
∂z
∂y

)
= ∂

∂y

(
2x2y − 9xy2 + 10x4y

) = 2x2 − 18xy + 10x4

∂2z
∂x∂y

= ∂

∂x

(
∂z
∂y

)
= ∂

∂x

(
2x2y − 9xy2 + 10x4y

) = 4xy − 9y2 + 40x3y,

and so forth. ■

A.8 THE TANGENT PLANE: THE TAYLOR EXPANSION
OF F (x,y )

In Section A.1, we saw that the tangent line y = f (a) + f ′(a)(x − a) gives the best linear
approximation of a single-variable function f near x = a. For F(x, y), a function of two
variables, the best approximation near a point (a, b) is provided by the tangent plane given
by the approximation formula

F(x, y) ≈ F(a, b) + ∂F
∂x

(a, b)(x − a) + ∂F
∂y

(a, b)(y − b),

where ∂F
∂x (a, b) and ∂F

∂y (a, b) denote the partial derivatives evaluated at the point (a, b).
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FIGURE A.2
Tangent plane to the surface z = x3 − x2y2 + y3 at (1, 2)

■ Example
Let’s calculate the tangent plane approximation of the function F(x, y) = x3 − x2y2 + y3

near the point (a, b) = (1, 2). We have ∂F
∂x = 3x2 − 2xy2 and ∂F

∂y = −2x2y + 3y2, so F(1, 2) =
13 −1222 +23 = 5, ∂F

∂x (1, 2) = 3(1)2 −2(1)(2)2 = −5, and ∂F
∂y (1, 2) = −2(1)2(2)+3(2)2 = 8.

Putting these results into the tangent plane formula, we get

F(x, y) ≈ F(1, 2) + ∂F
∂x

(1, 2)(x − 1) + ∂F
∂y

(1, 2)(y − 2)

= 5 − 5(x − 1) + 8(y − 2). ■

Figure A.2 shows the three-dimensional picture of the surface and its tangent plane.

For points (x, y) close to (1, 2), the values of z on the tangent plane are close to the values of
z on the surface defined by z = F(x, y).

We can define a full Taylor series expansion of a function of several variables, but for this text
we need only the idea of the tangent plane (linear) approximation.



APPENDIX B

Vectors and Matrices

Appendix B is intended to provide an expanded view of the vector and matrix algebra needed
in this text.

B.1 VECTORS AND VECTOR ALGEBRA; POLAR
COORDINATES

In more abstract courses, a vector is an object in a set whose elements obey certain algebraic
rules. For physicists, engineers, and other scientists, a vector—more properly, a geometric
vector—is a quantity that has both magnitude (size) and direction. In two-dimensional phys-
ical situations, there are two usual ways to represent a vector: (1) as an ordered pair of real

numbers, written (x, y) or
[

x
y

]
; and (2) as an arrow from the origin (usually) of the x-y plane

to a point (x, y) or
[

x
y

]
. The numbers x and y are called the components or coordinates

of the vector. As indicated in Chapter 5, we can also consider vectors with complex-number
coordinates and vectors whose components are functions. For the sake of simplicity in this
appendix, we’ll work with vectors whose components are real numbers.

Both ways of looking at a vector are shown in Figure B.1. In the second (“arrow”) view, the
vector v = (x, y) is always the hypotenuse of a right triangle, so by the Pythagorean Theorem
its length—denoted |v|—is given by the expression

√
x2 + y2. The direction of a vector is

indicated by the direction of the arrow.

Vectors—often representing forces of various kinds—can be combined to indicate interac-
tions. For example, you can add two vectors as follows: If v1 = (x1, y1) and v2 = (x2, y2), then
v1 + v2 = (x1, y1)+ (x2, y2) = (x1 + x2, y1 + y2). Subtraction is similar. You can also multiply a
vector by a real number (or a complex number or a function), which is called a scalar in this
situation. To do this, just multiply each component of the vector by the scalar: If v = (x, y)
and r is any real number, then r v = (rx, ry). Because the components of vectors are real num-
bers, we should expect the usual rules of algebra to apply. If v1, v2, and v3 are vectors and r
is a scalar, then v1 + v2 = v2 + v1 [commutative property], v1 + (v2 + v3) = (v1 + v2) + v3

Copyright © 2009, Elsevier Inc. 411
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FIGURE B.1
Ways to represent a vector
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The Parallelogram Law

[associative property], and r (v1 + v2) = r v1 + r v2 [distributive property]. There is a zero
vector, denoted by 0 = (0, 0), such that v+0 = v = 0+v for every vector v [additive identity].

Geometrically, the addition or subtraction of vectors is captured by the Parallelogram Law
(see Figure B.2 for the two-dimensional version).

Another way of representing a vector in two-dimensional space is by using polar coordinates
(Figure B.3). If we have a vector corresponding to the point (x, y), then we can describe it
using its length r (its radial distance from the origin) and the angle θ that the arrow makes
with the positive x-axis, measured in a counterclockwise direction. As we saw previously, the
length is given by the formula r = √

x2 + y2.

As we look at Figure B.3, simple trigonometry tells us that x = r cos θ, y = r sin θ, and θ =
arctan

( y
x

)
, x 	= 0. As indicated in some of the examples in Chapter 7, the polar representation

of vectors may be more natural in problems involving expressions that look like x2, y2, x2+y2,
and so on.

There is no reason to restrict our definition of vectors to two dimensions. In three-dimensional

space, a vector is an ordered triplet, (x, y, z) or

[
x
y
z

]
, of real numbers or an arrow joining the
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Polar representation of a vector

origin (0, 0, 0) to the point (x, y, z). In general, an n-dimensional vector is an ordered n-tuple,

(x1, x2, x3, . . . , xn) or

⎡
⎢⎢⎢⎢⎢⎣

x1

x2

x3
...

xn

⎤
⎥⎥⎥⎥⎥⎦, of real numbers. The coordinate-by-coordinate arithmetic/algebra

of vectors generalizes to any dimension in the obvious way.

Given a set of vectors {v1, v2, . . . , vm}, any vector of the form c1v1 + c2v2 + · · · + cmvm, where
c1, c2, . . . , cm are scalars, is called a linear combination of the set of vectors. The set of vectors
{v1, v2, . . . , vm} is called linearly independent if the only way we can have c1v1 + c2v2 +· · ·+
cmvm = 0 (the zero vector) is if c1 = c2 = · · · = cm = 0. Otherwise, the set of vectors is linearly
dependent. Linear dependence implies that at least one vector in the set can be expressed as a
linear combination of the others.

■ Example
We will determine whether the following vectors are linearly independent:

v1 =

⎡
⎢⎢⎣

1
1
0
0

⎤
⎥⎥⎦, v2 =

⎡
⎢⎢⎣

1
0
1
0

⎤
⎥⎥⎦, v3 =

⎡
⎢⎢⎣

0
0
1
1

⎤
⎥⎥⎦, v4 =

⎡
⎢⎢⎣

0
1
0
1

⎤
⎥⎥⎦.

The statement c1v1 + c2v2 + c3v3 + c4v4 = 0 is equivalent to the system of algebraic equations

c1 + c2 = 0

c1 + c4 = 0

c2 + c3 = 0

c3 + c4 = 0.
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This system is not difficult to solve by hand using substitution or elimination, but we can
also use the capability of a graphing calculator or CAS to solve such systems of equations.
In any case, we find that c1 = 1, c2 = −1, c3 = 1, and c4 = −1 is a solution. Because the
scalars are not all zero, we conclude that the four vectors are linearly dependent. Note, for
example, that we can write the first vector as a linear combination of the remaining vectors:
v1 = v2 − v3 + v4. ■

B.2 MATRICES AND BASIC MATRIX ALGEBRA
A matrix (the plural is matrices) is simply a rectangular arrangement (array) of numbers or
other mathematical objects (such as functions) and is usually denoted by a capital letter. It
can be considered a generalization of a vector. For example, we can have the matrix

A =

⎡
⎢⎢⎣

0 −4 1/2 9

π 14/5 −0.15 2

7
√

3 0 −3

⎤
⎥⎥⎦.

The numbers or objects making up a matrix are called its elements or entries. Most of the
time we’ll use real numbers, although complex numbers and even functions can appear as
entries of matrices (as they can for components of vectors).

One way to describe a matrix is by indicating how many rows and columns it has. Matrix A
in the preceding equation has 3 rows and 4 columns and is called a 3 by 4 matrix, or a 3 × 4
matrix. A matrix with m rows and n columns is called an m by n matrix (m × n matrix). Note
that each row or column of a matrix can be considered a vector. An n × 1 matrix is called a
column vector, whereas a 1 × n matrix is called a row vector. Two matrices are called equal
if they have the same number of rows and columns and their corresponding elements are
equal. For example, we can write[

1 0 −5/3

1/
√

2 3 0.25

]
=
[

7/7 0 −15/9√
2/2 15/5 1/4

]
.

You can add and subtract matrices of the same shape by adding or subtracting their corre-
sponding elements, but (for example) you can’t add a 3 by 4 matrix and a 4 by 3 matrix or
subtract one of these from the other. If we take the matrix A that we have already defined and
introduce the matrix B, so that we have

A =

⎡
⎢⎢⎣

0 −4 1/2 9

π 14/5 −0.15 2

7
√

3 0 −3

⎤
⎥⎥⎦ and B =

⎡
⎢⎢⎣

23 5 21/2 4

3/4 6/5 0.65 8

29
√

2 8 3

⎤
⎥⎥⎦,
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then

A + B =
⎡
⎢⎣

0 + (−3) −4 + 5 1/2 + (−1/2) 9 + 4

π + 3/4 14/5 + 6/5 −0.15 + 0.65 2 + 8

7 + (−9)
√

3 + √
2 0 + 8 −3 + 3

⎤
⎥⎦

=
⎡
⎢⎣

−3 1 0 13

π + 3/4 4 0.5 10

−2
√

3 + √
2 8 0

⎤
⎥⎦

and

A − B =
⎡
⎢⎣

0 − (−3) −4 − 5 1/2 − (−1/2) 9 − 4

π − 3/4 14/5 − 6/5 −0.15 − 0.65 2 − 8

7 − (−9)
√

3 − √
2 0 − 8 −3 − 3

⎤
⎥⎦

=
⎡
⎢⎣ 3 −9 1 5

π − 3/4 8/5 −0.8 −6

16
√

3 − √
2 −8 −6

⎤
⎥⎦.

The role of the number zero in matrix algebra is played by the zero matrix of the appropriate
size—the matrix all of whose entries are zero.

We can also multiply a matrix by a number (or even a function) called a scalar, as in the case
for vectors. We just multiply every element of the matrix by that scalar:

−5 ·
⎡
⎢⎣

3 −2 0

−7 4 1/3

5 −6
√

2

⎤
⎥⎦ =

⎡
⎢⎢⎣

−5 (3) −5 (−2) −5 (0)

−5 (−7) −5 (4) −5 (1/3)

−5 (5) −5 (−6) −5
(√

2
)
⎤
⎥⎥⎦

=
⎡
⎢⎣

−15 10 0

35 −20 −5/3

−25 30 −5
√

2

⎤
⎥⎦.

We’ve just multiplied a 3 by 3 matrix—one type of square matrix—by the scalar (−5).

B.3 LINEAR TRANSFORMATIONS AND MATRIX
MULTIPLICATION

The really interesting thing about matrix arithmetic and algebra is how we multiply matri-
ces. The natural thing to do—take two matrices with the same shape and multiply their



416 APPENDIX B: Vectors and Matrices

corresponding elements—is not what is meant by matrix multiplication in the theory of lin-
ear algebra. Instead, there is a row-by-column process that looks strange at first but becomes
more natural when you see its applications.

To motivate the multiplication of matrices, let’s return to elementary algebra for a moment
and look at a system of two equations in two unknowns:

−2x + 3y = 5

x − 4y = −2.

In connection with this system, we can think of a point (x, y) in the plane transformed into
another point as follows:

T(x, y) = (−2x + 3y, x − 4y).

For example,

T(1, 0) = (−2(1) + 3(0), 1 − 4(0)) = (−2, 1)

T(−4, 5) = (−2(−4) + 3(5), −4 − 4(5)) = (23, −24)

and

T(−2.8, −0.2) = (−2(−2.8) + 3(−0.2), −2.8 − 4(−0.2)) = (5, −2).

Note that this last calculation says that the ordered pair (x, y) = (−2.8, −0.2) is a solution of
our system of linear equations.

Geometrically, the point (1, 0) has been moved to the location (−2, 1), the point (−4, 5) has
been changed to (23, −24), and the point (−2.8, −0.2) has been transformed into (5, −2). If
we think of a point (x, y) as defining a vector, then the transformation stretches (or shrinks)
the vector and rotates it through some angle θ until it becomes another vector. Figure B.4
shows this interpretation of the effect of T on the vector (1, 0).

x

y

(�2, 1)
1

�2 �1 1

FIGURE B.4
The effect of T(x, y) = (−2x + 3y, x − 4y) on the vector (1, 0)
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More abstractly, we should be able to see that T is a linear transformation of points (x, y) in
the plane to other points (x̂, ŷ) in the plane: If u = (x1, y1) and v = (x2, y2), then T(c1u+c2v) =
T(c1u) + T(c2v) = c1T(u) + c2T(v) for any constants c1 and c2.

Matrix notation was invented by the English mathematician Arthur Cayley precisely to
describe linear transformations. If T(x, y) = (x̂, ŷ), where

ax + by = x̂

cx + dy = ŷ,

then we can pick out the coefficients a, b, c, and d and write them in a square array A =
[

a b
c d

]
called a matrix. If we know what variables x, y, x̂, and ŷ we’re using, then knowing this matrix
of coefficients enables us to understand what T is doing to points in the plane. We can focus

on these variables by introducing the vectors X =
[

x
y

]
and X̂ =

[
x̂
ŷ

]
. Now we can write our

system of equations compactly as [
a b
c d

] [
x
y

]
=
[

x̂
ŷ

]
,

or AX = X̂. To make sense, the “product” of A and X must be the column matrix
[

ax + by
cx + dy

]
,

which leads to a row-by-column multiplication:

[
a b

] [ x
y

]
= ax + by and

[
c d

] [ x
y

]
= cx + dy.

Furthermore, the multiplication of two matrices of the appropriate sizes can be interpreted
as a composition of transformations—one transformation followed by another.

■ Example
Suppose that we have two linear transformations defined by

M(x, y) = (x + 2y, 3x + 4y) and P(x, y) = (−2x, x + 3y).

Then

(M ◦ P)(x, y) = M(P(x, y)) = M(−2x, x + 3y)

= (−2x + 2(x + 3y), 3(−2x) + 4(x + 3y))

= (6y, −2x + 12y).

In particular, (M ◦ P)(1, 1) = (6, 10). ■
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The matrices of coefficients for the transformations M and P look like M =
[

1 2
3 4

]
and

p =
[−2 0

1 3

]
, so the composition M ◦ P takes the form of a product of 2 × 2 matrices:

[
1 2

3 4

][−2 0

1 3

][
x

y

]
=
[

1 2

3 4

][ −2x

x + 3y

]

=
[ −2x + 2(x + 3y)

3(−2x) + 4(x + 3y)

]
=
[

6y

−2x + 12y

]

and when
[

x
y

]
=
[

1
1

]
,

[
1 2

3 4

][−2 0

1 3

][
1

1

]
=
[

6

10

]
.

You should check to see that (M ◦ P)(x, y) 	= (P ◦ M)(x, y) or, equivalently, that[
1 2
3 4

] [−2 0
1 3

]
	=
[−2 0

1 3

] [
1 2
3 4

]
.

Looking at the preceding example, we see that transforming the vector (x, y) by P and then by M
is equivalent to transforming the vector by the single transformation T(x, y) = (6y, −2x+12y).

In matrix terms, we can express the effect of the composition M ◦ P as
[

0 6
−2 12

] [
x
y

]
=[

6y
−2x + 12y

]
. Note what we get when we add the results of multiplying each element of

the first row of the matrix associated with M,
[

1 2
]
, by the corresponding element of the

first column of the matrix associated with P,
[−2

1

]
: (1)(−2) + (2)(1) = 0, which happens

to be the first row, first column element of the matrix corresponding to M ◦ P. Similarly, for
example, combining the second row of the matrix associated with M,

(
3 4

)
, and the first

column of the matrix associated with P,
[−2

1

]
, we get the element in the second row, first

column of M ◦ P : (3)(−2) + (4)(1) = −2. In this way we can describe the matrix for M ◦ P
as the product of the matrix representing M and the matrix representing P.

In general, if A and B are both 2 × 2 matrices, we find the element in row i and column j
of the product matrix C = AB by adding the products of each element of row i of matrix A
and the corresponding element in column j of matrix B. For example, here’s what the matrix
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product corresponding to M ◦ P in the last example looks like in full:[
1 2

3 4

][−2 0

1 3

]
=
[

(1)(−2) + (2)(1) (1)(0) + (2)(3)

(3)(−2) + (4)(1) (3)(0) + (4)(3)

]
=
[

0 6

−2 12

]
.

You should be able to calculate the matrix product corresponding to P ◦ M. You’ll notice
that the order of composition/multiplication counts: The matrix corresponding to M◦ is not
necessarily the matrix corresponding to P ◦ M. In general, matrix multiplication is not com-
mutative: If A and B are two matrices that can be multiplied (see the next paragraph), then AB 	= BA
in general.

This situation of one function or transformation followed by another is the motivation for
matrix multiplication. The general multiplication of matrices remains the row-by-column
procedure described for 2×2 matrices. In order for us to calculate the matrix product C = AB,
the number of columns of A must be the same as the number of rows of B. Let C = AB, where
A is m × r and B is r × n. Then the product is a matrix with m rows and n columns:

A · B = C

(m × r) · (r × n) = m × n

Thus, if A is a 3 by 5 matrix and B is a 5 by 7 matrix, you can find the product AB, which
will be a 3 by 7 matrix. However, the product BA does not make sense because the number of
columns of B (7) does not equal the number of rows of A (3).

If the sizes of A and B are compatible, as described previously, then cij, the element in row
i and column j of the product matrix C, is just the sum of the products of each element of
row i of matrix A and the corresponding element in column j of matrix B. Letting aik denote
the entry in row i and column k of matrix A, and letting bkj denote the element in row k and
column j of matrix B, we can write the last sentence more concisely as

cij =
r∑

k=1

aikbkj = ai1 b1j + ai2 b2j + · · · + air brj. (B.3.1)

Schematically, we can represent this matrix multiplication as follows:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 . . . c1j . . . c1n
c21 c22 . . . c2j . . . c2n
...

...
...

...
...

...
ci1 ci2 . . . cij . . . cin

...
...

...
...

...
...

cm1 cm2 . . . cmj . . . cmn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1r
a21 a22 . . . a2r

...
...

...
...

ai1 ai2 . . . air

...
...

...
...

am1 am2 . . . amr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

b11 b12 . . .

b21 b22 . . .

...
...

...
br1 br2 . . .

b1j
b2j
...

brj

. . . b1n

. . . b2n
...

...
. . . brn

⎤
⎥⎥⎥⎥⎦.

Here are some more examples of matrix multiplication.
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■ Example

[
2 −3 0

4 0 1

]
·

⎡
⎢⎣

1 2

3 4

5 6

⎤
⎥⎦ =

[
2(1) − 3(3) + 0(5) 2(2) − 3(4) + 0(6)

4(1) + 0(3) + 1(5) 4(2) + 0(4) + 1(6)

]

=
[−7 −8

9 14

]
,

⎡
⎢⎣

π −2 6

0 4 1

−3 5 7

⎤
⎥⎦ ·

⎡
⎢⎣

2 −3 0

9 2 −6

2 1 4

⎤
⎥⎦

=
⎡
⎢⎣

π(2) − 2(9) + 6(2) π(−3) − 2(2) + 6(1) π(0) − 2(−6) + 6(4)

0(2) + 4(9) + 1(2) 0(−3) + 4(2) + 1(1) 0(0) + 4(−6) + 1(4)

−3(2) + 5(9) + 7(2) −3(−3) + 5(2) + 7(1) −3(0) + 5(−6) + 7(4)

⎤
⎥⎦

=
⎡
⎢⎣

2π − 6 −3π + 2 36

38 9 −20

53 26 −2

⎤
⎥⎦.

■

A particularly important and useful 2 × 2 matrix is the identity matrix I =
[

1 0
0 1

]
. You

should check to see that this matrix plays the same role in matrix algebra that the number
1 plays in arithmetic—that is, I · A = A · I for any 2 × 2 matrix A. If matrix A is 2 × n, then
I · A = A, but A · I is not defined unless n = 2. Similarly, if A is an n × 2 matrix, then A · I = A,
but I · A is not defined unless n = 2. In general, for any positive integer n, the n × n matrix
with ones on the main diagonal (upper left corner to lower right corner) and zeros elsewhere
serves as the identity matrix I for n × n matrix multiplication.

Given an n × n matrix A, the n × n matrix B is called the (multiplicative) inverse of A if AB =
I = BA. If an inverse of A exists, then it is unique and is denoted by A−1.

With the definitions we have seen, matrix addition and multiplication satisfy all the familiar
basic rules of algebra—except for commutativity. For example, we have the associative law for
multiplication: If A is an m × r matrix, B is an r × s matrix, and C is an s × n matrix, then
A(BC) = (AB)C, an m × n matrix. We also have the distributive law: If A is an m × r matrix and
B and C are r × n matrices, then A(B + C) = AB + AC (which is an m × n matrix).

Let’s prove the distributive law in the situation in which A is an m × r matrix and B and C are
r × 1 matrices (vectors). We expect the product A(B + C) to be a vector having m rows. Now
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suppose that aik denotes the element in row i, column k of A, that bk and ck are the elements
in row k(k = 1, 2, . . . , r), and that pi is the element in row i of the product A(B + C). Then by
Equation (B.3.1), we have (for i = 1, 2, . . . , m)

pi =
r∑

k=1

aik
(
bk + ck

) =
r∑

k=1

(
aik bk + aik ck

) =
r∑

k=1

aik bk +
r∑

k=1

aik ck

= (the entry in row i of AB) + (the entry in row i of AC),

so we have shown that A(B + C) = AB + AC.

B.4 EIGENVALUES AND EIGENVECTORS

As we saw in the previous section, if A is an n×n matrix and X is a nonzero n×1 vector

⎡
⎢⎢⎢⎣

x1

x2
...

xn

⎤
⎥⎥⎥⎦,

we can consider the multiplication of X by matrix A in the form AX as somehow transforming
or changing the vector X. If there is a scalar λ such that AX = λX, then λ is called an eigenvalue
of A, and the vector X is called an eigenvector corresponding to λ. Geometrically, we’re saying
that an eigenvector is a nonzero vector that gets changed into a constant multiple of itself. For example,

identifying a vector X =
[

x
y

]
with the point (x, y) in the familiar Cartesian coordinate system,

we can see that an eigenvector is a point (not the origin) such that it and its transformed self
lie on the same straight line through the origin. The direction of an eigenvector is either
unchanged (if λ > 0) or reversed (if λ < 0) when the vector is multiplied by A. The matrix
equation AX = λX is like the functional equation f (x) = λx, which represents a straight line
through the origin with slope λ.

If we start with the assumption that AX = λX, then AX − λX = 0 (the zero vector), and the
distributive property of matrix multiplication allows us to write (A−λI)X = 0. (We must write
A−λI instead of A−λ because it doesn’t make sense to subtract a number from a matrix.) If we
can find an inverse for A−λI—that is, an n×n matrix B such that (A−λI)B = I = B(A−λI)—
then we can divide the factor A − λI out of the matrix equation (A − λI)X = 0 to get X = 0,
the n × 1 vector all of whose elements are 0. Therefore, remembering that an eigenvector was
defined as a nonzero vector, we see that the only interesting situation occurs when the matrix
A − λI does not have an inverse. (Do you follow the logic?)

The equation (A−λI)X =0 represents a homogeneous system of n algebraic linear equations in
n unknowns, and the theory of linear algebra indicates that there is a number �, depending
on the matrix A − λI, with the following important property: If � 	= 0, then the system
(A − λI)X = 0 has only the zero solution x1 = x2 = . . . = xn = 0. However, if � = 0, then
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there is a solution X =

⎡
⎢⎢⎢⎣

x1

x2
...

xn

⎤
⎥⎥⎥⎦ with at least one of the xi different from zero. This number � is

the determinant of the matrix A − λI, denoted by det(A − λI). Therefore (A − λI)X = 0 has a
nonzero solution X only if det(A−λI) = 0, For any n×n linear system (homogeneous or not),
the nature of the solutions depends on (that is, is determined by) whether the determinant
is zero. The determinant is often calculated by means of successive operations on the rows
and/or columns of the matrix. Rather than spend time learning tedious algorithms for finding
determinants, you should learn how to get these numbers from your CAS. Even a graphing
calculator will evaluate a determinant if the matrix is not too large. From a more abstract
point of view, a determinant is just a special kind of function from a set of square matrices to
the real numbers.

For now, let’s see how a determinant arises in solving a simple system of algebraic equations.

■ Example
Suppose we want to solve the following system of two equations in two unknowns:

2x − 3y = 2

x + 4y = −5.

We can use the method of elimination to solve this system. For example, we can subtract twice
the second equation from the first equation to eliminate the variable x and get −11y = 12,
or y = −12

11 . Then we can substitute this value of y in the second equation and solve for x. We
get x = − 7

11 . Note that when we solve this particular system by elimination, the denominator
of each component of the solution is 11. ■

Now write the system in matrix form:[
2 −3
1 4

] [
x
y

]
=
[

2
−5

]
.

What do we get if we take the matrix of coefficients, multiply the main-diagonal (upper left,
lower right) elements 2 and 4, and then subtract the product of the other diagonal elements
−3 and 1? We get (2)(4)−(−3)(1) = 11. Surprise! The number calculated this way is the deter-
minant of the coefficient matrix. In solving any system of linear equations in two unknowns,
you always wind up dividing by the determinant—if it’s not zero. Cramer’s Rule, which you may
have seen in a college algebra course, is a general n×n linear system solution formula that uses
determinants.

For a larger system, a CAS or graphing calculator provides important information about a
system easily. Let’s use technology in the next example to calculate the determinant,
eigenvalues, and eigenvectors for a three-dimensional system.
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■ Example
Suppose we have a system with the matrix of coefficients

A =
⎡
⎣ 2 2 −6

2 −1 −3
−2 −1 1

⎤
⎦.

A CAS (Maple in this case) tells us that det(A) = 24 and that the eigenvalues are λ1 = 6, λ2 =
−2 = λ3. The corresponding (linearly independent) eigenvectors are

⎡
⎣−2

−1
1

⎤
⎦,

⎡
⎣ 1

−2
0

⎤
⎦, and

⎡
⎣0

3
1

⎤
⎦.

If you try this example using your own CAS, the eigenvectors may not look like those here,
but each should be a constant multiple of one of those given previously. ■
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APPENDIX C

Complex Numbers

C.1 COMPLEX NUMBERS: THE ALGEBRAIC VIEW
Historically, the need for complex numbers arose when people tried to solve equations such as
x2 + 1 = 0 and realized that there was no real (ordinary) number that satisfied this equation.
The basic element in the expansion of the number system is the imaginary unit, i = √−1.
There is an interesting pattern to the powers of i: i1 = i, i2 = −1, i3 = −i, i4 = 1, i5 = i, i6 =
−1, i7 = −i, i8 = 1, . . . . You can use this repetition in groups of four, for example, to calculate
a high power of i : i338 = (i2)169 = (−1)169 = −1. A complex number is any expression of
the form x + yi, where x and y are real numbers. If you have a complex number z = x + yi,
then x is called the real part—denoted Re(z)—and y is called the imaginary part—denoted
Im(z)—of the complex number. (Note that despite its name, y is a real number.) In particular,
any real number x is a member of the family of complex numbers because it can be written
as x + 0 · i. Any complex number of the form yi(= 0 + yi) is called a pure imaginary number.

Complex numbers can be added and subtracted in a reasonable way by combining real parts
and imaginary parts as follows:

(a + bi) + (c + di) = (a + c) + (b + d)i

and

(a + bi) − (c + di) = (a − c) + (b − d)i.

You can also multiply complex numbers as you would multiply any binomials in algebra,
remembering to replace i2 whenever it occurs by −1:

(a + bi) · (c + di) = ac + adi + bci + bdi2 = (ac − bd) + (ad + bc)i.

Division of complex numbers is a bit trickier. If z = x + yi is a complex number, then its
complex conjugate, z, is defined as follows: z = x − yi. (You just reverse the sign of the
imaginary part.) The complex conjugate is important in division because z · z = x2 + y2,

Copyright © 2009, Elsevier Inc. 425
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a real number. (Check this out.) In division of complex numbers, the conjugate plays much
the same role as the conjugate you learned to use in algebra to simplify fractions. For exam-
ple, in algebra, if you were asked to simplify the fraction 3√

5
, you would “rationalize the

denominator” as follows:

3√
5

= 3√
5

·
√

5√
5

= 3
√

5
5

.

Another example from algebra makes the similarity between conjugates more obvious:

2 + √
3

3 − √
2

= 2 + √
3

3 − √
2

· 3 + √
2

3 + √
2

= 6 + 2
√

2 + 3
√

3 + √
6

9 − 2

= 6 + 2
√

2 + 3
√

3 + √
6

7
.

In the preceding example, 3 + √
2 is the conjugate of 3 − √

2; when you multiply these
conjugates, the radical sign disappears, leaving you with the integer 7. Now if we have to
divide two complex numbers, we use the complex conjugate to get the answer, the quotient,
to look like a complex number. For example,

2 + 3i
3 + 5i

= 2 + 3i
3 + 5i

· 3 − 5i
3 − 5i

= 21 − i
9 + 25

= 21
34

− 1
34

i.

In general, if z = a + bi and w = c + di, then

z
w

= a + bi
c + di

= a + bi
c + di

· c − di
c − di

= ac + bd
c2 + d2 + bc − ad

c2 + d2 i.

If z and w are complex numbers, you should be able to see that z = z, (z + w) = z +w, z · w =
z · w, and

( z
w

) = z
w for w 	= 0. Also, Re(z) = z+z

2 and Im(z) = z−z
2i .

The important algebraic rules of commutativity, associativity, and distributivity work for com-
plex numbers. Furthermore, all the properties in this section extend to vectors and matrices

(Appendix B) with complex-number entries. For example, if V =

⎡
⎢⎢⎢⎣

c1

c2
...

cn

⎤
⎥⎥⎥⎦ is a vector with

complex components, then V =

⎡
⎢⎢⎢⎣

c1

c2
...

cn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

c1

c2
...

cn

⎤
⎥⎥⎥⎦. If A = [

aij
]

represents a matrix with entry

aij in row i and column j, then A = [
aij
] = [

aij
]
.
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C.2 COMPLEX NUMBERS: THE GEOMETRIC VIEW
The geometric interpretation of complex numbers occurred at roughly the same time to three
people: the Norwegian surveyor and map maker Caspar Wessel (1745–1818), the French-
Swiss mathematician Jean Robert Argand (1768–1822), and Karl Friedrich Gauss (1777–
1855), the German mathematician-astronomer-physicist.

The idea here is to represent a complex number using the familiar Cartesian coordinate system,
making the horizontal axis the real axis and the vertical axis the imaginary axis. Such a system
is called the complex plane. For example, Figure C.1 shows how the complex number 3 + 2i
would be represented as a point in this way.

If we join this point to the origin with a straight line, we get a vector. (See Section B.1.) The
sum of z = a + bi and w = c + di corresponds to the point (or vector) (a + c, b + d). This
implies that the addition/subtraction of complex numbers corresponds to the Parallelogram
Law of vector algebra (Figure C.2).

The modulus, or absolute value, of the complex number z = x + yi, denoted by |z|, is the
nonnegative real number defined by the equation |z| = √

x2 + y2. The number |z| represents

3 1 2i
2i

iy

3 x

FIGURE C.1
Representation of a complex number

z � a � bi

w � c � di

a

d

b

y

c x

z � w � (a � c) � (b � d )i

FIGURE C.2
The Parallelogram Law
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the distance between the origin and the point (x, y) in the complex plane, the length of the
vector representing the complex number z = x + yi. Note that |z|2 = z · z.

C.3 THE QUADRATIC FORMULA
Given the quadratic equation ax2 + bx + c = 0, where a, b, and c are real numbers with a 	= 0,
the solutions are given by the quadratic formula:

x = −b ± √
b2 − 4ac

2a
.

The expression inside the radical sign, b2 − 4ac, is called the discriminant and enables you
to discriminate among the possibilities for solutions. If b2 − 4ac > 0, the quadratic formula
yields two real solutions. If b2 − 4ac = 0, you get a single repeated solution—a solution of
multiplicity two. Finally, if b2 −4ac < 0, the quadratic formula produces two complex numbers
as solutions, a complex conjugate pair. To see this last situation, suppose that b2 −4ac = −q,
where q is a positive real number. Then the solution formula looks like

x = −b ± √−q
2a

= −b ± √
q(−1)

2a
= −b ± √

qi
2a

,

so the two solutions are x1 = − b
2a +

√
q

2a i and x2 = − b
2a −

√
q

2a i, which are complex conjugates
of each other.

C.4 EULER’S FORMULA
Around 1740, while studying differential equations of the form y′′ + y = 0, Euler discovered
his famous formula for complex exponentials:

eiy = cos y + i sin y.

If z = x + iy, then we have

ez = ex+iy = exeiy = ex(cos y + i sin y).

Without fully understanding the way infinite series work, Euler just substituted the complex
number iy in the series for ex (see Section A.3) and then separated real and imaginary parts:

eiy = 1 + iy + (iy)2

2! + (iy)3

3! + (iy)4

4! + (iy)5

5! + · · ·

= 1 + iy − y2

2! − i
y3

3! + y4

4! + i
y5

5! − · · ·

=
(

1 − y2

2! + y4

4! − · · ·
)

︸ ︷︷ ︸
cos y

+i
(

y − y3

3! + y5

5! − · · ·
)

︸ ︷︷ ︸
sin y

= cos y + i sin y.



APPENDIX D

Series Solutions of Differential Equations

Appendix D supplements the treatment of linear equations in Chapters 5 and 6.

D.1 POWER SERIES SOLUTIONS OF FIRST-ORDER
EQUATIONS

In Chapters 5 and 6 we discussed solutions for second- and higher-order linear equations with
constant coefficients. The methods we discuss in this appendix can be applied to equations—
not necessarily linear—with variable coefficients, equations that in general do not yield closed-
form solutions. Among these are equations important in many areas of applied mathematics.

As an illustration of the key idea, we’ll solve a simple first-order equation.

■ Example
Consider the equation y′ = 1 − xy. We make the fundamental assumption that a solution y
can be expanded in a power series (Taylor series, Maclaurin series)

y(x) = a0 + a1x + a2x2 + a3x3 + · · · + anxn + · · ·
that converges in some interval. (See Section A.3 for the basics.) We have chosen an interval
around the origin.

Then, because a convergent power series can be differentiated term by term within its interval
of convergence (see Section A.3),

y′(x) = a1 + 2a2x + 3a3x2 + · · · + nanxn−1 + · · · .

Substituting these last two series in the differential equation, we have

a1 + 2a2x + 3a3x2 + · · · + nanxn−1 + · · ·
= 1 − x

{
a0 + a1x + a2x2 + a3x3 + · · · + anxn + · · ·}

= 1 − a0x − a1x2 − a2x3 − a3x4 − · · · − anxn+1 − · · · .

Copyright © 2009, Elsevier Inc. 429
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Because these power series are equal, coefficients of equal powers of x on both sides must be
equal. (This is really the method of undetermined coefficients that we first saw in Section 4.3 of
the text.) Therefore, we have

a1 = 1, 2a2 = −a0, 3a3 = −a1, 4a4 = −a2, 5a5 = −a3, . . . , nan = −an−2, . . . ,

so

a1 = 1, a2 = −a0

2
, a3 = −a1

3
= −1

3
, a4 = −a2

4
= −− a0

2

4

= a0

2 · 4
, a5 = −a3

5
= 1

3 · 5
, . . . , an = −an−2

n
, . . . .

These formulas, in which we define later coefficients by relating them to earlier coefficients,
are called recurrence (or recursion) relations. If we look carefully, we see that for odd indices
(subscripts), the pattern is

a1 = 1, a3 = −1
3

, a5 = 1
3 · 5

, a7 = − 1
3 · 5 · 7

, . . . .

Similarly, for even indices we find the pattern

a0 = arbitrary, a2 = −a0

2
, a4 = a0

2 · 4
, a6 = − a0

2 · 4 · 6
, . . . .

In general, the pattern is

a2k = (−1)ka0

2 · 4 · 6 · · · (2k)
for k = 1, 2, 3, . . . ;

a2k+1 = (−1)k

1 · 3 · 5 · 7 · · · (2k + 1)
for k = 0, 1, 2, . . . .

Therefore, we can write the power series form of the solution as

y(x) = a0 + x − a0

2
x2 − 1

1 · 3
x3 +

( a0

2 · 4

)
x4 + 1

1 · 3 · 5
x5 + · · ·

=
(

x − x3

1 · 3
+ x5

1 · 3 · 5
− · · ·

)
+ a0

(
1 − x2

2
+ x4

2 · 4
− · · ·

)
,

where a0 = y(0) is the arbitrary constant that we expect in the general solution of a first-order
equation.

To approximate y(x) for a value of x close to zero, we just substitute the value in
the series, taking as many terms of this series as are needed to guarantee the accuracy
we wish. ■
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If we solve the linear equation in the preceding example using the technique of integrating
factors (see Section 2.2), we get the answer

y = ex2/2
∫

e−x2/2dx + Cex2/2,

which can’t be expressed in a more elementary way. If we integrate the power series represen-
tation of e−x2/2 term by term, multiply by the series form of ex2/2, and then add the series for
Cex2/2, we get the same series solution we found (after collecting terms).

In using this power series method, sometimes we can recognize the series in our solution as
a representation of an elementary function. Try using the method on the equation y′ = ay,
where a is a constant, for example. You should recognize the series solution as the Taylor
series representation of Ceax about the origin.

All computer algebra systems have the ability to work with series expansions, usually truncat-
ing the series after a fixed number of terms that the user can control. However, not all systems
can give you a power series solution of an ODE directly. For example, Maple has a very useful
power series package, powseries, and the dsolve command (in the package DEtools) has a series
option; but Mathematica and MATLAB require the user to do much more work in finding a
series solution.

D.2 SERIES SOLUTIONS OF SECOND-ORDER LINEAR
EQUATIONS: ORDINARY POINTS

In this section we’ll examine second-order linear equations of the form

a(t)y′′ + b(t)y′ + c(t)y = 0, (D.2.1)

where a(t), b(t), and c(t) are polynomial functions. We divide through by a(t) and write
Equation (D.2.1) in the standard form

y′′ + P(t)y′ + Q(t)y = 0, (D.2.2)

where P(t) = b(t)
a(t) and Q(t) = c(t)

a(t) .

A point t0 is called an ordinary point of Equation (D.2.2) if both P and Q can be expanded
in power series centered at t0 that converge for every t in an open interval containing t0.
Functions that have such power series representations are called analytic at the point t0. If t0
is not an ordinary point, it is called a singular point of the equation.

■ Example
The point t = 0 is an ordinary point of the equation (t + 2)y′′ + t2y′ + y = 0 because each of
the functions P(t) = t2

t+2 and Q(t) = 1
t+2 has its own power series expansion that converges
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near t = 0:

Q(t) = 1
2

− t
4

+ t2

8
− t3

16
+ · · · and P(t) = t2

2
− t3

4
+ t4

8
− t5

16
+ · · · .

(See the geometric series in Section A.3.) However, t = −2 is a singular point because the
denominators of P(t) and Q(t) are zero at t = −2. ■

Let’s apply the undetermined coefficient method of the last section to a famous second-order
linear equation near an ordinary point. The equation is named for the English mathematician
Sir George Bidell Airy (1801–1892), who did pioneering work in elasticity and in partial
differential equations.

■ Example
Airy’s equation, y′′+xy = 0, which occurs in the study of optics and quantum physics, cannot
be solved in terms of elementary functions. We can think of the equation as describing a
spring-mass system in which the stiffness of the spring is increasing with time. (Maybe the
room containing the system is getting colder.)

Noting that x = 0 is an ordinary point of this equation, we assume that we can write a
solution as

y(x) = a0 + a1x + a2x2 + a3x3 + a4x4 + · · · + anxn + · · · .

Then

y′(x) = a1 + 2a2x + 3a3x2 + 4a4x3 + · · · + nanxn−1 + · · ·
and

y′′(x) = 2a2 + 6a3x + 12a4x2 + · · · + n(n − 1)anxn−2 + · · · .

Substituting in the differential equation, we get(
2a2 + 6a3x + 12a4x2 + · · · + n(n − 1)anxn−2 + · · ·)

+ x
(
a0 + a1x + a2x2 + a3x3 + a4x4 + · · · + anxn + · · ·) = 0.

Collecting terms, we can write this last equation as

2a2 + (6a3 + a0) x + (12a4 + a1) x2 + · · ·
+ (n(n − 1)an + an−3) xn−2 + · · · = 0.

Equating coefficients of equal powers of x, we see that the preceding equation implies that

2a2 = 0, or a2 = 0; 6a3 + a0, or a3 = − a0

2 · 3
;

12a4 + a1 = 0, or a4 = − a1

3 · 4
; 20a5 + a2 = 0, or a5 = − a2

4 · 5
,
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and so forth, so we can see the recurrence relation as an = − an−3
(n−1)·n for n = 3, 4, 5, . . . Note

that a0 and a1 are arbitrary and that the coefficients are connected by jumps of three in
the subscripts. In particular we have 0 = a2 = a5 = a8 = · · · = a2+3k = · · · . Also, we can see
the pattern when the subscript is a multiple of 3:

a3 = − a0

2 · 3
a6 = − a3

5 · 6
= a0

2 · 3 · 5 · 6
a9 = − a6

8 · 9
= − a0

2 · 3 · 5 · 6 · 8 · 9

a12 = − a9

11 · 12
= a0

2 · 3 · 5 · 6 · 8 · 9 · 11 · 12

and so forth, so the formula is

a3k = (−1)ka0

2 · 3 · 5 · 6 · 8 · 9 · · · (3k − 1) · 3k
.

Similarly, we can see that

a4 = − a1

3 · 4
a7 = − a4

6 · 7
= a1

3 · 4 · 6 · 7

a10 = − a7

9 · 10
= − a1

3 · 4 · 6 · 7 · 9 · 10

a13 = − a10

12 · 13
= a1

3 · 4 · 6 · 7 · 9 · 10 · 12 · 13
,

and so forth, so the recurrence relation is

a3k+1 = (−1)ka1

3 · 4 · 6 · 7 · 9 · 10 · · · (3k) · (3k + 1)
.

Putting all the pieces together, we get

y(x) = a0

[
1 − x3

2 · 3
+ x6

2 · 3 · 5 · 6
− x9

2 · 3 · 5 · 6 · 8 · 9
+ · · ·

]

+ a1

[
x − x4

3 · 4
+ x7

3 · 4 · 6 · 7
− x10

3 · 4 · 6 · 7 · 9 · 10
+ · · ·

]

= y(0)

[
1 − x3

2 · 3
+ x6

2 · 3 · 5 · 6
− x9

2 · 3 · 5 · 6 · 8 · 9
+ · · ·

]

+ y′(0)x
[

1 − x3

3 · 4
+ x6

3 · 4 · 6 · 7
− x9

3 · 4 · 6 · 7 · 9 · 10
+ · · ·

]

= y(0) · Ai(x) + y′(0)x · Bi(x),

where the two series (convergent for all values of x) define Ai(x) and Bi(x), the Airy functions
of the first and second kind, respectively, up to constant multiplicative factors.
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FIGURE D.1
Solution of y′′ + xy = 0; y(0) = 0, y′(0) = 1

With the aid of technology, we can look at the graph of the solution of Airy’s equation with
initial conditions y(0) = 0, y′(0) = 1 (Figure D.1), which is just the graph of xBi(x).

Both Maple and Mathematica, for example, have built-in capabilities to deal with Airy func-
tions numerically and graphically—see the commands AiryAi(x) and AiryBi(x) [in Maple] or
AiryAi[x] and AiryBi[x] [in Mathematica]. ■

If we want to find a solution near an ordinary point t0 other than zero, we can use the
substitution u = t − t0. This substitution transforms the equation in t to one in the variable
u, which we can solve near the ordinary point u = 0. When we have solved the equation in
u, we can just replace u by t − t0 to return to the original variable.

The method of undetermined coefficients also applies to nonhomogeneous equations and
to equations whose coefficients are not polynomials, provided that the function on the right-
hand side and the coefficient functions can be expanded in powers of t. When we are trying
to solve a nonhomogeneous equation, equating coefficients becomes a little more difficult
because some of the coefficients of the solution series y(t) = ∑∞

n=0 antn will include numer-
ical values independent of the two arbitrary constants a0 and a1. This part of the general
solution yGNH constitutes yPNH. Check this out for yourself by using series to solve the
equation y′′ − y = ex. (You should recognize your solution as y = c1ex + c2e−x + 1

2 xex.)

D.3 REGULAR SINGULAR POINTS: THE METHOD
OF FROBENIUS

Some singular points are such that special series methods have been developed to handle
situations in which they occur. The point t0 is a regular singular point of y′′+P(t)y′+Q(t)y = 0
if t0 is a singular point and the functions (t − t0)P(t) and (t − t0)2Q(t) are both analytic at t0.
If t0 is a singular point that is not regular, it is called an irregular singular point.

For example, t = 1 is a singular point of the equation (t2 − 1)2y′′ + (t − 1)y′ + y = 0 because
P(t) = t−1

(t2−1)2 = t−1
(t+1)2(t−1)2 and Q(t) = 1

(t+1)2(t−1)2 have zero denominators at t = 1, so
neither P(t) nor Q(t) has a convergent power series expansion in a neighborhood of 1. But if

we look at (t − 1)P(t) = (t−1)2

(t+1)2(t−1)2 = 1
(t+1)2 and (t − 1)2Q(t) = (t−1)2

(t+1)2(t−1)2 = 1
(t+1)2 , we see
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that both (t −1)P(t) and (t −1)2Q(t) are analytic at t = 1, so t = 1 is a regular singular point.

Near a regular singular point—say t = 0 for convenience—we write Equation (D.2.2) as

t2y′′ + tp(t)y′ + q(t)y = 0, (D.3.1)

where p(t) = tP(t) and q(t) = t2Q(t). Because t = 0 is a regular singular point, p and q are
analytic at t = 0. The usual power series method will not work, and we use the method of
Frobenius,1 which produces at least one solution of the form

y(t) = tr
∞∑

n=0

antn =
∞∑

n=0

antn+r , (D.3.2)

where we assume that a0 	= 0.

It is important to note that three of the most popular computer algebra systems (Maple,
Mathematica, and MATLAB) cannot apply the method of Frobenius directly to get power
series solutions near regular singular points. You must develop a solution in a step-by-step
fashion, using the capabilities of your system to handle power series and recursion relations.

We’ll illustrate the method of Frobenius using a famous equation in applied mathematics,
one that first arose in an investigation of the motion of a hanging chain and has since appeared
in such problems as the analysis of vibrations of a circular membrane and planetary motion.

■ Example
Bessel’s equation of order p is x2y′′ + xy′ + (

x2 − p2
)

y = 0, which is of the form (D.3.1)
and has x = 0 as a regular singular point.2 We’ll take the parameter p to be an arbitrary
nonnegative real number.

Substituting the type of series given in (D.3.2) for y, we find that

y′ =
∞∑

n=0

an(n + r)xn+r−1

and

y′′ =
∞∑

n=0

an(n + r)(n + r − 1)xn+r−2,

1 The German mathematician Ferdinand Georg Frobenius (1849–1917) published his method in 1878. It was based on a technique that
originated with Euler (who else? ). Frobenius made many contributions to analysis and especially to algebra.
2 Among other achievements, the German astronomer Friedrich Wilhelm Bessel (1784–1846) was the first to measure accurately the distance
to a fixed star.
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so that we have

x2y′′ + xy′ + (
x2 − p2) y =

∞∑
n=0

an(n + r)(n + r − 1)xn+r +
∞∑

n=0

an(n + r)xn+r

+
∞∑

n=0

anxn+r+2 −
∞∑

n=0

anp2xn+r

=
∞∑

n=0

{
an(n + r)(n + r − 1) + an(n + r) − anp2} xn+r

+
∞∑

n=0

anxn+r+2

=
∞∑

n=0

{
(n + r)2 − p2} anxn+r +

∞∑
n=0

anxn+r+2 = 0.

Transposing series and making the substitution (actually a shift of subscripts) n + 2 = n on
the right-hand side, we get

∞∑
n=0

{
(n + r)2 − p2} anxn+r = −

∞∑
n=0

anxn+r+2 = −
∞∑

n=2

an−2xn+r .

Now we equate coefficients of equal powers. To start, we have

n = 0 :
(
r2 − p2) a0 = 0

n = 1 :
[
(1 + r)2 − p2] a1 = 0.

Because we have assumed that a0 	= 0, we must have r2 − p2 = 0. This last equation is called
the indicial equation3 and implies that r = ±p.

Let’s assume that r = p ≥ 0. Then when n = 1, the equation
[
(1 + r)2 − p2

]
a1 = 0 reduces

to (2r + 1)a1 = 0, so we can conclude a1 = 0.

For n ≥ 2, equating coefficients of equal powers of x gives us the recurrence relation{
(n + r)2 − p2} an = −an−2

or

an = − an−2{
(n + r)2 − p2

} = − an−2

n(n + 2r)

3 In general, for the method of Frobenius, the indicial equation has the form r(r − 1) + r p0 + q0 = 0, where p0 and q0 are the constant
terms of the series expansions of p(t) and q(t) in Equation (D.3.1).
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because r2 − p2 = 0. We can look at a few terms to see the pattern:

a2 = − a0

2(2 + 2r)
= − a0

22(1 + r)

a3 = − a1

3(3 + 2r)
= 0 [because a1 = 0]

a4 = − a2

4(4 + 2r)
= −

( −a0
22(1+r)

)
2 · 22(2 + r)

= a0

242!(1 + r)(2 + r)

a5 = − a3

5(5 + 2r)
= 0

a6 = − a4

6(6 + 2r)
= −

(
a0

242!(1+r)(2+r)

)
6(6 + 2r)

= − a0

263!(1 + r)(2 + r)(3 + r)
.

We can see, for example, that ak = 0 for k odd.

Letting n = 2k and remembering that we’re assuming r = p, we can express the even coef-
ficients in the form

a2k = (−1)ka0

22kk!(r + 1)(r + 2) · · · (r + k)

= (−1)ka0

22kk!(p + 1)(p + 2) · · · (p + k)
.

In working with Bessel’s equation, it is common practice to make things neater by taking
a0 = 1

2pp! ,
4 so that

a2k = (−1)k

22k+pk!(p + k)! .

The final result is the Bessel function of order p of the first kind, Jp(x):

y(x) = Jp(x) =
∞∑

n=0

(−1)nx2n+p

22n+pn!(p + n)! =
∞∑

n=0

(−1)n
( x

2

)2n+p

n!(p + n)!

=
( x

2

)p ∞∑
n=0

(−1)n
( x

2

)2n

n!(p + n)! .

It can be shown that this series converges for all real values of x.

4 Actually, a0 = 1
2p�(p+1)

, where � denotes Euler’s gamma function (see Section A.6).
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1
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FIGURE D.2
Jp(x) for p = 0, 1, 2, 3, 4; 0 ≤ x ≤ 10

Using technology, we can produce a graph of Bessel functions of order p for p = 0, 1, 2, 3,
and 4 (Figure D.2).

Both Maple and Mathematica, for example, can deal with Bessel functions of the first kind
numerically and graphically via the command BesselJ (mu, x) [in Maple] or BesselJ [m, x] [in
Mathematica]. The parameter mu or m represents the order that we have called p. It is interesting
to note that a CAS could express the solution of the IVP y′′ + xy = 0; y(0) = 0, y′(0) = 1 that
we considered in Section D.2 as

y(x) = 2
9

35/6π

�
(2

3

)√
x BesselJ

(
1
3

,
2x3/2

3

)
.

■

We should make several comments about the preceding example:

1. In our analysis, we have actually assumed that x > 0 to avoid the possibility of
fractional powers of negative numbers.

2. In the indicial equation r2 − p2 = 0, we have assumed that r = p, a nonnegative
number. If r is in fact a nonnegative integer, then the Frobenius series is an ordinary
power series with first term a0xn. For applications, the choices p = 0 and p = 1 occur
most often.

3. All our efforts have produced just one solution of Bessel’s equation for a fixed value
of p. It can be shown that when 2p is not a positive integer,

J−p(x) =
(

2
x

)p ∞∑
n=0

(−1)n
( x

2

)2n

n!(−p + n)!

defines a second, linearly independent solution of Bessel’s equation. When p is an
integer, it can be shown that Jp(x) = (−1)pJ−p(x), so the two solutions are dependent.

4. If p is not an integer, the general solution of Bessel’s equation has the form
y(x) = k1Jp(x) + k2J−p(x) for arbitrary constants k1 and k2.

5. The function

Yp(x) = (cos pπ)Jp(x) − J−p(x)

sin pπ
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is the standard Bessel function of the second kind. Then

y(x) = c1 Jp(x) + c2Yp(x)

is the general solution of Bessel’s equation in all cases, whether or not p is an integer.
Both Maple and Mathematica have commands—BesselY (mu, x) and BesselY [m, x],
respectively—that enable users to explore Bessel functions of the second kind
numerically and graphically.

There are many treatments of the properties and applications of Bessel functions.

Accessible sources of information include the books Differential Equations: Theory, Technique,
and Practice by George F. Simmons and Steven G. Krantz (New York: McGraw-Hill, 2007) and
Handbook of Mathematical Formulas and Integrals (Fourth Edition) by Alan Jeffrey and Hui Hui
Dai (San Diego: Academic Press, 2008).

D.4 THE POINT AT INFINITY
In some situations we want to determine the behavior of solutions of the equation

y′′ + P(t)y′ + Q(t)y = 0

for large values of the independent variable t—the behavior “in the neighborhood of infinity.”
The way to deal with this problem is to use the substitution t = 1

u and investigate the resulting
equation near u = 0. This substitution converts a problem in large values of t to one in small
values of u. Once the “u-problem” is solved near u = 0, we make the substitution t = 1

u in
the u-solution to get the solution near the t point of infinity.

Let u = 1
t . Then, by the Chain Rule,

y′ = dy
dt

= dy
du

.
du
dt

= dy
du

(
− 1

t2

)
= −u2.

dy
du

and

y′′ = d
dt

(
dy
dt

)
= d

du

(
dy
dt

)
· du

dt
=
(

−u2 d2y
du2 − 2u

dy
du

) (−u2) .

Let’s use this transformation method to solve an equation for large values of the independent
variable.

■ Example
Find the general solution of the equation

4t3 d2y
dt2 + 6t2 dy

dt
+ y = 0

for large values of t.
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First, we write the equation in the standard form

d2y
dt2 + 3

2t
dy
dt

+ 1
4t3 y = 0.

Making the substitution u = 1
t and using the calculations for y′ and y′′ given previously, we

transform our equation into(
−u2 d2y

du2 − 2u
dy
du

) (−u2) + 3u
2

(
−u2 dy

du

)
+ u3

4
y = 0

or

4u
d2y
du2 + 2

dy
du

+ y = 0,

which has u = 0 as a regular singular point.

If we use the Frobenius method, we find the general solution

�(u) = c1

∞∑
n=0

(−1)nun

(2n)! + c2

∞∑
n=0

(−1)nun+ 1
2

(2n + 1)! .

Substituting u = 1
t , we get the solution

y(t) = c1

∞∑
n=0

(−1)n

(2n)!
(

1
t

)n

+ c2

∞∑
n=0

(−1)n

(2n + 1)!
(

1
t

)n+ 1
2

= c1 cos
(

1√
t

)
+ c2 sin

(
1√
t

)
.

(See Section A.3.) ■

D.5 SOME ADDITIONAL SPECIAL DIFFERENTIAL
EQUATIONS

Many famous functions, such as the Airy and Bessel functions, arise as power series solutions
of second-order differential equations. These functions form a particular class of what are
usually called special functions. [A classic reference is Special Functions by Earl D. Rainville
(New York: Chelsea, 1971). A more recent book is Special Functions by George E. Andrews,
Richard Askey, and Ranjan Roy (New York: Cambridge University Press, 1999).]

Among these important second-order equations that have been significant in solving prob-
lems in applied mathematics, science, and engineering are the following, which you are invited
to investigate using the methods of this appendix.
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Chebyshev’s equation: (1 − x2)y′′ − xy′ + p2y = 0, where p is a constant. (When p is a
nonnegative integer, the solution is an nth-degree polynomial.)

Gauss’s hypergeometric equation: x(1 − x)y′′ + [c − (a + b + 1)x] y′ − aby = 0, where a,
b, and c are constants.

Hermite’s equation: y′′ − 2xy′ + 2py = 0, where p is a constant.
Laguerre’s equation: xy′′ + (1 − x)y′ + py = 0, where p is a constant.

Legendre’s equation: (1 − x2)y′′ − 2xy′ +
[
k(k + 1) − m2

1−x2

]
y = 0, where m and k are

constants, k > 0.
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CHAPTER 0

Answers/Hints to Odd-Numbered Exercises

Exercises 1.1

A1. a. The independent variable is x and the dependent variable is y.
b. First-order.
c. Linear.

A3. a. The independent variable is not indicated, but the dependent variable is x.
b. Second-order.
c. Nonlinear because of the term exp(−x)—the equation cannot be written in the form (1.1.1),

where y is replaced by x and x is replaced by the independent variable.
A5. a. The independent variable is x and the dependent variable is y.

b. First-order.
c. Nonlinear because you get the terms x2(y′)2 and x y′ y when you remove the parentheses.

A7. a. The independent variable is x and the dependent variable is y.
b. Fourth-order.
c. Linear.

A9. a. The independent variable is t and the dependent variable is x.
b. Third-order.
c. Linear.

A11. a. The independent variable is x, the dependent variable is y; first-order, nonlinear because of
the exponent y′.

A13. a. Nonlinear; the first equation is nonlinear because of the term 4xy = 4x(t)y(t).
b. Linear.
c. Nonlinear; the first and second equations are nonlinear because each contains a product of

dependent variables.
d. Linear.

B1. a = 1.

Exercises 1.2

A11. a. For example, c y′ = 1 is a possible differential equation satisfied by y.
b. For example, y′ − ay = beax cos bx.

Copyright © 2009, Elsevier Inc. 443
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c. For example, y′ − y = Bet . Other possibilities are the equations y′′ − y = 2Bet and
y′′ − y′ = Bet .

d. One answer is y′ = −3 e−3t + t y, or y′ − t y = −3 e−3t .

A13. y′ =
(

y2 + 1

y2 + 2

)(
x2 + 2

x2 + 1

)
, a first-order nonlinear equation.

A15. One solution is y′ = (−2x y)/(x2 + 4).

B3. a. The given equation is equivalent to (y′)2 = −1. Since there is no real-valued function y′
whose square is negative, there can be no real-valued function y satisfying the equation.

b. The only way that two absolute values can have a sum equal to zero is if each absolute
value is itself zero. This says that y is identically equal to zero, so that the zero function is
the only solution. The graph of this solution is the x-axis (if the independent variable is x).

B5. If x > c or x < −c, then c2 − x2 < 0 and then the functions y = ±
√

c2 − x2 do not exist as
real-valued functions. If x = ±c, then each function is the zero function, which is not a solution
of the differential equation.

B7. One solution is y(x) = (1/2)(sin x − cos x).

Exercises 1.3

A1. R(t) = −π (1 + cos t).

A3. r(t) = (a/b)(ebt/b − t − 1/b).

A5. A = −1/4, B = 1/37, C = −6/37.

B3. Recall the Product Rule and the Fundamental Theorem of Calculus (Section A.4).

B5. No. An equation of order n requires an n-parameter family of solutions.

B7. The length of the runway must be 5/6 mile (five-sixths of a mile).

B11. a. Deriving inspiration from Example 1.2.1, we get u(t) = u(0) ekat = A ekat .
b. We have w(t) = (k−1) A

k (1 − ekat) for 0 < k ≤ 1; w(t) = a At for k = 0.

C1. b. As t → ∞, e−kEt → 0, so that W(t) → C
E . Note that C/E is in pounds per day.

c. About 79 days for 20 lb, 138 days for 30 lb, and about 177 days for 35 lb. This says that the
weight is a concave up decreasing function of time—that is, the rate of weight loss slows
down with time.

C3. b. Here’s the graph of y(t) = 387.9802

1 + 54.0812 e−0.02270347 t :

c. Actual Population Logistic Pop. Value
1790 3,929,214 7,043,786
1980 226,545,805 225,066,248
1990 248,709,873 246,050,716

d. lim
t→∞ y(t) = lim

t→∞
387.9802

1 + 54.0812 e−0.02270347 t = 387.9802 million people.
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Exercises 2.1

A1. y = A
2

+ C

x2 .

A3. y = (t − 2)3 = t3 − 6t2 + 12t − 8. The solution y ≡ 0 is a singular solution of the basic ODE
and satisfies the initial condition.

A5. y = 2 − 3 cos x. The only possible singular solution is y ≡ 2, but this can be obtained by letting
C = 0.

A7. y2

2 + y + ln |y − 1| = −1
x + C. The constant function y ≡ 1 is a singular solution. Notice that

the implicit solution formula is not defined for y = 1.

A9. z = ln(C−10x)
ln 10 . Note that for each particular value of the parameter C, the solution is defined

only for 10x < C—that is, for x < ln C/ ln 10 (or x < log10 C).

A11. y = − x2

2
+ C or y = C e−x .

A13. x + 2y − 2 ln
∣∣x + 2y + 2

∣∣ = x + C; y = −(x + 2)/2 is a singular solution.

A15. arctan
( y

x

)
− 1

2
ln

(
x2 + y2

x2

)
− ln |x| − C = 0.

A17. We have two one-parameter families of solutions: y = x
√

2 ln |x| + C and y = −x
√

2 ln |x| + C.

B3. a. x(t) = 1
2 − t

.

b. The interval I can be as large as (−∞, 2) or (2, ∞). Any such interval I cannot include the
point t = 2, at which x(t) is not defined.

c. asdf

1

2

2 t22242628210

3

x

d. The only solution is x ≡ 0, a singular solution that satisfies the initial condition x(0) = 0.
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B5. t = 60.

B7. V(4) = 32π cubic units.

C1. V = 300 ft/sec.

C3. a. If we let p(x) = dy/dx, then the original equation becomes dp
dx = k

[
1 + p2]1/2.

b. y = C1
2k ek x + 1

2kC1
e−k x + C2 = 1

2k

(
C2ek x + 1

C2
e−k x

)
+ C3.

C5. a. The equilibrium solution occurs when C = D/μ.

b. The formula for the concentration is C = D
μ −

(
D−μC0

μ

)
e−μt . As t → ∞, e−μt → 0, so

C(t) → D
μ − 0 = D

μ , the equilibrium solution found in part (a).

c. asdf

D
�

C0

t

C0

C

Exercises 2.2

A1. y = 2x − 1 + C e−2 x .

A3. x = t2

2
− 1

2
+ C e−t2

.

A5. y = t3

6
− t2

5
+ C

t3 .

A7. y = x sin x + Cx.

A9. x = et(ln |t| + t2/2 + C
)
.

A11. y(x) = ex + ab − ea

x
.

A13. For m 	= −a, we have y = em x

a + m
+ C e−a x . If m = −a, then

ea xy =
∫

e(a−a) x dx =
∫

1 dx = x + C, so that y = xe−a x + C e−a x = (x + C)e−a x .

Note: A CAS that can solve ODEs may miss the need for an analysis of two cases.
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A15. x(t) =
(

t
t + 1

) (
t + ln|t| − 1

)
.

A17. y = − ln
(
x + C x2).

B1. y = t4

t6 + C
; y ≡ 0 is a singular solution.

B3. y = ±1√
x + 1

2
+ C e2x

; y ≡ 0 is a singular solution.

B5. y = 2 et2
/(

2 C − et2
)

; y ≡ 0 is a singular solution.

B7. a. W(t) =
(

α

β
+ C e−βt/3

)3
.

b. W∞ =
(

α

β

)3
.

c. W(t) = W∞
(

1 − e−βt/3
)3

.

d. dfdsfW

W`

t

B9. a. I(t) = E
R

− E
R

e−(R/L)t = E
R

(
1 − e−(R/L)t

)
.

b. lim
t→∞ I(t) = E

R
.

c. t = L
R

ln 2.

d. I(t) ≡ E
R

.

B11. Q(t) = E0C [sin (ω t) − ωRC cos(ωt)]

1 + (RCω)2 + ωE0RC2

1 + (RCω)2 e−t/RC

= E0C

1 + (RCω)2

{
sin(ωt) − ωRC cos(ωt) + ωRCe−t/RC

}
.

B13. p(t) = v
μ + v

+
(

p0 − v
μ + v

)
e−(μ+v)t = v

μ + v

[
1 − e−(μ+v)t

]
+ p0e−(μ+v)t
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q(t) = 1 −
{

v
μ + v

[
1 − e−(μ+v)t

]
+ p0e−(μ+v)t

}

= μ

μ + v
+
(

q0 − μ

μ + v

)
e−(μ+v)t

= μ

μ + v

[
1 − e−(μ+v)t

]
+ q0e−(μ+v)t .

C1. Note that (1 − n)y′ = yn u′.

Exercises 2.3

A1. p′ = b p − d p = (b − d) p.

A3. p′ = k p2 − d p = (k p − d) p.

B1. a. P = α t
k

+ α

k2 +
(

1.285 − α

k2

)
ek t ≈ (0.0452 t + 1.275) + 0.01045 e0.0355 t .

b. P(20) ≈ 2,200,736 people.

B3. A(t) = 25
2 − 25

2 e−t/50 = 25
2

(
1 − e−t/50

)
.

B5. a. 100 gallons.

b. 175 pounds.

B7. 165.12 minutes.

Exercises 2.4

A1. dfdf
3

2

1

�1

�2

�3

1 2�3 �2 �1

y

x3
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A3. dfdf

t

3

2

1

�1

�2

�3

1 2 3�3 �2 �1

x

A5. dfdf Q
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A7. dfdf
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A9. dfdf y
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A11. dfdf
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A13. dfdf
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A15. dfdf y
6

6

4

4

2

2

22

22

24

24

26

26 x

A17. dfdf

S
1 1.50.5 2 2.5 3

(S)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A19. The equations in Problems A4, A5, A8, and A14 are autonomous.

B1. a. dfdf
50
x

t

40

30

20

10

2 4 6 8 10 12 14 16 18 20

b. The amount of substance X approaches 40.

B3. Circles centered at the origin with radii
√

1/C2 − 1, where C ∈ [−1, 0) ∪ (0, 1] is the slope.

B5. The horizontal lines x = α and x = β.
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B7. a. Field 3.
b. Field 1.
c. Field 2.

B9. dfdf

4

2

22

22 21 1 2 x

y

24

The slope field indicates that any solution must be an increasing function. Some solutions in
the second quadrant seem to have vertical asymptotes, so that they “blow up in finite time,”
whereas other solutions starting out in this area flatten out (approach some finite value
asymptotically) as they pass through the first quadrant. Solutions with initial points in the third
quadrant are almost flat until they pass into the first or fourth quadrants. Starting out in the
fourth quadrant, a solution will start out having a very large slope, but will move into the first
quadrant and approach a positive finite value asymptotically. Overall then, we see that as
x → ∞, we have both y → ∞ and y → a, where a is a positive real number. As x → −∞
(i.e., as we look at the slope field from right to left), we see that y → ∞ or y → 0.

Exercises 2.5

A1.
21 1

y

A3.
21 3

x

A5.
0

y

A7. 2	0 	2	22	23	 3	
y

A9.
0

y
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A11.
0 1 3

x

A13.
0

x

A15. a.
0

x

b. There are no critical points. Any solution must be an increasing function.

B1. a.
1.2

I

b. If the initial current, I(0), is 3 amps, it is to the right of the critical point, so that the current
tends to decrease toward 1.2 amps as t gets larger.

B3. a.
0



9.8/cÖ

b. The positive equilibrium solution is
√

9.8/c, which is a sink representing “terminal velocity.”

B5. a. dfssdP

15

7

3

t

b. P(t) → 0 as t → ∞
B7. dfssd

a c
y

f (y)

0

b

C1. If α < 1/2, the equilibrium solution (1 − 2α)−1 is a sink. If α > 1/2, the equilibrium solution
(1 − 2 α)−1 is a source.
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C3. a.
0

x
2 a

bÖ
a
bÖ

b. x(t) → √
a/b.

c. x(t) stays at zero.

d. x(t) → √
a/b.

Exercises 2.6

A1. The equilibrium points are y = 0 and y = 1. Both of these are nodes.
A3. The only equilibrium point is y = 0, a source.
A5. The equilibrium points are x = −a/b and 0. We find that x = −a/b is a sink and x = 0 is a source.
A7. The equilibrium points are x = 0 and 1. The solution x = 1 is a sink. But x = 0 is a node.
A9. The equilibrium points are x = 0, 2, and 4. We see that x = 0 is a source, x = 2 is a sink, and

x = 4 is a source.
A11. The only equilibrium point is x = 0. A careful examination reveals that x = 0 is a source.
A13. There is only one equilibrium point, x ≈ 0.74, which is a source.
A15. We see that x = −1 is a sink, x = 0 is a source, and x = 0.5 is a node.

B1. a. u = 3

√
8P
bS

= 2 3

√
P
bS

.

b. The equilibrium speed is a sink.
c. A rower may start from rest with maximum acceleration but then tire a bit so that his or her

speed would level off at the equilibrium speed. If the rower’s speed is greater than the
equilibrium speed, we can reasonably believe that he or she may tire or the “drag force”
b S u2 may exceed the “tractive force” 8P

u and so slow the boat down.

B3. a.
0 1/b

N

b. With a = 10 and b = 2, the graph is

1.5

0.5
f (N )

20.5

21

0
0.5N

1
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c. The only equilibrium point is N = 1/b. The phase portrait given in (a) indicates that this is a
sink.

Exercises 2.7

A1. 1. dfssd

4

2

20.5 021.5 21 1.50.5 1

21

22

1

3

x

2. The only bifurcation point is c = 0.
3. The bifurcation diagram is

0

x

c
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A3. 1.

0.125

�0.5
x

C � 1

0.2

0
x

C � 1

x

0.1

0.50

C � 1

2. The only bifurcation point is c = 1.

3. dfsd

1

x

c
0

A5. 1.

0.2

0
x

C � 0

x

1

0

C � 0

0.25

�0.5
x

C � 0
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2. There is one bifurcation point, c = 0.

3.

c

x 5 c

x

B1. We find that h∗ = 25/4 is the maximum harvest rate beyond which any population will become
extinct.

B3. The value c = 0 is a pitchfork bifurcation.

0

x

x

B5. The values α = −2 and α = 2 are the only bifurcation points:

x

�

�2 20

0



458 Answers/Hints to Odd-Numbered Exercises

C1. c. The bifurcation point R = Rc is a sink.

sink

0

source

R

x

x ��  (R�Rc)/k (sink)

x �   (R�Rc)/k (sink)

Rc

Exercises 2.8

A1. For example, take any rectangle centered at (0, 3) that avoids the t-axis (x = 0).

A3. There is no rectangle R containing the origin that does not also include points of the x-axis,
where t = 0.

A5. There is no rectangle R satisfying the requirements of the Existence and Uniqueness Theorem.

A7. For example, take any rectangle in the t-y plane that does not include part of the line t = −1.

A9. The solution’s domain is I = (−π/2, π/2), an interval of length π.

A11. x(t) = ( t
3 + 3

√
x0
)3; the initial condition of Example 2.8.2 is x(0) = 0, so that we don’t expect

uniqueness in that case. In the current exercise, both f and ∂f
∂x are continuous at (0, x0) if

x0 < 0, so that we are guaranteed existence and uniqueness on some t-interval I.

B1. a.
∂f
∂Q

is not defined at Q = 1.

b. The constant function Q ≡ 1 is a solution because Q′ = 0 = |Q − 1| and Q(0) = 1. This
solution is in fact unique.

B3. The conditions of the Existence and Uniqueness Theorem are not satisfied, so uniqueness is not
guaranteed.

C1. The conditions of the Existence and Uniqueness Theorem are satisfied, and so we expect to find
an interval I = (2 − h, 2 + h) centered at x = 2 such that the IVP has a unique solution on I.

C3. No. If a solution near P ≡ b were to equal the equilibrium solution—that is, if another solution
curve intersects the horizontal line P ≡ b at the point (t∗, b)—then we would have two
solutions of the IVP dP

dt = kP(b − P), P(t∗) = b.

C5. a. Show that [y(t) y(−t)]′ = 0.

b. What does part (a) imply about the signs of y(t) and y(−t)?
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Exercises 3.1
A1. dfssdtk yk

0 1.000000
0.25 0.750000
0.50 0.625000
0.75 0.589844
1.00 0.643490

0.2
0.6

0.7

0.8

0.9

1
y

0.4 0.6 0.8 1 t

A3. dfssdtk yk

1.0 2.000000
1.5 3.359141
2.0 4.266010
2.5 5.065065
3.0 5.807155

2

3

4

5

y

1 1.5 2 2.5 3 t

A5. y(π/2) ≈ 1.14884140143. The absolute error of the approximation is |1 − 1.14884140143| =
0.14884140143.

A7. y(1) ≈ 1.38556107091.

A9. y(1) ≈ 0.80998149723; since the solution of the equation is y(x) = arctan x, we have
y(1) = arctan 1 = π/4. Multiplying our approximation for y(1) by 4, we get an approximation
for π.
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A11. a.

y1 = y0 + 0.2y0
2 = 1 + 0.2(1)2 = 1.2

y2 = y1 + 0.2y1
2 = 1.2 + 0.2(1.2)2 = 1.488

y3 = y2 + 0.2y2
2 = 1.488 + 0.2(1.488)2 = 1.9308288

y4 = y3 + 0.2y3
2 = 1.9308288 + 0.2(1.9308288)2 = 2.67644877098

y5 = y4 + 0.2y4
2 = 2.67644877098 + 0.2(2.67644877098)2 = 4.10912437572

y6 = y5 + 0.2y5
2 = 4.10912437572 + 0.2(4.10912437572)2 = 7.48610500275.

b. The equation is separable.
c. The following table compares approximate and actual values:

tk yk Actual y(tk)

0 1 1
0.2 1.2 1.25
0.4 1.488 1.6667
0.6 1.9308 2.5000
0.8 2.6764 5.0000
1.0 4.1091 UNDEFINED
1.2 7.4861 −5.0000

The solution graph indicates the difficulty:

210

2 3
x

25

0

5

10

1

B1. a. P(1) ≈ 1.330624 million people = 1,330,624 people.
b. P(0) = 1.284999 . . . people ≈ 1,285,000 people.

B3. V(0) = 166.390541 . . . ≈ 166.39 meters per second.

B5. With h = 0.5, we get x(2) ≈ 2.746746, with absolute error about 0.253254. With h = 0.25, we
get x(2) ≈ 2.870814, with absolute error about 0.129186.
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B7. a. x′′ = 3x5.
b. If x(0) = 1, then x′′ = 3x5 > 0 for all x > 0, implying that the solution curve is concave up.
c. Euler’s method underestimates the true value of the solution at t = 0.1.

B9. a. Note that the direction field is not meaningful for y < −1 or y > 1.

1

0.5

0y(t) 1 2

�0.5

�1

�2 �1

c. We see that y(1) ≈ 0.8950 and y(1.2) ≈ 1.0235. However y(1.3) and y(1.3), for example,
can’t be calculated because the values would involve the square roots of negative numbers.
With a relatively large step size of 0.4, once you get a little past t = 1.2, Euler’s method
produces values of y that are greater than 1.

C1. The only way a solution curve can coincide with its tangent line segments is if the solution
curve is a straight line—that is, if y(x) = Cx + D, so that the differential equation is dy

dx = c.

C3. a.
2500
2501

cos x + 50
2501

sin x − 2500
2501

e−50x ; y(0.2) = 0.9836011240 . . . .

b. y(0.2) ≈ 1.7466146068. The absolute error is 0.7630134828.
c. y(0.2) ≈ 1.1761983279. The absolute error is 0.1925972039.
d. y(0.2) ≈ 1.8623800769. The absolute error is 0.8787789529.
e. No.

6

4

2

0.2 0.4 0.6 0.8 1 x

y

�2

�4
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Exercises 3.2

A1. The table of approximations is

TRUE Euler’s Absolute Improved Euler Absolute
VALUE Method Error Method Error

h = 0.1 5.93977 5.69513 0.24464 5.93266 0.00711
h = 0.05 5.93977 5.81260 0.12717 5.93791 0.00186
h = 0.025 5.93977 5.87490 0.06487 5.93930 0.00047

A3. a. x(t) = −t − 1 + 2 et .
b. x(1) ≈ 3.42816.
c. The following table shows the absolute error at each step of part (b):

tk xk TRUE VALUE Absolute Error

0 1 1 0
0.1 1.11000 1.11034 0.00034
0.2 1.24205 1.24281 0.00076
0.3 1.39847 1.39972 0.00125
0.4 1.58180 1.58365 0.00185
0.5 1.79489 1.79744 0.00255
0.6 2.04086 2.04424 0.00338
0.7 2.32315 2.32751 0.00436
0.8 2.64558 2.65108 0.00550
0.9 3.01236 3.01921 0.00685
1.0 3.42816 3.43656 0.00840

B1. a. P(1) ≈ 1.330624 million people = 1,330,624 people.
b. P(0) ≈ 1.285363 million people = 1,285,363 people.

B3. a. y(t) = [(1 − α) t] 1/(1 − α).
b. Take f (t, y) = yα, t0 = 0, and y0 = 0 in the improved Euler method. Then we have, for any

h, y1 = y0 + h
2
{
f (t0, y0) + f (t1, y0 + h f (t0, y0))

} = h
2 f (t1, 0) = 0 = y2 = · · · = yk = yk+1 for

all positive integer values of k.
c. If y0 = y(0) = 0.01, then for any h, the improved Euler’s method produces a nonzero

sequence of approximate values.

Exercises 3.3

A1. TRUE VALUE Euler’s Method Improved Euler Method RK4 Method
h = 0.1 2.7182818 2.5937425 2.7140808 2.7182797
h = 0.05 2.7182818 2.6532977 2.7171911 2.7182817
h = 0.025 2.7182818 2.6850638 2.7180039 2.7182818
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A3. y(1) = e ≈ 2.71828181139414093.

A5. a. x = 2

t2 + C
.

b. The rkf45 method yields x(1) ≈ 0.99999999727228860.

B1. a. The following table provides the required data:

t V(t)
5 100.163

10 104.984
15 105.045
16 105.046
17 105.046
18 105.046
19 105.046
20 105.046

We guess that the terminal velocity is 105.046 ft/sec.

b. cccc
100

80

60

40

20

5 10 15 20 25 30 t

V

C1. a. cccct (0.5, 1) (0.5, 2) (1.5, 1) (1.5, 2) (2, 2)
1 1.845 1.707 2.320 1.918 2.051
2 2.663 2.069 4.207 2.215 2.233
3 3.349 2.190 4.893 2.235 2.236
4 3.872 2.224 4.988 2.236 2.236
5 4.246 2.233 4.999 2.236 2.236
6 4.504 2.235 5.000 2.236 2.236
7 4.677 2.236 5.000 2.236 2.236
8 4.791 2.236 5.000 2.236 2.236
9 4.865 2.236 5.000 2.236 2.236

10 4.913 2.236 5.000 2.236 2.236

b. (r, q) ≈ (0.5, 1.4).
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Exercises 4.1

A1. y = (c1 + c2t)e2t .

A3. x = et(c1 cos t + c2 sin t).

A5. x = c1 + c2e−2t .

A7. y = c1 cos 2t + c2 sin 2t.

A9. r(t) = e2t(c1 cos 4t + c2 sin 4t).

A11. x(t) = −e2t + 2et .

A13. y(t) = 1
4 e(2t−π) sin 4t.

B3. a. I(t) = 3
2

(
e−10t − e−50t

)
.

b. eee
0.8

0.6

0.4

0.2

0
0.1 0.2 0.3 0.4 0.5 t

I

c. The maximum value of I is approximately 0.8.
d. The maximum value of I is achieved when t ≈ 0.04 seconds.

B5. x(t) = 3 cos 12t + 5
6 sin 12t.

B7. a. x(t) = − 1
30 e−2t

(
11

√
3 sin(2

√
3t) + 3 cos(2

√
3t)

)
.

b. The graphs are

0

20.1

0.5 1 1.5 2 2.5 3

20.2

20.3

t

x

0

20.002

20.004

20.006

20.008

2.2 2.4 2.6 2.8 3 t

x



Answers/Hints to Odd-Numbered Exercises 465

0.0012

0.0008

0.0004

0
3.2 3.4 3.6 3.8 4 t

x

c. The greatest distance is approximately 33 cm.

C3. c. u(t) = C1t + C2.

Exercises 4.2
A7. yp = 3 x2.

B1. y(t) = 3
4 x − 1

16 + e−3 t/2
(

C1 cos
(

1
2

√
7x
)

+ C2 sin
(

1
2

√
7x
))

.

B3. y(x) = c1e−x + c2e2x/3 − 5
13 cos x + 1

13 sin x.

B5. y(x) = c1 cos x + c2 sin x − 1
2 x cos x.

B7. x(t) = c1e−t + c2 + 1
2 et − te−t .

C1. x(t) =
{

1 if 0 ≤ t < 1
− cos πt if t ≥ 1.

Exercises 4.3
A1. yGH = c1 + c2e−3t ; yPNH = Kt.

A3. yGH = c1 + c2e−7x ; yPNH = K xe−7x .

A5. yGH = c1 cos 5x + c2 sin 5x; yPNH = Ax(cos 5x + sin 5x).

A7. yGH = e−3x(c1 cos 2x + c2 sin 2x); yPNH = xe−3x(c1 cos 2x + c2 sin 2x).

A9. yGH = c1 cos kt + c2 sin kt; yPNH = C.

A11. yGNH = C1e3t + C2e−t + 1
5 e4t .

A13. xGNH = C1et cos t + C2et sin t +
(
−2

5 t − 14
25

)
sin t +

(
1
5 t + 2

25

)
cos t + et .

A15. xGNH = C1 + C2e−t − 2 cos t − 2 sin t.

A17. yGNH = (C1 + C2x)e−5x + 2x2e−5x .

A19. xGNH = C1e−t + C2e−2t +
(
− 3

10 t + 17
50

)
cos t +

(
1
10 t + 3

25

)
sin t.

B1. y(x) = 3
5

xe4x − 3
25

e4x + 3
25

e−x .

B3. y(t) = e−t/2
(

7 cos
(√

3
2 t

)
+ 11

√
3

3 sin
(√

3
2 t

))
+ (−t2e−t − 6e−t − 4te−t) sin t + (−2te−t − 6e−t) cos t.
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B7. a. ddd

t
0 5

0

2

b. y(t) = t − sin t.
c. y(t) = −π cos t − 2 sin t.

d. y(t) =
{

t − sin t, 0 ≤ t ≤ π

−π cos t − 2 sin t, t ≥ π.

t
40 8 12 16

y

�4

�2

2

4

C1. y(x) = c1ex + c2e2x + 3
130 (9 cos 3x − 7 sin 3x) − 1

6970 (27 cos 9x − 79 sin 9x).

C3. y(x) = c1 cos 2x + c2 sin 2x + 1
12 − 1

24 cos2 2x − 1
32 cos3 2x.

C5. b. No, any solution is unbounded unless the constant is zero.
c. If c = 0, the solution is unbounded unless the constant is zero. If b = 0 also, the solution is a

polynomial and thus unbounded as t → ∞.

C7. y(x) = c1x(
√

10−2) + c2 x(−√
10−2) + (10x2 − 2)/5x2.
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Exercises 4.4

A1. xGNH = C1tet + C2et + t ln tet − tet = K1tet + K2et + tet ln t.

A3. rGNH = C1tet + C2et + t ln tet − tet = K1tet + K2et + tet ln t.

A5. yGNH = c1xe−2x + c2e−2x + 1
2 x3e−2x .

A7. yGNH = c1xe−x + c2e−x + 1
4 x2e−x(2 ln x − 3).

A9. yGNH = ex (c1 ex + c2 − ex cos(e−x)
)

.

B1. yGNH = c1x ln x + c2x + 1
2 x ln2 x.

B3. yGNH = c1x2 + c2x + 1
4 x3(2 ln x − 3).

B5. yGNH = c1 tan x + c2 + 1
2 x tan x.

B7. yGNH = c1x3 + c2x2 + 1
2 x4.

Exercises 4.5

A1. y(x) = C1e3x + C2e−x + C3.

A3. y(x) = C1xe−x + C2e−x + C3.

A5. y(t) = C1e10t + et (C2 cos t + C3 sin t).

A7. y(t) = C1e−2t + C2e2t + C3e−3t + C4e3t .

A9. y(t) = C1 + (C2t + C3) et + C4e−2t .

B1. y(t) = (C1t2 + C2t + C3)et + (C4t + C5)e2t + C6e3t + C7e4t .

B3. y(x) = e−0.7289x(C1 cos (0.6186t) + C2 sin (0.6186t))
+ e0.4765x(C3 cos (0.7591t) + C2 sin (0.7591t)).

B5. a. yGH = C1x3 + C2x2 + C3x + C4.
b. An intelligent guess would be yPNH = (R/24)x4.

B7. y(t) = (C1 tn−3 + C2tn−4 + · · · + Cn−3t + Cn−2) + Cn−1e−t + Cnet .

B9. y(t) = 1
6 e3t + C1 + C2e−6t + C3et .

B11. y(x) = C1e4x + C2e3x + C3e−2x − xe3x

375 (25x2 + 60x + 126).

C1. y(x) = C1 cos x + C2 sin x + C3x + C4 + x sin x + 2x cos x + 1
4 x4 − 3x2.

C3. a. yPNH = C1y1 + C2y2 + C3y3.

b.

⎡
⎢⎣y 1 y 2 y 3

y′
1 y′

2 y′
3

y′′
1 y′′

2 y′′
3

⎤
⎥⎦
⎡
⎢⎣C′

1
C′

2
C′

3

⎤
⎥⎦ =

⎡
⎢⎣0

0
g

⎤
⎥⎦.

c. y(x) = c1ex + c2e−x + c3e2x − 1
2 xex .
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Exercises 4.6

A1.
{

dx1
dt = x2, dx2

dt = 1 + x1

}
.

A3. The nonautonomous system is
{
y′
1 = y2, y′

2 = (5 ln x + 3xy2 − 4y1)/x2}. Replacing x by y3 and
adding the equation y′

3 = 1 yields an autonomous system.

A5.
{
x′

1 = x2, x′
2 = x3, x′

3 = t x3 − x2 + 5x1 − t2}.

A7. The nonautonomous system is{
w′

1 = w2, w′
2 = w3, w′

3 = w4, w′
4 = 6 sin(4t) + 2w4 − 5w3 − 3w2 + 8w1

}
. To get an

autonomous system, replace t by w5 and add the equation w′
5 = 1.

A9.
{
x′

1 = x2, x′
2 = 1 − 3x2 − 2x1; x1(0) = 1, x2(0) = 0

}
.

A11. dx1
dt = x2, dx2

dt = 1
2
{
x1 − y2

2
}

, dy1
dt = y2, and dy2

dt = 4t+y1
x1

.

A13. d2u
dx2 − 4u − 2 = 0 or d2v

dx2 − 4v + 2 = 0.

A15. d2x
dt2 + 9 dx

dt + 6x − 12 = 0 or d2y
dt2 + 9 dy

dt + 6y − 18 = 0.

B1.
{

dx1
dt = x2, dx2

dt = −4x1 − 4x2; x1(0) = 2, x2(0) = −2
}
; the first equation represents the

velocity of the mass at time t, whereas the second equation represents the acceleration of the
mass.

B3.
{

dy1
dt = y2, dy2

dt = −
(

g
s0

)
y1

}
.

B5.
{
w′

1 = w2, w′
2 = w3, w′

3 = w4, w′
4 = 6 sin(4t) + 2w4 − 5w3 − 3w2 + 8w1

}
; to get an

autonomous system, replace t by w5 and add the equation w′
5 = 1.

B7.
{
u′

1 = u2, u′
2 = u3u2 + u2

3u1, u′
3 = 1; u1(0) = 1, u2(0) = 2, u3(0) = 0

}
.

C1.
d4x

dt4 − 16x = 120e−t − 64t; x(0) = 6, x′(0) = 8, x′′(0) = −48, and x′′′(0) = −8 or

d4y

dt4 − 16y = 540e−t − 96, y(0) = −24, y′(0) = 0, y′′(0) = −12, and y′′′(0) = 84.

Exercises 4.7

A1. a. {x′
1 = x2, x′

2 = −x2; x1(0) = 1, x2(0) = 2}.
b. 000

22 21 0 1

1

2

3

4

5

2 x1

x2
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c. 000

2

1

21

21

22

20.5 0.5 1 t

x1

x2

2

1.5

1

0.5

0
10 20 30 t

A3. a. {ẏ1 = y2, ẏ2 = −y1; y1(0) = 2, y2(0) = 0}.

b. 111 y2

y1

2

1

21

22

22 21 1 2

c. 111

2

1

21

22

210 25 5 10 t

y1

2

1

21

22

210 25 5 10 t

y2
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A5. a. {ẋ1 = x2, ẋ2 = x2; x1(0) = 1 = x2(0)}.

b. 111

2.5

2

1.5

1

0.5

0.5 1 1.5 2 2.5 x1

x2

c. 111

2.5

2

1.5

1

0.5

�1 �0.5 0 0.5 1 t

x1

2.5

2

1.5

1

0.5

�1 �0.5 0 0.5 1 t

x2

A7. a. {x′
1 = x2, x′

2 = x1 − x3
1; x1(0) = 0, x2(0) = 1}.

b. 111

�2 �1
x[1]

x[2]

1 2

1.5

1

0.5

0

1

�0.5

�1.5
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c. 111
2

1

x[1]
4

0
8

t
12

�1

�2

1.5

1

0.5

x[2]
4

0
8

t
12

�0.5

�1

�1.5

B1. 2 arctan
( y

x
) + ln

(
x2 + y2) − C = 0.

B3. a. {Q̇1 = Q2, Q̇2 = 1
2 sin t − 14Q1 − 9Q2; Q1(0) = 0, Q2(0) = 0.1}.

b. 22

�0.04 �0.02 0.02
Q [1]

Q [2]

�0.04

0.04

0.08

0.12

0.040

c. 444

0.04

0.02

[1]
0.5 1

t
1.5 2

�0.02

�0.04

0

�0.02

[1]
2 4

t
6 8

0.02

0.04

�0.04

0
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B5. Every point on the x- and y-axes is an equilibrium point. The phase portrait looks like

2

4

�2

�4

�4 �2 2 40

C1. The equilibrium solutions are (0, 0), (−1, 0), and (1, 0).
C3. a. With λ = 1, the phase portrait is

2

2

4

�2

�4

x [1]
x [2]�4 �2 40

b. With λ = −1, the phase portrait is

24

24

22

22

2

2

4

4

x [2]

0
x [1]

c. The value λ = 0 is a bifurcation point, a point at which the phase portrait changes drastically.
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Exercises 4.8
A1. a. {ẋ1 = x2, ẋ2 = −64x1 − 20x2; x1(0) = 1/3, x2(0) = 0}.

b. 5552 0.1

20.2

20.4

20.6

20.8
x2

x10.2 0.3

c. 5525

0.1

0.5 1 1.5 2

0.2

0.3

x1

t

d. The mass approaches its equilibrium position but doesn’t quite reach it because of the large
damping force. In particular, the mass doesn’t overshoot its equilibrium position.

A3. a. {ẋ1 = x2, ẋ2 = 16 cos8t − 64x1; x1(0) = 0, x2(0) = 0}.
b. 111 x2

2224

220

40

20

2 4 x1

c. 1111

0

2

4

1 2 43 5

x1

t
22

24
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d. The half lines x = t and x = −t are asymptotes for the graph in (c) for t ≥ 0:

0

2

4

1 2 43 5

x1

t

x � t

x � �t

�2

�4

B1. a. (M + 0.5)ẍ + 10 ẋ + kx = 0.

b. n = √
1000 M + 400/(2 M + 1).

c. t = 2M + 1
10

ln 4.

d. Removing the damping force means that the scales would continue to oscillate and would
not settle down to allow a reading to be taken.

C1. a. Q′′ + 8Q′ + 15Q = 0:This equation can represent a spring-mass system with spring constant
15 and damping constant 8. (We could also have derived a single second-order equation
in R.)

b. ẍ − 6ẋ + 10x = 0: This second-order equation cannot represent a spring-mass system
because the equation implies that any damping force works in the same direction as the
mass’s motion. (We could also have derived a single second-order equation in y.)

Exercises 4.9
A3. a. (−∞, ∞).

b. (−∞, 0) or (0, ∞).
c. (−∞, 0) or (0, 1) or (1, ∞).
d. (0, ∞).

B1. There is no contradiction.
C1. Extend the Existence and Uniqueness Theorem to six dimensions.
C3. (c) If the solution with initial condition x(0) = 1/2, y(0) = 0 satisfies x2(t) + y2(t) ≥ 1 for any

finite value of t, this means that the solution intersects the solution given in part (b) at some point
(x(t∗), y(t∗)) on the unit circle. Thus, two solutions of the system pass through the same point in
the open disk x2 + y2 < 4, contradicting the uniqueness established in part (a).

Exercises 4.10
A1. a. xk+1 = xk + h

2

{
f
(
tk, xk, yk

) + f
(
tk+1, xk + hf

(
tk, xk, yk

))
, yk + hg

(
tk, xk, yk

)}
yk+1 = yk + h

2

{
g
(
tk, xk, yk

) + g
(
tk+1, xk + hf

(
tk, xk, yk

))
, yk + hg

(
tk, xk, yk

)}
.

b. x(0.5) ≈ 1.1273, y(0.5) ≈ 0.5202.
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c. For x(0.5), the absolute error is approximately 0.0003; while for y(0.5), the absolute error is
approximately 0.0009.

A3. a. {u′
1 = u2, u′

2 = 2x + 2u1 − u2; u1(0) = 1, u2(0) = 1}.
b. Using Euler’s method with h = 0.1, we find that u1(0.5) ≈ 1.8774 and u2(0.5) ≈ 4.1711;

u1(1.0) ≈ 5.5515 and u2(1.0) ≈ 13.3031.
c. Using a fourth-order Runge-Kutta method with h = 0.1, we get u1(0.5) ≈ 2.1784 and

u2(0.5) ≈ 4.7536; u1(1.0) ≈ 6.7731 and u2(1.0) ≈ 14.7205.

B1. a. (x(t), y(t), z(t)) = (0, 5, 0) for all the values of t specified. The particle doesn’t seem to be
moving.

b. The values of x, y, and z seem to be increasing without bound as t grows larger, with the
values of x, y, and z approaching each other.

B3. t∗ = 3.72, to two decimal places.

B5. a.
{

du
dx = v, dv

dx = −2
x v − u3; u(0) = 1, v(0) = 0

}
.

b. x ≈ 6.9.

C1. a.
dS
dt

+ dI
dt

+ dR
du

= d
dt

(S + I + R) = 0. This means that the total population does not change.

b. 4411

20000

5 10 15 20

40000

S

S-I-R model—susceptible population

t

10000

5 10 15 20

20000

I

S-I-R model—infected population

t 10

10000

20000

30000

S-I-R model—recovered population

20 t

R

c. 444

30000 S

I

10000

10000

20000

S-I-R model—infected vs. susceptible

20000

10000

20000

30000

S-I-R model—recovered vs. susceptible

R

S40000 10000 20000

10000

20000

30000

S-I-R model—recovered vs. infected

R

I

d. We have used the rkf45 method and all values are rounded to the nearest whole number. The
values show the steady increase in the number of people who have recovered, the decrea-
sing number of susceptible people, and the fact that the number of infected people probably
peaks between days 10 and 15.
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t S I R
1 44,255 3062 2682
2 42,649 4405 2947
3 40,460 6217 3323
10 13,044 25,547 11,408
15 3447 25,638 20,915
16 2681 24,609 22,710
17 2108 23,464 24,428

e. We conclude that t ≈ 161 if we round down; but t ≈ 171 if we round I to the nearest
integer.

C3. a. 122t x(t) y(t)
0.01 0.4492 −0.0158
0.02 0.4468 −0.0113
0.03 0.4432 −0.0068
0.04 0.4385 −0.0024
0.05 0.4330 0.0019
0.06 0.4266 0.0062
0.07 0.4196 0.0105
0.08 0.4120 0.0146
0.09 0.4039 0.0187
0.10 0.3952 0.0227

C5. The direction of the solution curve is counterclockwise.

b. asdf

20.08

20.06

20.04

20.02
20.2 0.2 0.4 x

S

c

D

20.4

0.02

0.04

0.06

0.08

c. t ≈ 1.1.
d. Diastole: (x, c) ≈ (−0.46, 0.02) when t ≈ 0.52; systole: (x, c) ≈ (0.46, −0.02) when t ≈ 1.05.

Exercises 5.1

A1. a.

[
3 4

−1 −2

][
x
y

]
=
[
−7

5

]
;
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b.

[
π −3
5 2

][
a
b

]
=
[

4
−3

]
.

c.

⎡
⎢⎣ 1 −1 1

−1 2 −3
2 −3 5

⎤
⎥⎦
⎡
⎢⎣x

y
z

⎤
⎥⎦ =

⎡
⎢⎣ 7

9
11

⎤
⎥⎦.

A3. V =
[

1
0

]
.

A5. Ẋ =
[

ẋ
ẏ

]
=
[

2 1
3 4

] [
x
y

]
.

A7. Ẋ =
[

ẋ
ẏ

]
=
[

2 1
−1 4

][
x
y

]
.

A9. Ẋ =
[

ẋ
ẏ

]
=
[
−2 1

0 −2

][
x
y

]
.

B1. a. The system is {y′
1 = y2, y′

2 = 3y2 − 2y1}, which can be written as[
y′
1

y′
2

]
=
[

0 1
−2 3

][
y1

y2

]
.

b. The system is
{
y′
1 = y2, y′

2 = 1
5 y1 − 3

5 y2

}
, which can be written as[

y′
1

y′
2

]
=
[

0 1
1
5 −3

5

][
y1

y2

]
.

c. The system is
{
y′
1 = y2, y′

2 = −ω2y1
}
, which can be written as[

y′
1

y′
2

]
=
[

0 1
−ω2 0

][
y1

y2

]
.

Exercises 5.2

A1. a. 17;
b. 0;
c. 6t4 + 4 sin t;
d. 1.

A3.

[
−1 2
−4 5

]
, for example.

A5. a.

[
ẋ
ẏ

]
=
[

1 −1
−4 1

][
x
y

]
.

b. The characteristic equation is λ2 − (1 + 1)λ + (1(1) − (−1)(−4)) = λ2 − 2λ − 3 = 0.
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c. λ1 = 3 and λ2 = −1.

d. Any nonzero vector of the form

[
x

−2x

]
= x

[
1

−2

]
is an eigenvector corresponding to the

eigenvalue λ = 3. Any nonzero vector of the form

[
x

2x

]
= x

[
1
2

]
is an eigenvector

corresponding to the eigenvalue λ = −1.

A7. a.

[
ẋ
ẏ

]
=
[

1 0
0 1

][
x
y

]
.

b. The characteristic equation is λ2 − (1 + 1)λ + (1 − 0) = λ2 − 2λ + 1 = 0.
c. λ1 = 1 = λ2.

d. Clearly, any nonzero vector

[
x
y

]
is an eigenvector corresponding to the eigenvalue λ = −1.

As we see in Section 5.4, a 2 × 2 system that has a repeated eigenvalue (an eigenvalue of
“multiplicity two”) must be handled carefully. In this problem, we can find two eigenvectors

that do not lie on the same straight line—V1 =
[

1
0

]
and V2 =

[
0
1

]
, for example.

A9. a.

[
ẋ
ẏ

]
=
[

5 −1
2 1

][
x
y

]
.

b. λ2 − 6λ + 7 = 0.

c. λ1 = 3 + √
2, λ 2 = 3 − √

2.

d. V1 =
[

1
2 − √

2

]
, V2 =

[
1

2 + √
2

]
.

B1. b. x =
∣∣∣∣∣e b
f d

∣∣∣∣∣
/∣∣∣∣∣a b

c d

∣∣∣∣∣ and y =
∣∣∣∣∣a e
c f

∣∣∣∣∣
/∣∣∣∣∣a b

c d

∣∣∣∣∣.
B5. The phase portrait corresponding to the system in Problem B4 is

4

2

�2

�4

�1 2

y

x1�2

The trajectories are moving away from the origin as t increases. Algebraically, this is a
consequence of the fact that one eigenvalue, 3, is positive. Furthermore the trajectories

approach the line determined by the representative eigenvector

[
1

−2

]
associated with the
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larger eigenvalue 3 as t → ∞. The trajectories approach the line determined by

[
1
2

]
, the

representative eigenvector associated with the smaller eigenvalue −1 as t → −∞.

B7. a. c1(x) = α1

(
C0 − c0

α2 − α1

)
e(α2 − α1)x + α2c0 − α1C0

α2 − α1
and

c2(x) = α2

(
C0 − c0

α2 − α1

)
e(α2−α1)x + α2c0 − α1C0

α2 − α1
.

B9. a. The system is
{
ẋ1 = x2, ẋ2 = −kx2 − g

L x1
}
.

b. λ2 + kλ + g
L = 0.

c. λ1 =
(
−kL + √

k2L2 − 4gL
)/

2L, λ2 =
(
−k L − √

k2L2 − 4gL
)/

2L.

d. V1 =
[

1(
−kL + √

k2L2 − 4gL
)/

2L

]
, V2 =

[
1(

−kL − √
k2L2 − 4gL

)/
2L

]
.

e. As t → ∞, the pendulum tends to its equilibrium position (0, 0).

C1. d. Part (c) shows that the sign of dθ/dt equals the sign of xẏ − yẋ, which has just been shown to

equal c
[
x +

(
d−a
2c

)
y
]2 + y2

4c
[
4(ad − bc) − (a + d)2]. The first term of this last expression is c

times a perfect square, while in the second term the bracketed expression is positive by part
(b). Given the presence of another perfect square, y2/4, it is clear that x ẏ − yẋ (and so dθ/dt)
must have the same sign as c.

Exercises 5.3

A1. a. λ1 = 3 and λ2: Any nonzero vector of the form
[

x
0

]
= x

[
1
0

]
is an eigenvector corresponding

to the eigenvalue λ = 3. Any nonzero vector of the form
[

0
y

]
= y

[
0
1

]
is an eigenvector

corresponding to the eigenvalue λ = 2.
b. Here is a plot of several trajectories with the eigenvectors (essentially, the x- and y-axes)

shown:

24 22

22

2

2

4

4

24

x

y
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A3. a. λ1 = 1 and λ2 = −2: Any nonzero vector of the form
[

x
−4x

]
= x

[
1

−4

]
is an eigenvector

corresponding to the eigenvalue λ = 1. Any nonzero vector of the form
[

x
−x

]
= x

[
1

−1

]
is an

eigenvector corresponding to the eigenvalue λ = −2.

b. Here’s the plot of several trajectories and the eigenvectors:

20

10

10 20

�10

�10

�20

�20 x

y

A5. a. λ1 = 2 and λ2 = −4: Any nonzero vector of the form

[
x

1
5 x

]
= x

[
1
1
5

]
= x

[
5
1

]
is an

eigenvector corresponding to the eigenvalue λ = 2. Any nonzero vector of the form[
x

−x

]
= x

[
1

−1

]
is an eigenvector corresponding to the eigenvalue λ = −4.

b. Trajectories and eigenvectors are shown here:

10
y

x10

5

5

�5

�5

�10

�10

A7. a. λ1 = −5+√
17

2 and λ2 = −5−√
17

2 , both irrational numbers; using a CAS, we find

corresponding representative eigenvectors V1 =
[−1+√

17
8
1

]
and V2 =

[ −1−√
17

8
1

]
.
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b. Here are some trajectories and the eigenvectors (which are difficult to pick out):

�10

�5

�5

5

5 10�10

10
y

x

A9. a. λ1 = √
5 and λ2 = −√

5, irrational numbers: Any nonzero vector of the form[
x

−
(

2 + √
5
)] = x

[
1

−
(

2 + √
5
)] = x

[
2 − √

5
1

]
is an eigenvector corresponding to the

eigenvalue λ = √
5. Any nonzero vector of the form

[
x

−
(

2 − √
5
)

x

]
= x

[
1

−
(

2 − √
5
)] =

x

[
2 + √

5
1

]
is an eigenvector corresponding to the eigenvalue λ = −√

5.

b. Here are some trajectories and the eigenvectors:

�10

�5

�5

5

5 10�10

10
y

x

A11. a. λ1 = 0, V1 =
[
−2

1

]
; λ2 = 1, V1 =

[
−3

1

]
.

b. Here are the eigenvectors and some trajectories:
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�4

�2

2

x

y

�2�4

4

20 4

The two eigenvectors are very close together and may be difficult to see as separate vectors.

B1. a. λ = 0 and λ = −2.
b. Representative eigenvectors corresponding to the eigenvalues λ1 = 0 and λ2 = −2 are

V1 =
[

3
4

]
and V2 =

[
1
2

]
, respectively.

c. Here’s a plot of some trajectories:

�10

�5

5

10

10
y

x�10 �5 5

Every point of the line y = 4
3 x is an equilibrium point. The origin is a sink, while every other

point on the line is a node. All other trajectories (straight lines) seem to be parallel to the
trajectory determined by the eigenvector V1.

d. X(t) = c1e0·t
[

3
4

]
+ c2e−2t

[
1
2

]
= c1

[
3
4

]
+ c2e−2t

[
1
2

]
.

B3. X(t) = 1
2 e3t

[
1
5

]
+ 1

2 e−t
[

1
1

]
; the solution approaches 1

2 e3t
[

1
5

]
(the line y = 5x) asymptotically.

B5. b. Here are some trajectories for different values of α:
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�0.5�1 0.5

�0.5

�1

0.5

1

1 x

y

α = 0

0.50 1 x

y

0.5

1

�0.5�1

�0.5

�1

α = 5

0.5 1 x

y

0.5

1

�0.5�1

�0.5

 �1

0

α = −5
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When α = 0, the trajectory is a straight line from (0, 0.5) to the origin. For α > 0, the
trajectory swirls down from (0, 0.5) toward the origin in a clockwise direction, flattening
as α increases. For α < 0, the trajectory swirls from (0, 0.5) toward the origin in a
counterclockwise direction, flattening as α increases in the negative direction.

B7.
(

1
CR2

− R1
L

)2 − 4
CL > 0 [Also: L + C R1R2 > 2 R 2

√
LC, or L > R 2

(
2
√

LC − CR1

)
.

C1. a. X(t) =
[

r(t)
s(t)

]
= c1e

(−2+√
2

2

)
t
[

−√
2

1

]
+ c2e

(
−2−√

2
2

)
t
[ √

2
1

]

=
⎡
⎢⎣ −√

2c1e

(−2+√
2

2

)
t + √

2c2e

(−2−√
2

2

)
t

c1e

(−2+√
2

2

)
t + c2e

(−2−√
2

2

)
t

⎤
⎥⎦ : The origin is a sink.

b. X(t) =
[

r(t)
s(t)

]
= c1e

(√
2−1

)
t
[

1
−√

2

]
+ c2e

(−1−√
2)t

[
1√
2

]

=
⎡
⎢⎣ c1e

(√
2−1

)
t + c2e

(
−1−√

2
)
t

−√
2c1e

(
√

2−1)t + √
2c2e

(
−1−√

2
)
t

⎤
⎥⎦ : The origin is a saddle point.

c. λ1 = −1 + √
β and λ2 = −1 − √

β; the bifurcation point occurs at β = 1.

Exercises 5.4

A1. a. λ1 = 3 = λ2; V1 =
[

1
0

]
and V2 =

[
0
1

]
.

b. Here’s a plot of the eigenvectors and some trajectories:

y

x3

3

2

2

1

1

21

21

22

22

23

23
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A3. a. λ1 = 3 = λ2: Any nonzero vector of the form

[
x
x

]
= x

[
1
1

]
is an eigenvector corresponding

to the repeated eigenvalue λ = 3. All eigenvectors lie on the straight line determined by[
1
1

]
and there is only one linearly independent eigenvector.

b. Here’s a plot of the eigenvector and some trajectories:

y

x

3

2

1

1 2 3

21

22

23

23 22 21

A5. a. λ1 = −1 = λ2: Any nonzero vector of the form

[
x
x

]
= x

[
1
1

]
is an eigenvector corres-

ponding to the repeated eigenvalue λ = −1. All eigenvectors lie on the straight line

determined by

[
1
1

]
and there is only one linearly independent eigenvector.

b. Here’s a plot of the eigenvector and some trajectories:

y

4

2

2 4 x

22

24

24 22
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A7. a. λ1 = −2 = λ2: Any nonzero vector of the form

[
−x

x

]
= x

[
−1

1

]
is an eigenvector

corresponding to the repeated eigenvalue λ = −2. All eigenvectors lie on the straight line

determined by

[
−1

1

]
and there is only one linearly independent eigenvector.

b. Here’s a plot of the eigenvector and some trajectories:

8

4

4 8 x

y

�4

�8

�8 �4 0

B1. α2 = 4β.

B3. Two such systems are {ẋ = −2x, ẏ = −2y} and {ẋ = x + 3y, ẏ = −3x − 5y}.

B7. b. The sole linearly independent eigenvector is V =
[

1
0

]
.

Exercises 5.5

A1. a. λ1 = −1 + 2i and λ2 = −1 − 2i; V1 =
[

i
1

]
and V2 = V1 =

[
−i

1

]
.

b. Here’s a plot of some trajectories, spirals swirling into the origin (a sink):

24

10
8
6
4
2

22
24
26
28

210

22 2 4 x

y
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A3. a. λ1 = −0.5 + i and λ2 = −0.5 − i; V1 =
[

−1
i

]
and V2 =

[
−1
−i

]
.

b. Some trajectories, spirals swirling toward the origin (a sink), follow:

24

10

y

x

8

6

4

2

22

24

26

28

210

22 2 4

A5. a. λ1 =
(

1 + √
3i
)
/2 and λ2 =

(
1 − √

3i
)
/2; V1 =

[
1(

−3 + √
3i
)
/2

]
and

V2 =
[

1(
−3 − √

3 i
)
/2

]
.

b. Here are some trajectories, spirals swirling away from the origin (a source):

210

28

26

24

24 22
22

10

8

6

4

2

4 x

y

2

A7. a. λ1 = −6 + i and λ2 = −6 − i; V1 =
[

1 − i
2

]
and V2 =

[
1 + i

2

]
.

b. Some trajectories, spirals swirling toward the origin (a sink), follow:
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260

240

220

22 2 4 x

y

24

20

40

60

A9. a. λ1 = 5 + 2 i and λ2 = 5 − 2i; V1 =
[

1
1 − 2i

]
and V2 =

[
1

1 + 2i

]
.

b. Some trajectories, spirals swirling away from the origin (a source), follow:

x

y

24 22 2 4

24

22

2

4

B1. a. One such system has the matrix of coefficients

(
2 −4
1 2

)
, which yields the system

{ẋ = 2x − 4y, ẏ = x + 2y}.

b. One such system has the matrix of coefficients

(
1 −2
5 −1

)
, which yields the system

{ẋ = x − 2y, ẏ = 5x − y}.



Answers/Hints to Odd-Numbered Exercises 489

c. One such system has the matrix of coefficients

(
−1 2
−2 −1

)
, which yields the system

{ẋ = −x + 2y, ẏ = −2x − y}.

B5. X(t) = e− 2
3 t

⎛
⎝cos

(√
2

3 t
)

− 2
√

2 sin
(√

2
3 t

)
−3

√
2 sin

(√
2

3 t
)

⎞
⎠.

Exercises 5.6

A1.
{
x(t) = 1

2 et − 1
2 (sin t + cos t), y(t) = t − 1 + 2e− t

}
.

A3. XGNH =
⎡
⎣ c1et − c2e−t + tet − 1

2 et − t2 − 2

c1et + c2e−t + tet − 3
2 et − 2t

⎤
⎦ =

⎡
⎢⎣
(
c1 − 1

2

)
et − c2e−t + tet − t2 − 2(

c1 − 3
2

)
et + c2e−t + tet − 2t

⎤
⎥⎦.

A5. XGNH =
⎡
⎣ 2c1e4t − c2et + 3e5t

c1e4t + c2et + e5t

⎤
⎦.

A7. XGNH =
⎡
⎣ −c1e3t + c2e2t + te2t

c1e3t − 2c2e2t + 2e2t − 2te2t

⎤
⎦ =

⎡
⎣ −c1e3t + (t + c2) e2t

c1e3t − (2t − 2 + 2c2) e2t

⎤
⎦.

A9. XGNH =
⎡
⎣ 3c1e4t + c2e2t − 4e3t − e−t

c1e4t + c2e2t − 2e3t − 2e−t

⎤
⎦.

A11. XGNH =
⎡
⎣ −c1e3t + c2et + 2et cos t − et sin t

c1e3t + c2et + 3et cos t + et sin t

⎤
⎦.

A13. XGNH =
⎡
⎣ −1

2 c1e−2t − c2e−t + 1
10 sin t − 3

10 cos t + 1
6 et

−c1e−2t + c2e−t + 1
10 cos t + 3

10 sin t + 1
6 et

⎤
⎦.

A15. XGNH =
⎡
⎣ (c1 + (c2 + 1) t) et + 1

4 e−t

c2et − 1
2 e−t

⎤
⎦.

B7. a. XGNH =
[

x(t)
y(t)

]
=
[ − I

k1
e−k1t + I/k1

I
k1−k2

e−k1t − k1I
k2(k1−k2)

e−k2t + I/k2

]

=
⎡
⎢⎣ I

k1

(
1 − e−k1t

)
I

k2

(
1 + k2

k1−k2
e−k1t − k1

k1−k2
e−k2t

)
⎤
⎥⎦.
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b. lim
t→∞ x (t) = I

k1
and lim

t→∞ y(t) = I
k2

.

c. The graphs of x(t) and y(t) for the decongestant follow:

Amount of
Decongestant

Bloodstream

GI Tract

30 t252015105

0.2

0.4

0.6

0.8

1

d. The graphs of x(t) and y(t) for the antihistamine follow:

Amount of
Antihistamine

Bloodstream

GI Tract

30 t252015105

0.5

1

1.5

2

2.5

B9. a. ax − b y + e > 0.

b. −cx + dy − e > 0.

c. We have the equilibrium point (x∗, y∗) =
(

e(b−d)
ad−bc , e(a−c)

ad−bc

)
, provided that b ≥ d, a ≥ c, and

ad − bc 	= 0. (We can’t have a negative number of supporters.)

C1. a. XGNH =
[

x(t)
y(t)

]
=⎡

⎢⎢⎢⎣
[

1
2

(
α − l−d

b

)
−

√
ab

2b

(
β − k−c

a

)]
e
√

abt +
[

1
2

(
α − l−d

b

)
+

√
ab

2b

(
β − k−c

a

)]
e−√

abt + l−d
b

[
−

√
ab

2a

(
α − l−d

b

)
+ 1

2

(
β − k−c

a

)]
e
√

abt +
[√

ab
2a

(
α − l−d

b

)
+ 1

2

(
β − k−c

a

)]
e−√

abt + k−c
a

⎤
⎥⎥⎥⎦.

b. β − k−c
a <

√
ab
a

(
α − l−d

b

)
.
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c. Here are the graphs of x(t) and y(t) for 0 ≤ t ≤ 50:

3E5

2E5

2E5

2E5x(
t)

1E5

5E4

0 10 20 30 40 50
t

Extending the time axis a bit and using the “trace” or “zoom” capabilities of a CAS or
graphing calculator, we find that x(t∗) = y(t∗) when t∗ ≈ 54 days. From the graph we see
that side “y” is winning after 50 days.

Exercises 5.7

A1. a.

⎡
⎢⎣ẋ

ẏ
ż

⎤
⎥⎦ =

⎡
⎢⎣1 −1 1

1 1 −1
2 −1 0

⎤
⎥⎦
⎡
⎢⎣ x

y
z

⎤
⎥⎦.

b. λ1 = −1, V1 =
⎡
⎢⎣ 1

−3
−5

⎤
⎥⎦ ; λ2 = 1, V2 =

⎡
⎢⎣ 1

1
1

⎤
⎥⎦ ; λ3 = 2, V3 =

⎡
⎢⎣ 1

0
1

⎤
⎥⎦.

c. X(t) =
⎡
⎢⎣ c1e−t + c2et + c3e2t

−3c1e−t + c2et

−5c1e−t + c2et + c3e2t

⎤
⎥⎦.

A3. a.

⎡
⎢⎣ ẋ

ẏ
ż

⎤
⎥⎦ =

⎡
⎢⎣ 3 −1 1

1 1 1
4 −1 4

⎤
⎥⎦
⎡
⎢⎣ x

y
z

⎤
⎥⎦.

b. λ1 = 1, V1 =
⎡
⎢⎣ 1

1
−1

⎤
⎥⎦ ; λ2 = 2, V2 =

⎡
⎢⎣ 1

−2
−3

⎤
⎥⎦ ; λ3 = 5, V3 =

⎡
⎢⎣ 1

1
3

⎤
⎥⎦.
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c. X(t) =
⎡
⎢⎣ c1et + c2e2t + c3e5t

c1et − 2c2e2t + c3e5t

−c1et − 3c2e2t + 3c3e5t

⎤
⎥⎦.

A5. a.

⎡
⎢⎣ẋ

ẏ
ż

⎤
⎥⎦ =

⎡
⎢⎣2 −1 1

1 2 −1
1 −1 2

⎤
⎥⎦
⎡
⎢⎣x

y
z

⎤
⎥⎦.

b. λ1 = 2, V1 =
⎡
⎢⎣1

1
1

⎤
⎥⎦ ; λ2 = 3, V2 =

⎡
⎢⎣1

0
1

⎤
⎥⎦ ; λ3 = 1, V3 =

⎡
⎢⎣0

1
1

⎤
⎥⎦.

c. X(t) =
⎡
⎢⎣ c1e3t + c3e2t

c2et + c3e2t

c1e3t + c2et + c3e2t

⎤
⎥⎦.

A7. The space trajectory through (0, 1, 0) when t = 0 is

�1000
�500

�1000
10001000

1000

�500

�1000

�500

500
500

500

0

0

0

y

x

z

B3. X(t) =
⎡
⎢⎣ x(t)

y(t)
z(t)

⎤
⎥⎦ =

⎡
⎢⎣ −e−t

e−t

0

⎤
⎥⎦.

B5. a.
{
y′
1 = y2, y′

2 = −2y1 + y3, y′
3 = y4, y′

4 = y1 − 2y3
}
.

b. λ1 = i, λ2 = −i, λ3 = √
3i, λ4 = −√

3i.

c. Y(t) =

⎡
⎢⎢⎢⎣

y1(t)
y2(t)
y3(t)
y4(t)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

x1(t)
x′

1(t)
x2(t)
x′

2(t)

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

2 cos t + sin t
−2 sin t + cos t
2 cos t + sin t

−2 sin t + cos t

⎤
⎥⎥⎥⎦.

The masses oscillate in sync because x1(t) = x2(t) and x′
1(t) = x′

2(t) for all positive values
of t.
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d. Y(t) =

⎡
⎢⎢⎢⎣

y1(t)
y2(t)
y3(t)
y4(t)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

x1(t)
x′

1(t)
x2(t)
x′

2(t)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 cos
(√

3t
)

+ sin
(√

3t
)

−2
√

3 sin
(√

3t
)

+ √
3 cos

(√
3t
)

−2 cos
(√

3t
)

− sin
(√

3t
)

2
√

3 sin
(√

3t
)

− √
3 cos

(√
3t
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The masses are now out of sync because at any time t the masses are located at opposite
sides of their respective equilibrium positions and are moving either toward each other
or away from each other.

e. There are two natural frequencies, 1/2π for the system in part (c), and
√

3/2π. The “1” and
the “

√
3” in the numerators of the frequencies are the imaginary parts of the eigenvalues.

A third mode of oscillation is possible, combining the two natural frequencies already found.

C1. X(t) =
⎡
⎢⎣ A(t)

B(t)
C(t)

⎤
⎥⎦ =

⎡
⎢⎣ 11,000e−0.02t + (11,000/3)e−0.06t + 25,000/3

−(22,000/3)e−0.06t + 25,000/3
−11,000e−0.02t + (11,000/3) e−0.06t + 25,000/3

⎤
⎥⎦.

C3. a. Ẋ(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.1 0.02 0 0 0 0
0.1 −0.14 0 0 0 0
0 0 −0.1 0.02 0 0
0 0 0.1 −0.14 0 0
0 0 0 0 −0.1 0.02
0 0 0 0 0.1 −0.14

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1(t)
x2(t)
y1(t)
y2(t)
z1(t)
z2(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

4
2
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

b. x1(t) = 50 − 4.59e−0.169t − 45.41e−0.071t , x2(t) = 50 + 15.82e−0.169t − 65.82e−0.071t ,
y1(t) = 14.79e−0.169t + 35.21e−0.071t , y2(t) = −51.03e−0.169t + 51.03e−0.071t ,
z1(t) = −10.21e−0.169t + 10.21e−0.071t , z2(t) = 35.21e−0.169t + 14.79e−0.071t .

c. Here are x1(t), y1(t), and z1(t) on the same set of axes:

50

40

30

20

10

10

z1(t)
y1(t)

x1(t)

t20 30 40 50

d. Here are x2(t), y2(t), and z2(t) on the same set of axes:

50

40

30

20

10

10

z2(t)

y2(t)

x2(t)

t20 30 40 50
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C5. XGNH =
⎡
⎢⎣ x(t)

y(t)
z(t)

⎤
⎥⎦ =

⎡
⎢⎣ t2 + c3

12
t3 + t2 + c3

4 t + c2
4 − c3

48
t4 + 5

3 t3 + 1
2 (c3 + 1) t2 + c2t + c1

⎤
⎥⎦.

Exercises 6.1

A1. 2/s3, s > 0.

A3. 3!/s4, s > 0.

A5. 1/(s − a)2, s > a.

A7. 10/s + 100/(s − 2), s > 2.

A9.
(
12 − 14s + 5s2 − 17s3

)
/s4, s > 0.

A11. 2/(s − 1) − 3/(s + 1) + 8/s3, s > 1.

A13.
(
1 − e−4s − 4se−4s)/s2, s > 0.

A15.
(
s + e−2s − e−s)/s2, s > 0.

A17. L[y(t)] = 1/(s − 1).

A19. L[y(t)] = (2s + 5)/ ((s + 1)(s + 2)).

A21. L[y(t)] = s/
(
s2 + 1

)
.

A23. L[y(x)] = (
s3 − 2s2 + s + 3

)
/
(
(s2 + 1)(s2 − s − 2)

)
.

A25. L[y(x)] = 2
(
s2 + s − 1

)
/
(
s3 (s − 1)3).

B1. L[sinh(at)] = 1/[2(s − a)] − 1/[2(s + a)] = a/
(
s2 − a2) ; L[cosh(at)] = s/

(
s2 − a2).

B3. 1
s

(
eas−1
eas+1

)
= 1

s tanh
( as

2
)
.

B9. For example, h(t) = π for t = 1, h(t) = 1 for t 	= 1. Functions that differ at only a finite number
of points have equal integrals.

Exercises 6.2

A1. 1
3 sin 3t.

A3. cos
√

2t.

A5. 1
2
{
1 − e−t(cos t + sin t)

}
.

A7. 4e2t − 3 cos 4t + 5
2 sin 2t.

A9. −1
6 e−t − 4

3 e2t + 7
2 e3t .

B7. s/
(
s2 + 1

)2
.
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B9. y(t) = 2t2 − 6t + 7 + e−2t − 8e−t .

B11. y(x) = x2 + 4x + 4 + x2ex − 4ex .

B13. Q(t) =
{

e−t sin t for 0 ≤ t < π
2
5 cos t − 1

5 sin t − 1
5 e(−t+π){2 cos t + sin t} + e−t sin t for t ≥ π.

B15. f (t) = 4t + 2
3 t3.

C1. x(t) = 2 − e−t .

C3. x(t) = 1
10 t5e2t + 1

4 t4e2t = 1
20 t4e2t(2t + 5).

Exercises 6.3

A1. a. asdf

1 2 3 4

1

t

f (t)

b. f (t) = 1 · U(t − 1) + U(t − 2)[0 − 1] = U(t − 1) − U(t − 2).

A3. a. asdf

�1

�1

�2

1

1

2

t

3 4 50

b. f (t) = U(t − 1) − 3U(t − 2) + 2U(t − 3).
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A5. a. asdf

0

0.5

1

1.5

2

2
t

4 622

b. f (t) = t · U(t)+U(t−2)[(t−2)−t]+U(t−4)[0−(t−2)] = tU(t)−2U(t−2)+(2−t)U(t−4).

A11. L[ f (t)] = (
2 − 2e−2s + 4s2e−2s) /s3.

A13. L[ f (t)] = (
1 − 2e−2s + e−4s)/s2.

B1.
[

1
2 U(t − π) − 1

2 U(t − 3π)
]

sin2 t = 1
2 sin2 t for π < t < 3π and 0 elsewhere.

B3. y(t) =
⎧⎨
⎩

−14
5 e5t/4 + 6t + 24

5 for 0 ≤ t < 1

−14
5 e5t/4 + 54

5 e
5
4 (t−1) for t ≥ 1.

B5. y(t) = 1 − cos t + sin t − U
(
t − π

2
)
(1 − sin t) =

{
1 − cos t + sin t for t < π/2
− cos t + 2 sin t for t ≥ π/2.

B7. y(t) =⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

4 +
(

10
√

17
17 − 2

)
e−(

√
17+5)t/2 −

(
2 + 10

√
17

17

)
e(

√
17−5)t/2 for t ≤ 1

4 − et−1 +
(

1
2 − 7

√
17

34 − 2 + 10
√

17
17

)
e−
(
(
√

17+5)(t−1)/2
)

+
(

1
2 + 7

√
17

34

)
e(

√
17−5)(t−1)/2

+
(

10
√

17
17 − 2

)
e−
(
(
√

17+5)t/2
)

−
(

10
√

17
17 + 2

)
e−(

√
17+5)t/2 for t > 1.

B9. y(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
9 e3t − 1

3 t − 1
9 for 0 ≤ t ≤ 1

1
9 e3t − 2

9 e3(t−1) + 1
3 t − 5

9 for 1 ≤ t ≤ 2

1
9 e3t − 2

9 e3(t−1) + 1
9 e3(t−2) for t > 2.

B11. a. P(t) =

⎧⎪⎨
⎪⎩

Aekt + h
k

(
1 − ekt

)
for 0 ≤ t ≤ 30

Aekt + h
k

(
e−k(30−t) − ekt

)
for t > 30.

b. A = h
k

(
e330k − e360k

)/(
1 − e360k

)
.
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C1. a. The graph of W(t) is

0

0.2

0.4

0.6

0.8

1

1 2
t

3 4

b. y(t) ≡ 0.

c. y(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 for 0 ≤ t < 1

1
2 e2(1−t) + 1

2 − e1−t for 1 ≤ t ≤ 2

1
2 e2(1−t) − e1−t + e2−t − 1

2 e2(2−t) for t > 2.

Exercises 6.4

A1. −1.

A3. e−πs cos π3.

A5. y(t) =

⎧⎪⎨
⎪⎩

0 for t < 1
e−8(t−1) for 1 ≤ t < 2
e−8(t−1) + e−8(t−2) for t ≥ 2.

A7. y(t) = 1
6
(
e2t − e−4t).

A9. y(t) = e−t + 2te−t +
[
2(t − 1)e−(t−1)

]
U(t − 1).

A11. y(t) =
{

1 for t < 2π

1 + sin t for t ≥ 2π.

A13. y(t) = −1
4

(
2 sin(t − 1) − et−1 + e−(t−1)

)
U(t − 1).

B1. y(x) = [after expanding and simplifying]

⎧⎪⎨
⎪⎩

W
6EI x2

(
3
2 L − x

)
for 0 ≤ x < L

2

WL2

24EI

(
3x − L

2

)
for x ≥ L

2 .
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C1. a. x(t) =
⎧⎨
⎩

0 for t < a

H
√

mk
m sin

(√
k
m (t − a)

)
for t ≥ a.

b. Because m and k are constants directly related to the spring-mass system, varying the value
of H affects the amplitude of the oscillations, the maximum distance of the mass from its
equilibrium position. Viewed another way, in the original equation, the quantity k H
represents the magnitude of the jerk upward.

c. If we want A to be the maximum displacement of the mass from equilibrium, we must have
H

√
mk

m = A, or H = A
√

mk
k .

C3. a. L[y(t)] = (
1/

(
s2 + 2

)) ∞∑
n=1

e−ns.

b. y(t) =
(

1/
√

2
) ∞∑

n=1
U(t − n) sin

√
2(t − n).

c. The solution oscillates indefinitely.

Exercises 6.5

A1. y(t) = 5
2 e−2t + 1

2 e−4t .

A3. x(t) = 3e4t + 5e−t , y(t) = −2e4t + 5e−t .

A5. x(t) = 5et − 18tet , y(t) = −3et − 54tet .

A7. x(t) = et cos 2t + 1
2 et sin 2t, y(t) = x′ − x = et cos 2t − 2et sin 2t.

A9. x(t) = −e−3t(−2 sin 4t + cos 4t), y(t) = 2e−3t cos 4t.

A11. x(t) = 3
10 e−t + 7

10 e2t cos t − 11
10 e2t sin t, y(t) = −2

5 e−t + 2
5 et cos t + 9

5 e2t sin t.

A13. x(t) = 3et − 9t2 + 6t + 2, y(t) = −et − 6t.

B1. x(t) = 4
15 cos2√

3t − 2
15 + 4

15
√

3 sin
√

3t cos
√

3t − 2
15 cosh

√
3t + 1

15
√

3 sinh
√

3t

y(t) = −32
15 cos2 √

3t + 16
15 + 32

45
√

3 sin
√

3t cos
√

3t + 1
15 cosh

√
3t − 2

45
√

3 sinh
√

3t.

B3. x(t) = 11
20 cos 2t + 9

20 cos
(√

2t
)

, θ(t) = 11
20 cos 2t − 9

20 cos
(√

2t
)

.

B5. I1(t) = 11
4 − 1

20 e−6t − 27
10 e−t , I2(t) = 3

4 + 3
20 e−6t − 9

10 e−t .

C1. x(t) = 1
4 et − 3

4 e−t − 1
2 cos t + sin t + e−2t

y(t) = 1
2 cos t − sin t + 1

4 et − 3
4 e−t .

Exercises 6.6

A1. The solution x(t) → 0 as t → ∞.

A3. The solution x(t) oscillates as t → ∞.
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A5. The solution x(t) becomes unbounded as t → ∞.

A7. There are oscillations with decreasing amplitudes: x(t) → 0 as t → ∞.

A9. There are transient terms in x(t), but one pole is s = 1, implying that x(t) becomes unbounded
as t → ∞.

A11. a. 1
s2−1

.

b. The poles are s = ±1.

c. x(t) becomes unbounded as t grows large.

A13. a. X = 2s3+10s2+48s+44(
s2+2s+2

)(
s2+4s+20

) .

b. s = −1 ± i, −2 ± 4i.

c. x(t) → 0 as t → ∞.

B1. a. ẍ + ẋ + x = f (t).

b. x(t) = 2
13

[
e−(t−1)/2 cos

√
3

2 (t − 1)
]

U(t − 1) + 2
13

[
7
√

3
3 e−(t−1)/2 sin

√
3

2 (t − 1)
]

U(t − 1)

− 2
13

[
cos 2(t − 1) + 3

2 sin 2(t − 1)
]

U(t − 1).

B5. a. 1
s2−s−6

.

b. 1
5
{
e3t − e−2t}.

c. y(t) = 1
5 e3t ∫ t

0 e−3ug(u)du − 1
5 e−2t ∫ t

0 e2ug(u)du + 2e3t − e−2t .

B7. a. 1
a1s+a0

.

Exercises 7.1

A1. (0, 0) and
(

1
2 , 1

)
.

A3. (0, 0), (1, 1), and (−1, 1).

A5. (0, 0) and (−1, −1).

A7. (0, 0),
(

0, 3
2

)
, (1, 0), and (−1, 2).

A9. (0, 2nπ) and (2, (2n + 1)π), n = 0, ±1, ±2, . . . .

A11. (0, 0), (1, −1), and (1, 1).

A13. The entire x-axis except the origin plus the point (1, 1).

B1. (0, 0), (1, 0), (−1, 0), and (−4, 0).

B3. (0, a2) and
(

a1(−1+a1a2−a2)
a1−1 , 1

a1−1

)
, provided that a1 	= 1.

C1. (−1.016, 0.166), (−0.798, −1.450), (−0.259, −1.208), (0.355, 1.551), (0.634, 1.900), and
(1.085, −0.956).
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Exercises 7.2

B1. a. With u = 4 and v = 2, the phase portrait is

4
y

x

2

1 2 3 421

22

24

The boat eventually winds up at (0, 0).

B3. a.
{
ẋ = y, ẏ = 0.25x2 − x

}
.

b. Yes.

c. {ẋ = y, ẏ = −x}.

C1. d. If a < 0, then ṙ < 0, implying that a trajectory will spiral into (0, 0), so that the origin is a
stable spiral point (a sink). If a = 0, then ṙ = 0, so that r is a constant and the origin is a
stable center. If a > 0, the origin is an unstable spiral point (a source). In the language of
Section 2.6, the parameter value a = 0 is a bifurcation point.

0.220.220.4 0.4

23

22

21

1

2

3

x
0

a < 0
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1

0.20
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�3

0.4 x

y

a = 0 a > 0

Exercises 7.3
A1. The origin is a spiral source.

A3. The origin is a stable node, a sink.

A5. The origin is a saddle point.

A7. The origin is a center.

A9. The origin is a spiral sink.

B1. a. (0, 0) and (4, 1).

b. (0, 0) is a saddle point, whereas (4, 1) is a sink.

B3. a. (0, 0), (2, 0), and (9, 3).

b. (0, 0) is a source, (2, 0) is a sink, and (0, 3) is a saddle point.

C1. a. The only equilibrium point is
(

1, a
b

)
.

b. ẋ = (a − 1)(x − 1) + b
(
y − a

b

)
, ẏ = −a(x − 1) − b

(
y − a

b

)
. Letting u = x − 1 and v = y − a

b ,
this becomes the system u̇ = (a − 1)u + bv, v̇ = −au − bv.

c. λ = −1
2 − b

2 + a
2 ± 1

2

√
(a − b)2 − 2(a + b) + 1.

d. (1) (1, 3) is a spiral source; (2) (1, 2/7) is a sink ; (3) (1, 1/4) is a sink.

Exercises 7.4
A1. The only nontrivial equilibrium point is

(
1
4 , 3

2

)
.

A3. The only nontrivial equilibrium point is
(

3
4 , 1

4

)
.

A5. The only nontrivial equilibrium point is (3, 3).

A7. [t = .1, x(t) = .905130981942487424, y(t) = 1.99036351756532892]
[t = .2, x(t) = .820792722038854339, y(t) = 1.96310057595484810]
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[t = .3, x(t) = .746918149815353428, y(t) = 1.92096012363624435]
[t = .4, x(t) = .682988624646712062, y(t) = 1.8668278660690446]
[t = .5, x(t) = .628223724693027674, y(t) = 1.80349863147592626]
[t = .6, x(t) = .581725902364229608, y(t) = 1.73353191257205697]
[t = .8, x(t) = .509916830817235156, y(t) = 1.58232127656877064]
[t = .9, x(t) = .482944734671241827, y(t) = 1.504546664756024171]
[t = 1, x(t) = .460967197688796904, y(t) = 1.42710548153511119].

C1. c. y = ±√
2 cos x + C.

C3. a. θ(t) = sin 2t.

b. The period of sin 2t is 2π2 = π.

c. 19 ticks.

d. Halving the length of the pendulum reduces the amplitude and the period by a factor of√
2

2 =
√

1
2 . In other words, shortening the pendulum makes it run faster, yielding more ticks

per minute. (In this case, the clock will tick 27 times per minute.)

Exercises 7.5

A3. a.

x2

x1

1

1 2

2

�1

�2

�1�2

2

10 20 30 40

1

�1

�2

x1(t)

t

2

10 20 30 40

1

�1

�2

x2(t)

t

b.

1 2

6

4

2

�4

�2

�6

 x1x1�2 �1

x2x2

t

x1(t)

10 20 30 40
�1

1

2

�2

6
x2(t)

t

4
2

10 20 30 40
�2
�4
�6
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c. Each trajectory indicates the existence of a stable limit cycle. However, the shapes of the
trajectories and the limit cycles change as ε changes. Similarly, x1(t) and x2(t) are periodic
but not trigonometric; and when ε changes from 1/4 to 4, x1(t) changes to a flatter shape,
while x2(t) develops spikes.

B3. a. r(t) = 1 +
√

1
Ce2t−1

.

b. θ(t) = t + C.

c. (x(t), y(t)) = (r(t) cos θ(t), r(t) sin θ(t)).

B5. 2

1

0
5 10

t
15 20 25

21

22

B11. a. {ẋ1 = x2, ẋ2 = −a (x1) x2 − b (x1)}.
C1. a. The only equilibrium points are (0, 0) and (−2, −1).

b. The phase portrait near the origin and near the point (−2, −1) looks like

22

22 21

21

1

x

y

1 2 3

1

x

y

21

21222324

22

23

25

c. There seems to be an unstable limit cycle around (0, 0) (a source) and a stable limit cycle
(a sink) around (−2, −1).
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CHAPTER 0

Index

A
Above, 110
Absolute error, 99, 106, 399
Absolute value, 427
Adaptive methods, 124, 129
Air pollution, 51–53

rates, 52
Airy functions

of first kind, 433
of second kind, 433

Airy, George Bidell, 432
Airy’s equation, 432
Algebra, 304

complex numbers and,
425–426

linear, 221
matrix, 224–225, 414–415
systems, 320
vector, 411–414

Algorithm, Runge-Kutta-Fehlberg,
123, 128–129, 210–213

Allen’s Speculative Model, 96
Almost linear systems, 360–363,

395
Amounts, 165, 403
Amplitude, 137

of oscillations, 200, 392
time-varying, 195

Amplitude-phase angle form,
136–138

Analytic, 431
Analytic solutions, 27
Andrews, George E., 440
Angles, phase, 137
Angular velocity, 379, 389f

Antiderivatives, 403
Approximation methods, 160

at equilibrium points,
358–367

Euler’s method and, 358
five-step, 106f
for integrals, 103f
local linearity, 101
misleading, 359–360
numerical, 99–129
slope fields and, 364
for solutions, 127
tangent line, 399–400
Taylor polynomial, 361, 362,

400–403
three-step, 101, 102f
trajectories and, 364, 365

Arbitrary constants, 290
Argand, Robert, 427
Arms race model, 180–181
Askey, Richard, 440
Associated homogeneous

equations, 141–142
Associated linear system, 363,

395
Associative law, 420
Associative rule, 225
Asymptotes, 236
Asymptotically stable

equilibrium points, 372
Asymptotically stable solutions,

74, 96
Attractors, 74
Autonomous equations, 60, 95

slope field for, 63–64

Autonomous nonhomogeneous
systems, stability of,
276–277

Autonomous systems, 172
converting nonautonomous

equations into, 168–169
nonlinear, 361
qualitative analysis, 173–185
three-dimensional, 169

Auxiliary equation, 132–133
Averages, weighted, 122–123

B
Backward difference quotients,

129
Backward Euler formula, 129
Balance equation, 49
Balance law, 49
Basic matrix algebra, 414–415
Basic notions, 8
Bending movement, 327
Bendixson’s criterion, 393
Bernoulli equation, 46
Bessel, Friedrich Wilhelm,

435n2
Bessel functions, 111

of first kind, 437
Maple and, 438
Mathematica and, 438

Bessel’s equation, 435
Bifurcations, 81–88

diagram, 81
differential equations and,

81–82
pitchfork, 85
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Bifurcations (continued)
point, 82, 83–84, 96, 254, 269
transcritical, 85–88
value, 82

Bimolecular chemical reactions,
33–34

Bloodstream, 49–51
Bob, 379
Boundary conditions, 15, 16
Boundary-value problems, 13–24

with infinitely many
solutions, 17

practical, 17–18
solutions, 16–17

Brusselator, 374

C
CAB. See Civil Aeronautics Board
Cantilever beam problem,

326–328
Carrying capacity, 71
Cauchy-Euler equation, 152, 158
Cauchy-Euler polygon, 102
Cayley, Arthur, 417
Cayley-Hamilton Theorem, 261
Celestial Encounters: The Origins of

Chaos (Diacu and
Holmes), 353

Centers, 184, 264
for nonlinear systems, 376
stable, 376
for systems, 264
undamped pendulum and,

379
Chain rule, 28, 400, 408
Change, 1

rates of, 1
total, 403

Characteristic frequencies, 200
Characteristic polynomial, 283,

342
Characteristic values, 228
Chebyshev’s equation, 441
Chemostat, 97, 357
Chu, Tung Chin, 393
Circuit problem, 43–45
Civil Aeronautics Board (CAB),

201
Closed orbits, 191

Coefficients. See also
Undetermined coefficients

constant, 131–141
matrix of, 283, 417
method of undetermined,

143, 144–152, 430
nonconstant, 157–158
variable, 429

Column vectors, 414
Columns, 222, 418
Commutative property, 419
Compartment problems, 48–54
Complex conjugates, 133, 242,

261, 425
eigenvalues, 135–136

Complex eigenvalues, 261–263
solving 3 × 3 systems with,

287–289
systems with, 263–268

Complex eigenvectors, 261–263
Complex numbers

algebraic view of, 425–426
representation of, 427

Complex plane, 427
Components, 411
Composition of transformations,

417
Compounding, at every instant,

30
Computers, 320, 431
Concavity

down, 69
phase portraits and, 70f
up, 69

Concentrations, 253
Constant coefficients

higher-order linear equations
with, 159–173

homogeneous nth order linear
equation with, 159–160

homogeneous second-order
linear equations with,
131–141

nonhomogeneous nth order
linear equation with,
159–160

nonhomogeneous
second-order linear
equations with, 141–144

Constants
arbitrary, 290
damping, 193
spring, 189
vectors of, 272
velocity, 33

Continuous functions, 304
piecewise, 304, 323

Converges, 405
Conversion techniques, 217

higher-order equations into
systems, 166

nonautonomous equations,
168–169

second-order initial value
problem, 169–170

second-order linear equations,
166

second-order nonlinear
equations, 167

third-order equations, 168
Convolution, 311–321, 350

denoting, 349
Convolution Theorem, 317, 350

integral equation and,
318–319

Coordinates, 411
Cosines, hyperbolic, 204, 310
Counterclockwise, 212, 239, 383
Cramer’s rule, 422
Critical points, 74, 96, 179
Critically damped motion, 196
Crowding terms, 355
Cumulative truncation error, 104

square of step size and, 121
Currents, 197
Curves

above, 77
toward, 77
away, 77
deflection, 326
elastic, 326
four-dimensional, 287
implicit solutions of, 31f
integral, 11
positive direction of, 19
slope fields and, 57
solutions, 11, 31f, 110, 179,

191–193
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space, 21
in three-dimensional space,

178

D
Dai, Hui Hui, 439
d’Alembert, 141
Damped motion, 136
Damped pendulums, 241, 384
Damping constants, 193
Damping force, 193
Decreasing, 69, 110, 246
Deflection curve, 326
Degree of polynomial trial

solutions, 145t
Denominators, 354
Dependent eigenvectors, 244
Derivative tests, 75–76, 86, 389

failure of, 77
Derivatives, 222

negative, 69, 77
partial, 90
positive, 69

Determinants, 233, 422
of matrix of coefficients, 283

DEtools, 431
Diacu, F., 353
Difference quotients

backward, 129
forward, 129

Differential equations. See also
Ordinary differential
equations

basic terminology, 2–7
bifurcations and, 81–82
integrating, 27
Laplace transform of, 308–309
nonlinear first-order, 182
partial, 2–7
solutions of, 8–13
special, 440–441
stiff, 112–118
systems of, 64

Differential Equations: Theory,
Technique, and Practice
(Simmons and Krantz),
439

Differential operators, 139
Diffusion problems, 253

Dirac delta function, 331–335,
351

Dirac, Paul A.M., 332
Direction fields. See Slope fields
Discontinuous forcing terms,

325–326
Discontinuous functions

cantilever beam problem and,
326–328

Heaviside, 323–325
transforms of, 323–331

Distance, total, 404
Distributions, 332
Distributive law, 420
Distributive rule, 225
Diverges, 405
Domains, restricted, 88–89
Double pendulum, 297
Double root, 254
Dr. Euler’s Fabulous Formula

(Nahin), 135n4
Dreyer, T.P., 351n1
Driven undamped motion, 197
Driving term, 39
dsolve, 431
Dummy variables, 14
Dynamical solutions, 21
Dynamics, 1

E
Economic Principle of Supply

and Demand, 97
Eigenvalues, 132–133, 227–229,

233–234, 342, 421–423
complex, 261–263, 264–265,

287–289
complex conjugate, 135–136
conjugates, 262
equal nonzero, 254–255,

256–259
equal real, 254–261
equal to zero, 250–251
matrix representation of,

282–283
negative, 259, 267
nonhomogeneous systems

and, 292
positive, 259
pure imaginary, 267, 371

real but equal, 134
real but unequal, 133
saddle points and, 248
sinks and, 343
solving linear systems with,

229–230
solving 3 × 3 systems with,

285–287
sources and, 343
unequal negative, 246–248
unequal positive, 244–245
unequal real, 242–254
unequal, with opposite signs,

248–250
zero, 259–260

Eigenvectors, 227–229, 299,
421–423

complex, 261–263
dependent, 244
distinct, 257–259
generalized, 257
geometric interpretation of,

230–231
independent, 254–255,

256–257
matrix representation of,

282–283
nonhomogeneous systems

and, 292
representative, 230, 231f
solving linear systems with,

229–230
solving 3 × 3 systems with,

285–287
Eighth-order homogeneous

linear equations, 161–162
Elastic curve, 326
Elements, 222, 414
Elimination, 422
Emden’s equation, 215
Entering, 52
Entries, 222, 414
Equal eigenvalues

characteristic equation and,
134

nonzero, 254–255, 256–259
real, 254–261
real but, 134

Equal matrices, 414
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Equalities, checking, 315
Equations. See also Differential

equations; Linear
equations; Ordinary
differential equations

Airy’s, 432
autonomous, 60, 63–64, 95
auxiliary, 132–133
Balance, 49
Bernoulli, 46
Bessel’s, 435
Cauchy-Euler, 152, 158
characteristic, 132–134, 216,

232, 341
Chebyshev’s, 441
eighth-order homogeneous

linear, 161–162
Emden’s, 215
Euler’s differential, 152
first-order, 185–186,

227–234, 429–431
form of, 127
fourth-order homogeneous

linear, 161
Gauss’s hypergeometric, 441
Gompertz, 80
Hermite’s, 441
higher-order, 163–173
higher-order linear, 159–173
homogeneous, 35, 95,

342–344
indicial, 436
integral, 318–319, 349
integro-differential, 318
Laguerre’s, 441
Landau, 84
Legendre’s, 441
logistic, 68–71
Lotka-Volterra, 181–183, 396
Michaelis-Menten, 116
nonautonomous, 60, 95
nonhomogeneous, 39, 95,

141–144, 146t, 159–160,
162, 314, 344–347

nonhomogeneous nth-order
linear, 159–160

nonhomogeneous
second-order linear,
141–144, 146t

nonlinear, 83–84, 167, 359,
375–384

nonlinear first-order
differential, 182

nth order, 3
with parameters, 71
Riccati, 111
satisfying, 8
second-order, 337–339
separable, 28–38, 95, 354
slope fields and, 60–63
third-order, 168
uncoupled, 389
van der Pol’s, 385–394, 396
Volterra integral, 349
wave, 4

Equilibrium points, 74–80, 179,
218, 224, 394

asymptotically stable, 372
on horizontal axis, 250
linear approximation at,

358–367
of nonlinear systems,

353–358
odd multiple, 378
tests for, 75
unstable, 373

Equilibrium solutions, 59,
74–75, 179

semistable, 75
sinks and, 74–80, 96, 355
sources and, 74–80, 96, 355
unstable, 74–75

Equilibrium values, 34
Equivalence, 192
Errors

absolute, 99, 106, 399
analysis, 105–110
cumulative truncation, 104,

121
functions, 32
input, 127
local truncation, 104
propagated, 104, 128, 401
round-off, 105, 127
total, 104f
truncation, 104, 127–128, 402

Escherichia coli, 98
Euler, Leonhard, 82, 124t

Euler polygon, 102
Euler’s differential equation, 152
Euler’s formula, 135, 262, 299

backward, 129
complex numbers and, 428
discovery of, 135n4

Euler’s gamma function, 406, 437
Euler’s method, 99–112, 107t,

127, 128
completely unknown

solution, 111–112
with error analysis, 105–110
improved, 118–122, 209
linear approximation and,

358
systems and, 207–209
unknown exact solution,

110–111
Existence, 203–207
Existence and Uniqueness

Theorem, 89–90, 204–205
many solutions, 205
no solutions, 205
one solution, 205
regions, 90f

Expansion
Maclaurin, 363
Taylor, 363, 378, 402,

409–410
Exponential forcing function, 137

F
Failure, of derivative tests, 77
Fairness in employment, 52–53
Fechner, Gustav, 64
Finite values, 57
First Shift Formula, 311, 324
First-order equations

linear, 227–234
power series solutions,

429–431
systems of, 185–186

First-order initial value problems,
13–14

First-order method, 105, 128
First-order ordinary differential

equations, nonlinear, 5
First-order systems, 291
Five-step approximation, 106f
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Flow, 1
Flux, 1
Force

damping, 193
shear, 327
stretch and, 189

Forced damped motion, 196–197
Forced motion, 196

phase portraits, 197–198
Forced undamped motion,

198–200
analysis, 199
solutions, 199–200

Forcing functions, 147, 198
exponential, 147
linear combination of,

148–149
trigonometric, 147

Forcing term, 39
discontinuous, 325–326

Formulas
backward Euler, 129
Euler, 129, 135, 135n4, 262,

299, 428
First Shift, 311, 324
quadratic, 428
Second Shift, 311, 324

Forward difference quotients,
129

Four-dimensional curves, 287
Four-dimensional situations, 185
Four-dimensional space, 21
Four-dimensional systems

matrix form of, 289–290
from mechanics, 291

Fourth-order homogeneous
linear equation, 161

Fourth-order methods, 122, 128
Fractions, partial, 32, 404–405
Free damped motion, 193–195

spring-mass systems, 193
Free undamped motion, 188
Frequency, 200

characteristic, 200
natural, 200

Frobenius, Ferdinand Georg,
435n1

Frobenius, method of, 435,
436n3, 440

FTC. See Fundamental Theorem
of Calculus

Functions, 222
Airy, 433
Bessel, 111, 437
continuous, 304, 349
Dirac delta, 331–335, 351
discontinuous, 323–331
error, 32
Euler’s gamma, 406, 437
exponential forcing, 137
forcing, 147
gamma, 406, 437
generalized, 332
Heaviside, 323–325
hyperbolic, 400
hyperbolic secant, 126
implicit, 400
impulse, 331–335, 350
impulse response, 346–347,

351
independent, 134n3
inverse of, 312
with no explicit integrals, 32
one-to-one, 312
of partial derivatives, 408–409
periodic, 310
piecewise continuous, 304,

323, 349
special, 440–441
transfer, 346–347, 351
unit impulse, 332, 350
unit step, 323–325
unknown, 153
of variables, 408–409

Fundamental Theorem of
Calculus (FTC), 14,
403–404

G
Galileo, 200
Gamma function, 406, 437
Gauss, Karl Friedrich, 427
Gauss’s hypergeometric equation,

441
General form

for ordinary differential
equations, 4

for second-order ordinary
differential equations, 4

General solutions, 18–19
Generalized eigenvector, 257, 299
Generalized functions, 332
Geometric behavior of solutions,

235–242
saddle points, 235–236
sources, 236–238
spiral sources, 238–239

Geometric series, 402, 432
Geometric vector, 411
Gompertz, Benjamin, 80
Gompertz equation, 80
Graphs

phase portraits and, 78–80
separable equations and,

30–31
of solutions, 30–31

Guessing, 29
Gurtin, M.E., 351n1

H
Half-lines, 235
Handbook of Mathematical

Formulas and Integrals
(Jeffrey and Dai), 439

Characteristic equation,
132–133, 216, 232, 341

equal eigenvalues and, 134
unequal eigenvalues and,

133–134
Heaviside function, 323–325
Hermite’s equation, 441
Heteroclinic trajectories, 382
Heun, Karl, 118
Heun’s method, 118, 127, 128,

209
Higher-order equations, 163–173

conversion techniques, 166
Higher-order linear equations

with constant coefficients,
159–173

superposition principle, 160
Holmes, P., 353
Homogeneous equations, 35, 95,

332–334
associated, 141–142
eighth-order linear, 161–162
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Homogeneous equations
(continued)

forth-order linear, 161
nth order linear, 159–160
saddle points and, 343
second-order linear, 131–141
superposition principle for,

132
Homogeneous linear systems,

stability of, 242–270
Homogeneous nth order linear

equation, with constant
coefficients, 159–160

Homogeneous second-order
linear equations

characteristic equation and,
132–133

with constant coefficients,
131–141

Hooke’s Law, 189
Horizontal axis, 250
Hyperbolic cosine, 204, 310
Hyperbolic functions, 400
Hyperbolic secant function, 126
Hyperbolic sine, 204, 310

I
Identities, 8, 225
Identity matrix, 225, 420
Imaginary part, 133, 262, 299,

425
Imaginary units, 425
Implicit functions, 400
Implicit solutions, 9, 99

of curves, 31f
verifying, 9–10

Improper integral, 405–408
convergence, 405
divergence, 405

Improved Euler method,
118–122, 124t, 209

second-order, 121
Impulse functions

response, 351
transforms of, 331–335
unit, 332, 350

Impulse response functions,
346–347, 351

Increasing, 69
Indefinite integrals, 10

Independent eigenvectors,
254–255, 256–257

Independent functions, 134n3
Indicial equation, 436
Infected, 215
Infinite families of solutions,

10–11
Infinity, points at, 439–440
Initial conditions, 13, 14, 15
Initial value problems (IVP),

13–24
with discontinuous forcing

term, 325–326
first-order, 13–14
with infinitely many

solutions, 89
linear, 91–92
second-order, 15–16,

169–170
slope fields, for system, 211f
solutions of, 31f, 90f, 103
solutions of, using inverse

Laplace transform,
312–316

for step sizes, 111t
system, 19–21, 211f
system, with many solutions,

203–204
system, with no, 204
with unique solution, 13–24

Input, 39
Laplace transform and,

346–347
nonhomogeneous

second-order linear
equations, 141

Input error, 127
Integers, nonnegative, 438
Integral equations, 318

Convolution Theorem and,
318–319

solutions, 319
Volterra, 349

Integrals, 11
approximation of, by

rectangular area, 103f
curves, 11
functions with no explicit, 32
improper, 405–408
indefinite, 10

Integrating differential equations,
27

Integrating factor, 40–45, 95
rationale, 42–43
using, 41, 43

Integration, 403
Integro-differential equations,

318
Intervals, unique solutions in,

100
Inverse Laplace transforms,

311–316, 350
solving IVPs using, 312–314

Inverse, multiplicative, 420
Inverse of functions, 312
Inverse transformations, 303,

311–321
Laplace, 311–316, 350

Irregular singular point, 434
Isocline, 57

solutions and, 59
zero, 95

Isolated, 387
IVP. See Initial value problems

J
Jeffrey, Alan, 439
Jump discontinuity, 324

K
Kermack, 126
Kermack-McKendrick model,

126–127
Kirchhoff’s laws, 43, 73

Second, 265
Voltage, 131, 139, 151

Krantz, Steven G., 439
Kutta, M. Wilhelm, 122

L
Lagrange, Joseph Louis, 152
Laguerre’s equation, 441
Lanchester, F.W., 280
Landau equation, 84
Landau, L.D., 84
Laplace, Pierre-Simon de, 304
Laplace transform, 277, 294,

304–311
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of differential equation,
308–309

examples of, 313t
homogeneous equations and,

342–344
input and, 346–347
inverse, 311–316, 350
output and, 346–347
qualitative analysis, 341–349
stability and, 343–344
technology and, 320

Laser model, 85–88
Laser threshold, 86
Laws

associative, 420
Balance, 49
distributive, 420
Hooke’s, 189
Kirchhoff ’s, 43, 73
Kirchhoff ’s Second, 265
Kirchhoff ’s Voltage, 131, 139,

151
Newton’s Second Law of

Motion, 140, 189, 193,
198

parallelogram, 412f, 427f
Leaving, 52
Lefever, R., 374
Left-hand limit, 407
Legendre’s equation, 441
Leibniz, Gottfried Wilhelm, 1
L’Hôspital’s Rule, 333, 406
Limit cycles, 385–394

Lotka-Volterra equations and,
387

phase portrait, 391f
semistable, 388, 391, 396
stable, 385, 396
systems with two, 390–391
unstable, 385, 388–389, 396

Limiting behavior, 387
Limits

left hand, 407
right hand, 407

Linear algebra, 221
Linear approximation

at equilibrium points,
358–367

Euler’s method and, 358
misleading, 359–360

slope fields and, 364
three-step, 101, 102f
trajectories and, 364, 365

Linear combination, 39, 225,
283, 413

of forcing functions, 148–149
Linear cycles, linear systems and,

385
Linear dependence, 283–285,

413
of vectors, 284–285

Linear elements, 56, 58f
Linear equations, 38–48

bifurcation points for, 83
eighth-order homogeneous,

161–162
fourth-order homogeneous,

161
higher-order, 159–173
homogeneous nth order,

159–160
homogeneous second-order,

131–141
nonhomogeneous nth order,

159–160
nonhomogeneous

second-order, 141–144,
146t

second-order, 131–144, 166,
431–434

sinks in, 83
sources in, 83
standard form, 38
transforms of systems of,

336–339
Linear first-order differential

equations, 38
Linear independence, 283–285,

413
of vectors, 284–285

Linear initial value problems,
91–92

Linear operators, 39, 40, 305
nth order, 159

Linear ordinary differential
equations, 5

second-order, 5
Linear systems, 6

almost, 360–363, 395
associated, 363, 395

homogeneous, 242–270
linear cycles and, 385
matrix form of

two-dimensional, 223
matrix representations,

222–227
solving, with

eigenvalues/eigenvectors,
229–230

solving, with Laplace
transform, 336–337

superposition principle and,
234

transforms of, 336–339
two-dimensional, 268t

Linear transformation, 305, 349
matrix multiplication and,

415–421
Linearity, local, 75, 100f

approximation, 101
tangent line approximation,

399–400
Linearization, 358

misleading, 359–360
Linearized systems, 371

saddle points for, 376
Lines

half, 235
phase, 68–74, 96
tangent, 75

Loaded beams, 326f
Local linearity, 75, 100f

approximation, 101
tangent line approximation,

399–400
Local truncation errors, 104
Logarithm, 303
Logistic equation, 68–71

qualitative analysis of, 68–71
Lorenz, E.N., 396
Lotka, Alfred, 182
Lotka-Volterra equations,

181–183, 218, 396
limit cycles and, 387
Poincaré-Lyapunov theorem

and, 375–376
slope fields and, 377f
trajectories, 377f

Lotka-Volterra systems, 355
Lyapunov, A.M., 368
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M
Maclaurin expansion, 363
MacPherson strut, 147
Main-diagonals, 422
Maple, 320, 431, 433, 435

Bessel functions and, 438
Mathematica, 320, 431, 433, 435

Bessel functions and, 438
MATLAB, 320, 431, 435
Matrices, 221–227, 414–415

algebra, 224–225, 414–415
of coefficients, 283, 417
equal, 414
identity, 225, 420
product of 2 × 2, 418
square, 415
vectors and, 221–222
zero, 224, 415

Matrix algebra, 224–225,
414–415

Matrix multiplication, 415–421
Matrix representation

of (three) 3 × 3 system,
281–282

eigenvalues, 282–283
eigenvectors, 282–283
of four-dimensional systems,

289–290
of linear systems, 222–227
of nonhomogeneous systems,

292
of two-dimensional linear

systems, 223
McKendrick, 126
Mean Value Theorem, 335
Menten, Maud, 116
Method of Frobenius, 435,

436n3, 440
Method of undetermined

coefficients, 143, 144–152,
430

nonhomogeneous systems
and, 272–277

solving equations with,
144–145

Michaelis, Leonor, 116
Michaelis-Menten equation, 116
Mixed derivatives, 409
Mixing problems, 48
Modulus, 427

Monod, Jacob, 98
Motion

critically damped, 196
damped, 136
driven undamped, 197
forced, 196
forced damped, 196–197
forced undamped, 198–200
free damped, 193–195
free undamped, 188
Newton’s Second Law of, 140,

189, 193, 198
overdamped, 196
simple harmonic, 190
underdamped, 196
in unstable limit cycle, 389f

Multicompartment problems, 53
Multiplication

matrix, 415–421
row-by-column, 417
by scalars, 261

Multiplicative inverses, 420
Multiplicity f two, 428

N
Nahin, Paul J., 135n4
Napier, John, 303
Natural frequencies, 200
n-dimensional vector, 413
Negative derivatives, 69, 77
Negative directions, 191
Negative eigenvalues, 259, 267
Newton, Isaac, 1
Newton’s Second Law of Motion,

140, 189, 193, 198
No closed form solution,

155–156
Nodes, 74–80, 96

stable, 247
star, 255–256
unstable, 238, 245

Nonautonomous equations, 60,
95

conversion of, into
autonomous systems,
168–169

Nonconstant coefficients,
157–158

Nonhomogeneous equations, 39,
95, 314

Laplace transform, 344–347
nth order linear, 159–160
second-order linear, 141–144,

146t
third-order, 162

Nonhomogeneous nth order
linear equation, with
constant coefficients,
159–160

Nonhomogeneous second-order
linear equations with
constant coefficients,
141–144

input, 141
output, 141
solutions to, 142–143
trial particular solutions for,

146t
Nonhomogeneous systems,

270–281, 289, 300, 341
autonomous, 276–277
eigenvalues and, 292
eigenvectors and, 292
general solutions, 270–271,

292
matrix representation, 292
particular solutions for,

293–294
solution of, 271
trial particular solutions for,

274t
Nonlinear equations

bifurcation points for, 83
examples, 375–384
second-order, 167, 359
sinks in, 84
sources in, 84

Nonlinear first-order differential
equations, 182

Nonlinear operators, 39, 40
Nonlinear ordinary differential

equations, 5
first-order, 5

Nonlinear systems, 6, 221
autonomous, 361, 367–368
centers, 376
examples, 375–384
phase portraits and, 356f
slope fields and, 356f
sources for, 369
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spiral points, 376
spiral sink for, 360
stability of, 355–358

Nonnegative integers, 438
Nontrivial, 387
Nonzero vectors, 421
n-parameter family of solutions,

14
nth order equation, 3, 217
nth order linear operator, 159
Nullclines, 59, 61, 95
Numbers, 165

complex, 425–429
pure imaginary, 425

Numerical approximation,
99–129

Numerical solutions, 207–216

O
Odd multiples, 378, 381
ODE. See Ordinary differential

equations
One-compartment model, 49f
One-dimensional phase portrait,

69
One-parameter family of

solutions, 10
One-to-one functions, 312
Operators, 39

differential, 139
linear, 39, 40, 159, 305
nonlinear, 39, 40

Opposite signs, unequal
eigenvalues with, 248–250

Order
of n, 3
of ordinary differential

equations, 3–4
Ordinary differential equations

(ODE), 2–7
general form for, 4
linear, 5
nonlinear, 5
order of, 3–4
second-order, 4
second-order linear, 5
slope field, 56–68
solutions, 8–9
solutions, involving Dirac

delta function, 333–334

systems of, 6–7, 19–21, 230
Ordinary points, 431–434
Oscillations, 191

amplitude of, 200, 392
negative, 392
positive, 392
undamped, 267

Output, 39
Laplace transform and,

346–347
nonhomogeneous

second-order linear
equations, 141

Outward spirals, 386
Overdamped motion, 196

P
Parallel, 243n3
Parallelogram Law, 412f, 427f
Parameters, 10

equations with, 71–72
variation of, 152–159, 272

Partial derivatives, 90
functions of, 408–409

Partial differential equations, 2–7
Partial fractions, 32, 404–405
Particular solutions, 10–11, 153

for nonhomogeneous systems,
293–294

Pendulums
damped, 241, 384
double, 297
undamped, 263, 377–382,

396
Percentage, 68
Periodic, 198

functions, 310
Permeability, 253
Phase angle, 137
Phase lines, 68–74, 96
Phase plane, 174, 218, 221, 400
Phase portraits, 68–74, 84, 96,

218, 381f
analysis, 194
concavity and, 70f
forced motion, 197–198
graphs and, 78–80
limit cycles, 391f
nonlinear systems and, 356f
one trajectory, 174–176

one-dimensional, 69
several trajectories, 176–177
sinks in, 389
sources in, 389
for systems, 173–174, 235f,

237f, 251f, 256f
unstable limit cycle, 389f, 390f
van der Pol’s equation, 386f

Phase-plane diagram, 174
Piecewise continuous functions,

304, 323, 349
Pitchfork bifurcation, 85
Poincaré, Henri, 353
Poincaré-Lyapunov theorem,

367–375
applications of, 368–373
Lotka-Volterra equations and,

375–376
trajectory, 370f
undamped pendulum and,

377–382
Points. See also Equilibrium

points
bifurcation, 82, 83–84, 254,

269
critical, 74, 96, 179
at infinity, 439–440
ordinary, 431–434
saddle, 235–236, 248, 293,

343, 363, 369, 376, 397
singular, 431
spiral, 376, 379
stationary, 74
unstable equilibrium, 373

Polar coordinates, 388, 411–414
Poles, 342, 347
Polygons

Cauchy-Euler, 102
Euler, 102

Polynomials
characteristic, 283, 342
Taylor, approximation, 361,

362
Position, 15
Positive derivatives, 69
Positive eigenvalues, 259
Power series, 402

solutions, 429–431
Powseries, 431
Predator, 181
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Predator-prey model, 181–183,
218

qualitative analysis of,
183–184

Predictor-corrector method, 118
Prey, 181
Prigogine, I., 374
Principles, superposition, 39–40,

132, 160, 217, 221, 230,
234, 271

Problems
boundary-value, 13–24
circuit, 43–45
compartment, 48–54
initial-value, 13–24
mixing, 48
multicompartment, 53

Product of 2 × 2 matrices, 418
Product Rule, 400, 408
Products, 418
Projections, 179, 185, 287
Propagated error, 104, 128, 401
Pure imaginary eigenvalues, 267,

371
Pure imaginary numbers, 425

Q
Quadratic formula, 428
Qualitative analysis

of autonomous systems,
173–185

Laplace transform and,
341–349

of logistic equation, 68–71
of predator-prey model,

183–184
Qualitative solutions, 27, 56
Quotient rule, 400

R
Rainville, Earl D., 440
Range, 312
Rates, 52

air pollution, 52
of change, 1
reaction, 33
relative, 244

Reactions
bimolecular chemical, 33–34

rate, 33
velocity of, 33, 64

Real axis, 427
Real but equal eigenvalues,

134
Real but unequal eigenvalues,

133
Real part, 133, 299, 425
Real-valued solutions, 299
Recovered, 215
Rectangular area, approximation

of integrals by, 103f
Recurrence relations, 430
Regular singular point, 434–439
Relations, 9
Relative rates, 244
Repeated root, 254
Repeller, 74–75, 238, 239, 245
Representative eigenvectors, 230,

231f
Resonance, 148, 200–201, 218,

267
Responses, 210
Restricted domain, 88–89
Riccati equation, 111
Richardson, Lewis F., 180
Riemann sum, 103, 107
Right hand limits, 407
rkf45 method, 123, 128–129
Round-off error, 105, 127
Row vectors, 414
Row-by-column process, 416

multiplication, 417
Rows, 222, 418
Roy, Ranjan, 440
Rules

associative, 225
Chain, 28, 400, 409
Cramer’s, 422
distributive, 225
L’Hôspital’s, 333, 406
product, 400, 408
quotient, 400
Trapezoid, 119

Runge, Carl, 122
Runge-Kutta method, 122–127,

128
for systems, 209–210

Runge-Kutta-Fehlberg algorithm,
123, 128–129, 210–213

S
Saddle connections, 382
Saddle points, 293, 363, 369, 397

eigenvalues and, 248
geometric behavior of,

235–236
homogeneous equations and,

343
for linearized systems, 376
unequal eigenvalues with

opposite signs and,
249–250

Satisfying equations, 8
Saturation level, 50
Scalar, 224, 411, 415

multiplying by, 261
Schawlow, A., 85
Schrödinger, E., 332
Second Shift Formula, 311, 324
Second-order equations, systems

of, 337–339
Second-order initial value

problems, 15–16
conversion of, 169–170

Second-order linear equations
converting, 166
homogeneous, 131–141
nonhomogeneous, 141–144
series solutions of, 431–434

Second-order method, 121
Second-order nonlinear

equations, 167, 359
Second-order ordinary

differential equations
general form, 4
linear, 5
solutions, 9

Semistable equilibrium solution,
75, 96

Semistable limit cycle, 388, 391,
396

Separable equations, 28–38, 95,
354

graphs and, 30–31
solutions, 29–30

Separating variables, 28
Separatrices, 381f, 382
Series solutions, 431–434
Shear force, 327
Signs, table of, 70t
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Simmons, George F., 439
Simple harmonic motion,

190
Sine, hyperbolic, 204, 310
Singular point, 431

irregular, 434
regular, 434–439

Singular solutions, 19, 28, 95
Singularities, 342, 347
Sinks, 218, 236, 255f, 293

eigenvalues and, 343
equilibrium solutions and,

74–80, 96, 355
in linear equations, 83
in nonlinear equations, 84
phase portrait and, 389
spiral, 259, 267, 360
trajectories and, 180
unequal negative eigenvalues

and, 247–248
S-I-R model, 215
Slope fields, 56–68, 76f, 84, 91f,

95, 173
for autonomous equations,

63–64
curves and, 57
equations and, 60–63
linear approximation and,

364
Lotka-Volterra equations, 377f
nonlinear systems and, 356f
special, 59–68
for system IVP, 211f

Solutions
amplitude-phase angle form

of, 136–138
analytic, 27
approximating, 127
asymptiotically stable, 74, 96
boundary-value problems,

16–17
completely unknown, 111–112
curves, 11, 31f, 110, 179,

191–193
degree of polynomial trial,

145t
of differential equations, 8–13
dynamical, 21
to eighth-order homogeneous

linear equations, 161–162

equilibrium, 59, 74–75, 96,
179, 355

Euler’s method, 110–112
Existence and Uniqueness

Theorem and, 205
existence of, 88–94
families, 10–13, 14–19
first-order equations, 429–431
forced undamped motion,

199
general, 18–19, 270–271
geometric behavior of,

235–242
graphs, 30–31
guessing, 29
implicit, 9–10, 31f, 99
infinite families, 10–11
infinitely many

boundary-value problems,
17

integral equations, 319
isocline, 59
IVP, 90f, 103f
IVP, using inverse Laplace

transform, 312–316
IVP with infinitely many, 89
IVP with many, 203–204
IVP with no, 204
IVP, with unique, 204
to linear systems with

eigenvalues/eigenvectors,
229–230

local linear approximation,
101

no closed form, 155–156
of nonhomogeneous systems,

271
to nonhomogeneous

third-order equations, 162
n-parameter family of, 14
numerical, 207–216
numerical approximation,

99–129
ODE, involving Dirac delta

function, 333–334
one-parameter family of, 10
of ordinary differential

equations, 8–9
particular, 10–11, 153,

293–294

power series, 429–431
qualitative, 27, 56
real-valued, 299
of second-order ordinary

differential equations, 9
semistable equilibrium, 75, 96
separable equations, 29–30
series, of second-order linear

equations, 431–434
singular, 19, 28, 95
spring-mass problems, 195
stationary, 74
of systems, 178, 218
of systems of ODEs, 19–21
to 3 × 3 systems, 285–287
trial, 147
trial particular, for

nonhomogeneous
second-order linear
equations, 146t

trial particular, for
nonhomogeneous systems,
274t

unique, 17, 88–94, 96, 100
unknown exact, 110–111
unstable equilibrium, 74–75,

96
vectors, 222

Sources, 218, 255f, 293, 343
eigenvalues and, 343
equilibrium solutions and,

74–80, 96, 355
geometric behavior and,

236–239
in linear equations, 83
in nonlinear equations, 84
for nonlinear systems, 369
phase portrait and, 389
spiral, 238–239, 259, 267

Space curves, 21
Special functions, 440–441
Special Functions (Andrews, Askey,

and Roy), 440
Special Functions (Rainville), 440
Special slope field, 59–68
Spiral points

for nonlinear systems, 376
outward, 386
undamped pendulum and,

379
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Spiral sink, 259, 267
for nonlinear systems, 360

Spiral sources, 238–239,
259–260, 267

Spring constants, 189
Spring-mass problems, 188–203,

218
analysis, 190–191
phase portrait analysis, 194
solution curves and, 191–193
solutions, 195

Spring-mass systems, 190, 291f
free damped motion, 193

Square matrix, 415
Stability, 353, 394

asymptotically, 372
of autonomous

nonhomogeneous systems,
276–277

criteria, 268t
of homogeneous linear

systems, 242–270
of nonlinear systems,

355–358
theorem, 380

Stable centers, 376
Stable limit cycle, 385, 396
Stable nodes, 247
Standard form of linear

equations, 38
Star nodes, 255–256
Starting times, 179
Stationary points, 74
Stationary solutions, 74
Steady-state, 45

terms, 197
Step size

for initial value problems, 111t
square of, 121
variable, 123

Stiff differential equations,
112–118

Stimulus, 210
Stretch, force and, 189
Substitution, 229, 403
Sufficiency, 91
Superposition principle, 39–40,

217, 221, 230, 271
for higher-order linear

equations, 160

for homogeneous equations,
132

linear systems and, 234
Susceptibles, 215
Systems, 221–227

algebra, 320
almost linear, 360–363, 395
associated linear, 363, 395
autonomous, 168–169,

172–185, 361
autonomous

nonhomogeneous,
276–277

autonomous
three-dimensional, 169

centers, 264
with complex eigenvalues,

263–268
conversion of higher-order

equations, 166
of differential equations, 64
Euler’s method and, 207–209
first order, 291
of first-order equations,

185–186
high-order equations,

163–173
homogeneous linear, 242–270
IVP, 19–21, 211f
IVP, with many solutions,

203–204
IVP, with no solutions, 204
IVP, with unique, 204
linear, 6, 222–227, 229–230,

268t, 336–337, 385
linear, transforms, 336–339
linearized, 371, 376
Lotka-Volterra, 355
nonhomogeneous, 270–281,

289, 292–294, 300, 341
nonlinear, 6, 221, 355–358,

360, 361, 369, 375–384
nonlinear autonomous, 361,

367–368
of ordinary differential

equations, 6–7, 19–21,
230

phase portraits for, 173–174,
235f, 237f, 251f, 256f

Runge-Kutta method, 209–210

second-order equations,
337–339

solutions, 178, 218
spring-mass, 190, 193, 291f
states of, 177, 190
3 × 3, 281–282
three-dimensional, 185–186
trajectory, 174, 197f, 246f,

247f, 249f, 264f, 267f
with two limit cycles, 390–391
two-dimensional linear, 223,

268t
two-dimensional, of

first-order linear equations,
227–234

uncoupled, 274

T
Tangent line, 75, 362

approximation, 399–400
Tangent plane, 362

Taylor expansion and,
409–410

Taylor expansion, 363, 378
geometric, 402
power, 402
tangent plane and, 409–410

Taylor polynomial
approximation, 361,
400–403

first-degree, 362
Taylor series, 400–403
Technology, 320
Terms

discontinuous forcing,
325–326

driving, 39
forcing, 39
steady-state, 197
transient, 45, 197

Theorems
Cayley-Hamilton, 261
Convolution, 317–319, 350
Existence and Uniqueness,

89–90, 204–205
Fundamental, of Calculus, 14,

403–404
Mean Value, 335
Poincaré-Lyapunov, 367–376,

377–382
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stability, 380
Third-order equations,

conversion of, 168
Third-order nonhomogeneous

equations, 162
3 × 3 system

generalizations to, 289
matrix representation of,

281–282
solving, via complex

eigenvalues, 287–289
solving, via

eigenvalues/eigenvectors,
285–287

Three-dimensional systems,
185–186

Three-dimensional trajectory,
185–186

Three-step approximation, 101,
102f

Threshold, 50
laser, 86

Time-varying amplitude, 195
Total change, 403
Total distance, 404
Total error, 104f
Townes, C., 85
Trace, 233
Trajectory, 19, 218

half-lines, 235
linear approximation and,

364, 365
Lotka-Volterra equations, 377f
phase portrait with one,

174–176
phase portrait with several,

176–177
Poincaré-Lyapunov theorem,

370f
of systems, 174, 197f, 246f,

247f, 249f, 264f, 267f
three-dimensional, 185–186
two-dimensional, 186
x-y plane, 186f

Transcritical bifurcation, 85–88
Transfer functions, 346–347, 351
Transformations, 39, 303. See also

Inverse transformations;
Laplace transform

composition of, 417

of discontinuous functions,
323–331

of impulse functions, 331–335
linear, 305, 349
of systems of linear equations,

336–339
Transient behavior, 387
Transient terms, 45, 197
Trapezoid Rule, 119
Trigonometric forcing functions,

147
Triode generator, 385
Truncation error, 104, 127–128,

402
cumulative, 104, 121
local, 104

Two-dimensional linear systems
matrix representation, 223
stability criteria for, 268t

Two-dimensional systems, of first
order linear equations,
227–234

Two-dimensional trajectory, 186

U
Unbounded vibrations, 148
Uncoupled equations, 389
Uncoupled systems, 274
Undamped oscillations, 267
Undamped pendulum, 263, 396

centers and, 379
negative direction, 379
Poincaré-Lyapunov theorem

and, 377–382
spiral points and, 379

Underdamped motion, 196
Undetermined coefficients, 162,

216, 217, 405
exceptions to, 149–150
with exponential forcing

function, 147
with linear combination of

forcing functions, 148–149
method of, 143, 144–152, 430
nonhomogeneous systems

and, 272–277
with trigonometric forcing

function, 147
Unequal eigenvalues

characteristic equation and,
133–134

negative, 246–248
with opposite signs, 248–250
positive, 244–245
real, 242–254
real but, 133

Unique solutions, 17, 88–94, 96
in intervals, 100
IVP with, 88–89
linear IVP, 91–92
system IVP with, 204

Uniqueness, 203–207
Unit impulse function, 332,

350
Unit step function, 323–325
Unknown exact solution, Euler’s

method for, 110–111
Unknown functions, 153
Unstable equilibrium point,

373
Unstable equilibrium solution,

74–75, 96
Unstable limit cycle, 385,

388–389, 396
motion in, 389f
phase portrait, 389f, 390f

Unstable nodes, 238, 245
Unstable repellers, 238

V
van der Pol, Balthasar, 385
van der Pol’s equation, 385–394,

396
phase portraits, 386f

Variable coefficients, 429
Variable step sizes, 123
Variables

dummy, 14
functions of, 408–409
separating, 28

Variation of constants, 152–159
Variation of parameters,

152–159, 216, 217, 272
no closed form solution,

155–156
nonconstant coefficients,

157–158
using, 153–155
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Vector algebra, 411–414
Vectors, 221–222, 411–414. See

also Eigenvectors
column, 414
of constants, 272
geometric, 411
linear dependence of,

284–285
linear independence of,

284–285
n-dimensional, 413

nonzero, 421
row, 414
solution, 222
zero, 224, 412

Velocity, 15, 190, 404
angular, 379, 389f
constants, 33
of reactions, 33, 64

Volterra integral equation,
349

Volterra, Vita, 182

W
Wave equation, 4
Weighted averages, 122–123
Wessel, Caspar, 427

Z
Zeeman, E.C., 210
Zero isocline, 95
Zero matrix, 224, 415
Zero vector, 224, 412
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