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Preface

More than 30 years ago Leo Esaki and I realized that although there were many

semiconductor and solid state materials, only a few achieved wide usage. For example,

silicon is overwhelmingly used in electronics, III–V compounds are used in injection

lasers and light emitting diodes (LEDs) and niobates are used in nonlinear optoelectronics.

We introduced man-made superlattices using periodic heterostructures to mimic solids.

The first few years were tough. The first superlattice constructed from GaAs/GaPAs

seemed structurally sound, but it did not have the predicted negative differential

conductance (NDC). These superlattices were merely metallurgical, without sufficient

mean free path to exhibit quantum effects. Among the various quantum effects we

identified, a few were clearly due to quantum phase coherence: mini-energy bands, tailor-

made optical transitions, and in particular, Bloch oscillation of the electrons driven by the

applied electric field reaching the mini-Brillouin zone boundary. Whenever vBt . 1; with

vB being the Bloch frequency, current decreases with increase in voltage and NDC

appears. During this initial stage, IBM management gave us token backing, but the US

Army Research Office soon furnished us with partial support.

After the first experimental verification of NDC in a GaAs/GaAlAs superlattice, Gunn

pointed out that the observed NDC may be due to domain oscillation, a nonquantum

mechanical effect. To eliminate this possibility, 2 years later we introduced the resonant

tunneling diode (RTD), a “superlattice” consisting of a single quantum well. Ten years

after that, terahertz RTDs were realized and the age of man-made quantum structures had

arrived. In 1996, Robert Lontz, who directed the Physics-Electronic Division of the US

Army Research Office during the initial 5 years of the superlattice development, was asked

by Mikael Ciften, Head of the Physics Division at ARO during 1996/1997, to put together

a document, “The Superlattice Story”. This document was distributed to many agencies,

including the White House, to promote awareness and to stimulate the direction of

research in electronics in the general areas known as nanoscience. With this as a backdrop,

this book has been written not only as a guide to how ideas are perceived and developed,

but also to provide some details of the concepts, theories, experiments and physical models

of this rather complex subject.

About half of the topics covered in this book have been taken from publications in

which I was involved. The reasons why certain assumptions were made and certain

approaches were taken has been left out of many published works but are fully discussed in

this book. Among the topics covered here, I have devoted considerable space to the

semiconductor–atomic superlattice, which consists of a monolayer of atoms sandwiched

between two semiconductors forming a superlattice. This is an extreme extension of the

strained-layer superlattice like the Si/SiGe heterojunction structures. Moving into the area
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of quantum dots (QDs), resonant tunneling via 3 nm particles of crystalline silicon

embedded in SiO2 captivated Nicollian and myself for more than 3 years. The positive side

is that the observation of stepwise conductance always seems to involve multiples of

G0 ¼ e2=h; being , 40 mS, typically 40, 120, 240 mS. The negative side is the occurrence

of hysteresis and oscillations, sometimes with frequencies of , 0.1 Hz to . 10 MHz.

I am convinced that the source of this instability is trapping, magnified by the very large

coupling between the QD states and trapping sites. The interesting thing is that the defects

do not even need to be inside the QD. A disappointing discovery is that QDs have much

lower dielectric constants, resulting in a much higher binding energy of dopants. Simply

put, QDs cannot be doped and therefore they are mostly intrinsic. Instability of RTDs,

attributed to space charge effects, and G0 attributed to contacts are basically clarified in

this book. Instability is due to coupling of the quantum well states with an unintended

quantum well produced in the buffer spacer of the RTDs, and G0 comes from the wave

impedance of electrons.

The brighter side of work with QDs is the fact that some of these CdSe-, PbS-, QDs are

truly unique in the sense that they are relatively stable and somewhat self-passivated.

Incorporating these nanodots into a matrix such as porous silicon and solgel may lead to

widespread usage. However, no one has the vaguest idea of the electrical input/output

(I/O) for QDs. This book does not cover some bench-top results, such as the single electron

and molecular transistors that utilize QDs. In fact it does not even cover some of the latest

RTDs and the latest uses of superlattices like the quantum cascade laser (QCL). Early in

my career, I did not think magnetic properties played a major role in electronic devices.

Therefore, quantum devices with magnetic properties, including Aharonov–Bohm effects,

quantum hall effects and magnetic superlattices have been excluded. However this book

does prepare the reader for a proper mindset, i.e. how to pursue an idea and develop it.

Today there is an obvious problem with funding for the pursuance of new ideas. The

simple fact is that the development of an idea takes huge resources.

Lastly, I want to give some indication of what sort of technical background is required

of the reader. Naturally, one needs some working knowledge of basic mathematics such as

complex variables, partial differential equations and some skill in computer programming,

the kind taught in any graduate program for physical scientists and engineers. Intermediate

to advanced courses in electromagnetics, quantum mechanics, solid state and

semiconductor physics are necessary to understand and appreciate many concepts

presented in this book. However, the reader does not need to read this book from the first

page to the last. For example, when I first started my career, my all time savior was Morse

and Feshbach’s two volumes. However, this book requires the reader to have a generally

rigorous mindset rather than being overly concerned with detail. In short, almost anyone

with graduate school training can work through any part of this book. Obviously one may

ask whether this book can be used for a graduate level course. Well, I used parts of this

book in my course on advanced semiconductors.
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Before I close I want to give couple of observations and experiences about this period of

my career. I was fairly sure about the man-made superlattice at the very beginning because

I had just read Pippard’s 1965 book. In fact, he discussed the possibility of Bloch

oscillation being totally unobservable in real solids! Being now over 70 years old, I can say

to younger people that one should not rely too much on books because what is most

intriguing is most likely not in any book. And do not be intimidated by highly complex

theories because in most cases, there are simpler ways to arrive at a version that is

sufficient to understand a complex system. I would like to take this opportunity to give my

views about how sad the world is now for we technologists. When I started my career at

Bell Telephone Laboratories (BTL), now a part of Lucent Technologies, 950 PhDs were

attributed that year. Young men of many disciplines worked together. The cross-

disciplinary interchange of ideas really breaks down the boundaries between people

trained in different areas. Because we were young, we were capable of learning

“new tricks” thoroughly and efficiently. One may say that the same thing exists in

universities today. I have been long enough in the university environment to tell you that

universities are not as open as one imagines. The typical syndromes: I am engineer who

makes things work; I am physicist who makes point understandable; I am biologist to tell

you who we are, and so on, are very much a part of the tradition except perhaps in some of

the “great” universities. The reader of this book will soon recognize that the subject

crosses into a number of disciplines, although mostly within the physical, mathematical,

engineering fields, as well as chemistry and material science. To my mind crystallography

and group theory are very difficult subjects. Fortunately, most of us do not involve

ourselves with highly complex structures, neither do we get involved with the group

representations of these structures. The bottom line is to learn enough to get the job done.

I thank Jennifer and Jamie Stewart for helping me in the preparation of this manuscript.

Leo Esaki has always been my friend and my teacher. He believed in me. When he took

me on he told me that he had checked with a few people at Bell Laboratories about me and

what prompted him to hire me was a comment that was made, “Ray likes to do theory, but

he also likes experiments. But do not get him involved with too complicated experiments”.

He confided in me that he himself did not like very complicated experiments. I am

especially grateful to my wife, Danusia, who truly suffered from my remarks “Don’t talk

to me because every time you do, you set my thoughts back ten minutes”. Thanks to her

support, this remark has turned into the family joke and made writing this book a pleasant

experience. With these remarks, I dedicate this book to my wife Danusia and to Leo Esaki.
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Introduction

This book follows the development of superlattices and quantum wells from their

inception in 1969. My role paused after 1977, and I re-entered the field in 1984 after 7

years devoted to laser annealing and amorphous silicon. During the initial period, I was

involved with most phases beginning with the creation of man-made superlattices with

Esaki, later joined by Chang and followed by efforts to characterize the materials,

structures and properties, branching into resonant tunneling, optical response, Raman

scattering and type II superlattices. The theoretical results that helped to launch the

endeavor came from a few things we learned from a published book by Pippard.

The reason we became involved in Raman scattering was because we used it to

characterize alloy compositions and structures. Besides I always have had a fascination

with Raman scattering, partially because it was a personal challenge to master a subject

which I considered to be very complex, which needed a working knowledge of group

theory. It was not apparent when we were tackling the theory of resonant tunneling that we

needed to introduce a new method of tunneling calculation. This is mainly because

methods of calculating tunneling, such as the Bardeen’s transfer Hamiltonion and the

Wentzel–Kramers–Brillouin (WKB) approximation, subjects covered in detail by Duke,

simply could not work. In retrospect, it was the use of a computer that provided us with a

handle on resonant tunneling through a double barrier structure.

In 1984, I went to Brazil for an extended stay. Ioriatti and I started calculating the

dielectric constant and doping of a superlattice. During this period, I reopened some old

data and computations using a complex k-vector which were replaced by a formulation

with Green’s function with a finite self energy function, usually denoted by S, with S – 0.

The usual way of summing the diagrams is nothing more than a perturbation calculation,

only that perturbation may be carried to infinite order. My view was, let us tackle the

“holy cow” instead, by assuming the Hamiltonian of an open system to be non-Hermitian,

allowing a simple way of accounting for losses and their effects on the resonant state.

Basically, we gave up pretending that there is an eigenstate. The Im G gives us the local

spectral density and that is all we need. In fact Sir Mott took a fairly receptive view

towards my contention, after I pointed out to him that some parameters are directly

measurable, such as the mobility or the scattering time. This simple theory does not single

out the details of scattering such as from impurities, phonons, deformations, and so on.

Nevertheless they are not parameters that fit; rather, they represent a quantity such as the

mobility of electrons in the quantum well.

After I joined the University of North Carolina at Charlotte in 1988, Zypman became

my first postdoctoral fellow. We calculated the surface states of GaP on GaAs without

fitting parameters, and the results we obtained are applicable to the Si–O superlattice.
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Babic and I started a series of calculations on capacitance, doping and exciton of a

quantum dot. My interest clearly moved into quantum dots, a subject very much in fashion

today. The main finding was rather surprising. It is obvious that the dielectric screening

should go down because as the electron becomes more and more confined, it cannot even

move so how can it screen? During this initial phase of the theory, I called Ioriatti on the

phone and asked him point blank whether the Kramers–Kroenig’s (the “holy cow”)

relation should be taken as gospel. He told me that K–K relation applies when

1ðr; r0; t; t0Þ ¼ 1ðr 2 r0; t 2 t0Þ; quantum dots do not satisfy this assumption. I invited him

to spend 3 months with me because I needed someone who was not bound by tradition.

My original paper on the size-dependent dielectric constant was delayed for 3 years before

it finally appeared in print. This story has a happy ending because today size-dependent

dielectric function, perhaps more appropriately called size-dependent response function, is

well accepted.

The reader should refer to Chapter 8 which contains additional discussions regarding

capacitance and doping. The traditional dielectric function is global; however, the size-

dependent dielectric function, like any response function is local. However, I would like to

say a few words about the classical calculation of the capacitance. We learn in elementary

electricity and magnetism (E&M) that the capacitance of a sphere may be simply

calculated with two lines using the Gauss law. This is so if we assume electronic charges

may be infinitesimally divisible. A purely electrostatic calculation with discrete electronic

charges is quite involved. In fact it takes more computation time than a quantum

mechanical calculation, because in the latter calculation one does not need to specify the

position of the electrons, simply calculating the energy difference between a He-like atom

and hydrogen atom, or a Li-like atom and the He-like atom, etc. With classical calculation,

one is required to find the minimum energy for n electron positions in a three-dimensional

way inside a sphere, involving the age-old Platonic geometry. I have two graduate students

doing this calculation at this moment. The results are very interesting. Who ever thought

that a 100-year-old problem would resurface to research status? It is this type of discussion

throughout this book that hopefully readers may find worthwhile. Also throughout this

book, detailed accounts are devoted in each subject to how the ideas were first conceived

and in what circumstances, and the means to develop those ideas. I must say that often

nothing new came into our minds whenever we were feeling rather inventive. On the

contrary, new ideas in which I was involved invariably came about because something or

someone provided a trigger.

I want to mention something about the work done on silicon quantum dots with

Nicollian and our postdoctoral fellow Q-Y. Ye who came to us from F. Koch in Germany.

It was because of her willingness “secretly” to disagree with us that progress was made at

the beginning. When we first obtained results in 1990 on conductance steps, they were

numerous and had variable steps instead of equally spaced jumps in conductance. We were

having a hard time having the work published. Today, I can state with some certainty, that
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most of our (or my) work that had problems being accepted then for publication turned out

to be well cited later. I have been praised by the reviewer on several occasions upon

acceptance, but the work turned out to be poorly cited by others. So again, I take this

opportunity to urge you not to despair when your manuscript is brutally rejected.

I was one of the first to get involved when visible light emission in porous silicon

was reported. I was able to get started quickly while working mainly with J. Harvey at

the US Army Research Laboratory (called ETDL in 1990), because there were plenty of

human and material resources. We have determined experimentally that quantum

confinement at least contributed to pushing up the emission, and the refractive index

reduction is greater than could be explained by porosity alone. In this book, I have clearly

accepted the dual role of quantum confinement and surface complexes. It is a good

example why well qualified groups disagree and usually both are right.

Quantum conductance, explained in terms of an input conductance to a quantum system

such as a quantum wire with a wave conductance, in my view, has a more general role than

contact conductance. The discussion centered on the difference between an open and

closed system has deeper conceptual meaning. It may become quite important if phase

coherent electronic devices become more widely used in the future.

Forty years ago I was able to read a book quickly and retain a good part of what I read.

Unfortunately I cannot quite do the same now. I do urge younger researchers to take

every advantage of being young, energetic and having an inquisitive mind. The old song,

Anything you can do I can do better, should be a motto for us all. Lastly, every book has

some good passages, but we must realize that we cannot find all the answers in one book.

The thing to do is to read one and then another, until you find one that has some of the

details you are looking for. Then, spend all the time necessary to absorb it all. Even though

I have taken care to eliminate any mistakes in this book, I apologize for any that do remain.

Below is a partial list of the books that I found useful in preparing this book.

Good luck and best wishes.

Raphael Tsu, Charlotte NC 2004

(1) Textbooks

Bottcher, C.J.F. (1973) Theory of Electric Polarization, Vols 1 and 2, 2nd Edition,

Elsevier, Amsterdam.

Harrison, W.A. (1970) Solid State Theory, McGraw-Hill, New York.

Heitler, W. (1954) Quantum Theory of Radiation, Oxford University Press, Oxford.

Herzberg, G. (1944) Atomic Spectra and Atomic Structure, Dover Publications, New York,

Translated by Spinks J.W.T.
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Chapter 1

Superlattice

1.1. THE BIRTH OF THE MAN-MADE SUPERLATTICE

To appreciate why man-made superlattices were conceived, we need to understand why of

all the elements in the periodic table, only a handful of elements are suitable for electronic

devices. Before the advent of semiconductor devices, vacuum tubes started the electronic

revolution whereby electrons are emitted into the vacuum from a heated filament,

intercepted by a controlled grid and collected by an anode. Even with all the wonderful

functions that semiconductor devices can offer, particularly in integrated circuits (ICs),

many high power devices even today, like magnetrons used as electromagnetic generators

for high frequency and traveling wave tubes used as high power and high frequency

amplifiers, are still in use. However, hot filament is replaced by the search for a cold

cathode. Other endeavors consist of getter for adsorption of the residual gas inside a

vacuum tube and metals capable of stable operation at higher temperatures. After the

introduction of solid-state devices such as the transistor, a search for appropriate materials

launched a new discipline, material science, a term introduced by Pearson. He joined

Stanford University from Bell Telephone Laboratories (BTL) after contributing to the first

transistor. Even though incredibly rapid development has led to the present IC, a planar

structure consisting of literally millions of circuits known as the chip, only a handful of

materials is used, and of these mainly silicon.

Let us briefly summarize what types of material are involved in the modern day

electronic revolution: metals for contacts, semiconductors for active components of a

device and high band-gap materials for insulation. When I first started my career at

BTL, I was told that we should all look for new materials rather than inventing new

schemes for devices. Group IV covalent materials like Si and Ge are good for basic

transistors; group III–V semiconductors, GaAs for example, are used for detectors and

photonic devices; Perovskite structures such as barium titanate provide high dielectric

constants; lithium niobates are good for nonlinear optical devices; and rare earth doped

materials such as Nd-doped YAG garnets are used for high power lasers and so on.

Specifically, injection lasers were limited to GaAs, the best LED was GaP utilizing

nitrogen doped bond-excitons, high frequency transducers used quartz, and the best

photo-conductor used CdS, a highly defective group II–VI compound semiconductor.

Some crystals, such as hexagonal SiC, have a number of different structural forms

known as polytypes (Choyke et al., 1964), forming a natural superlattice structure with a

period ranging from 1.5 to 5.3 nm; however, these polytype structures cannot be
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controlled and the resulting energy gaps are too small to provide any useful electronic

novelty. These considerations were the leading reasons that drove Esaki and myself to

contemplate man-made solids.

In attempting to create a man-made solid, at the onset we recognized that mimicking the

translational symmetry can best be physically realized using a planar structure that has a

modulation of potential energy only in one direction, the direction normal to the planar

layers. This modulation can be achieved either by a periodic pn-junctions or layers of A/B,

two different materials arranged in a periodic way. To form an artificial energy band

structure, the distances involved must be smaller or at least no greater than the junction

width of a (Esaki, 1958) tunnel diode; more precisely, the mean free path of the electron

must at least be greater than the period of modulation in order to preserve phase coherence.

Let us take a closer look at the comparison between the pn-junction and the

heterostructures in forming a modulated potential variation. Almost all semiconductor

devices, transistors, detectors, transducers and switches were based on pn-junctions, a

junction separating two different forms of doping, n for negative owing to the surplus

electrons in the conduction band, and p for positive, owing to the deficiency of electrons in

the valence band. Doping, such as phosphorus on silicon sites, results in ionization, at

normal operating temperatures, of the extra electrons (not needed for four-fold

coordination) into the conduction band, contributing to free carrier transport. A junction

is formed when dopings on both sides develop a junction voltage caused by the alignment

of the Fermi levels. Extra electrons ionized into the conduction band from the phosphorus

dopant sites in n-doped Si, fall into the boron dopant sites in p-doped Si, leaving positive

charges in the vicinity of the n-side, and negative charges in the vicinity of the p-side of the

junction producing an electric field across the junction. At equilibrium, the potential

developed across the junction prevents further transfer of charges from the n-doped side to

the p-doped side. We must recognize that the potential difference is spread over the

depletion width of the pn-junction, because transferring charges involves a monopole with

a range extending over a fairly long distance. Heavier doping reduces the distance needed

to acquire sufficient charges to move the potential. However, the solid solubility limit

prevents the excessive doping needed to reduce the depletion width below the mean free

path, or in general the coherence length of the electrons. Simply put, the solid solubility

limit arises because whenever two P atoms are next to each other, they would rather be

bonded metallically than covalently, resulting in no contribution to the extra electron in

silicon in conventional n-doped silicon. The same reason applies to B-doping in Si, which

results in extra holes, a deficiency in electrons for p-doped silicon. Before we touch on the

heterostructures used in superlattices and quantum wells, we need to develop an

appreciation of why heterojunctions that have a potential difference on each side may be

well defined or ‘sharp’ to within a few tenths of a nanometer. We know that the band-edge

offset between two materials cannot be predicted using only an argument involving

the alignment with respect to the vacuum level, which is based on the work functions
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of the two materials. Usually one is left with measurements for the band-edge offset, or

some complicated ab-initio calculation such as the use of the density functional theory.

What I want to convey is a simple rule why the heterojunction may be very sharp. We

know that in a multipole expansion of a potential functions, the monopole term falls off

more slowly than the dipole term and the dipole term falls off more slowly than the

quadrupole term, and so on. Whenever positive and negative pairs are neutralized in a

given region, more precisely, in a unit cell of the solid, it is the multipole potential that an

electron sees, thus, a much sharper potential profile is experienced by an electron.

Heterostructures are neutral and therefore are quite similar to multipoles. In a man-made

solid, the period must be less than the mean free path, which is no more than few tens of

nanometers at room temperature. Except at temperatures close to 0 K, doping the

superlattice can barely make the grade. The need to make contact to a given active region

of a device calls for a planar structure with alternating layers of two materials that have a

sufficient band-edge offset, mimicking a periodic variation along the direction

perpendicular to the layers. In short, the criterion of a man-made superlattice introduced

by Esaki and Tsu (1969, 1970), is to develop alternating layers of A/B, having sufficient

band-edge off-set at a distance well below the period of the layers. Being a planar

structure, input/output, has as usual, contacts capable of handling large current density.

Figure 1.1 shows the original drawings depicting the two cases of modulation. Because of

the reasons elaborated above, only the heterojunction scheme was pursued at IBM Research.

Figure 1.1. Electron energy profile in the conduction- and valence-band for pn-junctions (a) and periodic

variation of the heterojunction (b). After Esaki and Tsu (1969, 1970), with permission.
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1.2. A MODEL FOR THE CREATION OF MAN-MADE ENERGY BANDS

We represented the periodic potential VðxÞ ¼ Vðx þ ndÞ with a period d typically 10–20

times greater than the lattice constant a in the host solid. We assumed that the wave

equation is that of a free particle Schrödinger equation with an effective mass m and a

potential term VðxÞ: With variable separable, we only deal with the x-direction,

2
h2

2m

d2

dx2
cx 2 VðxÞcx ¼ Excx: ð1:1Þ

A general solution for a periodic VðxÞ results in the Bloch state,

cx ¼ eikx
Xþ1

n¼21

unðk; xÞ: ð1:2Þ

For the sinusoidal case, VðxÞ ¼ V1ðcos 2kdx 2 1Þ; Eq. (1.1) becomes the Mathieu’s

equation, well described by McLachlan (1947),

d2

dq2
cq þ ðhþ g cos 2qÞcq ¼ 0; ð1:3Þ

where the reduced energy h ¼ ðEx 2 V1Þ=E0; g ¼ V1=E0; and the dimensionless

momentum u ¼ kdx; and E0 ¼ h2k2
d=2m; with kd ¼ p=d: We used a sinusoidal variation

of the modulation potential instead of a periodic square well potential at the very beginning

because we thought that the potential variation even with heterojunctions may be quite

“soft” owing to interdiffusions. The comparison of the sinusoidal potential modulation and

the periodic square well potential is shown in Figure 1.2, for the parameters shown in the

figure. Note that the difference for the dispersion relation was not significant leading

us, exclusively in later work, to use the periodic square potential, calculated with the

Krönig–Penney potential (Smith, 1961), for subsequent model calculations. Note that

the Brillouin zone (BZ) boundary is reduced from p=a to p=d; resulting in the formation of

the minizones. For d , 20a with a being the lattice constant of the host solid, the minizone

is 20 times smaller allowing electrons reaching the minizone boundary to create some

intriguing transport under tolerable values for the electric field.

Before we proceed to show the transport, current versus applied voltage in the next

section, I want to discuss several points that led to the resolution of some initial concerns.

We pointed out that we were not pursuing the doping superlattice, instead concentrating on

the A/B alloys. The III–V compounds of GaAs for the well and GaAlAs for the barriers

were selected because these materials have been used for the double heterojunction (DH)

lasers developed at BTL where GaAlAs was used to confine the charge carriers in the

so-called DH lasers. We must distinguish between quantum confinement, which Esaki and

I were seeking, and charge confinement, used in the DH lasers. The first problem

developed because we were told that GaAs and GaAlAs form an ohmic junction. If this

Superlattice to Nanoelectronics4



were true, it would not have been possible to serve as a superlattice potential modulation. I

was very concerned, but Esaki set my concerns aside. He said to me, “Experts are not

always right”. The next big step was that, short of measurements, what values can one use

for the modulation V1 in Eq. (1.1) above? Esaki called on Frank Herman, who was in

charge of the Department of Large Scale Computation at IBM Research at San Jose. He

used a LCAO calculation and presented us with his result, that 80% of the band gap

aligned with the conduction band and 20% with the valence band. In other words, we could

take 80% of the difference of the band gap of GaAs and GaAlAs as the modulation

parameter for the square-well potential in the conduction band. However, he warned us

that his calculation was based on alignment of the 1S state of the As atom in GaAs and the

1S state of the As atom in GaAlAs, so that his error bar could be as high as 1 eV. Again I

was shocked, but Esaki quickly reassured me that his only concern was to ask Herman to

wait before submitting his calculation for publication until we had had a chance to

demonstrate our superlattice. As I pointed out in the Introduction, one of my goals in

writing this book is to provide a fairly detailed discussion of the difficulties and stages we

passed before this venture succeeded. The above concerns can provide some insight as to

what extent one needs to stand firm. Frankly, without Esaki’s experience and forcefulness,

I would have given up.

Figure 1.2. Electron energy versus wave vector of superlattices: —, sinusoidal; – – – , square-well; · · ·, free

electron. Arrows denote the points of inflection; the 2nd derivatives of E –k become negative. Esaki and Tsu

(1969, 1970) with permission.
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1.3. TRANSPORT PROPERTIES OF A SUPERLATTICE

A simplification by Pippard (1965) of the path integration method of Chambers (1952) was

used to obtain current versus applied field F: The equations of motion are

h
dkx

dt
¼ eF; and vx ¼ h21 ›Ex

›kx

; and ð1:4Þ

dvx ¼ eFh22ð›2Ex=›k2
x Þdt; ð1:5Þ

and the drift velocity is

vd ¼ eFh22
ð
ð›2Ex=›k2

x Þexpð2t=tÞdt: ð1:6Þ

Taking a sinusoidal E –k relationship, the so-called tight binding dispersion relation,

vd ¼ gðjÞ½hkd=mð0Þ�; where gðjÞ ¼ j=ð1 þ p2j2Þ; ð1:7Þ

in which j ; eFt= hkd; mð0Þ ¼ 2h2=E1d2 and kd ¼ p=d: We see in Figure 1.3 that the drift

velocity versus the applied field F reaches a maximum value and beyond this point the

slope is negative and the so-called negative differential conductance (NDC) appears. What

happens is that electrons driven to the BZ boundary turn around because of Bragg

reflection. Without scattering, t!1; oscillation results in zero constant current. With

scattering, a constant current appears, but decreases with increase of j: Therefore, the

source of the NDC is precisely what leads to oscillation, the so-called Bloch oscillation. It

is probably unknown to most researchers today that Krömer in 1958 proposed using the

heavy-hole band in semiconductors to create a negative effective mass amplifier.

However, the scheme was not developed owing to difficulty in controlling the presence of

transverse negative masses. In any case, this book deals with the man-made superlattice

that has a negative effective mass only along the direction of the superlattice.

1.4. MORE RIGOROUS DERIVATION OF THE NEGATIVE DIFFERENTIAL

CONDUCTANCE

A more rigorous derivation involving the Boltzman equation with a tight binding E –k

relationship was obtained one year after the simple derivation using the impulse method of

Pippard (1965), presented in the last section as suitable for low carrier concentration. This

was the version that formed the basis for launching the man-made superlattice program at

IBM Research. Esaki and I made a survey of what properties may be exclusively attributed

to the formation of a man-made superlattice. We decided that the appearance of a NDC

serves as the key criterion. The basic assumption involves essentially the use of two-

dimensional electron gas (2DEG), where the E –k in the transverse direction is parabolic,
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free electron energy-momentum, and scattering time is assumed to be energy independent.

The latter assumption is in fact quite acceptable owing to the cancellation, to some degree,

of the primary scattering from acoustic phonons and impurities. In most elementary

treatments of the Boltzmann transport equation, a simple shifted distribution results in

Ohm’s law. Lebwohl and Tsu (1970) found that for a one-dimensional nonparabolic E –k

relationship in the Boltzmann equation, an exact solution is possible for constant

relaxation time. They showed that their result for Fermi–Dirac distribution is identical to

the proof by Budd (1963) of Chamber’s (1952) path integral method for Maxwellian

distribution.

Taking the electric field F in the x-direction, the Boltzmann transport equation without

the time and spatial variation becomes

k0

›f

›kx

þ f ¼ f0; ð1:8Þ

Figure 1.3. Drift velocity versus the reduced field parameter j; (a) for sinusoidal potential, (b) periodic square-

well potential with ki=kd ¼ 0:5 and (c) with ki=kd ¼ 0:82; where ki is the point of inflection. Arrows show the

peaks of the drift velocities. Esaki and Tsu (1969, 1970) with permission.
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in which k0 ¼ eFt= h and f0ðkÞ is the equilibrium distribution function. The periodicity of

the crystal along F is described by the reciprocal lattice vector K: The energy bands are

assumed to be

E ¼ ðh2k2
’=2mÞ þ ExðkxÞ; ð1:9Þ

where k’ is the component of the wave vector perpendicular to the direction of the

superlattice and ExðkxÞ is periodic in kx with period K: Eq. (1.8) has the general solution

f ðk’; kxÞ ¼
ðK=2

K=2
Gðkx; k

0
xÞf0ðk’; k

0
xÞdk0x; ð1:10Þ

in which the Green’s function G satisfies boundary conditions with period K: The adjoined

equation that G satisfies is

2k0

›G

›kx

þ G ¼
X1
21

dðkx 2 k0x 2 mKÞ: ð1:11Þ

Figure 1.4 shows the deformation of contour from C to C0 in the complex Z-plane.

G ¼
1

K

X1
21

ei2pmðkx2kx
0Þ=K

1 2 i2pmk0=K
¼ ^

1

2p iK

ð
c

eðkx2kx
0ÞZ=K

ð1 þ k0Z=KÞðe^Z 2 1Þ

¼
eðkx2kx

0Þ=k0

k0

ð1 2 e2K=k0 Þ21 kx , k
0

x

ðeK=k0 2 1Þ21 kx , k
0

x

ð1:12Þ

Figure 1.4. Deformation of contour from C to C0 in the complex Z-plane.
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Taking

f0ðk’; kxÞ ¼ uðk’ 2 k’mÞ{u½kx þ kxmðk’Þ�2 u½kx 2 kxmðk’Þ�}

with u being the heaviside unit-step functions and kxm the maximum kx; defined by

ExðkxÞ ¼ Ef ; and EðkmÞ ¼ Ef

At k’ ¼ 0; and kx ¼ 0; respectively, f ðkxÞ is given by

f ðkxÞ ¼

exp½2ðkx þ K=2Þ=k0�
sinhðkxm=k0Þ

sinhðK=2k0Þ
kx , 2kxm

1 þ expð2kx=k0Þ
sinh½ðkxm 2 K=2Þ=k0�

sinhðK=2k0Þ
lkxl , kxm

exp½2ðkx 2 K=2Þ=k0�
sinhðkxm=k0Þ

sinhðK=2k0Þ
kx . kxm

8>>>>>>><
>>>>>>>:

ð1:13Þ

and f ðkÞ ¼ uðk’ 2 k’mÞf ðkxÞ: The average current, as usual is given by

jx ¼
1

4p3h

ð
f ðkÞ

›E

›kx

dk

This procedure leads to the same result as Chamber’s path integral method for the

distribution function f with force F and velocity v;

f ¼
1

t

ðt0

21
f0ðE 2 DEÞexpð2ðt0 2 tÞ=tÞdt0; with DE ¼

ðt0

t
F·vdt00 ð1:14Þ

With the tight binding approximation for the superlattice E –k; Ex ¼ E0 2 E1

cosð2pkx=KÞ; the average current along the superlattice direction becomes

jx ¼
neE1d

h

vBt

ðvBtÞ
2 þ 1

H ð1:15Þ

in which vB ; eFd= h; and

H ;
1

2
½ðQ 2 sin Q cos QÞ=ðsin Q 2 Q cos QÞ� E0 2 E # Ef # E0 þ E1 ð1:16aÞ

1

2
½E1=ðEf 2 E0Þ� Ef . E0 þ E1 ð1:16bÞ

where the superlattice period d is defined by K ¼ 2p=d; and Q ¼ cos21ððE0 2 Ef Þ=E1Þ:

Note that Eq. (1.15) is essentially same as Eq. (1.7) except the factor H defined in

Eq. (1.15). Figure 1.5 shows H versus EF for the sinusoidal E –k relation. Note that H in

Eq. (1.15) depends only on the Fermi energy and the parameters specifying the E –k

relation, but does not involve the applied electric field F: Including k’ shows that H is not

zero even inside the mini-energy gap. This is correct because electrons have transverse

motion even within the mini-gap. It is noted that if one simply includes the transverse
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degree of freedom in the original derivation of Eq. (1.7), integration over the density of

states results in Eq. (1.15). Again we show that the Boltzmann equation for constant

relaxation time is the same as using Pipard’s method.

1.5. RESPONSE OF A TIME-DEPENDENT ELECTRIC FIELD

The condition for NDC whenever j , 0:4 or eFdt= h $ 1 in Eq. (1.7) may be grouped

differently by defining the Bloch frequency vB ; eFd= h; then the condition for NDC

becomes vBt $ 1: Therefore, the physics of NDC in a man-made superlattice is intimately

related to the subject of the Wannier Stark ladder (SL), introduced by Wannier (1960, 1961).

Actually the concept, ifCðxÞ is a solution of the wave equation for energy E 2 neFa;with a

being the lattice constant and n being any integer, was first discussed by James (1949). The

explicit localization induced by the application of a constant electric field was given by

Kane (1959). Since these earlier treatments, many arguments have appeared against the

existence of the SL, principally raised by Rabinovitch and Zak (1971), with arguments in

favor of SL and localization by Shockley (1972). Basically, these objections arise because

of the finite dimensions of the solid, the failure of representation of the wave function with

an operator x in the Hamiltonian by a superposition of Bloch functions and tunneling into

other bands. Using a vector potential to preserve symmetry, Krieger and Iafrate (1986) were

able to remove these objections. Unlike the case in which a scalar potential is used

Figure 1.5. H versus EF for the sinusoidal E –k relation. The solid curve shows the case with a transverse degree

of freedom and the dotted curve shows the one-dimensional case.
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to represent the effect of the field, the field dependent terms are continuous functions of time,

permitting the eigenfunctions of the unperturbed Hamiltonian to be the eigenfunction of the

Hamiltonian at the instant the field is turned on. The time development of the system for

times small compared to the inverse tunneling rate is represented by a linear combination of

the eigenfunctions of the instantaneous Hamiltonian. Actually the issue is similar to the fact

that the states of a hydrogen atom in a constant field are not discrete: strictly speaking

stationary states do not exist, yet there is no confusion in treating the problem in terms of

transitions between stationary states. In fact, Krieger and Iafrate side-stepped the issue of

stationary states. Instead, they showed that optical transitions involving a selection rule

which is consistent with the notion of the SL.

To remove some of the confusion, for example, in the relationship between localization

and Bloch oscillation what is the degree of localization, the effects of tunneling into other

bands, finite length and finite mean free path, relationship to quantum well structure, and

so on?, we apply the approach used in Sections 1.3 and 1.4 to include a time varying

electric field. As Lebwohl and Tsu (1970) pointed out, Chamber’s path integral method for

the Fermi–Dirac distribution leads to the same result as Eq. (1.15). Therefore, Chamber’s

path integral method will be used to treat a more general excitation, having an electric field

consisting of a constant term as well as a time-dependent term.

Starting with the distribution function for a constant relaxation time t given by

Eq. (1.14) and with vx ¼
1

h

›E

›kx

; then

kvxl ¼
1

4p3

ð
f vx dk ¼

1

4p3

ð
k

f0 dk
ðt0

21

1

h

›Eðt0Þ

›kx

2
›EðtÞ

›kx

� �
e2ðt2t0Þ=t dt

t
: ð1:17Þ

Taking a general field F;

F ¼ F0 þ
X

n

Fne2ivnt
; vn ¼ nv1

From h
dkx

dt
¼ eF;

kxðtÞ ¼ kxðt
0Þ þ

eF0

h
ðt 2 t0Þ þ

X
n.0

2eFn

hnv1

ðsin nv1t 2 sin nv1t0Þ ð1:18Þ

For n ¼ 1

kxðtÞ ¼ kxðt
0Þ þ

eF0

h
ðt 2 t0Þ þ

2eF1

hv1

ðsin v1t 2 sin v1t0Þ ð1:19Þ

For the tight binding Ex 2 k; Ex ¼ E0 2 E1 cosð2pkx=KÞ and ExðkxÞ ¼ Exð2kxÞ; putting

Eq. (1.18) in (1.17) with part-integration, the expectation value of the velocity becomes

kvxl ¼ nHv0

ðt

21
sinðgðt; t0ÞdÞeðt2t0Þ=tdt0; ð1:20Þ
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where v0 ¼ E1d= h; nH ¼
1

4p3

Ð
cosðkxdÞf0d k

!
and gðt; t0Þ is defined by the sum of the

second and third terms on the right side of Eq. (1.19), or

gd ¼
eF0d

h
ðt 2 t0Þ þ

2eF1d

hv1

ðsin v1t 2 sin v1t0Þ: ð1:21Þ

The integration of Eq. (1.20) is readily done using the expansion expðiz sin 	

uÞ ¼
Pþ1

n¼21 einuJnðzÞ; where Jn is the Bessel function, then the expectation value of

the velocity becomes

kvxl¼ v0H
X1

m;n¼21

Jm

vB1

v1

� �
Jn

vB1

v1

� �
sinðm2 nÞv1tþðvB þ nv1Þt cosðm2 nÞv1t

ðvB þ nv1Þ
2t2 þ 1

ð1:22Þ

where vB ; eF0d=h and vB1 ; eF1d=h: For H ¼ 1; kvxl in Eq. (1.22) is same as that

which was first obtained by Tsu (1990). For vB1=v1 p 1 (small F1),

kvxl¼ kvxl0 þRekvxl1cosv1tþ Imkvxl1sinv1t; ð1:23Þ

where

kvxl0 ¼ v0H
vBt

ðvBtÞ
2 þ 1

; ð1:24Þ

which is identical, as it should be, to the previous results. Let us discuss the case for

H ¼ 1; then v0H ¼ E1d=h and the maximum extent kxlm ¼ kvxlmt¼ E1=2eF0: Since

length is measured by nd; with n being the number of periods, the maximum number

of periods covered is given by

n ¼ E1=2eF0d ð1:25aÞ

ForvBtq 1; kvxl! 0; kxl¼ E1=eF0; and kxl¼ 2kxlm: ð1:25bÞ

The electrons will now oscillate with a period T ¼ 2p=vB; which was known to

Bloch (1928) and discussed by Houston (1940).

Without collision, an electron will oscillate at a frequency of vB and cover a distance of

E1=eF0: Note that the extent of an electron without collision is twice the maximum distance

given by v1t ¼ 1: We shall make this point clearer with respect to the degree of

localization. Rabinovitch and Zak (1971) cast some doubts about the existence of this

oscillation. In order to find out whether a Bloch electron can oscillate, we shall examine

Eqs. (1.22) and (1.23) in more detail. First of all, it is obvious that without both F0 and F1;

it is pointless to discuss whether a Bloch electron oscillates or not. I would like to point out

what constitutes basic understanding and what is needed in engineering optimization. It

turns out that all models apply within the limits set by the models. Often, a good model is

one that has an interrelationship with others familiar to a large number of researchers even
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though the models themselves may be quite limited. On the other hand, a less limited

model, by virtue of its complexity, may be familiar to very few. Do we pick the former

over the latter? Side stepping these philosophical points, we shall take a look at the linear

system. The in-phase component with time goes as cos vt which we abbreviate by writing

Rekvxl and the out of phase component with time goes as sin vt denoted by Imkvxl: Thus,

we sum all the terms in Eq. (1.22) for n 2 m ¼ 1: The equations describing the linear

response, for convenience, are given below:

Rekvl ;
Rekvxl1
v0sin vt

2v

vB1

� �
; ð1:26aÞ

and

Imkvl ;
Imkvxl1
v0sin vt

2v

vB1

� �
: ð1:26bÞ

Eqs. (1.26a and 1.26b) for various vBt are plotted in Figure1.6. For simplicity, we take

only the case of small electric field, i.e. vB1 p vB:

In Figure1.6, for vBt ¼ 1; Rekvl is always positive indicating the lack of gain or self-

oscillation. The Imkvl has a maximum at v ¼ vB: For vBt ¼ 2; Rekvl has a minimum at

v ¼ vB=2 and is negative, but Imkvl has a peak at v ¼ vB: With a further increase to

vBt ¼ 3; Rekvl has a maximum negative value at v ¼ 2vB=3 and the Imkvl has a peak at

Figure 1.6. The in-phase, Rekvl1 and out-of-phase Imkvl1 components of the linear response function for a

superlattice with an applied electric field of F ¼ F0 þ 2F1cos vt; vB ; eF0d=h and vB1 ; eF1d=h: After Tsu

(1993) with permission.
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v ¼ vB: Thus, the peak in Im part always appears at v ¼ vB; supposedly substantiating

the intuitive understanding that the system is oscillating at the Bloch frequency. The

question of gain or loss is another matter as we need to focus on Rekvl: Note that Rekvl
always has a maximum negative value below vB; indicating that self-oscillation that

occurs at the maximum gain is never at the Bloch frequency. Only as vBt!1 does the

maximum gain coincide with the Bloch frequency. For both vBtq 1 and vtq 1; it is

seen that Rekvl3 can have a substantial region that is negative, indicating that in the region

of nonlinear optics, an intense optical field is needed for gain.

What is happening is that higher energy photons cause transitions between minibands,

providing additional nonlinear response. This is because k is conserved to within multiples

of the reciprocal lattice vector, as in umklapprozesse. In the usual solids, optical

nonlinearity arises from small nonparabolicity of the E –k relation as treated by Jha and

Bloembergen (1968), as well as from the optical phonons in a multilayer dielectric

medium treated by Bloembergen and Sievers (1970). However, in man-made

suprelattices, nonparabolicity is huge, leading to substantial 2nd and 3rd harmonics

shown in Figure1.6, taken from Tsu and Esaki (1971), where the nonlinear effect is a factor

of 20 greater than that calculated by Wolf and Pearson (1966).

Experimentally one needs to arrange the polarization with a component of the

electric field in the superlattice direction. For t ¼ 0:5 ps and vBt ¼ 3 gives eF0d , 4

meV corresponding to F0 , 4 £ 103 V cm21 for d ¼ 10 nm: Therefore the condition

for self-oscillation at v ¼ 2vB=3 or v , 4 £ 1012 Hz; should be quite accessible. The

model calculations presented have answered the question that was raised about

whether or not a Bloch electron can oscillate. In fact, our results show that not only

can a Bloch electron go into oscillation, it can also serve as an amplifier. From device

viewpoint, one wonders whether it is better to use a superlattice as a “Bloch

amplifier” or one with a single quantum well with external feedback. At this point, I

remember years ago at BTL that a GaAs pn-junction transducer could operate without

an external cavity, rather different from the usual barium titanate transducer.

However, it was discovered that although the pn-junction acts as an electrical

resonating system, owing to the small value of the electromechanical coupling, the Q

value of the transducer is rather low. In short, the GaAs pn-junction transducer is not

very efficient, without, somehow, introducing a resonating system. Also, similar to the

traveling wave amplifier, the superlattice may have larger bandwidth and higher

power handling capacity. Additional considerations related to the effects of electric

field induced localization will be treated in a later section relating to the NDC

involving phonon-assisted hopping, where the effects of a superlattice of finite length

will be discussed. The physical picture may be simply summarized that the periodicity

of the solid serves as a distributed feedback. Therefore, one must recognize that the

validity of these results presented as applying to a finite number of periods must be

taken with additional considerations (Figure 1.7).
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1.6. NDC FROM THE HOPPING MODEL AND ELECTRIC FIELD

INDUCED LOCALIZATION

At a sufficiently high applied electric field, the energy gain by an electron reaching the

minizone boundary can exceed the energy bandwidth of the miniband. The band model

ceases to be valid. The hopping model of Tsu and Döhler (1975) is based on the model that

phonons provide the transfer of this energy to the lattice to reach equilibrium. The

mathematical derivation is based on the Kane function (Kane 1959). Some highlights

duplicated here are essential for the discussion, particularly in relation to the discussions on

electric field induced localization, which was only mentioned in the original work.

Figure 1.8 shows possible transitions between electrons localized in a given cell to adjacent

cells. Under the application of a field F0; a constant potential energy difference exists

between adjacent cells and a ladder structure for the energy state appears. If eF0d is such

that level 1 coincides with level 20, electrons may tunnel resonantly from 1 to 20 marked by

(a), followed by an inelastic scattering marked by (b) to level 10, in order to repeat the

process to the next cell. This process has been treated by Kazarinov and Suris (1972).

Figure 1.7. Calculated lJnl=J0 versus v for two values of t; with J ¼ en0kvxl; where n0 is the usual sum over the

DOS (density of states). After Tsu and Esaki (1971) with permission.
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The hopping model of Tsu and Döhler, as in the treatments of Saitoh (1972) and

Fukuyama et al. (1973), considers transitions between energy levels of a SL via phonon-

assisted transitions. The main motivation is to bypass the objections to using a band model

for the case where the energy gain by an electron in an electric field in a period exceeds the

energy bandwidth, i.e. hvB $ 2E1: Following Callaway (1964), the wave function in the

crystal momentum representations

cðrÞ ¼
Xð

wnðkÞcnðkÞdk; ð1:27Þ

where cnðkÞ ¼ Unðk; rÞe
ir·r and the Kane function (Kane, 1959).

wnðkÞ ¼
d

2p

� �2

exp 2
i

eF

ðkx

0
½12 1ð1Þn ðk0Þ�dk0xdðky 2 k0yÞdðkz 2 k0zÞ

� �
; ð1:28Þ

where

1ð1Þn ðk0Þ ¼ eFXnm þ 1nðkÞ and Xnm ¼
ð2pÞ3

V0

i
ð

Up
n

dUn

dkx

dr;

in which 1nðkÞ is the energy of the nth band. The requirement that wnðkÞ is periodic in k

results in the quantized levels

1v;nðkÞ ¼ eFd þ
d

2p

ðp=d

2p=d
½1ðkÞ þ eFXnm�dkx; ð1:29Þ

with v being any integer and Xnm ; L; a purely real constant because of the periodic

function Un: Using the tight binding E –k;

1ðkÞ ¼ h2k2
t =2m þ 10 2 ð1=2Þ11cos kxd; ð1:30Þ

Figure 1.8. Energy states under an applied electric field F: Process (a) involves direct tunneling followed by an

inelastic scattering (b), and process (c) describes inelastic scattering with emission and absorption of phonons.

After Tsu and Döhler (1975) with permission.

Superlattice to Nanoelectronics16



then

1vðkÞ ¼ h2k2
t =2m þ 10 þ eFdðv þ L=dÞ: ð1:31Þ

The above energy forms the basis of the SL, having equally spaced levels for different v:

The function

wvðkÞ ¼
d

2p

� �1=2

exp{ 2 i½kxðvd þ LÞ þ
11

2eFd

� �
sin kxd�}: ð1:32Þ

For one-dimensional periodic in x; with k restricted to the first minizone, 2p=d to p=d;

cðrÞ ¼
d

2p

� �1=2

eiktr
ðp=d

2p=d
Uðkx;xÞexp i kxðx2 vd 2 LÞ2

11

2eFd

� �
sin kxd

 �� �
dkx: ð1:33Þ

For large F such that eFd q 211; this wave function is highly localized with

Dx , 11=eF; centered at x ¼ Lþ vd: Therefore, the mean free path of the electrons must be

greater than Dx: With the transition probability due to phonons using the golden rule,

v^
vv0 ðkt 2 kt0 Þ ¼

2p

h

X
q

lkv0; k0t; nq ^ 1lHeplv;kt;nqll
2
dð1vðktÞ2 1vðk

0
tÞ7 hvqÞ; ð1:34Þ

with (þ ) for phonon absorption and (2 ) for phonon emission. Owing to small intercellular

transitions compared to intracellular relaxation, prior to and after each transition, both the

phonon and electron populations are governed by the equilibrium distribution functions,

Bose–Einstein and Fermi–Dirac functions, respectively. This is a major assumption that

allows us to proceed with the calculation. Skipping some detailed calculations involving

quite complicated numerical integration found in Tsu and Döhler (1975), the hopping

current jg between v and v0 cells, or g¼ v2 v0, becomes

jg ¼
emg

h2

ð1

0
½vþ

g ð1tÞ þv2
g ð1tÞ�f ð1tÞ½12 expð2geFd=kBTÞ�d1t; ð1:35Þ

where 1t is the energy transverse to the superlattice direction. Some of the steps used in

computing jg; involve first computing v^
vv0 ðkt 2 kt0 Þ by integration on the angle q and qx;

and summing over kt for v2 v0 ¼ 1;2;3;… To compare with the results derived for time

varying electric field presented in Section 1.5, let us return to the definitions for the

parameters used in the band model, i.e. energy bandwidth 21! 2E1; the applied electric

field F !F0 and the position of the miniband at E0; then

EvðkÞ ¼
h2k2

’

2m
þE0 þ eF0dðvþ L=dÞ; ð1:36Þ

and the wavefunction

cvðrÞ ¼
d

2p

� �1=2

eik’r
ðp=d

2p=d
uðkx;xÞexp i kxðx2 vd 2 LÞ2

E1

eF0d
sin kxd

 �� �
dkx: ð1:37Þ
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For large F0; the wavefunction is highly localized at a distance Dx , E1=eF0 and

centered at x ¼ Lþ vd: Using such a wavefunction to calculate the current due to an

electron in the cell v (energy state v) making a hop to cell v0 (energy state v0), we can

examine the important role of t; the scattering time. First of all, the localization distance

Dx , E1=eF0 agrees with that for the band model for vBtq 1: Our previous results have

pointed out that within the model of a constant scattering time t; the effect of scattering is

to reduce this localization length to half the value without scattering, as shown in

Eq. (1.25a). Although in this treatment and most SL calculations in general, finite

scattering time has not been included, it is necessary to see how the effect of the finite

scattering time can be understood. To take scattering into account, the total current should

be a sum of individual hopping between v and vv0; in other words, t determines the range

of g in

J ¼
Xn

g¼1

jg; with g¼ v0 2 v: ð1:38Þ

This is an extremely important point that we shall go into great detail after the

presentation of a physical model involving hopping using a coupled two-well model with a

voltage applied across the two adjacent wells. If the barrier is such that the tunneling

probability from one well to the next-nearest cell may be neglected, we may consider only

the net phonon-assisted transitions between the neighboring cells. Our purpose is to derive

the hopping current for this simple model and compare the results with those in Section

1.6. A general treatment for large tunneling between cells and long mean free path will be

discussed later.

1.6.1 Two-Well Model

Figure 1.9 shows a section of the superlattice potential profile. We assume that all the

energy states other than the lowest levels denoted by l1 and l2 are far away, so that it is

meaningful to consider the two lowest states only.

When the barrier width l is so large that electron wavefunctions do not overlap,

H0l1l ¼ l1l1l and H0l2l ¼ l2l2l ð1:39Þ

and l1 2 l2 ¼ V : Obviously for very high field, the next level L2 may be brought to the

vicinity of l1; so that level l1 will be coupled to L2 more so than with l2: This belongs to

the resonant tunneling case. As l is reduced, electrons in the states l1 and l2 are coupled

represented by a ; k1lH1l2l; in which H1 is the coupling operator, so that

11;2 ¼ l0 ^
V

2

� �2

þa2

" #1=2

þ
h2k2

’

2m
; ð1:40Þ
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where l0 is the longitudinal energy when V ¼ 0; and a ¼ 0: Note that 2a is the splitting

for V ¼ 0: These two states have wavefunctions

11 : c1 ¼
1

1 þ b2

� �1=2

ðl1lþ bl2lÞ; 12 : c2 ¼
1

1 þ b2

� �1=2

ðbl1l2 l2lÞ; ð1:41Þ

where

b ; 1 þ
V

2a

� �2
" #1=2

2
V

2a
: ð1:42Þ

Most people that I had discussions with, because of their familiarity with the molecular

orbitals, would quickly point out that the higher coupled state is anti-symmetric and the

lower of the two is symmetric. Note that in Eq. (1.41) the symmetry is reversed because we

have positive potential for the barrier, while in atomic systems, the positive nuclear charge

gives rise to negative potential. If we take

l1l/ sinðpp=WÞðx þ l=2Þeik’r

and

l2l/ sinðpp=WÞðx 2 l=2Þeik’r; ð1:43Þ

the matrix element

kc1leiq·rlc2l ¼
i2b

1 þ b2

1

qxW
sin

qxd

2
sin

qxW

2
£

1

1 2 ðqxW=2ppÞ2
dk0’;k’þq0’

: ð1:44Þ

Figure 1.9. Section of the superlattice potential profile, l1; l2; L1 and L2 are the energies of the uncoupled

wells with width W : 11 and 12 are the energies of the coupled wells when the coupling is increased by decreasing

the barrier width l: Tsu and Döhler (1975) with permission.
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For p ¼ 1 (ground state) and V q 2a;

kc1leiqxX lc2l ¼
i2a

V
sin

qxd

2

� �
1

qxW
£

sin
1

2
qxw

� �
1 2 ðqxW=2pÞ2

; ð1:45Þ

which is identical to the result of using Kane function for eFd q 11; if we identify 2a; the

splitting with the width of the E –k 11; eFd ¼ V and J1ðdÞ , 1=2ðdÞ: The transition

probability via electron–phonon interaction is then

w7
12 ¼

2p

h

X
q

lkc1llc2ll
2
dð11ð k

!
’Þ2 12ð k

!0
’Þ7 hvqÞ: ð1:46Þ

The rest of the calculation is identical to the previous treatment. The validity of the two-

well model depends on the extent of the localization of the wavefunctions. Therefore, it is

generally not applicable for low electric fields. Although the two-well model is only

correct at high fields, the approach may be used to treat the resonant tunneling case more

easily, because in principle, many higher levels may be incorporated into the formulation.

Figure 1.10 gives the comparisons between the superlattice case using the Kane

function with the two-well model for v2ð4pCsrh2=C2
1Þ versus F; at 300 and 77 K, with r;

C1 and Cs being the density, the deformation potential and the longitudinal sound velocity,

respectively. Superlattice ðnÞ denotes g ¼ n: For the case shown, there are two terms,

g ¼ 1 and 2, added to give the resultant. Note that oscillations at low fields are almost

gone, j ¼ j1 þ j2: With large t; coupling to remote wells becomes meaningful, so that

j ¼ j1 þ j2 þ j3 þ … moving the peak towards low field. We thus see that there is a role for

the relaxation time even we did not specifically include it. This is an important point

causing misunderstanding, not mentioned in the original paper by Tsu and Döhler (1975),

but by Tsu and Esaki (1991). Therefore, physically there is not much difference between

the hopping model and the band model, including the Bloch oscillation.

How many terms we need to sum depends on n; and in turn depends on the applied

electric field F0 in Eq. (1.25a). Therefore, in the extreme localization case where hopping

can only take place between adjacent cells, n ¼ 1; or in the above expression, v ¼ 1; then

the Esaki and Tsu (1969, 1970) expression vBt . 1 is not necessary because implicitly we

have already assumed that the mean free path is greater than the localization distance. This

point may be made quite clear by an example. Taking a regime where hvB , 2E1; such

that we cannot confidently use the band model, but the localization distance Dx ¼ nd; the

sum of jg requires all these terms up to n to be included. Note that in Figure 1.10, the peak

of the total current progressively shifts toward lower field, while the number of individual

hopping currents increases. How many terms we take depends on t; which is not taken into

account in any of these treatments of the SL. Thus, we need the Esaki and Tsu (1970)

condition, vBt . 1; to tell us how many terms in Eq. (1.38) should be taken. Since

scattering is not accounted for in the hopping model and the limit of sum is set by the band
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model, there is an intricate relationship between the band model and the SL treatment. For

vBt $ 1 and hvB p E1; the band model Esaki–Tsu applies. For hvB , E1; the hopping

model of Tsu–Döhler model applies, however, the Esaki–Tsu condition, vBt $ 1; is still

needed to tell us how many terms are required in the sum in Eq. (1.38). Only in the extreme

localization case, can the hopping model of Tsu and Döhler (1975) be taken without the

condition vBt $ 1 and then NDC is always given by eFd . 2E1; the energy bandwidth of

the band. As noted in Tsu and Esaki (1991), it is futile to apply the hopping model for

eFd p 2E1: A quantitative theory is lacking in the regime where the band model does not

apply and without taking into account the scattering, the hopping model also cannot apply.

The situation is analogous to localization by a magnetic field.

Figure 1.11 summarizes the discussion taken from Tsu and Esaki (1991). As

t3 . t2 . t1; the shaded region gives the limits vBt $ 1 and the peak current

progressively moves towards larger F: On the other hand, the calculated current from

the hopping model, jn progressively moves towards lower F: Therefore, the two models

practically describe the same basic phenomenon. This is a curious point shared by the lack

of significant difference between the coherent resonant tunneling of Tsu and Esaki (1973)

Figure 1.10. Comparisons between the hopping model using the Kane function with the two-well model for

v2ð4pCsrh2=C2
1Þ versus F at 300 and 77 K. Tsu and Döhler (1975) with permission.
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and the sequential model of Luri (1985), when scattering is taken into account. We shall

come back to these points later after the treatment of tunneling through a quantum well

structure.

Figure 1.12 shows the SL energy eFd versus miniband bandwidth E1 taken from Tsu

and Esaki (1991) (erratum). The shaded region shows the two models: band and hopping.

DE is the separation between minibands. In between the shaded regions, there is a lack of a

quantitative theory.

1.6.2 Effects of Finite Length

Some concerns about the existence of the SL in a periodic system of finite length led to the

discussion by Shockley (1972) and Fukuyama et al. (1973). Fukuyama considered the

Hamiltonian

H ¼
X

n

Hn þ H 0
n; ð1:47Þ

with Hn ¼ H0 þ Vn; where Vn ; eFdn ; nV0 and the nearest neighbor interaction such

that kn0lH 0
nlnl ¼ 0 for n0 ¼ n; and a for n0 ¼ n þ 1: With a wavefunction

c ¼
XN
n¼1

Cnaþ
n l0l: ð1:48Þ

Figure 1.11. Current J versus eFd=E1: As t3 . t2 . t1; the shaded region gives the limits vBt $ 1; and the

peak current progressively move toward larger F; where the same trend applies for the current j using the hopping

model. After Tsu and Esaki (1991) with permission.
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The expansion coefficient Cn satisfied the recursion relation

E 2 E0

V0

2 n

� �
Cn ¼

a

V0

ðCnþ1 þ Cn21Þ: ð1:49Þ

Using a rigid wall boundary condition, i.e. C0 ¼ CNþ1 ¼ 0; an equation for the

eigenstate E is obtained

J21ð2a=V0ÞYNþ121ð2a=V0Þ ¼ JNþ121ð2a=V0ÞY21ð2a=V0Þ; ð1:50Þ

in which 1 ; ðE 2 E0Þ=V0: Fukuyama showed that 1 ¼ n for a ¼ 0; which is a statement

of Stark quantization. For ap V0; he found that only states near the band edges are

affected ,N21. We shall take only three coupled wells and examine the question of

localization, where the separations are given by V0 (Tsu, 1992, 1993). With V0 ; eFd and

the nearest neighbor given by knlH0
nln0l ¼ a; the energy states are given by

E

E0

¼ 1 þ
a

E0

� �
b; cþ ¼

1

b

l1l
b 2 b

þ l2lþ
l3l

b þ b

� �
E

E0

¼ 1 : cc ¼
1

b
ðl1l2 bl2l2 l3lÞ

E

E0

¼ 1 2
a

E0

� �
b; c2 ¼

1

b

2l1l
b þ b

þ l2l2
l3l

b 2 b

� �
;

ð1:51Þ

where b ¼ ð2 þ b2Þ1=2 with b ; V0=a:

Figure 1.12. SL energy eFd versus miniband bandwidth E1: The shaded region shows the two models: band and

hopping. Tsu and Esaki (1991) (erratum) with permission.
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Figure 1.13 shows the plot of lcl2 for several values of b with a=E0 ¼ 0:1; and Table 1.1

gives the values of the energy E=E0:

It is clear from these energies that, whenever b . 1; the energy separation approach V0;

the applied voltage, and the corresponding wavefunctions start to be localized. For

example, the case for b ¼ 4; i.e. V0 ¼ 4a; lcl2 shows almost total localization in the sense

that the peak moves from the left to the right and the separation is dominated by the

applied voltage. The formation of the SL is based on the translational symmetry in a

constant applied field. Although Esaki and I used the model of an infinite structure to

calculate the minibands quite simply, we knew in reality one deals with finite chains,

perhaps no more than three as pointed out in the very first paper (Esaki and Tsu, 1970). In

an infinite system under an applied voltage, with þV on the right, the band profile displays

the familiar slope down, shown in Figure 1.14, and the minibands slope down accordingly.

However, we must be very careful not to misuse such a potential profile. As soon as the

energy gain eVd from the applied voltage per period exceeds the bandwidth of the

miniband, we are not in the band regime, rather, in the hopping regime where transport as

we normally understand it does not apply, because the energy states break up into localized

states as in a quantum well. In such a finite structure consisting of two or three coupled

wells energy states that are flat and horizontal across the coupled wells do not slope down

unlike the drawing applied to normal transport involving bulk semiconductors. Take a

system of two coupled quantum wells forming a repeated chain. The energy of each period

is flat across the period. Now, let us extend to three or four and we end up with the picture

represented by the coupled wave function shown in Figure 1.13. When the voltage drop

b = 0 b = 1 b = 4

Figure 1.13. The normalized wavefunctions lcl2 for three values of b: b ¼ 0 represents no applied voltage. The

coupling constant a between wells is taken as 0:1E0: Tsu (1993) with permission.

Table 1.1. Values of E=E0 for various b and a ¼ 0:1E0

b ¼ 0 b ¼ 1 b ¼ 4

Eþ=E0 1.141 1.173 1.424

Ec=E0 1 1 1

E2=E0 0.859 0.827 0.576
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per period exceeds the bandwidth of the miniband, localization dominates, the

wavefunction is localized within each well and a ladder structure appears. In a normal

bulk semiconductor, the high field region is actually limited by the velocity saturation with

a field of ,105 V cm21. In a normal solid having a lattice constant of few angstroms, eVd

is less than few millielectron volts, which is minuscule in comparison to the energy

bandwidth. The failure to distinguish cases with finite length contributed to the debate on

the existence of the SL (Rabinovich and Zak, 1971).

The interesting domain formation in a superlattice (Esaki and Chang, 1974) is in the

regime of localized hopping conduction. In their structure of a 50 period–GaAs/AlAs

superlattice, with an energy band DE1 , 10 meV and at an applied voltage of 10 meV per

period, the energy states are certainly localized. Similarly, one of the three samples in the

photoconductivity study reported by Tsu et al. (1975), is also within the localized regime.

In essence, most of these structures were in the regime of multiple quantum wells, rather

than true superlattices where conduction is dominated by the conventional band model. An

account dealing with these points will be given later.

1.6.3 Origin of NDC from the Band Model and Hopping Model

Thus far, using the band model (Esaki and Tsu, 1970), the condition for NDC is vBt $ 1;

and in physical terms this is the presence of a Bloch oscillation as electrons are driven to

the minizone boundary by the applied electric field F: On the other hand, Tsu (1975)

pointed out in an unpublished paper, that NDC in the hopping model is due to the decrease

in overlap of the wavefunctions between the SL energy levels as the applied field is

increased.

Let us point out some of the salient features described by Tsu (1975). The condition for

Bloch oscillation is vBT ¼ 2np; with T ¼ d=kvl: For the tightly binding E –k relationship,

Figure 1.14. Conventional way of representing a periodic structure with energy bands denoted by E1 and E2;

sloping down from the left to the right contact with a positive V : With a voltage drop per period of Vd such that

eVd exceeds the bandwidth DE1; such a profile is incorrect, because the minibands stay flat instead of sloping

down.
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kvl ¼ E1d=ph; so that

eFd ¼ E1=n: ð1:52Þ

And the maximum excursion xm ¼ E1=eF; which is same as Eq. (1.25b) with F replaced by

F0; because in Section 1.5, F is reserved for a time varying electric field. At xm; the

corresponding maximum k is km ¼ p=d; so that electrons can, at most, gain an energy of E1

from the field F: When E1 is greater than energy of the optical phonon, interaction with

phonons reduces the scattering time, requiring an increase of the field to reach Bloch

oscillation.

On the other hand, in the picture of hopping using the Kane function (1959), the

transition of a hop to the next state from 11 to 11 2 eFd; or to the next nearest energy state

from 11 to 11 2 2eFd; and so on, can be expressed by

k1leiq·rl1 þ nl2 !
E1

V

� �2n

;
E1

V
! 0: ð1:53Þ

Thus, the hopping model also gives the condition neFd ¼ E1; which is same as

Eq. (1.52). Therefore, the onset of NDC for the hopping model is described by the same

physical principles. Furthermore, the decrease of overlap between neighboring states leads

to the same effects even with impurity scatterings (Döhler et al., 1975). In summary, NDC

is nothing but the condition for Bloch oscillation as first described by the simple band

model.

Let us calculate the mobility of the GaAs well region using the experimental data for the

I –V curves (Chang et al., 1973) for a superlattice with barrier width B ¼ 1 nm; well width

W ¼ 6 nm; and a barrier height V1 , 0:4 eV: From Penny–Krönig model, E1 ¼ 70 meV:

The measured current maximum gives eFd ¼ 18; or n ¼ 70=18 ¼ 3:9: The electron mean

free path is , 4d; four periods. This allows us to obtain for the scattering time

t ¼ nd=kvl , 1:2 £ 10213 s corresponding to m ¼ 4650 ðcm2 V21 s21Þ using the tight

binding model. Other measurements from Tsu et al. (1975), with different W and B values,

led to the same value for the mobility. These are given in Table 1.2.

Note that the mobility is very close to the typical value of 5000 for molecular beam

epitaxy (MBE) GaAs epitaxial layers. The exact equality for the two cases is due to

rounding off the decimals. Nevertheless, it is remarkable that they agree. Therefore, these

results indicate that it is simple to characterize the mobility using only the position of the

onset of the NDC. Let us ask what happens to real solids. If we assume that the anomaly

Table 1.2. Comparison of calculated scattering time and mobility from measured data

W B E1 (meV) n nd (nm) t (10213 s) m (cm2 V21 s21) Refs.

6 1 70 4 28 1.2 4650 Chang et al. (1973)

5 5 38 2 20 5.9 4650 Tsu et al. (1975)
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observed by Maekawa (1970) may be due to the same physics as sketched above,

then indeed the SL in real solids has already been observed. More recently, the existence

of the SL has been experimentally verified (Leo et al., 1991; Feldmann et al., 1992; Shah,

1992).

The interesting domain formation in a superlattice (Esaki and Chang, 1974) is in the

regime of localized hopping conduction. In their structure of a 50 period–GaAs/AlAs

superlattice, with an energy band DE1 , 10 meV and at an applied voltage of 10 meV per

period, the energy states are certainly localized. Similarly, one of the three samples in the

photoconductivity study reported by Tsu et al. (1975), is also within the localized regime.

In essence, most of these structures were in the regime of multiple quantum wells, rather

than true superlattices where conduction is dominated by the conventional band model. An

account dealing with these points will be given later.

1.7. EXPERIMENTS

1.7.1 Domain Oscillation in a Superlattice

Esaki and Chang (1974) reported the oscillation observed in a superlattice due to a domain

of high field regions induced by the NDC at an electric field beyond the inflection point.

Because of unavoidable inhomogeneity, the high field induced domain appears and is

followed by oscillatory behavior. The superlattice structure used in their experiments

comprises 50 periods of 4.5 nm GaAs wells and 4 nm of AlAs barriers. The calculated

energy: EðDEÞ; both in millielectron volts, is 80(8). NDC appears at ,0.8 V,

corresponding to 16 mV per period. About half the voltage per period ,16 mV is across

the well region. Thus, NDC appears at ,8 meV which is close to the bandwidth DE , 8

meV of the calculated miniband for a 4.5 nm well width. Therefore, the instability starts at

the threshold of localization, rather than the NDC in the superlattice. In short, this

superlattice is closer to a multiple quantum well rather than a superlattice. Figure 1.15

shows the conductance from 65 to 300 K.

Figure 1.16 shows energy profiles with the domain formation on the left and the

corresponding conductance at points: (a) initial low field band conduction, followed by the

appearance of NDC shown on the right in (b), where domain formation is initiated. On

further increase of the applied voltage, a domain is established in (c). And finally

conductance is restored when the current in the lower band E1 can tunnel through the

higher E2 of the adjacent double barrier quantum well section, resulting in the

establishment of sections, and the domain throughout the length of the structure. This

experiment has established without doubt the presence of man-made quantum states.

Depending on the applied voltage, conduction is transformed from initial band-like

conduction to hopping conduction. Does the appearance of oscillation signify instability?

Not at all! Any system with a NDC will result in oscillation. Even if there is none
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internally, the system will oscillate at the maximum gain dictated by the overall circuit in

the measurement. Shall we apply bias with a large resistor to prevent oscillation? The

answer is yes, purely for observing the slope of the NDC. However, for the amplifier, we

need all the NDC possible for positive feedback.

1.7.2 Experiments on the Stark Ladder

Koss and Lambert (1972) reported the effect of a constant electric field on optical

absorption in GaAs. Figure 1.17 is a re-plot of their data with the lines removed. Without

the guide from the calculated lines, the data do not clearly indicate jumps in hv ¼ eFa:

The situation is quite different in a superlattice. Mendez et al. (1988) observed field

dependent photoluminescence and photocurrent with results consistent with field induced

localization. They observed an increase in localization with an increase in the applied

electric field. Voisin et al. (1988) observed the effect of Stark quantization in a

GaAs/AlGaAs superlattice on electroreflectance and Lyssenko et al. (1997) observed the

spatial displacement of the Bloch oscillating electrons. Leavitt and Little (1990) put

a quantum well inbetween superlattices serving as a notch for reference in their study of

optical transition involving SL. It is interesting to note that Dignam and Sipe (1991)

considered the treatment by Emin and Hart (1987) as the ultimate proof of the existence of

the Stark ladder. In this work, they take the constant electric field as a superposition of a

saw-tooth ramp and a step. Actually this approach is no more valid a proof than previous

work. This is the proper place to comment on the many theoretical investigations.

Figure 1.15. Difference conductance versus applied voltage at 65–300 K. Note the NDC at 125 and 65 K. After

Esaki and Chang (1974) with permission.
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Personally, we feel that the many body approach utilizing a linear chain model is basically

pedagogical (Chen and Zhao, 1991).

Recently, the NDC first predicted by Esaki and Tsu (1969) was observed by

several teams (Beltram et al., 1990; Sibille et al., 1990). These are very important

experimental confirmations of Stark quantization. As we discussed earlier, for vBtq 1;

an electron oscillates by virtue of repeated Bragg reflections, leading to localization.

Again, an analogy to the magnetic quantization is in order. The observation of cyclotron

resonance or the de-Haas–van Alphen effect is a direct manifestation of magnetic

quantization. The observation of NDC is a direct manifestation of electric field

Figure 1.16. Energy profile with domain formation (left). Conductance at points: (a) band conduction, (b)

initial domain formation, (c) expansion of domains, (d) fully developed domains. After Esaki and Chang (1974)

with permission.
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quantization. Beltram et al. (1990) were quite correct in pointing out that localization starts

at vBt . 1; the condition for NDC. SL theories predict that SL exists at any field because

scattering is not considered. Obviously it is meaningless to consider quantized energy

level for vBt , 1: This author tried to consider the effect of incoherent scattering on the

energy states of a quantized system (Tsu, 1989). It is common first to find the eigenstates

using perturbation calculations. Scatterings are considered and energy broadening is

obtained from the scattering cross-section. When scattering is large, we know that not only

levels are broadened, but there should be an accompanied level shift. These considerations

together with the discussion of the effects of scattering on localization should induce some

theorists to formulate a realistic theory instead of redoing what has been done many times.

The reason is obvious: most semiconductors do not have sufficiently long t; or mean free

path, so that the effects of scattering are dominant. In other words, experiments with real

solids instead of superlattices have a marginal chance of success. For this reason,

scattering must be taken into account in any realistic theory. This is also why this author

took the Boltzmann transport approach.

Apart from what has been discussed, there is another important difference between a

superlattice and real solids. In superlattices, if the applied electric field is mis-oriented

with respect to the periodic axis there are few consequences. However, in real solids, there

is a built-in smearing effect. If the applied electric field is slightly off the major symmetry

Figure 1.17. Absorption coefficient versus photon energy taken from Koss and Lambert (1972). The figure is

replotted with comparison to theory removed. The stepwise increase at Dhv ¼ neFa is not so obvious. After Koss

and Lambert (1972) with permission.
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axes, theory predicts that there will be no Stark quantization, and yet, intuitively, no major

problem should arise because there is always some spread in the field axis. Perhaps a wave

packet consisting of a solid angle of k vector centered about the field axis should be taken.

The coherent oscillations of a wave packet in a double-well structure have been recently

observed by Leo et al. (1991). Furthermore, Bloch oscillation in a semiconductor

superlattice has also been observed by Feldmann et al. (1992). Actually, superlattice and

coupled quantum wells are not all that different theoretically and experimentally. As

discussed earlier, an electric field induces localization in a periodic system, as well as

coupled wells, as shown in Figure1.18, by the same mechanism, separating the energies

between adjacent cells resulting in a decoupling of wavefunctions. Therefore, these

experimental observations confirm localization induced by the application of a constant

electric field.

1.7.3 Comparison with Cyclotron Resonance

I spent some time during the summer of 1991 at IBM Research working with Leo Esaki.

He asked me to look into the confusion that had surfaced between the band model and the

hopping model and which resulted in our paper (Tsu and Esaki, 1991), in particular,

making a comparison between cyclotron resonance and the SL. Since the analogy is much

more than casual, the situation will be discussed here in more detail.

Figure 1.18. Current versus applied voltage in the hopping regime. After Tsu and Döhler (1975) with

permission.
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Before the establishment of energy quantization in units of hvc with vc ¼ eH=mc; the

dynamics of electrons in a magnetic field was treated in the traditional equation

k ¼ ðe= hcÞv £ H: ð1:54Þ

The situation is entirely analogous to our situation, with the use of k ¼ ðe= hÞF for NDC,

by Esaki and Tsu (1970), establishing the condition for Bragg reflection. Without

scattering, owing to the oscillatory nature, the electrons are entirely localized within a

distance kxl given by Eq. (1.25b). Similarly, in cyclotron resonance, without scattering,

electrons are entirely localized within a cyclotron orbit. The quantization of cyclotron

orbit is treated without scattering (for example, Ziman, 1988), in much the same way as the

treatment of the SL. Experimentally, taking scattering into account, the condition vct . 1

must be observed. In addition, as hvc approaches the bandwidth of the energy band in

question, simple transport theory using the above equation of k cannot apply. And yet, a

formal quantization treatment by solving the Schrödinger equation with multiple bands

lacks the effect of scattering. To treat it properly, strictly speaking Green’s function should

be used, as discussed in the section on damping in resonant tunneling. Therefore, we must

examine closely the validity of the band model and the hopping model. However, from an

experimental point of view, as in the case of cyclotron resonance, solution of the

Boltzmann equation is certainly the key to understanding the experimental results. As in

most experiments on superlattices, the range of validity of the band model is exceeded, and

therefore, in most situations, the concept of transitions between SL levels needs to be

considered. There is one subtle point that needs to be clarified—the role of scattering in

localization. Again, we shall first discuss magnetic quantization. When an electron

undergoes a collision before completing one circular orbit, cyclotron resonance cannot be

important. Similarly, whenever an electron suffers a collision before Bragg reflection, the

SL cannot be dominant. Intuitively, if a wavefunction is localized in one cell, scattering can

couple a wavefunction to wavefunctions in the adjacent cells, resulting in “delocalization”,

similar to the case of an electron in one cyclotron orbit scattered into another orbit. Why

then is the maximum excursion kxlm reduced because of scattering? The answer to this

paradox lies in the fact that localization in quantum mechanics is only defined in terms of

stationary eigenstates, i.e. the extent of the eigenfunction, and scattering brings about

incoherent transitions among stationary states. Therefore, scattering reduces the coherent

length, in other words “delocalizes” the wavefunction resulting in spreading. Since this

spreading is incoherent, we should not consider that localization is reduced. On the

contrary, localization, as defined by the extent of the coherent part of the wavefunction, is

in fact increased. We can thus clearly state that localization is increased by scattering. This

is certainly true in amorphous quantum wells. We shall close this discussion with a

definitive statement regarding the effects of scattering. Scattering increases localization.

And this increase in localization in turn accompanies broadening of the SL. Therefore, we

have reached an important understanding that should be remembered—When keeping
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the scattering fixed, increases in the applied electric field increase localization and

sharpen the SL levels. When keeping the field fixed, increases in scattering will also

increase localization, but broaden the SL levels!

To summarize, the relationship between cyclotron resonance and magnetic quantization is

identical qualitatively to the Bloch oscillation and electric field induced quantization. At

present, before scattering is included in the quantization schemes, the Boltzmann transport

equation provides a better guide for experiments. At extremely high field where hvB , E1;

scattering considerations are less important in hopping models because localization is

sufficiently complete that the wavefunctions are almost decoupled between adjacent cells.

This extreme quantization is unlikely to be observable in a real solid except in molecular

crystals. Nonetheless, this extreme localization is in fact easier to observe in superlattices

and quantum well structures. Since the density of states obtained from SL formulation is not

obtainable from a semi-classical band model, effects such as optical transitions, involving

these Stark levels, and resonant tunneling when these levels are lined up between adjacent

cells, require a quantum mechanical approach. This aspect is, of course, apparent in the case

of magnetic quantization—transitions involving Landau levels must be treated with the full

Hamiltonian. Unlike in magnetic quantization, vctq 1 is generally achievable, but in the

SL, vBtq 1 is generally difficult to obtain. Theorists willing to tackle the scattering in the

SL can indeed provide an important contribution to the field of electric field quantization.

From a device point of view, which was what provided the rationale in this field, with

the advent of hypermobility materials (Pfeiffer et al., 1989), many new effects such as NDC,

material for nonlinear optics (Tsu and Esaki, 1971), parametric light amplifier (Tsu, 1990;

Monsivais et al., 1990) and ultimately a terahertz Bloch oscillator, are experimentally

realizable or already proven.

1.8. TYPE II SUPERLATTICE

Superlattices treated thus far involve modulations of the conduction band or valence band.

In some special heterostructures of A/B the conduction band of A lies close to the valence

band of B, forming the so-called type II superlattice. In InAs/GaSb, the top of the valence

band of GaSb is above the bottom of the conduction band of InAs. It turns out that this

type of superlattice has a unique feature—the band gap of the miniband, the energy

separation between the mini-conduction band and mini-valence band depends on the length

of the periodic variation of the two materials, A and B. For small separations, these two

bands interact, resulting in a new band gap. However, for large separations, interaction of

these bands vanishes so that the mini-gap tends to zero resulting in a zero-gap superlattice.

Since part of the purpose of this book is to stimulate ideas, I would like to describe how the

idea came to Esaki and me. Esaki asked me if I had some insight into how to move the point

of inflection, when the mass changes sign at some value of E –k of the miniband, closer to
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the mini-zone center, in order to lower the electric field necessary for NDC. While we were

examining various combinations of compound semiconductors, Esaki took a copy of

Handbook of Electronic Materials by Neuberger (1971), and asked what would happen if

the top of the valence band lies below the bottom of the conduction band. Although we did

not come up with a clear cut physical insight regarding whether this system would result in

moving the point of inflection closer to the G point, we agreed that the idea definitely was

worth exploring. I decided that Kane’s two-band k·p model (Kane, 1959) would be most

suited for this problem, partly because I had used this method before.

1.8.1 Material Parameters for the In12xGaxAs/GaSb12yAsy System

If we select a pair of alloy semiconductors, In12xGaxAs/GaSb12yAsy, and choose

y ¼ 0:918x þ 0:082; then a perfect lattice match is obtained for the A/B system. The

material parameters used for a suitable A/B system (Sai-Halasz et al., 1977) are tabulated

in Table 1.3 taken from Neuberger (1971).

Three pairs, the (a), (b) and (c) with band-edge energies shown in Figure 1.19 by

bracketed arrows, are plotted against the alloy composition x or y: The energy ordinate

scale is referenced to the vacuum level. A possible bowing is shown as a dashed line.

However, Vegard’s law is used for the calculation.

1.8.2 Kane k·p Two-Band Model

Because the adjacent layers involve the coupling of the conduction and valence bands,

unlike type I superlattices, Bloch waves instead of plane waves must be used. The plane

wave solution is adequate in general whenever the conduction band minimum of one layer

is far from and above the valence band maximum of an adjacent layer. In the quaternary

system, the top of the valence band of GaSb is 0.14 eV above the bottom of the conduction

band of InAs. The k·p two-band model of Kane (1959) is ideal for treating this case,

although in general the method can be extended to include other bands, for example,

the calculation of the energy band for GeTe by Tsu et al. (1968). The Hamiltonian matrix

Table 1.3. Material parameters selected for the type-II superlattice

Energy gap

Eg (eV)

Electron affinity

x (eV)

Electron mass

me=m0

Light hole mass

mlh=m0

Lattice constant

a (nm)

(a) InAs 0.36 4.9 0.024 0.024 0.6058

GaSb 0.70 4.06 0.048 0.056 0.6094

(b) InGaAs 0.44 4.838 0.027 0.028 0.6028

GaSbAs 0.81 4.062 0.051 0.060 0.6028

(c) InGaAs 1.078 4.344 0.053 0.063 0.5786

GaSbAs 1.211 4.067 0.062 0.074 0.5786
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for the two bands is given by

H ¼

Eg þ
h2k2

2m0

h

m0

k·p

h

m0

k·p
h2k2

2m0

2
66664

3
77775 ð1:55Þ

where p is the momentum matrix element taken, for convenience, to be real as originally

assumed by Kane, and the zero energy is at the valence band maximum. Then the E –k

relationships of the conduction and valence band, 1c and 1v; respectively, obtained from

the secular determinant are given by

1c;v ¼
h2k2

2m0

þ
Eg

2
½1 ^

ffiffiffi
C

p
� ð1:56Þ

where C ; 1 þ
h2k2

mEg

; k2; in which the reduced mass m21 ¼ m21
c þ m21

v : The

eigenfunctions diagonalize Eq. (1.55), are

Uc ¼ ð1 þ lbl2Þ21=2½l1lþ bl2l�; ð1:57aÞ

Figure 1.19. Changes in band edge energies with composition x or y in the In12xGaxAs and GaSb12yAsy

quaternary system. Pairs (a), (b) and (c) bracketed by arrows are used for the calculations. Sai-Halasz et al. (1977)

with permission.
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and

Uv ¼ ð1 þ lbl2Þ21=2½bl1l2 l2l�; ð1:57bÞ

in which

b ; ½ð
ffiffiffi
C

p
2 1Þ=ð

ffiffiffi
C

p
þ 1Þ�1=2;

where l1l and l2l represent the wavefunctions for k ¼ 0: For k ¼ 0; C ¼ 1 and b ¼ 0; there

is no mixing of the two bands, whereas at large k; C q 1 so that b ! 1; the U functions are

the usual ðl1l^ l2lÞ=
ffiffi
2

p
: At the branch point, h2k2 ¼ 2mEg; b is purely imaginary, so that

U ¼ ðl1lþ il2lÞ=
ffiffi
2

p
: In general for k – 0; the states l1l and l2l represent the

wavefunctions at k ¼ k0; then

1c;v ¼
h2ðk 2 k0Þ

2

2m0

þ
Eg

2
1 ^

h2

Eg

ððk 2 k0Þm
21ðk 2 k0Þ

" #1=2( )
; ð1:58Þ

where the mass tensor m21 has m11 ¼ m22 ¼ m21
t and m33 ¼ m21

l : The coupling parameter

in terms of k2 ; h2k2=mEg becomes b ¼ ð
ffiffiffiffiffiffiffiffi
C 2 1

p
Þ=k; when it is evident that the coupling

parameter, b depends on the sign of k: A wave traveling in the þx direction with (þ ) and

in the 2x direction with (2 ) should be used in Uc of Eqs. (1.57a) and (1.57b) for bð^kÞ or

bð^kÞ: Furthermore, for the valence band, the signs are reversed such that electrons

traveling in the þx direction with (2 ) and 2x direction with (þ ) should be used in Uv of

Eq. (1.58) for bð^kÞ or bð^kÞ: In particular, the next section describes the reflection and

transmission coefficients for waves incident on an interface, when the Bloch functions

instead of the plane waves for the electrons must be used. The use of the two band k·p

model is ideal for this situation.

1.8.3 When Are the Full Bloch Waves Needed?

Figure 1.20(a) shows a type I superlattice, i.e. an electron in a conduction band incident to

the left of another conduction band separated by an interface and a type II superlattice in

(b) where the right side is a valence band at the same energy.

It is generally unnecessary to include the full Bloch functions for conduction band to

conduction band, whereas for conduction band to valence band shown in (b), serious error

would generally prevail without the Bloch functions. Explicitly, the superscripts (þ ) and

(2 ) denote the waves moving to the right and left respectively and the subscripts c and v

denote the conduction and valence bands, or the upper and lower bands:

cþ
c ¼ Ucðk; xÞe

ikx
; c2

c ¼Ucð2k; xÞe2ikx ð1:59aÞ

cþ
v ¼ Uvð2k0; xÞeik0x

; c2
v ¼ Uvðk

0
; xÞeik0x

: ð1:59bÞ
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It is important to note the signs of the exponentials for the waves (þ ) and (2 ) here, as well

as in Uc and Uv; where the signs originate from bðkÞ: Incorrect signs in Eqs. (1.59a) and

(1.59b) are often the source of errors in calculations involving incident and reflected waves.

Let us proceed with the reflection problem, with an electron from the left conduction

band and emerging from the right of the interface into the conduction band with (þ ) for k2;

and valence band with (2 ) k2: For convenience, for the conduction band electron incident

from the left onto an interface located at x ¼ 0; we use U1 ; Ucðk1; xÞ; V1 ; Ucð2k1; xÞ;

and for the transmitted electron to the right, U2 ; Uvð7k02; xÞ; (2 ) for movement to the

right and (þ ) for movement to the left, then,

c1 ¼ U1expðik1xÞ þ RV1expð2ik1xÞ; ð1:60aÞ

and

c2 ¼ TU2expðik2xÞ: ð1:60bÞ

Matching these wavefunctions and their derivatives (equal effective masses are taken

for this example), there results

R ¼
ðk1 2 k2Þ2 i½ðU 0

1=U1Þ2 ðU 0
2=U2Þ�

ðk1 þ k2Þ2 i½ðU 0
2=U2Þ2 ðV 0

1=V1Þ�
; ð1:61aÞ

and

T ¼
2k1 2 i½ðU 0

1=U1Þ2 ðV 0
1=V1Þ�

ðk1 þ k2Þ2 i½ðU 0
2=U2Þ2 ðV 0

1=V1Þ�
: ð1:61bÞ

Obviously for plane waves, these U functions do not appear in R and T . Note that these

U functions, for example, U1; are given by Eqs. (1.57a) and (1.57b). Therefore, some

algebra is involved resulting in R and T once the basis states l1l and l2l are chosen. As an

Figure 1.20. E –k for (a) type I and (b) type II superlattices. The horizontal line indicates the energy of the

electron.
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example leading to useful and simple results, two orthonormal functions satisfying the

periodicity of the lattice g ; 2p=a; where a is the lattice constant, may be taken as

l1l ¼ ðg=pÞ1=2cosðgxÞ and l2l ¼ iðg=pÞ1=2sinðgxÞ; ð1:62Þ

for type I, conduction band to conduction band, so we have

R ¼
ðk1 2 k2Þ þ ½b1ðk1Þg1 2 b2ðk2Þg2�

ðk1 þ k2Þ þ ½b1ðk1Þg1 þ b2ðk2Þg2�
; ð1:63aÞ

and

T ¼
2½k1 þ b1ðk1Þg1�

ðk1 þ k2Þ þ ½b1ðk1Þg1 þ b2ðk2Þg2�
: ð1:63bÞ

For type II with an incident electron in the conduction band and a transmitted electron in

the valence band, R and T are:

R ¼
ðk1 2 k2Þ þ ½b1ðk1Þg1 þ b21

2 ðk2Þg2�

ðk1 þ k2Þ þ ½b1ðk1Þg1 2 b21
2 ðk2Þg2�

; ð1:64aÞ

and

T ¼
2½k1 þ b1ðk1Þg1�

ðk1 þ k2Þ þ ½b1ðk1Þg1 2 b21
2 ðk2Þg2�

: ð1:64bÞ

We shall take a special case using Eq. (1.64a) for the case shown in Eq. (1.56), a typical

case where the incident electron from the conduction band is transmitted into the valence

band on the right with the top of the valence band lying above the bottom of the conduction

band, for k1 < k2; g1 < g2 q k1 and b1 < b2 , 1=
ffiffi
2

p
; R , 1=3; whereas without these U

functions, R , 0: Physically, the wavefunctions for the conduction band and valence band

are orthogonal, but are coupled at the same energy, in this case, the k·p term that couples

them results in a linear combination of these orthogonal functions. We recognize that

when the reflectivity increases from 0 to 1/3 it indicates that an effective barrier is present

between the electron in the conduction band and valence band. To get some idea about this

effective barrier, one may simply substitute the U functions from Eqs. (1.57a) and (1.57b)

into the Schrödinger equation after canceling the plane wave parts for the effective V : The

seemingly complicated problem for the overlapping type II superlattice can be treated

quite simply using the principles established in this section. A more direct explanation in

terms of an effective potential experienced by an electron in the case of InAs/GaSb, when

an electron from the conduction band aligns in energy to an electron in the valence band,

will be further elaborated after the next section.
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1.8.4 Type II Superlattice with the Kane Two Band Model

Writing the Bloch function cðk; xÞ ¼ Uðk; xÞeikx for the wave going to the right, and

cð2k; xÞ ¼ Uð2k; xÞe2ikx; for the wave going to the left, then the waves in each sections are

c1ðk1; xÞ ¼ ½AU1ðk1; xÞexpðik1xÞ þ BU1ð2k1; xÞexpð2ik1xÞ�; 0 , x , d1 ð1:65aÞ

c2ðk2;xÞ¼½CU2ðk2;xÞexpðik2xÞþDU2ð2k2;xÞexpð2ik2xÞ�; d1,x,d1þd2¼d ð1:65bÞ

c3ðk3;xÞ¼c1ðk1;x2dÞexpðikdÞ: d,x,d1þd ð1:65cÞ

Assuming each layer thickness is an integer multiple of the lattice constant a in

Table 1.3, the E–k relationship for k as a function of E results,

cosðkdÞ¼cosðk1d1Þcosðk2d2Þ2F sinðk1d1Þsinðk2d2Þ; ð1:66Þ

in which

F¼
1

2

ik1þU 0
1=U1

ik2þU 0
2=U2

þ
ik2þU 0

2=U2

ik1þU 0
1=U1

" #
ð1:67Þ

where Ui¼Uiðki;0Þ and U 0
i¼dUiðki;xÞ=dxlx¼0; and the allowed bands correspond to energy

with real k: Eqs. (1.66) and (1.67) reduce to the well-known Kronig–Penney solution if the

logarithmic derivatives in Eq. (1.67) are zero. Some of the details in calculating the E–k

from the above equations have been left out in the published version (Sai-Halasz et al.,

1977). A one-dimension derivation without including self-consistent potential and spin

will be treated in what follows. The LCAO by Sai-Halasz et al. (1978) did take 3-d into

account, but left out the self-consistency and spin. In fact LCAO led to the same results as

the use of k·p

From the viewpoint of physical insight, the k·p model is more transparent to numerical

computations. Using the U functions in Eq. (1.57b), and the l1l and l2l in Eq. (1.62), the

energy versus k relations for several cases are shown in Figure 1.21, taken from

Sai-Halasz et al. (1977). A word of caution on this simple orthonormal function is

appropriate.

The momentum matrix element k1lPl2l ¼ hg ¼ 2ph=a; with a being the lattice constant.

However, the Kane model also gives k1lPl2l ¼ ðm0=2ÞðEg=mÞ
1=2: Therefore, the use of these

simple functions puts a restriction on the lattice constant a ¼ ð4ph=m0Þm=Eg: Nevertheless,

in a computational exercise, we have tried various orthornormal functions for l1l and l2l
and discovered that results are not very sensitive on the particular forms used, partly

because U functions come in as logarithm derivatives, U 0=U; somewhat akin to variational

solutions where a ratio is involved. Several cases were calculated by Tsu (1976), an

unpublished work containing much of the presented material in this Section 1.8 and which

formed the basis of the published version by Sai-Halacz et al. (1977).

The bottom part of the figure shows the reduction of the new Eg versus the period.

The smaller the period, the larger is the interaction resulting in coupling. At a large
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period, simply there are not too many interactions per unit volume, leading to zero

band gap. In this coherent picture, the system tends toward a zero band gap, but is

not semi-metallic. As the period d . l; the coherence length of the electrons, the

system returns to the semi-metallic state with overlapping of bands. This is really a

point of fundamental importance, in that as long as coherent interactions dominate,

even with long periods, only zero-gap behavior should be expected.

Figure 1.22 shows various U functions used. Before explaining the details of Figure

1.22, let us see what was done to avoid the restriction on the lattice constant a: By adding

another term to Eq. (1.62),

l1l ¼
2

að1 þ B2Þ

� �1=2

½cos gx þ B cos 2gx�; ð1:68aÞ

Figure 1.21. The E –k relationships calculated by the two-band k·p, model top of figures and energy gap,

bottom of figures, versus the reduced k=ðp=dÞ; for three pairs (a), (b) and (c), together with their respective band-

edge profiles. Dashed curves are derived from plane waves. Sai-Halasz et al. (1977) with permission.
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l2l ¼ i
2

að1 þ B2Þ

� �1=2

½sin gx 2 B sin 2gx�: ð1:68bÞ

Now the momentum matrix

k1lPl2l ¼ hg
1 2 2B2

1 þ B2

 !
¼ ðm0=2ÞðEg=mÞ

1=2
; ð1:69Þ

for the determination of B: With B; these basis functions are then used in Eqs. (1.68a) and

(1.68b) for the computation of E –k for the InAs/GaSbAs systems shown in Figure 1.22,

where E 2 k=kd; as well as the variation of the effective band gap, are shown. The notation

(3,3) is for three unit cells of InAs and three unit cells of GaSb0.915As0.085 and (5,1) is for

five InAs and one GaSbAs unit cells, etc. Solid lines apply to (3,3) using the basis states

Figure 1.22. Energy versus momentum k=kd for the InAs/GaSb0.915As0.085 system taken from Tsu (1976,

unpublished), left and energy versus unit cell thickness, right. The notation (3,3) is for three unit cells of InAs and

for three unit cells of GaSbAs. Solid lines and solid lines with three dots are for U functions using basis sets given

by Eq. (1.68a), (1.68b) and (1.62), respectively. For U ¼ 1 or plane waves shown by xxx, E –k is multivalued and

obviously incorrect.
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given by Eqs. (1.68a) and (1.68b). Solid line segments with three dots apply to (3,3) using

the simple basis states given by Eq. (1.62). Note that the results are different though not too

significant. Short of expanding this approach with minimization of the total energy, there

is really no way for us to tell which is more correct. Therefore, we must view this approach

as giving a semi-quantitative guide to the design of type II SL. Returning to Figure 1.22,

we note that using plane waves, i.e. with U ¼ 1; the E –k relationship is multivalued and

obviously incorrect. We have also computed E –k by interchanging sin gx and cos gx in

Eq. (1.62) and no change was found. This should not be surprising because interchanging

sin gx and cos gx is nothing more than shifting the interface between the two solids by

g x ¼ p=2: In summary, the k·p model may serve as a guide to understanding the type II

superlattice. For a specific design, the computed E –k for the SL serves as semi-

quantitative guide for the design.

Let us make a comparison between the k·p calculation and the LCAO calculation by

W.A. Harrison. Figure 1.23 is a re-plot of Figure 3 of Sai-Halasz et al. (1978), where band

structures of InAs and GaSb are zone-folded and superimposed on the central figure for the

superlattice. For clarity, the portion outside the two basic overlapping bands is not

included. The circle is drawn centered at the crossing of the conduction band of InAs with

the valence band of GaSb, where the interaction is the strongest. The interaction of these

two bands opens up an energy gap.

The new band gap Eg ¼ 0:44; 0.54 and 0.9 eV, at k ¼ 0; 0:3kd and 1:0kd; respectively

calculated with the k·p as shown in Figure 1.21(a). The corresponding Eg ¼ 0:45 eV ;

0.54 eV and 0.86 eV from the LCAO shown in Figure 1.23. It is remarkable that the

two calculations, one with k·p and the other with LCAO, give essentially the same

results. I would like to point out that both calculations may not be unquestionably

correct, however, the computed results are essentially the same. This prompted me to

present an “effective potentials” for the type II SL, different from the type I case. Let

us substitute the U functions from the two-band k·p model back to the Schrödinger

equation:

2
h2

2m
72U^ 2 i

h2

m
k·7U^ þ V 2 E 2

h2k2

2m

 !" #
U^ ¼ 0 ð1:70Þ

In one dimension, using zone folding into the reduced BZ, the terms inside the bracket

in the above equation become

E 2
h2k2

2m

 !
¼ E 2

h2ðk þ gÞ2

2m

 !
; 10; ð1:71Þ
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then

V^ ¼ 10 þ
h2k

m
ðg þ iU 0

^=U^Þ ¼ 10 þ
h2k

m
g

1 þ b

1 2 b21
: ð1:72Þ

We define an effective barrier by DV ; V2 2 V1: For conduction band to conduction

band at the same energy 10 we use Vþ
2 2 Vþ

1 ; and for conduction band to valence band at

the same energy, we use V2
2 2 Vþ

1 ; then

DVðtype IÞ ¼
h2k

m
½g2ð1 þ b2Þ2 g1ð1 þ b1Þ�; ð1:73aÞ

DVðtype IIÞ ¼
h2k

m
½g2ð1 þ b21

2 Þ2 g1ð1 þ b1Þ�: ð1:73bÞ

Let us take a drastic case where k1 , k2; g1 , g2; b1ðkÞ , b2ðkÞ; then

DVðtype IÞ ¼ 0;but DVðtype IIÞ ¼
h2kg

m
ðb21 2 bÞ; which is obviously not equal to

zero. I think this is the best way to explain why there is reflection even though the k

vectors are equal on both sides. I want to emphasize that this derivation applies to

electrons transported between two bulk materials, which is rather different from the

superlattice shown in Figure 1.21 or 1.22.

Before we close the discussion on this subject, I would like to point out that the k·p

calculation is somewhat overshadowed by ab initio techniques nowadays. Nevertheless, as

pointed out by Cardona and Pollak (1966), the parameters that diagonalize a 15 £ 15 k·p

Hamiltonian matrix are obtained quite directly from experiments, partially because the

momentum matrix element in the k·p theory is the same momentum matrix element for

Figure 1.23. Band structures for superlattices consisting of alternate layers of 12 atomic planes. Kz is in units of

2p=a; with the lattice constant a assumed to be the same for both cases.
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optical transitions. One may further ask if in fact an even simpler way may be developed

by taking two states at the point of crossing in k, as in elementary techniques forming the

symmetric and anti-symmetric states of a molecule, using the k·p model as coupling. This

is precisely the route we took.

We shall summarize the difference between type I and type II SL. In the usual

GaAs/GaAlAs superlattices, the modulation of the band edge energy of the conduction or

valence bands results in the formation of a confinement. In the case of an InAs/GaSb based

system with overlapping conduction–valence bands, the orthogonality of the states gives

rise to an effective confinement. This shows very directly that the reflectivity from

Eq. (1.61a) in the overlapping region of energy is high and in some instances, close to

unity, as if a fairly high barrier were separating the well regions. This feature presents a

wide range of applications of technological interest.

What happens to two bulk solids, InAs and GaSb, forming an interface? At the interface,

two things happen. First, alignment of the Fermi level results in the transference of

electrons in the valence band of GaSb to the conduction band of InAs. When both are

undoped, near the interface, electrons form an accumulation in InAs and holes form an

accumulation in GaSb, a situation that cannot really be described as semi-metal where the

overlapping of the conduction and valence bands is in the k-space, as in graphite and

bismuth. Since both InAs and GaSb are undoped, far away from the interface, they behave

as an intrinsic semiconductor, but having a large conduction along the interface. Second,

with thin alternate layers of InAs and GaSb forming a type II superlattice, something very

different results, i.e. a semiconductor with a variable band gap. Only because Esaki and I

tried to move the point of inflection toward the center of the mini-BZ, did we stumble on

this new and rich physical phenomenon.

1.9. PHYSICAL REALIZATION AND CHARACTERIZATION OF A SUPERLATTICE

1.9.1 First Attempt – GaAs/GaAsP Vapor Phase Epitaxy Superlattice

The first superlattice constructed with a periodic variation in the phosphorus content

the GaAs12xPx alloy system using vapor phase epitaxy (VPE) was attempted by

A.E. Blakeslee (Esaki et al. 1970). Figure 1.24 shows the transmission electron

micrograph (TEM) of a 30 period structure with a 20 nm period.

To characterize the structure further, X-ray diffraction was used to find the modulation

parameters D1 and D2 of an atom located at xp given by

xp ¼
Xp

n¼0

ða ¼ D1cosð2pna=dÞ þ D2cosð4pna=dÞÞ; ð1:74Þ

in which a ¼ 0:56 nm; is the lattice constant and d is the modulation of the alloy.

Figure 1.25(a) shows the X-ray intensity versus degree angle of the (400) diffraction peak.
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Figure 1.24. TEM of a GaAs/GaAs0.5P0.5 30 period structure with 20 nm for each period. Esaki et al. (1970)

with permission.

Figure 1.25. (a) X-ray diffraction of a GaAs/GaAs0.5P0.5 superlattice showing a periodic structure with satellite

peaks of 100 periods of 20 nm per period and (b) CL of two samples: 20 and 140 nm periods. Esaki et al. (1970)

with permission.
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The lA0l peak, a doublet of the Ka1 and Ka2 lines of Cu at 67.58 and 67.78 is from GaAs,

with a strong left peak from the GaAs substrate. The remaining structure, including the

center peak, with satellites lALl and lARl; belongs to the GaAs and GaAs0.5P0.5

superlattice. The parameters D1 and D2, the variation of the lattice constant from the mean

value, were chosen to fit the diffraction data. Without the second harmonic term in

Eq. (1.74), the asymmetry of the two satellites could not have been explained. The X-ray

characterization is in good agreement with rough values from the TEM. We could not

explain the X-ray data if instead it was assumed that the satellites originated from the

difference in the amplitude of the scattering between the P and the As atoms. Further

results of characterization using cathode luminescence (CL) are shown in Figure 1.25(b),

with two samples of 20 and 140 nm periods compared with pure GaAs at 4.2 K excited by

15 KeV electrons. The 1.82 eV peak of the 20 nm sample may indicate the formation of a

superlattice; however, the 1.65 eV peak of the 140 nm sample is most likely to be

due simply to the alloy material because it is unlikely that the mean free path is longer

than 140 nm.

Transport measurements on the n–n heterojunction of a GaAsP superlattice and GaAs

with a donor concentration of n , 106 –107 cm23 indicates that the energy discontinuity is

,0.05 eV, agreeing with what is already known (Davis et al., 1969) that most of the

difference in the effective energy gap lies in the valence band.

The failure to observe NDC led to the conclusion that the fabricated GaAs/GaAsP

superlattices are basically metallurgical, i.e. it is only a superlattice structurally. However,

electronically, owing to the poor overall mean free path from a poor lattice match and for

other reasons, there is no clear cut evidence of the formation of minibands. At this point, in

spite of the results of Alferov et al. (1971), which may indicate some hope of continuing

with the GaAs/GaAsP system, Esaki led our effort towards examining other systems,

mainly the GaAs/GaAlAs system, where a major effort has been devoted for some time to

the DH lasers (Hayashi et al., 1970; Hayashi, 1984).

The GaAs/GaAlAs superlattice will be covered in the next section; however, the X-

ray results are shown in Figure 1.26 for high angle with a 8.8 nm period and in

Figure 1.27 for low angle scattering with a 9.05 nm period taken from Chang et al.

(1974a,b). For the center peak, the zero order is much stronger than the weak

superlattice reflections, ^1, ^2 and ^3 satellites. The relative intensities of these

reflections give a measure of strain, in good agreement with the lattice constant

mismatch (Segmuller et al., 1977).

1.9.2 The GaAs/GaAlAs Superlattice: Determination of the Alloy Concentration

The most important parameter for the formation of superlattices is the band edge

alignment of the two adjacent materials. Because the band edge off-set is proportional

to the energy band gap, this information is of primary importance for the design of a

superlattice. Moreover, lattice matching is of primary importance for epitaxial growth
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at low strain, and therefore, low defect densities at the heterojunction interface of two

adjacent materials. Figure 1.28 shows the dependence of the energy gap versus the

lattice constant for a variety of systems, Si/Ge, as well as a variety of II–VI and

III–V compound semiconductors. Note that the lattice constant matching for GaAs

Figure 1.26. High angle X-ray diffraction of GaAs/AlAs superlattice with a 8.8 nm period near the (200), (400)

and (600) reflections. Segmuller et al. (1977) with permission.

Figure 1.27. Low angle X-ray scattering for a GaAs/AlAs SL with a 9.05 nm period. Chang et al., (1974a,b)

with permission.
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and AlAs is much better than GaAs and GaP. To achieve matching, as well as other

considerations like the transition from direct gap to indirect gap, we need to select the

proper molar fraction for the alloy system. For this reason, we need to control

the deposition for a precise molar fraction which requires characterization of this molar

fraction and the stochiometry of the particular pseudo-binary or even pseudo-quaternary

alloys.

As mentioned, apart from lattice constant matching, another parameter, the band edge

off-set is needed for the design of the miniband of the superlattice. And here we need first

to have some idea of the variation of the band gap with composition. Moreover, the

transition from direct to indirect band gap is sometimes crucial for proper design.

Figure 1.29 shows this variation for GaAs and AlAs, with measurements taken from Casey

and Panish (1969), and lines from Eqs. (1.75a) and (1.75b) taken from Onton et al. (1974).

Notwithstanding that, as the molar fraction of Al increases beyond ,40%, the lowest

fundamental band gap is switched from the BZ center, the G-point, to the X-point. This is

the reason why the molar fraction of Al must be less than 40%.

EgG ¼ 1:44 þ 1:04x þ 0:47x2 ð1:75aÞ

and

EgX ¼ 1:92 þ 0:17x þ 0:07x2
: ð1:75bÞ

Figure 1.28. Energy band gap versus the lattice constant for a number of systems. Courtesy from EPI-MBE.
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DH lasers using GaAlAs as a barrier to confine the space charge have been quite

successful for several years. (We must not confuse charge confinement with quantum

confinement involving the wave nature of electrons, which came much later as

consequences of the introduction of the superlattice and quantum wells.) In addition to

the determination by chemical means, such as ESCA which emphasizes composition

without indicating whether the alloy system is stochiometric, most researchers utilized

luminescence data for indications of quality. I have been fascinated by Raman scattering

for some time, thinking that the phonon structure alone should give indications of both

composition and stochiometry, with which Esaki agreed. IBM Poughkeepsie terminated

research on photonic systems leaving the use of many lasers available for experiment. At

the time, Esaki was concentrating on the design and installation of an MBE deposition

system, leaving little capacity for anything else. Kawamura, a prominent professor from

Japan who was spending a couple of years with us, also wanted to work on Raman

scattering. There was just sufficient capital equipment budget to add a SPEX double

spectrometer for high resolution Raman scattering. I succeeded in getting the first photon

counting system from SPEX as a try out. After Professor Kawamura arrived, I learned that

he, like me, also had no working knowledge of Raman scattering. G. Burn, who was able to

offer us help, commented to me, “The two of you are like blind leading the blind”. Well,

new tools always lead to new results. We discovered that the spectrum of GaAs taken by

Figure 1.29. The band structure of Ga12xAlxAs. The lines are given by Eqs. (1.75a) and (1.75b). Onton et al.

(1974) with permission.
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Kawamura and myself consisted of the usual TO and LO phonons of GaAs, but, in addition,

other structures, later identified as the phonons at the BZ boundary caused by the

breakdown of selection rule induced by disorder, a random distribution of Al in GaAs

forming a GaAlAs random alloy.

With the help of M. Lorenz and A. Onton, R. Chicotka was asked to help me and we

acquired a Brigdman grown single crystal of Ga12xAlxAs, with x ¼ 0 at one end and x , 1

at the other end of a 3 cm long by 1 cm wide sample. This sample was cut into two pieces

lengthwise, with a further cut into 10 pieces for ESCA and, later, for wet chemical

Figure 1.30. Raman spectrum for the Ga0.24Al0.76As alloy with polarization (k, k). DALA is disorder activated

LA phonon mode. Kawamura et al. (1972) with permission.

Figure 1.31. Mode frequency versus molar fraction x for the Ga12xAlxAs alloy system. Kawamura et al. (1972)

with permission.
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analysis. The other half was used for Raman measurements. A typical spectrum is shown

in Figure 1.30 taken from Tsu et al. (1972), showing the weak longitudinal acoustic (LA)

modes that were normally forbidden at the BZ zone boundary. I like to point out that the

discovery of these normally forbidden modes was due to a sensitive photon counting

system with an adjustable discriminator that was not possible with the Keithley meter

normally in use at the time. See the additional remarks in the preface.

The variations of the optical local (OL) mode, and the acoustical local (AL) mode

for various compositions are shown in Figure 1.31. The results of everything are

summarized in Figure 1.32, with the molar fraction obtained from both ESCA and wet

chemical analysis.

This Raman spectrum was given to L. Chang for refinement of the Knudsen cell

calibration used in MBE growth of the Ga12xAlx As barriers for the GaAlAs superlattices

and quantum wells.

Unlike ESCA, the phonon modes are similar to those used in luminescence

characterization, and molar fraction is determined from the mode spectra rather than

from composition. Therefore, one is assured of stochiometry. It is generally agreed that

luminescence peak intensity and/or lifetime gives a measurement of the quality in terms of

Figure 1.32. Raman phonon modes versus molar fraction for the Ga12xAlxAs alloy system. Tsu et al. (1972).
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defects, mobility, and so on. Nevertheless, the phonon linewidth also gives information

about the quality, although not directly. This point will be further discussed in the later

section dealing with Raman scattering. The quantum well structures (Dingle et al., 1974)

and superlattices (Dingle et al., 1975) fabricated at BTL seemed to be better quality in terms

of optical data, although these reports came nearly 2 years after the work presented by IBM,

owing, perhaps, to several years of work on heterojunction lasers. However, I think the main

reason was that the alloy composition used at IBM had nearly 50% [AL], unlike [Al] , 30%

at BTL with better lattice matching. Obviously the mistake involved a lack of experience.

1.9.3 Other Structural Characterizations

In the initial learning stage at IBM GaAs depositions on GaAs substrates were monitored

for epitaxy during growth using reflection high energy electron diffraction (RHEED)

mounted in situ (Dove et al., 1973). I asked John Arthur, who supposedly coined the term

“molecular beam epitaxy”, what distinguishes MBE from older deposition schemes with a

heated molecular oven. He replied that apart from having a “good ring”, it is really the use

of RHEED in situ that ensures an instant check of epitaxy. Scanning electron microscopy

(SEM) was not relied upon early on because of the lack of reliable information below

10 nm. In fact, our samples of superlattices, after characterization by X-ray were given to

Alex Broar, as calibration for his high intensity SEM. On the other hand, Rutherford back

scattering (RBS) had been sufficiently developed used for an attempt to determine the

actual structure. The sample used for the RBS study Mayer et al. (1973), has a periodicity

of ,100 nm, which can be easily analyzed by SEM and Raman to determine the spatial

periodicity and the alloy composition, respectively. The agreement of composition

determined using RBS and Raman was better than 5%; however, the agreement of period

between RBS and SEM was generally greater than 10%. Although the period of

Figure 1.33. Evaluation of a GaAs/GaAlAs periodic structure taken from Mayer et al. (1973). (a) RBS at

2.5 MeV Heþ with onset of the Al portion. Oscillations show three periods of GaAs/GaAlAs with a period of

,120 nm. (b) From SEM. (c) Alloy composition determined from Raman Scattering to be 29% [Al]. Mayer et al.

(1973) with permission.
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50–100 nm is much too large for any quantum effects, it was designed to corroborate the

use of RBS with SEM and Raman as a learning process. In particular, the barrier thickness

is usually less than 2 nm; therefore, these techniques are not sufficiently good to

characterize the device potential of these superlattices and quantum wells. The situation

today is quite different from what Figure 1.33 portrays because monolayer thick barriers

can be routinely realized in man-made quantum structures as discussed in Chapter 6.

1.10. SUMMARY

Esaki and I decided that the Bloch oscillation and its manifestation in NDC constitutes

the most direct evidence of the formation of a man-made superlattice as means of

broadening the class of semiconductors for electronic devices. Initially we obtained the

condition that whenever vBt . 1; with vB being the Bloch frequency, the current

decreases with the applied electric field, or NDC. In our original IBM report (Esaki and

Tsu, 1969), we stated that if the superlattice structures are formed in such a manner that

most scattering centers such as foreign atoms, imperfections, and so on, are concentrated

in the potential hills, that the matrix element for scattering is favorably reduced. This

prediction led to modulation doping, a widespread techniques for high mobility. The first

observation of NDC was 2 years later for a GaAs/GaAlAs superlattice. In an effort to

distinguish domain oscillation from Bloch oscillation, a quantum phenomenon, we

started on a path that involved only one period, a structure with two GaAlAs barriers on

each side of a GaAs quantum well, the now famous resonant tunneling diode (RTD), a

subject that will be taken up in the next chapter. Meanwhile, an optical response to the

time-dependent electric field of a superlattice was obtained. Two types of NDC, a band-

like and a hopping-like NDC for the highly localized case when the energy gain exceeds

the bandwidth of the superlattice, including the argument in favor of the existence of the

SL, are considered. Initial experimental results in support of the observation of quantum

effects are presented. As pointed out, originally Esaki and I tried to find a way to move

the point of inflection toward the BZ center, by creating a superlattice of two materials

with the bottom of the conduction band of one below the top of the valence band of the

other. In this section we gave details of the use of the k·p model which is more than

adequate. The effective band gap depends on how close the two materials forming the

heterostructure are put together. The last section is devoted to characterization, including

by X-ray, RHEED, RBS, SEM and Raman. Compositional characterization by Raman,

unlike SIMS, is capable of determining the stoichiometry via phonon modes. The

characterization techniques used in those days have improved by a large margin and

nowadays, STM and even X-TEM can reveal atomic resolution. When I left China, my

great uncle told me an ancient Chinese proverb on his death bed—To excel in work needs

to take advantage of the best tools.
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The concept of the superlattice has opened the door to devices such as quantum wire and

quantum dots, as well as serving as a test bed for modern nanotechnology involving the

wave nature of electrons. New ideas and technical breakthroughs are being added to the

huge list of advances at an ever increasing rate. The ramification of our ideas plays an

important role in research relating to the fundamental concepts of solids rather than in

device applications. Although modulation doping, Bloch oscillation, and so on came from

man-made heterostructures, no superlattice devices appear in any electronic systems even

after more than 30 years of intense research and development, unlike devices such as

LEDs and even injection lasers where practical implementation followed in a matter of a

decade or two. Economically, devices utilizing superlattices, even with technological

complexity in place, are simply not ready to be incorporated in any major way in the world

of devices. One may argue that many technical breakthroughs such as the input/output

(I/O) problems are needed before quantum dots can play a role in the electronic systems,

but man-made one-dimensional superlattice structures have no I/O problems. Thus, to my

mind, it is complexity and economic reasons that have prevented their adoption.

Nevertheless, the “genie” is out of the bottle; it is only a matter of time before the arrival of

widespread usage. When that day arrives, I predict it will be in a form quite different from

everything we are used to at present.

As noted earlier, without the tenacity of Leo Esaki, this project would have been “dead-

on-arrival”. I, for one, quite likely would have given up.
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Chapter 2

Resonant Tunneling Via Man-Made Quantum
Well States

2.1. THE BIRTH OF RESONANT TUNNELING

When Gunn pointed out to Esaki and myself that the observed negative differential

conductance (NDC) in a GaAlAs superlattice may originate from domain oscillations in

GaAlAs bulk alloys (Gunn, 1963, 1976), we extended our study to tunneling via man-

made quantum wells. Particularly, we were focused on a single quantum well of GaAs

with two GaAlAs barriers on each side, to avoid any possibility of domain formation, as

well as several wells coupled as shown in Figure 2.1. Before the theoretical calculation is

presented, let us touch on some general issues.

The energy E is the sum of longitudinal and transverse energies,

E ¼ El þ Et with Et ¼
h2k2

t

2mp
; ð2:1Þ

and the wave function is expressed as the product, c ¼ cl þ ct: For an n-period structure,

the electron wavefunctions in the left- and right-hand contacts are respectively

c1 ¼ ct½expðik1xÞ þ R expð2ik1xÞ�;

c2 ¼ ct½A1 expðik1xÞ þ B1 expð2ik1xÞ�;

..

.

cn ¼ ct½T expðiknxÞ�;

ð2:2Þ

where cn ¼ cnþ1 and ð1=mp
nÞc

0
n ¼ ð1=mp

nþ1Þc
0
nþ1 at the boundaries separating the region n

and n þ 1: In the original derivation, however, the effective masses are taken to be equal,

then

T

0

 !
¼ M1· · ·Mp· · ·Mn

1

R

� �
; ð2:3Þ
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where

Mp ¼
1

4

expðikpþ2dpþ2Þ expðikpþ2dpþ2Þ

expð2ikpþ2dpþ2Þ 2expð2ikpþ2dpþ2Þ

 !

�
expðikpþ1dpþ1Þ expð2ikpþ1dpþ1Þ

2iðkpþ1=kpþ2Þexpð2ikpþ1dpþ1Þ 2iðkpþ1=kpþ2Þexpð2ikpþ1dpþ1Þ

 !

�
1 þ iðkp=kpþ1Þ 1 2 iðkp=kpþ1Þ

1 2 iðkp=kpþ1Þ 1 þ iðkp=kpþ1Þ

 !
; ð2:4Þ

in which kp ¼ ½2mpðVp 2 ElÞ�
1=2= h: The reflection amplitude R and the transmission

amplitude T are given by R ¼ 2M21=M22 and T ¼ M11 2 M12M21=M22: In the original

version, following Duke (1969), with lTl2 ¼ ðkl=k
0
lÞDðElÞ; the net current density from the

left at E; to the right at E0 is

J ¼
e

4p3h

ð1

0
dkl

ð1

0
dkt½f ðEÞ2 f ðE0Þ�TpTðk0l=klÞ

›E

›kl

: ð2:5Þ

Note that there is a term ðk0l=klÞ in Eq. (2.5) was left out in the original by Tsu and Esaki

(1973). However, we shall follow the original treatment for the time being without this

k0l=kl term, partly because the main features are not affected by this term. A full discussion

of this point is given later. With the separation of variables due to the planar geometry, the

transverse momentum kt is conserved so that TpT depends only on the longitudinal

direction. After integration over the transverse dkt;

J ¼
empkT

2p2h3

ð1

0
dElT

pT·ln
1 þ exp½ðEf 2 ElÞ=kbT�

1 þ exp½ðEf 2 El 2 eVÞ=kbT�

 !
: ð2:6aÞ

Figure 2.1. Top: a superlattice of length l with barrier eV0: Bottom: the solid line shows a good approximation

of the potential profile used in the calculation. After Tsu and Esaki (1973), reprinted with permission.
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For kBT ! 0;

J ¼
emp

2ph2h3

 !ðEf

0
ðEf 2 ElÞT

pT dEl eV $ Ef ð2:6bÞ

J ¼
emp

2ph2h3

 ! ðEf2eV

0
ðeVÞTpT dEl þ

ðEf

Ef2eV
ðEf 2ElÞT

pT dEl

� �
; eV # Ef : ð2:6cÞ

Figure 2.2 shows the calculated transmission coefficient versus the incident electron

energy and Figure 2.3 shows the total tunneling current versus the applied voltage V :

Let us discuss something important. Although TpT reaches unity at the resonance

shown in Figure 2.2 at V ¼ 0; TpT may be very much reduced at V – 0; owing to the loss

of symmetry, a point that was not appreciated at first. To achieve a large NDC, one needs

to design the structure such it is nearly symmetrical at the operating point V : We shall go

into detail on this point as well as some other important points later. But first we offer a

physical picture of why NDC appears. Figure 2.4 shows an electron with energy E;

incident from the left and transmitted to the right: (a) through a single barrier with barrier

Figure 2.2. TpT versus incident electron energy in eV, the barrier and well width are 2 and 5 nm, and the barrier

height is 0.5 eV. After Tsu and Esaki (1973), with permission.
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Figure 2.3. J½ðemp=2p h2 h3Þ21 £ ð1:6 £ 10212Þ2� versus the applied voltage V showing NDC. After Tsu and

Esaki (1973), with permission.

Figure 2.4. (a) Electron transmission at an energy E incident from the left and transmitted to the right through a

single barrier. (b) The same barrier with a “cut”, representing a quantum well between two barriers, the double

barrier resonant tunneling (DBRT). (c) A resonant transmission peak at energy E1 appears and is superposed onto

the original barrier without the “cut”.
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height Vb; and (b) for a quantum well with a state denoted by E1; an “eigenstate” (resonant

state to be precise) created by a quantum well (QW), as in typical elementary quantum

mechanics, (c) with transmission lTl2: For a symmetrical structure, constructive

interference gives rise to resonance with TpT ¼ 1; centered at E1; similar to the optical

Fabry–Perot interferometer.

In Figure 2.5, the same structure is subjected to an applied voltage between the left and

right contacts. A current peak appears at V , 2E1: The approximation sign is due to the

loss of symmetry with an applied voltage. If symmetry can be preserved, the resonant

tunneling peak appears exactly at V ¼ 2E1: The width of the current peak is approximately

the width of EF: As the voltage is such that the state E1 moves into the forbidden gap, the

supply of electrons from the left contact vanishes, resulting in a rapid decrease in the

transmitted current. Thus, even without the use of a formula for the resonant tunneling

current, the mechanism for NDC is easily understood.

2.2. SOME FUNDAMENTALS

Before we deal with the ðk0l=klÞ term that was left out in the original Tsu–Esaki formula, we

shall first deal with some fairly elementary, yet quite important principles. For example,

Figure 2.5. The same double barrier structure is subjected to an applied voltage between the left and right

contacts. The low current is shown in (a), reaching a maximum value when the applied voltage is such that

EF $ E1 2 V2=2 $ 0 shown in (b), and finally the current is much decreased at V3 when the E1 state moves into

the forbidden gap of the left contact. j versus V is shown in (d). The background is direct Fowler–Nordheim

tunneling through both barriers.
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most quantum mechanics texts do not emphasize that 1 2 lRl2 is not equal to lT l2: Let an

electron incident at a barrier with a potential V ¼ VuðxÞ; and the Heaviside function uðxÞ;

so that the wavefunction for x , 0 is

cL ¼ eikx þ R e2ikx
;

and for x . 0 on the right is

cR ¼ TLReik0x
:

After imposing the continuity of c; and continuity of the current h=2imðcp7c2 7cpcÞ

at the boundary at x ¼ 0; there results R ¼ ðk 2 k0Þ=ðk þ k0Þ and TLR ¼ 2k=ðk þ k0Þ; so that

kð1 2 lRl2Þ ¼ lTLRl
2
k0: ð2:7Þ

Eq. (2.7) is simply the statement of current continuity. Similarly, we take an electron

incident from the left, with R0 and TRL; and we obtain R0 ¼ 2R; and TRL ¼ 2k0=ðk þ k0Þ; so

that lR0l2 ¼ lRl2; but lTRLl
2
¼ lTLRl

2
ðk0=kÞ2: Therefore, the reflection coefficient is the

same regardless of whether it is going to the right or to the left, but the transmission

coefficients are not the same. Now, we can calculate the net current going from the left to

the right for our double barrier quantum well tunneling structure.

jLR ¼
e

4p3h

ð
dkllTLRl

2 ›1l

›kl

k0l
kl

� �
f ð1Þ½1 2 f ð10Þ�dkt; with 10 ¼ 1þ eV : ð2:8Þ

Using dkl ¼ ðmp= h2Þðd1l=klÞ;

jLR ¼
emp

2p2h3

ð1

0
lTLRl

2 1l þ eV

1l

� �1=2

d1l

ð1

0
d1t½f ð1Þ2 f ð1Þf ð1þ eVÞ�; ð2:9aÞ

jRL ¼
emp

2p2h3

ð1

0
lTLRl

2 1l þ eV

1l

� �1=2

d1l

ð1

0
d1t½f ð1þ eVÞ2 f ð1Þf ð1þ eVÞ�; ð2:9bÞ

and the net current from the left-contact to the right-contact becomes

j ¼ jLR 2 jRL ¼
emp

2p2h3

ð1

0
lTLRl

2 1l þ eV

1l

� �1=2

d1l

ð1

0
d1t½f ð1Þ2 f ð1þ eVÞ�: ð2:10Þ

The original Tsu–Esaki expression has left out a term, ðk0l=klÞ ¼ ðð1l þ eVÞ=1lÞ
1=2;

referred to as the “kinematic term” by Coon and Liu (1985). Theories dealing with resonant

tunneling appeared before and even after Coon and Liu used the Tsu–Esaki expression

instead of the kinematic factor. The magnitude of this factor is ,
ffiffi
3

p
; because near

resonance eV , 2El: Although this term generally does not affect the overall physical

picture, let us look at what happens to the transmitted electron at an energy eV above the

Fermi energy at the right contact. An electron, lk0l . resonantly appears as a hot

electron at the right contact at an energy 1l þ eV ; and is readily scattered to the equilibrium

state lkl . at energy 1l inside the right contact within perhaps few angstroms. Early on
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I struggled with this difficulty, even trying to create a transitional layer inside the contact,

without any positive results. My idea was to create a transitional region in the contact

somewhat similar to what has been discussed by Datta (1995). But any attempt to create

two planes 1 and 2 inside the contacts presents a formidable task with dubious

consequences. From the intuitive pictures, we know that a large current in solids almost

certainly originates from a large carrier density, such as in metals, or via multiplication

mechanisms. Thus, we may view the process as the following sequence of events. (1)

Electrons gain energy under an applied voltage and exit into a contact defined by the

definition of a contact being an equal potential. (2) The extra energy is readily lost via

scattering towards equilibrium with the final product being the creation of heat. (3) Such a

process may be described by using Fermi golden rule in a rate equation rather than transport

equation, allowing the establishment of equilibrium. Sometimes it is even necessary to

define a hot electron temperature if elastic scattering dominates over inelastic events.

Within the crude assumption that the Fermi levels between the two contacts are similar,

electrons enter the collector at E þ eV ; and after relaxation return to the same Fermi

distribution of the contact. Inclusion of a self-consistent potential such as by Cahay et al.

(1987) and Bandara and Coon (1989) is a movement in the right direction, but not sufficient

without taking scattering inside the contact into account. Nevertheless, the net result may

very well be creating a term just canceling the kinematic term.

There was another non-technical issue that I had to deal with. I have stated previously

that the main reason for going to the DBRT was to model NDC without the possible

domain oscillation pointed out to us by Gunn. Note that the very title of our paper,

“Tunneling in a finite superlattice” (Tsu and Esaki, 1973), indicated my frame of mind. I

wanted to produce the basis for extending the tunneling results as a model for transport in a

superlattice showing NDC, where clearly equilibrium distribution should dominate every

few tunneling events, or at least within a length limited by the mean free path. I also want

to share with the reader the ideas that guided my thinking. When I embarked on this

problem, a book by Duke (1969) treated everything except the feature I was looking for,

allowing resonance to occur as in Fabry–Perot optical filter. I know that the double barrier

structure is nothing more than an electron filter allowing electrons at the state

approximated by kl ¼ np=w: Without an elaborate scattering formulation, it is clear that

the transmitted electrons simply lose the extra energy while cascading down. I noticed that

taking the velocity term as hkl=m
p instead of hk0l=m

p accomplishes just that. By doing so, I

circumvented a complicated scattering formulation inside the right contact. I was

convinced that whatever one does to take into account the scattering in the contact, the end

result will involve giving back the extra energy. From my perspective, the Tsu–Esaki

formulism represents a crude approximation. I erroneously chose to multiply lT l2 by kl;

rather than by k0l; the correct way. However, as events have shown, the original work of

Tsu and Esaki has led to an enormous number of improvements, including many body and

hot electron effects.
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Now I think we need to recognize that the left-out term may be important in some cases,

preserving fundamental consistency within simple assumptions. Therefore, I want to take

this opportunity to urge the inclusion of the “kinematics term”, however, recognizing the

complexity I have pointed out. I also want to point out that I was disappointed that the

extra correction, including the electron accumulation to the left and depletion to the right,

made by Bandara and Coon (1989) further significantly increased the tunneling current,

contrary to my intuition, where it decreased, as shown by Cahay et al. (1987), in a full self-

consistent calculation. I think most of those involved in experimental work may prefer to

see a correction factor decreasing the peak-to-valley ratio. The theory of resonant

tunneling is still being developed after some 30 years. But before I leave this subject, I

would like to comment briefly on several other treatments related to the discussion here.

Duke’s (1969) treatment is correct, but lacking the specific means to deal with coherent

resonances. Vassell et al. (1983) were the first to point out the omission of this “kinematic”

term from the Tsu–Esaki version. However, their presentation was quite confusing

because they used k0 for the incident electron from the left and k for the transmitted

electron to the right, and yet, in their formula (Eq. (2.21)), the velocity operator is vðkÞ

instead of vðk0Þ: In any case, the treatment of Coon and Liu (1985) is at least clear and their

results are consistent as far as they go. Nonetheless, as noted by Noteborn (1993), the

orthogonality process introduced by them was somewhat incorrect. Where do we stand

now? The self-consistent calculation by Cahay et al. (1987) is most appealing, because

their results fit simple logic, where the tunneling current goes down rather than going up as

reported by Bandara and Coon (1989). In a later section, I shall show how the self-

consistent results of Cahay et al. are obtained with simple inclusion of the space charge in

the quantum well.

Before I close this section, I want to emphasize that the sequential tunneling (ST),

model first conceptualized by Luryi (1985), represents a subset of the coherent tunneling

(CT) model, because, with unavoidable elastic as well as inelastic scattering in the

quantum well, relaxation must be present in the well. I find it hard to imagine why it is

surprising that the ST model developed by Payne (1986) and Weil and Vinter (1987) also

shows NDC. As long as tunneling is into or out of a discrete state in the quantum well,

outside the energy of this discrete state, tunneling cannot occur. As long as the mean free

path is greater than the well width, scattering can only broaden the linewidth of this state,

usually denoted by G, because there is no state available outside of this discrete state for

the electron to be scattered into. The use of a non-Hermitian Hamiltonian, to be treated

later, can naturally express this line broadening. Nonetheless, such an approach is

embraced by very few because quantum mechanics, for most people, is synonymous with

Hermitian operators. One often finds casual remarks that the use of the ST model is to

facilitate the calculation of space charge in the well. I shall present a simple calculation of

the space charge in the well using simply the wavefunction in the well. I think the most

important value of looking at the problem concerned with the ST model is to allow
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a definite Fermi level inside the well region and an average between the Fermi levels on

each side.

Since we have based on our physical picture of resonant tunneling on the important fact

that the resonant energy En , eV =2; where the voltage V aligns the quantum states with

the source of electrons, and generally En q EF: Figure 2.6 shows the calculated lT l2 using

the Airy function versus the longitudinal electron energy for structures (b1, w, b2) at (3, 4,

3 nm), respectively, with barrier height Vb ¼ 0:4 eV for GaAs well with GaAlAs barriers.

For example, (0.355) refers to a peak located at 0.355 eV. E2ð0:1Þ indicates the second

Figure 2.6. Calculated lTl2 versus E for (3, 4, 3 nm) at Vb ¼ 0:4 eV for the GaAs/AlGaAs DBRT structure,

using the Airy function shortly after the Tsu and Esaki (1973) publication. Note that the peaks move very close to

the En ¼ V=2 rule.
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energy state with an applied voltage of 0.1 eV. Specifically, we have the following:

E2ð0Þ2 E2ð0:1Þ ¼ 0:053 , V =2 at V ¼ 0:1;

E2ð0Þ2 E2ð0:6Þ ¼ 0:3015 , 0:6=2;

E1ð0Þ2 E1ð0:1Þ ¼ 0:10419 2 0:0528 ¼ 0:051 , 0:1=2:

Note that the rule En ¼ V =2; is followed very closely. Also, we want to point out that the

height of the resonant peak is drastically reduced as eV $ Vb; because the second barrier is

depressed to the point where it cannot effectively confine the electron.

The same structure using the exponential function to approximate the triangular ramp

by potential steps is also quite good, but not as close to the rule for the position of the

resonant energy compared to the Airy function. Let us list the calculated results using the

exponential function.

E2ð0Þ2 E2ð0:1Þ ¼ 0:3685 2 0:3185 ¼ 0:005 , V =2 at V ¼ 0:1;

E2ð0Þ2 E2ð0:6Þ ¼ 0:3685 2 0:043 ¼ 0:3255 . 0:6=2;

E1ð0Þ2 E1ð0:1Þ ¼ 0:10419 2 0:054 ¼ 0:050 , V =2 at V ¼ 0:1:

Except for the case eV ¼ 0:6; where the second barrier begins to lose its confinement

effect, the exponential approximation is still very good. These results were obtained early

on, enforcing our confidence in the simple picture presented in Figure 2.5. To summarize,

we point out that as long as the quantum well (QW) is made from uniform material and the

voltage is specified between the two barrier–well interfaces, regardless of the thickness of

the barriers, symmetrical or not, electrons inside the quantum well have an average

potential of V =2; commonly thought only to be applicable to a symmetrical DBRT

structure.

2.3. CONDUCTANCE FROM THE TSU–ESAKI FORMULA

As we see the most important result is the appearance of NDC, which we will discuss later

in detail. Whenever the applied voltage aligns the Fermi level with the resonant state of the

quantum well, tunneling gives rise to NDC. However, at a small applied potential and

kBT , 0; the conductance G; derived from the use of Eq. (2.10) or Eq. (2.5), the original

Tsu–Esaki formula, leads precisely to Landauer’s (1957, 1970) conductance for one-

dimensional tunneling. Basically, resonant tunneling comes from a delta function like T at

finite temperatures and Landauer’s conductance formula comes from a delta function like

f where f is the the Fermi distribution function at very low temperature. Both are obtained

from Eq. (2.10) or (2.5) taking the proper limits where these apply. To show this, it does

not matter whether we include the kinematic term. We start from Eq. (2.182) of Mitin et al.

(1999), which is identical to Eq. (2.5), for kBT , 0: And far from resonant, eV p En;
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the conductance per electron (per spin) is

G ¼
e2

h

X
n;m

TðEF; n;mÞ; ð2:11Þ

where the sum is over the transverse degree of freedom ðn;mÞ; or integration in dkt of the

transverse channels and T ; TpTðk0l=klÞ: The conductance per transverse channel becomes

Gnm ¼ ðe2=hÞTnm: If in each transverse channel Tnm ¼ 1; then Gnm ¼ G0 ¼ e2=h; the so-

called quantum conductance. This last assumption is frequently made; however, it is noted

that the condition Tnm ¼ 1 gives zero reflection, which happens near resonance and is

contrary to the assignment of a contact conductance. In transmission line theory the only

reflectionless contact is one with the input impedance exactly equal to the characteristic

impedance of the line. Let us discuss this more in detail. First of all, an impedance function

is merely a special case of a response function or transfer function for the input/output.

Therefore, there is no such thing unless two contacts are involved serving as input and

output. The impedance or conductance has been referred to as contact conductance, for

example by Datta (1995). In reality, it is not a contact conductance. If T ¼ 1 is taken, then

Eq. (2.11) applies to reflectionless contact. The real issue is why experimentally equal

steps of G0 appear? I think the answer lies in the fact that the transverse modes are not all

coupled to a planar boundary. More precisely, G0 is the conductance of the quantum wire

with matched impedance at the input end, terminating in the characteristic impedance, and

therefore also matched at the output end. We shall show later that G0 represents the wave

impedance of a closed system (a system with two contacts), the quantum conductance of a

quantum electron waveguide, or a quantum wire, analogous to the treatment of photons,

even in free space. For time dependence, we shall use the Laplace transform. Letting a

wave bounce between two reflectors, as adopted by Landauer for conductance, is a very

special case of the general time-dependent solution.

2.4. TUNNELING TIME FROM THE TIME-DEPENDENT

SCHRÖDINGER EQUATION

I took a sabbatical at the Institute of Physics and Chemistry in the University of Sao Paulo,

Brazil, between 1983 and 1985. During this period, I went back to Stark ladder (SL) and

QW areas, working on doping and the dielectric function in a SL, as well as the old

problem of damping to treat internal scattering in a quantum well, which is also closely

tied to the residence time for the electrons inside a QW. Tunneling time is not only

important in its own right, for example for device speed, it is also important in modeling

involving charging time, scattering time, and so on, where one finds it in use in

conjunction with the Matthiessen (1857) rule of adding inverse time constants. Part of

the content of this section, a thesis by Subrata Sen, has been briefly summarized by
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Tsu (2001); however, some details, using the Laplace transform, are not only important

from a technological point of view but also provide important concepts in fundamental

physics and engineering, particularly for graduate students. Sen came to me to do an MS in

Electrical Engineering in order to get a job in Silicon Valley, after having received a PhD in

theoretical nuclear physics from SUNY. I was quite satisfied with Sen’s thesis, a little too

mathematical perhaps, but worthy of publication. I take this opportunity to present it almost

in its entirety, because, unfortunately, it has never even been submitted for publication.

2.4.1 Stevens’ Problem

The time-dependent Schrödinger equation has been treated like a step child by physicists

and mathematicians. Expanding and following on the work of Stevens (1983), time-

dependent formulation of a transmission resonance in a DBRT structure is treated with

Laplace transforms. Starting with Stevens’ approach to the Schrödinger equation,

ih
›c

›t
¼ 2

h2

2m

›2c

›t2
þ VðxÞc; ð2:12Þ

where cðx; tÞ ¼ 0; for lxl!1; and cðx; 0Þ ¼ rðxÞ; and using the Laplace transform, ( p is

used instead of the traditional s used in most engineering fields), gives

f00 2 b2f ¼
i2m

h
rðxÞ; with b2 ¼

2m

h2
ðV 2 ihpÞ; and

fðx; pÞ ¼
ð1

0
cðx; tÞexpð2ptÞdt ¼ Lðcðx; tÞÞ

ð2:13Þ

Using Green’s function Gðx; x0; pÞ; satisfying G00 2 b2G ¼ ›ðx 2 x0Þ; then

fðx; pÞ ¼
i2m

h

ð1

21
Gðx; x0; pÞrðxÞdx0: ð2:14Þ

In free space, Gðx; x0; pÞ ¼ ð21=2bÞexpð2blx 2 x0lÞ:
For a square wave, rðxÞ ¼ A0uða 2 lxlÞexpðikxÞ; leading to

fðx; pÞ ¼
2maA0

hb
expð7bxÞsyncððb^ ikÞaÞ; with

ð2;þÞ for x $ a; and ðþ;2Þ for x # 2a;

in which syncðyÞ ¼ ½sinðyÞ�=y: Taking the inverse Laplace transform,

2acðx; tÞ ¼ expðikx 2 vtÞ{erfcðg2Þ2 erfcðgþÞ};

where a ¼
ffiffiffiffiffi
m= h

p
ð1 2 iÞ; and g^ ¼ ikð

ffi
t

p
=aÞ þ aðx ^ aÞ=

ffi
t

p
:

For Stevens’ half space problem, the boundary conditions become: VðxÞ ¼ 0 for

x $ 0;cðx; tÞ ¼ 0; for x !1 and cð0; tÞ ¼ f ðtÞ: By specifying f ðtÞ we are in effect putting
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a current source j at the origin as jðx; tÞ ¼ ihImðc›cp=›xÞ=2m: Note that direct specification

of jð0; tÞ; which is non-linear in c; would not have permitted the use of the Laplace

transform in solving the initial value problems. Then,

f00 2 b2f ¼ 0; and fð0; pÞ ¼ FðpÞ ¼ Lðf ðx; tÞÞ;fðx; pÞ ¼ FðpÞexpð2bxÞ:

With f ðtÞ ¼ expð2ivtÞ; then FðpÞ ¼ 1=ðp þ ivÞ; and

2cðx; tÞ ¼ expð2ivtÞ{expðikxÞerfcðh2Þ þ expð2ikxÞerfcðhþÞ};

where h^ ¼ x

ffiffiffiffi
a

t

r
^

ffiffiffiffiffiffiffi
2ivt

p
:

2.4.2 The Double Barrier Problem

We first consider the case of a semi-open system where the double barrier has one side at

which we put a current source. Initially, t , 0; there is no charge without a source. At

t ¼ 0; the source is switched on for a time period of T : The charge QðtÞ is obtained by

integrating lcpcl2 over the barriers and the well. For time t . T ; cð0; tÞ ¼ 0; the charge

leaks out through the right side only. We shall also treat a system that is open at both ends

of the barrier. The applied voltage allows the charge to flow through the system. However,

we use an exponential function instead of an Airy function for convenience. To calculate

the charge inside the quantum well, QðtÞ must be multiplied by ½nðvÞ2 n0ðvÞ� and

integrated over all v; using the distribution functions n for the input side and n0 for the

output side, the right side. Our goal is to study the decay time of the trapped charge as a

function of excitation energy, , expð2ivtÞ whose transform , 1=ðp þ ivÞ:

The response in terms of an impedance function Z, is given by

fðx; pÞ ¼ FðpÞZðx; pÞ: ð2:15Þ

For the half space problem in the previous section, Zðx; pÞ ¼ expð2bxÞ: Let us take the

potential of a symmetrical double barrier for barrier width, b and well width, w of a

potential

VðxÞ ¼ V ; a # x # a þ b; and a þ b þ w # x # a þ 2b þ w

¼ 0 elsewhere:

The boundary conditions and initial conditions (see Morse and Feshbach, 1956)

on under and over specifications of boundary and initial conditions) of the half-space

problem are

cðx; tÞ ¼ 0; x !1; and cðx; tÞ ¼ expð2ivtÞ{uðtÞ2 uðt 2 TÞ}; then

FðpÞ ¼ {1 2 exp½2ðp þ ivÞT�}=ðp þ ivÞ:

The system under consideration is a double barrier on one side of which we put a current

source. At t , 0; there is no charge. The source is turned on at t ¼ 0 for a time T :
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The charge QðtÞ is obtained by integrating lcðx; tÞl2 over the well and the barriers. For

t . T ; cð0; tÞ ¼ 0; so that the charge can only leak out through the right side only.

Therefore, this is a typical semi-open system. The flow of charge through the structure

requires a potential drop requiring the use of the Airy function; however, we approximate

the potential profile by steps for approximating to exponential functions.

Let us define

b2 ¼ 2
2mip

h
; and b02 ¼

2mðV 2 ihpÞ

h2

d1 ¼ ðbþ b0Þ2 2 ðb2 b0Þ2expð22b0bÞ

d2 ¼
2mV

h2
ð1 2 expð22b0bÞÞ

d3 ¼ ðb2 b0Þ2 2 ðbþ b0Þ2expð22b0bÞ

s ¼ x 2 a; y ¼ x 2 a 2 b; and z ¼ x 2 a 2 b 2 W

then, Zðx; pÞ; the Laplace transform of Green’s function

Zðx;pÞ ¼2D0½b sinh b0ðb2 sÞðd1 þ d2 expð2bWÞÞ

þb0 cosh b0ðb2 sÞðd1 2 d2 expð2bWÞÞ� ða # x # aþ bÞ

¼ 2b0D0½expð2byÞd1 2 expð2bð2W 2 yÞÞd2� ðaþ b # x # aþ bþWÞ

¼ 4bb0D0 expð2bWÞ½expð2b0zÞðbþb0Þ

2 expðb0ðz2 2bÞÞðb2b0Þ� ðaþ bþW # x # aþ 2bþWÞ

ð2:16Þ

where

D0 ¼
expð2ba2b0bÞ

expð22bWÞd2ðd2 þ d3Þ2 d1ðd1 þ d2Þ
:

There is a branch cut along the Re p from 21 to 0 and a double pole at

ðRe p; Im pÞ ¼ ð0;2vÞ: The path of integration is along the Im p in the right half of the

plane from 21 to þ 1. The inverse transform is performed numerically. For thick

barriers, $1.5 nm, there are first order poles on the negative imaginary axis where Z is

inside the well. If these poles coincide with the excitation FðpÞ; the doubly singular

response in fðx;pÞ exhibits resonance behavior. We shall see that these resonances are

characterized by a monotonic growth of the space charge inside the well and current

through the well. The charge and the current diminish while oscillating rapidly as

a function of energy separate from resonance, as shown in Figure 2.7, for QðtÞ and in

Figure 2.8 for jðtÞ: For a numerical example, we have chosen W ¼ 6 nm; b ¼ 2 nm; with

the barrier height V ¼ 0:3 eV and m ¼ 0:067 me: The limits of integration for the inverse
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transform were 23 eV , ImðphÞ, 3 eV; more than sufficient for the energies involved.

The transmission resonance occurs at v¼ 0:0682 eV: Note that at resonance, there is a

slight overshoot, but basically growth is monotonic until the excitation is cut off at t . T ;

after which rapid decay takes place. However, away from resonance, oscillatory behavior

is evident. These results are familiar to those working on transients, but those who use the

steady state time independent model could possibly take these oscillations as showing

instability (Goldman et al., 1987). For t . T ; the excitation is not singular, the response

disappears and the confined charge starts decaying. We define the decay time t by QðT þ

tÞ ¼ QðTÞ=e: Similarly, we can define a build-up time tb by QðtbÞ ¼ ð12 e21ÞQ0; where

Q0 is the steady state value of the charge inside the well. Note that this definition is not

Figure 2.7. The trapped charge QðtÞ versus time in fs for w ¼ 6 nm; b ¼ 2 nm with GaAs well and GaAlAs

barriers. The energy at resonance is located at E4 ¼ 0:0682 eV; E3 ¼ 0:079 eV; E2 ¼ 0:05 eV and E1 ¼ 0:03 eV:

First appeared in published form in Tsu (2001) taken from Sen’s unpublished MS Thesis (1989). From Tsu (2001),

with permission.

Figure 2.8. Transmitted current j versus t (fs) for the same case as Figure 2.7.
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unique when separated from resonance, because the trap charge is oscillatory. Therefore,

we take the time to reach the first peak as the build-up time. In a way, we must recognize

that decay time and build-up time can only be uniquely defined for monotonic variations.

With this cautionary remark, the build-up and decay times are shown in Figure 2.9.

Next, we consider the case of a pulse of width T ¼ 100 fs: The growth and decay is

more or less similar to the case shown, however, the decay starts before reaching the

steady state, resulting in a much wider peak than anticipated. In the calculation, we take

0 , a , 0:1 nm: However, the position of the resonance transmission peak remains stable

for any a:

It is interesting to note that even the decay after the excitation is turned off is not

monotonic; rather, it consists of very rapid oscillations as shown in Figure 2.8.

Note that both charge and current versus time are almost identical, a fact to be expected

from our understanding of Fabry–Perot optical cavity. This fact negates the notion of

instability caused by space charge build-up discussed in the last section. The build-up time

has a maximum at resonance as in any resonating system. However, it is important to

recognize that even the decay time peaks near resonance, a fact usually not much thought

out. The maximum build-up time is ,200 fs, which is the reason for the fast device speed

of the resonant tunneling diode (RTD).

2.4.3 Spreading of a Wave Trapped in a Well

Instead of using Stevens’ specification of the wave packet rðxÞ at t ¼ 0; we shall be

concerned with cases where rðxÞ is a steady state solution of the Schrödinger equation. We

start with an excitation exp ð2ivtÞ outside the well as in the previous section and compute

rðxÞ: The response fðx; pÞ can now be calculated using Eq. (2.14) with the appropriate

Green’s function. When the barrier is open at both ends, the charge naturally leaks out

faster and the resonance is less pronounced. The resonance peak for build-up time is due to

Figure 2.9. Build-up time and two cases of decay times. Dashed line, open at one end; dotted line, open at both

ends, in t (fs) versus energy. The rise at E . 0:25 eV shows the beginning of the next quantum state.
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the doubly singular character of the response function for t , T : However, during decay,

the excitation function ceases to be singular and the spectrum displays a wider peak.

Next, we consider expð2ivtÞ at x ¼ x0 as an excitation within the well and calculate the

steady state wave packet. To exploit the symmetry of the barrier, we need to modify our

coordinate system and formulate the problem as follows:

VðxÞ ¼ V ; 2b 2
W

2
# x # 2

W

2

¼ V ;
W

2
# x # b þ

W

2

¼ 0; elsewhere

cðx; tÞ ¼ 0; x !1

cðx0; tÞ ¼ expð2ivtÞ

Then,

fðx; pÞ ¼ FðpÞZ1ðx; pÞ; x0 # x #
W

2

fðx; pÞ ¼ FðpÞZ2ðx; pÞ; 2
W

2
# x # x0

Z1ðx; pÞ ¼
expð2bxÞ2 H expðbxÞ

expð2bx0Þ2 H expðbx0Þ

Z2ðx; pÞ ¼
expðbxÞ2 H expð2bxÞ

expðbxÞ2 H expð2bxÞ

H ¼ expð2bWÞðd1=d2Þ

The impedances Z1 and Z2 on either side of the point of excitation closely resemble the

impedances due to two single barriers. As the point of excitation moves towards the center

of the well from the shadow of the barrier, the singular nature we had observed in the

impedance of the system for an external excitation gradually disappears and with it the

resonant character of the response. The time evolution of the charge confined in the well at

steady state can now be calculated by using Green’s function. The decay for different

points of excitation located at x 0 inside the well are all different as shown in Figure 2.10.

Note that the decay time for x 0 ¼ 0 is nearly independent of energy. Unlike the case for

external excitation, with internal excitation near the center of the well at x 0 ¼ 3 nm; the

decay time drops off slowly as the energy goes above the resonant energy. This feature was

studied because I asked Subrata Sen what happened if charges were injected into the center

of the quantum well as in a device with a “gate” or due to relaxation processes. He was

quickly able to show that with a delta function as a source in the middle of the quantum

well, the two barriers are decoupled and sharp resonance gives way to a soft peak owing to

the two-dimensional nature of the quantum well states, resulting in sequential process, not
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a true resonant process. Subrata explained that the loss of the double pole leads to the loss

of resonance. Mathematically, however, the space is divided into two half-spaces.

2.4.4 The Series Expansion

In the 1880s, Oliver Heaviside developed operational calculus, a powerful mixture of

common sense, physical intuition and mathematical insight/skullduggery, and applied it to

solve linear differential equations. His paper containing series solutions of the wave

equation and the heat equation in free space was rejected by the editors of the Proceedings

of the Royal Society because of its lack of rigor (see Whittaker, 1928). Laplace transform

was extensively used by Carslaw and Jaeger (1948, 1959), beginning the characterization

of linear systems by their eigenvalues and poles in the complex plan, an approach adopted

here. According to Carslaw and Yeager, the hyperbolic functions in the transform were

expanded in a series of exponentials leading to solutions that have a convenient physical

meaning in terms of reflected waves, which are described in text books on the Laplace

transform (Carslaw and Jaeger, 1948). However, for the Schrödinger equation, the series

expansion loses a definite meaning. Here, we shall demonstrate that in the asymptotic

limit, a sinusoidal excitation produces a steady state in a quantum well with standing

waves at resonance.

We shall approximate the double barrier by delta function potentials. For our half-space

problem ðx $ 0Þ;VðxÞ ¼ V0dðx 2 aÞ and cð0; tÞ ¼ expð2ivtÞ: The excitation, FðpÞ ¼

1=ðp þ ivÞ and the impedance function

Zðx; pÞ ¼
ðV1 þ bÞexpð2bxÞ2 V1 expð2bð2a 2 xÞÞ

V1 þ b2 V1 expð22baÞ
;

where V1 ¼ 2mV0= h2: Expanding Zðx; pÞ in a series we obtain the response

fðx; pÞ ¼ FðpÞ
X1
n¼0

Vn
2 expð2bðx þ 2naÞÞ2

Vnþ1
2

V1

expð2bð2ðn þ 1Þa 2 xÞÞ

" #
: ð2:17Þ

Figure 2.10. Decay time t (fs) versus E (eV) for various points of excitation, x0; in the well.
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The first term in the summation asymptotically represents the direct wave while all

other terms represent the reflected waves, the quantity V2 ¼ V1=ðV1 þ bÞ being the

reflection coefficient. The inverse transform of the first term FðpÞexpð2bxÞ gives

1
2
½expðiðkx 2 vtÞÞerfcðgÞ2 expð2iðkx þ vtÞÞerfcðdÞ�

where

a ¼
ffiffiffiffiffi
m= h

q
ð1 2 iÞ; g ¼ x

ffiffiffiffi
a

t

r
2

ffiffiffiffiffiffiffi
2ivt

p
; d ¼ ð2a 2 xÞ

ffiffiffiffi
a

t

r
þ

ffiffiffiffiffiffiffi
2ivt

p

As t !1; erfcðdÞ! 0; we can treat the other terms similarly. The final asymptotic

expansion is

cðx; tÞ ¼
X1
n¼0

Vn
3 expðixnÞerfcðgnÞ2

Vnþ1
3

V1

expðiynÞerfcðdnÞ

" #

where

xn ¼ kðx þ 2naÞ2 vt; yn ¼ kð2ðn þ 1Þa 2 xÞ2 vt;

gn ¼ xn

ffiffiffiffi
a

t

r
2

ffiffiffiffiffiffiffi
2ivt

p
; dn ¼ yn

ffiffiffiffi
a

t

r
2

ffiffiffiffiffiffiffi
2ivt

p
:

As V3 ¼ V1=ðV1 þ kÞ is less than 1, the series converges and a steady state is reached. As

t !1 the complementary error functions tend to 1. The terms in the series will then add

up in phase whenever ka ¼ np; n ¼ 0; 1; 2;… Hence, standing waves are possible in the

asymptotic limit.

In conclusion, the Laplace transform is a powerful tool to study time-dependent

problems with spatial boundary conditions. One can also use the derivative of the phase

shift with frequency for the time delay using the time-independent approach. However,

only a Gaussian packet leads to the same result as a time-dependent treatment (Tsu and

Zypman, 1990). On the other hand, it is not really different from the use of Green’s

function, which we shall treat next. Although the Wigner function has been popularized

recently (Datta, 1995), my preference is still for the Green’s function.

2.4.5 Delay Time in DBRT

An estimate of a signal delay time may be obtained with the uncertainty relation,

DEDt < h; where DE is the linewidth of the transmission peak of the quantum well

structure. Another estimate, generally more accurate, involves t ¼ Qt0; with t0 being the

transit time given by t0 ¼ d=ðhk=mpÞ and Q ¼ DE=E: A rigorous expression for the delay

time of a signal propagating through a linear network (any book on signal processing) is

t ¼ df=dv ¼ ðdf=dkÞðdk=dvÞ; f ¼ kd þ u;
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where f is the total phase shift and u the phase of the transmission amplitude through the

DBRT structure. The delay time t for a structure with the barrier width and well width

equal to 2.5 and 6 nm, respectively is shown in Figure 2.11. Note that the approximate

values shown as circles are close to the computed delay time t: At resonance, the delay

time is very long.

In Figure 2.12, the time delay using a Gaussian at the left and at a time t later at the right

is compared with the build-up time and decay time for a d-function excitation within the

well, taken from Subrata Sen’s 1989 thesis. The delay time, peaking higher and narrower,

is similar to Figure 2.11.

Basically, the time slows down by the factor Q; the quality factor of the resonating

system similar to any resonating systems. However, as shown in Figure 2.12, the time

Figure 2.11. Delay time t for the first two resonant peaks versus k for the structure shown, solid t0 ¼ dmp= hk:

Dashed line and circles, t0Q: After Tsu and Zypman (1990), with permission.

Figure 2.12. Comparison of delay time, decay time and build-up time for the structure shown. Delay time was

calculated by Zypman (1988, unpublished). The others were from Sen.
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scale is a couple of femtoseconds, still very fast. Thus, we predict that any space charge

effects cannot be the reasons for the appearance of hysteresis or instability, which have

been attributed by some, in a resonant tunneling device. There will be a special section

devoted to this subject later.

2.5. DAMPING IN RESONANT TUNNELING

2.5.1 The Quality Factor Q

The quality factor Q is useful for characterizing losses in a resonating system and analysis

of linewidth in any spectrum. All experimentalist knows about the line-width at half

maximum (LWHM), DE: And Q is E=DE: Formally, Q is defined by:

(1) Q ; 2p £ number of wavelengths in a given mean free path, ‘ or Q ¼ k‘:

(2) Q ; 2p £ number of periods in a given mean free time, t; or Q ¼ vt:

(3) Q ; 2p £ (energy stored 4 energy loss per cycle, T or per wavelength, l), or

2p £ (particle stored 4 particle loss per cycle, T or per wavelength, l),

for

A ¼ A0 exp{i½ðkr þ ikiÞx 2 vt�};

then

Q ¼ 2p=expð1 2 expð22qlÞÞ; or Q ¼ 2p=expð1 2 expð2T=tÞÞ; q ; ki:

As qlp 1;Q ! kr‘ and as T=tp 1;Q ! vt; the same as (1) and (2) above. But if

qlq 1; or T=tq 1;Q ! 2p: This last result is obviously meaningless. What we need to

realize is that Q cannot be defined by definition (3) if the system damps before it goes

through less than one cycle of oscillation or one wavelength. Therefore, we see that the

first two definitions are always correct while the last is only meaningful for low loss.

Unfortunately, definition (3) is used far more extensively, particularly in the engineering

field. We shall use the first two definitions. Generally speaking, definition (1) is more

useful in transport problems and (2) is used in the time–oscillatory situation such as in

cyclotron resonance. In fact (1) and (2) are identical if we take the decay time t ¼ ð2nÞ21;

with n; the collision frequency. And (3) is popular with engineers, partly because we are

not interested in a highly damped system. Since mobility is defined as et=mp; regardless of

whether we use (1) or (2), the linewidth from resonant tunneling gives a measure of the

mobility. Q is a single parameter figure of merit.

2.5.2 The Simplest Way to Account for Damping

Before I discuss where and how we can include damping, let us go back to the usual

Green’s function G; in Fourier transformed space, for free space, which is adequate for us
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to make the point. Take the free space Green’s function

G^ðEÞ ¼
1

E 2 Ek ^ iS
; S! 0: ð2:18Þ

The reason we insist on S! 0 is because we want to preserve the Hermitian nature of

ðH 2 EkÞck ¼ 0; and ðH 2 EkÞGk ¼ ›ðx 2 x0Þ; where H ¼ Hþ ð2:19Þ

If we do not let S! 0; damping is involved, then Green’s function does not satisfy

Eq. (2.19), rather it satisfies an equation

ðH2 EkÞGkðx 2 x0Þ ¼ dðx 2 x0Þ; with H – Hþ
: ð2:20Þ

It is interesting to note that Green’s function need not be limited to Hermitian operators.

For an open system, the operator is generally non-Hermitian, whether one deals with a

lossy system such as in the optical Fabry–Perot interferometer, or with a microwave

cavity that has dissipation. In fact, even an antenna radiating energy to infinity cannot be

described by a closed system such as an atom or molecule. The simplest way to make any

sense of the use of a Hermitian Hamiltonian for a closed system applying to an open

system is to cut the system into parts, having the non-Hermitian parts sum to zero, where

each individual part or parts are non-Hermitian. Such individual parts obviously do not

have real eigenvalues, which is fine because we need the complex eigenvalues to represent

dissipation. The real problem is that we can no longer assign occupation, not even the

usual distribution functions, and certainly Pauli’s exclusion principle cannot be rigorously

enforced. The common denominator with all these problems lies in the fact that these

solutions are not orthogonal, preventing us from representing the excitations as quasi-

particles. To avoid these problems, quantum mechanics tells us to treat the dynamics by a

scattering formulation, abandoning the eigenvalue approach. Very early on in 1973 when I

first calculated resonant tunneling using complex k ¼ kr þ iki; not long after my solution

with real k was published (Tsu and Esaki, 1973), I showed my results to Rolf Landauer,

expressing some satisfaction that the calculated I –V shows the usual line-broadening

feature and a reduction in the peak-to-valley ratio for the tunneling current. I was

cautioned about putting a non-Hermitian term in the Schrödinger equation itself. Rolf

suggested to me that I should consider using the density matrix. I want to share with the

reader here why I wanted to put the damping term in the wave equation itself. The density

matrix operator, like the distribution function of the Boltzmann transport equation, has no

phase. It is certainly possible to formulate the problem step-by-step, such as using the

unitary operator for the solution from cðtÞ to cðt þ DtÞ; calculating the scattering process

Dt by Dt: However, I knew that in the classical system, the microwave cavity loss, or wave

propagation in a lossy medium represented by a complex dielectric function and so on, the

solution usually involves a complex wave vector or a complex frequency. I have read quite

a few accounts about the difference between classical systems and quantum mechanical
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systems. I think most arguments are missing the target. The substitution of classical

canonical variables by operators into commutation brackets leads to quantum mechanics.

As soon as non-linear terms are included, the Hamiltonian is non-Hermitian. The real issue

is not a fundamental one, rather a practical one. If the loss is so great that Q , 1; it is

certainly futile to describe states and a propagation constant, etc. However, for a rather

meager quantum device that has a Q , 2–5; there are 2–5 cycles before disappearance of

the excitation; certainly characterizing the system with a wave equation is useful and

correct. Before I leave this subject, I should point out that the scattering matrix S shares the

same flexibility as the Green’s function. Since the impedance function Z is only a special

case of the S matrix, engineers are on safer ground, because damping is usually introduced

in the impedance function Z:

Something of fundamental interest is discussed near the end of the first volume of Morse

and Feshbach (1956), pointed out to me by N. Horing. Let us take a non-Hermitian

operator N and its adjoint Nþ with their respective state vectors c and x; or

Ncm ¼ lmcm; ð2:21Þ

and

Nþxn ¼ mnxn: ð2:22Þ

If N – Nþ; we can neither make cm and cn orthogonal, nor can we make xm and xn

orthogonal, but cm and xn can be made bi-orthogonal. This is very serious. Not only do we

give up eigenvalues being constant at all time, the non-orthogonality wavefunction means

that the wavefunctions belonging to two different states, m and n are not independent. This

is another way of saying that the different states are not uniquely defined. We must give up

the notion that a broad resonant state may be viewed as an eigenstate. Actually, a good

experimenter would have asserted that transition into or out of a very broad state is not

very interesting. One of the first concepts I learned from Leo Esaki was that one should not

waste time on a very broad spectrum, because it is unlikely to exhibit any intriguing

physical phenomena. With all these discussions, I hope we are prepared to move on to

what we can do with the introduction of a complex wave vector.

2.5.3 Resonant Tunneling with Damping

As early as December 1973, I started putting a damping term, ihn ; iG in the Schrödinger

equation. With the wavefunction c ¼ cðrÞcðtÞ; where cðtÞ is the usual harmonic time

variation, the time-independent equation for cðrÞ becomes

2
h2

2m
72 þ ½VðrÞ2 EÞ2 iG �cðrÞ ¼ 0 ð2:23Þ
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Taking the wave vector k ¼ ðkt; kx þ ikxÞ; where kx þ ikx is the solution of

ðkx þ ikxÞ
2 ¼

2m

h2
ðEx 2 VðxÞ þ iGxÞ: ð2:24Þ

For resonant tunneling structures (RTS), VðxÞ ¼ VðxjÞ; where j denotes the sections of the

structure, the band edge off-set of the structure plus the applied potential across the RTS. In

the actual calculation, because the transverse component of a k is assumed to be conserved

from separable variable, we simply have an equation in the variable x with the usual

boundary conditions. Figure 2.13 shows the DBRT structure. First we compute kx þ ikx in

each section from Eq. (2.24) and Aþ damps to the right and Bþ damps to the left. The rest of

the computation is the same as before. I would like to point out the difference in practice

between the 1970s and the twenty-first century. In the 1970s, my matrix inversion required

that I separate the real and imaginary parts and arranged into doubling the rank of the

matrix; 2 £ 2 becomes 4 £ 4. The calculation is shown in Figure 2.12.

It is commonly assumed that the use of iG (we drop the subscript x) does not introduce a

self-energy shift (Gupta and Ridley, 1988). However, our solution of Green’s function

with the same iG shows a self-energy shift. The reason is that the self-energy terms comes

only from the imaginary part of G for purely real k: Because k is complex in the result

shown in Figure 2.14, there is a shift in the peak position of the resonant current. In the

next section, the use of Green’s function will be fully treated by H1 ¼ 2ih=t; or H1 ¼ 2q

ðd=dxÞ as a damping term added to the Hamiltonian H0:

In the years 1983–1985, I was a Professor at the Institute of Physics and Chemistry of

the Universidade de Sao Paulo, Brazil. I was told by Ioriatti that I should look at the book

by Isihara (1971), referring to Langevin’s equation. I seized on his suggestion and delved

into the book. This resulted in my first serious attempt to use the Green’s function

approach (Tsu, 1985a,b), although I had partially finished work on Green’s function using

time damping even before 1974. Since Langevin’s damping term gives damping in space,

and my original approach was on time damping, I shall start with a later paper (Tsu, 1989),

where I treated both cases. Although the primary target was the treatment of resonant

Figure 2.13. A DBRT structure showing the barrier width B and well width W : Values for kx þ ikx in Aþ and

Bþ are determined from Eq. (2.24), consistent with boundary conditions.
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tunneling involving amorphous materials, the approach may be applied to general cases of

damping. Mathematically, time damping appears to be simpler and more stable without

the need to switch the sign of the damping term every time the wave is reflected. However,

transforming relaxation in time to spatial damping results in the imaginary part of k

depending on the real part. Nevertheless, it is popular because it has been applied all along,

as by Heitler (1954).

2.5.4 Green’s Function in a Damped Free Electron Schrödinger Equation

2.5.4.1 Relaxation Time. If we introduce H1 ¼ 2ih=t into the free particle

Schrödinger equation, there are two possible cases. The first has complex energy and

real momentum, which are useful for time damping such as cyclotron resonances and

atomic transitions. The second has complex momentum and real energy, which is what we

shall examine in detail. For real k and complex E;

cðx; tÞ ¼ e^ikxe2Gte2ivt
; ð2:25Þ

where the energy E ! hv2 iG; is complex with G ¼ h=t: For complex k and real E; which

is the case we want to apply to damping in space from relaxation time, we substitute

k ¼ kr þ iki into c^ðxÞ , expð^ikxÞ in Schrödinger equation,

ðH þ H1Þc^ ¼ ih›c^=›t; or ð›2
=dx2 þ k2

0 þ iQ2Þc^ðxÞ ¼ 0;

where

k2
0 ; 2mE= h2

; k2
r ¼ k2

0 þ k2
i ; ki ¼ Q2

=2kr; in which Q2 ; 2m= ht: ð2:26Þ

Figure 2.14. Resonant tunneling with time damping, t ¼ 5 £ 10214 s for RTS with B ¼ 2:5 nm and the well

width w ¼ 6 nm for GaAs/GaAlAs RTS. Note that there is a drastic reduction in the peak-to-valley ratio,

particularly via the first resonant state. This calculation was repeated using the 35–65 rule for band-edge off-set of

the unpublished calculated in 1974 with the 20–80 rule. After Tsu and Zypman (1990), with permission.
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The one-dimensional Green’s function G^ðx; x
0Þ satisfies

›2

›x2
þ k2

0 þ iQ2

 !
G^ðx; x

0Þ ¼ 24p›ðx 2 x0Þ; ð2:27Þ

with

G^ðx 2 x0Þ ¼
2pi

k
e^ikðx2x0Þ

: ð2:28Þ

Note that we must fix the factor associated with the term ›ðx 2 x0Þ: Sometimes 24p,

which I used, and sometimes 21 is used. What I usually do is to fix the factor consistent

with nðEÞ; the density of states (DOS), obtained from Im Gðx ¼ x0Þ: Therefore, the factor

2ð2m= h2pÞ should be in front of ›ðx 2 x0Þ in Eq. (2.27). Why do most people simply take

the factor as 1? It is because mathematically, we define Green’s function as the solution of

a general differential equation with a forcing term, an excitation term, replaced by a delta

function. The forcing term depends on what is the variable for the differential equation.

For simplicity, we set it to 1 and decide later to be consistent with the forcing term. We do

not put this factor in but must realize that it should be there. For Q ! 0; ki ¼ 0; the

Hamiltonian operator in Eq. (2.27) is Hermitian and the Fourier transform of G^ðx; x
0Þ

reduces to Eq. (2.18). However, for Q – 0 in Eq. (2.26), G^ðx; x
0Þ is still given by

Eq. (2.28), except k is now complex, so that the DOS,

nðEÞ ¼ Im G^ðx
0
; x0Þ ¼

2pi

k
¼

2pkr

k2
r þ k2

i

ð2:29aÞ

and

Re G^ðx
0
; x0Þ ¼

2pki

k2
r þ k2

i

: ð2:29bÞ

Maximizing nðEÞ in Eq. (2.29a), by setting the derivative to zero, we obtain a peak for

nðEÞ located at k2
r ¼

ffiffiffiffi
3=4

p
Q2; corresponding to k2

0 ¼ Q2=
ffiffi
3

p
: For ki ¼ 0; nðEÞ ¼ 2p=k:

Similarly, for the Re G^ðx
0; x0Þ; there is also a very broad maximum located at

k2
r ¼ Q2=2

ffiffi
3

p
; or 2k2

0=
ffiffi
3

p
: We see that between the maxima of Im G^ðx

0; x0Þ and that of

Re G^ðx
0; x0Þ;Dk2

0 ¼ 2Q2=
ffiffi
3

p
: For Q2 ¼ 1 in the example shown in Figure 2.15,

Dk2
0 ¼ 2=

ffiffi
3

p
: What happens to Re G^ðx

0; x0Þ for Q2 ; 0? Re G^ðx
0; x0Þ is a delta function,

›ðkrÞ ¼ ›ðkÞ; at k ¼ 0 or E ¼ 0: Unlike for discrete states such as with oscillators,

whenever the imaginary part goes through a peak, the real parts go through zero. We shall

see later in Green’s function for quantum wells that the real part does indeed go through a

zero when the imaginary part goes through a peak.

Figure 2.15 shows kr; ki and nðEÞ versus E; for Q ¼ 0 (no damping) and Q ¼ 1 (with

damping). Now nðEÞ of the localized states has a tail in the normal forbidden gap. And the

peak, the maximum of nðEÞ is up-shifted due to the presence of damping, from k2
0 ¼ 0 to
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k2
0 ¼ Q2=

ffiffi
3

p
: Setting expð2ki‘Þ ¼ 1=e; defines ki ; ‘21; where ‘ is obviously the mean

free path. With Q2 in Eq. (2.26), we see that ‘ ¼ vt; where the velocity v ¼ hkr=m: Let us

further note that the demarcation of the local and non-local set by k2
0 $ Q2=

ffiffi
3

p
is

equivalent to kr‘ $ 1: Therefore, we can state that kr‘ < 1 demarcates the local and non-

local, or evanescent and propagating regimes. In a quantum well with kr ¼ np=w; kr‘ $ 1

means ‘ . w=np is the criterion for the existence of quantum states. For amorphous solids,

‘ < 0:5 2 1 nm; dictating the well width of a quantum well, w # 1:5 2 3 nm: The

maximum of the DOS appears at an up-shifted energy, which is therefore, not only

qualitatively but quantitatively consistent with the concept of the mobility gap in

amorphous solids going from localized states to non-local states as shown in Figure 2.15

(Mott and Davis, 1979).

In summary, above the mobility edge, the dispersion approaches that of a free particle.

The imaginary part of the wave vector decreases rapidly compared to the real part as

energy is increased. The non-local states are pushed up beyond k ¼ 0: Qualitatively, the

consequence of damping is to broaden and shift up the quasi-states in energy. What

happens is because the self-energy term is responsible for broadening and level shift. Since

localized states are already confined, confinement serves further to move up the extended

states with respect to the localized states. In the process, trapping levels originally at

resonance with band states are now left in the expanded localized region of energy, which

may be a blessing for amorphous materials. The widening of optical transition has been

attributed to quantum confinement in amorphous quantum well structures. For ‘ , 1 nm;

one should see quantum effects for a well width w # 3 nm. Therefore, the observed

Figure 2.15. kr ; ki and nðEÞ versus E: Now nðEÞ of the localized states resembles an exponential tail. The peak

demarcates the local (shaded) from non-local states. After Tsu (1989), with permission.
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quantum confinement effects reported by Abeles and Tiedje (1983) and Hirose and

Miyazaki (1984), and resonant tunneling reported by Pereyra et al. (1987), are indeed

consistent with the present theory. We have shown that damping can also significantly

push up the energy states involved in optical transitions. Therefore, one must be careful to

distinguish between what is due to confinement and what is due to damping as presented.

Furthermore, with time damping, the localized states form continuous tail states as shown

in Figure 2.15. This simple theory gives tail states approaching zero at E ¼ 21;

reminding us of the exponential tail due to randomness.

Let us start with Eq. (2.26),

k2
r ¼

k2
0

2
^

1

2
½k4

0 þ Q4�1=2:

We used the (þ ) sign for Figure 2.15. However, if we use the (2 ) sign, the real and

imaginary parts of k are interchanged, but no new solutions are generated.

We know that the effective band gap in amorphous silicon is increased from 1.1 eV for

c-Si to 1.7 eV for a-Si. Suppose we use this value 1.7 eV in Eq. (2.26) in the peak of the

DOS at k2
0 $ Q2=

ffiffi
3

p
; we obtain a mean free path ‘ ¼ 0:7 nm; which is quite close to what

we expect. In a way, this may be due to some remarkable coincidence. We normally

represent amorphous materials in terms of randomness in bond angle distribution, where a

model of “frozen-in” phonons can describe many properties of a-Si, including the

explanation of optical absorption without any adjustable parameters (Tsu, 1985a,b). What

we present here is a dissipative mechanism represented by a non-Hermitian operator. And

yet, everything seems to fit together for a-solids (Mott, 1970). We may now ponder what is

meant by random inelastic scattering. I showed these results to Sir Neville Mott. He said

that he wanted to include them in his new book. Alas, he passed away not long after. One

of the first books I carried back and forth from my home to my office at BTL was by Heitler

(1954). In those days, I thought it presented the most inclusive treatment on damping. I

noticed then that the so-called Lorentzian line is nothing but our Green’s function for free

particles, Eq. (2.18). I also knew that the isolated damped oscillator is Lorentzian and that

an infinite number of coupled oscillators result in a Gaussian lineshape, the so-called

Central Limit Theorem. This early introduction to fundamental ideas may have provided

me with such conviction that damping is a better way to deal with inelastic losses affecting

coherent interferences and the effects of finite mean free path on man-made quantum

systems as a whole. Because these man-made quantum systems are most likely not to have

as high Q quantum states as in atoms and molecules, damping must be introduced even if

for engineering design purposes alone.

As in the use of the Laplace transform, Green’s function Gðr; r0; pÞ has a singularity in

three-dimensions, which drastically complicates the matter in comparison with our one-

dimensional treatment. This can be seen simply with the free space Green’s function,
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expðikrÞ=r with nðEÞ , kr: Applying such a function to the three-dimensional structure

represents a formidable task.

2.5.4.2 Spatial Damping with Langevin’s Term. The quantum mechanical analog of

Langevin’s braking term in classical systems is to include a term

H1 ¼ 7
2h2q

2m
·7

in H0; which is

7
2h2q

2m

›

›x

in one-dimension, with lql ¼ 1=‘; where ‘ is the mean free path. As usual, c^ representing

a wave to the right with a (þ ) sign, and to the left with a (2 ) sign, satisfies

ðH þ H1 2 EÞc^ðxÞ ¼ 0: ð2:30Þ

Multiplying Eq. (2.30) by 2m= h2; we obtain

d2c^

dx2
þ k2

0c^ þ 2q
dc^

dx
¼ 0; ð2:31Þ

where k2
0 ¼ 2mE= h2 and q ¼ ½2uðx 2 x0Þ2 1�lql: Note that when using the Heaviside

function for q; there is no need to put in 7: The reason we need this 7 in H1 is that without

it, c^ diverges at x ¼ ^1: However, it is obvious that the differential equations to the

right and left are not the same. For a free particle without reflections, once a ›-function is

placed at x0; waves to the right and left emergent from x ¼ x0 do not overlap, so that we still

can define Green’s function. There are discontinuities at the point of the delta function, as

well as at each point where reflection of the wave takes place, requiring the sign of the

damping factor q to be switched, with complicated procedures for several points, x1; x2;…

in general. From Eq. (2.31)

d2

dx2
þ k2

0 þ 2q
d

dx

 !
G^ðx; x

0Þ ¼ 24p›ðx 2 x0Þ ð2:32Þ

Now, we have an extra discontinuity in addition to the usual jump in the derivative of

Green’s function at x ¼ x0; a discontinuity arising from the change of sign of q at x ¼ x0:

To find G; we first perform
Ðx0þ1

x021 ½Eq:ð2:32Þ�dx: The first term gives the discontinuity in

dG=dx; the second term vanishes because G^ðx; x
0Þ is continuous, however, the third term

does not vanish because of the Heaviside function for q: Before we find G^ðx; x
0Þ; let

us substitute c^ , expð^ikxÞ into Eq. (2.31) with k ¼ kr þ ki: Equating the

real and imaginary parts, we obtain k2
0 ¼ k2

r þ q2; ki ¼ þlql for propagation to the

right, x . x0; and ki ¼ 2lql for propagation to the left. Taking Green’s function

Resonant Tunneling Via Man-Made Quantum Well States 85



G^ðx; x
0Þ ¼ A expð^ikðx 2 x0Þ; gives A ¼ 2pi=ðk 2 i2lqlÞ: From ki ¼ þlql; we obtain

G^ðx; x
0Þ ¼

2pi

kr 2 ilql
exp½^iðkr þ ilqlÞx�: ð2:33Þ

Note that if q does not change sign, the denominator in Eq. (2.33) would be same as k in the

numerator for Green’s function for q ¼ 0: We see now in this form that we do not need to

worry about the ^q: Note that Eq. (2.33) is an improved version of what I published before

(Tsu 1985a,b). Surprisingly, the DOS is same as before,

nðEÞ ¼ Im G^ðx
0
; x0Þ ¼

1

p

2m

h2

 !
kr

k2
0

; ð2:34aÞ

and

Re G^ðx
0
; x0Þ ¼

1

p

2m

h2

 !
2q

k2
0

: ð2:34bÞ

except that the pre-factor Eq. (2.34a) is same as nðEÞ given by Tsu (1989), or in the

transformed form by Tsu (1985a,b). At q ¼ 0; Im G^ðx
0; x0Þ / 1=k and Re G^ðx

0; x0Þ / ›ðkÞ:

As shown in Figure 2.16, Langevin’s spatial damping gives rise to results that are very

similar to those from the time-damping case. However, nðEÞ peaks at k2
0 ¼ 2q2 or k2

r ¼ q2

without tailing into the forbidden gap and Re G^ðx
0; x0Þ has a broad maximum at k2

0 ¼ q2:

Except for the lack of tailing, all physical parameters obtained, such as the quality factor

Q; the self energy shift and linewidth are basically the same. In a way this is significant,

because essentially our intuitive back of the envelope estimate is remarkably good. I am

not saying that we do not need to examine individual interactions such as impurity

Figure 2.16. kr and nðEÞ versus E for spatial damping. As a result of damping, q – 0; the localized states

(shaded) are separated from the non-local states. After Tsu (1989), with permission.
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scattering, inelastic phonon scattering and more exalted ones such as surface roughness,

structural defects, etc. What I do want to emphasize is the fact that man-made quantum

systems are far from atomic states, certainly far from states giving rise to

superconductivity. The states we deal with perhaps have no more than Q , 10 and

frequently more like 2–5. Presently, the electronic world is moving towards quantum dots,

by virtue of the fact that the smaller size will have more atoms on the surface which are

subject to unwanted reactions and need complicated reconstruction to gain stability. I have

pointed out on several occasions that the most important quantum mechanical effects we

recognize in electronic devices are no more than the simple factor of two for the two

spinning electrons occupying a given state. Most cases, electrons act almost classically.

Therefore, we must view in the damping as representing an overall benefit quantum

system in devices, because it is a powerful measure of the state of coherence. We shall

come to acknowledge how useful are the quick ways of calculating linewidth, shifts and

the quality factor Q drawing on what we have presented, particularly using Green’s

function for quantum wells.

2.5.5 Green’s Function for Damped Quantum Well Structures

Green’s function used in conjunction with the Laplace transform for studying tunneling

time using the time-dependent Schrödinger equation is presented in Section 2.4. In this

section, the exact Green’s function with damping is presented. Here, we are in a position to

examine some of those techniques based on physical concepts. First, we take an isolated

quantum well, generalized to a finite barrier width useful for resonant tunneling. The steps

needed to determine approximate values involve finding the phase change for an electron

reflected from two barriers. We are all familiar with the fact that Im Gðx0; x0Þ gives the

DOS. However, it is not so well known that the zeros of Re Gðx0; x0Þ give the eigenstates for

an isolated quantum well without damping. We want to establish in what way with

damping, the zeros of Re G are related to the use of the method of phase of constructive

interference to find the energy state, which is exact without damping. We shall see how

valuable these quick and simple ways are in determining linewidth and level shift.

Moreover, with a finite barrier width and damping, the resonant state is further broadened

by the combined effects of tunneling out of the well and damping in the well. Lastly, for

tunneling through a double barrier structure, the energy spectrum of the transmitted

electrons gives a linewidth. A mathematic model is used to calculate the transmission

through the structure. For an isolated quantum well between two very thick barriers, there

is no way to place the energy detector for the transmitted electrons. Even worse is the fact

that we do not even know how to set up the problem in order to calculate the

eigenstates. This is where Green’s function comes in. Placing a delta function inside a

quantum well, the Im Gðx0lx0Þ gives the spectrum of the DOS, which exactly

describes the position of the eigenstates as well as the linewidth when losses are present.
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Jumping ahead, we shall use Gðx0lx0Þ to examine how well these approximate methods

work involving the quality factor Q; and others.

2.5.5.1 Another Look at the Free Particle Green’s Function. The Fourier transform

of Green’s function

G^ðEÞ ¼ ½ðE 2 HÞ7 S�21
; S ¼ Sr þ iSi: ð2:35Þ

For Sr ¼ 0 and as Si ! 0; it is obvious that the Im G , ›ðE 2 EkÞ and the zero of Re G

gives the eigenstate, E ¼ En: However, for S – 0; the zeros of the Re G give the shifted

resonant state, the self-energy shift and the Im G gives the broadened DOS. To my mind,

we should not be bound by the Hermitian assumption of the Hamiltonian. After all, we are

dealing with the zeros and poles in the complex E plane. In this regard, S can be anywhere

in the complex plane. The usual Green’s function of Hermitian operators corresponds to

S ¼ 2iSi and Si ! 0þ which apply to a closed system. For an open system or semi-open

system, S ¼ Sr þ iSi lying off the real axis in the complex plane. In complex variable

theories, whenever a pole moves off the real axis, damping follows. Back in 1967 when I

was working on the theory of electron phonon interactions in polar solids, I learned from

Ted Schultz, who had just published a book on many body theory (Schultz, 1964), that the

simplest way to include real time damping is to move the pole from v0 to v0 þ in; with

finite n (Tsu, 1967). I was still overly concerned with criticisms received for incorporating

non-Hermitian operators in the 1970s. When my manuscripts on damping (Tsu, 1985a,b;

Tsu and Zypman, 1990) were rejected by the reviewers, I quoted Breit and Wigner (1936),

to no avail. Perhaps, I should have simply stated my case without further ado as in Mehan

(2000), that with damping, S is complex! Now that these points have been noted, I shall

first derive Green’s function for the case of an isolated quantum well with damping

extending to the double barrier structure. But first, we shall derive the reflection

coefficients with damping to see in what way the reflection coefficients enter various

methods of approximation.

2.5.5.2 Reflection from a Barrier. Although reflection from a barrier is found in most

elementary quantum mechanics books, for the convenience of the readers, we shall include

a brief account here particularly when damping is present. We shall need these to treat the

problem of damping using the concept of Q; the quality factor of a resonating system.

On the left side of Figure 2.17, with time damping, c^ represent the wave to the right

and to the left, respectively. Then

c1 þ exp½iðkr þ ikiÞx� þ R exp½2iðkr þ ikiÞx�; c2 ¼ T expð2axÞ; ð2:36aÞ
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with a2 ¼ a2
0 2 k2

0; in which a2
0 ¼ 2mV = h2: Equating c and c0; assuming equal masses at

x ¼ w=2; we obtain

R ¼
ikr þ ða2 kiÞ

ikr 2 ðaþ kiÞ
e22kiw e2i2krw ¼

k2
r þ ða2 kiÞ

2

k2
r þ ðaþ kiÞ

2

�����
�����
1=2

e22kiw eiðu22krwÞ

¼
a2

0 þ 2k2
i 2 2kra

a2
0 þ 2k2

i þ 2kra

�����
�����
1=2

e22kiw eiðu22krwÞ ð2:36bÞ

tan u ¼ ð2kraÞ=ða
2 2 k2

i 2 k2
r Þ: ð2:36cÞ

The phase factor e22kiw appears here because the barrier is placed at x ¼ w rather than at

x ¼ 0: Note that the imaginary part, ki ¼ Q2=2kr; which complicates a great deal. In the

past I assumed a couple of numerical iterations by putting kr < p=w for ki to find u which

could be used in the method of phase to calculate the quantum well state with damping.

For ki ¼ 0; the reflection coefficient has a unity modulus with only a phase shift. What is

interesting is when a ¼ 0; ki – 0; lRl ¼ e22kiw; which tends to zero at large w; meaning

that at large w; reflection disappears. This result is correct, because in a lossy system at

large distance, nothing is left to be reflected back. Therefore, all coherence effects

disappear.

Similarly, for the case shown on the right side of Figure 2.17, which allows tunneling to

the right for finite barrier width B and barrier height V such that a2 ¼ a2
0 2 k2

0; with

k2
0 ¼ 2mE= h2 and a2

0 ¼ 2mV = h2; assuming damping in the region to the left of the barrier,

and no damping to the right of the barrier, then

R ¼ lRleiu

lRl2 ¼
ðkr 2 a sin bÞ2 þ ðki 2 a cos bÞ2

ðkr þ a sin bÞ2 þ ðki þ a cos bÞ2

�����
����� ð2:37aÞ

and

tan u ¼
2aðkr cos b2 ki sin bÞ

a2 2 k2
i 2 k2

r

ð2:37bÞ

Figure 2.17. Left, an electron reflected from an infinite barrier; right, a finite barrier.
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where

tan b ¼
22 expð22aBÞcosq

1 2 expð24aBÞ
ð2:37cÞ

and

tan q ¼
2k0a

a2 2 k2
0

ð2:37dÞ

As B !1;b! 0; and Eq. (2.37b) reduces to Eq. (2.36c).

2.5.5.3 The Method of Phase. We shall see how we can use the phase angle

[Eq. (2.36c)] for the calculation of the energy state of an isolated quantum well shown on

the left of Figure 2.17, and Eq. (2.37b) for the energy in a quantum well with a barrier of

finite thickness shown on the right of Figure 2.17. If all we need is an approximate value,

we can simply use the method of phase with krw þ u ¼ np: For exact values we must use

the solution Re Gðx0lx0Þ ¼ 0: Let us take a simple example to obtain an understanding of

the resonant tunneling through a double barrier structure by a simple fundamental concept,

perhaps even with reasonable quantitative results. This aspect was first presented by

Tsu (1985a,b), and will be duplicated here.

Let us use the method of phase, involving adding the phase krw of a wave in a path w

and the phase change upon reflection u for the condition of constructive interference. The

resonant energy is obtained by this simple process. Specifically, we equate the total phase

change after the wave has experienced two bounces from the two walls to 2 np or 2krw þ

2u ¼ 2np; then

kr ¼ ðnp2 uÞ=w; ð2:38Þ

where u is the phase angle of the reflection coefficient given by Eq. (2.37b). From

Eqs. (2.37) and (2.38), we can find the energy at resonance. As the barrier height is

lowered, u goes up, resulting in a lowering of kr; and lowering the energy state with a finite

barrier height. Let us take the case of a single well for illustration, with ki ¼ 0 and B ¼ 1;

the solution for the eigenvalue is given by Schiff (1955),

k tan kw=2 ¼ a and tan u ¼ 2 tanðu=2Þ=½1 2 tan2ðu=2Þ�

Together with Eq. (2.38), we have tan u ¼ ð2kaÞ=ða2 2 k2Þ; which is identical to

Eq. (2.37b) for ki ¼ 0 and B ¼ 1: We shall see how the method of phase can be used in

Eq. (2.37b) to find the eigenvalues when ki – 0; how the method of phase is related to the

peak in energy corresponding to the maxima in the DOS given by Im GþðkÞ and the zeros

of Re Gþ; and furthermore, how well it performs.

2.5.5.4 Green’s Function for an Isolated Quantum Well. We shall first work out

Green’s function for an isolated quantum well in detail, generalized to the case of a well
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with a finite barrier width on each side, allowing tunneling from the structure. Our method

is to place ›ðx 2 x0Þ inside the well for Gðx 2 x0Þ; satisfying all the usual boundary

conditions as well as the change of sign in q; in the case of spatial damping. For planar

structures, variable separable allows the use of the one-dimensional Green’s function. The

problem is really straightforward. Figure 2.24 shows two cases: an isolated quantum well

on the left and one that allows tunneling out on the right. The regions I and II are as shown.

To reduce the complexity, we place ›ðx 2 x0Þ in the middle, or as ›ðxÞ: This geometry

reduces the work by half because of symmetry, without loss of generality.

Let us first derive Green’s function with time damping for the isolated quantum well on

the left of Figure 2.18.

I : x . 0 AþexpðikxÞ þ Bþexpð2ikxÞ; II : Cþexpð2aðx 2 w=2Þ ð2:39aÞ

I : x , 0 A2expðikxÞ þ B2expð2ikxÞ; II : C2expðaðx þ w=2Þ ð2:39bÞ

At x ¼ 0; Aþ þ Bþ ¼ A2 þ B2 and ðAþ 2 BþÞ ¼ ðA2 2 B2Þ þ 4pi=k from

the jump in the derivative due to the delta function at x ¼ 0:

II : x ¼ ^w=2; A^expð^ikw=2Þ þ B^expð7ikw=2Þ ¼ C^ ð2:39cÞ

Because of the symmetry with the delta function in the middle of the quantum well,

Aþ ¼ B2;A2 ¼ Bþ;Cþ ¼ C2: At x ¼ 0;G0
þð0

þÞ2 G0
2ð0

2Þ ¼ 2ikðAþ 2 BþÞ ¼ 24p;

then

Gð0lxÞ ¼ ð4pi=kÞ½y expðikxÞ þ ðy 2 1Þexpð2ikxÞ� ð2:40Þ

where y ; ½lRlexpð2kiw þ iðkrw þ uÞÞ þ 1�21; in which lRl and tan u are same as the

magnitude of R in Eqs. (2.36b) and (2.36c), respectively. And

Gð0l0Þ ¼ ð4pi=kÞð2y 2 1Þ: ð2:41Þ

The notations are getting too complicated, so let us set

R expðikwÞ ¼ lRlexpð2kiwÞexpðiðkrw þ uÞÞ ; r expðiFÞ ¼ rðcos Fþ i sinFÞ: ð2:42Þ

Figure 2.18. Left, barriers on each side have infinite extent; right, barrier widths are finite so that tunneling into,

and out of, are involved.
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Re Gð0l0Þ ¼
2krr sin Fþ kið1 2 r2Þ

ðk2
r þ k2

i Þð1 þ r2 þ 2 r cosFÞ
ð2:43aÞ

Im Gð0l0Þ ¼
ð1 2 r2Þkr 2 2kir sin F

ðk2
r þ k2

i Þð1 þ r2 þ 2r cos FÞ
ð2:43bÞ

Re Gð0l0Þ ¼ 0 gives 2krr sinFþ kið1 2 r2Þ ¼ 0: For Q ¼ 0; so that ki ¼ Q2=2kr ¼ 0; it

becomes F ¼ kw 2 u ¼ np; with n ¼ 1; 3; 5: (This is because the even integers do not

satisfy the symmetrical structure we are treating.) Thus, we see that without damping,

the energy eigenstates are obtained with Re Gð0l0Þ ¼ 0; which is identical to our method

of phase.

The expression for the numerator in Eq. (2.43a) when equal to zero involves ki as a

function of kr; however, it can be computed simply with a pocket calculator. Once sin F is

determined, it is entered into Eq. (2.43b) with cos F in the denominator for Im Gð0l0Þ; we

can then calculate Im Gð0l0Þ and hence nðEÞ: Let us see what happens when ki – 0: The

method of phase involves only the term with sin F. Although sin F itself involves ki; it

would have appeared as though the method of phase can be extended to ki – 0: However,

if the term with ki is left out, the up-shift of the energy of the resonant state would not have

been present. Because kið1 2 r2Þ in Eq. (2.43a) is always positive, then F $ p; which

means that the resonant energy is always up-shifted from the eigenstate when Q ¼ 0 and

cannot be obtained without the Green’s function. This is what we are looking for; the

resonant energy is up-shifted due to damping, similar to the physical picture of the free

electron Green’s function (Tsu, 1985a,b). And for large ki; the use of the method of phase

is definitely not correct.

In Figure 2.19, the Re Gð0l0Þ and Im Gð0l0Þ calculated from Eqs. (2.43a) and (2.43b)

for an isolated quantum well width w ¼ 6 nm and barrier height of V ¼ 0:4 eV ; are shown

Figure 2.19. A sketch of Re- and Im-parts of Gð0l0Þ versus kr calculated from Eqs. (2.43a) and (2.43b) for an

isolated quantum well with well width 6 nm and barrier height of V ¼ 0:4 eV; and t ¼ 10214 s corresponding to

‘ , 8 nm: The unit of k is in reciprocal angstroms. The zero of Re G is at kr ¼ 0:048; or E ¼ 0:1 eV: For t!1;

E0 ¼ 0:076 eV: There is an up-shift of 0.024 eV due to damping.
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using a relaxation time t ¼ 10214s corresponding to ‘ , 8 nm: The peak of the Im part

corresponds to the zero of the Re part representing the resonant energy. What is satisfying

is the fact that much of the understanding derived by intuitive reasoning is basically

proved by the detailed Green’s function. Various estimates using the quality factor and

linewidth at the LWHM, give values in good agreement with the computations using

Green’s function. Furthermore, if the relaxation time is taken as the scattering time for the

mobility m ¼ et=mp; this chosen example corresponds to a m of 1300 cm2 V21 s21, which

is within expected range.

Next, let us see for Q ¼ 0; what happens to Im Gð0l0Þ at the eigenstates. At

Re Gð0l0Þ ¼ 0; Im Gð0l0Þ ; N=D; where

N ¼ ð1 2 r2Þkr and D ¼ k2
r ð1 þ r2 þ 2r cos FÞ

As r! 1; using L’Hospital’s rule, Im Gð0l0Þ! ›ðknÞ; so that nðEnÞ are discrete values at

the eigenstate En of the quantum well.

Green’s function for the quantum well case with Langevin’s damping is more

complicated because of ^q for the waves going to the right and going to the left. For a free

space Green’s function, a Heaviside step function is used to describe ^q; resulting in the

wave equation itself being a function of x and x0; or cðx; x0Þ; even without the ›ðx 2 x0Þ

term. What I have done with the free space Langevin’s damping is to treat this term

together with the delta function term as represented by a generalized Green’s function and

converting into integral equations. With barriers located at x ¼ w; or in general at x ¼

x1; x2…; the procedure needed to keep track of the relationship of the imaginary part of k;

with the sign of q; is quite complicated. For a simple isolated quantum well, Green’s

function for Langevin’s damping is almost identical to time damping, except that the

imaginary part of k is a constant, as described in Eq. (2.37) for the free space case. I think

the validity of this procedure may be rest with whether we can satisfy all the boundary

conditions with two waves from opposite directions in two different differential equations.

Certainly, we can no longer use the eigenvalue problems with completeness and closure.

However, we still have the principle of superposition. Before I leave this subject, I want to

show another possible differential equation capable of describing damping in space.

2.5.5.6 Another Possible Equation for Spatial Damping. Let us take the non-linear

equation

d2c

dx2
þ 4gx

dc

dx
þ 4g2x2cþ k2

0c ¼ 0; ð2:44aÞ

with the solution

c ¼ e^ikxe2gx2

; ð2:44bÞ

where k2
0 ¼ k2 þ 2g; such that the wave damps in both ^k: It can be shown that the

boundary conditions are still represented by the usual continuity of c and c0=m: Moreover,

the reflection coefficient is R ¼ ðik þ gÞ=ðik 2 gÞ: In fact, this equation leads to a good
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description of the effects of finite mean free path with one big problem that is shared by all

others with damping, i.e. the differential equation is not the usual Schrödinger equation.

The extra terms are not Hermitian and are non-linear. I leave these ideas to the amusement

of the reader.

Now for the double barrier problem shown on the right of Figure 2.18, repeating the

above procedures is really too complicated and generally requires computer. Let us

remember that even for the part of the Green’s function with the Laplace transform,

damping is not considered. However, one can use an age-old method for the calculation of

losses in resonant systems that is to be carried out next. We first calculate the quality factor

Q; knowing the position of the resonant states and the linewidth is obtained. In this way,

we avoid solving the complete Green’s function. This approach was published by

Tsu (1985a,b), buried in the book in a form generally not accessible to most people. Thus,

it is reproduced here.

2.5.6 Approximation Method for Linewidth and Level Shift Using Q

To find Q; we let an electron bounce between two barriers having a magnitude of reflection

denoted by lRl. It is important to use only the magnitude to prevent any phase coherence

effects. After n bounces, the density of the electron cpc is given by lRl2n
expð22nqwÞ;

with well width w: The distance covered is ‘ ¼ nw; so that

lRl2n
expð22nqwÞ ¼ lRl2‘=w expð22q‘Þ ¼ 1=e:

Taking the natural logarithm ‘n on both sides gives

‘ ¼
1

2q
½1 þ ð1=qwÞ‘nð1=RÞ�21

: ð2:45Þ

Next, we use Matthiessen’s rule for uncorrelated scattering events, ‘21 ¼ ‘21
0 þ ‘21

B ;

where ‘0 ¼ 1=2q and ‘B ¼ w=2 lnl1=Rl; where ‘0 is a mean free path in the absence of

confinement and ‘B is the mean free path when damping is zero so that it only takes into

account the tunneling out of the barriers. In order to find the shift ›E for the double barrier,

we use the method of phase, which we earlier proved to be exact. We simply equate the

total phase change after the wave has experienced two bounces from the two walls to 2np;

i.e. 2krw þ 2f ¼ 2np; giving kr ¼ ðnp2 fÞ=w; in which f is the phase change upon

reflection from the barrier.

As an added example of our approach, we shall compare the method of calculating ‘

from lRl with a physical approach. Using the third definition of the quality factor Q; we

may write Q ¼ 2p=JT ; where J and T are the current and period, respectively given by

J ¼ lA0l
2

hk=m and T ¼ 2ph=E:
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Taking a wavefunction in the well to be cW ¼ ð2=WÞ1=2 sin kx; together with results from

Schiff (1955, p. 95),

lA0l
2
¼

2

w
expð22aBÞ

4a2k2

a2
0

;

we arrive at the quality factor for tunneling through the barrier of width B;

QB ¼
kwa4

0

16a2k2
expð2aBÞ: ð2:46Þ

Using R from Eq. (2.36b,c) in Eq. (2.45) with q ¼ 0 for ‘B; ‘0 ¼ 1=2ki; with Matthiessen’s

rule, ‘21 ¼ ‘21
0 þ ‘21

B ; we obtain the same expression as in Eq. (2.46) for QB; the quality

factor due to tunneling out of the double barrier. From that the linewidth DE is obtained

from (1) or (2) for Q defined in Section 2.5.1. This expression may be compared using the

Green’s function or by straightforward numerical computation of the linewidth of the

transmission peak in resonant tunneling.

As presented in (Tsu, 1985a,b), from Im Gðx ¼ x0Þ; the linewidth DE ¼ 2E=kr‘ ¼ 2E=Q

and the level shift ›E ¼ E=4Q2; where Q is the quality factor. For small Q; the level shift is

overshadowed by the broadening of the line. For large Q; the level shift dominates over the

broadening factor. For typical crystalline materials, k , 107 cm21 and ‘0 , 30 nm;

giving Q , 30 and ›E=DE ¼ 1=8Q; for a linewidth of 200 meV, the shift is only ,1 meV,

which is really difficult to observe. However, with poor quantum confinement, Q , 1–3;

the shift is considerable. From an experimental point of view, it is easier to measure a

0.1 V shift than 0.8 V linewidth. A linewidth of a few tenths of an electron volt simply

does not stand out! At this stage, I want to emphasize that we can estimate a relaxation

time from the mobility. With this, we can obtain a line broadening and a level shift. One

may ask why we want to go through the complexity of using Green’s function. It is true

that every engineer can have a good design based on a few important concepts, often from

intuition, or simply some rule-of-thumb. A detailed mathematical model is extremely

important for the overall understanding in establishing the rule-of-thumb, as well as, quite

often, leading to new frontiers. Let us give an example how good an approximate estimate

can be made using the procedure just described by comparing with the use of Im Gð0l0Þ for

the case of an isolated GaAs quantum well width w ¼ 6 nm and a barrier height V ¼ 0:4 eV :

The spectra for various ‘0 are shown in Figure 2.20. The quality factor Q used is taken as

kn‘0; which is very close to the linewidth 2En=DEn: The cases marked 1–5 with peak

positions shown by arrows are summarized in Table 2.1.

Note that the shift is rather small except in the last two cases where the quality factor

falls below 2. Therefore, as we intuitively guessed, as long as Q . 2; we should not worry

too much about anything else. After all, the rule-of-thumb is no more than Heisenberg’s

principle. In a way, I am saying that all these theoretical criticisms about damping creating

a non-Hermitian Hamiltonian, and supposedly violating quantum mechanics are really

groundless. I shall close here by pointing out that when Q , 1; the spectrum is really not
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discrete and assigning Pauli’s exclusion principle, or even the Fermi distribution function,

is really far fetched for a state which is not even well defined.

To summarize, the approximation involves using damped electron wavefunctions. Next,

we will find the amplitude and phase of the reflection coefficient lRl and f of a wave

incident on a barrier. Without damping, the method of phase gives us exactly the energy

corresponding to the resonant tunneling which is identical to the maximum in the DOS.

With the method of incoherent multiple reflections, we arrive at Q; which is identical to the

usual definition when allowing a wave to leak out of a storage system, via tunneling out

and internal damping. All we need to do is to apply Eqs. (2.38) and (2.45) for Q and thus

Table 2.1. The linewidth calculated from Im Gð0l0Þ for the case of an isolated GaAs

quantum well with width w ¼ 6 nm and a barrier height V ¼ 0:4 eV

Case ‘0 (nm) Q E1 (eV)

1 96 12.8 0.0712

2 48 6.4 0.0715

3 24 3.2 0.072

4 12 1.6 0.076

5 6 1.0 0.089

Figure 2.20. Energy spectra of an isolated GaAs quantum well with width 6 nm and a barrier height of 0.4 eV

obtained from the zeros of Green’s function, for five values of t; corresponding to the mean free path ‘0: The

arrows indicate the peak positions of the resonant energies.
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for DE: However, the self-energy shift dE must come from Green’s function, k2
r ¼

k2
0 2 k2

i ; with ki from the mean free path ‘0 or the scattering time t: For k‘q 1;DE should

be used and for k‘p 1; and since the linewidth is so broad, it is more convenient

experimentally to find dE: Therefore, dE should be used for most amorphous cases. From

Eq. (2.43a), we have

sin F ¼ 2kið1 2 r2Þ=2krr; instead of sinF ¼ 0; ð2:47Þ

as with the method of phase. The difference is the factor 2kið1 2 r2Þ=2krr; which is really

quite small for ki p kr: Nevertheless, this term gives rise to an additional increase in kr; up-

shift of the peak, a fact even predicted by the free electron Green’s function with damping.

What happens if we simply substitute k by kr þ iki and find the transmission as well as the

resonant tunneling as shown in Figure 2.20? We can either solve the transmission problem

with a complex k which is correct, but lacks explicit elucidation of the role of the self-

energy shift or use Green’s function, for an expression of the shift dE: The total shift comes

from damping by the reflection coefficient, which involves k2
i even with the method of

phase, but misses a larger shift from Eq. (2.47), involving ki: For ki p kr; the shift is

dominated by ki in Eq. (2.47), in which it is erroneously stated that there is no shift (Gupta

and Ridely, 1988). Their calculated result is correct, because the shift is so small, however,

their conclusion is off the mark. As long as we recognize that DE is correctly approximated

by DE ¼ 2E=Q and the shift dE ¼ E=4Q2 from Green’s function (Tsu, 1985a,b), the

extremely simple approximation leading to the line broadening and the shift, is now

complete, giving a remarkably accurate estimate that includes the mobility involved.

Lastly, the all-important peak-to-valley ratio in resonant tunneling is, therefore,

prominently reduced by damping. I claim that the most important “figure of merit” in

quantum devices, whether for an isolated quantum well, where the states with damping

manifest in the broadening of the photons involved, or the peak-to-valley ratio of the

transmitted current in resonant tunneling, is the mean free path, which was used in the very

first introduction to man-made quantum systems (Esaki and Tsu, 1970).

The use of Green’s function is more powerful than looking for the transmission peak.

For an isolated quantum well, we can calculate Green’s function, but we cannot set up the

transmission case.

2.6. VERY SHORT ‘‘‘ AND w FOR AN AMORPHOUS QUANTUM WELL

The problem with modeling an amorphous quantum well is when the mean free path

‘; or the mean free time t; are so short that even without quantum confinement, the

energy is pushed up due to the self-energy shift. Therefore, modeling quantum

confinement for the amorphous case requires a complicated procedure. Before we can

use the measured data, let us summarize what we need to do. We use the results of
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the Green’s function and the definition of Q ; k‘0 or Q ; vt; with t ¼ ‘0=ðhkr=m
pÞ;

for the energy linewidth DE and the level shift dE: To illustrate the procedure, we list

in Table 2.2, important parameters obtained from our approximate procedures.

In Table 2.2, the appropriate parameters are consistent with the following summary

using the free particle Green’s function with loss:

GðkÞ has a pole at
ffiffiffiffiffiffiffiffiffiffi
k2

0 2 k2
i

q
þ iki

nðkÞ ¼ Im GðkÞ has a maximum at k2 ¼ k2
0 2 k2

i ½1 2 ðk2
i =3k2

0Þ�

Another modification is when the masses are not equal. Taking the mass in the barrier as

m1 and that of the well as m2; because of the current continuity, a in Eq. (2.36) should be

replaced by a0 ¼ a
ffiffiffiffiffiffiffiffi
m2=m1

p
; effectively reducing the barrier height with respect to the

quantum well. The consequence is to reduce the energy E:

For each ‘0; the energy E is calculated for a given well width w: From the plot of EðwÞ

versus ‘0; we can immediately determine the energy as a function of the mean free path.

However, the matter is complicated by the further reduction of ‘0; as the width w is

Table 2.2. Typical parameters characterizing a damped system particularly

appropriate for amorphous quantum systems

‘0 (nm) t (ps) Q DE (meV) dE (meV)

100 0.06 40 2.5 0.3

10 0.006 4.0 25 3.0

Figure 2.21. The energy states versus the mean free path L (same as ‘ used throughout this chapter).

The notation E10; E20; etc. refers to quantum well states with the width of the well, 1, 2, 3, 4 nm. A double barrier

(DB) structure (a-Si:H/a-SiNx:H) has dimensions ðB;w;BÞ ¼ ð3:5 nm;w; 3:5 nmÞ with w ¼ 1; 4, 3, 2, 1 nm. The

conduction band mass is taken as mp
c ¼ 0:2 me: Inset shows the fit of data for L ¼ 0:26–0:5 nm:After Tsu (1985a,b),

with permission, using data taken from Abeles and Tiedje (1983).
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reduced due to various deleterious effects, such as induced interface strains and defects,

and so on. We plotted the successive difference in Enðw2Þ2 Enðw1Þ;Enðw3Þ2 Enðw2Þ;…

with the guide that Enðw $ 6 nmÞ ¼ Enðw !1Þ: With this procedure, the mean free path

‘0 versus w is obtained as shown in Figure 2.21, taken from Fig. 2 of Tsu (1985a,b) with

data from a-Si:H/a-SiNx:H (Abeles and Tiedje, 1983). The important result is the fact that

the mean free path is less than 0.5 nm, almost a factor of 2 below what is usual for a-Si:H,

possibly due to the fairly complicated process of fabrication of the multilayer structure.

Figure 2.22. Inverse Q versus the 1st and 2nd resonant peaks versus m or inverse t: Zypman et al. (1988,

unpublished).

Figure 2.23. Peak-to-valley ratio versus t for the same two structures as in Figure 2.22.
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As quantum confinement is a reality in amorphous solids, one wonders why no one is

pursuing this route for them and in polycrystalline solids? The inverse Q is plotted versus

the mobility m in Figure 2.22, and the P=V ; the peak-to-valley ratio is plotted against t in

Figure 2.23, in both figures for the first two resonant states for two GaAs RT structures,

where (40, 0.3) and (20, 1.0) denote w ¼ 4 nm and a barrier height of 0.3 eV, etc. Although

the first resonant peak usually has higher transmission, the second peak dominates because

of a much wider width for the second transmission peak.

2.7. SELF-CONSISTENT POTENTIAL CORRECTION OF DBRT

Before we present some working rules for self-consistent potential calculations, we shall

first cover some fundamental rules that govern junctions, such as the pn-junction, and

heterojunctions in general. The rules are in fact simple. I often wonder why most technical

books on junctions still follow the “old fashioned”, half-a-century old rules, relying on

equations to explain what happens in a junction. What we need to remember is that the

Fermi level is similar to a water level between two containers with a connection between

the two so that a common level is established at equilibrium. We plot the electron energy,

with negative charge for electrons, so that the positive potential lowers the potential

energy profile. Therefore, electrons fall down and holes climb up. If the two sides have

different Fermi energies, at a distance far away from the contact, a common Fermi level

exitsts. However, near the contact, the Fermi level is not definable because both sides near

the contact are in depletion mode. Whenever a voltage is applied, we introduce quasi-

Fermi levels that have a separation equal to the applied voltage. The higher the carrier

density, the faster is the falling and climbing. Another principle I use is the fact that we

should always assume a rule and follow that rule. For example, an applied voltage causes

the electrons to move. A simple rule is based on preventing the universe from blowing up.

If the motion results in increasing the potential that causes the motion in the first place,

then the universe will blow up. Therefore, the motion must be such to cancel out the

applied potential. Let us summarize the following important rules:

(1) Potential cannot change without charge and charge cannot exit without a volume,

surface or thickness. Take two conduction bands separated by a junction bandedge

difference of DV ¼ V2 2 V1 (the conduction band-2 is above the conduction band-1)

and this difference DV is fixed at the junction. The electrons on the right falls towards

the common Fermi level at ^1; resulting in a depletion region to the right of the

junction, exposing the (þ ) dopant sites, and an accumulation of (2 ) charges, the

electrons to the left of the junction. On the right side, the potential falls until aligned

with the common Fermi level. On the left, electrons accumulate. How fast the

potential changes depends on doping. In this case, the slope of falling electrons
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depends on the doping density on the right. The slope of rising holes depends on how

many electrons are available. Because of the boundary condition that the normal

displacement vector is continuous, for equal dielectric constants on both sides, the

downward slope on the right must be same as the upward slope on the left at

the boundary. And the higher the doping and the more the electron density is

available, the faster is the change, or the thinner is the depletion thickness on the right

and accumulation thickness on the left. Therefore, with n-doping on both sides, the

side with higher doping determines the outcome.

(2) For a pn-heterojunction with equal doping, the electrons fall into the side with holes,

or we say the holes move up. The larger the n-doping, the faster the electrons fall, and

the larger the p-doping, the faster the holes climb, and both sides are depleted.

Electrons from the n-side leave the dopant (þ ) sites in the depletion layer, and holes

from the p-side climb and leave exposed (2 ) sites. What happens when the p-side is

negligibly doped? Then as in the n–n heterojunction, the higher doping side

dominates. For example, if the n-side on the right is highly doped, many electrons

from the right can fall into the accumulation layer on the left and the potential profile

is now determined by the highly doped n-side.

(3) A superlattice and a quantum well have a quite different scenario. John Bardeen asked

me during the Industrial Affiliates Conference at the University of Illinois in the late

1970s whether the Fermi levels are aligned in superlattices. I pointed out that the

Fermi level is mostly in the middle because the superlattice is almost completely

within the depletion region. This is because the layers are so thin that all the available

carriers are used up trying to line up the Fermi level, but never quite make it. Of

course, this situation arises because the band-edge alignment for the creation of the

periodic potential is generally many times greater than the binding energy of the

dopants. One can dope as much as one wants, the superlattice remains intrinsic. Since

doping creates a scattering center and other deleterious effects, why should one dope

the superlattice?

Just as important as the basic understanding is that the ultimate results are always based

on mathematic modeling using a self-consistent calculation. In such a model, one often

starts with no potential other than the applied voltage. The electron transport based on the

wavefunction solution of the Schrödinger equation is then solved together with the Poisson

equation. The new potential is now added to the original zero order solution. The process

usually converges to the final satisfactory results as a self-consistent calculation. In some

cases, if one needs faster convergence, the variational minimization technique is often

used so that one iteration is often sufficient for satisfactory modeling. At this point I would

like to remind the reader that the solution of a lossy waveguide cavity utilizes the same

procedure. First, one solves for the fields assuming perfect conductivity. The fields for the

zero order solution are now used to calculate the current and thus the power loss.
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I mentioned before that the self-consistent calculation of Cahay et al. (1987) seemed

quite straightforward to me. They divided the DBRT structure into three basic regions:

electrons originate from the left side contact, tunnel through the quantum well region and

are transmitted to the right. Even without assuming relaxation processes, the electrons in

the quantum well create a space charge, raising the potential and requiring a higher applied

voltage for the alignment of the discrete quantum states with the electron source at the left

contact. In the actual model, there is a further complication, because two undoped sections

were placed between the doped contacts and the barriers that form the quantum well

structure in order to minimize Coulomb scattering in the quantum structure. Figure 2.24

shows their calculated results compared with the case where the self-consistent potential is

not included. Note that the position of the resonant peak shifts to higher applied voltage

and the peak height is lowered as well as linewidth increasing. In short, the self-consistent

results predict poorer performance. Simple inclusion of the space charge presented below

shows essentially these findings.

To calculate the space charge, we start with the two-dimensional DOS

nðEÞ ¼ mp
=ph2

: ð2:48Þ

In the quantum well of width w; assuming perfect confinement, the charge density in the

lowest level E1 is

ecpc ¼ eð2=wÞsin2ðpx=wÞ;

so that the charge density inside the quantum well is

r ¼ eðmp
=ph2ÞDEtð2=wÞsin2ðpx=wÞ: ð2:49Þ

Figure 2.24. Current versus voltage, self-consistent and flat-band results for a DBRT GaAs with Al0.45Ga0.55As

barriers and two undoped GaAs spacers, with 2 £ 1018 cm23 Te nþ-doped contacts, all 5 nm thick. After Cahay

et al. (1987), with permission.

Superlattice to Nanoelectronics102



Solving the Poisson’s equation

72fSC ¼
d2fSC

dx2
¼ 2r=1;

we arrive at the potential energy of the space charge,

fSC ¼ ðr0=41Þ{ðw=pÞ
2sin2ðpx=wÞ þ wx 2 x2}; 0 # x # w; ð2:50Þ

where r0 ; eðmp=ph2ÞDEtð2=wÞ: Note that the inclusion of the applied potential does not

change the value of VSC; because potentials may be superimposed.

The maximum value is at x ¼ 0:5w; or the potential energy in eV units. (Note that in eV

units, voltage V is numerically same as energy measured in eV.) VSCðw=2Þ ¼

0:25ðr0=1Þw
2ðp22 þ 0:25Þ: Taking w ¼ 5 nm; mp ¼ 0:07m0 1 ¼ 11 10 for GaAs, the

value of VSCðw=2Þ ¼ 0:42DEt: For DEt , 80 meV; corresponding to n , 2 £ 1018 cm23,

VSCðw=2Þ ¼ 0:035 eV: Near resonance the energy, E1 ¼ eV =2; then the increase in voltage

at resonance with space charge correction ,0.035 £ 2 ¼ 0.07 eV. The separation between

the mid-point of the NDC in Figure 2.24, taken from Cahay et al. (1987), with and without

self-consistent results, is 0.25 2 0.17 ¼ 0.08 V, indicating that our simple space charge

increase of 0.07 V is really quite good. How do we explain the lowering of the peak value

and broadening of the linewidth? As we know, higher voltage translates to more asymmetry,

reducing lT l2; which in turn reduces the peak value. The wavefunction used assumes

complete confinement, or the quality factor Q of the resonating system is infinite. In reality,

even without loss, Q – 1 due to tunneling out of the barrier. However, even for a Q of 20,

the correction using the eigenstate is very small. Our simple estimate indeed represents the

actual situation, thus we conclude that the self-consistent correction in the left and right

leads, where accumulation at the left contact and depletion at the right contact are much less

important, because an electron confined in a resonating system has a overwhelming

probability of being inside the resonating system.

2.8. EXPERIMENTAL CONFIRMATION OF RESONANT TUNNELING

I started on the theory a full 9 months before the publication of Tsu and Esaki (1973). After

careful evaluation of the possible experimental verification, we at IBM, under the direction

of Esaki, thought that it is too optimistic to expect that anyone could fabricate a tunneling

structure without “pin holes” with an overall thickness of no more than 10 nm. One must

understand the consequence of failure while the whole concept of the man-made

superlattice was at stake. In late autumn of 1973, Esaki was notified about his Nobel Prize,

which triggered a sense of confidence in all of us. Chang was instructed to start on the

growth of the double barrier resonant tunneling, DBRT, structure using the best computed

results that I had obtained. I was instructed to prepare a mask for the structure that was
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suitable for I –V measurements. My first try in late November 1973 used 50 mm dots for

contacts, without having a single one showing NDC, which we had decided was the best

evidence of resonant tunneling. We enlisted the best facilities at the Special Technique

Group at IBM Research Center, with masks for dots of several micrometers. We decided

on a conservative size of 6 mm dots for contacts. At the end of 1973 and the beginning of

1974, we were able to find NDC in more than 30% of all the dots, resulting in the now

well-known Chang et al. (1974) experimental confirmation of DBRT. Figure 2.25 shows

the measured conductance and current at 77 K. Note that the barriers were much too thick

by today’s standards. The reason is that we simply could not believe that anyone could

make a 2 nm barrier. We used x ¼ 0:5 in Ga0.5Al0.5As. Later, we learned from the work at

BTL (Dingle et al., 1974) about the alloy AlxGa12xAs, where x # 0:3; which is good for

lattice matching. The peak positions are fairly close to the calculated values.

Figure 2.25. Current and conductance versus the applied voltage of a DBRT structure using 6 mm Au dots as

contacts. After Chang et al. (1974), reprinted with permission.

Superlattice to Nanoelectronics104



Figure 2.26 shows another design with a 4 nm QW, leading to a larger measured voltage

than calculated voltage, which we believed was partially due to the use of exponential

functions instead of the Airy functions needed for large fields. I would like to mention

some of our computational problems. At the time, I was using the newly introduced

personal terminal using the APL program at IBM instead of the main frame computer with

FORTRAN and punched cards. One paid a dear price for convenience, with only a 32 kB

memory. This meant that a highly efficient program had to be written to run without

allowing an approximation of the linear voltage by many steps, but permitting the use of

exponential functions. Therefore, we were only taking the average values of the potential

at the midpoints of the barriers and the well, which seriously limited the accuracy at larger

voltage. There was not even a sub-routine for Airy functions available with the APL, so I

had to use the asymptotic expressions and create my own sub-routine! In short, the

agreement for the 4 nm well is not as good as for the 5 nm well, possibly because the larger

voltage resulted in a poor approximation by the exponential functions. Nevertheless, as

pointed out by Chang et al. (1974), the overall comparison between the calculated and

measured values was satisfactory.

Resonant tunneling in DB structures was begun in 1973–1974, and has developed into

a major field in quantum devices leading the way (and metamorphous) to the

nanoelectronics of today. Understanding of the subject is still evolving. My personal

view is that damping mechanisms need further attention. On the other hand, unlike

Figure 2.26. Conductance versus the applied voltage. Note that the measured peak positions do not agree with

the calculated quantum well, for the reasons given above. Positions aside, there is no NDC. At the time, we

believed the problem was with the scattering; the higher the energy, the lower is the mean free path. After Chang

et al. (1974), reprinted with permission.
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quantum dot devices, there is no input/output problem. A terahertz oscillator has been

realized with RTD, a subject we shall treat later. Even if we allow that full adoption of

RTD devices in everyday electronics may still be some years away, what is the future for

quantum dot electronics?

2.9. INSTABILITY IN RTD

2.9.1 The Goldman–Tsui–Cunningham Instability

Instability was first reported by Goldman et al. (1987), who asserted that j plotted

against V with the inclusion of self-consistent potential results in instability and

hysteresis near the resonant peak. However Sollner (1987) explained that oscillation is

due to external circuits and oscillation manifests itself in hysteresis. Before I try to

resolve this important issue, I want to go back to explain oscillation and the appearance

of hysteresis in terms of fundamental physics. Oscillation in almost all RF devices,

including microwave oscillators and lasers, is caused by the presence of gain, whether

it is due to population inversion leading to negative resistance, as in gas and injection

lasers, or simply gain, as in negative differential resistance (NDR), including parametric

oscillators, with the frequency fixed by an external resonating system known as the

cavity or laser mirrors. These external resonators are usually, but not always, tuned to a

frequency near the maximum gain. In second harmonic oscillators, the external cavity

is tuned to the second harmonic where the gain is usually much lower. In Gunn (1963,

1976) oscillators, a typical device with NDC, field induced domain is caused by uneven

partitioning of the applied voltage over a region, as a consequence of inhomogeniety.

Fundamentally, domain formation is due to the system seeking a minimum total energy

for the system; in this case, almost all of the energy is electrical. Therefore, space

charge does not induce instability by itself.

Next, let us look at the typical hysteresis of the magnetization B–H curve. When I was

at IBM Research, I asked H. Chang, who was in charge of the Magnetic Memory at the

IBM Research Center, to explain to me whether magnetic domains, usually described in

terms of a domain delineated by surface energy, involve some kind of phase transition. He

said that the domains are formed as the system tries to minimize the total energy, and

therefore, at least some sort of local minimization of the total energy is involved. The

Curie temperature is just the energy needed for the configuration to return to a more

random orientation. This process was very much on my mind when Nicollian and I (Tsu

et al., 1993, 2003) first observed switching and hysteresis in tunneling through 2–3 nm

quantum dots of Si. We observed high frequency instability of greater than megahertz

values, as well as low frequency switching of less than 10 Hz. Owing to the slowness of

the switching, we knew we were dealing with trapping, where electrons are trapped onto

a defect site resulting in negatively charged clusters, defects or dislocations, and so on.
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The structure relaxes to minimize the strain energy resulting in hysteresis. More will be

devoted to this subject in Chapter 7. For example, why is trapping more prevalent in

quantum dots (QDs) than in quantum wells (QWs)? I hope that I have at least set the stage

for the discussion about why I think Sollner’s explanation is close to being correct. I

acquired this sort of wisdom during the couple of years I worked on porous Si (Tsu, 1994),

where there was great debate about whether the visible light emitted from PSi is due to

quantum confinement or surface crud. I came to realize that whenever two groups of fairly

knowledgeable people heatedly disagree, the chances are they are both partially correct.

We now know that both quantum confinement and surface crud together play important

roles in the observed visible luminescence in PSi. As long as the two key points are clear in

our minds, we can indeed resolve the issue at hand. Basically, our present debate is very

much like the example I give here involving PSi.

1. No instability induced self-oscillation is possible with a single quantum well—no

domains, no coupled oscillators and thus no self-oscillation.

2. No trapping follows by reconfiguration and there is no hysteresis.

Why then did the self-consistent calculations sometimes show stability (Cahay et al.,

1987) while sometimes instability appears, as shown in Figure 2.27 (Goldman et al.,

1987; Berkowitz and Lux, 1987; Alves et al., 1988), Berkowitz and Lux (1989), and

Figure 2.27. Current versus voltage of a DBRT with hysteresis. Sollner (1987), with permission.
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Zhao et al. (2003). The answer lies in the fact that two or more quantum wells are involved.

Zhao was the first to point out that in addition to the DB–QW, an additional triangular

shaped quantum well, “EQW” (Zhao’s terminology) is created by the applied voltage in

the undoped section, called a buffer, used to separate the charged dopant sites from the

structure. This “EQW”, as in the inversion region of a metal oxide silicon field effect

transistor (MOSFET), predates the man-made heterojunction DBRT structures. Figure

2.28 shows the coupling between the two QWs introduces bi-stability, as in any ordinary

flip-flop system. Let me comment on the need to use the time-dependent Schrödinger

equation, or at least some time-dependent formulation such as the density matrix, or the

Wigner function used by Zhao et al. (2003). I have worked out the response function for

the superlattice (Tsu and Esaki, 1970; Tsu, 1990), using the simplified path integral time-

dependent approach. The Wigner function is superior because it contains spatial boundary

conditions. But it is also possible to include spatial boundary conditions in Pippard’s

Figure 2.28. A single QW at V ¼ 0; top, becomes a double QW system, bottom, with the additional EQW at

V – 0: The coupling between the resonant state EQW and the QW state E1 results in coupled modes, EQW(^ )

and Eð^Þ
1 ; which may explain the source of instability. The bowing of the potential profile is due to space charge.

Superlattice to Nanoelectronics108



integral. I can visualize that the result will be quite similar to the Wigner function in one

dimension used by Zhao. I think the primary virtue of the Wigner function is that it is so

simple, and quite likely, good enough, although the use of the density matrix and a three-

dimensional calculation is probably better, it involves huge computational complexity.

Before Zhao et al. (2003), Woolard et al. (1996) introduced an inductor in their

equivalent circuit that gave me a clue that internal oscillation can be present, since we

know that the circuit representation of a resonating system with a cavity involves

an inductor to store magnetic energy and a capacitor to store electrostatic energy. I have

already concentrated on the role of the undoped buffer region transformed into a triangular

quantum well by an applied voltage as shown in Figure 2.28. Interestingly, Woolard et al.

(1996) did not even mention the second quantum well, EQW, until a later paper by Zhao

et al. (2003). Figure 2.28 shows a RTS including two undoped sections on either side of the

structure and the contacts. The notations are I for intrinsic, B for barriers and W for the

quantum well. The RTS portion is drawn to scale, but the contacts are not. This is because

the linear dimension of the structure consists of 5 nm for each section, while the contacts

have a long depletion layer for alignment of the Fermi level of the nþ region. The two QW

states E1 and E2 are quite a way from the bottom of the conduction band edge so that at low

applied voltage, there is no current. With an applied voltage, the I region forms into a

triangular QW similar to the inversion layer of a MOSFET. Because this I region is so

close to the heavily doped contacts, the mean free path is low resulting in fairly broad

quantum states, the EQW states, following the nomenclature used by Zhao. No current

appears until this EQW state is aligned with the source of electrons. There is coupling

between the EQW state and the QW state E1 as shown in Figure 2.28. The maximum

coupling is at a voltage such that the EQW state and E1 are aligned, resulting in coupled

modes, denoted by E^
1 and EQW^:

In the original Tsu and Esaki (1973) paper, three peaks appeared in Figure 2.3, although

in Figure 2.27 of Sollner only two peaks are evident. I think the reason is that the lower

mobility in the EQW leads to much broader states. Also, we know that any quantitative

agreement with measured I –V requires a full self-consistent calculation. Thus, at least

quantitatively we can account for the measured I –V , which is still more than we expected

to do. What is important is that we can restore our confidence in our physical picture of the

resonant tunneling mechanism. What has happened to the statement by Alves et al. (1988)

that bistability results from the stored space charge in the quantum well? In their Fig. 1 for

the structure that their calculation is based upon, there is a triangular well in the emitter at

an appreciably high applied voltage, a similar situation that reported by Zhao et al. (2003).

In particular, reading between the lines of Sollner (1987), we must recognize what Sollner

was trying to tell us: “Do not jump to a conclusion simply by looking at the I –V”.

However, I think a time-dependent calculation, like that used by Zhao et al. (2003), is

probably more reliable.
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There is another potentially very important issue I shall treat next—excitation inside of

a quantum well that results in tunneling out through both barriers of the DBRT structure.

This situation applies to cases where trapped electrons may re-enter the QW, affecting the

space charge of the whole structure. If this is indeed the case, there will be a source of

instability because this additional space charge comes from the traps which are not related

to the resonant tunneling between the contacts. This possible source of instability requires

no coupled wells. However, in reality, a coupled system of QW states and the states of the

trapping sites are again involved.

2.9.2 Decoupling of the Two Barriers by an Excitation within the Well

We will treat here the consequence of introducing an excitation function within the

quantum well. The general formulation requires the use of the Laplace transform that will

be presented in the next section. We will show that resonance, due to coherent interference

of the electron wave function inside the well, gives way to exactly the same case as when

the two barriers have been decoupled when a delta function excitation is introduced into

the well. Let us first generalize the equations leading to Eq. (2.7). Let an electron

wavefunction in region 1,

c1 ¼ Aexpðik1xÞ þ R expð2ik1xÞ;

incident on a square barrier with width B and barrier height V in region 2, exit into region 3

with wavefunction

c3 ¼ T expðik3xÞ; with k2
2 ¼

2m2

h2
ðE 2 VÞ:

Usually, one sets lAl ¼ 1; however, we leave A to be arbitrary because later we need it

when we introduce an excitation within the well. The incident current ji; the reflected jr and

the transmitted jt are respectively

ji ¼
hk1

m1

lAl2; jr ¼ 2
hk1

m1

lRl2 and jt ¼
hk3

m3

lT l2:

Explicitly

jt
ji

¼
k3m1

k1m3

T

A

����
����2¼ k3m1

k1m3

4

a2
1 cosh2 k2B þ b2

1 sinh2 k2B

" #
; ð2:51Þ

where a1 ; ð1 þ ðm1k3=m3k1ÞÞ and b1 ; ððk2m1=k1m2Þ2 ðk3m2=k2m3ÞÞ:

Since ji þ jr ¼ jt; for lAl ¼ 1 and equal masses, we recover Eq. (2.7).

Next, we take the case of two barriers with widths B2 and B1 as shown in Figure 2.26

and regions I, II and III, with subscript “a”, to the right of the ›-function excitation, shown

as an arrow pointing upward, and subscript “b”, to the left of the excitation function, and

with T1 transmitted to the right and T2 transmitted to the left (Figure 2.29).
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The wavefunctions are:

c1 ¼ A1 expik1ðx 2 x0Þ þ B1 exp 2 ik1ðx 2 x0Þ Region Ia

c2 ¼ A2 expik1ðx 2 x0Þ þ B2 exp 2 ik1ðx 2 x0Þ Region Ib

with the boundary conditions: c1 ¼ c2; and c0
1 2 c0

2 ¼ 1: Then, the normalized current

transmission JðIa ! IIIaÞ ; JR becomes

JR ¼
m1k3

m3k1

T1

A1

����
����2¼ 4ðk3m1=k1m3Þ

a2
1 cosh2 k2B1 þ b2

1 sinh2 k2B1

: ð2:52Þ

Similarly, the normalized current transmission JðIb ! IIIbÞ ; JL becomes

JL ¼
m1k3

m3k1

T2

B2

����
����2¼ 4ðk3m1=k1m3Þ

a2
2 cosh2 k2B2 þ b2

2 sinh2 k2B2

; ð2:53Þ

with a2 ; ð1 þ ðm3k1=m1k3ÞÞ and b2 ; ððk2m1=k1m2Þ2 ðk1m3=k3m1ÞÞ:

Comparing both Eqs. (2.52) and (2.53) with Eq. (2.51), it is obvious that the current

transmissions are governed by tunneling through a single barrier. Therefore, the presence

of a source decouples the double barriers into two single barriers. For B1 ¼ B2; the total

current to the right Ia,

jðIaÞ ¼
hk1

m1

½lA1l
2
2 lB1l

2
�; so that

JðIIIaÞ

JðIaÞ
¼

k3m3

k1m1

:

The total current to the left in Ib,

jðIbÞ ¼
hk1

m1

½lB2l
2
2 lA2l

2
�; so that

JðIIIbÞ

JðIbÞ
¼

k3m3

k1m1

;

both involve the same factor of k3m3=k1m1: Now we can apply our results to a general case

of m barriers to the left of a well with an excitation and n barriers to the right of the same

well with an excitation, the m þ n barrier system breaks down into two simple systems,

Figure 2.29. A double barrier structure with regions, I, II, III. Subscripts “a” and “b” are for x . x0 and x , x0;

respectively. The excitation tunnels in both directions, T1 and T2:
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one with m barriers and the other with n barriers. Our results bring some very important

physics into the understanding of excitations, even having an impact on the self-consistent

potential calculation. Charges entering and leaving the quantum well act in a similar way

to the excitation function described here. The result is to decouple the two barriers in

phase, switching to a mode where only tunneling in a single barrier seems to matter. This is

another manifestation of the reason why the sequential model seems to apply. However,

without any sort of phase randomizing relaxation, instability due to charging cannot occur.

And since the trapped charges re-enter the quantum well randomly, it is a source of

instability, the famous 1=f noise (Kogan, 1996).

Some of the disagreements in the computed results have been clarified and at least two

sources of possible instabilities have been identified and discussed in a qualitative way

with some quantitative backing: coupled QW to “EQW” formed by an applied voltage and

coupling of the QW to traps, which simply constitutes another system. Thus, instability, if

it occurs, is not an intrinsic property of the NDC in an RTD. In fact, I cannot agree with

Woolard et al. (2003), who call the existence of oscillation in their time-dependent

computation an intrinsic instability in fact not much different from the solution of the

Laplace transforms.

2.10. SUMMARY

In summary, I knew that a given model had limitations, particularly one that involves a fair

degree of complexity. The approach started by Stevens using Laplace transform represents

a step beyond time-independent treatments. Sen first called my attention to Steven’s work.

The tunneling time of a typical RTD is a couple of hundreds of femtoseconds, confirming

that the ultimate device speed is ,10 THz. I went to great lengths to show that it is

important to account for the losses inside the quantum well, if nothing else, to provide the

answer why the P=V ratio of RTD is much reduced from the computed value even when the

space charge effects are included. I want to go into some conceptual points. Quantum

mechanics was designed to take care of atoms and molecules. The mathematical

description of an eigenstate and an eigenvalue is just the right tool because atoms and

molecules do last indefinitely or even very long. Therefore, the use of the Hermitian

Hamiltonian is natural. Most quantum devices do not last more than several periods. We

see that even to account for losses in a laser cavity, we solve for the modes without losses.

Then we calculate losses using these state functions. Simply put, we use perturbation.

Similarly, we calculate the wavefunction for H0; then we use the eigenfunction to calculate

the losses. We can even go one further step to balance the detail. In the density matrix

formulation and Boltzmann equation, the collision terms are calculated in terms of the

eigenfunctions of the Hamiltonian H0: The reason why these accepted approaches are not

adequate is because the losses are usually very high, so that the Q of the system is typically

no more than 5–10. The self-energy shift may be more than line broadening. This is why
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we must resort to the use of Green’s function with complex energy or complex momentum

and why I introduced the idea that we could perhaps cut the system into parts, representing

open systems, each having non-Hermitian terms. During our debates, I joked that we could

move the poles along the imaginary axis to account for losses and still insist that the

Hamiltonian is Hermitian. My theorist friends reminded me that the end result on the

surface is same as using Green’s function, so I should simply accept the formalism of

Green’s function. I reminded them that Green’s function formalism does not cover the

totality of non-Hermitian operators. For example, non-linear terms may not be represented

by a complex energy or momentum! In fact, all we need is to include two different loss

mechanisms; Green’s function does not have the simple form represented by Eq. (2.18).

Using the concept of the quality factor Q; the line width is / Q21; but the level shift is

/ Q22; giving a simple method of estimating the performance of RTD. We conclude that

even the reported resonant tunneling in amorphous materials is basically sound. However,

we need to recognize that the upshift of states is partially due to the short mean free path, in

addition to quantum confinement.

Now I have discovered that the use of Wigner function may even be more suitable

because scattering may be included. However, time-independent models appear to have

pushed beyond their validity in situations where interactions with other systems are

involved. Since no modeling is precise enough, as far as I am concerned, fundamental

physics and understanding based on even the best models should not be more than guiding

the thinking. Nevertheless, it is satisfying to know that these simple models of resonant

tunneling are basically sound. I was quite alarmed when intrinsic instability was

supposedly discovered in RTD. I am happy to state that I am much relieved that the

“second” quantum well, in addition to possible traps, provides the missing coupling, which

may lead to instability. The NDC in RTD is no different from any other oscillators and

amplifiers possessing NDC and, therefore, RTD does not involve intrinsic instability.

However, one wonders whether the use of an intrinsic buffer is the best way to produce a

terahertz (THz) oscillator. Would a gradual grading of doping, eliminating the possibility

of an additional quantum well under applied voltage offer a better solution? Lastly, with all

the recent emphasis on nanoelectronics, the RTD has no implementation problems.

Quantum nature is dictated by the dimension along the device structure, which being a

planar device, does not have problems with contacts for input/output.

The amount of literature related to RTDs is enormous and a simple search can be started

the internet. Nevertheless, in spite of the laboratory successes in THz RTD oscillators,

there is still no RTD oscillator that has a respectable output in the milliwatt range. I think

the villain is still posed by defects resulting in traps. As the number of electrons

participating in the active process decreases in a device, trapping becomes more and more

pronounced. This tendency is particularly great in quantum dots where the wavefunctions

of the intended device and defects become almost indistinguishable, a subject I shall go

into in some detail in Chapter 7. The value of the RTD, therefore, manifests itself
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in the fundamental understanding of solids, serving as a testing ground for future devices

involving or dominated by the wave nature of electrons, but above all, in leading people

into nanoscience.
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Chapter 3

Optical Properties and Raman Scattering
in Man-Made Quantum Systems

3.1. OPTICAL ABSORPTION IN A SUPERLATTICE

The optical absorption of a superlattice where the minibands are fairly distinct may be

modeled simply as shown in Figure 3.1, which depicts the band gap shifted up due to

confinement effects in (a), E 2 kt in (b) and the two-dimensional density of states (DOS)

in (c), where the states in the longitudinal direction are taken as sharp discrete levels.

Optical absorption is proportional to the product of the ltransition matrixl2 and the joint

DOS. It is not a subject involving new concepts. However, experimentally, the superlattice

structure, or multiple quantum well (QW) structures, consist of a thin layer not much

thicker than 10 nm on top of a substrate at least several tens of times as thick. For this

reason a challenge is presented if the substrate is not removed. I have in the past had

occasion to use reflectivity at various angles of incidence. Reduction of such data is not

well known. For this reason, I want to present the bulk of results of Tsu et al. (1975b).

Optical transitions involve transitions between the 1–2, 10 –20, 10 –1 states, etc. The

first two processes involving intra-bands have been theoretically studied by Kazarinov

and Shmartsev (1971). The present treatment involves a 1–10 transition without taking

excitons into account. The wavefunction of the nth band, cn is given by

cn ¼ fnðxÞUðkt; rÞexpðik·rÞ: ð3:1Þ

The matrix element for transition

Hnn0 ¼
iehA

2mc

ð
cn0expðiq·rÞâ07cndr;

with the vector potential A ¼ â0A; for vertical transition (direct)

Hnn0 ¼ 2ðeA=2mcÞa0Pnn0 ;

where

Pnn0 ; 2ih
ð

f pn ðxÞU
pðkt; rÞ½k þ i7fn0 ðxÞUðkt; rÞ�dr:

The energy difference between the initial and final states

Ec 2 Ev ¼
X
nn0

ðEn þ En0 Þ þ
h2k2

t

2m
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in which m is the transverse reduced mass. For the special case, where the valence

band is either flat or even not quantized owing to poor mobility,

E1 ¼ Eg þ ð1 2 cos kxdÞ10; ð3:2Þ

where 210 is the width of the miniband. The absorption coefficient a is given by

ahv ¼ ðe2m=2pm2hÞl �Pnn0 l
2
kmax; ð3:3Þ

where kmax is given by hv2 Eg ¼ 10ð1 2 cos kmaxdÞ and l �Pnn0 l is the average over the

solid angle, implying that we ignore any polarization effects. Figure 3.2 shows the

qualitative absorption for constant matrix element. The dashed curve applies to zero

Figure 3.1. (a) Section of a superlattice potential profile, (b) E 2 kt; (c) density of states. From Tsu et al.

(1975b), with permission.

Figure 3.2. Qualitative absorption versus hv2 Eg for constant matrix element; superlattice; ……,

multiple QWs, where the states are discrete.
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bandwidth for large barrier height, generally for multiple QWs. Thus absorption is

essentially the joint DOS for the superlattice, or multiple QWs.

The sample under study consists of 100 periods of GaAs/Ga0.5Al0.5As with a period

of 4.5 nm. For comparison, we use a Ga0.5Al0.5As alloy 6.5 nm thick film. A freshly

evaporated film of Ag was used for reference. We did try to remove the substrate

with a hole varying in thickness but it was thought to be inadequate for serious

measurement. In retrospect, taking note of the more direct results obtained by

Dingle et al. (1974), which appeared after the manuscript of this work was submitted,

we agreed that removing the substrate, even if the sample was not ideal, would have

given more dramatic data. Nevertheless, useful characterization was possible owing to

the use of a small incident angle that accentuated the reflectivity fringes. What

follows demonstrates this point. Figures 3.3 and 3.4 shows the reflectivity of the

superlattice compared with the alloy. The number shows the order of the interference

fringe.

Note that the fringes are much more visible and the positions are different allowing a

cross check for fitting. In the analysis of data with a substrate attached, because of the

complexity of the exact expression for the reflectivity, the data rarely fit to the whole

expression for the determination of the optical constants. Usually one obtains the

refractive index from the fringes. The procedure described here is very powerful, because

both the refractive index and the absorption constants may be obtained without the use of

Kramer–Krönig relations, or requiring the use of either the reflectivity or the transmission.

Let k1; k2 and k3 be the propagation constants for the vacuum, film and substrate,

respectively, for light incident at an angle u1 from the vacuum and u2 and u3; the

propagation directions in the film and substrate, all measured from the surface normal,

Figure 3.3. Reflectivity at normal incidence of the superlattice at 900 nm and alloy at 6.5 nm. From Tsu et al.

(1975b), with permission.
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Snell’s law gives

sin u1

sin u2

¼
k2

k1

¼ n þ iK;
sin u1

sin u3

¼
k3

k1

¼ n0
;

where the refractive index is n for the film and n0 for the substrate and d is the thickness of

the film, then

R2 ¼ ½ð1 2 aÞ=ð1 þ aÞ�2; a ¼
1 2 expði2k2d cos u2ÞQ23

1 þ expði2k2d cos u2ÞQ23

P12

Q23 ¼
k3cos u2 2 k2cos u3

k3cos u2 þ k2cos u3

; P12 ¼
k1cos u2

k2cos u1

:

ð3:4Þ

For relatively low absorption, n .. K; the extinction coefficient, we neglect K except

in the exponential terms. Then some surprising results follow. The maxima and minima

occur at wavelengths determined by

ð4pd=lÞðn2 2 sin2u1Þ
1=2 ¼ 2pp; for RþðmaximaÞ

¼ 2pðp þ 1
2
Þ; for R2ðminimaÞ

ð3:5Þ

Figure 3.4. Same as Figure 3.3 but the angle of incidence is 708, almost at grazing. From Tsu et al. (1975b),

with permission.
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where p is any integer. And for normal incidence,

Rþ ¼
n0 2 1

n0 þ 1
and R2 ¼

n2 2 n0

n2 þ n0
: ð3:6Þ

We see that the maxima, Rþ; are determined only by the refractive index of the substrate.

The procedure led to an n for the alloy within 3% of the value for GaAs. Since the

visibility of the fringes is proportional to aþ 2 a2; and inversely proportional to cos u1;

the grazing angle gives more accurate values for n and K: Once n and n0 have been

obtained, remember that k2=k1 ¼ n þ iK; therefore K; or the absorption coefficient

a ¼ 4pK=l; can be determined for each wavelength.

Figure 3.5 shows the refractive index for the substrate, the superlattice and the alloy.

Note that, far from resonances, at long wavelengths, the alloy is close to the average value

for GaAs and AlAs obtained by Onton (1970).

At the time that we first obtained the result, we were exuberant because we had found a

way to obtain the absorption coefficient without removing the substrate (Figure 3.6).

However, few months later when the absorption of a multiple QW appeared (Dingle et al.,

1974), we recognized that more impressive data could be obtained with the substrate

removed and wedged to suppress interference fringes. Wedge is used to avoid the

interaction of interference fringes and discrete energy states of the quantum well, creating

a very complex spectrum. Figure 3.7, taken from Dingle et al. (1974), shows the

absorption spectra of GaAs/Al0.2Ga0.8As multiple QW structures, with well width Lz at

2 K. The value of a , 2:5 £ 104 cm24 for Lz ¼ 400 nm at the exciton peak. For Lz ¼ 21

and 14 nm, the first excitons as well as subsequent excitons for transitions involving

Figure 3.5. Refractive indices for GaAs, the superlattice and the alloy at 77 K. From Tsu et al. (1974), with

permission.
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n ¼ 2; 3 also show up clearly. They indicate that quantum effects at 2 K start at Lz , 50

nm: The finding is consistent with the bound states of the well given by

E ¼ En þ
h2

2mp
k2

t :

I want to point out a couple of important points regarding the results of Dingle et al.

(1974). First, I have already mentioned the removal of the substrate, and even more

importantly, how wedging is used to suppress interference fringe. Second, we should

not be too dogmatic about fitting theory to experimental data. Initially, we at IBM used

a barrier height of 80% of the difference between the band gap of AlAs and GaAs for

band-edge alignment. Dingle et al. using their data seemed to have presented a

convincing argument that the band-edge off-set in the conduction band should be 88%

of the difference in the band gap. Some 10 years later, we all agreed on 60% of the

difference. Therefore, the fit would not have been very good if the correct value for the

band-edge offset had been used. In fact, my experience convinced me that detailed

qualitative consistency is usually more important than quantitative agreement between a

theoretical model and fit to experimental data. Why we did not seriously pursue the

route of multiple QWs? The reason is simple. We were too wrapped up in proving our

point. We were having a hard time convincing anyone, particularly those at IBM, that

Figure 3.6. Absorption coefficient a (104 cm21) versus photon energy in eV at 77 K. The best straight line fit

for ðahvÞ2 versus hv; gives the position of the absorption edge, 1.63 eV for the superlattice and 2 eV for the alloy.

From Tsu et al. (1975b), with permission.
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we indeed had something to offer in the form of man-made quantum states to broaden

the class of electronic materials and devices utilizing quantum states. Finally, we simply

did not understand well enough the importance of keeping x , 0:3 in AlxGa12xAs

before 1974–1975. The vast experience in working on heterojunction lasers gave BTL

an edge over us at IBM. By 1975, I knew that the QW structures at BTL were better

than those we had at IBM, because by then we had removed and wedged the sample–

substrate and repeated the absorption measurement. Our exciton peaks were only barely

visible at 4.2 K.

3.2. PHOTOCONDUCTIVITY IN A SUPERLATTICE

Photon conductivity serves as a powerful technique for characterizing the optical and

transport properties of a superlattice and QW. Because this technique is not as widely

used, I would like to give an example, from a fairly early stage of the development of

superlattices and QWs for resonant tunneling, of how the photoconductivity experiment

reinforced our confidence that the research we had started was indeed heading in the right

direction, although, as we shall see, many details do not fit together very well.

Figure 3.7. Absorption spectra of excitons in the multiple QW GaAs/Al0.2Ga0.8As, with well width Lz at 2 K.

a , 2:5 £ 104 cm24 for Lz ¼ 400 nm at the exciton peak. For Lz ¼ 21 and 14 nm, excitons associated with the

nth bound states are evident. After Dingle et al. (1974), with permission.
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Superlattices with three different configurations have been used in the experiments

(Tsu et al., 1975): A—(100, 35, 35 2 x ¼ 0.8), B—(80, 50, 50 2 x ¼ 0.78) and C—(50,

110, 100 2 x ¼ 0.55), using the notation: sample—(no. of periods, thickness of GaAs,

thickness of GaAlAs—% of alloy composition of Ga). The total thickness of the

superlattice (SL) is ,1 mm in order to provide adequate photon absorption. The SL is

undoped and fabricated on an n-GaAs substrate with n , 1018 cm23: The semi-transparent

Au 0.25 £ 0.025 cm2 top electrodes are used for both I –V and photoexcitations. In

Figure 3.8, the photo response is shown plotted against the photon energy in eV at 5 K,

with E1 and E2 designating the two SL bands. The trend is there, showing E2 broader than

E1; and sample A, which has narrower barriers shows a broader peak marked as lE1l or

lE2l: The Schottky junction between the Au–GaAs contact, results in a built-in potential.

In sample C, not only do the states move down with wider QWs, these states are more or

less discrete, having smaller transitions from the valence band, dominated by the heavy

hole band with a larger DOS. In the original analysis (Tsu et al., 1975a), it is estimated

from the steady state photocurrent that the mt product will be mt , 2–2:5 £ 10210 cm2

V21: Using m , 10 cm2 V21 s21 (Esaki and Chang, 1974), t , 10211 s; which is not

Figure 3.8. Number of electrons per incident photons £ 1022 versus photon energy in eV for the samples A, B

and C described in text. Calculated energies of the bandwidths are marked with arrows showing fair agreement

with the measured photocurrent peaks. The energy profile is shown in the top part. After Tsu et al. (1975a), with

permission.
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unreasonable for the lifetime of the electrons. Note that this lifetime is not the scattering

time used for mobility.

Figure 3.9 shows the photocurrent versus the applied voltage for sample B at 5, 63 and

217 K, at two photoenergies correspond to the two peaks at E1 and E2: The positive

voltage refers to þV on the Au-electrode. The asymmetry is from the Schottky barrier.

The most encouraging feature is the negative differential resistance (NDR) marked by

arrows. This NDR is stronger at 217 K than at 5 K, indicating that the main transport is

phonon-assisted hopping described in Section 1.6 of Chapter 1. As shown in Figure 1.11,

the negative slopes at 77 and 300 K are nearly same, but the level of the tunneling current

at 77 K is more than a factor of 3 lower than that at 300 K. If the lower limit of the

tunneling current is set by the mean free path, as we know that mean free path has a

maximum nearer to 77 K than 5 K, and since the level of the phonon-assisted hopping is

much higher at higher temperatures, we think that the SL is basically behaving as Stark

ladder, rather than using band conduction as described in Section 1.7. The voltage per

period corresponds to eFd , 10 meV; which is greater than DE1 , 7 meV; therefore,

it is within the phonon-assisted hopping regime. Therefore, we are quite certain that

Figure 3.9. Photocurrent versus applied voltage for sample B at 5, 63, and 217 K with incident photoenergies

corresponding to the two peaks at E1 and E2 of Figure 3.8. The position of the maximum NDR is marked by

arrows. After Tsu et al. (1975a), with permission.
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the observed NDR confirms the theoretical calculation of the NDR due to phonon-assisted

hopping (Tsu and Döhle, 1975; Döhle et al., 1975). More recently (Capasso et al., 1985), in

a pþinþ junction that has a AlInAs/GaInAs superlattice in the i-region at 77 K used

photoconductive measurements to exhibit NDR in the hopping regime, confirming earlier

results (Tsu et al., 1975a).

Note that the band-edge off-set used in this work was changed from 0:8DEg to 0:88DEg:

We know that a higher barrier gives rise to greater confinement that leads to a higher

energy state. All our work at IBM, and later work at BTL, show good agreement. When

later this number settled down to 0:6DEg; the real agreement of measurements made by

everyone should have been viewed as fortuitous. However, as I showed that damping up-

shifts these energies (Chapter 2) making it appear as though the barriers were higher, again

I assert that we must not be too dogmatic about so-called very good fit. The truth of the

matter is that we are making incremental but definite progress all the time and that process

applies to all technical progress.

3.3. RAMAN SCATTERING IN A SUPERLATTICE AND QUANTUM WELL

As shown in Chapter 1, the folding of the dispersion in the regular Brillouin zone (BZ) into

minizones (MZs) for a superlattice describes most of the important features of the man-

made superlattice. These features include the formation of minibands, localization with

large gaps between minibands, Bragg reflection giving rise to Bloch oscillation and

the foundation of the appearance of NDR. The reciprocal space for phonons is exactly

the same as for electrons because the real space and reciprocal space are determined by the

structure. Therefore, we can expect most of these features that are due to zone folding to be

applicable to phonons. A couple of acronyms are useful for the discussion: OPFA for

optical phonons from folded acoustic phonons and OPFO for optical phonons from folded

optical phonons. The idea that formation of the OPFA introduces photon–phonon

interaction at low frequencies is very appealing. Before we explain the main reason why,

as pointed out in the very first paper launching man-made quantum structures (Esaki and

Tsu, 1970), the key is that the mean free path must exceed structure size, the period of the

superlattice. This puts a stringent limitation on the phonons. Optical phonons do not

propagate far, but low frequency sound waves propagate almost unimpeded like in the

crystal quartz, which has the highest Q (quality factor) resonator known to man, and was

the time standard used by WWV radio signal before being replaced by the Ce-laser.

Therefore folded acoustic phonons should exhibit pronounced SL effects. The quasi

particle of a photon–phonon coupled system is a polariton, with its manifestation in the

dielectric function. In a normal solid, polaritons do not exist below the optical phonon

bands because the dispersion v–q for photons does not cross that of the acoustic phonons.

OPFA allows the crossing of the two dispersions, creating polaritons at frequencies
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ranging from the acoustic phonons at the BZ all the way down to zero. We should realize

that at such low frequencies, the wavelength is so long that we need a very long period SL

to have sufficient coupling. Therefore the real device is still limited near the terahertz scale

so that a SL of practical thickness may be fabricated. Another aspect in which we study

Raman scattering in SL is in characterization, e.g. determination of alloy compositions and

thicknesses as discussed in Chapter 1, localization of excitons, as well as the strains at the

heterojunction interface.

Not long after launching a man-made superlattice (Tsu and Jha, 1972) using a linear

chain model, calculated the dispersion of phonons and polaritons in a SL showing that the

frequencies of these modes may be prescribed by proper design. The occurrence of fairly

strong OPFA in the far infrared should be useful for coherent frequency generators,

Restrahlen filters, acoustic gratings, and so on. It was recognized that folding the BZ into

MZ provides a means of mapping the phonon dispersion, which is particularly useful when

samples are too thin for neutron scattering experiments. Raman scattering was used

routinely for the optimization and characterization of the superlattice systems, alloy

compositions 1972 and a fairly long-period superlattice (Mayer et al., 1973; Tsu, 1981).

The folding of the acoustic phonons was first experimentally confirmed by Colvard et al.

(1980). However, folding of optical phonons is weaker because optical phonons simply do

not last long enough because the group velocity of optical phonons is at least two orders of

magnitude below that of acoustic phonons. The situation may be different if the superlattice

were constructed with alternate layers of single unit calls. The Raman spectra of optical

excitation between the valence band and the first two QW states were first calculated by

Tsu and Esaki (1975). In this work optical phonons are in the extended zone but the

electronic wave functions are quantized in the reduced zone. The spectra show a series of

peaks below the main peak of the GaAs, thus clearly indicating the effects of confinement

in the form of zone-folding. Sai-Halasz et al. (1978) obtained Raman spectra suggestive of

optical confinement; however, Merlin et al. (1980) explained their results in terms of

anisotropy of polar phonons. However, I can simply dismiss Sai-Halasz’s experiment by

the fact that the two samples, 10 nm/10 nm and 5.2 nm/6.6 nm, give identical results.

Barker et al. (1978) turned their attempt to identify folding optical phonons into a study of

the interdiffusion process at the heterojunction interface. The first clear-cut evidence of the

OPFO came from Jusserand et al. (1984, 1985). The OPFOs for both longitudinal-optical

(LO)- and transverse-optical (TO)-phonons in GaAs were obtained by Sood et al. (1985).

Raman scattering has also been used to determine deformation in the GaSi/Si strain-layer

superlattice (SLS) by Cerdeira et al. (1984). Their results indicate that the entire lattice

mismatch is accommodated by a homogeneous tetragonal strain in the GeSi alloy layers

only. It is important that the mechanisms of Raman scattering in man-made quantum

structures are understood. Of all the subjects involving solids, I consider that a good

working knowledge in Raman scattering is the most difficult because the subject is heavily

involved with group theory, even with the use of double group.
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3.3.1 Some Fundamentals

Starting with a simple system of acoustic and optical branches, many additional modes

arise. What we should recognize is that these additional modes are weak. Figure 3.10

shows a simple sketch of displacement of various atoms indicated by arrows, its length

referring to the magnitude of the displacements. This is the kind of model I used to gain

physical insight. For example in a diatomic system, even if we take the radical assumption

that the force constants are all equal, then the zone center optical phonons have the highest

frequency because the opposing motion of the two atoms has a reduced mass in the

denominator to determine frequency. Next, the optical frequency at the BZ boundary is

Figure 3.10. Displacements of various atoms and dispersion relations based on the linear chain model. OPFO

and OPFA stand for optical phonons from folded optical or acoustic phonons. The modes are designated as L and

H; and arrows shows displacements.
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determined by the mass of the lighter atom of the two, while the acoustic phonon

frequency at the BZ is determined by the mass of the heavier of the two atoms. For equal

masses, the reduced mass is halved and the two frequencies at the BZ boundary are

degenerate. This picture allows me to predict many eventualities. We can add complexity

to this simple picture, for example, the distinction between longitudinal and transverse

frequencies, and even include anisotropy.

Figure 3.10 shows the dispersion of the phonon branch in the original BZ folded twice

with p=a of the BZ into p=4a of the reduced zone (RZ). There are three kinds of atoms, Ga,

As and Al. Actually, we should differentiate between As in GaAs and As in AlAs, because

the force constants, as well as the effective charges, are different in the two cases.

Nevertheless, we take them to be equal. Because of the splittings, at each k there is a higher

and a lower branch. For example, at k ¼ p=2a; H2 denotes the lowest OPFO and L2

denotes the highest OPFA. When folded into the RZ, for k ¼ 0 to p=4a; L2 is folded into

the zone center, shown as a dashed curve. At k ¼ p=2a; at the very bottom, these mode

locations are shown as L1;…H3: Let us focus on L2: At the top next to As there is a large

arrow pointing downwards, but a dot for Al indicating that the Al atom does not move. The

arrow points upwards for the next As atom, third from the top, followed by a dot for Ga.

And this sequence repeats. This means that the two As atoms move to cancel each other,

since they have the same charge sign and this large opposing motion does not generate a

dipole moment. Next to L2 is H2; the As atoms do not move, all being shown as dots, but

the opposing arrows for Ga and Al do not cancel each other, resulting in much stronger

Raman scattering as well as some dipole moments. In reality there is a small dipole

moment even at L2 because the effective charges and masses are different owing to the

difference in the ionic radii. At BZ, all pairs of up–down arrows for Ga–As and Al–As

enforce each other resulting in strong dipole moments. Whether polaritons are present

depends on crossing of the dispersion v–q:

3.3.2 Phonons and Polariton Modes in a Superlattice

In 1971, Tsu and Jha (1972) considered that phonons and polaritons in a superlattice

described by zone folding should form optical modes with the acoustical phonon. What

happens to the folding of the optical phonon? A periodic potential results in a series of

MZs in reciprocal space, forming the SL. However, alternate layers of materials with

different masses, force constants and effective ionic charges results in a superlattice that

has interesting optical properties that are due to the interactions of photons and optical

phonons. When acoustical phonons are folded into an optical branch they interact with low

frequency photons within the normal acoustic phonon frequencies. Because the

frequencies of the modes may be prescribed by the correct choice of thicknesses as

well as of materials, we have man-made optical materials that have periods in the regime

of phonon wavelengths that are usually close to the dimensions of man-made electronic

superlattices. Therefore, periods are much smaller than those in photonic crystals that have
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dimensions in the range of photon wavelengths. What is the major consequence? Photonic

crystals utilize interference properties with far larger dimensions. Let me give an example.

A typical superlattice is characterized by dimensions governed by the mean free path, in

the order of tens of nanometers. Photonic crystals usually have periods greater than few

micrometers. And phonon superlattices have periods in the range of tens of nanometers,

similar to superlattices.

To work out the zone folding and the opening up of minibands as in the case of an

electronic SL, we used the linear chain model. For N atoms per unit cell, with mp; xp; ep

and Fp being the mass, equilibrium position, the effective charge and the force constant for

the pth atom, the equation of motion becomes

mp €yrp þ
Fp

xp 2 xp21

ðyrp 2 yr;p21Þ þ
Fp

xpþ1 2 xp

ðyrp 2 yr;pþ1Þ ¼ epE; ðp ¼ 1;…;NÞ ð3:7Þ

where yrp is the displacement of the pth atom in the rth call, transverse to the propagation

vector and E is the self-consistent electric field. We set up the boundary conditions

x1 2 x0 ¼ xNþ1 2 xN ; yr;0 2 yr21;N and yr;Nþ1 2 yrþ1;1: For simplicity, we let xp 2 xp21 ¼ a

and xNþ1 2 x0 ¼ Na ¼ d; the period. With E ¼ 0 and yp ¼ expðiqxp 2 ivtÞ; in Eq. (3.7) and

writing in matrix form

ðK 2v2MÞY ¼ 0; ð3:8Þ

where K and M are the force constant matrix and mass matrix, following Verleur and

Barker (1966). Eq. (3.8) may be reduced to an eigenvalue problem by substituting

u ¼ M1=2Y and B ¼ M1=2KM21=2; resulting in the complex matrix equations

ðB2 2v2Þu ¼ 0: ð3:9Þ

The solution of this frequency equation gives the transverse phonon frequencies vtiðqÞ;

with the phonon wave vector q: In the presence of an electric field E; the dielectric function

1ðvÞ ¼ 11 þ
X

0

i

Siv
2
ti

v2
ti 2v2

; ð3:10Þ

where vtiðq ¼ 0Þ and Si ; AQ2
i =v

2
ti is the oscillator strength (Figure 3.11). The vector Qi is

ðQ1;…;Qp;…;QNÞ ¼ ðe1=m
1=2
1 ;…; eN =m

1=2
N ÞU; ð3:11Þ

where the unitary matrix U diagonalizes the force constant matrix B: The constant A in Si;

satisfies the sum rule

10 ¼ 11 þA
X

0

i

Q2
i

v2
ti

ð3:12Þ

Superlattice to Nanoelectronics130



in which 11 and 10 are the high and low frequency limits of the dielectric constants,

respectively. The sum in Eq. (3.12) excludes the point zero of the acoustic frequency. The

polariton dispersion is obtained by putting 1ðvÞ ¼ q2c2=v2 in Eq. (3.12). The detail values

for the dynamic force constant B; the effective charges e and 1 are to be found in Tsu and

Jha (1972), with most values taken from Dolling and Waugh (1963), giving the dynamic

force constant BAs – As in GaAs more than double BAs0 – As0 in AlAs. However,

eAs ¼22:12e and eAs0 ¼22:2e are nearly the same. For simplicity, we took 10 and 11
to be the average of the two.

Figure 3.11. (a) Oscillator strength versus frequency v; (b) v–q for the polaritons and (c) v–q for the phonons

in the minizone. The period of the superlattice consists of AlAs (five monolayers) and GaAs (five monolayers)

along the (100) direction. After Tsu and Jha (1972), with permission.
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3.3.3 Calculation of Raman Scattering in Superlattice and Surface Quantization

3.3.3.1 Superlattice. The spectra of LO phonons from Raman scattering associated

with quantum states in a GaAs/GaAlAs superlattice and the surface quantization in highly

doped GaAs were calculated (Tsu and Esaki, 1975). Since the results were published in a

Conference proceeding that is not generally available and because some details were cut

from the original IBM Research Note, the bulk of the results based on the IBM Research

Note are given in this section. Since the phonon branches are folded into the reduced MZ,

these minibranches can now be excited near q , 0: If the oscillator strength of these folded

branches is weak, i.e. ionic mass-, charge- and force constant-differences are small, one

may neglect the folding effects of the phonon branches and consider instead the umklap

process of electrons in the reduced MZ, interacting with phonons in the extended MZs

(regular BZs of the solid). The case being treated, is a superlattice where the bandwidth of

the quantum states is very narrow so that a double-well approximation is valid.

Figure 3.12 shows the potential profile in one direction. The energy states in the

valence- and conduction-bands are labeled by Ev and Ea; respectively. Owing to coupling

Figure 3.12. Calculated Raman spectra for a GaAs/GaAlAs superlattice with a period d ¼ 2w and d=a ¼ 5;

where a is the lattice constant. Inset shows the optical excitation for holes in the valence band to the electronic

state in the conduction band. From Tsu and Esaki (1975), with permission.
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of wavefunctions in adjacent wells, the energy Ea split into an antisymmetric function

c2 corresponding to Ea2 ¼ Eg þ 1; and a symmetric state cþ having Eaþ ¼ Eg. These

wavefunctions

c2 ¼
1ffiffi
2

p ðl1l2 l2lÞ and cþ ¼
1ffiffi
2

p ðl1lþ l2lÞ ð3:13Þ

are written in terms of the uncoupled wavefunctions

l1l

,
ffiffiffiffiffi
2

W

r
sin

np

W
x ^

d 2 W

2

� �
eik’r

l2l

ð3:14Þ

for a level, n ¼ 1; whereas for b level, n ¼ 2:

The scattering process consists of excitation by the incoming photon, v and q, scattering

an electron from Ev to Eaþ; emitting a phonon vK ; k resulting in Ea2 then returning to Ev

while creating a photon at v0; q0; in other words

ds

dv
,
X
K

X
v;a;a0

kvlHRlalkalHpla0lka0lHRlvl
ðE1 2 hvÞðE2 2 hv0Þ

�����
�����
2

dðvK 2 vþ v0Þ

;
X
K

lA þ Bl2dðvK 2 vþ v0Þ: ð3:15Þ

Summing over the intermediate states involves integrations over the transverse momenta,

k’v0 ; k’ and k0’; and summations over the discrete states. In our case, the discrete states, a;

b; etc., have only two states each, the symmetric and antisymmetric states. We are

interested in resonance enhancement, therefore, we may treat a and b separately. The

terms,

kvlHRlal has two terms; A2
q ðkcþvleiq·rlc^lþ kc2vleiq·rlc^lÞ;

kalHpla0l has one term; bþ
K kc^le2iK·rlc7l and

ka0lHRlvl has two terms; Aþ
q0 ðkc7le2iq0·rlcþvlþ kc7le2iq0·rlc2vlÞ:

Whenever there are two signs, the superior ones are used in A and the inferior ones in

B. The energy denominators for A and B are different

A : ðEg þ E1ð’Þ2 hvÞðEg þ 1þ hvK þ E2ð’Þ2 hvÞ

and

B : ðEg þ 1þ E1ð’Þ2 hvÞðEg þ hvK þ E2ð’Þ2 hvÞ;

Optical Properties and Raman Scattering in Man-made Quantum Systems 133



in which

E1ð’Þ ;
h2k2

’

2me

þ
h2k2

’v

2mh

and E2ð’Þ ;
h2k0’

2

2me

þ
h2k2

’v

2mh

:

After summing over k’v and k0’;

A or B ,
ðk’max

0

k’dk’

ðk2
’ 2 a2Þðk2

’ 2 b2Þ
M2ðKÞ; where ð3:16Þ

a2 ;
2m

h2
ðhv2 EgÞ and b2 ;

2m

h2
ðhv2 Eg 2 12 hvKÞ for A; and

a2 ;
2m

h2
ðhv2 Eg 2 1Þ and b2 ;

2m

h2
ðhv2 Eg 2 hvKÞ for B:

It may be shown that there is little resonance enhancement for hvK p 1 and hvK q 1:

there is a logarithmic singularity represented by ðhvKÞ
21‘nðhvK =dÞ; where

d ; hv2 Eg 2 1 for A; d ; hv2 Eg for B. Therefore

ds

dv
, ðhvKÞ

21
‘nðhvK =dÞDðvKÞhðvKÞM

2ðvKÞlvK¼v2v0 ð3:17Þ

where DðvKÞ is the DOS, hðvKÞ is the Bose–Einstein function and M2ðvKÞ is given by

M2ðvKÞ ¼
ðK’M

0

I2ðKxÞ

K2
K’dK’

 !
I2ðqÞI2ð2q0Þ ð3:18Þ

in which

IðqÞ ;
2

W

ðW

0
sin2 npx

W
eiqxdx;

and

I2ðKxÞ ¼
2 sinðKxW=2Þ

KxW
sinðKxd=2Þ½1 2 ðKxW=2npÞ2�21

:

For acoustic phonons, the factor K2 in the denominator of Eq. (3.19) should be replaced by K

in the numerator. The function M2ðvKÞ is plotted in Figure 3.11 for the case d ¼ 2W : Note

that there are various peaks corresponding to Kx , ðp=2WÞ; ð3p=2WÞ; etc. Since this

resonance is due to the two-dimensional nature of the quantum states, it is possible to

produce stronger resonance by applying a magnetic field along the superlattice direction

creating true bound states. Our results indicate that it is possible to probe the acoustic and

optical phonon branches for large momenta by sandwiching a given material between

potential barriers. In fact, as far as Raman scattering is concerned, a perfect periodic

structure is not necessary, as long as all well widths are kept reasonably constant. This is due

to the relative broadness of the spectra. One might ask, what happens to the umklap
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processes for the regular crystal lattice? Since the reciprocal space for phonons and

electrons coincide, all the umklap processes are redundant.

3.3.3.2 Surface Quantization. In an n-type semiconductor such as GaAs, a large DOS

in the forbidden gap pins the Fermi level within the gap, causing the electronic energy

bands to bend up toward the surface. The absorption length for 5145 Å in GaAs is only

about a couple of tens of nanometers, so that the fraction of Raman scattering due to

surface quantization the usual coupling of plasmon–optical phonon is significant enough

to be observable (Tsu et al., 1974). We shall calculate this effect by assuming that hole

states are quantized at the surface with a ground state wavefunction given by Stern and

Howard (1967),

lbl , ze2azuðkb’; rÞe
ikb’r ¼ ueikb’r

ð1

21

eik00zdk00

ðk00 2 iaÞ2
: ð3:19Þ

Many of the complicated steps were never published anywhere, so I shall present them

here almost in full for those who want to see how it was done. From the first order Raman

cross-section, ðds=dv of Eq. (3.15), v0 ¼ v2 vK ; where v; v0 and vK refer to the incident

and scattered photon and the phonon frequencies; and E1 ¼ Eg þ ðh2=2meÞk
02 þ

ðh2=2mhÞk
2; E1 ¼ Eg þ Eb þ ðh2=2mhÞk

2; where k and k0 refer to electron in the valence

band, and conduction band, respectively. The HR and Hp are

HR ¼
e

mc

2ph

1vqV

 !1=2X
j

a2
q eiq·rj e2ivqt þ aþ

q e2iq·rj eþivqt
h i

1q·Pj

where Pj is the momentum operator for the electrons and

Hp ¼
e

iK

2phvK

V

� �1=2 1

11
2

1

10

� �1=2

bK eiK·r þ bþ
K e2iK·r

h i
:

In kklHRlk0l; for sufficient layer thickness,
P

j eiðkþq2k0Þ·Rj ! ›ðk þ q 2 k0Þ; and as usual

for solids, the volume integral over the whole sample is converted to an integration in a

unit cell and a delta function in k: In kk0lHplbl; momentum is only conserved in the

transverse direction, the integration over the volume results in ›ðk0
’ 2 K’ 2 kb’Þ

Ð
dz;

because bound state EbðzÞ is not a plane wave. The scattering via phonons from this ground

state to a continuum state is represented by the matrix element, leaving out the factor

1=2pN for the moment,

kblHplal , Mðkb; k
0Þdðk0

’ 2 K’ 2 kb’Þ=ðk
0
z 2 Kz 2 iaÞ2;

and similarly, the other two matrix elements in the Raman cross-section are

kf lHRlbl , Mðk0
;kbÞdðkb’ 2 k’ 2 q0

’Þ=ðaþ iðkz þ q0
zÞÞ

2
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and

kalHRlil , Mðk0
;kÞdðk þ q 2 k0Þ:

The total sum is for a single bound state b;X
k;k0;kb’;b

ð·Þ ¼
X

k’;kzkb’

ð·Þ

Note that the wavefunction in Eq. (3.19) destroys the momentum conservation in the first

two matrix elements along the kz direction. After summing over k0 and kb’; taking only

one bond state, neglecting the k-dependence of the M the scattering is proportional to

ds

dv
,
ð

dkz

ðk’M

0

k’dk’

k2
’2

2m

h2
ðhv2EgÞþ k2

z

 !
k2
’2

2m

h2
ðhv2Eg 2Eb 2 hvKÞþ

m

mh

k2
z

 !

£ ðkz þ qz 2Kz þ iaÞ22ðkz þ q0
z 2 iaÞ22

;

where ðk’MÞ2 ¼
2m

h2
ðhv2Eg 2Eb 2 hvKÞ; then

ds

dv
¼
ð1

21

‘n k2
z 2

2m

h2
ðhv2EgÞ

 !,
k2

z

m

mh

2
2m

h2
ðhv2Eg 2Eb 2 hvKÞ

 !

ðkz 2Kz 2 iaÞ2ðkz 2 iaÞ2 k2
z 2

2m

h2
ðEb þ hvKÞðmh=mh 2mÞ

 ! ð3:20Þ

where Eb is the energy of the surface quantized state and qz , q0
z , 0: In my work sheets,

there are five pages of integration in the complex plane. Our society likes to refer to some

people as bright and others as not so bright. Most often what we need is discipline to help

us work through any complexities. Herring made this apt comment in the days when I was

at BTL and he was looking into my work on the electron–phonon interaction in

piezoelectric solids. No one but ourselves can check through complicated mathematical

results. The poles in the 3rd term in the denominator make no contribution. The double

poles in the 1st and 2nd terms make a small contribution and have a peak at Kz ¼ 0; but the

first order pole in the 1st and 2nd terms produces the spectrum that has a peak near Kz ¼ a:

Since we are interested in highly doped cases where a, 2£ 107 cm21 such that

a2 q ð2m=h2ÞðEb þ hvKÞ; there is no possibility of resonance. Then

ds

dv
, hðhvKÞIðhvKÞDðhvKÞ;

in which hvK ¼v2v0; and

IðhvKÞ, ðKz=aÞ
2
=½ðKz=aÞ

2 þ 1�3: ð3:21Þ
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We have used the dispersion relation for GaAs (Waugh and Dolling, 1963), to convert

IðKZÞ to IðhvKÞ in order to compare the calculated Raman scattering involving a bound state

with the experimentally observed Raman scattering in the depletion region of GaAs (Tsu et al.,

1974). In the experiment, for doping of n ¼ 2:9£ 1018 cm23 anda¼ ð12mpe2Nd=1h2Þ1=3 from

Stern and Howard (1967), d ¼ 20 nm; and a¼ 2:1£ 107 cm21: In Figure 3.13, the measured

data, shown as a dashed line compares favorably with the calculated data with a peak at

Kz ¼ a: As we see that even localization is caused by a highly damped wavefunction of

electrons, the Raman spectrum shares the same features as the localized state, only then the

matrix element will be much reduced resulting in smaller effects.

The two cases presented serve as a model for understanding Raman scattering where

wavefunctions are localized. In normal bulk solids with continuous E –k dispersion for the

electrons, Raman scattering picks up the phonons at q , 0: However, with discrete

electronic states, Raman spectrum picks up the q value of the phonons according to the

discrete k value of the electrons. In the case of highly localized wavefunctions such as the

surface quantized state as treated, or in the inversion region of the MOS capacitor, as well

as in QWs and superlattices, the phonon involved is determined by the characteristic k: For

the surface quantization treated, it is the parameter a: In QWs, it is the k of the discrete

states. In a superlattice, it is determined by the zone-folding of the phonon dispersion from

the BZ into the MZ. As we have seen that folding transforms an acoustic phonon into an

optical phonon, displaying the phonon dispersion in the MZ gives a series of peaks in the

Raman spectrum as shown in Figure 3.11. One might ask, what happens to the umklap

Figure 3.13. Raman scattering from highly doped n ¼ 2:9 £ 1018 cm23 and (111) orientated GaAs. The dashed

line shows the measured data. The calculated peak at Kz ¼ a corresponds to phonon frequency of 286.5 cm21.
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processes for the regular crystal lattice? Since the reciprocal space for phonons and

electrons coincides, all the umklap processes are redundant. Note that in the theory we

have completely ignored phonon localization because basically the difference in the elastic

constants and the dielectric constants between GaAs and AlAs is simply not large enough

to effect significant localization. Mathematically, we can predict that if the phonons

are significantly localized, the Raman spectrum will exhibit even greater peaks

owing to higher order poles in the complex plane. But experimentally it is difficult to

distinguish the cases with or without phonon localization. There have been several

outstanding experiments proving the role of zone-folding in Raman spectra, which we will

take up next.

3.3.4 Experimental Confirmation of Zone-Folding

3.3.4.1 Folded LA in Raman Scattering. The first experimental observation of OPFA

modes was reported by Colvard et al. (1980). The samples consisted of 1720 periods of

1.36 nm GaAs/1.14 nm AlAs along the (100) direction. The acoustic phonons at q ¼ 2p=d

at the center of the MZ were observed as the B2 and A1 modes of the D2d group. These

modes may be represented by the continuum elastic model first investigated by Rytov

(1956). The dispersion relation for LA in a structure with thicknesses d1 and d2 is given by

cos qd ¼ cosðvd1=c1Þcosðvd2=c2Þ2 ½ð1 þ K2Þ=2K�sinðvd1=c1Þsinðvd2=c2Þ; ð3:22Þ

in which K ¼ c1r1=c2r2; where c1; c2 are the sound velocities for LA phonons along (100),

and r1; r2 are the respective densities. In the case of thicker GaAs layers, d1 . d2; then

v ðB2Þ . v ðA1Þ and conversely, for d1 , d2; then v ðB2Þ , v ðA1Þ: Since B2 mode is

odd under inversion, it is usually weaker than the symmetric A1 mode. For d1 ¼ d2; the

Raman intensity tends to zero for even m; with m being an integer in the Bragg reflection,

ml ¼ d: The second-order susceptibilities for the tetragonal D2d symmetry applicable to

the superlattice along (100), from Hayes and Loudon (1978), are

a
a

a

� �A1ðZÞ
c

2c

� �A2

d
2d

� �B1

e
e

� �B2ðZÞ
f

g

� �EðyÞ

f
g

� �EðxÞ

:

It is simple to show that only the A1 and B2 modes are Raman active for back scattering

geometry, zðx; xÞ�z for A1 and zðx; yÞ�z for B2. In group theory, the irreducible representation

of the polarizability tensor for the group D2d must transform as xx or xy: Similarly in

infrared, they transform as x or y with two-dimensional E-modes which involve only

transverse phonons. Figure 3.14 shows the measured Raman spectrum with sharp peaks

near 65 cm21, the folded LA phonon modes. Dispersion of LA phonons is sketched in

Figure 3.15, with an enlarged portion shown in (b) and the amplitude of the folded

phonons shown in (c). AlAs layers are shown by shaded dots. Colvard et al. (1980) found

that these phonon modes are quite localized in their respective layers using a simple
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calculation. This is not surprising, because optical phonons may be calculated with good

results by two Keating force constants (Keating, 1966). What it means is that nearest

neighbor coupling constants are all that is necessary. If that is the case, putting AlAs next

to GaAs, which have different force constants with no next nearest neighbor terms

certainly will give localized modes in the respective layers. Therefore I am not convinced

by the arguments. Looking at the Raman spectrum that I calculated with zone folding, it

would be very difficult to say anything at all about the degree of localization of the

phonons. It is simply due to the selection rule conserving the phonon q to the highly

localized wave vector k of the electronic quantum structures.

Figure 3.14. Raman spectra of a GaAs(1.36 nm)/AlAs(1.14 nm) SL. After Colvard et al. (1980), with

permission.

Figure 3.15. (a) Dispersion of LA phonons, (b) detail from (a) and (c) amplitude of the folded phonons. AlAs

layers are shown by shaded dots.
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3.3.4.2 Folded Optical Phonons in Raman Scattering. The first definite observation

of OPFO in GaAs/GaAlAs superlattices was reported by Jusserand et al. (1984). For an

Al molar fraction of 0.3, the Raman spectra of various samples in the zðx; yÞ�z are shown in

Figure 3.16. Using the notation ðn;mÞ for (GaAs)n–(GaAlAs)m, the samples used in

Figure 3.16 are characterized by the set: S2(6,4), S5(9,9), S7(12,7) and S9(17,12). The

results agree with the calculation given in Section 3.3.3, although the calculation does not

employ the proper Raman tensor for D2d symmetry so that there is no distinction between

the polarization of the incoming and scattered light.

The Raman spectra for a 400 period GaAs(2 nm)/AlAs(6 nm) superlattice obtained by

Sood et al. (1985), with both the folded LO and TO are shown in Figure 3.17(a) and (b).

The series of peaks, labeled LOm, corresponding to LO phonons of A1 with even m; and B2

with odd m for the D2d point group, for two different laser frequencies, are the best

experimental proof of the interaction of electrons in a superlattice with the folded phonons

in the mini-BZ. In Figure 3.18, five TO peaks show up superimposed on a strong

background, at an incident photon energy of ,1.9 eV. Since LO phonons with a long

Figure 3.16. The folded LO for four samples S1–S4 clearly demonstrates the theoretical calculation in Section

3.3.3. From Jusserand et al. (1984), with permission.
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range Coulomb interaction are more affected by Landau damping (Tsu, 1967),

qualitatively, one should expect that TO at higher q will show up more easily than LO

in Raman scattering. This explanation was not given by Sood et al. in their original

publication. The strong background appears to be due to the polarization used. It is

impressive that a mapping of both the LO- and TO-phonons of GaAs using only vðq ¼

mp=dÞ; with d being the thickness of the GaAs layer, agrees so well with the data known

from neutron scattering usually requiring a very thick sample.

3.3.5 Raman Scattering from a Strain-Layer Superlattice (SLS)

The use of Raman scattering to determine deformation in Si/GeSi (SLS) was reported by

Cerdeira et al. (1984). According to Matthews and Blakeslee (1976), perfection may be

enhanced by choosing film thicknesses below that at which misfit dislocations are formed

when interfacial strain is high. These concepts are incorporated in what is known as the

strain-layer superlattice (SLS). In fact SLS has greatly broadened the choice of materials

forming perfect epitaxial heterostructures for quantum confinement and superlattices.

Figure 3.19 shows the Si–Ge peak in the alloy spectrum for (a) a single incoherent layer,

thick enough that the stored strain energy from a lattice mismatch is much greater than

what is required to create dislocations and (b) a SLS. Note that the spectrum for

Figure 3.17. Off-resonance Raman spectra (a) and near resonance (b) showing folded LO phonons. After Sood

et al. (1985), with permission.

Optical Properties and Raman Scattering in Man-made Quantum Systems 141



(b) is narrower and strain shifted. Using the appropriate Gruneisen constants, Cerdeira

et al. estimated the interlayer strain. With Ge0.65Si0.35, the strain is 2%. For GaSb/AlSb, a

strain of 0.2% was measured by Jusserand et al. (1985).

3.4. SUMMARY

To measure the optical absorption without removing the back substrate, we resort to a

technique that takes the reflectivity at an angle in addition to the usual normal incidence,

resulting in the determination of both refractive index and absorption coefficient. This

technique is not new, but is rarely described in any books on optical measurements. This

simple example again illustrates why one should think about the problem without rushing

Figure 3.18. Raman spectra of folded TO phonon, showing five distinct peaks. The high background is due to

the use of polarization zðx; xÞ�z: After Sood et al. (1985).

Figure 3.19. (a) Ge0.65Si0.35/Si strain layer superlattice curve (b) is upshifted from an alloy of the same

composition, Ge0.65Si0.35. After Jusserand et al. (1985), with permission.
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to look up the usual reported work. In fact the reviewer suggested to me that our method

should constitute a separate paper for the Journal of the Optical Society. At the time we

were too busy with new work, but more precisely, published work from BTL using

the wedge shape to eliminate fringes clearly offers a superior measured exciton line for

the QW structures, as shown in Figure 3.7. Again, because we did not remove the

substrate, photoconductivity offers a good way to identify the miniband states of a

superlattice experimentally as shown in Figure 3.8. In 1971, Jha and I calculated the zone-

folding effects of a polariton and phonons in a superlattice using a linear chain model,

again illustrating how a complicated problem may be simply modeled. Obviously a more

rigorous calculation would have been very complex. In 1975, Esaki and I published the

first Raman spectrum of a superlattice as well as the spectrum of an isolated quantum state.

The key to the success of the calculation involves the use of complex integration in terms

of the poles, mostly double poles. This is a good illustration of how useful it is to have

some working knowledge of a complex variable. I was very much influenced by my

teacher, Walter Kohn, who was my advisor for little more than a couple of months in 1956.

He told me that the single most important tool for a physicist is a working knowledge of

complex variables. The first experimental confirmation of phonon zone folding was

obtained by Colvard et al. (1980) and later by Sood et al. (1985). The Raman spectrum is

capable of determining strain using the Gruneisen constant relating strain to frequency

shift for Si/SiGe (Cerdeira et al., 1984; Jusserand et al., 1985). When I was learning about

Raman scattering, I discovered that it is a very difficult subject because of the involvement

of group theory and fairly complicated solid-state theory. However, experimentally one

only needs to acquire some working knowledge, such as looking up the Raman tensors for

a given crystal structure, and some understanding of crystal orientation with respect to the

polarization of the incident and scattered photons. However, if spin flip is involved, some

understanding of the double group, a much more complex subject, is needed. Raman

scattering involving spins is so complex that it usually takes a year to master.
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Tsu, R. & Döhle, G.H. (1975) Phys. Rev.B, 12, 680.

Tsu, R. & Esaki, L. (1975) in Proceedings of the Third Light Scattering in Solids, Campinas, Eds.

Balkanski, M., Leite, R.C.C. & Porto, S.P.S., Wiley, New York, p. 533.

Tsu, R. & Jha, S.S. (1972) Appl. Phys. Lett., 20, 1.

Tsu, R., Kawamura, H. & Esaki, L. (1974) Solid State Commun., 15, 321.

Tsu, R., Chang, L.L., Sai Halasz, G.A. & Esaki, L. (1975a) Phys. Rev. Lett., 34, 1509.

Tsu, R., Koma, A. & Esaki, L. (1975b) J. Appl. Phys. Rev. Lett., 33, 827.

Verleur, H.W. & Barker, A.S. (1966) Phys. Rev., 149, 715.

Waugh, J.L.T. & Dolling, G. (1963) Phys. Rev., 132, 2416.

Superlattice to Nanoelectronics144



Chapter 4

Dielectric Function and Doping of a Superlattice

The dielectric constant represents the screening of the applied electric field in a medium

owing to the presence of charges and dipoles, and so on. Usually, it is considered in the

random phase approximation in Lindhart’s expression (Ziman, 1988) in terms of a sum

over all the transitions due to an applied electric field, which is simply a statement that the

total effect is a superposition of individual responses from individual transitions. What

happens if two transitions are coupled? As long as it is possible to transform the coupled

modes into the individual responses of the quasi particles, then we may simply sum all the

responses. Normally we separate the modes into various ranges in energy. In free

molecules, the lowest term comes from the rotation of the molecule, which is not present

in solids. In solids, the most important contribution comes from the optical response to an

applied electric field that results from transitions between the valence band and the

conduction band, involving the product of two terms, the matrix element of transition and

the joint density of states. The matrix element has an energy denominator; the higher is the

band gap of the solids and the lower is the dielectric function. Therefore, if the energy state

is raised owing to quantum confinement, the dielectric function is reduced accordingly. As

we have seen from Chapter 3, the dielectric constant enters into a multitude of physical

situations, ranging from phonon dispersions to electron phonon interactions. Often it is

good enough to consider the bulk values in a situation, like the relation between the LO and

TO phonons, in the Laddane–Sachs–Teller relation. However, in doping semiconductors,

often the most important features in the operation of electronic devices, the binding energy

of dopants is inversely proportional to the square of the dielectric constant, a major effect

to be accounted for in three-dimensional quantum confinement which will be treated later.

For a superlattice and a quantum well, quantum confinement is only along the layer

structure. The major difference is not the overall screening, rather it is due to the joint

density of states of the two-dimensional system. This aspect will be treated here.

4.1. DIELECTRIC FUNCTION OF A SUPERLATTICE AND A QUANTUM WELL

4.1.1 Longitudinal Dielectric Constants for Quantum Wells

The transverse dielectric constant of the Ga0.5Al0.5As/GaAs superlattice has been

measured by Tsu et al. (1975), showing that the refractive index lies between the

Ga0.5Al0.5As alloy and GaAs. The dielectric constant is important for impurity levels,

excitons and carrier screening in general. For polar semiconductors like GaAs, the ionic
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contribution to the static dielectric constant represents a significant factor compared with

the part contributed by its covalent nature. The present treatment follows closely the

calculation by Tsu and Ioriatti (1985). Since the ionic part involves charge transfer

between the Ga and As atoms, as treated by Ilegems and Pearson (1966), it is assumed that

quantum well plays a negligible role in the ionic part. For a typical quantum well of width

w ¼ 5 nm; due to the up-shift of the energy, the dielectric constant is expected to be

reduced. The matrix element between the initial and final states kilA·Plfl is almost a

constant in comparison to the Van Hove singularity in the joint density of states at the G; X

and L points of the Brillouin zone (BZ), where the valence band runs almost parallel to the

conduction band along the L and D directions. Assuming that the transitions near the three

points of the BZ, G; X and L, are additive, we calculate the difference between the unbound

bulk and the bound case, the quantum well. Under the application of a perturbing electric

field F in the direction of the quantum well, the wavefunction

cnk ¼ lnklþ
X
nk

knkleFxln0k0l
Enk 2 En0k0

ln0k0l; ð4:1Þ

where knklxln0k0l ¼ knklxln0kl›kk0 ; the Fermi function fvk ¼ 1; fck ¼ 0; n ¼ v and n0 ¼ c;

then

1 ¼ 1ionic þ
8pe2h2

m2
0

X
k

P2
vc

½EcðkÞ2 EvðkÞ�
3
: ð4:2Þ

We replaced the part in Eq. (4.2) that is due to the bulk by the corresponding quantum

well part. Taking Eb; the energy at the barrier as the upper limit of energy, the part to be

subtracted is

1BðG Þ ¼
8e2P2

p 2
ðmG=m0Þ

3=2ð2m0Eg= h
2Þ1=2ðEgÞ

22
ðEb=Eg

1

ðx 2 1Þ1=2

x3
dx; ð4:3Þ

for a transition involving the light hole band to the conduction band at the G point, mG is

the reduced mass for the light hole mass in the valence band and the conduction band. At

the point L; mL is used, however, we shall see that P2 in Eq. (4.3) are different at each point

G; X and L; as well as the two polarizations ðk;’Þ: Similarly for the bound states with

wavefunctions for the quantum well:

ccv ¼ Ucvðr; kÞsinðmpx=wÞexpðiktrÞ; ð4:4Þ

with the matrix element Pmm0 ¼ Pmm›mm0›k’;k0’; we arrive at the term to replace 1BðG Þ;

1Gk ¼
X
m

2e2

w

lPk
mml

2

m0

ðmG=m0Þ
ðEg=EmmÞ

2 2 ðEg=EbÞ
2

E2
g

; ð4:5Þ

where Pk
mm is the momentum matrix with the electric field transverse to the well. For the

electric field ’ to the plane of the quantum well, Pk
mm is substituted by P’

mm and the total
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dielectric constant at G; X and L; becomes

1k;’ ¼ 12 ð1GB þ 1L
B þ 1x

BÞ þ ð1Gk;’ þ 1L
k;’ þ 1X

k;’Þ: ð4:6Þ

Let us go over what we did. Instead of calculating the dielectric constant we used the

effective mass, which is usually only valid near these high symmetry points. Therefore, we

subtracted the bulk contribution and replaced this with the quantum well expression,

expressed by Eq. (4.6). Figure 4.1 shows the band structure of GaAs (solid), and

Al0.35Ga0.65As (dashed). We used 60% of the difference in the two band gaps EG
g and EG

b ;

and the band-edge off-set at G is 0.6(3.31–3.3), according to Mendez et al. (1981). At

point X EX
g , EX

b ; so that the off-set is nearly zero as shown in Figure 4.1.

With the density of state mass at the point L m3=2
L ¼ NLmtm

1=2
l ; where m21

t ¼ m21
ct þ m21

vt

in which mct ¼ 0:075m0 and mvt ¼ 0:2m0; NL ¼ 4; and mc‘ ¼ mv‘ ¼ m‘ ¼ 1:9m0;

1BðLÞ ¼
4e2lpl2ml

pm2
0

ð2mLEg= h
2Þ1=2

ðy þ 1Þðy 2 1Þ3=2

y2E2
g

; ð4:7Þ

where y ¼ EL
b 2 EL

g : What are the values for the momentum matrix at G; X and L? Let us

first list the group designation of these points for the various bands in GaAs.

L G X

L6 G6 X7 Conduction band

L4,5 G8 X6 Valence band

L6 G7 X7

Figure 4.1. Energy band structure of bulk GaAs and Al0.35Ga0.65As at G; L, and X. After Tsu and Ioriatti (1985),

with permission.
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According to Pollak and Cardona (1966), the momentum matrix for various cases listed

below should be used.

At G : 1Gk ðhhÞ—lPl2 At L : 1L
k—lPl2ð4=3Þ

1Gk ð‘hÞ—lPl2ð1=3Þ

1G’ð‘hÞ—lPl2ð2=3Þ 1L
’—lPl2ð2=3Þ lPl2=m0 ¼ 7:5 eV

The calculated dielectric constant versus the well width is shown in Figure 4.2.

Below a well width of 2 nm, the quantum states are squeezed out of the well for the

barrier height involved, giving a zero contribution. As the width is increased to beyond

7 nm, a transition involving the second quantum state gives rise to an additional

contribution, resulting in a sudden rise. The states near the top of the barrier are neither

two-dimensional nor three-dimensional in nature. They have not been taken into account

in this calculation, contributing to the poor convergence toward the bulk value. As pointed

out by F. Stern, if a better procedure for incorporating the sum rule is used in the process of

removal and insertion, a better convergence may result. Thus this method does not apply to

very high barriers. Nonetheless, our results should be applicable in a limited energy range

near each quantum state. Let us summarize the general trend. The breakdown of symmetry

results in an increase in the case of parallel polarization over perpendicular polarization.

The static dielectric constant approaches the value for the GaAs bulk for large well width

and shows a 20% reduction for w # 2 nm: It is important to account for this reduction

when dealing with impurity states and excitons.

Figure 4.2. Calculated longitudinal dielectric constant 1k and 1’ versus well width. After Tsu and Ioriatti

(1985), with permission.
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4.1.2 Transverse Dielectric Constant of the GaAs/AlAs Superlattice

The calculation in this section is based on that of Kahen et al. (1985), where the individual

contributions from the G; X and L valleys are treated separately. Since confinement is in

GaAs, an increase of the energy states lowers the dielectric constant, a general rule that

applies to all cases.

The notation e‘hð1Þ refers to the transition from the light hole to the 1st superlattice

band in the conduction band. The spin–orbit split off to the 1st SL band is marked as

eso(1). Note that for parallel polarization, the transverse dielectric constant is above that of

the alloy. Since the electrons are basically confined in the GaAs well region, comparison to

the alloy is not as meaningful as comparison to GaAs. It is clear that the dielectric constant

is decreased owing to up-shift of the energy state from confinement in the GaAs layer

(see Figure 4.3).

4.2. DOPING A SUPERLATTICE

When the energy states in a quantum confined system are pushed up, the reduction in the

dielectric constant increases the binding energy of the dopants. Since the impurity sites

Figure 4.3. The calculated transverse dielectric constant for 158 periods of the GaAs/AlGaAs superlattice with a

barrier width, LB and well width LZ, with a0 being the lattice constant. The solid and dashed curves depict

polarization of the electric field parallel to and perpendicular to the superlattice layers, respectively. Arrows mark

theGpoint transitions. The dash–dot curve represents the AlGaAs alloy. After Kahen et al. (1985), with permission.
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intermingle with the barriers, which confine the electrons, the binding energy is position

dependent. This was first treated by Bastard (1981), using infinite barriers and was later

extended to finite barriers by Mailhiot et al. (1982). Usually one starts with a trial

wavefunction consisting of a bulk hydrogenic wavefunction modulated by a function

depending only on the z coordinate, the axis along the potential variation, used in a

variational procedure. Ioriatti and Tsu (1986) used a different approach, leaving the

z-dependent function as an unknown. Upon integration over the transverse coordinates, the

minimization of the total effective Hamiltonian leads to a well-known differential

equation, Whittaker’s equation, which is solved for any square-well potentials with

arbitrary impurity locations. For an isolated quantum well, this approach leads to the same

results found by Mailhiot et al. (1982) and Greene and Bajaj (1983). For a superlattice,

where the width of the miniband is in the order of or larger than the binding energy, our

results are substantially different from the isolated well result owing to the spread of the

donor envelop function into neighboring wells. This effect tends to dominate to the point

of reversing the trend, i.e. there is an increase in binding energy with increasing well

width. Basically, for narrow barriers, the miniband states are more three-dimensional than

the two-dimensional nature of the impurity level in a quantum well.

Let the impurity be located at zi in a GaAs/AlxGa12xAs superlattice. The Hamiltonian

may be written as

H ¼ P2
=2mp 2 ðe2

=1Þ½r2 þ ðz 2 ziÞ
2�21=2 þ VSLðzÞ ð4:8Þ

where

VSLðzÞ ¼
0; lz 2 nða þ bÞl , a=2

V0; lz 2 ðn þ ð1=2ÞÞða þ bÞl , b=2
ð4:9Þ

in which a and b are the widths of the wells and potential barriers, respectively and V0 is

the barrier height. In Eq. (4.8) r ¼ ðx2 þ y2Þ1=2 and 1 is the dielectric constant (if MKS

units were used, 1! 4p1r10Þ: For an Al composition with x , 0:3; we can simply use the

same mp ¼ 0:067m0 for both barrier and well, and for simplicity we further assume that

1 ¼ 13: Since a separable variable does not apply, the trial function for the ground state is

taken as

cðr; zÞ ¼ Rðr; zÞfðzÞ ð4:10Þ

Rðr; z; lÞ ¼
2

l

expðlz 2 zil=lÞ
ð1 þ lz 2 zil=lÞ1=2

exp{ 2 ½ðz 2 ziÞ
2 þ r2�1=2=l} ð4:11Þ

and fðzÞ should be determined variationally. R is the 1s hydrogenic state containing a

variational parameter l; and is normalized. The ground state energy E ¼ kclHcl can be
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obtained by first integrating over the transverse variable. This gives

E ¼
ð1

21
dz{fpð2h2

=2mpÞd2f=dz2 þ fpf½VSLðzÞ þ V1ðzÞ�}; ð4:12Þ

in which

V1ðzÞ ¼ 2
h2

mpl2

ð2l=ap
BÞ2 1

1 þ 2lz 2 zil=l
þ

1=2

ð1 þ 2lz 2 zil=lÞ2

� �
ð4:13Þ

is the average effective impurity potential after integrating out the transverse variable, and

ap
B is the effective Bohr radius, given in MKS unit by ap

B ¼ 4ph21r10=m
pe2: Minimizing E

with respect to f for a given l; Eq. (4.12) leads to a differential equation for f: Making the

following substitutions:

b2 ¼ 2mpðV0z2 EÞ= h2
;

K ¼ ½ð2l=ap
BÞ2 1�=2bl;

x ¼ blð1 þ lz 2 zil=lÞ;

with z ¼ 0 or 1, for z in the well or barrier regions, respectively, we obtained the well-

known Whittaker equation,

d2f

dx2
þ

21

4
þ

1

4x2
þ

K

x

� �
f ¼ 0: ð4:14Þ

The two linearly independent solutions are Mk;0ðxÞ and WK;0ðxÞ; the regular and irregular

Whittaker functions. For E . 0; f behaves like the exponential and trigonometric

functions for z ¼ 1 or 0, respectively. The power law dependence in the asymptotic forms

of the Whittaker functions reflects the long-range Coulomb term (Merzbacher, 1970). The

boundary conditions, the continuity of f and df=dx across the boundary and at the donor

sites, determine E as a function of l:

When VSL ¼ 0; the continuity of f and f0 at the donor site and f ¼ 0 at infinity leads to

bl ¼ 1 and K ¼ 0:5; giving l ¼ ap
B and E ¼ 2h2=2mpðap

BÞ
2; the solution for the hydrogen

atom. For a hydrogenic center located in the plane of an infinite potential and the boundary

conditions f ¼ 0 at z ¼ zi; 1; then K ¼ 3=2 and bl ¼ 1; giving, l ¼ 2ap
B; so that E ¼

2h2=8mpðap
BÞ

2; which is exact. Finally, situating an impurity between two hard walls

separated by an infinitesimal distance, setting z ¼ zi in Eq. (4.13) and minimizing the

resulting expression with respect to l; we obtain the exact solution for the two-

dimensional hydrogen atom (Levine, 1965).

We will elaborate further for a superlattice. We have taken an effective range for the

potential V1ðzÞ as 2L, defined by lz 2 zill; which is several ap
B: Outside this effective range

the potential is represented by the square-well Krönig–Penney (KP) model. Inside this

range, we apply at each interface (the impurity site and the right and left termination points
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are also considered as interfaces) a two-component vector composed of the value of the

wavefunction and its first derivative at the corresponding interface. The two linearly

independent solutions of Eq. (4.14) are then used to relate vectors associated with two

consecutive interfaces. A transfer matrix is thus associated unambiguously with each pair

of consecutive interfaces. Continuous boundary conditions for both f and f0 across all the

interfaces allow us to represent the propagation of the two-component vector associated

with the left termination point with that of the right termination point, as the matrix

product of a succession of such matrices. It follows that

fR

fR

 !
¼ M ðWhittakerÞ

fL

fL

 !
;

where the subscripts R and L denote the right and left termination points. Matching the

logarithmic derivative f0
L=fL to that for the KP solution decaying to the left, and the

logarithmic derivative f0
R=fR to that for the KP solution decaying to the right, leads to a

solution for E as a function of l: The minimum E obtained by variation of l leads to the

ground state of the superlattice with the impurity. The difference between this value and

the lowest E for the KP solution is our ground state binding energy of the donor impurity.

As shown in Figure 4.4, the binding energy of dopant or impurity in units of Rydberg,

Ryp ¼ h2=2mpðap
BÞ

2 is plotted versus the barrier width normalized to the Bohr radius for

various normalized well widths. For GaAs, the Bohr radius is increased from 0.053 to

9.843 nm by the factor 1r=m
p , 10 nm and the Rydberg is reduced from 13.6 eV for a H

atom to 5.6 meV. Note that for a barrier width of thickness, b=ap
B . 1; the solution

Figure 4.4. Binding energy Eb in units of Ryp (5.6 meV) versus the barrier width b and various well widths a,

normalized to apB: Inset shows Eb versus well width for several barrier widths. Only at large b does Eb increase

with a decrease of well width. After Ioriatti and Tsu (1986), with permission.
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approaches that for the isolated quantum well, where Eb increases with decreasing well

width. Our results for quantum well are within 1% of those obtained numerically (Mailhiot

et al., 1982; Greene and Bajaj, 1983). Owing to the spread of the wavefunction to

neighboring wells with thin barriers, the reverse happens and Eb decreases with the

decrease in well width. Our solution does converge to the H-atom in three dimensions

as the barrier width diminishes. In the inset of Figure 4.4, the binding energy is plotted

versus the well width for several barrier widths. For b , 2 nm, Eb increases with the

increase in the well width and at b , 6 nm, there is a peak for Eb at a , 5–6 nm. Beyond

this point, Eb decreases with an increase of well width like the case for an isolated quantum

well. I thought I could predict almost everything that happens to the superlattice and

quantum well. When Ioriatti showed me the computed results, I thought that there was an

error until repeated checks, even going as far as repeating the computer program, gave the

same results and we realized the true meaning of the band states. When we use such

textbook approximations as the particle in the box, we must realize that the validity of

these simple models must be carefully examined. In particular, ab initio calculations

cannot be trusted without repeated tests.

4.3. SUMMARY

The dielectric constant of a superlattice has been calculated. The value is about 20% lower

for a typical superlattice. The economy presented to the problem of shallow donor states

through the use of the Whittaker functions is obvious. Even without treating the

superlattice case using the transfer matrix and Krönig–Penney model, the question of

mixing of closely spaced quantum well states is automatically taken care of by the

variational approach. What is satisfying is that we discover this powerful method rather by

chance in the sense that we did not envision the way it turned out. One wonders why we

want to bother with the binding energy of shallow dopants in a superlattice. After all,

quantum well doping is detrimental in most cases. To answer this, we must simply look at

the difference between an isolated molecule and a polymer chain. We dope the chain to

acquire transport; similarly we dope the superlattice to acquire current transport. In fact,

in quantum cascade lasers for a superlattice to serve simply as a wire with the capability

of matching the output from the nth section to the input of the (n þ 1)th section, it must

be doped.
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Chapter 5

Quantum Step and Activation Energy

5.1. OPTICAL PROPERTIES OF QUANTUM STEPS

I spent a few summers at Fort Monmouth at the US Army EDTL Laboratory. In 1989, Paul

Shen showed me some intriguing structures in the optical data involving AlGaAs at the

surface of GaAs. He told me that these structures were considered by some to be surface

crud. I could not believe that surface crud could be so regular and repeatable. We

embarked on a joint study of quantization, not with a quantum well, but with a quantum

step. We developed ways to calculate the density of states (DOS) of quantum steps

allowing us to sum the optical transitions and correlate them with the photoreflectance

measurements.

At energies below the barrier, the k-vector in the region of the barrier is purely

imaginary, the discontinuity in potential due to the step is greater and the DOS is more

discrete. The calculated peaks of the photoreflectance for a GaAlAs step on GaAs agree

well with experiments on energy. For optical absorption, the usual DOS does not apply

because momentum is only conserved in the transverse direction. New understanding

relating to band-edge alignment may be studied with quantum steps. In particular, it should

be possible to utilize the quasi-discrete nature of the DOS of a quantum step in a variety of

photo-assisted processes.

5.1.1 Density of States of a Quantum Step

Following Shen et al. (1990), we start with the potential profile:

V ¼ 2V1; z , 0

¼ 0; 0 , z , L

¼ 1 z . L

: ð5:1Þ

Since the work function of GaAs/GaAlAs is much greater than the potential step V1;

for simplicity, the surface at z ¼ L is represented by an infinite barrier. Without intentional

doping, the depletion width is at least several micrometers, and with a step of thickness

,5–50 nm, depletion may be totally ignored. The boundary conditions at z ¼ 0 are

the continuity of ci and c 0
i=mi: The reflection coefficient is simply a phase change,

R ¼ expði21fÞ with f ¼ 2 tan21ðh tan k2L þ pÞ; in which h ¼ k1m2=k2m1; where

k2
i ¼ 2miðEL þ ViÞ=h

2; with i ¼ 2 for the step and EL being the energy along the quantum
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step. The DOS in terms of EL; nLðELÞ; is given by (Wigner, 1955):

nLðELÞ ¼
1

2pL

df

dEL

¼
1

2pL

F

1 þ F2

1

EL

2k2L

sinð2k2LÞ
2

V1

EL þ V1

� �
; ð5:2Þ

where F ; h tan k2L: With V1 ¼ 0; nLðELÞ ¼ ðdk2=dELÞ=p; the usual DOS of a free

particle. In terms of the total energy E ¼ EL þ h2k2
t =2m2; after integration in the transverse

coordinates, the DOS nðEÞ is given by

nðEÞ ¼
2

4p2

ð1

0
nLðELÞdEL

ð1

0
d E 2 EL 2

h2k2
t

2m2

 !
2pktdkt

¼
1

2p2L

2m2

h2

 !
tan21F: ð5:3aÞ

Again for V1 ¼ 0; m1 ¼ m2 and nðEÞ ¼ ð1=2p2Þð2m= h2Þ3=2E1=2; the usual three-

dimensional DOS for free particles. Let us evaluate Eq. (5.3a) for V1 – 0 and L !1;

applying to a simple barrier,

nðEÞ ¼
1

2p2

2m

h2
limL!1

tan21F

L
¼

1

2p2

2m

h2

 !3=2

E1=2limL!1Gðk2LÞ; ð5:3bÞ

where

Gðk2LÞ ¼
h

cos2k2L þ h2sin2k2L
;

which oscillates between h and 1=h; and averages to 1 as L !1: The calculated nLðELÞ

versus EL for various thicknesses of the quantum step with V1 ¼ 0:15 eV; m1 ¼ 0:066m0

and m2 ¼ 0:076m0; corresponding to the conduction band of a Ga0.84Al0.16As quantum

step on GaAs, is shown in Figure 5.1. Unlike in quantum well, these peaks oscillate with

decreasing amplitudes. The thicker the quantum step, the farther apart in energy are the

peaks. The DOS of the heavy hole nLvðELvÞ can be calculated similarly.

5.1.2 Matrix Element Between the Valence and Conduction Bands

The matrix element between the valence band and the conduction band is

Mvc ¼ MB
vcMEnv

vc dðktc 2 ktvÞ; ð5:4aÞ

where the subscripts c and v denote conduction and valence band, respectively. The Bloch

component MB
vc ¼ kcB

c le·PlcB
v l and the envelope component

MEnv
vc ¼

ðL

21
ccc

p
v dz

¼
1

2p
AcAp

v

ðL

0
sin½k2cðz 2 LÞ�sin½k2vðz 2 LÞ�dz þ exp i

fc 2 fv

2

� �
dðk1c 2 k1vÞ;

ð5:4bÞ
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where lAcðvÞl
2
¼ 4h2

cðvÞ=½h
2
cðvÞsin2ðk2cðvÞLÞ þ cos2ðk2cðvÞLÞ�: The second term in Eq. (5.4b)

contributes to the optical constant originating from GaAs, which gives the square root

singularity of the absorption coefficient at the energy of the GaAs direct gap. Since we are

only interested in the vicinity of the AlGaAs gap, this second term is neglected in the

discussion that follows. Figure 5.2 shows MEnv
vc with Vc ¼ 0:15 eV; Vv ¼ 0:082 eV;

m1c ¼ 0:066m0; m2c ¼ 0:076m0; m1v ¼ 0:34m0; m2v ¼ 0:36m0 and L ¼ 20 nm: The

conduction band offset used is 65%. Note that MEnv
vc peaks at k2c ¼ k2v: For Vc ¼ Vv ¼ 0;

Figure 5.1. Density of states nlðELÞ versus EL for various thicknesses from Eq. (5.2). Solid line, 50 nm; dotted

line, 20 nm; dashed line, 15 nm. Unlike the quantum well, these peaks oscillate with decreasing amplitudes. After

Shen et al. (1990), with permission.

Figure 5.2. Matrix elements lMEnv
vc l versus dELc and dELv for a 20 nm Ga0.84Al0.16As Q step. After Shen et al.

(1990), with permission.
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and L ¼ 1; lMEnv
vc l2=L ! ›ðk2c 2 k2vÞ. For finite L; lMEnv

vc l spreads out so that it is not

possible to express optical transitions in terms of a simple joint DOS.

The absorption coefficient of the quantum step is given by

a ¼ ð4p2e2
=ncm2

0vÞlMB
cvl

2
JEnv; ð5:5Þ

with

JEnv ¼
2

8p3

� �2 1

L

ð
dkcdkvdktcdktvd Eg þ ELc þ ELv þ

h2k2
tc

2mc

þ
h2k2

tv

2mv

2 hv

 !

£ dðktc 2 ktvÞlMEnv
vc l2 ð5:6Þ

Substituting nLcðvÞdEL for dkcðvÞ=p;

JEnv ¼
1

2p2

2m

h2

 !
4

L

ð
nLcðELcÞnLvðELvÞ lMEnv

vc l2uðhv2Eg 2ELc 2ELvÞdELcdELv; ð5:7Þ

where m is the reduced mass and u is the Heaviside step function. For L!1; lMEnv
vc l2=L!

›ðkc 2 kvÞ; and JEnv reduces to a joint DOS. JEnv plotted against ðhv2EgÞ is shown in

Figure 5.3, with various thicknesses L of the quantum step. As L!1; JEnv /E21=2: The

solid line in Figure 5.3 is the DOS of the bulk GaAlAs. Note that the absorption spectrum

of the 70 nm GaAlAs slab resembles closely the bulk GaAlAs.

Figure 5.3. JEnv versus ðhv2 EgÞ for various thicknesses as marked. For large L; JEnv approaches the joint DOS

of the bulk GaAlAs shown by the solid line as given by Eq. (5.3b). After Shen et al. (1990), with permission.
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5.1.3 Electroreflectance from a Quantum Step

A quantum step of Ga0.84Al0.16As on a GaAs buffer was etched in 0.02% NH4OH,

0.02% H2O in 1 part of DI water at an etching speed of 20 nm min21 for various

thicknesses for the photoreflectance measurements. Some details of thickness determi-

nation during have been described by Shen et al. (1990 and references therein). An He–Ne

laser was used in the photoreflectance spectra shown in Figure 5.4. A good account of the

apparatus for photoreflectance is detailed in Shen et al. (1987) and the details of line-shape

fitting are described by Aspnes (1980).

In Figure 5.4, the photoreflectance spectra, 105 DR=R at room temperature is shown for

three thicknesses, 5, 15 and 50 nm. The smooth curves are line-shape fits with marked

arrows showing the values obtained for the energies. They give excellent agreement

except for the thin 5 nm sample which has a much broader linewidth. The small

discrepancy in the position of the peak may be due to error in the determination of the

thickness. The calculated peak position and linewidth are obtained by differentiating JEnv

in Figure 5.3. The intrinsic linewidth at room temperature from a GaAlAs bulk sample is

used in the fitting process of these spectra. If we had increased all the thicknesses by 5 nm,

then the fit for the energy positions for all samples would have been perfect.

The photoreflectance spectra are sensitive to a quantum step thickness of at least 5 nm,

perhaps down to 2 nm. Therefore, the technique should be viewed as one of the most

sensitive optical characterizations of heterojunctions. If the measurement can be done at

Figure 5.4. Measured photoreflectance spectra (dotted lines) of a quantum step of various thicknesses as

marked. The solid lines are line-shape fittings. The values obtained for energy gap are shown by arrows. After

Shen et al. (1990), with permission.
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moderately low temperatures, for example at 77 K, excitonic effects should show up as in

quantum wells.

I knew about the technique of finding the delay time and the derivatives of the phase

with frequency when I was at BTL. While working on the tunneling time with Zypman

(see Chapter 2), I showed him how we could obtain the DOS from the delay time. A few

days later, he showed me the paper written by Wigner in 1955 on the same subject. It is

surprising that such a powerful technique has not been described in any textbook such as

Merzbacher (1970). At least, with regard to the quantum step, this technique offers distinct

simplicity. We know that the quantum step offers another way of characterizing the

heterojunction systems. Unlike quantum wells where many quantum devices have been

explored and developed into routine applications like oscillators, lasers and amplifiers, it is

conceivable that the quantum step may also be developed into useful devices. The primary

difference between the two lies in the degree of trapping of electrons in a given region of

space, which is far more for a quantum well. On the other hand, since the trapping time in a

step is much less, it is conceivable that a series of quantum steps arranged in phase may

offer a mechanism for application.

5.2. DETERMINATION OF ACTIVATION ENERGY IN QUANTUM WELLS

The concept of activation energy Ea is extremely useful particularly in chemical reactions

and crystal growth. The usual way to obtain Ea is using the Arrhenius plot, involving, for

example, a current, size of a crystallites, and so on, versus inverse temperature. For a

current J / expð2Ea=kBuÞ; plotting J versus 1=kBu gives Ea as the slope. Or in general,

EaðV ; uÞ ¼ 2
d ln J

dð1=kBuÞ
: ð5:8Þ

Since the current is JðV ; uÞ; with V and u being the voltage applied and the temperature,

the activation energy from the Arrhenius plot is also a function of V and u: Normally, there

are several regions where a straight line may be fitted for a particular value of the

activation energy. Even if we used such an approach, we would need to answer what is this

fitted value that has units of energy and what is the relationship to other known parameters

characterizing the system. This is what we derived (Ding and Tsu, 1997). The system we

chose is a silicon-based double barrier resonant tunneling (DBRT) structure, with two

barriers on each side of a quantum well (Tsu, 1993; Tsu et al., 1997). After developing the

theory and proving our results by measurement, we found that the effective barrier height

is nothing other than the ground quantum state of the quantum well. The activation energy

Ea in Eq. (5.8) generally does not have much meaning, except after extrapolation to zero

for both V and u: Let us start with the usual tunneling formula, (Tsu and Esaki, 1973) for
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the current per energy, El; in the longitudinal direction,

iðElÞ ¼
empkBu

2p2h3
lTpT lln

1 þ exp½ðEF 2 ElÞ=kBu�

1 þ exp½ðEF 2 El 2 eVÞ=kBu�

� �
; ð5:9Þ

where lTpT l;El; EF; V and kB; are the transmission coefficient, the longitudinal energy, the

Fermi level in the left contact, the applied voltage between the contacts to drive the current

and the Boltzmann constant, respectively. Next, let us define the average transmitted

energy of the electrons flowing between the contacts,

�Ea ¼

ð1

0
iðElÞEl dElð1

0
iðElÞdEl

: ð5:10Þ

In order to arrive at a close form for �Ea; we replace the transmission coefficient in Eq.

(5.9) by

lTpTl < BðElÞ þ LðElÞ; ð5:11Þ

where the background BðElÞ; which is primarily due to tunneling through both barriers as if

no well were present (see Chapter 2), may be approximated by BðElÞ ¼ e2a=Em
l ; with a and

integers m for the best fit, LðElÞ; the resonant part approximated by a Lorentzian line-shape

with linewidth D; and the center energy E1ðVÞ;

LðElÞ ¼
1

1 þ ½E 2 E1ðVÞ�2=D2
: ð5:12Þ

For symmetrical structures, E1ðVÞ ¼ E1 2 eV =2: Using lTpT l in Eq. (5.11) and at a

limited voltage range eV # 2ðE1 2 EFÞ we obtained

�Ea <
C1kBT for the low temperature region

E1 2 eV =2 þ C2kBT for the high temperature region

(
; ð5:13Þ

in which C1 and C2 are determined by the background BðElÞ: Note that the use of lTpT l in

Eq. (5.11) is for convenience only to avoid a lengthy numerical solution of �Ea; which is not

really necessary.

Next, we numerically obtain Ea defined in Eq. (5.8) with J given by

JðV ; uÞ ¼
ð1

0
iðElÞdEl: ð5:14Þ

Ea is plotted versus the temperature u in Figure 5.5 for the DBRT structure shown in the

inset. The steps are as follows:

1. Calculate the energy E1 using the lTpT l from the usual matrix procedure in Chapter 2

for the structure. The structure was fabricated using the process that will be described
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in Chapter 6 on the semiconductor/atomic superlattice, which consists of epitaxially

grown Si/O multilayers with a monolayer of oxygen adsorbed between epitaxially

grown silicon (Tsu et al., 1997). The precise thickness of the barrier is 1-unit cell of Si/

1-monolayer of oxygen/1-unit cell of Si, serving as a barrier, followed by 2-unit cells

of Si as the quantum well together with a second barrier forming the DBRT structure.

Therefore, the effective thickness of the barrier is ,1.1 nm and the well is ,1.1 nm

deep. The calculated E1 , 0:58 eV for the energy state of the lowest resonant state.

2. From the position of E1 in Eqs. (5.11) and (5.12), we compute �Ea from Eqs. (5.10) and

(5.9). We also compute directly JðV ; uÞ from Eqs. (5.11) and (5.14).

3. Next we compute EaðV ; uÞ from Eq. (5.8), also numerically, and plot the results in

Figure 5.5 at various applied voltages.

4. Extrapolating to q ¼ 0; for Eaðu ¼ 0Þ:

5. Next, we plot Eaðu ¼ 0Þ versus V shown in Figure 5.6 as circles. A straight line fit

through the circles intercepts the ordinate at 0.58 eV, which is the final activation

energy Eaðu ¼ 0;V ¼ 0Þ; equal to E1; proving that the lowest quantum state E1 is the

activation energy.

To show why E1 is equal to Eaðu ¼ 0;V ¼ 0Þ; let us take the case in Figure 5.5 for

V2 , 0:6 V; with Eaðu ¼ 0Þ ¼ E1 2 eV2=2 ¼ 0:58 eV 2 0:6=2 eV ¼ 0:28 eV , 0:275 eV:

And Eaðu ¼ 0;V ¼ 0Þ is precisely 0.58 eV. Another way of looking at these numbers

is using the results obtained by Barker and Gruodis (1967), where the maximum peak

Figure 5.5. EaðV ; uÞ versus uðKÞ for the structure shown at the top with E1 ¼ 0:58 eV obtained by the usual

transfer matrix formulation. In the extrapolation to uð0Þ; EaðV ; 0Þ is used to obtain EaðV ¼ 0; u ¼ 0Þ; the

activation energy. From Ding and Tsu (1997), with permission.
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value of

JðV ; T1;T2Þ ; ½JðV ;T1Þ2 JðV ; T2Þ�=JðV ; T2Þ

is located very nearly at eV ¼ Eb; with Eb being the height of a square barrier (Duke,

1969). Then for our example, putting eV ¼ Eb in Eaðu ¼ 0Þ ¼ Eb 2 eV2=2 ¼ E1 2 Eb=2

again gives rise to Eb , E1: Thus, what we know intuitively, that the current must pass

through the structure via the lowest quantum level, is indeed correct. One may ask why we

need to go through all this just for that. The implications are enormous. Before as we see,

the only way to find the quantum state was to have a good peak current located at the

resonant energy of the structure. Now we know that we can find the lowest level of the

quantum well state even without conditions for good NDC to locate the peak, and

therefore, the resonant state. We can simply measure the current versus the applied voltage

at various temperatures as shown in Figure 5.7. Using Eq. (5.8), we obtained a plot of

EaðV ; uÞ shown in Figure 5.5. Values extrapolated to Eaðu ¼ 0;VÞ are plotted as in Figure

5.6 resulting in Figure 5.8. The best possible straight line through the circles gives

intercepts at 0.51–0.57 eV as the two limits of the procedure. We arrive at the energy state

E1 , 0.51–0.57 eV for the resonant state of the structure shown in Figure 5.8. This is the

basis we used to estimate the position of the quantum state ,0.5 eV for the Si/O

superlattice. There will be a full treatment of this subject later (Tsu et al., 1997).

Figure 5.8 shows Eaðu ¼ 0;VÞ obtained numerically from Figure 5.7 plotted against the

applied voltage V : Compared to Figure 5.6, it is clear that the structure is much worse in the

sense that the better resonant structure, i.e. the one with a NDC, would have plots similar to

Figure 5.6. The determined E1 , 0:51–0:57 eV would have shown a NDC at V , 1 V:

Failure to show the NDC indicates that the effective mobility or the mean free path is poor.

Figure 5.6. Eaðu ¼ 0;VÞ versus the applied voltage V : The best straight line through the circles intercepts the

ordinate at Eaðu ¼ 0;V ¼ 0Þ; the activation energy. From Ding and Tsu (1997), with permission.
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In conclusion, our method of obtaining the position of the quantum states based on

measurement is quite similar to the determination of the activation energy. It allows

determination even in the absence of a NDC. Mark Reed suggested writing a longer

version of the Ding and Tsu (1997) paper because the procedure is really quite complex.

I hope that in this more detailed version of the paper, it will be much easier to follow

the steps. Lastly, it is probably obvious to the reader that the measurement and

Figure 5.7. The I versus V measurement of a Si/O DBRT structure for u ¼ 300 2 500 K: From Ding and Tsu

(1997), with permission.

Figure 5.8. Eaðu ¼ 0;VÞ obtained numerically from Figure 5.7 versus V : The extrapolated straight line through

the circles to V ¼ 0 gives the activation energy, Eaðu ¼ 0;V ¼ 0Þ: From Ding and Tsu (1997), with permission.
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computation required are much more involved than the simple I–V plot locating the

peak current. However, it is a powerful method of obtaining for new systems where NDC

is not available.

5.3. SUMMARY

It is well known that a confined system has a localized DOS, but it is not generally

recognized that at an energy above but near a barrier, the DOS is also localized, although

not as completely. This is simply because wavefunctions do not change discontinuously.

Therefore, a quantum step can also provide various parameters that characterize a

quantum system. The DOS is calculated using the residence time, which in turn used is in

the calculation of electroreflectance. I have worked with Pollak on several joint

publications. He thinks me somewhat adventurous while I think him very cautious. For

these reasons, I told Shen that I am very sure that the electroreflectance data support

quantum confinement. In retrospect, even tunneling should exhibit localization at an

energy just above the barriers.

Activation energy is usually determined by using the Arrhenius plot of some variable

such as current, particle size, and so on, versus 1=kBu: We developed a method to find the

barrier height of a RTD even without the appearance of a current maximum by plotting the

average energy transport through the structure, extrapolated to zero applied voltage and

u ¼ 0; because we have shown that this gives the activation energy precisely and

therefore, the barrier height may be determined. As shown in Section 5.2, the process is

much more complicated than locating the current peak and extracting the barrier height

from the calculation of this current peak. Therefore, this procedure for the determination

of barrier height is for cases where resonant tunneling does not provide a current peak.

With regard to accuracy, in Figure 5.8, we have extrapolated a small amount of available

data all the way to V ¼ 0 for the barrier height. To enlarge the range of data, it is necessary

to use a larger range of temperature u: Therefore, accuracy relies on how high a

temperature the structure can withstand, and how reliable measurements can be made at

lower temperatures. This method for the determination of an effective barrier height is not

in any book, illustrating my earlier statement that consulting books is necessary, but

certainly not sufficient for new ideas.
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Chapter 6

Semiconductor Atomic Superlattice (SAS)

Superlattices and quantum wells were introduced as man-made quantum structures to

engineer the quantum states for electrical and optical applications (Esaki and Tsu, 1970;

Tsu and Esaki, 1973). Since then, thousands of papers have been published and more than

500 patents have been awarded on topics relating to the application of microelectronic and

optoelectronic devices, and to techniques for producing superlattice materials. In

retrospect, the idea relies heavily on the availability of good heterojunctions, lattice-

matched systems (Cho, 1971), and later, strained layered systems (Matthews and

Blakeslee, 1976). To realize quantum states in a given geometry, the size must be smaller

or comparable to the coherence length of electrons, in order to exhibit quantum

interference. This requirement eliminates doping as an effective means of achieving

confinement, except at low temperatures (Döhler et al., 1981), because doping comes from

charge separation which results in dimensions generally far exceeding the coherence

length of electrons at room temperatures. On the other hand, band-edge alignment of a

heterojunction provides an abrupt barrier height. This short range potential is the

consequence of higher order multipoles in the atomic potentials as discussed in Chapter 1.

A new type of superlattice was proposed, the epilayer doping superlattice (EDS),

consisting of, for example, a couple of layers of Si in AlP (Tsu, 1988). The idea is

fundamentally different from atomic plane-doped or d-doped superlattices (Zrenner et al.,

1985), where only a small fraction of the plane is occupied by doping or substitution.

Basically, if the entire layer is involved, unlike doping, disorder is eliminated. Another

type of superlattice designed to incorporate extremely localized interactions that is most

promising for silicon was introduced by Tsu (1993), consisting of an effective barrier to

silicon, formed by a suboxide with a couple of monolayers of oxygen atoms. To overcome

the problem of structural robustness associated with porous silicon, p-Si (a brief account is

treated in this chapter), it was proposed that nano-particles of silicon with a size in the

range of several nanometers sandwiched between thin oxide layers to form a superlattice,

may solve the problem of mechanical robustness while retaining the features of quantum

confinement as in the case of porous silicon (Tsu et al., 1995), where the name interface

adsorbed gas-superlattice (IAG-superlattice) was introduced. This name originates from

the idea that oxygen is introduced via surface adsorption in order to prevent the formation

of a very thick oxide. However, there is no attempt to circumvent the polycrystalline

nature of the structure. At this stage, it was recognized that perhaps it is possible to adsorb

one monolayer of atomic species, such as oxygen onto silicon, beyond which epitaxial

growth of silicon may be continued. This system used as a barrier for silicon is treated in
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detail theoretically and realized experimentally (Tsu et al., 1996; 1998a,b). Localized

interaction in a man-made quantum system is not really new, for example, resonant

tunneling involving localized defects was reported by Dellow et al. (1992).

6.1. SILICON-BASED QUANTUM WELLS

The electronic industry is overwhelmingly dominated by the silicon integrated circuit (IC).

For the III–V (columns III and V of the periodic table) based matched lattice systems, and

even with strain-layer systems (Matthews and Blakeslee, 1976), quantum devices remain

as research topics and speciality applications. In 1993, I proposed that the concept of a

strain-layer superlattice be pushed to the limit by a Si–SiO2 system, perhaps with the

thickness of the SiO2 no more than one unit cell thick. Figure 6.1 shows the proposed

quantum well with a barrier consisting of one unit cell thick of Si in between two SiO2

barriers.

Basically, the concept of a strain-layer superlattice is that with a sufficiently thin

epitaxial layer, the strain energy in each layer is below the energy needed for the growth of

point defects or dislocations. Since dislocations have an activation energy for nucleation

and a lower activation energy for growth, it is possible to exceed the energy requirement

without generating defects. The metal-oxide-silicon (MOS) device owes its success to the

low defect density at the Si/amorphous SiO2 interface with a barrier height of 3.2 eV. It is

not possible to grow Si epitaxially on the amorphous SiO2, but it is possible to continue

epitaxy if the SiO2, or perhaps more appropriately SiOx layer is only one or two

monolayers. This is the thinking that led to my proposed scheme. To my mind, defects

should have a hard time nucleating in a very small system with a much reduced degree of

freedom. And this is good for us trying to build a nanoelectronic quantum device, although

a major problem is the difficulty in defining voltage, input–output and so on, subjects we

shall treat in more detail later.

Barrier

Eb2

E2

E1

W

~1 eV

Eb1
SiO2

Si

Barrier

Figure 6.1. Scheme of a Si quantum well with thickness w between two barriers formed by a Si/SiO2/Si

superlattice. After Tsu (1993), with permission.
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6.2. Si–INTERFACE ADSORBED GAS (IAG) SUPERLATTICE

During the process of converting our III–V molecular beam epitaxy (MBE) system to

silicon MBE, Jonder Morais came from Brazil to study a PhD with me. He had worked as a

machinist and knew my theoretical work on amorphous superlattice and quantum wells

when I was in Brazil. He challenged me to consider nano-crystalline silicon with SiO2, or

SiOx, by letting him build a simple system for the deposition of silicon with the

introduction of oxygen via gas adsorption. This work originated the term interface

adsorbed gas superlattice (IAG-SL). Figure 6.2 shows the transmission electron

microscopy (TEM) of nine periods of IAG-SL that has an intended period ,18 nm. We

only know that the SiO2 layer is thin. The process is as follows: (1) we set the thickness of

the Si deposition, for example, after reaching 18 nm, (2) we interrupt the deposition by

introducing O2 or O2 þ H2 into the deposition chamber, followed by Si deposition, all at a

substrate temperature of ,308C, so that the deposited Si is mostly amorphous before

annealing at ,8508C. An estimate of the thickness showed a 10% variation between the

center portion defined by a circle 2 cm in diameter and the edge at 4 cm diameter. It is

obvious that the thickness control is poor in this simple system.

Figure 6.3 shows the Raman spectra, excited by a 459.7 nm Ar laser, of two periods of

Si–IAG-SL (O2 þ H2). The curve c–a is marked by Ga on the low energy side of the half-

width and on Gb the high energy side of the half-width, with the center at 421.5 cm21,

which is the expected by Raman peak for crystalline silicon. The particle size ‘ is

determined from the half-widths to be 10 nm (Tsu et al. 1995). For ‘ $ 10 nm; Si should

not luminescence efficiently because the corresponding wave vector q is only 10% of q at

the D-point of the Brillouin zone (BZ), so that optical transition is still dominated by a

phonon-assisted transition, resulting in a very weak transition.

Figure 6.2. Cross-section TEM of a typical nine-period IGA-SL with a period d , 18 nm. From Tsu and Zhang

(2002), with permission.
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Figure 6.4 shows the photo luminescence (PL) of two samples, a pronounced peak at

,1.7 eV for the nine-period sample (d , 10 nm) and 2.34 eV for the five-period sample,

both after (O2 þ H2) annealing at 1027 Torr at 8508C for 30 min. The PL intensity is

increased more than 10 times after annealing. The PL is more than a factor of 3 weaker

when annealing in O2 without H2. In a later paper, it was found that the best annealing

temperature is 4208C (Tsu et al., 1997). The PL peak at 2.34 eV becomes far more

dominant with a rather narrow linewidth ,0.3 eV. The maximum period that was tried for

the superlattice structure was only nine periods. The reason to keep the total thickness low

is dictated by the need to passivate the interface defects further, annealing in the presence

of gas mixtures. In particular, annealing in H2 or H2 þ O2 gives better results, as shown in

Figure 6.4. It was found in surface Auger (Morais, 1995), that the oxygen peaks coincide

with the silicon dips, indicating that the structure indeed consists of silicon separated

by regions of high oxygen content. Moreover, the 2.34 eV peak is attributed to a localized

Si–O complex at the interface (Morais, 1995). This brings us to an important point. In

devices dictated by bulk, surface or interface regions are considered undesirable. As the

particle size shrinks to the nanometer scale, surface or interface regions become significant

or even dominate over the “bulk”; thus we need to reorient our views, so that surface or

interface regions become the focus of our considerations.

Figure 6.3. Raman spectra using a 459.7 nm Ar laser, of two periods of Si-IAG/SL (O2 þ H2) with d ¼ 40 nm

the thickness of each Si layer at a substrate temperature Ts of 208C. Note that without annealing, spectrum c is

basically that of a-Si. After Tsu et al. (1995), with permission.
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Most of our samples that luminesce well have a grain size of ,3 nm. The mechanism

controlling the grain size is quite involved. We shall only touch on the salient points here.

Basically, unlike the amorphous-crystalline phase transition in bulk, in very thin structures,

the phase transition is controlled by proximity effects rather than simple temperature

effects (Tsu et al., 1997). These considerations prevented us from using extremely thin

silicon layers as recently demonstrated in the work of Lu et al. (1995). In other words, if we

were to crystallize their structure, we would have to use heat much beyond the usual

crystallization temperature of bulk a-Si to Tc ,7008C (Gonzalez-Hernandez et al., 1984).

We shall postpone discussion of what happens when we use a much reduced thickness for

the silicon layers until the treatment of the epitaxially grown Si–O superlattices.

Finally, surface Auger in Figure 6.5 of a typical sample shows that the dips in the Si

count coincide with the peaks in the O count. Since the annealing time is longer than the

deposition time, the diffusive movement towards the substrate shown is a real effect.

6.3. AMORPHOUS SILICON/SILICON OXIDE SUPERLATTICE

Lu et al. (1995) and Baribeau et al. (1995) reported strong visible PL from the amorphous

Si/SiO2 superlattice. The PL peak shown in Figure 6.6 can be shifted from 1.7 to 2.3 eV

Figure 6.4. Photoluminescence versus photon energy excited by the 457.9 nm Ar laser line. Annealing, e.g.

(O2 þ H2), is usually at 800–8508C for half an hour. The Raman line is put there for calibration purposes, to

estimate efficiency and the photon energy of PL. After Tsu et al. (1995), with permission.
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when the thickness of amorphous silicon layer in the superlattice is 1–3 nm. The visible

light emission was explained in terms of quantum confinement of electrons in the two-

dimensional silicon layers.

It is appropriate to discuss the difference between this a-Si/SiO2 and the Si–O

superlattice that was discussed in more detail in Section 6.2. As long as the amorphous

silicon thickness is below that of the coherence length, from the quantum phenomenon

point of view, it is not so important whether the confined electrons can interfere in

Figure 6.5. Surface Auger of the sample in Figure 6.4, with and without annealing. Note that the dips in the Si

count coincide with the peaks in the O count. Taken from the unpublished PhD thesis of J. Morais et al.

Figure 6.6. PL peak energy versus Si thickness of a-Si/SiO2 superlattice. After Lu et al. (1995), with permission.
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an amorphous layer or in a crystalline layer. Amorphous bonding allows more flexibility

resulting in a larger variety of bonding defects, which ultimately manifest in increased

recombination and scattering centers, compared to the crystalline case. However,

hydrogenated amorphous silicon photovoltaic materials have been steadily improved; any

premature judgment is somewhat risky at this stage.

6.4. SILICON–OXYGEN (Si–O) SUPERLATTICE

We introduced the term semiconductor atomic superlattice (SAS) to describe a

superlattice system consisting of epitaxial layers of a semiconductor such as silicon, for

example, sandwiched between adsorbed atomic species such as oxygen, carbon and, even

CO. Several years ago, while searching for a barrier system for silicon, where there is no

lattice-matched heterojunction except in the SixGe12x system (Bean, 1985; Meyerson,

1986; Feldman et al., 1987) it was proposed that perhaps the best and simplest way to build

a barrier into silicon is to utilize the concept of strain-layer superlattice with sufficiently

thin silicon layers (Tsu, 1993). Subsequently, it was realized that the best way to limit the

thickness of the oxide which introduces disorder is to limit the supply of oxygen by surface

adsorption (Tsu et al., 1996, 1998a,b). This is because after monolayer coverage of oxygen

on a clean silicon surface, further oxygen adsorption is not possible without substantial

heating to drive in the oxygen via diffusion. This method is, therefore, in the realm of self-

organized crystal growth (Fukuda et al., 1997).

SAS is the outgrowth of the originally proposed barrier for silicon. Basically, the

concept of a strain-layer superlattice is that, with a sufficiently thin epitaxial layer, the

strain energy in each layer is below the energy needed for the growth of point defects or

dislocations. The effective barrier height of a Si monolayer in an oxygen–Si system, as we

will show, may be higher than 1 eV, so that it is possible to design an effective barrier

height much greater than kBT at room temperature. The thickness at which SiO2 can be

tolerated for continuous epitaxy is the key for this kind of superlattice. The debate is about

whether the monolayer of SiO2 on Si is ordered or disordered. Epitaxial growth of silicon

may be continued after interruption by oxide growth as shown by Meakin et al. (1988).

The explanation involves the natural seeding provided even by the reconstructed Si (100) at

low pressure chemical vapor deposition (CVD) at a low flow rate. Based on grazing angle

X-ray diffraction (Rabedeau et al., 1991) have found evidence for a low coverage 2 £ 1

epitaxial structure at the SiO2/Si interface for dry oxides grown on ordered Si surfaces at

room temperature. However, the 2 £ 1 structure does not survive thermal annealing.

Subsequently, the Si–O superlattice was formed and I–V measurements showed a

barrier height of .0.5 eV (Ding and Tsu, 1997), which is sufficiently high for a variety of

electronic and optoelectronic applications. Basically, the method involves the adsorption

of oxygen onto a clean Si surface followed by Si deposition 1–2 nm thick, using in situ
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reflection high energy electron diffraction (RHEED) to monitor the 2 £ 1 surface

reconstruction as a measure of the restoration of a clean silicon surface before the next

growth step. More detailed work about defects and degree of epitaxy has been carried out

with oxygen exposure (Tsu et al., 1998a,b).

Figure 6.7 shows the typical in situ RHEED used to monitor epitaxy. After HF treatment

Figure 6.7(a), 2 £ 1 dimerization, the half-order, is clearly shown in Figure 6.7(b) from

surface reconstruction of Si(100). With a 2 nm Si buffer, the two-dimensional RHEED

pattern is almost perfect in Figure 6.7(c). Exposure to 10 L (1 L is 1028 Torr of oxygen for

100 s) of oxygen at 308C does not eliminate the 2 £ 1 structure, shown in Figure 6.7(d),

until 1.1 nm of Si is deposited, shown in Figure 6.7(e), where the transformation from a

two-dimensional to a three-dimensional pattern is quite evident. A second exposure at

10 L does not substantially alter the RHEED shown in Figure 6.7(f), however, the 2 £ 1

reappears after 4 nm of Si is deposited, shown in Figure 6.7(g), and approaches the original

pattern, shown in Figure 6.7(h). This series of in situ RHEED demonstrate that epitaxial

growth is continued beyond the adsorbed oxygen layer. It may be argued that RHEED

Figure 6.7. In situ RHEED for epitaxial Si MBE beyond oxygen adsorption: (a) initial RHEED after HF dipping

(cleaning), (b) 1 £ 2 reconstruction appears after 60 min at 8508C, (c) the pattern is further improved after 20 nm

of Si buffer is deposited at 550–6508C at 0.03 nm s21, (d) 1st 10 L of oxygen exposure, at 308C still shows 1 £ 2

reconstruction, (e) 1.1 nm of Si is deposited at 5508C at 0.03 nm s21 showing degradation of two-dimensional

pattern and loss of the 1 £ 2 reconstruction, (f) a second exposure to 10 L oxygen is followed by the repeat of

(e), (g) 1 £ 2 reconstruction reappears after 4 nm of Si is deposited at 550–6508C at 0.03 nm s21, and finally,

(h) the pattern is almost completely recovered after a repeat of (g).
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favors structures so that few clusters can in principle dominate the patterns, although we

know that this is not the case, because we can scan the e-beam over the sample and no big

changes were observed. Besides, RHEED was used to monitor the progress of the growth,

and TEM and other measurements were used to corroborate the in situ RHEED.

A sample subjected to a four times repeated sequence of 10 L oxygen exposure followed

by 1.1 nm of Si deposition at 5508C has been fabricated for high resolution cross-section

TEM (HRX-TEM). In this sample, after the 2 £ 1 reconstruction was brought back, a layer

of 12 nm was deposited serving to restore the epitaxial structure as well as capping for

protection. A Si buffer of 12–13 nm (above the two bottom arrows), was first deposited at

5508C on a 0.01 V cm (100) n-type silicon wafer with RCA cleaning and hydrogen

stabilization followed by 30 min annealing at 8508C. The active part, which is region of

interest, is formed by two 10 L oxygen exposures separated by 1.1 nm Si deposition at

5508C. The active layer is capped by 8 nm of Si, mainly used for the study of epitaxial

recovery and for protection.

Figure 6.8 shows the HRX-TEM of this sample. Note that the top of the lower vertical

arrow points to a region showing cluster formation. On the other hand, with lower

resolution TEM, we found that the so-called cluster is actually quite uniform. This is

further assurance that a few clusters containing oxygen are not available so that the other

portions will allow the continuation of epitaxial growth. This point is further clarified

when we show the plane view TEM.

Obviously, the sample used for the HRX-TEM shown in Figure 6.8 was much improved

in comparison to the earlier sample shown in Figure 6.9, where stacking fault defects

dominate. Most of the TEM work was by Dovidenko. At the time she was doing her PhD

under Professor Hren, who thought that the origin of these observed defects may very well

be externally introduced rather than caused by the adsorbed oxygen. More careful cleaning

and etching with thermal annealing under high vacuum showed a drastic improvement.

However, a repeated superlattice structure was not observed until several years after a

subject that will be treated more fully later.

Figure 6.10 shows several attempts to introduce oxygen during growth instead of using

adsorption as a separate step. Only after Si deposition of several micrometers thickness

does the stacking fault subside. Therefore, oxygen introduced via gas phase adsorption

seems to be the only viable technique for incorporating monolayers of oxygen.

Let us now describe the process in more detail. Typically, we expose the clean silicon

surface to oxygen at 10 L, and epitaxial silicon is grown at a deposition temperature of

550–6008C at a rate 0.4 Å s21 (The substrate temperature has been increased to 7008C in

more recent work.). Deposition and exposure are done in a growth chamber and an

analysis chamber, respectively, with a low base pressure of 10210 Torr. Our structure

typically consists of 12 nm of Sb doped silicon buffer on 0.01 V cm (100) n-type silicon

wafer, followed by oxygen exposure and 1.1 nm undoped Si deposition. The use of 1.1 nm

is to approximate two silicon unit cell thicknesses. A second oxygen exposure followed
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Figure 6.9. Early Si–O superlattice showing stacking fault defects without 8508C annealing under UHV for

30 min or more. Note that in lower resolution, the superlattice layer is continuous.

Figure 6.8. HR X-TEM of the first successful epitaxial growth after two 10 L oxygen adsorptions. Note that the

top of the lower vertical arrow points to a whitish region showing possible cluster formation. From Tsu et al.

(1998a,b), with permission.
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typically by 5–8 nm silicon completes the barrier structure. For current–voltage ðI –VÞ

measurements, the last Si deposition is again Sb doped followed by aluminum contact. The

diode size varies between 10 £ 10 mm and 40 £ 40 mm. For barrier height determination,

the barrier thickness usually consists of several repeats up to a maximum of four, with

various exposures to oxygen, initially between 1 and 6 L. An initial attempt was made to fit

the I –V (Tsu et al., 1996), but was found to be grossly inadequate. The use of a

generalization of the Arrhenius procedure that is fully discussed in Chapter 5 (Ding and

Tsu, 1997), results in a more consistent value for the barrier height of the Si–O

superlattice barrier. Figure 6.9 shows the specifics of the determination of the effective

barrier height varying almost linearly with oxygen exposures of 1, 2 and 6 L (Figure 6.11).

Figure 6.10. Low defect epitaxial growth is not possible with oxygen remaining in the deposition chamber.

Stacking faults dominate and persist beyond 100 nm of Si growth.

Figure 6.11. (a) Current versus voltage of a superlattice barrier for 6 L oxygen exposure, (b) temperature

dependent I –V ; and (c) effective barrier height Eb versus oxygen exposure between 1 and 6 L. After Tsu et al.

(1998a,b), with permission.
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We have exposed up to 100 L. The effective barrier height saturates at 20 L. In most of

our later work, 50 L is used because we discovered that the superlattice region becomes

more uniform laterally. The asymmetry I –V is due to a Schottky barrier at the Si–metal

contact, as well as to the possibility of oxygen diffusion towards the front contact. It was

pointed out to us by John Sullivan of Sandia National Laboratory that localized defects

such as dangling bonds can serve to pin the Fermi level resulting in a Schottky-like

depletion region that serves as a barrier close to the Si–O interface. Furthermore, this

Fermi level pinning may in fact serve to smooth out the possible clustering effects. I felt as

if I were working as a one-man crusade, where obviously the active participation of many

researchers was required. Nevertheless, as we shall see, positive, though small,

incremental progress has been made in the realization of the SAS.

6.5. ESTIMATE OF THE BAND-EDGE ALIGNMENT USING ATOMIC STATES

Even before we built a ball and stick model structure to estimate the strains in SAS, and

subsequently density functional theory (DFT), computations as well, we embarked on

models that allowed us to estimate the band-edge alignment between Si and Si–O

superlattice. Before we go into more detail, I would like to offer my experience in working

with solids. In the early 1980s, Morrel Cohen visited me at Energy Conversion Devices. I

was showing some of my work on the band structure of a-Si to him while mentioning how

important is the role of atomic silicon. He saw the plots of the 11 and 12 of Si and a-Si

pinned to my board. He said that I should put the plot of atomic-Si side by side these two

plots. I pointed out the importance of the two silicon peaks at 3.5 and 4.6 eV due to the

Van-Hove singularities. He told me that these are details and that I should look at the main

peak at ,4 eV, which is largely from the atomic transition. At that point he mentioned

how most people fail to recognize the similarities rather than the vast differences between

the atomic states and the band structures of solids. This greatly affected my realization of

the importance of atomic states and transitions. Figure 6.12 shows the energy states of

atomic silicon and oxygen together with the energy bands of SiO2.

Figure 6.12 shows the ground state of atomic Si: 3P2,1,0,1D2,1S0 denoted by the term

3S23P2 and the excited states denoted by the terms 3S23P14S1 and so on, with an average

energy separation of the ground state from the lower excited states of ,4.1 eV, which is

close to the 12 of silicon as discussed. The ground state of atomic O is 3P2,1,0 denoted by

2S22P4 separated from the excited state 2S22P33S–5S0 by 9 eV from the ground state and

0.4 eV from the next higher –3S0 state. The bands for SiO2 are shown at the extreme right of

the figure with an ionization energy of210 eV which is above Ev andx ¼ 20:95 eV;which

is below Ec: Two arrows are drawn from 5S0 to Ec and from 3P2,1,0 to Ev: Two electrons are

transferred from Si to SiO2, but only one electron per Si atom is transferred to SiO; therefore,

we take the mid-point as the energies for SiO, leading to the band-edge off-set from silicon
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DEc ¼ 1:5 eV andDEv ¼ 6:5 eV; shown in the middle of Figure 6.12. These values suggest

that the Si–O superlattice barrier is derivable from the use of 1.5 eV for the band-edge off-

set from silicon. Next, we shall use the HOMO–LUMO to estimate these off-sets.

6.6. ESTIMATE OF THE BAND-EDGE ALIGNMENT WITH HOMO–LUMO

Instead of forming coupled states with the ground states and the lower excited states of Si

and O atoms, for the lowest approximation, we take the highest occupied Si state, 3P2,1,0 at

27.95 eV as E2, coupled to the lowest unoccupied O state, 5S0 at 24.3 eV as E1 with

coupling a0 ¼ 5:11 eV to fit the band-edge off-set DEc ¼ 3:2 eV between Si and SiO2.

In other words, the secular determinant is adjusted to the coupling constant a0, i.e.

det
E1 2 E a

a E2 2 E

�����
����� ¼ 0; ð6:1Þ

then

E^ ¼ Eav ^ ðD2 þ a2Þ1=2; Eav ; ðE1 þ E2Þ=2 and D ; ðE1 2 E2Þ=2: ð6:2Þ

Figure 6.12. Taken from the following: Si arc spectrum: Radziemski and Andrew (1963); ionization energies

1iðSiÞ ¼ 28:149 eV, 1iðOÞ ¼ 213:615 eV and 1iðSiO2Þ ¼ 210 eV: Vier and Mayer (1944); O spectrum:

Herzberg (1944); SiO2: Li and Ching (1985). SiO is estimated to have band-edge off-sets from silicon at

DEc ¼ 1:5 eV and DEv ¼ 6:5 eV:
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In Table 6.1, DEc and DEv are calculated for a=a0 as a parameter. For two electrons

transferred from Si to O2, a ¼ a0 ¼ 5:11 eV: However, for SiO, there is only one electron

per Si atom for each O atom. Therefore, we takea=a0 ¼ 0:5 given in bold in Table 6.1. Note

that DEc ¼ 0:92 eV; which is lower than the previous estimate of 1.5 eV. However, the

energy gap 11:55–0:7 ¼ 10:8 eV is 20% larger than the correct value of 9 eV for SiO2.

Therefore, the corresponding DEv ¼ 4:27 for SiO is probably also 20% too high. A better

estimate should include more than 2 £ 2 in the secular determinant, for example, it should

include 3S23P14S1, the excited state of Si, and 3P2,1,0, the ground state of O. From the

activation energy measurements, an effective barrier height for sample with .20 L oxygen

adsorption is found to be in the range of 0.5 eV, corresponding to an off-set of close to 1 eV.

We have been using 1 eV as the band-edge off-set for the Si–O superlattice. We found that it

was not possible to alternate monolayers of Si and O. The minimum thickness of the Si layer

for each O adsorption is probably a unit cell, or at least every two silicon layers for one

oxygen layer, otherwise the system will become a random alloy. I want to emphasize here

once more that the whole idea is to avoid a method like atomic layer epitaxy (ALE), because

whenever the situation is such that silicon cannot dominate oxygen, and oxygen cannot

dominate silicon, an amorphous SiO2 structure will result. The whole idea of our scheme

relies on the principle that Si forms a structure and dictates at what position the O atom can

sit. Thus, the logic of our scheme will require at least two Si layers for every one O layer.

This is the reason we do not think the thickness can be reduced significantly from 1.1 nm.

Perhaps the minimum is ,0.55 nm, the unit cell of silicon.

Figure 6.13 shows the calculated HOMO–LUMO (Tsu, 2000) giving an estimate of the

band-edge off-set between Si and Si–O superlattice.

6.7. ESTIMATION OF STRAIN FROM A BALL AND STICK MODEL

I have stated on several occasions that whenever an expert says that something cannot be

done, one should not take it as gospel, but if he gives a specific outline on how to do it, one

should take it seriously. I believed this statement that was reinforced by the work of Distler

and Zvyagin (1966) and Henning (1970), which encouraged me to pursue the idea of

fabricating SAS epitaxial structures. Now, we need to construct a working model using

hand-built ball and stick models. We start with the simple idea that the bond lengths Si–Si

Table 6.1. Calculated DEc and DEv values for a=a0 using a0 ¼ 5:11 eV and a=a0 ¼ 0:5 for SiO

a=a0 (eV) 1.0 0.75 0.5 0.25

LUMO (eV) 20.70 21.88 2 2.98 23.90

HOMO (eV) 211.55 210.37 2 9.27 28.35

DEc (eV) 3.2 2.32 0.92 0.01

DEv (eV) 6.55 5.37 4.27 3.34
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and Si–O are fixed and the coordination number of Si should be preserved. In addition,

beyond the next layer of Si atoms, the usual tetrahedral structure should prevail. The first

models with one O-layer and two O-layers are shown in Figures 6.14 and 6.15, respectively.

It is generally difficult for anyone to visualize a three-dimensional relationship. The best

way is to use the ball and stick model kit, although the directions of the bonds are preset in

these chemistry sets so that the angles cannot be further adjusted, resulting in a less than

ideal hand-built model. Nevertheless, the visual perception that these models provide is

invaluable. Next, to get the coordinates, we simply put strings into the model as shown in

Figure 6.16. With the locations of these atoms assigned, we can calculate the strains and

later give these coordinates to DF calculators for more rigorous computations.

Figure 6.17 shows all the coordinates of a planar view of the Si–O superlattice with one

monolayer of O. Two planes, marked by 4 and 3, are shown on the right. Basically, the

bottom part of the Si structure is shifted up. The position of P0 is at the midpoint between

(134) and (113), and P00 is the midpoint between (314) and (333) and P is the midpoint

between P0 and P00. In addition, the two vectors giving the direction along which the

oxygen atoms can sit are marked by J1 and J2 as shown at the top of Figure 6.18 and

the bond angles u and b, together with the bond length of 1.66 Å for Si–O are shown in

the lower part of Figure 6.18. These figures are to facilitate the calculation of the strain and

minimization of the strain energy that will be presented next.

Figure 6.13. HOMO–LUMO used to estimate the band-edge off-set between Si and Si–O superlattice. a0 ¼

5:11 eV is taken to fit SiO2. For SiO, it is assumed that a=a ¼ 0:5 giving DEc , 1 eV and DEv ¼ 4:3 eV: We are

comfortable with DEc, but DEv is probably closer to 3.4 eV. The shaded regions denote the conduction and the

valence bands. Tsu (2000a), with permission.
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The lattice constant for Si is a ¼ 5:43 Å then L=2 ¼
ffiffi
5

p
a=4 ¼ 1:52 Å (Figure 6.18),

giving a bond angle u ¼ cos21ðL=2Þ=1:66 ¼ 23:98; so that the distance P0 –O is 0.67 Å.

From these, we have the bond bending strain Sb ¼ 6:4% using the bond angle for Si–O of

1418, and a bond length between the two oxygen atoms of 1.37 Å, resulting in the

stretching strain Sa ¼ 6:2% using our bond length for O–O of 1.46 Å. Next, we allow

the separation between the planes P-3 and P-4 to be 2‘ and minimizing the strain energy

with respect to ‘; we shall show that much lower strains result.

Figure 6.14. Ball and stick model for Si–O superlattice structure with one monolayer of oxygen.

Figure 6.15. Ball and stick model for Si–O superlattice structure with two monolayers of oxygen.
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Instead of using the bottom figure of Figure 6.18 in the minimization of the strain energy

by letting the separation be adjustable, Figure 6.18 is reconfigured as Figure 6.19, with ‘ as

a variable to be adjusted for the minimization of the total strain energy.

Specifically, our procedure of minimizing the strain energy is to fix the bond length

of Si–O at 1.66 Å, but letting the angles u and b depend on ‘; resulting in varying

Figure 6.16. Ball and stick model for Si–O superlattice structure with strings added for the coordinates of

atoms involved in strain estimate and subsequent DFT computations.

Figure 6.17. A planar view of the Si–O superlattice with one layer of O, showing the coordinates. The arrows

indicate the direction in going from one atom to the other; for example, from Si (134) to Si(113), with arrows

pointing down, is distinguished from Si(333) to Si(314) with arrows pointing up. Dots and circles are used for Si

and O atoms, respectively. Two planes, marked by 4 and 3, are shown on the right. For points P, P 0and P 0 0, see text.
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the distance O–O as well. The strain energy 1s is then

1s ¼ kaS2
a þ kbS2

b: ð6:3Þ

From the variation of ›1s ¼ 0 with respect to ‘; we obtain

kaSa

›Sa

›‘
¼ 2kbSb

›Sb

›‘
; ð6:4Þ

in which the two Keating constants (Keating, 1966) for stretching and bending are ka and

kb; respectively. For silicon, ka ¼ 27kb; writing ‘ ; 1 þ D and neglecting terms , D2;

the condition for minimum strain energy is given by

kb £ 1022½120ð1 2 38:5DÞ þ 2:3ð1 2 2:8DÞ� ¼ 0; giving D ¼ 0:026: ð6:5Þ

We need to be careful; although Figure 6.19 is drawn in a plane, it is really a three-

dimensional picture. For example, the distance between the points P0 2 ð1; 3; 3 þ ‘Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ð‘=2Þ2

p
ða=4Þ; therefore, for ‘ ; 1 þ D; the length P0 2 O ; b; so that b2 þ ða=4Þ2 	

½1 þ ð‘=2Þ2� ¼ 1:662; etc. These values are not too different from those from the density

functional calculation (DFC), which will be discussed later. To summarize, at least our

model shows a value for strain, not negligible, but perhaps tolerable. There are several

models possible making similar assumptions; keeping the bond length fixed and allowing

Figure 6.18. P0 is the midpoint between (134) and (113). P00 is the midpoint between (314) and (333). The

midpoint between P0 and P00 is P. The vectors J1and J2 are shown with the O-atom located in the direction of these

vectors. The coordinates, bond angles u and b, together with the bond length of 1.66 Å for Si–O are shown in the

lower part.

Figure 6.19. P is now ð2; 2; 3 þ 0:5‘Þ; with ‘ adjusted for the minimum strain energy.
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the bond angle to be adjusted while conserving the coordination number. To accommodate

the presence of oxygen, for minimum strain, the distance between two planes given by

Eq. (6.5) increased by only 2.6%, resulting in the strain Sa ¼ 0:05% and Sb ¼ 5:9%: The

HRX-TEM is not able to show the 2.6% increase, however, using a sample with 20–22

layers of Si for each monolayer of oxygen, the strain pattern does show a superlattice

structure in Figure 6.20.

Figure 6.20 shows HRX-TEM of a sample with four periods Si–O superlattice. This is

the first time periodic superlattice structure has been seen in TEM.

Following this success, a nine-period Si–O superlattice having the same thicknesses

was examined by HRX-TEM in more detail (see Figure 6.21) indicating that the strain

pattern caused by the introduction of oxygen spreads significantly beyond the monolayer

(Gurdal, unpublished). At this stage, we realized that the strain pattern should spread

several atomic distances in a similar manner to the theoretically calculated GaP on GaAs

(Tsu et al., 1989), which will be treated next.

6.7.1 Charge Transfer on Strain-Layer Epitaxy

Replacing a Si atom by an O atom with a transfer of charge from the Si to O is similar to

the replacement of As by a P atom in GaAs, calculated by Tsu et al. (1989). When an atom

of As is replaced by a P atom in GaAs, owing to the difference in ionicity, local puckering

is effected by charge transfer. The total energy stored Eex ¼ EðstrainÞ þ EðinterfaceÞ ;
Es þ Eint: For several atomic layers of GaP on GaAs, the dominant stored energy is the

electrical dipole–dipole energy at the interface. The creation of misfit dislocations may

release the strain energy (Matthews and Blakeslee, 1976), although it cannot affect

Figure 6.20. A four-period Si–O superlattice with (a) part of a 235 nm Si buffer, (b) four periods of Si–O

superlattice with each period consisting of one monolayer of adsorbed oxygen sandwiched between five unit cells

of Si on each side, giving a total thickness per period of ,11.5 nm, and (c) an epitaxial Si cap of ,24 nm. Note

the presence of long range coherent layering. Tsu et al. (2000), with permission.
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the interface dipole term. Only interface diffusion can lower Eint. It has been further argued

(Dodson, 1988) that the dislocation sources are inhomogeneous in nature resulting from

local stress concentrations near the interface. Strain energy is responsible for the creation

of misfit dislocations, while the dipole energy drives diffusion. The excess energy of L,

the number of strained epilayers of GaP on a GaAs substrate, is calculated from

a minimization of the total internal energy U ¼ UðrepulsiveÞ þ UðelectrostaticÞ:

In Figure 6.22, a GaP epilayer is confined to the GaAs substrate in the plane of the

Figure 6.21. Eight periods of Si–O superlattice with each period consisting of nine monolayers of Si with one

monolayer of adsorbed oxygen with a total thickness per period of approximately 1.25 nm, making a total thickness

in the superlattice region of approximately 10 nm, on top of 5 nm of undoped buffer. Note that the strain propagates

to a couple of monolayers on each side of the adsorbed oxygen, shown as dark lines. Gurdal (unpublished).

Figure 6.22. Two epilayers of GaP are shown on a (100) GaAs substrate. Note that the distance in the (100)

plane is fixed by the lattice constant of GaAs, while the vertical distances are adjusted via a minimization of the

total internal energy. Tsu et al. (1989), with permission.
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interface, the (100) plane, leaving the vertical dimensions dl ¼ d1;…; dL; to be

determined via a minimization of U. Instead of using the Madelung sum of the

electrostatic term, we have chosen a unit tetrahedron to calculate the electrostatic energy,

UðelectrostaticÞ ¼ UðtetrahedronÞ þ Uðdipole–dipoleÞ þ Uðhigher orderÞ; where the

higher order multipoles are neglected.

This procedure is similar to finding a faster convergence to the Madelung sum (Evjen,

1932). Table 6.2 gives the charges in various III–V of interest. In calculating the effective

charge e p, the starting point is the ionicity f. Using a simple heteronuclear diatomic model,

f ¼ ð1 2 b2Þ=ð1 þ b2Þ; in which b is the normalization for the coupled modes A and B,

with wavefunctions, c^ ¼ ð1 þ b2Þ21=2½cA ^ cB�: Applying the 8-N rule for GaAs, the

effective charge epðGaÞ ¼ 3=ð1 þ b2Þ ¼ 1:97e and epðAsÞ ¼ 21:97e for f ¼ 0:31; from

Phillips (1973). Further, the repulsive energy is given by Kittel (1973), by

UR ¼ NZl expð2R=rÞ; ð6:6Þ

in which R is the nearest neighbor distance. The parameters Zl and r are obtained from the

relationship between the bulk modulus and the energy U ¼ UR 2 aq2=R; with a being the

Madelung constant. These values for various III–V compounds are listed in Table 6.2.

Further simplification uses a fixed value d for the dl averaged at thickness L, while taking

the lattice constant of GaAs, a, for the in-plane separation of Ga–P. In other words, d is the

variational parameter for the minimization of the energy. Then the repulsive energy

UR ¼ Zl exp½2ð1 þ 8ðd=aÞ2�1=2ða=2:828rÞðL þ 1Þ=2: ð6:7Þ

The energy of the tetrahedron, Utet is given by

Utet ¼
ðL 2 1Þð2:02eÞ2

2a
½ð1 þ 16ðd=aÞ2Þ21=2 2 5:657ð1 þ 8ðd=aÞ2Þ21=2�

þ
ð1:97Þ2:02e2

4a
½ð5=16Þ þ 0:5ðd=aÞ þ ðd=aÞ2Þ�21=2

2
ð1:97 þ 2:02Þ2:02e

1:414a
ð1 þ 8ðd=aÞ2Þ21=2

: ð6:8Þ

The last two terms in Eq. (6.8) represent the electrostatic energy of a unit tetrahedron

located just below the interface. The dipole–dipole term is

Ud2d ¼
ð1:97eÞð2:02eÞad

4ð0:25a þ dÞ3
: ð6:9Þ

Table 6.2. Constants for various III–V compounds for the repulsive energy UR

a (Å) Zl ð103 eVÞ r (Å) ep

AlAs 5.66 8.29 0.33 1.91

GaAs 5.64 6.26 0.345 1.97

GaP 5.45 6.09 0.34 2.02
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Next, we minimize the sum of the three terms (6.7–6.9) with respect to d. To find the

excess energy, we must subtract (a/4) (GaP) for the vertical distance and a (GaP) in the

plane. In other words, we are looking for the unstrained GaP without the interface dipole

term. Therefore, the excess energy Eex includes the dipole and the strain terms because we

have subtracted the inherent energy of the crystal.

Figure 6.23 shows a comparison of the classical stored strain energy for a film that has

two equal strains in the (100) plane and a stress-free direction normal to the interface. The

stored strain energy for this case is

Es ¼ 0:5ðC11 þ 2C12Þð1 2 C12=C11ÞS
2
;

in which S for GaP on GaAs is 0.036. Note that the excess energy is normalized to Å2. For

a given (100) plane, there are two Ga atoms in an area of 5.652 Å2.

Figure 6.23 shows the calculated excess energy plotted against the number of epilayers

for GaP on GaAs. Considering that no adjustable parameters were used in the calculation,

the 20% higher asymptotic value compared to the classical value is really quite reasonable.

Note that the excess surface energy, primarily due to the dipole energy from charge

transfer, extends to a couple of epilayers. From Figures 6.20 and 6.21, it is quite clear why

we failed to observe the superlattice pattern in HRX-TEM for all our samples before we

significantly increased the thickness of each period. Spreading the strain on both sides of

the oxygen layer prevented the TEM pattern from distinguishing between the regions with

or without the oxygen.

As Figure 6.15 shows, the ball and stick model of the Si–O superlattice structure with

two monolayers of oxygen; the corresponding detail for the coordinates of Si and O atoms

Figure 6.23. Calculated excess energy in eV/Å22 versus the number of epilayers. The dashed line represents

the classical strain energy. Most of the surface energy is dominated by the electrically repulsive dipole–dipole

energy at the interface. Note that the strain energy at the surface extends to a couple of epilayers. Tsu et al. (1989),

with permission.
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is shown in Figure 6.24. Basically, there are now two monolayers of O atoms separated

by a monolayer of Si. Obviously, nothing else is possible. Four planes are marked, with

O atoms in-between P-1 and P-2 planes, and P-2 and P-3 planes.

To enable visualization, Figure 6.25 gives a three-dimensional arrangement of Si and O

atoms shown as dots and circles. Three planes, P-1, P-2 and P-3 in Figure 6.25 are also

Figure 6.24. Coordinates for the two layers of O atoms separated by a monolayer of Si atoms. The explanation

of the arrows is similar to Figure 6.17. Four planes are marked, with O atoms in-between P-1 and P-3. The bottom

part of the figure shows the detail of the locations of the O atoms, along the vector P0-P, with respect to Si atoms.

Figure 6.25. Three-dimensional arrangement of Si and O atoms for the case of two monolayers of O as in

Figure 6.23.
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Figure 6.26. Coordinates used by Tsu and Lofgren (2001) to calculate strain without minimizing the strain

energy giving Sb , 6.4%. After Tsu and Lofgren (2001).

Figure 6.27. The coordinates used by Babic for the DFC computation of the best possible strain S; shear

S , 1%, but tensile S , 10%, and there is an increase in the binding energy per atom of 1.13 eV. Babic

(unpublished).
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marked. The coordinate axes are placed at (000) of the Si unit cell, which is shown as a

dotted cube.

Several versions of the coordinates were used. For example, the center Si atom is placed

at A (2, 2, 0) a/4 in Figure 6.26. Obviously, one can simply use a translational vector

T ¼ ð1; �1; �4Þ to transform, for example, the Si atom at (1, 3, 4) in Figure 6.17 to the Si atom

at A (2, 2, 0), used by Tsu and Lofgren (2001), in Figure 6.26.

Before Babic proceeded with his DFC computation (Figure 6.27), he used the computer-

generated model shown in Figure 6.28(a), the original, Si motif where the darkened Si

atoms are designated for replacement by two O atoms as shown in Figure 6.28(b), along

the (100) plane.

Babic found that the best ‘ is 1.3, which is significantly larger than the 1.026 using the

minimization of the total strain given before (Table 6.3). The shear S value of 1% is below

the 6.4 and 0.05% obtained before. But his tensile S value of 10% is huge, coming from the

dipole energy resulting from the transfer of charge ep; which was not accounted for in the

previous minimization of the strain energy. Both strains decay very rapidly when moving

Figure 6.28. (a) Computer generated model of crystalline silicon lattice where the darkened silicon atoms are

designated for replacement by two oxygen atoms, as shown in (b), along the (100) plane.

Table 6.3. Babic’s DFC computation, with an adjustable parameter for the layer thickness given by (a=4Þ‘ in the

first column, charge transfer ep from the Si atom to the O atom, the increased binding energy per atom D and the

barrier height, BH

‘ Shear S (%) Tensile S Min thickness (nm) Dipole E (eV) ep D (eV) BH (eV)

0.8 8.5 45 0.6–0.7 0.11 0.095 0.08 0.95

1.0 6 25 0.6–0.7 0.33 0.12 0 1.22

1.2 3 19 0.7–0.8 0.45 0.15 0.8 2.30

1.3 1 10 0.8–0.9 0.29 0.16 1.13 0.5–1.74

1.4 3 10 0.9–1.0 0.35 0.18 1.03 4.06

From Babic (unpublished).
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perpendicularly away from the interface. The minimum thickness of the epitaxial silicon

layer between two oxygen interfaces is given in the fourth column as ,1 nm, which is

near the thickness we used, 1.1 nm or two unit cells of the Si lattice, for most of our Si–O

superlattice structure and which we originally chose intuitively. The charge transfer

induces a repulsive electric dipole at the interface with the energy shown in the fifth

column. The charge transfer ep; from the Si atom to the oxygen, produces a slight ionicity.

D (eV) is the most important column, giving the increase in the binding energy per atom,

and reaching a maximum at ‘ ¼ 1:3; which coincides with the minimum shear strain of

1%. This provides the stability of the SAS system. Consequently, the silicon epitaxy

beyond the oxygen interface is stable. The last column gives the barrier height as the sum

of the lowest excitation energy and the dipole energy. The range of the barrier height of

0.5–1.74 eV depends on the dielectric screening used. If a dielectric constant of 12 is used,

we obtain BH ¼ 0:5 eV, and if we simply use the average value of SiO2 and Si, we obtain

1.74 eV. In other words, the lower the dielectric constant, the higher is the barrier height.

We know that the dielectric constant is lowered in a short-period superlatttice (Chapter 4)

and an increase in ionicity results in a decrease in screening. Therefore, we come to the

best estimate for the BH at ,1 eV, consistent with my estimate from the activation

measurements. We used this value all along, even before the DFC was done,

demonstrating the importance of coordinating theory and measurement.

We learn from the strain estimate and the DFC calculation that the tensile stress is

large from the DFC results. Although it decays rapidly when moving perpendicularly

away from the interface, the important question is whether defects are generated by

this large repulsive dipole–dipole energy, creating a tensile strain perpendicular to the

layers. The only way to affect this energy is via diffusion to alter the charge transfer.

As long as we assume that diffusion does not occur, this energy is dormant.

My intuition is that it can augment generation, but not create defects or direct

participating in the nucleation of defects. According to the Matthews and Blakeslee

(1976) criterion, the stored strain energy is simply not enough to reach the threshold.

As long as we only construct a one oxygen monolayer or even a two oxygen

monolayer superlattice, we are dealing with the strain-layer superlattice (Osbourn,

1982), or at least we think so.

6.7.2 Defects in the Si–O Superlattice

The HRX-TEM of a Si–O sample: Si (buffer)/(O–Si (1.1 nm)-O–Si (1.1 nm)-O)/Si on

Si(100) is shown in Figure 6.29(a). The “whitish” part of the figure may indicate where the

oxygen “cluster-like” region is located. Epitaxy is evident beyond and around this

“whitish” region. We have also superceded the SAS by Si (111). Generally, it is slightly

more defective than Si (100). Although we have a relatively continuous layer of oxygen, as

pointed out before (Tsu et al., 1999a,b), even discontinued clusters can serve as a barrier

because electrons, like de Broglie waves, cannot pass through a region of space smaller
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than the wavelength. This is a good place to emphasize that there are two mechanisms,

step in energy and/or step in geometrical shape, both of which give rise to an effective

barrier to electrons. In Figure 6.29(b), plane view TEM shows rather low defect densities,

somewhat below 109 cm22. Both of these TEM pictures were obtained by Dovidenko,

who assured me that this cluster-like region is not a cluster in the usual sense of a region,

definable by its own lattice structure. We are not too sure why HRX-TEM shows “cluster-

like” regions, but the plane view is rather uniform throughout.

We know that without the oxygen adsorption process our epitaxially grown silicon

has much lower defects, and strain is really not the cause of defects. We also know

that heavily Sb doped silicon, even without the oxygen adsorption, has much more

defects. Therefore, I am forced to accept the idea that the source of the defects is

already in the silicon wafer, or is introduced externally.

We have decreased the number of defects by almost two orders of magnitude

during the couple of years since we launched this work. We are optimistic that further

reduction should be possible. Note that the defect density at the Si/SiO2 interface for

most MOS gates is generally higher. At this stage, we think the defects may still be

extrinsic rather than from the strain. Certainly, more research may provide an answer.

As pointed out previously (Tsu et al., 1999a,b), whenever the oxygen leak valve is

left on during the silicon deposition, horrendous numbers of defects are generated,

although the three-dimensional diffraction pattern still persists. The defects cannot be

covered up even after 200 nm of Si deposition on top of the SiOx layer, as shown in

Figure 6.10. It is generally known that it is not possible to grow good Si epitaxially

on an oxide layer, but at least we have shown that it is possible using the Si–O

superlattice.

Figure 6.29. (a) High resolution cross-section TEM of Si(100). Moving from the bottom of the figure towards

the top shows Si (buffer)/(2 £ O–Si (1.1 nm)-O)/Si-capping. (b) Plane view TEM of the same sample. The defect

densities is below 109 cm22. After Tsu et al. (1999a,b), with permission.
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6.8. ELECTROLUMINESCENCE AND PHOTOLUMINESCENCE

Figure 6.30(a) shows a schematic of a nine-period electroluminescence (EL) device with a

Si–O superlattice as the active layer. EL covers the whole contact with bright EL around

the edges. The voltage applied across the Schottky diode is between 220 V reverse-bias

and as low as 26.8 V reverse-bias. This point will be discussed in more detail when the

life-test result is shown. Annealing in H2 þ N2 (1:10) at 4208C for 10 min leads to a

greater EL intensity.

The spectra of both EL and photoluminescence (PL) were obtained with a U-1000

Yvon-Jobin monochromator and detected by a R-943 Hamamatsu PMT. The 457.9 nm

line of the Ar laser was used for the PL spectra. Figure 6.31 shows typical EL and PL.

Although the main peak is located at 2 eV, the emitted light appears to be greenish because

the EL spectrum extends to a photon energy beyond 3.5 eV. From the activation energy

determination (Figure 6.11), the ground state in the Si–O superlattice is ,0.5 eV, and an

estimate for the valence band is ,0.4 eV, giving a total with the 1.2 eV band gap of silicon

added, of ,2 eV for the optical transition. Therefore, the peak measured at ,2 eV may be

due to the quantum state. The photons in EL above 3.5 eV may possibly be due to higher

quantum states, or may be attributed to a Si–O localized complex as in porous silicon.

Although the yellowish-green EL emission is visible with the naked eye through a low

power microscope, it is not very bright. Even at 1.1 nm, the indirect nature of the silicon

energy band is still operative so that optical process is still dominated by phonon assisted

transitions. After all, at 1.1 nm, the value of q is still a factor of two below the D-minimum

of the Si conduction band. The cut-off due to the laser line is evident in the PL spectrum.

The spectrum is quite broad. It is possible that the main peak originates from the quantum

confinement of silicon and the broad line signifies that the effective barrier width of the

monolayer of oxygen is quite thin. Of course, it is also possible that non-uniformity in the

barrier causes the broad spectrum. The strong shoulder extending beyond 3.5 eV may even

be larger because our spectrometer efficiency falls off above 3.5 eV.

Figure 6.30. (a) This is a schematic of the EL device with a nine-period Si–O superlattice as the active layer.

EL from the top through a partially transparent Au electrode with dimensions of 0.5 £ 1.2 mm is shown in (b).

The dark spot is caused by the wire contact. Tsu (2000a,b), with permission.
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Figure 6.32 shows one of our life tests with continuous monitoring of current. Since the

light output is proportional to the current, the stability of the EL device is obvious. In fact,

we have also performed under constant current. After the first 30 days, the applied bias was

dropped to 26.8 V to keep the current approximately constant. Therefore, the apparent

current peak is an artifact of reducing the applied voltage at 750 h. The longest operating

time is over 1 year when my laboratory was required to relocate. The applied bias includes

the voltage drop over the substrate. The drop from 210.4 to 26.8 V is probably due to

current-induced annealing effects, commonly known as electrical forming. After the

initial 30 days of operation, there is an increase of 50% observed in the light output
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Figure 6.31. EL and PL from a typical Schottky diode with nine-period Si–O superlattice. The 457.9 nm line of

the Ar laser was used for the PL spectra. The great intensity of the PL is due to greater collection of the emitted

light. The PL cut-off is due to the Ar laser. After Tsu et al. (1999a,b) with permission.

Figure 6.32. Current versus time under reverse bias. 210.4 V was applied for 30 days. The applied voltage was

then cut to 26.8 V to maintain the same current approximately, which resulted in an apparent peak in current at

,750 h of operation, with further reductions at the 80th, 120th and 150th days to 26 V. After Tsu (2000a), with

permission.
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(Tsu et al., 1999b). In other words, the light output is linear with current. As pointed out,

the photon emission is certainly not as efficient as direct-gap semiconductors, but it is more

efficient than silicon. And since it appears to be extremely robust, it may find applications

in Si-based devices.

The PL of a four-period Si–O superlattice with an increase of the Si thickness from 1.1

to 2.2 nm has been fabricated in order to ascertain whether lowering of the quantum state

is possible. The spectrum consists of a broad peak at 1.85 eV, a shoulder at 2.15 eV and a

sharp peak at 2.2 eV, shown in Figure 6.33. Note that this sharp peak at 2.2 eV is close to

the value of 0.92 eV above the Si conduction band minimum for the LUMO calculated

with a=a0 ¼ 0:5 in Table 6.1. If we consider the 2.2 eV structure as the down-shifted from

the EL shoulder at 3.1 eV in Figure 6.31 due to increased thickness of the Si layers, there

is a weak quantum confinement effect. The sharp peak decreases after annealing at 8508C,

indicating that oxygen may have diffused into a different arrangement, supporting the

interpretation of the Si–O complex as the origin of the emitted light. On the other hand,

the 8508C anneal could have altered the Si–O superlattice structure in the first place. In

essence, we think the origin of all these optical emissions consists of both man-made

quantum effects and interface-localized complexes. Again, more research needs to be

carried out to acquire more definitive answers.

In my laboratory, we do not have a set up for absolute calibration of efficiency. We have

put in sufficient effort into developing porous silicon, PSi, targeting improvement in the

surface morphology of PSi using a gentle etching technique (Filios et al., 1996). This effort

not only gave consist results, but also obtained the best PL from PSi for a given thickness.

Figure 6.33. PL of a four-period Si(2.2 nm)–O superlattice complex excited by the 2nd harmonic Nd-YAG

laser. The increase in the Si thickness is to lower the quantum state. The spectrum was measured by A. Sevian.

After Tsu (2000a), with permission.
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Thus, for emission efficiency, we simply compare the emission from Si–O superlattice

with our best PSi sample. Figure 6.34 shows the comparison of a typical nine-period Si–O

superlattice with an active region of ,10 nm and a PSi sample with an active region of

,100 nm. The emission efficiency of our Si–O superlattice is at least as good as the PSi

sample, giving the best reported efficiency of 0.1–0.2% (Tsybeskov et al., 1996).

Considering how many people have been excited by the prospect of the application of PSi

in optoelectronics that has dubious reliability, the availability of stable, robust Si–O

superlattice is much more appealing. Electroluminescence, EL is another story. EL from

PSi is simply not stable at all. The EL efficiency is estimated to be 2 £ 1024%, by means of

threshold voltage and minimum operating current, and experimentally using the same

procedure as for PSi. It is evident that EL efficiency is much lower than that of PL. Next,

we shall give several reasons why this is so.

Note that the EL device is operated under reverse bias, which is rather different from the

pn-junction light emitting diode (LED), which is operated under forward bias. The holes

for recombination are generated as a result of an avalanche of injected hot electrons, as

shown in Figure 6.35.

The need for an avalanche, shown in Figure 6.35, obviously lowers the efficiency. We

launched a project to provide double injection by placing the active region within the

depletion region of a pn-junction. Serious difficulties were encountered in trying to

fabricate the Si–O superlattice structure on fairly heavily doped silicon. We even failed to

grow a good epitaxial silicon buffer on a heavily Sb doped buffer. We called off this

attempt due to lack of experience, work force and other resources.
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Figure 6.34. PL from both porous silicon and Si–O superlattice, taken under an identical set-up. The PSi

sample is freshly made from p-Si (100), 1–2 Vcm with a thickness of ,100 nm. Thus, the PL efficiency is at least

similar or better than PSi. After Tsu et al. (1998b), with permission.
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In conclusion, we know that more repeats of the Si–O period result in higher emission,

indicating that even if the emission is due to the hybridization of the oxygen–silicon

arrangement, the complexes contribution to emission is not from some unwanted oxygen

on the surface of the last interface. The most important feature for new applications lies in

the fact that the EL device is stable and robust. In fact, the current-induced annealing effect

shown in Figure 6.32 may be linked to evening out of the large dipole–dipole energy at the

interface. As pointed out by Tsu et al. (1989), the only way to affect this interface term is

via diffusion, or more precisely, rearrangement of the positions of the oxygen atoms

relative to the silicon atoms. Thus, with the application of a voltage, current-induced

diffusion may be the cause of electrical annealing. The best part is the fact that

photoemission has gone up over the months of operation. Whether the low efficiency can

be significantly improved is another matter. And possible application depends on finding a

niche in the world of solid-state devices.

6.9. TRANSPORT THROUGH A Si–O SUPERLATTICE

The Si–O superlattice was introduced as an epitaxial barrier for silicon quantum devices.

A barrier height of ,0.5 eV with a thin layer of silicon sandwiched between two adsorbed

oxygen layers has been achieved. Since the current–voltage shows a fair degree of

insulation, naturally it may serve as a replacement for the present amorphous silicon

dioxide gate for metal oxide semiconductor field effect transistor (MOSFET), moving one

step closer to the ultimate goal of a three-dimensional integrated circuit, 3D-IC.

Furthermore, the epitaxially formed insulating layer can also serve as a silicon on insulator

(SOI) instead of the present MOSFET using the depletion of the pn-junction to isolate

neighboring devices.

hν Avalanche multiplication

Ec
EF

Ev

V

Figure 6.35. Band profile shows a Schottky barrier and the active region of the Si–O superlattice EL device

under reverse bias. Electrons undergo avalanche multiplication providing holes for recombination with light

emission. After Tsu et al. (1999a,b), with permission.
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Although current–voltage measurements have been used from the very start of the

project, detailed I–V measurement was undertaken by Seo et al. (2001). For electrical

measurements, the buffer layer is doped with antimony to ,1017 cm23, forming

a relatively thin layer of 20 nm. After the buffer layer is completed, RHEED shows the

typical 2 £ 1 surface reconstruction. For a nine-period Si–O superlattice, the sample is

moved back and forth between the growth chamber for silicon deposition and the analysis

chamber for oxygen exposure, usually at 1027 Torr. Therefore, the fabrication process is

time consuming and quite tedious particularly because the procedures have not been

computerized. Finally, an antimony doped 4–5 nm silicon layer is deposited on top of the

nine periods to cap the superlattice and facilitate the deposition of the electrical contact.

Without this relatively light doping, the I –V will be totally dominated by the Schottky

barriers at the contacts.

After the MBE deposition is completed, the sample is cut into smaller pieces for further

processing, such as annealing and passivation. Specifically, our samples were annealed in

H2 þ N2 (1:10) at 4208C for 10, 20 and 30 min, respectively, mainly to remove dangling

bond defects. For comparison, we have also annealed our sample in O2 þ N2 (2:1) at

8008C for 10 min. Finally, a 200 nm thick aluminum electrode is evaporated at 1027 Torr

followed by patterning to provide contacts and to define the individual devices. The back

contact is also aluminum. Nicollian taught us that a simple way to remove the Schottky

barrier on the back surface of the wafer is simply to rub the back surface of the wafer with

fine sand paper before metallization. Figure 6.36 gives a schematic view of the device used

for the I –V and G–V measurements, having contact area ,1023 cm2.

The DC I –V measurements were performed with a Keithley 236 I –V system. Figure 6.37

shows the comparison of the I –V characteristics for hydrogen- and oxygen-annealed

Figure 6.36. Schematic cross-sectional structure of a nine-period Si–O superlattice. Seo et al. (2001), with

permission.
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samples. It is worth pointing out the difference between this work and other work reported

previously (Tsu et al., 1997). The previous single barrier results in a rather unsymmetrical

I –V because the Schottky barrier was formed by n-doping while relatively heavier doping is

used for this investigation.

Figure 6.38 shows results from similar two cases, H2 and O2 annealed at a bias voltage

between þ30 and 230 V. The device is stable in this range. Figure 6.39 shows the

conductance in a detailed comparison of the H2 and O2 annealed cases. There is negative

conductance, which is probably due to hot carrier injection into the silicon capping region

and the silicon buffer region undergoing avalanche multiplication, as discussed by

Tsu (1998). Resonant tunneling via some inadvertent isolated defects may be responsible

for the initiation of the process. The detail of the G–V is really far more complex. A

simple explanation based on resonant tunneling without a model including trapping

Figure 6.37. Current versus bias voltage for two samples, H2 for hydrogen annealed, (4208C, 30 min) and O2

for oxygen annealed (8008C, 10 min). After Seo et al. (2001), with permission.

Figure 6.38. I –V for the same type of samples as Figure 6.37 with a larger range of bias voltage. Seo et al.

(2001), with permission.
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mechanisms cannot offer a satisfactory understanding at this point. Perhaps, the domain

formation, discussed in Chapter 1 (Esaki and Chang, 1974) is involved.

We have shown that the Si–O superlattice can serve as an isolation for Si devices. Up to

a bias of 30 V, the field inside the multilayer structure reaches ,3 £ 107 V cm21. There is

no sign of breakdown, which is rather reassuring. However, the low voltage isolation is not

sufficient for implementation as a substitute for SOI. Drastically increasing the number of

periods, e.g. 50 periods, may offer the needed requirements. However, the appearance of

jumps and negative resistance indicates the presence of electrically active defects and

traps, which may be reduced by further investigation involving annealing, passivation and

optimization of parameters, such as the thickness of the thin silicon as well as the oxygen

exposure, in addition to all the usual parameters for MBE or CVD such as temperature,

base pressure, deposition rates, etc. Present interest in thin oxide gates for high frequency

MOSFET is running into similar problems, known as the soft-breakdown and hard-

breakdown (Nigam et al., 1999). The nature of this investigation is believed to be tied to

these studies. In summary, we have shown that the Si–O superlattice can serve as a barrier

as well as an isolation for Si devices. Our experimental results show substantial promise.

6.10. COMPARISON OF A Si–O SUPERLATTICE AND A Ge–Si MONOLAYER

SUPERLATTICE

In searching for a barrier for silicon, an epitaxially formed Si–O strain-layer superlattice

was launched. The necessary condition is that the oxygen layer is a monolayer. It is

incorporated by adsorption. The interfacial strain is at most a few percent, which is really

not too high for strained-layer superlattice. However, the interfacial dipole–dipole energy

Figure 6.39. Conductance for the two types of samples, dark line for hydrogen annealed and light line for

oxygen annealed. There is a negative resistance for the oxygen-annealed sample. Instability sets in beyond 40 V

for the hydrogen-annealed sample. Seo et al. (2001), with permission.
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due to charge transfer is high enough to cause alarm. Nevertheless, we think the latter

could be a problem with excitation such as a current. Oddly enough, a long-term operation

passing a substantial current with a fairly high electric field for at least several months

seems to have annealed out significant numbers of the defects. The band-edge alignment in

the conduction band of the Si/Si–O superlattice is ,1 eV, sufficiently high for most

quantum device applications. The photoluminescence and electroluminescence are stable

and robust, with efficiencies almost as good as the best porous silicon. The high field

breakdown is excellent such that the Si–O superlattice may be a candidate oxide for use as

an insulating gate for MOSFET, and even as an insulating, epitaxially grown SOI.

Other projects attempted for the SAS include Si–CO superlattice, which has a PL quite

similar to Si–O superlattice, but with a narrower emission linewidth and Si–C superlattice,

to which we have devoted more effort. The Si–C superlattice that was tried structurally

seems to be on track, though the RHEED pattern is not as good as Si–O superlattice, and no

visible light emission has been observed thus far. An initial estimate gives a band-edge

alignment in the conduction band of,2 eV, which is consistent with why there is no visible

light emission. The electronegativity of C, x(C) is 2.55, significantly smaller than xð

OÞ ¼ 3:44; leading to a smaller effective charge transfer from the Si atom, giving rise to a

smaller dipole energy and a smaller tensile strain. The bond-length of Si–C,,1.9 Å, is also

closer to Si than Si–O, ,1.6 Å. Thus, the in-plane strain is also likely to be less than Si–O

superlattice. All these figures seem to indicate that the Si–C superlattice should be better

than the Si–O superlattice. However, Si and C are isoelectronic, meaning that C is

structurally the same as silicon. And this may be the problem, because the likelihood of

carbon atoms forming clusters is greater. Fortunately, the ways in which we introduce

carbon via gas adsorption may be sufficient to prevent the formation of clusters.

To my mind, the work on the Ge–Si monolayer strained-layer superlattice (Pearsall

et al., 1998) should be singled out to make a comparison with the Si–O superlattice.

Before we do, I shall re-emphasize that the key point is to prevent the formation of a

random alloy by letting one of the two, silicon in this case, dominate over the other.

Oxygen consists of only one monolayer so that oxygen atoms have to sit on sites

compatible with the surface structure, or more precisely, reconstructed surface structure.

Figure 6.40 shows electroreflectance spectra for three structures: Ge(1)-Si(1),

Ge(2)-Si(2) and the Ge(4)-Si(4), taken from figure 11 of Pearsall et al. (1998). They

emphasized that the superlattice transition at ,2.3 eV for (2:2) and (4:4) does not appear

in the (1:1) structure, and that the electronic band structure resembles the random

Ge0.5Si0.5 alloy. Also, the spectra of the superlattice between 2.5 and 3 eV are more

complex than those of (1:1). They also observed that for Ge(6)-Si(6) and beyond, a TEM

of lower resolution clearly shows strain relaxation because the Matthews and Blakeslee

(1976) criterion for pseudomorphic defect-free growth has been exceeded. Therefore, their

results are consistent with my reasons why only one monolayer or at most two monolayers

of oxygen may be considered in the SAS.
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There is something very attractive about this work, in that Ge(1)-Si(1) is stable and

defect-free growth is possible. Therefore, to my mind, it should serve as a good barrier for

Si quantum devices—superlattices as well as quantum wells. This enormously important

possible application, to my surprise, was not mentioned by Pearsall et al. (1998).

As we have explained in detail, the Si–O superlattice retains the epitaxial growth. The

in-plane strain is larger than most III–V superlattice, but is well within the strain-layer

superlattice. The tensile strain is rather large creating conditions for diffusion, which limit

the operation temperature otherwise oxygen could diffuse. However, we must recognize

that if the silicon epitaxial layers beyond the Si–O layers were perfect, there would be

nowhere for the oxygen to diffuse into. Thus oxygen diffusion outside the intended regions

might not be possible. Diffusion experiments should be a priority in further development

of the Si–O superlattice.

6.11. SUMMARY

The concept of the SAS materializes in stages. Initially it was thought that if we made

oxide thin enough, it may form a strained-layer superlattice. This did not work and we

took the route of using polycrystalline silicon on polycrystalline silicon dioxide.

Figure 6.40. Electroreflectance spectra of (1:1)–(6:6) superlattice structures. The notation (1:1) means

Ge(1)-Si(1). (2:2) and (4:4) show superlattice characteristics; however, (1:1) is very similar to the random alloy of

Ge0.5Si0.5. After figure 11 of Pearsall et al. (1998), with permission.
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Both photoluminescence, PL and electroluminescence, EL were observed. However, I

knew that it would never “fly”, since even in the polycrystalline case, oxides were formed

with adsorbed oxygen to limit the oxide thickness. It occurred to us that epitaxial growth is

very aggressive, however, what counts is how low is the defect density. It took us a while

to learn how to grow epitaxial silicon on saturated adsorbed oxygen. We learned from John

Hren that our results may be much improved with a better cleaning process for the

substrate. Following his advice, the stacking faults disappeared and the defect density was

drastically lowered. Our nine-period Si–O SAS was life tested with the monitoring of

photoluminescence and electroluminescence for more than one year with stable operation.

We think the visible light comes from a combination of quantum confinement and

interface oxygen complexes. We then embarked on a theoretical study of hand-built

models, calculating the strain and energy states and comparing with DFC, by Babic and

Edwards (2000, unpublished). First of all, DFC calculations basically agree with simple

calculations, that the strain is surprisingly low. Moreover, I –V measurements suggest the

possibility of applying Si–O superlattice to a MOSFET having insulating SOI replaced by

this epitaxially formed insulating layer. And this insulating layer can also serve as the gate

oxide in such way that the whole MOSFET is epitaxial, allowing possible three-

dimensional integrated circuits.

This chapter gives a good example of how an idea was developed and

metamorphosed into an all epitaxially formed structure. The process is fundamentally

different from atomic layered epitaxy (ALE), because in SAS, for Si–O superlattice,

silicon dictates what sites oxygen can occupy consistent with the surface

reconstruction, whereas in ALE, no one constituent dictates, resulting in a random

alloy. Thus, SAS offers an extension to include cases where strain is really too large

to be accommodated.

In closing this section, I want to mention that I, like many others, am moving away from

superlattices and quantum wells for one reason—federally funded research has moved

away from these topics, although from the technology viewpoint, interest is just beginning

owing to the success of, for example, terahertz resonant tunneling diodes (Sollner et al.,

1983; Brown et al., 1989), the VCSELs (Huffaker et al., 1996) and the quantum cascade

laser (Faist et al., 1994). Research into quantum dots (QDs), with bench-top proof of

principle, may not materialize as useful devices. The reason is simple, nobody has the

vaguest ideal how to put diodes input/output into nano-scaled quantum dot devices.

Nevertheless, this is the subject I shall treat next.
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Chapter 7

Si Quantum Dots

7.1. ENERGY STATES OF SILICON QUANTUM DOTS

Resonant tunneling via silicon quantum dots has been observed by Ye et al. (1991).

The system consists of nano-crystalline silicon particles with dimensions of 3–10 nm

embedded in an amorphous SiO2 matrix. In order to understand the measured conductance

as a function of the applied gate voltage, we need at least the positions of the energy states

of a three dimensionally confined quantum dot (3D-QD). The energy state of an idealized

quantum box is simple enough and is covered in most elementary books. However, the

energy surface is not spherical in general, the barrier height is not infinite and the geometry

is not a cube. In this section the calculation of the energy state for a silicon sphere with

different effective masses is presented in more detail than published in Tsu (1990) to

illustrate some of the issues we need to consider when moving on a step from the usual

particle in a box.

We shall first calculate the energy state of a silicon cube oriented along several high

symmetry axes, assuming that the barrier height is infinite. In fact this assumption is not

bad at all because the band-edge alignment between Si and SiO2 is 3.2 eV and we are

considering dimensions in the range of 3–10 nm, so that the energy involved is much less

than the barrier height. Since the transverse mass mt and the longitudinal mass ml are

appropriate for a valley in the k100l direction, the usual mt ¼ 0:19me and ml ¼ 0:916me

may be used for a cube along the k100l direction, or

Em;n;p ¼
h2p2

2d2

m2

mt

þ
n2

mt

þ
p2

ml

 !
: ð7:1Þ

However, along the k110l and k111l directions, it is not readily obvious which effective

mass should apply. Stern and Howard (1967) considered the appropriate masses for a sheet

oriented with respect to k110l and k111l in consideration of the inversion system. Since our

cube has the same symmetry, the masses given by Ando et al. (1982) are used. Table 7.1

gives values along the three principal orientations.

For the convenience of the reader, the low lying energies are given in Table 7.2 for a

cube with sides d ¼ 75 �A: The calculated energy states for a 7.5 nm cube are shown in

Figure 7.1. The notation k111l4 indicates our results for a cube oriented along k111l with a

degeneracy of 4. In other words, the other two degeneracies should have the same energy

as k100l6.
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For a spherical silicon particle, the wave equation with principal masses of mt and ml;

satisfying the boundary condition of a sphere, does not have simple solutions. We shall use

a variational approach, which represents a generalization of the work by Efros and Efros

(1982). We take a product wavefunction to calculate the expectation value of the energy.

By setting the first variation to zero, we generate a new differential equation involving

only one of the three variables. The approach taken here is entirely similar to the

calculation of the ground state energy for a shallow impurity state in a superlattice by

Ioriatti and Tsu (1986), presented in Chapter 5. Let the Hamiltonian

H ¼ H0 þ H1

in which

H0 ; 2h2 1

r

›

›r
r
›

›r

� �
þ

›2

r2›f2

 !" #
=2mt; ð7:2Þ

and

H1 ; 2h2ð›2
=›z2Þ=2ml

in which mt ¼ 0:19me and ml ¼ 0:916me; for the case of k100l. Let C ¼ cðr;fÞZðzÞ ¼

NJmðktrÞe
imfZ in which, N is to be determined by normalization, k2

t ¼ 2mEt= h2 and Jm is

Table 7.1. Conduction band effective masses in the orientations k110l and k111l.
Values are taken from Ando et al. (1982)

k100l k110l k111l

mt=me 0.19 0.19 0.19

ml=me 0.92 0.31 0.26

Table 7.2. Energy below 0.3 eV of a cube with sides d ¼ 75 �A for the three orientations

from Eq. (7.1) using the masses given in Table 7.1

m n p E k110l (eV) E k110l (eV) E k111l (eV)

1 1 1 0.078 0.092 0.079

1 1 2 0.100 0.156 0.157

1 1 3 0.137 0.264 0.300

1 2 1 0.184 0.198 –

2 1 1

1 2 2 0.206 0.263 0.235

2 1 2

1 2 3 0.243 0.37 –
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the Bessel function, Math Functions (Abramowitz and Stegem, 1964) and

H0cðr;fÞ ¼ Etcðr;fÞ: ð7:3aÞ

From
Ð2p

0 dw
Ðr0

0 r ›rlcðr;wÞl2 ¼ 1; setting r ¼ r0t; where r0 ¼
ffiffiffiffiffiffiffiffiffi
a2 2 z2

p
; we obtain

cðr;fÞ ¼ ðpÞ21=2J 0
mðamnÞ

21lða2 2 z2Þ21=2lJmðktrÞe
imf

; ð7:3bÞ

with amn being the zero values of JmðamnÞ because of the simple boundary condition that

the wavefunction goes to zero at the surface of the sphere. From E ¼ kClHlCl; and

dE ¼ 0; we obtain an equation in ZðzÞ: Specifically, kClH0 þ H1 2 ElCl becomes

Et

ða=2

2a=2
ZpZ dz 2

h2

2ml

ða=2

2a=2
Zp

ffiffiffiffiffiffiffiffiffi
a2 2 z2

p d2

dz2

Zffiffiffiffiffiffiffiffiffi
a2 2 z2

p dz ¼ E
ða=2

2a=2
ZpZ dz: ð7:4aÞ

Figure 7.1. Calculated energy state for a d ¼ 7:5 nm Si cube. The right side show the other directions. The

notation k100l6 indicates the orientation in k100l with a degeneracy factor of 6. The variational solution is for a

sphere with a ¼ 0:58d; chosen to align with the ground state. After Tsu (1990), with permission.
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The boundary condition JmðktrÞ ¼ 0; at r ¼ r0 ¼
ffiffiffiffiffiffiffiffiffi
a2 2 z2

p
; results in kt

ffiffiffiffiffiffiffiffiffi
a2 2 z2

p
¼ amn;

the zeros of Bessel function. Therefore, we obtain

Et ¼ h2a2
mn=2mtða

2 2 z2Þ: ð7:4bÞ

Note that the energy Et depends on z and the zeros of the Bessel function amn: Setting the

variation dE ¼ 0 with respect to Zp; we obtain a new differential equation in E: Assuming

the wavefunction vanishes on the surface of a sphere with radius a; we found that

Z 00 þ ð2z=ða2
2 z2ÞÞZ 0 þ 2mlE= h2

2 mla
2
mn=mtða

2
2 z2Þ þ

ða2 þ 2z2Þ

ða2 2 z2Þ2

" #
Z ¼ 0: ð7:5Þ

The eigenvalue E is given by the boundary condition, Zð^aÞ ¼ 0: If the wavefunction for

transition probability is required, Eq. (7.5) must be solved. However, if our objective is to

find the eigenvalue E; we may use the trial wavefunctions,

Z ¼

Ze ¼ a21=2 cos
ppz

2a
p ¼ 1; 3; 5;…

Z0 ¼ a21=2 sin
ppz

a
p ¼ 1; 2; 3;…

8><
>: ð7:6Þ

satisfying the boundary condition at z ¼ ^a: The eigenvalue E is now given by

E ¼
ða

2a
dz EtZ

pZ 2
h2

2ml

Zp Z 00 þ
2z

ða2 2 z2Þ
Z 0 þ

a2 þ 2z2

ða2 2 z2Þ2
Z

" #( )
: ð7:7Þ

We shall simplify the notation by writing the quantum number ðm; n; lÞ; with l such that

l ¼

1; for Zeðp ¼ 1Þ

2; for Z0ðp ¼ 1Þ

3; for Zeðp ¼ 3Þ

4; for Z0ðp ¼ 2Þ

etc:

8>>>>>>><
>>>>>>>:

:

The first few zeros of Jmn; are listed

Note that the dimension of a cube d and the radius a of the sphere are not related.

However, we could relate them, for example using equal volume, then d=a ¼ 1:612

m n aðm; nÞ

0 1 2.404

1 1 3.832

0 2 5.520

1 2 7.016

2 2 8.417
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and the variational solution gives a higher value for the lowest energy. We must recognize

that the quantum numbers for the sphere have nothing to do with those of the cube.

However, we can also set the lowest energy level for the variational solution equal to

lowest energy level of a cube, then d=a ¼ 1:71: For comparison, we use the latter by setting

the lowest level of the variational solution equal to that of the cube. For Ze;

E

h2=2mta
2

 !
¼ a2

mnFep þ
mt

ml

pp

2

� �2

þ
pp

2

� �
Gep 2 Hep

" #
ð7:8Þ

where

Fep ¼
ð1

21

cos2ðppy=2Þ

1 2 y2
dy; Gep ¼

ð1

21

y sin ppy

1 2 y2
dy; and

Hep ¼
ð1

21

ð1 þ 2y2Þcos2ðppy=2Þ

ð1 2 y2Þ2
dy:

And for Z0;

E

h2=2mta
2

 !
¼ a2

mnFop þ
mt

ml

½ðppÞ2 þ ðppÞGop 2 Hop� ð7:9Þ

where

Fop ¼
ð1

21

sin2ppy

1 2 y2
dy; Gop ¼

ð1

21

y sinð2ppyÞ

1 2 y2
dy; and

Hop ¼
ð1

21

ð1 þ 2y2Þsin2ppy

ð1 2 y2Þ2
dy:

ð7:10Þ

Below we shall list the first few energies:

m n a2ðmnÞ a2ðmnÞFe;1 a2ðmnÞFe;3 a2ðmnÞFe;3

0 1 5.78 7.04 10.11 8.96

1 1 14.68 17.88 25.69 22.61

0 2 27.05 32.95 47.34 41.66

1 2 49.22 59.95 86.1 75.80

p Fep Gep Hep Fop Gop Hop

1 1.22 1.41 2.72 1.55 21.600 9.2

3 1.75 1.18 9.86

In Table 7.3 we list the energies for the sphere using the variational solution for the

sphere. For comparison, we set the ground state energy of the sphere using the masses for
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k100l equal to those of the cube oriented in k100l at 0.78 eV. Note that the highest levels

for the sphere with the variational solution are higher than those for the cube k100l.
The last column lists three energies of a sphere using the solution of the sphere assuming

mt ¼ ml ¼ 0:26me; the roots of the spherical Bessel functions jmðamnÞ and Emn in eV. For

mt=ml – 1; the variational solution is better, although a cylinder with a height equal to the

radius, having simple solution, might actually be better at representing the QD.

n j0ða0nÞ j1ða1nÞ j2ða2nÞ E0n E1n E1n

1 p 4.495 5.69 0.078 0.161 0.266

2 2p 7.725 9.09 0.316 0.475

3 3p

The computed energies for a sphere of radius a with all levels empty are shown in

Figure 7.1. We set the ratio a=d ¼ 0:58 in order to line up the ground state for the cube,

E111; to coincide with the ground state E011 for the sphere using the masses for k100l. It is

interesting to note that for a=d ¼ 0:62; the volume of a sphere with radius a is equal to that

of a cube with sides d: When I first showed the result to Stern, he thought the small

difference of ,7% from the equal volume case was indeed very interesting. The quantum

number for the sphere (011) of E011 stands for m ¼ 0 and n ¼ 1; with p ¼ 1; where a01 is

the lowest zero of the Bessel function and p ¼ 1 denotes the lowest order mode that

satisfies the boundary condition at z ¼ ^a:

The Coulomb energy from electron occupation that is consistent with Pauli’s exclusion

principle owing to its small size is quite significant, particularly with a voltage applied

(Ye et al., 1991). We shall show that our experimental results indicate that the effective

mass anisotropy is overwhelmed by the induced image charge which apparently has nearly

spherical symmetry. This fact was brought home previously from entirely different

experimental evidence—the volume percolation of microcrystalline silicon grains in an

amorphous silicon matrix is 0.18, which is close to the theoretical value of 0.16 for spheres

(Tsu et al., 1982). Therefore, the microcrystalline structure obtained by annealing

deposited amorphous silicon has an essentially spherical shape (Tsu et al., 1986). Note that

the spherical solution using the variational approach is in fact more general than the cubic

model, because for orientations of a cube other than the three high symmetry axes,

Table 7.3. Tabulation of energies of a sphere with the effective masses given in k100l, for the lowest energy

aligned with that of a cube, i.e. d=a ¼ 1:71

m n p E k100l (eV) E k110l (eV) E k111l (eV) E (sphere) (eV)

0 1 1 0.078 0.086 0.07 0.079

0 1 2 0.106 0.13 0.11

0 1 3 0.145 0.187 0.154 0.161

1 1 1 0.192 0.20 0.216

1 1 2 0.25 0.273 0.22 0.266
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the cubic model involves the full effective mass tensor. In short, the simplicity of the cubic

solution is deceptive; the tabulated results are for high symmetry directions. Since most of

the experimentally prepared QDs are closer to spherical shape, the size-dependent energy

of a silicon sphere is more useful because orientation is not an issue. High resolution TEM

pictures also show an almost perfect spherical shape. That being the case, why did we go to

the trouble of using the longitudinal and transverse effective masses? The answer is the

fact that models can only be justified by comparison with measurements. We shall show

later in conjunction with conductance steps that the energy states in silicon QDs are indeed

closer to being spherically symmetric, at least for particle sizes under 5 nm. A non-

spherical energy surface results in states with degeneracies.

The calculated energy levels of a silicon QDs apply only to a neutral Si particle, similar

to the so-called empty lattice band structures in solids, with an idealized boundary

condition—that the wavefunction is zero at the surface and Coulomb terms are included.

As soon as the ground state designated by (011) is occupied by two electrons with spin-up

and spin-down, even using the idealized boundary condition, the extra charges induce

image charges depending on the difference between the dielectric constants in the silicon

and the matrix. This subject will be treated in the next chapter on quantum capacitance

where the problem becomes extremely complex. Nonetheless, I want to point out some

salient features that are useful for gaining some physical insight: The extra energy from the

Coulomb interactions is quite significant as the particle size is reduced to a few

nanometers. The smearing actually can bring the QD closer to a spherically symmetric

“man-made-atom”. In other words, the three widely separated states in Figure 7.1, (012),

(013) and (111) for the nano-scaled sphere due to the orientation-dependent masses may

merge toward the p-state of a spherically symmetric system. Using the measured

conductance data, we found that the first two excited states are merged, but the third may

be distinct. If optical emission is produced by electron injection, a rather complicated

spectrum will also result depending on the occupation of the levels. Therefore what applies

to nano-scaled QDs requires additional rules, which we normally accept for solid state and

atomic physics; it is, as the popular expression states, “a whole new ball game”.

7.2. RESONANT TUNNELING IN SILICON QUANTUM DOTS

Resonant tunneling via nano-crystalline silicon, nc-Si, embedded in an amorphous silicon

dioxide, a-SiO2, matrix has been exploited (Tsu et al., 1990), using a thin layer of

deposited a-Si at low temperature, followed by crystallization after annealing. These nano-

scale silicon QDs are then embedded in an oxide matrix after subsequent annealing in an

oxygen-rich environment. Resonant tunneling via nc-Si with SixC12x:H barriers has been

reported by Fortunato et al. (1989). Takagi et al. (1990) have reported quantized size
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effects in PL with Si particles in the size range 4.5 nm using microwave plasma deposition

with SiH4, a sort of inverse of the work of Lu et al. (1995) discussed in Chapter 6.

In the present scheme, nc-Si is produced by crystallization from the amorphous phase

and barriers are formed by thermal oxidation of silicon. It has been pointed out that the

defect density of the c-Si/a-SiO2 system under metal oxide semiconductor (MOS)

technology is really low enough to apply to quantum well structures (Tsu et al., 1989).

Figure 7.2 shows the grain size of crystallized silicon after annealing at 8008C plotted

against the deposition temperature Ts (Tsu, 1985). There is a peak at Ts , 3308C; although

it is not commonly known to most researchers that this temperature is actually the

crystallization temperature of a-Si annealing in a vacuum. Another fact unknown to most

researchers involves the effect of the interface. Bulk amorphous Ge crystallizes at 1808C.

However, a 5 nm thin layer of a-Ge sandwiched into thick layer of a-Si does not crystallize

until the temperature is raised to above 5508C when a-Si begins to crystallize. Similarly,

a thin a-Si layer sandwiched into a-SiO2 does not crystallize until the annealing

temperature is raised above 9008C. How thin is thin? When the thickness involved is

below 10 nm, the interface dominates (Allred et al., 1988). Why is it important to make

these points? I knew about these results when I was working at Energy Conversion

Devices (ECD), although none of these results was published because the interface created

an inhibition to phase changes which may apply to the chalcogenide switches used at ECD.

Figure 7.2. Grain size versus substrate temperature after crystallization. Note that under an UHV anneal, the

huge drop in grain size at low substrate temperature does not occur. After Tsu et al. (1986), with permission.
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I actually forgot this important point so that initially Ye failed to crystallize a-Si layers

,8 nm thick, until she doubled the thickness, a development discussed in detail by Tsu

(1998). Another important point is the fact that silicon tends to form a spherical shape after

crystallization. The nc-Si formed after crystallization from a-Si are spherical (Tsu et al.,

1982). Therefore, the particles are never pancake shaped, whereas Ge tends to crystallize

into a columnar or cylindrical shape (Hernandez et al., 1984). Since the oxidation process

consumes silicon, typically if the target is set for 10 nm nc-Si particles, the thickness of the

a-Si layer should be increased to ,18 nm. A schematic cross-section of the structure is

shown in Figure 7.3. The substrate is a silicon wafer with n ¼ 3:5 £ 1016 cm23: Starting

with a thermally grown field oxide 100 nm thick at 10508C in dry oxygen, an active device

varying in size from 40 mm £ 40 mm down to 10 mm £ 10 mm, is formed by etching a

window photolithographically. A thin undoped a-Si layer, ,15–18 nm is deposited by an

e-beam, followed by crystallization and oxidation at 800–9008C in 3:1 dry N2 þ O2 at

atmosphere pressure. Why we chose this rather low temperature is fully discussed by Tsu

(1998). Aluminum gate and back contacts are vacuum deposited. Typically our samples

consist of ,5–10 nm crystallites surrounded by 2.5–3 nm oxide serving as barriers.

There is an important point dealing with tunneling measurements which needs to be

emphasized. In normal resonant tunneling via quantum wells, the contacts are nþ -doped

leading to the negative differential conductance (NDC) whenever the applied voltage is

such that the quantum state of the well moves below the source of electrons, from the

contact into the forbidden gap. However, with a metal contact, the Fermi sphere is very

large compared to all these quantum states involved. When the applied voltage is such that

the state involved moves below the conduction band edge, there is tunneling from the metal

Figure 7.3. Sketch of a resonant tunneling diode structure. Nano-crystallites are shown as shaded circles

embedded in a-SiO2 matrix. After Ye et al. (1991), with permission.
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contact as shown in Figure 7.4. This leads to a conductance peak, but no current peak.

Therefore, a NDC should never appear. In Figure 7.4 (top), V1 represents the voltage

across the QD. Owing to deep depletion (for an explanation of deep depletion, see

Nicollian and Brews, 1983) in the silicon substrate at the right contact, there is an

additional voltage Vs; so that the alignment of the quantum state with the Fermi level

requires a voltage Va –Vs; shown in Figure 7.4 (middle), together with a sketch showing

Figure 7.4. Schematic diagram of a Si QD embedded in a SiO2 matrix. Because of the large Fermi sphere of the

metal contact, unlike conventional resonant tunneling with nþ contacts, the conductance peak but not the current

peak appears. (Top) shows the relationship between V1; the voltage across the structure and VS; the voltage due to

deep depletion in the contact, the silicon substrate; (Middle) shows the current and conductance; and (Bottom)

includes the charge Q; so that the onset of conductance jump appears at an applied voltage Va ¼ V1 þ Q=C þ VS:

After Tsu (1993), with permission.
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the conductance jump by a peak. More detailed discussion is delayed until Chapter 11,

where the wave impedance of an electron is introduced. In Figure 7.4 (bottom), owing to

the charge Q stored in the QD, the applied voltage for the onset of the conductance jump is

further moved to a higher voltage and includes the term Q=C; the potential from charging

the capacitance of the quantum dot including the two thin barriers.

The device in Figure 7.3 is characterized electrically by measuring the dc current and a

small signal capacitance and equivalent conductance at 1 MHz as functions of the gate

bias VG; using a lock-in amplifier equipped with a current preamplifier (Model 410 C-V

plotter). A variable voltage ramp, usually at a rate of 10 mV s21, provides the bias.

Figure 7.5 shows the conductance measured at 77 K. Two sharp conductance peaks at

, 2 11.8 and 215.3 V are attributed to tunneling via the first two QD states. The steps

shown on the right are attributed to the coupling of QDs at higher energy forming a two-

dimensional-like layer. Note that the first and next state in a Si sphere of d , 8 nm are

,0.05 and 0.11 eV, but the measured first and second sharp peaks are located at , 2 11.8

and 215.3 eV.

How can we reconcile the data with the calculated energy positions? The difference

between the voltage Vnþ1 and Vn per electron is

eðVnþ1 2 VnÞ ; eDV ¼ Enþ1 2 En þ e2
=2C; ð7:11Þ

where C is the capacitance. For QDs with d , 8 nm; Enþ1 2 En , 0:06 eV; but e2=C ,
0:32 eV; so that DV , 0:44 V for two electrons. But the difference is 3.8 or 1.9 V

assuming symmetrical barriers, a factor of ,5 larger than DV , 0:44 V: Thus, we know

Figure 7.5. The conductance near zero bias is caused by electron capture and emission by traps at the

a-SiO2/nc-Si interface (Nicollian and Brews, 1982). The discontinuity between the left side and right side is due to

two different samples adjacent to each other on the same wafer. The inset shows the deep depletion discussed in

the text. After Ye et al. (1991), with permission.
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that only 20% of the applied voltage appears across the QD device and the rest appears

across the substrate, as first pointed out in Ye et al. (1991).

Subsequently, more device configurations were obtained so that Nicollian decided to

measure the parameters for the equivalent circuit, with results allowing us to fit together

the data and estimate energy states more consistently (Nicollian and Tsu, 1993). The most

convincing set of step-by-step measurements going from a-Si to nc-Si is shown in

Figure 7.6. Of particular interest are the sharp conductance structures which show up when

the temperature is reduced from 300 to 77 K.

Before I leave this section, it is reassuring that the linewidth of the conductance peak,

obtained by Li, shown in Figure 7.7, is basically the same as kBT ; which indicates that all is

well. At this stage Nicollian and I decided to apply for a patent for silicon-based functional

quantum devices. Ye finished her postdoctoral assignment and the work was taken over by

Li, who needed a MS thesis. Armed with a better understanding, I made a bold decision to

fabricate a wide range of device configurations. In fact, Nicollian did warn me about

opening a “can of worms” as he put it. Well, as we shall see what happened in the next

section, oscillations, hysteresis and switching appeared in 5–10% of our samples, and

even telegraph-like, apparently random structures.

Meanwhile, I gave a pre-annealed sample to S.Y. Chow, who thought all the results

pointed to “breakdowns” (Chow, 1992). In a later article (Tsu, 1998, 2000), I pointed out

Chow was mainly working with the silicon that was still in amorphous phase, because he

did not know that a nanometer thick a-Si, sandwiched in a-SiO2, simply does not

Figure 7.6. Left—conductance versus gate bias at 300 K measured at 1 MHz. (a) Al/a-SiO2/c-Si

(b) Al/a-SiO2/a-Si/a-SiO2/c-Si. (c) After annealing at 8508C of (b), Al/a-SiO2/nc-SiO2/a-SiO2/c-Si. Right—repeat

of case (c) at 300 K compared to 77 K. After Ye et al. (1991), with permission.
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crystallize with annealing at temperatures below 10008C. We had not communicated to

him the giant step in improving consistency given by electrical forming under forward bias

(Tsu et al., 1994) with the concept and consequences fully explained by Tsu (1998).

Basically, electrical forming selects the most favorable current path, allowing

repeatability and stability, while apparently excluding the participation of many other

particles (Figure 7.8). Once the consistency is established, the scheme allows us to study

the physics of Si QDs; however, this is far from being a nano-scale quantum device. Going

back to the right-hand side of Figure 7.6 at 77 K, between the initial and the second jump

in conductance, G , 80 mS; consistent with the 1st QD state occupied by two electrons,

the fundamental conductance G0 ¼ 78 mS (Van Wees et al., 1988). Based on this

observation, the data for Figure 7.6 indicate that only one QD is involved, suggesting that

Figure 7.8. Electrical forming used to eliminate the unwanted tissue region of an annealed crystallized Si-QD.

Paths (a) and (b) indicate only minute conduction until path (c) is reached. Subsequent paths, (d)–(f) indicate

structures after forming with (f 0) often showing hysteresis. After Tsu et al. (1994), with permission.

Figure 7.7. Conductance G versus V in volts showing the linewidth is , kBT at room temperature. Taken from

Li’s thesis (1993), published in Tsu (2003), with permission.
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our current path is really filamentary, rather than uniformly across the contacts. This fact

may explain why we have repeatable and consistent measurements and why we have not

observed spreading due to a distribution of particle size. In the next section, several plots

of conductance versus applied voltage will be shown. In particular, before and after

electrical forming, our data clearly show the involvement of only a single QD. As a matter

of fact, when the data were first shown to Greene, he told Nicollian and I that from all his

experience in surface studies, most field emission measurements actually involve a single

electron! With this, Nicollian simply said, “Now you know why Keithley licensed my CV

measuring instrument package, the most sensitive up-to-date system”.

7.3. SLOW OSCILLATIONS AND HYSTERESIS

Our funding has been improved sufficiently for us to put more students onto this project

and leading to use of a variety of samples whose main feature is nc-Si embedded in an

oxide matrix. Actually inadvertent forming was first discovered accidentally during

measurements in the reverse bias. Then we realized that better control can be achieved by

passing a current in the forward bias with a current limiter circuit.

Figure 7.9 shows conductance versus increasing negative bias. With reproducible G–V

traces obtained routinely, after forming for the first time we were able to examine the data

Figure 7.9. Conductance versus increasing negative bias, shown to the left. Before electrical forming, below

the dashed line, G–V is unstable and lacking sharp features. After forming, above the dashed line, G–V is stable

and reproducible, and almost always shows at least one sharp peak. Taken from Bowhill’s (1994) MS thesis,

unpublished.
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in detail. The first step jump in conductance in Figures 7.7 and 7.10 is usually represented

by DG ¼ 232 mS or 6G0; with G0 ¼ 39 mS: Note that the second jump in Figure 7.10

shows a DG ¼ 155 mS or 4G0: The factor of 6 indicates that an additional six electrons

take part in the conduction and could be attributed by the threefold degenerate 2p state of a

sphere. But the next jump involving only four electrons is not well understood, unless we

go back to the energy calculated in Figure 7.1.

Figure 7.10 shows conductance versus bias (Tsu et al., 1994). The arrows mark Vn and

Vnþ1 where the step increase in conductance occurs because of the addition of extra

conducting channels. At first we thought the many vertical lines represent many particles.

One day Li called me to show me some extremely slow oscillations in time at a fixed

applied voltage, with periods varying from fraction of a second to as long as 20 s. Since the

circuit impedance does not affect the oscillation, we knew that the oscillation is not

induced externally. In other words, these d-function-like peaks are oscillations in time

rather than at different voltage, because if we sweep faster, these d-function-like peaks are

further separated. At a fixed bias, 211.95 and 211.85 V, the conductance oscillates with

values approximately between the two channels. Figure 7.11 shows conductance

oscillations in time between G1 and G2 at two different biases: 211.95 V (a), at a bias

close to Vnþ1; the beginning of a second channel with G2 and 211.85 V (b), a bias closer

to Vn; where the first channel is conducting with G1: Note that DG ¼ G2 2 G1 ¼

420 2 260 mS ¼ 160 mS , 4G0: Again if we press on with only one QD involved, we

must accept the fact that the three states shown in Figure 7.1, (012), (013) and (111), with

the two lower ones merging into a single state close to a p-like state, so that the additional

number of electrons is 6 2 2 ¼ 4, lead to a step in the conductance given by DG , 4G0:

This result does not apply to Figure 7.11(b), with DG , 5G0; where instead of DG , 4G0

or 6G0; apparently one electron fails to conduct. This is a good place to emphasize that our

Figure 7.10. Conductance versus bias. The arrows mark Vn and Vnþ1 the step increase in conductance and the

appearance of an extra conducting channel. At fixed bias 211.95 and 211.85 V, conductance oscillates between

the two channels. Tsu et al. (1994), with permission.
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work at first was rejected for publication because the reviewer thought these oscillations

were telegraph noise, a subject I should go into with some detail later in this section. The

nature of these oscillations is very complex, which may not be made clear using the time-

independent Schrödinger equation. We think the origin of oscillatory switching lies in the

coupling of two nearby QDs, one connected to the contacts while the other is not. The fact

remains that the system is extremely complex, calling for more careful measurements,

particularly in the nanometer region.

Figure 7.12 shows conductance oscillation measured at 1 MHz with slowing down near

the end of a 900 s trace. The switching speed changes from ,2 s to more than 10 s. In fact

the oscillation stops completely after half an hour, ending in the high conductance state,

with DG , 155 mS or 4G0; indicating that four electrons participated in the conduction

process. This experimental fact led us to suggest that the (012) and (013) states in the

variational solution shown in Figure 7.1 are degenerate and similarly in Figure 7.11.

As far as the switching slowing down, it is quite evident from the 600 to 920 s

timeframe, that the on-time in the higher conducting state is increasing but remaining

relatively constant in the lower conducting state. Actually at the beginning, the on-time is

quite short. Next, let us show a couple of traces with a somewhat different trend, where the

on-time remains relatively constant, but the conductance time in the lower state tends to

decrease, as shown in Figures 7.13 and 7.14. There is a small but unidirectional decrease

in the period of switching, a 10% reduction during the initial 50–100 periods, which is

consistent with a slight reduction of the barrier effecting coupling upon heating.

It is clear that these conductance oscillations or switching cannot be explained without

bringing in the time dependence of trapping or the residence time of electrons at these

Figure 7.11. Conductance oscillations between G1 and G2 at biases of 211.95 V (a), near Vnþ1 and 211.85 V

(b), near Vn: After Tsu et al. (1994), with permission.

Superlattice to Nanoelectronics222



levels. They are definitely not telegraph noise. As pointed out in Tsu (1998), if the data

were still unstable after electrical forming, the sample was simply discarded. About 20%

of the stable and reproducible samples showed oscillations, however, they were different

in small details. This tells us that electrical forming is capable of providing a given sample

for useful study, but I doubt it would provide a useful sample for device applications! We

have taken two devices on the same wafer separated far apart and placed in parallel.

Nothing very unusual happens because the current is doubled or the conductance added,

whenever the applied voltage is such that both states are occupied. However, when two

adjacent devices having slightly different voltages at the jump in conductance are

Figure 7.13. The on-time in the higher conducting state remains, but shows a slight decrease in the lower

conducting state. Taken by X. Li in Tsu (2003), with permission.

Figure 7.12. Conductance oscillation measured at 1 MHz showing slowing down near the end of a 900 s trace,

with switching speed changing from ,2 s to more than 10 s, ending in a high conducting state. From one of the

many traces taken in 1993 but never published.
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connected singly and in parallel, shown in Figure 7.15, the result is extremely interesting

because whether the two adjacent coupled QDs are conducting or not, the potential due to

the occupancy of one dot raises the potential of the other, indicating that the two dots are

close enough and their potentials are interacting with an additional shift of 22.5 V from

216.5 to 219 V. And there is an additional jump in conductance of 120 mS from

DGðsolidÞ , 360 mS: This indicates that an extra three more electrons take part which can

only mean that the symmetry has changed from the coupling of two dots.

I think by now the reader should be convinced that what we have shown was not

telegraph noise, or simple breakdown, but involved some complicated quantum

conduction. However, since some of our samples do exhibit telegraph-like noise,

Figure 7.16 shows a typical case. Broadly speaking, oscillatory conductance involves two

QDs or one QD and one defect. But if the defect is coupled to a third or more sites, the

complexity alone can lead to more random trapping and re-emission resulting in telegraph-

like appearance from ,30% or less of the dots we measured.

Figure 7.17 shows telegraph-like noise spectra of complex current fluctuation prior to

oxide breakdown due to discrete multilevel switching (Farmer et al., 1988). Although

detailed discussion of slow oscillations is quite complex, it is possible to explain the

general mechanisms in terms of a relatively simple model of quantum effects, because, by

comparison, the samples we singled out for study are much simpler than those with

telegraph-like noise spectra. Since we can produce almost all the reported telegraph noise

spectra as well in the type of samples we fabricated using various annealing and electrical

forming techniques, I really think the bottom line is that we have used a selective forming

process picking the simplest configuration, i.e. a current filament consisting of only one

silicon dot. As long as we reject the majority of samples as bad samples, our selection

process does have merits, and is not so different from all the others including passivation

Figure 7.14. The on-time in the higher conducting state remains unchanged but is slowly decreasing in the

lower conducting state. Taken by X. Li, unpublished.
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of defects, annealing in steam to reduce the interface density of the MOS capacitors, or

even something more current, picking out a single thread of a carbon nanotube!

As pointed out by Tsu et al. (1994), whenever eV1 in Eq. (7.11) is aligned with EF; the

energy E1 þ e2=2C; E1 þ 2e2=2C; includes charging the capacity C; referred to as a

Coulomb blockade (Likharev, 1988), which is nothing other than simple electrostatics.

When trapping by a defect is present, the first current jump occurs at an applied voltage

Va ¼ V1 þ Q=C þ Vs; with Vs being the voltage drop due to deep depletion (Tsu, 1993).

Suppose an electron is captured resulting in Q ¼ eðn þ 1Þ; an additional voltage of e=C is

necessary to maintain resonant tunneling. Because the applied bias is fixed, the

conductance will jump down to a lower value. Conversely, whenever an electron is

emitted from a trap, the charge Q returns to Q ¼ en; and the potential at the QD drops back

Figure 7.15. The dotted and dashed lines show two adjacent dots connected singly. The solid line shows the

two devices connected in parallel. Note that jump DGðdottedÞ at ,80 mS and jump DGðdashedÞ at ,160 mS.

However, for the parallel connected case, DGðsolidÞ , 360 mS; an additional jump of 120 mS, as well as the

shift of an additional 22.5 V from 216.5 to 219 V. From Bowhill’s thesis, unpublished.
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so that the energy state involved is again aligned with the Fermi level of the contact at V1;

causing the conductance to jump back to a higher value. Therefore, the period is the sum of

the electron capture and emission time constants. In this picture, oscillation is the result of a

flip-flop between two charge states involving exchange with a defect. Alternately, the two

states can be two coupled QDs separated by a barrier resulting in the splitting of energy E0

into Eþ and E2 with a frequency of oscillation v ¼ ðEþ 2 E2Þ= h ¼ 4E0 expð2aBÞ=awh;

where a ¼
ffiffiffiffiffiffiffiffiffiffi
2mU= h2

q
; with U; B and w; being the barrier height, the width and the well

width, respectively (Tsu, 1993). Assuming that a non-conducting state is weakly

coupled to a conducting state via an oxide barrier of U ¼ 3:2 eV; for a period of 10 s, it is

Figure 7.16. Conductance versus bias voltage shows telegraph-like noise. At a fixed voltage, the variation in

time is not like all those we have shown as oscillations or oscillatory switching, rather, a typical noise-like

spectrum. Unpublished thesis by Chen Ding (1994).

Figure 7.17. Telegraph-like noise spectra of complex current fluctuation prior to oxide breakdown showing

discrete multilevel switching. Farmer et al. (1988), with permission.
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necessary that B , 15 nm: Since the total layer thickness is ,15 nm, we conclude that the

origin of the switching is more likely to be due to a defect state located near a conducting

QD rather than to a similar but non-conducting QD state. Conduction peaks have been

reported by resonant tunneling via bound states of a single donor in a quantum well

(Dellow et al., 1992) which is not too different from the subject treated in this section

(Figure 7.18).

Typical step-like G–V with hysteresis at 300 K is shown in Figure 7.19, taken from Li

(1993). The conductance steps at 40 to 205 to 385 mS give DG ¼ 40; 165 and 185 mS.

Again the results point to the three higher states merging into a single three-fold p-like

degenerate state of a spherically symmetric hydrogen-like 1s, 2p state. The two electrons

in the 1s state give 78 mS, however it appears only one electron occupies this 1s state.

Occupation of the 2p state, allowing six additional electrons, should give DG of ,240 mS,

however, only five appear to be taken up. These facts indicate that the three states in

Figure 7.1 are not all merged into a 2p-like state with a total of six electrons. We conclude

that perhaps only the first two, (012) and (013), are merged, indicating that it is not a totally

spherically symmetric system. Let us look at the energies involved. In Figure 7.19, the

voltage at 211.52 and 211.32 V gives DV of 0.2 V, and between 211.52 and 211.57

gives a DV of 0.05 V as if no charging is involved. In other words, the term e2=2C does not

seem to be involved. The only possibility is that the charges are already present even

before the jump in conductance. And the only rationale is that the charges are located at a

nearby QD, but, for some reason do not contribute to conductance. Therefore, we have

Figure 7.18. (a) Conductance oscillation near and before a peak. At fixed voltages, (b)–(d), oscillation with

time is detailed. Oscillation is more complex in (d) where the number of electrons involved in jumping back and

forth varies between 4 and 8 while in (b) and (c) the number appears to be fixed at 8. Taken by X. Li, unpublished.
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the evidence of trapping from a “non-conducting” QD located near the conducting QD,

exchanging electrons and resulting in hysteresis. My previous publication on the subject

(for example, Tsu et al., 1994; Tsu, 1998) stated that we were unable to distinguish

between the two possibilities, switching and hysteresis involving coupling of a QD with a

nearby defect, or coupling of a QD with a nearby “silent QD”. Now I think the ambiguity is

at least partially resolved, and we can be reasonably sure that it is the trapping site at a

nearby non-conducting QD, rather than a QD couple to one with a tunneling channel, that

serve only as a trap for electrons capable of raising and lowering the potential at the

conducting QD. What can we say about hysteresis as a result of a different configuration in

phase space? The stored charges not only can change the potential, but also result in a

slight change of bonding configuration giving puckering. The structure is indeed slightly

changed, leading to change in the symmetry and selection rules. Occasionally we observed

light emission. It was very weak and infrequent, and the origin seems to resemble

switching.

7.4. AVALANCHE MULTIPLICATION FROM RESONANT TUNNELING

Current–voltage measurements of resonant tunneling through nano-scale silicon QDs

connected in parallel reveal large current staircases. The sharpness of the current jumps

comes from the action of tunneling through a few groups of silicon particles of various

sizes connected in parallel, and the magnitude of the current jumps results from substrate

avalanche multiplication of the small injected resonant-tunneling current. Some of

Figure 7.19. Typical step-like G–V with hysteresis at 300 K. Conductances of 40, 205 and 380 mS with

DG ¼ 40; 165 and 185 mS , G0, 4G0 and 5G0: After Tsu (2003) and Li’s thesis.
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the most striking results described apparently originate from a single silicon QD in spite of

the fact that many silicon QDs are connected in parallel. However, as pointed out, only a

small percentage of samples tested fall into this category. Most of our samples do show

fairly consistent conduction peaks especially in cases with lower applied voltage. At

higher applied voltage, we consistently observed staircases in I –V :

The typical full width at half maximum of the conductance peak is 30 meV.

Inhomogeneous broadening, caused by a large distribution of particle sizes, should result

in a far broader conductance peak for any appreciable spread in the particle size

distribution. We have resolved this paradox, because all the measured linewidths of the

conductance peaks show only homogeneous broadening. Localized electrical forming of

the sample prior to the observation of resonant tunneling creates a conductive path that

selects only a few of the many possible nano-crystallite sizes available in a given device

structure. Since only a few nano-particles are involved in the resonant tunneling, these

different groups of particles will cause different peaks, rather than acting to smear a given

peak. These major ingredients lead to a simple model, based on a few particles of different

sizes connected in parallel, as shown in Figure 7.20(a) for three sizes, in (b) with different

energy states, and in (c) with three staircases for the current plotted against the applied

Figure 7.20. (a) Three nc-Si particles of different sizes connected in parallel. (b) Their corresponding energy

states. (c) I –V of the parallel arrangement showing three staircases. After Boeringer and Tsu (1994), with

permission.
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voltage. This model also solves the early mystery of why there appear so many jumps or

staircases.

Our applied voltage is divided between the thin oxide layer containing the QDs Vox and

VS of the substrate depletion layer. Moreover, the electrons tunneling into the deep

depleted region of the substrate result in avalanche multiplication. Following Nicollian

and Brews (1982), we start from the voltage applied to the device Vin as

Vin ¼ Vox þ VS; ð7:12Þ

with

Vox ¼ Foxdox; ð7:13Þ

where Fox and dox are the electric field in the oxide and the oxide thickness, respectively.

At the oxide/nc-Si interface,

1oxFox ¼ 1SiFSi; ð7:14Þ

where 1ox; 1Si and FSi are the effective dielectric constant of the oxide/nc-Si layer, the bulk

silicon and the electric field on the bulk silicon side of the interface, respectively. On the

bulk silicon side,

FSi ¼
q

1Si

NDw; ð7:15Þ

in which q and ND are the electronic charge and the doping density of the substrate,

respectively, and the depletion width w is given by w ¼ ð21SiVS=qNDÞ
1=2: Combining these

expressions, we arrive at

Vox ¼
ffiffiffiffiffiffiffiffiffiffiffi
2q1SiND

p dox

1ox

ffiffiffiffi
VS

p
; C

ffiffiffiffi
VS

p
: ð7:16Þ

As a zeroth order approximation, the oxide/nc-Si layer is modeled as a constant resistor, R0;

with additional resistors, R1A; R1B and R1C in parallel with the first resistor being

successively added as the contact Fermi level sweeps through the energy levels, E1A to E1C

of the parallel particles shown in Figure 7.21. The multiplication factor M is given by

M ¼ 1=ð1 2 ðV =VBÞ
nÞ; with V and VB being the applied and the breakdown voltage, with an

empirical parameter n (Miller, 1957; Manduteanu, 1985). Figure 7.21 shows the electrical

equivalent circuit model for the tunneling process involved (Boeringer and Tsu, 1994).

For convenience, we assume a symmetrical double barrier structure, then

Vox ¼ 2
E1

q
þ

q

Ceff

; ð7:17Þ

where E1 , 0:18 eV is the first energy level in a 5 nm QD (Tsu, 1990) and Ceff is given by

the increment of the total energy stored to be treated in the next chapter (Tsu, 1993). Since
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Figure 7.21. Electrical equivalent circuit model showing parallel conduction through parallel particles and

avalanche multiplication in the substrate with a multiplication factor M: After Boeringer and Tsu (1995), with

permission.

Figure 7.22. Measured and theoretically fitted I –V of a device at 300 K. After Boeringer and Tsu (1995), with

permission.
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the applied voltage is known from the measurement, the constant C can be obtained from

Eqs. (7.12) and (7.16) as C equal to 0.08. The values of the resistors such as R1A; are

determined as the best fit to the measured plot. A remarkably good fit for a typical I –V is

shown in Figure 7.22 resulting in the parameters in Table 7.4.

Note that the energies E1; together with scaling the lowest energy given in Figure 7.1,

give us the diameter of the silicon particles in the fourth column of Table 7.4, in general

agreement with TEM and Raman measurements (Tsu et al., 1995).

The measured and theoretical I –V curves of a Si-QD device at 77 K have also been

fitted by the same procedure. Results show that two sets of staircases are involved,

consistent with the identification of two distinct groups of staircases corresponding to the

ground and the first excited states (Boeringer and Tsu, 1994). It should be quite obvious

that the bulk of our experimental data were stable and repeatable after we learned how to

form the as-fabricated samples electrically. Our basic understanding in terms of tunneling

through these crystallized silicon nano-particles embedded in an oxide matrix may be

fitted to our theory using an equivalent circuit with parallel paths. The negative side is the

fact that only a very small percentage of the total number of particles covered by our

relatively large contact is active. So the dream of a silicon QD field effect transistor (FET)

is far from a reality.

7.5. INFLUENCE OF LIGHT AND REPEATABILITY UNDER MULTIPLE SCANS

My last graduate student, Chen Ding, working on a nc-Si QD embedded in an amorphous

oxide matrix, needed a thesis to graduate and he has just completed our latest I –V and

C –V set-up. Urged by Nicollian to make one more effort to evaluate whether our idea of

making a silicon-based QD FET is viable, I assigned Ding to the task of putting together

the new features we have learned since 1989–1990, to fabricate the best devices ready for

new simultaneous measurements of the Re- and Im-parts of the current and conductance.

Instead of following Poindexter’s suggestion that we need to increase the annealing

temperature to 12008C, we built a current limiter for electrical forming under forward bias.

The results were striking in some sense and still disappointing when it comes to possible

implementation as a real device. Figure 7.23 shows typical conductance with repeated

Table 7.4. Parameters of the three particles for the theoretical fit to the experimental data in Figure 7.22.

R0 ¼ 58; 000 V; n in Eq. (7.12) ¼ 1.8 and VB ¼ 45 V

nc-Si Vox at E1 (V) E1 (eV) Calculated diameter (Å) R through E1 (V)

A 0.426 0.170 51.4 12,000

B 0.450 0.180 49.9 8900

C 0.477 0.191 48.5 9000
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scans. Note that the G–V is totally stabilized from the fourth scan on. This result alerted us

that perhaps we should have formed electrically for longer. Several attempts to form

longer did result in totally repeatable G–V right from the first scan. However, we also

learned that a better procedure involves first using the forming with forward bias, followed

by “forming in the reverse bias”, i.e. using the repeated scans to stabilize the structure

further. This procedure is successful, however, Nicollian said that no one in his right mind

would contemplate using such a device. Meanwhile, while working as a consultant to SI

Diamond Inc., I learned, to my surprise, that all electroluminescent (EL), devices require

electrical forming. When I told Nicollian about this fact, he replied, “That is why EL

devices never made the grade”. Within this background, let me show our new results.

Even more amazing is the effect of light shown in Figure 7.24. The magnitude and phase

of G is plotted against the bias voltage with light, WL, and without light, NL. Under

illumination with a focused microscope light through a filter, typically steps in G–V are

transformed to peaks in G–V : If there is already a peak, then the peak becomes much

sharper and larger under illumination. Using Si, Ge and GaAs wafers polished on both

sides as filters, as well as various Corning filters, it was established that light-induced

effects disappear when the photon energy falls below the fundamental gap of silicon. In the

case of Figure 7.24, the conductance peak is almost four times higher with light. On the

phase angle F versus V plot, a 2258 dip near the peak of G totally disappears under

illumination. The disappearance of a substantial phase shift may be interpreted by filling

traps from light generated carriers, resulting in a stronger conductance peak. Plots made by

Figure 7.23. Conductance versus bias voltage under multiple scans. There is self-electrical annealing with

stable G–V after the fourth scan. From Ding’s thesis (1994).
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Chen showed three conductance steps with substantial peaks appearing under illumination

at the leading edge of each step. Since the generation of e–h pairs lowers the substrate

resistance, the peaks are shifted toward lower bias voltage under illumination, about a

0.5% reduction. Actually, we should not be surprised by our finding because C –V

measurements have been used by Nicollian to identify traps all along (Nicollian and

Brews, 1982). There is some difference though. Our procedure does not encompass the

Re- and Im- parts of G; rather the amplitude and phase of G:

7.6. SUMMARY

To summarize, although occupation of these quantum states results in a more spherically

symmetric system, it is not really exact. My estimate is that the two lower excited states,

(012) and (013) in Figure 7.1 are merged and the upper-most state (111) is not. Before we

discovered the effects of illumination, we thought that trapping is due to a non-conducting

QD located next to a conducting QD. The non-conducting QD is charged and raises the

potential at the conducting QD so that no extra voltage is needed to move the charges into

the conducting dot. The change in conductance is very close to what one would expect

Figure 7.24. Conductance versus bias voltage. The peak in G is almost four times higher with light. On

the phase angle F versus V plot, the 2258 dip near the peak of G disappears under illumination at a photon

energy .1.1 eV. After Ding and Tsu (1995), with permission.
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from nG0; with G0 given by the fundamental unit of conductance ,39 mS, and n;

the electron occupation number, consistent with Pauli’s exclusion principle. Whenever

the first jump in conductance involves two electrons, our data is more predictable,

whereas when the first jump involves only one electron, it is more common to observe

telegraph-like G–V : This fact indicates that a defect traps an electron and holds on to it by

drastically changing the potential and blocking another electron. This type of process is

precisely what generates random telegraph-like signals. The reason such processes take

place far more often in QD tunneling than quantum well tunneling, first of all, is that a

large number of electrons participate in the latter process from the transverse degree of

freedom overwhelming the trapping effects. And secondly, the state in a nano-scale QD is

quite similar to a defect so that the coupling is large. After we discovered the effects of

light, we realized that the process seems to be caused by a variety of trappings, although

the data did not rule out trapping from non-conducting dots, instead of some unknown

defects. I attended the NATO Advanced Research Workshops on the Physics of Few-

Electron Nanostructures held in Noordwijk in 1992. I told Nicollian how others were using

lithographically produced devices with much more consistent data. He did not seem to be

swayed by this. He asked me whether these experiments were at room temperature.

I replied, “Of course not”. He then said that we should continue with our work but that we

need to fine tune our process. Meanwhile I was having success with semiconductor atomic

superlattices (see Chapter 6) with results that seemed to make them far more promising as

a potential device. Nicollian passed away in 1995 and our pursuit of the Si-based QD

device came to an end. Looking back, what could be simpler than forming Si-particles by

annealing from the amorphous phase. Obviously if I had known all the complications,

most probably I would not have devoted so much effort to it. Nevertheless, the

understanding needed to unravel all the experimental data does present an intellectual

challenge which requires more than solid state physics and atomic physics in what should

be properly referred to as the physics of nano-electronics as well as good engineering.

The complexity of understanding in what is involved is mind boggling. In semiconductor

physics, we are used to a few things, such as effective masses, even effective mass tensors

and energy bands that are enumerated in reciprocal space with a designation following

group symmetry, etc. The subject is far from child’s play, nevertheless, we barely need to

keep check of induced charges because surface effects are mostly negligible. In QD, there

may be equal or more atoms located on the surface and energy states must take into account

these induced charges. Furthermore one needs to distinguish whether the interacting

charges are from another source, such as from the matrix, or from the same charge on the dot,

because the former case requires the inclusion of Heisenberg’s exchange term, while the

latter involves only the direct Coulomb term. Since the position of these QDs is not precisely

controlled, their couplings are not uniform. It is dangerous to assign broadening to account

for a distribution of sizes and separations, because there are “feedback” effects. For

example, trapping of an electron from a QD by a nearby impurity results in a change of
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coordinates to minimize the strain energy. In a simple picture, there is a relaxation resulting

in a change of configuration. This is simply a mini local phase transition, which results in

hysteresis. We are not saying that none of these phenomena ever happen in our electronic

devices. The difference is in sheer numbers. In a low power MOSFET, there are perhaps far

more than 103 electrons. Losing a few to a trap, or even some being controlled by a trap is

hardly serious. For a typical QD tunneling no more than few electrons are involved in the

process. Here, losing couple electrons is a serious business. Along this line of argument, I

predict the real issue with the implementation of nano-electronics is not so much as how well

we can “clean up” the act, rather in what role we expect a device to function. S.S. Chen, now

at Florida State University, told me once that the reason why “fuzzy logic” was hot was

because at one time there were great expectations awaiting its development. I dare predict

that QD nanoelectronics will never be developed into wide usage in computer technology;

rather, it will be used in some areas yet to be discovered.

The device world has been fascinated by the Coulomb blockade leading to the single

electron transistor (SET) (Fulton and Dolan, 1987), which is seemingly the ultimate

electronic device. The fact is that trapping is a very difficult “road block” to overcome.

With millions of years of evolution, living organisms have developed a system that might

be loosely described as “single ion transistor”.
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Chapter 8

Capacitance, Dielectric Constant and Doping
Quantum Dots

8.1. CAPACITANCE OF SILICON QUANTUM DOTS

We show in the last chapter that charge accumulation plays a major role in the energy

states of the quantum confined nano-crystalline silicon (nc-Si). We are all familiar with the

striking difference between the atomic spectra of the hydrogen and helium atoms caused

by the presence of an additional electron. The physics is even more complicated when the

difference in the static dielectric constant of silicon (,12) and a-SiO2 (,4) results in

induced polarization. A single electron inside a silicon sphere can interact with its induced

polarization in the oxide. With two electrons inside the silicon, electrons and induced

polarization interact, resulting in a complicated picture. Adding the first electron results in

hydrogen-like state with the interaction terms described. However, adding a second

electron requires a solution somewhat similar to the helium-like state which has

interactions between the two electrons as well as with all the induced charges. The use of

perturbation limits our results essentially to the ground state (Babic et al., 1992). Because

of complicated interactions, expressing the extra energy due to the addition of an electron

in terms of capacitance is not a constant representable by geometry as in classical theory.

Only for a large quantum dot does the use of constant capacitance represents a fair

approximation (Likharev, 1991). The single most important fact is that the energy of the

quantum system is much larger than the electrostatic energy due to the charge of

the electron. The ground state energy difference between zero and one electron defines the

effective capacitance C1, and similarly the ground state energy between one and two

electrons defines the effective capacitance C2, etc. In principle, this process can go on to Cn

in terms of the energy difference between n and n þ 1 electrons. However, our approach

cannot be readily generalized to more than two electrons as presented by Macucci et al.

(1993, 1995), where the important induced terms discussed above are not included. In spite

of the fact that our results use a perturbative calculation, because we took into account the

induced charges, a detailed account should be of considerable interest.

We embedded a spherical silicon dot of radius a in an a-SiO2 matrix. Instead of taking

the actual barrier height of 3.2 eV between Si and a-SiO2, an infinite barrier height is

assumed. The consequence is that for a small radius, except for the ground state and

possibly few low-lying states, higher states are not confined. This is why we restricted our

calculation to the ground state even if an exact, instead of perturbative method is used. Let

us point out how complex the problem would be using a finite barrier height. The tailing
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of the wavefunction into the matrix necessitates replacement of the dielectric discontinuity

by a smooth function in order to avoid the singularity of the associated polarization energy

(Stern, 1978). Note that this approximation does not apply for GaAs/AlGaAs dots. For

a . 1 nm, the effective-mass approximation and the static dielectric constant are

applicable. However, instead of taking the mt and ml as treated in the previous chapter,

an isotropic mass of 0.26 me and the relative permitivity of Si, 11 ¼ 12 and that of a-SiO2,

12 ¼ 4 are used. Before we delve into the calculation, let me point out that the charge of an

electron is assumed to be infinitesimally divisible in classical theory which does not really

apply at all. And taking the discreteness of electronic charge, even in a classical

description, is very complex.

8.1.1 Electrostatics

The calculation of the electrostatic energy terms follows the work by Brus (1983, 1984)

and Böttcher (1973). Note that the usual simplification using the image method does not

apply because of the curved boundary and the fact that the dielectric discontinuity is not a

sheet of infinite conductivity. Thus, Green’s function must be used. Green’s function

inside the sphere is

Ginðr; r
0Þ ¼

1

4p1011lr 2 r0l
þ
X

l

Alr
lPlðcos gÞ; ð8:1Þ

and outside the sphere

Goutðr; r
0Þ ¼

X
l

Blr
2ðlþ1ÞPlðcos gÞ; ð8:2Þ

in which r, r0 are the position vectors of the field point and the charge point, respectively,

and g is the angle between these vectors, measured from the origin at the center of the

sphere. The coefficients Al and Bl are determined by the electrostatic boundary conditions

at the Si/a-SiO2 interface. With the use of infinite barrier height, the wavefunction is zero

at the surface of the Si sphere, Bl values are not needed for the evaluation of the matrix

elements and

Alðr
0Þ ¼

ð11 2 12Þðl þ 1Þr0l

4p1011½12 þ lð11 þ 12Þ�a
2lþ1

: ð8:3Þ

In the case of one electron, an electron induces the bound surface charge density which

generates electrostatic potential at the electron’s position. Energy associated with this term

must include a factor of 1
2
; since it is a self-interaction term. Thus this energy of self-

polarization becomes

fsðrÞ ¼
1

2

X
l

q2ð11 2 12Þðl þ 1Þr2l

4p1011½12 þ lð11 þ 12Þ�a
2lþ1

; ð8:4Þ
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where the electronic charge is q. In the two-electron case, there are four terms: self-

polarization terms for each electron, Coulomb interaction and polarization interaction. The

latter arises as follows: one electron induces a bound surface charge density, which

interacts with the second electron. The Coulomb term has the form

fcðr1; r2Þ ¼
q2

4p1011lr1 2 r2l
; ð8:5Þ

and from Eqs. (8.1) and (8.3), the polarization term is

fpðr1; r2Þ ¼
X

l

q2ð11 2 12Þr
l
1rl

2Plðcos gÞ

4p1011½12 þ lð11 þ 12Þ�a
2lþ1

: ð8:6Þ

Presently, my group is calculating the positions of up to 20 electrons minimizing the total

energy, ES þ EC þ EP:

8.1.2 Quantum Mechanical Calculation

The Hamiltonian for the one-electron case consists of the kinetic energy for the infinite

barrier potential: VðrÞ ¼ 0; r , a;1; r . a; and the self-polarization energy. An exact

analytical treatment of the Schrödinger equation is too complex; we resort to the

perturbation theory. The spherical Bessel functions are the solutions of the zeroth order

Hamiltonian that includes the kinetic energy and infinite barrier potential terms. The

lowest eigenfunction

c0ðrÞ ¼ Nj0ðpr=aÞY00ðVÞ; ð8:7Þ

in which N ¼ a23=2I21
0 ; where I2

0 ¼ 0:0506606: The self-polarization energy is defined by

ES ¼ kc0ðrÞfsðrÞc0ðrÞl

¼ N2
ð

j2
0ðpr=aÞY2

00ðVÞ
X

l

q2ð11 2 12Þðl þ 1Þr2l

8p1011½12 þ lð11 þ 12Þ�a
2lþ1

 !
r2dr dV ð8:8Þ

contains a dimensionless series to be summed numerically,

X
l

l þ 1

11 þ lð11 þ 12Þ

ð1

0
x2lj20ðpxÞx2dx; ð8:9Þ

equal to 0.01516. The final form of the self-polarization energy for the ground state is thus

ES ¼
q2ð11 2 12Þ

8p1011a
0:299; ð8:10Þ

which scales as the inverse of the radius a proportional to 11 2 12: Note that if the

dielectric constant of the matrix is higher than the quantum dot, the self-energy term
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changes sign. The total ground state energy is then

E1 ¼ 144:6=a2 þ 1:44=a; ð8:11Þ

where the units of the energy and the radius are eV and Å, respectively.

The two-electron Hamiltonian includes one-electron terms as before and the Coulomb

and polarization terms of the two-electron interaction

H ¼
2h2

2m
ð72

1 þ72
2ÞþVðr1ÞþVðr2Þþfsðr1Þþfsðr2Þþfcðr1;r2Þþfpðr1;r2Þ: ð8:12Þ

We treat the kinetic energy for the infinite barrier as the zeroth order, and all other terms by

first order perturbation theory. The lowest order spherical Bessel function is taken as the

wavefunction for each electron in the ground state. An anti-symmetrization is achieved

through spin components. The one-electron terms of the two-electron ground state energy

are the same as in the one-electron case. The Coulomb matrix element is evaluated in a

similar manner as the perturbation treatment of the helium ground state (Bransden and

Joachain, 1983),

EC ¼ c0ðr1Þc0ðr2Þ
q2

4p1011lr1 2 r2l
c0ðr1Þc0ðr2Þ

* +
; ð8:13Þ

which reduces to

EC ¼
q2

4p1011a
I24
0

ð1

0

ð1

0
j20ðpx1Þj

2
0ðpx2Þ £

1

lxl
x2

1x2
2dx1dx2: ð8:14Þ

The dimensionless double integral which is computed numerically is equal to 0.00458545.

The polarization matrix element

EP ¼ c0ðr1Þc0ðr2Þ
X

l

q2ð11 2 12Þðl þ 1Þrl
1rl

2Plðcos gÞ

4p1011½12 þ lð11 þ 12Þ�a
2lþ1

c0ðr1Þc0ðr2Þ

* +
: ð8:15Þ

Because of the orthogonality relations for the spherical harmonics, all terms except l ¼ 0

vanish. The polarization energy is

EP ¼
q2ð11 2 12Þ

4p101112a
: ð8:16Þ

It is interesting to note that both Coulomb and polarization energies contain only the l ¼ 0

term, while the self-polarization energy contains contributions from all Legendre

polynomials. The two-electron ground state energy can be written as

E2 ¼ 289:3=a2 þ 7:42=a: ð8:17Þ
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The kinetic energy term becomes equal to the other components of the total energy at a

radius of 39 Å. For a larger radius than 39 Å, one should use a self-consistent calculation.

8.1.3 Classical Calculation

The behavior of the system for a very large spherical well approaches its classical limit.

The length scale approaches the coherence length, assumed to be 100 Å. At this radius, the

kinetic energy estimated by the use of the uncertainty principle is ,1 meV, which is

negligible compared with the electrostatic terms. For a single electron, the polarization has

a minimum value with the electron at the center, and excluding the self-energy of the

electron, the self-polarization energy is

EC
1 ¼

1

2

1

12

2
1

11

� �ð1

a

D2

10

d3r ¼
1

2

11 2 12

1112

ð1

a
4pq2 r2

16p210r4
dr; ð8:18Þ

which is equal to

EC
1 ¼

1

2

11

12

2 1

� �
q2

4p1011a
: ð8:19Þ

Mathematically for two electrons, the problem is harder classically than with quantum

mechanics, because we need first to find the positions of the two electrons inside a

spherical well in the ground state by minimization of the energy that is made up when the

repulsive Coulomb and polarization terms push them to the boundary and the self-

polarization term push them away from the boundary towards each other. Since the

positions are symmetrical, we can just take b as the position from the center determined by

the minimization of the total electrostatic energy. In terms of x ¼ b=a;

EC
2 ¼

q2

4p1011a

1

2x
þ ð11 2 12Þ

X
l

x2lðl þ 1Þ½1 þ ð21Þl�

12 þ lð11 þ 12Þ

 !
: ð8:20Þ

The minimum, EC
2 ðminÞ ¼ 5:0284; is found numerically at x ¼ 0:594: Table 8.1 gives the

calculated classical electrostatic energies for radius a in Å. Evidently it is the discrete

nature of the electronic charge that necessitates this procedure.

Before we discuss the significance of our classical calculation, a minimization of the

polarization energy to find the most probable position of the two electrons is necessary

owing to the discrete nature of the electronic charge. For an infinitely divisible charge

Table 8.1. Classically calculated one- and two-electron electrostatic energies in eV

a (Å) 10 20 30 40 60 80 100 120

EC
1 0.12 0.06 0.04 0.03 0.02 0.015 0.012 0.01

EC
2 0.60 0.30 0.20 0.15 0.10 0.075 0.06 0.05

D 0.48 0.24 0.16 0.12 0.08 0.06 0.048 0.04
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density, the simple classical result in terms of the Poisson’s equation for charges inside

a dielectric sphere in SI units gives

Vðr , aÞ ¼
q

4p10

½1 þ 0:5ð10=11Þ½1 2 ðr=aÞ2��; ð8:21aÞ

and

Vðr . aÞ ¼
q

4p10r
; ð8:21bÞ

applicable for uniformly distributed charges inside a dielectric sphere of 11 immersed in

10: It should be clear that the complication comes from the discreteness of the electronic

charges and is unrelated to quantum mechanical considerations. In other words,

capacitance should always be defined in terms of the extra energy stored when an extra

electron is added.

Table 8.2 gives the calculated one- and two-electron ground state energies from

quantum mechanics. The superscripts k, s, c, p on the energy E refer to kinetic, self-

polarization, Coulomb and polarization interaction terms, respectively. Those values

beyond a ¼ 40 Å, listed in italic, for providing a general trend, indicate that values are

very approximate because a self-consistent calculation would be needed.

We define the quantum capacitance and the classical capacitance by

EQ
nþ1 2 EQ

n ¼
1

2

q2

CQ
nþ1

and EC
nþ1 2 EC

n ¼
1

2

q2

CC
nþ1

; ð8:22Þ

where the superscripts Q and C are for quantum and classical cases, respectively. Our

results are limited to n ¼ 0 and n ¼ 1 because of the use of perturbation calculations.

However, for a finite barrier height, only a few electrons can be confined in a quantum dot.

Table 8.3 gives the values of CC
nþ1 and CQ

nþ1 for n ¼ 0, 1 with a in (Å) and capacitance C in

(fF) with the notation ð2mÞ ¼ 102m:

Table 8.2. One-and two-electron ground state energies in eV from quantum mechanics

a (Å) 10 20 30 40 60 80 100 120

Ek
1 1.446 0.362 0.161 0.091 0.040 0.023 0.015 0.010

Es
1 0.144 0.072 0.048 0.036 0.024 0.016 0.014 0.012

E
q
1 1.59 0.434 0.209 0.121 0.064 0.039 0.028 0.022

Ek
2 2.893 0.723 0.321 0.182 0.080 0.045 0.029 0.020

Es
2 0.288 0.144 0.096 0.072 0.048 0.036 0.029 0.020

Ec
2 0.214 0.107 0.071 0.054 0.036 0.027 0.021 0.018

E
p
2 0.24 0.12 0.08 0.06 0.04 0.030 0.024 0.020

E
q
2 3.065 1.094 0.568 0.368 0.204 0.138 0.103 0.082

D 2.05 0.66 0.36 0.25 0.14 0.100 0.75 0.060
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8.1.4 Summary of Our Calculation

For the convenience of the reader, all the calculated results are summarized below.

Quantum mechanical regime (1 nm , a , 4 nm, extrapolated to a . 4 nm):

1. One-electron ground state energy: E1
0 ¼ 144:6=a2 þ 1:44=a

2. One-electron lowest excited energy: E1
1 ¼ 295:9=a2 þ 1:55=a

3. DE1 ¼ 1:51:3=a2 þ 0:11=a

4. Two-electron ground state energy: E2
0 ¼ 289:3=a2 þ 7:42=a

5. Two-electron lowest excited singlet state energy: E2
0 ¼ 440:5=a2 þ 7:89=a

6. DE2 ¼ 151:2=a2 þ 0:47=a

Classical regime (a . 10 nm):

1. One-electron located at the center of a sphere of radius a: E1
c ¼ 1:2=a

2. Two-electrons located at ðr ¼ b;f ¼ 0Þ and ðr ¼ b;f ¼ pÞ

3. Total electrostatic energy minimized with respect to b, gives b ¼ 0.594 and E2
c ¼ 6:0=a

4. DE2 ¼ 4:8=a

Figure 8.1 shows the calculated capacitances. Even though quantum capacitance

approaches the value for the classical case, it is still somewhat below at 100 nm. At 2 nm,

the quantum capacitance C2
Q is only 3.6% and C1

Q is only 14% of their corresponding

classical values. On the other hand, what is most unexpected is that for the classical C2
C it is

consistent for all a to be 25% of C1
C: Obviously when the number of electrons approaches

infinity, the effect due to the discrete nature of the electronic charge should disappear.

The calculated energy for a sphere with one electron is somewhat higher than the value

given in Chapter 7 because of the self-polarization term included in this calculation, which

is very important as far as the capacitance is concerned. In resonant tunneling, the voltage

required to align the Fermi level of the contact with the quantum energy depends on the

energy calculated self-consistently, which is equivalent to the inclusion of this

capacitance. For one electron, the self-polarization term comes from the coupled

Poisson’s equation in a self-consistent calculation. However, with two electrons, we have

Table 8.3. Capacitances for n ¼ 0 and 1 with Q for quantum and C for classical cases

a (Å) 10 20 30 40 60 80 100 500

CC
1 6.67(24) 1.33(23) 2.00(23) 2.67(23) 4.00(23) 5.33(23) 6.67(23) 3.33(22)

CC
2 1.67(24) 3.33(24) 4.97(24) 6.67(24) 1.00(23) 1.33(23) 1.67(23) 8.35(23)

CQ
1 5.03(25) 1.84(24) 3.83(24) 6.35(23) 1.25(23) 1.97(23) 2.77(23) 2.30(22)

CQ
2 3.90(25) 1.21(24) 2.22(24) 3.20(24) 5.73(24) 8.20(24) 1.10(23) 6.35(23)

CQ
1 =C

C
1 0.075 0.138 0.192 0.238 0.313 0.370 0.416 0.690

CQ
2 =C

C
2 0.023 0.036 0.045 0.048 0.058 0.062 0.065 0.076
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shown that in addition to this self-polarization term, we need to include the polarization

and Coulomb terms. For example, at a ¼ 10 Å, in addition to the kinetic energy at

2.893 eV, the self-polarization energy is 0.288 eV and the two extra terms, the interaction

term from the Coulomb and polarization provide another 0.454 eV, raising the kinetic

energy term by 25%. At a ¼ 20 �A; the kinetic energy term is raised by 50% and at

a ¼ 40 Å, it is raised by 100%. Therefore, as the particle size increases, eventually the

kinetic energy is inconsequential such that in a Coulomb blockade (van Houten and

Beenaker, 1989), only the capacitance represented by the classical electrostatic stored

energy plays a role. As we see, the reverse is true for small size nanoparticles, where the

dominance of the kinetic energy eventually takes over. However, in real structures, this

simple picture also breaks down because the kinetic energy is “pinned” by the finite barrier

height so that the dominant factor in most cases is still due to the charging effect, and

therefore significantly affected by the space charge stored in the states of a quantum dot.

We are currently extending our calculation to more than two-electrons, up to four in all,

when it is a formidable task even to calculate the case of three electrons classically. Our

aim is to verify the results of Macucci et al. (1993, 1995), which give higher values for odd

numbers and lower values for even additions of electrons. It is interesting to note, as we

have shown, that this phenomenon is embodied even in classical electrostatics. In the next

section, we shall deal with the reduction of the dielectric constant of a quantum dot, which

we have not included in this section for the obvious reason that we did this work before we

realized that the dielectric constant depends on the size of the quantum dot.

Figure 8.1. Calculated capacitances, where subscript C stands for classical and subscript Q stands for quantum

mechanical and superscripts 1 and 2 are for adding the first and the second electron, respectively.
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8.1.5 Comparison with Other Approaches

In attempting to describe a quantum dot as a system of many-electron artificial atoms

(Bednarek et al., 1999) used Hartree–Fock for a spherical quantum dot embedded in an

insulating matrix with a spherical confinement potential of radius a and a finite barrier

height V0: First of all, with a finite barrier height, whenever the radius a is too small for a

given V0; the bound state does not appear, while the use of an infinite barrier allows bound

states for an arbitrarily small radius of the quantum dot. Therefore, their solution in

principle should represent an improvement for general applications. Taking the

chemical potential mn in units of Ry; the Rydberg for silicon, defined by

Ry ; h2=2mpðap
BÞ

2 ¼ 24:5 meV with a Bohr radius ap
B ; a011=m

p ¼ 2:4 �A; from their

Figure 5 plotted against the radius in units of ap
B; I tried to convert their calculated results

to compare with our results. (For silicon, 11 ¼ 12 and ml ¼ 0:92me and mt ¼ 0:19me for

an approximate isotropic effective mass mp=me ¼ 0:26 and a Bohr radius a0 ¼ 0:529 �A:)

I found that for DEn;nþ1 ; mnþ1 2 mn; their values lie between two groups: DEn;nþ1 for

n ¼ 2; 8;… which is ,40% lower than our calculated DE2 and for n ¼ 1; 3; 7; 8;… which

is about a factor of three lower. Obviously it is caused by the variation caused by following

their “periodic table”. At this point I would like to express my view on their calculation, as

well as the more fundamental aspect of invoking an artificial atom model. First of all an

atom is neutral because as electrons are added to the atoms going from hydrogen to Pb, for

example, the atoms remain neutral because the extra electrons are precisely balanced by

the extra protons inside the nucleus. Therefore, we really should not take too seriously any

parallelism between atoms and quantum dots. We can call a quantum dot an artificial atom

if we like, but the physics is very different, particularly as we have shown that the

difference in dielectric constants between the dot and the matrix produce very large

additional energies. Not only the direct Coulomb interaction and the Heisenberg exchange

term should be included between the added electrons and the electron already present,

these interactions should be taken into account between the induced ‘image charge’ of one

with that of the other, including the polarization charges of the two. The reason why their

results do not agree with ours in the region where V0 ¼ 50Ry; which should allow a fair

comparison, comes from the fact that they assumed no dielectric discontinuity between the

quantum dot and the matrix and we found that it is essential to take that into account. I also

take issue with their inclusion of many electrons similar to Macucci et al. (1993). A

realistic self-consistent calculation including the contacts would have distorted the

potential profile rendering a meaningless model of an artificial atom.

I want to discuss some preliminary classical calculations with discrete electronic

charge.1 We have gone from n ¼ 2 as far as n ¼ 20 electrons, following Platonic Solid

Geometry, for n ¼ 4; 6; 8; 12; 20; corresponding to going from a tetrahedron to

1 The platonic solid consists of five shapes, and was named after the ancient Greek philosopher Plato, who

speculated that these five solids were the shapes of the fundamental components of the physical universe.
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a dodecahedron. Electrons are placed at the vertices located at equal distances from the

origin. We found that the minimized self-polarization energy is mostly below the classical

value until n ¼ 12 is passed. In the paragraph above it seemed that there is a difference

between even and odd numbers of electrons in the quantum model. Now we know that this

is classical but with discrete values for the electronic charge. The classical calculation

allows us to include trapped charges at the defect sites inside the oxide gate capacitor,

which is really quite relevant. We hope that our results will enrich the understanding of

possible instability in the gate oxide in the form of random telegraph noise.

8.2. DIELECTRIC CONSTANT OF A SILICON QUANTUM DOT

As the physical size approaches several nanometers, reduction in the static dielectric

constant 1 becomes significant. A simple one oscillator model, an extension of the Penn

model, taking into account the quantum-confined silicon sphere of radius a and wire, was

first introduced at the 1992 Materials Research Society Boston Conference (Tsu et al.,

1993). This work presented a brief derivation of the unpublished work on 1ðaÞ by Tsu and

Ioriatti at the time, leading to the drastic increase in the donor and exciton binding energies

and also a model for the self-limiting effect on electrochemically etched porous silicon

caused by the reduction in the dielectric constant. The calculated size-dependent 1 is very

close to 1ðqÞ calculated by Walter and Cohen (1970) taking q ¼ p=a: The important point

is that the expression for the size-dependent dielectric constant involves no adjustable

parameters. Therefore, the expression can apply to any solids. It is noteworthy that 1ðaÞ is

more suitable for calculations of donor and exciton binding energies in a finite quantum

confined nanoparticle when the full electrostatic boundary value problem must be tackled.

Optical reflectivity measurements show that the refractive index is significantly reduced in

porous silicon, PSi, beyond what can be accounted for from porosity, ,70% (Harvey et al.,

1992). Using the Bruggeman effective medium approximation it was found, at 5145 Å,

that the n(Si) of an Ar laser is 4.2, so that an n(PSi) of 1.8 cannot be all due to voids

(Aspnes, 1981). An additional 20% reduction may be due to a quantum size effect as was

understood from the reduction calculated for a superlattice (Tsu and Ioriatti, 1985).

Figure 8.2 gives the reflectance at two polarizations at 6328 Å. The best fit gives n ¼ 1:48:

It was concluded then that the additional significant reduction comes from the size-

dependent 1:

Between the time Ioriatti and I first submitted our manuscript in 1993 and when it finally

appeared in print in 1997 (Tsu et al., 1997), Babic and I had been busy applying 1ðaÞ to the

calculation of the donor and exciton binding energies, as well as developing a model

explaining the self-limiting process in electrochemically etched porous silicon. Mean-

while, several calculations appeared between 1994 and 1996 (Wang and Zunger, 1994,

1996a,b; Lannoo et al., 1995), with results almost identical to our simple calculation.
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A good review of the size-dependent 1ðaÞ appeared (Yoffe, 2001); however, his statement—

that the model developed by Tsu et al. makes many more assumptions relative to other more

elaborate calculations—needs to be clarified. We shall see that in our model, within

the assumptions that were made such as uniformity of the medium, no local field correction

and no wavefunction extension beyond the quantum dot, there are actually no parameters

other than the number of valence electrons, the bulk dielectric constant of silicon, the

effective masses and the energy denominator, which is taken to be 4 eV. I learned about

this 4 eV value some years ago from Morrel Cohen who told me that the important energy

is the atomic silicon transition between the ground state and the lowest excited states,

a point also used in conjunction with the HOMO–LUMO calculation in Chapter 7.

Reduction of the static dielectric constant becomes significant as the size of the

quantum-confined physical systems, such as quantum dots and wires, approaches the

nanometer region. A reduced static dielectric constant increases Coulomb interaction

energy between electrons, holes and ionized shallow impurities in quantum-confined

structures. A size-dependent static dielectric constant is especially suitable for situations

that involve dielectric discontinuity and require a full electrostatic boundary value

problem to be solved as in doping quantum dot (Tsu and Babic, 1994a–c), finding the

exciton binding energy in Si QD, (Babic and Tsu, 1997) and making a model for the self-

limiting mechanism when etching PSi (Babic et al., 1992; Tsu and Babic, 1993). For those

who might question the simple model in favor of a full pseupotential computation (Wang

and Zunger, 1994), or a semiempirical LCAO computation (Lannoo et al., 1995), we

emphasize that our simple model leading to the derivation (Tsu et al., 1997) contains no

adjustable parameters and gives better physical insight. In what follows, more detail about

the model and the thought that went into it are given.

Figure 8.2. Reflectance from porous Si at two polarizations. The best fit gives n , 1:5; using the measured

porosity of 80%. After Tsu et al. (1993), with permission.
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Strictly speaking, the dielectric function 1 is only definable in an unbounded region

of space. In Maxwell’s equation, it is simply the constitutive parameter of the medium.

The wave vector-dependent dielectric function 1ðqÞ has been derived for cubic

semiconductors such as Si, Ge and GaAs (Penn, 1962; Walter and Cohen, 1970; Baroni

and Resta, 1986). This 1ðqÞ has had many applications, in particular, in the calculation of

screened shallow impurity potentials (Morita and Nara, 1966). Theoretical treatment of the

dielectric constant in quantum well systems (Kahen et al., 1985; Tsu and Ioriatti, 1985),

shows that a significant reduction of 1 occurs when the width of the quantum well is

reduced to several nanometers or less. However, application of the rigorous 1ðqÞ in

calculations of the donor or the exciton binding energy in quantum dots/wires that have

electrostatic boundary conditions to contend with, represents a formidable task. These

calculations become much more manageable if, instead of 1ðqÞ; a constant but size-

dependent effective dielectric constant 1ðaÞ is used. While the concept of a constant size-

dependent effective dielectric constant for a finite body is not rigorous, it represents an

approximation that is very suitable for calculations that involve the electrostatic boundary

value problem at dielectric discontinuities.

The single-oscillator model is based on a modification of the model by Penn (1962),

taking into account the discrete eigenstates of quantum-confined nanoparticles while

keeping the oscillator strength fixed and equal to its bulk value. This last assumption has

been referred to by Yoffe (2001) as a possible weakness of the theory. The initial version

of this work (Tsu et al., 1993) contains DE that is a factor of 2 too large, but which

subsequently has been corrected when applied to the exciton recombination and binding

energies in silicon nanocrystallites (Tsu and Babic, 1993) and to the donor binding energy

(Tsu and Babic, 1993). Wang and Zunger (1994) extended our initial formulation of the

size-dependent static dielectric constant 1ðaÞ of silicon quantum dots using an empirical

pseudopotential calculation. Lannoo et al. (1995) applied a semi-empirical LCAO

technique to calculate the static dielectric constant for silicon quantum dots related to

porous silicon. Unfortunately they also referred to the initial version of our work with the

factor of 2 error (Tsu et al., 1993) while in fact, the corrected version had already been

published long before and was used in the calculation of the donor binding energy by Tsu

and Babic (1994).

8.2.1 Size-Dependent 1ðaÞ

The response of a medium to an applied potential f0; with fi representing the induced

potential, such that the total potential, usually referred to as the self-consistent potential, f;

can be formulated with the use of the quantum mechanical analog of the classical Liouville

equation,

ih
›r

›t
¼ ½H; r�; ð8:23Þ
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in which H ¼ H0 þ H1ðr; tÞ and r ¼ r0 þ r1ðr; tÞ; where H0 is the one-electron

Hamiltonian which characterizes the quantum dot, including the nuclei and the boundary

conditions, H1 ¼ ef expðiq·r 2 vtÞ; and r1; the induced number density fluctuation due to

an applied potential f0: With the time dependence represented by eivt; the induced

electrostatic potential fiðrÞ is

fiðrÞ ¼ e
ð r1ðr

0Þd3r0

lr 2 r0l
; with f ¼ f0 þ fi: ð8:24Þ

Letting the eigen energy and the eigenstates of H0 be Ea and la .; then

H0lal ¼ Ealal; ð8:25Þ

and the number density fluctuation

r1ðrÞ ¼ e
X0

a;b

fa 2 fb

Ea 2 Eb

caðrÞc
p
bðrÞ

ð
d3r0caðr

0Þfðr0Þcbðr
0Þ; ð8:26Þ

and the self-consistent potential is represented by the integral equation

fðrÞ ¼ f0ðrÞ þ e2
ð d3r0

lr 2 r0l

ð
d3r00xðr0; r00Þfðr00Þ; ð8:27Þ

in which the susceptibility is given by

xðr0; r00Þ ¼
X00
a;b

fa 2 fb

Ea 2 Eb

caðrÞc
p
bðrÞcaðr

0Þcbðr
0Þ: ð8:28Þ

Not only is it necessary to contend with the integral equation (8.27), the difficulty comes

from the non-local susceptibility in Eq. (8.28). The problem is drastically simplified and

universally defined for unbounded, spatially uniform systems by

xðr0; r00Þ ¼ xðr0 2 r00Þ: ð8:29Þ

Using the convolution theorem of Fourier integrals where f0ðrÞ varies slowly compared to

the lattice constant, the q-dependent dielectric function becomes

1ðqÞ ¼ 1 2
4p

q2
xðqÞ: ð8:30Þ

The reason we go through the usual procedures elaborated by Ehrenreich and Cohen

(1959), and discussed in some detail by Harrison (1970), in arriving at Eq. (8.30) will be

made clear in order to offer an appreciation of the conditions under which a size-dependent

dielectric constant may be defined. It is not because we are dealing with an integral

equation (8.27) for the self-consistent potential, because step-by-step iterations can always

be used. The most fundamental issue is the assumption in Eq. (8.29), which is not true

under the boundary conditions, even if only the electrostatic boundary conditions are used.
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For a finite structure, xðr0; r00Þ – xðr0 2 r00Þ; there is no simple basis set for which the

integral equation can be solved for a general f0ðrÞ: Thus in principle, a universal scalar

dielectric function cannot be defined, although a response function does exist once

a special set of input/output arrangements have been specified. The approach of Wang and

Zunger (1994) involves the use of the pseudopotential calculation for the absorption and

obtaining a dielectric function with the Kramers–Kronig relation. Therefore, the

susceptibility in Eq. (8.29) is implicitly assumed. As far as neglecting the local field

correction is concerned, it should be much less than the maximum reduction of 10%

estimated by Harrison (1970), because in our simple approach, the dielectric constant of

the bulk silicon is used which, for the most part, has already accounted for most of the

corrections.

Extending the Lindhard formula for the Hartree dielectric function of a free electron gas

to semiconductors (Ziman, 1988), we obtain

1ðq;vÞ ¼ 1 þ
4pe2

q2

X
k;g

lkkleiq·rlk þ q þ gll2½f0ðkÞ2 f0ðk þ q þ gÞ�

Eðk þ q þ gÞ2 EðkÞ2 hvþ ihG
: ð8:31Þ

Using the sum rule for oscillator strength (Thomas–Reiche–Kuhn) (Merzbacher, 1961),

X
b

ðEa 2 EbÞlkaleiq·rlbll2 ¼
h2q2

2m
; ð8:32Þ

and with series expansion keeping only the terms linear in q, Eq. (8.2.9) becomes

1ðq; 0Þ ¼ 1 þ
ðhvpÞ

2

E2
g

; ð8:33Þ

in which v2
p ¼

4pne2

m
and Eg ø Eðk þ q þ gÞ2 EðkÞ: It should be noted that the mass is

the free electron mass.

For various situations of interest such as shallow impurities, excitons, and optical

absorptions, the important Fourier components involve those in the vicinity of q ¼ 0:

Therefore one is left with the calculation of xðq ¼ 0Þ:

The dielectric constant is a measure of virtual optical transitions. Quantum confinement

increases separation of the discrete states resulting in an increase in the energy

denominator and a subsequent reduction in 1: First, let us discuss the main feature of the

Penn model (Penn, 1962), with the aid of Figure 8.3 showing the electron energy as a

function of k for isotropic three-dimensional nearly free electron systems. The inset shows

12 versus photon energy for Si, giving a justification for setting Eg ¼ 4 eV (the average

energy separation between the ground state and the first excited state of atomic silicon,

3S23P2 2 3S23P14S1 ,4.1 eV; see Figure 6.12 of Chapter 6), for the single-oscillator
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model of the static dielectric constant for bulk silicon, where the bulk value 1B is given by

1B ¼ 1 þ
hvp

Eg

 !2

: ð8:34Þ

The isotropic model fills up an almost free isotropic energy band with all the valence

electrons up to an energy EF; and then a gap of Eg ¼ 4 eV is centered at EF: Round dots in

Figure 8.3 indicate the discrete energies and momenta for a sphere of radius a, given by

En‘ ¼
h2k2

n‘

2m
; ð8:35Þ

where kn‘ ¼ an‘=a; in whichan‘ are the nth roots of the spherical Bessel function j‘ðkaÞ ¼ 0:

As the radius is decreased, the roots of the spherical Bessel functions are separated further

and further apart. Eventually, the energy separation can exceed the gap Eg: Obviously we

assume that the wavefunction is zero at the surface of the sphere, representing an

approximation, but quite good one, for the boundary condition. It is important to recognize

that the fundamental G–D gap at 1.2 eV plays no role in the dielectric function. Since

kFa q 1; the asymptotic expression of j‘ðkaÞ gives rise to the least amount of separation

between k and k0, shown in detail later, is given by k 2 k0 ¼ p=2a: Let us examine in detail

why with kF in the middle of k0 and k gives rise to the minimum separation of p=2: Since

Figure 8.3. Electron energy versus k for an isotropic three-dimensional nearly free electron model. The inset

shows 12 versus photon energy, giving Eg , 4 eV for Si. Round dots indicate the discrete energies and momenta.

Eþ 2 E2 is the new gap for the Si sphere of radius a. After Tsu et al. (1993), with permission.
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kFa q 1; the asymptotic expression of j‘ðkaÞ ¼ 0 at r ¼ a;

j‘ðkaÞ ,
sinðkr 2 ‘p=2Þ

kr
¼ 0

results in ka ¼ ðn þ ‘=2Þp; so that the least separation is at n ¼ n0 and ‘0 ¼ ‘^ 1; giving

kn‘ 2 kn0‘0 ¼ p=2a and kn‘ þ kn0‘0 ¼ ð2n þ ‘2 1=2Þp=a ¼ 2kF; and the corresponding

least separation of the energy

DE ¼
h2

2m
ðk2 2 k02Þ ¼

h2

2m
ðk þ k0Þðk 2 k0Þ ¼

pEF

kFa
; ð8:36Þ

in which EF ¼ h2k2
F=2m: The energy separation of Eq. (8.36) is half the value of the energy

separation of the first version of the model where j‘ðkaÞ for ‘ . 0 was erroneously

excluded in Tsu et al. (1993) and Tsu (1993).

Now the energies of the states at Ej and Ejþ1; in the presence of the periodic potential

which results in a gap Eg in the bulk, may be found from the coupling of Ej and Ejþ1 at kj

and kjþ1 ( j is a shorthand notation involving both the n and ‘ indices). The new energies of

an adjacent pair is given by the

det
E 2 E1 Eg=2

Eg=2 E 2 E2

 !
¼ 0;

so that

E^ ¼ EF ^
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDEÞ2 þ E2

g

q
: ð8:37Þ

The size-dependent dielectric constant, from 1ðaÞ is now

1ðaÞ ¼ 1 þ
ðhvp=EgÞ

2

ððEþ 2 E2Þ=EgÞ
2
¼ 1 þ

1B 2 1

1 þ ðDE=EgÞ
2
: ð8:38Þ

Taking the parameters for Si, 1B ¼ 12;Eg ¼ 4 eV; and filling the energy bands up to EF with

4 £ 5 £ 1022 valence electrons per cm3, giving EF ¼ 12:6 eV and kF ¼ 1:81 �A21 with

m ¼ me; the computed 1ðaÞ according to the modified Penn model is shown in Figure 8.4.

For comparison with other results, 1B ¼ 11:3 is also included, together with the plots of

the size-dependent screening dielectric constant from Walter and Cohen (1970) and the

size-dependent dielectric constant from Wang and Zunger (1994) as well as Lannoo et al.

(1995). The crosses shown in Figure 8.4 represent the bulk wave vector-dependent

dielectric constant 1ðqÞ from Walter–Cohen that was converted into 1ðaÞ by putting

q ¼ 2p=d; where d ¼ 2a: This comparison was suggested to me by Marvin Cohen after I

showed him our first version. The basis in equating q ¼ 2p=d ¼ p=a is simply the

requirement dictated by the Fourier transform that the confinement in the configuration
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space of d corresponds to q ¼ 2p=d in momentum space, the Heisenberg uncertainty

principle. There appears to be good agreement between the simple modified Penn model

and the other much more sophisticated calculations. The reduction of 1ðaÞ is not really

significant before the radius of the sphere approaches approximately 15 Å but it becomes

really significant for spheres with radii comparable to the lattice constant of Si, a0 ¼ 5:43 �A:

The difference between our 1ðaÞ and other three calculations results from our use of

1B ¼ 12 for the Si bulk dielectric constant instead of 1B ¼ 11:3 or 11.4, as in the other

works. Using 1B ¼ 11:3; our results are the same as the results of Walter–Cohen, and very

close to the results of Wang and Zunger as well as Lannoo et al. (1995) and Allen et al.

(1995). Finally, it should be noted that as the sphere radius a is reduced below 1 nm,

approaching the atomic Si, as mentioned before, Eg $ 4:1 eV will further reduce 1ðaÞ: It is

remarkable that 1ðaÞ; given by such simple theory, compares so closely to the results of the

far more sophisticated calculations.

At the early stage of structural investigation of porous silicon, quantum wire was

considered to be a model for porous silicon. Therefore, we would like to include the

modified Penn model for quantum wire of radius a. Everything for the sphere applies to the

wire except that the spherical Bessel junction j‘ðkaÞ ¼ 0 is replaced by the cylindrical

Bessel junction J‘ðkaÞ ¼ 0; then the density of states of a quantum wire is

nðEÞ ¼
1

4p2

2m

h2

 !3=2X
n‘

ðE 2 En‘Þ
21=2

: ð8:39Þ

Figure 8.4. Size-dependent static dielectric constant 1ðaÞ versus the radius a in angstroms for silicon: solid

line—modified Penn model with 1B ¼ 12; dash–dot line—same as before but with 1B ¼ 11:3; crosses—

converted from Walter–Cohen with q ¼ p=a; long-dash line—from Lannoo et al. and short dash line—from

Wang–Zunger. After Tsu et al. (1997), with permission.
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As it turns out, owing to the isotropic electron mass, the computed constant as a function

of the wire size has the same appearance, although the positions of the energies En‘ are

different for the wire and sphere cases.

Since dielectric function, similar to elastic constant, is considered to be a constitutive

parameter, which applies to an unbounded region of space, the concept of a size-dependent

dielectric function requires further discussion.

Figure 8.5 shows the plasmon dispersion for q , qs: Classically and at high

temperatures, the Fermi velocity should be replaced by thermal velocity, where screening

is referred to as the Debye screening. The greater the electron density, the larger is the

plasma frequency and the larger is qs: Since q is inverse to length, as the region shrinks,

only electrons with large q participate as independent particles. However all electrons in a

quantum dot are phase coherent, with q determined by the size, not by the density. For

small quantum dots, q is very large. By virtue of the phase coherency, the boundary

condition dictates the interactions. Even a single electron can interact with its induced

charge distribution at the boundary. Here is the very fundamental issue—Do we separate

the medium from the geometrical boundary?

Traditionally, we formulate the dynamics of a situation by global material parameters

such as density, band structure, effective mass, dielectric function, and even elastic constant

and melting point, and geometrical factors are to be accounted for by boundary conditions

and integration on a given surface or volume. The complication arises not only owing to the

mixing of material parameters and boundary conditions, but because both are in fact losing

qqS

vF

Single
ParticlePlasmon

0 

w

wp

Figure 8.5. Plasmon dispersion for q , qs; with qs ¼ vp=nF; where many-body effects give rise to plasmon,

while for q , qs; a single electron description dominates. A large plasma frequency, large qs; gives a smaller

screening length.
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their identities. Therefore, only a microscopic description, in terms of individual particles,

atoms and molecules can provide a unique solution of the dynamical situation. My

preoccupation with the dielectric constant, capacitance, and so on, in this chapter, therefore

should be viewed as a way to present a description capable of providing the physics and

engineering for the design and optimization of a device. Our first attempt to publish our

work, presented during the spring of 1993, ended in disaster from my personal point of view.

Without a forum like the Annual Material Society Conference, I would not have been able to

present the partial results in December 1992 in the first place. The following work of Wang

and Zunger and of Lannoo et al. would not have appeared and the review by Yoffe (2001)

would certainly have been different from what he wrote. The crucial point is that most of us,

including myself, without solving the complicated problems in their entirety, were simply

not equipped or willing to go far enough. Morrel Cohen once told me this. I simply asked

how far is far enough? For example, it is certainly true that a global description is not

adequate for many problems related to quantum dots; nevertheless, there is a definite

solution for the response once the input/output is specified. In short, the usual expressions

for the dielectric functions are global, but the dielectric function of a quantum dot is really a

response function; local, not global. In this case, it seems that we are forced to take each

problem on its own. Actually, this is not a recent phenomenon; fundamental models are

always created for a simplified situation with the solution, it is to be hoped, capable of

describing the problem at hand by a wider range of possible applications. In closing this

section, I want to offer my view. We should continue to develop models even though they

may only be valid in a limited realm of applicability, because, by doing so, others can join in

the effort in searching for a more universally acceptable solution.

8.3. DOPING A SILICON QUANTUM DOT

Doping is important in semiconductor devices. In n-type semiconductors, if the binding

energy of the shallow donor is sufficiently low, then the electron is appreciably ionized into

the conduction band at the operating temperature, giving rise to conduction under an

applied voltage. In p-type semiconductors, the dopant is a shallow acceptor and the charge

carrier is a hole. What happens when the dopant lies deep, i.e. when the binding energy if

much greater than kBT ; is that the electron is not ionized into the conduction band so that

conduction cannot take place. Let us use silicon as an example for the rest of our discussion.

The binding energy of phosphorus dopant is 47 meV which is,2 kBT at room temperature.

Therefore, at room temperature, the P-site has a charge state of þ1 because one electron

is lost from P-site to the conduction band. Suppose there are 5 £ 1016 cm23 of P-doping.

The ratio of [P]/[Si] is 1026, or one in every 100 Si-sites. In each Si unit cell there are eight

Si-atoms, so that the probability of a P-atom is 1/12 of the Si unit cells. Contrary to

the common intuition that one needs a coherent length covering many atoms in order to
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form overlapping energy states into an energy band, in most cases only few are needed.

In the very first publication on the man-made superlattice, Esaki and I used Heisenberg’s

uncertainty principle to argue that all we need is three coupled quantum wells to mimic a

superlattice. It is even less for the three-dimensional case. When Tanaka and I were

calculating the density of states of amorphous silicon (Tanaka and Tsu, 1981), we

discovered that using 11 tight binding parameters it is possible to generate the band

structure of silicon. And 11 interactions do not even represent all of the third neighbor

distances. I want to establish, for the argument needed for the case of quantum dots, the

coherent length needed to form overlapping states allowing the transfer of electrons from

one dot to the next. Obviously the minimum is two, because with two coupled dots, an

electron can move from one to the next, then onto the third, and so on. For man-made

superlattices, we need at least a mean free path ‘ . 2d; with d being the period of the

superlattice. For negative differential conductance (NDC) and Bloch oscillation, one needs

an even longer ‘; discussed in detail in Chapter 1. If coupling involves only two dots, than

the original uncoupled states E is transformed into two, E^ with D ¼ Eþ 2 E2: If all the

dots are in contact, an electron injected into a given dot results in conduction under an

applied voltage per dot of Vd , D, otherwise something else is needed, usually phonons.

What happens if a given dot is doped? As long as all the dots are in contact, or more

precisely coupled under an applied voltage, the electron in the given dot can move to the

next resulting in conduction. When they are not all in contact and not all coupled together,

the electron will be confined in the cluster, transforming the cluster into a charged

capacitor, raising the potential and blocking further tunneling into the cluster. Suppose now

we can drastically increase the dopant density such that there is a unit probability of any dot

being occupied by a dopant. If all the dots are in contact, the conduction will increase n-

fold. What happens if they are only connected into unconnected clusters? High dopant

density means that many dots in a cluster are doped allowing more electrons to occupy the

states in the cluster while remaining neutral, thus reducing charging of the clusters. Suppose

we keep the dopant density fixed, while reducing the dot size. The extent of the

wavefunction of a dopant is basically the Bohr radius in a solid. For Si, rB , 1=mp is about

25 Å. Once an electron is ionized into the conduction band, it is localized within a mean free

path ‘; that is usually longer than 25 Å. Thus we say that an electron in a localized state is

transformed into a non-local state, the band state. In a quantum dot of radius 10 Å, taking

into account the reduction of 1; then rB is about the size of dot. But fundamentally the extent

of the wavefunction is obviously the confining potential barrier. To achieve unit probability

of occupation by a dopant in each dot with a radius of 10 Å requires a doping density

.5 £ 1019 cm23, approaching the solid solubility of phosphorus in silicon. That is aside

from the fact, as we shall see in this section, that the binding energy for a radius of 10 Å is

about 1.5 eV, making ionization into the ground state of the confined silicon quantum dot

impossible. Let us go on to the derivation of the binding energy of shallow dopants before

we finish discussing all the consequences.
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Fundamentally, quantum confinement pushes up the allowed energies resulting in an

increase in the binding energy of shallow impurities such as in the cases of quantum wells

(Bastard, 1981) and the superlattice (Ioriatti and Tsu, 1986). In a quantum dot of radius a,

the reduction of the size-dependent static dielectric constant 1ðaÞ results in a significant

increase in the binding energy of shallow impurities (Tsu and Babic, 1993, 1994a–c).

Since the formation of PSi by electrochemical etching depends on the current, a significant

increase in the binding energy can cut off extrinsic conduction leading to a self-limiting

process during the formation of the porous silicon (see the preliminary discussion in Tsu

and Babic, 1993). With a more detailed study however, the reduction in 1ðaÞ contributes to

only a portion of the increase of Eb, with the bulk of the increase due to the induced

polarization charges at the boundary of the dielectric discontinuity (Tsu and Babic,

1994a–c). The physical picture is as follows: (1) the reduction of the static dielectric

constant plays a role in increasing Eb of a donor or accepter via reduction of

dielectric screening; (2) a more significant term is due to the induced charges at the

dielectric interface between the quantum dot and the matrix in which the dot is embedded.

With 11 and 12 denoting the dielectric constant of the particle and the matrix, for 11 . 12;

the induced charge on the donor is of the same sign resulting in an attractive interaction

with the electron of the dot, pushing deeper the ground state energy of the donor and

resulting in an appreciable increase in Eb: For 11 , 12; the opposite is true, Eb is reduced

allowing possible extrinsic conduction even at room temperature. Discussion of the totally

different behavior of PSi in air and water was pointed out by Lehmann and Vial at the

Grenoble Workshop. Tsu and Babic (1993) suggested that the different behavior of PSi in

an aqueous solution and in air may be attributed to the difference in the binding energies.

In short, matching the dielectric constant of the quantum dot and the matrix can

considerably reduce Eb; thus allowing doping, a vital point to recognize in considering the

optoelectronic role of quantum dots.

The validity of the effective mass approximation for a quantum dot depends on the

range of the Bloch function for the dot, which must be less than the width of the Brillouin

zone. For GaAs wells the effective mass approximation is valid down to a well width of

,20 Å (Priester et al., 1983). Owing to the nearly identical crystal structures of Si and

GaAs, and thus the nearly identical sizes of the Brillouin zones, the effective mass

approximation should provide adequate results for a Si quantum dot down to a radius of

10 Å. Interestingly, it was the inclusion of 1ðqÞ in the calculation of Eb that resulted in fair

agreement with the experimental value of 47 meV for P in Si (Pantelides, 1978). Using

1ðaÞ derived in the last section for 11; Tsu and Babic (1994a–c) derived Eb for a Si dot

embedded in various matrixes. The Hamiltonian may be written as

H ¼ 2
h2

2me

7
2 þ VðrÞ þ fcðrÞ þ fpðrÞ þ fsðrÞ; ð8:40Þ
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where

VðrÞ ¼
0 r , a

1 r $ a

(
;

and the direct Coulomb potential fc between the donor and the electron is

fc ¼ 2
q2

4p1011r
; ð8:41Þ

and the self-polarization between the electron and its induced charges, following Babic

et al. (1992), is

fs ¼
1

2

X
l

q2ð11 2 12Þðl þ 1Þr2l

4p1011½12 þ lð11 þ 12Þ�a
2lþ1

; ð8:42Þ

and taking the s state for the spherically symmetric ground state, the polarization term

between the electron-induced polarization of the donor (Babic et al., 1992), is

fp ¼ 2
q2ð11 2 12Þ

4p101112a
: ð8:43Þ

Note that we have excluded the self-polarization term between the donor and its induced

polarization, because this interaction contributes to the donor formation energy when the

donor is introduced into the quantum dot. The ground state energy of the donor, E0 is

Figure 8.6. Size-dependent 1 versus the radius a of a Si sphere, with EF in eV and kF in Å21. After Tsu and

Babic (1994c), with permission.
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obtained by a minimization of E0 with respect to the parameter c in the trial function

cðrÞ ¼ 1 2
r

a

� �2
" #

e2r=c
: ð8:44Þ

Note that this trial wavefunction satisfies the boundary condition of cðr ¼ aÞ ¼ 0:

For a given radius a, 11 ¼ 1ðaÞ taken from Figure 8.6 is used to obtain the ground state

numerically. How we define the binding energy and approximate matrix needs some

discussion.

The left-hand side of Figure 8.7 shows how we define the binding energy Eb ¼ E1 2 E0;

where E1 is the lowest allowed state in a neighboring particle without a positive charged

Figure 8.7. Left: definition of the binding energy Eb in terms of the difference between the lowest allowed state

in a neighboring particle without the donor and the ground state energy E0 of a donor. Right: (a) actual situation

where a donor at the center of a sphere is surrounded by other spheres and (b) our simplified model where the

sphere with the donor is immersed in a uniform matrix.

Figure 8.8. The donor binding energy Eb versus the Si sphere for a few matrices. Instead of taking 12 for water

as 80, we were advised to use 6 instead. See text for the reason. After Tsu and Babic (1994c), with permission.
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donor, but includes the self-polarization and the ground state energy E0 of the donor. This

definition makes sense only when the donor density is such that majority of silicon

particles contain no donor. On the right-hand side of Figure 8.7, (a) shows the actual

situation where a donor at the center of a sphere is surrounded by other spheres without

donors and (b) shows our simplified model where the sphere with the donor is immersed in

a uniform matrix of 12: The induced charge at the dielectric interface is should be reduced

in (a).

Figure 8.8 shows the calculated donor binding energy Eb versus the Si sphere of radius a

for few matrices. Instead of taking 12 for water as 80, we were advised by L. M. Peter at

the Les Houches Winter School 1994 that 6 should be used because within a thin layer of

water in contact with silicon, referred to as the primary salvation sheet, the dipoles are

bound and resist orientation by an external field, resulting in a much lower value for the

dielectric constant of water. A detailed account is given by Bockris and Reddy (1997).

Note that without the dielectric difference, 11 ¼ 12 at 20 Å, and Eb , 0:17 eV, a huge

Figure 8.9. Energy band diagram of silicon with respect to the redox states in solution under an applied positive

anodic voltage for (a) bulk silicon when etching can proceed and (b) silicon nanoparticles with no etching. After

Tsu and Babic (1994c), with permission.
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difference from the case where 12 ¼ 1 for a PSi particle in air, where the PSi particle is

essentially a good insulator in air.

Porous silicon is usually formed by anodic etching of p-type silicon. Although our

calculations have been for n-type silicon, the conclusions are applicable to the p-type.

The reason for this is the dominance of the electrostatic energy terms, which are the same

for either donors or acceptors. Dealing with donors has allowed simplification of the

kinetic energy term compared to the case of acceptors where one has to treat light and

heavy hole degeneracy and use the much more complicated Luttinger–Kohn Hamiltonian

(Luttinger and Kohn, 1955). The dramatic increase of the accepter binding energy due to

dielectric mismatch and quantum confinement offers an explanation for the self-limiting

etching of PSi. At the beginning of etching, acceptor binding energy is low, with the same

value as in the bulk. A positive voltage applied to the p-type silicon produces an

accumulation of mobile holes at the silicon electrolyte interface enabling etching.

Figure 8.9(a) shows the energy bands for silicon and the redox states in the solution. As

etching progresses, the dimensions of unetched silicon are reduced and the binding energy

of acceptors increases sharply. The concentration of free holes decreases making silicon

appear intrinsic. Figure 8.9(b) shows the energy bands in nanosilicon with respect to the

redox states in the solution. Without the accumulation of holes at the interface,

electrochemical etching cannot proceed. Although some holes can tunnel from the

acceptors to the solution, this does not constitute etching because no silicon bond at the

interface is involved.

8.4. SUMMARY

We have discussed three subjects, quantum capacitance, the size-dependent dielectric

function and doping of a quantum dot, and all are different in the quantum regime. The

main difference in quantum capacitance from its classical definition is the fact that there is

no such thing as storage of charge alone and the charge of the electron is discrete. We have

shown that taking into account the discreteness of electronic charge the classical

capacitance is quite different when there are only a few electrons. Only when the number

of electrons is large does the discreteness of the electronic charge cease to exhibit new

features. When the size is below a couple of nanometers, quantum mechanically the

kinetic energy of the stored electrons becomes dominant over the electrostatic stored

energy. Pauli’s exclusion principle plays an additional role in quantum capacitance. In our

formulation, one electron in the ground state of a sphere is only the ground state of a

hydrogen-like state, and two electrons are the ground state of a helium-like state. For

simplicity, while still retaining the dominant features that describe a quantum capacitor,

we assumed that the sphere has a different dielectric constant from the matrix, but the

barrier confining the electrons is taken to be infinity. Thus, a step towards a more realistic
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description should include a finite barrier, which would result in more complications.

At a radius of 2 nm, the first electron added to a sphere has a quantum capacitance 7 times

below that of the classical capacitance and the second electron added has a quantum

capacitance of 27 times below its classical counterpart. Note that even our classical

capacitance is not the same as the textbook value because of the discreteness of electronic

charge. The model we use to calculate the classical capacitance, with discrete electronic

charge, is based on the minimization of the electrostatic energy based on Platonic Solid

Geometry. This procedure allows us to include fixed trapped charges and thus may serve to

elucidate instability in the gate oxide even without quantum effects.

The size-dependent dielectric function is not defined according to the usual definition,

because of the loss of the global nature. We emphasize that even the general 1ðqÞ is global

while 1ðaÞ; with its boundary condition, is closer to the definition of a localized response

function. Using a single oscillator placed at the Fermi energy of all the valence electrons

without any other adjustable parameter, the calculated value for silicon turns out to be

almost identical to 1ðq ¼ 2p=aÞ obtained from the pseudopotential calculation. This fact

leads to the realization that the pseudopotential calculation is perhaps no more accurate

than the single oscillator description for the dielectric constant. Part of the reason I gave is

the fact that the 1ðaÞ result does utilize several parameters such as the value of the bulk

dielectric constant, the number of valence electrons, the silicon unit cell size and the

energy Eg at the maximum absorption peak for silicon. In fact, one oscillator does not

mean one parameter, it is more like four parameters.

The reduction of the dielectric constant at sizes approaching a couple of nanometers

drastically reduces the dopant binding energy from 13.6 eV for the hydrogen atom to

,1 eV. In other words, all quantum dots a couple of nanometers in size are intrinsic

even the dopant happens to be inside a quantum dot. How can we ensure that dopants can

indeed be inside a quantum dot as well as all the other quantum dots. Simple intuition

tells us that uniform doping of all the quantum dots is not possible. If it comes to the

point that we must uniformly dope the quantum dots, which is not possible with present

techniques, then I think we must do away with doping. On the other hand, it appears that

carrier injection should be the main mode of utilizing quantum dots for nanoelectronics.

There is one huge difference; injection of electrons adds negative charge, while doping

gives charge neutrality.
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Chapter 9

Porous Silicon

9.1. POROUS SILICON – LIGHT EMITTING SILICON

Following the first report on efficient photoluminescence (PL) in electrochemically etched

silicon into porous silicon or PSi (Canham, 1990), the field of investigation has become

very active owing to possible applications in silicon-based optoelectronics. The

electronics industry is almost totally dominated by silicon technology, although without

significant interaction with light because of its indirect band-to-band optical transition,

unlike GaAs, silicon is unable to play a role in optoelectronic devices. Our main interest is

focused on the light emitting aspect of PSi that has been explored since 1990, although the

history of PSi dates back to 1956 (see review by Gösele and Lehmann, 1994). The origin of

visible photoluminescence at around 1.6 eV and higher was attributed to quantum

confinement from the very first paper by Canham (1990) and confirmed by an increased

optical absorption edge (Lehmann and Gösele, 1991) and by correlation with Raman shift

(Tsu et al., 1992). However, there were equally convincing arguments with respect to

polysilane surface centers (Prokes, 1993) as well as siloxene molecules (Stutzmann et al.,

1993). Let us comment on the involvement of two equally credible groups with

diametrically opposite interpretations backed by experimental data. First of all, porous

silicon is easy to form but harder to institute fine control, such as molecular beam epitaxy

(MBE), for the fabrication of devices. Secondly, PSi involves electrochemistry, which is

not nearly as developed as precise deposition techniques like chemical vapor deposition

(CVD) and MBE. And thirdly, a possibly important fact is that both quantum confinement

and “surface crud” contribute to the observed PL. In addition to the reasons mentioned, a

high resolution cross-section transmission electron micrograph (TEM) of PSi clearly

identifies crystallites of size ,3 nm (Cole et al., 1992) and there is sufficient proof to

invoke the quantum confinement model even if surface complexes do exist. This is the

mindset I shall pursue in the following.

The PL in PSi at room temperature is attributed (Babic and Tsu, 1997) to the

recombination of excitons confined in silicon nano-crystallites whose diameter is ,3 nm.

The transition is mainly a second-order phonon-assisted process like in bulk silicon which

involves an electron from the bottom of the conduction band and a hole from the top of the

valence band. In well-passivated samples there are no surface trap states in the silicon

energy gap that would provide non-radiative recombination paths. Radiative electron–

hole recombination is practically the only process effectively left. This picture of porous

silicon PL is essentially consistent with the picture described in Brus et al. (1995).
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However, measurements from Schuppler et al. (1995) suggest significant smaller Si nano-

crystallites than those reported. Calculations by Hill and Whaley (1995) appear to support

significantly smaller Si-nano-particles being responsible for the visible PL. A non-

radiative channel competing with the radiative exciton recombination is possibly provided

by electron tunneling out of the quantum dot (Vial et al., 1992). Too little passivation leads

to many surface states and therefore to non-radiative decay via these states whose rate is

temperature dependent.

Figure 9.1 shows the calculated exciton recombination energy plotted against the radius

of a silicon sphere for several values of the dielectric constant of the matrix 12 with the

dielectric constant of the Si sphere 11 given by Figure 8.6 of Chapter 8 (Babic and Tsu,

1997, SL & Micro). Note that the recombination energy is not sensitive to 11 and has a

value of ,1.9 eV for a dot of diameter 3 nm, due to near mutual cancellation of the

electron and hole polarization self-energies and their polarization interaction energy for

the excitons involved. Our calculation, based on effective mass model, agrees well with

tight binding model used by Martin et al. (1994).

It is instructive to compare and contrast excitonic radiative recombination in silicon

nano-crystallites and in bulk Si, both at room temperature. In the bulk at room

temperature, it is more likely that the exciton will be broken up by a phonon than it will

encounter the right phonon-assisted radiative recombination. This is due to the low exciton

binding energy in bulk Si of 14.7 meV (Shaklee and Nahory, 1970) compared to the

energy of the phonon necessary to conserve momentum in the radiative recombination.

Exciton break-up is facilitated by the quasi-continuum of available states in both valence

Figure 9.1. Calculated exciton recombination energy versus Si dot radius for several values of the dielectric

constant of the matrix 12: After Babic and Tsu (SL & Micro) (1997), with permission.
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and conduction bands. The e–h pair liberated from exciton by a phonon, flies apart from

one another through the quasi-continuum, thus totally disabling radiative recombination.

In Si quantum dots, the exciton binding energy is much larger than the energy of the

phonon necessary for radiative recombination. The quasi-continuum of valence and

conduction band states is modified to a discrete set of energy levels. A thermal phonon

cannot break up the exciton inside the quantum dots, allowing time to wait for the right

phonon to come along for radiative recombination.

Figure 9.2 shows exciton binding energy plotted against the radius of the dot for several

values of the dielectric constant of the matrix. Applied to a typical PSi crystallite of radius

1.5 nm, the exciton binding energy ranges from 82 meV ð12 ¼ 80Þ to 1.03 eV ð12 ¼ 1Þ;

and 0.23 eV with 12 ¼ 6 for water (see the discussion following the citation of Figure 8.8).

For 12 ¼ 11; where only the Coulomb term remains, the exciton binding energy is 0.16 eV,

still more than an order of magnitude higher than the bulk value of 14.7 meV. This major

increase in the Coulomb interaction part of the exciton binding energy is caused by the

increased overlap of the electron and hole wavefunctions. The difference between the

exciton binding energy and the Coulomb energy is due to the self-polarization energy of

the electron and of the hole. As shown in Eq. (8.4) and discussion, the self-polarization

energy scales as ð12 2 11Þ=12 and accounts for most of the exciton binding energy,

therefore, the size-dependent dielectric constant (Figure 8.4) must be used for the

calculation. Regardless of which value is used for the matrix, the exciton binding energy is

much greater than kBT at room temperature. Therefore, excitons confined to a quantum

Figure 9.2. Exciton binding energy versus the radius of the dot for several values of the dielectric constant of

the matrix. After Babic and Tsu (SL & Micro) (1997), with permission.
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dots are well bound electrostatically irrespective of the surrounding matrix. For comparison

with other calculations, see further discussions in Babic and Tsu (SL & Micro) (1997).

Quantum confinement changes the positions of the G valence band maximum and D

conduction band minimum levels. Note that the conduction band maximum at G,

experimentally determined to be ,2.9 eV (Chalikowsky et al., 1989) should also be

modified by confinement, as shown in the schematic sketch in Figure 9.3. It is reasonable

to assume that the curvature of the bands at G for both conduction and valence bands is

nearly the same, therefore, no stable excitons can exist in bulk at G (E 2 k bends down

instead of bending up). Via quantum confinement, because the quasi-continuum is

discretized, excitons are stable as usual. The electrostatic interaction between the electron

and the hole are similar to the already calculated lowest indirect exciton with its envelope

wavefunctions. Thus, the estimated exciton recombination energy of the confined direct

exciton in Si nano-crystallites is ,2.75 eV for a diameter of 3 nm PSi. Recombination of

these direct excitons may be the origin of the weaker but faster blue PL in well passivated

and non-oxidized PSi samples (Petrova-Koch et al., 1993). It is faster but weaker because it

competes with an extremely strong non-radiative relaxation channel that relaxes electrons

towards the bottom of the conduction band. The crucial part of this non-radiative channel

is the first excited p-like electron state in the quantum dot constructed from the bulk Si

states around the conduction band minimum at the D point. Radiative recombination from

the first excited p electron state to the lowest hole state is suppressed by the selection rule

involving the envelope wavefunctions. This p-like electron at D and a hole at G of the

valence band form an indirect exciton whose energy is 2.66 eV for a ,3 nm quantum dot

in PSi, which is less than 0.1 eV below the direct excitons, allowing for extremely efficient

Figure 9.3. Schematic diagram showing bulk silicon valence and conduction bands, confinement-induced

quantum states with electrons confined both at the G and D points of the Brillouin zone. The 1p excited state at D

may be coupled to the 1s state at G by the surface oxygen complex. The possible transitions (A) red peak at

1.96 eV, (B) weak and fast blue peak at 2.75 eV, (C) suppressed transition at 2.66 eV, (D) infrared peak at

0.76 eV and (E) blue peak at 2.6 eV are observed in oxidized samples. After Babic and Tsu (SL & Micro) (1997),

with permission.
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vibronic–phonon transitions between the direct exciton to the indirect excitons at the D

point, competing with the recombination of the direct exciton. The energy difference

between 2.66 and 1.96 eV is 0.7 eV lying in the infrared, and may very well be the

reported infrared PL in PSi (Fauchet et al., 1994). Porous silicon subjected to rapid thermal

oxidation shows blue PL at 2.6 eV attributed to surface states involving oxygen complexes

(Kanemitsu et al., 1993).

Besides PSi, similar luminescence phenomena were observed in man-made silicon

nano-crystalline structures, fabricated by the vacuum deposition technique discussed in

Figures 6.4, 6.6 and 6.34 of Chapter 6, as well as using a high temperature aerosol method

and selecting the size by chromatography (Littau et al., 1993) and a non-thermal

microwave gas phase synthesis using a mixture of argon and silane (Zhang et al., 1994).

Elemental semiconductors Ge, Si and C embedded in an SiO2 matrix exhibited fairly

strong and stable PL, with peaks ranging from infrared to blue wavelengths (Zhang et al.,

1995) and elaborated in Tsu and Zhang (2002). In the case of Ge, samples for a light

emitting diode (LED) were fabricated from 45 nm thick polycrystalline Si films deposited

initially as amorphous films by e-beam evaporation onto 70 nm SiO2 films thermally

grown on nþ Si substrates, followed by Ge implantation, to create a supersaturated solid

solution of Ge in the SiO2 film with an approximately uniform Ge (,5 nm in diameter)

concentration of 5%. The samples were subsequently annealed at 6008C, 1 £ 1026 Torr,

for 40 min to induce precipitation. The electroluminescent (EL) spectrum was broad and

peaked at 1.2–1.4 eV. In the case of silicon, samples of Si-clusters can be prepared by

sputtering SiO2 onto silicon wafers without additional heating. After annealing at 8008C

for 20–30 min in N2, the typical PL spectra show the typical quantum size effect in

Figure 9.4(a)–(c) with an increasing Si to oxide ratio. A more detailed discussion on

Figure 9.4. PL of silicon clusters in a SiO2 matrix. The intensity of PL is related to the cluster densities found by

TEM. Red shift results from (a) to (c) with increasing Si in the oxide matrix. After Tsu and Zhang (2002), with

permission.
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the extended X-ray absorption fire structure (EXAFS) characterization and mechanisms of

cluster size control may be found in Zhang et al. (1995). In the case of C-clusters in a SiO2

matrix, blue emission results (Zhang et al., 1996).

In 1971, inspired by P. Sorokin to develop a possible blue or UV laser, I undertook a

project putting rare earth elements like Eu and Sm into CaF2 (Tsu and Esaki, 1970a,b).

I noticed that luminescent efficiency of the desired lines was quenched after introducing

more than 0.5% of rare earth into CaF2. The explanation is quite simple. Whenever the

impurity concentration reaches the third nearest neighbor, as is generally applicable to all

solids, the probability of the dopants forming a complex increases rapidly. Not only does

the complex have its own signature of optical transitions, the non-radiative channels

become more significant because coupling to phonons in the matrix is drastically increased

owing to vibronic states of the complex coupling with the phonons of the solid. The

experimental data at low temperatures clearly show the multiple vibronic peaks in addition

to the “zero-vibronic” peak. The vibronic frequency is not so different from the phonon

frequencies because phonon dispersions may be adequately represented by two so-called

Keating constants (Keating, 1966) with the stretching constant overwhelmingly

dominating the bending constant. In quantum confinement of nc-Si, the problem is

compounded by the indirect transition dominating even at a diameter of 2–3 nm. The

game plan is to find the “proper” matrix, which is detached from the nc-Si crystallites, not

only with respect to electronic detachment with barriers like those used in the formation of

superlattices and quantum wells, but more importantly a barrier to phonons. The only way

is to increase the porosity of the matrix, making the matrix as close to a mere skeleton as

possible. Therefore, porous silicon is really very very special. The skeleton provides a

current path that allows electrical excitations, while blocking phonon couplings. It is safe

to state that the study of porous silicon involves more people than any other endeavor in

science and engineering and primarily it is simple to make. However, after 15 years, there

is not a single device that has entered into common usage. It is equally safe to state that the

problem it faces is almost insurmountable.

9.2. POROUS SILICON – OTHER APPLICATIONS

The biggest obstacle preventing PSi devices from joining the class of commercial products

is the lack of mechanical robustness and stability. Tsybeskov and Fauchet (1994) took a

step in the right direction by reducing the current during electrochemical etching. We

focused our study on the morphology of PSi (Filios et al., 1996) by drastically reducing the

current as well as reducing the HF concentration to less than 25%. Typically,

J # 10 mA cm22 with an anodization time of 20–45 min in the dark, is considered

to have been gently etched. For comparison J $ 30 mA cm22 is considered to have

been heavily etched, measured using PL, Raman and audio force microscopy (AFM).
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The results are quite convincingly improved as shown in Figure 9.5, where the gently

etched sample shows up interference fringes in the PL spectrum. The slight blue shift with

the heavily etched sample is obviously due to the decrease in size of the nc-Si.

Figure 9.6 shows the AFM comparison between the gently etched (a) and heavily etched

(b) samples.

What is most encouraging is the discovery of epitaxial growth of Si on PSi, resulting in a

free standing thin film of epitaxially grown silicon (Solanki et al., 2004). Figure 9.7 shows

the AFM of a much improved PSi surface morphology after annealing at 10508C for

30 min in H2 (Solanki et al., 2004).

Figure 9.5. Room temperature photoluminescence spectra of electrochemically prepared porous silicon

samples, anodized at low current density (A) showing fringes, and at high current density (B). After Filios et al.

(1996), with permission.

Figure 9.6. AFM images of electrochemically prepared porous silicon samples, anodized at low current density

(a) and at high current density (b). After Filios et al. (1996), with permission.
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Layer transfer techniques based on porous silicon have been developed to obtain a high

quality thin film of Si on a foreign substrate aimed at reducing the substrate cost for

photovoltaic purposes (Brendel, 1997). The separation of the PSi layer from the substrate

may be either before or after epitaxial growth of high quality silicon (Tayanaka et al.,

1998). In photovoltaic (PV) applications, the process allows the realization of stable and

high efficiency solar cells in a thin film form. After heat treatment at .10508C in a H2

atmosphere for 30 min, the structure of PSi is drastically changed in such a way that the

top surface of the low-porosity region becomes smooth due to closing of pores, and thus

ready for epitaxial growth of monocrystalline silicon (Tayanaka et al., 1998; Rinke et al.,

1999). Thus far, the main driving force behind this work is to find a way to reduce the cost

of high quality PV material as well as a better way to produce a silicon on insulator (SOI),

for a better complementary metal oxide silicon (CMOS). However, at least to my mind,

another potentially huge application is the bridging of PSi for its optoelectronic capability,

and depositing high quality monocrystalline epitaxial silicon on top for devices such as

CMOS, thus realizing the dream of a silicon-based optoelectronic device, a subject to

which many special International Conferences have been devoted, e.g. the European MRS

Conference in 2002 (Ni et al., 2003).

Figure 9.7. AFM of PSi surface anodized in 20% HF in acetic acid at 75 mA cm22. (a) As prepared, (b) after

annealing at 10508C for 30 min in H2. After Solanki et al. (2004), with permission.
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Another subject discussed during this meeting (Ni et al., 2003), involved the question of

the broad linewidth of PSi and QDs in general. I pointed out that the major contributor to

the line broadening process is the coupling to the outside world, I/O for intended coupling,

as well as losses for unintended coupling. However, the “crud” on the surface constitutes a

major challenge to theoretical formulation, either with diffused boundary conditions, or

splitting the surface species into two parts one lying slightly inside and another slightly

outside the QD as done by Stern (1978), to avoid the singularity at the boundary. With all

the expectations of QDs in devices, the question of linewidth is an important subject for

investigation.

9.3. SUMMARY

Visible luminescence in porous silicon is basically due to quantum confinement, however,

oxygen complexes also contribute significantly. The morphology may be improved by

reducing the etching rate. Silicon can be epitaxially grown on porous silicon. I argue that

the possibility of embedding luminescent quantum dots of CdSe or PbS, etc. into high

porosity PSi, sealed off by epitaxial silicon growth offers the best chance for electronic and

optoelectronic applications. The possibility of introducing luminescent quantum dots,

even with a periodic pattern, into PSi followed by epitaxial Si growth may be useful in

optoelectronic applications. And replacing luminescent quantum dots by wide-gap

quantum dots may serve as a gate capacitor to control source–drain current in a field effect

transistor. Therefore, the capability of epitaxial growth on PSi has enormous device

potential.
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Chapter 10

Some Novel Devices

10.1. COLD CATHODE

At the First International Symposium on cold cathodes held October 25–26, 2000, in

Phoenix, Arizona, as part of the 198th Meeting of the Electrochemical Society, I was

involved in pulling hot electrons from a semiconductor surface originating above the

Fermi surface, as cooling mechanism. A double barrier resonant tunneling structure was

placed at the surface with a barrier. A second barrier is formed by the vacuum. Resonant

tunneling is capable of selecting electrons from a particular energy range, thus serving as

an energy selector, and is used to remove electrons from the surface of a semiconductor

into the vacuum. It is referred to by us as inverse Nottingham cooling (Tsu and Greene,

1999; Tsu, 2001a,b; Yu et al., 2002). Basically, in addition to the use of resonant tunneling

as an energy filter, the discrete energy level in a quantum well produces two-dimensional

electrons (2D-electrons), allowing the electrons in a given state to be at an energy above

the bottom of the conduction band, gaining extra energy at the expense of the work

function and resulting in lowering of the effective work function for field emission. At that

meeting, I learned from Binh how engineering a thin insulating layer near the surface to

trap the space charge resulted in lowering of the work function (Binh and Adessi, 2000).

I suggested to Binh that we should join forces by using a resonant tunneling structure to

serve both as a 2D-electron system as well as to lower the space charge. As shown in

Figure 10.1(a), the structure we chose uses a III-N system to take advantage of the low

work function of high band-gap semiconductors.

The first barrier is n-Al0.5Ga0.5N with a GaN quantum well. The second barrier is the

vacuum. Two quantum well states E1 and E2 are shown with widths due to unavoidable

losses. Figure 10.1(b) shows the schematic of the measuring apparatus. We first obtained a

molecular beam epitaxy (MBE) grown sample on sapphire without showing substantial

emission. While showing these poor results to A. Khan, he suggested that he could grow a

sample with the same geometry on SiC, possibly with an improved structure as well as

being capable of high current.

Figure 10.2 shows the emission current density Jmes plotted against the actual field F

at the surface of the nano-structured cathode at 1608C, i.e. in the presence of a

thermionic-like emission. In the insert are the plots of the total emission current I

plotted against applied voltage Vapp, for six different distances z between the anode and

the cathode. The convergence of all the I–V data toward a unique Jmes–F plot for

different z values is a confirmation of the correctness of the emission measurements
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Figure 10.1. Nano-structured layers of the cold cathode. (a) Band-edge diagram in the absence of an external

electric field ðVapp ¼ 0Þ; Vb1 and Vb2 are, respectively, the first and second barriers; E1 and E2 are the energy levels

of sub-bands inside the quantum well. (b) Schematic structure of the different layers of the cathode within the

Scanning Anode Field Emission Microscope (SAFEM) environment. After Semet et al. (2004), with permission.

Figure 10.2. Emission current density Jmes versus the actual field F at the surface of the nano-structured Solid

State Emitter (SSE) cathode at 1608C. The insert shows the total emission current I versus applied voltage Vapp,

for six different distances z between the anode and the cathode. After Semet et al. (2004), with permission.
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and analysis of Binh et al. (2001). From these data, a Fowler–Norheim (F–N) behavior

for the emission characteristics is obtained from a nearly straight line plot of

‘nðJmes=F
2Þ against 1=F:

At first we did not include the self-consistent potential by neglecting the space

charge in the sub-bands. Calculated results indicate that substantial emission current

starts only at a field in excess of 5 £ 106 V cm21. However, when we included the

space charge, 2D-electrons occupation when a given sub-band is either aligned or

moving below the Fermi level of the contact, emission started at an electric field at

least five times lower than that. Figure 10.3 shows the different field emission

mechanisms of the nano-structured planar cathode with an applied field F: Note that

(i) to be able to present these band diagrams within this figure, the field representation

is not at the same scale inside the cathode and outside in the vacuum particularly if

one considers GaN having 1 ¼ 810 with an applied field in the range of 50 V mm21

(ii) further reduction from the induced image charges due to the space charge in the

quantum well is not shown in this sketch.

In our two-step tunneling model, a larger lowering of the work function due to space

charge in the quantum well is crucial. The idea is that when this 2D-like quantum state is

occupied, it results in a space charge in the quantum well, leading to additional lowering of

the effective work function defined by the energy of the source of electron at the vacuum

level. A precise quantitative approach requires the use of the Airy function when a voltage

is applied to the structure, with self-consistent calculations. However, to estimate the

lowering of the work function we used a simple approach, involving first finding the

potential due to the space charge inside the 2D quantum well. Using this calculated

lowering of the work function, the usual field emission expression derived from F–N

Figure 10.3. Illustration of the different field emission mechanisms by schematic band-edge diagrams of the

nano-structured planar cathode with an applied field F at room temperature. (a) Resonant tunneling mechanism

only; (b)–(d) evolution with space charge formation inside the GaN layer with, as a consequence, an effective

lowering of the surface barrier. In addition to the resonant tunneling and due to the occupation of the quantum

state E1, electrons occupying this state (for example, whenever the level E1 moves below 0) can tunnel out of this

single barrier via the usual F–N tunneling, resulting in JSC (c), and the total current JFN ¼ (JRT þ JSC). Note that

the vacuum field is not drawn to scale in this illustration. After Semet et al. (2004), with permission.
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theory is then fitted to the experimentally measured field emission. It is important to note

that lowering the work function consists of two parts, the 2D-quantum states that have a

“flat” energy profile right up to the surface at any applied voltage and the space charge

“bulging” of the potential shown in Figure 10.3.

To estimate the space charge effect, assuming a perfect confinement, we calculate the

charge density n at the lowest level E1 state in the quantum well of width w,

n ¼ eðmp
=ph2ÞðE2 2 E1Þð2=wÞsin2ðpx=wÞ; ð10:1Þ

where mp is the effective mass of the electron with charge e. Solving the Poisson’s

equation we arrive at the potential energy of the space charge VSC, for 0 # x # w;

VSC ¼ ðr0=41Þ{ðw=pÞ
2sin2ðpx=wÞ þ wx 2 x2}; ð10:2Þ

where r0 ; eðmp=ph2ÞðE2 2 E1Þð2=wÞ and 1 is the dielectric constant. The maximum value

of VSC is at x ¼ w=2; VSCðw=2Þ ¼ 0:25ðr0=1Þw
2ðp22 þ 0:25Þ and the average of VSC ;

VSCðavÞ ¼ 0:62VSCðw=2Þ: Taking the average of the difference VðwÞ2 Vð0Þ; the total

lowering of the work function DF is

DF ; Vb2 2Feff ¼ VSCðavÞ þ 0:5ðVðwÞ2 Vð0ÞÞ þ E1: ð10:3Þ

The effective barrier Feff is the actual barrier at the surface after the lowering and

can be determined experimentally from the (Jmes, F) plots, i.e. FFN. For an estimation

of DF, we have taken mp ¼ 0:22m0; 1 ¼ 810 for GaN, VSCðw=2Þ ¼ 0:4 eV;

0:5ðVðwÞ2 Vð0ÞÞ ¼ 0:62 eV and E1 ¼ 0:18 eV. This gives DF ¼ 1:05 eV, i.e.

Feff ¼ 0:45 eV for Vb2 ¼ 1:5 eV. This calculated value of 0.45 eV for the effective

surface barrier is very close to the experimental values FFN measured from the (Jmes, F)

plots, which were in the range of 0.25–0.53 eV. Therefore, we conclude that after the

occupation of the quantum level by the electron in the state E1 lying below E ¼ 0; the

tunneling current JFN ¼ JRT þ JSC is given by F–N tunneling through a single barrier

created by the vacuum, with an effective barrier of only a few tenths of an electron volt,

Figure 10.3(d). This lowered barrier at the surface controls the variation of the emitted

current JFN with field.

This work is really quite significant, not only because the cold cathode via field emission

is important in its own right, but also, for example, as source of electrons in vacuum

electronics, such as the famous traveling wave tube (TWT), which is still widely in use as a

high power wide band amplifier, a fact not generally known outside the space electronics

field. A robust resonant tunneling structure is not obtainable by surface treatment, for

example by using cesium on the surface of silicon to lower the work function. But more

than that, it is a typical example of how nanoelectronics consisting of quantum

confinement in one direction may be the only viable quantum device that has the standard

input/output (I/O) in a planar configuration. The I/O for quantum dot electronics has thus

far eluded all efforts at implementation. I shall elaborate on this point later dealing with
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contacts on a planar surface. In the next section, I shall show how quantum dots may be

incorporated into optoelectronic devices because of their fantastically low power threshold

for a nonlinear response.

10.2. SATURATION INTENSITY OF PbS QUANTUM DOTS

The saturation intensity for lead sulfide in a titanium dioxide–glycerol matrix (PbS/TiO2–

glycerol) on a glass substrate as a function of quantum cluster concentration and cluster

size has been studied (Kang et al., 2004). The saturation intensity in these materials is

strongly dependent on the size of the semiconductor nano-crystals, the concentration, or

the sample thickness. As discussed in the last chapter on the introduction of luminescent

materials such as CdS or PbS into PSi, a solgel such as TiO2–glycerol serves as an

excellent matrix for decoupling phonons and other unwanted coupling between the

quantum dots and the matrix. Porous silicon, in addition to providing decoupling, is

capable of carrying current by the silicon skeleton. The basic feature in samples is that they

are reflective at a certain range of the incoming intensity of the optical field and are

transparent over a threshold intensity beyond which the output and input intensities are

related linearly. The system studied involves a very dilute distribution of PbS quantum

dots with dimensions of ,3–10 nm embedded in a matrix of TiO2–glycerol. We found

that the threshold of power separating absorption bleaching, Pth, is linearly related to the

thickness, with values of Pth of a few milliwatts per square centimeter, more than three

orders of magnitude below that of quantum dots with dimensions of about 1 mm,

representing a typical solid.

Titanium isopropoxide (99%), glacial acetic acid (99.7%), glycerol (99%) and lead

acetate trihydrate (99%) were purchased from Aldrich and used without further

processing. Aqueous lead acetate (2.5 mmol) was mixed in a solution of 10 ml ethanol

and 8 ml acetic acid. Titanium isopropoxide (2 ml), various amounts of glycerol and

5 moles of thiourea were subsequently added. The solution was stirred for 24 h and

approximately 70% of the solvent was evaporated using a rotary evaporator before spin

coating. Thiourea was used as a sulfur source, which prevents the formation of PbS before

heating, following the reactions:

NH2CSNH2 þ 2H2O!H2SðgÞ þCO2ðgÞ þ 2NH3ðgÞ Pb2þ þH2S! PbSþ 2Hþ ð10:4Þ

The viscous sol was spin coated to the glass substrate at a spinning rate of 3000 rpm for

30 s. The as-prepared film was transparent, but became dark after annealing for 10 min at

1608C, indicating the formation of nano-crystalline PbS. Four thicknesses of films starting

from 6.8 mm were fabricated by successive coating after heat treatment.

Figure 10.4 shows the threshold power Pth ¼ 3:1; 6, 8.5, and 13.5 mW cm22 for the PbS

cluster size of 10 nm plotted against the thickness d ¼ 6:8; 13.6, 20.4 and, 27.2 mm,
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respectively. The samples were a thin film of PbS/TiO2–glycerol with thicknesses ranging

from 6.8 to 27.2 mm on a glass substrate. The key point is that these samples consist of

dilute nano-particles of PbS, having size a , L; coherence length of an electron in the

nano-particles embedded in a TiO2–glycerol matrix, and essentially with one transition

between the ground state E1 and excited state E2 in each PbS quantum dot.

Figure 10.5 shows the saturation intensity as a function of sample thickness, allowing a

selection of thicknesses for specific saturation intensity.

Note that the result is linear through the origin. This fact indicates that (a) the total

number of transitions is governed by the total number of quantum dots; (b) various layers

Figure 10.4. The output/input intensity distribution for several thin film PbS/TiO2 samples on a glass substrate.

After Kang et al. (2004), with permission.

Figure 10.5. Saturation intensity as a function of sample thickness. After Kang et al. (2004), with permission.
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of quantum dots have the nearly same density per unit area; (c) these 10 nm size quantum

dots are determined by X-ray diffraction, and IR spectra determined by optical means

characterize these quantum dots of PbS.

If distribution of quantum dots in a layer remains fixed then the total number NQD is

proportional to the thickness. This assumption leads to a simple model allowing

comparison of various cases where only the excited state can interact with the matrix.

Neglecting the spontaneous emission term, with V12 denoting the transition rate from E1 to

E2, which is equal to V21 from E2 to E1, and a decay rate V0 due to the interaction between

the quantum dot and the matrix, we have the following coupled rate equations, writing

V ¼ V12 ¼ V21;

dn2

dt
¼ ðn1 2 n2ÞV2 n2V0 ð10:5Þ

dn1

dt
¼ 2ðn1 2 n2ÞV: ð10:6Þ

Substituting, n2 ¼ CðtÞexpð2V0tÞ and n1 < n10expð2VtÞ we arrive at

dC

dt
¼ n10Vexp½2ðV2V0Þt�;

resulting in

n2 ¼ n10

V

V2V0

{1 2 exp½2ðV0 2VÞt}expð2VtÞ: ð10:7Þ

The ratio of

n2

n1

¼
V

V0 2V
{1 2 exp½2ðV0 2VÞt}: ð10:8Þ

At V0 ¼ V; L’hospital’s rule leads to

n2

n1

¼ Vt: ð10:9Þ

Saturation occurs at n1 ¼ n2 thus at a time t such that Vt ¼ 1 defines saturation, where t

is the decay time defined by V0. Therefore, the experimentally determined threshold value

Pth, allows us to find the product Vt or V0t. It is interesting that as long as we can assume

that the channel of relaxation via the matrix is only through the excited state E2, regardless

of how large this interaction is, saturation occurs at V0t ¼ 1: The relationship given by

Eq. (10.8) may be further improved using a higher order iteration, allowing n1 as well as n2

to be affected by the relaxation term n2V0; however, the account we have presented is

sufficient for our present purposes.
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Experimentally, the value of Pth ranges from 3.1 to 13.5 mW cm22, a rather moderate

power for the threshold, indicating that coupling between the PbS quantum dots and the

TiO2–glycerol matrix is rather low, making it a nearly ideal system for a purely optical

switch or other devices. Before we leave the present discussion, we want to point out that

the plot of n2=n1 versus V from Eq. (10.8) represents a well-behaved function with a

definite point at V ¼ V0, delineating the onset of saturation. A list of future investigations

may involve the temperature effect of the role of phonons and vibronic states and non-

radiative decay channels as well as the frequency dependence of this coupling as E2 2 E1

varies with the size of the quantum dot.

For a large particle of PbS, ,1 mm in size, which is much greater than L , 10–25 nm;

the transmission versus the thickness is highly non-linear (Kang et al., 2004), because the

total transition is summed over the volume of the particle, which is a factor of 106 greater

than the nano-particles embedded in a comparable volume. This fact explains the much

larger Pth. Unlike PbS where electron–hole pairs created by the incident photons of a

Nd-YAG laser q 0.4 eV, the band gap, can cascade down via phonon interaction, in nano-

particles with discrete quantum states transfer of excitation to phonons is generally not

possible.

Although the number of states in a quantum dot is closer to a molecule, however there

are multitudes of surface states, mainly due to complexes from bonds between the

quantum dot and the matrix. The fraction of complexes increases as the surface to volume

ratio increases. The linear relationship in Figure 10.5 indicates either a lack of any surface

crud, which is quite unlikely, or more likely that the complex involves energies in the UV

range, which are not accessible to excitation by the Nd-YAG laser. Therefore, if UV

excitation is used, the Pth versus thickness may be better represented by the case without

quantized states in the non-linear threshold–thickness relationship, as for the case of large

particle size, leading to a much higher value of Pth. Thus, by probing with a different

frequency, it should be possible to identify the recombination channels due to the surface

complexes.

The difficulty in providing input/output prevents us from taking full advantage of the

quantum properties generally expected from nanoscience in relation to electronics and

optoelectronics. We can build a quantum system with energy barriers for electronic

confinement. However, for phonons, it is a different story. It is almost impossible to isolate

a quantum dot from a phonon. Therefore, the use of a sol–gel as well as the possible use of

porous silicon mentioned in the previous chapter represent an ideal situation. Sulfur

compounds like CdS (Brus, 1994, 1996; Alivisato, 1996) and PbS are also important in this

work. The all pervasive degradation, for example, of oil as a lubricant and metal contacts,

is caused by oxygen, because oxygen is so plentiful and has such a high electro-negativity.

I like to tell the story of how I became convinced that oxygen is the main spoiler. I was

taking a London University external BSc during the early 1950s majoring in Physics

and Chemistry. My professor showed us how to make small aluminum particles, collected
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on a filter paper after the final rinse. We were told to put the filter paper in the sun to see

what happened. When it dried, the rapid oxidation set the paper on fire! Sulfur is one of the

better elements at resisting oxidation, and since the environment is generally not full of

sulfur, sulfides are more stable compared to column V elements like P and As, although the

nitrides are more stable. Perhaps a lnN quantum dot has a future. Although quantum dots

of CdS, CdSe and PbS are more stable than most III-Vs, they still need to be encapsulated

and protected. Nevertheless, PSi is really my all time favorite, because the possibility of

epitaxial silicon growth on top of PSi virtually seals the active nano-particles from the

intrusion of oxygen as well as providing current connectivity. I am not sure whether PSi

can ever be developed to the point of general use. At least in principle it possesses the

ingredients to serve as a “perfect matrix” for quantum dots.

10.3. MULTIPOLE ELECTRODE HETEROJUNCTION HYBRID STRUCTURES

Since the introduction of the man-made superlattices and quantum well structures, the field

has taken off with the development of quantum slabs (QS), quantum wires (QW), quantum

dots (QD), and nano-electronics in general (Meirav et al., 1990). This rapidly expanding

field owes its success to the development of the epitaxially grown heterojunctions and

heterostructures originally used to confine carriers in injection lasers (Kromer, 1963;

Alferov, 1965; Hayashi, 1984). Meanwhile, advances in lithography allow potentials to be

applied in the nano-scale dimension, mainly with in-plane electrodes, leading to the

possibility of quantum confinement without heterostructures (Tsu, 2002, 2003). Actually,

quantum states in the inversion layer of field effect transistors (FETs), formed by the

application of a large gate voltage appeared several years before the introduction of

superlattices and quantum wells (Stern and Howard, 1967). The quantum Hall effect was

first discovered in the Si inversion layer (von Klitzing, 1980). Apart from the devices,

many fundamental phenomena connected with quantum conductance effects will not be

elaborated upon, however, we should point out that most experiments on the Aharonov–

Bohm effect and conductance oscillation in a magnetic field, and so on, have already

embodied the use of hybrid electrodes (see, for example, Washburn and Webb, 1992).

In this section on the multipole electrode heterojunction hybrid structure (MEHHS), the

hybrid structures of heterojunctions and applied potentials via multipole electrodes for

a much wider variety of structures for future quantum devices are discussed (Tsu, 2002,

2003). The technology required to fabricate these electrodes, to some degree is routinely

used in the double-gate devices targeted for improving efficiency of complementary metal

oxide silicon (CMOS) devices (Wong et al., 1997).

Figure 10.6 shows a typical double gate FET. Note that the double-gate structures could

very well be the gates needed to confine electrons provided the dimension is below
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the inelastic mean free path of the channel. We shall see later how similar this structure is

to the schemes involving multipole electrodes.

Resonant tunneling via man-made double barrier heterostructures, the resonant

tunneling diode (RTD), was introduced 10 years before working devices appeared

(Sollner et al., 1983). Quantum cascade lasers (QCL), developed at BTL under the

direction of F. Cappasso, incorporating the principles of superlattices appeared almost 25

years after the introduction of the man-made superlattices (Faist et al., 1994). The main

advantage of using double-gate CMOS and DG-FETs is to control the electric fields in the

active region of extremely short channel devices. More importantly, doping becomes

unnecessary, as in RTDs. In spite of the fact that the DG-FET originates from the work

done by engineers in silicon technology, the adoption into the mainstream of ULICs may

very well be at least 10 years away. On the other hand, it must be recognized that with the

ever decreasing size of integrated circuits (IC) structures, the goal stressed here for the use

of heterojunction multipole electrodes for quantum devices may very well be reached via

silicon technology. In short, research in silicon technology and quantum devices are

converging towards each other, but full implementation may be many years away. A few

specific examples are detailed here, to stimulate a rapid adoption of a hybrid system for the

formation of quasi-discrete states, the resonant states, for quantum devices. From a broad

view point, the Si/SiO2 inversion is a hybrid system.

Let us go into some detail about why multipoles are important. The multipole expansion

of an electric field has a very important feature; the higher the multipole, the faster the field

falls off with distance. In fact this is essentially the reason why heterojunctions, being

neutral, can be much more abrupt than pn-junctions. Sometimes we consider quantum

confinement by geometrical boundaries as a separate means of achieving quantum states;

however, geometrical confinement cannot take place without band-edge alignment of the

heterostructures. For example, a microwave resonator is formed from a section of the

waveguide with a geometrical constriction. The constriction is precisely the result of

Figure 10.6. Schematic cross-section of an ideal double-gate FET. After Wong et al. (1977), with permission.
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discontinuities, such as the difference in dielectric constants or the difference between an

insulator and conductor. Although the origin of confinement may be ultimately traced to

the potential, for the purpose of describing and characterizing the fundamental

mechanisms for engineering designs, it is very useful to distinguish between confinement

by heterostructures and confinement by multipole electrodes, as well as a hybride

scheme using both.

10.3.1 Examples of Heterojunction Multipole Electrode Hybrid Structures

Next we shall discuss the hybrid system with mutipole electrodes applied to a quantum slab

formed by heterojunctions, for a much wider variety of structures for use in future quantum

devices (Tsu, 2002, 2003). Meanwhile advances in lithography allow potentials to be

applied in nano-scale dimensions leading to the possibility of quantum confinement

without heterostructures (for example, Song et al., 1998). In principle, multipole electrodes

can provide confinement as well as control of symmetry for specific device functions

(Tsu and Datta, 2002). Such potentials may be designed (i) for arbitrary geometry, (ii) to

produce softer scattering and (iii) to be dynamic, e.g. to turn the device on and off. An

example of a hybrid system with multipole electrodes applied to a QS formed by

heterojunctions is shown in Figure 10.7, taken from Tsu (2002). The difference between the

electrodes in Figure 10.7 and the double gates in Figure 10.6 is the multipole nature of the

(^ ) pair of electrodes. Note that the potentials at the top, t ¼ 0 and the bottom, t ¼ d; are

ideal for confining an electron, but at the center, t ¼ d=2; the confinement is much weaker.

The thickness of the QS d should be less than the inelastic scattering length of the

material forming the QS, usually no more than a few tens of nanometers. The maximum

separation of the (þþ ) pair and (22 ) pair should be determined by the breakdown field

of the material, generally no more than ,107 V cm21. Figure 10.8 shows a case where

Figure 10.7. Left—Potential inside a QS of thickness d with multipole electrodes on top and bottom of the slab

to effect quantum confinement. Right—potential versus distance at three levels: t ¼ 0; t ¼ d=2; and t ¼ d: Note

that the confining potentials are reduced in the middle of the slab. After Tsu (2002), with permission.
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the thickness of the slab is much greater than the separation of the (þþ ) and (22 ) pairs

of electrodes. If the bottom electrodes are moved far from the QS, the confining potential

near the top at t ¼ 0 is nearly the same but at t ¼ d; it is much reduced. Therefore for

d , 10 nm, the bottom electrodes should not be placed more than few d lengths away. The

requirements that the top þ1 V and 21 V electrodes must be sufficiently separated,

limited by the breakdown voltage, together with the minimum distance separating the top

and bottom electrodes presents a severe technical challenge though not an impossible one.

The right side of Figure 10.8 shows the case where the bottom electrodes are placed 10d

below the top electrodes the confinement at t ¼ d almost disappears because these

potential spikes are not delta functions. The multipole electrodes in Figures 10.7 and 10.8

are similar to most buried gates currently being investigated for highly efficient CMOS-

FET. The fabrication is complex but possible. Wong (2002) details an excellent account

for the self-aligned double-gate fabrication process. The major difference between what is

presented here and the DG-FET is the multipole nature of the electrodes. It is quite

possible that this hybrid confinement scheme would be realized by pursuing high-end

silicon technology rather than by those investigating nanoelectronic devices. This last

view can be traced to my experience at BTL and IBM, where I witnessed how great a

program and effort are needed to bring an idea to reality. Figure 10.9 shows a schematic

drawing for a 3D-hybrid structure QS. With the rapid advancement in the resolution of

lithography, such structures may be fabricated, serving as the precursor to a wide variety

of quantum dot-field effect transistors (QD-FETs). The main theme is that by using

electrodes in a plane, the bottle-neck of I/O may be avoided. Connections to the electrodes

may be through vias.

Figure 10.8. Left—the potential inside a QS with multipole electrodes placed at the top and bottom. Right—

potential versus distance at the bottom of the QS, t ¼ d; and “delta-function like” potential spikes versus distance

when the electrodes are separated by 10d. Note that in this case, confinement at t ¼ d almost disappears because

these spikes are not really delta functions with the peak position fixed at þ1 V and 21 V. After Tsu (2002), with

permission.
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10.4. SOME FUNDAMENTAL ISSUES: MAINLY DIFFICULTIES

In bulk crystalline solids, symmetry manifests itself in the periodic part of the Bloch

function, which depends on the wave vector k of the Brillouin zone. The symmetry of the

man-made quantum state is determined by the symmetry of the heterostructure and the

applied potentials. Like atomic and molecular physics, for two electrons occupying a

given state, a symmetric state goes with the anti-symmetric spin function, the singlet,

while the antisymmetric state goes with the three symmetric spin states, the triplets. The

applied potential can change the symmetry resulting in rearrangements of the spin parts.

Moreover, determining the boundary conditions due to band-edge off-set, together with

the dielectric discontinuity due to the difference between the dielectric functions of the

regions of interest, for the QD or QW, constitute a formidable task in computational

physics. For example, the dielectric discontinuity was fully included in the treatment of the

doping of a quantum dot and the capacitance of a quantum dot in Chapter 8. However, in

these treatments it was assumed that the electron wavefunction goes to zero at the

boundary. We know that is not the case because the RTD will never work with this type of

simplified boundary condition. We simply point out the involvement. If an electron

induces a potential at the dielectric mismatch, there will be an inside and outside effect

(outside refers to the matrix), resulting in extra Coulomb energy. However, if the induced

electron wavefunction originates from another site in the matrix, then the Heisenberg

exchange term should be included. All these features are quite negligible in QW structures,

but are magnified by a large factor in QD structures simply because of the small volume of

the active region. When the size is sufficiently reduced, a Poisson distribution replaces

Gaussian statistics so that fluctuations from the mean by inadvertent defects become

unavoidable and switching results. This is a classical problem associated with random

processes, which prevents the implementation of redundancy and robustness. The familiar

Figure 10.9. A schematic drawing of a 3D-hybrid structure QS with a two-dimensional array of electrodes on

top and bottom. The positive and negative electrodes are arranged to produce confinement as QDs. The

3D-potential profile is shown on the right, with electrons confined in the minima.
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concept of resistance capacitance (RC) time constant is still applicable, except that

capacitance is not simply given by the geometry, and resistance is not given by the lossy

part of the transport, but rather includes the fundamental wave impedance of the electrons,

which will be treated in the next chapter. The quantum mechanical definition of

capacitance in terms of stored energy includes kinetic as well as electrostatic energy.

Therefore, capacitance is much reduced in QDs, not only due to the reduction in dielectric

constant, but also due to the increased kinetic energy inside the QD. Lastly, we should

remember that atomic physics is based on spherically symmetric potentials. With arbitrary

symmetry, one needs to examine each individual case (Tsu and Datta, 2002).

Nevertheless, as with all theoretical and computational issues, we resort to simple

solvable geometry to obtain guidelines for engineering design.

Input/output is the most difficult problem for these nano-scale devices (Tsu, 2001a,b).

First of all, when one speaks of a voltage applied at a particular region, terminal or contact,

an equal potential surface is implied. As size decreases to the nano-scale region, generally

only metals may qualify. One cannot rely on doping to reduce the Schottky barrier. For

example, solid solubility limits the maximum doping concentration, usually by about

0.1%. Silicon, for example, has 5 £ 1022 atoms per cm3. In a volume space defined by

10 nm linear dimension, there are 50 dopants at the 0.1% doping level. However, for a

doping density of 1018 cm23, there is only one dopant in the volume. The doping density

fluctuates wildly so that the device cannot function. Therefore, it is safe to say that metallic

contact or semi-metallic contact must be used to ensure I/O to the active quantum device,

if for nothing more than the demands of electrostatics.

Many dramatic results have been claimed in the work of single electron transistor, for

example by Reed et al. (1988). First, these results take advantage of the relatively larger

size operating at very low temperatures or use scanning tunneling microscopy (STM)

probes for smaller devices operating at higher temperatures. Both cases represent bench

top experiments, a longway from being able to apply to the world of electronic devices.

Meanwhile there is a steady stream of results and claims involving nano-scale particles in

optical applications (see for example, Brus et al., 1996). However, these are also far from

any real devices. First of all, photons, with their large wavelength, invariably contact many

particles in parallel. A parallel system like optical “blinking” is intrinsically unstable. Let

us use a very simple argument against the system in parallel. A resistor with two contacts

is basically a parallel system. Then why is it stable? It is stable because the resistor is

operating in the linear range, the Ohm’s law regime, so that the conductance is

proportional to the area of the contact. More than 10 years ago, Tsu and Nicollian took up

the investigation of tunneling via nano-scale silicon particles, ,3 nm in size, between two

large contacts (see Chapter 7). Many strange phenomena occurred. First, there was the

traditional tunneling via resonant state of the Si QDs resulting in a delta-function-like

conductance structure, which is to be expected. The charging and discharging of the QD,

the so-called Coulomb blockade is also to be expected. Even the hysteresis curve is to be
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expected from inadvertent trapping of electrons. These trapping sites do not even need to

be located inside the quantum dot as long as the potential of the charged traps can affect the

energy of the quantum dots. But, what is most disturbing is the conductance oscillations in

time, or more precisely, on/off switching of the conductance caused by the traps.

Therefore, the old rule always applies, cleaning up the defects and impurities. Only,

because the active number of electrons is many orders of magnitude reduced, the cleaning

up is far more stringent and may take a generation or more. More on this will be given in

the next chapter.

The MEHHS is ready for possible application. The system that is ready may very well

be the electron quantum waveguide, where fabrication techniques for heterostructures are

sufficiently mature and high-resolution lithography is sufficiently advanced to allow the

formation of this hybrid system.

10.5. COMMENTS ON QUANTUM COMPUTING

In recent years, the research community has feverishly pursued the lure of quantum

computing (QC). Basically, the binary bits are replaced by Q-bits, a sort of quaternary bit,

which includes putting the phase of the state into the logical gates of a classical computing

scheme (Deutsch, 1985; Mullins, 2001). Let me comment on QC using familiar examples.

Memory is totally classical, in other words no phase in is involved, because once a bit is

stored, a “0” or a “1”, a day later it is still a “0” or a “1”. This is a similar situation to when

a policeman catches a speeder and enters the record of conviction. However, he is likely to

have used a phase sensitive scheme, the Magic-Tee (also known as the Michealson

interferometer) to catch the speeder. Therefore QC utilizes the wave nature of electron to

serve as the phase sensitive part of the scheme in order to accomplish certain task. I think

many people fail to catch on to this idea and this gives rise to great argument. There is no

fundamental problem for me when someone plans to use the wave nature for the phase

sensitive part of the mission, commonly referred to as processing. However, there are

problems in the real system with losses and leakage, no different the reason I use a non-

Hermitian operator for an open system. Clearly the idea involving using the Magic-Tee to

catch the speeder is an open system! Mathematically a complete set can represent any

function. However, because of the need for input/output, devices are not totally isolated

but partially open, and one is forced to deal with resonance states instead of eigenstates of

the system. Together with unavoidable losses and finite bandwidth, serious problems exist

to this day in the implementation of the concept. In real terms, it would be remarkable if

someone could assemble 10 terms in a series expansion with any degree of precision, for

example with five significant figures for each term. One can digitalize a signal, but one

cannot digitalize an electron wavefunction because the wavefunction is normalized.

Nevertheless, we mention QC devices because they may become important someday, and
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more importantly, the use of an electron quantum waveguide with MEHHS may be a

vehicle for achieving the dream of QC. My reading on all this is different. I think QC will

never come into common usage, not even with cryptology. However, the concept may find

some use in a niche yet to be discovered.

10.6. SUMMARY

The cold cathode is a device for electron field emission replacing the hot filament in

vacuum electronics. High power high frequency devices such as the TWT are still the

backbone of the high power amplifier. Recently, a new type of cold cathode has come on

the scene, field emission with resonant tunneling (FERT), a scheme that involves placing a

quantum well structure at the surface of a semiconductor with a fairly low work function

such as the GaN. The QW structure consists of a GaAlN barrier, a GaN well and a second

barrier consisting of a vacuum. With a field at the surface, the vacuum is transformed into a

triangular barrier at the surface. Electrons from the nþ-GaN tunnel resonantly into the

vacuum providing a high current, as well as lowering the work function, because the

quantum state is flat across the potential profile allowing the effective work function to be

lowered by ,E1=2; where E1 is the quantum state involved. In fact, the device

outperformed the design by a huge margin, giving a factor of 5 lower electric field,

because it was found that the space charge in the well gives rise to additional lowering of

the work function, by eVSC, where VSC is the potential from the space charge rSC: This is

another typical example of research. One should not hesitate about doing new research or

worry about finding complete understanding, because this is hardly ever achieved even

after a given device has been in use for a long time. I spent several years at Energy

Conversion Devices, Inc. when we were working closely with Japanese scientists and

engineers from Sharp. I discovered that the Japanese would go ahead and launch a given

device before we in the USA consider that it was fully field tested. To my mind there is no

such thing as complete understanding.

I remember that PbS was the backbone of a near infrared detector, and that HgCdTe was

used further into the infrared. Putting PbS in a sol–gel provided an efficient luminescence

material embedded in a highly porous medium that allowed decoupling of phonons as well

as serving as a vacuum barrier for PbS in quantum confinement. We found a several orders

of magnitude reduction in absorption saturation when the particle size of PbS is below

10 nm, when PbS becomes a QD. This work opened the door to a whole class of schemes,

such as embedding CdSe in porous silicon for nonlinear optics at low power! What

happens is because each QD has only one quantum state. This is not achievable with

quantum wells because quantum confinement in one dimension leaves a large two-

dimensional density of states in the transverse degree of freedom. Optical transition still

involves nearly the same number of oscillators, while in QD, being zero dimensional
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system, optical transition involves only one state! I asked an organic chemist why ethylene

glycol is so good in preserving quantum dots such as CdSe. The answer is that these

organic liquids are covalent which prevents oxygen from getting in. This gives us

something to think about when looking for a matrix to serve as a passivation agent.

Let us again emphasize that multipole potentials are short ranged. If you have any

doubts just remember that the radiation field in the near field is short ranged and consists of

multipoles. In fact many people, even without having a clear understanding of what is a

multipole field, are capable of offering designs for electrodes basically creating higher

order multipole fields! Coupling a hybrid structure with heterojunction and multipole

electrodes seem to present the future of quantum devices. The best part is the fact that there

is no problem with I/O, because the contact at high current can still be planar across a

planar heterojunction with mutipole electrodes on the planar surface. In fact what I am

suggesting is nothing more than reconfiguration of the FET into a structure with a double-

gate in the planar surface instead of one on the top surface and a second one below the

planar surface. Actually there can be two pairs, with one pair on the top and bottom surface

of the quantum slab, and a second pair on the top surface of the quantum slab. Figure 10.9

illustrates a possible design of a hybrid heterostructure 3D QD-FET. Note that of all the

bench-top success stories in nano-electronics with QDs, the connections to the active

region are invariably via contacts lying in a plane that includes this structure. I predict that

the forerunners of quantum nano-devices will all be connected with contacts in a plane.

There seems no other ways of implementing the I/O.
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Chapter 11

Quantum Impedance of Electrons

In circuits, particularly linear systems, impedance is a universal concept that characterizes

input/output (I/O). For waves, an additional parameter, the propagation constant, together

with the impedance, characterizes the operation of a system. Since electrons are waves,

they should also be represented by these two parameters, propagation constant and

impedance. Nevertheless, electromagnetic waves are considered to be “true waves”

because the energy–momentum relation is linear allowing a wave packet to be maintained

at all times, whereas, for electrons, a Gaussian packet spreads because of the dispersion in

non-linear E 2 k (see, for example, any book on quantum mechanics). I have had several

discussions on this point, particularly with those working on the popular subject of

quantum computing. The prevailing view is that the electron, perhaps, is not really a wave.

With this possible point of fundamental controversy, nonetheless I present my derivation

of the impedance of electrons.

11.1. LANDAUER CONDUCTANCE FORMULA

Sometime ago, almost as long ago as I first tackled the problem of resonant tunneling via a

finite superlattice (Tsu and Esaki, 1973), I noticed that the conductance consists of discrete

components that depend on the number of longitudinal modes, the quantum states in a

quantum well (Chapter 2) as well as the transverse degree of freedom. In the Tsu–Esaki

expression for the resonant tunneling, integration was performed over the transverse

degree of freedom first, noting that the two-dimensional density of states (2D-DOS) for an

unbounded case is simply mp=ph2: Let us instead integrate over the longitudinal direction

first, dkl or dEl: Defining the function FðEÞ ; 2
P

t ½1 þ expðE þ EtÞ=kBT�; then the net

tunneling current between two contacts becomes (Mitin et al., 1999)

I ¼
2e

L

X
t

X
kl

1

h

dEl

dkl

{FðE þ eV 2 EFÞ2 FðE 2 EFÞ}: ð11:1Þ

With T ! 0 and V ! 0; FðE þ eV 2 EFÞ2 FðE 2 EFÞ! eV ›ðEF 2 EÞ; the conduc-

tance G ¼ ›I=›V from Eq. (11.1) becomes the Landauer’s conductance formula

G ¼ 2G0

X
t

lT l2ðEF ;EtÞ; ð11:2Þ

where the sum over the transverse degree of freedom without confinement should have an

extra factor of mp=ph2; as in Tsu and Esaki (1973) in which the conductance per spin,
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G0 ¼ e2=h ¼ 38:6 mS; with its inverse Z0 ¼ 25:9 kV: The main conceptual difference

between the conductance and the resonant tunneling formulas lie in the term lTl2 which is

broad compared with the sharp Fermi function in the former and is almost a d function for

the latter. There are issues raised by Landauer (1957, 1970) concerning the assumption of

zero reflectance and by Datta (1995) concerning the potential drop at the contact interface.

Both will be discussed more in detail after the section on the wave impedance of an

electron.

11.2. ELECTRON QUANTUM WAVEGUIDE (EQW)

Facing the serious I/O problem of quantum devices (Chapter 7), I thought that the electron

quantum waveguide (EQW) from an application point of view, has at least no serious I/O

problem. But before we discuss in more detail the issues involved, a more in-depth account

of EQW (Tsu, 2003) is presented because there are fundamental issues regarding contact

conductance and fundamental wave impedance. Since the subject is so intimately

connected with the wave impedance and characteristic impedance of a photonic

waveguide, some conventional waveguide aspects will be first reviewed. Stratton

(1948) introduced the concept of the ratio defining a wave impedance,

h ¼ lEl=lHl ¼ lEl2=2lSl; ð11:3Þ

with S being the Poynting vector. Stratton, referring to Schelkunoff (1938), stated:

“Impedance offered by a given medium to a wave is closely related to energy flow.”

The electromagnetic wave impedance in an unbounded region is given by h0 ¼
ffiffiffiffiffi
m=1

p
:

In free space with m ¼ m0 and 1 ¼ 10; h0 ¼ 377 V and the characteristic impedance in

free space Z0 ¼ h0: This is not true for a waveguide. The wave impedances for transverse

electric (TE) and transverse magnetic (TM) are hTE and hTM; having the specific forms

hTE ¼ h0=k and hTM ¼ h0k; with k ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 2 k2

c =k
2
0

q
; in which the cut-off wave vector

k2
c ¼ ðmp=aÞ2 þ ðnp=bÞ2 and k0 ¼ 2p=l0; where l0 is the free space wavelength. Note that

hTEhTM ¼ h2
0: At kc , k0; hTE !1; but hTM ! 0: Thus the wave impedance depends on

the geometrical boundary conditions as well as the field configurations. However, this

wave impedance is not the same as the characteristic impedance in circuits (Marcuvitz,

1951). The problem arises because at a fixed location along the length of the waveguide,

the fields in the transverse direction depend on the location in the transverse plane. Using

an appropriate averaging of the fields over the transverse plane in terms of the crest vales,

the voltage and current can now be definitively defined and for both TE and TM modes, the

characteristic impedance Z ðTE or TMÞ ¼ ða=bÞ h (TE or TM), following Reich et al.

(1953). For a ¼ b; the definition of the characteristic impedance Z and the wave

impedance h are the same but not the same as h0: Since the propagation constant along
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the guide kz ¼
ffiffiffiffiffiffiffiffiffiffi
k2

0 2 k2
c

q
; when k0 , kc the propagation kz is imaginary and the guide is

cut-off. This is why kc is called the cut-off wavevector.

The I/O of conventional microwave waveguides is not child’s play. Many great minds

were involved in the excitation, coupling and matching of microwaves using waveguides

during the Second World War, mainly conducted at the MIT Lincoln Laboratory and Bell

Telephone Laboratories. Let us discuss how we launch a wave into a waveguide. For

simple visualization we use a laser source and fiber optics as a guide. The laser consists of

a cavity, with a set of Bragg reflectors, usually with a reflectivity R close to 1, forming a

high Q Fabry–Perot resonator. The reason we use a high Q cavity is because stimulated

transition is proportional to the photon intensity. A higher Q leads to a higher intensity and

thus higher efficiency. Since reflectivity R ¼ ðZi 2 Z0Þ=ðZi þ Z0Þ , 1; and because the

impedance of the laser cavity Zi q Z0; the transmission coefficient T , 0: If T , 0 at the

source–guide interface, how does the excitation enter the guide? The answer is provided

by the definition of Q, being the number of cycles the excitation lasts if the source of the

excitation is turned off. Since the field inside the laser cavity is so high, even with T p 1;

the “leak-out” rate is sufficient to ensure that a significant amount of power flows into the

waveguide. The reason we go through all this to explain the excitation of optical

waveguide is to lay the foundation for discussion of the excitation of the electron

waveguide. In a typical microwave waveguide, a matching section, E–H tuner, is located

near the source–guide interface to tune out any mismatch. A matching network like the

E–H tuner, is usually nothing more than a section of a waveguide with adjustable length,

or simply put, a resonating section. This, incidentally, is similar to the electron case, where

a section consists of at least two barriers with the length of the section being adjustable.

We shall explain this point in more detail later. We want to mention briefly that in EQW it

is not necessary to adjust the length, because an applied voltage can change the de Broglie

wavelength, and therefore, effectively change the length. I want to stress that the

“contact” is far from reflectionless for electromagnetic waveguides; rather, reflectivity is

near unity.

Next, let us take the electron waveguide as shown in Figure 11.1. Following Tsu (2003),

the propagating wave vector kz including the potential energy eV is given by

k2
z ¼

2me

h2
ðE þ eVÞ2 k2

t;nm: ð11:4Þ

The transverse momentum vector kt;mn at the mode ðm; nÞ is given by

k2
t;nm ¼

mp

a

� �2

þ
np

b

� �2

; k2
c ; ð11:5Þ

and Et;mn ¼ ðh2k2
c Þ=2m; we see that the transverse energy is nothing other than the energy at

the cut-off propagation vector, kc in the usual waveguide case. The density of states (DOS)
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for a cross-sectional area A is

DOS ¼
1

A

X
n;m

ðkzM

0
dkz; ð11:6Þ

where kzM is the maximum value for a given set ðm; nÞ; E and eV : At T ¼ 0; E ¼ EF for

2me

h2
ðEF þ eVÞ , k2

c ; ð11:7Þ

kz is purely imaginary and propagation is not possible. Counting only the propagating

modes, including two spins, the current density is

j ¼
2e

2pA

X
n;m

ðkzM

0

1

h

›E

›kz

dkz;

with E ¼ EF ; the current,

I ¼
2e

h

X
n;m

ðEF þ eVÞ2 Et;mn: ð11:8Þ

At m ¼ n ¼ 0; I00 ¼ 2ðe=hÞðEF þ eVÞ; and for eV00 þ EF . 0; G00 ¼ ð›I00=›VÞ ¼

2ðe2=hÞ ; 2G0; at m ¼ 1; n ¼ 0; I10 ¼ 2ðe=hÞðEF þ eVÞ2 Et;10; and for eV10 þ EF .

Et;10; G10 ¼ ð›I10=›VÞ ¼ 2ðe2=hÞ ; 2G0; etc. resulting in G ¼ G00 þ G10; continuing to

the general case of (m,n), G ¼ ›I=›V is

G ¼
X
n;m

2G0uðEF þ eV 2 h2k2
t;nm=2mÞ; ð11:9Þ

in which u is the unit step function, having a series of steps depending on how many

modes, (m,n) are included. With a negative sign for e, þeV becomes 2eV in Eq. (11.9).

The factor of 2 in front of G0 is for the two spins. Thus for the spin polarized case, there

Figure 11.1. Section of an electron waveguide embedded in a potential barrier on all sides with coordinates

shown. The applied potential V is such that it is 0 for z , 0 and V for z . 0:
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should be G0(þ1/2) and G0(21/2) without the factor 2. It is important to recognize that for

single mode operations, only one step in G appears, depending on the condition given by

Eq. (11.7). The origin of these extra modes is due to the inclusion of modes (m,n) coming

from the incident electrons that have transverse energy. In free space, we simply take

a ¼ b ¼ 1; then G ¼ G0uðEF 2 eVÞ; which ensures that the potential of the waveguide is

below that of in EF : Otherwise no transmission is possible from the source of electrons the

energy range from E ¼ 0 to EF : It is important to recognize that an incident electron with

transverse energy can enter the waveguide, but without transverse– longitudinal

scattering, only the longitudinal energy contributes to conductance. What is this

conductance? From the derivation, clearly it is an input conductance, which Datta

(1995) referred to as contact conductance. What happens to the output impedance? The

setup of the problem implicitly assumes the output end is terminated by its own

characteristic impedance. What happens to the sending end? Since all transverse modes

forming the allowed modes entering the EQW are assumed to be uncoupled, the reflection

coefficient of each mode is zero for the planar boundary conditions. More on this point will

be presented later.

From Heisenberg’s uncertainty principle, the manifestation of the wave nature of an

electron for G is simple starting from I ¼ e=Dt; with Dt DE $ h; and DE ¼ eV ; I ¼ e2V =h

giving rise to G ¼ e2=h; which is a factor of 2p greater than G0 per spin. Nevertheless,

experimental results from Van Wees et al. (1988), as well as the results for Si-QDs

presented in Chapter 7, clearly give G0 , 40 mS per spin, confirming G0 ¼ e2=h; rather

than G0 ¼ e2=h: I think the difference between the two expressions is due to the fact that

Heisenberg’s relation, Dt DE $ h; in most quantum mechanics books, refers to a

minimum packet.

The quantized conductance steps in units of 2e 2/h for the transport of electrons in

constricted geometry were first pointed out by Landauer (1957, 1970), and often mistaken

for ballistic behavior or even some mechanism of energy loss in these systems. However,

these conductance steps are entirely a wave phenomenon: the dependence of the

longitudinal component of the wave vector kz on the potential without dissipation. In

EQW, the above derivation shows that, unlike photons, electrons from a contact on a

Fermi surface are involved with electrons in all directions. For example, a cone of

electrons at a solid angle DV emerging from a spherical Fermi surface involves electrons

both in a given direction such as the z-direction as well as in the transverse directions. In

general, multimode operation dominates over a single mode operation. With the

application of a potential V, many transverse modes are included, resulting in propagation

that has a sum of modes given by the expression for G. It should be apparent that this sum

of modes is totally controllable by the potential V, thus providing a very useful electronic

device, not only as a filter, but also for selectable tunneling.

As pointed out in Figure 7.4, when the applied voltage sweeps the quantum state into the

forbidden gap of the n-doped contact, the disappearance of the tunneling current leads to
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negative differential conductance (NDC). However, with a metal contact, only one step

appears. There is an important point. Going back to Figure 7.4b, the current after V1 is

shown as a constant slope that needs more explanation, but it was not explained in Chapter 7.

This is because of the role of the electron wave impedance in terms of the conductance per

channel that is presented in this chapter. Before we go into detail, I want to briefly touch on

this point. In a quantum wire or EQW, the 2D-DOS is a constant, being mp=ph2: Thus each

channel contributes to a constant factor, the conductance G0 ¼ e2=h: Now, for a quantum

dot, the state is denoted by three quantum numbers, therefore each channel is enumerated

by three quantum numbers. Whenever the applied voltage is swept through a state, the

conductance is increased by G0: In addition to this conductance, Figure 7.4b also shows

conductance peaks originating from the sharp vertical rise of the current. Experimentally,

this peak has a linewidth very close to kBT as shown in Figure 7.7.

11.3. WAVE IMPEDANCE OF ELECTRONS

Several years ago, shortly after I published my version of the electron waveguide (Tsu,

2003), I asked Datta whether he liked controversial topics. If he did I suggested that he

should join with me in introducing the concept of the electron wave impedance in the same

way as the wave impedance of photons, or for that matter any wave, including classical

systems like sound waves and wave propagation over a one-dimensional string.

There is a conceptual problem as to why this conductance has no imaginary part and yet

represents a lossless case. As in any wave phenomenon such as in electromagnetics, the

wave impedance in free space, h ¼ ðm=1Þ1=2; having a value of 376.6 V. In reality, the

concept of wave impedance manifests itself in the transport of energy either to a load with

reflection and dissipative losses, or simply flowing on. It is entirely a wave phenomenon.

Although electrons are not pure waves, with entanglement due to Pauli’s exclusion

principle, the differential equation, at least represented by the Schrödinger equation, is a

typical wave equation and as such should have similar wave impedance. As long as we are

dealing with a lossless case, the conductance is real. Reflection and transmission, which

are the consequence of boundary conditions in sections where the differential equation is

piece-wise analytical, are handled through the use of impedance matching at these

boundaries, an identical manner to the role of impedances in circuit theory.

11.3.1 Wave Impedance in a Solid with a Plane Wave in One Direction

Following Datta and Tsu (2003), the wave impedance is defined via a plane wave

normalized in a volume AL, with A transverse to the direction z; and length L sufficiently

large for normalization. However, in solids, L must be less than the mean free path,
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otherwise waves have no meaning. Then

E ¼
ðL

0
dz
ðb

0
dy
ða

0
dxcpHc ¼

h2k2
0

2m
; ð11:10Þ

and

I ¼ e
ðb

0
dy
ða

0
dx

h

i2m
ðcpcz 2 ccp

z Þ ¼ e
hkz

mL
; ð11:11Þ

where H is the kinetic energy operator. To get an expression for impedance in units of

ohms, we need to divide E in Eq. (11.10) by the charge to obtain the potential V : The

impedance Z ¼ V=I; so that

Z ¼
h

2e2

k2
0L

kz

; ð11:12Þ

and in terms of kz ¼
ffiffiffiffiffiffiffiffiffiffi
k2

0 2 k2
c

q
; as in Section 11.2, Eq. (11.12) may be recast into

Z ¼
h

2e2

k0Lffiffiffiffiffiffiffiffiffiffiffiffi
1 2 k2

c =k
2
0

q ; ð11:13Þ

where k2
c ; ðmp=aÞ2 þ ðnp=bÞ2; which looks similar to but is not quite the same as the

waveguide case for photons. Furthermore, along the direction of propagation, unlike the

sine dependences in the x and y directions, the wavefunction dependence on z is expðikzzÞ;

a propagating function, therefore, periodic boundary conditions must be applied, i.e.

kzL ¼ 2lp; with l being any integer. Then Eq. (11.12) becomes

Z ¼ Z0l½1 2 k2
c =k

2
0�

21
; ð11:14Þ

where

Z0 ¼ h=2e2
: ð11:15Þ

The factor ½1 2 k2
c =k

2
0�

21 leads to a different expression from G for the EQW in the last

chapter. However, in deriving the conductance of the EQW, we allow electrons with

transverse energy to enter the waveguide, although only the longitudinal energy

contributes to the conductance. Here, an incident electron that has a transverse degree

of freedom applies to an electron incident at an angle to the impedance along the z-axis.

Since our formulation does not allow the transverse energy to be channeled into the

z-direction for comparison with the derivation for EQW, we should not have included the

transverse energy in the present derivation. In other words, we should have taken an

electron that has energy only in the z-direction. Then kz ¼ k0; and the factor ½1 2 k2
c =k

2
0�

21

does not appear. Then Z0 ¼ h=2e2 and Z21
0 ¼ 2G0; which is a factor of 2 larger than the

derivation for EQW. Eq. (11.9) applies to contact conductance, as elaborated by Datta

(1995), while Z21
0 ¼ 2G0 applies to the wave conductance of the electrons. This is because
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in the derivation of G0, a contact represented by a tunneling barrier is present, which is

quite different from wave impedance even without an applied potential. There is really no

reason that the two expressions should be the same, because whenever contacts are

present, we are talking about a closed system, while without contacts, an open system is

considered, which has exactly the same ratio for a capacitor with contact and without

contact and whose stored electrostatic energy is CV 2 and 0.5 CV 2, respectively. We shall

delve into this point in detail later. Before that, we shall take an extremely simple approach

just to be sure that the factor of two increase in the conductance obtained from the wave

impedance compared to G0 is not a trivial mistake in algebra.

11.3.2 Quantum Wave Impedance of Open and Closed Systems

For a section of the EQW with cross-sectional area A ¼ a £ b and length L, the energy

density

1 ¼ ðh2k2
0=2mÞ=abL; ð11:16Þ

power per unit area

P=ab ¼ 1ðh2k2
0=2mÞðhkz=mÞ=L; ð11:17Þ

and current

i ¼ eðhkz=mÞ=L: ð11:18Þ

With P ¼ i2Z; Eqs. (11.16)–(11.18) gives

Z ¼
h

2e2

� �
k2

0L

kz

¼ Z0l=ð1 2 k2
c =k

2
0Þ; ð11:19Þ

where the periodic boundary condition for a traveling wave, kzL ¼ 2pl is used to arrive at

the right hand side of Eq. (11.19). Note that Eq. (11.19) is identical to Eqs. (11.12) and

(11.14). The inverse of Z0;GQW ; Z21
0 ¼ 2G0: At this point I was certain that a

satisfactory explanation must be found for the factor of 2 difference. To start with, we shall

go back to the case of our definition of quantum capacitance CQ or Ceff : The main physics

involves the difference between an open system compared with a closed system. A closed

system consists of two contacts such as the resonant tunneling diode (RTD) and an open

system consists of a quantum dot or quantum well not connected to leads.

The capacitance of a closed system involves a capacitor with two leads or a quantum

well connected to two reservoirs as the double barrier resonant tunnel diode (DBRTD).

Like in Chapter 8, the difference between 2-electron occupation of a quantum dot E2 and

1-electron occupation E1 defines the capacitance, i.e.

Cc ¼ q2
=2ðE2 2 E1Þ: ð11:20Þ
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Because ðE2 2 E1Þ ¼ qDV =2; as for a symmetrical DBRTD, Cc ¼ q=DV : However for an

open system, we still have C0 ¼ q=DV ; but ðE2 2 E1Þ ¼ qDV ; so that

C0 ¼ q2
=ðE2 2 E1Þ: ð11:21Þ

Therefore

C0 ¼ 2Cc: ð11:22Þ

Here is the factor of two for the capacitance: the open system is twice the value for the

closed system using the symmetric model. In fact, I knew even if the DBRTD were not

symmetrical, the conductance is still represented by the closed system, with a proper

treatment of the potential, although in a computer calculation, the potential function varies

from barrier to barrier anyway. Only when a simple model is used to estimate resonant

tunneling, the potential seen by the quantum well is half the applied voltage across the two

contacts.

The EQW without an applied voltage is an open system with GQW as derived resulting

in Eq. (11.14). However in the derivation of G0, a voltage is applied at the contact,

representing a closed system, and thus

GQW ¼ 2G0: ð11:23Þ

In attributing the conductance G0 to a contact conductance and including discussion of the

need to smear out the voltage at the interface to a screening length (Datta, 1995), we take a

step forward from other hypotheses. The explanation in terms of the open system

compared with a closed system circumvents the question of where the voltage is dropped.

Rather, the voltage is dropped between two contacts as in any semiconductor devices. No

one is concerned with the detail of the screening going on inside the contact. As I have

shown, the appearance of G0 is because of the wave nature. Contact certainly plays an

important role in bringing a voltage to the EQW, however, the existence of impedance is

purely a wave phenomenon. Throughout this section, EQW is used. There are other

nomenclatures, such as quantum wire, Qwire or nano-wire, for the same system, although

strictly speaking, there are differences. An electromagnetic wire guides the energy mostly

outside of the wire. On the other hand, in microwave waveguides, energy is mostly inside

the structure. In optical fibers, energy is guided along the fiber optics both inside and

outside the fiber. Electron waveguides, by virtue of electrons being the carriers of energy,

the induced charge travels along the sides forming energy barriers that allow energy to

flow outside as well as inside the structures. Another difference between the microwave

waveguides and EQW is the fact that in photonic guides, the lowest order mode capable of

propagating is the TE01 mode, which shows variation in the fields only along one of the

two transverse directions. In EQW, as in the energy states of QD (Chapter 7), the lowest

mode is (1,1,1). Not only is there always a cut-off for propagation determined by the

Quantum Impedance of Electrons 303



conditions in Eq. (11.7), but the lowest mode already consists of charge variation in all

three directions.

The potential energy term in the derivation of the conductance for EQW is taken as eV.

In all the resonant tunneling calculations I came across, even without symmetry, the

potential seen by the structure is eV/2, and then G ¼ ›I=›V and has this factor of 2

increase. What is going on? Placing two contacts, the voltage drop across the structure is V

and the voltage seen by the structure is V/2. The voltage V is used for the open

system, while V/2 is used for the closed system. Thus we have clearly established that

for an open system the conductance is twice G0 per spin. Datta (1995) is correct to call it a

contact conductance, but he should have gone farther by calling it an input conductance.

There is one other point needs that clarification. This conductance G0 as a sum of unit

step functions is because the incident electrons from a Fermi sphere have a transverse

degree of freedom, i.e. the excitation consists of transverse modes in parallel, leading to

adding the contributions forming a ladder for G0. For the derivation of wave impedance,

apart from the factor of 2 which we have attributed to an open system, the wave

impedance with propagation along the z-axis only is Z ¼ Z0l; thus there is still this

factor l that needs further consideration. The question lies in the length we take for the

normalization along the direction of propagation of the wave. The length L must be less

than the coherence length L, otherwise the wave picture loses its meaning. In a solid, we

can set L ¼ na0; with a0 being the size of the unit cell, then k0 ¼ 2pl=na0 ¼ 2pp=a0: If

we take a0 for the normalization, then Z ¼ Z0 p. At high energy and high k0, the

impedance Z goes up with p. There is an intrinsic difference between electron waves and

photons, where Z is a constant. Why then is this the basis for comparing Z with G? The

lowest allowed Z and G appear to be from the same origin, which forms the basis of my

statement that the contact conductance is only the excitation of the quantum structure

consistent with the wave conductance of electron, and each transverse degree of freedom

is perfectly matched to the wave conductance of electron in a quantum structure, whether

a QD or a Qwire.

To summarize, uniqueness is established by taking p ¼ 1; the lowest allowed state,

thereby fixing the length L for normalization. The wave impedance is the current due to

wave propagation for a given kinetic energy. (I have explained in detail that the so-called

contact conductance is really an input wave conductance in a closed system; however,

for historical reasons, I shall continue to use the term contact conductance or universal

conductance here.) As in Eq. (11.2), conductance, involving a sum of the transverse

degree of freedom increases in steps, but in wave impedance, adding inverse impedances,

the conductance increase is not in equal steps. In fact, it has another entirely different

origin. Referring to research conducted by Nicollian and myself for tunneling via

quantum states of silicon QDs several nanometers in size, the conductance jumps are not

equally spaced for the following reasons. There are degeneracies in the quantum states

(as discussed in Chapter 7; see also Van Houten and Beenakker, 1996). Filling 1s-like
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state takes two electrons, but the p-states are not three-fold degenerate because of the

non-isotropic effective mass as well as various valleys as in the k111l, k110l and k100l
directions. The real picture is much more complicated. But why do we keep seeing

“fairly” regular steps in published measurements? These measurements come from

charging of the capacitor caused by some arrangements that allow tunneling to take

place. They represent the discreteness of electronic charge together with a region of

constriction being expressible by a constant capacitance. These data do not appear in Si

QDs. I am certain of this because I wasted or enjoyed 5 years of my life trying to sort out

the complicated I–V in tunneling via Si QDs.

What happens for a very small energy with very small k0 such that the length of

normalization exceeds the mean free path of coherence length L? The concept of Z is only

definable for an energy greater than this minimum k fixed by L as the greatest length

allowed for the definition of Z. Only the ground state has a wave impedance of Z0. Suppose

another solid has an electron coherence length twice that of the other, then the lowest

ground state has Z0, but the energy of this lowest state is 4 times lower. The wave

impedance loses its meaning altogether. In fact even for contact conductance to be

meaningful, the de Broglie wavelength must be shorter than L: We see that the wave

impedance Z < hkL=2e2 before we put in the periodic boundary condition for k. In

photons, the energy momentum involves a linear relationship, but for electrons, the energy

momentum involves a square relationship, resulting in Z / k: The consequence is that as

energy increases, Z also increases.

The lack of uniqueness in Z is more troublesome. What we need to do is to pick a lowest

energy, so that k0 is fixed by this energy. This in turn defines L for l ¼ 1: In other words

L ¼ 2p=k0: For this lowest energy, Z ¼ Z0: At all energies greater than this lowest energy,

Z is increased, given by l ¼ 2; 3; etc. This procedure of normalizing Z ¼ Z0 for the lowest

energy requires further thought. In reality, because of Coulomb interaction for electrons,

the electron wave has a finite coherent length; therefore, limiting L is same as limiting this

lowest energy.

Now we want to discuss the meaning of this wave impedance. Suppose this wave is

incident onto a region described by the differential equation with piecewise analyticity,

then the boundary conditions lead to the reflection coefficient

G ¼
lk 2 k0l
lk þ k0l

¼
lZ0 2 Z0

0l
lZ0 þ Z0

0l
:

What we stress here is that once the impedances are calculated or expressed in terms of

simple parameters, as in circuit theory, there is no need to solve the wave equation

every time a new situation arises. This is just the beginning of our goal of developing

circuit theory applicable to the designs and analyses of nano-electronic systems. In our

view, we are not far away from developing a general circuit theory based on all that is
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used in microwave circuits, eventually including dissipation and complicated

geometrical shapes.

11.3.3 Wave Impedance in Unbounded Space

In an arbitrary direction of propagation and using periodic boundary conditions for all

three directions, the wave impedance in an unbounded free space is given by

Zl;m;n ¼ Z0Jl;m;n; ð11:24Þ

where

Jl;m;n ¼

l2

L2
þ

m2

a2
þ

n2

b2

l

L2
þ

m

a2
þ

n

b2

2
664

3
775: ð11:25Þ

Even with L ¼ a ¼ b; the function Jl;m;n listed below consists of fractions except in the

one-dimensional case, reminding the fractional quantum numbers in the fractional Hall

effects (Chakraborty and Pietilainen, 1988). Note that there are degeneracies in the three-

dimensional case. Suppose there is only one electron traversing the space, one can always

pick, in this case, one of the axes of the cube to align with the direction of propagation, so

that the wave impedance will be given by the fourth column in Table 11.1 marked 1D.

Table 11.1. Quantum number dependence of Jl;m;n in 1, 2 and 3 dimensions

l m n 1D 2D 3D

1 1 1 1 1 1

2 1 1 – 5/3 3/2

2 2 1 – – 9/5

2 2 2 2 2 2

3 1 1 – 5/2 11/5

3 2 1 – – 7/3

3 2 2 – 13/5 17/7

3 3 1 – – 19/7

3 3 2 – – 11/4

3 3 3 3 3 3

4 1 1 – 17/5 3

4 2 1 – – 3

4 2 2 – 10/3 3

4 3 1 – – 13/4

4 3 2 – – 29/9

4 3 3 – 25/7 17/5

4 4 1 – – 11/3

4 4 2 – – 18/5

4 4 3 – – 41/11

4 4 4 4 4 4
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Now, a second electron is propagating in a direction not collinear with the first. Since we

cannot align the coordinates with both, complicated impedances will appear at the

detector. Therefore in principle these fractional terms will play a role. Moreover, our

derivation is for non-interacting electrons. If there is more than one interacting electron the

subject becomes complicated and controversial and will be discussed in the next section.

11.3.4 Some Fundamental Issues in Quantum Systems

Because photons are bosons, lasers and microwave sources like the magnetron involve

excited states with many photons occupying the same state or nearly the same state. For

fermions, such as electrons, each state can only be occupied by one with a particular set of

quantum numbers. Simply put there will be one electron per state. Then how do we make

an amplifier? The usual explanation is that e–e interactions split the state into a band. The

totality of responses by all the electrons in a band constitutes amplification. Then the

spectrum will be sufficiently broad.

For many years I have thought about how a many electron system wipes out the

coherent effects of a wave behaving almost classically. Semiconductor oscillators such as

gunn and avalanche diodes certainly fall into this category. RTDs like Esaki tunnel diodes

are NDC devices that belong to a class where the transmitted electrons maintain their

phase relationship with the incident electrons. However, the transmitted electrons lose

their phase coherence after cascading down to the Fermi level of the collector, as in the

emitter, retaining no phase coherency. In short, the signal from thousands or even millions

of electrons behaves classically. In this respect, the situation is quite similar to my example

of the policeman detecting the speeding motorist and recording a traffic violation. During

detection a phase sensitive scheme is involved, not unlike the tunneling process involving

constructive and destructive interference during the tunneling phase, and forgetting these

during the collecting phase. In QD devices, things are quite different.

First, unlike RTDs with all the transverse degrees of freedom, a given longitudinal

discrete state can accommodate very large numbers of electrons with different transverse

energies. The transverse energy, together with their longitudinal energy, “reassembles” the

nearly spherical Fermi energy surface in the collector! Without the planar interface, the

transverse and longitudinal energies do not separately satisfy the boundary conditions. Let

us be reminded that in RTDs, the longitudinal energy and the transverse momentum are

conserved. However, in tunneling through a quantum dot, the total energy and momentum

are conserved separately. Therefore, in a small QD, strictly speaking only one electron per

state is allowed. Suppose there are 10 electrons, as presented in Chapter 8, they are

coupled by a number of processes; via their induced charges due to the differences in

dielectric constants from the matrix; direct Coulomb and exchange interactions; via

phonons, vibronic states and even defect states; above all, coupling via geometrical

shapes, because geometrical boundaries do mix up the state functions as, for example,

the eigenstates of spherical harmonics will form new linear combinations on the surface

Quantum Impedance of Electrons 307



of a cube! In other words, there are plenty of strong couplings of the 10 electrons that

results in a band, in a practically identical way to the cases described for RTDs.

The end results are similar, but the dynamics leading to the collector are quite different

in detail. For example, with a handful of electrons, how do we assign occupation and how

do we apply the equilibrium distribution for a few electrons? If we do, we are assuming,

for example, that strong interaction with phonons justifies the use of the equilibrium

distribution function. In fact this is not a bad assumption because, as mentioned

previously, a QD may be isolated in terms of potential energy barriers, but barely isolated

in terms of phonons. Simply because elastic constants are not all that different between the

QD and the matrix, unless we are talking about a sol–gel as a matrix, then of course we

cannot talk about conduction, although we can talk about the optical properties of the QD.

Although I have not championed magnetic devices yet, a magnetic QD with a handful of

atoms much smaller in extent than the magnetic domain is indeed a very interesting

subject. In this regard, quantum Hall effects, Arharonov–Bohm effects and magnetic

superlattices indeed represent good physics; however, I still have doubts that any of these

will ever become mainstream devices. On the other hand, I can see that devices like charge

couple devices certainly would acquire new dimension with QDs. We can state with

certainty that the overall knowledge and techniques needed to analyze and to engineer QD

devices are becoming increasingly complex, which remind me of something attributed to

Wigner. Each generation needs to rediscover its accumulated knowledge and acquiring

working skills.

11.4. SUMMARY

In the electromagnetic case, the wave nature leads to a wave impedance of free space

which is purely real. The wave impedance of waveguides is different, depending on the

propagation constants. The characteristic impedance of a waveguide contains further

geometrical factors. These three are all different, yet share the same origin, the wave

nature of photons. We have derived the wave impedances for electrons in free space, in a

quantum wire or in EQW, for both open and closed systems. The pre-factor for the

conductance per spin G0 ¼ e2=h for a closed system and is double this value, 2G0 for an

open system. Similar to electromagnetic waves, the wave impedance or wave conductance

for various cases are different in detail, although all of them share the same origin, the

wave nature of the electron. We have clearly identified the so-called universal

conductance as the input conductance from a contact to a structure, whether a section

of a Qwire, a QW or a QD. What led Landauer (1970) to assume that the contact is

reflectionless? Generally contacts are not reflectionless, but the effects of reflection, as in

the case of resonant tunneling, are accounted for by the transmission term in addition to the

“pre-factor” G0. If the transmission is very small, reflection is very large, so that the input
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impedance will be very large and the conductance will be very small. All this fits into the

description of input impedance. However, the question is why experimental data give

unity for the transmission. At low temperatures, different modes from different transverse

degree of freedoms are truly independent. As soon as mixing of the longitudinal and

transverse modes is present, longitudinal and transverse momenta are mixed, and these

equal steps of conductance are smeared. But why in the case of Si QD that Nicollian and I

worked on are conductance jumps clearly in units of G0 even at room temperatures? I think

the answer lies in the fact that, for a size of a few nanometers, the quantized energies

are so far apart that they are almost unaffected by phonons, a primary contributor to mixing

of modes.
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Chapter 12

Nanoelectronics: Where Are You?

Before I discuss this subject, I want to present Figure 12.1 which I organized 16 years ago

(Tsu, 1988) based on a report by Dickinson (1970) that I received when I was at IBM

which in turn was based on unpublished work by J.C. Slater at the Lincoln Laboratory. The

reason I found it very useful is because of the inclusion of the metallic and ionic radii in

addition to the covalent radii. For example, the ionic radius (þ1) of Sb is the same as the

covalent radius of Si, rendering Sb an almost perfect n-type dopant for Si after an electron

is ionized into the conduction band. Such information is particularly useful for quantum

dots. I hope that the readers will find it useful for the inclusion in this, the final chapter of

this book.

In the introduction, I have listed books which I have used, many of them throughout my

career. Although I have also listed Mahan’s Many-Particle Physics, I must stress that I

consider many body theory to be more important in examining the structure and

formulation of fundamental physics of interacting particles rather than using it as the basis

for actual computations for a given problem. Personally, as did Esaki, I prefer a simple

approach to elegant theory. For example, the simple formulas that give us the expressions

for the negative differential conductance (NDC) and the response of conduction electrons

in a superlattice clearly identify the mechanisms and fundamental physics involved in the

man-made superlattice.

Introducing damping to quantum systems results in parameters readily identifiable by

the measured mobility inside the quantum well. In treating the semiconductor atomic

superlattice, I have shown that fairly straightforward estimates of the effective barrier

height and the interfacial strain give us results again close to density functional

calculations. The calculation using effective mass for quantum dots may not apply when

the QD size goes below 1 nm, but the calculation certainly gives better physical insight

than, for example, purely a numerical ab initio computation. And this comment certainly

applies to our computed results for the size-dependent dielectric function—results from a

single oscillator model agree point by point precisely with the same q-dependent

computation using a pseudopotential calculation. Incidentally, a single oscillator model

involves multiple parameters such as lattice constants, the dielectric constant of the bulk,

the number of electrons in the valence band, and so on. What does this all add up to? I am

not suggesting that we return to the 1950s and 1960s, doing physics and engineering with a

slide rule, but traditional formulations based on parameters like the energy band gap,

effective mass, Gruneissen constant, Keating constants, boundary conditions, and so on

serve us well. The traditional approach in solid state and semiconductor physics can play
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an important role, particularly if we are aiming to find physical insights. In fact, I even

dislike those calculated results that are given in dimensionless variables. For example,

Peter Price used the Monte Carlo method to calculate the NDC of a superlattice with

results given in dimensionless plots. I converted his results to my current and voltage, and

then I discovered that they are nearly the same. My contention is that I can think in terms

of these parameters, even though they are referred to as phenomenological, but not in

terms of fundamental interactions, which are mainly electrostatic in origin. For example,

I can visualize an electron tunneling through a barrier, but not in terms of going through

Figure 12.1. Covalent, metallic and ionic radii of selected elements taken from Dickinson (1970) and organized

and interpolated by Tsu (1988).
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some configuration of atoms and molecules. In some cases, ab initio computations serve to

augment confidence, but from my perspective, they rarely provide basic physical

understanding.

The discussion in terms of open and closed systems is rather fundamental. The wave

impedance of electrons, like photons, will play an important role some day when quantum

devices become routine components. Following this, I want to mention a few things about

the direction taken by nanoelectronics. It took almost 20 years before superlattice and

quantum wells moved from bench-top demonstrations to actual devices. After 30 years,

the best application for the superlattice is perhaps high mobility devices with modulation

doping. Porous silicon did not make the grade in view of its fragile structure. Nevertheless,

I think that epitaxial growth of silicon on PSi may become a useful technology someday.

Quantum dots and quantum interference devices have been demonstrated often enough for

more than 12 years, and yet we have not seen the development of any real devices. With all

the problems of input/output to a QD, it appears that only contacts lying entirely in a plane,

used by all those bench-top demonstrations, can work. Integrated circuits are all in a plane,

i.e. contacts and active elements lying in a plane. What is the difference? First of all, we

can only apply a voltage in the nanometer region for nanostructures and that calls for

metals, otherwise we cannot even define a voltage. But metals always lead to Schottky

barriers if devices are made with semiconductors. Perhaps, we should make quantum dot

devices from metals! After all, a small metallic dot is an “insulator”. Optical properties are

another story. It appears that II–VI compounds such as CSe and PbS are ideal example of

QDs. Anyone can buy these as ready made QD “powders”. However, they are usually

passivated and protected, frequently by an organic matrix such as ethylene glycol,

otherwise they do not last long, no better than PSi. I was enlightened by an organic chemist

that the reason why organic liquids are used to preserve quantum dots is that these organic

liquids are covalent and capable of preventing oxygen from passing freely through them.

In short QDs do not make the grade as optical devices either. Realistically, I estimate that

the funding in QDs may last another few years at the most. What we need is to take a very

different route. We need to come up with totally new ways of defining devices. However,

among traditional systems, I think the electron quantum waveguide may be the only one

capable of being developed into an actual use within the foreseeable future. We may need

to focus on the coherent aspect of quantum devices such as RTDs and superlattices rather

than insisting on a device size of a few nanometers. I challenge the reader to come up with

totally new ways of defining what a nano-device is, perhaps in areas connected with

biotechnology. But I have a warning: every time I tried, I came back empty handed.

How should we judge the impact of superlattices and resonant tunneling through

quantum wells? It is clear that in comparison with the field effect transistors, the impact of

these quantum devices is minuscule. However, their contribution to electronic devices lies

in the fact that they brought many researchers to the field of quantum phenomena in man-

made structures leading to the enormous breadth of nanotechnology today. If I were to
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include a more complete list of references for quantum devices, I would have to double the

size of this book. At any rate, researchers to date can simply go to the Internet to find

relevant materials to get started in most areas of interest. In some cases, the explanation

available on the Internet is actually better than the original publications and text books.

Finally, I want to tell a story. Many years ago Brian Schwartz showed me a copy of his

notes on superconductivity that were to be published as a book. I told him that I had a

better way of understanding superconductivity. I made an impression on him when I

referred to phonons as the “devil in my world of science”, but that Cooper pairs are formed

in partnership with the devil. When I repeated this to a first class biologist recently, he said

that oxygen is the devil in his world of science. However, millions of years of natural

selection allow the formation of partnership between cells and oxygen in the energy

production process of ATP (adenosine triphosphate). He asked me whether I have found

my devil to hold hands with in nanoelectronics. My reply is that I am still looking.

I predict that progress in applying nano-scale physics in devices will come from those

working in metal oxide silicon field effect transistor (MOSFET), step-by-step, slowly but

surely inching ahead. In an ultra-small MOSFET, there are far more than a few thousand

electrons flowing between the source and drain contacts so that a few defects can be

overwhelmed. It is on an entirely different scale with nano-electronic devices with only a

few electrons. This difference allows researchers in MOSFET to continue their slow but

sure progress. On the other hand, great leaps in nanoelectronics will come from those who

have to identify a function and look for a particular system to deliver the mission, rather

than those who already have the invention and are looking for applications. But most of

all, success belongs to those who are willing to take a risk.

Stability issues are very real in quantum nano-devices. Switching and hysteresis, apart

from nonlinear effects, are all caused by strong coupling between the intended active parts

with the unintended defects forming deep traps. This is particularly prominent in structures

in a few nanometer regimes where the structure and defects have similar wavefunctions

allowing them to couple strongly. Nearly 10 of my students were involved with the strange

data presented in Chapter 7. Many of those results were never even written up for

publication. Ten years have gone by, and now we know that these weird data may be

lumped together as telegraph-like noise or more generally, 1/f noise. This last paragraph

has a message. The scientific and technical community should have found an outlet for

strange and inexplicable results, so that these students did not have to abandon their work

in order to find a more acceptable path to glory.
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