

Emerging Topics in

Computer Vision

Edited by

Gérard Medioni and Sing Bing Kang

Contents

PREFACE ix

CONTRIBUTORS x

1 INTRODUCTION 1
1.1 Organization 1
1.2 How to Use the Book 2
1.3 Contents of DVDs 2

SECTION I:
FUNDAMENTALS IN COMPUTER VISION 3

2 CAMERA CALIBRATION 5
Zhengyou Zhang
2.1 Introduction 5
2.2 Notation and Problem Statement 7

2.2.1 Pinhole Camera Model 8
2.2.2 Absolute Conic 9

2.3 Camera Calibration with 3D Objects 11
2.3.1 Feature Extraction 13
2.3.2 Linear Estimation of the Camera Projection Matrix 13
2.3.3 Recover Intrinsic and Extrinsic Parameters from P 14
2.3.4 Refine Calibration Parameters Through a Nonlinear

Optimization 15
2.3.5 Lens Distortion 15
2.3.6 An Example 17

2.4 Camera Calibration with 2D Objects: Plane Based Technique 18
2.4.1 Homography between the model plane and its image 18
2.4.2 Constraints on the intrinsic parameters 19
2.4.3 Geometric Interpretation2 19
2.4.4 Closed-form solution 20

i

ii Contents

2.4.5 Maximum likelihood estimation 22
2.4.6 Dealing with radial distortion 22
2.4.7 Summary 23
2.4.8 Experimental Results 24
2.4.9 Related Work 26

2.5 Solving Camera Calibration With 1D Objects 27
2.5.1 Setups With Free-Moving 1D Calibration Objects 28
2.5.2 Setups With 1D Calibration Objects Moving Around

a fixed Point 29
2.5.3 Basic Equations 30
2.5.4 Closed-Form Solution 32
2.5.5 Nonlinear Optimization 33
2.5.6 Estimating the fixed point 34
2.5.7 Experimental Results 35

2.6 Self Calibration 39
2.7 Conclusion 39
2.8 Appendix: Estimating Homography Between the Model Plane

and its Image 40
Bibliography 41

3 MULTIPLE VIEW GEOMETRY 45
Anders Heyden and Marc Pollefeys
3.1 Introduction 45
3.2 Projective Geometry 46

3.2.1 The central perspective transformation 46
3.2.2 Projective spaces 47
3.2.3 Homogeneous coordinates 49
3.2.4 Duality 52
3.2.5 Projective transformations 54

3.3 Tensor Calculus 56
3.4 Modelling Cameras 58

3.4.1 The pinhole camera 58
3.4.2 The camera matrix 59
3.4.3 The intrinsic parameters 59
3.4.4 The extrinsic parameters 60
3.4.5 Properties of the pinhole camera 62

3.5 Multiple View Geometry 63
3.5.1 The structure and motion problem 63
3.5.2 The two-view case 64
3.5.3 Multi-view constraints and tensors 70

Contents iii

3.6 Structure and Motion I 75
3.6.1 Resection 75
3.6.2 Intersection 75
3.6.3 Linear estimation of tensors 76
3.6.4 Factorization 78

3.7 Structure and Motion II 80
3.7.1 Two-view geometry computation 80
3.7.2 Structure and motion recovery 83

3.8 Auto-calibration 87
3.9 Dense Depth Estimation 90

3.9.1 Rectification 90
3.9.2 Stereo matching 92
3.9.3 Multi-view linking 93

3.10 Visual Modeling 94
3.10.1 3D surface reconstruction 95
3.10.2 Image-based rendering 98
3.10.3 Match-moving 101

3.11 Conclusion 101
Bibliography 103

4 ROBUST TECHNIQUES FOR COMPUTER VISION 109
Peter Meer
4.1 Robustness in Visual Tasks 109
4.2 Models and Estimation Problems 113

4.2.1 Elements of a Model 113
4.2.2 Estimation of a Model 119
4.2.3 Robustness of an Estimator 122
4.2.4 Definition of Robustness 124
4.2.5 Taxonomy of Estimation Problems 127
4.2.6 Linear Errors-in-Variables Regression Model 130
4.2.7 Objective Function Optimization 134

4.3 Location Estimation 139
4.3.1 Why Nonparametric Methods 140
4.3.2 Kernel Density Estimation 141
4.3.3 Adaptive Mean Shift 146
4.3.4 Applications 150

4.4 Robust Regression 157
4.4.1 Least Squares Family 158
4.4.2 M-estimators 163
4.4.3 Median Absolute Deviation Scale Estimate 166

iv Contents

4.4.4 LMedS, RANSAC and Hough Transform 169
4.4.5 The pbM-estimator 173
4.4.6 Applications 178
4.4.7 Structured Outliers 180

4.5 Conclusion 183
Bibliography 183

5 THE TENSOR VOTING FRAMEWORK 191
Gérard Medioni and Philippos Mordohai
5.1 Introduction 191

5.1.1 Motivation 192
5.1.2 Desirable descriptions 194
5.1.3 Our approach 195
5.1.4 Chapter Overview 197

5.2 Related Work 198
5.3 Tensor Voting in 2D 203

5.3.1 Second Order Representation and Voting in 2-D 203
5.3.2 First Order Representation and Voting in 2-D 210
5.3.3 Voting Fields 213
5.3.4 Vote analysis 215
5.3.5 Results in 2-D 218
5.3.6 Illusory Contours 219

5.4 Tensor Voting in 3D 221
5.4.1 Representation in 3-D 222
5.4.2 Voting in 3-D 224
5.4.3 Vote analysis 226
5.4.4 Results in 3-D 228

5.5 Tensor Voting in ND 229
5.5.1 Computational Complexity 232

5.6 Application to Computer Vision Problems 233
5.6.1 Initial Matching 234
5.6.2 Uniqueness 235
5.6.3 Discrete Densification 236
5.6.4 Discontinuity Localization 237
5.6.5 Stereo 239
5.6.6 Multiple View Stereo 241
5.6.7 Visual Motion from Motion Cues 243
5.6.8 Visual Motion on Real Images 245

5.7 Conclusion and Future Work 246
5.8 Acknowledgment 250

Contents v

Bibliography 250

SECTION II:
APPLICATIONS IN COMPUTER VISION 254

6 IMAGE BASED LIGHTING 255
Paul E. Debevec
6.1 Basic Image Based Lighting 257

6.1.1 Capturing Light 257
6.1.2 Illuminating Synthetic Objects with Real Light 260
6.1.3 Lighting Entire Environments with IBL 269

6.2 Advanced Image Based Lighting 269
6.2.1 Capturing a Light Probe in Direct Sunlight 272
6.2.2 Compositing objects into the scene including shadows 282
6.2.3 Image-Based Lighting in Fiat Lux 288
6.2.4 Capturing and Rendering Spatially-Varying Illumination291

6.3 Image Based Relighting 294
6.4 Conclusion 299
Bibliography 301

7 COMPUTER VISION IN VISUAL EFFECTS 305
Doug Roble
7.1 Introduction 305
7.2 Computer Vision Problems Unique to Film 306

7.2.1 Welcome to the Set 306
7.3 Feature Tracking 319
7.4 Optical Flow 321
7.5 Camera Tracking and Structure from Motion 325
7.6 The Future 330
Bibliography 330

8 CONTENT BASED IMAGE RETRIEVAL: AN OVERVIEW 333
Theo Gevers and Arnold W.M. Smeulders
8.1 Overview of the chapter 334
8.2 Image Domains 339

8.2.1 Search modes 339
8.2.2 The sensory gap 341
8.2.3 The semantic gap 342
8.2.4 Discussion 343

8.3 Image Features 344

vi Contents

8.3.1 Color 345
8.3.2 Shape 348
8.3.3 Texture 349
8.3.4 Discussion 352

8.4 Representation and Indexing 352
8.4.1 Grouping data 353
8.4.2 Features accumulation 354
8.4.3 Feature accumulation and image partitioning 357
8.4.4 Salient features 358
8.4.5 Shape and object features 359
8.4.6 Structure and lay-out 361
8.4.7 Discussion 361

8.5 Similarity and Search 362
8.5.1 Semantic interpretation 362
8.5.2 Similarity between features 363
8.5.3 Similarity of object outlines 366
8.5.4 Similarity of object arrangements 367
8.5.5 Similarity of salient features 368
8.5.6 Discussion 369

8.6 Interaction and Learning 369
8.6.1 Interaction on a semantic level 369
8.6.2 Classification on a semantic level 370
8.6.3 Learning 371
8.6.4 Discussion 371

8.7 Conclusion 372
Bibliography 372

9 FACE DETECTION, ALIGNMENT AND RECOGNITION 385
Stan Z. Li and Juwei Lu
9.1 Introduction 385
9.2 Face Detection 388

9.2.1 Appearance and Learning Based Approach 389
9.2.2 Preprocessing 391
9.2.3 Neural and Kernel Methods 393
9.2.4 Boosting Based Methods 394
9.2.5 Post-Processing 400
9.2.6 Evaluation 401

9.3 Face Alignment 404
9.3.1 Active Shape Model 405
9.3.2 Active Appearance Model 407

Contents vii

9.3.3 Modeling Shape from Texture 408
9.3.4 Dealing with Head Pose 414
9.3.5 Evaluation 416

9.4 Face Recognition 419
9.4.1 Preprocessing 419
9.4.2 Feature Extraction 420
9.4.3 Pattern Classification 431
9.4.4 Evaluation 439

Bibliography 445

10 PERCEPTUAL INTERFACES 455
Matthew Turk and Mathias Kölsch
10.1 Introduction 455
10.2 Perceptual Interfaces and HCI 457
10.3 Multimodal Interfaces 464
10.4 Vision Based Interfaces 472

10.4.1 Terminology 476
10.4.2 Elements of VBI 479
10.4.3 Computer Vision Methods for VBI 491
10.4.4 VBI Summary 504

10.5 Brain-Computer Interfaces 504
10.6 Summary 507
Bibliography 509

SECTION III:
PROGRAMMING FOR COMPUTER VISION 520

11 OPEN SOURCE COMPUTER VISION LIBRARY 521
Gary Bradski
11.1 Overview 521

11.1.1 Installation 522
11.1.2 Organization 527
11.1.3 Optimizations 529

11.2 Functional Groups: What’s Good for What 532
11.2.1 By Area 534
11.2.2 By Task 538
11.2.3 Demos and Samples 542

11.3 Pictorial Tour 545
11.3.1 Functional Groups 545
11.3.2 Demo Tour 561

viii Contents

11.4 Programming Examples Using C/C++ 561
11.4.1 Read Images from Disk 566
11.4.2 Read AVIs from Disk, or Video from a Camera 568

11.5 Other Interfaces 570
11.5.1 Ch 570
11.5.2 Matlab 575
11.5.3 Lush 577

11.6 Appendix A 578
11.7 Appendix B 579
Bibliography 580

12 SOFTWARE ARCHITECTURE FOR COMPUTER VI-
SION 585
Alexandre R.J. François
12.1 Introduction 585

12.1.1 Motivation 585
12.1.2 Contribution 588
12.1.3 Outline 589

12.2 SAI: A Software Architecture Model 590
12.2.1 Beyond Pipes and Filters 590
12.2.2 The SAI Architectural Style 597
12.2.3 Example Designs 601
12.2.4 Architectural Properties 620

12.3 MFSM: An Architectural Middleware 622
12.3.1 MFSM overview 623
12.3.2 A First Image Manipulation Example 626
12.3.3 Custom Elements 634
12.3.4 A Shared Memory Access Example 643

12.4 Conclusion 648
12.4.1 Summary 648
12.4.2 Perspectives 649

12.5 Acknowledgments 651
Bibliography 651

PREFACE

One of the major changes instituted at the 2001 Conference on Computer
Vision and Pattern Recognition (CVPR) in Kauai, HI was the replacement
of the traditional tutorial sessions with a set of short courses. The topics
of these short courses were carefully chosen to reflect the diversity in com-
puter vision and represent very promising areas. The response to these short
courses was a very pleasant surprise, with up to more than 200 people attend-
ing a single short course. This overwhelming response was the inspiration
for this book.

There are three parts in this book. The first part covers some of the more
fundamental aspects of computer vision, the second describes a few interest-
ing applications, and third details specific approaches to facilitate program-
ming for computer vision. This book is not intended to be a comprehensive
coverage of computer vision; it can, however, be used as a complement to
most computer vision textbooks.

A unique aspect of this book is the accompanying DVD which features
videos of lectures by the contributors. We feel that these lectures would be
very useful for readers as quick previews of the topics covered in the book.
In addition, these lectures are much more effective in depicting results in the
form of video or animations, compared to printed material.

We would like to thank all the contributors for all their hard work, and
Bernard Goodwin for his support and enthusiasm for our book project. The
USC Distance Education Network helped to tape and produce the lectures
and Bertran Harden tirelessly assembled all the multimedia content onto a
DVD. We are also grateful to P. Anandan and Microsoft Corporation for the
financial support used to defray some of the lecture production costs.

Gérard Medioni, University of Southern California
Sing Bing Kang, Microsoft Research
November, 2003

ix

CONTRIBUTORS

Gary Bradski
Mgr: Machine Learning Group
Intel Labs
SC12-303
2200 Mission College Blvd.
Santa Clara, CA 95052-8119
USA
www.intel.com/research/mrl/research/opencv
www.intel.com/research/mrl/research/media-visual.htm

Paul Debevec
USC Institute for Creative Technologies
13274 Fiji Way, 5th Floor
Marina del Rey, CA 90292
USA
http://www.debevec.org/

Alexandre R.J. François
PHE-222 MC-0273
Institute for Robotics and Intelligent Systems
University of Southern California
Los Angeles, CA 90089-0273
USA
afrancoi@usc.edu
iris.usc.edu/ afrancoi

x

Contributors xi

Theo Gevers
University of Amsterdam
Kruislaan 403
1098 SJ Amsterdam
The Netherlands
gevers@science.uva.nl
http://carol.science.uva.nl/ gevers/

Anders Heyden
Centre for Mathematical Sciences
Lund University
Box 118
SE-221 00 Lund
Sweden
heyden@maths.lth.se
www.maths.lth.se/matematiklth/personal/andersp/

Mathias Kölsch
Computer Science Department
University of California
Santa Barbara, CA 93106
USA
matz@cs.ucsb.edu
http://www.cs.ucsb.edu/∼matz

Stan Z. Li
Microsoft Research Asia
5/F, Beijing Sigma Center
No. 49, Zhichun Road, Hai Dian District
Beijing, China 100080
szli@microsoft.com
www.research.microsoft.com/∼szli

Juwei Lu
Bell Canada Multimedia Lab
University of Toronto
Bahen Centre for Information Technology
Room 4154, 40 St George Str.
Toronto, ON, M5S 3G4
Canada
juwei@dsp.utoronto.ca
www.dsp.utoronto.ca/∼juwei/

xii Contributors

Gerard Medioni
SAL 300, MC-0781
Computer Science Department
University of Southern California
Los Angeles, CA 90089-0781
USA
medioni@iris.usc.edu
iris.usc.edu/home/iris/medioni/User.html

Peter Meer
Electrical and Computer Engineering Department
Rutgers University
94 Brett Road
Piscataway, NJ 08854-8058
USA
meer@caip.rutgers.edu
www.caip.rutgers.edu/∼meer

Philippos Mordohai
PHE 204, MC-0273
3737 Watt Way
Los Angeles, CA 90089-0273
USA
mordohai@usc.edu
iris.usc.edu/home/iris/mordohai/User.html

Marc Pollefeys
Department of Computer Science
University of North Carolina
Sitterson Hall, CB#3175
Chapel Hill, NC 27599-3175
USA
marc@cs.unc.edu
www.cs.unc.edu/∼marc/

Doug Roble
Digital Domain
300 Rose Av
Venice, CA 90291
USA
www.d2.com

Contributors xiii

Arnold Smeulders
ISIS group, University of Amsterdam
Kruislaan 403
1098SJ AMSTERDAM
The Netherlands
smeulder@science.uva.nl
www.science.uva.nl/isis/

Matthew Turk
Computer Science Department
University of California
Santa Barbara, CA 93106
USA
mturk@cs.ucsb.edu
www.cs.ucsb.edu/∼mturk

Zhengyou Zhang
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052
USA
zhang@microsoft.com
www.research.microsoft.com/∼zhang/

Chapter 1

INTRODUCTION

The topics in this book were handpicked to showcase what we consider to
be exciting and promising in computer vision. They are a mix of more
well-known and traditional topics (such as camera calibration, multi-view
geometry, and face detection), and newer ones (such as vision for special
effects and tensor voting framework). All have the common denominator of
either demonstrated longevity or potential for endurance in computer vision,
when the popularity of a number of areas have come and gone in the past.

1.1 Organization

The book is organized into three sections, covering various fundamentals,
applications, and programming aspects of computer vision.

The fundamentals section consists of four chapters. Two of the chapters
deal with the more conventional but still popular areas: camera calibration
and multi-view geometry. They deal with the most fundamental operations
associated with vision. The chapter on robust estimation techniques will be
very useful for researchers and practitioners of computer vision alike. There
is also a chapter on a more recent tool (namely the tensor voting framework)
developed that can be customized for a variety of problems.

The applications section covers two more recent applications (image-
based lighting and vision for visual effects) and three in more conventional
areas (image seach engines, face detection and recognition, and perceptual
interfaces).

One of the more overlooked area in computer vision is the programming
aspect of computer vision. While there are generic commercial packages that
can be used, there exists popular libraries or packages that are specifically
geared for computer vision. The final section of the book describes two
different approaches to facilitate programming for computer vision.

1

2 Introduction Chapter 1

1.2 How to Use the Book

The book is designed to be accompanying material to computer vision text-
books.

Each chapter is designed to be self-contained, and is written by well-
known authorities in the area. We suggest that the reader watch the lecture
first before reading the chapter, as the lecture (given by the contributor)
provides an excellent overview of the topic.

1.3 Contents of DVDs

The two DVDs are organized by chapter as follows:

– Chap. 2: Camera Calibration (Z. Zhang) – VS

– Chap. 3: Multiple View Geometry (A. Heyden, M. Pollefeys) – VS

– Chap. 4: Robust Techniques for Computer Vision (P. Meer) – VS

– Chap. 5: The Tensor Voting Framework (G. Medioni, P. Mordohai) –
VS

– Chap. 6: Image Based Lighting (P.E. Debevec) – VSC

– Chap. 7: Computer Vision in Visual Effects (D. Roble) – SC

– Chap. 8: Content Based Image Retrieval: An Overview (T. Gevers,
A.W.M. Smeulders) – V

– Chap. 9: Face Detection, Alignment and Recognition (S.Z. Li, J. Lu)
– V

– Chap. 10: Perceptual Interfaces (M. Turk, M. Kölsch) – VS

– Chap. 11: Open Source Computer Vision Library (G. Bradski) – SP

– Chap. 12: Software Architecture for Computer Vision (A.R.J. François)
– VS

(Note: V=video presentation, S=slides in PDF format, C=color images
in both BMP and PDF formats, P=project and source code.)

SECTION I:
FUNDAMENTALS IN
COMPUTER VISION

It is only fitting that we start with some of the more fundamental concepts
in computer vision. The range of topics covered in this section is wide:
camera calibration, structure from motion, dense stereo, 3D modeling, robust
techniques for model fitting, and a more recently developed concept called
tensor voting.

In Chapter 2, Zhang reviews the different techniques for calibrating a
camera. More specifically, he describes calibration techniques that use 3D
reference objects, 2D planes, and 1D lines, as well as self-calibration tech-
niques.

One of more popular (and difficult) areas in computer vision is stereo.
Heyden and Pollefeys describe how camera motion and scene structure can
be reliably extracted from image sequences in Chapter 3. Once this is ac-
complished, dense depth distributions can be extracted for 3D surface recon-
struction and image-based rendering applications.

A basic task in computer vision is hypothesizing models (e.g., 2D shapes)
and using input data (typically image data) to corroborate and fit the models.
In practice, however, robust techniques for model fitting must be used to
handle input noise. In Chapter 4, Meer describes various robust regression
techniques such as M-estimators, RANSAC, and Hough transform. He also
covers the mean shift algorithm for the location estimation problem.

The claim by Medioni and his colleagues that computer vision problems
can be addressed within a Gestalt framework is the basis of their work on
tensor voting. In Chapter 5, Medioni and Mordohai provide an introduction
to the concept of tensor voting, which is a form of binning according to

3

4
Section I:

Fundamentals in Computer Vision

proximity to ideal primitives such as edges and points. They show how this
scheme can be applied to a variety of applications, such as curve and surface
extraction from noisy 2D and 3D points (respectively), stereo matching, and
motion-based grouping.

Chapter 2

CAMERA CALIBRATION

Zhengyou Zhang

Camera calibration is a necessary step in 3D computer vision in order to
extract metric information from 2D images. It has been studied extensively
in computer vision and photogrammetry, and even recently new techniques
have been proposed. In this chapter, we review the techniques proposed
in the literature include those using 3D apparatus (two or three planes or-
thogonal to each other, or a plane undergoing a pure translation, etc.), 2D
objects (planar patterns undergoing unknown motions), 1D objects (wand
with dots) and unknown scene points in the environment (self-calibration).
The focus is on presenting these techniques within a consistent framework.

2.1 Introduction

Camera calibration is a necessary step in 3D computer vision in order to
extract metric information from 2D images. Much work has been done,
starting in the photogrammetry community (see [3, 6] to cite a few), and
more recently in computer vision ([12, 11, 33, 10, 37, 35, 22, 9] to cite a few).
According to the dimension of the calibration objects, we can classify those
techniques roughly into three categories.

3D reference object based calibration. Camera calibration is performed
by observing a calibration object whose geometry in 3-D space is known
with very good precision. Calibration can be done very efficiently [8].
The calibration object usually consists of two or three planes orthog-
onal to each other. Sometimes, a plane undergoing a precisely known
translation is also used [33], which equivalently provides 3D reference
points. This approach requires an expensive calibration apparatus and

5

6 Camera Calibration Chapter 2

an elaborate setup.

2D plane based calibration. Techniques in this category requires to ob-
serve a planar pattern shown at a few different orientations [42, 31].
Different from Tsai’s technique [33], the knowledge of the plane motion
is not necessary. Because almost anyone can make such a calibration
pattern by him/her-self, the setup is easier for camera calibration.

1D line based calibration. Calibration objects used in this category are
composed of a set of collinear points [44]. As will be shown, a camera
can be calibrated by observing a moving line around a fixed point, such
as a string of balls hanging from the ceiling.

Self-calibration. Techniques in this category do not use any calibration
object, and can be considered as 0D approach because only image
point correspondences are required. Just by moving a camera in a
static scene, the rigidity of the scene provides in general two con-
straints [22, 21] on the cameras’ internal parameters from one camera
displacement by using image information alone. Therefore, if images
are taken by the same camera with fixed internal parameters, cor-
respondences between three images are sufficient to recover both the
internal and external parameters which allow us to reconstruct 3-D
structure up to a similarity [20, 17]. Although no calibration objects
are necessary, a large number of parameters need to be estimated, re-
sulting in a much harder mathematical problem.

Other techniques exist: vanishing points for orthogonal directions [4, 19],
and calibration from pure rotation [16, 30].

Before going further, I’d like to point out that no single calibration tech-
nique is the best for all. It really depends on the situation a user needs to
deal with. Following are my few recommendations:

– Calibration with apparatus vs. self-calibration. Whenever possible, if
we can pre-calibrate a camera, we should do it with a calibration appa-
ratus. Self-calibration cannot usually achieve an accuracy comparable
with that of pre-calibration because self-calibration needs to estimate a
large number of parameters, resulting in a much harder mathematical
problem. When pre-calibration is impossible (e.g., scene reconstruction
from an old movie), self-calibration is the only choice.

– Partial vs. full self-calibration. Partial self-calibration refers to the
case where only a subset of camera intrinsic parameters are to be cal-

Section 2.2. Notation and Problem Statement 7

ibrated. Along the same line as the previous recommendation, when-
ever possible, partial self-calibration is preferred because the number
of parameters to be estimated is smaller. Take an example of 3D re-
construction with a camera with variable focal length. It is preferable
to pre-calibrate the pixel aspect ratio and the pixel skewness.

– Calibration with 3D vs. 2D apparatus. Highest accuracy can usually be
obtained by using a 3D apparatus, so it should be used when accuracy is
indispensable and when it is affordable to make and use a 3D apparatus.
From the feedback I received from computer vision researchers and
practitioners around the world in the last couple of years, calibration
with a 2D apparatus seems to be the best choice in most situations
because of its ease of use and good accuracy.

– Calibration with 1D apparatus. This technique is relatively new, and it
is hard for the moment to predict how popular it will be. It, however,
should be useful especially for calibration of a camera network. To
calibrate the relative geometry between multiple cameras as well as
their intrinsic parameters, it is necessary for all involving cameras to
simultaneously observe a number of points. It is hardly possible to
achieve this with 3D or 2D calibration apparatus1 if one camera is
mounted in the front of a room while another in the back. This is not
a problem for 1D objects. We can for example use a string of balls
hanging from the ceiling.

This chapter is organized as follows. Section 2.2 describes the camera
model and introduces the concept of the absolute conic which is important
for camera calibration. Section 2.3 presents the calibration techniques using
a 3D apparatus. Section 2.4 describes a calibration technique by observing a
freely moving planar pattern (2D object). Its extension for stereo calibration
is also addressed. Section 2.5 describes a relatively new technique which uses
a set of collinear points (1D object). Section 2.6 briefly introduces the self-
calibration approach and provides references for further reading. Section 2.7
concludes the chapter with a discussion on recent work in this area.

2.2 Notation and Problem Statement

We start with the notation used in this chapter.

1An exception is when those apparatus are made transparent; then the cost would be
much higher.

8 Camera Calibration Chapter 2

2.2.1 Pinhole Camera Model

CC

θθ

α
β

),(00 vu

=

Z
Y
X

M

mm

),(tR
Figure 2.1. Pinhole camera model

A 2D point is denoted by m = [u, v]T . A 3D point is denoted by M =
[X,Y, Z]T . We use x̃ to denote the augmented vector by adding 1 as the last
element: m̃ = [u, v, 1]T and M̃ = [X,Y, Z, 1]T . A camera is modeled by the
usual pinhole (see Figure 2.1): The image of a 3D point M, denoted by m is
formed by an optical ray from M passing through the optical center C and
intersecting the image plane. The three points M, m, and C are collinear. In
Figure 2.1, for illustration purpose, the image plane is positioned between
the scene point and the optical center, which is mathematically equivalent
to the physical setup under which the image plane is in the other side with
respect to the optical center. The relationship between the 3D point M and
its image projection m is given by

sm̃ = A
[
R t

]︸ ︷︷ ︸
P

M̃ ≡ PM̃ , (2.1)

with A =

α γ u0
0 β v0
0 0 1

 (2.2)

and P = A
[
R t

]
(2.3)

where s is an arbitrary scale factor, (R, t), called the extrinsic parameters,
is the rotation and translation which relates the world coordinate system to
the camera coordinate system, and A is called the camera intrinsic matrix,
with (u0, v0) the coordinates of the principal point, α and β the scale factors

Section 2.2. Notation and Problem Statement 9

in image u and v axes, and γ the parameter describing the skew of the
two image axes. The 3× 4 matrix P is called the camera projection matrix,
which mixes both intrinsic and extrinsic parameters. In Figure 2.1, the angle
between the two image axes is denoted by θ, and we have γ = α cot θ. If the
pixels are rectangular, then θ = 90◦ and γ = 0.

The task of camera calibration is to determine the parameters of the
transformation between an object in 3D space and the 2D image observed by
the camera from visual information (images). The transformation includes

– Extrinsic parameters (sometimes called external parameters): orienta-
tion (rotation) and location (translation) of the camera, i.e., (R, t);

– Intrinsic parameters (sometimes called internal parameters): charac-
teristics of the camera, i.e., (α, β, γ, u0, v0).

The rotation matrix, although consisting of 9 elements, only has 3 degrees
of freedom. The translation vector t obviously has 3 parameters. Therefore,
there are 6 extrinsic parameters and 5 intrinsic parameters, leading to in
total 11 parameters.

We use the abbreviation A−T for (A−1)T or (AT)−1.

2.2.2 Absolute Conic

Now let us introduce the concept of the absolute conic. For more details,
the reader is referred to [7, 15].

A point x in 3D space has projective coordinates x̃ = [x1, x2, x3, x4]T .
The equation of the plane at infinity, Π∞, is x4 = 0. The absolute conic Ω
is defined by a set of points satisfying the equation

x2
1 + x2

2 + x2
3 = 0
x4 = 0 .

(2.4)

Let x∞ = [x1, x2, x3]T be a point on the absolute conic (see Figure 2.2).
By definition, we have xT∞x∞ = 0. We also have x̃∞ = [x1, x2, x3, 0]T and
x̃T∞x̃∞ = 0. This can be interpreted as a conic of purely imaginary points
on Π∞. Indeed, let x = x1/x3 and y = x2/x3 be a point on the conic, then
x2 + y2 = −1, which is an imaginary circle of radius

√−1.
An important property of the absolute conic is its invariance to any rigid

transformation. Let the rigid transformation be H =
[
R t
0 1

]
. Let x∞ be

a point on Ω. By definition, its projective coordinates: x̃∞ =
[
x∞
0

]
with

10 Camera Calibration Chapter 2

Plane at infinity

01 =∞
−−

∞ mAAm TT

C

∞m

∞x

Absolute Conic

0=∞∞xxT

Image of
Absolute Conic

Figure 2.2. Absolute conic and its image

xT∞x∞ = 0. The point after the rigid transformation is denoted by x′∞, and

x̃′
∞ = Hx̃∞ =

[
Rx∞

0

]
.

Thus, x′∞ is also on the plane at infinity. Furthermore, x′∞ is on the same
Ω because

x′T
∞x′

∞ = (Rx∞)T (Rx∞) = xT∞(RTR)x∞ = 0 .

The image of the absolute conic, denoted by ω, is also an imaginary conic,
and is determined only by the intrinsic parameters of the camera. This can
be seen as follows. Consider the projection of a point x∞ on Ω, denoted by

Section 2.3. Camera Calibration with 3D Objects 11

m∞, which is given by

m̃∞ = sA[R t]
[
x∞
0

]
= sARx∞ .

It follows that

m̃TA−TA−1m̃ = s2xT∞RTRx∞ = s2xT∞x∞ = 0 .

Therefore, the image of the absolute conic is an imaginary conic, and is
defined by A−TA−1. It does not depend on the extrinsic parameters of the
camera.

If we can determine the image of the absolute conic, then we can solve
the camera’s intrinsic parameters, and the calibration is solved.

We will show several ways in this chapter how to determine ω, the image
of the absolute conic.

2.3 Camera Calibration with 3D Objects

The traditional way to calibrate a camera is to use a 3D reference object
such as those shown in Figure 2.3. In Fig. 2.3a, the calibration apparatus
used at INRIA [8] is shown, which consists of two orthogonal planes, on
each a checker pattern is printed. A 3D coordinate system is attached to
this apparatus, and the coordinates of the checker corners are known very
accurately in this coordinate system. A similar calibration apparatus is a
cube with a checker patterns painted in each face, so in general three faces
will be visible to the camera. Figure 2.3b illustrates the device used in Tsai’s
technique [33], which only uses one plane with checker pattern, but the plane
needs to be displaced at least once with known motion. This is equivalent
to knowing the 3D coordinates of the checker corners.

A popular technique in this category consists of four steps [8]:

1. Detect the corners of the checker pattern in each image;

2. Estimate the camera projection matrix P using linear least squares;

3. Recover intrinsic and extrinsic parameters A, R and t from P;

4. Refine A, R and t through a nonlinear optimization.

Note that it is also possible to first refine P through a nonlinear optimization,
and then determine A, R and t from the refined P.

It is worth noting that using corners is not the only possibility. We can
avoid corner detection by working directly in the image. In [25], calibration

12 Camera Calibration Chapter 2

Kn
ow

n d
isp

lac
em

ent

Kn
ow

n d
isp

lac
em

ent

(a) (b)

Figure 2.3. 3D apparatus for calibrating cameras

is realized by maximizing the gradients around a set of control points that
define the calibration object. Figure 2.4 illustrates the control points used
in that work.

Figure 2.4. Control points used in a gradient-based calibration technique

Section 2.3. Camera Calibration with 3D Objects 13

2.3.1 Feature Extraction

If one uses a generic corner detector, such as Harris corner detector, to detect
the corners in the check pattern image, the result is usually not good because
the detector corners have poor accuracy (about one pixel). A better solution
is to leverage the known pattern structure by first estimating a line for each
side of the square and then computing the corners by intersecting the fitted
lines. There are two common techniques to estimate the lines. The first is to
first detect edges, and then fit a line to the edges on each side of the square.
The second technique is to directly fit a line to each side of a square in the
image such that the gradient on the line is maximized. One possibility is to
represent the line by an elongated Gaussian, and estimate the parameters
of the elongated Gaussian by maximizing the total gradient covered by the
Gaussian. We should note that if the lens distortion is not severe, a better
solution is to fit just one single line to all the collinear sides. This will leads
a much more accurate estimation of the position of the checker corners.

2.3.2 Linear Estimation of the Camera Projection Matrix

Once we extract the corner points in the image, we can easily establish their
correspondences with the points in the 3D space because of knowledge of
the patterns. Based on the projection equation (2.1), we are now able to
estimate the camera parameters. However, the problem is quite nonlinear if
we try to estimate directly A, R and t. If, on the other hand, we estimate
the camera projection matrix P, a linear solution is possible, as to be shown
now.

Given each 2D-3D correspondence mi = (ui, vi) ↔ Mi = (Xi, Yi, Zi), we
can write down 2 equations based on (2.1):[

Xi Yi Zi 1 0 0 0 0 uiXi uiYi uiZi ui
0 0 0 0 Xi Yi Zi 1 viXi viYi viZi vi

]
︸ ︷︷ ︸

Gi

p = 0

where p = [p11, p12, . . . , p34]T and 0 = [0, 0]T .
For n point matches, we can stack all equations together:

Gp = 0 with G = [GT
1 , . . . ,G

T
n]T

Matrix G is a 2n× 12 matrix. The projection matrix can now be solved by

min
p
‖Gp‖2 subject to ‖p‖ = 1

14 Camera Calibration Chapter 2

The solution is the eigenvector of GTG associated with the smallest eigen-
value.

In the above, in order to avoid the trivial solution p = 0 and considering
the fact that p is defined up to a scale factor, we have set ‖p‖ = 1. Other
normalizations are possible. In [1], p34 = 1, which, however, introduce a sin-
gularity when the correct value of p34 is close to zero. In [10], the constraint
p2
31 + p2

32 + p2
33 = 1 was used, which is singularity free.

Anyway, the above linear technique minimizes an algebraic distance, and
yields a biased estimation when data are noisy. We will present later an
unbiased solution.

2.3.3 Recover Intrinsic and Extrinsic Parameters from P

Once the camera projection matrix P is known, we can uniquely recover the
intrinsic and extrinsic parameters of the camera. Let us denote the first 3×3
submatrix of P by B and the last column of P by b, i.e., P ≡ [B b]. Since
P = A[R t], we have

B = AR (2.5)
b = At (2.6)

From (2.5), we have

K ≡ BBT = AAT =

α2 + γ2 + u2

0︸ ︷︷ ︸
ku

u0 v0 + c β︸ ︷︷ ︸
kc

u0

u0 v0 + c α︸ ︷︷ ︸
kc

α2
v + v2

0︸ ︷︷ ︸
kv

v0

u0 v0 1

Because P is defined up to a scale factor, the last element of K = BBT is usu-
ally not equal to 1, so we have to normalize it such that K33(the last element) =
1. After that, we immediately obtain

u0 = K13 (2.7)
v0 = K23 (2.8)

β =
√
kv − v2

0 (2.9)

γ =
kc − u0 v0

β
(2.10)

α =
√
ku − u2

0 − γ2 (2.11)

Section 2.3. Camera Calibration with 3D Objects 15

The solution is unambiguous because: α > 0 and β > 0.
Once the intrinsic parameters, or equivalently matrix A, are known, the

extrinsic parameters can be determined from (2.5) and (2.6) as:

R = A−1B (2.12)

t = A−1b . (2.13)

2.3.4 Refine Calibration Parameters Through a Nonlinear Opti-
mization

The above solution is obtained through minimizing an algebraic distance
which is not physically meaningful. We can refine it through maximum
likelihood inference.

We are given n 2D-3D correspondences mi = (ui, vi)↔ Mi = (Xi, Yi, Zi).
Assume that the image points are corrupted by independent and identically
distributed noise. The maximum likelihood estimate can be obtained by
minimizing the distances between the image points and their predicted po-
sitions, i.e.,

min
P

∑
i

‖mi − φ(P, Mi)‖2 (2.14)

where φ(P, Mi) is the projection of Mi onto the image according to (2.1).
This is a nonlinear minimization problem, which can be solved with the

Levenberg-Marquardt Algorithm as implemented in Minpack [23]. It requires
an initial guess of P which can be obtained using the linear technique de-
scribed earlier. Note that since P is defined up to a scale factor, we can set
the element having the largest initial value as 1 during the minimization.

Alternatively, instead of estimating P as in (2.14), we can directly esti-
mate the intrinsic and extrinsic parameters, A, R, and t, using the same
criterion. The rotation matrix can be parameterized with three variables
such as Euler angles or scaled rotation vector.

2.3.5 Lens Distortion

Up to this point, we use the pinhole model to describe a camera. It says
that the point in 3D space, its corresponding point in image and the camera’s
optical center are collinear. This linear projective equation is sometimes not
sufficient, especially for low-end cameras (such as WebCams) or wide-angle
cameras; lens distortion has to be considered.

According to [33], there are four steps in camera projection including lens
distortion:

16 Camera Calibration Chapter 2

Step 1: Rigid transformation from world coordinate system (Xw, Yw, Zw)
to camera one (X,Y, Z):

[X Y Z]T = R [Xw Yw Zw]T + t

Step 2: Perspective projection from 3D camera coordinates (X,Y, Z) to
ideal image coordinates (x, y) under pinhole camera model:

x = f
X

Z
, y = f

Y

Z

where f is the effective focal length.

Step 3: Lens distortion2:

x̆ = x+ δx , y̆ = y + δy

where (x̆, y̆) are the distorted or true image coordinates, and (δx, δy)
are distortions applied to (x, y).

Step 4: Affine transformation from real image coordinates (x̆, y̆) to frame
buffer (pixel) image coordinates (ŭ, v̆):

ŭ = d−1
x x̆+ u0 , v̆ = d−1

y y̆ + v0 ,

where (u0, v0) are coordinates of the principal point; dx and dy are dis-
tances between adjacent pixels in the horizontal and vertical directions,
respectively.

There are two types of distortions:

Radial distortion: It is symmetric; ideal image points are distorted along
radial directions from the distortion center. This is caused by imperfect
lens shape.

Decentering distortion: This is usually caused by improper lens assem-
bly; ideal image points are distorted in both radial and tangential di-
rections.

The reader is referred to [29, 3, 6, 37] for more details.
2Note that the lens distortion described here is different from Tsai’s treatment. Here,

we go from ideal to real image coordinates, similar to [36].

Section 2.3. Camera Calibration with 3D Objects 17

The distortion can be expressed as power series in radial distance r =√
x2 + y2:

δx = x(k1r
2 + k2r

4 + k3r
6 + · · ·) + [p1(r2 + 2x2) + 2p2xy](1 + p3r

2 + · · ·) ,
δy = y(k1r

2 + k2r
4 + k3r

6 + · · ·) + [2p1xy + p2(r2 + 2y2)](1 + p3r
2 + · · ·) ,

where ki’s are coefficients of radial distortion and pj ’s and coefficients of
decentering distortion.

Based on the reports in the literature [3, 33, 36], it is likely that the
distortion function is totally dominated by the radial components, and es-
pecially dominated by the first term. It has also been found that any more
elaborated modeling not only would not help (negligible when compared with
sensor quantization), but also would cause numerical instability [33, 36].

Denote the ideal pixel image coordinates by u = x/dx, and v = y/dy. By
combining Step 3 and Step 4 and if only using the first two radial distortion
terms, we obtain the following relationship between (ŭ, v̆) and (u, v):

ŭ = u+ (u− u0)[k1(x2 + y2) + k2(x2 + y2)2] (2.15)

v̆ = v + (v − v0)[k1(x2 + y2) + k2(x2 + y2)2] . (2.16)

Following the same reasoning as in (2.14), camera calibration including
lens distortion can be performed by minimizing the distances between the
image points and their predicted positions, i.e.,

min
A,R,t,k1,k2

∑
i

‖mi − m̆(A,R, t, k1, k2, Mi)‖2 (2.17)

where m̆(A,R, t, k1, k2, Mi) is the projection of Mi onto the image according
to (2.1), followed by distortion according to (2.15) and (2.16).

2.3.6 An Example

Figure 2.5 displays an image of a 3D reference object, taken by a camera to
be calibrated at INRIA. Each square has 4 corners, and there are in total
128 points used for calibration.

Without considering lens distortion, the estimated camera projection ma-
trix is

P =

7.025659e−01 −2.861189e−02 −5.377696e−01 6.241890e+01
2.077632e−01 1.265804e+00 1.591456e−01 1.075646e+01
4.634764e−04 −5.282382e−05 4.255347e−04 1

From P, we can calculate the intrinsic parameters: α = 1380.12, β =
2032.57, γ ≈ 0, u0 = 246.52, and v0 = 243.68. So, the angle between the two

18 Camera Calibration Chapter 2

Figure 2.5. An example of camera calibration with a 3D apparatus

image axes is 90◦, and the aspect ratio of the pixels is α/β = 0.679. For the
extrinsic parameters, the translation vector t = [−211.28,−106.06, 1583.75]T

(in mm), i.e., the calibration object is about 1.5m away from the camera;
the rotation axis is [−0.08573,−0.99438, 0.0621]T (i.e., almost vertical), and
the rotation angle is 47.7◦.

Other notable work in this category include [27, 38, 36, 18].

2.4 Camera Calibration with 2D Objects: Plane-based Tech-
nique

In this section, we describe how a camera can be calibrated using a moving
plane. We first examine the constraints on the camera’s intrinsic parameters
provided by observing a single plane.

2.4.1 Homography between the model plane and its image

Without loss of generality, we assume the model plane is on Z = 0 of the
world coordinate system. Let’s denote the ith column of the rotation matrix

Section 2.4. Camera Calibration with 2D Objects: Plane Based Technique 19

R by ri. From (2.1), we have

s

uv
1

 = A
[
r1 r2 r3 t

]
X
Y
0
1

 = A
[
r1 r2 t

] XY
1

 .

By abuse of notation, we still use M to denote a point on the model plane, but
M = [X,Y]T since Z is always equal to 0. In turn, M̃ = [X,Y, 1]T . Therefore,
a model point M and its image m is related by a homography H:

sm̃ = HM̃ with H = A
[
r1 r2 t

]
. (2.18)

As is clear, the 3× 3 matrix H is defined up to a scale factor.

2.4.2 Constraints on the intrinsic parameters

Given an image of the model plane, an homography can be estimated (see
Appendix). Let’s denote it by H = [h1 h2 h3]. From (2.18), we have

[h1 h2 h3] = λA [r1 r2 t] ,

where λ is an arbitrary scalar. Using the knowledge that r1 and r2 are
orthonormal, we have

hT1 A−TA−1h2 = 0 (2.19)

hT1 A−TA−1h1 = hT2 A−TA−1h2 . (2.20)

These are the two basic constraints on the intrinsic parameters, given one
homography. Because a homography has 8 degrees of freedom and there
are 6 extrinsic parameters (3 for rotation and 3 for translation), we can only
obtain 2 constraints on the intrinsic parameters. Note that A−TA−1 actually
describes the image of the absolute conic [20]. In the next subsection, we
will give an geometric interpretation.

2.4.3 Geometric Interpretation

We are now relating (2.19) and (2.20) to the absolute conic [22, 20].
It is not difficult to verify that the model plane, under our convention, is

described in the camera coordinate system by the following equation:

[
r3
rT3 t

]T
x
y
z
w

 = 0 ,

20 Camera Calibration Chapter 2

where w = 0 for points at infinity and w = 1 otherwise. This plane intersects

the plane at infinity at a line, and we can easily see that
[
r1
0

]
and

[
r2
0

]
are

two particular points on that line. Any point on it is a linear combination
of these two points, i.e.,

x∞ = a

[
r1
0

]
+ b

[
r2
0

]
=
[
ar1 + br2

0

]
.

Now, let’s compute the intersection of the above line with the absolute
conic. By definition, the point x∞, known as the circular point [26], satisfies:
xT∞x∞ = 0, i.e., (ar1 + br2)T (ar1 + br2) = 0, or a2 + b2 = 0 . The solution
is b = ±ai, where i2 = −1. That is, the two intersection points are

x∞ = a

[
r1 ± ir2

0

]
.

The significance of this pair of complex conjugate points lies in the fact that
they are invariant to Euclidean transformations. Their projection in the
image plane is given, up to a scale factor, by

m̃∞ = A(r1 ± ir2) = h1 ± ih2 .

Point m̃∞ is on the image of the absolute conic, described by A−TA−1 [20].
This gives

(h1 ± ih2)TA−TA−1(h1 ± ih2) = 0 .

Requiring that both real and imaginary parts be zero yields (2.19) and (2.20).

2.4.4 Closed-form solution

We now provide the details on how to effectively solve the camera calibration
problem. We start with an analytical solution. This initial estimation will
be followed by a nonlinear optimization technique based on the maximum
likelihood criterion, to be described in the next subsection.

Let

B = A−TA−1 ≡
B11 B12 B13
B12 B22 B23
B13 B23 B33

 (2.21)

=

1
α2 − γ

α2β
v0γ−u0β
α2β

− γ
α2β

γ2

α2β2 + 1
β2 −γ(v0γ−u0β)

α2β2 − v0
β2

v0γ−u0β
α2β

−γ(v0γ−u0β)
α2β2 − v0

β2
(v0γ−u0β)2

α2β2 + v20
β2 +1

 . (2.22)

Section 2.4. Camera Calibration with 2D Objects: Plane Based Technique 21

Note that B is symmetric, defined by a 6D vector

b = [B11, B12, B22, B13, B23, B33]T . (2.23)

Let the ith column vector of H be hi = [hi1, hi2, hi3]T . Then, we have

hTi Bhj = vTijb (2.24)

with vij = [hi1hj1, hi1hj2+hi2hj1, hi2hj2, hi3hj1+hi1hj3, hi3hj2+hi2hj3, hi3hj3]T .
Therefore, the two fundamental constraints (2.19) and (2.20), from a given
homography, can be rewritten as 2 homogeneous equations in b:[

vT12
(v11 − v22)T

]
b = 0 . (2.25)

If n images of the model plane are observed, by stacking n such equations
as (2.25) we have

Vb = 0 , (2.26)

where V is a 2n×6 matrix. If n ≥ 3, we will have in general a unique solution
b defined up to a scale factor. If n = 2, we can impose the skewless constraint
γ = 0, i.e., [0, 1, 0, 0, 0, 0]b = 0, which is added as an additional equation to
(2.26). (If n = 1, we can only solve two camera intrinsic parameters, e.g., α
and β, assuming u0 and v0 are known (e.g., at the image center) and γ = 0,
and that is indeed what we did in [28] for head pose determination based
on the fact that eyes and mouth are reasonably coplanar. In fact, Tsai [33]
already mentions that focal length from one plane is possible, but incorrectly
says that aspect ratio is not.) The solution to (2.26) is well known as the
eigenvector of VTV associated with the smallest eigenvalue (equivalently,
the right singular vector of V associated with the smallest singular value).

Once b is estimated, we can compute all camera intrinsic parameters as
follows. The matrix B, as described in Sect. 2.4.4, is estimated up to a scale
factor, i.e.,, B = λA−TA with λ an arbitrary scale. Without difficulty, we
can uniquely extract the intrinsic parameters from matrix B.

v0 = (B12B13 −B11B23)/(B11B22 −B2
12)

λ = B33 − [B2
13 + v0(B12B13 −B11B23)]/B11

α =
√
λ/B11

β =
√
λB11/(B11B22 −B2

12)

γ = −B12α
2β/λ

u0 = γv0/α−B13α
2/λ .

22 Camera Calibration Chapter 2

Once A is known, the extrinsic parameters for each image is readily
computed. From (2.18), we have

r1 = λA−1h1 , r2 = λA−1h2 , r3 = r1 × r2 , t = λA−1h3

with λ = 1/‖A−1h1‖ = 1/‖A−1h2‖. Of course, because of noise in data, the
so-computed matrix R = [r1, r2, r3] does not in general satisfy the properties
of a rotation matrix. The best rotation matrix can then be obtained through
for example singular value decomposition [13, 41].

2.4.5 Maximum likelihood estimation

The above solution is obtained through minimizing an algebraic distance
which is not physically meaningful. We can refine it through maximum
likelihood inference.

We are given n images of a model plane and there are m points on the
model plane. Assume that the image points are corrupted by independent
and identically distributed noise. The maximum likelihood estimate can be
obtained by minimizing the following functional:

n∑
i=1

m∑
j=1

‖mij − m̂(A,Ri, ti, Mj)‖2 , (2.27)

where m̂(A,Ri, ti, Mj) is the projection of point Mj in image i, according to
equation (2.18). A rotation R is parameterized by a vector of 3 parameters,
denoted by r, which is parallel to the rotation axis and whose magnitude is
equal to the rotation angle. R and r are related by the Rodrigues formula [8].
Minimizing (2.27) is a nonlinear minimization problem, which is solved with
the Levenberg-Marquardt Algorithm as implemented in Minpack [23]. It
requires an initial guess of A, {Ri, ti|i = 1..n} which can be obtained using
the technique described in the previous subsection.

Desktop cameras usually have visible lens distortion, especially the ra-
dial components. We have included these while minimizing (2.27). See my
technical report [41] for more details.

2.4.6 Dealing with radial distortion

Up to now, we have not considered lens distortion of a camera. However, a
desktop camera usually exhibits significant lens distortion, especially radial
distortion. The reader is referred to Section 2.3.5 for distortion modeling.
In this section, we only consider the first two terms of radial distortion.

Section 2.4. Camera Calibration with 2D Objects: Plane Based Technique 23

Estimating Radial Distortion by Alternation. As the radial distortion is ex-
pected to be small, one would expect to estimate the other five intrinsic
parameters, using the technique described in Sect. 2.4.5, reasonable well by
simply ignoring distortion. One strategy is then to estimate k1 and k2 after
having estimated the other parameters, which will give us the ideal pixel
coordinates (u, v). Then, from (2.15) and (2.16), we have two equations for
each point in each image:[

(u−u0)(x2+y2) (u−u0)(x2+y2)2

(v−v0)(x2+y2) (v−v0)(x2+y2)2

] [
k1
k2

]
=
[
ŭ−u
v̆−v

]
.

Given m points in n images, we can stack all equations together to obtain
in total 2mn equations, or in matrix form as Dk = d, where k = [k1, k2]T .
The linear least-squares solution is given by

k = (DTD)−1DTd . (2.28)

Once k1 and k2 are estimated, one can refine the estimate of the other param-
eters by solving (2.27) with m̂(A,Ri, ti, Mj) replaced by (2.15) and (2.16).
We can alternate these two procedures until convergence.

Complete Maximum Likelihood Estimation. Experimentally, we found the
convergence of the above alternation technique is slow. A natural extension
to (2.27) is then to estimate the complete set of parameters by minimizing
the following functional:

n∑
i=1

m∑
j=1

‖mij − m̆(A, k1, k2,Ri, ti, Mj)‖2 , (2.29)

where m̆(A, k1, k2,Ri, ti, Mj) is the projection of point Mj in image i ac-
cording to equation (2.18), followed by distortion according to (2.15) and
(2.16). This is a nonlinear minimization problem, which is solved with the
Levenberg-Marquardt Algorithm as implemented in Minpack [23]. A rota-
tion is again parameterized by a 3-vector r, as in Sect. 2.4.5. An initial guess
of A and {Ri, ti|i = 1..n} can be obtained using the technique described in
Sect. 2.4.4 or in Sect. 2.4.5. An initial guess of k1 and k2 can be obtained with
the technique described in the last paragraph, or simply by setting them to
0.

2.4.7 Summary

The recommended calibration procedure is as follows:

24 Camera Calibration Chapter 2

1. Print a pattern and attach it to a planar surface;

2. Take a few images of the model plane under different orientations by
moving either the plane or the camera;

3. Detect the feature points in the images;

4. Estimate the five intrinsic parameters and all the extrinsic parameters
using the closed-form solution as described in Sect. 2.4.4;

5. Estimate the coefficients of the radial distortion by solving the linear
least-squares (2.28);

6. Refine all parameters, including lens distortion parameters, by mini-
mizing (2.29).

There is a degenerate configuration in my technique when planes are
parallel to each other. See my technical report [41] for a more detailed
description.

In summary, this technique only requires the camera to observe a planar
pattern from a few different orientations. Although the minimum number
of orientations is two if pixels are square, we recommend 4 or 5 different
orientations for better quality. We can move either the camera or the planar
pattern. The motion does not need to be known, but should not be a pure
translation. When the number of orientations is only 2, one should avoid
positioning the planar pattern parallel to the image plane. The pattern could
be anything, as long as we know the metric on the plane. For example, we
can print a pattern with a laser printer and attach the paper to a reasonable
planar surface such as a hard book cover. We can even use a book with known
size because the four corners are enough to estimate the plane homographies.

2.4.8 Experimental Results

The proposed algorithm has been tested on both computer simulated data
and real data. The closed-form solution involves finding a singular value
decomposition of a small 2n × 6 matrix, where n is the number of images.
The nonlinear refinement within the Levenberg-Marquardt algorithm takes
3 to 5 iterations to converge. Due to space limitation, we describe in this
section one set of experiments with real data when the calibration pattern
is at different distances from the camera. The reader is referred to [41] for
more experimental results with both computer simulated and real data, and
to the following Web page:

Section 2.4. Camera Calibration with 2D Objects: Plane Based Technique 25

(A) (B)

Figure 2.6. Two sets of images taken at different distances to the calibration
pattern. Each set contains five images. On the left, three images from the set taken
at a close distance are shown. On the right, three images from the set taken at a
larger distance are shown.

26 Camera Calibration Chapter 2

Table 2.1. Calibration results with the images shown in Figure 2.6

image set α β ϑ u0 v0 k1 k2

A 834.01 839.86 89.95◦ 305.51 240.09 -0.2235 0.3761
B 836.17 841.08 89.92◦ 301.76 241.51 -0.2676 1.3121

A+B 834.64 840.32 89.94◦ 304.77 240.59 -0.2214 0.3643

http://research.microsoft.com/˜zhang/Calib/
for some experimental data and the software.

The example is shown in Fig. 2.6. The camera to be calibrated is an
off-the-shelf PULNiX CCD camera with 6 mm lens. The image resolution
is 640×480. As can be seen in Fig. 2.6, the model plane contains a 9 × 9
squares with 9 special dots which are used to identify automatically the cor-
respondence between reference points on the model plane and square corners
in images. It was printed on a A4 paper with a 600 DPI laser printer, and
attached to a cardboard.

In total 10 images of the plane were taken (6 of them are shown in
Fig. 2.6). Five of them (called Set A) were taken at close range, while the
other five (called Set B) were taken at a larger distance. We applied our
calibration algorithm to Set A, Set B, and also to the whole set (called Set
A+B). The results are shown in Table 2.1. For intuitive understanding, we
show the estimated angle between the image axes, ϑ, instead of the skew
factor γ. We can see that the angle ϑ is very close to 90◦, as expected with
almost all modern CCD cameras. The cameras parameters were estimated
consistently for all three sets of images, except the distortion parameters
with Set B. The reason is that the calibration pattern only occupies the
central part of the image in Set B, where lens distortion is not significant
and therefore cannot be estimated reliably.

2.4.9 Related Work

Almost at the same time, Sturm and Maybank [31], independent from us,
developed the same technique. They assumed the pixels are square (i.e., γ =
0) and have studied the degenerate configurations for plane-based camera
calibration.

Gurdjos et al. [14] have re-derived the plane-based calibration technique
from the center line constraint.

My original implementation (only the executable) is available at

Section 2.5. Solving Camera Calibration With 1D Objects 27

http://research.microsoft.com/˜zhang/calib/.
Bouguet has re-implemented my technique in Matlab, which is available at
http://www.vision.caltech.edu/bouguetj/calib doc/.

In many applications such as stereo, multiple cameras need to be cali-
brated simultaneously in order to determine the relative geometry between
cameras. In 2000, I have extended (not published) this plane-based technique
to stereo calibration for my stereo-based gaze-correction project [40, 39].
The formulation is similar to (2.29). Consider two cameras, and denote the
quantity related to the second camera by ′. Let (Rs, ts) be the rigid trans-
formation between the two cameras such that (R′, t′) = (R, t) ◦ (Rs, ts) or
more precisely: R′ = RRs and t′ = Rts + t. Stereo calibration is then to
solve A,A′, k1, k2, k

′
1, k

′
2, {(Ri, ti)|i = 1, . . . , n}, and (Rs, ts) by minimizing

the following functional:

n∑
i=1

m∑
j=1

[
δij‖mij − m̆(A, k1, k2,Ri, ti, Mj)‖2 + δ′

ij‖m′
ij − m̆(A′, k′

1, k
′
2,R

′
i, t

′
i, Mj)‖2

]
(2.30)

subject to
R′
i = RiRs and t′

i = Rits + ti .

In the above formulation, δij = 1 if point j is visible in the first camera,
and δij = 0 otherwise. Similarly, δ′

ij = 1 if point j is visible in the second
camera. This formulation thus does not require the same number of feature
points to be visible over time or across cameras. Another advantage of this
formulation is that the number of extrinsic parameters to be estimated has
been reduced from 12n if the two cameras are calibrated independently to
6n+ 6. This is a reduction of 24 dimensions in parameter space if 5 planes
are used.

Obviously, this is a nonlinear optimization problem. To obtain the ini-
tial guess, we run first single-camera calibration independently for each cam-
era, and compute Rs through SVD from R′

i = RiRs (i = 1, . . . , n) and ts
through least-squares from t′

i = Rits + ti (i = 1, . . . , n). Recently, a closed-
form initialization technique through factorization of homography matrices
is proposed in [34].

2.5 Solving Camera Calibration With 1D Objects

In this section, we describe in detail how to solve the camera calibration
problem from a number of observations of a 1D object consisting of 3 collinear
points moving around one of them [43, 44]. We only consider this minimal

28 Camera Calibration Chapter 2

configuration, but it is straightforward to extend the result if a calibration
object has four or more collinear points.

2.5.1 Setups With Free-Moving 1D Calibration Objects

We now examine possible setups with 1D objects for camera calibration.
As already mentioned in the introduction, we need to have several observa-
tions of the 1D objects. Without loss of generality, we choose the camera
coordinate system to define the 1D objects; therefore, R = I and t = 0 in
(2.1).

Two points with known distance. This could be the two endpoints of a stick,
and we take a number of images while waving freely the stick. Let A and B
be the two 3D points, and a and b be the observed image points. Because
the distance between A and B is known, we only need 5 parameters to define
A and B. For example, we need 3 parameters to specify the coordinates of A
in the camera coordinate system, and 2 parameters to define the orientation
of the line AB. On the other hand, each image point provides two equations
according to (2.1), giving in total 4 equations. Given N observations of
the stick, we have 5 intrinsic parameters and 5N parameters for the point
positions to estimate, i.e., the total number of unknowns is 5+5N . However,
we only have 4N equations. Camera calibration is thus impossible.

Three collinear points with known distances. By adding an additional point,
say C, the number of unknowns for the point positions still remains the
same, i.e., 5 + 5N , because of known distances of C to A and B. For each
observation, we have three image points, yielding in total 6N equations.
Calibration seems to be plausible, but is in fact not. This is because the
three image points for each observation must be collinear. Collinearity is
preserved by perspective projection. We therefore only have 5 independent
equations for each observation. The total number of independent equations,
5N , is always smaller than the number of unknowns. Camera calibration is
still impossible.

Four or more collinear points with known distances. As seen above, when the
number of points increases from two to three, the number of independent
equations (constraints) increases by one for each observation. If we have
a fourth point, will we have in total 6N independent equations? If so, we
would be able to solve the problem because the number of unknowns remains
the same, i.e., 5 + 5N , and we would have more than enough constraints if
N ≥ 5. The reality is that the addition of the fourth point or even more
points does not increase the number of independent equations. It will always

Section 2.5. Solving Camera Calibration With 1D Objects 29

be 5N for any four or more collinear points. This is because the cross ratio is
preserved under perspective projection. With known cross ratios and three
collinear points, whether they are in space or in images, other points are
determined exactly.

2.5.2 Setups With 1D Calibration Objects Moving Around a fixed
Point

From the above discussion, calibration is impossible with a free moving 1D
calibration object, no matter how many points on the object. Now let us
examine what happens if one point is fixed. In the sequel, without loss of
generality, point A is the fixed point, and a is the corresponding image point.
We need 3 parameters, which are unknown, to specify the coordinates of A
in the camera coordinate system, while image point a provides two scalar
equations according to (2.1).

Two points with known distance. They could be the endpoints of a stick,
and we move the stick around the endpoint that is fixed. Let B be the free
endpoint and b, its corresponding image point. For each observation, we
need 2 parameters to define the orientation of the line AB and therefore the
position of B because the distance between A and B is known. Given N
observations of the stick, we have 5 intrinsic parameters, 3 parameters for A
and 2N parameters for the free endpoint positions to estimate, i.e., the total
number of unknowns is 8 + 2N . However, each observation of b provides
two equations, so together with a we only have in total 2 + 2N equations.
Camera calibration is thus impossible.

Three collinear points with known distances. As already explained in the last
subsection, by adding an additional point, say C, the number of unknowns
for the point positions still remains the same, i.e., 8+2N . For each observa-
tion, b provides two equations, but c only provides one additional equation
because of the collinearity of a, b and c. Thus, the total number of equations
is 2 + 3N for N observations. By counting the numbers, we see that if we
have 6 or more observations, we should be able to solve camera calibration,
and this is the case as we shall show in the next section.

Four or more collinear points with known distances. Again, as already ex-
plained in the last subsection, The number of unknowns and the number of
independent equations remain the same because of invariance of cross-ratios.
This said, the more collinear points we have, the more accurate camera cal-
ibration will be in practice because data redundancy can combat the noise
in image data.

30 Camera Calibration Chapter 2

2.5.3 Basic Equations

Figure 2.7. Illustration of 1D calibration objects

Refer to Figure 2.7. Point A is the fixed point in space, and the stick AB
moves around A. The length of the stick AB is known to be L, i.e.,

‖B− A‖ = L . (2.31)

The position of point C is also known with respect to A and B, and therefore

C = λAA + λBB , (2.32)

where λA and λB are known. If C is the midpoint of AB, then λA = λB = 0.5.
Points a, b and c on the image plane are projection of space points A, B and
C, respectively.

Without loss of generality, we choose the camera coordinate system to
define the 1D objects; therefore, R = I and t = 0 in (2.1). Let the unknown
depths for A, B and C be zA, zB and zC , respectively. According to (2.1), we

Section 2.5. Solving Camera Calibration With 1D Objects 31

have

A = zAA−1ã (2.33)

B = zBA−1b̃ (2.34)

C = zCA−1c̃ . (2.35)

Substituting them into (2.32) yields

zC c̃ = zAλAã + zBλBb̃ (2.36)

after eliminating A−1 from both sides. By performing cross-product on both
sides of the above equation with c̃, we have

zAλA(ã× c̃) + zBλB(b̃× c̃) = 0 .

In turn, we obtain

zB = −zA λA(ã× c̃) · (b̃× c̃)

λB(b̃× c̃) · (b̃× c̃)
. (2.37)

From (2.31), we have

‖A−1(zBb̃− zAã)‖ = L .

Substituting zB by (2.37) gives

zA‖A−1(ã +
λA(ã× c̃) · (b̃× c̃)

λB(b̃× c̃) · (b̃× c̃)
b̃
)‖ = L .

This is equivalent to
z2
AhTA−TA−1h = L2 (2.38)

with

h = ã +
λA(ã× c̃) · (b̃× c̃)

λB(b̃× c̃) · (b̃× c̃)
b̃ . (2.39)

Equation (2.38) contains the unknown intrinsic parameters A and the un-
known depth, zA, of the fixed point A. It is the basic constraint for camera
calibration with 1D objects. Vector h, given by (2.39), can be computed from
image points and known λA and λB. Since the total number of unknowns
is 6, we need at least six observations of the 1D object for calibration. Note
that A−TA actually describes the image of the absolute conic [20].

32 Camera Calibration Chapter 2

2.5.4 Closed-Form Solution

Let

B = A−TA−1 ≡
B11 B12 B13
B12 B22 B23
B13 B23 B33

 (2.40)

=

1
α2 − γ

α2β
v0γ−u0β
α2β

− γ
α2β

γ2

α2β2 + 1
β2 −γ(v0γ−u0β)

α2β2 − v0
β2

v0γ−u0β
α2β

−γ(v0γ−u0β)
α2β2 − v0

β2
(v0γ−u0β)2

α2β2 + v20
β2 +1

 . (2.41)

Note that B is symmetric, and can be defined by a 6D vector

b = [B11, B12, B22, B13, B23, B33]T . (2.42)

Let h = [h1, h2, h3]T , and x = z2
Ab, then equation (2.38) becomes

vTx = L2 (2.43)

with
v = [h2

1, 2h1h2, h
2
2, 2h1h3, 2h2h3, h

2
3]
T .

When N images of the 1D object are observed, by stacking n such equations
as (2.43) we have

Vx = L21 , (2.44)

where V = [v1, . . . ,vN]T and 1 = [1, . . . , 1]T . The least-squares solution is
then given by

x = L2(VTV)−1VT1 . (2.45)

Once x is estimated, we can compute all the unknowns based on x = z2
Ab.

Let x = [x1, x2, . . . , x6]T . Without difficulty, we can uniquely extract the
intrinsic parameters and the depth zA as

v0 = (x2x4 − x1x5)/(x1x3 − x2
2)

zA =
√
x6 − [x2

4 + v0(x2x4 − x1x5)]/x1

α =
√
zA/x1

β =
√
zAx1/(x1x3 − x2

2)

γ = −x2α
2β/zA

u0 = γv0/α− x4α
2/zA .

At this point, we can compute zB according to (2.37), so points A and
B can be computed from (2.33) and (2.34), while point C can be computed
according to (2.32).

Section 2.5. Solving Camera Calibration With 1D Objects 33

2.5.5 Nonlinear Optimization

The above solution is obtained through minimizing an algebraic distance
which is not physically meaningful. We can refine it through maximum
likelihood inference.

We are given N images of the 1D calibration object and there are 3
points on the object. Point A is fixed, and points B and C moves around A.
Assume that the image points are corrupted by independent and identically
distributed noise. The maximum likelihood estimate can be obtained by
minimizing the following functional:

N∑
i=1

(‖ai − φ(A, A)‖2 + ‖bi − φ(A, Bi)‖2 + ‖ci − φ(A, Ci)‖2
)
, (2.46)

where φ(A, M) (M ∈ {A, Bi, Ci}) is the projection of point M onto the image,
according to equations (2.33) to (2.35). More precisely, φ(A, M) = 1

zM
AM,

where zM is the z-component of M.
The unknowns to be estimated are:

– 5 camera intrinsic parameters α, β, γ, u0 and v0 that define matrix A;

– 3 parameters for the coordinates of the fixed point A;

– 2N additional parameters to define points Bi and Ci at each instant
(see below for more details).

Therefore, we have in total 8 + 2N unknowns. Regarding the parameteri-
zation for B and C, we use the spherical coordinates φ and θ to define the
direction of the 1D calibration object, and point B is then given by

B = A + L

sin θ cosφ
sin θ sinφ

cos θ

where L is the known distance between A and B. In turn, point C is computed
according to (2.32). We therefore only need 2 additional parameters for each
observation.

Minimizing (2.46) is a nonlinear minimization problem, which is solved
with the Levenberg-Marquardt Algorithm as implemented in Minpack [23].
It requires an initial guess of A, A, {Bi, Ci|i = 1..N} which can be obtained
using the technique described in the last subsection.

34 Camera Calibration Chapter 2

2.5.6 Estimating the fixed point

In the above discussion, we assumed that the image coordinates, a, of the
fixed point A are known. We now describe how to estimate a by considering
whether the fixed point A is visible in the image or not.

Invisible fixed point. The fixed point does not need to be visible in the image.
And the camera calibration technique becomes more versatile without the
visibility requirement. In that case, we can for example hang a string of
small balls from the ceiling, and calibrate multiple cameras in the room by
swinging the string. The fixed point can be estimated by intersecting lines
from different images as described below.

Each observation of the 1D object defines an image line. An image line
can be represented by a 3D vector l = [l1, l2, l3]T , defined up to a scale factor
such as a point m = [u, v]T on the line satisfies lT m̃ = 0. In the sequel, we
also use (n, q) to denote line l, where n = [l1, l2]T and q = l3. To remove
the scale ambiguity, we normalize l such that ‖l‖ = 1. Furthermore, each l
is associated with an uncertainty measure represented by a 3× 3 covariance
matrix Λ.

GivenN images of the 1D object, we haveN lines: {(li,Λi)|i = 1, . . . , N}.
Let the fixed point be a in the image. Obviously, if there is no noise, we
have lTi ã = 0, or nTi a + qi = 0. Therefore, we can estimate a by minimizing

F =
N∑
i=1

wi‖lTi ã‖2 =
N∑
i=1

wi‖nTi a + qi‖2 =
N∑
i=1

wi(aTninTi a + 2qinTi a + q2i)

(2.47)
where wi is a weighting factor (see below). By setting the derivative of F
with respect to a to 0, we obtain the solution, which is given by

a = −
(N∑
i=1

wininTi
)−1(N∑

i=1

wiqini
)
.

The optimal weighting factor wi in (2.47) is the inverse of the variance of lTi ã,
which is wi = 1/(ãTΛiã). Note that the weight wi involves the unknown a.
To overcome this difficulty, we can approximate wi by 1/ trace(Λi) for the
first iteration, and by re-computing wi with the previously estimated a in
the subsequent iterations. Usually two or three iterations are enough.

Visible fixed point. Since the fixed point is visible, we have N observations:
{ai|i = 1, . . . , N}. We can therefore estimate a by minimizing

∑N
i=1 ‖a−ai‖2,

assuming that the image points are detected with the same accuracy. The
solution is simply a = (

∑N
i=1 ai)/N .

Section 2.5. Solving Camera Calibration With 1D Objects 35

The above estimation does not make use of the fact that the fixed point
is also the intersection of the N observed lines of the 1D object. Therefore,
a better technique to estimate a is to minimize the following function:

F =
N∑
i=1

[
(a−ai)TV−1

i (a−ai)+wi‖lTi ã‖2
]

=
N∑
i=1

[
(a−ai)TV−1

i (a−ai)+wi‖nTi a+qi‖2
]

(2.48)
where Vi is the covariance matrix of the detected point ai. The derivative
of the above function with respect to a is given by

∂F
∂a

= 2
N∑
i=1

[
V−1
i (a− ai) + wininTi a + wiqini

]
.

Setting it to 0 yields

a =
(N∑
i=1

(V−1
i + wininTi)

)−1(N∑
i=1

(V−1
i ai − wiqini)

)
.

If more than three points are visible in each image, the known cross ratio
provides an additional constraint in determining the fixed point.

For an accessible description of uncertainty manipulation, the reader is
referred to [45, Chapter 2].

2.5.7 Experimental Results

The proposed algorithm has been tested on both computer simulated data
and real data.

Computer Simulations

The simulated camera has the following property: α = 1000, β = 1000,
γ = 0, u0 = 320, and v0 = 240. The image resolution is 640×480. A stick of
70 cm is simulated with the fixed point A at [0, 35, 150]T . The other endpoint
of the stick is B, and C is located at the half way between A and B. We have
generated 100 random orientations of the stick by sampling θ in [π/6, 5π/6]
and φ in [π, 2π] according to uniform distribution. Points A, B, and C are
then projected onto the image.

Gaussian noise with 0 mean and σ standard deviation is added to the
projected image points a, b and c. The estimated camera parameters are
compared with the ground truth, and we measure their relative errors with
respect to the focal length α. Note that we measure the relative errors in

36 Camera Calibration Chapter 2

Table 2.2. Calibration results with real data.
Solution α β γ u0 v0
Closed-form 889.49 818.59 -0.1651 (90.01◦) 297.47 234.33
Nonlinear 838.49 799.36 4.1921 (89.72◦) 286.74 219.89
Plane-based 828.92 813.33 -0.0903 (90.01◦) 305.23 235.17
Relative difference 1.15% 1.69% 0.52% (0.29◦) 2.23% 1.84%

(u0, v0) with respect to α, as proposed by Triggs in [32]. He pointed out
that the absolute errors in (u0, v0) is not geometrically meaningful, while
computing the relative error is equivalent to measuring the angle between
the true optical axis and the estimated one.

We vary the noise level from 0.1 pixels to 1 pixel. For each noise level,
we perform 120 independent trials, and the results shown in Fig. 2.8 are the
average. Figure 2.8a displays the relative errors of the closed-form solution
while Figure 2.8b displays those of the nonlinear minimization result. Errors
increase almost linearly with the noise level. The nonlinear minimization
refines the closed-form solution, and produces significantly better result (with
50% less errors). At 1 pixel noise level, the errors for the closed-form solution
are about 12%, while those for the nonlinear minimization are about 6%.

Real Data

For the experiment with real data, I used three toy beads from my kids
and strung them together with a stick. The beads are approximately 14 cm
apart (i.e., L = 28). I then moves the stick around while trying to fix one
end with the aid of a book. A video of 150 frames was recorded, and four
sample images are shown in Fig. 2.9. A bead in the image is modeled as a
Gaussian blob in the RGB space, and the centroid of each detected blob is
the image point we use for camera calibration. The proposed algorithm is
therefore applied to the 150 observations of the beads, and the estimated
camera parameters are provided in Table 2.2. The first row is the estimation
from the closed-form solution, while the second row is the refined result after
nonlinear minimization. For the image skew parameter γ, we also provide
the angle between the image axes in parenthesis (it should be very close to
90◦).

For comparison, we also used the plane-based calibration technique de-
scribed in [42] to calibrate the same camera. Five images of a planar pattern
were taken, and one of them is shown in Fig. 2.10. The calibration result is
shown in the third row of Table 2.2. The fourth row displays the relative

Section 2.5. Solving Camera Calibration With 1D Objects 37

(a) Closed-form solution

(b) Nonlinear optimization

Figure 2.8. Calibration errors with respect to the noise level of the image points.

38 Camera Calibration Chapter 2

Frame 10 Frame 60

Frame 90 Frame 140

Figure 2.9. Sample images of a 1D object used for camera calibration.

Figure 2.10. A sample image of the planar pattern used for camera calibration.

Section 2.6. Self Calibration 39

difference between the plane-based result and the nonlinear solution with re-
spect to the focal length (we use 828.92). As we can observe, the difference
is about 2%.

There are several sources contributing to this difference. Besides ob-
viously the image noise and imprecision of the extracted data points, one
source is our current rudimentary experimental setup:

– The supposed-to-be fixed point was not fixed. It slipped around on the
surface.

– The positioning of the beads was done with a ruler using eye inspection.

Considering all the factors, the proposed algorithm is very encouraging.

2.6 Self-Calibration

Self-calibration is also called auto-calibration. Techniques in this category
do not require any particular calibration object. They can be considered as
0D approach because only image point correspondences are required. Just
by moving a camera in a static scene, the rigidity of the scene provides in
general two constraints [22, 21, 20] on the cameras’ internal parameters from
one camera displacement by using image information alone. Absolute conic,
described in Section 2.2.2, is an essential concept in understanding these
constraints. Therefore, if images are taken by the same camera with fixed
internal parameters, correspondences between three images are sufficient to
recover both the internal and external parameters which allow us to recon-
struct 3-D structure up to a similarity [20, 17]. Although no calibration
objects are necessary, a large number of parameters need to be estimated,
resulting in a much harder mathematical problem.

We do not plan to go further into details of this approach because two
recent books [15, 7] provide an excellent recount of those techniques.

2.7 Conclusion

In this chapter, we have reviewed several camera calibration techniques. We
have classified them into four categories, depending whether they use 3D
apparatus, 2D objects (planes), 1D objects, or just the surrounding scenes
(self-calibration). Recommendations on choosing which technique were given
in the introduction section.

The techniques described so far are mostly focused on a single-camera
calibration. We touched a little bit on stereo calibration in Section 2.4.9.

40 Camera Calibration Chapter 2

Camera calibration is still an active research area because more and more
applications use cameras. In [2], spheres are used to calibrate one or more
cameras, which can be considered as a 2D approach since only the surface
property is used. In [5], a technique is described to calibrate a camera net-
work consisting of an omni-camera and a number of perspective cameras. In
[24], a technique is proposed to calibrate a projector-screen-camera system.

2.8 Appendix: Estimating Homography Between the Model
Plane and its Image

There are many ways to estimate the homography between the model plane
and its image. Here, we present a technique based on maximum likelihood
criterion. Let Mi and mi be the model and image points, respectively. Ideally,
they should satisfy (2.18). In practice, they don’t because of noise in the
extracted image points. Let’s assume that mi is corrupted by Gaussian noise
with mean 0 and covariance matrix Λmi . Then, the maximum likelihood
estimation of H is obtained by minimizing the following functional∑

i

(mi − m̂i)TΛ−1
mi

(mi − m̂i) ,

where m̂i =
1

h̄T3 Mi

[
h̄T1 Mi
h̄T2 Mi

]
with h̄i, the ith row of H.

In practice, we simply assume Λmi = σ2I for all i. This is reasonable if points
are extracted independently with the same procedure. In this case, the above
problem becomes a nonlinear least-squares one, i.e., minH

∑
i ‖mi − m̂i‖2.

The nonlinear minimization is conducted with the Levenberg-Marquardt Al-
gorithm as implemented in Minpack [23]. This requires an initial guess,
which can be obtained as follows.

Let x = [h̄T1 , h̄
T
2 , h̄

T
3]T . Then equation (2.18) can be rewritten as[

M̃T 0T −uM̃T
0T M̃T −vM̃T

]
x = 0 .

When we are given n points, we have n above equations, which can be written
in matrix equation as Lx = 0, where L is a 2n×9 matrix. As x is defined up
to a scale factor, the solution is well known to be the right singular vector of
L associated with the smallest singular value (or equivalently, the eigenvector
of LTL associated with the smallest eigenvalue). In L, some elements are
constant 1, some are in pixels, some are in world coordinates, and some are
multiplication of both. This makes L poorly conditioned numerically. Much
better results can be obtained by performing a simple data normalization
prior to running the above procedure.

Bibliography 41

Bibliography

[1] Y.I. Abdel-Aziz and H.M. Karara. Direct linear transformation into object
space coordinates in close-range photogrammetry. In Proceedings of the Sym-
posium on Close-Range Photogrammetry, University of Illinois at Urbana-
Champaign, Urbana, Illinois, pages 1–18, January 1971.

[2] M. Agrawal and L. Davis. Camera calibration using spheres: A semi-definite
programming approach. In Proceedings of the 9th International Conference on
Computer Vision, pages 782–789, Nice, France, October 2003. IEEE Computer
Society Press.

[3] D. C. Brown. Close-range camera calibration. Photogrammetric Engineering,
37(8):855–866, 1971.

[4] B. Caprile and V. Torre. Using Vanishing Points for Camera Calibration. The
International Journal of Computer Vision, 4(2):127–140, March 1990.

[5] X. Chen, J. Yang, and A. Waibel. Calibration of a hybrid camera network.
In Proceedings of the 9th International Conference on Computer Vision, pages
150–155, Nice, France, October 2003. IEEE Computer Society Press.

[6] W. Faig. Calibration of close-range photogrammetry systems: Mathematical
formulation. Photogrammetric Engineering and Remote Sensing, 41(12):1479–
1486, 1975.

[7] O. Faugeras and Q.-T. Luong. The Geometry of Multiple Images. The MIT
Press, 2001. With contributions from T. Papadopoulo.

[8] O. Faugeras. Three-Dimensional Computer Vision: a Geometric Viewpoint.
MIT Press, 1993.

[9] O. Faugeras, T. Luong, and S. Maybank. Camera self-calibration: theory and
experiments. In G. Sandini, editor, Proc 2nd ECCV, volume 588 of Lecture
Notes in Computer Science, pages 321–334, Santa Margherita Ligure, Italy,
May 1992. Springer-Verlag.

[10] O. Faugeras and G. Toscani. The calibration problem for stereo. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages
15–20, Miami Beach, FL, June 1986. IEEE.

[11] S. Ganapathy. Decomposition of transformation matrices for robot vision. Pat-
tern Recognition Letters, 2:401–412, December 1984.

[12] D. Gennery. Stereo-camera calibration. In Proceedings of the 10th Image Un-
derstanding Workshop, pages 101–108, 1979.

[13] G.H. Golub and C.F. van Loan. Matrix Computations. The John Hopkins
University Press, Baltimore, Maryland, 3 edition, 1996.

[14] P. Gurdjos, A. Crouzil, and R. Payrissat. Another way of looking at plane-based
calibration: the centre circle constraint. In Proceedings of the 7th European
Conference on Computer Vision, volume IV, pages 252–266, Copenhagen, May
2002.

[15] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, 2000.

[16] R. Hartley. Self-calibration from multiple views with a rotating camera. In J-
O. Eklundh, editor, Proceedings of the 3rd European Conference on Computer
Vision, volume 800-801 of Lecture Notes in Computer Science, pages 471–478,
Stockholm, Sweden, May 1994. Springer-Verlag.

42 Camera Calibration Chapter 2

[17] R. Hartley. An algorithm for self calibration from several views. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages
908–912, Seattle, WA, June 1994. IEEE.

[18] J. Heikkilä and O. Silvén. A four-step camera calibration procedure with im-
plicit image correction. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1106–1112, San Juan, Puerto Rico, June
1997. IEEE Computer Society.

[19] D. Liebowitz and A. Zisserman. Metric rectification for perspective images of
planes. In Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 482–488, Santa Barbara, California, June 1998. IEEE
Computer Society.

[20] Q.-T. Luong and O.D. Faugeras. Self-calibration of a moving camera from
point correspondences and fundamental matrices. The International Journal of
Computer Vision, 22(3):261–289, 1997.

[21] Q.-T. Luong. Matrice Fondamentale et Calibration Visuelle sur
l’Environnement-Vers une plus grande autonomie des systèmes robotiques.
PhD thesis, Université de Paris-Sud, Centre d’Orsay, December 1992.

[22] S. J. Maybank and O. D. Faugeras. A theory of self-calibration of a moving
camera. The International Journal of Computer Vision, 8(2):123–152, August
1992.

[23] J.J. More. The levenberg-marquardt algorithm, implementation and theory. In
G. A. Watson, editor, Numerical Analysis, Lecture Notes in Mathematics 630.
Springer-Verlag, 1977.

[24] T. Okatani and K. Deguchi. Autocalibration of projector-screen-camera sys-
tem: Theory and algorithm for screen-to-camera homography estimation. In
Proceedings of the 9th International Conference on Computer Vision, pages
774–781, Nice, France, October 2003. IEEE Computer Society Press.

[25] L. Robert. Camera calibration without feature extraction. Computer Vision,
Graphics, and Image Processing, 63(2):314–325, March 1995. also INRIA Tech-
nical Report 2204.

[26] J.G. Semple and G.T. Kneebone. Algebraic Projective Geometry. Oxford:
Clarendon Press, 1952. Reprinted 1979.

[27] S.W. Shih, Y.P. Hung, and W.S. Lin. Accurate linear technique for camera
calibration considering lens distortion by solving an eigenvalue problem. Optical
Engineering, 32(1):138–149, 1993.

[28] I. Shimizu, Z. Zhang, S. Akamatsu, and K. Deguchi. Head pose determina-
tion from one image using a generic model. In Proceedings of the IEEE Third
International Conference on Automatic Face and Gesture Recognition, pages
100–105, Nara, Japan, April 1998.

[29] C. C. Slama, editor. Manual of Photogrammetry. American Society of Pho-
togrammetry, fourth edition, 1980.

[30] G. Stein. Accurate internal camera calibration using rotation, with analysis of
sources of error. In Proc. Fifth International Conference on Computer Vision,
pages 230–236, Cambridge, Massachusetts, June 1995.

Bibliography 43

[31] P. Sturm and S. Maybank. On plane-based camera calibration: A general
algorithm, singularities, applications. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 432–437, Fort Collins,
Colorado, June 1999. IEEE Computer Society Press.

[32] B. Triggs. Autocalibration from planar scenes. In Proceedings of the 5th Euro-
pean Conference on Computer Vision, pages 89–105, Freiburg, Germany, June
1998.

[33] R. Y. Tsai. A versatile camera calibration technique for high-accuracy 3D ma-
chine vision metrology using off-the-shelf tv cameras and lenses. IEEE Journal
of Robotics and Automation, 3(4):323–344, August 1987.

[34] T. Ueshiba and F. Tomita. Plane-based calibration algorithm for multi-camera
systems via factorization of homography matrices. In Proceedings of the 9th
International Conference on Computer Vision, pages 966–973, Nice, France,
October 2003. IEEE Computer Society Press.

[35] G.Q. Wei and S.D. Ma. A complete two-plane camera calibration method
and experimental comparisons. In Proc. Fourth International Conference on
Computer Vision, pages 439–446, Berlin, May 1993.

[36] G.Q. Wei and S.D. Ma. Implicit and explicit camera calibration: Theory and
experiments. IEEE Transactions on Pattern Analysis and Machine Intelligence,
16(5):469–480, 1994.

[37] J. Weng, P. Cohen, and M. Herniou. Camera calibration with distortion models
and accuracy evaluation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 14(10):965–980, October 1992.

[38] R. Willson. Modeling and Calibration of Automated Zoom Lenses. PhD thesis,
Department of Electrical and Computer Engineering, Carnegie Mellon Univer-
sity, 1994.

[39] R. Yang and Z. Zhang. Eye gaze correction with stereovision for video tele-
conferencing. In Proceedings of the 7th European Conference on Computer
Vision, volume II, pages 479–494, Copenhagen, May 2002. Also available as
Technical Report MSR-TR-01-119.

[40] R. Yang and Z. Zhang. Model-based head pose tracking with stereovision.
In Proc. Fifth IEEE International Conference on Automatic Face and Gesture
Recognition (FG2002), pages 255–260, Washington, DC, May 2002. Also avail-
able as Technical Report MSR-TR-01-102.

[41] Z. Zhang. A flexible new technique for camera calibration. Technical Report
MSR-TR-98-71, Microsoft Research, December 1998. Available together with
the software at http://research.microsoft.com/˜zhang/Calib/.

[42] Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 22(11):1330–1334, 2000.

[43] Z. Zhang. Camera calibration with one-dimensional objects. Technical Report
MSR-TR-2001-120, Microsoft Research, December 2001.

[44] Z. Zhang. Camera calibration with one-dimensional objects. In Proc. Euro-
pean Conference on Computer Vision (ECCV’02), volume IV, pages 161–174,
Copenhagen, Denmark, May 2002.

[45] Z. Zhang and O.D. Faugeras. 3D Dynamic Scene Analysis: A Stereo Based
Approach. Springer, Berlin, Heidelberg, 1992.

Chapter 3

MULTIPLE VIEW
GEOMETRY

Anders Heyden

and Marc Pollefeys

3.1 Introduction

There exist intricate geometric relations between multiple views of a 3D
scene. These relations are related to the camera motion and calibration as
well as to the scene structure. In this chapter we introduce these concepts
and discuss how they can be applied to recover 3D models from images.

In Section 3.2 a rather thorough description of projective geometry is
given. Section 3.3 gives a short introduction to tensor calculus and Sec-
tion 3.4 describes in detail the camera model used. In Section 3.5 a modern
approach to multiple view geometry is presented and in Section 3.6 simple
structure and motion algorithms are presented. In Section 3.7 more ad-
vanced algorithms are presented that are suited for automatic processing on
real image data. Section 3.8 discusses the possibility of calibrating the cam-
era from images. Section 3.9 describes how the depth can be computed for
most image pixels and Section 3.10 presents how the results of the previous
sections can be combined to yield 3D models, render novel views or combine
real and virtual elements in video.

45

46 Multiple View Geometry Chapter 3

3.2 Projective Geometry

Projective geometry is a fundamental tool for dealing with structure from
motion problems in computer vision, especially in multiple view geometry.
The main reason is that the image formation process can be regarded as a
projective transformation from a 3-dimensional to a 2-dimensional projective
space. It is also a fundamental tool for dealing with auto-calibration prob-
lems and examining critical configurations and critical motion sequences.

This section deals with the fundamentals of projective geometry, includ-
ing the definitions of projective spaces, homogeneous coordinates, duality,
projective transformations and affine and Euclidean embeddings. For a tra-
ditional approach to projective geometry, see [9] and for more modern treat-
ments, see [14], [15], [24].

3.2.1 The central perspective transformation

We will start the introduction of projective geometry by looking at a central
perspective transformation, which is very natural from an image formation
point of view, see Figure 3.1.

x

Πi

E

Πo

X

h

l

l2

l1

Figure 3.1. A central perspective transformation

Definition 1. A central perspective transformation maps points, X,

Section 3.2. Projective Geometry 47

on the object plane, Πo, to points on the image plane Πi, by intersecting the
line through E, called the centre, and X with Πi.

We can immediately see the following properties of the planar perspective
transformation:

– All points on Πo maps to points on Πi except for points on l, where l
is defined as the intersection of Πo with the plane incident with E and
parallel with Πi.

– All points on Πi are images of points on Πo except for points on h,
called the horizon, where h is defined as the intersection of Πi with
the plane incident with E and parallel with Πo.

– Lines in Πo are mapped to lines in Πi.
– The images of parallel lines intersects in a point on the horizon, see

e.g. l1 and l2 in Figure 3.1.
– In the limit where the point E moves infinitely far away, the planar

perspective transformation turns into a parallel projection.
Identify the planes Πo and Πi with R

2, with a standard cartesian coordinate
system Oe1e2 in Πo and Πi respectively. The central perspective transfor-
mation is nearly a bijective transformation between Πo and Πi, i.e. from R

2

to R
2. The problem is the lines l ∈ Πo and h ∈ Πi. If we remove these lines

we obtain a bijective transformation between R
2 \ l and R

2 \ h, but this is
not the path that we will follow. Instead, we extend each R

2 with an extra
line defined as the images of points on h and points that maps to l, in the
natural way, i.e. maintaining continuity. Thus by adding one artificial line
to each plane, it is possible to make the central perspective transformation
bijective from (R2 + an extra line) to (R2 + an extra line). These extra lines
correspond naturally to directions in the other plane, e.g. the images of the
lines l1 and l2 intersects in a point on h corresponding to the direction of l1
and l2. The intersection point on h can be viewed as the limit of images of a
point on l1 moving infinitely far away. Inspired by this observation we make
the following definition:

Definition 2. Consider the set L of all lines parallel to a given line l in R
2

and assign a point to each such set, pideal, called an ideal point or point
at infinity, cf. Figure 3.2.

3.2.2 Projective spaces

We are now ready to make a preliminary definition of the two-dimensional
projective space, i.e. the projective plane.

48 Multiple View Geometry Chapter 3

pideal

L

e1

e2

Figure 3.2. The point at infinity corresponding to the set of lines L.

Definition 3. The projective plane, P
2, is defined according to

P
2 = R

2 ∪ {ideal points} .

Definition 4. The ideal line, l∞ or line at infinity in P
2 is defined ac-

cording to
l∞ = {ideal points} .

The following constructions could easily be made in P
2:

1. Two different points define a line (called the join of the points)

2. Two different lines intersect in a point

with obvious interpretations for ideal points and the ideal line, e.g. the line
defined by an ordinary point and an ideal point is the line incident with
the ordinary point with the direction given by the ideal point. Similarly we
define

Definition 5. The projective line, P
1, is defined according to

P
1 = R

1 ∪ {ideal point} .

Section 3.2. Projective Geometry 49

Observe that the projective line only contains one ideal point, which could
be regarded as the point at infinity.

In order to define three-dimensional projective space, P
3, we start with

R
3 and assign an ideal point to each set of parallel lines, i.e. to each direction.

Definition 6. The projective space, P
3, is defined according to

P
3 = R

3 ∪ {ideal points} .

Observe that the ideal points in P
3 constitutes a two-dimensional manifold,

which motivates the following definition.

Definition 7. The ideal points in P
3 builds up a plane, called the ideal

plane or plane at infinity, also containing ideal lines.

The plane at infinity contains lines, again called lines at infinity. Every set
of parallel planes in R

3 defines an ideal line and all ideal lines builds up the
ideal plane. A lot of geometrical constructions can be made in P

3, e.g.

1. Two different points define a line (called the join of the two points)

2. Three different points define a plane (called the join of the three points)

3. Two different planes intersect in a line

4. Three different planes intersect in a point

3.2.3 Homogeneous coordinates

It is often advantageous to introduce coordinates in the projective spaces, so
called analytic projective geometry. Introduce a cartesian coordinate system,
Oexey in R

2 and define the line l : y = 1, see Figure 3.3. We make the
following simple observations:

Lemma 1. The vectors (p1, p2) and (q1, q2) determines the same line through
the origin iff

(p1, p2) = λ(q1, q2), λ �= 0 .

Proposition 1. Every line, lp = (p1, p2)t, t ∈ R, through the origin, except
for the x-axis, intersect the line l in one point, p.

We can now make the following definitions:

50 Multiple View Geometry Chapter 3

lp : (p1.p2)t, t ∈ R

ex

ey

p

l : y = 1

Figure 3.3. Definition of homogeneous coordinates in P
1.

Definition 8. The pairs of numbers (p1, p2) and (q1, q2) are said to be equiv-
alent if

(p1, p2) = λ(q1, q2), λ �= 0 .

We write
(p1, p2) ∼ (q1, q2) .

There is a one-to-one correspondence between lines through the origin and
points on the line l if we add an extra point on the line, corresponding to
the line x = 0, i.e. the direction (1, 0). By identifying the line l augmented
with this extra point, corresponding to the point at infinity, p∞, with P

1, we
can make the following definitions:

Definition 9. The one-dimensional projective space, P
1, consists of

pairs of numbers (p1, p2) (under the equivalence above), where (p1, p2) �=
(0, 0). The pair (p1, p2) is called homogeneous coordinates for the corre-
sponding point in P

1.

Theorem 1. There is a natural division of P
1 into two disjoint subsets

P
1 = {(p1, 1) ∈ P

1} ∪ {(p1, 0) ∈ P
1} ,

corresponding to ordinary points and the ideal point.

The introduction of homogeneous coordinates can easily be generalized
to P

2 and P
3 using three and four homogeneous coordinates respectively. In

the case of P
2 fix a cartesian coordinate system Oexeyez in R

3 and define
the plane Π : z = 1, see Figure 3.4. The vectors (p1, p2, p3) and (q1, q2, q3)

Section 3.2. Projective Geometry 51

p

ex

ey

lp : (p1.p2, p3)t, t ∈ R

Π : z = 1

ez

Figure 3.4. Definition of homogeneous coordinates in P
2.

determines the same line through the origin iff

(p1, p2, p3) = λ(q1, q2, q3), λ �= 0 .

Every line through the origin, except for those in the x-y-plane, intersect the
plane Π in one point. Again, there is a one-to-one correspondence between
lines through the origin and points on the plane Π if we add an extra line,
corresponding to the lines in the plane z = 0, i.e. the line at infinity, l∞,
built up by lines of the form (p1, p2, 0). We can now identifying the plane Π
augmented with this extra line, corresponding to the points at infinity, l∞,
with P

2.

Definition 10. The pairs of numbers (p1, p2, p3) and (q1, q2, q3) are said to
be equivalent iff

(p1, p2, p3) = λ(q1, q2, q3), λ �= 0 written (p1, p2, p3) ∼ (q1, q2, q3) .

Definition 11. The two-dimensional projective space P
2 consists of all

triplets of numbers (p1, p2, p3) �= (0, 0, 0). The triplet (p1, p2, p3) is called
homogeneous coordinates for the corresponding point in P

2.

Theorem 2. There is a natural division of P
2 into two disjoint subsets

P
2 = {(p1, p2, 1) ∈ P

2} ∪ {(p1, p2, 0) ∈ P
2} ,

corresponding to ordinary points and ideal points (or points at infinity).

The same procedure can be carried out to construct P
3 (and even P

n for
any n ∈ N), but it is harder to visualize, since we have to start with R

4.

52 Multiple View Geometry Chapter 3

Definition 12. The three-dimensional (n-dimensional) projective space
P

3 (Pn) is defined as the set of one-dimensional linear subspaces in a vector
space, V (usually R

4 (Rn+1)) of dimension 4 (n + 1). Points in P
3 (Pn) are

represented using homogeneous coordinates by vectors (p1, p2, p3, p4) �=
(0, 0, 0, 0) ((p1, . . . , pn+1) �= (0, . . . , 0)), where two vectors represent the same
point iff they differ by a global scale factor. There is a natural division of P

3

(Pn) into two disjoint subsets

P
3 = {(p1, p2, p3, 1) ∈ P

3} ∪ {(p1, p2, p3, 0) ∈ P
3}

(Pn = {(p1, . . . , pn, 1) ∈ P
n} ∪ {(p1, . . . , pn, 0) ∈ P

n} ,
corresponding to ordinary points and ideal points (or points at infinity).

Finally, geometrical entities are defined similarly in P
3.

3.2.4 Duality

Remember that a line in P
2 is defined by two points p1 and p2 according to

l = {x = (x1, x2, x3) ∈ P
2 | x = t1p1 + t2p2, (t1, t2) ∈ R

2} .
Observe that since (x1, x2, x3) and λ(x1, x2, x3) represents the same point in
P

2, the parameters (t1, t2) and λ(t1, t2) gives the same point. This gives the
equivalent definition:

l = {x = (x1, x2, x3) ∈ P
2 | x = t1p1 + t2p2, (t1, t2) ∈ P

1} .
By eliminating the parameters t1 and t2 we could also write the line in the
form

l = {x = (x1, x2, x3) ∈ P
2 | n1x1 + n2x2 + n3x3 = 0} , (3.1)

where the normal vector, n = (n1, n2, n3), could be calculated as n = p1×p2.
Observe that if (x1, x2, x3) fulfills (3.1) then λ(x1, x2, x3) also fulfills (3.1) and
that if the line, l, is defined by (n1, n2, n3), then the same line is defined by
λ(n1, n2, n3), which means that n could be considered as an element in P

2.
The line equation in (3.1) can be interpreted in two different ways, see

Figure 3.5:
– Given n = (n1, n2, n3), the points x = (x1, x2, x3) that fulfills (3.1)

constitutes the line defined by n.
– Given x = (x1, x2, x3), the lines n = (n1, n2, n3) that fulfills (3.1)

constitutes the lines coincident by x.
Definition 13. The set of lines incident with a given point x = (x1, x2, x3)
is called a pencil of lines.

Section 3.2. Projective Geometry 53

In this way there is a one-to-one correspondence between points and lines in
P

2 given by
x = (a, b, c) ↔ n = (a, b, c) ,

as illustrated in Figure 3.5.

e1

e2 e2

e1

Figure 3.5. Duality of points and lines in P
2.

Similarly, there exists a duality between points and planes in P
3. A plane

π in P
3 consists of the points x = (x1, x2, x3, x4) that fulfill the equation

π = {x = (x1, x2, x3, x4) ∈ P
3 | n1x1 + n2x2 + n3x3 + n4x4 = 0} , (3.2)

where n = (n1, n2, n3, n4) defines the plane. From (3.2) a similar argument
leads to a duality between planes and points in P

3. The following theorem
is fundamental in projective geometry:

Theorem 3. Given a statement valid in a projective space. Then the dual
to that statement is also valid, where the dual is obtained by interchanging
entities with their duals, intersection with join etc.

For instance, a line in P
3 could be defined as the join of two points. Thus

the dual to a line is the intersection of two planes, which again is a line, i.e.
the dual to a line in P

3 is a line. We say that lines are self-dual. A line in
P

3 defined as the join of two points, p1 and p2, as in

l = {x = (x1, x2, x3, x4) ∈ P
3 | x = t1p1 + t2p2, (t1, t2) ∈ P

1}

is said to be given in parametric form and (t1, t2) can be regarded as
homogeneous coordinates on the line. A line in P

3 defined as the intersection

54 Multiple View Geometry Chapter 3

of two planes, π and µ, consists of the common points to the pencil of planes
in

l : {sπ + tµ | (s, t) ∈ P
1}

is said to be given in intersection form.

Definition 14. A conic, c, in P
2 is defined as

c = {x = (x1, x2, x3) ∈ P
2 | xTCx = 0} , (3.3)

where C denotes 3 × 3 matrix. If C is non-singular the conic is said to be
proper, otherwise it is said to be degenerate.

The dual to a general curve in P
2 (P3) is defined as the set of tangent lines

(tangent planes) to the curve.

Theorem 4. The dual, c∗, to a conic c : xTCx is the set of lines

{l = (l1, l2, l3) ∈ P
2 | lTC ′l = 0} ,

where C ′ = C−1.

3.2.5 Projective transformations

The central perspective transformation in Figure 3.1 is an example of a
projective transformation. The general definition is as follows:

Definition 15. A projective transformation from p ∈ P
n to p′ ∈ P

m is
defined as a linear transformation in homogeneous coordinates, i.e.

x′ ∼ Hx , (3.4)

where x and x′ denote homogeneous coordinates for p and p′ respectively
and H denote a (m+ 1)× (n+ 1)-matrix of full rank.

All projective transformations form a group, denoted GP . For example a
projective transformation from x ∈ P

2 to y ∈ P
2 is given byy1

y2
y3

 ∼ H
x1
x2
x3

 ,

where H denote a non-singular 3× 3-matrix. Such a projective transforma-
tion from P

2 to P
2 is usually called a homography.

It is possible to embed an affine space in the projective space, by a simple
construction:

Section 3.2. Projective Geometry 55

Definition 16. The subspaces

Ani = { (x1, x2, . . . , xn+1) ∈ P
n | xi �= 0 }

of P
n, are called affine pieces of P

n. The plane Hi : xi = 0 is called the
plane at infinity, corresponding to the affine piece Ani . Usually, i = n+ 1
is used and called the standard affine piece and in this case the plane at
infinity is denoted H∞.

We can now identify points in A
n with points, x, in Ani ⊂ P

n, by

P
n (x1, x2, . . . , xn, xn+1) ∼ (y1, y2, . . . , yn, 1) ≡ (y1, y2, . . . , yn) ∈ A

n .

There is even an affine structure in this affine piece, given by the following
proposition:

Proposition 2. The subgroup, H, of projective transformations, GP , that
preserves the plane at infinity consists exactly of the projective transforma-
tions of the form (3.4), with

H =
[
An×n bn×1
01×n 1

]
,

where the indices denote the sizes of the matrices.

We can now identify the affine transformations in A with the subgroup H:

A x �→ Ax + b ∈ A ,

which gives the affine structure in Ani ⊂ P
n.

Definition 17. When a plane at infinity has been chosen, two lines are said
to be parallel if they intersect at a point at the plane at infinity.

We may even go one step further and define a Euclidean structure in P
n.

Definition 18. The (singular, complex) conic, Ω, in P
n defined by

x2
1 + x2

1 + . . .+ x2
n = 0 and xn+1 = 0

is called the absolute conic.

Observe that the absolute conic is located at the plane at infinity, it contains
only complex points and it is singular.

56 Multiple View Geometry Chapter 3

Lemma 2. The dual to the absolute conic, denoted Ω′, is given by the set of
planes

Ω′ = {Π = (Π1,Π2, . . .Πn+1) | Π2
1 + . . .+ Π2

n = 0 .

In matrix form Ω′ can be written as ΠTC ′Π = 0 with

C ′ =
[
In×n 0n×1
01×n 0

]
.

Proposition 3. The subgroup, K, of projective transformations, GP , that
preserves the absolute conic consists exactly of the projective transformations
of the form (3.4), with

H =
[
cRn×n tn×1
01×n 1

]
,

where 0 �= c ∈ R and R denote an orthogonal matrix, i.e. RRT = RTR = I.

Observe that the corresponding transformation in the affine space A =
An+1
n can be written as

A x �→ cRx + t ∈ A ,

which is a similarity transformation. This means that we have a Euclidean
structure (to be precise a similarity structure) in P

n given by the absolute
conic.

3.3 Tensor Calculus

Tensor calculus is a natural tool to use, when the objects at study are ex-
pressed in a specific coordinate system, but have physical properties that
are independent on the chosen coordinate system. Another advantage is
that it gives a simple and compact notation and the rules for tensor algebra
makes it easy to remember even quite complex formulas. For a more detailed
treatment see [58] and for an engineering approach see [42].

In this chapter a simple definition of a tensor and the basic rules for
manipulating tensors are given. We start with a straight-forward definition:

Definition 19. An affine tensor is an object in a linear space, V, that
consists of a collection of numbers, that are related to a specific choice of
coordinate system in V, indexed by one or several indices;

Ai1,i2,··· ,inj1,j2,··· ,jm .

Section 3.3. Tensor Calculus 57

Furthermore, this collection of numbers transforms in a pre-defined way when
a change of coordinate system in V is made, see Definition 20. The number
of indices (n + m) is called the degree of the tensor. The indices may
take any value from 1 to the dimension of V. The upper indices are called
contravariant indices and the lower indices are called covariant indices.

There are some simple conventions, that have to be remembered:
– The index rule: When an index appears in a formula, the formula is

valid for every value of the index, i.e. ai = 0⇒ a1 = 0, a2 = 0, . . .
– The summation convention: When an index appears twice in a formula,

it is implicitly assumed that a summation takes place over that index,
i.e. aibi =

∑
i=1,dim V aib

i

– The compatibility rule: A repeated index must appear once as a sub-
index and once as a super-index

– The maximum rule: An index can not be used more than twice in a
term

Definition 20. When the coordinate system in V is changed from e to ê
and the points with coordinates x are changed to x̂, according to

êj = Sijei ⇔ xi = Sijx̂j ,

then the affine tensor components change according to

ûk = Sjkuj and vj = Sjkv̂
k ,

for lower and upper indices respectively.

From this definition the terminology for indices can be motivated, since
the covariant indices co-varies with the basis vectors and the contravariant
indices contra-varies with the basis vectors. It turns out that a vector (e.g.
the coordinates of a point) is a contravariant tensor of degree one and that a
one-form (e.g. the coordinate of a vector defining a line in R

2 or a hyperplane
in R

n) is a covariant tensor of degree one.

Definition 21. The second order tensor

δij =

{
1 i = j

0 i �= j

is called the Kronecker delta. When dimV = 3, the third order tensor

εijk =

1 (i,j,k) an even permutation
−1 (i,j,k) an odd permutation
0 (i,j,k) has a repeated value

is called the Levi-Cevita epsilon.

58 Multiple View Geometry Chapter 3

3.4 Modelling Cameras

This chapter deals with the task of building a mathematical model of a
camera. We will give a mathematical model of the standard pin-hole camera
and define intrinsic and extrinsic parameters. For more detailed treatment
see [24], [15] and for a different approach see [26].

3.4.1 The pinhole camera

The simplest optical system used for modelling cameras is the so called pin-
hole camera. The camera is modelled as a box with a small hole in one
of the sides and a photographic plate at the opposite side, see Figure 3.6.
Introduce a coordinate system as in Figure 3.6. Observe that the origin of
the coordinate system is located at the centre of projection, the so called
focal point, and that the z-axis is coinciding with the optical axis. The
distance from the focal point to the image, f , is called the focal length.
Similar triangles give

ex

C

ey

ez

Z

f

X

(X, Y, Z)

x (x, y)
(x0, y0)

Figure 3.6. The pinhole camera with a coordinate system.

x

f
=
X

Z
and

y

f
=
Y

Z
. (3.5)

This equation can be written in matrix form, using homogeneous coordinates,
as

λ

xy
1

 =

f 0 0 0
0 f 0 0
0 0 1 0

X
Y
Z
1

 , (3.6)

where the depth, λ, is equal to Z.

Section 3.4. Modelling Cameras 59

3.4.2 The camera matrix

Introducing the notation

K =

f 0 0
0 f 0
0 0 1

 x =

xy
1

 X =

X
Y
Z
1

 , (3.7)

in (3.6) gives
λx = K[I3×3 | 03×1]X = PX , (3.8)

where P = K [I3×3 | 03×1].

Definition 22. A 3× 4 matrix P relating extended image coordinates x =
(x, y, 1) to extended object coordinates X = (X,Y, Z, 1) via the equation

λx = PX

is called a camera matrix and the equation above is called the camera
equation.

Observe that the focal point is given as the right null-space to the camera
matrix, since PC = 0, where C denote homogeneous coordinates for the
focal point, C.

3.4.3 The intrinsic parameters

In a refined camera model, the matrix K in (3.7) is replaced by

K =

γf sf x0
0 f y0
0 0 1

 , (3.9)

where the parameters have the following interpretations, see Figure 3.7:
– f : focal length - also called camera constant
– γ : aspect ratio - modelling non-quadratic light-sensitive elements
– s : skew - modelling non-rectangular light-sensitive elements
– (x0, y0) : principal point - orthogonal projection of the focal point

onto the image plane, see Figure 3.6.
These parameters are called the intrinsic parameters, since they model
intrinsic properties of the camera. For most cameras s = 0 and γ ≈ 1 and
the principal point is located close to the centre of the image.

Definition 23. A camera is said to be calibrated ifK is known. Otherwise,
it is said to be uncalibrated.

60 Multiple View Geometry Chapter 3

γ

1 arctan(1/s)

Figure 3.7. The intrinsic parameters

3.4.4 The extrinsic parameters

It is often advantageous to be able to express object coordinates in a differ-
ent coordinate system than the camera coordinate system. This is especially
the case when the relation between these coordinate systems are not known.
For this purpose it is necessary to model the relation between two different
coordinate systems in 3D. The natural way to do this is to model the rela-
tion as a Euclidean transformation. Denote the camera coordinate system
with ec and points expressed in this coordinate system with index c, e.g.
(Xc, Yc, Zc), and similarly denote the object coordinate system with eo and
points expressed in this coordinate system with index o, see Figure 3.8. A

(R, t)

ec
eo

Figure 3.8. Using different coordinate systems for the camera and the object.

Euclidean transformation from the object coordinate system to the camera

Section 3.4. Modelling Cameras 61

coordinate system can be written in homogeneous coordinates as
Xc

Yc
Zc
1

 =
[
RT 0
0 1

] [
I −t
0 1

]
Xo

Yo
Zo
1

 =⇒ Xc =
[
RT −RT t
0 1

]
Xo , (3.10)

where R denote an orthogonal matrix and t a vector, encoding the rotation
and translation in the rigid transformation. Observe that the focal point
(0, 0, 0) in the c-system corresponds to the point t in the o-system. Inserting
(3.10) in (3.8) taking into account that X in (3.8) is the same as Xc in (3.10),
we obtain

λx = KRT [I | − t]Xo = PX , (3.11)

with P = KRT [I | − t]. Usually, it is assumed that object coordinates are
expressed in the object coordinate system and the index o in Xo is omitted.
Observe that the focal point, Cf = t = (tx, ty, tz), is given from the right
null-space to P according to

P

tx
ty
tz
1

 = KRT [I | − t]

tx
ty
tz
1

 = 0 .

Given a camera, described by the camera matrix P , this camera could also
be described by the camera matrix µP , 0 �= µ ∈ R, since these give the same
image point for each object point. This means that the camera matrix is
only defined up to an unknown scale factor. Moreover, the camera matrix P
can be regarded as a projective transformation from P

3 to P
2, cf. (3.8) and

(3.4).
Observe also that replacing t by µt and (X,Y, Z) with (µX, µY, µZ),

0 �= µ ∈ R, gives the same image since

KRT [I | − µt]

µX
µY
µZ
1

 = µKRT [I | − t]

X
Y
Z
1

 .

We refer to this ambiguity as the scale ambiguity.
We can now calculate the number of parameters in the camera matrix,

P :

– K: 5 parameters (f , γ, s, x0, y0)

62 Multiple View Geometry Chapter 3

– R: 3 parameters
– t: 3 parameters

Summing up gives a total of 11 parameters, which is the same as in a general
3×4 matrix defined up to scale. This means that for an uncalibrated camera,
the factorization P = KRT [I | − t] has no meaning and we can instead deal
with P as a general 3× 4 matrix.

Given a calibrated camera with camera matrix P = KRT [I | − t] and
corresponding camera equation

λx = KRT [I | − t]X ,

it is often advantageous to make a change of coordinates from x to x̂ in the
image according to x = Kx̂, which gives

λKx̂ = KRT [I | − t]X ⇒ λx̂ = RT [I | − t]X = P̂X .

Now the camera matrix becomes P̂ = RT [I | − t].
Definition 24. A camera represented with a camera matrix of the form

P = RT [I | − t]
is called a normalized camera.

Note that even when K is only approximatively known, the above nor-
malization can be useful for numerical reasons. This will be discussed more
in detail in Section 3.7.

3.4.5 Properties of the pinhole camera

We will conclude this section with some properties of the pinhole camera.

Proposition 4. The set of 3D-points that projects to an image point, x, is
given by

X = C + µP+x, 0 �= µ ∈ R ,

where C denote the focal point in homogeneous coordinates and P+ denote
the pseudo-inverse of P .

Proposition 5. The set of 3D-points that projects to a line, l, is the points
lying on the plane Π = P T l.

Proof: It is obvious that the set of points lie on the plane defined by the
focal point and the line l. A point x on l fulfills xT l = 0 and a point X on
the plane Π fulfills ΠTX = 0. Since x ∼ PX we have (PX)T l = XTP T l = 0
and identification with ΠTX = 0 gives Π = P T l.

Section 3.5. Multiple View Geometry 63

Lemma 3. The projection of a quadric, XTCX = 0 (dually ΠTC ′Π = 0,
C ′ = C−1), is an image conic, xT cx = 0 (dually lT c′l = 0, c′ = c−1), with
c′ = PC ′P T .

Proof: Use the previous proposition.

Proposition 6. The image of the absolute conic is given by the conic xTωx =
0 (dually lTω′l = 0), where ω′ = KKT .

Proof: The result follows from the previous lemma:

ω′ ∼ PΩ′P T ∼ KRT [I −t] [I 0
0 0

] [
I
−tT

]
RKT = KRTRKT = KKT .

3.5 Multiple View Geometry

Multiple view geometry is the subject where relations between coordinates
of feature points in different views are studied. It is an important tool
for understanding the image formation process for several cameras and for
designing reconstruction algorithms. For a more detailed treatment, see [27]
or [24] and for a different approach see [26]. For the algebraic properties of
multilinear constraints see [30].

3.5.1 The structure and motion problem

The following problem is central in computer vision:

Problem 1. structure and motion Given a sequence of images with corre-
sponding feature points xij, taken by a perspective camera, i.e.

λijxij = PiXj , i = 1, . . . ,m, j = 1, . . . , n ,

determine the camera matrices, Pi, i.e. the motion, and the 3D-points,
Xj, i.e. the structure, under different assumptions on the intrinsic and/or
extrinsic parameters. This is called the structure and motion problem.

It turns out that there is a fundamental limitation on the solutions to the
structure and motion problem, when the intrinsic parameters are unknown
and possibly varying, a so called un-calibrated image sequence.

Theorem 5. Given an un-calibrated image sequence with corresponding
points, it is only possible to reconstruct the object up to an unknown pro-
jective transformation.

64 Multiple View Geometry Chapter 3

Proof: Assume that Xj is a reconstruction of n points in m images, with
camera matrices Pi according to

xij ∼ PiXj , i = 1, . . .m, j = 1, . . . n .

Then HXj is also a reconstruction, with camera matrices PiH−1, for every
non-singular 4× 4 matrix H, since

xij ∼ PiXj ∼ PiH−1HXj ∼ (PiH−1) (HXj) .

The transformation
X �→ HX

corresponds to all projective transformations of the object.
In the same way it can be shown that if the cameras are calibrated, then it is
possible to reconstruct the scene up to an unknown similarity transformation.

3.5.2 The two-view case

The epipoles

Consider two images of the same point X as in Figure 3.9.

C1

x1

e2,1

X

e1,2

x2

C2Image 2Image 1

Figure 3.9. Two images of the same point and the epipoles.

Definition 25. The epipole, ei,j , is the projection of the focal point of
camera i in image j.

Section 3.5. Multiple View Geometry 65

Proposition 7. Let

P1 = [A1 | b1] and P2 = [A2 | b2] .

Then the epipole, e1,2 is given by

e1,2 = −A2A
−1
1 b1 + b2 . (3.12)

Proof: The focal point of camera 1, C1, is given by

P1

[
C1
1

]
= [A1 | b1]

[
C1
1

]
= A1C1 + b1 = 0 ,

i.e. C1 = −A−1
1 b1 and then the epipole is obtained from

P2

[
C1
1

]
= [A2 | b2]

[
C1
1

]
= A2C1 + b2 = −A2A

−1
1 b1 + b2 .

It is convenient to use the notation A12 = A2A
−1
1 . Assume that we have

calculated two camera matrices, representing the two-view geometry,

P1 = [A1 | b1] and P2 = [A2 | b2] .

According to Theorem 5 we can multiply these camera matrices with

H =
[
A−1

1 −A−1
1 b1

0 1

]
from the right and obtain

P̄1 = P1H = [I | 0] P̄2 = P2H = [A2A
−1
1 | b2 −A2A

−1
1 b1] .

Thus, we may always assume that the first camera matrix is [I | 0]. Observe
that P̄2 = [A12 | e], where e denotes the epipole in the second image.
Observe also that we may multiply again with

H̄ =
[
I 0
vT 1

]
without changing P̄1, but

H̄P̄2 = [A12 + evT | e] ,

i.e. the last column of the second camera matrix still represents the epipole.

Definition 26. A pair of camera matrices is said to be in canonical form
if

P1 = [I | 0] and P2 = [A12 + evT | e] , (3.13)

where v denote a three-parameter ambiguity.

66 Multiple View Geometry Chapter 3

The fundamental matrix

The fundamental matrix was originally discovered in the calibrated case in
[38] and in the uncalibrated case in [13]. Consider a fixed point, X, in 2
views:

λ1x1 = P1X = [A1 | b1]X, λ2x2 = P2X = [A2 | b2]X .

Use the first camera equation to solve for X, Y , Z

λ1x1 = P1X = [A1 | b1]X = A1

XY
Z

+ b1 ⇒
XY
Z

 = A−1
1 (λ1x1 − b1)

and insert into the second one

λ2x2 = A2A
−1
1 (λ1x1 − b1) + b2 = λ1A12x1 + (−A12b1 − b2) ,

i.e. x2, A12x1 and t = −A12b1 + b2 = e1,2 are linearly dependent. Observe
that t = e1,2, i.e. the epipole in the second image. This condition can be
written as xT1A

T
12Tex2 = xT1 Fx2 = 0, with F = AT12Te, where Tx denote the

skew-symmetric matrix corresponding to the vector x, i.e. Tx(y) = x× y.
Definition 27. The bilinear constraint

xT1 Fx2 = 0 (3.14)

is called the epipolar constraint and

F = AT12Te

is called the fundamental matrix.

Theorem 6. The epipole in the second image is obtain as the right nullspace
to the fundamental matrix and the epipole in the left image is obtained as
the left nullspace to the fundamental matrix.

Proof: Follows from Fe = AT12Tee = AT12(e× e) = 0. The statement about
the epipole in the left image follows from symmetry.

Corollary 1. The fundamental matrix is singular, i.e. detF = 0.

Given a point, x1, in the first image, the coordinates of the corresponding
point in the second image fulfill

0 = xT1 Fx2 = (xT1 F)x2 = l(x1)Tx2 = 0 ,

where l(x1) denote the line represented by xT1 F .

Section 3.5. Multiple View Geometry 67

Definition 28. The line l = F Tx1 is called the epipolar line corresponding
to x1.

The geometrical interpretation of the epipolar line is the geometric construc-
tion in Figure 3.10. The points x1, C1 and C2 defines a plane, Π, intersecting
the second image plane in the line l, containing the corresponding point.

e2,1

Image 1 Image 2

x1

C1 C2

e1,2

l2

Π

L

Figure 3.10. The epipolar line.

From the previous considerations we have the following pair

F = AT12Te ⇔ P1 = [I | 0], P2 = [A12 | e] . (3.15)

Observe that

F = AT12Te = (A12 + evT)TTe

for every vector v, since

(A12 + ev)TTe(x) = AT12(e× x) + veT (e× x) = AT12Tex ,

since eT (e × x) = e · (e × x) = 0. This ambiguity corresponds to the
transformation

H̄P̄2 = [A12 + evT | e] .

We conclude that there are three free parameters in the choice of the second
camera matrix when the first is fixed to P1 = [I | 0].

68 Multiple View Geometry Chapter 3

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

���
���
���

���
���
���

��
��
��

��
��
��

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

x1

e1,2

X

e2,1

x2

C2Image 2Image 1
C1

Π : VTX = 0

Figure 3.11. The homography corresponding to the plane Π.

The infinity homography

Consider a plane in the three-dimensional object space, Π, defined by a
vector V: VTX = 0 and the following construction, cf. Figure 3.11. Given
a point in the first image, construct the intersection with the optical ray
and the plane Π and project to the second image. This procedure gives a
homography between points in the first and second image, that depends on
the chosen plane Π.

Proposition 8. The homography corresponding to the plane Π : VTX = 0
is given by the matrix

HΠ = A12 − evT ,

where e denote the epipole and V = [v 1]T .

Proof: Assume that

P1 = [I | 0], P2 = [A12 | e] .

Write V = [v1 v2 v3 1]T = [v 1]T (assuming v4 �= 0, i.e. the plane is not
incident with the origin, i.e. the focal point of the first camera) and X =

Section 3.5. Multiple View Geometry 69

[X Y ZW]T = [wW]T , which gives

VTX = vTw +W , (3.16)

which implies that vTw = −W for points in the plane Π. The first camera
equation gives

x1 ∼ [I | 0]X = w

and using (3.16) gives vTx1 = −W . Finally, the second camera matrix gives

x2 ∼ [A12 | e]
[

x1
−vTx1

]
= A12x1 − evTx1 = (A12 − evT)x1 .

Observe that when V = (0, 0, 0, 1), i.e. v = (0, 0, 0) the plane Π is the plane
at infinity.

Definition 29. The homography

H∞ = HΠ∞ = A12

is called the homography corresponding to the plane at infinity or
infinity homography.

Note that the epipolar line through the point x2 in the second image can be
written as x2 × e, implying

(x2 × e)THx1 = xT1H
TTex2 = 0 ,

i.e. the epipolar constraint and we get

F = HTTe .

Proposition 9. There is a one to one correspondence between planes in 3D,
homographies between two views and factorization of the fundamental matrix
as F = HTTe.

Finally, we note that the matrix HT
ΠTeHΠ is skew symmetric, implying that

FHΠ +HT
ΠF

T = 0 . (3.17)

70 Multiple View Geometry Chapter 3

3.5.3 Multi-view constraints and tensors

Consider one object point, X, and its m images, xi, according to the camera
equations λixi = PiX, i = 1 . . .m. These equations can be written as

P1 x1 0 0 . . . 0
P2 0 x2 0 . . . 0
P3 0 0 x3 . . . 0
...

...
...

...
. . .

...
Pm 0 0 0 . . . xm

︸ ︷︷ ︸

M

X
−λ1
−λ2
−λ3

...
−λm

=

0
0
0
...
0

 . (3.18)

We immediately get the following proposition:

Proposition 10. The matrix, M , in (3.18) is rank deficient, i.e.

rankM < m+ 4 ,

which is referred to as the rank condition.

The rank condition implies that all (m+4)× (m+4) minors of M are equal
to 0. These can be written using Laplace expansions as sums of products
of determinants of four rows taken from the first four columns of M and of
image coordinates. There are 3 different categories of such minors depending
on the number of rows taken from each image, since one row has to be taken
from each image and then the remaining 4 rows can be distributed freely.
The three different types are:

1. Take the 2 remaining rows from one camera matrix and the 2 remaining
rows from another camera matrix, gives 2-view constraints.

2. Take the 2 remaining rows from one camera matrix, 1 row from another
and 1 row from a third camera matrix, gives 3-view constraints.

3. Take 1 row from each of four different camera matrices, gives 4-view
constraints.

Observe that the minors of M can be factorized as products of the 2-, 3-
or 4-view constraint and image coordinates in the other images. In order to
get a notation that connects to the tensor notation we will use (x1, x2, x3)
instead of (x, y, z) for homogeneous image coordinates. We will also denote
row number i of a camera matrix P by P i.

Section 3.5. Multiple View Geometry 71

The monofocal tensor

Before we proceed to the multi-view tensors we make the following observa-
tion:

Proposition 11. The epipole in image 2 from camera 1, e = (e1, e2, e3) in
homogeneous coordinates, can be written as

ej = det

P 1

1
P 2

1
P 3

1
P j2

 . (3.19)

Proposition 12. The numbers ej constitutes a first order contravariant
tensor, where the transformations of the tensor components are related to
projective transformations of the image coordinates.

Definition 30. The first order contravariant tensor, ej , is called the mono-
focal tensor.

The bifocal tensor

Considering minors obtained by taking 3 rows from one image, and 3 rows
from another image:

det
[
P1 x1 0
P2 0 x2

]
= det

P 1
1 x1

1 0
P 2

1 x2
1 0

P 3
1 x3

1 0
P 1

2 0 x1
2

P 2
2 0 x2

2
P 3

2 0 x3
2

 = 0 ,

which gives a bilinear constraint:

3∑
i,j=1

Fijxi1x
j
2 = Fijxi1x

j
2 = 0 , (3.20)

where

Fij =
3∑

i′,i′′,j′,j′′=1

εii′i′′εjj′j′′ det

P i

′
1

P i
′′

1

P j
′

2

P j
′′

2

 .

The following proposition follows from (3.20).

72 Multiple View Geometry Chapter 3

Proposition 13. The numbers Fij constitutes a second order covariant ten-
sor.

Here the transformations of the tensor components are related to projective
transformations of the image coordinates.

Definition 31. The second order covariant tensor, Fij , is called the bifocal
tensor and the bilinear constraint in (3.20) is called the bifocal constraint.

Observe that the indices tell us which row to exclude from the corresponding
camera matrix when forming the determinant. The geometric interpretation
of the bifocal constraint is that corresponding view-lines in two images in-
tersect in 3D, cf. Figure 3.9. The bifocal tensor can also be used to trans-
fer a point to the corresponding epipolar line, cf. Figure 3.10, according to
l2j = Fijxi1. This transfer can be extended to a homography between epipolar
lines in the first view and epipolar lines in the second view according to

l1i = Fijε
jj′
j′′ l2j′ej

′′
,

since εjj
′

j′′ l2j′ej
′′

gives the cross product between the epipole e and the line l2,
which gives a point on the epipolar line.

The trifocal tensor

The trifocal tensor was originally discovered in the calibrated case in [60]
and in the uncalibrated case in [55]. Considering minors obtained by taking
3 rows from one image, 2 rows from another image and 2 rows from a third
image, e.g.

det

P 1
1 x1

1 0 0
P 2

1 x2
1 0 0

P 3
1 x3

1 0 0
P 1

2 0 x1
2 0

P 2
2 0 x2

2 0
P 1

3 0 0 x1
3

P 3
3 0 0 x3

3

= 0 ,

gives a trilinear constraints:

3∑
i,j,j′,k,k′=1

T jki xi1εjj′j′′xj
′

2 εkk′k′′xk
′

3 = 0 , (3.21)

Section 3.5. Multiple View Geometry 73

where

T jki =
3∑

i′,i′′=1

εii′i′′ det

P i

′
1

P i
′′

1
P j2
P k3

 . (3.22)

Note that there are in total 9 constraints indexed by j′′ and k′′ in (3.21).

Proposition 14. The numbers T jki constitutes a third order mixed tensor,
that is covariant in i and contravariant in j and k.

Definition 32. The third order mixed tensor, T jki is called the trifocal ten-
sor and the trilinear constraint in (3.21) is called the trifocal constraint.

Again the lower index tells us which row to exclude from the first camera
matrix and the upper indices tell us which rows to include from the second
and third camera matrices respectively and these indices becomes covariant
and contravariant respectively. Observe that the order of the images are
important, since the first image is treated differently. If the images are per-
muted another set of coefficients are obtained. The geometric interpretation
of the trifocal constraint is that the view-line in the first image and the planes
corresponding to arbitrary lines coincident with the corresponding points in
the second and third images (together with the focal points) respectively
intersect in 3D, cf. Figure 3.12. The following theorem is straightforward to
prove.

Theorem 7. Given three corresponding lines, l1, l2 and l3 in three image,
represented by the vectors (l11, l

1
2, l

1
3) etc. Then

l3k = T ijk l1i l
2
j . (3.23)

From this theorem it is possible to transfer the images of a line seen in two
images to a third image, so called tensorial transfer. The geometrical
interpretation is that two corresponding lines defines two planes in 3D, that
intersect in a line, that can be projected onto the third image. There are
also other transfer equations, such as

xj2 = T jki xi1l
3
k and xk3 = T jki xj2l

3
k ,

with obvious geometrical interpretations.

74 Multiple View Geometry Chapter 3

C3

x1

l3

Image 3

C1

Image 1

l2

Image 2
C2

X

Figure 3.12. Geometrical interpretation of the trifocal constraint.

The quadrifocal tensor

The quadrifocal tensor was independently discovered in several papers, e.g.
[64], [26]. Considering minors obtained by taking 2 rows from each one of 4
different images gives a quadrilinear constraint:

3∑
i,i′,j,j′,k,k′,l,l′=1

Qijklεii′i′′x1
i′εjj′j′′x2

j′εkk′k′′x3
k′εll′l′′x4

l′ = 0 , (3.24)

where

Qijkl = det

P i1
P j2
P k3
P l4

 .

Note that there are in total 81 constraints indexed by i′′, j′′, k′′ and l′′ in
(3.24).

Proposition 15. The numbers Qijkl constitutes a fourth order contravariant
tensor.

Section 3.6. Structure and Motion I 75

Definition 33. The fourth order contravariant tensor, Qijkl is called the
quadrifocal tensor and the quadrilinear constraint in (3.24) is called the
quadrifocal constraint.

Note that there are in total 81 constraints indexed by i′′, j′′, k′′ and l′′.
Again, the upper indices tell us which rows to include from each camera
matrix respectively they become contravariant indices. The geometric inter-
pretation of the quadrifocal constraint is that the four planes corresponding
to arbitrary lines coincident with the corresponding points in the images
intersect in 3D.

3.6 Structure and Motion I

We will now study the structure and motion problem in detail. Firstly, we
will solve the problem when the structure in known, so called resection, then
when the motion is known, so called intersection. Then we will present a
linear algorithm to solve for both structure and motion using the multifocal
tensors and finally a factorization algorithm will be presented. Again we
refer the reader to [24] for a more detailed treatment.

3.6.1 Resection

Problem 2 (Resection). Assume that the structure is given, i.e. the object
points, Xj, j = 1, . . . n are given in some coordinate system. Calculate the
camera matrices Pi, i = 1, . . .m from the images, i.e. from xi,j.

The most simple solution to this problem is the classical DLT algorithm
based on the fact that the camera equations

λjxj = PXj , j = 1 . . . n

are linear in the unknown parameters, λj and P .

3.6.2 Intersection

Problem 3 (Intersection). Assume that the motion is given, i.e. the cam-
era matrices, Pi, i = 1, . . .m are given in some coordinate system. Calculate
the structure Xj, j = 1, . . . n from the images, i.e. from xi,j.

Consider the image of X in camera 1 and 2{
λ1x1 = P1X,

λ2x2 = P2X,
(3.25)

76 Multiple View Geometry Chapter 3

which can be written in matrix form as (cf. (3.18))

[
P1 x1 0
P2 0 x2

] X
−λ1
−λ2

 = 0 , (3.26)

which again is linear in the unknowns, λi and X. This linear method can of
course be extended to an arbitrary number of images.

3.6.3 Linear estimation of tensors

We are now able to solve the structure and motion problem given in Prob-
lem 1. The general scheme is as follows

1. Estimate the components of a multiview tensor linearly from image
correspondences

2. Extract the camera matrices from the tensor components
3. Reconstruct the object using intersection, i.e. (3.26)

The eight-point algorithm

Each point correspondence gives one linear constraint on the components of
the bifocal tensor according to the bifocal constraint:

Fijxi1x
j
2 = 0 .

Each pair of corresponding points gives a linear homogeneous constraint on
the nine tensor components Fij . Thus given at least eight corresponding
points we can solve linearly (e.g. by SVD) for the tensor components. After
the bifocal tensor (fundamental matrix) has been calculated it has to be
factorized as F = A12T

T
e , which can be done by first solving for e using

Fe = 0 (i.e. finding the right nullspace to F) and then for A12, by solving
linear system of equations. One solution is

A12 =

 0 0 0
F13 F23 F33
−F12 −F22 −F32

 ,

which can be seen from the definition of the tensor components. In the case
of noisy data it might happen that detF �= 0 and the right nullspace does
not exist. One solution is to solve Fe = 0 in least squares sense using SVD.
Another possibility is to project F to the closest rank-2 matrix, again using
SVD. Then the camera matrices can be calculated from (3.26) and finally
using intersection, (3.25) to calculate the structure.

Section 3.6. Structure and Motion I 77

The seven-point algorithm

A similar algorithm can be constructed for the case of corresponding points
in three images.

Proposition 16. The trifocal constraint in (3.21) contains 4 linearly inde-
pendent constraints in the tensor components T jki .

Corollary 2. At least 7 corresponding points in three views are needed in
order to estimate the 27 homogeneous components of the trifocal tensor.

The main difference to the eight-point algorithm is that it is not obvious how
to extract the camera matrices from the trifocal tensor components. Start
with the transfer equation

xj2 = T jki xi1l
3
k ,

which can be seen as a homography between the first two images, by fixing
a line in the third image. The homography is the one corresponding to the
plane Π defined by the focal point of the third camera and the fixed line in
the third camera. Thus we know from (3.17) that the fundamental matrix
between image 1 and image 2 obeys

FT ·J
· + (T ·J

·)TF T = 0 ,

where T ·J· denotes the matrix obtained by fixing the index J . Since this is a
linear constraint on the components of the fundamental matrix, it can easily
be extracted from the trifocal tensor. Then the camera matrices P1 and P2
could be calculated and finally, the entries in the third camera matrix P3 can
be recovered linearly from the definition of the tensor components in (3.22),
cf. [27].

An advantage of using three views is that lines could be used to constrain
the geometry, using (3.23), giving two linearly independent constraints for
each corresponding line.

The six-point algorithm

Again a similar algorithm can be constructed for the case of corresponding
points in four images.

Proposition 17. The quadrifocal constraint in (3.24) contains 16 linearly
independent constraints in the tensor components Qijkl.

From this proposition it seems as 5 corresponding points would be suffi-
cient to calculate the 81 homogeneous components of the quadrifocal tensor.
However, the following proposition says that this is not possible

78 Multiple View Geometry Chapter 3

Proposition 18. The quadrifocal constraint in (3.24) for 2 corresponding
points contains 31 linearly independent constraints in the tensor components
Qijkl.

Corollary 3. At least 6 corresponding points in three views are needed in
order to estimate the 81 homogeneous components of the quadrifocal tensor.

Since one independent constraint is lost for each pair of corresponding points
in four images, we get 6 · 16− (6

2) = 81 linearly independent constraints.
Again, it is not obvious how to extract the camera matrices from the

trifocal tensor components. First, a trifocal tensor has to be extracted and
then a fundamental matrix and finally the camera matrices. It is outside
the scope of this work to give the details for this, see [27]. Also in this
case corresponding lines can be used by looking at transfer equations for the
quadrifocal tensor.

3.6.4 Factorization

A disadvantage with using multiview tensors to solve the structure and mo-
tion problem is that when many images (� 4) are available, the information
in all images can not be used with equal weight. An alternative is to use a
so called factorization method, see [59].

Write the camera equations

λi,jxi,j = PiXj , i = 1, . . . ,m, j = 1, . . . , n

for a fixed image i in matrix form as

XiΛi = PiX , (3.27)

where

Xi =
[
xTi,1 xTi,2 . . . xTi,n

]
, X =

[
XT

1 XT
2 . . . XT

n

]
,

Λi = diag(λi,1, λi,2, . . . , λi,n) .

The camera matrix equations for all images can now be written as

X̂ = PX , (3.28)

where

X̂ =

X1Λ1
X2Λ2

...
XmΛm

 , P =

P1
P2
...
P3

 .

Section 3.6. Structure and Motion I 79

Observe that X̂ only contains image measurements apart from the unknown
depths.

Proposition 19.

rank X̂ ≤ 4

This follows from (3.28) since X̂ is a product of a 3m×4 and a 4×n matrix.
Assume that the depths, i.e. Λi are known, corresponding to affine cameras,
we may use the following simple factorization algorithm:

1. Build up the matrix X̂ from image measurements.

2. Factorize X̂ = UΣV T using SVD.

3. Extract P = the first four columns of UΣ and X = the first four rows
of V T .

In the perspective case this algorithm can be extended to the so called iter-
ative factorization algorithm:

1. Set λi,j = 1.

2. Build up the matrix X̂ from image measurements and the current es-
timate of λi,j .

3. Factorize X̂ = UΣV T using SVD.

4. Extract P = the first four columns of UΣ and X = the first four rows
of V T .

5. Use the current estimate of P and X to improve the estimate of the
depths from the camera equations XiΛi = PiX.

6. If the error (re-projection errors or σ5) is too large goto 2.

Definition 34. The fifth singular value, σ5 in the SVD above is called the
proximity measure and is a measure of the accuracy of the reconstruction.

Theorem 8. The algorithm above minimizes the proximity measure.

Figure 3.13 shows an example of a reconstruction using the iterative factor-
ization method applied on four images of a toy block scene. Observe that
the proximity measure decreases quite fast and the algorithm converges in
about 20 steps.

80 Multiple View Geometry Chapter 3

0 2 4 6 8 10 12 14 16 18 20
1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10 12 14 16 18 20
−9

−8.5

−8

−7.5

−7

−6.5

−6

−5.5

−5

−4.5

Figure 3.13. Above: Four images. Below: The proximity measure for each
iteration, the standard deviation of re-projection errors and the reconstruction.

3.7 Structure and Motion II

In this section we will discuss the problem of structure and motion recov-
ery from a more practical point of view. We will present an approach to
automatically build up the projective structure and motion from a sequence
of images. The presented approach is sequential which offers the advantage
that corresponding features are not required to be visible in all views.

We will assume that for each pair of consecutive views we are given a set
of potentially corresponding feature points. The feature points are typically
obtained by using a corner detector [19]. If the images are not too widely
separated corresponding features can be identified by comparing the local
intensity neighborhoods of the feature points on a pixel-by-pixel basis. In
this case, typically only feature points that have similar coordinates are
compared. In case of video, it might be more appropriate to use a feature
tracker [56] that follows features from frame to frame. For more widely
separated views more complex features would have to be used [39, 53, 69, 40].

3.7.1 Two-view geometry computation

The first step of our sequential structure and motion computation approach
consists of computing the geometric relation between two consecutive views.
As seen in Section 3.5.2 this consist of recovering the fundamental matrix. In
principle the linear method presented in Section 3.6.3 could be used. In this
section a practical algorithm is presented to compute the fundamental matrix
from a set of corresponding points perturbed with noise and containing a

Section 3.7. Structure and Motion II 81

significant proportion of outliers.

Linear algorithms

Before presenting the complete robust algorithm we will first revisit the linear
algorithm. Given a number of corresponding points (3.14) can be used to
compute F . This equation can be rewritten in the following form:[

x1x2 y1x2 x2 x1y2 y1y2 y2 x1 y1 1
]
f = 0 (3.29)

with x1 = [x1 y1 1]�,x2 = [x2 y2 1]� and f a vector containing the elements
of the fundamental matrix. As discussed before, stacking 8 or more of these
equations allows for a linear solution. Even for 7 corresponding points the
one parameter family of solutions obtained by solving the linear equations
can be restricted to 1 or 3 solutions by enforcing the cubic rank-2 con-
straint det (F1 + λF2) = 0. Note also that, as pointed out by Hartley [22],
it is important to normalize the image coordinates before solving the linear
equations. Otherwise the columns of (3.29) would differ by several orders
of magnitude and the error would be concentrated on the coefficients cor-
responding to the smaller columns. This normalization can be achieved by
transforming the image center to the origin and scaling the images so that
the coordinates have a standard deviation of unity.

Non-linear algorithms

The result of the linear equations can be refined by minimizing the following
criterion [70]:

C(F) =
∑(

d(x2, Fx1)2 + d(x1, F
�x2)2

)
(3.30)

with d(., .) representing the Euclidean distance in the image. This criterion
can be minimized through a Levenberg-Marquard algorithm [50]. An even
better approach consists of computing the maximum-likelyhood estimation
(for Gaussian noise) by minimizing the following criterion:

C(F, x̂1, x̂2) =
∑(

d(x̂1,x1)2 + d(x̂2,x2)2
)

with x̂�
2 F x̂1 = 0 (3.31)

Although in this case the minimization has to be carried out over a much
larger set of variables, this can be achieved efficiently by taking advantage
of the sparsity of the problem.

82 Multiple View Geometry Chapter 3

Robust algorithm

To compute the fundamental matrix from a set of matches that were auto-
matically obtained from a pair of real images, it is important to explicitly
deal with outliers. If the set of matches is contaminated with even a small
set of outliers, the result of the above methods can become unusable. This is
typical for all types of least-squares approaches (even non-linear ones). The
problem is that the quadratic penalty allows for a single outlier that is very
far away from the true solution to completely bias the final result.

An approach that can be used to cope with this problem is the RANSAC
algorithm that was proposed by Fischler and Bolles [17]. A minimal subset
of the data, in this case 7 point correspondences, is randomly selected from
the set of potential correspondences and the solution obtained from it is
used to segment the remainder of the dataset in inliers and outliers. If
the initial subset contains no outliers, most of the correct correspondences
will support the solution. However, if one or more outliers are contained in
the initial subset, it is highly improbable that the computed solution will
find a lot of support among the remainder of the potential correspondences,
yielding a low “inlier” ratio. This procedure is repeated until a satisfying
solution is obtained. This is typically defined as a probability in excess of
95% that a good subsample was selected. The expression for this probability
is Γ = 1− (1−ρp)m with ρ the fraction of inliers, p the number of features in
each sample, 7 in this case, and m the number of trials (see Rousseeuw [51]).

Two-view geometry computation

The different algorithms described above can be combined to yield a practical
algorithm to compute the two-view geometry from real images:

1. Compute initial set of potential correspondences (and set ρmax =
0,m = 0)

2. While (1− (1− ρ7
max)

m) < 95% do
(a) Randomly select a minimal sample (7 pairs of corresponding points)

(b) Compute the solution(s) for F (yielding 1 or 3 solutions)
(c) Determine percentage of inliers ρ (for all solutions)
(d) Increment m, update ρmax if ρmax < ρ

3. Refine F based on all inliers
4. Look for additional matches along epipolar lines
5. Refine F based on all correct matches (preferably using (3.31))

Section 3.7. Structure and Motion II 83

3.7.2 Structure and motion recovery

Once the epipolar geometry has been computed between all consecutive
views, the next step consists of reconstructing the structure and motion
for the whole sequence. To the contrary of the factorization approach of
Section 3.6.4, here a sequential approach is presented. First the structure
and motion is initialized for two views and then gradually extended towards
the whole sequence. Finally, the solution is refined through a global mini-
mization over all the unknown parameters.

Initializing the structure and motion

Initial motion computation Two images of the sequence are used to deter-
mine a reference frame. The world frame is aligned with the first camera.
The second camera is chosen so that the epipolar geometry corresponds to
the retrieved fundamental matrix F :

P1 = [I3×3 | 03]
P2 = [TeF + ev� | σe]

(3.32)

Eq. (3.32) is not completely determined by the epipolar geometry (i.e. F and
e), but has 4 more degrees of freedom (i.e. v and σ). The vector v determines
the position of the reference plane (i.e. the plane at infinity in an affine or
metric frame) and σ determines the global scale of the reconstruction. The
location of the reference plane shouldn’t make any difference if the algorithm
is projectively invariant. To achieve this it is important to use homogeneous
representations for all 3D entities and to only use image measurements for
minimizations. The value for the parameter σ has no importance and can
be fixed to one.

Initial structure computation Once two projection matrices have been fully
determined the matches can be reconstructed through triangulation. Due
to noise the lines of sight will not intersect perfectly. In the projective case
the minimizations should be carried out in the images and not in projective
3D space. Therefore, the distance between the reprojected 3D point and the
image points should be minimized:

d(x1, P1X)2 + d(x2, P2X)2 (3.33)

It was noted by Hartley and Sturm [23] that the only important choice is to
select in which epipolar plane the point is reconstructed. Once this choice is
made it is trivial to select the optimal point from the plane. Since a bundle
of epipolar planes only has one parameter, the dimension of the problem

84 Multiple View Geometry Chapter 3

is reduced from three to one. Minimizing the following equation is thus
equivalent to minimizing equation (3.33).

d(x1, l1(λ))2 + d(x2, l2(λ))2 (3.34)

with l1(λ) and l2(λ) the epipolar lines obtained in function of the parameter
λ describing the bundle of epipolar planes. It turns out (see [23]) that this
equation is a polynomial of degree 6 in λ. The global minimum of equa-
tion (3.34) can thus easily be computed directly. In both images the points
on the epipolar line l1(λ) and l2(λ) closest to the points x1 resp. x2 are se-
lected. Since these points are in epipolar correspondence their lines of sight
intersect exactly in a 3D point. In the case where (3.31) had been mini-
mized to obtain the fundamental matrix F the procedure described here is
unnecessary and the pairs (x̂1, x̂2) can be reconstructed directly.

Updating the structure and motion

The previous section dealt with obtaining an initial reconstruction from two
views. This section discusses how to add a view to an existing reconstruction.
First the pose of the camera is determined, then the structure is updated
based on the added view and finally new points are initialized.

projective pose estimation For every additional view the pose towards the
pre-existing reconstruction is determined. This is illustrated in Figure 3.14.
It is assumed that the epipolar geometry has been computed between view
i− 1 and i. The matches which correspond to already reconstructed points
are used to infer correspondences between 2D and 3D. Based on these the
projection matrix Pi is computed using a robust procedure similar to the
one laid out for computing the fundamental matrix. In this case a minimal
sample of 6 matches is needed to compute Pi. A point is considered an inlier
if there exists a 3D point that projects sufficiently close to all associated
image points. This requires to refine the initial solution of X based on all
observations, including the last. Because this is computationally expensive
(remember that this has to be done for each generated hypothesis), it is
advised to use a modified version of RANSAC that cancels the verification
of unpromising hypothesis [5]. Once Pi has been determined the projection
of already reconstructed points can be predicted, so that some additional
matches can be obtained. This means that the search space is gradually
reduced from the full image to the epipolar line to the predicted projection
of the point.

This procedure only relates the image to the previous image. In fact it is
implicitly assumed that once a point gets out of sight, it will not come back.

Section 3.7. Structure and Motion II 85

x
i−3 x i−2 i−1 Fi−3

i−2
i−1

x

X

x
xx

x x
i

i
^

^
^ ^

Figure 3.14. Image matches (xi−1,xi) are found as described before. Since some
image points, xi−1, relate to object points, X, the pose for view i can be computed
from the inferred matches (X,xi). A point is accepted as an inlier if a solution for
X̂ exist for which d(P X̂,xi) < 1 for each view k in which X has been observed.

Although this is true for many sequences, this assumptions does not always
hold. Assume that a specific 3D point got out of sight, but that it becomes
visible again in the two most recent views. This type of points could be
interesting to avoid error accumulation. However, the naive approach would
just reinstantiate a new independent 3D point. A possible solution to this
problem was proposed in [35].

Refining and extending structure The structure is refined using an iterated
linear reconstruction algorithm on each point. The scale factors can also be
eliminated from (3.25) so that homogeneous equations in X are obtained:

P3Xx− P1X = 0
P3Xy − P2X = 0

(3.35)

86 Multiple View Geometry Chapter 3

with Pi the i-th row of P and (x, y) being the image coordinates of the point.
An estimate of X is computed by solving the system of linear equations ob-
tained from all views where a corresponding image point is available. To ob-
tain a better solution the criterion

∑
d(PX,x)2 should be minimized. This

can be approximately obtained by iteratively solving the following weighted
linear least-squares problem:

1

P3X̃

[
P3x− P1
P3y − P2

]
X = 0 (3.36)

where X̃ is the previous solution for X. This procedure can be repeated a
few times. By solving this system of equations through SVD a normalized
homogeneous point is automatically obtained. If a 3D point is not observed
the position is not updated. In this case one can check if the point was seen
in a sufficient number of views to be kept in the final reconstruction. This
minimum number of views can for example be put to three. This avoids to
have an important number of outliers due to spurious matches.

Of course in an image sequence some new features will appear in every
new image. If point matches are available that were not related to an existing
point in the structure, then a new point can be initialized as described in
Section 3.7.2.

Refining structure and motion

Once the structure and motion has been obtained for the whole sequence,
it is recommended to refine it through a global minimization step so that a
bias towards the initial views is avoided. A maximum likelihood estimation
can be obtained through bundle adjustment [67, 57]. The goal is to find
the parameters of the camera view Pk and the 3D points Xi for which the
sum of squared distances between the observed image points mki and the
reprojected image points Pk(Xi) is minimized. It is advised to extend the
camera projection model to also take radial distortion into account. For m
views and n points the following criterion should be minimized:

min
Pk,Xi

m∑
k=1

n∑
i=1

d(xki, Pk(Xi))2 (3.37)

If the errors on the localisation of image features are independent and satisfy
a zero-mean Gaussian distribution then it can be shown that bundle adjust-
ment corresponds to a maximum likelihood estimator. This minimization
problem is huge, e.g. for a sequence of 20 views and 100 points/view, a

Section 3.8. Auto-calibration 87

minimization problem in more than 6000 variables has to be solved (most of
them related to the structure). A straight-forward computation is obviously
not feasible. However, the special structure of the problem can be exploited
to solve the problem much more efficiently [67, 57]. The key reason for this
is that a specific residual is only dependent on one point and one camera,
which results in a very sparse structure for the normal equations.

Structure and motion recovery algorithm

To conclude this section an overview of the structure and motion recovery
algorithm is given. The whole procedure consists of the following steps:

1. Match or track points over the whole image sequence (see Section 3.5.2)

2. Initialize the structure and motion recovery

(a) Select two views that are suited for initialization
(b) Set up the initial frame
(c) Reconstruct the initial structure

3. For every additional view

(a) Infer matches to the existing 3D structure
(b) Compute the camera pose using a robust algorithm
(c) Refine the existing structure
(d) Initialize new structure points

4. Refine the structure and motion through bundle adjustment

The results of this algorithm are the camera poses for all the views and
the reconstruction of the interest points. For most applications the camera
poses are the most usefull, e.g. MatchMoving (aligning a virtual camera with
the motion of a real camera, see Section 3.10.3).

3.8 Auto-calibration

As shown by Theorem 5, for a completely uncalibrated image sequence the
reconstruction is only determined up to a projective transformation. While
it is true that often the full calibration is not available, often some knowl-
edge of the camera intrinsics is available. As will be seen in this section,
this knowledge can be used to recover the structure and motion up to a
similarity transformation. This type of approach is called auto-calibration or
self-calibration in the literature. A first class of algorithms assumes constant,

88 Multiple View Geometry Chapter 3

but unknown, intrinsic camera parameters [16, 21, 44, 28, 65]. Another class
of algorithms assumes some intrinsic camera parameters to be known, while
others can vary [47, 29]. Specific algorithms have also been proposed for
restricted camera motion, such as pure rotation [20, 11], or restricted scene
structure, such as planar scenes [66].

The absolute conic and its image

The central concept for auto-calibration is the absolute conic. As stated in
Proposition 3 the absolute conic allows to identify the similarity structure in
a projective space. In other words, if, given a projective reconstruction, one
was able to locate the conic corresponding to the absolute conic in the real
world, this would be equivalent to recovering the structure of the observed
scene up to a similarity. In this case, a transformation that transforms
the absolute conic to its canonical representation in Euclidean space, i.e.
Ω′ = diag(1, 1, 1, 0), would yield a reconstruction similar to the original (i.e.
identical up to orientation, position and scale).

As was seen in Proposition 6 the image of the absolute conic is directly
related to the intrinsic camera parameters, and this independently of the
choice of projective basis:

PΩ′P� ∼ KK� (3.38)

Therefore, constraints on the intrinsics can be used to constrain the loca-
tion of the conic corresponding to the absolute conic. Most auto-calibration
algorithms are based on (3.38).

Critical motion sequences

Auto-calibration is not always guaranteed to yield a uniqyue solution. De-
pending on the available constraints on the intrinsics and on the camera
motion, the remaining ambiguity on the reconstruction might be larger than
a similarity. This problem was identified as the problem of critical motion
sequences. The first complete analysis of the problem for constant intrin-
sics camera parameters was made by Sturm [61]. Analysis for some other
cases can be found in [62, 43, 32]. It was also shown that in some cases the
ambiguity notwithstanding correct novel views could be generate [45].

Linear auto-calibration

In this section we present a simple linear algorithm for auto-calibration of
cameras. The approach, published in [49], is related to the initial approach

Section 3.8. Auto-calibration 89

published in [46], but avoids most of the problems due to critical motion
sequences by incorporating more a priori knowledge. As input it requires a
projective representation of the camera projection matrices.

As discussed in Section 3.4.3, for most cameras it is reasonable to assume
that the pixels are close to square and that the principal point is close to the
center of the image. The focal length (measured in pixel units) will typically
be of the same order of magnitude as the image size. It is therefore a good
idea to perform the following normalization:

PN = K−1
N P with KN =

 w + h 0 w
2

w + h h
2
1

 (3.39)

where w and h are the width, respectively height of the image. After
normalization the focal length should be of the order of unity and the prin-
cipal point should be close to the origin. The above normalization would
scale a focal length of a 60mm lens to 1 and thus focal lengths in the range
of 20mm to 180mm would end up in the range [1/3, 3] and the principal
point should now be close to the origin. The aspect ratio is typically around
1 and the skew can be assumed 0 for all practical purposes. Making this
a priori knowledge more explicit and estimating reasonable standard devia-
tions yields f ≈ rf ≈ 1 ± 3, u ≈ v ≈ 0 ± 0.1, r ≈ 1 ± 0.1 and s = 0 which
approximately translates to the following expectations for ω′:

ω′ ∼ KK� =

 γ2f2 + x2
0 x0y0 x0

x0y0 f2 + y2
0 y0

x0 y0 1

 ≈
 1± 9 ±0.01 ±0.1
±0.01 1± 9 ±0.1
±0.1 ±0.1 1

(3.40)

and ω′
22/ω

′
11 ≈ 1± 0.2. Now, these constraints can also be used to constrain

the left-hand side of (3.38). The uncertainty can be take into account by
weighting the equations, yielding the following set of constraints:

ν
9

(
P1Ω′P1

� − P3Ω′P3
�) = 0

ν
9

(
P2Ω′P2

� − P3Ω′P3
�) = 0

ν
0.2

(
P1Ω′P1

� − P2Ω′P2
�) = 0

ν
0.1

(
P1Ω′P2

�) = 0
ν

0.1

(
P1Ω′P3

�) = 0
ν

0.01

(
P2Ω′P3

�) = 0

(3.41)

with Pi the ith row of P and ν a scale factor that can be set to 1. If
for the solution P3Ω′P3

� varies widely for the different views, one might
want to iterate with ν = (P3Ω̃′P3

�)−1 with Ω̃′ the result of the previous

90 Multiple View Geometry Chapter 3

iteration. Since Ω′ is a symmetric 4× 4 matrix it is linearly parametrized by
10 coefficients. An estimate of the dual absolute quadric Ω′ can be obtained
by solving the above set of equations for all views through homogeneous
linear least-squares. The rank-3 constraint can be imposed by forcing the
smallest singular value to zero. The upgrading transformation T can be
obtained from diag (1, 1, 1, 0) = TΩ′T� by decomposition of Ω′.

Auto-calibration refinement

This result can then further be refined through bundle adjustment (see Sec-
tion 3.7.2). In this case the constraints on the intrinsics should be enforced
during the minimization process. Constraints on the intrinsics can be en-
forced either exactly through parametrisation, or approximately by adding a
residual for the deviation from the expected value in the global minimization
process.

3.9 Dense Depth Estimation

With the camera calibration given for all viewpoints of the sequence, we
can proceed with methods developed for calibrated structure from motion
algorithms. The feature tracking algorithm already delivers a sparse sur-
face model based on distinct feature points. This however is not sufficient
to reconstruct geometrically correct and visually pleasing surface models.
This task is accomplished by a dense disparity matching that estimates cor-
respondences from the grey level images directly by exploiting additional
geometrical constraints. The dense surface estimation is done in a number
of steps. First image pairs are rectified to the standard stereo configuration.
Then disparity maps are computed through a stereo matching algorithm.
Finally a multi-view approach integrates the results obtained from several
view pairs.

3.9.1 Rectification

Since the calibration between successive image pairs was computed, the
epipolar constraint that restricts the correspondence search to a 1-D search
range can be exploited. Image pairs can be warped so that epipolar lines
coincide with image scan lines. The correspondence search is then reduced
to a matching of the image points along each image scan-line. This results
in a dramatic increase of the computational efficiency of the algorithms by
enabling several optimizations in the computations.

For some motions (i.e. when the epipole is located in the image) standard

Section 3.9. Dense Depth Estimation 91

rectification based on planar homographies [2] is not possible and a more ad-
vanced procedure should be used. The approach proposed in [48] avoids this
problem. The method works for all possible camera motions. The key idea
is to use polar coordinates with the epipole as origin. Corresponding lines
are given through the epipolar geometry. By taking the orientation [36] into
account the matching ambiguity is reduced to half epipolar lines. A mini-
mal image size is achieved by computing the angle between two consecutive
epipolar lines, that correspond to rows in the rectified images, to have the
worst case pixel on the line preserve its area.

Some examples A first example comes from the castle sequence. In Fig-
ure 3.15 an image pair and the associated rectified image pair are shown.
A second example was filmed with a hand-held digital video camera in the

Figure 3.15. Original image pair (left) and rectified image pair (right).

Béguinage in Leuven. Due to the narrow streets only forward motion is feasi-
ble. In this case the full advantage of the polar rectification scheme becomes
clear since this sequence could not have been handled through traditional
planar rectification. An example of a rectified image pair is given in Fig-
ure 3.16. Note that the whole left part of the rectified images corresponds
to the epipole. On the right side of this figure a model that was obtained by

92 Multiple View Geometry Chapter 3

Figure 3.16. Rectified image pair (left) and some views of the reconstructed scene
(right).

combining the results from several image pairs is shown.

3.9.2 Stereo matching

The goal of a dense stereo algorithm is to compute corresponding pixel for
every pixel of an image pair. After rectification the correspondence search
is limited to corresponding scanlines. As illustrated in Fig 3.17, finding
the correspondences for a pair of scanlines can be seen as a path search
problem. Besides the epipolar geometry other constraints, like preserving

Section 3.9. Dense Depth Estimation 93

1 4

1 2 1,23,4 3 4

2 3

P Pk k+1

op
tim

al
pa

th

epipolar line image k1 2 3,4

1,2 image l

search
region

ep
ip

ol
ar

 li
ne

 im
ag

e
l

image k
occlusion

occlusion

3

4

Figure 3.17. Illustration of the ordering constraint (left), dense matching as a
path search problem (right).

the order of neighboring pixels, bidirectional uniqueness of the match, and
detection of occlusions can be exploited. In most cases it is also possible
to limit the search to a certain disparity range (an estimate of this range
can be obtained from the reconstructed 3D feature points). Besides these
constraints, a stereo algorithm should also take into account the similarity
between corresponding points and the continuity of the surface. It is possible
to compute the optimal path taking all the constraints into account using
dynamic programming [8, 12, 41]. Other computationally more expensive
approaches also take continuity across scanlines into account. Real-time
approaches on the other hand estimate the best match independently for
every pixel. A complete taxonomy of stereo algorithms can be found in [52].

3.9.3 Multi-view linking

The pairwise disparity estimation allows to compute image to image corre-
spondences between adjacent rectified image pairs, and independent depth
estimates for each camera viewpoint. An optimal joint estimate is achieved
by fusing all independent estimates into a common 3D model. The fusion
can be performed in an economical way through controlled correspondence
linking (see Figure 3.18). A point is transferred from one image to the next
as follows:

x2 = R′−1(R(x1) +D(R(x1)) (3.42)

with R(.) and R′(.) functions that map points from the original image into
the rectified image and D(.) a function that corresponds to the disparity

94 Multiple View Geometry Chapter 3

ne

kL

e

......
P1

P Pi+2

nP

k+1

k+1P

k-2

Pk-1 Pk
Downward linking upward linking����

������

Figure 3.18. Depth fusion and uncertainty reduction from correspondence linking.

map. When the depth obtained from the new image point x2 is outside the
confidence interval the linking is stopped, otherwise the result is fused with
the previous values through a Kalman filter. This approach is discussed into
more detail in [34]. This approach combines the advantages of small baseline
and wide baseline stereo. The depth resolution is increased through the com-
bination of multiple viewpoints and large global baseline while the matching
is simplified through the small local baselines. It can provide a very dense
depth map by avoiding most occlusions. Due to multiple observations of a
single surface points the texture can be enhanced and noise and highlights
can be removed.

3.10 Visual Modeling

In the previous sections we explained how the camera motion and calibra-
tion, and depth estimates for (almost) every pixel could be obtained. This
yields all the necessary information to build different types of visual models.
In this section several types of models are considered. First, the construction
of texture-mapped 3D surface models is discussed. Then, a combined image-
and geometry-based approach is presented that can render models ranging
from pure plenoptic to view-dependent texture and geometry models. Fi-
nally, the possibility of combining real and virtual scenes is also treated.

Section 3.10. Visual Modeling 95

3.10.1 3D surface reconstruction

The 3D surface is approximated by a triangular mesh to reduce geometric
complexity and to tailor the model to the requirements of computer graphics
visualization systems. A simple approach consists of overlaying a 2D trian-
gular mesh on top of one of the images and then build a corresponding 3D
mesh by placing the vertices of the triangles in 3D space according to the
values found in the corresponding depth map. To reduce noise it is recom-
mended to first smooth the depth image (the kernel can be chosen of the
same size as the mesh triangles). The image itself can be used as texture
map. While normally projective texture mapping would be required, the
small size of the triangles allow to use standard (affine) texture mapping
(the texture coordinates are trivially obtained as the 2D coordinates of the
vertices).

Figure 3.19. Surface reconstruction approach (top): A triangular mesh is overlaid
on top of the image. The vertices are back-projected in space according to the depth
values. From this a 3D surface model is obtained (bottom)

96 Multiple View Geometry Chapter 3

It can happen that for some vertices no depth value is available or that
the confidence is too low. In these cases the corresponding triangles are
not reconstructed. The same happens when triangles are placed over dis-
continuities. This is achieved by selecting a maximum angle between the
normal of a triangle and the line-of-sight through its center (e.g. 85 de-
grees). This simple approach works very well on the dense depth maps as
obtained through multi-view linking. The surface reconstruction approach
is illustrated in Figure 3.19.

A further example is shown in Figure 3.20. The video sequence was
recorded with a hand-held camcorder on an archaeological site in Turkey
(courtesy of Marc Waelkens). It shows a decorative medusa head that was
part of a monumental fountain. The video sequence was processed fully
automatically by using the algorithms discussed in Section 3.7, 3.8, 3.9, 3.10.
From the bundle adjustment and the multi-view linking, the accuracy was
estimated to be of 1

500 (compared to the size of the reconstructed object).
This has to be compared with the image resolution of 720× 576. Note that
the camera was uncalibrated and, besides the unknown focal length and
principal point, has significant radial distortion and an aspect ratio different
from one, i.e. 1.09, which were all automatically recovered from the video
sequence.

To reconstruct more complex shapes it is necessary to combine results
from multiple depth maps. The simplest approach consists of generating sep-
arate models independently and then loading them together in the graphics
system. Since all depth-maps are located in a single coordinate frame, reg-
istration is not an issue. Often it is interesting to integrate the different
meshes into a single mesh. A possible approach is given in [10].

A further example is shown in Figure 3.20. The video sequence was
recorded with a hand-held camcorder on the archaeological site of Sagalasso
in Turkey (courtesy of Marc Waelkens). It shows a decorative medusa head
that was part of a monumental fountain. The video sequence was processed
fully automatically by using the algorithms discussed in Section 3.7, 3.8, 3.9,
3.10. From the bundle adjustment and the multi-view linking, the accuracy
was estimated to be of 1

500 (compared to the size of the reconstructed object).
This has to be compared with the image resolution of 720× 576. Note that
the camera was uncalibrated and, besides the unknown focal length and
principal point, has significant radial distortion and an aspect ratio different
from one, i.e. 1.09, which were all automatically recovered from the video
sequence.

To reconstruct more complex shapes it is necessary to combine results
from multiple depth maps. The simplest approach consists of generating sep-

Section 3.10. Visual Modeling 97

Figure 3.20. 3D-from-video: one of the video frames (upper-left), recovered
structure and motion (upper-right), textured and shaded 3D model (middle) and
more views of textured 3D model (bottom).

98 Multiple View Geometry Chapter 3

arate models independently and then loading them together in the graphics
system. Since all depth-maps are located in a single coordinate frame, reg-
istration is not an issue. Often it is interesting to integrate the different
meshes into a single mesh. A possible approach is given in [10].

3.10.2 Image-based rendering

In the previous section we presented an approach to construct 3D models.
If the goal is to generate novel views, other approaches are available. In
recent years, a multitude of image-based approaches have been proposed
that render images from images without the need for an explicit intermediate
3D model. The most well known approaches are lightfield and lumigraph
rendering [37, 18] and image warping [4, 54, 1].

Here we will briefly introduce an approach to render novel views directly
from images recorded with a hand-held camera. If available, some depth
information can also be used to refine the underlying geometric assumption.
A more extensive discussion of this work can be found in [25, 33]. A related
approach was presented in [3]. A lightfield is the collection of the lightrays
corresponding to all the pixels in all the recorded images. Therefore, ren-
dering from a lightfield consists of looking up the “closest” ray(s) passing
through every pixel of the novel view. Determining the closest ray consists
of two steps: (1) determining in which views the closest rays are located
and (2) within that view select the ray that intersects the implicit geometric
assumption in the same point. For example, if the assumption is that the
scene is far away, the corresponding implicit geometric assumption might be
Π∞ so that parallel rays would be selected.

In our case the view selection works as follows. All the camera projection
centers are projected in the novel view and Delaunay triangulated. For every
pixel within a triangle, the recorded views corresponding to the three vertices
are selected as “closest” views. If the implicit geometric assumption is planar,
a homography relates the pixels in the novel view with those in a recorded
view. Therefore, a complete triangle in the novel view can efficiently be
drawn using texture mapping. The contributions of the three cameras can
be combined using alpha blending. The geometry can be approximated by
one plane for the whole scene, one plane per camera triple or by several
planes for one camera triple. The geometric construction is illustrated in
Figure 3.21.

This approach is illustrated in Figure 3.22 with an image sequence of 187
images recorded by waving a camera over a cluttered desk. In the lower part
of Figure 3.22 a detail of a view is shown for the different methods. In the

Section 3.10. Visual Modeling 99

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

��
��
��
��

���� �
�
�
�

����
��
��
��
��

��

����

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

��
��
��
��

��
��
��
��

��

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

mV

m

mL
pi

i

virtual view point

virtual image plane

scene geometry

CV

real cameras

approximated scene geometry L

Figure 3.21. Drawing triangles of neighboring projected camera centers and
approximated scene geometry.

100 Multiple View Geometry Chapter 3

Figure 3.22. Top: Image of the desk sequence and sparse structure-and-motion
result (left), artificial view rendered using one plane per image triple (right). Details
of rendered images showing the differences between the approaches (bottom): one
global plane of geometry (left), one local plane for each image triple (middle) and
refinement of local planes (right).

Section 3.11. Conclusion 101

case of one global plane (left image), the reconstruction is sharp where the
approximating plane intersects the actual scene geometry. The reconstruc-
tion is blurred where the scene geometry diverges from this plane. In the
case of local planes (middle image), at the corners of the triangles, the re-
construction is almost sharp, because there the scene geometry is considered
directly. Within a triangle, ghosting artifacts occur where the scene geome-
try diverges from the particular local plane. If these triangles are subdivided
(right image) these artifacts are reduced further.

3.10.3 Match-moving

Another interesting application of the presented algorithms consists of adding
virtual elements to real video. This has important applications in the enter-
tainment industry and several products, such as 2d3’s boujou and RealViz’
MatchMover, exist that are based on the techniques described in Section 3.7
and Section 3.8 of this chapter. The key issue consists of registering the
motion of the real and the virtual camera. The presented techniques can be
used to compute the motion of the camera in the real world. This allows
to restrict the problem of introducing virtual objects in video to determine
the desired position, orientation and scale with respect to the reconstructed
camera motion. More details on this approach can be found in [7]. Note
that to achieve a seamless integration also other effects such as occlusion
and lighting would have to be taken care of.

An example is shown in Figure 3.23. The video shows the remains of one
of the ancient monumental fountains of Sagalassos. A virtual reconstruction
of the monument was overlaid on the original frame. The virtual camera was
set-up to mimic exactly the computed motion and calibration of the original
camera.

3.11 Conclusion

In this chapter the relations between multiple views of a 3D scene were dis-
cussed. The discussion started by introducing the basic concepts of projective
geometry and tensor calculus. Then the pinhole camera model, the epipolar
geometry and the multiple view tensors were discussed. Next, approaches
that rely on those concepts to recover both the structure and motion from a
sequence of images were presented. Those approaches were illustrated with
some real world example and applications.

Acknowledgment The authors wish to acknowledge the financial support of
the EU projects InViews, Attest, Vibes and Murale, as well as the contri-

102 Multiple View Geometry Chapter 3

Figure 3.23. Augmented video: 6 frames (out of 250) from a video where a virtual
reconstruction of an ancient monument has been added.

Bibliography 103

butions of their (former) colleagues in Leuven and Lund where most of the
presented work was carried out. Luc Van Gool, Maarten Vergauwen, Frank
Verbiest, Kurt Cornelis, Jan Tops, Reinhard Koch and Benno Heigl have
contributed to generate the results that illustrate this chapter.

Bibliography

[1] S. Avidan and A. Shashua. Novel view synthesis in tensor space. In Proc. of
IEEE Conference on Computer Vision and Pattern Recognition, pages 1034–
1040, 1997.

[2] N. Ayache. Artificial Vision for Mobile Robots: Stereo Vision and Multi-sensory
Perception. MIT Press, 1991.

[3] C. Buehler, M. Bosse, L. McMillan, S. Gortler, and M. Cohen. Unstructured
lumigraph rendering. In Proc. SIGGRAPH, 2001.

[4] S. Chen and L. Williams. View interpolation for image synthesis. Computer
Graphics, 27(Annual Conference Series):279–288, 1993.

[5] O. Chum and J. Matas. Randomized ransac and t(d,d) test. In Proc. British
Machine Vision Conference, 2002.

[6] K. Cornelis, M. Pollefeys, M. Vergauwen, and L. Van Gool. Augmented reality
from uncalibrated video sequences. In A. Zisserman M. Pollefeys, L. Van Gool
and A. Fitzgibbon (Eds.), editors, 3D Structure from Images - SMILE 2000,
volume 2018, pages 150–167. Springer-Verlag, 2001.

[7] K. Cornelis, M. Pollefeys, M. Vergauwen, F. Verbiest, and L. Van Gool. Track-
ing based structure and motion recovery for augmented video productions.
In Proceedings A.C.M. symposium on virtual reality software and technology
- VRST 2001, pages 17–24, November 2001.

[8] I. Cox, S. Hingoraini, and S. Rao. A maximum likelihood stereo algorithm.
Computer Vision and Image Understanding, 63(3):542–567, May 1996.

[9] H. S. M. Coxeter. Projective Geometry. Blaisdell Publishing Company, 1964.
[10] B. Curless and M. Levoy. A volumetric method for building complex models

from range images. In Proc. SIGGRAPH ’96, pages 303–312, 1996.
[11] L. de Agapito, R. Hartley, and E. Hayman. Linear selfcalibration of a rotating

and zooming camera. In Proc. IEEE Conf. Comp. Vision Patt. Recog., volume I,
pages 15–21, June 1999.

[12] L. Falkenhagen. Depth estimation from stereoscopic image pairs assuming
piecewise continuous surfaces. In Proc. of European Workshop on combined Real
and Synthetic Image Processing for Broadcast and Video Production, November
1994.

[13] O. Faugeras. What can be seen in three dimensions with an uncalibrated stereo
rig? In Proc. European Conf. on Computer Vision, pages 563–578, 1992.

[14] O. Faugeras. Three-Dimensional Computer Vision. MIT Press, Cambridge,
Mass., 1993.

[15] O. Faugeras and Q.-T. Luong. The Geometry of Multiple Images. MIT Press,
Cambridge, Mass., 2001.

104 Multiple View Geometry Chapter 3

[16] O. Faugeras, Q.-T. Luong, and S. Maybank. Camera self-calibration: Theory
and experiments. In Computer Vision - ECCV’92, volume 588 of Lecture Notes
in Computer Science, pages 321–334. Springer-Verlag, 1992.

[17] M. Fischler and R. Bolles. Random sampling consensus: a paradigm for model
fitting with application to image analysis and automated cartography. Com-
mun. Assoc. Comp. Mach., 24:381–395, 1981.

[18] S. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen. The lumigraph. In
Proc. SIGGRAPH ’96, pages 43–54. ACM Press, New York, 1996.

[19] C. Harris and M. Stephens. A combined corner and edge detector. In Fourth
Alvey Vision Conference, pages 147–151, 1988.

[20] R. Hartley. An algorithm for self calibration from several views. In Proc. IEEE
Conf. Comp. Vision Patt. Recog., pages 908–912, 1994.

[21] R. Hartley. Euclidean reconstruction from uncalibrated views. In J.L. Mundy,
A. Zisserman, and D. Forsyth, editors, Applications of Invariance in Com-
puter Vision, volume 825 of Lecture Notes in Computer Science, pages 237–256.
Springer-Verlag, 1994.

[22] R. Hartley. In defense of the eight-point algorithm. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 19(6):580–593, June 1997.

[23] R. Hartley and P. Sturm. Triangulation. Computer Vision and Image Under-
standing, 68(2):146–157, 1997.

[24] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, 2000.

[25] B. Heigl, R. Koch, M. Pollefeys, J. Denzler, and L. Van Gool. Plenoptic mod-
eling and rendering from image sequences taken by hand-held camera. In Proc.
DAGM, pages 94–101, 1999.

[26] A. Heyden. Geometry and Algebra of Multipe Projective Transformations. PhD
thesis, Lund University, Sweden, 1995.

[27] A. Heyden. Tensorial properties of multilinear constraints. Mathematical Meth-
ods in the Applied Sciences, 23:169–202, 2000.

[28] A. Heyden and K. Åström. Euclidean reconstruction from constant intrinsic
parameters. In Proc. 13th International Conference on Pattern Recognition,
pages 339–343. IEEE Computer Soc. Press, 1996.

[29] A. Heyden and K. Åström. Euclidean reconstruction from image sequences
with varying and unknown focal length and principal point. In Proc. IEEE
Conference on Computer Vision and Pattern Recognition, pages 438–443. IEEE
Computer Soc. Press, 1997.

[30] A. Heyden and K. str m. Algebraic properties of multilinear constraints.
Mathematical Methods in the Applied Sciences, 20:1135–1162, 1997.

[31] F. Kahl. Critical motions and ambiuous euclidean reconstructions in auto-
calibration. In Proc. ICCV, pages 469–475, 1999.

[32] F. Kahl, B. Triggs, and K. Astrom. Critical motions for autocalibration when
some intrinsic parameters can vary. Jrnl. of Mathematical Imaging and Vision,
13(2):131–146, 2000.

[33] R. Koch, B. Heigl, and M. Pollefeys. Image-based rendering from uncalibrated
lightfields with scalable geometry. In G. Gimel’farb (Eds.) R. Klette, T. Huang,

Bibliography 105

editor, Multi-Image Analysis, volume 2032 of Lecture Notes in Computer Sci-
ence, pages 51–66. Springer-Verlag, 2001.

[34] R. Koch, M. Pollefeys, and L. Van Gool. Multi viewpoint stereo from uncal-
ibrated video sequences. In Proc. European Conference on Computer Vision,
pages 55–71, 1998.

[35] R. Koch, M. Pollefeys, B. Heigl, L. Van Gool, and H. Niemann. Calibration of
hand-held camera sequences for plenoptic modeling. In Proc.ICCV’99 (inter-
national Conference on Computer Vision), pages 585–591, 1999.

[36] S. Laveau and O. Faugeras. Oriented projective geometry for computer vision.
In B. Buxton and R. Cipolla (eds.), editors, Computer Vision - ECCV’96,
Lecture Notes in Computer Science, Vol. 1064, pages 147–156. Springer-Verlag,
1996.

[37] M. Levoy and P. Hanrahan. Lightfield rendering. In Proc. SIGGRAPH ’96,
pages 31–42. ACM Press, New York, 1996.

[38] H. C. Longuet-Higgins. A computer algorithm for reconstructing a scene from
two projections. Nature, 293:133–135, 1981.

[39] D. Lowe. Object recognition from local scale-invariant features. In Proc. Inter-
national Conference on Computer Vision, pages 1150–1157, 1999.

[40] J. Matas, S. Obdrzalek, and O. Chum. Local affine frames for wide-baseline
stereo. In Proc. 16th International Conference on Pattern Recognition, vol-
ume 4, pages 363–366, 2002.

[41] G. Van Meerbergen, M. Vergauwen, M. Pollefeys, and L. Van Gool. A hierar-
chical symmetric stereo algorithm using dynamic programming. International
Journal on Computer Vision, 47(1/2/3):275–285, 2002.

[42] N. Myklestad. Cartesian Tensors - the Mathematical Language of Engineering.
Van Nostrand, Princeton, 1967.

[43] M. Pollefeys. Self-calibration and metric 3D reconstruction from uncalibrated
image sequences. PhD thesis, Katholieke Universiteit Leuven, 1999.

[44] M. Pollefeys and L. Van Gool. Stratified self-calibration with the modulus
constraint. IEEE transactions on Pattern Analysis and Machine Intelligence,
21(8):707–724, 1999.

[45] M. Pollefeys and Luc Van Gool. Do ambiguous reconstructions always give
ambiguous images? In Proc. International Conference on Computer Vision,
pages 187–192, 2001.

[46] M. Pollefeys, R. Koch, and L. Van Gool. Self-calibration and metric recon-
struction in spite of varying and unknown internal camera parameters. In Proc.
International Conference on Computer Vision, pages 90–95. Narosa Publishing
House, 1998.

[47] M. Pollefeys, R. Koch, and L. Van Gool. Self-calibration and metric reconstruc-
tion in spite of varying and unknown internal camera parameters. International
Journal of Computer Vision, 32(1):7–25, 1999.

[48] M. Pollefeys, R. Koch, and L. Van Gool. A simple and efficient rectification
method for general motion. In Proc.ICCV’99 (international Conference on
Computer Vision), pages 496–501, 1999.

106 Multiple View Geometry Chapter 3

[49] M. Pollefeys, F. Verbiest, and L. Van Gool. Surviving dominant planes in uncal-
ibrated structure and motion recovery. In A. Heyden, G. Sparr, M. Nielsen, and
P. Johansen, editors, Computer Vision - ECCV 2002, 7th European Conference
on Computer Vision, volume 2351 of Lecture Notes in Computer Science, pages
837–851, 2002.

[50] W. Press, S. Teukolsky, and W. Vetterling. Numerical recipes in C: the art of
scientific computing. Cambridge university press, 1992.

[51] P. Rousseeuw. Robust Regression and Outlier Detection. Wiley, New York,
1987.

[52] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame
stereo correspondence algorithms. International Journal of Computer Vision,
47(1/2/3):7–42, April-June 2002.

[53] C. Schmid and R. Mohr. Local grayvalue invariants for image retrieval. IEEE
PAMI, 19(5):530–534, 1997.

[54] S. Seitz and C. Dyer. View morphing. Computer Graphics, 30(Annual Confer-
ence Series):21–30, 1996.

[55] A. Shashua. Trilinearity in visual recognition by alignment. In Proc. European
Conf. on Computer Vision, 1994.

[56] J. Shi and C. Tomasi. Good features to track. In Proc. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR’94), pages 593–600, 1994.

[57] C. Slama. Manual of Photogrammetry. American Society of Photogrammetry,
Falls Church, VA, USA, 4 edition, 1980.

[58] B. Spain. Tensor Calculus. University Mathematical Texts, Oliver and Boyd,
Edingburgh, 1953.

[59] G. Sparr. Simultaneous reconstruction of scene structure and camera locations
from uncalibrated image sequences. In Proc. International Conf. on Pattern
Recognition, 1996.

[60] M. E. Spetsakis and J. Aloimonos. A unified theory of structure from motion.
In Proc. DARPA IU Workshop, 1990.

[61] P. Sturm. Critical motion sequences for monocular self-calibration and uncali-
brated euclidean reconstruction. In Proc. 1997 Conference on Computer Vision
and Pattern Recognition, pages 1100–1105. IEEE Computer Soc. Press, 1997.

[62] P. Sturm. Critical motion sequences for the self-calibration of cameras and
stereo systems with variable focal length. In Proc. 10th British Machine Vision
Conference, pages 63–72, 1999.

[63] P. Sturm. Critical motion sequences for the self-calibration of cameras and
stereo systems with variable focal length. In Proc. BMVC, 1999.

[64] B. Triggs. Matching constraints and the joint image. In Proc. Int. Conf. on
Computer Vision, 1995.

[65] B. Triggs. The absolute quadric. In Proc. 1997 Conference on Computer Vision
and Pattern Recognition, pages 609–614. IEEE Computer Soc. Press, 1997.

[66] B. Triggs. Autocalibration from planar scenes. In ECCV, volume I, pages
89–105, June 1998.

[67] B. Triggs, P. McLauchlan, R. Hartley, and A. Fiztgibbon. Bundle adjustment –
a modern synthesis. In R. Szeliski (Eds.) B. Triggs, A. Zisserman, editor, Vision

Bibliography 107

Algorithms: Theory and Practice, LNCS Vol.1883, pages 298–372. Springer-
Verlag, 2000.

[68] G. Turk and M. Levoy. Zippered polygon meshes from range images. In Pro-
ceedings of SIGGRAPH ’94, pages 311–318, 1994.

[69] T. Tuytelaars and L. Van Gool. Wide baseline stereo based on local, affinely
invariant regions. In British Machine Vision Conference, pages 412–422, 2000.

[70] Z. Zhang, R. Deriche, O. Faugeras, and Q.-T. Luong. A robust technique
for matching two uncalibrated images through the recovery of the unknown
epipolar geometry. Artificial Intelligence Journal, 78:87–119, October 1995.

Chapter 4

ROBUST TECHNIQUES FOR
COMPUTER VISION

Peter Meer

4.1 Robustness in Visual Tasks

Visual information makes up about seventy five percent of all the senso-
rial information received by a person during a lifetime. This information
is processed not only efficiently but also transparently. Our awe of visual
perception was perhaps the best captured by the seventeenth century british
essayist Joseph Addison in an essay on imagination [1].

Our sight is the most perfect and most delightful of all our senses.
It fills the mind with the largest variety of ideas, converses with
its objects at the greatest distance, and continues the longest in
action without being tired or satiated with its proper enjoyments.

The ultimate goal of computer vision is to mimic human visual per-
ception. Therefore, in the broadest sense, robustness of a computer vision
algorithm is judged against the performance of a human observer performing
an equivalent task. In this context, robustness is the ability to extract the
visual information of relevance for a specific task, even when this information
is carried only by a small subset of the data, and/or is significantly different
from an already stored representation.

To understand why the performance of generic computer vision algo-
rithms is still far away from that of human visual perception, we should
consider the hierarchy of computer vision tasks. They can be roughly clas-
sified into three large categories:

109

110 Robust Techniques for Computer Vision Chapter 4

– low level, dealing with extraction from a single image of salient simple
features, such as edges, corners, homogeneous regions, curve fragments;

– intermediate level, dealing with extraction of semantically relevant
characteristics from one or more images, such as grouped features,
depth, motion information;

– high level, dealing with the interpretation of the extracted information.
A similar hierarchy is difficult to distinguish in human visual perception,
which appears as a single integrated unit. In the visual tasks performed by
a human observer an extensive top-down information flow carrying repre-
sentations derived at higher levels seems to control the processing at lower
levels. See [84] for a discussion on the nature of these interactions.

A large amount of psychophysical evidence supports this “closed loop”
model of human visual perception. Preattentive vision phenomena, in which
salient information pops-out from the image, e.g., [55], [109], or perceptual
constancies, in which changes in the appearance of a familiar object are
attributed to external causes [36, Chap.9], are only some of the examples.
Similar behavior is yet to be achieved in generic computer vision techniques.
For example, preattentive vision type processing seems to imply that a region
of interest is delineated before extracting its salient features.

To approach the issue of robustness in computer vision, will start by
mentioning one of the simplest perceptual constancies, the shape constancy.
Consider a door opening in front of an observer. As the door opens, its
image changes from a rectangle to a trapezoid but the observer will report
only the movement. That is, additional information not available in the
input data was also taken into account. We know that a door is a rigid
structure, and therefore it is very unlikely that its image changed due to
a nonrigid transformation. Since the perceptual constancies are based on
rules embedded in the visual system, they can be also deceived. A well
known example is the Ames room in which the rules used for perspective
foreshortening compensation are violated [36, p.241].

The previous example does not seem to reveal much. Any computer
vision algorithm of rigid motion recovery is based on a similar approach.
However, the example emphasizes that the employed rigid motion model is
only associated with the data and is not intrinsic to it. We could use a
completely different model, say of nonrigid doors, but the result would not
be satisfactory. Robustness thus is closely related to the availability of a
model adequate for the goal of the task.

In today’s computer vision algorithms the information flow is almost ex-
clusively bottom-up. Feature extraction is followed by grouping into seman-

Section 4.1. Robustness in Visual Tasks 111

tical primitives, which in turn is followed by a task specific interpretation of
the ensemble of primitives. The lack of top-down information flow is arguably
the main reason why computer vision techniques cannot yet autonomously
handle visual data under a wide range of operating conditions. This fact
is well understood in the vision community and different approaches were
proposed to simulate the top-down information stream.

The increasingly popular Bayesian paradigm is such an attempt. By
using a probabilistic representation for the possible outcomes, multiple hy-
potheses are incorporated into the processing, which in turn guide the infor-
mation recovery. The dependence of the procedure on the accuracy of the
employed representation is relaxed in the semiparametric or nonparametric
Bayesian methods, such as particle filtering for motion problems [51]. In-
corporating a learning component into computer vision techniques, e.g., [3],
[29], is another, somewhat similar approach to use higher level information
during the processing.

Comparison with human visual perception is not a practical way to arrive
to a definition of robustness for computer vision algorithms. For example,
robustness in the context of the human visual system extends to abstract
concepts. We can recognize a chair independent of its design, size or the
period in which it was made. However, in a somewhat similar experiment,
when an object recognition system was programmed to decide if a simple
drawing represents a chair, the results were rather mixed [96].

We will not consider high level processes when examining the robustness
of vision algorithms, neither will discuss the role of top-down information
flow. A computer vision algorithm will be called robust if it can tolerate
outliers, i.e., data which does not obey the assumed model. This definition
is similar to the one used in statistics for robustness [40, p.6]

In a broad informal sense, robust statistics is a body of knowl-
edge, partly formalized into “theories of statistics,” relating to
deviations from idealized assumptions in statistics.

Robust techniques are used in computer vision for at least thirty years.
In fact, those most popular today are related to old methods proposed to
solve specific image understanding or pattern recognition problems. Some of
them were rediscovered only in the last few years.

The best known example is the Hough transform, a technique to extract
multiple instances of a low-dimensional manifold from a noisy background.
The Hough transform is a US Patent granted in 1962 [47] for the detection
of linear trajectories of subatomic particles in a bubble chamber. In the
rare cases when Hough transform is explicitly referenced this patent is used,

112 Robust Techniques for Computer Vision Chapter 4

though an earlier publication also exists [46]. Similarly, the most popular
robust regression methods today in computer vision belong to the family of
random sample consensus (RANSAC), proposed in 1980 to solve the per-
spective n-point problem [25]. The usually employed reference is [26]. An
old pattern recognition technique for density gradient estimation proposed in
1975 [32], the mean shift, recently became a widely used methods for feature
space analysis. See also [31, p.535].

In theoretical statistics, investigation of robustness started in the early
1960s, and the first robust estimator, the M-estimator, was introduced by
Huber in 1964. See [49] for the relevant references. Another popular family
of robust estimators, including the least median of squares (LMedS), was
introduced by Rousseeuw in 1984 [86]. By the end of 1980s these robust
techniques became known in the computer vision community.

Application of robust methods to vision problems was restricted at the
beginning to replacing a nonrobust parameter estimation module with its
robust counterpart, e.g., [4], [41], [59], [102]. See also the review paper [74].
While this approach was successful in most of the cases, soon also some
failures were reported [77]. Today we know that these failures are due to the
inability of most robust estimators to handle data in which more than one
structure is present [9], [97], a situation frequently met in computer vision
but almost never in statistics. For example, a window operator often covers
an image patch which contains two homogeneous regions of almost equal
sizes, or there can be several independently moving objects in a visual scene.

Large part of today’s robust computer vision toolbox is indigenous. There
are good reasons for this. The techniques imported from statistics were
designed for data with characteristics significantly different from that of the
data in computer vision. If the data does not obey the assumptions implied
by the method of analysis, the desired performance may not be achieved.
The development of robust techniques in the vision community (such as
RANSAC) were motivated by applications. In these techniques the user has
more freedom to adjust the procedure to the specific data than in a similar
technique taken from the statistical literature (such as LMedS). Thus, some
of the theoretical limitations of a robust method can be alleviated by data
specific tuning, which sometimes resulted in attributing better performance
to a technique than is theoretically possible in the general case.

A decade ago, when a vision task was solved with a robust technique, the
focus of the research was on the methodology and not on the application.
Today the emphasis has changed, and often the employed robust techniques
are barely mentioned. It is no longer of interest to have an exhaustive survey
of “robust computer vision”. For some representative results see the review

Section 4.2. Models and Estimation Problems 113

paper [98] or the special issue [94].
The goal of this chapter is to focus on the theoretical foundations of the

robust methods in the context of computer vision applications. We will pro-
vide a unified treatment for most estimation problems, and put the emphasis
on the underlying concepts and not on the details of implementation of a
specific technique. Will describe the assumptions embedded in the different
classes of robust methods, and clarify some misconceptions often arising in
the vision literature. Based on this theoretical analysis new robust methods,
better suited for the complexity of computer vision tasks, can be designed.

4.2 Models and Estimation Problems

In this section we examine the basic concepts involved in parameter esti-
mation. We describe the different components of a model and show how to
find the adequate model for a given computer vision problem. Estimation is
analyzed as a generic problem, and the differences between nonrobust and
robust methods are emphasized. We also discuss the role of the optimization
criterion in solving an estimation problem.

4.2.1 Elements of a Model

The goal of data analysis is to provide for data spanning a very high-
dimensional space an equivalent low-dimensional representation. A set of
measurements consisting of n data vectors yi ∈ Rq can be regarded as a
point in Rnq. If the data can be described by a model with only p � nq
parameters, we have a much more compact representation. Should new data
points become available, their relation to the initial data then can be estab-
lished using only the model. A model has two main components

– the constraint equation;

– the measurement equation.
The constraint describes our a priori knowledge about the nature of the
process generating the data, while the measurement equation describes the
way the data was obtained.

In the general case a constraint has two levels. The first level is that
of the quantities providing the input into the estimation. These variables
{y1, . . . , yq} can be obtained either by direct measurement or can be the
output of another process. The variables are grouped together in the context
of the process to be modeled. Each ensemble of values for the q variables
provides a single input data point, a q-dimensional vector y ∈ Rq.

114 Robust Techniques for Computer Vision Chapter 4

At the second level of a constraint the variables are combined into carri-
ers, also called as basis functions

xj = ϕj(y1, . . . , yq) = ϕj(y) j = 1, . . . ,m . (4.1)

A carrier is usually a simple nonlinear function in a subset of the variables.
In computer vision most carriers are monomials.

The constraint is a set of algebraic expressions in the carriers and the
parameters θ0, θ1, . . . , θp

ψk(x1, . . . , xm; θ0, θ1, . . . , θp) = 0 k = 1, . . . ,K . (4.2)

One of the goals of the estimation process is to find the values of these
parameters, i.e., to mold the constraint to the available measurements.

The constraint captures our a priori knowledge about the physical and/or
geometrical relations underlying the process in which the data was generated,
Thus, the constraint is valid only for the true (uncorrupted) values of the
variables. In general these values are not available. The estimation process
replaces in the constraint the true values of the variables with their corrected
values, and the true values of the parameters with their estimates. We will
return to this issue in Section 4.2.2.

The expression of the constraint (4.2) is too general for our discussion
and we will only use a scalar (univariate) constraint, i.e., K = 1, which is
linear in the carriers and the parameters

α+ x�θ = 0 x� = [ϕ1(y) · · · ϕp(y)] (4.3)

where the parameter θ0 associated with the constant carrier was renamed α,
all the other carriers were gathered into the vector x, and the parameters
into the vector θ. The linear structure of this model implies that m = p.
Note that the constraint (4.3) in general is nonlinear in the variables.

The parameters α and θ are defined in (4.3) only up to a multiplicative
constant. This ambiguity can be eliminated in many different ways. We will
show in Section 4.2.6 that often it is advantageous to impose ‖θ‖ = 1. Any
condition additional to (4.3) is called an ancillary constraint.

In some applications one of the variables has to be singled out. This vari-
able, denoted z, is called the dependent variable while all the other ones are
independent variables which enter into the constraint through the carriers.
The constraint becomes

z = α+ x�θ (4.4)

and the parameters are no longer ambiguous.

Section 4.2. Models and Estimation Problems 115

0 50 100 150 200 250 300

0

20

40

60

80

100

120

140

160

180

200

y1

y2

Figure 4.1. A typical nonlinear regression problem. Estimate the parameters of
the ellipse from the noisy data points.

To illustrate the role of the variables and carriers in a constraint, will
consider the case of the ellipse (Figure 4.1). The constraint can be written
as

(y − yc)
�Q(y − yc)− 1 = 0 (4.5)

where the two variables are the coordinates of a point on the ellipse, y� =
[y1 y2]. The constraint has five parameters. The two coordinates of the
ellipse center yc, and the three distinct elements of the 2 × 2 symmetric,
positive definite matrix Q. The constraint is rewritten under the form (4.3)
as

α+ θ1y1 + θ2y2 + θ3y
2
1 + θ4y1y2 + θ5y

2
2 = 0 (4.6)

where

α = y�
c Qyc − 1 θ� = [−2y�

c Q Q11 2Q12 Q22] . (4.7)

Three of the five carriers

x� = [y1 y2 y2
1 y1y2 y2

2] (4.8)

are nonlinear functions in the variables.
Ellipse estimation uses the constraint (4.6). This constraint, however,

has not five but six parameters which are again defined only up to a multi-
plicative constant. Furthermore, the same constraint can also represent two
other conics: a parabola or a hyperbola. The ambiguity of the parameters
therefore is eliminated by using the ancillary constraint which enforces that
the quadratic expression (4.6) represents an ellipse

4θ3θ5 − θ2
4 = 1 . (4.9)

116 Robust Techniques for Computer Vision Chapter 4

The nonlinearity of the constraint in the variables makes ellipse estimation
a difficult problem. See [27], [57], [72], [117] for different approaches and
discussions.

For most of the variables only the noise corrupted version of their true
value is available. Depending on the nature of the data, the noise is due
to the measurement errors, or to the inherent uncertainty at the output
of another estimation process. While for convenience we will use the term
measurements for any input into an estimation process, the above distinction
about the origin of the data should be kept in mind.

The general assumption in computer vision problems is that the noise is
additive. Thus, the measurement equation is

yi = yio + δyi yi ∈ Rq i = 1, . . . , n (4.10)

where yio is the true value of yi, the i-th measurement. The subscript ‘o’
denotes the true value of a measurement. Since the constraints (4.3) or (4.4)
capture our a priori knowledge, they are valid for the true values of the
measurements or parameters, and should have been written as

α+ x�
o θ = 0 or zo = α+ x�

o θ (4.11)

where xo = x(yo). In the ellipse example y1o and y2o should have been used
in (4.6).

The noise corrupting the measurements is assumed to be independent
and identically distributed (i.i.d.)

δyi ∼ GI(0, σ2Cy) (4.12)

where GI(·) stands for a general symmetric distribution of independent out-
comes. Note that this distribution does not necessarily has to be normal. A
warning is in order, though. By characterizing the noise only with its first
two central moments we implicitly agree to normality, since only the normal
distribution is defined uniquely by these two moments.

The independency assumption usually holds when the input data points
are physical measurements, but may be violated when the data is the output
of another estimation process. It is possible to take into account the corre-
lation between two data points yi and yj in the estimation, e.g., [75], but it
is rarely used in computer vision algorithm. Most often this is not a crucial
omission since the main source of performance degradation is the failure of
the constraint to adequately model the structure of the data.

The covariance of the noise is the product of two components in (4.12).
The shape of the noise distribution is determined by the matrix Cy. This

Section 4.2. Models and Estimation Problems 117

60 80 100 120 140 160 180 200 220 240

−50

0

50

100

150

200

250

300

350

y
1

y 2

60 80 100 120 140 160 180 200 220 240

−50

0

50

100

150

200

250

300

350

y
1

y 2

(a) (b)

Figure 4.2. The importance of scale. The difference between the data in (a) and
(b) is only in the scale of the noise.

matrix is assumed to be known and can also be singular. Indeed for those
variables which are available without error there is no variation along their
dimensions inRq. The shape matrix is normalized to have det[Cy] = 1, where
in the singular case the determinant is computed as the product of nonzero
eigenvalues (which are also the singular values for a covariance matrix). For
independent variables the matrix Cy is diagonal, and if all the independent
variables are corrupted by the same measurement noise, Cy = Iq. This is
often the case when variables of the same nature (e.g., spatial coordinates)
are measured in the physical world. Note that the independency of the
n measurements yi, and the independency of the q variables yk are not
necessarily related properties.

The second component of the noise covariance is the scale σ, which in
general is not known. The main messages of this chapter will be that

robustness in computer vision cannot be achieved without having
access to a reasonably correct value of the scale.

The importance of scale is illustrated through the simple example in
Figure 4.2. All the data points except the one marked with the star, belong
to the same (linear) model in Figure 4.2a. The points obeying the model are
called inliers and the point far away is an outlier. The shape of the noise
corrupting the inliers is circular symmetric, i.e., σ2Cy = σ2I2. The data in
Figure 4.2b differs from the data in Figure 4.2a only by the value of the scale
σ. Should the value of σ from the first case be used when analyzing the data
in the second case, many inliers will be discarded with severe consequences
on the performance of the estimation process.

The true values of the variables are not available, and instead of yio and
at the beginning of the estimation process the measurement yi has to be

118 Robust Techniques for Computer Vision Chapter 4

used to compute the carriers. The first two central moments of the noise
associated with a carrier can be approximated by error propagation.

Let xij = ϕj(yi) be the j-th element, j = 1, . . . , p, of the carrier vector
xi = x(yi) ∈ Rp, computed for the i-th measurement yi ∈ Rq, i = 1, . . . , n.
Since the measurement vectors yi are assumed to be independent, the carrier
vectors xi are also independent random variables.

The second order Taylor expansion of the carrier xij around the corre-
sponding true value xijo = ϕj(yio) is

xij ≈ xijo+
[
∂ϕj(yio)
∂y

]�
(yi−yio)+

1
2
(yi−yio)

�∂2ϕj(yio)
∂y∂y� (yi−yio) (4.13)

where ∂ϕj(yio)
∂y is the gradient of the carrier with respect to the vector of the

variables y, and Hj(yio) = ∂2ϕj(yio)
∂y∂y� is its Hessian matrix, both computed in

the true value of the variables yio. From the measurement equation (4.10)
and (4.13) the second order approximation for the expected value of the noise
corrupting the carrier xij is

E[xij − xijo] =
σ2

2
trace[CyHj(yio)] (4.14)

which shows that this noise is not necessarily zero-mean. The first order ap-
proximation of the noise covariance obtained by straightforward error prop-
agation

cov[xi − xio] = σ2Cxi = σ2Jx|y(yio)
�CyJx|y(yio) (4.15)

where Jx|y(yio) is the Jacobian of the carrier vector x with respect to the
vector of the variables y, computed in the true values yio. In general the
moments of the noise corrupting the carriers are functions of yio and thus are
point dependent. A point dependent noise process is called heteroscedastic.
Note that the dependence is through the true values of the variables, which
in general are not available. In practice, the true values are substituted with
the measurements.

To illustrate the heteroscedasticity of the carrier noise we return to the
example of the ellipse. From (4.8) we obtain the Jacobian

Jx|y =
[

1 0 2y1 y2 0
0 1 0 y1 2y2

]
(4.16)

and the Hessians

H1 = H2 = 0 H3 =
[

2 0
0 0

]
H4 =

[
0 1
1 0

]
H5 =

[
0 0
0 2

]
. (4.17)

Section 4.2. Models and Estimation Problems 119

Assume that the simplest measurement noise distributed GI(0, σ2I2) is cor-
rupting the two spatial coordinates (the variables). The noise corrupting the
carriers, however, has nonzero mean and a covariance which is a function of
yo

E[x− xo] = [0 0 σ2 0 σ2]� cov[x− xo] = σ2Jx|y(yo)
�Jx|y(yo) .

(4.18)
To accurately estimate the parameters of the general model the heteroscedas-
ticity of the carrier noise has to be taken into account, as will be discussed
in Section 4.2.5.

4.2.2 Estimation of a Model

We can proceed now to a formal definition of the estimation process.

Given the model:
– the noisy measurements yi which are the additively corrupted

versions of the true values yio

yi = yio + δyi yi ∈ Rq δyi ∼ GI(0, σ2Cy) i = 1, . . . , n

– the covariance of the errors σ2Cy, known only up to the scale σ

– the constraint obeyed by the true values of the measurements

α+ x�
ioθ = 0 xio = x(yio) i = 1, . . . , n

and some ancillary constraints.

Find the estimates:
– for the model parameters, α̂ and θ̂

– for the true values of the measurements, ŷi
– such that they satisfy the constraint

α̂+ x̂�
i θ̂ = 0 x̂i = x(ŷi) i = 1, . . . , n

and all the ancillary constraints.

The true values of the measurements yio are called nuisance parameters
since they have only a secondary role in the estimation process. We will
treat the nuisance parameters as unknown constants, in which case we have
a functional model [33, p.2]. When the nuisance parameters are assumed to
obey a know distribution whose parameters also have to be estimated, we

120 Robust Techniques for Computer Vision Chapter 4

have a structural model. For robust estimation the functional models are
more adequate since require less assumptions about the data.

The estimation of a functional model has two distinct parts. First, the
parameter estimates are obtained in the main parameter estimation proce-
dure, followed by the computation of the nuisance parameter estimates in the
data correction procedure. The nuisance parameter estimates ŷi are called
the corrected data points. The data correction procedure is usually not more
than the projection of the measurements yi on the already estimated con-
straint surface.

The parameter estimates are obtained by (most often) seeking the global
minima of an objective function. The variables of the objective function are
the normalized distances between the measurements and their true values.
They are defined from the squared Mahalanobis distances

d2
i =

1
σ2 (yi − yio)

�C+
y (yi − yio) =

1
σ2 δy

�
i C+

y δyi i = 1, . . . , n (4.19)

where ‘+’ stands for the pseudoinverse operator since the matrix Cy can
be singular, in which case (4.19) is only a pseudodistance. Note that di ≥
0. Through the estimation procedure the yio are replaced with ŷi and the
distance di becomes the absolute value of the normalized residual.

The objective function J (d1, . . . , dn) is always a positive semidefinite
function taking value zero only when all the distances are zero. We should
distinguish between homogeneous and nonhomogeneous objective functions.
A homogeneous objective function has the property

J (d1, . . . , dn) =
1
σ
J (‖δy1‖Cy

, . . . , ‖δyn‖Cy
) (4.20)

where ‖δyi‖Cy
= [δy�

i C+
y δyi]

1/2 is the covariance weighted norm of the mea-
surement error. The homogeneity of an objective function is an important
property in the estimation. Only for homogeneous objective functions we
have

[α̂, θ̂] = argmin
α,θ
J (d1, . . . , dn) = argmin

α,θ
J
(
‖δy1‖Cy

, . . . , ‖δyn‖Cy

)
(4.21)

meaning that the scale σ does not play any role in the main estimation
process. Since the value of the scale is not known a priori, by removing
it an important source for performance deterioration is eliminated. All the
following objective functions are homogeneous

JLS =
1
n

n∑
i=1

d2
i JLAD =

1
n

n∑
i=1

di JLkOS = dk:n (4.22)

Section 4.2. Models and Estimation Problems 121

where, JLS yields the family of least squares estimators, JLAD the least abso-
lute deviations estimator, and JLkOS the family of least k-th order statistics
estimators. In an LkOS estimator the distances are assumed sorted in as-
cending order, and the k-th element of the list is minimized. If k = n/2,
the least median of squares (LMedS) estimator, to be discussed in detail in
Section 4.4.4, is obtained.

The most important example of nonhomogeneous objective functions is
that of the M-estimators

JM =
1
n

n∑
i=1

ρ(di) (4.23)

where ρ(u) is a nonnegative, even-symmetric loss function, nondecreasing
with |u|. The class of JM includes as particular cases JLS and JLAD, for
ρ(u) = u2 and ρ(u) = |u|, respectively, but in general this objective function
is not homogeneous. The family of M-estimators to be discussed in Section
4.4.2 have the loss function

ρ(u) =
{

1− (1− u2)d |u| ≤ 1
1 |u| > 1

(4.24)

where d = 0, 1, 2, 3. It will be shown later in the chapter that all the ro-
bust techniques popular today in computer vision can be described as M-
estimators.

The definitions introduced so far implicitly assumed that all the n data
points obey the model, i.e., are inliers. In this case nonrobust estimation
technique provide a satisfactory result. In the presence of outliers, only
n1 ≤ n measurements are inliers and obey (4.3). The number n1 is not
know. The measurement equation (4.10) becomes

yi = yio + δyi δyi ∼ GI(0, σ2Cy) i = 1, . . . , n1 (4.25)
yi i = (n1 + 1), . . . , n

where nothing is assumed known about the n − n1 outliers. Sometimes in
robust methods proposed in computer vision, such as [99], [106], [113], the
outliers were modeled as obeying a uniform distribution.

A robust method has to determine n1 simultaneously with the estimation
of the inlier model parameters. Since n1 is unknown, at the beginning of
the estimation process the model is still defined for i = 1, . . . , n. Only
through the optimization of an adequate objective function are the data
points classified into inliers or outliers. The result of the robust estimation
is the inlier/outlier dichotomy of the data.

122 Robust Techniques for Computer Vision Chapter 4

The estimation process maps the input, the set of measurements yi,
i = 1, . . . , n into the output, the estimates α̂, θ̂ and ŷi. The measurements
are noisy and the uncertainty about their true value is mapped into the
uncertainty about the true value of the estimates. The computational pro-
cedure employed to obtain the estimates is called the estimator. To describe
the properties of an estimator the estimates are treated as random variables.
The estimate θ̂ will be used generically in the next two sections to discuss
these properties.

4.2.3 Robustness of an Estimator

Depending on n, the number of available measurements, we should distin-
guish between small (finite) sample and large (asymptotic) sample properties
of an estimator [75, Secs.6,7]. In the latter case n becomes large enough that
further increase in its value no longer has a significant influence on the esti-
mates. Many of the estimator properties proven in theoretical statistics are
asymptotic, and are not necessarily valid for small data sets. Rigorous anal-
ysis of small sample properties is difficult. See [85] for examples in pattern
recognition.

What is a small or a large sample depends on the estimation problem at
hand. Whenever the model is not accurate even for a large number of mea-
surements the estimate remains highly sensitive to the input. This situation
is frequently present in computer vision, where only a few tasks would qual-
ify as large scale behavior of the employed estimator. We will not discuss
here asymptotic properties, such as the consistency, which describes the re-
lation of the estimate to its true value when the number of data points grows
unbounded. Our focus is on the bias of an estimator, the property which is
also central in establishing whether the estimator is robust or not.

Let θ be the true value of the estimate θ̂. The estimator mapping the
measurements yi into θ̂ is unbiased if

E[θ̂] = θ (4.26)

where the expectation is taken over all possible sets of measurements of size
n, i.e., over the joint distribution of the q variables. Assume now that the
input data contains n1 inliers and n−n1 outliers. In a “thought” experiment
we keep all the inliers fixed and allow the outliers to be placed anywhere in
Rq, the space of the measurements yi. Clearly, some of these arrangements
will have a larger effect on θ̂ than others. Will define the maximum bias as

bmax(n1, n) = max
O
‖θ̂ − θ‖ (4.27)

Section 4.2. Models and Estimation Problems 123

where O stands for the arrangements of the n − n1 outliers. Will say that
an estimator exhibits a globally robust behavior in a given task if and only if

for n1 < n bmax(n1, n) < tb (4.28)

where tb ≥ 0 is a threshold depending on the task. That is, the presence of
outliers cannot introduce an estimation error beyond the tolerance deemed
acceptable for that task. To qualitatively assess the robustness of the esti-
mator we can define

η(n) = 1−min
n1

n1

n
while (4.28) holds (4.29)

which measures its outlier rejection capability. Note that the definition is
based on the worst case situation which may not appear in practice.

The robustness of an estimator is assured by the employed objective func-
tion. Among the three homogeneous objective functions in (4.22), minimiza-
tion of two criteria, the least squares JLS and the least absolute deviations
JLAD, does not yield robust estimators. A striking example for the (less
known) nonrobustness of the latter is discussed in [89, p.20]. The LS and
LAD estimators are not robust since their homogeneous objective function
(4.20) is also symmetric. The value of a symmetric function is invariant un-
der the permutations of its variables, the distances di in our case. Thus, in
a symmetric function all the variables have equal importance.

To understand why these two objective functions lead to a nonrobust es-
timator, consider the data containing a single outlier located far away from
all the other points, the inliers (Figure 4.2a). The scale of the inlier noise,
σ, has no bearing on the minimization of a homogeneous objective function
(4.21). The symmetry of the objective function, on the other hand, implies
that during the optimization all the data points, including the outlier, are
treated in the same way. For a parameter estimate close to the true value
the outlier yields a very large measurement error ‖δyi‖Cy

. The optimiza-
tion procedure therefore tries to compensate for this error and biases the fit
toward the outlier. For any threshold tb on the tolerated estimation errors,
the outlier can be placed far enough from the inliers such that (4.28) is not
satisfied. This means η(n) = 0.

In a robust technique the objective function cannot be both symmet-
ric and homogeneous. For the M-estimators JM (4.23) is only symmetric,
while the least k-th order statistics objective function JLkOS (4.20) is only
homogeneous.

Consider JLkOS . When at least k measurements in the data are inliers
and the parameter estimate is close to the true value, the k-th error is com-
puted based on an inlier and it is small. The influence of the outliers is

124 Robust Techniques for Computer Vision Chapter 4

avoided, and if (4.28) is satisfied, for the LkOS estimator η(n) = (n− k)/n.
As will be shown in the next section, the condition (4.28) depends on the
level of noise corrupting the inliers. When the noise is large, the value of
η(n) decreases. Therefore, it is important to realize that η(n) only measures
the global robustness of the employed estimator in the context of the task.
However, this is what we really care about in an application!

Several strategies can be adopted to define the value of k. Prior to the
estimation process k can be set to a given percentage of the number of points
n. For example, if k = n/2 the least median of squares (LMedS) estimator
[86] is obtained. Similarly, the value of k can be defined implicitly by setting
the level of the allowed measurement noise and maximizing the number of
data points within this tolerance. This is the approach used in the random
sample consensus (RANSAC) estimator [26] which solves

θ̂ = arg
θ

max
k

dk:n subject to ‖δyk:n‖Cy
< s(σ) (4.30)

where s(σ) is a user set threshold related to the scale of the inlier noise. In a
third, less generic strategy, an auxiliary optimization process is introduced
to determine the best value of k by analyzing a sequence of scale estimates
[63], [76].

Beside the global robustness property discussed until now, the local ro-
bustness of an estimator also has to be considered when evaluating perfor-
mance. Local robustness is measured through the gross error sensitivity
which describes the worst influence a single measurement can have on the
value of the estimate [89, p.191]. Local robustness is a central concept in the
theoretical analysis of robust estimators and has a complex relation to global
robustness e.g., [40], [69]. It also has important practical implications.

Large gross error sensitivity (poor local robustness) means that for a
critical arrangement of the n data points, a slight change in the value of
a measurement yi yields an unexpectedly large change in the value of the
estimate θ̂. Such behavior is certainly undesirable. Several robust estimators
in computer vision, such as LMedS and RANSAC have large gross error
sensitivity, as will be shown in Section 4.4.4.

4.2.4 Definition of Robustness

We have defined global robustness in a task specific manner. An estimator
is considered robust only when the estimation error is guaranteed to be less
than what can be tolerated in the application (4.28). This definition is
different from the one used in statistic, where global robustness is closely
related to the breakdown point of an estimator. The (explosion) breakdown

Section 4.2. Models and Estimation Problems 125

point is the minimum percentage of outliers in the data for which the value
of maximum bias becomes unbounded [89, p.117]. Also, the maximum bias is
defined in statistics relative to a typically good estimate computed with all
the points being inliers, and not relative to the true value as in (4.27).

For computer vision problems the statistical definition of robustness is
too narrow. First, a finite maximum bias can still imply unacceptably large
estimation errors. Second, in statistics the estimators of models linear in the
variables are often required to be affine equivariant, i.e., an affine transfor-
mation of the input (measurements) should change the output (estimates)
by the inverse of that transformation [89, p.116]. It can be shown that the
breakdown point of an affine equivariant estimator cannot exceed 0.5, i.e.,
the inliers must be the absolute majority in the data [89, p.253], [69]. Accord-
ing to the definition of robustness in statistics, once the number of outliers
exceeds that of inliers, the former can be arranged into a false structure thus
compromising the estimation process.

Our definition of robust behavior is better suited for estimation in com-
puter vision where often the information of interest is carried by less than
half of the data points and/or the data may also contain multiple structures.
Data with multiple structures is characterized by the presence of several in-
stances of the same model, each corresponding in (4.11) to a different set of
parameters αk,θk, k = 1, . . . ,K. Independently moving objects in a scene is
just one example in which such data can appear. (The case of simultaneous
presence of different models is too rare to be considered here.)

The data in Figure 4.3 is a simple example of the multistructured case.
Outliers not belonging to any of the model instances can also be present.
During the estimation of any of the individual structures, all the other data
points act as outliers. Multistructured data is very challenging and once the
measurement noise becomes large (Figure 4.3b) none of the current robust
estimators can handle it. Theoretical analysis of robust processing for data
containing two structures can be found in [9], [97], and we will discuss it in
Section 4.4.7.

The definition of robustness employed here, beside being better suited for
data in computer vision, also has the advantage of highlighting the complex
relation between σ, the scale of the inlier noise and η(n), the amount of
outlier tolerance. To avoid misconceptions we do not recommend the use of
the term breakdown point in the context of computer vision.

Assume for the moment that the data contains only inliers. Since the
input is corrupted by measurement noise, the estimate θ̂ will differ from the
true value θ. The larger the scale of the inlier noise, the higher the probability
of a significant deviation between θ and θ̂. The inherent uncertainty of an

126 Robust Techniques for Computer Vision Chapter 4

0 10 20 30 40 50 60 70 80 90 100 110
30

40

50

60

70

80

90

100

110

120

y
1

y 2

0 20 40 60 80 100 120
0

50

100

150

y
1

y 2

(a) (b)

Figure 4.3. Multistructured data. The measurement noise is small in (a) and
large in (b). The line is the fit obtained with the least median of squares (LMedS)
estimator.

estimate computed from noisy data thus sets a lower bound on tb (4.28).
Several such bounds can be defined, the best known being the Cramer-Rao
bound [75, p.78]. Most bounds are computed under strict assumptions about
the distribution of the measurement noise. Given the complexity of the visual
data, the significance of a bound in a real application is often questionable.
For a discussion of the Cramer-Rao bound in the context of computer vision
see [58, Chap. 14], and for an example [95].

Next, assume that the employed robust method can handle the percent-
age of outliers present in the data. After the outliers were removed, the
estimate θ̂ is computed from less data points and therefore it is less reliable
(a small sample property). The probability of a larger deviation from the
true value increases, which is equivalent to an increase of the lower bound on
tb. Thus, for a given level of the measurement noise (the value of σ), as the
employed estimator has to remove more outliers from the data, the chance
of larger estimation errors (the lower bound on tb) also increases. The same
effect is obtained when the number of removed outliers is kept the same but
the level of the measurement noise increases.

In practice, the tolerance threshold tb is set by the application to be
solved. When the level of the measurement noise corrupting the inliers in-
creases, eventually we are no longer able to keep the estimation errors below
tb. Based on our definition of robustness the estimator no longer can be
considered as being robust! Note that by defining robustness through the
breakdown point, as it is done in statistics, the failure of the estimator would
not have been recorded. Our definition of robustness also covers the numer-
ical robustness of a nonrobust estimator when all the data obeys the model.
In this case the focus is exclusively on the size of the estimation errors, and

Section 4.2. Models and Estimation Problems 127

the property is related to the efficiency of the estimator.
The loss of robustness is best illustrated with multistructured data. For

example, the LMedS estimator was designed to reject up to half the points
being outliers. When used to robustly fit a line to the data in Figure 4.3a,
correctly recovers the lower structure which contains sixty percent of the
points. However, when applied to the similar but heavily corrupted data
in Figure 4.3b, LMedS completely fails and the obtained fit is not different
from that of the nonrobust least squares [9], [77], [97]. As will be shown in
Section 4.4.7, the failure of LMedS is part of a more general deficiency of
robust estimators.

4.2.5 Taxonomy of Estimation Problems

The model described at the beginning of Section 4.2.2, the measurement
equation

yi = yio + δyi yi ∈ Rq δyi ∼ GI(0, σ2Cy) i = 1, . . . , n (4.31)

and the constraint

α+ x�
ioθ = 0 xio = x(yio) i = 1, . . . , n (4.32)

is general enough to apply to almost all computer vision problems. The
constraint is linear in the parameters α and θ, but nonlinear in the variables
yi. A model in which all the variables are measured with errors is called in
statistics an errors-in-variables (EIV) model [111], [115].

We have already discussed in Section 4.2.1 the problem of ellipse fitting
using such nonlinear EIV model (Figure 4.1). Nonlinear EIV models also
appear in any computer vision problem in which the constraint has to cap-
ture an incidence relation in projective geometry. For example, consider the
epipolar constraint between the affine coordinates of corresponding points in
two images A and B

[yB1o yB2o 1]�F [yA1o yA2o 1] = 0 (4.33)

where F is a rank two matrix [43, Chap.8]. When this bilinear constraint is
rewritten as (4.32) four of the eight carriers

x�
o = [yA1o yA2o yB1o yB2o yA1oyB1o yA2oyB1o yA2oyB1o yA2oyB2o]

(4.34)
are nonlinear functions in the variables. Several nonlinear EIV models used
in recovering 3D structure from uncalibrated image sequences are discussed
in [34].

128 Robust Techniques for Computer Vision Chapter 4

0
5

10
15

20

0

5

10

15

20
0

5

10

15

y1y2
z

Figure 4.4. A typical traditional regression problem. Estimate the parameters of
the surface defined on a sampling grid.

To obtain an unbiased estimate, the parameters of a nonlinear EIV model
have to be computed with nonlinear optimization techniques such as the
Levenberg-Marquardt method. See [43, Appen.4] for a discussion. However,
the estimation problem can be also approached as a linear model in the
carriers and taking into account the heteroscedasticity of the noise process
associated with the carriers (Section 4.2.1). Several such techniques were
proposed in the computer vision literature: the renormalization method [58],
the heteroscedastic errors-in-variables (HEIV) estimator [64], [71], [70] and
the fundamental numerical scheme (FNS) [12]. All of them return estimates
unbiased in a first order approximation.

Since the focus of this chapter is on robust estimation, we will only use
the less general, linear errors-in-variables regression model. In this case
the carriers are linear expressions in the variables, and the constraint (4.32)
becomes

α+ y�
ioθ = 0 i = 1, . . . , n . (4.35)

An important particular case of the general EIV model is obtained by
considering the constraint (4.4). This is the traditional regression model
where only a single variable, denoted z, is measured with error and therefore
the measurement equation becomes

zi = zio + δzi δzi ∼ GI(0, σ2) i = 1, . . . , n (4.36)
yi = yio i = 1, . . . , n

while the constraint is expressed as

zio = α+ x�
ioθ xio = x(yio) i = 1, . . . , n . (4.37)

Note that the nonlinearity of the carriers is no longer relevant in the tradi-
tional regression model since now their value is known.

Section 4.2. Models and Estimation Problems 129

0 2 4 6 8 10

0246810

0

1

2

3

4

5

6

7

8

9

10

y1y2

y3

Figure 4.5. A typical location problem. Determine the center of the cluster.

In traditional regression the covariance matrix of the variable vector

v� = [z y] σ2Cv = σ2
[

1 0�

0 O

]
(4.38)

has rank one, and the normalized distances, di (4.19) used in the objective
functions become

d2
i =

1
σ2 (vi − vio)�C+

v (vi − vio) =
(zi − zio)2

σ2 =
(
δzi
σ

)2

. (4.39)

The two regression models, the linear EIV (4.35) and the traditional
(4.37), has to be estimated with different least squares techniques, as will be
shown in Section 4.4.1. Using the method optimal for traditional regression
when estimating an EIV regression model, yields biased estimates. In com-
puter vision the traditional regression model appears almost exclusively only
when an image defined on the sampling grid is to be processed. In this case
the pixel coordinates are the independent variables and can be considered
available uncorrupted (Figure 4.4).

All the models discussed so far were related the class of regression prob-
lems. A second, equally important class of estimation problems also exist.
They are the location problems in which the goal is to determine an estimate
for the “center” of a set of noisy measurements. The location problems are
closely related to clustering in pattern recognition.

In practice a location problem is of interest only in the context of robust
estimation. The measurement equation is

yi = yio + δyi i = 1, . . . , n1 (4.40)
yi i = (n1 + 1), . . . , n

130 Robust Techniques for Computer Vision Chapter 4

with the constraint
yio = θ i = 1, . . . , n1 (4.41)

with n1, the number of inliers, unknown.
The important difference from the regression case (4.25) is that now we

do not assume that the noise corrupting the inliers can be characterized by
a single covariance matrix, i.e., the cloud of inliers has an elliptical shape.
This will allow to handle data such as in Figure 4.5.

The goal of the estimation process in a location problem is twofold.

– Find a robust estimate θ̂ for the center of the n measurements.

– Select the n1 data points associated with this center.

The discussion in Section 4.2.4 about the definition of robustness also applies
to location estimation.

While handling multistructured data in regression problems is an open
research question, clustering multistructured data is the main application
of the location estimators. The feature spaces derived from visual data are
complex and usually contain several clusters. The goal of feature space
analysis is to delineate each significant cluster through a robust location
estimation process. We will return to location estimation in Section 4.3.

4.2.6 Linear Errors-in-Variables Regression Model

To focus on the issue of robustness in regression problems, only the simplest
linear errors-in-variables (EIV) regression model (4.35) will be used. The
measurements are corrupted by i.i.d. noise

yi = yio + δyi yi ∈ Rp δyi ∼ GI(0, σ2Ip) i = 1, . . . , n (4.42)

where the number of variables q was aligned with p the dimension of the
parameter vector θ. The constraint is rewritten under the more convenient
form

g(yio) = y�
ioθ − α = 0 i = 1, . . . , n . (4.43)

To eliminate the ambiguity up to a constant of the parameters the following
two ancillary constraints are used

‖θ‖ = 1 α ≥ 0 . (4.44)

The three constraints together define the Hessian normal form of a plane in
Rp. Figure 4.6 shows the interpretation of the two parameters. The unit

Section 4.2. Models and Estimation Problems 131

Figure 4.6. The concepts of the linear errors-in-variables regression model. The
constraint is in the Hessian normal form.

vector θ is the direction of the normal, while α is the distance from the
origin.

In general, given a surface f(yo) = 0 in Rp, the first order approximation
of the shortest Euclidean distance from a point y to the surface is [110, p.101]

‖y − ŷ‖ � |f(y)|
‖∇f(ŷ)‖ (4.45)

where ŷ is the orthogonal projection of the point onto the surface, and∇f(ŷ)
is the gradient computed in the location of that projection. The quantity
f(y) is called the algebraic distance, and it can be shown that it is zero only
when y = yo, i.e., the point is on the surface.

Taking into account the linearity of the constraint (4.43) and that θ has
unit norm, (4.45) becomes

‖y − ŷ‖ = |g(y)| (4.46)

i.e., the Euclidean distance from a point to a hyperplane written under the
Hessian normal form is the absolute value of the algebraic distance.

When all the data points obey the model the least squares objective
function JLS (4.22) is used to estimate the parameters of the linear EIV
regression model. The i.i.d. measurement noise (4.42) simplifies the expres-
sion of the distances di (4.19) and the minimization problem (4.21) can be
written as

[α̂, θ̂] = argmin
α,θ

1
n

n∑
i=1

‖yi − yio‖2 . (4.47)

132 Robust Techniques for Computer Vision Chapter 4

Combining (4.46) and (4.47) we obtain

[α̂, θ̂] = argmin
α,θ

1
n

n∑
i=1

g(yi)
2 . (4.48)

To solve (4.48) the true values yio are replaced with the orthogonal projection
of the yi-s onto the hyperplane. The orthogonal projections ŷi associated
with the solution α̂, θ̂ are the corrected values of the measurements yi, and
satisfy (Figure 4.6)

ĝ(ŷi) = ŷ�
i θ̂ − α̂ = 0 i = 1, . . . , n . (4.49)

The estimation process (to be discussed in Section 4.4.1) returns the pa-
rameter estimates, after which the ancillary constrains (4.44) can be imposed.
The employed parametrization of the linear model

ω1 = [θ� α]� = [θ1 θ2 · · · θp α]� ∈ Rp+1 (4.50)

however is redundant. The vector θ being a unit vector it is restricted to
the p-dimensional unit sphere in Rp. This can be taken into account by
expressing θ in polar angles [115] as, θ = θ(β)

β = [β1 β2 · · · βp−1]
� 0 ≤ βj ≤ π j = 1, · · · , p− 2 0 ≤ βp−1 < 2π

(4.51)
where the mapping is

θ1(β) = sinβ1 · · · sinβp−2 sinβp−1

θ2(β) = sinβ1 · · · sinβp−2 cosβp−1

θ3(β) = sinβ1 · · · sinβp−3 cosβp−2

... (4.52)
θp−1(β) = sinβ1 cosβ2

θp(β) = cosβ1 .

The polar angles βj and α provide the second representation of a hyperplane

ω2 = [β� α]� = [β1 β2 · · · βp−1 α]� ∈ Rp . (4.53)

The ω2 representation being based in part on the mapping from the unit
sphere to Rp−1, is inherently discontinuos. See [24, Chap. 5] for a detailed
discussion of such representations. The problem is well known in the context
of Hough transform, where this parametrization is widely used.

Section 4.2. Models and Estimation Problems 133

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

y
1

y 2 l
a2

 l
a1

α

α

0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

y
1

y 2

l
b1

l
b2

β
− β

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

l
a1

 l
a2

l
b1

 l
b2

β /π

α

−2 0 2 4
−3

−2

−1

0

1

2

3

 l
a1

 l
a2

 l
b1

 l
b2

y
1

y 2

(a) (b) (c) (d)

Figure 4.7. Discontinuous mappings due to the polar representation of θ. (a)
Two lines with same α and antipodal polar angles β. (b) Two lines with same α
and polar angles β differing only in sign. (c) The ω2 parameter space. (d) The ω3
parameter space.

To illustrate the discontinuity of the mapping, consider the representation
of a line, p = 2. In this case only a single polar angle β is needed and the
equation of a line in the Hessian normal form is

y1cosβ + y2sinβ − α = 0 . (4.54)

In Figures 4.7a and 4.7b two pairs of lines are shown, each pair having the
same α but different polar angles. Take β1 = β. The lines in Figure 4.7a
have the relation β2 = β + π, while those in Figure 4.7b β2 = 2π − β.
When represented in the ω2 parameter space (Figure 4.7c) the four lines are
mapped into four points.

Let now α → 0 for the first pair, and β → 0 for the second pair. In the
input space each pair of lines merges into a single line, but the four points in
the ω2 parameter space remain distinct, as shown by the arrows in Figure
4.7c.

A different parameterization of the hyperplane in Rp can avoid this prob-
lem, though no representation of the Hessian normal form can provide a con-
tinuous mapping into a feature space. In the new parameterization all the
hyperplanes not passing through the origin are represented by their point
closest to the origin. This point has the coordinates αθ and is the intersec-
tion of the plane with the normal from the origin. The new parametrization
is

ω3 = αθ = [αθ1 αθ2 · · · αθp]� ∈ Rp . (4.55)

It is important to notice that the space of ω3 is in fact the space of the input
as can also be seen from Figure 4.6. Thus, when the pairs of lines collapse,
so do their representations in the ω3 space (Figure 4.7d).

134 Robust Techniques for Computer Vision Chapter 4

Planes which contain the origin have to be treated separately. In practice
this also applies to planes passing near the origin. A plane with small α is
translated along the direction of the normal θ with a known quantity τ .
The plane is then represented as τθ. When m planes are close to the origin

the direction of translation is
m∑
i=1

θi and the parameters of each translated

plane are adjusted accordingly. After processing in the ω3 space it is easy
to convert back to the ω1 representation.

Estimation of the linear EIV regression model parameters by total least
squares (Section 4.4.1) uses the ω1 parametrization. The ω2 parametrization
will be employed in the robust estimation of the model (Section 4.4.5). The
parametrization ω3 is useful when the problem of robust multiple regression
is approached as a feature space analysis problem [9].

4.2.7 Objective Function Optimization

The objective functions used in robust estimation are often nondifferentiable
and analytical optimization methods, like those based on the gradient, can-
not be employed. The k-th order statistics, JLkOS (4.22) is such an ob-
jective function. Nondifferentiable objective functions also have many local
extrema and to avoid being trapped in one of these minima the optimization
procedure should be run starting from several initial positions. A numerical
technique to implement robust estimators with nondifferentiable objective
functions, is based on elemental subsets.

An elemental subset is the smallest number of data points required to
fully instantiate a model. In the linear EIV regression case this means p
points in a general position, i.e., the points define a basis for a (p − 1)-
dimensional affine subspace in Rp [89, p. 257]. For example, if p = 3 not all
three points can lie on a line in 3D.

The p points in an elemental subset thus define a full rank system of
equations from which the model parameters α and θ can be computed ana-
lytically. Note that using p points suffices to solve this homogeneous system.
The ancillary constraint ‖θ‖ = 1 is imposed at the end. The obtained pa-
rameter vector ω1 = [θ� α]� will be called, with a slight abuse of notation,
a model candidate.

The number of possibly distinct elemental subsets in the data
(
n
p

)
, can

be very large. In practice an exhaustive search over all the elemental subsets
is not feasible, and a random sampling of this ensemble has to be used.
The sampling drastically reduces the amount of computations at the price
of a negligible decrease in the outlier rejection capability of the implemented

Section 4.2. Models and Estimation Problems 135

robust estimator.
Assume that the number of inliers in the data is n1, and that N elemental

subsets, p-tuples, were drawn independently from that data. The probability
that none of these subsets contains only inliers is (after disregarding the
artifacts due to the finite sample size)

Pfail =
[
1−

(n1

n

)p]N
. (4.56)

We can choose a small probability Perror to bound upward Pfail. Then the
equation

Pfail = Perror (4.57)

provides the value of N as a function of the percentage of inliers n1/n, the
dimension of the parameter space p and Perror. This probabilistic sampling
strategy was applied independently in computer vision for the RANSAC
estimator [26] and in statistics for the LMedS estimator [89, p.198].

Several important observations has to be made. The value of N obtained
from (4.57) is an absolute lower bound since it implies that any elemental
subset which contains only inliers can provide a satisfactory model candidate.
However, the model candidates are computed from the smallest possible
number of data points and the influence of the noise is the largest possible.
Thus, the assumption used to compute N is not guaranteed to be satisfied
once the measurement noise becomes significant. In practice n1 is not know
prior to the estimation, and the value of N has to be chosen large enough to
compensate for the inlier noise under a worst case scenario.

Nevertheless, it is not recommended to increase the size of the subsets.
The reason is immediately revealed if we define in a drawing of subsets of
size q ≥ p, the probability of success as obtaining a subset which contains
only inliers

Psuccess =

(
n1
q

)
(
n
q

) =
q−1∏
k=0

n1 − k
n− k . (4.58)

This probability is maximized when q = p.
Optimization of an objective function using random elemental subsets

is only a computational tool and has no bearing on the robustness of the
corresponding estimator. This fact is not always recognized in the computer
vision literature. However, any estimator can be implemented using the fol-
lowing numerical optimization procedure.

136 Robust Techniques for Computer Vision Chapter 4

Objective Function Optimization With Elemental Subsets

– Repeat N times:
1. choose an elemental subset (p-tuple) by random sampling;

2. compute the corresponding model candidate;

3. compute the value of the objective function by assuming the model
candidate valid for all the data points.

– The parameter estimate is the model candidate yielding the smallest
(largest) objective function value.

This procedure can be applied the same way for the nonrobust least squares
objective function JLS as for the the robust least k-th order statistics JLkOS
(4.22). However, while an analytical solution is available for the former
(Section 4.4.1), for the latter the above procedure is the only practical way
to obtain the estimates.

Performing an exhaustive search over all elemental subsets does not guar-
antee to find the global extremum of the objective function since not every
location in the parameter space can be visited. Finding the global extremum,
however, most often is also not required. When a robust estimator is im-
plemented with the elemental subsets based search procedure, the goal is
only to obtain the inlier/outlier dichotomy, i.e., to select the “good” data.
The robust estimate corresponding to an elemental subset is then refined by
processing the selected inliers with a nonrobust (least squares) estimator.
See [87] for an extensive discussion of the related issues from a statistical
perspective.

The number of required elemental subsets N can be significantly reduced
when information about the reliability of the data points is available. This
information can be either provided by the user, or can be derived from the
data through an auxiliary estimation process. The elemental subsets are
then chosen with a guided sampling biased toward the points having a higher
probability to be inliers. See [103] and [104] for computer vision examples.

We have emphasized that the random sampling of elemental subsets is
not more than a computational procedure. However, guided sampling has
a different nature since it relies on a fuzzy pre-classification of the data
(derived automatically, or supplied by the user). Guided sampling can yield
a significant improvement in the performance of the estimator relative to
the unguided approach. The better quality of the elemental subsets can
be converted into either less samples in the numerical optimization (while
preserving the outlier rejection capacity η(n) of the estimator), or into an
increase of η(n) (while preserving the same number of elemental subsets N).

Section 4.2. Models and Estimation Problems 137

We conclude that guided sampling should be regarded as a robust tech-
nique, while the random sampling procedure should be not. Their subtle but
important difference has to be recognized when designing robust methods for
solving complex vision tasks.

In most applications information reliable enough to guide the sampling is
not available. However, the amount of computations still can be reduced by
performing in the space of the parameters local searches with optimization
techniques which do not rely on derivatives. For example, in [90] line search
was proposed to improve the implementation of the LMedS estimator. Let
ωb

1 = [θ�
b αb]

� be the currently best model candidate, as measured by the
value of the objective function. From the next elemental subset the model
candidate ω1 = [θ� α]� is computed. The objective function is then assessed
at several locations along the line segment ωb

1 − ω1, and if an improvement
relative to ωb

1 is obtained the best model candidate is updated.
In Section 4.4.5 we will use a more effective multidimensional uncon-

strained optimization technique, the simplex based direct search. The sim-
plex search is a heuristic method proposed in 1965 by Nelder and Mead
[78]. See also [82, Sec.10.4]. Simplex search is a heuristic with no theoretical
foundations. Recently direct search methods became again of interest and
significant progress was reported in the literature [66] [114], but in our con-
text there is no need to use these computationally more intensive techniques.

To take into account the fact that θ is a unit vector, the simplex search
should be performed in the space of the polar angles β ∈ Rp−1. A simplex in
Rp−1 is the volume delineated by p vertices in a nondegenerate position, i.e.,
the points define an affine basis in Rp−1. For example, in R2 the simplex
is a triangle, in R3 it is a tetrahedron. In our case, the vertices of the
simplex are the polar angle vectors βk ∈ Rp−1, k = 1, . . . , p, representing p
unit vectors θk ∈ Rp. Each vertex is associated with the value of a scalar
function fk = f(βk). For example, f(u) can be the objective function of an
estimator. The goal of the search is to find the global (say) maximum of this
function.

We can always assume that at the beginning of an iteration the vertices
are labeled such that f1 ≤ f2 ≤ · · · ≤ fp. In each iteration an attempt is
made to improve the least favorable value of the function, f1 in our case, by
trying to find a new location β′

1 for the vertex β1 such that f1 < f(β′
1).

Simplex Based Direct Search Iteration

First β̄ the centroid of the nonminimum vertices, βk, k = 2, . . . , p, is ob-
tained. The new location is then computed with one of the following opera-

138 Robust Techniques for Computer Vision Chapter 4

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

β
1

β 2
β

1

β
2

β
3

β
−

β
1
’

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

β
1

β 2
β

1

β
2

β
3

β
−

β
1
’

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

β
1

β 2
β

1

β
2

β
3

β
−

β
1
’

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

β
1

β 2
β

1

β
2

β
3

β
−

β’
1

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

β
1

β 2
β

1

β
2

β
3

β
−

β’
1

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

β
1

β 2
β

1

β
2

β
3

β
−

β’
1

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

β
1

β 2
β

1

β
2

β
3

β
−

β’
1

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

β
1

β 2
β

1

β
2

β
3

β
−

β’
1

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

β
1

β 2
β

1

β
2

β
3

β
−

β’
1

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

β
1

β 2
β

1

β
2

β
3

β
−

β’
1

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

β
1

β 2
β

1

β
2

β
3

β
−

β’
1

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

β
1

β 2
β

1

β
2

β
3

β
−

β
1
’

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

β
1

β 2

β
1

β
2

β
3

β
−

β
1
’

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

β
1

β 2

β
1

β
2

β
3

β
−

β
1
’

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

β
1

β 2

β
1

β
2

β
3

β
−

β
1
’

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

β
1

β 2

β
1

β
2

β
3

β
−

β’
1

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

β
1

β 2

β
1

β
2

β
3

β
−

β’
1

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

β
1

β 2

β
1

β
2

β
3

β
−

β’
1

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

β
1

β 2

β
1

β
2

β
3

β
−

β’
1

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

β
1

β 2

β
1

β
2

β
3

β
−

β’
1

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

β
1

β 2

β
1

β
2

β
3

β
−

β’
1

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

β
1

β 2

β
1

β
2

β
3

β
−

β’
1

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

β
1

β 2

β
1

β
2

β
3

β
−

β’
1

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

β
1

β 2

β
1

β
2

β
3

β
−

β
1
’

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

β
1

β 2

β
1

β
2

β
3

β
−

β
1
’

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

β
1

β 2

β
1

β
2

β
3

β
−

β
1
’

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

β
1

β 2

β
1

β
2

β
3

β
−

β’
1

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

β
1

β 2

β
1

β
2

β
3

β
−

β’
1

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

β
1

β 2

β
1

β
2

β
3

β
−

β’
1

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

β
1

β 2

β
1

β
2

β
3

β
−

β’
1

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

β
1

β 2

β
1

β
2

β
3

β
−

β’
1

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

β
1

β 2

β
1

β
2

β
3

β
−

β’
1

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

β
1

β 2

β
1

β
2

β
3

β
−

β
1
’

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

β
1

β 2

β
1

β
2

β
3

β
−

β
1
’

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

β
1

β 2

β
1

β
2

β
3

β
−

β
1
’

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

β
1

β 2

β
1

β
2

β
3

β
−

β’
1

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

β
1

β 2

β
1

β
2

β
3

β
−

β’
1

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

β
1

β 2

β
1

β
2

β
3

β
−

β’
1

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

β
1

β 2

β
1

β
2

β
3

β
−

β’
1

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

β
1

β 2

β
1

β
2

β
3

β
−

β’
1

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

β
1

β 2

β
1

β
2

β
3

β
−

β’
1

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

β
1

β 2

β
1

β
2

β
3

β
−

β’
1

(a) (b) (c) (d)

Figure 4.8. Basic operations in simplex based direct search. (a) Reflection. (b)
Expansion. (c) Outside contraction. (d) Inside contraction.

tions along the direction β̄ − β1: reflection, expansion and contraction.

1. The reflection of β1, denoted β′ (Figure 4.8a) is defined as

β′ = crβ1 + (1− cr)β̄ (4.59)

where cr < 0 is the reflection coefficient. If f2 < f(β′) ≤ fp, then
β′

1 = β′ and the next iteration is started.

2. If f(β′) > fp, i.e., the reflection has produced a new maximum, the
simplex is expanded by moving β′ to β∗ (Figure 4.8b)

β∗ = ceβ
′ + (1− ce)β̄ (4.60)

where the expansion coefficient ce > 1. If f(β∗) > f(β′) the expansion
is successful and β′

1 = β∗. Else, β′
1 = β′. The next iteration is started.

3. If f(β′) ≤ f2, the vector β1n is defined as either β1 or β′, whichever
has the larger associated function value, and a contraction is performed

β∗ = ccβ1n + (1− cc)β̄ . (4.61)

First, a contraction coefficient 0 < cc < 1 is chosen for outside contrac-
tion (Figure 4.8c). If f(β∗) > f(β1n), then β′

1 = β∗ and the next
iteration is started. Otherwise, an inside contraction is performed
(Figure 4.8d) in which cc is replaced with −cc, and the condition
f(β∗) > f(β1n) is again verified.

4. Should both contractions fail all the vertices are updated

βk ←−
1
2
(
βk + βp

)
k = 1, . . . , (p− 1) (4.62)

and the next iteration is started.

Section 4.3. Location Estimation 139

0
20

40
60

80

0

20

40

60

80

0

20

40

60

80

y
1

y
2

y 3

20
40

60
80

100

0

20

40

60

80

100

−50

0

50

L*

u*

v*

(a) (b)

Figure 4.9. Multistructured data in the location estimation problem. (a) The
“traditional” case. (b) A typical computer vision example.

Recommended values for the coefficients are cr = −1, ce = 1.5, cc = 0.5.

To assess the convergence of the search several stopping criteria can be em-
ployed. For example, the variance of the p function values fk should fall
below a threshold which is exponentially decreasing with the dimension of
the space, or the ratio of the smallest and largest function values f1/fp should
be close to one. Similarly, the volume of the simplex should shrink below
a dimension dependent threshold. In practice, the most effective stopping
criteria are application specific incorporating additional information which
was not used during the optimization.

In the previous sections we have analyzed the problem of robust estima-
tion from a generic point of view. We can proceed now to examine the two
classes of estimation problems: location and regression. In each case will
introduce a new robust technique whose improved behavior was achieved by
systematically exploiting the principles discussed so far.

4.3 Location Estimation

In this section will show that in the context of computer vision tasks often
only nonparametric approaches can provide a robust solution for the location
estimation problem. We employ a class of nonparametric techniques in which
the data points are regarded as samples from an unknown probability density.
The location estimates are then defined as the modes of this density. Explicit
computation of the density is avoided by using the mean shift procedure.

140 Robust Techniques for Computer Vision Chapter 4

4.3.1 Why Nonparametric Methods

The most general model of the location problem is that of multiple structures

k = 1, . . . ,K m1 = 1 · · · mK+1 = n1 + 1

y(k)
i = y(k)

io + δyi y(k)
io = θ(k) i = mk, . . . , (mk+1 − 1)

yi i = (n1 + 1), . . . , n (4.63)

with no information being available about the nature of the inlier noise δyi,
the n− n1 outliers, or the number of structures present in the data K. The
model (4.63) is also used in cluster analysis, the equivalent pattern recog-
nition problem. Clustering under its most general form is an unsupervised
learning method of unknown categories from incomplete prior information
[52, p. 242]. The books [52], [21, Chap. 10], [44, Sec.14.3] provide a complete
coverage of the related pattern recognition literature.

Many of the pattern recognition methods are not adequate for data anal-
ysis in computer vision. To illustrate their limitations will compare the two
data sets shown in Figure 4.9. The data in Figure 4.9a obeys what is assumed
in traditional clustering methods when the proximity to a cluster center is
measured as a function of Euclidean or Mahalanobis distances. In this case
the shape of the clusters is restricted to elliptical and the inliers are assumed
to be normally distributed around the true cluster centers. A different metric
will impose a different shape on the clusters. The number of the structures
(clusters) K, is a parameter to be supplied by the user and has a large influ-
ence on the quality of the results. While the value of K can be also derived
from the data by optimizing a cluster validity index, this approach is not
robust since it is based on (possibly erroneous) data partitions.

Expectation maximization (EM) is a frequently used technique today in
computer vision to model the data. See [44, Sec.8.5.2] for a short description.
The EM algorithm also relies on strong prior assumptions. A likelihood func-
tion, defined from a mixture of predefined (most often normal) probability
densities, is maximized. The obtained partition of the data thus employs
“tiles” of given shape. The number of required mixture components is often
difficult to determine, and the association of these components with true
cluster centers may not be obvious.

Examine now the data in Figure 4.9b in which the pixels of a color
image were mapped into the three-dimensional L∗u∗v∗ color space. The
significant clusters correspond to similarly colored pixels in the image. The
clusters have a large variety of shapes and their number is not obvious. Any
technique which imposes a preset shape on the clusters will have difficulties

Section 4.3. Location Estimation 141

to accurately separate K significant structures from the background clutter
while simultaneously also having to determine the value of K.

Following our goal oriented approach toward robustness (Section 4.2.3) a
location estimator should be declared robust only if it returns a satisfactory
result. From the above discussion can be concluded that robustly solving
location problems in computer vision often requires techniques which use the
least possible amount of prior assumptions about the data. Such techniques
belong to the family of nonparametric methods.

In nonparametric methods the n data points are regarded as outcomes
from an (unknown) probability distribution f(y). Each data point is as-
sumed to have an equal probability

Prob[y = yi] =
1
n

i = 1, . . . , n . (4.64)

When several points have the same value, the probability is n−1 times
the multiplicity. The ensemble of points defines the empirical distribution
f(y|y1 · · ·yn) of the data. The empirical distribution is the nonparametric
maximum likelihood estimate of the distribution from which the data was
drawn [22, p.310]. It is also the “least committed” description of the data.

Every clustering technique exploits the fact that the clusters are the
denser regions in the space. However, this observation can be pushed further
in the class of nonparametric methods considered here, for which a region
of higher density implies more probable outcomes of the random variable y.
Therefore, in each dense region the location estimate (cluster center) should
be associated with the most probable value of y, i.e., with the local mode of
the empirical distribution

θ̂
(k)

= argmax
y k f(y|y1 · · ·yn) k = 1, . . . ,K . (4.65)

Note that by detecting all the significant modes of the empirical distribution
the number of clusters K is automatically determined. The mode based
clustering techniques make extensive use of density estimation during data
analysis.

4.3.2 Kernel Density Estimation

The modes of a random variable y are the local maxima of its probability
density function f(y). However, only the empirical distribution, the data
points yi, i = 1, . . . , n are available. To accurately determine the locations
of the modes, first a continuous estimate of the underlying density f̂(y) has

142 Robust Techniques for Computer Vision Chapter 4

to be defined. Later we will see that this step can be eliminated by directly
estimating the gradient of the density (Section 4.3.3).

To estimate the probability density in y a small neighborhood is defined
around y. The neighborhood usually has a simple shape: cube, sphere or
ellipsoid. Let its volume be Vy, and my be the number of data points inside.
Then the density estimate is [21, Sec.4.2]

f̂(y) =
my

nVy
(4.66)

which can be employed in two different ways.
– In the nearest neighbors approach, the neigborhoods (the volumes Vy)

are scaled to keep the number of points my constant. A mode cor-
responds to a location in which the neighborhood has the smallest
volume.

– In the kernel density approach, the neigborhoods have the same volume
Vy and the number of points my inside are counted. A mode corre-
sponds to a location in which the neighborhood contains the largest
number of points.

The minimum volume ellipsoid (MVE) robust location estimator pro-
posed in statistics [89, p.258], is a technique related to the nearest neighbors
approach. The ellipsoids are defined by elemental subsets obtained through
random sampling, and the numerical optimization procedure discussed in
Section 4.2.7 is employed. The location estimate is the center of the smallest
ellipsoid which contains a given percentage of the data points. In a robust
clustering method proposed in computer vision the MVE estimator was used
to sequentially remove the clusters from the data, starting from the largest
[53]. However, by imposing an elliptical shape for the clusters severe ar-
tifacts were introduced and the method was never successful in real vision
applications.

For our goal of finding the local maxima of f̂(y), the kernel density meth-
ods are more suitable. Kernel density estimation is a widely used technique
in statistics and pattern recognition, where it is also called the Parzen win-
dow method. See [92], [112] for a description in statistics, and [21, Sec.4.3]
[44, Sec. 6.6] for a description in pattern recognition.

Will start with the simplest case of one-dimensional data. Let yi, i =
1, . . . , n, be scalar measurements drawn from an arbitrary probability distri-
bution f(y). The kernel density estimate f̂(y) of this distribution is obtained

Section 4.3. Location Estimation 143

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

8

x
0 20 40 60 80 100 120

−1

−0.5

0

0.5

1

1.5

2

x
0 20 40 60 80 100

0

0.005

0.01

0.015

0.02

0.025

0.03

x

f(
x)

(a) (b) (c)

Figure 4.10. Kernel density estimation. (a) Histogram of the data. (b) Some of
the employed kernels. (c) The estimated density.

based on a kernel function K(u) and a bandwidth h as the average

f̂(y) =
1
nh

n∑
i=1

K

(
y − yi
h

)
. (4.67)

Only the class of symmetric kernel functions with bounded support will be
considered. They satisfy the following properties

K(u) = 0 for |u| > 1
∫ 1

−1
K(u) = 1 (4.68)

K(u) = K(−u) ≥ 0 K(u1) ≥ K(u2) for |u1| ≤ |u2| .

Other conditions on the kernel function or on the density to be estimated
[112, p.18], are of less significance in practice. The even symmetry of the
kernel function allows us to define its profile k(u)

K(u) = ckk(u2) k(u) ≥ 0 for 0 ≤ u ≤ 1 (4.69)

where ck is a normalization constant determined by (4.68). The shape of the
kernel implies that the profile is a monotonically decreasing function.

The kernel density estimate is a continuous function derived from the
discrete data, the empirical distribution. An example is shown in Figure
4.10. When instead of the histogram of the n points (Figure 4.10a) the
data is represented as an ordered list (Figure 4.10b, bottom), we are in fact
using the empirical distribution. By placing a kernel in each point (Figure
4.10b) the data is convolved with the symmetric kernel function. The density
estimate in a given location is the average of the contributions from each
kernel (Figure 4.10c). Since the employed kernel has a finite support, not
all the points contribute to a density estimate. The bandwidth h scales the

144 Robust Techniques for Computer Vision Chapter 4

size of the kernels, i.e., the number of points whose contribution is averaged
when computing the estimate. The bandwidth thus controls the amount of
smoothing present in f̂(y).

For multivariate measurements yi ∈ Rp, in the most general case, the
bandwidth h is replaced by a symmetric, positive definite bandwidth matrix
H. The estimate of the probability distribution at location y is still computed
as the average

f̂(y) =
1
n

n∑
i=1

KH (y − yi) (4.70)

where the bandwidth matrix H scales the kernel support to be radial sym-
metric, i.e., to have the desired elliptical shape and size

KH(u) = [det[H]]−1/2K(H−1/2u) . (4.71)

Since only circular symmetric prototype kernels K(u) will be considered, we
have, using the profile k(u)

K(u) = ck,pk(u�u) . (4.72)

From (4.70), taking into account (4.72) and (4.71) results

f̂(y) =
ck,p

n[det[H]]1/2

n∑
i=1

k
(
(y − yi)

�H−1(y − yi)
)

=
ck,p

n[det[H]]1/2

n∑
i=1

k
(
d[y,yi,H]2

)
(4.73)

where the expression d[y,yi,H]2 denotes the squared Mahalanobis distance
from y to yi. The case H = h2Ip is the most often used. The kernels then
have a circular support whose radius is controlled by the bandwidth h and
(4.70) becomes

f̂K(y) =
1
nhp

n∑
i=1

K

(
y − yi
h

)
=
ck,p
nhp

n∑
i=1

k

(∥∥∥∥y − yi
h

∥∥∥∥2
)

(4.74)

where the dependence of the density estimate on the kernel was made ex-
plicit.

The quality of a density estimate f̂(y) is assessed in statistics using the
asymptotic mean integrated error (AMISE), i.e., the integrated mean square
error

MISE(y) =
∫

E
[
f(y)− f̂(y)

]2
dy . (4.75)

Section 4.3. Location Estimation 145

between the true density and its estimate for n → ∞ while h → 0 at a
slower rate. The expectation is taken over all data sets of size n. Since the
bandwidth h of a circular symmetric kernel has a strong influence on the
quality of f̂(y), the bandwidth minimizing an approximation of the AMISE
error is of interest. Unfortunately, this bandwidth depends on f(y), the
unknown density [112, Sec.4.3].

For the univariate case several practical rules are available [112, Sec.3.2].
For example, the information about f(y) is substituted with σ̂, a robust scale
estimate derived from the data

ĥ =
[

243R(K)
35µ2(K)2n

]1/5

σ̂ (4.76)

where

µ2(K) =
∫ 1

−1
u2K(u)du R(K) =

∫ 1

−1
K(u)2du (4.77)

The scale estimate σ̂ will be discussed in Section 4.4.3.
For a given bandwidth the AMISE measure is minimized by the Epanech-

nikov kernel [112, p.104] having the profile

kE(u) =
{

1− u 0 ≤ u ≤ 1
0 u > 1

(4.78)

which yields the kernel

KE(y) =
{ 1

2c
−1
p (p+ 2)(1− ‖y‖2) ‖y‖ ≤ 1

0 otherwise
(4.79)

where cp is the volume of the p-dimensional unit sphere. Other kernels can
also be defined. The truncated normal has the profile

kN (u) =
{
e−au 0 ≤ u ≤ 1

0 u > 1
(4.80)

where a is chosen such that e−a is already negligible small. Neither of the two
profiles defined above have continuous derivatives at the boundary u = 1.
This condition is satisfied (for the first two derivatives) by the biweight kernel
having the profile

kB(u) =
{

(1− u)3 0 ≤ u ≤ 1
0 u > 1

(4.81)

Its name here is taken from robust statistics, in the kernel density estimation
literature it is called the triweight kernel [112, p.31].

146 Robust Techniques for Computer Vision Chapter 4

The bandwidth matrix H is the critical parameter of a kernel density
estimator. For example, if the region of summation (bandwidth) is too large,
significant features of the distribution, like multimodality, can be missed
by oversmoothing. Furthermore, locally the data can have very different
densities and using a single bandwidth matrix often is not enough to obtain
a satisfactory estimate.

There are two ways to adapt the bandwidth to the local structure, in
each case the adaptive behavior being achieved by first performing a pilot
density estimation. The bandwidth matrix can be either associated with the
location y in which the distribution is to be estimated, or each measurement
yi can be taken into account in (4.70) with its own bandwidth matrix

f̂K(y) =
1
n

n∑
i=1

KHi
(y − yi) . (4.82)

It can be shown that (4.82), called the sample point density estimator, has
superior statistical properties [39].

The local maxima of the density f(y) are by definition the roots of the
equation

∇f(y) = 0 (4.83)

i.e., the zeros of the density gradient. Note that the converse is not true
since any stationary point of f(y) satisfies (4.83). The true density, however,
is not available and in practice the estimate of the gradient ∇̂f(y) has to be
used.

In the next section we describe the mean shift technique which avoids
explicit computation of the density estimate when solving (4.83). The mean
shift procedure also associates each data point to the nearest density max-
imum and thus performs a nonparametric clustering in which the shape of
the clusters is not set a priori.

4.3.3 Adaptive Mean Shift

The mean shift method was described in several publications [16], [18], [17].
Here we are considering its most general form in which each measurement
yi be associated with a known bandwidth matrix Hi, i = 1, . . . , n. Taking
the gradient of the sample point density estimator (4.82) we obtain, after
recalling (4.73) and exploiting the linearity of the expression

∇̂fK(y) ≡ ∇f̂K(y) (4.84)

=
2ck,p
n

n∑
i=1

[det[Hi]]−1/2 H−1
i (y − yi) k

′
(
d[y,yi,Hi]

2
)
.

Section 4.3. Location Estimation 147

The function g(x) = −k′(x) satisfies the properties of a profile, and thus we
can define the kernel G(u) = cg,pg(u�u). For example, for the Epanechnikov
kernel the corresponding new profile is

gE(u) =
{

1 0 ≤ u ≤ 1
0 u > 1

(4.85)

and thus GE(u) is the uniform kernel. For convenience will introduce the
notation

Qi(y) = det[Hi]−1/2 H−1
i g

(
d[y,yi,Hi]

2
)
. (4.86)

From the definition of g(u) and (4.69)

Qi(y) = O d[y,yi,Hi] > 1 . (4.87)

Then (4.84) can be written as

∇̂fK(y) =
2ck,p
n

(
n∑
i=1

Qi(y)

)(n∑
i=1

Qi(y)

)−1 n∑
i=1

Qi(y)yi − y

 (4.88)

and the roots of the equation (4.83) are the solutions of

y =

(
n∑
i=1

Qi(y)

)−1 n∑
i=1

Qi(y)yi (4.89)

which can be solved only iteratively

y[l+1] =

(
n∑
i=1

Qi

(
y[l]
))−1 n∑

i=1

Qi

(
y[l]
)
yi l = 0, 1, . . . (4.90)

The meaning of an iteration becomes apparent if we consider the particular
case Hi = h2

i I yielding

y =

∑n
i=1 yi h

−(p+2)
i g

(∥∥∥y−yi

hi

∥∥∥2
)

∑n
i=1 h

−(p+2)
i g

(∥∥∥y−yi

hi

∥∥∥2
) (4.91)

and which becomes when all hi = h

y =

∑n
i=1 yi g

(∥∥∥y−yi

h

∥∥∥2
)

∑n
i=1 g

(∥∥∥y−yi

h

∥∥∥2
) . (4.92)

148 Robust Techniques for Computer Vision Chapter 4

From (4.87) we see that at every step only a local weighted mean is computed.
The robustness of the mode detection method is the direct consequence of
this property. In the next iteration the computation is repeated centered
on the previously computed mean. The difference between the current and
previous locations, the vector

m[l+1]
G = y[l+1] − y[l] l = 0, 1, . . . (4.93)

is called the mean shift vector, where the fact that the weighted averages are
computed with the kernel G was made explicit. Adapting (4.88) to the two
particular cases above it can be shown that

m[l+1]
G = c

∇̂fK(y[l])

f̂G(y[l])
(4.94)

where c is a positive constant. Thus, the mean shift vector is aligned with the
gradient estimate of the density, and the window of computations is always
moved toward regions of higher density. See [17] for the details. A relation
similar to (4.94) still holds in the general case, but now the mean shift and
gradient vectors are connected by a linear transformation.

In the mean shift procedure the user controls the resolution of the data
analysis by providing the bandwidth information. Since most often circular
symmetric kernels are used, only the bandwith parameters hi are needed.

Mean Shift Procedure
1. Choose a data point yi as the initial y[0].

2. Compute y[l+1], l = 0, 1, . . . the weighted mean of the points at less
than unit Mahalanobis distance from y[l]. Each point is considered
with its own metric.

3. Verify if
∥∥∥m[l+1]

G

∥∥∥ is less than the tolerance. If yes, stop.

4. Replace y[l] with y[l+1], i.e., move the processing toward a region with
higher point density. Return to Step 2.

The most important properties of the mean shift procedure are illustrated
graphically in Figure 4.11. In Figure 4.11a the setup of the weighted mean
computation in the general case is shown. The kernel associated with a data
point is nonzero only within the elliptical region centered on that point.

Section 4.3. Location Estimation 149

200 300 400 500 600 700 800
200

300

400

500

600

700

800

y

y
1

y 2

200 300 400 500 600 700 800
200

300

400

500

600

700

800

y

y
1

y 2

(a) (b) (c)

Figure 4.11. The main steps in mean shift based clustering. (a) Computation of
the weighted mean in the general case. (b) Mean shift trajectories of two points in
a bimodal data. (c) Basins of attraction.

Thus, only those points contribute to the weighted mean in y whose kernel
support contains y.

The evolution of the iterative procedure is shown in Figure 4.11b for the
simplest case of identical circular kernels (4.92). When the locations of the
points in a window are averaged, the result is biased toward the region of
higher point density in that window. By moving the window into the new
position we move uphill on the density surface. The mean shift procedure is
a gradient ascent type technique. The processing climbs toward the highest
point on the side of the density surface on which the initial position y[0] was
placed. At convergence (which can be proven) the local maximum of the
density, the sought mode, is detected.

The two initializations in Figure 4.11b are on different components of this
mixture of two Gaussians. Therefore, while the two mean shift procedures
start from nearby locations, they converge to different modes, both of which
are accurate location estimates.

A nonparametric classification of the data into clusters can be obtained
by starting a mean shift procedure from every data point. A set of points
converging to nearby locations defines the basin of attraction of a mode. Since
the points are processed independently the shape of the basin of attraction
is not restricted in any way. The basins of attraction of the two modes of a
Gaussian mixture (Figure 4.11c) were obtained without using the nature of
the distributions.

The two-dimensional data in Figure 4.12a illustrates the power of the
mean shift based clustering. The three clusters have arbitrary shapes and
the background is heavily cluttered with outliers. Traditional clustering

150 Robust Techniques for Computer Vision Chapter 4

300 350 400 450 500 550 600 650 700
300

350

400

450

500

550

600

650

700

x
1

x 2

300
400

500
600

700

300

400

500

600

700
0

0.5

1

1.5

2

2.5

3

x 10
−7

x
2

x
1

f(
x)

300 350 400 450 500 550 600 650 700
300

350

400

450

500

550

600

650

700

x
1

x 2

(a) (b) (c)

Figure 4.12. An example of clustering using the mean shift procedure. (a) The
two-dimensional input. (b) Kernel density estimate of the underlying distribution.
(c) The basins of attraction of the three significant modes (marked ‘+’).

methods would have difficulty yielding satisfactory results. The three sig-
nificant modes in the data are clearly revealed in a kernel density estimate
(Figure 4.12b). The mean shift procedure detects all three modes, and the
associated basins of attraction provide a good delineation of the individual
clusters (Figure 4.12c). In practice, using only a subset of the data points
suffices for an accurate delineation. See [16] for details of the mean shift
based clustering.

The original mean shift procedure was proposed in 1975 by Fukunaga
and Hostetler [32]. See also [31, p.535]. It came again into attention with
the paper [10]. In spite of its excellent qualities, mean shift is less known
in the statistical literature. The book [92, Sec.6.2.2] discusses [32], and a
similar technique is proposed in [11] for bias reduction in density estimation.

The simplest, fixed bandwith mean shift procedure in which all Hi = h2Ip,
is the one most frequently used in computer vision applications. The adap-
tive mean shift procedure discussed in this section, however, is not difficult to
implement with circular symmetric kernels, i.e., Hi = h2

i Ip. The bandwidth
value hi associated with the data point yi can be defined as the distance
to the k-th neighbor, i.e., for the pilot density estimation the nearest neigh-
bors approach is used. An implementation for high dimensional spaces is
described in [35]. Other, more sophisticated methods for local bandwidth
selection are described in [15], [18]. Given the complexity of the visual data,
such methods, which are based on assumptions about the local structure,
may not provide any significant gain in performance.

4.3.4 Applications

We will sketch now two applications of the fixed bandwith mean shift pro-
cedure, i.e., circular kernels with Hi = h2Ip.

Section 4.3. Location Estimation 151

– discontinuity preserving filtering and segmentation of color images;
– tracking of nonrigid objects in a color image sequence.

These applications are the subject of [17] and [19] respectively, which should
be consulted for details.

An image can be regarded as a vector field defined on the two-dimensional
lattice. The dimension of the field is one in the gray level case and three
for color images. The image coordinates belong to the spatial domain, while
the gray level or color information is in the range domain. To be able to
use in the mean shift procedure circular symmetric kernels the validity of an
Euclidean metric must be verified for both domains. This is most often true
in the spatial domain and for gray level images in the range domain. For
color images, mapping the RGB input into the L∗u∗v∗ (or L∗a∗b∗) color space
provides the closest possible Euclidean approximation for the perception of
color differences by human observers.

The goal in image filtering and segmentation is to generate an accu-
rate piecewise constant representation of the input. The constant parts
should correspond in the input image to contiguous regions with similarly
colored pixels, while the discontinuities to significant changes in color. This
is achieved by considering the spatial and range domains jointly. In the
joint domain the basin of attraction of a mode corresponds to a contiguous
homogeneous region in the input image and the valley between two modes
most often represents a significant color discontinuity in the input. The joint
mean shift procedure uses a product kernel

K(y) =
c

h2
sh

q

r

k

(∥∥∥∥ys

hs

∥∥∥∥2
)
k

(∥∥∥∥yr

hr

∥∥∥∥2
)

(4.95)

where ys and yr are the spatial and the range parts of the feature vector,
k(u) is the profile of the kernel used in both domains (though they can also
differ), hs and hr are the employed bandwidths parameters, and c is the
normalization constant. The dimension of the range domain q, is one for
the gray level and three for the color images. The user sets the value of the
two bandwidth parameters according to the desired resolution of the image
analysis.

In discontinuity preserving filtering every pixel is allocated to the nearest
mode in the joint domain. All the pixels in the basin of attraction of the
mode get the range value of that mode. From the spatial arrangement of the
basins of attraction the region adjacency graph (RAG) of the input image
is then derived. A transitive closure algorithm is performed on the RAG
and the basins of attraction of adjacent modes with similar range values are

152 Robust Techniques for Computer Vision Chapter 4

fused. The result is the segmented image.
The gray level image example in Figure 4.13 illustrates the role of the

mean shift procedure. The small region of interest (ROI) in Figure 4.13a is
shown in a wireframe representation in Figure 4.13b. The three-dimensional
G kernel used in the mean shift procedure (4.92) is in the top-left corner.
The kernel is the product of two uniform kernels: a circular symmetric two-
dimensional kernel in the spatial domain and a one-dimensional kernel for
the gray values.

At every step of the mean shift procedure, the average of the 3D data
points is computed and the kernel is moved to the next location. When the
kernel is defined at a pixel on the high plateau on the right in Figure 4.13b,
adjacent pixels (neighbors in the spatial domain) have very different gray
level values and will not contribute to the average. This is how the mean
shift procedure achieves the discontinuity preserving filtering. Note that the
probability density function whose local mode is sought cannot be visualized
since it would require a four-dimensional space, the fourth dimension being
that of the density.

The result of the segmentation for the ROI is shown in Figure 4.13c,
and for the entire image in Figure 4.13d. A more accurate segmentation is
obtained if edge information is incorporated into the mean shift procedure
(Figures 4.13e and 4.13f). The technique is described in [13].

A color image example is shown in Figure 4.14. The input has large
homogeneous regions, and after filtering (Figures 4.14b and 4.14c) many of
the delineated regions already correspond to semantically meaningful parts
of the image. However, this is more the exception than the rule in filter-
ing. A more realistic filtering process can be observed around the windows,
where many small regions (basins of attraction containing only a few pixels)
are present. These regions are either fused or attached to a larger neighbor
during the transitive closure process on the RAG, and the segmented image
(Figures 4.14d and 4.14e) is less cluttered. The quality of any segmenta-
tion, however, can be assessed only through the performance of subsequent
processing modules for which it serves as input.

The discontinuity preserving filtering and the image segmentation algo-
rithm were integrated together with a novel edge detection technique [73] in
the Edge Detection and Image SegmentatiON (EDISON) system [13]. The
C++ source code of EDISON is available on the web at

www.caip.rutgers.edu/riul/

The second application of the mean shift procedure is tracking of a dy-
namically changing neighborhood in a sequence of color images. This is a

Section 4.3. Location Estimation 153

(a) (b)

(c) (d)

(e) (f)

Figure 4.13. The image segmentation algorithm. (a) The gray level input image
with a region of interest (ROI) marked. (b) The wireframe representation of the
ROI and the 3D window used in the mean shift procedure. (c) The segmented
ROI. (d) The segmented image. (e) The segmented ROI when local discontinuity
information is integrated into the mean shift procedure. (f) The segmented image.

154 Robust Techniques for Computer Vision Chapter 4

(a)

(b) (c)

(d) (e)

Figure 4.14. A color image filtering/segmentation example. (a) The input image.
(b) The filtered image. (c) The boundaries of the delineated regions. (d) The
segmented image. (e) The boundaries of the delineated regions.

Section 4.3. Location Estimation 155

critical module in many object recognition and surveillance tasks. The prob-
lem is solved by analyzing the image sequence as pairs of two consecutive
frames. See [19] for a complete discussion.

The neighborhood to be tracked, i.e., the target model in the first im-
age contains na pixels. We are interested only in the amount of relative
translation of the target between the two frames. Therefore, without loss of
generality the target model can be considered centered on ya = 0. In the
next frame, the target candidate is centered on yb and contains nb pixels.

In both color images kernel density estimates are computed in the joint
five-dimensional domain. In the spatial domain the estimates are defined
in the center of the neighborhoods, while in the color domain the density is
sampled at m locations c. Let c = 1, . . . ,m be a scalar hashing index of these
three-dimensional sample points. A kernel with profile k(u) and bandwidths
ha and hb is used in the spatial domain. The sampling in the color domain
is performed with the Kronecker delta function δ(u) as kernel.

The result of the two kernel density estimations are the two discrete color
densities associated with the target in the two images. For c = 1, . . . ,m

model: f̂a(c) = A
∑na

i=1 k

(∥∥∥ya,i

ha

∥∥∥2
)
δ
[
c(ya,i)− c

]
(4.96)

candidate: f̂b(c,yb) = B
∑nb

i=1 k

(∥∥∥yb−yb,i

hb

∥∥∥2
)
δ
[
c(yb,i)− c

]
(4.97)

where, c(y) is the color vector of the pixel at y. The normalization constants
A,B are determined such that

m∑
c=1

f̂a(c) = 1
m∑
c=1

f̂b(c,yb) = 1 . (4.98)

The normalization assures that the template matching score between these
two discrete signals is

ρ(yb) =
m∑
c=1

√
f̂a(c)f̂b(c,yb) (4.99)

and it can be shown that

d(yb) =
√

1− ρ(yb) (4.100)

is a metric distance between f̂a(c) and f̂b(c,yb)
To find the location of the target in the second image, the distance (4.100)

has to be minimized over yb, or equivalently (4.99) has to be maximized.

156 Robust Techniques for Computer Vision Chapter 4

That is, the local maximum of ρ(yb) has to be found by performing a search
in the second image. This search is implemented using the mean shift pro-
cedure.

The local maximum is a root of the template matching score gradient

∇ρ(yb) =
1
2

m∑
c=1

∇f̂b(c,yb)
√

f̂a(c)

f̂b(c,yb)
= 0 . (4.101)

Taking into account (4.97) yields

m∑
c=1

nb∑
i=1

(yb−yb,i) k
′
(∥∥∥∥yb − yb,i

h

∥∥∥∥2
)
δ
[
c(yb,i)− c

]√ f̂a(c)

f̂b(c,yb)
= 0 . (4.102)

As in Section 4.3.3 we can introduce the profile g(u) = −k′(u) and define
the weights

qi(yb) =
m∑
c=1

√
f̂a(c)

f̂b(c,yb)
δ
[
c(yb,i)− c

]
(4.103)

and obtain the iterative solution of (4.101) from

y[l+1]
b =

∑nb
i=1 y[l]

b,i qi

(
y[l]
b

)
g

(∥∥∥∥y[l]
b −yb,i

hb

∥∥∥∥2
)

∑nb
i=1 qi

(
y[l]
b

)
g

(∥∥∥∥y[l]
b −yb,i

hb

∥∥∥∥2
) (4.104)

which is a mean shift procedure, the only difference being that at each step
the weights (4.103) are also computed.

In Figure 4.15 four frames of an image sequence are shown. The tar-
get model, defined in the first frame (Figure 4.15a), is successfully tracked
throughout the sequence. As can be seen, the localization is satisfactory in
spite of the target candidates’ color distribution being significantly differ-
ent from that of the model. While the model can be updated as we move
along the sequence, the main reason for the good performance is the small
amount of translation of the target region between two consecutive frames.
The search in the second image always starts from the location of the target
model center in the first image. The mean shift procedure then finds the
nearest mode of the template matching score, and with high probability this
is the target candidate location we are looking for. See [19] for more exam-
ples and extensions of the tracking algorithm, and [14] for a version with
automatic bandwidth selection.

Section 4.4. Robust Regression 157

(a) (b)

(c) (d)

Figure 4.15. An example of the tracking algorithm. (a) The first frame of a color
image sequence with the target model manually defined as the marked elliptical
region. (b) to (d) Localization of the target in different frames.

The robust solution of the location estimation problem presented in this
section put the emphasis on employing the least possible amount of a priori
assumptions about the data and belongs to the class of nonparametric tech-
niques. Nonparametric techniques require a larger number of data points
supporting the estimation process than their parametric counterparts. In
parametric methods the data is more constrained, and as long as the model
is obeyed the parametric methods are better in extrapolating over regions
where data is not available. However, if the model is not correct a para-
metric method will still impose it at the price of severe estimation errors.
This important trade-off must be kept in mind when feature space analysis
is used in a complex computer vision task.

4.4 Robust Regression

The linear errors-in-variables (EIV) regression model (Section 4.2.6) is em-
ployed for the discussion of the different regression techniques. In this model
the inliers are measured as

yi = yio + δyi yi ∈ Rp δyi ∼ GI(0, σ2Ip) i = 1, . . . , n1 (4.105)

158 Robust Techniques for Computer Vision Chapter 4

and their true values obey the constraints

g(yio) = y�
ioθ − α = 0 i = 1, . . . , n1 ‖θ‖ = 1 α ≥ 0 . (4.106)

The number of inliers must be much larger than the number of free param-
eters of the model, n1 � p. Nothing is assumed about the n− n1 outliers.

After a robust method selects the inliers they are often postprocessed
with a nonrobust technique from the least squares (LS) family to obtain the
final parameter. Therefore, we start by discussing the LS estimators. Next,
the family of M-estimators is introduced and the importance of the scale
parameter related to the noise of the inliers is emphasized.

All the robust regression methods popular today in computer vision can
be described within the framework of M-estimation and thus their perfor-
mance also depends on the accuracy of the scale parameter. To avoid this
deficiency, we approach M-estimation in a different way and introduce the
pbM-estimator which does not require the user to provide the value of the
scale.

In Section 4.2.5 it was shown that when a nonlinear EIV regression model
is processed as a linear model in the carriers, the associated noise is het-
eroscedastic. Since the robust methods discussed in this section assume the
model (4.105) and (4.106), they return biased estimates if employed for solv-
ing nonlinear EIV regression problems. However, this does not mean they
should not be used! The role of any robust estimator is only to establish
a satisfactory inlier/outlier dichotomy. As long as most of the inliers were
recovered from the data, postprocessing with the proper nonlinear (and non-
robust) method will provide the correct estimates.

Regression in the presence of multiple structures in the data will not be
considered beyond the particular case of two structures in the context of
structured outliers. We will show why all the robust regression methods fail
to handle such data once the measurement noise becomes large.

Each of the regression techniques in this section is related to one of the
objective functions described in Section 4.2.2. Using the same objective
function location models can also be estimated, but we will not discuss these
location estimators. For example, many of the traditional clustering methods
belong to the least squares family [52, Sec.3.3.2], or there is a close connection
between the mean shift procedure and M-estimators of location [17].

4.4.1 Least Squares Family

We have seen in Section 4.2.3 that the least squares family of estimators is
not robust since its objective function JLS (4.22) is a symmetric function in

Section 4.4. Robust Regression 159

all the measurements. Therefore, in this section will assume that the data
contains only inliers, i.e., n = n1.

The parameter estimates of the linear EIV regression model are obtained
by solving the minimization

[α̂, θ̂] = argmin
α,θ

1
n

n∑
i=1

‖yi − yio‖2 = argmin
α,θ

1
n

n∑
i=1

g(yi)
2 (4.107)

subject to (4.106). The minimization yields the total least squares (TLS)
estimator. For an in-depth analysis of the TLS estimation see the book
[111]. Related problems were already discussed in the nineteenth century
[33, p.30], though the method most frequently used today, based on the
singular value decomposition (SVD) was proposed only in 1970 by Golub
and Reinsch [37]. See the book [38] for the linear algebra background.

To solve the minimization problem (4.107) will define the n× p matrices
of the measurements Y and of the true values Yo

Y = [y1 y2 · · · yn]
� Yo = [y1o y2o · · · yno]

� . (4.108)

Then (4.107) can be rewritten as

[α̂, θ̂] = argmin
α,θ
‖Y −Yo‖2F (4.109)

subject to
Yoθ − α1n = 0n (4.110)

where 1n(0n) is a vector in Rn of all ones (zeros), and ‖A‖F is the Frobenius
norm of the matrix A.

The parameter α is eliminated next. The data is centered by using the
orthogonal projector matrix G = In− 1

n1n1
�
n which has the property G1n =

0n. It is easy to verify that

Ỹ = GY = [ỹ1 ỹ2 · · · ỹn]� ỹi = yi −
1
n

n∑
i=1

yi = yi − ȳ . (4.111)

The matrix Ỹo = GYo is similarly defined. The parameter estimate θ̂ is then
obtained from the minimization

θ̂ = argmin
θ
‖Ỹ − Ỹo‖2F (4.112)

subject to
Ỹoθ = 0n . (4.113)

160 Robust Techniques for Computer Vision Chapter 4

The constraint (4.113) implies that the rank of the true data matrix Ỹo is
only p− 1 and that the true θ spans its null space. Indeed, our linear model
requires that the true data points belong to a hyperplane in Rp which is a
(p− 1)-dimensional affine subspace. The vector θ is the unit normal to this
plane.

The available measurements, however, are located nearby the hyperplane
and thus the measurement matrix Ỹ has full rank p. The solution of the TLS
thus is the rank p− 1 approximation of Ỹ . This approximation is obtained
from the SVD of Ỹ written as a dyadic sum

Ỹ =
p∑

k=1

σ̃kũkṽ�
k (4.114)

where the singular vectors ũi, i = 1, . . . , n and ṽj , j = 1, . . . , p provide
orthonormal bases for the four linear subspaces associated with the matrix
Ỹ [38, Sec.2.6.2], and σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃p > 0 are the singular values of this
full rank matrix.

The optimum approximation yielding the minimum Frobenius norm for
the error is the truncation of the dyadic sum (4.114) at p − 1 terms [111,
p.31] ̂̃

Y =
p−1∑
k=1

σ̃kũkṽ�
k (4.115)

where the matrix ̂̃Y contains the centered corrected measurements ̂̃y. These
corrected measurements are the orthogonal projections of the available ỹi on
the hyperplane characterized by the parameter estimates (Figure 4.6). The
TLS estimator is also known as orthogonal least squares.

The rank one null space of ̂̃Y is spanned by ṽp, the right singular vector
associated with the smallest singular value σ̃p of Ỹ [38, p.72]. Since ṽp is a
unit vector

θ̂ = ṽp . (4.116)

The estimate of α is obtained by reversing the centering operation

α̂ = ȳ�θ̂ . (4.117)

The parameter estimates of the linear EIV model can be also obtained in
a different, though completely equivalent way. We define the carrier vector
x by augmenting the variables with a constant

x = [y� − 1]� σ2C = σ2
[

Ip 0
0� 0

]
(4.118)

Section 4.4. Robust Regression 161

which implies that the covariance matrix of the carriers is singular. Using
the n× (p+ 1) matrices

X = [x1 x2 · · · xn]� Xo = [x1o x2o · · · xno]� (4.119)

the constraint (4.110) can be written as

Xoω = 0n ω = [θ� α]� ‖θ‖ = 1 α ≥ 0 (4.120)

where the subscript ‘1’ of this parametrization in Section 4.2.6 was dropped.
Using Lagrangian multipliers it can be shown that the parameter estimate

ω̂ is the eigenvector of the generalized eigenproblem

X�Xω = λCω (4.121)

corresponding to the smallest eigenvalue λmin. This eigenproblem is equiva-
lent to the definition of the right singular values of the matrix Ỹ [38, Sec.8.3].
The condition ‖θ̂‖ = 1 is then imposed on the vector ω̂.

The first order approximation for the covariance of the parameter esti-
mate is [70, Sec.5.2.2]

Cω̂ = σ̂2(X�X− λminC)+ (4.122)

where the pseudoinverse has to be used since the matrix has rank p following
(4.121). The estimate of the noise standard deviation is

σ̂2 =
∑n

i=1 ĝ(yi)
2

n− p+ 1
=

λmin
n− p+ 1

=
σ̃2
p

n− p+ 1
(4.123)

where ĝ(yi) = y�
i θ̂ − α̂ are the residuals. The covariances for the other

parametrizations of the linear EIV model, ω2 (4.53) and ω3 (4.55) can be
obtained through error propagation.

Note that when computing the TLS estimate with either of the two meth-
ods, special care has to be taken to execute all the required processing steps.
The first approach starts with the data being centered, while in the sec-
ond approach a generalized eigenproblem has to be solved. These steps are
sometimes neglected in computer vision algorithms.

In the traditional linear regression model only the variable z is corrupted
by noise (4.36), and the constraint is

zio = α+ x�
ioθ xio = x(yio) i = 1, . . . , n . (4.124)

162 Robust Techniques for Computer Vision Chapter 4

−10 0 10 20 30 40 50

0

20

40

60

80

100

120

140

160

180

y
1

y 2

True
OLS
TLS

−40 −20 0 20 40
−2

−1

0

1

2

3

4

5

6

7

8

α

θ 1

−40 −20 0 20 40
−2

−1

0

1

2

3

4

5

6

7

8

α

θ 1

(a) (b) (c)

Figure 4.16. OLS vs. TLS estimation of a linear EIV model. (a) A typical
trial. (b) The scatterplot of the OLS estimates. A significant bias is present. (c)
The scatterplot of the TLS estimates. The true parameter values correspond to the
location marked ‘+’.

This model is actually valid for fewer computer vision problems (Figure 4.4)
than it is used in the literature. The corresponding estimator is the well
known (ordinary) least squares (OLS)

ω̂ = (X�
o Xo)

−1X�
o z Cω̂ = σ̂2(X�

o Xo)
−1 σ̂2 =

∑n
i=1 z

2
i

n− p (4.125)

where

Xo =
[
x1o x2o · · · xno
1 1 · · · 1

]�
z = [z1 z2 · · · zn]� . (4.126)

If the matrix Xo is poorly conditioned the pseudoinverse should be used
instead of the full inverse.

In the presence of significant measurement noise, using the OLS estimator
when the data obeys the full EIV model (4.105) results in biased estimates
[111, p.232]. This is illustrated in Figure 4.16. The n = 30 data points are
generated from the model

5y1o − y2o + 1 = 0 δy ∼ NI(0, 52I2) (4.127)

where NI(·) stands for independent normally distributed noise. Note that
the constraint is not in the Hessian normal form but

α+ θ1y1o − y2o = 0 θ1 = 5 α = 1 (4.128)

where, in order to compare the performance of the OLS and TLS estimators,
the parameter θ2 was set to -1. When the traditional regression model is

Section 4.4. Robust Regression 163

−2 −1 0 1 2
0

0.5

1

1.5

u

ρ bw
(u

)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

1

2

3

4

5

6

u

w
(u

)

−2 −1 0 1 2
0

0.5

1

1.5

u

ρ zo
(u

)

(a) (b) (c)

Figure 4.17. Redescending M-estimators. (a) Biweight loss function. (b) The
weight function for biweight. (c) Zero-one loss function.

associated with this data it is assumed that

y2o ≡ zo = θ1y1o + α δz ∼ NI(0, 52) (4.129)

and the OLS estimator (4.125) is used to find θ̂1 and α̂. The scatterplot of
the result of 100 trials is shown in Figure 4.16b, and the estimates are far
away from the true values.

Either TLS estimation method discussed above can be employed to find
the TLS estimate. However, to eliminate the multiplicative ambiguity of the
parameters the ancillary constraint θ̂2 = −1 has to be used. See [111, Sec.
2.3.2]. The TLS estimates are unbiased and the scatterplot is centered on
the true values (Figure 4.16c).

Throughout this section we have tacitly assumed that the data is not
degenerate, i.e., the measurement matrix Y has full rank p. Both the TLS
and OLS estimators can be adapted for the rank deficient case, though then
the parameter estimates are no longer unique. Techniques similar to the ones
described in this section yield minimum norm solutions. See [111, Chap.3]
for the case of the TLS estimator.

4.4.2 M-estimators

The robust equivalent of the least squares family are the M-estimators, first
proposed in 1964 by Huber as a generalization of the maximum likelihood
technique in which contaminations in the data distribution are tolerated. See
[67] for an introduction to M-estimators and [49] for a more in-depth discus-
sion. We will focus only on the class of M-estimators most recommended for
computer vision applications.

The robust formulation of (4.48) is

[α̂, θ̂] = argmin
α,θ

1
n

n∑
i=1

ρ

(
1
s
g(yi)

)
= argmin

α,θ
JM (4.130)

164 Robust Techniques for Computer Vision Chapter 4

where s is a parameter which depends on σ, the (unknown) scale of the
inlier noise (4.105). With a slight abuse of notation s will also be called
scale. The loss function ρ(u) satisfies the following properties: nonnegative
with ρ(0) = 0, even symmetric ρ(u) = ρ(−u), and nondecreasing with |u|.
For ρ(u) = u2 we obtain the LS objective function (4.107).

The different M-estimators introduced in the statistical literature differ
through the distribution assumed for the data. See [5] for a discussion in the
context of computer vision. However, none of these distributions will provide
an accurate model in a real application. Thus, the distinctive theoretical
properties of different M-estimators are less relevant in practice.

The redescending M-estimators are characterized by bounded loss func-
tions

0 ≤ ρ(u) ≤ 1 |u| ≤ 1 ρ(u) = 1 |u| > 1 . (4.131)

As will be shown below, in a redescending M-estimator only those data points
which are at distance less than s from the current fit are taken into account.
This yields better outlier rejection properties than that of the M-estimators
with nonredescending loss functions [69], [115].

The following class of redescending loss functions covers several impor-
tant M-estimators

ρ(u) =
{

1− (1− u2)d |u| ≤ 1
1 |u| > 1

(4.132)

where d = 1, 2, 3. The loss functions have continuous derivatives up the
(d− 1)-th order, and a unique minimum in ρ(0) = 0.

Tukey’s biweight function ρbw(u) (Figure 4.17a) is obtained for d = 3 [67,
p.295]. This loss function is widely used in the statistical literature and was
known at least a century before robust estimation [40, p.151]. See also [42,
vol.I, p.323]. The loss function obtained for d = 2 will be denoted ρe(u).
The case d = 1 yields the skipped mean loss function, a name borrowed from
robust location estimators [89, p.181]

ρsm(u) =
{
u2 |u| ≤ 1
1 |u| > 1

(4.133)

which has discontinuous first derivative. It is often used in vision applica-
tions, e.g., [108].

In the objective function of any M-estimator the geometric distances
(4.46) are normalized by the scale s. Since ρ(u) is an even function we do
not need to use absolute values in (4.130). In redescending M-estimators the
scale acts as a hard rejection threshold, and thus its value is of paramount

Section 4.4. Robust Regression 165

importance. For the moment we will assume that a satisfactory value is
already available for s, but will return to this topic in Section 4.4.3.

The M-estimator equivalent to the total least squares is obtained follow-
ing either TLS method discussed in Section 4.4.1. For example, it can be
shown that instead of (4.121), the M-estimate of ω (4.120) is the eigenvector
corresponding to the the smallest eigenvalue of the generalized eigenproblem

X�WXω = λCω (4.134)

where W ∈ Rn×n is the diagonal matrix of the nonnegative weights

wi = w(ui) =
1
ui

dρ(ui)
du

≥ 0 ui =
ĝ(yi)
s

i = 1, . . . , n . (4.135)

Thus, in redescending M-estimators w(u) = 0 for |u| > 1, i.e., the data points
whose residual ĝ(yi) = y�

i θ̂ − α̂ relative to the current fit is larger than the
scale threshold s are discarded from the computations. The weights wbw(u) =
6(1−u2)2 derived from the biweight loss function are shown in Figure 4.17b.
The weigths derived from the ρe(u) loss function are proportional to the
Epanechnikov kernel (4.79). For traditional regression instead of (4.125) the
M-estimate is

ω̂ = (X�
o WXo)

−1X�
o Wz . (4.136)

The residuals ĝ(yi) in the weights wi require values for the parameter esti-
mates. Therefore, the M-estimates can be found only by an iterative proce-
dure.

M-estimation with Iterative Weighted Least Squares
Given the scale s.

1. Obtain the initial parameter estimate ω̂[0] with total least squares.

2. Compute the weights w[l+1]
i , l = 0, 1,

3. Obtain the updated parameter estimates, ω̂[l+1].

4. Verify if ‖ω̂[l+1] − ω̂[l]‖ is less than the tolerance. If yes, stop.

5. Replace ω̂[l] with ω̂[l+1]. Return to Step 2.

For the traditional regression the procedure is identical. See [67, p.306]. A
different way of computing linear EIV regression M-estimates is described in
[115].

The objective function minimized for redescending M-estimators is not
convex, and therefore the convergence to a global minimum is not guaran-
teed. Nevertheless, in practice convergence is always achieved [67, p.307],

166 Robust Techniques for Computer Vision Chapter 4

and if the initial fit and the chosen scale value are adequate, the obtained
solution is satisfactory. These two conditions are much more influential than
the precise nature of the employed loss function. Note that at every itera-
tion all the data points regarded as inliers are processed, and thus there is
no need for postprocessing, as is the case with the elemental subsets based
numerical optimization technique discussed in Section 4.2.7.

In the statistical literature often the scale threshold s is defined as the
product between σ̂ the robust estimate for the standard deviation of the
inlier noise (4.105) and a tuning constant. The tuning constant is derived
from the asymptotic properties of the simplest location estimator, the mean
[67, p.296]. Therefore its value is rarely meaningful in real applications.
Our definition of redescending M-estimators avoids the problem of tuning
by using the inlier/outlier classification threshold as the scale parameter s.

The case d = 0 in (4.132) yields the zero-one loss function

ρzo(u) =
{

0 |u| ≤ 1
1 |u| > 1

(4.137)

shown in Figure 4.17c. The zero-one loss function is also a redescending
M-estimator, however, is no longer continuous and does not have a unique
minimum in u = 0. It is only mentioned since in Section 4.4.4 will be
used to link the M-estimators to other robust regression techniques such
as LMedS or RANSAC. The zero-one M-estimator is not recommended in
applications. The weight function (4.135) is nonzero only at the boundary
and the corresponding M-estimator has poor local robustness properties.
That is, in a critical data configuration a single data point can have a very
large influence on the parameter estimates.

4.4.3 Median Absolute Deviation Scale Estimate

Access to a reliable scale parameter s is a necessary condition for the mini-
mization procedure (4.130) to succeed. The scale s is a strictly monotonically
increasing function of σ the standard deviation of the inlier noise. Since σ is
a nuisance parameter of the model, it can be estimated together with α and
θ at every iteration of the M-estimation process [67, p.307]. An example of
a vision application employing this approach is [7]. However, the strategy
is less robust than providing the main estimation process with a fixed scale
value [68]. In the latter case we talk about an M-estimator with auxiliary
scale [69], [100].

Two different approaches can be used to obtain the scale prior to the
parameter estimation. It can be either arbitrarily set by the user, or it can be

Section 4.4. Robust Regression 167

0 50 100 150 200 250

−100

−50

0

50

100

150

y
1

y 2

0 50 100 150 200 250

−100

−50

0

50

100

150

y
1

y 2

−4 −2 0 2 4 6 8 10
0

5

10

15

20

25

−4 −2 0 2 4 6 8 10
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

(a) (b) (c)

Figure 4.18. Sensitivity of the M-estimation to the ŝmad scale value. Dashed
line–initial TLS fit. Solid line–biweight M-estimate. (a) c = 1.5. (b) c = 3.5. (c)
Overestimation of the scale in the presence of skewness. The median of the residuals
is marked ‘+’ under the sorted data points. The bar below corresponds to ±ŝmad

computed with c = 3.

derived from the data in a pilot estimation procedure. The first approach is
widely used in the robust regression techniques developed within the vision
community, such as RANSAC or Hough transform. The reason is that it
allows an easy way to tune a method to the available data. The second
approach is often adopted in the statistical literature for M-estimators and
is implicitly employed in the LMedS estimator.

The most frequently used off-line scale estimator is the median absolute
deviation (MAD), which is based on the residuals ĝ(yi) relative to an initial
(nonrobust TLS) fit

ŝmad = cmed
i
|ĝ(yi)−med

j
ĝ(yj)| (4.138)

where c is a constant to be set by the user. The MAD scale estimate measures
the spread of the residuals around their median.

In the statistical literature the constant in (4.138) is often taken as
c = 1.4826. However, this value is used to obtain a consistent estimate
for σ when all the residuals obey a normal distribution [67, p.302]. In com-
puter vision applications where often the percentage of outliers is high, the
conditions is strongly violated. In the redescending M-estimators the role of
the scale parameter s is to define the inlier/outlier classification threshold.
The order of magnitude of the scale can be established by computing the
MAD expression, and the rejection threshold is then set as a multiple of this
value. There is no need for assumptions about the residual distribution. In
[105] the standard deviation of the inlier noise σ̂ was computed as 1.4826
times a robust scale estimate similar to MAD, the minimum of the LMedS

168 Robust Techniques for Computer Vision Chapter 4

optimization criterion (4.140). The rejection threshold was set at 1.96σ̂ by
assuming normally distributed residuals. The result is actually three times
the computed MAD value, and could be obtained by setting c = 3 without
any assumption about the distribution of the residuals.

The example in Figures 4.18a and 4.18b illustrates not only the impor-
tance of the scale value for M-estimation but also the danger of being locked
into the nature of the residuals. The data contains 100 inliers and 75 out-
liers, and as expected the initial TLS fit is completely wrong. When the
scale parameter is set small by choosing for ŝmad the constant c = 1.5, at
convergence the final M-estimate is satisfactory (Figure 4.18a). When the
scale ŝmad is larger, c = 3.5, the optimization process converges to a local
minimum of the objective function. This minimum does not correspond to a
robust fit (Figure 4.18b). Note that c = 3.5 is about the value of the constant
which would have been used under the assumption of normally distributed
inlier noise.

The location estimator employed for centering the residuals in (4.138) is
the median, while the MAD estimate is computed with the second, outer
median. However, the median is a reliable estimator only when the distri-
bution underlying the data is unimodal and symmetric [49, p.29]. It is easy
to see that for a heavily skewed distribution, i.e., with a long tail on one
side, the median will be biased toward the tail. For such distributions the
MAD estimator severely overestimates the scale since the 50th percentile
of the centered residuals is now shifted toward the boundary of the inlier
distribution. The tail is most often due to outliers, and the amount of over-
estimation increases with both the decrease of the inlier/outlier ratio and
the lengthening of the tail. In the example in Figure 4.18c the inliers (at
the left) were obtained from a standard normal distribution. The median is
0.73 instead of zero. The scale computed with c = 3 is ŝmad = 4.08 which in
much larger than 2.5, a reasonable value for the spread of the inliers. Again,
c should be chosen smaller.

Scale estimators which avoid centering the data were proposed in the
statistical literature [88], but they are computationally intensive and their
advantage for vision applications is not immediate. We must conclude that
the MAD scale estimate has to be used with care in robust algorithms dealing
with real data. Whenever available, independent information provided by
the problem at hand should be exploited to validate the obtained scale. The
influence of the scale parameter s on the performance of M-estimators can
be entirely avoided by a different approach toward this family of robust
estimators. This will be discussed in Section 4.4.5.

Section 4.4. Robust Regression 169

0 50 100 150 200 250

−100

−50

0

50

100

150

y
1

y 2

0 50 100 150 200

−40

−20

0

20

40

60

80

100

120

140

160

y
1

y 2

(a) (b)

Figure 4.19. The difference between LMedS and RANSAC. (a) LMeds: finds the
location of the narrowest band containing half the data. (b) RANSAC: finds the
location of the densest band of width specified by the user.

4.4.4 LMedS, RANSAC and Hough Transform

The origin of these three robust techniques was described in Section 4.1.
Now will show that they all can be expressed as M-estimators with auxiliary
scale.

The least median of squares (LMedS) estimator is a least k-th order
statistics estimator (4.22) for k = n/2, and is the main topic of the book
[89]. The LMedS estimates are obtained from

[α̂, θ̂] = argmin
α,θ

med
i
g(yi)

2 (4.139)

but in practice we can use

[α̂, θ̂] = argmin
α,θ

med
i
|g(yi)| . (4.140)

The difference between the two definitions is largely theoretical, and becomes
relevant only when the number of data points n is small and even, while
the median is computed as the average of the two central values [89, p.126].
Once the median is defined as the [n/2]-th order statistics, the two definitions
always yield the same solution. By minimizing the median of the residuals,
the LMedS estimator finds in the space of the data the narrowest cylinder
which contains at least half the points (Figure 4.19a). The minimization is
performed with the elemental subsets based search technique discussed in
Section 4.2.7.

The scale parameter s does not appear explicitly in the above definition
of the LMedS estimator. Instead of setting an upper bound on the value of
the scale, the inlier/outlier threshold of the redescending M-estimator, in the

170 Robust Techniques for Computer Vision Chapter 4

LMedS a lower bound on the percentage of inliers (fifty percent) is imposed.
This eliminates the need for the user to guess the amount of measurement
noise, and as long as the inliers are in absolute majority, a somewhat bet-
ter robust behavior is obtained. For example, the LMedS estimator will
successfully process the data in Figure 4.18a.

The relation between the scale parameter and the bound on the percent-
age of inliers is revealed if the equivalent condition of half the data points
being outside of the cylinder, is written as

1
n

n∑
i=1

ρzo

(
1
s
g(yi)

)
=

1
2

(4.141)

where ρzo is the zero-one loss function (4.137), and the scale parameter is
now regarded as a function of the residuals s [g(y1), . . . , g(yn)]. By defining
s = med

i
|g(yi)| the LMedS estimator becomes

[α̂, θ̂] = argmin
α,θ

s [g(y1), . . . , g(yn)] subject to (4.141). (4.142)

The new definition of LMedS is a particular case of the S-estimators, which
while popular in statistics, are not widely know in the vision community. For
an introduction to S-estimators see [89, pp.135–143], and for a more detailed
treatment in the context of EIV models [115]. Let ŝ be the minimum of s in
(4.142). Then, it can be shown that

[α̂, θ̂] = argmin
α,θ

1
n

n∑
i=1

ρzo

(
1
ŝ
g(yi)

)
(4.143)

and thus the S-estimators are in fact M-estimators with auxiliary scale.
The value of ŝ can also be used as a scale estimator for the noise corrupt-

ing the inliers. All the observations made in Section 4.4.3 remain valid. For
example, when the inliers are no longer the absolute majority in the data the
LMedS fit is incorrect, and the residuals used to compute ŝ are not reliable.

The Random Sample Consensus (RANSAC) estimator predates the LMedS
[26]. Since the same elemental subsets based procedure is used to optimize
their objective function, sometimes the two techniques were mistakenly con-
sidered as being very similar, e.g., [74]. However, their similarity should be
judged examining the objective functions and not the way the optimization
is implemented. In LMedS the scale is computed from a condition set on
the percentage of inliers (4.142). In RANSAC the following minimization

Section 4.4. Robust Regression 171

0 5 10 15
0

5

10

15

20

y

z

OLS
LMedS
Final

0 5 10 15
0

5

10

15

20

y

z

OLS
LMedS
Final

(a) (b)

Figure 4.20. The poor local robustness of the LMedS estimator. The difference
between the data sets in (a) and (b) is that the point (6, 9.3) was moved to (6, 9.2).

problem is solved

[α̂, θ̂] = argmin
α,θ

1
n

n∑
i=1

ρzo

(
1
ŝ
g(yi)

)
given ŝ (4.144)

that is, the scale is provided by the user. This is a critical difference. Note
that (4.144) is the same as (4.30). Since it is relative easy to tune RANSAC
to the data, it can also handle situations in which LMedS would already
fail due to the large percentage of outliers (Figure 4.19b). Today RANSAC
replaced LMedS in most vision applications, e.g., [65], [83], [107].

The use of the zero-one loss function in both LMedS and RANSAC yields
very poor local robustness properties, as it is illustrated in Figure 4.20, an
example inspired by [2]. The n = 12 data points appear to be a simple
case of robust linear regression for which the traditional regression model
(4.37) was used. The single outlier on the right corrupts the least squares
(OLS) estimator. The LMedS estimator, however, succeeds to recover the
correct fit (Figure 4.20a), and the ordinary least squares postprocessing of
the points declared inliers (Final), does not yield any further change. The
data in Figure 4.20b seems to be the same but now the LMedS, and therefore
the postprocessing, completely failed. Actually the difference between the
two data sets is that the point (6, 9.3) was moved to (6, 9.2).

The configuration of this data, however, is a critical one. The six points
in the center can be grouped either with the points which appear to be
also inliers (Figure 4.20a), or with the single outlier on the right (Figure
4.20b). In either case the grouping yields an absolute majority of points
which is preferred by LMedS. There is a hidden bimodality in the data, and
as a consequence a delicate equilibrium exist between the correct and the
incorrect fit.

172 Robust Techniques for Computer Vision Chapter 4

In this example the LMedS minimization (4.140) seeks the narrowest
band containing at least six data points. The width of the band is measured
along the z axis, and its boundary is always defined by two of the data
points [89, p.126]. This is equivalent to using the zero-one loss function in
the optimization criterion (4.143). A small shift of one of the points thus
can change to which fit does the value of the minimum in (4.140) correspond
to. The instability of the LMedS is discussed in a practical setting in [45],
while more theoretical issues are addressed in [23]. A similar behavior is also
present in RANSAC due to (4.144).

For both LMedS and RANSAC several variants were introduced in which
the zero-one loss function is replaced by a smooth function. Since then more
point have nonzero weights in the optimization, the local robustness proper-
ties of the estimators improve. The least trimmed squares (LTS) estimator
[89, p.132]

[α̂, θ̂] = argmin
α,θ

k∑
i=1

g(y)2i:n (4.145)

minimizes the sum of squares of the k smallest residuals, where k has to be
provided by the user. Similar to LMedS, the absolute values of the residuals
can also be used.

In the first smooth variant of RANSAC the zero-one loss function was re-
placed with the skipped mean (4.133), and was called MSAC [108]. Recently
the same loss function was used in a maximum a posteriori formulation of
RANSAC, the MAPSAC estimator [104]. A maximum likelihood motivated
variant, the MLESAC [106], uses a Gaussian kernel for the inliers. Guided
sampling is incorporated into the IMPSAC version of RANSAC [104]. In ev-
ery variant of RANSAC the user has to provide a reasonably accurate scale
value for a satisfactory performance.

The use of zero-one loss function is not the only (or main) cause of the
failure of LMedS (or RANSAC). In Section 4.4.7 we show that there is a more
general problem in applying robust regression methods to multistructured
data.

The only robust method designed to handle multistructured data is the
Hough transform. The idea of Hough transform is to replace the regression
problems in the input domain with location problems in the space of the
parameters. Then, each significant mode in the parameter space corresponds
to an instance of the model in the input space. There is a huge literature
dedicated to every conceivable aspect of this technique. The survey papers
[50], [62], [81] contain hundreds of references.

Since we are focusing here on the connection between the redescending M-

Section 4.4. Robust Regression 173

estimators and the Hough transform, only the randomized Hough transform
(RHT) will be considered [56]. Their equivalence is the most straightforward,
but the same equivalence also exists for all the other variants of the Hough
transform as well. The feature space in RHT is built with elemental subsets,
and thus we have a mapping from p data points to a point in the parameter
space.

Traditionally the parameter space is quantized into bins, i.e., it is an
accumulator. The bins containing the largest number of votes yield the
parameters of the significant structures in the input domain. This can be
described formally as

[α̂, β̂]k = argmax
[α,β]

k
1
n

n∑
i=1

κzo
(
sα, sβ1 , . . . , sβp−1 ; g(yi)

)
(4.146)

where κzo(u) = 1−ρzo(u) and sα, sβ1 , . . . , sβp−1 define the size (scale) of a bin
along each parameter coordinate. The index k stands for the different local
maxima. Note that the parametrization uses the polar angles as discussed
in Section 4.2.6.

The definition (4.146) is that of a redescending M-estimator with aux-
iliary scale, where the criterion is a maximization instead of a minimiza-
tion. The accuracy of the scale parameters is a necessary condition for a
satisfactory performance, an issue widely discussed in the Hough transform
literature. The advantage of distributing the votes around adjacent bins was
recognized early [101]. Later the equivalence with M-estimators was also
identified, and the zero-one loss function is often replaced with a continuous
function [61], [60], [79].

In this section we have shown that all the robust techniques popular in
computer vision can be reformulated as M-estimators. In Section 4.4.3 we
have emphasized that the scale has a crucial influence on the performance of
M-estimators. In the next section we remove this dependence by approaching
the M-estimators in a different way.

4.4.5 The pbM-estimator

The minimization criterion (4.130) of the M-estimators is rewritten as

[α̂, θ̂] = argmax
α,θ

1
n

n∑
i=1

κ

(
y�
i θ − α
s

)
κ(u) = cρ[1− ρ(u)] (4.147)

where κ(u) is called the M-kernel function. Note that for a redescending M-
estimator κ(u) = 0 for |u| > 1 (4.131). The positive normalization constant
cρ assures that κ(u) is a proper kernel (4.68).

174 Robust Techniques for Computer Vision Chapter 4

Consider the unit vector θ defining a line through the origin in Rp. The
projections of the n data points yi on this line have the one-dimensional
(intrinsic) coordinates xi = y�

i θ. Following (4.67) the density of the set of
points xi, i = 1, . . . , n, estimated with the kernel K(u) and the bandwidth
ĥθ is

f̂θ(x) =
1

nĥθ

n∑
i=1

K

(
y�
i θ − x
ĥθ

)
. (4.148)

Comparing (4.147) and (4.148) we can observe that if κ(u) is taken as the
kernel function, and ĥθ is substituted for the scale s, the M-estimation cri-
terion becomes

θ̂ = argmax
θ

[
ĥθ max

x
f̂θ(x)

]
(4.149)

α̂ = argmax
x

f̂
θ̂
(x) . (4.150)

Given the M-kernel κ(u), the bandwidth parameter ĥθ can be estimated
from the data according to (4.76). Since, as will be shown below, the value
of the bandwidth has a weak influence on the the result of the M-estimation,
for the entire family of redescending loss functions (4.132) we can use

ĥθ = n−1/5 med
i
|y�

i θ −med
j

y�
j θ | . (4.151)

The MAD estimator is employed in (4.151) but its limitations (Section 4.4.3)
are of less concern in this context. Also, it is easy to recognize when the
data is not corrupted since the MAD expression becomes too small. In this
case, instead of the density estimation most often a simple search over the
projected points suffices.

The geometric interpretation of the new definition of M-estimators is
similar to that of the LMedS and RANSAC techniques shown in Figure 4.19.
The closer is the projection direction to the normal of the linear structure,
the tighter are grouped the projected inliers together which increases the
mode of the estimated density (Figure 4.21). Again a cylinder having the
highest density in the data has to be located. The new approach is called
projection based M-estimator, or pbM-estimator.

The relations (4.149) and (4.150) are the projection pursuit definition of
an M-estimator. Projection pursuit was proposed by Friedman and Tukey
in 1974 [30] to solve data analysis problems by seeking “interesting” low-
dimensional projections of the multidimensional data. The informative value
of a projection is measured with a projection index, such as the quantity

Section 4.4. Robust Regression 175

0 200 400 600 800 1000

−100

0

100

200

300

400

500

600

700

800

θ
1

θ
2

y
1

y 2

200 300 400 500 600 700 800 900 1000
0

0.005

0.01

0.015

x

f θ 1(x
)

200 300 400 500 600 700 800 900 1000
0

0.005

0.01

0.015

x

f θ 2(x
)

(a) (b) (c)

Figure 4.21. M-estimation through projection pursuit. When the data in the
rectangle is projected orthogonally on different directions (a), the mode of the esti-
mated density is smaller for an arbitrary direction (b), than for the direction of the
normal to the linear structure (c).

inside the brackets in (4.149). The papers [48] [54] survey all the related
topics. It should be emphasized that in the projection pursuit literature the
name projection pursuit regression refers to a technique different from ours.
There, a nonlinear additive model is estimated by adding a new term to the
model after each iteration, e.g., [44, Sec.11.2].

When in the statistical literature a linear regression problem is solved
through projection pursuit, either nonrobustly [20], or robustly [89, p.143],
the projection index is a scale estimate. Similar to the S-estimators the
solution is obtained by minimizing the scale, now over the projection direc-
tions. The robust scale estimates, like the MAD (4.138) or the median of
the absolute value of the residuals (4.142), however, have severe deficiencies
for skewed distributions, as was discussed in Section 4.4.3. Thus, their use
as projection index will not guarantee a better performance than that of the
original implementation of the regression technique.

Projections were employed before in computer vision. In [80] a highly
accurate implementation of the Hough transform was achieved by using lo-
cal projections of the pixels onto a set of directions. Straight edges in the
image were then found by detecting the maxima in the numerically differen-
tiated projections. The L2E estimator, proposed recently in the statistical
literature [91], solves a minimization problem similar to the kernel density es-
timate formulation of M-estimators, however, the focus is on the parametric
model of the inlier residual distribution.

The critical parameter of the redescending M-estimators is the scale s,
the inlier/outlier selection threshold. The novelty of the pbM-estimator is
the way the scale parameter is manipulated. The pbM-estimator avoids the
need of M-estimators for an accurate scale prior to estimation by using the

176 Robust Techniques for Computer Vision Chapter 4

bandwidth ĥθ as scale during the search for the optimal projection direc-
tion. The bandwidth being an approximation of the AMISE optimal solution
(4.75) tries to preserve the sensitivity of the density estimation process as
the number of data points n becomes large. This is the reason for the n−1/5

factor in (4.151). Since ĥθ is the outlier rejection threshold at this stage, a
too small value increases the probability of assigning incorrectly the optimal
projection direction to a local alignment of points. Thus, it is recommended
that once n becomes large, say n > 103, the computed bandwith value is
slightly increased by a factor which is monotonic in n.

After the optimal projection direction θ̂ was found, the actual inlier/outlier
dichotomy of the data is defined by analyzing the shape of the density around
the mode. The nearest local minima on the left and on the right correspond
in Rp, the space of the data, to the transition between the inliers belonging
to the sought structure (which has a higher density) and the background
clutter of the outliers (which has a lower density). The locations of the
minima define the values α1 < α2. Together with θ̂ they yield the two
hyperplanes in Rp separating the inliers from the outliers. Note that the
equivalent scale of the M-estimator is s = α2−α1, and that the minima may
not be symmetrically located relative to the mode.

The 2D data in the example in Figure 4.22a contains 100 inliers and 500
outliers. The density of the points projected on the direction of the true
normal (Figure 4.22b) has a sharp mode. Since the pbM-estimator deals
only with one-dimensional densities, there is no need to use the mean shift
procedure (Section 4.3.3) to find the modes, and a simple heuristic suffices
to define the local minima if they are not obvious.

The advantage of the pbM-estimator arises from using a more adequate
scale in the optimization. In our example, the ŝmad scale estimate based on
the TLS initial fit (to the whole data) and computed with c = 3, is about
ten times larger than ĥ

θ̂
, the bandwith computed for the optimal projection

direction (Figure 4.22b). When a redescending M-estimator uses ŝmad, the
optimization of the objective function is based on a too large band, which
almost certainly leads to a nonrobust behavior.

Sometimes the detection of the minima can be fragile. See the right mini-
mum in Figure 4.22b. A slight change in the projected location of a few data
points could have changed this boundary to the next, much more significant
local minimum. However, this sensitivity is tolerated by pbM-estimator.
First, by the nature of the projection pursuit many different projections are
investigated and thus it is probable that at least one satisfactory band is
found. Second, from any reasonable inlier/outlier dichotomy of the data

Section 4.4. Robust Regression 177

−30 −20 −10 0 10 20 30

10

15

20

25

30

35

40

45

y
1

y 2

−10 0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

x

fθ(x)

| |

| |

(a) (b)

Figure 4.22. Determining the inlier/outlier dichotomy through the density of
the projected data. (a) 2D data. Solid line: optimal projection direction. Dashed
lines: boundaries of the detected inlier region. (b) The kernel density estimate of
the projected points. Vertical dashed lines: the left and right local minima. The
bar at the top is the scale ±ŝmad computed with c = 3. The bar below is ±ĥ

θ̂
, the

size of the kernel support. Both are centered on the mode.

postprocessing of the points declared inliers (the region bounded by the two
hyperplanes in Rp) can recover the correct estimates. Since the true inliers
are with high probability the absolute majority among the points declared
inliers, the robust LTS estimator (4.145) can now be used.

The significant improvement in outlier tolerance of the pbM-estimator
was obtained at the price of replacing the iterative weighted least squares
algorithm of the traditional M-estimation with a search inRp for the optimal
projection direction θ̂. This search can be efficiently implemented using the
simplex based technique discussed in Section 4.2.7.

A randomly selected p-tuple of points (an elemental subset) defines the
projection direction θ, from which the corresponding polar angles β are
computed (4.52). The vector β is the first vertex of the initial simplex in
Rp−1. The remaining p− 1 vertices are then defined as

βk = β + ek ∗ γ k = 1, . . . , (p− 1) (4.152)

where ek ∈ Rp−1 is a vector of 0-s except a 1 in the k-th element, and γ
is a small angle. While the value of γ can depend on the dimension of the
space, using a constant value such as γ = π/12, seems to suffice in practice.
Because θ is only a projection direction, during the search the polar angles
are allowed to wander outside the limits assuring a unique mapping in (4.52).
The simplex based maximization of the projection index (4.149) does not
have to be extremely accurate, and the number of iterations in the search
should be relative small.

178 Robust Techniques for Computer Vision Chapter 4

The projection based implementation of the M-estimators is summarized
below.

The pbM-estimator

– Repeat N times:
1. choose an elemental subset (p-tuple) by random sampling;

2. compute the TLS estimate of θ;

3. build the initial simplex in the space of polar angles β;

4. perform a simplex based direct search to find the local maximum
of the projection index.

– Find the left and right local minima around the mode of the density
corresponding to the largest projection index.

– Define the inlier/outlier dichotomy of the data. Postprocess the inliers
to find the final estimates of α and θ.

4.4.6 Applications

The superior outlier tolerance of the pbM-estimator relative to other robust
techniques is illustrated with two experiments. The percentage of inliers in
the data is assumed unknown and can be significantly less than that of the
outliers. Therefore the LMedS estimator cannot be applied. It is shown
in [106] that MLESAC and MSAC have very similar performance and are
superior to RANSAC. We have compared RANSAC and MSAC with the
pbM-estimator.

In both experiments ground truth was available, and the true standard
deviation of the inliers σt could be computed. The output of any robust
regression is the inlier/outlier dichotomy of the data. Let the standard de-
viation of the points declared inliers measured relative to the true fit be σ̂in.
The performance of the different estimators was compared through the ratio
σ̂in/σt. For a satisfactory result this ratio should be very close to one.

The same number of computational units is used for all the techniques. A
computational unit is either processing of one elemental subset (RANSAC),
or one iteration in the simplex based direct search (pbM). The number of
iterations in a search was restricted to 25, but often it ended earlier. Thus,
the amount of computations attributed to the pbM-estimator is an upper
bound.

In the first experiment the synthetic data contained 100 inlier points
obeying an eight-dimensional linear EIV regression model (4.106). The mea-
surement noise was normally distributed with covariance matrix 52I8. A

Section 4.4. Robust Regression 179

10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

percentage of outliers

σ
in

/σ
t

pbMMSACo

MSACm

RANSAC

Figure 4.23. RANSAC vs. pbM-estimator. The relative standard deviation of
the residuals function of the percentage of outliers. Eight dimensional synthetic
data. The employed scale threshold: RANSAC – ŝmad; MSACm – ŝmad; MSACo
– sopt. The pbM-estimator has no tuning parameter. The vertical bars mark one
standard deviation from the mean.

variable percentage of outliers was uniformly distributed within the bound-
ing box of the region occupied in R8 by the inliers. The number of computa-
tional units was 5000, i.e., RANSAC used 5000 elemental subsets while the
pbM-estimator initiated 200 local searches. For each experimental condition
100 trials were run. The true sample standard deviation of the inliers σt,
was computed in each trial.

The scale provided to RANSAC was the ŝmad, based on the TLS fit to the
data and computed with c = 3. The same scale was used for MSAC. However,
in an optimal setting MSAC was also run with the scale sopt = 1.96σt. Note
that this information is not available in practice! The graphs in Figure 4.23
show that for any percentage of outliers the pbM-estimator performs at least
as well as MSAC tuned to the optimal scale. This superior performance is
obtained in a completely unsupervised fashion. The only parameters used
by the pbM-estimator are the generic normalized amplitude values needed
for the definition of the local minima. They do not depend on the data or
on the application.

In the second experiment, two far apart frames from the corridor sequence
(Figures 4.24a and 4.24b) were used to estimate the epipolar geometry from
point correspondences. As was shown in Section 4.2.5 this is a nonlinear
estimation problem, and therefore the role of a robust regression estimator
based on the linear EIV model is restricted to selecting the correct matches.
Subsequent use of a nonlinear (and nonrobust) method can recover the un-

180 Robust Techniques for Computer Vision Chapter 4

−150 −100 −50 0 50 100
0

10

20

30

40

50

60

70

80

90

100

residuals
−3 −2 −1 0 1 2 3

0

2

4

6

8

10

12

14

16

18

inlier residuals

(a) (b) (c) (d)

Figure 4.24. Estimating the epipolar geometry for two frames of the corridor
sequence. (a) and (b) The input images with the points used for correspondences
marked. (c) Histogram of the residuals from the ground truth. (d) Histogram of
the inliers.

biased estimates. Several such methods are discussed in [116].
The Harris corner detector [110, Sec.4.3] was used to establish the corre-

spondences, from which 265 point pairs were retained. The histogram of the
residuals computed as orthogonal distances from the ground truth plane in
8D, is shown in Figure 4.24c. The 105 points in the central peak of the his-
togram were considered the inliers (Figure 4.24d). Their standard deviation
was σt = 0.88.

The number of computational units was 15000, i.e., the pbM-estimator
used 600 searches. Again, MSAC was tuned to either the optimal scale sopt
or to the scale derived from the MAD estimate, ŝmad. The number true
inliers among the points selected by an estimator and the ratio between the
standard deviation of the selected points and that of the true inlier noise are
shown in the table below.

selected points/true inliers σ̂in/σt
MSAC (smad) 219/105 42.32
MSAC (sopt) 98/87 1.69

pbM 95/88 1.36

The pbM-estimator succeeds to recover the data of interest, and behaves
like an optimally tuned technique from the RANSAC family. However, in
practice the tuning information is not available.

4.4.7 Structured Outliers

The problem of multistructured data is not considered in this chapter, but a
discussion of robust regression cannot be complete without mentioning the
issue of structured outliers. This is a particular case of multistructured data,

Section 4.4. Robust Regression 181

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

s

ε(
s;

α,
β)

0 50 100 150
0

0.2

0.4

0.6

0.8

1

s

ε(
s;

α,
β)

0 5 10 15 20 25
0.5

0.6

0.7

0.8

0.9

1

s

ε(
s;

α,
β)

0 5 10 15 20 25
0.5

0.6

0.7

0.8

0.9

1

s

ε(
s;

α,
β)

(a) (b) (c) (d)

Figure 4.25. Dependence of ε(s;α, β) on the scale s for the data in Figure 4.3b.
(a) Zero-one loss function. (b) Biweight loss function. (c) The top-left region of
(a). (d) The top-left region of (b). Solid line – envelope εmin(s). Dashed line – true
parameters of the lower structure. Dotdashed line – true parameters of the upper
structure. Dotted line – least squares fit parameters.

when only two structures are present and the example shown in Figure 4.3 is
a typical case. For such data, once the measurement noise becomes signifi-
cant all the robust techniques, M-estimators (including the pbM-estimator),
LMedS and RANSAC behave similarly to the nonrobust least squares es-
timator. This was first observed for the LMedS [77], and was extensively
analyzed in [97]. Here we describe a more recent approach [9].

The true structures in Figure 4.3b are horizontal lines. The lower one
contains 60 points and the upper one 40 points. Thus, a robust regression
method should return the lower structure as inliers. The measurement noise
was normally distributed with covariance σ2I2, σ = 10. In Section 4.4.4
it was shown that all robust techniques can be regarded as M-estimators.
Therefore we consider the expression

ε(s;α, β) =
1
n

n∑
i=1

ρ

(
y1cosβ + y2sinβ − α

s

)
(4.153)

which defines a family of curves parameterized in α and β of the line model
(4.54) and in the scale s. The envelope of this family

εmin(s) = min
α,β

ε(s;α, β) (4.154)

represents the value of the M-estimation minimization criterion (4.130) as a
function of scale.

By definition, for a given value of s the curve ε(s;α, β) can be only above
(or touching) the envelope. The comparison of the envelope with a curve
ε(s;α, β) describes the relation between the employed α, β and the parame-
ter values minimizing (4.153). Three sets of line parameters were investigated

182 Robust Techniques for Computer Vision Chapter 4

using the zero-one (Figure 4.25a) and the biweigth (Figure 4.25b) loss func-
tions: the true parameters of the two structures (α = 50, 100;β = π/2), and
the least squares parameter estimates (αLS , βLS). The LS parameters yield
a line similar to the one in Figure 4.3b, a nonrobust result.

Consider the case of zero-one loss function and the parameters of the
lower structure (dashed line in Figure 4.25a). For this loss function ε(s; 50, π/2)
is the percentage of data points outside the horizontal band centered on
y2 = 50 and with half-width s. As expected the curve has a plateau around
ε = 0.4 corresponding to the band having one of its boundaries in the
transition region between the two structures. Once the band extends into
the second structure ε(s; 50, π/2) further decreases. The curve, however, is
not only always above the envelope, but most often also above the curve
ε(s;αLS , βLS). See the magnified area of small scales in Figure 4.25c.

For a given value of the scale (as in RANSAC) a fit similar to least squares
will be prefered since it yields a smaller value for (4.153). The measurement
noise being large, a band containing half the data (as in LMedS) corresponds
to a scale s > 12, the value around which the least squares fit begins to
dominate the optimization (Figure 4.25a). As a result the LMedS will always
fail (Figure 4.3b). Note also the very narrow range of scale values (around s =
10) for which ε(s; 50, π/2) is below ε(s;αLS , βLS). It shows how accurately
has the user to tune an estimator in the RANSAC family for a satisfactory
performance.

The behavior for the biweight loss function is identical, only the curves
are smoother due to the weigthed averages (Figures 4.25b and 4.25d). When
the noise corrupting the structures is small, in Figure 4.3a it is σ = 2, the
envelope and the curve ε(s; 50, π/2) overlap for s < 8 which suffices for the
LMedS criterion. See [9] for details.

We can conclude that multistructured data has to be processed first by
breaking it into parts in which one structure dominates. The technique in [8]
combines several of the procedures discussed in this chapter. The sampling
was guided by local data density, i.e., it was assumed that the structures and
the background can be roughly separated by a global threshold on nearest
neighbor distances. The pbM-estimator was employed as the estimation
module, and the final parameters were obtained by applying adaptive mean
shift to a feature space. The technique had a Hough transform flavor, though
no scale parameters were required. The density assumption, however, may
fail when the structures are defined by linearizing a nonlinear problem, as it
is often the case in 3D vision. Handling such multistructured data embedded
in a significant background clutter, remains an open question.

Section 4.5. Conclusion 183

4.5 Conclusion

Our goal in this chapter was to approach robust estimation from the point
of view of a practitioner. We have used a common statistical framework
with solid theoretical foundations to discuss the different types and classes
of robust estimators. Therefore, we did not dwell on techniques which have
an excellent robust behavior but are of a somewhat ad-hoc nature. These
techniques, such as tensor voting (see Chapter 5), can provide valuable tools
for solving difficult computer vision problems.

Another disregarded topic was the issue of diagnosis. Should an algo-
rithm be able to determine its own failure, one can already talk about robust
behavior. When in the late 1980’s robust methods became popular in the
vision community, the paper [28] was often considered as the first robust
work in the vision literature. The special issue [93] and the book [6] contain
representative collections of papers for the state-of-the-art today.

We have emphasized the importance of embedding into the employed
model the least possible amount of assumptions necessary for the task at
hand. In this way the developed algorithms are more suitable for vision
applications, where the data is often more complex than in the statistical
literature. However, there is a tradeoff to satisfy. As the model becomes
less committed (more nonparametric), its power to extrapolate from the
available data also decreases. How much is modeled rigorously and how
much is purely data driven is an important decision of the designer of an
algorithm. The material presented in this chapter was intended to help in
taking this decision.

Acknowledgements

I must thank to several of my current and former graduate students whose
work is directly or indirectly present on every page: Haifeng Chen, Dorin
Comaniciu, Bogdan Georgescu, Yoram Leedan and Bogdan Matei. Long dis-
cussions with Dave Tyler from the Statistics Department, Rutgers University
helped to crystallize many of the ideas described in this paper. Should they
be mistaken, the blame is entirely mine. Preparation of the material was sup-
ported by the National Science Foundation under the grant IRI 99-87695.

Bibliography

[1] J. Addison. Pleasures of imagination. Spectator, 6, No. 411, June 21, 1712.
[2] G. Antille and H. El May. The use of slices in the LMS and the method of

density slices: Foundation and comparison. In Y. Dodge and J. Whittaker,

184 Robust Techniques for Computer Vision Chapter 4

editors, Proc. 10th Symp. Computat. Statist., Neuchatel, volume I, pages 441–
445. Physica-Verlag, 1992.

[3] T. Arbel and F. P. Ferrie. On sequential accumulation of evidence. Intl. J. of
Computer Vision, 43:205–230, 2001.

[4] P. J. Besl, J. B. Birch, and L. T. Watson. Robust window operators. In
Proceedings of the 2nd International Conference on Computer Vision, pages
591–600, Tampa, FL, December 1988.

[5] M.J. Black and A. Rangarajan. On the unification of line processes, outlier
rejection, and robust statistics with applications in early vision. Intl. J. of
Computer Vision, 19:57–91, 1996.

[6] K. J. Bowyer and P. J. Phillips, editors. Empirical evaluation techniques in
computer vision. IEEE Computer Society, 1998.

[7] K. L. Boyer, M. J. Mirza, and G. Ganguly. The robust sequential estimator:
A general approach and its application to surface organization in range data.
IEEE Trans. Pattern Anal. Machine Intell., 16:987–1001, 1994.

[8] H. Chen and P. Meer. Robust computer vision through kernel density estima-
tion. In Proc. European Conf. on Computer Vision, Copenhagen, Denmark,
volume I, pages 236–250, May 2002.

[9] H. Chen, P. Meer, and D. E. Tyler. Robust regression for data with multi-
ple structures. In 2001 IEEE Conference on Computer Vision and Pattern
Recognition, volume I, pages 1069–1075, Kauai, HI, December 2001.

[10] Y. Cheng. Mean shift, mode seeking, and clustering. IEEE Trans. Pattern
Anal. Machine Intell., 17:790–799, 1995.

[11] E. Choi and P. Hall. Data sharpening as a prelude to density estimation.
Biometrika, 86:941–947, 1999.

[12] W. Chojnacki, M. J. Brooks, A. van den Hengel, and D. Gawley. On the
fitting of surfaces to data with covariances. IEEE Trans. Pattern Anal. Machine
Intell., 22:1294–1303, 2000.

[13] C.M. Christoudias, B. Georgescu, and P. Meer. Synergism in low-level vision.
In Proc. 16th International Conference on Pattern Recognition, Quebec City,
Canada, volume IV, pages 150–155, August 2002.

[14] R. T. Collins. Mean-shift blob tracking through scale space. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition, Madison, WI, volume II,
pages 234–240, 2003.

[15] D. Comaniciu. An algorithm for data-driven bandwidth selection. IEEE Trans.
Pattern Anal. Machine Intell., 25:281–288, 2003.

[16] D. Comaniciu and P. Meer. Distribution free decomposition of multivariate
data. Pattern Analysis and Applications, 2:22–30, 1999.

[17] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature
space analysis. IEEE Trans. Pattern Anal. Machine Intell., 24:603–619, 2002.

[18] D. Comaniciu, V. Ramesh, and P. Meer. The variable bandwidth mean shift
and data-driven scale selection. In Proc. 8th Intl. Conf. on Computer Vision,
Vancouver, Canada, volume I, pages 438–445, July 2001.

[19] D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based object tracking. IEEE
Trans. Pattern Anal. Machine Intell., 25:564–577, 2003.

Bibliography 185

[20] D. Donoho, I. Johnstone, P. Rousseeuw, and W. Stahel. Discussion: Projection
pursuit. Annals of Statistics, 13:496–500, 1985.

[21] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification. Wiley, second
edition, 2001.

[22] B. Efron and R. Tibshirani. An Introduction to the Bootstrap. Chapman &
Hall, New York, 1993.

[23] S. P. Ellis. Instability of least squares, least absolute deviation and least median
of squares linear regression. Statistical Science, 13:337–350, 1998.

[24] O. Faugeras. Three-Dimensional Computer Vision. MIT Press, 1993.
[25] M.A. Fischler and R.C. Bolles. Random sample consensus: A paradigm for

model fitting with applications to image analysis and automated cartography. In
DARPA Image Understanding Workshop, pages 71–88, University of Maryland,
College Park, April 1980.

[26] M.A. Fischler and R.C. Bolles. Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography.
Comm. Assoc. Comp. Mach, 24(6):381–395, 1981.

[27] A.W. Fitzgibbon, M. Pilu, and R.B. Fisher. Direct least square fitting of el-
lipses. IEEE Trans. Pattern Anal. Machine Intell., 21:476–480, 1999.

[28] W. Förstner. Reliability analysis of parameter estimation in linear models with
applications to mensuration problems in computer vision. Computer Vision,
Graphics, and Image Processing, 40:273–310, 1987.

[29] W. T. Freeman, E. G. Pasztor, and O. W. Carmichael. Learning in low-level
vision. Intl. J. of Computer Vision, 40:25–47, 2000.

[30] J. H. Friedman and J. W. Tukey. A projection pursuit algorithm for exploratory
data analysis. IEEE Trans. Comput., 23:881–889, 1974.

[31] K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press,
second edition, 1990.

[32] K. Fukunaga and L. D. Hostetler. The estimation of the gradient of a density
function, with applications in pattern recognition. IEEE Trans. Information
Theory, 21:32–40, 1975.

[33] W. Fuller. Measurement Error Models. Wiley, 1987.
[34] B. Georgescu and P. Meer. Balanced recovery of 3D structure and camera mo-

tion from uncalibrated image sequences. In Proc. European Conf. on Computer
Vision, Copenhagen, Denmark, volume II, pages 294–308, 2002.

[35] B. Georgescu, I. Shimshoni, and P. Meer. Mean shift based clustering in high
dimensions: A texture classification example. In Proc. 9th Intl. Conf. on Com-
puter Vision, Nice, France, pages 456–463, October 2003.

[36] E. B. Goldstein. Sensation and Perception. Wadsworth Publishing Co., 2nd
edition, 1987.

[37] G. H. Golub and C. Reinsch. Singular value decomposition and least squares
solutions. Number. Math., 14:403–420, 1970.

[38] G. H. Golub and C. F. Van Loan. Matrix Computations. John Hopkins U.
Press, second edition, 1989.

[39] P. Hall, T.C. Hui, and J.S. Marron. Improved variable window kernel estimates
of probability densities. Annals of Statistics, 23:1–10, 1995.

186 Robust Techniques for Computer Vision Chapter 4

[40] R. Hampel, E.M. Ronchetti, P.J. Rousseeuw, and W.A. Stahel. Robust Statis-
tics. The Approach Based on Influence Function. Wiley, 1986.

[41] R. M. Haralick and H. Joo. 2D-3D pose estimation. In Proceedings of the 9th
International Conference on Pattern Recognition, pages 385–391, Rome, Italy,
November 1988.

[42] R. M. Haralick and L. G. Shapiro. Computer and Robot Vision. Addison-
Wesley, 1992.

[43] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, 2000.

[44] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.
Springer, 2001.

[45] T. P. Hettmansperger and S. J. Sheather. A cautionary note on the method of
least median of squares. The American Statistician, 46:79–83, 1992.

[46] P.V.C. Hough. Machine analysis of bubble chamber pictures. In Interna-
tional Conference on High Energy Accelerators and Instrumentation, Centre
Européenne pour la Recherch Nucléaire (CERN), 1959.

[47] P.V.C. Hough. Method and means for recognizing complex patterns. US Patent
3,069,654, December 18, 1962.

[48] P. J. Huber. Projection pursuit (with discussion). Annals of Statistics, 13:435–
525, 1985.

[49] P. J. Huber. Robust Statistical Procedures. SIAM, second edition, 1996.
[50] J. Illingworth and J. V. Kittler. A survey of the Hough transform. Computer

Vision, Graphics, and Image Processing, 44:87–116, 1988.
[51] M. Isard and A. Blake. Condensation - Conditional density propagation for

visual tracking. Intl. J. of Computer Vision, 29:5–28, 1998.
[52] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall,

1988.
[53] J.M. Jolion, P. Meer, and S. Bataouche. Robust clustering with applications

in computer vision. IEEE Trans. Pattern Anal. Machine Intell., 13:791–802,
1991.

[54] M. C. Jones and R. Sibson. What is projection pursuit? (with discussion). J.
Royal Stat. Soc. A, 150:1–37, 1987.

[55] B. Julesz. Early vision and focal attention. Rev. of Modern Physics, 63:735–772,
1991.

[56] H. Kälviäinen, P. Hirvonen, L. Xu, and E. Oja. Probabilistic and nonprob-
abilistic Hough transforms: Overview and comparisons. Image and Vision
Computing, 13:239–252, 1995.

[57] K. Kanatani. Statistical bias of conic fitting and renormalization. IEEE Trans.
Pattern Anal. Machine Intell., 16:320–326, 1994.

[58] K. Kanatani. Statistical Optimization for Geometric Computation: Theory and
Practice. Elsevier, 1996.

[59] D.Y. Kim, J.J. Kim, P. Meer, D. Mintz, and A. Rosenfeld. Robust computer
vision: The least median of squares approach. In Proceedings 1989 DARPA
Image Understanding Workshop, pages 1117–1134, Palo Alto, CA, May 1989.

[60] N. Kiryati and A. M. Bruckstein. What’s in a set of points? IEEE Trans.
Pattern Anal. Machine Intell., 14:496–500, 1992.

Bibliography 187

[61] N. Kiryati and A. M. Bruckstein. Heteroscedastic Hough transform (HtHT): An
efficient method for robust line fitting in the ‘errors in the variables’ problem.
Computer Vision and Image Understanding, 78:69–83, 2000.

[62] V. F. Leavers. Survey: Which Hough transform? Computer Vision, Graphics,
and Image Processing, 58:250–264, 1993.

[63] K.M. Lee, P. Meer, and R.H. Park. Robust adaptive segmentation of range
images. IEEE Trans. Pattern Anal. Machine Intell., 20:200–205, 1998.

[64] Y. Leedan and P. Meer. Heteroscedastic regression in computer vision: Prob-
lems with bilinear constraint. Intl. J. of Computer Vision, 37:127–150, 2000.

[65] A. Leonardis and H. Bischof. Robust recognition using eigenimages. Computer
Vision and Image Understanding, 78:99–118, 2000.

[66] R. M. Lewis, V. Torczon, and M. W. Trosset. Direct search methods: Then
and now. J. Computational and Applied Math., 124:191–207, 2000.

[67] G. Li. Robust regression. In D. C. Hoaglin, F. Mosteller, and J. W. Tukey, ed-
itors, Exploring Data Tables, Trends, and Shapes, pages 281–343. Wiley, 1985.

[68] R. A. Maronna and V. J. Yohai. The breakdown point of simulataneous general
M estimates of regression and scale. J. of Amer. Stat. Assoc., 86:699–703, 1991.

[69] R. D. Martin, V. J. Yohai, and R. H. Zamar. Min-max bias robust regression.
Annals of Statistics, 17:1608–1630, 1989.

[70] B. Matei. Heteroscedastic Errors-in-Variables Models in Com-
puter Vision. PhD thesis, Department of Electrical and Com-
puter Engineering, Rutgers University, 2001. Available at
http://www.caip.rutgers.edu/riul/research/theses.html.

[71] B. Matei and P. Meer. Bootstrapping errors-in-variables models. In B. Triggs,
A. Zisserman, and R. Szelisky, editors, Vision Algorithms: Theory and Practice,
pages 236–252. Springer, 2000.

[72] B. Matei and P. Meer. Reduction of bias in maximum likelihood ellipse fitting.
In 15th International Conference on Computer Vision and Pattern Recog., vol-
ume III, pages 802–806, Barcelona, Spain, September 2000.

[73] P. Meer and B. Georgescu. Edge detection with embedded confidence. IEEE
Trans. Pattern Anal. Machine Intell., 23:1351–1365, 2001.

[74] P. Meer, D. Mintz, D. Y. Kim, and A. Rosenfeld. Robust regression methods
in computer vision: A review. Intl. J. of Computer Vision, 6:59–70, 1991.

[75] J. M. Mendel. Lessons in Estimation Theory for Signal Processing, Communi-
cations, and Control. Prentice Hall, 1995.

[76] J. V. Miller and C. V. Stewart. MUSE: Robust surface fitting using unbiased
scale estimates. In CVPR96, pages 300–306, June 1996.

[77] D. Mintz, P. Meer, and A. Rosenfeld. Consensus by decomposition: A paradigm
for fast high breakdown point robust estimation. In Proceedings 1991 DARPA
Image Understanding Workshop, pages 345–362, La Jolla, CA, January 1992.

[78] J. A. Nelder and R. Mead. A simplex method for function minimization. Com-
puter Journal, 7:308–313, 1965.

[79] P. L. Palmer, J. Kittler, and M. Petrou. An optimizing line finder using a
Hough transform algorithm. Computer Vision and Image Understanding, 67:1–
23, 1997.

188 Robust Techniques for Computer Vision Chapter 4

[80] D. Petkovic, W. Niblack, and M. Flickner. Projection-based high accuracy
measurement of straight line edges. Machine Vision and Appl., 1:183–199,
1988.

[81] P. D. Picton. Hough transform references. Internat. J. of Patt. Rec and Artific.
Intell., 1:413–425, 1987.

[82] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes in C. Cambridge University Press, second edition, 1992.

[83] P. Pritchett and A. Zisserman. Wide baseline stereo matching. In 6th Interna-
tional Conference on Computer Vision, pages 754–760, Bombay, India, January
1998.

[84] Z. Pylyshyn. Is vision continuous with cognition? The case for cognitive im-
penetrability of visual perception. Behavioral and Brain Sciences, 22:341–423,
1999. (with comments).

[85] S.J. Raudys and A.K. Jain. Small sample size effects in statistical pattern
recognition: Recommendations for practitioners. IEEE Trans. Pattern Anal.
Machine Intell., 13:252–264, 1991.

[86] P. J. Rousseeuw. Least median of squares regression. J. of Amer. Stat. Assoc.,
79:871–880, 1984.

[87] P. J. Rousseeuw. Unconventional features of positive-breakdown estimators.
Statistics & Prob. Letters, 19:417–431, 1994.

[88] P. J. Rousseeuw and C. Croux. Alternatives to the median absolute deviation.
J. of Amer. Stat. Assoc., 88:1273–1283, 1993.

[89] P. J. Rousseeuw and A. M. Leroy. Robust Regression and Outlier Detection.
Wiley, 1987.

[90] D. Ruppert and D. G. Simpson. Comment on “Unmasking Multivariate Outliers
and Leverage Points”, by P. J. Rousseeuw and B. C. van Zomeren. J. of Amer.
Stat. Assoc., 85:644–646, 1990.

[91] D. W. Scott. Parametric statistical modeling by minimum integrated square
error. Technometrics, 43:247–285, 2001.

[92] B. W. Silverman. Density Estimation for Statistics and Data Analysis. Chap-
man & Hall, 1986.

[93] Special Issue. Performance evaluation. Machine Vision and Appl., 9(5/6), 1997.
[94] Special Issue. Robust statistical techniques in image understanding. Computer

Vision and Image Understanding, 78, April 2000.
[95] G. Speyer and M. Werman. Parameter estimates for a pencil of lines: Bounds

and estimators. In Proc. European Conf. on Computer Vision, Copenhagen,
Denmark, volume I, pages 432–446, 2002.

[96] L. Stark and K.W. Bowyer. Achieving generalized object recognition through
reasoning about association of function to structure. IEEE Trans. Pattern Anal.
Machine Intell., 13:1097–1104, 1991.

[97] C. V. Stewart. Bias in robust estimation caused by discontinuities and multiple
structures. IEEE Trans. Pattern Anal. Machine Intell., 19:818–833, 1997.

[98] C. V. Stewart. Robust parameter estimation in computer vision. SIAM Reviews,
41:513–537, 1999.

[99] C.V. Stewart. Minpran: A new robust estimator for computer vision. IEEE
Trans. Pattern Anal. Machine Intell., 17:925–938, 1995.

Bibliography 189

[100] K. S. Tatsuoka and D. E. Tyler. On the uniqueness of S and constrained
M-functionals under non-elliptical distributions. Annals of Statistics, 28:1219–
1243, 2000.

[101] P. R. Thrift and S. M. Dunn. Approximating point-set images by line segments
using a variation of the Hough transform. Computer Vision, Graphics, and
Image Processing, 21:383–394, 1983.

[102] A. Tirumalai and B. G. Schunk. Robust surface approximation using least me-
dian of squares. Technical Report CSE-TR-13-89, Artificial Intelligence Labo-
ratory, 1988. University of Michigan, Ann Arbor.

[103] B. Tordoff and D.W. Murray. Guided sampling and consensus for motion
estimation. In 7th European Conference on Computer Vision, volume I, pages
82–96, Copenhagen, Denmark, May 2002.

[104] P. H. S. Torr and C. Davidson. IMPSAC: Synthesis of importance sampling
and random sample consensus. IEEE Trans. Pattern Anal. Machine Intell.,
25:354–364, 2003.

[105] P. H. S. Torr and D. W. Murray. The development and comparison of robust
methods for estimating the fundamental matrix. Intl. J. of Computer Vision,
24:271–300, 1997.

[106] P. H. S. Torr and A. Zisserman. MLESAC: A new robust estimator with
application to estimating image geometry. Computer Vision and Image Under-
standing, 78:138–156, 2000.

[107] P. H. S. Torr, A. Zisserman, and S. J. Maybank. Robust detection of degenerate
configurations while estimating the fundamental matrix. Computer Vision and
Image Understanding, 71:312–333, 1998.

[108] P.H.S. Torr and A. Zisserman. Robust computation and parametrization of
multiple view relations. In 6th International Conference on Computer Vision,
pages 727–732, Bombay, India, January 1998.

[109] A. Treisman. Features and objects in visual processing. Scientific American,
254:114–125, 1986.

[110] E. Trucco and A. Verri. Introductory Techniques for 3-D Computer Vision.
Prentice Hall, 1998.

[111] S. Van Huffel and J. Vandewalle. The Total Least Squares Problem. Computa-
tional Aspects and Analysis. Society for Industrial and Applied Mathematics,
1991.

[112] M. P. Wand and M.C. Jones. Kernel Smoothing. Chapman & Hall, 1995.
[113] I. Weiss. Line fitting in a noisy image. IEEE Trans. Pattern Anal. Machine

Intell., 11:325–329, 1989.
[114] M. H. Wright. Direct search methods: Once scorned, now respectable. In D. H.

Griffiths and G. A. Watson, editors, Numerical Analysis 1995, pages 191–208.
Addison-Wesley Longman, 1996.

[115] R. H. Zamar. Robust estimation in the errors-in-variables model. Biometrika,
76:149–160, 1989.

[116] Z. Zhang. Determining the epipolar geometry and its uncertainty: A review.
Intl. J. of Computer Vision, 27:161–195, 1998.

[117] Z. Zhang. Parameter-estimation techniques: A tutorial with application to
conic fitting. Image and Vision Computing, 15:59–76, 1997.

Chapter 5

THE TENSOR VOTING
FRAMEWORK

Gérard Medioni

and Philippos Mordohai

5.1 Introduction

The design and implementation of a complete artificial vision system is a
daunting challenge. The computer vision community has made significant
progress in many areas, but the ultimate goal is still far-off. A key component
of a general computer vision system is a computational framework that can
address a wide range of problems in a unified way. We have developed
such a framework over the past several years [40], which is the basis of the
augmented framework that is presented in this chapter. It is based on a data
representation formalism that uses tensors and an information propagation
mechanism termed tensor voting.

Most computer vision problems are inverse problems, due to the fact
that the imaging process maps 3-D “world” features onto 2-D arrays of pix-
els. The loss of information due to the reduction in dimensionality and the
fact the imaging process is not linear combined with unavoidable sources
of noise, such as limited sensor resolution, quantization of continuous in-
formation into pixels, photometric and projective distortion, guarantee that
computer vision algorithms operate on datasets that include numerous out-
liers and are severely corrupted by noise. Many scene configurations could
have generated a given image (see Fig. 5.1). An automated computer vision
system must impose constraints or prior knowledge about the appearance

191

192 The Tensor Voting Framework Chapter 5

of familiar objects, to select the most likely scene interpretation. In this
chapter we present a methodology for the perceptual organization of tokens.
The tokens represent the position of elements such as points or curvels, and
can also convey other information, such as curve or surface orientation. The
organization is achieved by enforcing constraints, as suggested by Gestalt
psychology, within the proposed computational framework. All processing
is strictly bottom-up without any feedback loops or top-down stages.

Figure 5.1. An infinite set of scene configurations can produce the same image.
Most people, however, would perceive a flat triangle in the above example

5.1.1 Motivation

The motivation for designing and implementing the Tensor Voting Frame-
work came from the observation that, even though many computer vision
problems are similar, different algorithms were applied to each of them. In
most cases, one starts from one or more images and attempts to infer descrip-
tions of the depicted scenes, in terms of appearance, shape, motion etc. The
type of primitives, the constraints and desired solution may differ, therefore
a general framework must be flexible enough to adjust to different settings
and incorporate different constraints. The primitives used in computer vision
problems span a wide range of features including differential image intensity
properties, such as edges and corners; elementary structures, such as elemen-
tary curves and surface patches; motion vectors; reflectance properties; and
texture descriptors. The most generally applicable constraint is the “matter
is cohesive” constraint proposed by Marr [39], that states that objects in real
scenes are continuous almost everywhere. Other powerful constraints exist,
but are usually applicable to specific problems where certain assumptions
hold. The desired type of scene descriptions is a large issue, some aspects of
which will be addressed in the next subsection.

Despite the apparent differences among computer vision problems, the
majority of them can be posed as perceptual organization problems. In the

Section 5.1. Introduction 193

beginning of last century, the Gestalt psychologists [70] formulated a set of
principles which guide perceptual organization in the Human Visual System.
These principles include similarity, proximity, good continuation, simplic-
ity, closure, colinearity, and co-curvilinearity, which cooperate, or sometimes
compete, to produce salient structures formed by the observed tokens (Fig.
5.2). We claim that computer vision problems can be addressed within a
Gestalt framework, where the primitives are grouped according to the above
criteria to give rise to salient structures. For instance, descriptions in terms
of shape can generated by grouping tokens according to similarity, proximity
and good continuation. In other applications, salient groups might appear
due to similarity in other properties such as motion, texture, or surface nor-
mal.

(a) Proximity (b)Similarity

(c) Good continuation (d)Closure

Figure 5.2. Simple examples of the Gestalt principles. In (a) the dots are grouped
in four groups according to similarity. In (b) the darker dots are grouped in pairs,
as do the lighter ones. In (c) the most likely grouping is A to B, and not A to C,
due to the smooth continuation of curve tangent from A to B. In (d), the factor of
closure generates the perception of an ellipse and a diamond

The unifying theme in computer vision problems, from a perceptual or-
ganization point of view, is the search for salient structures that arise due
to non-accidental alignment of the input tokens and, therefore, must bear
semantic importance. The term perceptual saliency indicates the quality of
features to be important, stand out conspicuously, be prominent and at-
tract our attention. In the remainder of this chapter, we demonstrate how a
number of computer vision problems can be formulated as perceptual organi-
zation problems and how the tensor voting framework provides the machin-
ery to address these problems in a unified way with minor problem-specific
adaptations.

194 The Tensor Voting Framework Chapter 5

5.1.2 Desirable descriptions

An alternative approach to ours, and one that has been widely used, is the
formulation of computer vision problems within an optimization framework.
Objective functions can be set up according to the requirements and con-
straints of the problem at hand by imposing penalties to primitives that de-
viate from the desired models. Local penalties are aggregated into an energy
or cost function, which is then optimized using an appropriate method. Due
to the inverse nature of computer vision, optimization methods usually need
simplifying assumptions to reduce the complexity of the objective functions,
as well as careful initialization to avoid convergence at local optima.

The largest difference, however, between optimization methods and the
one proposed here is that they arrive at global solutions, while we claim
that local descriptions are more appropriate. Under a global, model-based
approach, one cannot discriminate between local model misfits and noise.
Furthermore, global descriptions are restricted to features that can be ex-
pressed in a parametric form. A local description is more general in the sense
that it can encode any smooth feature, with a finite number of discontinu-
ities, as a set of tokens. A hierarchy of more abstract descriptions can be
derived from the low-level, local one, if that is desired, while the opposite is
not always feasible.

(a) Illusory contour formed by endpoints (b) Layered interpretation

Figure 5.3. Illusory contour and its interpretation in terms of layers

A second requirement on the descriptions we wish to infer is that they
should be in terms of layers. Psychological evidence suggests that human
perception also supports a layered description of the world. For instance,
the illusory contour that clearly appears in Fig. 5.3 can be explained by a
scene interpretation that consists of a circle on top of a set of lines. Even

Section 5.1. Introduction 195

though we do not aim to emulate the human visual system, this evidence
suggests that a layered representation is beneficial for a general computer
vision system.

Finally, we choose an object-based representation over a viewpoint-based
one. With this choice we avoid introducing unnecessary viewpoint-dependant
elements in intermediate stages of the computation. For instance, if unique-
ness along the lines of sight is a reasonable or desired assumption for a given
problem, it can be enforced at later stages, thus avoiding the enforcement of
constraints too early, when they might be detrimental to the solution.

5.1.3 Our approach

In this section we briefly review the tensor voting framework, which was
originally presented in [40], including extensions that have been developed
in the past few years. The two main aspects of the framework are the repre-
sentation by tensors and the information propagation mechanism by tensor
voting. Its purpose is to serve as a computational mechanism for perceptual
grouping of oriented and un-oriented tokens generated based on image or
other primitives. It has mainly been applied to mid-level vision problems,
but it is suitable for any problem, of any dimensionality, that can be formu-
lated as a perceptual organization problem. The novelty of our approach is
that there is no objective function that is explicitly defined and optimized ac-
cording to global criteria. Instead, tensor voting is performed locally and the
saliency of perceptual structures is estimated as a function of the support
tokens receive from their neighbors. Tokens with compatible orientations
that can form salient structures reinforce each other. The support of a token
for its neighbors is expressed by votes that are cast according to the Gestalt
principles of proximity, co-linearity and co-curvilinearity.

Data representation The representation of a token originally consisted of a
symmetric second order tensor that encodes perceptual saliency. The tensor
essentially indicates the saliency of each type of perceptual structure the
token belongs to, and its preferred normal or tangent orientations. Tensors
were first used as a signal processing tool for computer vision applications
by Granlund and Knutsson [12] and Westin [71]. Our use of tensors differs
in that our representation is not signal based, but rather symbolic, where
hypotheses for the presence of a perceptual structure at a given location are
represented as tokens with associated second order tensors that encode the
most likely type of structure and its preferred tangent or normal orientations.
The power of this representation lies in that all types of saliency are encoded
by the same tensor.

196 The Tensor Voting Framework Chapter 5

The second order symmetric tensors fulfill the requirements set in the
previous paragraphs, since they are well suited as descriptors of local struc-
ture. As opposed to scalar saliency values, the representation by tensors is
richer in information, since it also encodes orientation hypotheses at each
location, thus allowing the application of Gestalt principles such as good
continuation, colinearity and co-curvilinearity. Even though this is also fea-
sible with vectors, as in the work of Guy and Medioni [15, 16], the tensors
can simultaneously encode all potential types of structures, such as surfaces,
curves and regions, as well as the uncertainty of the information.

A representation scheme sufficient for our purposes must be able to en-
code both smooth perceptual structures as well as discontinuities which come
in two types: orientation and structural discontinuities. The former occur
at locations where a perceptual structure is continuous, but its orientation
is not, or where multiple salient structures, such as curves or surfaces, meet.
Curve orientation discontinuities occur at locations where multiple curve seg-
ments intersect, while surface orientation discontinuities occur where mul-
tiple surface patches intersect. In other words, whereas there is only one
orientation associated with a location within a smooth curve segment, or a
surface patch or a region boundary, there are multiple orientations associ-
ated with locations where a discontinuity occurs. Hence, the desirable data
representation is the that can encode more than one orientation at a given lo-
cation. It turns out that a second order symmetric tensor possesses precisely
this property, as will be shown in Sections 5.3 and 5.4.

The second type of discontinuities are structural discontinuities. These
occur at locations such as the endpoints B and C of Fig. 5.8(a). They are
first order discontinuities since the perceptual structure is no longer con-
tinuous there. Non-accidental terminations of perceptual structures carry
significant weight and should be explicitly detected and represented. The
second order symmetric tensors fail to describe structural discontinuities be-
cause they cannot capture first order properties and the second order prop-
erties of the structure remain invariant at its boundaries. In order to address
this shortcoming of the framework, as it was published in [40], vectors (first
order tensors) were introduced [69]. More specifically, besides the second
order tensor, each token is associated with a polarity vector that encodes the
likelihood of the token being a termination of a perceptual structure. Po-
larity vectors are sensitive to first order properties such as the distribution
of neighboring tokens around a given token. Structure terminations can be
detected based on their essential property to have all their neighbors, at least
locally, on the same side of a half-space.

Section 5.1. Introduction 197

Tensor Voting The way to encode primitives in the representation scheme
is demonstrated in the following sections. The starting point in our attempt
to infer salient structures and scene descriptions is a set of un-oriented or
oriented tokens. Un-oriented tokens express the hypothesis that a perceptual
structure, of an unknown yet type, exists at the token’s location. Oriented
tokens can be elementary curves (curvels), elementary surfaces (surfels) etc.
They express the hypothesis that a perceptual structure with the given ori-
entation goes through the location of the token. The question is how should
these hypotheses be combined in order to derive the saliency of each token?

We propose to do this by tensor voting, a method of information propa-
gation where tokens convey their orientation preferences to their neighbors
in the form of votes. First and second order votes, which are respectively
vectors and second order tensors, are cast from token to token. The second
order vote is a second order tensor that has the orientation in terms of nor-
mals and tangents the receiver would have if the voter and receiver were part
of the same smooth perceptual structure. The first order vote is a vector
that points towards the voter, and thus the interior of the structure, if the
receiver ware indeed a boundary.

Each vote is an estimate of orientation or termination of a perceptual
structure consisting of just two tokens: the voter and the receiver. In
essence, simple, smooth perceptual structures are fitted between the two
locations to generate the orientation estimates at the receiver. According to
the Gestalt principle of proximity, the strength of the votes attenuates with
distance, making the influence from distant tokens, and possible interference
from unrelated ones, smaller. The strength of the vote also decreases with
increased curvature of the hypothesized structure, making straight continu-
ations preferable to curved ones following the principles of smooth continu-
ation and simplicity.

A large number of first and second order votes are accumulated at each
location. By analyzing the consistency of the orientation estimations and the
amount of support a token receives, we can determine the type of structure
that exists at the location and its saliency. The aggregation of support via
tensor voting is a generalization to the Hough transform [23] that was first
proposed by Guy and Medioni [15, 16] using a vector-based scheme.

5.1.4 Chapter Overview

This chapter is organized as follows:

– Section 5.2 is a review of related work in perceptual organization.

– Section 5.3 presents the tensor voting framework in 2-D.

198 The Tensor Voting Framework Chapter 5

– Section 5.4 shows how it can be generalized to 3-D.

– Section 5.5 presents the N-D version of the framework and a compu-
tational complexity analysis.

– Section 5.6 addresses how computer vision problems can be posed
within the framework and presents our results on stereo and motion
analysis.

– Section 5.7 concludes the chapter after pointing out some issues that
still remain open.

5.2 Related Work

Perceptual organization has been an active research area. Important issues
include noise robustness, initialization requirements, handling of disconti-
nuities, flexibility in the types that can be represented, and computational
complexity. This section reviews related work which can be classified in the
following categories:

– regularization

– relaxation labeling

– computational geometry

– robust methods

– level set methods

– symbolic methods

– clustering

– methods based on local interactions

– methods inspired by psychophysiology and neuroscience.

Regularization Due to the projective nature of imaging, a single image can
correspond to different scene configurations. This ambiguity in image for-
mation makes the inverse problem, the inference of structures from images,
ill-posed. To address ill-posed problems, constraints have to be imposed
on the solution space. Within the regularization theory, this is achieved
by selecting an appropriate objective function and optimizing it according
to the constraints. Poggio, Torre and Koch [51] present the application of

Section 5.2. Related Work 199

regularization theory to computer vision problems. Terzopoulos [65], and
Robert and Deriche [52] address the issue of preserving discontinuities while
enforcing global smoothness in a regularization framework. A Bayesian for-
mulation of the problem based on Minimum Description Length is proposed
by Leclerc [32]. Variational techniques are used by Horn and Schunk [22]
for the estimation of optical flow, and by Morel and Solimini [43] for image
segmentation. In both cases the goal is to infer functions that optimize the
selected criteria, while preserving discontinuities.

Relaxation labeling A different approach to vision problems is relaxation
labeling. The problems are cast as the assignment of labels to the elements
of the scene from a set of possible labels. Haralick and Shapiro define the
consistent labeling problem in [17] and [18]. Labels that violate consistency
according to predefined criteria are iteratively removed from the tokens until
convergence. Faugeras and Berthod [8] describe a gradient optimization
approach to relaxation labeling. A global criterion is defined that combines
the concepts of ambiguity and consistency of the labeling process. Geman
and Geman discuss how stochastic relaxation can be applied to the task of
image restoration in [11]. MAP estimates are obtained by a Gibbs sampler
and simulated annealing. Hummel and Zucker [24] develop an underlying
theory for the continuous relaxation process. One result is the definition of
an explicit function to maximize to guide the relaxation process, leading to
a new relaxation operator. The second result is that finding a consistent
labeling is equivalent to solving a variational inequality. This work was
continued by Parent and Zucker [50] for the inference of trace points in 2-D,
and by Sander and Zucker [54] in 3-D.

Computational geometry Techniques for inferring surfaces from 3-D point
clouds have been reported in the computer graphics literature. Boissonnat
[2] proposes a technique based on computational geometry for object rep-
resentation by triangulating point clouds in 3-D. Hoppe et al. [21] infer
surfaces from unorganized point clouds as the zero levels of a signed dis-
tance function from the unknown surface. The strength of their approach
lies in the fact that the surface model, topology and boundaries need not
be known a priori. Later, Edelsbrunner and Mücke [7] introduce the three-
dimensional alpha shapes that are based on a 3-D Delaunay triangulation
of the data. Szeliski, Tonnesen and Terzopoulos [61] describe a method
for modeling surfaces of arbitrary, or changing, topology using a set of ori-
ented dynamic particles which interact according to distance, co-planarity,
co-normality and co-circularity. Computational geometry methods are lim-
ited by their sensitivity to even a very small number of outliers, and their

200 The Tensor Voting Framework Chapter 5

computational complexity.

Robust methods In the presence of noise, robust techniques inspired by
RANSAC (random sample consensus) [9] can be applied. Small random sam-
ples are selected from the noisy data and are used to derive model hypotheses
which are tested using the remainder of the dataset. Hypotheses that are
consistent with a large number of the data points are considered valid. Vari-
ants of RANSAC include RESC [74] and MIR [31], which are mainly used
for segmentation of surfaces from noisy 3-D point clouds. The extracted
surfaces are limited to planar or quadratic, except for the approach in [33]
which can extract high-order polynomial surfaces. Chen et al. [4] intro-
duce robust statistical methods to computer vision. They show how robust
M-estimators with auxiliary scale are more general than the other robust
estimators previously used in the field. They also point out the difficulties
caused by multiple structures in the data and propose a way to detect them.
In all cases an a priori parametric representation of the unknown structure
is necessary, thus limiting the applicability of these methods.

Level set methods The antipode of the explicit representation of surfaces
by a set of points, is the implicit representation in terms of a function.
In [58], Sethian proposes a level set approach under which surfaces can be
inferred as the zero-level iso-surface of a multivariate implicit function. The
technique allows for topological changes, thus it can reconstruct surfaces
of any genus as well as non-manifolds. Zhao, Osher and Fedkiw [20] and
Osher and Fedkiw [49] propose efficient ways of handling implicit surfaces
as level sets of a function. A combination of points and elementary surfaces
and curves can be provided as input to their technique, which can handle
local changes locally, as well as global deformations and topological changes.
All the implicit surface-based approaches are iterative and require careful
selection of the implicit function and initialization. The surface in explicit
form, as a set of polygons, can be extracted by a technique such as the
classic Marching Cubes algorithm [37]. The simultaneous representation of
surfaces, curves and junctions is impossible.

Symbolic methods Following the paradigm set by Marr [39], many researchers
developed methods for hierarchical grouping of symbolic data. Lowe [38] de-
veloped a system for 3-D object recognition based on perceptual organization
of image edgels. Groupings are selected among the numerous possibilities ac-
cording to the Gestalt principles, viewpoint invariance and low likelihood of
being accidental formations. Later, Mohan and Nevatia [41] and Dolan and
Riseman [6] also propose perceptual organization approaches based on the

Section 5.2. Related Work 201

Gestalt principles. Both are symbolic and operate in a hierarchical bottom-
up fashion starting from edgels and increasing the level of abstraction at each
iteration. The latter approach aims at inferring curvilinear structures, while
the former aims at segmentation and extraction of 3-D scene descriptions
from collations of features that have high likelihood of being projections of
scene objects. Along the same lines is Jacobs’ [25] technique for inferring
salient convex groups among clutter since they most likely correspond to
world objects. The criteria to determine the non-accidentalness of the po-
tential structures are convexity, proximity and contrast of the edgels.

Clustering A significant current trend in perceptual organization is cluster-
ing [26]. Data are represented as nodes of a graph and the edges between
them encode the likelihood that two nodes belong in the same partition of the
graph. Clustering is achieved by cutting some of these edges in a way that
optimizes global criteria. A landmark approach in the field was the intro-
duction of normalized cuts by Shi and Malik [60]. They aim at maximizing
the degree of dissimilarity between the partitions normalized by essentially
the size of each partition, in order to remove the bias for small clusters.
Boykov, Veksler and Zabih [3] use graph-cut based algorithms to approx-
imately optimize energy functions whose explicit optimization is NP-hard.
They demonstrate the validity of their approach on a number of computer
vision problems. Stochastic clustering algorithms are developed by Cho and
Meer [5] and Gdalyahu, Weinshall and Werman [10]. A consensus of various
clusterings of the data is used as a basis of the solution. Finally, Robles-Kelly
and Hancock [53] present a perceptual grouping algorithm based on graph
cuts and an iterative Expectation Maximization scheme, which improves the
quality of results at the expense of increased computational complexity.

Methods based on local interactions We now turn our attention to perceptual
organization techniques that are based on local interaction between primi-
tives. Shashua and Ullman [59] first addressed the issue of structural saliency
and how prominent curves are formed from tokens that are not salient in iso-
lation. They define a locally connected network that assigns a saliency value
to every image location according to the length and smoothness of curvature
of curves going through that location. In [50], Parent and Zucker infer trace
points and their curvature based on spatial integration of local information.
An important aspect of this method is its robustness to noise. This work
was extended to surface inference in three dimensions by Sander and Zucker
[54]. Sarkar and Boyer [55] employ a voting scheme to detect a hierarchy of
tokens. Voting in parameter space has to be performed separately for each
type of feature, thus making the computational complexity prohibitive for

202 The Tensor Voting Framework Chapter 5

generalization to 3-D. The inability of previous techniques to simultaneously
handle surfaces, curves and junctions was addressed in the precursor of our
research in [15, 16]. A unified framework where all types of perceptual struc-
tures can be represented is proposed along with a preliminary version of the
voting scheme presented here. The major advantages of the work of Guy
and Medioni were noise robustness and computational efficiency, since it is
not iterative. How this methodology evolved is presented in the remaining
sections of this chapter.

Methods inspired by psychophysiology and neuroscience Finally, there is an
important class of perceptual organization methods that are inspired by hu-
man perception and research in psychophysiology and neuroscience. Gross-
berg, Mingolla and Todorovic [13, 14] developed the Boundary Contour Sys-
tem and the Feature Contour System that can group fragmented and even
illusory edges to form closed boundaries and regions by feature cooperation
in a neural network. Heitger and von der Heydt [19], in a classic paper on
neural contour processing, claim that elementary curves are grouped into
contours via convolution with a set of orientation selective kernels, whose
responses decay with distance and difference in orientation. Williams and
Jacobs [72] introduce the stochastic completion fields for contour grouping.
Their theory is probabilistic and models the contour from a source to a sink
as the motion of a particle performing a random walk. Particles decay af-
ter every step, thus minimizing the likelihood of completions that are not
supported by the data or between distant points. Li [36] presents a contour
integration model based on excitatory and inhibitory cells and a top-down
feedback loop. What is more relevant to our research, that focuses on the
pre-attentive bottom-up process of perceptual grouping, is that connection
strength decreases with distance, and that zero or low curvature alternatives
are preferred to high curvature ones. The model for contour extraction of
Yen and Finkel [73] is based on psychophysical and physiological evidence
that has many similarities to ours. It employs a voting mechanism where
votes, whose strength decays as a Gaussian function of distance, are cast
along the tangent of the osculating circle. An excellent review of perceptual
grouping techniques based on cooperation and inhibition fields can be found
in [44]. Even though we do not attempt to present a biologically plausible
system, the similarities between our framework and the ones presented in
this paragraph are nevertheless encouraging.

Relations with our approach Some important aspects of our approach in
the context of the work presented in this section are discussed here. In
case of dense, noise free, uniformly distributed data, we are able to match

Section 5.3. Tensor Voting in 2D 203

the performance of surface extraction methods such as [2, 7, 66, 58, 37].
Furthermore, our results degrade much more gracefully in the presence of
noise (see for example [15] and [40]). The input can be oriented, un-oriented
tokens, or a combination of both, while many of the techniques mentioned
above require oriented inputs to proceed. In addition, we are able to extract
open and closed forms of all types of structures simultaneously. Our model-
free approach allows us to handle arbitrary perceptual structures that adhere
just to the “matter is cohesive” principle ([39]) and not predefined models
that restrict the admissible solutions. Model-based approaches cannot easily
distinguish between model misfit and noise. Our voting function has many
similarities with other voting-based methods, such as the decay with distance
and curvature [19, 73, 36], and the use of constant curvature paths [50, 56,
55, 73] that result in an eight-shaped voting field (in 2-D) [13, 14, 19, 73, 36].
The major difference is that in our case the votes cast are tensors and not
scalars, therefore they can express much richer information.

5.3 Tensor Voting in 2-D

This section introduces the tensor voting framework in 2-D. It begins by
describing the original second order representation and voting of [40]. Since
the strictly second order framework cannot handle structure discontinuities,
first order information has been added to the framework. Now tokens are
encoded with second order tensors and polarity vectors. These tokens prop-
agate their information to their neighbors by casting first and second order
votes. We demonstrate how all types of votes are derived from the same
voting function and how voting fields are generated. Votes are accumulated
at every token to infer the type of perceptual structure or structures going
through it along with their orientation. Voting from token to token is called
“sparse voting”. Then dense voting, during which votes are accumulated at
all grid positions, can be performed to infer the saliency everywhere. This
process allows the continuation of structures and the bridging of gaps. In
2-D, perceptual structures can be curves, regions and junctions, as well as
their terminations, which are the endpoints of curves and the boundaries of
regions. Finally, we present results on synthetic, but challenging, examples,
including illusory contours.

5.3.1 Second Order Representation and Voting in 2-D

The second order representation is in the form of a second order symmetric
non-negative definite tensor which essentially indicates the saliency of each
type of perceptual structure (curve, junction or region in 2-D) the token

204 The Tensor Voting Framework Chapter 5

Figure 5.4. Decomposition of a 2-D second order symmetric tensor into its stick
and ball components

Input Second order tensor Eigenvalues Quadratic form

λ1 = 1, λ2 = 0
[

n2
1 n1n2

n1n2 n2
2

]
oriented

λ1 = λ2 = 1
[

1 0
0 1

]
un-oriented

Table 5.1. Encoding oriented and un-oriented 2-D inputs as 2-D second order
symmetric tensors

may belong to and its preferred normal and tangent orientations. Tokens
cast second order votes to their neighbors according to the tensors they are
associated with.

Second order representation A 2-D, symmetric, non-negative definite, second
order tensor can be viewed as a 2 × 2 matrix, or equivalently an ellipse.
Intuitively, its shape indicates the type of structure represented and its size
the saliency of this information. The tensor can be decomposed as in the
following equation:

T = λ1ê1ê
T
1 + λ2ê2ê

T
2 = (λ1 − λ2)ê1êT1 + λ2(ê1êT1 + ê2ê

T
2) (5.1)

where λi are the eigenvalues in decreasing order and êi are the corresponding
eigenvectors (see also Fig. 5.4). Note that the eigenvalues are non-negative
since the tensor is non-negative definite. The first term in (5.1) corresponds
to a degenerate elongated ellipsoid, termed hereafter the stick tensor , that

Section 5.3. Tensor Voting in 2D 205

indicates an elementary curve token with ê1 as its curve normal. The second
term corresponds to a circular disk, termed the ball tensor , that corresponds
to a perceptual structure which has no preference of orientation or to a
location where multiple orientations coexist. The size of the tensor indicates
the certainty of the information represented by it. For instance, the size of
the stick component (λ1 − λ2) indicates curve saliency.

Based on the above, an elementary curve with normal �n is represented by
a stick tensor parallel to the normal, while an un-oriented token is represented
by a ball tensor. Note that curves are represented by their normals and
not their tangents for reasons that become apparent in higher dimensions.
See Table 5.1 for how oriented and un-oriented inputs are encoded and the
equivalent ellipsoids and quadratic forms.

Second order voting Now that the inputs, oriented or un-oriented, have
been encoded with tensors, we examine how the information they contain is
propagated to their neighbors. The question we want to answer is: assuming
that a token at O with normal �N and a token at P belong to the same
smooth perceptual structure, what information should the token at O cast
at P? We first answer the question for the case of a voter with a pure stick
tensor and show how all other cases can be derived from it. We claim that,
in the absence of other information, the arc of the osculating circle (the
circle that shares the same normal as a curve at the given point) at O that
goes through P is the most likely smooth path, since it maintains constant
curvature. The center of the circle is denoted by C in Fig. 5.5. In case
of straight continuation from O to P , the osculating circle degenerates to
a straight line. Similar use of primitive circular arcs can also be found in
[50, 56, 55, 73].

Figure 5.5. Second order vote cast by a stick tensor located at the origin

206 The Tensor Voting Framework Chapter 5

As shown in Fig. 5.5, the second order vote is also a stick tensor and
has a normal lying along the radius of the osculating circle at P . What
remains to be defined is the magnitude of the vote. According to the Gestalt
principles it should be a function of proximity and smooth continuation.
The influence from a token to another should attenuate with distance, to
minimize interference from unrelated tokens, and curvature, to favor straight
continuation over curved alternatives when both exist. Moreover, no votes
are cast if the receiver is at an angle larger than 45o with respect to the
tangent of the osculating circle at the voter. Similar restrictions on the fields
appear also in [19, 73, 36]. The saliency decay function we have selected has
the following form:

DF (s, κ, σ) = e−(s2+cκ2

σ2) (5.2)

where s is the arc length OP , κ is the curvature, c controls the degree of decay
with curvature, and σ is the scale of voting, which determines the effective
neighborhood size. The parameter c is a function of the scale and is optimized
to make the extension of two orthogonal line segments to form a right angle
equally likely to the completion of the contour with a rounded corner [15]. Its
value is given by: c = −16log(0.1)×(σ−1)

π2 . Scale essentially controls the range
within which tokens can influence other tokens. The saliency decay function
has infinite extend, but for practical reasons it is cropped at a distance where
the votes cast become insignificant. For instance, the field can be defined
up to the extend that vote strength becomes less than 1% of the voter’s
saliency. The scale of voting can also be viewed as a measure of smoothness.
A large scale favors long range interactions and enforces a higher degree of
smoothness, aiding noise removal at the same time, while a small scale makes
the voting process more local, thus preserving details. Note that σ is the
only free parameter in the system.

The 2-D second order stick voting field for a unit stick voter located at
the origin and aligned with the z-axis can be defined as follows as a function
of the distance l between the voter and receiver and the angle θ, which is
the angle between the tangent of the osculating circle at the voter and the
line going through the voter and receiver (see Fig. 5.5).

SSO(d, θ) = DF (s, κ, σ)
[−sin(2θ)

cos(2θ)

]
[−sin(2θ) cos(2θ)]

s =
θl

sin(θ)
, κ =

2sin(θ)
l

(5.3)

The votes are also stick tensors. For stick tensors of arbitrary size the magni-
tude of the vote is given by 5.2 multiplied by the the size of the stick λ1−λ2.

Section 5.3. Tensor Voting in 2D 207

The ball voting field is formally defined in Section 5.3.3. It can be derived
from the second order stick voting field It is used for voting tensors that
have non zero ball components and contain a tensor at every position that
expresses the orientation preference and saliency of the receiver of a vote
cast by a ball tensor. For arbitrary ball tensors the magnitude of the votes
has to be multiplied by λ2.

The voting process is identical whether the receiver contains a token or
not, but we use the term sparse voting to describe a pass of voting where
votes are cast to locations that contain tokens only, and the term dense voting
for a pass of voting from the tokens to all locations within the neighborhood
regardless of the presence of tokens. Receivers accumulate the votes cast to
them by tensor addition.

Sensitivity to Scale The scale of the voting field is the single critical pa-
rameter of the framework. Nevertheless, the sensitivity to it is low. Similar
results should be expected for similar values of scale and small changes in
the output are associated with small changes of scale. We begin analyzing
the effects of scale with simple synthetic data for which ground truth can
be easily computed. The first example is a set of un-oriented tokens evenly
spaced on the periphery of a circle of radius 100 (see Fig. 5.6(a)). The tokens
are encoded as ball tensors and tensor voting is performed to infer the most
types of structures they form, which are always detected as curves, and their
preferred orientations. The theoretic values for the tangent vector at each
location can be calculated as [−sin(θ) cos(θ)]T .

(a) 72 un-oriented tokens on a circle (b) 76 un-oriented tokens on a square

Figure 5.6. Inputs for quantitative estimation of orientation errors as scale varies

Table 5.2 reports the angular error in degrees between the ground truth
tangent orientation at each of the 72 locations and the orientation estimated
by tensor voting. (Note that the values on the table are for σ2.) The second
example in Fig. 5.6(b) is a set of un-oriented tokens lying at equal distances

208 The Tensor Voting Framework Chapter 5

σ2 Angular error for circle
(degrees)

Angular error for
square (degrees)

50 1.01453 1.11601e-007
100 1.14193 0.138981
200 1.11666 0.381272
300 1.04043 0.548581
400 0.974826 0.646754
500 0.915529 0.722238
750 0.813692 0.8893
1000 0.742419 1.0408
2000 0.611834 1.75827
3000 0.550823 2.3231
4000 0.510098 2.7244
5000 0.480286 2.98635

Table 5.2. Errors in curve orientation estimation as functions of scale

on a square of side 200. After voting, the junctions are detected due to their
high ball saliency and the angular error between the ground truth and the
estimated tangent at each curve inlier is reported in Table 5.2. The extreme
scale values, especially the larger ones, used here are beyond the range that
is typically used in the other experiments presented in this chapter. A σ2

value of 50 corresponds to a voting neighborhood of 16, while a σ2 of 5000
corresponds to a neighborhood of 152. An observation from these simple
experiments is that, as scale increases, each token receives more votes and
this leads to a better approximation of the circle by the set of points, while,
on the other hand, too much influence from the other sides of the square
rounds its corners causing an increase in the reported errors.

A different simple experiment demonstrating the stability of the results
with respect to large scale variations is shown in Fig. 5.7. The input consists
of a set of un-oriented tokens from a hand drawn curve. Approximately
half the points of the curve have been randomly removed from the data
set and the remaining points where spaced apart by 3 units of distance.
Random outliers whose coordinates follow a uniform distribution have been
added to the data. The 166 inliers and the 300 outliers are encoded as ball
tensors and tensor voting is performed with a wide range of scales. The
detected inliers at a few scales are shown in Fig. 5.7(b)-(d). At the smallest
scales isolated inliers do not receive enough support to appear as salient,
but as scale increases the output becomes stable. In all cases outliers are

Section 5.3. Tensor Voting in 2D 209

(a) Un-oriented inputs (b) inliers for σ2 = 50

(c) inliers for σ2 = 500 (d) inliers for σ2 = 5000

Figure 5.7. Noisy input for inlier/outlier saliency comparison

σ2 Saliency of inlier A Saliency of outlier B
50 0.140 0
100 0.578 0
200 1.533 0
300 3.369 0
400 4.973 0.031
500 6.590 0.061
750 10.610 0.163
1000 14.580 0.297
2000 30.017 1.118
3000 45.499 2.228
4000 60.973 3.569
5000 76.365 5.100

Table 5.3. Errors in curve orientation estimation as functions of scale

successfully removed. Table 5.3 shows the curve saliency of an inlier A
and that of an outlier B as the scale varies. (Note that the values on the
table again are for σ2.) Regardless of the scale, the saliency of A is always
significantly larger than that of B making the selection of a threshold that
separates inliers from outliers trivial.

210 The Tensor Voting Framework Chapter 5

5.3.2 First Order Representation and Voting in 2-D

In this section the need for integrating first order information into the frame-
work is justified. The first order information is conveyed by the polarity
vector that encodes the likelihood of the token being on the boundary of a
perceptual structure. Such boundaries in 2-D are the endpoints of curves and
the end-curves of regions. The direction of the polarity vector indicates the
direction of the inliers of the perceptual structure whose potential boundary
is the token under consideration. The generation of first order votes is shown
based on the generation of second order votes.

First order representation To illustrate the significance of adding the po-
larity vectors to the original framework as presented in [40], consider the
contour depicted in Fig. 5.8(a), keeping in mind that we represent curve
elements by their normals. The contour consists of a number of points, such
as D, that can be considered “smooth inliers”, since they can be inferred
from their neighbors under the constraint of good continuation. Consider
point A, which is an orientation discontinuity where two smooth segments
of the contour intersect. A can be represented as having both curve normals
simultaneously. This is a second order discontinuity that is described in the
strictly second order framework by the presence of a salient ball component
in the tensor structure. The ball component of the second order tensor cap-
tures the uncertainty of orientation, with its size indicates the likelihood that
the location is a junction. On the other hand, the endpoints B and C of the
contour are smooth continuations of their neighbors in the sense that their
normals do not differ significantly from those of the adjacent points. The
same is true for their tensors as well. Therefore, they cannot be discrimi-
nated from points B′ and C ′ in Fig. 5.8(b). The property that makes these
pairs of points very different is that B and C are terminations of the curve
in Fig. 5.8(a), while their counterparts are not.

The second order representation is adequate to describe locations where
the orientation of the curve varies smoothly and locations where the orien-
tation of the curve is discontinuous, which are second order discontinuities.
The termination of a perceptual structure is a first order property and is
handled by the first order augmentation to the representation. Polarity vec-
tors are vectors that are directed towards the direction where the majority
of the neighbors of a perceptual structure are, and whose magnitude encodes
the saliency of the token as a potential termination of the structure. The
magnitude of these vectors, termed polarity hereafter, is locally maximum
for tokens whose neighbors lie on one side of the half-space defined by the
polarity vector. In the following sections the way first order votes are cast

Section 5.3. Tensor Voting in 2D 211

(a) Open contour (b) Closed contour

Figure 5.8. Curves with orientation discontinuities at A and A′ and endpoints B
and C. The latter cannot be represented with second order tensors

Figure 5.9. Second and first order votes cast by a stick tensor located at the
origin

and collected to infer polarity and structure terminations is shown.

First order voting Now, we turn our attention to the generation of first order
votes. note that the first order votes are cast according to the second order
information of the voter. As shown in Fig. 5.9, the first order vote cast by
a unitary stick tensor at the origin is tangent to the osculating circle, the
smoothest path between the voter and receiver. Its magnitude, since nothing
suggests otherwise, is equal to that of the second order vote according to
(5.2). The first order voting field for a unit stick voter aligned with the
z-axis is:

SFO(d, θ) = DF (s, κ, σ)
[−cos(2θ)
−sin(2θ)

]
(5.4)

what should be noted is that tokens cast first and second order votes based
on their second order information only. This occurs because polarity vectors

212 The Tensor Voting Framework Chapter 5

(a) Input set of un-oriented tokens

(b) Saliency (c) Polarity

Figure 5.10. Accumulated saliency and polarity for a simple input

have to be initialized to zero since no assumption about structure termina-
tions is available. Therefore, first order votes are computed based on the
second order representation which can be initialized (in the form of ball
tensors) even with no information other than the presence of a token.

A simple illustration of how first and second order votes can be combined
to infer curves and their endpoints in 2-D appears in Fig. 5.10. The input
consists of a set of colinear un-oriented tokens which are encoded as ball
tensors. The tokens cast votes to their neighbors and collect the votes cast
to them. The accumulated saliency can be seen in Fig. 5.10(b), where the
dashed lines mark the limits of the input. The interior points of the curve
receive more support and are more salient than those close to the endpoints.
Since second order voting is an excitatory process, locations beyond the
endpoints are also compatible with the inferred line and receive consistent
votes from the input tokens. Detection of the endpoints based on the second
order votes is virtually impossible since there is no systematic way of selecting
a threshold that guarantees that the curve will not extend beyond the last
input tokens. The strength of the second order aspect of the framework lies
in the ability to extrapolate and fill in gaps caused by missing data. The
accumulated polarity can be seen in Fig. 5.10(c). The endpoints appear
clearly as maxima of polarity. The combination of saliency and polarity
allows us to infer the curve and terminate it at the correct points. See
section 5.3.4 for a complete analysis of structure inference in 2-D.

Section 5.3. Tensor Voting in 2D 213

(a) The 2-D stick and ball fields (b) Stick vote cast from O to P

Figure 5.11. Voting fields in 2-D and alignment of the stick field with the data
for vote generation

5.3.3 Voting Fields

In this paragraph we show how votes from ball tensors can be derived with
the same saliency decay function and how voting fields can be computed to
reduce the computational cost of calculating each vote according to (5.2).
Finally, we show how the votes cast by an arbitrary tensor can be computed
given the voting fields.

The second order stick voting field contains at every position a tensor
that is the vote cast there by a unitary stick tensor located at the origin
and aligned with the y axis. The shape of the field in 2-D can be seen in
the upper part of Fig. 5.11(a). Depicted at every position is the eigenvector
corresponding to the largest eigenvalue of the second order tensor contained
there. Its size is proportional to the magnitude of the vote. To compute a
vote cast by an arbitrary stick tensor, we need to align the field with the
orientation of the voter, and multiply the saliency of the vote that coincides
with the receiver by the saliency of the arbitrary stick tensor, as in Fig.
5.11(b).

The ball voting field can be seen in the lower part of Fig. 5.11(a). The
ball tensor has no preference of orientation, but still can cast meaningful

214 The Tensor Voting Framework Chapter 5

Figure 5.12. Tensor addition in 2-D. Purely stick tensors result only from the
addition of parallel stick tensors and purely ball tensors from the addition of ball
tensors or orthogonal stick tensors

information to other locations. The presence of two proximate un-oriented
tokens, the voter and the receiver, indicates a potential curve going through
the two tokens. The ball voting fields allow us to infer preferred orientations
from un-oriented tokens, thus minimizing initialization requirements.

The derivation of the ball voting field B(P) from the stick voting field
can be visualized as follows: the vote at P from a unitary ball tensor at the
origin O is the integration of the votes of stick tensors that span the space of
all possible orientations. In 2-D, this is equivalent to a rotating stick tensor
that spans the unit circle at O. The 2-D ball field can be derived from the
stick field S(P), according to:

B(P) =
∫ 2π

0
R−1
θ S(RθP)R−T

θ dθ (5.5)

where Rθ is the rotation matrix to align S with ê1, the eigenvector corre-
sponding to the maximum eigenvalue (the stick component), of the rotating
tensor at P .

In practice, the integration is approximated by tensor addition (see also
Fig. 5.12):

T =
π∑
i=0

π∑
j=0

�vi�v
T
i (5.6)

where V is the accumulated vote and �vij are the stick votes, in vector form
(which is equivalent since a stick tensor has only one non-zero eigenvalue and
can be expressed as the outer product of its only significant eigenvector),

Section 5.3. Tensor Voting in 2D 215

from O to P cast by the stick tensors i ∈ [0, 2π) that span the unit circle.
Normalization has to be performed in order to make the energy emitted by a
unitary ball equal to that of a unitary stick. As a result of the integration, the
second order ball field does not contain purely stick or purely ball tensors, but
arbitrary second order symmetric tensors. The field is radially symmetric,
as expected, since the voter has no preferred orientation.

The 2-D first order stick voting field is a vector field, which at every
position holds a vector that is equal in magnitude to the stick vote that
exists in the same position in the fundamental second order stick voting field,
but is tangent to the smooth path between the voter and receiver instead
of normal to it. The first order ball voting field can be derived as in (5.5)
by substituting the first order stick field for the second order stick field and
performing vector instead of tensor addition when integrating the votes at
each location.

All voting fields defined here, both first and second order, as well as all
other fields in higher dimensions, are functions of the position of the receiver
relative to the voter, the tensor at the voter and a single parameter, the scale
of the saliency decay function. After these fields have been pre-computed at
the desired resolution, computing the votes cast by any second order tensor
is reduced to a few look-up operations and linear interpolation. Voting takes
place in a finite neighborhood within which the magnitude of the votes cast
remains significant. For example, we can find the maximum distance smax
from the voter at which the vote cast will have 1% of the voter’s saliency, as
follows:

e−(s2max
σ2) = 0.01 (5.7)

The size of this neighborhood is obviously a function of the scale σ. As
described in section 5.3.1, any tensor can be decomposed into the basis com-
ponents (stick and ball in 2-D) according to its eigensystem. Then, the cor-
responding fields can be aligned with each component. Votes are retrieved
by simple look-up operations, and their magnitude is multiplied by the cor-
responding saliency. The votes cast by the stick component are multiplied
by λ1 − λ2 and those of the ball component by λ2.

5.3.4 Vote analysis

Votes are cast from token to token and accumulated by tensor addition in the
case of the second order votes, which are in general arbitrary second order
tensors, and by vector addition in the case of the first order votes, which are
vectors.

216 The Tensor Voting Framework Chapter 5

Figure 5.13. Salient ball tensors at regions and junctions

Figure 5.14. First order votes received at region inliers and boundaries

Analysis of second order votes Analysis of the second order votes can be
performed once the eigensystem of the accumulated second order 2×2 tensor
has been computed. Then the tensor can be decomposed into the stick and
ball components:

T = (λ1 − λ2)ê1êT1 + λ2(ê1êT1 + ê2ê
T
2) (5.8)

where ê1êT1 is a stick tensor, and ê1ê
T
1 + ê2ê

T
2 is a ball tensor. The follow-

ing cases have to be considered. If λ1 � λ2, this indicates certainty of one
normal orientation, therefore the token most likely belongs on a curve which
has the estimated normal at that location. If λ1 ≈ λ2, the dominant com-
ponent is the ball and there is no preference of orientation, either because
all orientations are equally likely, or because multiple orientations coexist at
the location. This indicates either a token that belongs to a region, which
is surrounded by neighbors from the same region from all directions, or a
junction where two or more curves intersect and multiple curve orientations
are present simultaneously (see Fig. 5.13). Junctions can be discriminated
from region tokens since their saliency is a distinct, local maximum of λ2,
whereas the saliency of region inliers is more evenly distributed. An outlier
receives only inconsistent votes, so both eigenvalues are small.

Section 5.3. Tensor Voting in 2D 217

2-D Feature Saliency Second
order tensor
orientation

Polarity Polarity
vector

curve interior high λ1−λ2 normal: ê1 low -
curve endpoint high λ1−λ2 normal: ê1 high parallel to

ê2
region interior high λ2 - low -
region bound-
ary

high λ2 - high normal to
boundary

junction locally max
λ2

- low -

outlier low - low -

Table 5.4. Summary of first and second order tensor structure for each feature
type in 2-D

Analysis of first order votes Vote collection for the first order case is per-
formed by vector addition. The accumulated result is a vector whose direc-
tion points to a weighted center of mass from which votes are cast, and whose
magnitude encodes polarity. Since the first order votes are also weighted by
the saliency of the voters and attenuate with distance and curvature, their
vector sum points to the direction from which the most salient contributions
were received. A relatively low polarity indicates a token that is in the in-
terior of a curve or region, therefore surrounded by neighbors whose votes
cancel out each other. On the other hand, a high polarity indicates a token
that is on or close to a boundary, thus receiving votes from only one side
with respect to the boundary, at least locally. The correct boundaries can be
extracted as maxima of polarity along the direction of the polarity vector.
See the region of Fig. 5.14, where the votes received at interior points cancel
each other out, while the votes at boundary points reinforce each other re-
sulting in a large polarity vector there. Table 5.4 illustrates how tokens can
be characterized using the collected first and second order information.

Dense Structure Extraction In order to extract dense structures based on
the sparse set of tokens, an additional step is performed. Votes are collected
at every location to determine where salient structures exist. The process
of collecting votes at all locations regardless of whether they contain an
input token or not is called dense voting . The tensors at every location
are decomposed and Saliency maps are built. In 2-D there are two types

218 The Tensor Voting Framework Chapter 5

of saliency that need to be considered, stick and ball saliency. Figure 5.15
shows an example where curve and junction saliency maps are built from a
sparse set of oriented tokens.

(a) Sparse input tokens (b) Curve saliency map (c)Junction saliency map

Figure 5.15. Saliency maps in 2-D (darker regions have higher saliency)

Curve extraction is performed as a marching process, during which curves
are grown starting from seeds. The most salient unprocessed curve token is
selected as the seed and the curve is grown following the estimated normal.
The next point is added to the curve with subpixel accuracy as the zero-
crossing of the first derivative of saliency along the curve’s tangent. Even
though saliency values are available at discrete grid positions, the locations
of the zero-crossings of the first derivative of saliency can be estimated with
sub-pixel accuracy by interpolation. In practice, to reduce the computational
cost of casting unnecessary votes, votes are collected only at grid points
towards which the curve can grow, as indicated by the normal of the last
point added. As the next point is added to the curve, following the path
of maximum saliency, new grid points where saliency has to be computed
are determined. Endpoints are critical since they indicate where the curve
should stop.

Regions can be extracted via their boundaries. As described previously,
region boundaries can be detected based on their high region saliency and
high polarity. Then, they are used as inputs to the curve extraction pro-
cess described in the previous paragraph. Junctions are extracted as local
maxima of the junction saliency map. This is the simplest case because junc-
tions are isolated in space. Examples for the structure extraction processes
described here are presented in the following subsection.

5.3.5 Results in 2-D

In this section, we present examples on 2-D perceptual grouping using the
tensor voting framework. Figure 5.16(a) shows a data set that contains a
number of fragmented sinusoidal curves represented by un-oriented points

Section 5.3. Tensor Voting in 2D 219

contaminated by a large number of outliers. Figure 5.16(b) shows the out-
put after tensor voting. Curve inliers are colored gray, endpoints black,
while junctions appear as gray squares. All the noise has been removed and
the curve segments have been correctly detected and their endpoints and
junctions labeled.

(a) Noisy un-oriented data set (b) Extracted curves, endpoints
and junctions

Figure 5.16. Curve, endpoint and junction extraction from a noisy dataset with
sinusoidal curves

The example in Fig. 5.17 illustrates the detection of regions and curves.
The input consists of a cardioid, represented by a set of un-oriented points,
and two quadratic curves, also represented as sets of un-oriented points,
contaminated by random uniformly distributed noise (Fig. 5.17(a)). Figures
5.17(b)-(d) show the detected region inliers, region boundaries and curve
inliers respectively. Note that some points, where the curves and the cardioid
overlap, have been detected as both curve and region inliers.

5.3.6 Illusory Contours

An interesting phenomenon is the grouping of endpoints and junctions to
form illusory contours. Kanizsa [29] demonstrated the universal and unam-
biguous perception of illusory contours caused by the alignment of endpoints,
distant line segments, junctions and corners. [19, 13, 14] developed com-
putational models for the inference of illusory contours and point out the
differences between them and regular contours. Illusory contours are always
convex and, when they are produced by endpoints, their formation occurs
in the orthogonal direction of the contours whose endpoints give rise to the
illusory ones. A perception of an illusory contour is strong in the lower part

220 The Tensor Voting Framework Chapter 5

(a) Noisy un-oriented data set (b) Region inliers

(c) Region boundaries (d) Curve inliers

Figure 5.17. Region and curve extraction from noisy data

of Fig. 5.18(a), while no contour is formed in the upper part.
The capability to detect endpoints can be put to use for the inference

of illusory contours. Figure 5.19(a) shows a set of line segments whose ex-
tensions converge to the same point and whose endpoints form an illusory
circle. The segments consist of un-oriented points which are encoded as ball
tensors and propagate first and second order votes to their neighbors. The
endpoints can be detected based on their high polarity values. They can be
seen in Fig. 5.19(b) along with the polarity vectors. The direction of the po-
larity vectors determines the side of the half-plane where the endpoint should
cast second order votes to ensure that the inferred illusory contours are con-
vex. These votes are cast using a special field shown in Fig. 5.18(b). This
field is single-sided and is orthogonal to the regular field. Alternatively, the
endpoint voting field can be viewed as the positive side of the fundamental
stick field rotated by 90 degrees. A dense contour, a circle, is inferred after

Section 5.4. Tensor Voting in 3D 221

(a) Perception of illusory contour (b) Orthogonal field

Figure 5.18. Illusory contours are perceived when they are convex (a). The
single-sided field used for illusory contour inference. P denotes the polarity vector
of the voting endpoint

these votes have been collected and analyzed as in the previous subsection
(Fig. 5.19(c)). Note that first order fields can be defined in a similar way.
An aspect of illusory contour inference that requires further investigation is
a mechanism for deciding whether to employ regular voting fields to con-
nect fragmented curves, or to employ the orthogonal fields to infer illusory
contours.

(a) Input (b) Inferred endpoints (c) Illusory contour

Figure 5.19. Illusory contour inference from endpoints of linear segments

5.4 Tensor Voting in 3-D

We proceed to the generalization of the framework in 3-D. The remainder of
this section shows that no significant modifications need to be made, apart
from taking into account that more types of perceptual structure exist in 3-D
than in 2-D. In fact, the 2-D framework is a subset of the 3-D framework,
which in turn is a subset of the general N-D framework. The second order
tensors and the polarity vectors become 3-D, while the voting fields are

222 The Tensor Voting Framework Chapter 5

(a) A 3-D generic tensor (λi are its (b) Decomposition into the stick,
eigenvalues in descending order) plate and ball components

Figure 5.20. A second order generic tensor and its decomposition in 3-D

derived from the same fundamental 2-D second order stick voting field.
In 3-D, the types of perceptual structure that have to be represented

are regions (which are now volumes), surfaces, curves and junctions. Their
terminations are the bounding surfaces of volumes, the bounding curves of
surfaces and the endpoints of curves. The inputs can be either un-oriented
or oriented, in which case there are two types: elementary surfaces (surfels)
or elementary curves (curvels).

5.4.1 Representation in 3-D

The representation of a token consists of a symmetric second order tensor
that encodes saliency and a vector that encodes polarity.

Second order representation A 3-D, second order, symmetric, non-negative
definite tensor is equivalent to a 3 × 3 matrix and a 3-D ellipsoid. The
eigenvectors of the tensor are the axes of the ellipsoid. It can be decomposed
as in the following equation:

T = λ1ê1ê
T
1 + λ2ê2ê

T
2 + λ3ê3ê

T
3 =

= (λ1 − λ2)ê1êT1 + (λ2 − λ3)(ê1êT1 + ê2ê
T
2) + λ3(ê1êT1 + ê2ê

T
2 + ê3ê

T
3) (5.9)

where λi are the eigenvalues in decreasing order and êi are the corresponding
eigenvectors (see also Fig. 5.20). Note that the eigenvalues are non-negative
since the tensor is non-negative definite and the eigenvectors are orthogonal.
The first term in (5.9) corresponds to a degenerate elongated ellipsoid, the
3-D stick tensor , that indicates an elementary surface token with ê1 as its
surface normal. The second term corresponds to a degenerate disk-shaped
ellipsoid, termed hereafter the plate tensor , that indicates a curve or a surface
intersection with ê3 as its tangent, or, equivalently with ê1 and ê2 spanning

Section 5.4. Tensor Voting in 3D 223

Input Tensor Eigenvalues Quadratic form

λ1 = 1,

 n2
1 n1n2 n1n3

n1n2 n2
2 n2n3

n1n3 n2n3 n2
3

surfel λ2 = λ3 = 0

λ1 = λ2 = 1, P (see below)
curvel λ3 = 0

λ1 = λ2 = λ3 = 1

 1 0 0
0 1 0
0 0 1

un-oriented

P=

 n1
2
1 + n2

2
1 n11n12 + n21n22 n11n13 + n21n23

n11n12 + n21n22 n1
2
2 + n2

2
2 n12n13 + n22n23

n11n13 + n21n23 n12n13 + n22n23 n1
2
3 + n2

2
3

Table 5.5. Encoding oriented and un-oriented 2-D inputs as 2-D second order

symmetric tensors

the plane normal to the curve. Finally, the third term corresponds to a
sphere, the 3-D ball tensor , that corresponds to a structure which has no
preference of orientation. Table 5.5 shows how oriented and un-oriented
inputs are encoded and the equivalent ellipsoids and quadratic forms

The representation using normals instead of tangents can be justified
more easily in 3-D, where surfaces are arguably the most frequent type of
structure. In 2-D, normal or tangent representations are equivalent. A sur-
face patch in 3-D is represented by a stick tensor parallel to the patch’s
normal. A curve, which can also be viewed as a surface intersection, is
represented by a plate tensor that is normal to the curve. All orientations
orthogonal to the curve belong in the 2-D subspace defined by the plate ten-
sor. Any two of these orientations that are orthogonal to each other can be
used to initialize the plate tensor (see also Table 5.5). Adopting this repre-
sentation allows a structure with N − 1 degrees of freedom in N-D (a curve

224 The Tensor Voting Framework Chapter 5

in 2-D, a surface in 3-D) to be represented by a single vector, while a tangent
representation would require the definition of N−1 vectors that form a basis
for an (N-1)-D subspace. Assuming that this is the most frequent structure
in the N-D space, our choice of representation makes the stick voting field,
which corresponds to the elementary (N-1)-D variety, the basis from which
all other voting fields are derived.

First order representation The first order part of the representation is, again,
a polarity vector whose size indicates the likelihood of the token being a
boundary of a perceptual structure and which points towards the half-space
where the majority of the token’s neighbors are.

5.4.2 Voting in 3-D

Identically to the 2-D case, voting begins with a set of oriented and un-
oriented tokens. Again, both second and first order votes are cast according
to the second order tensor of the voter.

Second order voting In this section, we begin by showing how a voter with
a purely stick tensor generates and casts votes, and then, derive the voting
fields for the plate and ball cases. We chose to maintain voting as a function
of only the position of the receiver relative to the voter and of the voter’s
preference of orientation. Therefore, we again address the problem of finding
the smoothest path between the voter and receiver by fitting arcs of the
osculating circle, as described in Section 5.3.1.

Note that the voter, the receiver and the stick tensor at the voter define
a plane. The voting procedure is restricted in this plane, thus making it
identical to the 2-D case. The second order vote, which is the surface normal
at the receiver under the assumption that the voter and receiver belong to
the same smooth surface, is also a purely stick tensor in the plane (see also
Fig. 5.5). The magnitude of the vote is defined by the same saliency decay
function, duplicated here for completeness.

DF (s, κ, σ) = e−(s2+cκ2

σ2) (5.10)

where s is the arc length OP , κ is the curvature, c is a constant which
controls the decay with high curvature, and σ is the scale of voting. Sparse,
token to token voting is performed to estimate the preferred orientation of
tokens, followed by dense voting during which saliency is computed at every
grid position.

Section 5.4. Tensor Voting in 3D 225

First order voting Following the above line of analysis, the first order vote
is also on the plane defined by the voter, the receiver and the stick tensor.
As shown in Fig. 5.9, the first order vote cast by a unitary stick tensor at
the origin is tangent to the osculating circle. Its magnitude is equal to that
of the second order vote.

Voting Fields Voting by any 3-D tensor takes place by decomposing the
tensor into its three components: the stick, the plate and the ball. Second
order voting fields are used to compute the second order votes and first order
voting fields for the first order ones. Votes are retrieved from the appropriate
voting field by look-up operations and are multiplied by the saliency of each
component. Stick votes are weighted by λ1 − λ2, plate votes by λ2 − λ3 and
ball votes by λ3.

The 3-D first and second order fields can be derived from the corre-
sponding 2-D fields by rotation about the voting stick, which is their axis
of symmetry. The visualization of the 2-D second order stick field in Fig.
5.11(a) is also a cut of the 3-D field that contains the stick tensor at the
origin.

To show the derivation of the ball voting fields Bi(P) from the stick
voting fields, we can visualize the vote at P from a unitary ball tensor at
the origin O as the integration of the votes of stick tensors that span the
space of all possible orientations. In 2-D, this is equivalent to a rotating stick
tensor that spans the unit circle at O, while in 3-D the stick tensor spans
the unit sphere. The 3-D ball field can be derived from the stick field S(P),
as follows. The first order ball field is derived from the first order stick field
and the second order ball field from the second order stick field.

Bi(P) =
∫ 2π

0

∫ 2π

0
R−1
θφψSi(RθφψP)R−T

θφψdφdψ|θ=0 (5.11)

i = 1, 2, the order of the field

where Rθφψ is the rotation matrix to align S with ê1, the eigenvector corre-
sponding to the maximum eigenvalue (the stick component), of the rotating
tensor at P , and θ, φ, ψ are rotation angles about the x, y, z axis respectively.

In the second order case, the integration is approximated by tensor addi-
tion, T =

∑
�vi�v

T
i , while in the first order case by vector addition, V =

∑
�vi.

Note that normalization has to be performed in order to make the energy
emitted by a unitary ball equal to that of a unitary stick. Both fields are
radially symmetric, as expected, since the voter has no preferred orientation.

To complete the description of the voting fields for the 3-D case, we
need to describe the plate voting fieldsPi(P). Since the plate tensor encodes

226 The Tensor Voting Framework Chapter 5

3-D Feature Saliency Second
order tensor
orientation

Polarity Polarity
vector

surface interior high λ1−λ2 normal: ê1 low -
surface end-
curve

high λ1−λ2 normal: ê1 high orthogonal
to ê1 and
end-curve

curve interior high λ2−λ3 tangent: ê3 low -
curve endpoint high λ2−λ3 tangent: ê3 high parallel to

ê3
region interior high λ3 - low -
region bound-
ary

high λ3 - high normal to
bounding
surface

junction locally max
λ3

- low -

outlier low - low -

Table 5.6. Summary of first and second order tensor structure for each feature
type in 3-D

uncertainty of orientation around one axis, it can be derived by integrating
the votes of a rotating stick tensor that spans the unit circle, in other words
the plate tensor. The formal derivation is analogous to that of the ball voting
fields and can be written as follows:

Pi(P) =
∫ 2π

0
RθφψSi(R−1

θφψP)RTθφψdψ|θ=φ=0 (5.12)

i = 1, 2, the order of the field

where θ, φ, ψ, and Rθφψ have the same meaning as in the previous equation.

5.4.3 Vote analysis

After voting from token to token has been completed, we can determine
which tokens belong to perceptual structures, as well as the type and pre-
ferred orientation of these structures. The eigensystem of each tensor is
computed and the tensor is decomposed according to (5.9). Tokens can be
classified according to the accumulated first and second order information
according to Table 5.6.

Section 5.4. Tensor Voting in 3D 227

Dense Structure Extraction Now that the most likely type of feature at each
token has been estimated, we want to compute the dense structures (curves,
surfaces and volumes in 3-D) that can be inferred from the tokens. Con-
tinuous structures are again extracted through the computation of saliency
maps. Three saliency maps need to be built: one that contains λ1 − λ2 at
every location, one for λ2 − λ3 and one for λ3. This can be achieved by
casting votes to all locations, whether they contain a token or not (dense
voting).

Figure 5.21. Dense surface extraction in 3-D. (a) Elementary surface patch with
normal �n. (b) 3-D surface saliency along normal direction (c) First derivative of
surface saliency along normal direction

Figure 5.22. Dense curve extraction in 3-D. (a) 3-D curve with tangent �t and
the normal plane. (b) Curve saliency iso-contours on the normal plane (c) First
derivatives of surface saliency on the normal plane

Surfaces and curves are extracted using a modified marching algorithm
[62] (based on the marching cubes algorithm [37]). They correspond to zero
crossings of the first derivative of the corresponding saliency. Junctions are

228 The Tensor Voting Framework Chapter 5

isolated and can be detected as distinct local maxima of λ3. Volume inliers
are characterized by high λ3 values. Their bounding surfaces also have high
λ3 values and high polarity, with polarity vectors being normal to the surface
and pointing towards the interior of the region. Volumes are extracted as
regions of high λ3, terminated at their boundaries which have high λ3 and
high polarity. Junctions are isolated, distinct maxima of λ3.

In order to reduce the computational cost, the accumulation of votes at
locations with no prior information and structure extraction are integrated
and performed as a marching process. Beginning from seeds, locations with
highest saliency, we perform a dense vote only towards the directions dictated
by the orientation of the features. Surfaces are extracted with sub-voxel
accuracy, as the zero-crossings of the first derivative of surface saliency (Fig.
5.21). As in the 2-D case, discrete saliency values are computed at grid points
and the continuous function is approximated via interpolation. Locations
with high surface saliency are selected as seeds for surface extraction, while
locations with high curve saliency are selected as seeds for curve extraction.
The marching direction in the former case is perpendicular to the surface
normal, while, in the latter case, the marching direction is along the curve’s
tangent (Fig. 5.22).

5.4.4 Results in 3-D

In this section we present results on synthetic 3-D datasets corrupted by
random noise. The first example is on a dataset that contains a surface
in the from of a spiral inside a cloud of noisy points (Fig. 5.23). Both the
surface and the noise are encoded as un-oriented points. The spiral consists of
19,000 points, while the outliers are 30,000. Figure 5.23(b) shows the surface
boundaries detected after voting. As the spiral is tightened to resemble a
cylinder (Fig. 5.23(c)), the surfaces merge and the inferred boundaries are
those of a cylinder (Fig. 5.23(d)).

The example in Fig. 5.24 illustrates the detection of regions and curves.
The input consists of a “peanut” and a plane, encoded as un-oriented points
contaminated by random uniformly distributed noise (Fig. 5.24(a)). The
”peanut” is empty inside, except for the presence of noise, which has an equal
probability of being anywhere in space. Figure 5.24(c) shows the detected
surface inliers, after tokens with low saliency have been removed. Figure
5.24(c) shows the curve inliers, that is the tokens that lie at the intersection
of the two surfaces. Finally, Fig. 5.24(d) shows the extracted dense surfaces.

Figure 5.25(a) shows two solid generalized cylinders with different parabolic
sweep functions. The cylinder are generated by a uniform random distribu-

Section 5.5. Tensor Voting in ND 229

(a) Noisy un-oriented data set (b) Surface boundaries

(c) Tight spiral (d) Surface boundaries

Figure 5.23. Surface boundary detection from noisy data

tion of un-oriented points in their interior, while the noise is also uniformly
distributed but with a lower density. After sparse voting, volume inliers
are detected due to their high ball saliency and low polarity, while region
boundaries are detected due to their high ball saliency and polarity. The
polarity vectors are normal to the bounding surface of the cylinders. Using
the detected boundaries as inputs we perform a dense vote and extract the
bounding surface in continuous form in Fig. 5.25(b).

5.5 Tensor Voting in N-D

The framework can easily be generalized to higher dimensions to tackle per-
ceptual organization problems in N-dimensional spaces. At first glance, it
might not be apparent how computer vision problems can be formulated in

230 The Tensor Voting Framework Chapter 5

(a) Noisy un-oriented data set (b) Surface inliers

(c) Curve inliers (d) Dense surfaces

Figure 5.24. Surface and surface intersection extraction from noisy data

domains with more than three dimensions, but some computer vision prob-
lems are very naturally represented in such domains. For instance, in Section
5.6, we show how optical flow can be formulated as the organization of tokens
in smooth layers in a 4-D space, where the four dimensions are the image
coordinates and the horizontal and vertical velocity.

Both the representation and voting can be generalized to N dimensions
along the lines of the previous section, where the generalization from 2-D
to 3-D was shown. The symmetric second order tensor in N-D is equivalent
to an N × N matrix and an N-dimensional hyper-ellipsoid. Each axis of
the hyper-ellipsoid can be viewed as a vector that is locally normal to the
underlying structure. An elementary hyper-plane is represented by a stick
tensor, which has only one non-zero eigenvalue and, therefore, one normal.
An elementary curve has one tangent and N-1 normals and is represented
by a second order tensor with N-1 non-zero equal eigenvalues, whose corre-

Section 5.5. Tensor Voting in ND 231

(a) Noisy un-oriented data set (b) Dense bounding surface

Figure 5.25. Region inlier and boundary detection in 3-D

sponding eigenvectors are the normals of the elementary curve. The polarity
vector is an N-D vector and its interpretation is the same as in the previous
sections. Its magnitude is proportional to the token’s likelihood for being a
boundary of a perceptual structure, it is locally orthogonal to the boundary
and is directed towards the interior of the structure.

As mentioned in Section 5.4.2, first and second order voting by a purely
stick voter takes place on a plane defined by the voter, the receiver and the
stick tensor of the voter, regardless of the dimensionality of the space. Any
cut of a second order stick voting field in any dimension, that contains the
the origin and the stick, is identical to the fundamental second order 2-D
stick voting field. The same holds for the first order stick field as well. The
ball voting fields are radially symmetric since the voter has no preference
of orientation. What changes is the number of degrees of freedom of the
elementary stick voter at the origin that spans the unit sphere to simulate
the effect of the ball voter. The total number of first and second order voting
fields is 2N .

Analysis of the results of voting can be performed under the principles
summarized in Tables 5.4 and 5.6. An aspect of the framework that is harder
to generalize is the extraction of dense structures in N-D. The exponential
increase in the number of vertices per hypercube requires a large number of
votes to be cast and collected, and generates a prohibitively large number of
possible configurations for an N-D variant of the Marching Cubes algorithm.

Caution must be applied to certain issues in N-D which are not as promi-

232 The Tensor Voting Framework Chapter 5

nent in two or three dimensions. Since voting is a function of distance and
curvature, these measures have to be meaningful. The space has to be Eu-
clidean, or, at least, the axes have to be scaled in a way that distances are
meaningful, thus making the effect of more relevant neighbors larger than
the effect of irrelevant ones. The data are stored in an Approximate Near-
est Neighbor (ANN) k-d tree [1], and thus the computational complexity
of searching for a token’s neighbors is linear with the dimensionality of the
space. Finally, depending on the number of input tokens and the dimen-
sionality of the space, the pre-computation of the voting fields may become
impractical. If the data is relatively sparse in a high dimensional space, it
is more efficient to compute the required votes when they are cast, instead
of generating complete voting fields and using them as look-up tables. For
sparse data in high dimensions, repetition of votes is less probable and many
of the pre-computed votes may never be used.

5.5.1 Computational Complexity

In this section, the computational complexity of tensor voting is analyzed.
We show that it is a function of the number of tokens and, in the case of
dense structure extraction, the size of the extracted structures.

The initialization step consists of sorting the tokens according to their
spacial coordinates and storing them in a data structure from which they can
be retrieved efficiently. We use the ANN k-d tree as the data structure that
holds the tokens. Its construction is of O(dn logn) complexity, where d is
the dimension of the space and n the number of tokens. This data structure
meets the requirements of tensor voting operations, since it is optimal when
the locations of the data remain constant and multiple queries that seek the
data points within a certain distance from a given location are generated.
During voting, the tokens that are within the neighborhood of the voter, as
defined by the scale (see equation 5.7 in Section 5.3.4), can be retrieved with
O(logn) operations.

The number of votes cast by a voter is not fixed and depends on the
distribution of data in space and the scale of voting. For most practical
purposes, however, we can assume that each voter casts votes on a fraction
of the dataset and that votes being cast to all tokens is the undesirable con-
sequence of an extremely large scale. On average, the number of votes cast
by each voter can be approximated as the product of data density times the
size of the voting field. For each voter and receiver pair, the N components
of the voter cast first and second order votes which are computed by look-up
operations from the voting fields and linear interpolation. The complexity

Section 5.6. Application to Computer Vision Problems 233

of voting, after the receivers have been localized, is linear in the number of
tokens and the dimension of the space.

The complexity of dense structure extraction, which is implemented in 2-
and 3-D only, is a function of grid resolution. since it defines the number of
curvels or surfels extracted. The surface or curve saliency of a fixed number of
grid points has to be computed for each surfel or curvel. For instance, surface
saliency values at the eight vertices of a grid cube have to be computed for a
surfel to be extracted at sub-voxel accuracy inside the cube. The search for
tokens within the voting neighborhood of each vertex, from which votes are
collected, is O(m), where m is the number of vertices. The marching cubes
algorithm [37] is also linear, since it essentially consists of look-up operations.
The number of voxels that are visited, but where no surface is extracted, is
typically small (zero for a closed surface). Therefore the complexity of dense
surface extraction in 3-D is O(mlogn), where n is the number of tokens and
m the number of surfels. The same holds for curve extraction.

5.6 Application of the Tensor Voting Framework to Com-
puter Vision Problems

Thus far, we have demonstrated the capability of the tensor voting framework
to group oriented and un-oriented tokens into perceptual structures, as well
as to remove noise. In practice, however, we rarely have input data in the
form we used for the examples of Sections 5.3.5 and 5.4.4, except maybe for
range or medical data. In this section, the focus will be on vision problems,
where the input is images, while the desired output varies from application
to application, but is some form of scene interpretation in terms of objects
and layers.

The missing piece that bridges the gap from the images to the type of
input required by the framework is a set of application-specific processes
that can generate the tokens from the images. These relatively simple tools
enable us to address a variety of computer vision problems within the tensor
voting framework, alleviating the need to design software packages dedicated
to specific problems. The premise is that solutions to these problems must
comprise coherent structures that are salient due to the non-accidental align-
ment of simpler tokens. The fact that these solutions might come in different
forms, such as image segments, 3-D curves or motion layers, does not pose
an additional difficulty to the framework, since they are all characterized by
non-accidentalness and good continuation. As mentioned in Section 5.1.1,
problem specific constraints can easily be incorporated as modules into the
framework. For instance, uniqueness along the lines of sight can be enforced

234 The Tensor Voting Framework Chapter 5

in stereo after token saliencies have been computed via tensor voting.
The remainder of this section will demonstrate how stereo and motion

segmentation can be treated in a very similar way within the framework, with
the only difference being the dimensionality of the space. In the case of stereo
processing is performed in 3-D, either in world coordinates if calibration
information is available, or in disparity space. Motion segmentation is done
in a 4-D space with the axes being the two image axes, x and y, and two
velocity axes, vx and vy, since the epipolar constraint does not apply and
motion can occur in any direction.

Four modules have been added to the framework tailored to the problems
of stereo and motion segmentation. These are: the initial matching module
that generates tokens based on potential pixel correspondences; the enforce-
ment of the uniqueness constraint, since the desired outputs are usually in
the form of a disparity or velocity estimate for every pixel; the “discrete
densification” module that generates disparity or velocity estimates at pixels
for which no salient token exists; and the integration of monocular cues for
discontinuity localization.

5.6.1 Initial Matching

The goal of the initial matching module is the generation of tokens from
potential pixel correspondences. Each correspondence between two pixels in
two images gives rise to a token, in the 3-D (x, y, d) space in the case of stereo,
where d is disparity, or in the 4-D (x, y, vx, vy) space in the case of visual mo-
tion, where vx and vy are the velocities along the x and y axes. The correct-
ness of the potential matches is assessed after tensor voting, when saliency
information is available. Since smooth scene surfaces generate smooth layers
in 3-D or 4-D, the decisions on the correctness of potential matches can be
made based on their saliency.

The problem of matching is fundamental for computer vision areas deal-
ing with more than one image and has been addressed in a variety of ways. It
has been shown that no single technique can overcome all difficulties, which
are mainly caused by occlusion and lack of texture. For instance, small
matching windows are necessary to estimate the correct disparity or velocity
close to region boundaries, but they are very noisy in textureless regions.
The opposite is true for large windows, and there is no golden mean solu-
tion to the problem of window size selection. To overcome this, the initial
matching is performed by normalized cross-correlation using square windows
with multiple sizes. Since the objective is dense disparity and velocity map
estimation, we adopt an area-based method and apply the windows to al

Section 5.6. Application to Computer Vision Problems 235

pixels. Peaks in the cross-correlation function of each window size are re-
tained as potential correspondences. The emphasis is towards detecting as
many correct correspondences as possible, at the expense of a possibly large
number of wrong ones, which can be rejected after tensor voting.

(a) Left image (b) Initial matches

Figure 5.26. One of the two input frames and the initial matches for the Venus
dataset. The view of the initial matches is rotated in the 3-D (x, y, d) space

The candidate matches are encoded in the appropriate space as ball ten-
sors, having no bias for a specific orientation, or as stick tensors, biased
towards locally fronto-parallel surfaces. Since the correct orientation can
be estimated with un-oriented inputs, and, moreover, a totally wrong ini-
tialization with stick tensors would have adverse effects on the solution, we
initialize the tokens with ball tensors. Even though the matching score can
be used as the initial saliency of the tensor, we prefer to ignore it and initial-
ize all tensors with unit saliency. This allows the seamless combination of
multiple matchers, including non-correlation based ones. The output of the
initial matching module is a cloud of points in which the inliers form salient
surfaces. Figure 5.26 shows one of the input images of the stereo pair and
the initial matches for the “Venus” dataset from [57]).

5.6.2 Uniqueness

Another constraint that is specific to the problems of stereo and motion is
that of uniqueness. The required output is usually a disparity or velocity
estimate for every pixel in the reference image. Therefore, after sparse vot-
ing, the most salient token for each pixel position is retained and the other
candidates are rejected. In the case of stereo, we are interested in surface
saliency since even thin objects can be viewed as thin surface patches that
reflect light to the cameras. Therefore, the criterion for determining the

236 The Tensor Voting Framework Chapter 5

correct match for a pixel is surface saliency λ1 − λ2. In the case of visual
motion, smooth objects in the scene that undergo smooth motions appear
as 2-D “surfaces” in the 4-D space. For each (x, y) pair we are interested
in determining a unique velocity [vx vy], or, equivalently, we are looking for
a structure that has two tangents and two normals in the 4-D space. The
appropriate saliency is λ2−λ3, which encodes the saliency of a 2-D manifold
in 4-D space. Tokens with very low saliency are also rejected, even if they
satisfy uniqueness, since the lack of support from the neighborhood indicates
that they are probably wrong matches.

5.6.3 Discrete Densification

Due to failures in the initial matching stage to generate the correct candi-
date for every pixel, there are pixels without disparity estimates after the
uniqueness enforcement module (Fig. 5.27(a)). In 3-D, we could proceed
with a dense vote and extract dense surfaces as in Section 5.4.3. Alterna-
tively, since the objective is a disparity or velocity estimate for each pixel, we
can limit the processing time by filling in the missing estimates only, based
on their neighbors. For lack of a better term, we termed this stage “discrete
densification”. With a reasonable amount of missing data, this module has a
small fraction of the computational complexity of the continuous alternative
and is feasible in 4-D or higher dimensions.

The first step is the determination of the range of possible disparities
or velocities for a given pixel. This can be accomplished by examining the
estimates from the previous stage in a neighborhood around the pixel. The
size of this neighborhood is not critical and can be taken equal to the size
of the voting neighborhood. Once the range of the neighbors is found, it is
extended at both ends to allow the missing pixel to have disparity or velocity
somewhat smaller of larger than all its neighbors. New candidates are gener-
ated for the pixel with disparities or velocities that span the extended range
just estimated. Votes are collected at these candidates from their neighbors
as before, but the new candidates do not cast any votes. Figure 5.27(b)
shows the dense disparity map computed from the incomplete map of Fig.
5.27(a).

The incomplete map of Fig. 5.27(a) shows that most holes appear where
the image of Fig. 5.26(a) is textureless, and thus the initial matching is
ambiguous. The discrete densification stage completes missing data by en-
forcing good continuation and smoothly extending the inferred structures.
Smooth continuation is more likely when there are no cues, such as image
intensity edges, suggesting otherwise.

Section 5.6. Application to Computer Vision Problems 237

(a) Sparse disparity map (b) Dense disparity map

Figure 5.27. Disparity map for Venus after outlier rejection rejection and unique-
ness enforcement (missing estimates colored white); and the disparity map after
discrete densification

5.6.4 Discontinuity Localization

The last stage of processing attempts to correct the errors caused by occlu-
sion. The input is a set disparity or motion layers produced by grouping the
tokens of the previous stage. The boundaries of these layers, however, are
not correctly localized. The errors are due to occlusion and the shortcomings
of the initial matching stage. Occluded pixels, that are visible in one image
only, very often produce high matching scores at the disparity or velocity
of the occluding layer. For example, point A which is occluded in the left
image of Fig. 5.28 appears as a better match for B’ in the right image, than
B which is the correct match. Also the difference in the level of texture in
two adjacent regions, in terms of contrast and frequency, can bias the initial
matching towards the more textured region.

(a) Left image (b) Right image

Figure 5.28. Problems in matching caused by occlusion. A appears a better
match for B’ than B, which is the true corresponding pixel

238 The Tensor Voting Framework Chapter 5

Since it is hard to detect the problematic regions during initial match-
ing, we propose a post-processing step to correct this type of errors which
was first published in [48] for the case of motion. Since binocular cues are
unreliable next to layer boundaries due to occlusion, we have to resort to
monocular information. A reasonable assumption is that the intensity dis-
tributions of two surfaces that are distant in the scene, but appear adjacent
from a particular viewpoint, should be quite different. Therefore, the pres-
ence of a discontinuity in the scene should also be accompanied by an edge
in the image. Instead of detecting edges in the entire image and having to
discriminate between true discontinuities and texture edges, we propose to
focus on “uncertainty zones” around the boundaries inferred at the previ-
ous stage. The width of the uncertainty zones depends on the half-size of
the matching window, since this is the maximum surface over-extension, as
well as the width of the occluded region, which can be estimated from the
difference in disparity or velocity at the boundary. In practice we mark as
uncertain the entire occluded area extended by half the size of the maximum
matching window on either side.

Once the uncertainty zones have been labelled as such, we look for edges
in them rather than the entire image. This is done by tensor voting in 2-D
since some of the edges we are looking for may be fragmented or consist of
aligned edgels of low contrast. The initialization is performed by running
a simple gradient operator and initializing tokens at each pixel position as
stick tensors whose orientation is given by the gradient and whose saliency
is given by:

Sal(x, y) = G(x, y)× e−
(x−xo)2

σ2
e (5.13)

where G(x, y) is the magnitude of the gradient at (x, y), xo is the position of
the original layer boundary and σe is a function of the width of the uncer-
tainty zone. The exponential term serves as a prior that biases the extracted
edges towards the original layer boundaries, and more importantly towards
the direction of the original boundaries. That is, a vertical boundary is more
salient in a region where an almost vertical boundary was originally detected.
This makes the edge detection scheme more robust to texture edges of dif-
ferent orientations. Voting is performed in 2-D with these tokens as inputs
and edges are extracted starting from seeds, tokens with maximum curve
saliency, and growing. Voting enables the completion of fragmented edges
while the interference by spurious strong responses of the gradient is not
catastrophic. Results for the example of Fig. 5.28 can be seen in Fig. 5.29.

Section 5.6. Application to Computer Vision Problems 239

(a) Detected edges (b) Final disparity map

(c) Initial error map (b) Final error map

Figure 5.29. Discontinuity localization for the initial disparity map for Venus.
Uncertainty zones are marked in gray and the final edges in black. The error maps
before and after the correction are in the bottom row. Gray denotes disparity errors
between one half and one level and black errors larger than one disparity level

5.6.5 Stereo

We pose the problem of stereo as the extraction of salient surfaces in 3-
D disparity space. After the initial matches are generated as described in
Section 5.6.1, the correct ones, which correspond to the actual disparities of
scene points, form coherent surfaces in disparity space which can be inferred
by tensor voting. The initial candidate matches are encoded as balls and
tensor voting is performed. Then, the uniqueness constraint is enforced
and tokens with low saliency are rejected as outliers. The advantage of the
tensor voting based approach is that interaction among tokens occurs in 3-D,
instead of the 2-D image space or the 1-D epipolar line space, thus minimizing
the interference between points that appear adjacent in the image but are
projections of distant points in the scene. The output at this stage is a sparse
disparity map, which for the “Venus” example can be seen in Fig. 5.26(c).
Preliminary results on binocular stereo, before the development of many of
the modules presented here, have been published in [34, 35].

Discrete densification is performed to fill in the holes of the sparse depth

240 The Tensor Voting Framework Chapter 5

(a) Left image (b) Sparse disparity map

(c) Dense disparity map (d) Initial error map

(e) Final disparity map (f) Final error map

Figure 5.30. Results for the “sawtooth” dataset of [57]

map. The results for the “sawtooth” dataset of [57] can be seen in Fig.
5.30(c). Errors mostly exist near depth discontinuities (Fig. 5.30(d), where
errors greater than one disparity level are marked in black and errors between
one half and one disparity level are marked in gray) and they are corrected
according to Section 5.6.4. The final disparity and error maps appear in Fig.
5.30(e) and (f). Other results can be seen in Figs. 5.31 and 5.32. Note that
in the last example the surfaces are not planar and the images are rather
textureless. Despite these difficulties we are able to infer the correct surfaces
according to Section 5.4.3 which are shown texture-mapped in disparity space
in Fig. 5.32(c-d).

Section 5.6. Application to Computer Vision Problems 241

(a) Left image (b) Initial dense disparity map

(c) Final disparity map (d) Final error map

Figure 5.31. Results for the “map” dataset of [57], where the ground truth depth
discontinuities have been super-imposed on the disparity maps

(a) Left image (b) Reconstructed surface

Figure 5.32. Results for the “arena” dataset where the surfaces have been recon-
structed in disparity space and texture-mapped

5.6.6 Multiple View Stereo

We have also applied the stereo algorithm to the problem of multiple view
stereo. The novelty of our approach is the processing of all views simulta-
neously instead of processing them pairwise and merging the results. The

242 The Tensor Voting Framework Chapter 5

algorithm and results can be found in [42]. The additional difficulty stem-
ming from the increase in the number of views is a considerable increase in
the number of tokens that need to be processed. Methods that operate on
21

2D maps are not applicable since uniqueness with respect to a grid does
not hold in this case. This poses no additional difficulties for our method
since our representation is object and not view-centered.

(a) Four of the input images (b) Initial matches

(c) Surface inliers (d) Surface boundaries

Figure 5.33. Results for the “lighthouse” sequence that consists of 36 images
captured using a turntable

Candidate matches are generated from image pairs, as in the binocular
case, and are reconstructed in 3-D space using the calibration information
that needs to be provided. If two or more candidate matches fall in the
same voxel their saliencies are added, thus making tokens confirmed by more
views more salient. The number of tokens is a little below two million for
the example in Fig. 5.33. Processing of large datasets is feasible due to the
local nature of the voting process. Tensor voting is performed on the entire
set of candidate matches from all images and then uniqueness is enforced
with respect to rays emanating from pixels in the images. Four of the 36
input frames of the “lighthouse sequence”, a view of the candidate matches
and the inferred surface inliers and boundaries can be seen in Fig. 5.33.

Section 5.6. Application to Computer Vision Problems 243

5.6.7 Visual Motion from Motion Cues

In this section we address the problem of perceptual organization using mo-
tion cues only, which was initially published in [46]. The input is a pair of
images, such as the ones in Fig. 5.34(a), where monocular cues provide no
information, but when viewed one after another, human observers perceive
groupings based on motion. In the case of Fig. 5.34(a) the perceived groups
are a translating disk and a static background. As discussed in the intro-
duction of Section 5.6, the appropriate space in the case of visual motion is
4-D, with the axes being the two image axes and the two velocity axes vx
and vy. Processing in this space alleviates problems associated with pixels
that are adjacent in the image, but belong in different motion layers. For
instance, pixels A and B in Fig. 5.34(b) that are close in image space and
have similar velocities are also neighbors in the 4-D space. On the other
hand, pixels A and C that are neighbors in the image but have different
velocities are distant in 4-D space, and pixel D which has been assigned an
erroneous velocity appears isolated.

(a) Input images

(b) Representation in 4-D

Figure 5.34. Random dot images generated by a translating disk over a static
background and advantages of processing in 4-D

Candidate matches are generated by assuming every dot in the first image

244 The Tensor Voting Framework Chapter 5

(a) Initial matches (b) Velocity field

(c) Region boundaries (d) Motion layers

Figure 5.35. Results on the translating disk over a static background example.
The 3-D views were generated by dropping vy

corresponds to every other dot within a velocity range in the other image.
A 3-D view (where the vy component has been dropped) of the point cloud
generated by this process for the images of Fig. 5.34(a) can be seen in Fig.
5.35(a) where vy is not displayed. The correct matches form salient surfaces
surrounded by a large number of outliers. The surfaces appear flat in this
case because the motion is a pure translation with constant velocity. These
matches are encoded as 4-D ball tensors and cast votes to their neighbors.
Since the correct matches form larger and denser layers, they receive more
support from their neighbors and emerge as the most salient velocity can-
didates for their respective pixels. The relevant saliency is 2-D “surface”
saliency in 4-D, which is encoded by λ2 − λ3 (see also Section 5.6.2). This
solves the problem of matching for the dots of the input images. The esti-
mated sparse velocity field can be seen in Fig. 5.35(b).

People, however, perceive not only the dots as moving but also their
neighboring background pixels, the white pixels in the examples shown here.
This phenomenon is called motion capture and is addressed at the discrete
densification stage, where velocity candidates are generated for all pixels
without velocity estimates based on the velocities of their neighbors. Votes
are collected at these candidates and the most salient are retained. Finally,

Section 5.6. Application to Computer Vision Problems 245

(a) Velocity field (b) Sparse velocities

(c) Region boundaries (d) Motion layers

Figure 5.36. Results on an expanding disk. Again, the 3-D views were generated
by dropping vy

the tokens that have been produced by both stages are grouped into smooth
motion layers in 4-D space. Regions and boundaries can be seen in Fig.
5.35(c) and (d). An example with non-rigid motion can be seen in Fig. 5.36
where a disk is undergoing an expanding motion.

5.6.8 Visual Motion on Real Images

After demonstrating the validity of our approach on synthetic data, we ap-
plied it to real images [45, 47, 48]. Candidate matches are generated by mul-
tiple cross-correlation windows applied to all pixels, as in the case of stereo,
but, since the epipolar constraint does not hold, the search for matches is
done in 2-D neighborhoods in the other image. The tokens are initialized as
4-D ball tensors and tensor voting is performed to compute the saliency of
the tokens. The token with the largest “surface” saliency is selected as the
correct match for each pixel after outliers with low saliency are removed from
the dataset. Results on the Yosemite sequence, which is a typical benchmark
example for motion estimation for which ground truth exists, can be seen in
Fig. 5.37. The average angular error is 3.74 degrees with standard devia-
tion 4.3 degrees with velocities computed for 100% of the image. Somewhat

246 The Tensor Voting Framework Chapter 5

smaller errors have been achieved by methods that compute velocities for
less than 10% of the pixels ([47]).

(a) An input frame (b) Motion layer

(c)x velocities (d) y velocities

Figure 5.37. Results on the Yosemite sequence

Since the input is real images, the problems described in Section 5.6.4
decrease the quality of the results, as can be seen in Fig. 5.38(c-d). Dis-
continuity detection as in Section 5.6.4 and [48] is performed to correct the
velocity maps produced after discrete densification. Results can be seen in
Figs. 5.39 and 5.40.

5.7 Conclusion and Future Work

We have presented the current state of the tensor voting framework which is a
product of a number of years of research mostly at the University of Southern
California. In this section we present the contributions of the framework to
perceptual organization and computer vision problems, as well as the axes
of our ongoing and future research.

The tensor voting framework provides a general methodology that can

Section 5.7. Conclusion and Future Work 247

(a) Input image (b) Initial matches

(c)Initial motion layers (d) Initial boundaries

(e)Corrected motion layers (f) Corrected boundaries

Figure 5.38. Results on the “candybox” example. The initial matches are shown
rotated in (x, y, vx) space. The second row shows results before discontinuity local-
ization, while the third row is after correction

be applied to a large range of problems as long as they can be posed as the
inference of salient structures in a metric space of any dimension. The ben-
efits from our representation and voting schemes are that no models need to
be known a priori, nor do the data have to fit a parametric model. In ad-

248 The Tensor Voting Framework Chapter 5

(a) Initial motion layers (b) Initial boundaries

(c) Saliency of edges after voting (d) Corrected boundaries

Figure 5.39. Results on the synthetic “fish” example. The initial layers are shown
rotated in (x, y, vx) space. The uncertainty zones and curve saliency after tensor
voting in 2-D are shown in (c), and the corrected boundaries in (d)

dition, all types of perceptual structures can be represented and inferred at
the same time. Processing can begin with un-oriented inputs, is non-iterative
and there is only one free parameter, the scale of the voting field. Tensor
voting facilitates the propagation of information locally and enforces smooth-
ness while explicitly detecting and preserving discontinuities with very little
initialization requirements. The local nature of the operations makes the
framework efficient and applicable to very large datasets. Robustness to
noise is an important asset of the framework due to the large amounts of
noise that are inevitable in computer vision problems.

Results, besides the organization of generic tokens, have been shown in
real computer vision problems such as stereo and motion analysis. Perfor-
mance equivalent or superior to state-of-the-art algorithms has been achieved
without the use of algorithms that are specific to each problem, but rather
with general, simple and re-usable modules. Results in other computer vi-
sion problems using tensor voting have also been published in [63, 30, 64, 69,
68, 67, 27, 28]. A major axis of our future work is the generation of tokens

Section 5.7. Conclusion and Future Work 249

(a) Input image (b) Initial matches

(c) Initial boundaries (d) Corrected boundaries

Figure 5.40. Results on the “barrier” example. The initial matches are shown
rotated in (x, y, vx) space. Discontinuity detection significantly improves the quality
of the layer boundaries

from images in a more direct and natural way. This will expand the range
of problems we currently address without having to develop new algorithms
for each problem.

Arguably the largest remaining issue is that of automatic scale selection
or of a multi-scale implementation of the tensor voting framework. It has
been addressed in [69] under circumstances where additional assumptions,
such as the non-existence of junctions, could be made. Scale affects the level
of details that are captured, the degree of smoothness of the output, the
completion of missing information and the robustness to noise. Since these
factors are often conflicting, the use of a single scale over a complicated
dataset is a compromise that fails to produce the best results everywhere.
One way to address this is to adapt the scale locally according to some
criterion such as data density. Alternatively, a number of scales can be used
and the problem can be transformed to one of finding the way to integrate

250 The Tensor Voting Framework Chapter 5

the results over the different scales. A fine to coarse scheme was adopted in
[69], which is consistent with the majority of the literature, but one could
envision coarse to fine schemes as well. In any case, the issue remains open
and is further complicated by that fact that even human perception is a
function of scale.

5.8 Acknowledgment

The authors would like to thank all those who contributed to the research
in tensor voting at the University of Southern California. From the orig-
inal vector voting scheme of Gideon Guy, to the first implementation of
the framework as presented in [40] by Chi-Keung Tang and Mi Suen Lee,
to the other contributors: Pierre Kornprobst, Amin Massad, Lee Gaucher,
Mircea Nicolescu, Eun-Young Kang, Jinman Kang, René Dencker Eriksen,
Wai-Shun Tong.

Bibliography

[1] S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman, and A.Y. Wu. An optimal
algorithm for approximate nearest neighbor searching fixed dimensions. Journal
of the ACM, 45(6):891–923, 1998.

[2] J.D. Boissonnat. Representing 2d and 3d shapes with the delaunay triangula-
tion. In ICPR84, pages 745–748, 1984.

[3] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization
via graph cuts. PAMI, 23(11):1222–1239, November 2001.

[4] H. Chen, P. Meer, and D.E. Tyler. Robust regression for data with multiple
structures. In CVPR01, pages I:1069–1075, 2001.

[5] K.J. Cho and P. Meer. Image segmentation from consensus information. CVIU,
68(1):72–89, October 1997.

[6] J. Dolan and E.M. Riseman. Computing curvilinear structure by token-based
grouping. In CVPR92, pages 264–270, 1992.

[7] H. Edelsbrunner and E.P. Mücke. Three-dimensional alpha shapes. ACM
Transactions on Graphics, 13(1):43–72, 1994.

[8] O.D. Faugeras and M. Berthod. Improving consistency and reducing ambiguity
in stochastic labeling: An optimization approach. PAMI, 3(4):412–424, July
1981.

[9] M.A. Fischler and R.C. Bolles. Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography.
Comm. of the ACM, 24(6):381–395, 1981.

[10] Y. Gdalyahu, D. Weinshall, and M. Werman. Self-organization in vision:
Stochastic clustering for image segmentation, perceptual grouping, and image
database organization. PAMI, 23(10):1053–1074, October 2001.

[11] S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the
bayesian restoration of images. PAMI, 6(6):721–741, November 1984.

Bibliography 251

[12] G.H. Granlund and H. Knutsson. Signal Processing for Computer Vision.
Kluwer, December 1995.

[13] S. Grossberg and E. Mingolla. Neural dynamics of form perception: Boundary
completion. Psychological Review, pages 173–211, 1985.

[14] S. Grossberg and D. Todorovic. Neural dynamics of 1-d and 2-d brightness
perception: A unified model of classical and recent phenomena. Perception and
Psychophysics, 43:723–742, 1988.

[15] G. Guy and G. Medioni. Inferring global perceptual contours from local fea-
tures. IJCV, 20(1/2):113–133, 1996.

[16] G. Guy and G. Medioni. Inference of surfaces, 3d curves, and junctions from
sparse, noisy, 3d data. PAMI, 19(11):1265–1277, November 1997.

[17] R.M. Haralick and L.G. Shapiro. The consistent labeling problem: Part i.
PAMI, 1(2):173–184, April 1979.

[18] R.M. Haralick and L.G. Shapiro. The consistent labeling problem: Part ii.
PAMI, 2(3):193–203, May 1980.

[19] F. Heitger and R. von der Heydt. A computational model of neural contour
processing: Figure-ground segregation and illusory contours. In ICCV93, pages
32–40, 1993.

[20] S. Osher H.K. Zhao and R. Fedkiw. Fast surface reconstruction using the level
set method. In UCLA Computational and Applied Mathematics Reports, pages
32–40, 2001.

[21] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Surface
reconstruction from unorganized points. Computer Graphics, 26(2):71–78, 1992.

[22] B.K.P. Horn and B.G. Schunck. Determining optical flow. AI, 17(1-3):185–203,
August 1981.

[23] P.V.C. Hough. Method and means for recognizing complex patterns. In US
Patent, 1962.

[24] R.A. Hummel and S.W. Zucker. On the foundations of relaxation labeling
processes. PAMI, 5(3):267–287, May 1983.

[25] D.W. Jacobs. Robust and efficient detection of salient convex groups. PAMI,
18(1):23–37, January 1996.

[26] A.K. Jain and R.C. Dubes. Algorithms for clustering data. In Prentice-Hall,
1988.

[27] J. Jia and C.K. Tang. Image repairing: Robust image synthesis by adaptive nd
tensor voting. In CVPR03, pages I:643–650, 2003.

[28] J. Kang, I. Cohen, and G. Medioni. Continuous tracking within and across
camera streams. In CVPR03, pages I:267–272, 2003.

[29] G.K. Kanizsa. Subjective contours. In Scientific American, volume 234, pages
48–54, 1976.

[30] P. Kornprobst and G. Medioni. Tracking segmented objects using tensor voting.
In CVPR00, pages II: 118–125, 2000.

[31] K. Koster and M. Spann. Mir: An approach to robust clustering-application
to range image segmentation. PAMI, 22(5):430–444, May 2000.

[32] Y.G. Leclerc. Constructing simple stable descriptions for image partitioning.
IJCV, 3(1):73–102, May 1989.

252 The Tensor Voting Framework Chapter 5

[33] K.M. Lee, P. Meer, and R.H. Park. Robust adaptive segmentation of range
images. PAMI, 20(2):200–205, February 1998.

[34] M.S. Lee and G. Medioni. Inferring segmented surface description from stereo
data. In CVPR98, pages 346–352, 1998.

[35] M.S. Lee, G. Medioni, and P. Mordohai. Inference of segmented overlapping
surfaces from binocular stereo. PAMI, 24(6):824–837, June 2002.

[36] Z. Li. A neural model of contour integration in the primary visual cortex.
Neural Computation, 10:903–940, 1998.

[37] W.E. Lorensen and H.E. Cline. Marching cubes: A high resolution 3d surface
reconstruction algorithm. Computer Graphics, 21(4):163–169, 1987.

[38] D.G. Lowe. Perceptual Organization and Visual Recognition. Kluwer, June
1985.

[39] D. Marr. Vision. Freeman Press, 1982.
[40] G. Medioni, M.S. Lee, and C.K. Tang. A Computational Framework for Seg-

mentation and Grouping. Elsevier, 2000.
[41] R. Mohan and R. Nevatia. Perceptual organization for scene segmentation and

description. PAMI, 14(6):616–635, June 1992.
[42] P. Mordohai and G. Medioni. Perceptual grouping for multiple view stereo

using tensor voting. In ICPR02, pages III: 639–644, 2002.
[43] J.M. Morel and S. Solimini. Variational Methods in Image Segmentation.

Birkhauser, 1995.
[44] H. Neummann and E. Mingolla. Computational neural models of spatial in-

tegration in perceptual grouping. From Fragments to Objects: Grouping and
Segmentation in Vision, T.F.Shipley and P.J. Kellman, Editors, pages 353–400,
2001.

[45] M. Nicolescu and G. Medioni. 4-d voting for matching, densification and seg-
mentation into motion layers. In ICPR02, pages III: 303–308, 2002.

[46] M. Nicolescu and G. Medioni. Perceptual grouping from motion cues using
tensor voting in 4-d. In ECCV02, pages III: 423–428, 2002.

[47] M. Nicolescu and G. Medioni. Layered 4d representation and voting for group-
ing from motion. PAMI, 25(4):492–501, April 2003.

[48] M. Nicolescu and G. Medioni. Motion segmentation with accurate boundaries
- a tensor voting approach. In CVPR03, pages I:382–389, 2003.

[49] S. Osher and R.P. Fedkiw. The Level Set Method and Dynamic Implicit Sur-
faces. Springer Verlag, 2002.

[50] P. Parent and S.W. Zucker. Trace inference, curvature consistency, and curve
detection. PAMI, 11(8):823–839, August 1989.

[51] T.A. Poggio, V. Torre, and C. Koch. Computational vision and regularization
theory. Nature, 317:314–319, 1985.

[52] L. Robert and R. Deriche. Dense depth map reconstruction: A minimization
and regularization approach which preserves discontinuities. In ECCV96, pages
I:439–451, 1996.

[53] A. Robles-Kelly and E.R. Hancock. An expectation-maximisation framework
for perceptual grouping. In IWVF4, LNCS 2059, pages 594–605. Springer
Verlag, 2001.

Bibliography 253

[54] P.T. Sander and S.W. Zucker. Inferring surface trace and differential structure
from 3-d images. PAMI, 12(9):833–854, September 1990.

[55] S. Sarkar and K.L. Boyer. A computational structure for preattentive per-
ceptual organization: Graphical enumeration and voting methods. SMC, 24:
246–267, 1994.

[56] E. Saund. Labeling of curvilinear structure across scales by token grouping. In
CVPR92, pages 257–263, 1992.

[57] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame
stereo correspondence algorithms. IJCV, 47(1-3):7–42, April 2002.

[58] J.A. Sethian. Level Set Methods: Evolving Interfaces in Geometry, Fluid Me-
chanics, Computer Vision and Materials Science. Cambridge University Press,
1996.

[59] A. Shashua and S. Ullman. Structural saliency: The detection of globally salient
structures using a locally connected network. In ICCV88, pages 321–327, 1988.

[60] J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI, 22(8):
888–905, August 2000.

[61] R. Szeliski, D. Tonnesen, and D. Terzopoulos. Modeling surfaces of arbitrary
topology with dynamic particles. In CVPR93, pages 82–87, 1993.

[62] C.K. Tang and G. Medioni. Inference of integrated surface, curve, and junction
descriptions from sparse 3d data. PAMI, 20(11):1206–1223, November 1998.

[63] C.K. Tang, G. Medioni, and M.S. Lee. Epipolar geometry estimation by tensor
voting in 8d. In ICCV99, pages 502–509, 1999.

[64] C.K. Tang, G. Medioni, and M.S. Lee. N-dimensional tensor voting and appli-
cation to epipolar geometry estimation. PAMI, 23(8):829–844, August 2001.

[65] D. Terzopoulos. Regularization of inverse visual problems involving discontinu-
ities. PAMI, 8(4):413–424, July 1986.

[66] D. Terzopoulos and D. Metaxas. Dynamic 3d models with local and global
deformations: Deformable superquadrics. PAMI, 13(7):703–714, July 1991.

[67] W.S. Tong and C.K. Tang. Rod-tv: Reconstruction on demand by tensor
voting. In CVPR03, pages II:391–398, 2003.

[68] W.S. Tong, C.K. Tang, and G. Medioni. Epipolar geometry estimation for
non-static scenes by 4d tensor voting. In CVPR01, pages I:926–933, 2001.

[69] W.S. Tong, C.K. Tang, and G. Medioni. First order tensor voting and applica-
tion to 3-d scale analysis. In CVPR01, pages I:175–182, 2001.

[70] M. Wertheimer. Laws of organization in perceptual forms. Psycologische
Forschung, Translation by W. Ellis, A source book of Gestalt psychology (1938),
4:301–350, 1923.

[71] C.F. Westin. A Tensor Framework for Multidimensional Signal Processing.
Ph.D. thesis, Linkoeping University, Sweden,, 1994.

[72] L.R. Williams and D.W. Jacobs. Stochastic completion fields: A neural model
of illusory contour shape and salience. Neural Computation, 9(4):837–858, 1997.

[73] S.C. Yen and L.H. Finkel. Extraction of perceptually salient contours by striate
cortical networks. Vision Research, 38(5):719–741, 1998.

[74] X.M. Yu, T.D. Bui, and A. Krzyzak. Robust estimation for range image seg-
mentation and reconstruction. PAMI, 16(5):530–538, May 1994.

SECTION II:
APPLICATIONS IN
COMPUTER VISION

The chapters in this section describe a variety of interesting applications
in computer vision, ranging from the more traditional (content-based im-
age retrieval, face detection, human tracking) to the more graphics-oriented
(image-based lighting and visual effects).

In Chapter 6, Debevec describes how scenes and objects can be illu-
minated using images of light from the real world. While this operation,
also known as image-based lighting, has its roots in computer graphics, it
requires computer vision techniques to extract high dynamic range images
and resample the captured light.

Many of the special effects seen in movies rely on computer vision tech-
niques to facilitate their production. In Chapter 7, Roble describes some of
vision techniques that have been used successfully in the movie industry.

A natural extension to current text-based search engines would be image
retrieval. In Chapter 8, Gevers and Smeulders present a survey on the theory
and techniques for content-based image retrieval. The issues covered include
interactive query formulation, image feature extraction, representation and
indexing, search techniques, and learning based on feedback.

Li and Lu describe techniques for face detection, alignment, and recog-
nition in Chapter 9. They show how the difficult problems of changing head
pose and different illumination can be handled.

In Chapter 10, Turk and Kölsch describe the area of perceptual interfaces,
which involves the use of multiple perceptual modalities (e.g., vision, speech,
haptic) to enable human-machine interaction. The authors motivate the need
for such a study and discuss issues related to vision-based interfaces.
254

Chapter 6

IMAGE-BASED LIGHTING

Paul E. Debevec

Image-based lighting (IBL) is the process of illuminating scenes and ob-
jects - be they real or synthetic - with images of light from the real world.
IBL evolved from the techniques known as environment mapping and re-
flection mapping [3], [20], in which panoramic images are used as texture
maps on computer generated models to show shiny objects reflecting real
and synthetic environments. When used effectively, image-based lighting
can produce highly realistic renderings of people, objects, and environments,
and it can be used to convincingly integrate computer generated objects into
real world scenes.

The basic steps in image-based lighting are:

1. Capturing real-world illumination as an omnidirectional, high dynamic
range image

2. Mapping the illumination on to a representation of the environment

3. Placing the 3D object inside the environment

4. Simulating the light from the environment illuminating the CG object

Figure 6.1 shows an example of an object illuminated entirely using IBL.
The light was captured in a kitchen, and includes light from the fixture on the
ceiling, the blue sky from the windows, and the indirect light from the walls,
ceiling, and cabinets in the room. The light from this room was mapped onto
a large sphere, and the model of the microscope on the table was placed in
the middle of the sphere. Then, a global illumination renderer was used to
simulate the object’s appearance as illuminated by the light coming from the

255

256 Image Based Lighting Chapter 6

Figure 6.1. A microscope, modeled by Gary Butcher in 3D Studio Max, ren-
dered using Marcos Fajardo’s “Arnold” rendering system with image-based lighting
captured within a kitchen.

sphere of incident illumination. The model was created by Gary Butcher in
3D Studio Max, and the renderer used was the “Arnold” global illumination
system written by Marcos Fajardo.

Because it is illuminated with captured lighting, the image of the computer-
generated microscope should look much like a real microscope would appear
in the kitchen environment. IBL simulates not just the direct illumination
from the ceiling light and windows, but also the indirect illumination from
the rest of the surfaces in the room. The reflections in the smooth curved
bottles reveal the appearance of the kitchen, and the shadows on the table
reveal the colors and spread of the area light sources. The objects also reflect

Section 6.1. Basic Image Based Lighting 257

each other, owing to the ray-tracing component of the global illumination
techniques being employed.

This first part of this chapter will describe the theory and practice of
image-based lighting, and will provide concrete examples of the technique in
action using Greg Ward’s Radiance lighting simulation system. The second
part of the chapter will present advanced image-based lighting techniques,
such as having the objects cast shadows into the scene, and capturing light-
ing that varies within space. The final part of this chapter will discuss
image-based relighting, which is the process of synthetically illuminating
real objects and people with light captured from the real world.

6.1 Basic Image-Based Lighting

6.1.1 Capturing Light

The first step of image-based lighting is to obtain a measurement of real-
world illumination, called a light probe image in [7]. Several such images
available in the Light Probe Image Gallery at http://www.debevec.org/Probes/.
The web site includes the kitchen environment used to render the microscope
as well as lighting captured in various other interior and outdoor environ-
ments. A few of these environments are shown in Figure 6.2.

Light Probe images are photographically acquired images of the real
world with two important properties: first, they are omnidirectional - for
every direction in the world, there is a pixel in the image that corresponds
to that direction. Second, their pixel values are linearly proportional to the
amount of light in the real world. The rest of this section will describe
techniques for how to take images satisfying both of these properties.

Taking omnidirectional images can be done in a number of ways. The
simplest way is to use a regular camera to take a photograph of a mirrored
ball placed in a scene. A mirrored ball actually reflects the entire world
around it, not just the hemisphere toward the camera: light rays reflecting
off the outer circumference of the ball glance toward the camera from the back
half of the environment. Another method to obtain omnidirectional images
using is to shoot a mosaic of many pictures looking in different directions
[4, 26] and combine them using an image stitching program such as RealViz
Stitcher. A good way to cover a particularly large area in each shot is to
use a fisheye lens [14], allowing the full field to be covered in as few as two
images. A final technique is to use a special scanning panoramic camera,
such as ones made by Panoscan or Spheron, which uses a vertical row of
CCD elements on a rotating camera head to scan across 360 degrees field of

258 Image Based Lighting Chapter 6

(a) (b)

(c) (d)

Figure 6.2. Several light probe images from the Light Probe Image Gallery at
http://www.debevec.org/Probes. The light is from (a) a residential kitchen, (b)
the eucalyptus grove at UC Berkeley, (c) the Uffizi gallery in Florence, Italy, and
(d) Grace Cathedral in San Francisco.

Section 6.1. Basic Image Based Lighting 259

(a) (b) (c) (d) (e)

Figure 6.3. A series of differently-exposed images of a mirrored ball photographed
at Funston beach near San Francisco. The exposures, ranging in shutter speed from
1/1000 second in (a) to 1/4 second in (e), are merged into a high dynamic range
image to be used as an image-based lighting environment.

view.
Most digital images do not have the property that pixel values are pro-

portional to light levels. Usually, light levels are encoded nonlinearly in order
to appear correctly or more pleasingly on nonlinear display devices such as
computer monitors. Furthermore, standard digital images typically repre-
sent only a small fraction of the dynamic range1 present in most real-world
lighting environments. When a part of the scene is too bright, the pixels
saturate to their maximum value (which is 255 for 8-bit images) no matter
how bright they really are.

Ensuring that the pixel values in the omnidirectional images are truly
proportional to quantities of light can be accomplished using high dynamic
range (HDR) photography techniques as described in [11, 21]. The process
typically involves taking a series of pictures of the scene with varying expo-
sure levels, and then using these images both to solve for the response curve
of the imaging system and then to form a linear-response composite image
covering the entire range of illumination values present in the scene. Software
for assembling images in this way includes the command-line mkhdr program
at http://www.debevec.org/Research/HDR/ and the Windows-based HDR
Shop program at http://www.debevec.org/HDRShop/.

HDR images can be represented well using a single-precision floating-
point number for each of red, green, and blue, allowing the full range of light
from thousandths to millions of W/(srm2) to be represented. HDR image
data can be stored in a variety of file formats, including the floating-point
version of the TIFF file format, or the Portable Floatmap [9] variant of the
PBM Plus Portable Pixmap format. Several other representations that use
less storage are available, including Greg Ward’s RGBE format [29] that

1The ratio between the dimmest and brightest accurately represented regions of an
image.

260 Image Based Lighting Chapter 6

uses one byte for each of red, green, blue, and a common 8-bit exponent,
and Ward’s more recent 24-bit and 32-bit LogLuv formats recently included
in the TIFF standard [18]. The light probe images in the light probe image
gallery are available in the RGBE format, allowing them to be easily used in
Ward’s RADIANCE global illumination renderer. We’ll see how to do this
in the next section.

Figure 6.3 shows a series of images used in creating a light probe image.
To acquire these images, a three-inch polished ball bearing was placed on
top of a tripod at Funston Beach near San Francisco, and a digital camera
with a telephoto zoom lens was used to take a series of exposures of the ball.
Being careful not to disturb the camera, pictures were taken at shutter speeds
ranging from 1/4 second to 1/10000 second, allowing the camera to properly
image everything from the dark cliffs to the bright sky and the setting sun.
The images were assembled using code similar to that now found in mkhdr
and HDR Shop, yielding a high dynamic range, linear-response image.

6.1.2 Illuminating Synthetic Objects with Real Light

Image-based lighting is the process of using light probe images as sources
of illumination for CG scenes and objects. IBL is now supported by several
commercial renderers, including LightWave 3D, Entropy, and Final Render.
For this tutorial, we’ll use the freely-downloadable RADIANCE lighting sim-
ulation package written by Greg Ward at Lawrence Berkeley Laboratories.
RADIANCE is a UNIX package, which means that to use it you’ll need to
use a computer such as a PC running Linux or a Silicon Graphics or Sun
workstation. Here are the steps to using image-based lighting to illuminate
synthetic objects in RADIANCE:

1. Download and install RADIANCE

First, test to see if you already have RADIANCE installed by typing
which rpict at a UNIX command prompt. If the shell returns “Com-
mand not found”, you’ll need to install RADIANCE. To do this, visit
the RADIANCE web site at http://radsite.lbl.gov/radiance and
click on the “download” option. As of this writing, the current version
is 3.1.8, and it is pre-compiled for SGI and Sun workstations. For other
operating systems, such as Linux, you can download the source files
and then compile the executable programs using the makeall script.
Once installed, make sure that the RADIANCE binary directory is in
your $PATH and that your $RAYPATH environment variable includes the
RADIANCE library directory. Your system administrator should be

Section 6.1. Basic Image Based Lighting 261

Table 6.1. The material specifiers in scene.rad.

Materials
void plastic red plastic 0 0 5 .7 .1 .1 .06 .1
void metal steel 0 0 5 0.6 0.62 0.68 1 0
void metal gold 0 0 5 0.75 0.55 0.25 0.85 0.2
void plastic white matte 0 0 5 .8 .8 .8 0 0
void dielectric crystal 0 0 5 .5 .5 .5 1.5 0
void plastic black matte 0 0 5 .02 .02 .02 .00 .00
void plastic gray plastic 0 0 5 0.25 0.25 0.25 0.06
0.0

able to help you if you’re not familiar with installing software packages
on UNIX.

2. Create the scene

The first thing we’ll do is create a RADIANCE scene file. RADIANCE
scene files contain the specifications for the geometry, reflectance prop-
erties, and lighting in your scene. We’ll create a very simple scene with
a few spheres sitting on a platform. First, let’s specify the material
properties we’ll use for the spheres. Create a new directory and then
call up your favorite text editor to type in the material specifications
in Table 6.1 to the file scene.rad.

These lines specify the diffuse and specular characteristics of the ma-
terials we’ll use in our scene, including crystal, steel, and red plastic.
In the case of the red plastic, the diffuse RGB color is (.7, .1, .1), the
proportion of light reflected specularly is .06, and the specular rough-
ness is .1. The 0 0 5 just after the names tell RADIANCE how many
alphanumeric, integer, and floating-point parameters to expect in each
specifier.

Now let’s add some objects with these material properties to our scene.
The objects we’ll choose will be some spheres sitting on a pedestal. Add
the lines in Table 6.2 to the end of scene.rad.

The lines in Table 6.2 specify five spheres made from the various ma-
terials sitting in an arrangement on the pedestal. The first sphere,
ball0, is made of the red plastic material and located in the scene
at (2,0.5,2) with a radius of 0.5. The pedestal itself is composed of two

262 Image Based Lighting Chapter 6

Table 6.2. The geometric shapes in scene.rad.

Objects
red plastic sphere ball0 0 0 4 2 0.5 2 0.5
steel sphere ball1 0 0 4 2 0.5 -2 0.5
gold sphere ball2 0 0 4 -2 0.5 -2 0.5
white matte sphere ball3 0 0 4 -2 0.5 2 0.5
crystal sphere ball4 0 0 4 0 1 0 1
!genworm black matte twist "cos(2*PI*t)*(1+0.1*cos(30*PI*t))"
"0.06+0.1+0.1*sin(30*PI*t)" "sin(2*PI*t)*(1+0.1*cos(30*PI*t))"
"0.06" 200 | xform -s 1.1 -t 2 0 2 -a 4 -ry 90 -i 1
!genbox gray plastic pedestal top 8 0.5 8 -r 0.08 | xform -t
-4 -0.5 -4
!genbox gray plastic pedestal shaft 6 16 6 | xform -t -3
-16.5 -3

Table 6.3. A traditional light source for scene.rad.

Traditional Light Source
void light lightcolor 0 0 3 10000 10000 10000
lightcolor source lightsource 0 0 4 1 1 1 2

bevelled boxes made with the RADIANCE genbox generator program.
In addition, the genworm program is invoked to create some curly iron
rings around the spheres.

3. Add a traditional light source

Next, let’s add a traditional light source to the scene to get our first
illuminated glimpse – without IBL – of what the scene looks like. Add
the lines from Table 3 to scene.rad to specify a traditional light source.

4. Render the scene with traditional lighting

In this step we’ll create an image of the scene. First we need to use the
oconv program to process the scene file into an octree file for RADI-
ANCE to render. Type the following command to the UNIX command
prompt:

Section 6.1. Basic Image Based Lighting 263

Figure 6.4. The RADIANCE rview interactive renderer viewing the scene as
illuminated by a traditional light source.

oconv scene.rad > scene.oct

The # simply indicates the prompt and does not need to be typed.
This will create an octree file scene.oct that can be rendered in RA-
DIANCE’s interactive renderer rview. Next, we need to specify a
camera position. This can be done as command arguments to rview,
but to make things simpler let’s store our camera parameters in a file.
Use your text editor to create the file camera.vp with the following
camera parameters as the first and only line of the file:

rview -vtv -vp 8 2.5 -1.5 -vd -8 -2.5 1.5 -vu 0 1 0 -vh 60 -vv 40

These parameters specify a perspective camera (-vtv) with a given
viewing position (-vp) and direction (-vd) and up vector (-vu) and
with horizontal (-vh) and vertical (-vv) fields of view of 60 and 40
degrees, respectively. (The rview text at the beginning of the line is
a standard placeholder in RADIANCE camera files, not an invocation
of the rview executable.) Now let’s render the scene in rview; type:

rview -vf camera.vp scene.oct

264 Image Based Lighting Chapter 6

In a few seconds, you should get an image window similar to what
is shown in Figure 4. The image shows the spheres on the platform,
surrounded by the curly rings, and illuminated by the traditional light
source. The image may or may not be pleasing, but it certainly looks
very computer-generated. Let’s now see if we can make it more realistic
by lighting the scene with image-based lighting.

5. Download a light probe image

Visit the Light Probe Image Gallery at http://www.debevec.org/Probes/
and choose a light probe image to download. The light probe images
without concentrated light sources tend to produce good-quality ren-
ders more quickly, so using one of the “beach”, “uffizi”, or “kitchen”
probes to begin is recommended. We’ll choose the “beach” probe de-
scribed earlier in our first example. Download the beach probe.hdr
file to your computer by shift-clicking or right-clicking “Save Target
As...” or “Save Link As...” and then view it using the RADIANCE
image viewer ximage:

ximage beach_probe.hdr

If the probe downloaded properly, a window should pop up displaying
the beach probe image. While the window is up you can click-drag
the mouse pointer over a region of the image and then press “=” to
re-expose the image to properly display the region of interest. If the
image did not download properly, try downloading and expanding the
all probes.zip or all probes.tar.gz archive from the same web
page, which will download all the light probes images and ensure that
their binary format is preserved. When you’re done examining the
light probe image, press the “q” key in the ximage window to dismiss
the window.

6. Map the light probe image onto the environment

Let’s now add the light probe image to our scene by mapping it onto
an environment surrounding our objects. First, we need to create a
new file that will specify the mathematical formula for mapping the
light probe image onto the environment. Use your text editor to create
the file angmap.cal containing the lines from Table 6.

This file will tell RADIANCE how to map direction vectors in the world
(Dx, Dy, Dz) into light probe image coordinates (u,v). Fortunately,

Section 6.1. Basic Image Based Lighting 265

Table 6.4. The angular map .cal file.

{ angmap.cal
Convert from directions in the world (Dx, Dy, Dz)
into (u,v) coordinates on the light probe image
-z is forward (outer edge of sphere) +z is backward
(center of sphere) +y is up (toward top of sphere) }
d = sqrt(Dx*Dx + Dy*Dy);
r = if(d, 0.159154943*acos(Dz)/d, 0);
u = 0.5 + Dx * r; v = 0.5 + Dy * r;

Table 6.5. Commenting out the traditional light source in scene.rad.

#lightcolor source lightsource 0 0 4 1 1 1 2

RADIANCE accepts these coordinates in the range of zero to one no
matter the image size, making it easy to try out light probe images
of different resolutions. The formula converts from the angular map
version of the light probe images in the light probe image gallery, which
is different than the mapping a mirrored ball produces. If you need
to convert a mirrored ball image to this format, HDR Shop [27] has a
“Panoramic Transformations” function for this purpose.

Next, comment out (by adding #’s at the beginning of the lines) the
traditional light source in scene.rad that we added in Step 3, as in
Table 6.

Note that this is not a new line to add to the file, but a modification
to a line already entered. Now, add the lines from Table 6 to the end
of scene.rad to include the image-based lighting environment.

The colorpict sequence indicates the name of the light probe image
and the calculations file to use to map directions to image coordinates.
The glow sequence specifies a material property comprising the light
probe image treated as an emissive glow. Finally, the source specifies
the geometry of an infinite sphere mapped with the emissive glow of
the light probe. When RADIANCE’s rays hit this surface, their illu-
mination contribution will be taken to be the light specified for the

266 Image Based Lighting Chapter 6

Table 6.6. The image-based lighting environment for scene.rad.

Image-Based Lighting Environment
void colorpict hdr probe image 7 red green blue
beach probe.hdr angmap.cal u v 0 0
hdr probe image glow light probe 0 0 4 1 1 1 0
light probe source ibl environment 0 0 4 0 1 0 360

corresponding direction in the light probe image.

Finally, since we changed the scene file, we need to update the octree
file. Run oconv once more to do this:

oconv scene.rad > scene.oct

7. Render the scene with image-based lighting

Let’s now render the scene using image-based lighting. Enter the fol-
lowing command to bring up a rendering in rview:

rview -ab 1 -ar 5000 -aa 0.08 -ad 128 -as 64 -st 0 -sj 1 -lw 0
-lr 8 -vf camera.vp scene.oct

In a few moments, you should see the image in Figure 6.5 begin to take
shape. What RADIANCE is doing is tracing rays from the camera into
the scene, illustrated in Figure 6. When a ray hits the environment, it
takes as its radiance value the corresponding value in the light probe
image. When a ray hits a particular point on an object, RADIANCE
calculates the color and intensity of the incident illumination (known
as irradiance) on that point by sending out a multitude of rays in
random directions to quantify the light arriving at that point on the
object. The number of rays are specified by -ad and -as parameters2.
Some of these rays will hit the environment, and others will hit other
parts of the object, causing RADIANCE to recurse into computing the
light coming from this new part of the object. The number of levels

2The -ad parameter specifies how many rays will be cast directly into the environment,
and the -as parameter specifies how many additional rays will be sent to provide greater
sampling density in regions of high variance.

Section 6.1. Basic Image Based Lighting 267

Figure 6.5. The spheres on the pedestal illuminated by the beach light probe
image from Figure 6.2.

of recursion is specified by the -ab parameter; usually an -ab value
of 1 or 2 is sufficient. Once the illumination on the object point has
been computed, RADIANCE calculates the light reflected toward the
camera based on the object’s material properties and this becomes the
pixel value of that point of the object. Images calculated in this way
can take a while to render, but produce a faithful rendition of how the
captured illumination would illuminate the objects.

The command-line arguments to rview above tell RADIANCE the
manner in which to perform the lighting calculations. -ab 1 indicates
that RADIANCE should produce only one “ambient bounce” recur-
sion in computing the object’s illumination; more accurate simulations
could be produced with a value of 2 or higher. The -ar and -aa sets
the resolution and accuracy of the surface illumination calculations,
and -ad and -as set the number of rays traced out from a surface
point to compute its illumination. The -st, -sj, -lw, and -lr specify
how the rays should be traced for glossy and shiny reflections. For
more information on these and more RADIANCE parameters, see the
reference guide on the RADIANCE web site.

When the render completes, you should see an image of the objects as
illuminated by the beach lighting environment. The synthetic steel ball
reflects the environment and the other objects directly; the glass ball
both reflects and refracts the environment, and the diffuse white ball
shows subtle shading which is lighter toward the sunset and darkest

268 Image Based Lighting Chapter 6

Figure 6.6. How RADIANCE traces rays to determine the incident illumination
on a surface from an image-based lighting environment.

where the ball contacts the pedestal. The rough specular reflections
in the red and gold balls appear somewhat speckled in this medium-
resolution rendering; the reason is that RADIANCE sends out just one
ray for each specular sample (regardless of surface roughness) rather
than the much greater number it sends out to compute the diffuse
illumination. Rendering at a higher resolution and filtering the image
down can alleviate this effect.

We might want to create a particularly high-quality rendering using
the command-line rpict renderer, which outputs the rendered image
to a file. Run the following rpict command:

rpict -x 800 -y 800 -t 30 -ab 1 -ar 5000 -aa 0.08 -ad 128 -as 64
-st 0 -sj 1 -lw 0 -lr 8 -vf camera.vp scene.oct > render.hdr

The command line arguments to rpict are identical to rview except
that one also specifies the maximum x- and y-resolutions for the image
(here, 800 by 800 pixels) as well as how often to report back on the ren-
dering progress (here, every 30 seconds.) On an 2 GHz computer this

Section 6.2. Advanced Image Based Lighting 269

should take approximately five minutes. When complete, the rendered
output image can by viewed with the ximage program. To produce
very high quality renderings, you can increase the x and y resolutions
to very high numbers, such as 3000 by 3000 pixels, and then filter the
image down to produce an anti-aliased rendering. This filtering down
can be performed with either RADIANCE’s pfilt command or using
HDR Shop. To filter a 3000 by 3000 pixel image down to 1000 by 1000
pixels using pfilt, enter:

pfilt -1 -x /3 -y /3 -r 1 render.hdr > filtered.hdr

The high-quality renderings in this paper were produced using this
method. To render the scene with different lighting environments,
download a new probe image, change the beach probe.hdr reference
in the scene.rad file, and call rview or rpict once again. Light probe
images with concentrated light sources such as “grace” and “stpeters”
will require increasing the -ad and -as sampling parameters to the
renderer in order to avoid mottled renderings. Renderings of our ob-
jects illuminated by the light probes of Figure 6.2 are shown in Figure
6.7. Each rendering shows different effects of the lighting, from the
particularly soft shadows under the spheres in the overcast Uffizi envi-
ronment to the focused pools of light from the stained glass windows
under the glass ball in the Grace Cathedral environment.

6.1.3 Lighting Entire Environments with IBL

So far these techniques have shown how to illuminate synthetic objects
with measurements of real light, which can help the objects appear as if
they are actually in a real-world scene. The technique can also be used
to light large-scale environments with captured illumination captured from
real-world skies; Figure 6.8 shows a computer model of the Parthenon on
the Athenian Acropolis illuminated by several real-world sky environments
captured with high dynamic range photography using a fisheye lens.

6.2 Advanced Image-Based Lighting

The technique of image-based lighting can be used not only to illuminate
synthetic objects with real-world light, but to place synthetic objects into a
real-world scene. To do this realistically, the objects need to photometrically
affect their environment; that is, they need to cast shadows and reflect indi-
rect illumination onto their nearby surroundings. Without these effects, the

270 Image Based Lighting Chapter 6

(a) (b)

(c) (d)

Figure 6.7. The objects illuminated by the four light probe images from Figure
6.2.

synthetic object will most likely look “pasted in” to the scene, rather than
look as if it had actually been there.

A limitation of the techniques presented so far is that they require that
the series of digital images taken span the complete range of intensities in
the scene. For most scenes, the range of shutter speeds available on a digital
camera can cover this range effectively. However, for sunlit scenes, the di-
rectly visible sun will often be too bright to capture even using the shortest
exposure times available. This is a problem since failing to record the color
and intensity of the sun will cause significant inaccuracies in the captured
lighting environment.

This section will describe extensions to the image-based lighting tech-
niques that solve both the problem of capturing the intensity of the sun and
the problem of having the synthetic objects cast shadows onto the environ-
ment. Although presented together, they are independent techniques which
can be used separately as needed. These techniques will be presented in

Section 6.2. Advanced Image Based Lighting 271

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.8. A computer graphics model of the Parthenon seen circa 1800 in (e-h)
as illuminated by the image-based real-world lighting environments seen in (a-d).

272 Image Based Lighting Chapter 6

(a) (b)

Figure 6.9. (a) The Guggenheim Museum in Bilbao. (b) A background plate
image taken in front of the museum.

the form of a new image-based lighting example, also using the RADIANCE
rendering system.

6.2.1 Capturing a Light Probe in Direct Sunlight

The example we will use is that of placing a new sculpture and some spheres
in front of the Guggenheim museum in Bilbao, Spain seen in Fig. 6.9(a). To
create this example, I first photographed a background plate image using a
Canon EOS-D60 digital camera on a tripod as in Fig. 6.9(b). The image was
taken with a 24mm lens at ASA 100 sensitivity, f/11 aperture, and 1/60th
of a second shutter speed. A shadow from a nearby lamp post can be seen
being cast along the ground.

To capture the lighting, I placed a three-inch mirrored sphere on a second
tripod in front of the camera as in Fig. 6.10. I left the first camera in the
same place, pointing in the same direction, since that would make it easier to
align the probe and background images later. In order to keep the reflection
of the camera small in the sphere, I placed the sphere approximately one
meter away from the camera, and then changed to a 200mm telephoto lens
in order for the sphere to appear relatively large in the frame. I used a remote
release for the camera shutter to avoid moving the camera while capturing the
lighting, and I took advantage of the camera’s automatic exposure bracketing
(AEB) feature to quickly shoot the mirrored sphere at 1/60th, 1/250th, and
1/1000th of a second. These images are shown in Fig. 6.11(a-c). The images
were recorded using the camera’s “RAW” mode which saves uncompressed
image data to the camera’s memory card. This ensures capturing the best
possible image quality and for this camera has the desirable effect that the
image pixel values exhibit a linear response to incident light in this mode.

Section 6.2. Advanced Image Based Lighting 273

Figure 6.10. Capturing a Light Probe image in front of the museum with a
mirrored ball and a digital camera.

Knowing that the response is linear is helpful for assembling high dynamic
range images, since there is no need to derive the response curve of the
camera.

Since the sun was shining, it appears in the reflection in the mirrored
sphere as seen by the camera. Because the sun is so bright, even the shortest
1/1000th of second exposure failed to capture the sun’s intensity without
saturating the image sensor. After assembling the three images into a high
dynamic range image, the area near the sun was not recorded properly, as
seen in Fig. 6.11(d). As a result, using this image as a lighting environment
would produced mismatched lighting, since a major source of the illumination
would not have been accounted for.

I could have tried using several techniques to record an image of the
mirrored sphere such that the sun did not saturate. I could have taken an
even shorter exposure at 1/4000th of a second (the shortest shutter speed
available on the camera), but it’s almost certain the sun would still be too
bright. I could have made the aperture smaller, taking the picture at f/22 or
f/32 instead of f/11, but this would change the optical properties of the lens,
and it would be unlikely to be a precise ratio of exposure to the previous
images. Also, camera lenses tend to produce their best best images at f/8
or f/11. I could have placed a neutral density filter in front of the lens,
but this would also change the optical properties of the lens (the resulting
image might not line up with the others due to refraction, or from bumping
the camera). Instead, I used a technique which will allow us to indirectly
measure the intensity of the sun, which is to photograph a diffuse gray sphere

274 Image Based Lighting Chapter 6

(a) (b)

(c) (d)

Figure 6.11. (a-c) A series of images of a mirrored sphere in the Bilbao scene
taken at 1/60th, 1/250th, and 1/1000th of a second. (d) Detail of the sun area of
(c), showing the overexposed areas in a dark color.

Figure 6.12. Photographing a diffuse grey sphere to determine the intensity of
the sun.

in the same location (Fig. 6.12).
The image of the diffuse grey sphere will allow us to reconstruct the

intensity of the sun in the following way. Suppose that we had actually

Section 6.2. Advanced Image Based Lighting 275

been able to capture the correct color and intensity of the sun in the light
probe image. Then, if we were to use that light probe image to illuminate
a synthetic diffuse grey sphere, it should have the same appearance as the
real grey sphere actually illuminated by the lighting environment. However,
since the light probe failed to record the complete intensity of the sun, the
rendered diffuse sphere will not match the real diffuse sphere, and in fact we
would expect it to be significantly darker. As we will see, the amount by
which the rendered sphere is darker in each of the three color channels tells
us the correct color and intensity for the sun.

The first part of this process is to make sure that all of the images that
have been taken are radiometrically consistent. So far, we’ve recorded light
in three different ways: seen directly with the 24mm lens, seen reflected in
the mirrored sphere through the 200mm lens, and finally as reflected off of
the diffuse sphere with the 200mm lens. Although the 24mm and 200mm
lenses were both set to an f/11 aperture, they did not necessarily transmit
the same amount of light to the image sensor. To measure this difference,
we can photograph a white spot of light in our laboratory with the cameras
to determine the transmission ratio between the two lenses at these two
f/stops, as seen in Fig. 6.13. The measurement recorded that the spot in
the 24mm lens image appeared 1.42 times as bright in the red channel, 1.40
times as bright in green, and 1.38 times as bright in blue compared to the
200mm lens image. Using these results, we can multiply the pixel values
of the images acquired with the 200mm lens by (1.42, 1.40, 1.38) so that the
images represent places in the scene with equal colors and intensities equally.
I could have been even more precise by measuring the relative amount of
light transmitted as a spatially varying function across each lens, perhaps
by photographing the spot in different places in the field of view of each
lens. At wider f/stops, many lenses, particularly wide angle ones, transmit
significantly less light to the corners of the image than to the center. Since
the f/11 f/stop was reasonably small I made the assumption that these effects
would not be significant.

Continuing toward the goal of radiometric consistency, we should note
that neither the mirrored sphere nor the diffuse sphere are 100% reflective.
The diffuse sphere is intentionally painted grey instead of white so that it
will be less likely to saturate the image sensor if an automatic light meter is
being employed. I measured the paint’s reflectivity by painting a flat surface
with the same color, and then photographing the surface in diffuse natu-
ral illumination. In the scene I also placed a similarly oriented reflectance
standard, a white disk of material specially designed to reflect nearly 100%
of all wavelengths of light across the visible spectrum. By dividing the av-

276 Image Based Lighting Chapter 6

(a) (b) (c)

Figure 6.13. (a) A constant intensity illuminant created by placing a white LED
inside a tube painted white on the inside, with a diffuser placed across the hole in
the front. (b-c) Images taken of the illuminant using the 24mm and 200mm lenses
at f/11 to measure the transmission ratio between the two lenses.

erage RGB pixel value of the painted sample to average pixel value of the
reflectance standard, I determined that the reflectivity of the grey paint was
(0.032, 0.333, 0.346) in the red, green, and blue channels. By dividing the
pixel values of the grey sphere image by these values, I was able to obtain an
image of how a perfectly white sphere would have appeared in the lighting
environment. Reflectance standards such as the one that I used are available
from companies such as Coastal Optics and LabSphere. A less expensive
solution is to use the white patch of a MacBeth ColorChecker chart. We
have measured the white patch of the chart to be 86% reflective, so any
measurement taken with respect to this patch should be multiplied by 0.86
to scale it to be proportional to absolute reflectance.

The mirrored sphere is also not 100% reflective; even specially made
first-surface mirrors are rarely greater than 90% reflective. To measure the
reflectivity of the sphere to first order, I photographed the sphere on a tripod
with the reflectance standard facing the sphere in a manner such that both
the standard and its reflection were visible in the same frame, as in Fig. 6.14.
Dividing the reflected color by the original color revealed that the sphere’s
reflectivity was (0.632, 0.647, 0.653) in the red, green, and blue channels. Us-
ing this measurement, I was able to further scale the pixel values of the image
of the mirrored sphere in Fig. 6.11 by (1

0.632 ,
1

0.647 ,
1

0.653) to approximate the
image that a perfectly reflective sphere would have produced.

To be more precise, I could have measured and compensated for the
sphere’s variance in reflectivity with the angle of incident illumination. Due
to the Fresnel reflection effect, the sphere will exhibit greater reflection to-
ward grazing angles. However, my group has measured that this effect is less
than a few percent for all measurable angles of incidence of the spheres we

Section 6.2. Advanced Image Based Lighting 277

(a) (b)

Figure 6.14. (a) An experimental setup to measure the reflectivity of the mirrored
sphere. The reflectance standard at the left can be observed directly as well as in
the reflection on the mirrored sphere seen in (b).

have used so far.
Now that the images of the background plate, the mirrored sphere, and

the diffuse sphere have been mapped into the same radiometric space, we
need to model the missing element, which is the sun. The sun is 1,390,000
km in diameter and on average 149,600,000 km away, making it appear as
a disk in our sky with a subtended angle of 0.53 degrees. The direction
of the sun could be calculated from standard formulas involving time and
geographic coordinates, but it can also be estimated reasonably well from
the position of the saturated region in the mirrored sphere. If we consider
the mirrored sphere to have image coordinates (u, v) each ranging from −1
to 1, a unit vector (Dx, Dy, Dz) pointing toward the faraway point reflected
toward the camera at (u, v) can be computed as:

θ = tan−1 −v
u

(6.1)

φ = 2 sin−1(
√
u2 + v2) (6.2)

(Dx, Dy, Dz) = (sinφ cos θ, sinφ sin θ,− cosφ) (6.3)

In this case, the center of the saturated image was observed at coordinate
(0.414, 0.110) yielding a direction vector of (0.748, 0.199, 0.633). Knowing the
sun’s size and direction, we can now model the sun in Radiance as an infinite
source light:

We have not yet determined the radiance of the sun disk, so in this file
sun.rad, I chose its radiance L to be (46700, 46700, 46700). This radiance

278 Image Based Lighting Chapter 6

Table 6.7. A unit intensity sun sun.rad.

sun.rad
void light suncolor 0 0 3 46700 46700 46700
suncolor source sun 0 0 4 0.748 0.199 0.633 0.53

value happens to be such that the brightest point of a diffuse white sphere
lit by this environment will reflect a radiance value of (1, 1, 1). To derive
this number, I computed the radiance Lr of the point of the sphere point-
ing toward the sun based on the rendering equation for Lambertian diffuse
reflection [6]:

Lr =
∫ 2π

0

∫ r

0
L
ρd
π

sin θ cos θ δθ δφ

Since the radius of our 0.53◦ diameter sun is r = 0.00465 radians, the
range of θ is small enough to approximate sin θ ≈ θ and cos θ ≈ 1 yielding:

Lr ≈ L
ρd
π

∫ 2π

0

∫ r

0
θ δθ δφ = ρd L r

2

Letting our desired radiance from the sphere be Lr = 1 and its diffuse
reflectance to be a perfect white ρd = 1, we obtain that the required radiance
value L for the sun is 1/r2 = 46700. A moderately interesting fact is that
this tells us that on a sunny day, the sun is generally over 46,700 times as
bright as the sunlit surfaces around you. Knowing this, it is not surprising
that it is difficult to capture the sun’s intensity with a camera designed to
photograph people and places.

Now we are set to compute the correct intensity of the sun. Let’s call
our incomplete light probe image (the one that failed to record the intensity
of the sun) Pincomplete. If we render an image of a virtual mirrored sphere
illuminated by only the sun, we will obtain a synthetic light probe image of
the synthetic sun. Let’s call this probe image Psun. The desired complete
light probe image, Pcomplete, can thus be written as the incomplete light
probe plus some color α = (αr, αg, αb) times the sun light probe image as in
Fig. 6.15.

To determine Pcomplete, we somehow need to solve for the unknown α.
Let’s consider, for each of the three light probe images, the image of a dif-
fuse white sphere as it would appear under each of these lighting environ-
ments, which we can call Dcomplete, Dincomplete, and Dsun. We can compute

Section 6.2. Advanced Image Based Lighting 279

= + α
Pcomplete Pincomplete Psun

Figure 6.15. Modeling the complete image-based lighting environment the sum
of the incomplete light probe image plus a scalar times a unit sun disk.

= + α
Dcomplete Dincomplete Dsun

Figure 6.16. The equation of Fig. 6.15 rewritten in terms of diffuse spheres
illuminated by the corresponding lighting environments.

Dincomplete by illuminating a diffuse white sphere with the light probe image
Pincomplete using the image-based lighting technique from the previous sec-
tion. We can compute Dsun by illuminating a diffuse white sphere with the
unit sun specified in sun.rad from Table 6.7. Finally, we can take Dcomplete

to be the image of the real diffuse sphere under the complete lighting envi-
ronment. Since lighting objects is a linear operation, the same mathematical
relationship for the light probe images must hold for the images of the diffuse
spheres they are illuminating. This gives us the equation illustrated in Fig.
6.16.

We can now subtract Dincomplete from both sides to obtain the equation
in Fig. 6.17.

Since Dsun and Dcomplete−Dincomplete are images consisting of thousands
of pixel values, the equation in Fig. 6.17 is actually a heavily overdetermined
set of linear equations in α, with one equation resulting from each red, green,
and blue pixel value in the images. Since the shadowed pixels in Dsun are

280 Image Based Lighting Chapter 6

α =
Dsun Dcomplete −Dincomplete

Figure 6.17. Subtracting Dincomplete from both sides of the equation of Fig.
6.16 yields an equation in which it is straightforward to solve for the unknown sun
intensity multiplier α.

zero, we can not just divide both sides by Dsun to obtain an image with an
average value of α. Instead, we can solve for α in a least squares sense to
minimize α Dsun − (Dcomplete − Dincomplete). In practice, however, we can
more simply choose an illuminated region of Dsun, take this region’s average
value µsun, then take the same region of Dcomplete−Dincomplete, compute its
average pixel value µdiff , and then compute α = µdiff/µsun.

Applying this procedure to the diffuse and mirrored sphere images from
Bilbao, I determined α = (1.166, 0.973, 0.701). Multiplying the original sun
radiance (46700, 46700, 46700) by this number, we obtain (54500, 45400, 32700)
for the sun radiance, and we can update the sun.rad from Table 6.7 file ac-
cordingly.

We can now verify that the recovered sun radiance has been modeled
accurately by lighting a diffuse sphere with the sum of the recovered sun
and the incomplete light probe Pincomplete. The easiest way to do this is
to include both the sun.rad environment and the image light probe image
together as the Radiance lighting environment. Figure 6.18(a) and (b) show
a comparison between such a rendering and the actual image of the diffuse
sphere. Subtracting the two images allows us to visually verify the accuracy
of the lighting reconstruction. The difference image in Fig. 6.18(c) is nearly
black, which indicates a close match.

The rendered sphere in Fig. 6.18(b) is actually illuminated with a combi-
nation of the incomplete light probe image and the modeled sun light source,
rather than with a complete image-based lighting environment. To obtain
a complete light probe, we can compute Pcomplete = Pincomplete + α Psun as
above, and use this image on its own as the light probe image. However, it
is actually advantageous to keep the sun separate as a computer-generated

Section 6.2. Advanced Image Based Lighting 281

(a) Actual (b) Rendered (c) Difference

Figure 6.18. (a) The actual diffuse sphere in the lighting environment, scaled
to show the reflection it would exhibit if it were 100% reflective. (b) A rendered
diffuse sphere, illuminated by the incomplete probe and the recovered sun model.
(c) The difference between the two, exhibiting an RMS error of less than 2% over
all surface normals, indicating a good match.

light source rather than as part of the image-based lighting environment.
The reason for this has to do with how efficiently the Monte Carlo rendering
system can generate the renderings. As seen in Fig. 6.6, when a camera ray
hits a point on a surface in the scene, a multitude of randomized indirect
illumination rays are sent into the image-based lighting environment to sam-
ple the incident illumination. Since the tiny sun disk occupies barely one
hundred thousandth of the sky, it is unlikely that any of the rays will hit the
sun even if a thousand or more rays are traced to sample the illumination.
Any such point will be shaded incorrectly as if it is in shadow. What is
worse is that for some of the points in the scene at least one of the rays fired
out will hit the sun. If a thousand rays are fired and one hits the sun, the
rendering algorithm will light the surface with the sun’s light as if it were
one thousandth of the sky, which is one hundred times as large as the sun
actually is. The result is that every hundred or so pixels in the render there
will be a pixel that is approximately one hundred times as bright as it should
be, and the resulting rendering will appear very “speckled”.

Leaving the sun as a traditional computer-generated light source avoids
this problem almost entirely. The sun is still in the right place with the cor-
rect size, color, and intensity, but the rendering algorithm knows explicitly
that it is there. As a result, the sun’s illumination will be computed as part
of the direct illumination calculation: for every point of every surface, the
renderer will always fire at least one ray toward the sun. The renderer will
still send a multitude of indirect illumination rays to sample the sky, but
since the sky is relatively uniform it’s illumination contribution can be sam-

282 Image Based Lighting Chapter 6

pled sufficiently accurately with a few hundred rays. (If any of the indirect
illumination rays do hit the sun, they will not add to the illumination of the
pixel, since the sun’s contribution is already being considered in the direct
calculation.) The result is that renderings with low noise can be computed
with a small fraction of the rays which would otherwise be necessary if the
sun were represented as part of the image-based lighting environment.

The technique of representing a concentrated image-based area of illumi-
nation as a traditional CG light sources can be extended to multiple light
sources within more complex lighting environments. Section 6.2.3 describes
how the windows and ceiling lamps within St. Peter’s Basilica were modeled
as local area lights to efficiently render the animation Fiat Lux. Techniques
have also been developed to approximate image-based lighting environments
entirely as clusters of traditional point light sources [5, 17, 2]. These al-
gorithms let the user specify the desired number of light sources and then
use clustering algorithms to choose the light source positions and intensities
to best approximate the lighting environment. Such techniques can make
it possible to simulate image-based lighting effects using more traditional
rendering systems.

At this point we have successfully recorded a light probe in a scene where
the sun is directly visible; in the next section we will use this recorded
illumination to realistically place some new objects in front of the museum.

6.2.2 Compositing objects into the scene including shadows

The next step of rendering the synthetic objects into the scene involves recon-
structing the scene’s viewpoint and geometry, rather than its illumination.
We first need to obtain a good estimate of the position, orientation, and
focal length of the camera at the time that it photographed the background
plate image. Then, we will also need to create a basic 3D model of the scene
that includes the surfaces with which the new objects will photometrically
interact – in our case, this is the ground plane upon which the objects will
sit.

Determining the camera pose and local scene geometry could be done
through manual survey at the time of the shoot or through trial and error
afterwards. For architectural scenes such as ours, it is usually possible to ob-
tain these measurements through photogrammetry, often from just the one
background photograph. Fig. 6.19 shows the use of the Façade photogram-
metric modeling system described in [12] to reconstruct the camera pose and
the local scene geometry based on a set of user-marked edge features in the
scene.

Section 6.2. Advanced Image Based Lighting 283

(a) (b)

Figure 6.19. Reconstructing the camera pose and the local scene geometry using a
photogrammetric modeling system. (a) Edges from the floor tiles and architecture
are marked by the user (b) The edges are corresponded to geometric primitives,
which allows the computer to reconstruct the position of the local scene geometry
and the pose of the camera.

The objects which we will place in front of the museum are a statue of a
Caryatid from the Athenian Acropolis and four spheres of differing materi-
als: silver, glass, plaster, and onyx. By using the recovered camera pose, we
can render these objects from the appropriate viewpoint, and using the light
probe image, we can illuminate the objects with the lighting from the actual
scene. However, overlaying such rendered objects onto the background plate
image will not result in a realistic image, since the objects would not pho-
tometrically interact with the scene – the objects would not cast shadows
on the ground, the scene would not reflect in the mirrored sphere or refract
through the glass one, and there would be no light reflected between the
objects and their local environment.

To have the scene and the objects appear to photometrically interact, we
can model the scene in terms of its approximate geometry and reflectance
and add this model of the scene to participate in the illumination calcula-
tions along with the objects. The ideal property for this approximate scene
model to have is for it to precisely resemble the background plate image
when viewed from the recovered camera position and illuminated by the
captured illumination. We can achieve this property easily if we choose the
model’s geometry to be a rough geometric model of the scene, projectively
texture-mapped with the original background plate image. Projective tex-

284 Image Based Lighting Chapter 6

ture mapping is the image-based rendering process of assigning surface colors
as if the image were being projected onto the scene as if from a virtual slide
projector placed at the original camera position. Since we have recovered
the camera position, performing this mapping is a straightforward process in
many rendering systems. A useful property of projective texture mapping is
that when an image is projected onto geometry, a rendering of the scene will
look just like the original image when viewed from the same viewpoint as the
projection. When viewed from different viewpoints, the similarity between
the rendered viewpoint the original scene will be a function of how far the
camera has moved and the accuracy of the scene geometry. Fig. 6.20 shows
a bird’s-eye view of the background plate projected onto a horizontal poly-
gon for the ground plane and a vertical polygon representing the museum in
the distance; the positions of these two polygons were determined from the
photogrammetric modeling step in Fig. 6.19.

When a texture map is applied to a surface, the renderer can be told
to treat the texture map’s pixel values either as measures of the surface’s
radiance, or as measures of the surface’s reflectance. If we choose to map the
values on as radiance, then the surface will be treated as an emissive surface
that appears precisely the same no matter how it is illuminated or what sort
of objects are placed in its vicinity. This is in fact how we have been mapping
the light probe images onto the sky dome as the “glow” material to become
image-based lighting environments. However, for the ground beneath the
objects, this is not the behavior we want. We instead need to texture-map
the ground plane with reflectance values, which will allow the ground plane to
participate in the same illumination computation as the added objects, thus
allowing the ground plane to receive shadows and interreflect light with the
objects. In Radiance, we can do this by specifying the material as “plastic”
with no specular component and then modulating the diffuse color values of
the surface using the projective texture map.

The problem we now face is that the pixels of the background plate image
are actually measurements of radiance – the amount light reflecting from the
scene toward the camera – rather than reflectance, which is what we need
to project onto the local scene. Reflectance values represent the proportion
of incident light that a surface reflects back (also known as the material’s
albedo), and range from zero (0% of the light is reflected) to one (100% of
the light is reflected). Considered in RGB for the three color channels, these
reflectance values represent what we traditionally think of as the inherent
“color” of a surface, since they are independent of the incident illumination.
Radiance values are different in that they can range from zero to arbitrarily
high values. Thus, it is generally inaccurate to use radiance values as if they

Section 6.2. Advanced Image Based Lighting 285

Figure 6.20. The final scene, seen from above instead of from the original camera
viewpoint. The background plate is mapped onto the local scene ground plane
and a billboard for the museum behind. The light probe image is mapped onto the
remainder of the ground plane, the billboard, and the sky. The synthetic objects are
set on top of the local scene and both the local scene and the objects are illuminated
by the captured lighting environment.

were reflectance values.
As it turns out, we can convert the radiance values from the background

plate image into reflectance values using the following relationship:

radiance = irradiance× reflectance
or

reflectance = radiance / irradiance

Since the background plate image tells us the radiance for each point on
the local scene, all we need to know is the irradiance of each point as well.
As it turns out, these irradiance values can be determined using the illumi-
nation which we recorded within the environment in the following manner.
We assign the local scene surfaces a diffuse material property of known re-
flectance, for example 50% grey, or (0.5, 0.5, 0.5) in RGB. We then render
this local scene as illuminated by the image-based lighting environment to
compute the appearance of the scene under the lighting, seen in Fig. 6.21(a).

286 Image Based Lighting Chapter 6

With this rendering, we can determine the irradiance of each surface point at
irradiance = radiance / reflectance, where the reflectance is the 50% grey
color. Finally, we can compute the reflectance, or albedo map, of the local
scene as reflectance = radiance/irradiance, where the radiance values are
the pixel values from the background plate. The result of this division is
shown in Fig. 6.21(b).

(a) (b)

Figure 6.21. Solving for the albedo map of the local scene. (a) A diffuse stand-in
for the local scene is rendered as illuminated by the recovered lighting environment
to compute the irradiance at each point of the local scene. (b) Dividing the back-
ground plate image from Fig. 6.9(b) by the irradiance estimate image in (a) yields
a per-pixel map of the albedo, or diffuse reflectance, of the local scene.

In the renderings in Fig. 6.21, I kept the billboard polygon for the build-
ing mapped with the original scene radiance from the background plate,
rather than attempting to estimate its reflectance values. The main reason I
made this choice is that for the objects I would be placing in the scene, their
photometric effect on the building in the background did not seem likely to
be visually significant.

In this example, the local scene is a single polygon, and thus no point of
the local scene is visible to any other point. As a result, it really makes no
difference what reflectance value we assume for the scene when we compute
its irradiance. However, if the local scene were a more complicated, non-
convex shape, such as we would see on flight of stairs, the surfaces of the local
scene would interreflect. Thus, the reflectance value chosen for computing the
irrradiance will affect the final reflectance values solved for by the algorithm.
For this reason, it makes sense to try to choose an approximately correct
value for the assumed reflectance; 50% grey is more likely to be accurate than
100% reflective. If better accuracy in determining the local scene reflectance
is desired, then the reflectance estimation process could be iterated using

Section 6.2. Advanced Image Based Lighting 287

Figure 6.22. A final rendering of the synthetic objects placed in front of the
museum using the recovered lighting environment.

the reflectance computed by each stage of the algorithm as the assumed
reflectance in the next stage. A similar approach to the problem of estimating
local scene reflectance is described in [7]. By construction, the local scene
with its estimated reflectance properties produces precisely the appearance
found in the background plate when illuminated by the recovered lighting
environment.

At this point, it is a simple process to create the final rendering of the
objects added in to the scene. We include the synthetic objects along with
the local scene geometry and reflectance properties, and ask the renderer to
produce a rendering of the scene as illuminated by the recovered lighting
environment. This rendering for our example can be seen in Fig. 6.22,
using two bounces of indirect illumination. In this rendering, the objects are
illuminated consistently with the original scene, they cast shadows in the
appropriate direction, and their shadows are the appropriate color. The scene
reflects realistically in the shiny objects, and refracts realistically through the
translucent objects. If all of the steps were followed with for modeling the

288 Image Based Lighting Chapter 6

(a) (b)

Figure 6.23. (a) One of the ten light probe images acquired within the Basilica
(b) A basic 3D model of the interior of St. Peter’s obtained using the Façade system
from the HDR panorama in 6.24(a).

scene’s geometry, photometry, and reflectance, the synthetic objects should
look almost exactly as they would if they were really there in the scene.

6.2.3 Image-Based Lighting in Fiat Lux

The animation “Fiat Lux” shown at the SIGGRAPH 99 Electronic Theater
used image-based lighting to place synthetic monoliths and spheres into the
interior of St. Peter’s Basilica. A frame from the film is shown in Fig. 6.25.
The project required making several extensions to the image-based lighting
process for handling the fact that it takes place in an interior environment
with many concentrated light sources.

The source images for the St. Peter’s sequences in the film were acquired
on location with a Kodak DCS-520 camera. Each image was shot in High
Dynamic Range at the following exposures: 2 sec, 1/4 sec, 1/30 sec, 1/250
sec, 1/1000 sec, and 1/8000 sec. The images consisted of ten light probe
images taken using a mirrored sphere along the nave and around the altar,
and two partial panoramic image mosaics to be used as the background plate
images (one is shown in Fig. 6.24(a)).

The film not only required adding synthetic animated objects into the
Basilica, but it also required rotating and translating the virtual camera. To
accomplish this, we used the Façade system to create a basic 3D model of
the interior of the Basilica from one of the panoramic photographs, shown
in 6.23. Projecting the panoramic image onto the 3D model allowed novel
viewpoints of the scene to be rendered within several meters of the original
camera position.

Section 6.2. Advanced Image Based Lighting 289

(a) (b)

Figure 6.24. (a) One of the two HDR panoramas acquired to be a virtual back-
ground for Fiat Lux, assembled from ten HDR images shot with a 14mm lens. (b)
The modeled light sources from the St. Peter’s environment.

Projecting the HDR panoramic image onto the Basilica’s geometry caused
the illumination of the environment to emanate from the local geometry
rather than from infinitely far away as seen in other IBL examples. As a
result, the illumination from the lights in the vaulting and the daylight from
the windows comes from different directions depending on where a synthetic
object in the model is placed. For each panoramic environment, the light-
ing was derived using a combination of the illumination within each HDR
panorama as well as light probe images to fill in areas not seen in the partial
panoramas.

As in the Bilbao example, the image-based lighting environment was used
to solve for the reflectance properties of the floor of the scene so that it could
participate in the lighting computation. A difference is that the marble floor
of the Basilica is rather shiny, and significant reflections from the windows
and light sources were present within the background plate. In theory, these
shiny areas could have been computationally eliminated using the knowledge
of the lighting environment. Instead, though, we decided to remove the
specularities and recreate the texture of the floor using an image editing
program. Then, after the diffuse albedo of the floor was estimated using
the reflectometry technique from the last section, we synthetically added a
specular component to the floor surface. For artistic reasons, we recreated
the specular component as a perfectly sharp reflection with no roughness,
virtually polishing the floor of the Basilica.

To achieve more efficient renderings, we employed a technique of convert-
ing concentrated sources in the incident illumination images into computer-
generated area light sources. This technique is similar to how the sun was
represented in our earlier Bilbao museum example, although there was no

290 Image Based Lighting Chapter 6

Figure 6.25. A frame from the SIGGRAPH 99 film Fiat Lux, which combined
image-based modeling, rendering, and lighting to place animated monoliths and
spheres into a photorealistic reconstruction of St. Peter’s Basilica.

need to indirectly solve for the light source intensities since even the bright-
est light sources fell within the range of the HDR images. The technique for
modeling the light sources was semi-automatic. Working from the panoramic
image, we clicked to outline a polygon around each concentrated source of il-
lumination in the scene, including the Basilica’s windows and lighting; these
regions are indicated in Fig. 6.24(b). Then, a custom program projected the
outline of each polygon onto the model of the Basilica. The program also
calculated the average pixel radiance within each polygon, and assigned each
light source its corresponding color from the HDR image. Radiance includes
a special kind of area light source called an illum that is invisible when
directly viewed, but otherwise acts as a regular light source. Modeling the
lights as illum sources made it so that the original details in the windows
and lights were visible in the renders if though each was modeled as an area
light of a single consistent color.

Even using the modeled light sources to make the illumination calcula-
tions more efficient, Fiat Lux was a computationally intensive film to render.
The 21

2 minute animation required over seventy-two hours of computation on
one hundred dual 400MHz processor Linux computers. The full animation
can be downloaded at http://www.debevec.org/FiatLux/.

Section 6.2. Advanced Image Based Lighting 291

6.2.4 Capturing and Rendering Spatially-Varying Illumination

The techniques presented so far capture light at discrete points in space as
two-dimensional omnidirectional image datasets. In reality, light changes
throughout space, and this changing illumination can be described as the
five-dimensional plenoptic function [1]. This function is essentially a collec-
tion of light probe images (θ, φ) taken at every possible (x, y, z) point in
space. The most dramatic changes in lighting occur at shadow boundaries,
where a light source may be visible in one light probe image and occluded
in a neighboring one. More often, changes in light within space are more
gradual, consisting of changes resulting from moving closer to and further
from sources of direct and indirect illumination.

Two recent papers [19, 13] have shown that the plenoptic function can
be reduced to a four-dimensional function for free regions of space. Since
light travels in straight lines and maintains its radiance along a ray, any ray
recorded passing through a plane Π can be used to extrapolate the plenoptic
function to any other point along that ray. These papers then showed that
the appearance of a scene, recorded as a 2D array of 2D images taken from a
planar grid of points in space, could be used to synthesize views of the scene
from viewpoints both in front of and behind the plane.

A key observation in image-based lighting is that there is no fundamen-
tal difference between capturing images of a scene and capturing images of
illumination. It is illumination that is being captured in both cases, and one
needs only pay attention to having sufficient dynamic range and linear sensor
response when using cameras to capture light. It thus stands to reason that
the light field capture technique would provide a method of capturing and
reconstructing varying illumination within a volume of space.

To this end, our group has constructed two different devices for capturing
incident light fields [28]. The first, shown in Fig. 6.26(a) is a straightforward
extrapolation of the mirrored ball capture technique, consisting of a 12 ×
12 array of 1-inch mirrored spheres fixed to a board. Although the adjacent
spheres reflect each other near the horizon, the array captures images with
a nearly 160◦ unoccluded field of view. A single HDR image of the spheres
provides a four-dimensional dataset of wide field-of-view images sampled
across a planar surface. However, since each sphere occupied just a small
part of the image, the angular resolution of the device was limited, and
the 12 × 12 array of spheres provided even poorer sampling in the spatial
dimensions.

To improve the resolution, we built a second device for capturing inci-
dent light fields (ILFs) consisting of a video camera with a 185◦ fisheye lens

292 Image Based Lighting Chapter 6

(a) (b)

Figure 6.26. Two devices for capturing spatially-varying incident lighting. (a) An
array of mirrored spheres. (b) A 180◦ fisheye camera on a two-dimensional transla-
tion stage. Both devices acquire four-dimensional datasets of incident illumination.

Figure 6.27. Lighting a 3D scene with an incident light field captured at a plane
beneath the objects. Illumination rays traced from the object such as R0 are traced
back as R′

0 onto their intersection with the ILF plane. The closest light probe
images to the point of intersection are used to estimate the color and intensity of
light along the ray.

mounted to an x-y translation stage, shown in 6.26(b). While this device
could not acquire an incident light field in a single moment, it did allow
for capturing 1024 × 1024 pixel light probes at arbitrary density across the
incident light field plane Π. We used this device to capture several spatially-
varying lighting environments that included spot light sources and sharp
shadows at spatial resolutions of up to 32× 32 light probe images.

We saw earlier in this chapter in Fig. 6.6 the simple process of how
a rendering algorithm traces rays into a light probe image to compute the

Section 6.2. Advanced Image Based Lighting 293

(a) (b)

Figure 6.28. (a) A real scene, illuminated by two colored spotlights. (b) A
computer model of the scene, illuminated with the captured spatially-varying illu-
mination. The illumination was captured with the device in Fig. 6.26(b).

light incident upon a particular point on a surface. Fig. 6.27 shows the
corresponding process for rendering a scene as illuminated by an incident
light field. As before, the ILF is mapped on to a geometric shape covering
the scene, referred to as the auxiliary geometry, which can be a finite-distance
dome or a more accurate geometric model of the environment. However, the
renderer also keeps track of the original plane Π from which the ILF was
captured. When an illumination ray sent from a point on a surface hits the
auxilary geometry, the ray’s line is intersected with the plane Π to determine
the location and direction of that ray as captured by the ILF. In general,
the ray will not strike the precise center of a light probe sample, so bilinear
interpolation can be used to sample the ray’s color and intensity from the
ray’s four closest light probe samples. Rays which do not correspond to rays
observed within the field of view of the ILF can be extrapolated from the
nearest observed rays of the same direction, or assumed to be black.

Fig. 6.28(a) shows a real scene consisting of four spheres and a 3D print
of a sculpture model illuminated by spatially-varying lighting. The scene
was illuminated by two spot lights, one orange and one blue, with a card
placed in front of the blue light to create a shadow across the scene. We
photographed this scene under the lighting, and then removed the objects
and positioned the ILF capture device shown in Fig. 6.26(b) to capture the
illumination incident to the plane of the table top. We then captured this
illumination as a 30× 30 array of light probe images spaced one inch apart

294 Image Based Lighting Chapter 6

in the x and y dimensions. The video camera was electronically controlled
to capture each image at sixteen different exposures one stop apart, ranging
from 1 sec. to 1

32768 sec. To test the accuracy of the recovered lighting,
we created a virtual version of the same scene, and positioned a virtual
camera to view the scene from the same viewpoint as the original camera.
Then, we illuminated the virtual scene using the captured ILF to obtain
the virtual rendering seen in Fig. 6.28(b). The virtual rendering shows
the same spatially-varying illumination properties on the objects, including
the narrow orange spotlight and the half-shadowed blue light. Despite a
slight misalignment between the virtual and real illumination, the rendering
clearly shows the accuracy of using light captured on the plane of the table
to extrapolate to areas above the table. For example, the base of the statue,
where the ILF was captured, is in shadow from the blue light, and fully
illuminated by the orange light. Directly above, the head of the statue is
illuminated by the blue light but does not fall within orange one. This effect
is present in both the real photograph and the synthetic rendering.

6.3 Image-Based Relighting

The image-based lighting techniques we have seen so far are useful for lighting
synthetic objects, lighting synthetic environments, and rendering synthetic
objects into real-world scenes with consistent lighting. However, we have not
yet seen techniques for creating renderings of real-world objects illuminated
by captured illumination. Of particular interest would be to illuminate peo-
ple with these techniques, since most images created for film and television
involve people in some way. Certainly, if it were possible to create a very
realistic computer model of a person then this model could be illuminated
using the image-based lighting techniques already presented. However, since
creating photoreal models of people is still a difficult process, a more direct
route would be desirable.

There actually is a more direct route, and it requires nothing more than
a special set of images of the person in question. The technique is based
on the fact that light is additive, which can be explained by thinking of a
person, two light sources, and three images. Suppose that the person sits
still and is photographed lit by both light sources, one to each side. Then,
two more pictures are taken, each with only one of the lights on. If the pixel
values in the images are proportional to the light levels, then the additivity
of light dictates that the sum of the two one-light images will look the same
as the two-light image. More usefully, the color channels of the two images
can be scaled before they are added, allowing one to create an image of a

Section 6.3. Image Based Relighting 295

person illuminated with a bright orange light to one side and a dim blue
light to the other. I first learned about this property from Paul Haeberli’s
Grafica Obscura web site [15].

(a) (b)

Figure 6.29. (a) Light Stage 1, a manually operated device for lighting a person’s
face from every direction in the sphere of incident illumination directions. (b) A
long-exposure photograph of acquiring a Light Stage 1 dataset. As the light spirals
down, one or more video cameras record the different illumination directions on the
subject in approximately one minute. The recorded data is shown in Fig. 6.30.

In a complete lighting environment, the illumination comes not from just
two directions, but from a whole sphere of incident illumination. If there
were a way to light a person from a dense sampling of directions distributed
across the whole sphere of incident illumination, it should be possible to re-
combine tinted and scaled versions of these images to show how the person
would look in any lighting environment. The Light Stage device [8] shown
in Fig. 6.29 was designed to acquire precisely such a dataset. The device’s
250-Watt halogen spotlight is mounted on a two-axis rotation mechanism
such that the light can spiral from the top of the sphere to the bottom in ap-
proximately one minute. During this time, one or more digital video cameras
can record the subject’s appearance as illuminated by nearly two thousand
lighting directions distributed throughout the sphere. A subsampled light
stage dataset of a person’s face can be seen in Fig. 6.30(a).

Fig. 6.30(c) shows the Grace cathedral lighting environment remapped
to be the same resolution and in the same longitude-latitude coordinate
mapping as the light stage dataset. For each image of the face in the dataset,

296 Image Based Lighting Chapter 6

(a)

(b) (c)

(d)

Figure 6.30. (a) A dataset from the light stage, showing a face illuminated from
the full sphere of lighting directions. Ninety-six of the 2,048 images in the full
dataset are shown. (b) The Grace cathedral light probe image. (c) The light probe
sampled into the same longitude-latitude space as the light stage dataset. (d) The
images in the dataset scaled to the same color and intensity as the corresponding
directions of incident illumination. Fig. 6.31(a) shows a rendering of the face as
illuminated by the Grace cathedral environment obtained by summing these scaled
images.

Section 6.3. Image Based Relighting 297

(a) (b) (c) (d)

Figure 6.31. Renderings of the light stage dataset from Fig. 6.30 as illuminated
by four image-based lighting environments. (a) Grace Cathedral. (b) Eucalyptus
Grove. (c) Uffizi Gallery. (d) St. Peter’s Basilica.

the resampled light probe indicates the color and intensity of the light from
the environment in the corresponding direction. Thus, we can multiply the
red, green, and blue color channels of each light stage image by the amount
of red, green, and blue light in the corresponding direction in the lighting
environment to obtain the modulated dataset that appears in Fig. 6.30(d).
Fig. 6.31(a) shows the result of summing all of the scaled images in Fig.
6.30(d), producing an image of the subject as they would appear illuminated
by the light of Grace Cathedral. Results obtained for three more lighting
environments are shown in Fig. 6.31(b-d).

The process of computing the weighted sum of the face images is simple
computation, but it requires accessing hundreds of megabytes of data for each
rendering. The process can be accelerated by performing the computation
on compressed versions of the original images. In particular, if the images
are compressed using an orthonormal transform such as the Discrete Cosine
Transform, the linear combination of the images can be computed directly
from the basis coefficients of the original images as shown in [25]. The Face
Demo program written by Chris Tchou and Dan Maas (Fig. 6.32) uses DCT-
compressed versions of the face datasets to allow interactive face relighting
with either light probe images or user-controlled light sources in real time.
More recent work has used Spherical Harmonics [24, 23] and Wavelets [22]
to perform real-time image-based lighting on virtual light stage datasets of

298 Image Based Lighting Chapter 6

Figure 6.32. The Face Demo program written by Chris Tchou and Dan Maas
allows light stage datasets to be interactively re-illuminated using DCT-compressed
data. The program is available at http://www.debevec.org/FaceDemo/.

three-dimensional computer graphics models.
The face renderings in 6.31 are highly realistic and require no use of 3D

models or recovered reflectance properties. However, the image summation
technique that produced them works only for still images of the face. A
project in our group’s current work involves capturing Light Stage datasets
of people in different expressions and from different angles, and blending
between these expressions and viewpoints to create 3D animated faces. For
this project, we have built a second light stage device that uses a rotating
semicircular arm of strobe lights to capture a 500-image dataset in less than
ten seconds. We have also used the device to record the reflectance properties
of various cultural artifacts, described in [16].

Our most recent lighting apparatus, Light Stage 3, is a lighting repro-
duction system consisting of a full sphere of color LED light sources [10].
Each of the 156 light sources can be independently driven to any RGB color,
which allows an approximate reproduction of a captured lighting environ-
ment to be recreated in a laboratory or studio. Fig. 6.33 shows a subject
standing within Light Stage 3 illuminated by a reproduction of the Grace
cathedral lighting environment. Fig. 6.34 shows three subjects rendered
into three different lighting environments. In these renderings, the subject

Section 6.4. Conclusion 299

Figure 6.33. Light Stage 3. A subject is illuminated by a real-time reproduction
of the light of Grace Cathedral.

has been composited onto an image of the background environment using a
matte obtained from an infrared matting system.

6.4 Conclusion

Traditionally, real and the computer-generated worlds have been fundamen-
tally separate spaces, each subject to their own laws of physics and aesthetics.
The development of global illumination rendering techniques enabled light
in computer-generated worlds to obey the same laws of physics as light in
the real world, making it possible to render strikingly realistic images. Using
the principles of global illumination, Image-Based Lighting makes it possi-
ble for the real and computer generated worlds to interact through lighting:
real world light can be captured and used to illuminate computer-generated
objects, and light within the computer can be used to illuminate people and
objects in the real world. This chapter has shown basic examples of how to
perform image-based lighting using the freely available RADIANCE global
illumination renderer. With some experimentation and your own camera and
mirrored ball, you should be able to adapt these examples to your own mod-
els and applications. For more information on image-based lighting, please
look for the latest developments at http://www.debevec.org/IBL/. Happy
lighting!

300 Image Based Lighting Chapter 6

(a) (b) (c)

(d) (e) (f)

Figure 6.34. Light Stage 3 Composite Images (a-c) show live-action sub-
jects composited into three different environments using Light Stage 3 to reproduce
the environment’s illumination on the subject. (d-f) show the corresponding light-
ing environments used in the composites. The subjects were composited over the
backgrounds using an infrared compositing system [10].

Bibliography 301

Acknowledgements

The work described in this chapter represents the work of many individuals.
Greg Ward wrote the RADIANCE rendering system and provided advice for
using it optimally in an image-based lighting context. Marcos Fajardo wrote
the Arnold renderer and provided helpful HDR and IBL support. Christine
Waggoner and Son Chang helped carry out early light source identification
identification experiments. Andreas Wenger wrote the Canon RAW to HDR
converter and Chris Tchou wrote the HDR Shop image editing program
used to process the Bilbao images. Maya Martinez helped compose the
Bilbao scene. Teddy Kim provided light probe assistance in Bilbao. Tim
Hawkins helped acquire the HDR images used in Fiat Lux and helped lead the
Fiat Lux team including Westley Sarokin, H.P. Duiker, Tal Garfinkel, Jenny
Huang, and Christine Cheng. The work presented here owes its support to
the National Science Foundation, the California MICRO program, Interval
Research Corporation, the Digital Media Innovation Program, Interactive
Pictures Corporation, U.S. Army contract #DAAD19-99-D-0046, TOPPAN
Printing Co. Ltd., and the University of Southern California Office of the
Provost.

Editors’ note: The color version of the figures in this chapter can be found
in the accompanying DVD.

Bibliography

[1] E. H. Adelson and J. R. Bergen. Computational Models of Visual Processing,
chapter 1. MIT Press, Cambridge, Mass., 1991. The Plenoptic Function and
the Elements of Early Vision.

[2] S. Agarwal, R. Ramamoorthi, S. Belongie, and H. W. Jensen. Structured
importance sampling of environment maps. ACM Transactions on Graphics,
22(3):605–612, July 2003.

[3] J. F. Blinn. Texture and reflection in computer generated images. Communi-
cations of the ACM, 19(10):542–547, October 1976.

[4] S. E. Chen. Quicktime vr - an image-based approach to virtual environment
navigation. In Proceedings of SIGGRAPH 95, Computer Graphics Proceedings,
Annual Conference Series, pages 29–38, Aug. 1995.

[5] J. Cohen and P. Debevec. The LightGen HDRShop Plugin. Available at
www.debevec.org/HDRShop/, 2001.

[6] M. F. Cohen and J. R. Wallace. Radiosity and Realistic Image Synthesis, chap-
ter 2, page 32. Academic Press, 1993.

[7] P. Debevec. Rendering synthetic objects into real scenes: Bridging traditional
and image-based graphics with global illumination and high dynamic range
photography. In SIGGRAPH 98, July 1998.

302 Image Based Lighting Chapter 6

[8] P. Debevec, T. Hawkins, C. Tchou, H.-P. Duiker, W. Sarokin, and M. Sagar.
Acquiring the reflectance field of a human face. Proceedings of SIGGRAPH
2000, pages 145–156, July 2000.

[9] P. Debevec and D. Lemmon. Image based lighting. In SIGGRAPH 2001 Notes
for Course 14, August 2001.

[10] P. Debevec, A. Wenger, C. Tchou, A. Gardner, J. Waese, and T. Hawkins. A
lighting reproduction approach to live-action compositing. ACM Transactions
on Graphics, 21(3):547–556, July 2002.

[11] P. E. Debevec and J. Malik. Recovering high dynamic range radiance maps
from photographs. In SIGGRAPH 97, pages 369–378, August 1997.

[12] P. E. Debevec, C. J. Taylor, and J. Malik. Modeling and rendering architec-
ture from photographs: A hybrid geometry- and image-based approach. In
SIGGRAPH 96, pages 11–20, August 1996.

[13] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen. The Lumigraph. In
SIGGRAPH 96, pages 43–54, 1996.

[14] N. Greene. Environment mapping and other application of world projections.
IEEE Computer Graphics and Applications, 6(11):21–29, November 1986.

[15] P. Haeberli. Synthetic lighting for photography. Available at
http://www.sgi.com/grafica/synth/index.html, January 1992.

[16] T. Hawkins, J. Cohen, and P. Debevec. A photometric approach to digitizing
cultural artifacts. In Proc. 2nd International Symposium on Virtual Reality,
Archaeology, and Cultural Heritage (VAST 2001), pages 333–342, December
2001.

[17] T. Kollig and A. Keller. Efficient illumination by high dynamic range images.
In Eurographics Symposium on Rendering: 14th Eurographics Workshop on
Rendering, pages 45–51, June 2003.

[18] G. W. Larson. Overcoming gamut and dynamic range limitations in digital
images. In Proceedings of the Sixth Color Imaging Conference, November 1998.

[19] M. Levoy and P. Hanrahan. Light field rendering. In SIGGRAPH 96, pages
31–42, 1996.

[20] G. S. Miller and C. R. Hoffman. Illumination and reflection maps: Simulated
objects in simulated and real environments. In SIGGRAPH 84 Course Notes
for Advanced Computer Graphics Animation, July 1984.

[21] T. Mitsunaga and S. K. Nayar. Radiometric self calibration. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition, Fort Collins, June 1999.

[22] R. Ng, R. Ramamoorthi, and P. Hanrahan. All-frequency shadows using
non-linear wavelet lighting approximation. ACM Transactions on Graphics,
22(3):376–381, July 2003.

[23] R. Ramamoorthi and P. Hanrahan. Frequency space environment map render-
ing. ACM Transactions on Graphics, 21(3):517–526, July 2002.

[24] P.-P. Sloan, J. Kautz, and J. Snyder. Precomputed radiance transfer for real-
time rendering in dynamic, low-frequency lighting environments. ACM Trans-
actions on Graphics, 21(3):527–536, July 2002.

[25] B. Smith and L. Rowe. Compressed domain processing of JPEG-encoded im-
ages. Real-Time Imaging, 2(2):3–17, 1996.

Bibliography 303

[26] R. Szeliski and H.-Y. Shum. Creating full view panoramic mosaics and environ-
ment maps. In Proceedings of SIGGRAPH 97, Computer Graphics Proceedings,
Annual Conference Series, pages 251–258, Aug. 1997.

[27] C. Tchou and P. Debevec. HDR Shop. Available at
http://www.debevec.org/HDRShop, 2001.

[28] J. Unger, A. Wenger, T. Hawkins, A. Gardner, and P. Debevec. Capturing and
rendering with incident light fields. In Eurographics Symposium on Rendering:
14th Eurographics Workshop on Rendering, June 2003.

[29] G. Ward. Real pixels. Graphics Gems II, pages 80–83, 1991.

Chapter 7

COMPUTER VISION IN
VISUAL EFFECTS

Doug Roble

7.1 Introduction

Computer vision has changed the way movies are made. Sure, computer
graphics gets all the press, but computer vision techniques have made sig-
nificant impact on the way films with visual effects are envisioned, planned,
and executed. This chapter will examine the state of the practice of com-
puter vision techniques in visual effects. We will also examine the changes
computer vision has brought to the industry, the new capabilities directors
and visual effects creators have available and what is desired in the future.

Let us examine the concept of visual effects in terms of computer vision.
The main task of visual effects is to manipulate or add things to an im-
age. Artists are very skilled, but the more information they have about the
original image or the more tools the computer presents to them, the more
effective they can be.

Computer vision has made a huge impact in the field of visual effects
over the last decade. In the early 1990s we saw the shift away from using
physical models and photographic techniques to create and add fantastic
things to an image. It has became commonplace to scan each frame of
film into the computer and composite computer generated elements with the
filmed background image. Digitizing the filmed image is so common now
that whole films are digitized, manipulated in the digital realm and filmed
out to a negative for printing. (“Oh Brother, Where Art Thou?” is a good
example of this. The color of each frame of the film was digitally adjusted

305

306 Computer Vision in Visual Effects Chapter 7

to give the film its “look”.) And, of course, digital cameras are starting to
make in-roads into Hollywood. “Star Wars, Attack of the Clones” was shot
completely with a digital camera.

Once a sequence of frames is digitized, it becomes possible to apply stan-
dard computer vision algorithms to the digitized sequence in order to extract
as much information as possible from the image. Structure from motion, fea-
ture tracking, and optical flow are just some of the techniques that we will
examine in relation to film making.

7.2 Computer Vision Problems Unique to Film

7.2.1 Welcome to the Set

A film set is a unique work environment. It is a place of high creativity,
incredible tension, sometimes numbing boredom. The set is a place of conflict
in the creation of art. The producers and their staff are responsible for
keeping the show on budget and on time and they fear and respect the set,
for filming on a set is very expensive indeed. The director and crew are
trying to get the best possible images and performances on film. These two
forces are at odds with each other on the set and often the computer vision
people are caught in the middle!

The set is where it all begins for the digital artists responsible for what
we call “data integration”. Data integration is acquiring, analyzing, and
managing all the data recorded from the set. It is common for a visual effects
facility to send a team of one or more people to the set with the standard
crew. Before, during, and after filming, the data integration crew pop in and
out of the set, recording everything they can about the makeup of the set.
This is where the trouble starts: the producers are not crazy about the data
integration crew, they are an added expense for a not so obvious result. The
directors can get irritated with the data integration team because it is just
one more disturbance on the set, slowing them down from getting one more
take before the light fades or the producers start glaring again.

At least that is the way it was in the beginning. Movie makers are getting
much more savvy and accustomed to the power that computer vision provides
them in the film making process. While a director might be slightly annoyed
that a vision person is slowing the process slightly, he or she is infinitely
more annoyed when the visual effects supervisor tells him how to film a
scene because of the inability of the effects people to deal with a kind of
camera move.

Watch some movies from the 1980s. Special effects were booming and

Section 7.2. Computer Vision Problems Unique to Film 307

there were elaborate, effects-laden movies in that decade. But effects shots
always telegraphed themselves to the audience because the camera stopped
moving! If a stop motion creature effect or some elaborate set extension was
planned, the director could either lock the camera down or move it in very
limited ways (a rotation about the lens’ nodal axis or a simple zoom could
usually be handled, but nothing more). Now directors can film however they
want. The camera can be on giant crane, a plane, a Steadicam, or even
a hand held shot. If there is not enough information in the scene for the
computer vision algorithms to work, we drop objects in the scene and paint
them out later! (A couple of problem scenes for the ambitious researcher out
there: a camera mounted in a plane flying over the ocean on a clear day -
computing the camera location each frame is tricky, all your reference points
are moving! And yet, if the camera track is not correct, inserting a boat
on the surface of the ocean will look wrong. Or a camera carried by a skier
filming on a smooth glacier - this is where adding objects make the problem
go away, but without them, there is no hope!)

For a major production with many effects shots a team of 2 to 3 people
are sent to the set to record information. They typically stay with the film
crew throughout the production, traveling to outdoors locations and working
on the indoors sets that have been constructed. This data integration crew
records everything they can to make the digital artists’ lives easier. Here is
a list of things that the crew tries to capture:

– Environment Maps: Environment maps are spherical (or semi-spherical)
photographs of the set, generally taken from near center of the set or
near where the digital object is going to be inserted into the set. Dig-
ital artists began running into the center of a sets with a chrome ball
in the late 80s and early 90s. The quickest, cheapest way to acquire
an environment map is to go to your garden supply center, buy a dec-
orative chrome ball and mount it on a tripod. Then, when the chance
presents itself, run into the center of the set, and snap two quick pho-
tographs of the chrome ball from both sides. It is relatively easy to
map the pixels of the image to the area on the ball and from that, it
is possible to project the images onto a spherical environment map.

This environment map is then used in the renderer to render the digital
objects as if they are in the environment of the set. Shiny objects
reflect portions of the set and even diffuse objects change their color
depending on the incident light from the environment maps.

This ability to light digital objects with the light that existed on the set
has caused a flurry of development over the last decade. Paul Debevec

308 Computer Vision in Visual Effects Chapter 7

was a pioneer in the use of High Dynamic Range imagery, used in
conjunction with environment maps, showing just how powerful the
combination can be.

A snapshot of a chrome ball is only so useful. It creates a picture of a
360 degree environment, but since film (be it digital or photochemical)
has a limited dynamic range, much of the information in the image
is inaccurate. All photographers have experienced this to one extent.
Setting the exposure controls to capture detail in the dark areas of
a scene mean that the bright areas will be over exposed and clipped.
Alternately, setting the exposure for accurately capturing the bright
areas of the scene mean that the dark areas will have no information
in them.

The concept behind high dynamic range photography is simple; take
multiple images of a scene each with a different exposure. Then, com-
bine the images into one image by using only the non-clipped pixels
of the images and an appropriate mapping function. The results are
amazing. Instead of an image with 8 bit pixels and values that go from
0 to 256, high dynamic range images store floating point numbers that
go from zero to a very large number indeed. It is even possible (and
sometimes very useful) to have negative color values!

There are many advantages to high dynamic range images, but in the
context of environment maps, the main advantage is that they are an
accurate way of capturing the light energy of the environment, not just
a simple snapshot. These environment maps can be used as elaborate
lights in a rendering package and can be used to create stunningly
convincing images. A good introduction to these concepts can be found
in [11] and [3].

– Camera and Object Motion: Computing camera location and mo-
tion is where computer vision first made in-roads into the film industry.
Directors acknowledged, but did not like, the constraint that the cam-
era had to stop moving or move in a very specific way if an effect was
going to work.

The first method used to record camera motion did not rely on visual
effects at all. Encoding devices were attached to the moving parts
of a crane or a dolly. The measurements from the encoding devices
were sent to a computer and, combined with an exact knowledge of
the rig’s geometry, the location and orientation of the camera could be
determined.

Section 7.2. Computer Vision Problems Unique to Film 309

Figure 7.1. Chrome and diffuse balls used to capture environment maps.

These measurements could be then sent to a motion control camera rig
and the motion of the camera could be replicated. A motion control
camera rig is basically a large robotic camera mover. Very precisely
manufactured and with very accurate stepper motors, the best motion
control rigs could move the camera starting at one end of a long set,
perform a complicated move across the set, and return to the starting
point and only be mere millimeters off from the original location.

Of course, the encoding process is rife with errors. It is well-nigh impos-
sible to accurately encode the motion of the camera. The measurement
and modeling of the rig is difficult to do exactly, it is impossible to en-
code any flex or looseness in the rig and finally, it is not possible to
encode the inner workings of the camera. Given these problems, it is
rare that a camera move is encoded on one camera system and repli-
cated on another. More often both the original camera move and the
replication of the move was done on the same rig. This minimized the
errors of the system and often worked well.

But, there is still a problem. Most motion control rigs are big, heavy

310 Computer Vision in Visual Effects Chapter 7

machines. They have to be, given the weight of the camera they are
carrying and the need for stiffness in the rig. So they could never move
very quickly. Certainly not as quickly as a hand held camera or using
a dolly or a crane.

Given all these limitations, motion control rigs were only used for shots
with models or very limited shots with actors.

Recently, “real-time” motion control rigs have been used on sets. The
Bulldog Motion Control Camera rig from ImageG received a Technical
Academy Award in 2001. It is extremely fast and can be used to
reproduce very fast camera moves.

What does this all have to do with computer vision? Quite a bit,
actually. Motion control rigs are still used in visual effects because it
is often much more cost effective to build a detailed model of a ship or
location rather than constructing it all as a digital set. Industrial Light
and Magic built a large model of a pirate ship and sailed it in a pond
behind their facility for a large number of shots in the film “Pirates of
the Caribbean (2003)”. It was just more cost effective.

There are two problems associated with motion control rigs and com-
puter vision. The first problem is relatively easy. If a model is filmed
with motion control, the images are often enhanced with digital effects.
Unfortunately, even though the camera path is known from the motion
control move, it cannot be trusted. The path is very repeatable, but
it is not sub-pixel accurate in the digital realm - the internal camera
motion and flex of the devices is not recorded. However, the camera
pose estimation is a very easy subset of the general problem. Once
features in the image are identified, the motion of the features is easy
to predict because of the known motion of the camera. In fact, while
the overall path of the camera may have errors, the incremental motion
from one frame to the next is quite accurate. So the camera motion is
used to predict the feature motion and a quick template match in the
local area is performed to find the features to sub-pixel accuracy. Stan-
dard structure from motion techniques are used to refine the motion.
Convergence is very fast since the starting path is quite good.

The second problem with motion control cameras is quite difficult and,
to some extent, impossible to solve. Often it is required to replicate the
motion of a handheld camera with the motion control rig. Often a di-
rector will film the actors with a “wild” camera in front of a bluescreen.
Then, at a later date, the camera move is reproduced on a motion con-

Section 7.2. Computer Vision Problems Unique to Film 311

trol rig filming an elaborate model. The actors are composited with
the filmed model for the final shot. Tracking the camera on the stage
is not terribly difficult. The data integration team will place markers
or known geometry on the blue screen and pose estimation techniques
can be used to recover the camera path. The problem comes when
transferring the camera motion to the motion control rig.

Motion control rigs do not stop before a frame of film is shot. It is
a common misconception, but they do not move, stop, shoot, move,
stop... Rather, they shoot the sequence of frames in one continuous
motion. There are many advantages to this but the two overriding
benefits are speed of shooting and motion blur. Stopping before each
frame slows down the motion control rig terribly and stage time is
expensive. If the camera is moving while the shutter is open, one
gets motion blur for free. Model shots look very unconvincing without
motion blur.

This continuous motion of the rig leads to the problem. Because of the
size of the motion control rig, there are physical limits to the torque of
the stepper motors and how fast they can move the rig. Therefore, at
the speed that is needed for the shot, the camera may not be able to
exactly reproduce the desired motion. When the foreground and back-
ground are merged they will not line up and high frequency motions
of the camera move will not be preserved in the background plate.

This problem is difficult to fix. If the problem is extreme enough,
the motion control camera motion is tracked (using methods described
above) and compared with the original camera motion. 3D points
in the scene are the then projected onto the image plane of the real
camera and the motion control rig. The discrepancy of these points
is then used to build a general warping field that is applied to the
background images. Naturally, this is a 2D fix to what is a 3D problem
and it is unable to correct all the problems, but it usually suffices. Of
course, a generalized warp will filter the image and effectively reduce
the resolution of the background image so the images are typically
digitized at a higher resolution.

– Set and Object Geometry: The data integration team is responsi-
ble for capturing geometric information about the set. This can range
from some simple measurements of the height of a locked off camera
or where a light is in relation to the camera to full three dimensional
reconstruction of the set with textures and BRDF analysis of the sur-

312 Computer Vision in Visual Effects Chapter 7

Figure 7.2. Typical gear in a data integration tracking kit.

faces.

Most data integration teams have assembled a “tracking kit” that is
brought to the set and (hopefully) has all the devices needed to capture
the required information. The following items are included in most kits:

– Tape measures: Tape measures are still the fastest way to get at
least some measurements from the set. Often a data integration
team member will dash into the set and measure the distance
between two notable landmarks. This data will be used to give a
scale to the geometry reconstructed using photogrammetry.

– Tripods: A good tripod is essential for the work the data inte-
gration team does. Being able to lock down a camera and have it

Section 7.2. Computer Vision Problems Unique to Film 313

stay locked down is very important for high dynamic range image
recording.

– Chrome and diffuse spheres: As discussed earlier, the data
integration team is responsible for capturing environment data in
the scene. These spheres are mounted on a tripod and set in the
center of the scene and photographed from various points of view.
These images will be stitched together for a complete environment
map.

– Camera calibration charts: High quality checkerboard grids
are taken on the set to determine the intrinsic parameters of the
cameras being used. These charts are typically mounted on a rigid
metal plate to insure accuracy. Sometimes, because of the lens
being used or the situation, a larger calibration chart is needed.
In this case, the grid is printed on large format plasticized paper.
This large grid - typically 2 or 3 meters on a side - is attached to
a flat wall.

– Tracking geometry: Visual effects companies typically have a
machine shop to build necessary items for model shoots. The ma-
chine shop is also used to build highly accurate reference geometry
for computer vision applications.
Metal cubes, from a couple of centimeters to as large as a meter
on a side are placed in a set to provide some known geometry.
This helps provide scale for photogrammetry and also are a way
of measuring and controlling error.
These reference devices are not left in the set during actual film-
ing, but are often filmed by the main camera and removed before
main filming.

– Brightly colored tape and ping pong balls: A huge problem,
from a computer vision perspective, of shooting on a blue screen
set is that there is nothing to track! The background is a uni-
form blue and the foreground is typically moving people. Quite
challenging for camera tracking!
Hence the need for tracking objects. Pieces of tape or colored
ping-pong balls are taped to the bluescreen background. These
provide handy reference points for the tracking algorithms but do
not cause too many problems for the matte extraction algorithms.
As an aside, bluescreen shots can be quite challenging for a good
camera track. While being able to place reference markers may

314 Computer Vision in Visual Effects Chapter 7

Figure 7.3. Large, rigid geometry used for photogrammetry and camera calibra-
tion.

seem ideal, there is a delicate balance between placing enough
reference points and too many for an easy matte extraction. (The
reason that the crew was filming in front of a blue screen was to
make it easy!) But often more of a problem is that the blue screen
is usually quite a distance away from the actors and is typically
a flat screen. Computing the pose of a camera with points that
are all co-planar can be difficult some times and the fact that the
reference points are far away from a camera that probably does
not move all that much makes accuracy even more challenging.
Finally, the actors are always a factor. Depending on the number
of actors, all the tracking markers may be obscured.
What happens in the worst case: the camera is moving but the
actors have obscured all the reference points? We rely on the
data integration artist to solve the problem by hand. Camera
positions can be interpolated from known points, but in worst
case sections, there is no alternative to solving it using the artist’s
skill at knowing “what looks good”.

– A total station survey device: Back in the early 1990s, when
computer vision techniques were starting to make an impact on
filming and the set, it was quite common to hire survey crew

Section 7.2. Computer Vision Problems Unique to Film 315

to create a survey of reference points on the set. These points
were used in a camera pose estimation algorithm to compute the
location of a moving camera for each frame of film.

As computer vision techniques became commonplace, visual ef-
fects studios purchased their own survey devices and trained peo-
ple in their use. Now, almost every studio owns a “total station”.
“Total station” is the generic name for the survey devices used
by burly government workers... often seen blocking traffic. A to-
tal station is a tripod mounted, highly accurate, laser distance
and angle measure. A total station has an accurate telescoping
sight and a laser pointer. Once the station is set up, the survey
person simply sights or points the laser at a spot in the terrain
and presses a button. The distance to the spot is measured using
phase measurement. The angle and distance provide the 3D lo-
cation of the point. Key points in the set can be digitized quite
quickly.

The problem with total stations is that they are time consuming
to set up. And if one moves the station, there is a realignment
process to compute the location of the total station in relation
to the first setup point. Also, the only points that are digitized
are the points that are selected during the session. If the data
integration artist needs to compute a point that the person on the
total station did not compute, different photogrammetry based
techniques need to be used.

The huge advantage of a total station is that a high accurate ref-
erence geometry of key points in the set is built. This can be
enormously helpful for camera or object tracking later. Relying
solely on structure from motion techniques to compute the loca-
tion of the camera is unwise - those techniques are notoriously bad
if the camera focal length changes during the shot. This will cer-
tainly happen during a zoom and often happens during a simple
change of focus. With reference geometry the camera’s intrinsic
parameters can be calculated from frame to frame. This gives the
director the ultimate freedom on a set.

– Digital cameras with different kinds of lenses including
a fisheye: Of course, the data integration team carries a digi-
tal camera on the set. This is used to record the layout of the
set, reconstruct the geometry of the set and build environment
maps. The cameras are usually high resolution and have cali-

316 Computer Vision in Visual Effects Chapter 7

brated lenses.
Data integration teams usually carry a high quality fisheye lens to
make environment maps, but there are issues with these lenses.
As mentioned in a previous section, fisheye lenses can be used
to quickly build a 360 degree panorama of the set. But they
also typically have poor optic qualities, in particular large bloom
around bright light sources or reflections. These can be difficult
to deal with when assembling the HDR images - they are typically
painted out by hand!
To deal with this problem, there are special purpose 2D slit cam-
eras mounted on a motorized tripod head. These cameras will
slowly spin around, grabbing a slice of the environment at a time,
usually changing the exposure as they go. They do not exhibit the
bloom problem that fish-eye lenses do, but they are much slower
and much more expensive.

– Video camera (progressive scan): A video camera is also
brought to some set or location shoots. One or more can be
used to augment what the main film (or digital video) camera is
shooting. We have built stereo rigs that mount a video camera
a fixed distance away from the main film rig, so that a stereo
correspondence can be built on every frame. This is useful for
closeup shots of actors where the moving geometry of the face
needs to be digitized.
Of course, all the problems associated with stereo are present in
this setup, including changing light sources, non-ideal subjects
and changing lens parameters.

– LIDAR (LIght Detection And Ranging): Since the late
1990s, another option for building set geometry has been LIDAR.
A LIDAR unit looks similar to a total station and accomplishes
the same kind of task, just at a much finer detail and automat-
ically. A LIDAR device is a time-of-flight laser mounted on a
mechanical base that rotates the laser up and down and left and
right. In a certain amount of time, a swath of the set can be
scanned to high accuracy and great detail.
LIDAR produces a cloud of 3D points that represent the surfaces
that the unit can see from a certain position. By moving the de-
vice and scanning from different positions, the multiple clouds of
points can be aligned and joined to provide a remarkably complete
point based representation of the set. The range of a professional

Section 7.2. Computer Vision Problems Unique to Film 317

LIDAR device is around 100 to 200 meters, so it is effective both
inside and outside.
The density of points that LIDAR produces is both a strength
and a weakness. Just a couple of scans can produces hundreds of
thousands of points which, though amazing to look at, are useless
to a digital artist who is trying to recreate a set digitally. Some
sort of surface representation is much more useful to the artist.
Computing the appropriate surface from a cloud of points is an
ongoing research project. There have been some successful tech-
niques based on the use of radial basis functions. And recently,
point based representations of geometry have started to make an
impact on this problem [8, 9].

– Textures and beyond: Finally, the data integration team is respon-
sible for recording the textures of the set. It is becoming quite pop-
ular to create completely digital representations of sets or locations.
The director David Fincher has been a strong proponent of using pho-
togrammetry techniques to completely recreate a set inside the com-
puter. The visual effects company Buf Films recreated the interior of
an entire house for him for the film “Panic Room”. But getting the
geometry to mimic the real world is only part of the battle. A consid-
erable amount of the “reality” of the real world is how light reflects off
an object.

It is the data integration team’s job to help the modelers who are
building the digital set in any way they can. The most important
thing to record is the diffuse textures of an object. Lighting the set
with diffuse lights or using cross polarizing filters on the light and
the camera lens, results in images with very little specular highlights.
(Having a specular highlight baked into a texture is a bit of a pain.
Part of the modeling process is cleaning up textures and painting out
specular highlights. There are typically quite a few people working on
this.)

Of course, as anyone who has played a video game can attest, textures
are only one step on the way to reality. Next, shaders are written that
use the textures and add things like bump mapping or displacement
maps to give the surface of an object a feeling of reality. This is where
the data integration team comes into play again. By photographing
images of an object from different calibrated vantage points, the ge-
ometry of the object can be constructed and the diffuse texture taken

318 Computer Vision in Visual Effects Chapter 7

from one point of view can be compared with the diffuse texture from
another point of view. Any disparity in the texture must be due to
some displacement of the surface not modeled by the underlying ge-
ometry [4]. It becomes a simple stereo problem again. The disparity
map produced by template matching along the epipolar lines intersect-
ing the polygons of the surface can be used as a bump or displacement
map in a shader. This helps the artists achieve a higher sense of reality.

Beyond displacement maps, changing the lighting model of the surface
helps improve the reality of the digital model. Light rarely reflects off
a surface in a purely diffuse model. Rather it scatters according to
a BRDF (Bi-Directional Radiance Distribution Function). This can
be measured in the lab using a goniospectrometer and a couple of big
visual effects houses have purchased one of these devices. It consists
of a moving camera that accurately measures the scattered light in
a hemispherical area, producing an accurate distribution function for
lighting models. Recently there has been some exciting work on mea-
suring approximate BRDF models without one of these cumbersome
devices. It is now possible to measure a BRDF with a video camera an
a flashlight moving in an approximate hemispherical arc [7]. Of course
the results of these kinds of measurements are quite crude, but they
can be put to use by shader writers to make a surface look even better.

Finally, many objects do not simply reflect light using a diffuse and
specular lighting model but rather allow the light to penetrate into the
object where is scatters and bounces around before emerging again.
This phenomena resulted in a modification to the BRDF model to
produce the BSSRDF model where subsurface scattering is taken into
account. Marble exhibits this behavior, but even more notably, human
skin is very translucent. Shine a laser pointer through your hand to
see exactly how translucent it is. The data integration team will often
do just that. By shining a light into an object, photographing the glow
produced by the subsurface scatter, a reasonable model of the scatter
term can be built.

Obviously, the data integration team needs to be equipped to capture all
aspects of geometry and light on the set. It is a fun job, the set is an exciting
place to be and there is a certain thrill with working alongside celebrities.
But that thrill quickly fades as the reality of a high pressure job with long
hours and often a long schedule sets in. Once the film is exposed and the
sets are struck, the team comes back to the office and the processing of the
images and data can begin in earnest.

Section 7.3. Feature Tracking 319

7.3 Feature Tracking

Digital artists use one computer vision technique more often than all others:
pattern tracking or template matching. Digital artists who specialize in 2D
effects (rotoscoping, wire removal, compositing) use pattern tracking nearly
constantly. Being able to accurately follow a feature in an image is vital for
quick, accurate effects.

As an example of how this is used, consider the film “Interview with
the Vampire”, released in 1994. In that film, the vampire Lestat, played
by Tom Cruise, is cut with scissors by another vampire. These cuts are on
both cheeks. The director wanted the cuts to appear on the cheeks, bleed
slightly, then fade as the vampire’s healing power took hold. All within one
continuous shot.

Of course, one really cannot cut Tom Cruise’s cheek, and even if it was
possible with makeup, getting it to heal convincingly on camera would be
very difficult. Luckily, this kind of effect is fairly commonplace, even back
in the early 1990s. Digital artists modeled two pieces of “cut” geometry and
animated it with standard modeling tools. These elements were rendered
out as images assuming no motion of Tom’s head. They simply animated
the cuts using the first frame of the sequence as a guide.

The challenge then was to track the cut elements to Tom’s moving head
throughout the shot. This is where computer vision techniques come in to
play. At that time, the major digital image manipulation and compositing
packages all had some method of pattern tracking. They are usually based
on the minimization of the cross-correlation of the original image area in a
search image area. J. P. Lewis wrote a seminal paper on template matching
that many visual effects companies still use today [6].

In the case of “Interview with the Vampire,” two spots on Tom’s right
cheek were pattern tracked, the resulting positions were used to scale and
rotate the original images of the rendered cut to track along with the motion
of the cheek. Because Tom did not move his head much, the artists were
able to get away with only using a 2 point technique. If the movement of
the cheek was more complicated, the artists could use four points an a much
more complicated warp of the image to track it exactly. (Of course, there are
times where even a complicated deformation of a 2D image will not hold up,
in that case we need to do a more complicated 3D track of the camera and
object move so that the effect can be rendered in the right position. This
will be discussed later.)

Pattern tracking has become such an integral part of a digital artist’s
toolbox that it is used all the time without audiences even noticing. In

320 Computer Vision in Visual Effects Chapter 7

Figure 7.4. Brad Pitt’s makeup was toned down using feature tracking in Inter-
view with the Vampire

the same film, Brad Pitt’s vampire makeup was too noticeable on screen.
The director asked if it was possible to tone the makeup down. Feature
tracking solved the problem again. The digital artist created a 2D digital
makeup element - basically some pancake makeup and this was tracked to
the offending vampire veins. A quick composite later and the veins had been
masked to a certain extent.

The effect was quite successful, but it was not exactly easy. Pattern
tracking in a film environment faces many challenges. First, it must be
robust in the presence of noise. All vision techniques need to deal with noise
and pattern tracking is no exception. A recurring theme in this chapter will
be the audience’s ability to notice even the smallest error when it is magnified
on the big screen. Some films are even being transfered to large format film
and projected on an Imax screen - sure to expose any flaws in the graphics
or vision!

In dealing with noise, there are a couple of techniques that work with
pattern tracking. One is relatively simple: the median filter. A small me-
dian filter does a nice job removing the worst noise without destroying the
underlying geometry of the image. More elaborate, the noise in the image
can be characterized by analyzing a sequence of images over a still subject.
By applying an adaptive low pass filter over the image that follows the char-
acteristics of the individual camera, the noise can be knocked down quite a
bit.

Extreme lighting changes still stymie most pattern tracking algorithms.

Section 7.4. Optical Flow 321

A high degree of specular reflection blows out most underlying information
in the image and is quite difficult to deal with in a pattern track. Flashes of
lightning or other extreme lighting changes also produce bloom on the image
that will change the geometry of the pattern being tracked. At this point
there is no recourse but to track the offending frames by hand.

7.4 Optical Flow

Recently, over the last 5 years, optical flow techniques have really started to
make a big impact on the film industry. In fact there are a couple of com-
panies that do fairly well selling software based on optical flow techniques.

Optical flow is the 2D motion of the features in an image sequence, from
one frame to the next [1, 10]. Consider a pattern track centered on every
pixel. After an optical flow analysis of an image sequence, a secondary
frame is generated for every original image in the sequence. This new image
does not contain colors, but rather a 2D vector for each pixel. This vector
represents the motion of the feature seen through the pixel from one frame
to the next.

In an ideal case, if one were to take the pixels of the image n and move
them all along their individual motion vectors, an exact replica of image n+1
will be created. The pixels in image n have been pushed around to make
image n+1.

Of course, things never work out that perfectly, but it is possible to
see the power of such information. The first application of optical flow
follows naturally: change the timing of a sequence of images. If the director
shot a sequence using a standard film camera at normal speed, 24 frames
are exposed per second. It happens occasionally that the director wants to
change the speed of the film, either slow it down or speed it up. Optical flow
helps in either case.

Slowing down a image sequence is relatively easy. If the director wanted
to see the shot as if it was filmed at 48 frames per second, one simply dupli-
cates each frame of film. This was what was done before the advent of digital
image manipulation. A single film negative was printed onto two frames of
print film. Playing the resulting film back resulted in slow motion. However,
it also looked a little jerky. The film pauses for 2 24ths of a second and it is a
noticeable effect. The solution was to generate in-between frames that were
blends of image n and image n+1. Again, this was done during the printing
process: the in-between frames are generated by exposing the print film with
the n and n+1 negative frames for only half the exposure time each. This
created an in-between frame that looked different than the original frames,

322 Computer Vision in Visual Effects Chapter 7

but also looked pretty bad. It was a double exposure of two different images
and exhibits quite a bit of strobing and streaking.

Optical flow comes to the rescue. In the explanation above, it was shown
that by moving the pixels along the optical flow motion vectors, a new image
can be generated. By scaling the motion vectors by half, the new image is
exactly between the two original images. This new image typically looks
quite a bit better than a blend of the neighboring images, it does not exhibit
any of the blurred or double exposed edges. It also has the advantage in that
it can be used to slow the original sequence down by any factor. New images
can be generated by scaling the motion vectors by any value from 0.0 to 1.0.

But pause a moment. It was stated earlier that if the pixels are pushed
along their motion vectors, the image at n+1 can be created from the pixels
that make up image n. Unfortunately, it is not that easy. The motion vectors
typically go in all directions and sometimes neighboring motion vectors di-
verge or converge. There is no guarantee that the pixels in image n+1 will be
all filled by simply following the motion of the pixels. Instead, the operation
of creating the in-between image is a “pixel pull” operation. For each pixel
in image n+1, a search is done to find the motion vector that will land in the
center of the pixel. This motion vector will probably be the motion vector
located at a sub-pixel location that is the result of an interpolation between
the 4 neighboring pixels. A search is made in the local neighborhood of the
destination pixel to find a likely starting pixel location in image n. Then a
gradient descent is used to compute the exact sub-pixel location, that when
added to the interpolated motion vector lands on the center of the desired
pixel.

But there is more! Interpolating the color of the subpixel will lead to
sampling and aliasing artifacts. In fact if the motion vectors converge - the
colors of a group of pixels all end up at one pixel in image n+1 - the original
pixels should be filtered to generate an accurate pixel color. What is typically
done is that the previous backwards tracing is done from the 4 corners of
the pixel. This creates a 4 sided polygonal area that is sampled and filtered.
These results create a superior in-between image.

Speeding up a sequence of images is just as straightforward, with a slight
twist. Consider the problem of speeding up the action by a factor of two.
In that case, it is desired to make it look like the action was filmed with a
camera that ran at 12 frames a second. It should be easy, right? Simply
throw away every other frame from the original sequence! This works fine,
with one problem: motion blur. The objects in the images are now supposed
to be moving twice as fast and the motion blur recorded on the images looks
like it was filmed with a 24 frames per second camera. This produces the

Section 7.4. Optical Flow 323

strobing, harsh effect normally associated with sped up film.
Optical flow comes to the rescue in this case as well. The motion vectors

associated with each pixel can be used to streak the images so that the
motion blur appears correct. Like the sampling issue before, blurring an
image according to optical flow motion has some hidden issues. The easy,
but incorrect, way to add motion blur to the image is to use the motion
vector to create a convolution kernel. The entries in the convolution kernel
that are within a certain distance from the motion vector are given a weight
based on a gaussian falloff. The final kernel is normalized and convolved
with the image to produce the resultant pixel. This is done for each pixel in
the image. This technique certainly blurs the image in a complex directional
sense, but it does not quite produce correct motion blur. (It is reasonably
fast - it does require a different kernel computation at every pixel - and quite
acceptable in some situations.)

This method, as mentioned, is incorrect. Consider this example: a model
of a spaceship has been filmed on the set with a black background behind it.
After the shoot, it is decided to add more motion blur to the shot - maybe
it makes the shot more dynamic or something. So, somehow motion vectors
for each pixel are computed. It need not be optical flow in this case. Since
the model is rigid, it is possible to use the motion of the motion control rig or
tracking the motion of the model to generate a reproduction of the model shot
in the computer. This can then be rendered where instead of writing out the
color of every pixel, the pixels contain the motion vector. Whether created
by optical flow or some rendering technique, assume the pixels contain the
2D motion vector of the feature under the pixel. Now, consider what is
happening at the edge of the model. A pixel covering the edge of the model
will have the appropriate motion vector, but the neighboring pixel that only
covers background contains no motion at all! The background is black, and
even if the camera is moving, it will be impossible to detect the motion. The
problem becomes evident at this point. Using the previous technique to add
motion blur, if the spaceship is moving fast, the pixels covering the spaceship
will be heavily blurred. The pixels right next to the spaceship will have no
blurring at all. This causes a massive visual discontinuity that audiences
(and visual effects supervisors) are sure to notice.

There is a (mostly) correct solution to this: instead of blurring the pixels,
distribute the energy of the pixels along the motion vector. This gets a little
more complicated in that the motion vectors are converging and diverging
in places. This caused problems in interpolating images, and it causes prob-
lems adding motion blur. Basically, the color of a pixel is distributed along
the motion vector path from the pixel. Doing the naive approach of simply

324 Computer Vision in Visual Effects Chapter 7

adding a fraction of the pixel’s color to the pixels that intersect the path
produces bright and dark streaks in the motion blur where the vector con-
verge and diverge. Rather, one has to use the interpolated motion vectors
at each corner to create a motion polygon of converge. Then, the color is
added to each pixel under the motion polygon, using a weighting that is the
area of coverage of the individual covered pixel divided by the total area of
the motion polygon. This produces lovely motion blur, at quite a cost in
compute time. In the reality of visual effects, we try to get away with the
cheap solution for motion blur, knowing that we can always pay the price
for the more accurate version of motion blur.

The previous paragraphs seem to indicate that optical flow is a robust,
trustworthy algorithm. This is not the case. Optical flow gets terribly con-
fused with pixels that contain features that disappear (or appear) in the
space of one frame. This is commonly referred to as fold-over. Also, spec-
ular highlights and reflections in objects can fool even the best optical flow
algorithm. And most optical flow algorithms assume a certain spatial con-
tinuity - one pixel moves in pretty much the same direction as its neighbor
- which makes computing optical flow on complicated moving objects like
water or blowing tree leaves quite difficult.

There are many solutions to these problems. If the fold-over areas can
be found, they can be dealt with by predicting the motion of the pixels from
previous or following frames. Sequences of images are often analyzed both
forwards and backwards, where the pixel motion vectors do not match up
is usually a good indication of fold-over. Most optical flow algorithms also
compute an indication of confidence in the flow for a pixel or an area. Where
fold-over areas are indicated, the discontinuity in the vectors is encouraged
rather than avoided. And interpolating the pixels for in-between frames is
done by recognizing that the pixel will either be disappearing or appearing
and interpolating in the appropriate direction.

Optical flow is not just for image manipulation. It is increasingly being
used to extract information about the image. In 2002, Yung-Yu Chung et al
published an influential paper titled “Video Matting of Complex Scenes” [2].
The techniques in this paper have made an impact on the film industry:
it is now quite a bit easier to extract a matte from an object that was
not filmed in front of a blue screen. The paper describes a technique for
computing the matte based on Bayesian likelihood estimates. Optical flow
comes into play by pushing the initial estimate of the matte (or in this case,
the trimap - a segmenting of the image into foreground, background and
unknown elements) around as the contents of the image moves. It uses the
same technique as described above for computing an in-between image, but

Section 7.5. Camera Tracking and Structure from Motion 325

this time applied to the trimap image. Many visual effects companies have
implemented compositing techniques based on this paper.

Additionally, ESC Entertainment used optical flow to help in reconstruct-
ing the facial motion of the actors in the movies “Matrix Reloaded” and
“Matrix Revolutions”. They filmed an actor in front of a blue screen with
three (or more) synced cameras. Instead of using traditional stereo tech-
niques, which have problems with stereo correspondence, the artists placed
a 3D facial mask on the face of the actor in each film sequence. This was
relatively easy to do for the first frame of the film - the actor’s face had not
deformed from the digitized mask. The sequences of film were analyzed for
optical flow. Then the vertices of the mask were moved in 2D according to
the optical flow. Since each vertex could be seen in 2 or more camera views,
the new 3D position of the vertex can be calculated by triangulation. Doing
this for each vertex on every frame produced quite clean moving, deform-
ing masks of face’s of the actors. This avoided any stereo correspondence
problem!

7.5 Camera Tracking and Structure from Motion

With the advent of computer vision techniques in visual effects, directors
found that they could move the camera all over the place and the effects crew
could still insert digital effects into the image. So, naturally, film directors
ran with the ability and never looked back. Now all the large effects shops
have dedicated teams of computer vision artists. Almost every shot is tracked
in one way or another.

In the computer vision community, the world space location of the camera
is typically referred to as the camera’s extrinsic parameters. Computing
these parameters from information in an image or images is typically referred
to as “camera tracking” in the visual effects industry. In computer vision this
task has different names depending on how you approach the solution to the
problem: “camera calibration”, “pose estimation”, “structure from motion”
and more. All the latest techniques are available to the artists computing
the camera motion.

The overriding concern of the artists is accuracy. Once a shot gets as-
signed to an artist, the artist produces versions of the camera track that
are rendered as wireframe over the background image. Until the wireframe
objects line up exactly the artist must continually revisit the sequence, ad-
justing and tweaking the motion curves of the camera or the objects.

A camera track starts its life on the set. As mentioned before, the data
integration team gathers as much information as is practical. At the min-

326 Computer Vision in Visual Effects Chapter 7

imum, a camera calibration chart is photographed, but often a survey of
key points is created or the set is photographed with a reference object so
that photogrammetry can be used to determine the 3D location of points on
the set. This data is used to create a polygonal model of the points on the
set. (This model is often quite hard to decipher. It typically only has key
points in the set and they are connected in a rough manner. But it is usually
enough to guide the tracking artist.)

The images from the shot are “brought on-line” - either scanned from
the original film or transfered from the high definition digital camera. Also,
any notes from the set are transcribed to a text file and associated with the
images.

Before the tracking is begun, the lens distortion must be dealt with.
While the lenses used in film making are quite extraordinary, they still con-
tain a certain amount of radial distortion on the image. Fixed lenses are
quite good, but zoom lenses and especially anamorphic lens setups are quite
notorious for the distortion they contain. In fact, for an anamorphic zoom
lens, the distortion is quite hard to characterize. For the most part, the in-
trinsic parameters of the lens are easily computed from the calibration charts
on set. For more complicated lenses where the standard radial lens distortion
equations do not accurately model the behavior of the lens, the distortion is
modeled by hand. A correspondence between the grid shot through the lens
and an ideal grid is built and used to warp the image into the ideal state.

However the lens distortion is computed, the images are warped to pro-
duce “straightened images” which approximate what would be seen through
a pinhole camera. These images are used on-line throughout the tracking,
modeling and animation process. The original images are only used when
the final results are composited with the rendered components of the shot.
This seems like an unnecessary step, surely the intrinsic parameters of the
lens can be incorporated into the camera model? The problem is that these
images are not just used for tracking, but also as background images in the
animation packages that the artists use. And in those packages, a simple
OpenGL pinhole camera model is the only one available. So, if the original
images were used to track the camera motion and the tracking package uses a
complicated camera model that includes radial (or arbitrary) lens distortion,
the line-up would look incorrect when viewed through a standard animation
package that does not support a more complicated camera model.

The implications of this are twofold. One, two different sets of images
must be stored on disk, the original and the straightened version. Secondly,
the artists must render their CG elements at a higher resolution because
they will eventually be warped to fit the original images and this will soften

Section 7.5. Camera Tracking and Structure from Motion 327

Figure 7.5. Snapshot of a boat/car chase in the movie “xXx”. Left: Original;
Right: Final composite image with digital hydrofoils inserted.

The artist assigned to the shot will use either an in-house computer vision
program or one of many commercially available packages. For the most part,
these programs have similar capabilities. They can perform pattern tracking
and feature detection, they can set up a constraint system and then solve
for the location of the camera or moving rigid objects in the scene. And
recently, most of these program have added the ability to compute structure
from motion without the aid of any surveyed information.

In the most likely scenario, the artists will begin with the sequence of
images and the surveyed geometry. Correspondences between the points on
the geometry and the points in the scene are made and an initial camera
location is determined. Typically, the data integration team has computed
the intrinsic parameters of the camera based on the reference grid shot with
the lens.

Once the initial pose is determined, the points associated with each point
on the reference geometry are tracked in 2D over time. Pattern trackers are
used to do this, though when the pattern tracks fail, the artist will often
track the images by hand.

Why would pattern tracks fail? One of the most common reasons is that
feature points in the scene - the ones that are easy to digitize with a total
station - are often not the best points to camera track: corners of objects.
Corners can be difficult to pattern track because of the large amount of
change that the pattern undergoes as the camera rotates around the corner.
And often the background behind the corner will contribute to confusion of
the pattern tracking algorithm. Corner detection algorithms can pick them
out, but the sub-pixel precision of these algorithms is not as high as ones
based on cross correlation template matching.

Motion blur poses many problems for the tracking artist. Pattern trackers

328 Computer Vision in Visual Effects Chapter 7

often fail in the presence of motion blur. And even if the artist is forced to
track the pattern by hand, it can be difficult to determine where a feature
lies on the image if it is blurred over many pixels. Recently, the artists
at Digital Domain were tracking a shot for a movie called “xXx”. In the
shot, the camera was mounted on a speeding car traveling down a road
parallel to a river. On the river, a hydrofoil boat was traveling alongside the
car. The effect was to replace the top of the boat with a digitally created
doomsday device and make it look like it was screaming down the river
on some nefarious mission. The first task was to track the camera motion
of the car with respect to the background landscape. Then the boat was
tracked as a rigid moving object with respect to the motion of the camera.
Naturally, the motion blur for both cases was extreme. Automatic tracking
program had a very difficult time due to the extreme motion of the camera.
Feature points would travel nearly half way across the image in the space
of one or two frames. Optical flow algorithms failed for the same reason.
Tracking the points proved quite difficult because of the extreme streaking
of the information in the image. The artists placed the point in the center
of the streak and hoped for the best.

This worked, to some extent. In this extreme example, the motion blur
of the boat was, at times, so extreme that the streaks caused by the motion
blur were not linear at all. The motion of tracked camera and boat were
represented as a linear interpolation between key-frame positions at every
frame. The motion blur generated by the renderer did not match the motion
blur of the background frame. It is surprising how much small detail the
eye can pick up. When the artists used spline interpolation to interpolate
the camera motion and added sub-frame key-frames to correctly account for
sharp camera/model motion, the digital imagery fit with the background
noticeably better.

Beyond the tracking of points, digital tracking artists have many tools
available for a good track. The points can be weighted based on the certainty
of the points - points that are obscured by objects can still be used, even
though one cannot see them, their position is interpolated (or guessed) and
their uncertainty set very high. Camera pose estimation is still an optimiza-
tion problem and often the position computed is the position that minimizes
the error in the correspondence of points. That being the case, removing a
point from the equation can have quite an effect to the computed location of
the camera. This results in the dreaded “pop” in motion after a point leaves
the image. This pop can be managed by ramping the point’s uncertainty
as the point approaches leaving the image. Alternately the point can be
used after it leaves the image, the artist pretends that the point’s location

Section 7.5. Camera Tracking and Structure from Motion 329

is known and this can minimize any popping.
Other constraints beyond points are available in many packages. Linear

constraints are often useful, an edge on the surveyed geometry is constrained
to stay on the edge of an object in the image. Pattern trackers are able to
follow the edge of the object as easily as a point on the object.

Of course, it is not necessary to have any surveyed information. Structure
from motion techniques can solve for the location of both the camera and the
3D points in the scene without any surveyed information at all. If there is no
absolute measurement of anything on the set, there is no way for structure
from motion algorithms to determine the absolute scale of the 3D points and
camera translation. Scale is important to digital artists, animated characters
and physical effects are built at a specific scale and having to play with the
scale to get things to “look right” is not something that artists like to do.
So, even when relying on structure from motion, some information - like the
measurement of a distance between two points on the set - is quite useful for
establishing the scale of the scene.

The convergence of optical flow techniques, following good features for
tracks and structure from motion solvers has caused large ripples through
the film and video production facilities. Now, with no a priori knowledge
of the set, a reasonable track and reconstruction of the set can be created
- as long as the camera moves enough and enough points can be followed.
Some small visual effects facilities rely on almost all structure from motion
solutions. Larger facilities are finding it to be an enormous help, but rely on
more traditional camera tracking techniques for quite a few shots. Automatic
tracking is automatic when it is easy.

Consider a shot where the camera is moving the camera is chasing the
hero of the film down a street. At some point the camera points up to the sky
and then back down to center on the main character. Typical effects might
be to add some digital buildings to the set (or at least enhance the buildings
that are already in the scene) and perhaps add some flying machines or
creatures chasing our hero. This makes the camera tracking particularly
challenging: the camera, when it points to the sky, will not be able to view
any track-able points. But, if building and flying objects are being added to
the scene, the camera move during that time must at least be “plausible”
and certainly be smooth and not exhibit any popping motion as tracking
points are let go. Automatic tracking techniques are generally not used on
this kind of shot because the artist will want complete control of the points
used to compute the camera motion. The camera will be tracked for the
beginning of the shot and the end of the shot and then the camera motion
for the area where the camera is only pointing at sky or non-valid tracking

330 Computer Vision in Visual Effects Chapter 7

points (like the top of the actor’s head) is created by clever interpolation and
gut feeling for what the camera was doing. Often something can be tracked,
even if it is a far off cloud, and that can at least be used to determine the
rotation of the camera.

7.6 The Future

Camera tracking and photogrammetry are the main applications of computer
vision in visual effects. But new techniques are making it into visual effects
all the time.

Space carving techniques are starting to show up in visual effects. In
the movie “Minority Report”, a 3D image of a person was projected in
Tom Cruise’s apartment. The camera roamed around the projection and it
needed to look like a true 3D display. The projected actor was filmed on a
special greenscreen stage, surrounded by many synchronized video cameras.
Each camera was calibrated and fixed. Since the actor was surrounded by
greenscreen, it was relatively simple to determine what part of each image
was actor and what was background. From this a view volume was formed.
The intersection of all the view volumes of all the cameras produced a convex
hull of the actor. Projecting the images onto the resulting geometry produced
a remarkably realistic model of the person. This is just the beginning for
this technique. At recent conferences, similar techniques are being developed
to extract amazingly detailed deforming models of humans with concavities
and everything.

It is a terribly exciting time to be involved in computer vision and visual
effects. Over the years the advantages of robust computer vision tools has
become evident to the artists and the management. Computer vision tech-
niques allow the artists to do things that were not possible previously and it
helps them do it faster and more efficiently, which makes the management
happy.

Editors’ note: The color version of the figures in this chapter can be found
in the accompanying DVD.

Bibliography

[1] M.J. Black and P. Anandan. “The robust estimation of multiple motions:
Parametric and piecewise-smooth flow fields”. Computer Vision and Image
Understanding, 63(1):75–104, 1996.

[2] Y.-Y. Chuang, A. Agarwala, B. Curless, D.H. Salesin, and R. Szeliski. “Video

Bibliography 331

matting of complex scenes”. ACM Transactions on Graphics, 21(3):243–248,
July 2002.

[3] P.E. Debevec. “Rendering synthetic objects into real scenes: Bridging tradi-
tional and image-based graphics with global illumination and high dynamic
range photography”. Siggraph98, Annual Conference Series, pages 189–198,
1998.

[4] P.E. Debevec, C.J. Taylor, and J. Malik. “Modeling and rendering architecture
from photographs: A hybrid geometry- and image-based approach”. Computer
Graphics, Annual Conference Series, pages 11–20, 1996.

[5] H.W. Jensen, S.R. Marschner, M. Levoy, and P. Hanrahan. “A practical model
for subsurface light transport”. Siggraph01, Annual Conference Series, pages
511–518, 2001.

[6] J. Lewis. “Fast normalized cross-correlation”. Vision Interface, 1995.
[7] V. Masselus, P. Dutre, F. Anrys. “The free form light stage”. Proceedings of

the 13th Eurographics Workshop on Rendering, pages 247–256, June 2002.
[8] M. Pauly, R. Keiser, L.P. Kobbelt, and M. Gross. “Shape modeling with point-

sampled geometry”. ACM Transactions on Graphics, 22(3):641–650, July 2003.
[9] H. Pfister, M. Zwicker, J. van Baar, and M. Gross. “Surfels: Surface elements

as rendering primitives”. Siggraph00, Annual Conference Series, pages 335-342,
2000.

[10] R. Szeliski and J. Coughlin. “Spline-based image registration”. Technical Report
No. CRL-94-1, Cambridge Research Lab., DEC, April 1994.

[11] Y. Yu, P. Debevec, J. Malik, and T. Hawkins. “Inverse global illumination:
Recovering reflectance models of real scenes from photographs”. Siggraph99,
Annual Conference Series, pages 215–224, Los Angeles, 1999.

Chapter 8

CONTENT-BASED IMAGE
RETRIEVAL: AN OVERVIEW

Theo Gevers

and Arnold W.M. Smeulders

In this chapter, we present an overview on the theory, techniques and
applications of content-based image retrieval. We choose patterns of use,
image domains and computation as the pivotal building blocks of our survey.
A graphical overview of the content-based image retrieval scheme is given in
Fig. 8.1. Derived from this scheme, we follow the data as they flow through
the computational process, see Fig. 8.3, with the conventions indicated in
Fig. 8.2. In all of this chapter, we follow the review in [155] closely.

We focus on still images and leave video retrieval as a separate topic.
Video retrieval could be considered as a broader topic than image retrieval
as video is more than a set of isolated images. However, video retrieval
could also be considered to be simpler than image retrieval since, in addition
to pictorial information, video contains supplementary information such as
motion, and spatial and time constraints e.g. video disclose its objects more
easily as many points corresponding to one object move together and are
spatially coherent in time. In still pictures the user’s narrative expression of
intention is in image selection, object description and composition. Video, in
addition, has the linear time line as an important information cue to assist
the narrative structure.

333

334 Content Based Image Retrieval: An Overview Chapter 8

polygonal points
color
texture

polygonal points
color
texture

IMAGE SEGMENTATION

IMAGE SEGMENTATION

PHYSICAL IMAGE STORE

L
O
G
I
C
A
L

S
T
O
R
E

COMPUTATION OF

COMPUTATION OF

polygonal points
color
texture

FEATURES

FEATURES

CANDIDATE LIST

RELEVANCE FEEDBACK

IMAGE RETRIEVAL
K-NEAREST NEIGHBOR

INITIAL QUERY Q0

QO QO

QO

QUERY REFORMULATION Qi+1

Qi+1

Figure 8.1. Overview of the basic concepts of the content-based image retrieval
scheme as considered in this chapter. First, features are extracted from the images
in the database which are stored and indexed. This is done off-line. The on-
line image retrieval process consists of a query example image from which image
features are extracted. These image feature are used to find the images in the
database which are most similar. Then, a candidate list of most similar images is
shown to the user. From the user feed-back the query is optimized and used as a
new query in an iterative manner.

8.1 Overview of the chapter

The overview of the basic components, to be discussed in this chapter, is
given in Fig. 8.1 and the corresponding dataflow process is shown in Fig.
8.3. The sections in this chapter harmonize with the data as they flow from
one computational component to another as follows:
•Interactive query formulation: Interactive query formulation is offered

either by query (sub)image(s) or by offering a pattern of feature values and
weights. To achieve interactive query formulation, an image is sketched,
recorded or selected from an image repository. With the query formulation,
the aim to search for particular images in the database. The mode of search
might be one of the following three categories: search by association, target
search, and category search. For search by association, the intention of the
user is to browse through a large collection of images without a specific aim.

Section 8.1. Overview of the chapter 335

Figure 8.2. Data flow and symbol conventions as used in this chapter. Different
styles of arrows indicate different data structures.

Search by association tries to find interesting images and is often applied in
an iterative way by means of relevance feedback. Target search is to find
similar (target) images in the image database. Note that ”similar image”
may imply a (partially) identical image, or a (partially) identical object in
the image. The third class is category search, where the aim is to retrieve an
arbitrary image which is typical for a specific class or genre (e.g. indoor im-
ages, portraits, city views). As many image retrieval systems are assembled
around one of these three search modes, it is important to get more insight
in these categories and their structure. Search modes will be discussed in
Section 8.2.1.
•Image domains: The definition of image features depends on the reper-

toire of images under consideration. This repertoire can be ordered along the
complexity of variations imposed by the imaging conditions such as illumi-
nation and viewing geometry going from narrow domains to broad domains.
For images from a narrow domain there will be a restricted variability of
their pictorial content. Examples of narrow domains are stamp collections

336 Content Based Image Retrieval: An Overview Chapter 8

Figure 8.3. Basic algorithmic components of query by pictorial example captured
in a data-flow scheme while using the conventions of Fig. 8.2.

and face databases. For broad domains, images may be taken from objects
from unknown viewpoints and illumination. For example, two recordings
taken from the same object from different viewpoints will yield different
shadowing, shading and highlighting cues changing the intensity data fields
considerably. Moreover, large differences in the illumination color will dras-
tically change the photometric content of images even when they are taken
from the same scene. Hence, images from broad domains have a large picto-
rial variety which is called the sensory gap to be discussed in Section 8.2.2.
Furthermore, low-level image features are often too restricted to describe
images on a conceptual or semantic level. This semantic gap is a well-known
problem in content-based image retrieval and will be discussed in Section
8.2.3.
•Image features: Image feature extraction is an important step for im-

age indexing and search. Image feature extraction modules should take into

Section 8.1. Overview of the chapter 337

account whether the image domain is narrow or broad. In fact, they should
consider to which of the imaging conditions they should be invariant to such a
change in viewpoint, object pose, and illumination. Further, image features
should be concise and complete and at the same having high discrimina-
tive power. In general, a tradeoff exists between the amount of invariance
and selectivity. In Section 8.3, a taxonomy on feature extraction modules is
given from an image processing perspective. The taxonomy can be used to
select the proper feature extraction method for a specific application based
on whether images come from broad domains and which search goals are at
hand (target/category/associate search). In Section 8.3.1, we first focus on
color content descriptors derived from image processing technology. Vari-
ous color based image search methods will be discussed based on different
representation schemes such as color histograms, color moments, color edge
orientation, and color correlograms. These image representation schemes are
created on the basis of RGB, and other color systems such as HSI and CIE
L∗a∗b∗. For example, the L∗a∗b∗ space has been designed to conform to the
human perception of color similarity. If the appreciation of a human observer
of an object is based on the perception of certain conspicuous items in the
image, it is natural to direct the computation of broad domain features to
these points and regions. Similarly, a biologically plausible architecture [84]
of center-surround processing units is likely to select regions which humans
would also focus on first. Further, color models are discussed which are
robust to a change in viewing direction, object geometry and illumination.
Image processing for shape is outlined in Section 8.3.2. We focus on local
shape which are image descriptors capturing salient details in images. Fi-
nally, in Section 8.3.3, our attention is directed towards texture and a review
is given on texture features describing local color characteristics and their
spatial layout.
•Representation and indexing
Representation and indexing will be discussed in Section 8.4. In gen-

eral, the image feature set is represented by vector space, probabilistic or
logical models. For example, for the vector space model, weights can be
assigned corresponding to the feature frequency giving the well-known his-
togram form. Further, for accurate image search, it is often desirable to
assign weights in accordance to the importance of the image features. The
image feature weights used for both images and queries can be computed
as the product of the features frequency multiplied by the inverse collection
frequency factor. In this way, features are emphasized having high feature
frequencies but low overall collection frequencies. More on feature accumu-
lation and representation is discussed in Section 8.4.2. In addition to feature

338 Content Based Image Retrieval: An Overview Chapter 8

representation, indexing is required to speed up the search process. Indexing
techniques include adaptive histogram binning, signature files, and hashing.
Further, tree-based indexing schemes have been developed for indexing the
stored images so that similar images can be identified efficiently at some
additional costs in memory, such as a k-d tree, R*-tree or a SS-tree, [69] for
example.

Throughout the chapter, a distinction is made between weak and strong
segmentation. Weak segmentation is a local grouping approach usually focus-
ing on conspicuous regions such as edges, corners and higher-order junctions.
In Section 8.4.4, various methods are discussed to achieve weak segmenta-
tion. Strong segmentation is the extraction of the complete contour of an
object in an image. Obviously, strong segmentation is far more difficult
than weak segmentation and is hard to achieve if not impossible for broad
domains.
•Similarity and search
The actual matching process can be seen as a search for images in the

stored image set closest to the query specification. As both the query and
the image data set is captured in feature form, the similarity function oper-
ates between the weighted feature sets. To make the query effective, close
attention has to be paid to the selection of the similarity function. A proper
similarity function should be robust to object fragmentation, occlusion and
clutter by the presence of other objects in the view. For example, it is known
that the mean square and the Euclidean similarity measure provides accu-
rate retrieval without any object clutter [59] [162]. A detailed overview on
similarity and search is given in Section 8.5.
•Interaction and Learning
Visualization of the feature matching results gives the user insight in

the importance of the different features. Windowing and information dis-
play techniques can be used to establish communications between system
and user. In particular, new visualization techniques such as 3D virtual
image clouds can used to designate certain images as relevant to the user’s
requirements. These relevant images are then further used by the system
to construct subsequent (improved) queries. Relevance feedback is an auto-
matic process designed to produce improved query formulations following an
initial retrieval operation. Relevance feedback is needed for image retrieval
where users find it difficult to formulate pictorial queries. For example,
without any specific query image example, the user might find it difficult to
formulate a query (e.g. to retrieve an image of a car) by image sketch or by
offering a pattern of feature values and weights. This suggests that the first
search is performed by an initial query formulation and a (new) improved

Section 8.2. Image Domains 339

query formulation is constructed based on the search results with the goal to
retrieve more relevant images in the next search operations. Hence, from the
user feedback giving negative/positive answers, the method can automati-
cally learn which image features are more important. The system uses the
feature weighting given by the user to find the images in the image database
which are optimal with respect to the feature weighting. For example, the
search by association allows users to refine iteratively the query definition,
the similarity or the examples with which the search was started. There-
fore, systems in this category are highly interactive. Interaction, relevance
feedback and learning are discussed in Section 8.6.
•Testing
In general, image search systems are assessed in terms of precision, re-

call, query-processing time as well as reliability of a negative answer. Fur-
ther, the relevance feedback method is assessed in terms of the number of
iterations to approach to the ground-truth. Today, more and more images
are archived yielding a very large range of complex pictorial information. In
fact, the average number of images, used for experimentation as reported in
the literature, augmented from a few in 1995 to over a hundred thousand by
now. It is important that the dataset should have ground-truths i.e. images
which are (non) relevant to a given query. In general, it is hard to get these
ground-truths. Especially for very large datasets. A discussion on system
performance is given in Section 8.6.

8.2 Image Domains

In this section, we discuss patterns in image search applications, the reper-
toire of images, the influence of the image formation process, and the seman-
tic gap between image descriptors and the user.

8.2.1 Search modes

We distinguish three broad categories of search modes when using a content-
based image retrieval system, see Fig. 8.4.
• There is a broad variety of methods and systems designed to browse

through a large set of images from unspecified sources, which is called search
by association. At the start, users of search by association have no specific
aims other than to find interesting images. Search by association often im-
plies iterative refinement of the search, the similarity or the examples with
which the search was initiated. Systems in this category are highly inter-
active, where the query specification may be defined by sketch [28] or by
example images. The oldest realistic example of such a system is probably

340 Content Based Image Retrieval: An Overview Chapter 8

Figure 8.4. Three patterns in the purpose of content-based retrieval systems.

[91]. The result of the search can be manipulated interactively by relevance
feedback [76]. To support the quest for relevant results, also other sources
than images are employed, for example [163].
• Another class of search mode is target search with the purpose to find a

specific image. The search may be for a precise copy of the image in mind, as
in searching art catalogues, e.g. [47]. Target search may also be for another
image of the same object the user has an image of. This is target search
by example. Target search may also be applied when the user has a specific
image in mind and the target is interactively specified as similar to a group
of given examples, for instance [29]. These systems are suited to search for
stamps, paintings, industrial components, textile patterns, and catalogues in
general.
• The third class of search modes is category search, aiming at retrieving

an arbitrary image representative for a specific class. This is the case when
the user has an example and the search is for other elements of the same
class or genre. Categories may be derived from labels or may emerge from
the database [164], [105]. In category search, the user may have available a
group of images and the search is for additional images of the same class [25].
A typical application of category search is catalogues of varieties. In [82, 88],
systems are designed for classifying trademarks. Systems in this category are
usually interactive with a domain specific definition of similarity.

Section 8.2. Image Domains 341

8.2.2 The sensory gap

In the repertoire of images under consideration (the image domain) there is
a gradual distinction between narrow and broad domains [154]. At one end
of the spectrum, we have the narrow domain:

A narrow domain has a limited and predictable variability in all
relevant aspects of its appearance.

Hence, in a narrow domain one finds images with a reduced diversity in
their pictorial content. Usually, the image formation process is similar for
all recordings. When the object’s appearance has limited variability, the
semantic description of the image is generally well-defined and largely unique.
An example of a narrow domain is a set of frontal views of faces, recorded
against a clear background. Although each face is unique and has large
variability in the visual details, there are obvious geometrical, physical and
illumination constraints governing the pictorial domain. The domain would
be wider in case the faces had been photographed from a crowd or from an
outdoor scene. In that case, variations in illumination, clutter in the scene,
occlusion and viewpoint will have a major impact on the analysis.

On the other end of the spectrum, we have the broad domain:

A broad domain has an unlimited and unpredictable variability in
its appearance even for the same semantic meaning.

In broad domains images are polysemic, and their semantics are described
only partially. It might be the case that there are conspicuous objects in the
scene for which the object class is unknown, or even that the interpretation
of the scene is not unique. The broadest class available today is the set of
images available on the Internet.

Many problems of practical interest have an image domain in between
these extreme ends of the spectrum. The notions of broad and narrow are
helpful in characterizing patterns of use, in selecting features, and in de-
signing systems. In a broad image domain, the gap between the feature
description and the semantic interpretation is generally wide. For narrow,
specialized image domains, the gap between features and their semantic in-
terpretation is usually smaller, so domain-specific models may be of help.

For broad image domains in particular, one has to resort to generally
valid principles. Is the illumination of the domain white or colored? Does it
assume fully visible objects, or may the scene contain clutter and occluded
objects as well? Is it a 2D-recording of a 2D-scene or a 2D-recording of
a 3D-scene? The given characteristics of illumination, presence or absence

342 Content Based Image Retrieval: An Overview Chapter 8

of occlusion, clutter, and differences in camera viewpoint, determine the
demands on the methods of retrieval.

The sensory gap is the gap between the object in the world and
the information in a (computational) description derived from a
recording of that scene.

The sensory gap makes the description of objects an ill-posed problem: it
yields uncertainty in what is known about the state of the object. The sen-
sory gap is particularly poignant when a precise knowledge of the recording
conditions is missing. The 2D-records of different 3D-objects can be identi-
cal. Without further knowledge, one has to decide that they might represent
the same object. Also, a 2D-recording of a 3D- scene contains information
accidental for that scene and that sensing but one does not know what part
of the information is scene related. The uncertainty due to the sensory gap
does not only hold for the viewpoint, but also for occlusion (where essential
parts telling two objects apart may be out of sight), clutter, and illumination.

8.2.3 The semantic gap

As stated in the previous sections, content-based image retrieval relies on
multiple low-level features (e.g. color, shape and texture) describing the
image content. To cope with the sensory gap, these low-level features should
be consistent and invariant to remain representative for the repertoire of
images in the database. For image retrieval by query by example, the on-line
image retrieval process consists of a query example image, given by the user
on input, from which low-level image features are extracted. These image
features are used to find images in the database which are most similar to the
query image. A drawback, however, is that these low-level image features are
often too restricted to describe images on a conceptual or semantic level. It
is our opinion that ignoring the existence of the semantic gap is the cause of
many disappointments on the performance of early image retrieval systems.

The semantic gap is the lack of coincidence between the informa-
tion that one can extract from the visual data and the interpre-
tation that the same data have for a user in a given situation.

A user wants to search for images on a conceptual level e.g. images containing
particular objects (target search) or conveying a certain message or genre
(category search). Image descriptions, on the other hand, are derived by
low-level data-driven methods. The semantic search by the user and the

Section 8.2. Image Domains 343

low-level syntactic image descriptors may be disconnected. Association of a
complete semantic system to image data would entail, at least, solving the
general object recognition problem. Since this problem is yet unsolved and
will likely to stay unsolved in its entirety, research is focused on different
methods to associate higher level semantics to data-driven observables.

Indeed, the most reasonable tool for semantic image characterization
entails annotation by keywords or captions. This converts content-based
image access to (textual) information retrieval [134]. Common objections
to the practice of labeling are cost and coverage. On the cost side, labeling
thousands of images is a cumbersome and expensive job to the degree that the
deployment of the economic balance behind the database is likely to decrease.
To solve the problem, systems presented in [140], [139] use a program that
explores the Internet collecting images and inserting them in a predefined
taxonomy on the basis of the text surrounding them. A similar approach
for digital libraries is taken by [19]. On the coverage side, labeling is seldom
complete, context sensitive and, in any case, there is a significant fraction of
requests whose semantics can’t be captured by labeling alone [7, 72]. Both
methods will cover the semantic gap only in isolated cases.

8.2.4 Discussion

We have discussed three broad types of search categories: target search,
category search and search by association. Target search is related to the
classical methods in the field of pattern matching and computer vision such
as object recognition and image matching. However, image retrieval differs
from traditional pattern matching by considering more and more images
in the database. Therefore, new challenges in content-based retrieval are
in the huge amount of images to search among, the query specification by
multiple images, and in the variability of imaging conditions and object
states. Category search connects to statistical pattern recognition methods.
However, compared to traditional pattern recognition, new challenges are
in the interactive manipulation of results, the usually very large number of
object classes, and the absence of an explicit training phase for feature and
classifier tuning (active learning). Search by association is the most distant
from the classical field of computer vision. It is severely hampered by the
semantic gap. As long as the gap is there, use of content-based retrieval for
browsing will not be within the grasp of the general public as humans are
accustomed to rely on the immediate semantic imprint the moment they see
an image.

An important distinction we have discussed is that between broad and

344 Content Based Image Retrieval: An Overview Chapter 8

narrow domains. The broader the domain, the more browsing or search by
association should be considered during system set-up. The narrower the
domain, the more target search should be taken as search mode.

The major discrepancy in content-based retrieval is that the user wants to
retrieve images on a semantic level, but the image characterizations can only
provide similarity on a low-level syntactic level. This is called the semantic
gap. Furthermore, another discrepancy is that between the properties in an
image and the properties of the object. This is called the sensory gap. Both
the semantic and sensory gap play a serious limiting role in the retrieval of
images based on their content.

8.3 Image Features

Before starting the discussion on image features, it is important to keep in
mind that content-based retrieval does not depend on a complete descrip-
tion of the pictorial content of the image. It is sufficient that a retrieval
system presents similar images, i.e. similar in some user defined sense. The
description of the content by image features should serve that goal primarily.

One such goal can be met by using invariance as a tool to deal with
the accidental distortions in the image content introduced by the sensory
gap. From Section 8.2.2, it is clear that invariant features may carry more
object-specific information than other features as they are insensitive to the
accidental imaging conditions such as illumination, object pose and camera
viewpoint. The aim of invariant image features is to identify objects no
matter from how and where they are observed at the loss of some of the
information content.

Therefore, the degree of invariance, should be tailored to the recording
circumstances. In general, a feature with a very wide class of invariance
looses the power to discriminate among object differences. The aim is to se-
lect the tightest set of invariants suited for the expected set of non-constant
conditions. What is needed in image search is a specification of the minimal
invariant conditions in the specification of the query. The minimal set of in-
variant conditions can only be specified by the user as it is part of his or hers
intention. For each image retrieval query a proper definition of the desired
invariance is in order. Does the applicant wish search for the object in ro-
tation and scale invariance? illumination invariance? viewpoint invariance?
occlusion invariance? The oldest work on invariance in computer vision has
been done in object recognition as reported among others in [119] for shape
and [181] for color. Invariant description in image retrieval is relatively new,
but quickly gaining ground, for a good introduction see [15], [30], [57].

Section 8.3. Image Features 345

8.3.1 Color

Color has been an active area of research in image retrieval, more than in
any other branch of computer vision. Color makes the image take values in
a color vector space. The choice of a color system is of great importance for
the purpose of proper image retrieval. It induces the equivalent classes to
the actual retrieval algorithm. However, no color system can be considered
as universal, because color can be interpreted and modeled in different ways.
Each color system has its own set of color models, which are the parameters
of the color system. Color systems have been developed for different pur-
poses: 1. display and printing processes: RGB, CMY ; 2. television and
video transmittion efficiency: Y IQ, Y UV ; 3. color standardization: XY Z;
4. color uncorrelation: I1I2I3; 5. color normalization and representation:
rgb, xyz; 6. perceptual uniformity: U∗V ∗W ∗, L∗a∗b∗, L∗u∗v∗; 7. and intu-
itive description: HSI, HSV . With this large variety of color systems, the
inevitable question arises which color system to use for which kind of image
retrieval application. To this end, criteria are required to classify the various
color systems for the purpose of content-based image retrieval. Firstly, an
important criterion is that the color system is independent of the underlying
imaging device. This is required when images in the image database are
recorded by different imaging devices such as scanners, camera’s and cam-
recorder (e.g. images on Internet). Another prerequisite might be that the
color system should exhibit perceptual uniformity meaning that numerical
distances within the color space can be related to human perceptual differ-
ences. This is important when images are to be retrieved which should be
visually similar (e.g. stamps, trademarks and paintings databases). Also,
the transformation needed to compute the color system should be linear. A
non-linear transformation may introduce instabilities with respect to noise
causing poor retrieval accuracy. Further, the color system should be com-
posed of color models which are understandable and intuitive to the user.
Moreover, to achieve robust image retrieval, color invariance is an impor-
tant criterion. In general, images and videos are taken from objects from
different viewpoints. Two recordings made of the same object from different
viewpoints will yield different shadowing, shading and highlighting cues.

Only when there is no variation in the recording or in the perception
than the RGB color representation is a good choice. RGB-representations
are widely in use today. They describe the image in its literal color properties.
An image expressed by RGB makes most sense when recordings are made
in the absence of variance, as is the case, e.g., for art paintings [72], the
color composition of photographs [47] and trademarks [88, 39], where two

346 Content Based Image Retrieval: An Overview Chapter 8

dimensional images are recorded in frontal view under standard illumination
conditions.

A significant improvement over the RGB-color space (at least for re-
trieval applications) comes from the use of normalized color representations
[162]. This representation has the advantage of suppressing the intensity
information and hence is invariant to changes in illumination intensity and
object geometry.

Others approaches use the Munsell or the L∗a∗b∗-spaces because of their
relative perceptual uniformity. The L∗a∗b∗ color system has the property
that the closer a point (representing a color) is to another point, the more
visual similar the colors are. In other words, the magnitude of the perceived
color difference of two colors corresponds to the Euclidean distance between
the two colors in the color system. The L∗a∗b∗ system is based on the
three dimensional coordinate system based on the opponent theory using
black-white L∗, red-green a∗, and yellow-blue b∗ components. The L∗ axis
corresponds to the lightness where L∗ = 100 is white and L∗ = 0 is black.
Further, a∗ ranges from red +a∗ to green −a∗ while b∗ ranges from yellow
+b∗ to blue −b∗. The chromaticity coordinates a∗ and b∗ are insensitive to
intensity and has the same invariant properties as normalized color. Care
should be taken when digitizing the non-linear conversion to L∗a∗b∗-space
[117].

The HSV -representation is often selected for its invariant properties.
Further, the human color perception is conveniently represented by these
color models where I is an attribute in terms of which a light or surface
color may be ordered on a scale from dim to bright. S denotes the relative
white content of a color and H is the color aspect of a visual impression.
The problem of H is that it becomes unstable when S is near zero due to the
non-removable singularities in the nonlinear transformation, which a small
perturbation of the input can cause a large jump in the transformed values
[62]. H is invariant under the orientation of the object with respect to the
illumination intensity and camera direction and hence more suited for object
retrieval. However, H is still dependent on the color of the illumination [57].

A wide variety of tight photometric color invariants for object retrieval
were derived in [59] from the analysis of the dichromatic reflection model.
They derive for matte patches under white light the invariant color space
(R−G
R+G ,−B−R

B+R ,
G−B
G+B), only dependent on sensor and surface albedo. For a

shiny surface and white illumination, they derive the invariant representation
as |R−G|

|R−G|+|B−R|+|G−B| and two more permutations. The color models are
robust against major viewpoint distortions.

Color constancy is the capability of humans to perceive the same color

Section 8.3. Image Features 347

in the presence of variations in illumination which change the physical spec-
trum of the perceived light. The problem of color constancy has been the
topic of much research in psychology and computer vision. Existing color
constancy methods require specific a priori information about the observed
scene (e.g. the placement of calibration patches of known spectral reflectance
in the scene) which will not be feasible in practical situations, [48], [52], [97]
for example. In contrast, without any a priori information, [73], [45] use
illumination-invariant moments of color distributions for object recognition.
However, these methods are sensitive to object occlusion and cluttering as
the moments are defined as an integral property on the object as one. In
global methods in general, occluded parts will disturb recognition. [153] cir-
cumvents this problem by computing the color features from small object
regions instead of the entire object. Further, to avoid sensitivity on object
occlusion and cluttering, simple and effective illumination-independent color
ratio’s have been proposed by [53], [121], [60]. These color constant models
are based on the ratio of surface albedos rather than the recovering of the
actual surface albedo itself. However, these color models assume that the
variation in spectral power distribution of the illumination can be modeled
by the coefficient rule or von Kries model, where the change in the illumina-
tion color is approximated by a 3x3 diagonal matrix among the sensor bands
and is equal to the multiplication of each RGB-color band by an indepen-
dent scalar factor. The diagonal model of illumination change holds exactly
in the case of narrow-band sensors. Although standard video camera’s are
not equipped with narrow-band filters, spectral sharpening could be applied
[46] to achieve this to a large extent.

The color ratio’s proposed by [121] are given by: N(Cx1 , Cx2) = C�x1−C�x2

C�x2+C�x1

and those proposed by [53] are defined by: F (Cx1 , Cx2) = C�x1

C�x2
expressing

color ratio’s between two neighboring image locations, for C ∈ {R,G,B},
where �x1 and �x2 denote the image locations of the two neighboring pixels.

The color ratio’s of [60] are given by: M(Cx1
1 , Cx2

1 , Cx1
2 , Cx2

2) = C
�x1
1 C

�x2
2

C
�x2
1 C

�x1
2

expressing the color ratio between two neighboring image locations, for
C1, C2 ∈ {R,G,B} where �x1 and �x2 denote the image locations of the two
neighboring pixels. All these color ratio’s are device dependent, not percep-
tual uniform and they become unstable when intensity is near zero. Further,
N and F are dependent on the object geometry. M has no viewing and
lighting dependencies. In [55] a thorough overview is given on color models
for the purpose of image retrieval. Figure 8.5 shows the taxonomy of color
models with respect to their characteristics. For more information we refer
to [55].

348 Content Based Image Retrieval: An Overview Chapter 8

Figure 8.5. a. Overview of the dependencies differentiated for the vari-
ous color systems. + denotes that the condition is satisfied - denotes that the
condition is not satisfied.

Rather than invariant descriptions, another approach to cope with the
inequalities in observation due to surface reflection is to search for clus-
ters in a color histogram of the image. In the RGB-histogram, clusters of
pixels reflected off an object form elongated streaks. Hence, in [126], a non-
parametric cluster algorithm in RGB-space is used to identify which pixels
in the image originate from one uniformly colored object.

8.3.2 Shape

Under the name ’local shape’ we collect all properties that capture conspic-
uous geometric details in the image. We prefer the name local shape over
other characterization such as differential geometrical properties to denote
the result rather than the method.

Local shape characteristics derived from directional color derivatives have
been used in [117] to derive perceptually conspicuous details in highly tex-
tured patches of diverse materials. A wide, rather unstructured variety of

Section 8.3. Image Features 349

image detectors can be found in [159].
In [61], a scheme is proposed to automatic detect and classify the physi-

cal nature of edges in images using reflectance information. To achieve this,
a framework is given to compute edges by automatic gradient threshold-
ing. Then, a taxonomy is given on edge types based upon the sensitivity
of edges with respect to different imaging variables. A parameter-free edge
classifier is provided labeling color transitions into one of the following types:
(1) shadow-geometry edges, (2) highlight edges, (3) material edges. In fig-
ure 8.6.a, six frames are shown from a standard video often used as a test
sequence in the literature. It shows a person against a textured background
playing ping-pong. The size of the image is 260x135. The images are of
low quality. The frames are clearly contaminated by shadows, shading and
inter-reflections. Note that each individual object-parts (i.e. T-shirt, wall
and table) is painted homogeneously with a distinct color. Further, that the
wall is highly textured. The results of the proposed reflectance based edge
classifier are shown in figure 8.6.b-d. For more details see [61].

Combining shape and color both in invariant fashion is a powerful com-
bination as described by [58] where the colors inside and outside affine cur-
vature maximums in color edges are stored to identify objects.

Scale space theory was devised as the complete and unique primary step
in pre-attentive vision, capturing all conspicuous information [178]. It pro-
vides the theoretical basis for the detection of conspicuous details on any
scale. In [109] a series of Gabor filters of different directions and scale have
been used to enhance image properties [136]. Conspicuous shape geometric
invariants are presented in [135]. A method employing local shape and inten-
sity information for viewpoint and occlusion invariant object retrieval is given
in [143]. The method relies on voting among a complete family of differen-
tial geometric invariants. Also, [170] searches for differential affine-invariant
descriptors. From surface reflection, in [5] the local sign of the Gaussian
curvature is computed, while making no assumptions on the albedo or the
model of diffuse reflectance.

8.3.3 Texture

In computer vision, texture is considered as all what is left after color and
local shape have been considered or it is given in terms of structure and
randomness. Many common textures are composed of small textons usually
too large in number to be perceived as isolated objects. The elements can
be placed more or less regularly or randomly. They can be almost identical
or subject to large variations in their appearance and pose. In the context of

350 Content Based Image Retrieval: An Overview Chapter 8

Figure 8.6. Frames from a video showing a person against a textured back-
ground playing ping-pong. From left to right column. a. Original color frame.
b. Classified edges. c. Material edges. d. Shadow and geometry edges.

image retrieval, research is mostly directed towards statistical or generative
methods for the characterization of patches.

Basic texture properties include the Markovian analysis dating back to
Haralick in 1973 and generalized versions thereof [95, 64]. In retrieval, the
property is computed in a sliding mask for localization [102, 66].

Another important texture analysis technique uses multi-scale auto- re-
gressive MRSAR-models, which consider texture as the outcome of a deter-
ministic dynamic system subject to state and observation noise [168, 110].
Other models exploit statistical regularities in the texture field [9].

Wavelets [33] have received wide attention. They have often been con-
sidered for their locality and their compression efficiency. Many wavelet
transforms are generated by groups of dilations or dilations and rotations

Section 8.3. Image Features 351

that have been said to have some semantic correspondent. The lowest levels
of the wavelet transforms [33, 22] have been applied to texture representa-
tion [96, 156], sometimes in conjunction with Markovian analysis [21]. Other
transforms have also been explored, most notably fractals [41]. A solid com-
parative study on texture classification from mostly transform-based prop-
erties can be found in [133].

When the goal is to retrieve images containing objects having irregular
texture organization, the spatial organization of these texture primitives is,
in worst case, random. It has been demonstrated that for irregular texture,
the comparison of gradient distributions achieves satisfactory accuracy [122],
[130] as opposed to fractal or wavelet features. Therefore, most of the work
on texture image retrieval is stochastic from nature [12], [124], [190]. How-
ever, these methods rely on grey-value information which is very sensitive to
the imaging conditions. In [56] the aim is to achieve content-based image re-
trieval of textured objects in natural scenes under varying illumination and
viewing conditions. To achieve this, image retrieval is based on matching
feature distributions derived from color invariant gradients. To cope with
object cluttering, region-based texture segmentation is applied on the target
images prior to the actual image retrieval process. In Figure 8.7 results are
shown of color invariant texture segmentation for image retrieval. From the
results, we can observe that RGB and normalized color θ1θ2, is highly sen-
sitive to a change in illumination color. Only M is insensitive to a change
in illumination color. For more information we refer to [56].

Query

Original image RGB Mθ1θ2

Figure 8.7. a. Query texture under different illumination b. Target image c.
Segmentation result based on RGB. d. Segmentation result based on variant of
rgb. e. Segmentation result based on color ratio gradient M .

Texture search proved also to be useful in satellite images [100] and
images of documents [31]. Textures also served as a support feature for
segmentation-based recognition [106], but the texture properties discussed
so far offer little semantic referent. They are therefore ill-suited for retrieval

352 Content Based Image Retrieval: An Overview Chapter 8

applications in which the user wants to use verbal descriptions of the image.
Therefore, in retrieval research, in [104] the Wold features of periodicity,
directionality, and randomness are used, which agree reasonably well with
linguistic descriptions of textures as implemented in [127].

8.3.4 Discussion

First of all, image processing in content-based retrieval should primarily be
engaged in enhancing the image information of the query, not on describing
the content of the image in its entirety.

To enhance the image information, retrieval has set the spotlights on
color, as color has a high discriminatory power among objects in a scene,
much higher than gray levels. The purpose of most image color process-
ing is to reduce the influence of the accidental conditions of the scene and
sensing (i.e. the sensory gap). Progress has been made in tailored color
space representation for well-described classes of variant conditions. Also,
the application of geometrical description derived from scale space theory
will reveal viewpoint and scene independent salient point sets thus opening
the way to similarity of images on a few most informative regions or points.

In this chapter, we have made a separation between color, local geometry
and texture. At this point it is safe to conclude that the division is an
artificial labeling. For example, wavelets say something about the local shape
as well as the texture, and so may scale space and local filter strategies
do. For the purposes of content-based retrieval an integrated view on color,
texture and local geometry is urgently needed as only an integrated view
on local properties can provide the means to distinguish among hundreds of
thousands different images. A recent advancement in that direction is the
fusion of illumination and scale invariant color and texture information into a
consistent set of localized properties [74]. Also in [16], homogeneous regions
are represented as collections of ellipsoids of uniform color or texture, but
invariant texture properties deserve more attention [167] and [177]. Further
research is needed in the design of complete sets of image properties with
well-described variant conditions which they are capable of handling.

8.4 Representation and Indexing

In the first subsection, we discuss the ultimate form of spatial data by group-
ing the data into object silhouettes, clusters of points or point-sets. In the
next subsection, we leave the spatial domain, to condense the pictorial in-
formation into feature values.

Section 8.4. Representation and Indexing 353

8.4.1 Grouping data

In content-based image retrieval, the image is often divided in parts before
features are computed from each part. Partitionings of the image aim at
obtaining more selective features by selecting pixels in a trade of against
having more information in features when no subdivision of the image is
used at all. We distinguish the following partitionings:
• When searching for an object, it would be most advantageous to do a

complete object segmentation first:

Strong segmentation is a division of the image data into regions
in such a way that region T contains the pixels of the silhouette of
object O in the real world and nothing else, specified by: T = O.

It should be noted immediately that object segmentation for broad domains
of general images is not likely to succeed, with a possible exception for so-
phisticated techniques in very narrow domains.
• The difficulty of achieving strong segmentation may be circumvented

by weak segmentation where grouping is based on data- driven properties:

Weak segmentation is a grouping of the image data in conspic-
uous regions T internally homogeneous according to some crite-
rion, hopefully with T ⊂ O.

The criterion is satisfied if region T is within the bounds of object O, but
there is no guarantee that the region covers all of the object’s area. When
the image contains two nearly identical objects close to each other, the weak
segmentation algorithm may falsely observe just one patch. Fortunately, in
content-based retrieval, this type of error is rarely obstructive for the goal.
In [125], the homogeneity criterion is implemented by requesting that colors
be spatially coherent vectors in a region. Color is the criterion in [49], [126].
In [16, 114], the homogeneity criterion is based on color and texture. The
limit case of weak segmentation is a set of isolated points [143, 59]. No
homogeneity criterion is needed then, but the effectiveness of the isolated
points rest on the quality of their selection. When occlusion is present in the
image, weak segmentation is the best one can hope for. Weak segmentation
is used in many retrieval systems either as a purpose of its own or as a
pre-processing stage for data-driven model- based object segmentation.
• When the object has a (nearly) fixed shape, like a traffic light or an

eye, we call it a sign:

Localizing signs is finding an object with a fixed shape and se-
mantic meaning, with T = xcenter.

354 Content Based Image Retrieval: An Overview Chapter 8

Signs are helpful in content based retrieval as they deliver an immediate and
unique semantic interpretation.
• The weakest form of grouping is partitioning:

A partitioning is a division of the data array regardless of the
data, symbolized by: T �= O.

The area T may be the entire image, or a conventional partitioning as the
central part of the image against the upper, right, left and lower parts [75].
The feasibility of fixed partitioning comes from the fact that image are cre-
ated in accordance with certain canons or normative rules, such as placing
the horizon about 2/3 up in the picture, or keeping the main subject in the
central area. This rule is often violated, but this violation, in itself, has se-
mantic significance. Another possibility of partitioning is to divide the image
in tiles of equal size and summarize the dominant feature values in each tile
[129].

8.4.2 Features accumulation

In the computational process given in Fig. 8.3, features are calculated next.
The general class of accumulating features aggregate the spatial information
of a partitioning irrespective of the image data. A special type of accumu-
lative features are the global features which are calculated from the entire
image. Fj (see Fig. 8.2) is the set of accumulative features or a set of accu-
mulative features ranked in a histogram. Fj is part of feature space F . Tj
is the partitioning over which the value of Fj is computed. In the case of
global features Tj=void represents the image, otherwise Tj represents a fixed
tiling of the image. The operator h may hold relative weights, for example
to compute transform coefficients.

A simple but very effective approach to accumulating features is to use
the histogram, that is the set of features F(m) ordered by histogram index
m.

One of the earlier approaches to color-based image matching, using the
color at pixels directly as indices, has been proposed by Swain and Ballard
[162]. If the RGB or normalized color distributions of two images are globally
similar, the matching rate is high. The work by Swain and Ballard has had
an enormous impact on color-based histogram matching resulting in many
histogram variations.

For example, the QBIC system [42] allows for a user-defined computation
of the histogram by the introduction of variable k denoting the number of
bins of the histogram. Then, for each 3xk cells, the average modified Munsell

Section 8.4. Representation and Indexing 355

color is computed together with the five most frequently occurring colors.
Using a standard clustering algorithm they obtain k super cells resulting in
the partitioning of the color system.

In [58] various color invariant features are selected to construct color
pattern-cards. First, histograms are created in a standard way. Because the
color distributions of histograms depend on the scale of the recorded object
(e.g. distance object-camera), they define color pattern-cards as thresholded
histograms. In this way, color pattern-cards are scale-independent by indi-
cating whether a particular color model value is substantially present in an
image or not. Matching measures are defined, expressing similarity between
color pattern-cards, robust to a substantial amount of object occlusion and
cluttering. Based on the color pattern-cards and matching functions, a hash-
ing scheme is presented offering run-time image retrieval independent of the
number of images in the image database.

In the ImageRover system, proposed by [147], the L∗u∗v∗ color space is
used where each color axis has been split into 4 equally sized bins resulting
in a total of 64 bins. Further, [37] uses the L∗a∗b∗ system to compute the
average color and covariance matrix of each of the color channels. [158] uses
theHSV color space to obtain a partition into 144 bins giving more emphasis
on hue H than value V and saturation I. Further, [4] also focuses on the
HSV color space to extract regions of dominant colors. To obtain colors
which are perceptually the same but still being distinctive, [165] proposes
to partition the RGB color space into 220 subspaces. [36] computes the
average color describing a cell of a 4x4 grid which is superimposed on the
image. [149] uses the L∗a∗b∗ color space because the color space consists of
perceptually uniform colors, which better matches the human perception of
color. [65] roughly partitions the Munsell color space into eleven color zones.
Similar partitioning have been proposed by [29] and [24].

Another approach, proposed by [161], is the introduction of the cumu-
lative color histogram which generate more dense vectors. This enables to
cope with coarsely quantized color spaces. [186] proposes a variation of the
cumulative histograms by applying cumulative histograms to each sub-space.

Other approaches are based on the computation of moments of each color
channel. For example, [6] represents color regions by the first three moments
of the color models in the HSV -space. Instead of constructing histograms
from color invariants, [73], [45] propose the computation of illumination-
invariant moments from color histograms. In a similar way, [153] computes
the color features from small object regions instead of the entire object.

[85] proposes to use integrated wavelet decomposition. In fact, the color
features generate wavelet coefficients together with their energy distribu-

356 Content Based Image Retrieval: An Overview Chapter 8

tion among channels and quantization layers. Similar approaches based on
wavelets have been proposed by [175], [101].

All of this is in favor of the use of histograms. When very large data sets
are at stake, plain histogram comparison will saturate the discrimination.
For a 64-bin histogram, experiments show that for reasonable conditions,
the discriminatory power among images is limited to 25,000 images [160].
To keep up performance, in [125], a joint histogram is used providing dis-
crimination among 250,000 images in their database rendering 80% recall
among the best 10 for two shots from the same scene using simple features.
Other joint histograms add local texture or local shape [68], directed edges
[87], and local higher order structures [47].

Another alternative is to add a dimension representing the local distance.
This is the correlogram [80], defined as a 3- dimensional histogram where the
colors of any pair are along the first and second dimension and the spatial
distance between them along the third. The autocorrelogram defining the
distances between pixels of identical colors is found on the diagonal of the
correlogram. A more general version is the geometric histogram [1] with the
normal histogram, the correlogram and several alternatives as special cases.
This also includes the histogram of the triangular pixel values reported to
outperform all of the above as it contains more information.

A different view on accumulative features is to demand that all infor-
mation (or all relevant information) in the image is preserved in the feature
values. When the bit-content of the features is less than the original image,
this boils down to compression transforms. Many compression transforms
are known, but the quest is for transforms simultaneously suited as retrieval
features. As proper querying for similarity is based on a suitable distance
function between images, the transform has to be applied on a metric space.
And, the components of the transform have to correspond to semantically
meaningful characteristics of the image. And, finally, the transform should
admit indexing in compressed form yielding a big computational advantage
over having the image be untransformed first. [144] is just one of many
where the cosine-based JPEG-coding scheme is used for image retrieval. The
JPEG-transform fulfills the first and third requirement but fails on a lack
of semantics. In the MPEG-standard the possibility to include semantic de-
scriptors in the compression transform is introduced [27]. For an overview
of feature indexes in the compressed domain, see [108]. In [96], a wavelet
packet was applied to texture images and, for each packet, entropy and en-
ergy measures were determined and collected in a feature vector. In [83],
vector quantization was applied in the space of coefficients to reduce its di-
mensionality. This approach was extended to incorporate the metric of the

Section 8.4. Representation and Indexing 357

color space in [141]. In [86] a wavelet transform was applied independently to
the three channels of a color image, and only the sign of the most significant
coefficients is retained. In [3], a scheme is offered for a broad spectrum of
invariant descriptors suitable for application on Fourier, wavelets and splines
and for geometry and color alike.

8.4.3 Feature accumulation and image partitioning

The lack of spatial information for methods based on feature accumula-
tion might yield lower retrieval accuracy. As for general image databases,
a manual segmentation is not feasible due to the sensory gap, a simple ap-
proach is to divide images into smaller sub-images and then index them. This
is known as fixed partitioning. Other systems use a segmentation scheme,
prior to the actual image search, to partition each image into regions. Nearly
all region-based partitioning schemes use some kind of weak segmentation
decomposing the image into coherent regions rather than complete objects
(strong segmentation).

Fixed Partitioning

The simplest way is to use a fixed image decomposition in which an image is
partitioned into equally sized segments. The disadvantage of a fixed parti-
tioning is that blocks usually do not correspond with the visual content of an
image. For example, [65] splits an image into nine equally sized sub-images,
where each sub-region is represented by a color histogram. [67] segments
the image by a quadtree, and [99] uses a multi-resolution representation of
each image. [36] also uses a 4x4 grid to segment the image. [148] partitions
images into three layers, where the first layer is the whole image, the second
layer is a 3x3 grid and the third layer a 5x5 grid. A similar approach is
proposed by [107] where three levels of a quadtree is used to segment the
images. [37] proposes the use of inter-hierarchical distances measuring the
difference between color vectors of a region and its sub-segments. [20] uses
an augmented color histogram capturing the spatial information between
pixels together to the color distribution. In [59] the aim is to combine color
and shape invariants for indexing and retrieving images. Color invariant
edges are derived from which shape invariant features are computed. Then
computational methods are described to combine the color and shape in-
variants into a unified high-dimensional histogram for discriminatory object
retrieval. [81] proposes the use of color correlograms for image retrieval.
Color correlograms integrate the spatial information of colors by expressing
the probability that a pixel of color ci lies at a certain distance from a pixel

358 Content Based Image Retrieval: An Overview Chapter 8

of color cj . It is shown that color correlograms are robust to a change in
background, occlusion, and scale (camera zoom). [23] introduces the spatial
chromatic histograms, where for every pixel the percentage of pixels having
the same color is computed. Further, the spatial information is encoded by
baricenter of the spatial distribution and the corresponding deviation.

Region-based Partitioning

Segmentation is a computational method to assess the set of points in an
image which represent one object in the scene. As discussed before, many
different computational techniques exist, none of which is capable of han-
dling any reasonable set of real world images. However, in this case, weak
segmentation may be sufficient to recognize an object in a scene. Therefore,
in [12] an image representation is proposed providing a transformation from
the raw pixel data to a small set of image regions which are coherent in color
and texture space. This so-called Blobworld representation is based on seg-
mentation using the Expectation-Maximization algorithm on combined color
and texture features. In the Picasso system [13], a competitive learning clus-
tering algorithm is used to obtain a multiresolution representation of color
regions. In this way, colors are represented in the l∗u∗v∗ space through a set
of 128 reference colors as obtained by the clustering algorithm. [63] proposes
a method based on matching feature distributions derived from color ratio
gradients. To cope with object cluttering, region-based texture segmentation
is applied on the target images prior to the actual image retrieval process.
[26] segments the image first into homogeneous regions by split and merge
using a color distribution homogeneity condition. Then, histogram inter-
section is used to express the degree of similarity between pairs of image
regions.

8.4.4 Salient features

As the information of the image is condensed into just a limited number of
feature values, the information should be selected with precision for greatest
saliency and proven robustness. That is why saliency in [103] is defined as
the special points, which survive longest when gradually blurring the image
in scale space. Also in [137] lifetime is an important selection criterion for
salient points in addition to wiggliness, spatial width, and phase congruency.
To enhance the quality of salient descriptions, in [170] invariant and salient
features of local patches have been considered. In each case, the image is
summarized in a list of conspicuous points. In [143] salient and invariant
transitions in gray value images are recorded. Similarly, in [59, 54], photo-

Section 8.4. Representation and Indexing 359

metric invariance is the leading principle in summarizing the image in salient
transitions in the image. Salient feature calculations lead to sets of regions
or points with known location and feature values capturing their salience.

In [16], first the most conspicuous homogeneous regions in the image are
derived and mapped into feature space. Then, expectation- maximization
[35] is used to determine the parameters of a mixture of Gaussians to model
the distribution of points into the feature space. The means and covariance
matrices of these Gaussians, projected on the image plane, are represented
as ellipsoids characterized by their center x, their area, eccentricity, and
direction. The average values of the color and texture descriptions inside the
ellipse are also stored.

Various color image segmentation methods have been proposed which
account for the image formation process, see for instance the work collected
by Wolff, Shafer and Healey [181]. [150] presented the dichromatic reflection
model, a physical model of reflection which states that two distinct types of
reflection - surface and body reflection - occur, and that each type can be
decomposed into a relative spectral distribution and a geometric scale fac-
tor. [93] developed a color segmentation algorithm based on the dichromatic
reflection model. The method is based on evaluating characteristic shapes of
clusters in red-green-blue (RGB) space followed by segmentation indepen-
dent of the object’s geometry, illumination and highlights. To achieve robust
image segmentation, however, surface patches of objects in view must have a
rather broad distribution of surface normals which may not hold for objects
in general. [10] developed a similar image segmentation method using the
H-S color space instead of the RGB-color space. [73] proposed a method to
segment images on the basis of normalized color. However, [92] showed that
normalized color and hue are singular at some RGB values and unstable at
many others.

8.4.5 Shape and object features

The theoretically best way to enhance object-specific information contained
in images is by segmenting the object in the image. But, as discussed above,
the brittleness of segmentation algorithms prevents the use of automatic
segmentation in broad domains. And, in fact, in many cases it is not nec-
essary to know exactly where an object is in the image as long as one can
identify the presence of the object by its unique characteristics. When the
domain is narrow a tailored segmentation algorithm may be needed more,
and fortunately also be better feasible.

The object internal features are largely identical to the accumulative fea-

360 Content Based Image Retrieval: An Overview Chapter 8

tures, now computed over the object area. They need no further discussion
here.

An abundant comparison of shape for retrieval can be found in [113],
evaluating many features on a 500-element trademark data set. Straightfor-
ward features of general applicability include Fourier features and moment
invariants of the object this time, sets of consecutive boundary segments, or
encoding of contour shapes [40].

For retrieval, we need a shape representation that allows a robust mea-
surement of distances in the presence of considerable deformations. Many
sophisticated models widely used in computer vision often prove too brittle
for image retrieval. On the other hand, the (interactive) use of retrieval
makes some mismatch acceptable and, therefore precision can be traded for
robustness and computational efficiency.

More sophisticated methods include elastic matching and multi- reso-
lution representation of shapes. In elastic deformation of image portions
[34, 123] or modal matching techniques [145] image patches are deformed
to minimize a cost functional that depends on a weighed sum of the mis-
match of the two patches and on the deformation energy. The complexity of
the optimization problem depends on the number of points on the contour.
Hence, the optimization is computationally expensive and this, in spite of
the greater precision of these methods, has limited their diffusion in image
databases.

Multi-scale models of contours have been studied as a representation for
image databases in [118]. Contours were extracted from images and progres-
sively smoothed by dividing them into regions of constant sign of the second
derivative and progressively reducing the number of such regions. At the final
step, every contour is reduced to an ellipsoid which could be characterized
by some of the features in [47]. A different view on multi-resolution shape is
offered in [98], where the contour is sampled by a polygon, and then simpli-
fied by removing points from the contour until a polygon survives selecting
them on perceptual grounds. When computational efficiency is at stake an
approach for the description of the object boundaries is found in [189] where
an ordered set of critical points on the boundary are found from curvature
extremes. Such sets of selected and ordered contour points are stored in [112]
relative to the basis spanned by an arbitrary pair of the points. All point
pairs are used as a basis to make the redundant representation geometrically
invariant, a technique similar to [182] for unordered point sets.

For retrieval of objects in 2D-images of the 3D-worlds, a viewpoint in-
variant description of the contour is important. A good review of global
shape invariants is given in [138].

Section 8.4. Representation and Indexing 361

8.4.6 Structure and lay-out

When feature calculations are available for different entities in the image,
they may be stored with a relationship between them. Such a structural fea-
ture set may contain feature values plus spatial relationships, a hierarchically
ordered set of feature values, or relationships between point sets or object
sets. Structural and layout feature descriptions are captured in a graph,
hierarchy or any other ordered set of feature values and their relationships.

To that end, in [111, 49] lay-out descriptions of an object are discussed in
the form of a graph of relations between blobs. A similar lay-out description
of an image in terms of a graph representing the spatial relations between
the objects of interest was used in [128] for the description of medical im-
ages. In [51], a graph is formed of topological relationships of homogeneous
RGB-regions. When selected features and the topological relationships are
viewpoint invariant, the description is viewpoint invariant, but the selection
of the RGB-representation as used in the paper will only suit that purpose
to a limited degree. The systems in [78, 157] studies spatial relationships
between regions each characterized by locations, size and features. In the
later system, matching is based on the 2D-string representation founded by
Chang [17]. For a narrow domain, in [128, 132] the relevant element of a
medical X-ray image are characterized separately and joined together in a
graph that encodes their spatial relations.

Starting from a shape description, the authors in [98] decompose an ob-
ject into its main components making the matching between images of the
same object easier. Automatic identification of salient regions in the image
based on non-parametric clustering followed by decomposition of the shapes
found into limbs is explored in [50].

8.4.7 Discussion

General content-based retrieval systems have dealt with segmentation brit-
tleness in a few ways. First, a weaker version of segmentation has been
introduced in content-based retrieval. In weak segmentation the result is a
homogeneous region by some criterion, but not necessarily covering the com-
plete object silhouette. It results in a fuzzy, blobby description of objects
rather than a precise segmentation. Salient features of the weak segments
capture the essential information of the object in a nutshell. The extreme
form of the weak segmentation is the selection of a salient point set as the
ultimately efficient data reduction in the representation of an object, very
much like the focus- of-attention algorithms for an earlier age. Only points
on the interior of the object can be used for identifying the object, and con-

362 Content Based Image Retrieval: An Overview Chapter 8

spicuous points at the borders of objects have to be ignored. Little work
has been done how to make the selection. Weak segmentation and salient
features are a typical innovation of content-based retrieval. It is expected
that salience will receive much attention in the further expansion of the field
especially when computational considerations will gain in importance.

The alternative is to do no segmentation at all. Content-based retrieval
has gained from the use of accumulative features, computed on the global
image or partitionings thereof disregarding the content, the most notable
being the histogram. Where most attention has gone to color histograms,
histograms of local geometric properties and texture are following. To com-
pensate for the complete loss of spatial information, recently the geometric
histogram was defined with an additional dimension for the spatial layout
of pixel properties. As it is a superset of the histogram an improved dis-
criminability for large data sets is anticipated. When accumulative features
they are calculated from the central part of a photograph may be very ef-
fective in telling them apart by topic but the center does not always reveals
the purpose. Likewise, features calculated from the top part of a picture
may be effective in telling indoor scenes from outdoor scenes, but again this
holds to a limited degree. A danger of accumulative features is their inabil-
ity to discriminate among different entities and semantic meanings in the
image. More work on semantic-driven groupings will increase the power of
accumulative descriptors to capture the content of the image.

Structural descriptions match well with weak segmentation, salient re-
gions and weak semantics. One has to be certain that the structure is within
one object and not an accidental combination of patches which have no mean-
ing in the object world. The same brittleness of strong segmentation lurks
here. We expect a sharp increase in the research of local, partial or fuzzy
structural descriptors for the purpose of content-based retrieval especially of
broad domains.

8.5 Similarity and Search

When the information from images is captured in a feature set, there are
two possibilities for endowing them with meaning: one derives an unilateral
interpretation from the feature set or one compares the feature set with the
elements in a given data set on the basis of a similarity function.

8.5.1 Semantic interpretation

In content-based retrieval it is useful to push the semantic interpretation of
features derived from the image as far as one can.

Section 8.5. Similarity and Search 363

Semantic features aim at encoding interpretations of the image
which may be relevant to the application.

Of course, such interpretations are a subset of the possible interpretations of
an image. To that end, consider a feature vector F derived from an image
i. For given semantic interpretations z from the set of all interpretations Z,
a strong semantic feature with interpretation zj would generate a P (z|F) =
δ(z−zj). If the feature carries no semantics, it would generate a distribution
P (z|F) = P (z) independent of the value of the feature. In practice, many
feature types will generate a probability distribution that is neither a pulse
nor independent of the feature value. This means that the feature value
skews the interpretation of the image, but does not determine it completely.

Under the umbrella weak semantics we collect the approaches that try
to combine features in some semantically meaningful interpretation. Weak
semantics aims at encoding in a simple and approximate way a subset of
the possible interpretations of an image that are of interest in a given appli-
cation. As an example, the system in [28] uses color features derived from
Itten’s color theory to encode the semantics associated to color contrast and
harmony in art application.

In the MAVIS2-system [90] data are considered at four semantic levels,
embodied in four layers called the raw media, the selection, the selection
expression and conceptual layers. Each layer encodes information at an
increasingly symbolic level. Agents are trained to create links between fea-
tures, feature signatures at the selection layer, inter-related signatures at the
selection expression layer, and concept (expressed as textual labels) at the
conceptual layer. In addition to the vertical connections, the two top layers
have intra-layer connections that measure the similarity between concepts
at that semantic level and contribute to the determination of the similarity
between elements at the lower semantic level.

8.5.2 Similarity between features

A different road to assign a meaning to an observed feature set, is to compare
a pair of observations by a similarity function. While searching for a query
image iq(x) among the elements of the data set of images, id(x), knowledge
of the domain will be expressed by formulating a similarity measure Sq,d
between the images q and d on the basis of some feature set. The similarity
measure depends on the type of features.

At its best use, the similarity measure can be manipulated to represent
different semantic contents; images are then grouped by similarity in such
a way that close images are similar with respect to use and purpose. A

364 Content Based Image Retrieval: An Overview Chapter 8

common assumption is that the similarity between two feature vectors F
can be expressed by a positive, monotonically non increasing function. This
assumption is consistent with a class of psychological models of human sim-
ilarity perception [152, 142], and requires that the feature space be metric.
If the feature space is a vector space, d often is a simple Euclidean distance,
although there is indication that more complex distance measures might be
necessary [142]. This similarity model was well suited for early query by
example systems, in which images were ordered by similarity with one ex-
ample.

A different view sees similarity as an essentially probabilistic concept.
This view is rooted in the psychological literature [8], and in the context of
content-based retrieval it has been proposed, for example, in [116].

Measuring the distance between histograms has been an active line of
research since the early years of content-based retrieval, where histograms
can be seen as a set of ordered features. In content-based retrieval, his-
tograms have mostly been used in conjunction with color features, but there
is nothing against being used in texture or local geometric properties.

Various distance functions have been proposed. Some of these are gen-
eral functions such as Euclidean distance and cosine distance. Others are
specially designed for image retrieval such as histogram intersection [162].
The Minkowski-form distance for two vectors or histograms �k and �l with
dimension n is given by:

DkM (�k,�l) = (
n∑
i=1

|ki − li|ρ)1/ρ (8.1)

The Euclidean distance between two vectors �k and �l is defined as follows:

DE(�k,�l) =

√√√√ n∑
i=1

(ki − li)2 (8.2)

The Euclidean distance is an instance of the Minkowski distance with k = 2.
The cosine distance compares the feature vectors of two images and re-

turns the cosine of the angle between the two vectors:

DC(�k,�l) = 1− cosφ (8.3)

where φ is the angle between the vectors �k and �l. When the two vectors
have equal directions, the cosine will add to one. The angle φ can also be
described as a function of �k and �l:

Section 8.5. Similarity and Search 365

cosφ =
�k ·�l
||�k|| ||�l||

(8.4)

The cosine distance is well suited for features that are real vectors and not
a collection of independent scalar features.

The histogram intersection distance compares two histograms �k and �l of
n bins by taking the intersection of both histograms:

DH(�k,�l) = 1−
∑n

i=1 min(ki, li)∑n
i=1 ki

(8.5)

When considering images of different sizes, this distance function is not a
metric due to DH(�k,�l) �= DH(�l,�k). In order to become a valid distance
metric, histograms need to be normalized first:

�kn =
�k∑n
i ki

(8.6)

For normalized histograms (total sum of 1), the histogram intersection is
given by:

DnH(�kn,�ln) = 1−
n∑
i

|kni − lni | (8.7)

This is again the Minkowski-form distance metric with k = 1. Histogram
intersection has the property that it allows for occlusion, i.e. when an object
in one image is partly occluded, the visible part still contributes to the
similarity [60], [59].

Alternative, histogram matching is proposed defined by normalized cross
correlation:

Dx(�k,�l) =
∑n

i=1 kili∑n
i=1 k

2
i

(8.8)

The normalized cross correlation has a maximum of unity that occurs if and
only if �k exactly matches �l.

In the QBIC system [42], the weighted Euclidean distance has been used
for the similarity of color histograms. In fact, the distance measure is based
on the correlation between histograms �k and �l:

DQ(�k,�l) = (ki − li)tA(ki − lj) (8.9)

366 Content Based Image Retrieval: An Overview Chapter 8

Further, A is a weight matrix with term aij expressing the perceptual dis-
tance between bin i and j.

The average color distance has been proposed by [70] to obtain a simpler
low-dimensional distance measure:

DHaf(
�k,�l) = (kavg − lavg)t(kavg − lavg) (8.10)

where kavg and lavg are 3x1 average color vectors of �k and �l.
As stated before, for broad domains, a proper similarity measure should

be robust to object fragmentation, occlusion and clutter by the presence of
other objects in the view. In [58], various similarity function were compared
for color-based histogram matching. From these results, it is concluded that
retrieval accuracy of similarity functions depend on the presence of object
clutter in the scene. The histogram cross correlation provide best retrieval
accuracy without any object clutter (narrow domain). This is due to the
fact that this similarity functions is symmetric and can be interpreted as the
number of pixels with the same values in the query image which can be found
present in the retrieved image and vice versa. This is a desirable property
when one object per image is recorded without any object clutter. In the
presence of object clutter (broad domain), highest image retrieval accuracy
is provided by the quadratic similarity function (e.g. histogram intersection).
This is because this similarity measure count the number of similar hits and
hence are insensitive to false positives.

Finally, the natural measure to compare ordered sets of accumulative
features is non-parametric test statistics. They can be applied to the dis-
tributions of the coefficients of transforms to determine the likelihood that
two samples derive from the same distribution [14, 131]. They can also be
applied to compare the equality of two histograms and all variations thereof.

8.5.3 Similarity of object outlines

In [176] a good review is given of methods to compare shapes directly af-
ter segmentation into a set of object points t(x) without an intermediate
description in terms of shape features.

For shape comparison, the authors make a distinction between trans-
forms, moments, deformation matching, scale space matching and dissimi-
larity measurement. Difficulties for shape matching based on global trans-
forms are the inexplicability of the result, and the brittleness for small de-
viations. Moments, specifically their invariant combinations, have been fre-
quently used in retrieval [94]. Matching a query and an object in the data
file can be done along the ordered set of eigen shapes [145], or with elastic

Section 8.5. Similarity and Search 367

matching [34, 11]. Scale space matching is based on progressively simplifying
the contour by smoothing [118]. By comparing the signature of annihilated
zero crossings of the curvature, two shapes are matched in a scale and ro-
tation invariant fashion. A discrete analogue can be found in [98] where
points are removed from the digitized contour on the basis of perceptually
motivated rules.

When based on a metric, dissimilarity measures will render an ordered
range of deviations, suited for a predictable interpretation. In [176], an
analysis is given for the Hausdorff and related metrics between two shapes
on robustness and computational complexity. The directed Hausdorff metric
is defined as the maximum distance between a point on query object q and
its closest counterpart on d. The partial Hausdorff metric, defined as the
k-th maximum rather than the absolute maximum, is used in [71] for affine
invariant retrieval.

8.5.4 Similarity of object arrangements

The result of a structural description is a hierarchically ordered set of feature
valuesH. In this section we consider the similarity of two structural or layout
descriptions.

Many different techniques have been reported for the similarity of feature
structures. In [180, 82] a Bayesian framework is developed for the matching
of relational attributed graphs by discrete relaxation. This is applied to line
patterns from aerial photographs.

A metric for the comparison of two topological arrangements of named
parts, applied to medical images, is defined in [166]. The distance is derived
from the number of edit-steps needed to nullify the difference in the Voronoi-
diagrams of two images.

In [18], 2D-strings describing spatial relationships between objects are
discussed, and much later reviewed in [185]. From such topological rela-
tionships of image regions, in [79] a 2D- indexing is built in trees of symbol
strings each representing the projection of a region on the co-ordinate axis.
The distance between the Hq and Hd is the weighed number of editing op-
erations required to transform the one tree to the other. In [151], a graph is
formed from the image on the basis of symmetry as appears from the medial
axis. Similarity is assessed in two stages via graph-based matching, followed
by energy-deformation matching.

In [51], hierarchically ordered trees are compared for the purpose of re-
trieval by rewriting them into strings. A distance-based similarity measure
establishes the similarity scores between corresponding leaves in the trees.

368 Content Based Image Retrieval: An Overview Chapter 8

At the level of trees, the total similarity score of corresponding branches is
taken as the measure for (sub)tree-similarity. From a small size experiment,
it is concluded that hierarchically ordered feature sets are more efficient
than plain feature sets, with projected computational shortcuts for larger
data sets.

8.5.5 Similarity of salient features

Salient features are used to capture the information in the image in a limited
number of salient points. Similarity between images can then be checked in
several different ways.

In the first place, the color, texture or local shape characteristics may
be used to identify the salient points of the data as identical to the salient
points of the query.

A measure of similarity between the feature values measured of the blobs
resulting from weak segmentation consists of a Mahalanobis distance between
the feature vector composed of the color, texture, position, area, eccentricity,
and direction of the two ellipses [16].

In the second place, one can store all salient points from one image in a
histogram on the basis of a few characteristics, such as color on the inside
versus color on the outside. The similarity is then based on the group-wise
presence of enough similar points [59]. The intersection model has been
used in image retrieval in [153], while keeping access to their location in the
image by back-projection [162]. Further, a weight per dimension may favor
the appearance of some salient features over another. See also [77] for a
comparison with correlograms.

A third alternative for similarity of salient points is to concentrate only
on the spatial relationships among the salient points sets. In point by point
based methods for shape comparison, shape similarity is studied in [89],
where maximum curvature points on the contour and the length between
them are used to characterize the object. To avoid the extensive computa-
tions, one can compute the algebraic invariants of point sets, known as the
cross-ratio. Due to their invariant character, these measures tend to have
only a limited discriminatory power among different objects. A more recent
version for the similarity of nameless point-sets is found in geometric hashing
[182] where each triplet spans a base for the remaining points of the object.
An unknown object is compared on each triplet to see whether enough sim-
ilarly located points are found. Geometric hashing, though attractive in its
concept, is too computationally expensive to be used on the very large data
sets of image retrieval due to the anonymity of the points. Similarity of two

Section 8.6. Interaction and Learning 369

points sets given in a row-wise matrix is discussed in [179].

8.5.6 Discussion

Whenever the image itself permits an obvious interpretation, the ideal content-
based system should employ that information. A strong semantic interpre-
tation occurs when a sign can be positively identified in the image. This is
rarely the case due to the large variety of signs in a broad class of images
and the enormity of the task to define a reliable detection algorithm for each
of them. Weak semantics rely on inexact categorization induced by simi-
larity measures, preferably online by interaction. The categorization may
agree with semantic concepts of the user, but the agreement is in general
imperfect. Therefore, the use of weak semantics is usually paired with the
ability to gear the semantics of the user to his or her needs by interpretation.
Tunable semantics is likely to receive more attention in the future especially
when data sets grow big.

Similarity is an interpretation of the image based on the difference with
another image. For each of the feature types a different similarity measure is
needed. For similarity between feature sets, special attention has gone to es-
tablishing similarity among histograms due to their computational efficiency
and retrieval effectiveness.

Similarity of shape has received a considerable attention in the context
of object-based retrieval. Generally, global shape matching schemes break
down when there is occlusion or clutter in the scene. Most global shape
comparison methods implicitly require a frontal viewpoint against a clear
enough background to achieve a sufficiently precise segmentation. With the
recent inclusion of perceptually robust points in the shape of objects, an
important step forward has been made.

Similarity of hierarchically ordered descriptions deserves considerable at-
tention, as it is one mechanism to circumvent the problems with segmenta-
tion while maintaining some of the semantically meaningful relationships in
the image. Part of the difficulty here is to provide matching of partial distur-
bances in the hierarchical order and the influence of sensor-related variances
in the description.

8.6 Interaction and Learning

8.6.1 Interaction on a semantic level

In [78], knowledge-based type abstraction hierarchies are used to access im-
age data based on context and a user profile, generated automatically from

370 Content Based Image Retrieval: An Overview Chapter 8

cluster analysis of the database. Also in [19], the aim is to create a very large
concept-space inspired by the thesaurus-based search from the information
retrieval community. In [117] a linguistic description of texture patch visual
qualities is given, and ordered in a hierarchy of perceptual importance on
the basis of extensive psychological experimentation.

A more general concept of similarity is needed for relevance feedback, in
which similarity with respect to an ensemble of images is required. To that
end, in [43] more complex relationships are presented between similarity and
distance functions defining a weighted measure of two simpler similarities
S(s, S1, S2) = w1 exp(−d(S1, s))+w2 exp(−d(S2, s)). The purpose of the bi-
referential measure is to find all regions that are similar to two specified query
points, an idea that generalizes to similarity queries given multiple examples.
The approach can be extended with the definition of a complete algebra of
similarity measures with suitable composition operators [43, 38]. It is then
possible to define operators corresponding to the disjunction, conjunction,
and negation of similarity measures, much like traditional databases. The
algebra is useful for the user to manipulate the similarity directly as a means
to express characteristics in specific feature values.

8.6.2 Classification on a semantic level

To further enhance the performance of content-based retrieval systems, im-
age classification has been proposed to group images into semantically mean-
ingful classes [171], [172], [184], [188]. The advantage of these classification
schemes is that simple, low-level image features can be used to express se-
mantically meaningful classes. Image classification is based on unsupervised
learning techniques such as clustering, Self-Organization Maps (SOM) [188]
and Markov models [184]. Further, supervised grouping can be applied. For
example, vacation images have been classified based on a Bayesian frame-
work into city vs. landscape by supervised learning techniques [171], [172].
However, these classification schemes are entirely based on pictorial informa-
tion. Aside from image retrieval ([44], [146]), very little attention has been
paid on using both textual and pictorial information for classifying images
on the Web. This is even more surprisingly if one realizes that images on
Web pages are usually surrounded by text and discriminatory HTML tags
such as IMG, and the HTML fields SRC and ALT. Hence, WWW images
have intrinsic annotation information induced by the HTML structure. Con-
sequently, the set of images on the Web can be seen as an annotated image
set.

Section 8.6. Interaction and Learning 371

8.6.3 Learning

As data sets grow big and the processing power matches that growth, the
opportunity arises to learn from experience. Rather than designing, imple-
menting and testing an algorithm to detect the visual characteristics for each
different semantic term, the aim is to learn from the appearance of objects
directly.

For a review on statistical pattern recognition, see [2]. In [174] a variety
of techniques is discussed treating retrieval as a classification problem.

One approach is principal component analysis over a stack of images
taken from the same class z of objects. This can be done in feature space [120]
or at the level of the entire image, for examples faces in [115]. The analysis
yields a set of eigenface images, capturing the common characteristics of a
face without having a geometric model.

Effective ways to learn from partially labeled data have recently been
introduced in [183], [32] both using the principle of transduction [173]. This
saves the effort of labeling the entire data set, infeasible and unreliable as it
grows big.

In [169] a very large number of pre-computed features is considered, of
which a small subset is selected by boosting [2] to learn the image class.

An interesting technique to bridge the gap between textual and pictorial
descriptions to exploit information at the level of documents is borrowed
from information retrieval, called latent semantic indexing [146, 187]. First
a corpus is formed of documents (in this case images with a caption) from
which features are computed. Then by singular value decomposition, the
dictionary covering the captions is correlated with the features derived from
the pictures. The search is for hidden correlations of features and captions.

8.6.4 Discussion

Learning computational models for semantics is an interesting and relatively
new approach. It gains attention quickly as the data sets and the machine
power grow big. Learning opens up the possibility to an interpretation of
the image without designing and testing a detector for each new notion. One
such approach is appearance-based learning of the common characteristics of
stacks of images from the same class. Appearance-based learning is suited for
narrow domains. For the success of the learning approach there is a trade-of
between standardizing the objects in the data set and the size of the data
set. The more standardized the data are the less data will be needed, but,
on the other hand, the less broadly applicable the result will be. Interesting
approaches to derive semantic classes from captions, or a partially labeled

372 Content Based Image Retrieval: An Overview Chapter 8

or unlabeled data set have been presented recently, see above.

8.7 Conclusion

In this chapter, we have presented an overview on the theory, techniques and
applications of content-based image retrieval. We took patterns of use and
computation as the pivotal building blocks of our survey.

From a scientific perspective the following trends can be distinguished.
First, large scale image databases are being created. Obviously, large scale
datasets provide different image mining problems than rather small, narrow-
domain datasets. Second, research is directed towards the integration of
different information modalities such as text, pictorial, and motion. Third,
relevance feedback will be and still is an important issue. Finally, invariance
is necessary to get to general-purpose image retrieval.

From a societal/commercial perspective, it is obvious that there will be
enormous increase in the amount of digital images used in various commu-
nication frameworks such as promotion, sports, education, and publishing.
Further, digital images have become one of the major multimedia informa-
tion sources on Internet, where the amount of image/video on the Web is
growing each day. Moreover, with the introduction of the new generation
cell-phones, a tremendous market will be opened for the storage and man-
agement of pictorial data. Due to this tremendous amount of pictorial infor-
mation, image mining and search tools are required as indexing, searching
and assessing the content of large scale image databases is inherently a time-
consuming operation when done by human operators. Therefore, product
suites for content-based video indexing and searching is not only necessary
but essential for future content owners in the field of entertainment, news,
education, video communication and distribution.

We hope that from this review that you get the picture in this new
pictorial world...

Bibliography

[1] R.K. Srihari A. Rao and Z. Zhang. Geometric histogram: A distribution of
geometric configurations of color subsets. In Internet Imaging, volume 3,964,
pages 91–101, 2000.

[2] R.P.W. Duin A.K. Jain and J. Mao. Statistical pattern recognition: A review.
IEEE Transactions on PAMI, 22(1):4 – 37, 2000.

[3] R. Alferez and Y-F Wang. Geometric and illumination invariants for object
recognition. IEEE Transactions on PAMI, 21(6):505 – 536, 1999.

Bibliography 373

[4] D. Androutsos, K. N. Plataniotis, and A. N. Venetsanopoulos. A novel vector-
based approach to color image retrieval using a vector angular-based distance
measure. Image Understanding, 75(1-2):46–58, 1999.

[5] E. Angelopoulou and L. B. Wolff. Sign of gaussian curvature from curve orien-
tation in photometric space. IEEE Transactions on PAMI, 20(10):1056 – 1066,
1998.

[6] A.R. Appas, A.M. Darwish, A.I. El-Desouki, and S.I. Shaheen. Image indexing
using composite regional color channel features. In IS&T/SPIE Symposium on
Electronic Imaging: Storage and Retrieval for Image and Video Databases VII,
pages 492–500, 1999.

[7] L. Armitage and P. Enser. Analysis of user need in image archives. Journal of
Information Science, 23(4):287–299, 1997.

[8] F.G. Ashby and N. A. Perrin. Toward a unified theory of similarity and recog-
nition. Psychological Review, 95(1):124–150, 1988.

[9] D. Ashlock and J. Davidson. Texture synthesis with tandem genetic algorithms
using nonparametric partially ordered markov models. In Proceedings of the
Congress on Evolutionary Computation (CEC99), pages 1157–1163, 1999.

[10] R. Bajcsy, S. W. Lee, and A. Leonardis. Color image segmentation with detec-
tion of highlights and local illumination induced by inter-reflections. In IEEE
10th ICPR’90, pages 785–790, Atlantic City, NJ, 1990.

[11] R. Basri, L. Costa, D. Geiger, and D. Jacobs. Determining the similarity of
deformable shapes. Vision Research, 38(15-16):2365–2385, 1998.

[12] S. Belongie, C. Carson, H. Greenspan, and J. Malik. Color- and texture-based
image segmentation using em and its application to content-based image re-
trieval. In Sixth International Conference on Computer Vision, 1998.

[13] A. Del Bimbo, M. Mugnaini, P. Pala, and F. Turco. Visual querying by color
perceptive regions. Pattern Recognition, 31(9):1241–1253, 1998.

[14] J. De Bonet and P. Viola. Texture recognition using a non-parametric multi-
scale statistical model. In Computer Vision and Pattern Recognition, 1998.

[15] H. Burkhardt and S. Siggelkow. Invariant features for discriminating between
equivalence classes. In I. Pitas et al., editor, Nonlinear model-based image video
processing and analysis. John Wiley and Sons, 2000.

[16] C. Carson, S. Belongie, H. Greenspan, and J. Malik. Region-based image query-
ing. In Proceedings of the IEEE International Workshop on Content-Based
Access of Image and Video Databases, 1997.

[17] S. K. Chang and A. D. Hsu. Image-information systems - where do we go from
here. IEEE Transactions on Knowledge and Data Engineering, 4(5):431 – 442,
1992.

[18] S. K. Chang, Q. Y. Shi, and C. W. Yan. Iconic indexing by 2d strings. IEEE
Transactions on PAMI, 9:413 – 428, 1987.

[19] H. Chen, B. Schatz, T. Ng, J. Martinez, A. Kirchhoff, and C. Lim. A par-
allel computing approach to creating engineering concept spaces for semantic
retrieval: the Illinois digital library initiative project. IEEE Transactions on
PAMI, 18(8):771 – 782, 1996.

374 Content Based Image Retrieval: An Overview Chapter 8

[20] Y. Chen and E.K. Wong. Augmented image histogram for image and video
similarity search. In IS&T/SPIE Symposium on Electronic Imaging: Storage
and Retrieval for Image and Video Databases VII, pages 523–429, 1999.

[21] H. Choi and R. Baraniuk. Multiscale texture segmentation using wavelet-
domain hidden markov models. In Conference Record of Thirty-Second Asilo-
mar Conference on Signals, Systems and Computers, volume 2, pages 1692–
1697, 1998.

[22] C. K. Chui, L. Montefusco, and L. Puccio. Wavelets : theory, algorithms, and
applications. Academic Press, San Diego, 1994.

[23] L. Cinque, S. Levialdi, and A. Pellicano. Color-based image retrieval using
spatial-chromatic histograms. In IEEE Multimedia Systems, volume 2, pages
969–973, 1999.

[24] G. Ciocca and R. Schettini. A relevance feedback mechanism for content-based
image retrieval. Information Processing and Management, 35:605–632, 1999.

[25] G. Ciocca and R Schettini. Using a relevance feedback mechanism to improve
content-based image retrieval. In Proceedings of Visual Information and Infor-
mation Systems, pages 107–114, 1999.

[26] C. Colombo, A. Rizzi, and I. Genovesi. Histogram families for color-based
retrieval in image databases. In Proc. ICIAP’97, 1997.

[27] P. Correira and F. Pereira. The role of analysis in content-based video coding
and indexing. Signal Processing, 66(2):125 – 142, 1998.

[28] J.M. Corridoni, A. del Bimbo, and P. Pala. Image retrieval by color semantics.
Multimedia systems, 7:175 – 183, 1999.

[29] I. J. Cox, M. L. Miller, T. P. Minka, and T. V. Papathomas. The bayesian
image retrieval system, PicHunter: theory, implementation, and pychophysical
experiments. IEEE Transactions on Image Processing, 9(1):20 – 37, 2000.

[30] G. Csurka and O. Faugeras. Algebraic and geometrical tools to compute pro-
jective and permutation invariants. IEEE Transactions on PAMI, 21(1):58 –
65, 1999.

[31] J. F. Cullen, J. J. Hull, and P. E. Hart. Document image database retrieval
and browsing using texture analysis. In Proceedings of the fourth international
conference on document analysis and recognition, Ulm, Germany, pages 718–
721, 1997.

[32] M.-H. Yang D. Roth and N. Ahuja. Learning to recognize objects. In Computer
Vision and Pattern Recognition, pages 724–731, 2000.

[33] I. Daubechies. Ten lectures on wavelets. Society for Industrial and Applied
Mathematics, Philadelphia, 1992.

[34] A. del Bimbo and P. Pala. Visual image retrieval by elastic matching of user
sketches. IEEE Transactions on PAMI, 19(2):121–132, 1997.

[35] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete
data via the em algorithm. Journal of the Royal Statistical Society, 39(1):1–38,
1977.

[36] E. Di Sciascio Di, G. Mingolla, and M. Mongielle. Content-based image retrieval
over the web using query by sketch and relevance feedback. In VISUAL99, pages
123–30, 1999.

Bibliography 375

[37] A. Dimai. Spatial encoding using differences of global features. In IS&T/SPIE
Symposium on Electronic Imaging: Storage and Retrieval for Image and Video
Databases IV, pages 352–360, 1997.

[38] D. Dubois and H. Prade. A review of fuzzy set aggregation connectives. Infor-
mation Sciences, 36:85–121, 1985.

[39] J.P. Eakins, J.M. Boardman, and M.E. Graham. Similarity retrieval of trade-
mark images. IEEE Multimedia, 5(2):53–63, 1998.

[40] C. Esperanca and H. Samet. A differential code for shape representation in im-
age database applications. In Proceedings of the IEEE International Conference
on Image Processing Santa Barbara, CA, USA, 1997.

[41] L.M. Kaplan et. al. Fast texture database retrieval using extended fractal
features. In I. Sethi and R. Jain, editors, Proceedings of SPIE vol. 3312, Storage
and Retrieval for Image and Video Databases, VI, pages 162–173, 1998.

[42] M. Flicker et al. Query by image and video content: the qbic system. IEEE
Computer, 28(9), 1995.

[43] R. Fagin. Combining fuzzy information from multiple systems. J Comput Syst
Sci, 58(1):83–99, 1999.

[44] J. Favella and V. Meza. Image-retrieval agent: Integrating image content and
text. 1999.

[45] G. D. Finlayson, S. S. Chatterjee, and B. V. Funt. Color angular indexing. In
ECCV96, pages 16–27, 1996.

[46] G.D. Finlayson, M.S. Drew, and B.V. Funt. Spectral sharpening: Sensor trans-
formation for improved color constancy. JOSA, 11:1553–1563, 1994.

[47] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom,
M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker. Query
by image and video content: the QBIC system. IEEE Computer, 1995.

[48] D. Forsyth. Novel algorithm for color constancy. International Journal of
Computer Vision, 5:5–36, 1990.

[49] D.A. Forsyth and M.M. Fleck. Automatic detection of human nudes. Interna-
tional Journal of Computer Vision, 32(1):63–77, 1999.

[50] G. Frederix and E.J. Pauwels. Automatic interpretation based on robust seg-
mentation and shape extraction. In D.P. Huijsmans and A.W.M. Smeulders,
editors, Proceedings of Visual 99, International Conference on Visual Infor-
mation Systems, volume 1614 of Lecture Notes in Computer Science, pages
769–776, 1999.

[51] C-S. Fuh, S-W Cho, and K. Essig. Hierarchical color image region segmenta-
tion for content-based image retrieval system. IEEE Transactions on Image
Processing, 9(1):156 – 163, 2000.

[52] B.V. Funt and M.S. Drew. Color constancy computation in near-mondrian
scenes. In Computer Vision and Pattern Recognition, pages 544–549, 1988.

[53] B.V. Funt and G.D. Finlayson. Color constant color indexing. IEEE Transac-
tions on PAMI, 17(5):522–529, 1995.

[54] J. M. Geusebroek, A. W. M. Smeulders, and R. van den Boomgaard. Measure-
ment of color invariants. In Computer Vision and Pattern Recognition. IEEE
Press, 2000.

376 Content Based Image Retrieval: An Overview Chapter 8

[55] Th. Gevers. Color based image retrieval. In Multimedia Search. Springer Verlag,
2000.

[56] Th. Gevers. Image segmentation and matching of color-texture objects. IEEE
Trans. on Multimedia, 4(4), 2002.

[57] Th. Gevers and A. W. M. Smeulders. Color based object recognition. Pattern
recognition, 32(3):453 – 464, 1999.

[58] Th. Gevers and A. W. M. Smeulders. Content-based image retrieval by
viewpoint-invariant image indexing. Image and Vision Computing, 17(7):475 –
488, 1999.

[59] Th. Gevers and A. W. M. Smeulders. Pictoseek: combining color and shape
invariant features for image retrieval. IEEE Transactions on Image Processing,
9(1):102 – 119, 2000.

[60] Th. Gevers and A.W.M. Smeulders. Color based object recognition. Pattern
Recognition, 32:453–464, 1999.

[61] Th. Gevers and H. M. G. Stokman. Classification of color edges in video into
shadow-geometry, highlight, or material transitions. IEEE Trans. on Multime-
dia, 5(2), 2003.

[62] Th. Gevers and H. M. G. Stokman. Robust histogram construction from color
invariants for object recognition. IEEE Transactions on PAMI, 25(10), 2003.

[63] Th. Gevers, P. Vreman, and J. van der Weijer. Color constant texture segmen-
tation. In IS&T/SPIE Symposium on Electronic Imaging: Internet Imaging I,
2000.

[64] G.L. Gimel’farb and A. K. Jain. On retrieving textured images from an image
database. Pattern Recognition, 29(9):1461–1483, 1996.

[65] Y. Gong, C.H. Chuan, and G. Xiaoyi. Image indexing and retrieval using color
histograms. Multimedia Tools and Applications, 2:133–156, 1996.

[66] C. C. Gottlieb and H. E. Kreyszig. Texture descriptors based on co-occurrences
matrices. Computer Vision, Graphics, and Image Processing, 51, 1990.

[67] L.J. Guibas, B. Rogoff, and C. Tomasi. Fixed-window image descriptors for
image retrieval. In IS&T/SPIE Symposium on Electronic Imaging: Storage
and Retrieval for Image and Video Databases III, pages 352–362, 1995.

[68] A. Gupta and R. Jain. Visual information retrieval. Communications of the
ACM, 40(5):71–79, 1997.

[69] A. Guttman. R-trees: A dynamic index structure for spatial searching. In ACM
SIGMOD, pages 47 – 57, 1984.

[70] J. Hafner, H.S. Sawhney, W. Equit, M. Flickner, and W. Niblack. Efficient color
histogram indexing for quadratic form distance functions. IEEE Transactions
on PAMI, 17(7):729–736, 1995.

[71] M. Hagendoorn and R. C. Veltkamp. Reliable and efficient pattern matching
using an affine invariant metric. International Journal of Computer Vision,
35(3):203 – 225, 1999.

[72] S. Hastings. Query categories in a study of intellectual access to digitized art
images. In ASIS ’95, Proceedings of the 58th Annual Meeting of the American
Society for Information Science, Chicago, IL, 1995.

[73] G. Healey. Segmenting images using normalized color. IEEE Transactions on
Systems, Man and Cybernetics, 22(1):64–73, 1992.

Bibliography 377

[74] G. Healey and D. Slater. Computing illumination-invariant descriptors of spa-
tially filtered color image regions. IEEE Transactions on Image Processing,
6(7):1002 – 1013, 1997.

[75] K. Hirata and T. Kato. Rough sketch-based image information retrieval. NEC
Res Dev, 34(2):263 – 273, 1992.

[76] A. Hiroike, Y. Musha, A. Sugimoto, and Y. Mori. Visualization of informa-
tion spaces to retrieve and browse image data. In D.P. Huijsmans and A.W.M.
Smeulders, editors, Proceedings of Visual 99, International Conference on Vi-
sual Information Systems, volume 1614 of Lecture Notes in Computer Science,
pages 155–162, 1999.

[77] N.R. Howe and D.P. Huttenlocher. Integrating color, texture, and geometry for
image retrieval. In Computer Vision and Pattern Recognition, pages 239–247,
2000.

[78] C.C. Hsu, W.W. Chu, and R.K. Taira. A knowledge-based approach for retriev-
ing images by content. IEEE Transactions on Knowledge and Data Engineering,
8(4):522–532, 1996.

[79] F. J. Hsu, S. Y. Lee, and B. S. Lin. Similairty retrieval by 2D C-trees matching
in image databases. Journal of Visual Communication and Image Representa-
tion, 9(1):87 – 100, 1998.

[80] J. Huang, S. R. Kumar, M. Mitra, W-J Zhu, and R. Zabih. Spatial color
indexing and applications. International Journal of Computer Vision, 35(3):245
– 268, 1999.

[81] J. Huang, S.R. Kumar, M. Mitra, W-J Zhu, and R. Ramin. Image indexing
using color correlograms. In Computer Vision and Pattern Recognition, pages
762–768, 1997.

[82] B. Huet and E. R. Hancock. Line pattern retrieval using relational histograms.
IEEE Transactions on PAMI, 21(12):1363 – 1371, 1999.

[83] F. Idris and S. Panchanathan. Image indexing using wavelet vector quantiza-
tion. In Proceedings of the SPIE Vol. 2606–Digital Image Storage and Archiving
Systems, pages 269–275, 1995.

[84] L. Itti, C. Koch, and E. Niebur. A model for saliency-based visual attention for
rapid scene analysis. IEEE Transactions on PAMI, 20(11):1254 – 1259, 1998.

[85] C.E. Jacobs, A. Finkelstein, and D.H. Salesin. Fast multiresolution image query-
ing. In Computer Graphics, 1995.

[86] C.E. Jacobs, A. Finkelstein, and S. H. Salesin. Fast multiresolution im-
age querying. In Proceedings of SIGGRAPH 95, Los Angeles, CA. ACM
SIGGRAPH, New York, 1995.

[87] A. K. Jain and A. Vailaya. Image retrieval using color and shape. Pattern
Recognition, 29(8):1233–1244, 1996.

[88] A. K. Jain and A. Vailaya. Shape-based retrieval: A case study with trademark
image databases. Pattern Recognition, 31(9):1369 – 1390, 1998.

[89] L. Jia and L. Kitchen. Object-based image similarity computation using in-
ductive learning of contour-segment relations. IEEE Transactions on Image
Processing, 9(1):80 – 87, 2000.

378 Content Based Image Retrieval: An Overview Chapter 8

[90] D. W. Joyce, P. H. Lewis, R. H. Tansley, M. R. Dobie, and W. Hall. Semiotics
and agents for integrating and navigating through multimedia representations.
In Minerva M. Yeung, Boon-Lock Yeo, and Charles Bouman, editors, Proceed-
ings of SPIE Vol. 3972, Storage and Retrieval for Media Databases 2000, pages
120–131, 2000.

[91] T. Kato, T. Kurita, N. Otsu, and K. Hirata. A sketch retrieval method for full
color image database - query by visual example. In Proceedings of the ICPR,
Computer Vision and Applications, The Hague, pages 530–533, 1992.

[92] J.R. Kender. Saturation, hue, and normalized colors: Calculation, digitization
effects, and use. Technical report, Department of Computer Science, Carnegie-
Mellon University, 1976.

[93] G. J. Klinker, S. A. Shafer, and T. Kanade. A physical approach to color image
understanding. International Journal Computer Vision, pages 7–38, 4 1990.

[94] A. Kontanzad and Y. H. Hong. Invariant image recognition by Zernike mo-
ments. IEEE Transactions on PAMI, 12(5):489 – 497, 1990.

[95] S. Krishnamachari and R. Chellappa. Multiresolution gauss-markov random
field models for texture segmentation. IEEE Transactions on Image Processing,
6(2), 1997.

[96] A. Laine and J. Fan. Texture classification by wavelet packet signature. IEEE
Transactions on PAMI, 15(11):1186–1191, 1993.

[97] E. H. Land. The retinex theory of color vision. Scientific American, 218(6):108–
128, 1977.

[98] L. J. Latecki and R. Lakamper. Convexity rule for shape decomposition based
on discrete contour evolution. Image Understanding, 73(3):441 – 454, 1999.

[99] K-S. Leung and R. Ng. Multiresolution subimage similarity matching for large
image databases. In IS&T/SPIE Symposium on Electronic Imaging: Storage
and Retrieval for Image and Video Databases VI, pages 259–270, 1998.

[100] C-S. Li and V. Castelli. Deriving texture feature set for content-based retrieval
of satellite image database. In Proceedings of the IEEE International Confer-
ence on Image Processing Santa Barbara, CA, USA, 1997.

[101] K.C. Liang and C.C.J. Kuo. Progressive image indexing and retrieval based
on embedded wavelet coding. In IEEE International Conference on Image
Processing, volume 1, pages 572–575, 1997.

[102] H. C. Lin, L. L. Wang, and S. N. Yang. Color image retrieval based on hidden
Markov models. IEEE Transactions on Image Processing, 6(2):332 – 339, 1997.

[103] T. Lindeberg and J. O. Eklundh. Scale space primal sketch construction and
experiments. Journ Image Vis Comp, 10:3 – 18, 1992.

[104] F. Liu and R. Picard. Periodicity, directionality, and randomness: Wold
features for image modelling and retrieval. IEEE Transactions on PAMI,
18(7):517–549, 1996.

[105] M. Welling M. Weber and P. Perona. Towards automatic discovery of object
categories. In Computer Vision and Pattern Recognition, pages 101–108, 2000.

[106] W. Y. Ma and B. S. Manjunath. Edge flow: a framework of boundary detection
and image segmentation. In Proc. IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR’97), San Juan, Puerto Rico, pages 744–
749, 1997.

Bibliography 379

[107] J. Malki, N. Boujemaa, C. Nastar, and A. Winter. Region queries without
segmentation for image retrieval content. In Int. Conf. on Visual Information
Systems, VISUAL99, pages 115–122, 1999.

[108] M. K. Mandal, F. Idris, and S. Panchanathan. Image and video indexing in
the compressed domain: a critical review. Image and Vision Computing, 2000.

[109] B. S. Manjunath and W. Y. Ma. Texture features for browsing and retrieval
of image data. IEEE Transactions on PAMI, 18(8):837 – 842, 1996.

[110] J. Mao and A.K. Jain. Texture classification and segmentation using multires-
olution simultaneous autoregressive models. Pattern Recognition, 25(2), 1992.

[111] J. Matas, R. Marik, and J. Kittler. On representation and matching of multi-
coloured objects. In Proc. 5th ICCV, pages 726 – 732, 1995.

[112] R. Mehrotra and J. E. Gary. Similar-shape retrieval in shape data management.
IEEE Computer, 28(9):57–62, 1995.

[113] B. M. Mehtre, M. S. Kankanhalli, and W. F. Lee. Shape measures for con-
tent based image retrieval: A comparison. Information Proc. Management,
33(3):319 – 337, 1997.

[114] M. Mirmehdi and M. Petrou. Segmentation of color texture. PAMI, 22(2):142
– 159, 2000.

[115] B. Moghaddam and A. Pentland. Probabilistic visual learning for object rep-
resentation. IEEE Transactions on PAMI, 19(7):696 – 710, 1997.

[116] B. Moghaddam, W. Wahid, and A. Pentland. Beyond eigenfaces: Probabilis-
tic matching for face recognition. In 3rd IEEE International Conference on
Automatic Face and Gesture Recognition, Nara, Japan, 1998.

[117] A. Mojsilovic, J. Kovacevic, J. Hu, R. J. Safranek, and S. K. Ganapathy. Match-
ing and retrieval based on the vocabulary and grammar of color patterns. IEEE
Transactions on Image Processing, 9(1):38 – 54, 2000.

[118] F. Mokhtarian. Silhouette-based isolated object recognition through curvature
scale-space. IEEE Transactions on PAMI, 17(5):539–544, 1995.

[119] J. L. Mundy, A. Zissermann, and D. Forsyth, editors. Applications of invariance
in computer vision, volume 825 of Lecture Notes in Computer Science. Springer
Verlag GmbH, 1994.

[120] H. Murase and S. K. Nayar. Visual learning and recognition of 3D objects from
appearance. International Journal of Computer Vision, 14(1):5 – 24, 1995.

[121] S. K. Nayar and R. M. Bolle. Reflectance based object recognition. Interna-
tional Journal of Computer Vision, 17(3):219–240, 1996.

[122] T. Ojala, M. Pietikainen, and D. Harwood. A comparison study of texture
measures with classification based on feature distributions. Pattern Recognition,
29:51 – 59, 1996.

[123] P. Pala and S. Santini. Image retrieval by shape and texture. Pattern Recog-
nition, 32(3):517–527, 1999.

[124] D.K. Panjwani and G. Healey. Markov random field models for unsuper-
vised segmentation of textured color images. IEEE Transactions on PAMI,
17(10):939 – 954, 1995.

[125] G. Pass and R. Zabith. Comparing images using joint histograms. Multimedia
systems, 7:234 – 240, 1999.

380 Content Based Image Retrieval: An Overview Chapter 8

[126] E. J. Pauwels and G. Frederix. Nonparametric clustering for image segmenta-
tion and grouping. Image Understanding, 75(1):73 – 85, 2000.

[127] A. Pentland, R. W. Picard, and S. Sclaroff. Photobook: Content-based manipu-
lation of image databases. International Journal of Computer Vision, 18(3):233
– 254, 1996.

[128] E. Petrakis and C. Faloutsos. Similarity searching in medical image databases.
IEEE Transactions on Knowledge and Data Engineering, 9(3):435–447, 1997.

[129] R.W. Picard and T.P. Minka. Vision texture for annotation. Multimedia Sys-
tems, 3, 1995.

[130] M. Pietikainen, S. Nieminen, E. Marszalec, and T. Ojala. Accurate color dis-
crimination with classification based on feature distributions. In Proc. Int’l
Conf. Pattern Recognition, pages 833 – 838, 1996.

[131] J. Puzicha, T. Hoffman, and J. M. Buhmann. Non-parametric similarity mea-
sures for unsupervised texture segmentation and image retrieval. In Proceedings
of the International Conference on Computer Vision and Pattern Recognition-
CVPR, 1997.

[132] W. Qian, M. Kallergi, L. P. Clarke, H. D. Li, D. Venugopal, D. S. Song, and
R. A. Clark. Tree-structured wavelet transform segmentation of microcalcifica-
tions in digital mammography. JI Med. Phys., 22(8):1247 – 1254, 1995.

[133] T. Randen and J. Hakon Husoy. Filtering for texture classification: a compar-
ative study. IEEE Transactions on PAMI, 21(4):291 – 310, 1999.

[134] E. Riloff and L. Hollaar. Text databases and information retrieval. ACM
Computing Surveys, 28(1):133–135, 1996.

[135] E. Rivlin and I. Weiss. Local invariants for recognition. IEEE Transactions on
PAMI, 17(3):226 – 238, 1995.

[136] R. Rodriguez-Sanchez, J. A. Garcia, J. Fdez-Valdivia, and X. R. Fdez-Vidal.
The rgff representational model: a system for the automatically learned par-
titioning of ’visual pattern’ in digital images. IEEE Transactions on PAMI,
21(10):1044 – 1073, 1999.

[137] P. L. Rosin. Edges: Saliency measures and automatic thresholding. Machine
Vision and Appl, 9(7):139 – 159, 1997.

[138] I. Rothe, H. Suesse, and K. Voss. The method of normalization of determine
invariants. IEEE Transactions on PAMI, 18(4):366 – 376, 1996.

[139] Y. Rui, T.S. Huang, M. Ortega, and S. Mehrotra. Relevance feedback: a
power tool for interactive content-based image retrieval. IEEE Transactions on
circuits and video technology, 1998.

[140] M. Beigi S.-F. Chang, J.R. Smith and A. Benitez. Visual information retrieval
from large distributed online repositories. Comm. ACM, 40(12):63 – 71, 1997.

[141] S. Santini, A. Gupta, and R. Jain. User interfaces for emergent semantics
in image databases. In Proceedings of the 8th IFIP Working Conference on
Database Semantics (DS-8), Rotorua (New Zealand), 1999.

[142] S. Santini and R. Jain. Similarity measures. IEEE Transactions on PAMI,
21(9):871 – 883, 1999.

[143] C. Schmid and R. Mohr. Local grayvalue invariants for image retrieval. IEEE
Transactions on PAMI, 19(5):530 – 535, 1997.

Bibliography 381

[144] M. Schneier and M. Abdel-Mottaleb. Exploiting the JPEG compression scheme
for image retrieval. IEEE Transactions on PAMI, 18(8):849 –853, 1996.

[145] S. Sclaroff. Deformable prototypes for encoding shape categories in image
databases. Pattern Recognition, 30(4):627 – 641, 1997.

[146] S. Sclaroff, M. LaCascia, and S. Sethi. Using textual and visual cues for
content-based image retrieval from the World Wide Web. Image Understand-
ing, 75(2):86 – 98, 1999.

[147] S. Sclaroff, L. Taycher, and M. La Cascia. Imagerover: A content-based image
browser for the world wide web. In IEEE Workshop on Content-based Access
and Video Libraries, 1997.

[148] N. Sebe, M.S. Lew, and D.P. Huijsmands. Multi-scale sub-image search. In
ACM Int. Conf. on Multimedia, 1999.

[149] S. Servetto, Y. Rui, K. Ramchandran, and T. S. Huang. A region-based rep-
resentation of images in mars. Journal on VLSI Signal Processing Systems,
20(2):137–150, 1998.

[150] S.A. Shafer. Using color to separate reflection components. COLOR Res. Appl.,
10(4):210–218, 1985.

[151] D. Sharvit, J. Chan, H. Tek, and B. B. Kimia. Symmetry-based indexing of
image databases. Journal of Visual Communication and Image Representation,
9(4):366 – 380, 1998.

[152] R. N. Shepard. Toward a universal law of generalization for physical science.
Science, 237:1317–1323, 1987.

[153] D. Slater and G. Healey. The illumination-invariant recognition of 3D objects
using local color invariants. IEEE Transactions on PAMI, 18(2):206 – 210,
1996.

[154] A.W.M. Smeulders, M. L. Kersten, and Th. Gevers. Crossing the divide be-
tween computer vision and data bases in search of image databases. In Fourth
Working Conference on Visual Database Systems, L’Aquila, Italy, pages 223–
239, 1998.

[155] A.W.M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain. Content
based image retrieval at the end of the early years. IEEE Transactions on
PAMI, 22(12):1349 – 1380, 2000.

[156] J. R. Smith and S. F. Chang. Automated binary feature sets for image retrieval.
In C. Faloutsos, editor, Proceedings of ICASSP, Atlanta. Kluwer Academic,
1996.

[157] J. R. Smith and S-F. Chang. Integrated spatial and feature image query. Mul-
timedia systems, 7(2):129 – 140, 1999.

[158] J.R. Smith and S.-F. Chang. Visualseek: a fully automated content-based
image query system. In ACM Multimedia, 1996.

[159] S. M. Smith and J. M. Brady. SUSAN - a new approach to low level image
processing. International Journal of Computer Vision, 23(1):45 – 78, 1997.

[160] M. Stricker and M. Swain. The capacity of color histogram indexing. In Com-
puter Vision and Pattern Recognition, pages 704 – 708. IEEE Press, 1994.

[161] M.A. Stricker and M. Orengo. Similarity of color images. In IS&T/SPIE
Symposium on Electronic Imaging: Storage and Retrieval for Image and Video
Databases IV, 1996.

382 Content Based Image Retrieval: An Overview Chapter 8

[162] M. J. Swain and B. H. Ballard. Color indexing. International Journal of
Computer Vision, 7(1):11 – 32, 1991.

[163] M.J. Swain. Searching for multimedia on the world wide web. In IEEE In-
ternational Conference on Multimedia Computing and Systems, pages 33–37,
1999.

[164] D. J. Swets and J. Weng. Hierarchical discriminant analysis for image retrieval.
IEEE Transactions on PAMI, 21(5):386 – 401, 1999.

[165] T.F. Syeda-Mahmood. Data and model-driven selection using color regions.
International Journal of Computer Vision, 21(1):9–36, 1997.

[166] H. D. Tagare, F. M. Vos, C. C. Jaffe, and J. S. Duncan. Arrangement - a
spatial relation between parts for evaluating similarity of tomographic section.
IEEE Transactions on PAMI, 17(9):880 – 893, 1995.

[167] T. Tan. Rotation invariant texture features and their use in automatic script
identification. IEEE Transactions on PAMI, 20(7):751 – 756, 1998.

[168] P. M. Tardif and A. Zaccarin. Multiscale autoregressive image representation
for texture segmentation. In Proceedings of SPIE Vol. 3026, Nonlinear Image
Processing VIII, San Jose, CA, USA, pages 327–337, 1997.

[169] K. Tieu and P. Viola. Boosting image retrieval. In Computer Vision and
Pattern Recognition, pages 228–235, 2000.

[170] T. Tuytelaars and L. van Gool. Content-based image retrieval based on local
affinely invariant regions. In Proceedings of Visual Information and Information
Systems, pages 493 – 500, 1999.

[171] A. Vailaya, M. Figueiredo, A. Jain, and H. Zhang. A bayesian framework for
semantic classification of outdoor vacation images. In C. a. Bouman M. M. Ye-
ung, B. Yeo, editor, Storage and Retrieval for Image and Video Databases VII
- SPIE, pages 415–426, 1999.

[172] A. Vailaya, M. Figueiredo, A. Jain, and H. Zhang. Content-based hierarchical
classification of vacation images. In IEEE International Conference on Multi-
media Computing and Systems, 1999.

[173] V.N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, 1995.
[174] N. Vasconcelos and A. Lippman. A probabilistic architecture for content-based

image retrieval. In Computer Vision and Pattern Recognition, pages 216–221,
2000.

[175] A. Vellaikal and C.C.J. Kuo. Content-based retrieval using multiresolution
histogram representation. Digital Image Storage Archiving Systems, pages 312–
323, 1995.

[176] R. C. Veltkamp and M. Hagendoorn. State-of-the-art in shape matching. In
Multimedia search: state of the art. Springer Verlag GmbH, 2000.

[177] L. Z. Wang and G. Healey. Using Zernike moments for the illumination and
geometry invariant classification of multispectral texture. IEEE Transactions
on Image Processing, 7(2):196 – 203, 1991.

[178] J. Weickert, S. Ishikawa, and A. Imiya. Linear scale space has first been pro-
posed in japan. Journal of Mathematical Imaging and Vision, 10:237 – 252,
1999.

[179] M. Werman and D. Weinshall. Similarity and affine invariant distances between
2d point sets. IEEE Transactions on PAMI, 17(8):810 – 814, 1995.

Bibliography 383

[180] R. C. Wilson and E. R. Hancock. Structural matching by discrete relaxation.
IEEE Transactions on PAMI, 19(6):634 – 648, 1997.

[181] L. Wolff, S. A. Shafer, and G. E. Healey, editors. Physics-based vision: princi-
ples and practice, volume 2. Jones and Bartlett, Boston etc., 1992.

[182] H.J. Wolfson and I. Rigoutsos. Geometric hashing: An overview. IEEE com-
putational science and engineering, 4(4):10 – 21, 1997.

[183] Q. Tian Y. Wu and T.S. Huang. Discriminant-em algorithm with applications
to image retrieval. In Computer Vision and Pattern Recognition, pages 222–227,
2000.

[184] H. H. Yu and W. Wolf. Scene classification methods for image and video
databases. In Proc. SPIE on Digital Image Storage and Archiving Systems,
pages 363–371, 1995.

[185] Q. L. Zhang, S. K. Chang, and S. S. T. Yau. A unified approach to iconic
indexing, retrieval and maintenance of spatial relationships in image databases.
Journal of Visual Communication and Image Representation, 7(4):307 – 324,
1996.

[186] Y.J. Zhang, Z.W. Liu, and Y. He. Comparison and improvement of color-based
image retrieval. In IS&T/SPIE Symposium on Electronic Imaging: Storage and
Retrieval for Image and Video Databases IV, pages 371–382, 1996.

[187] R. Zhao and W. Grosky. Locating text in complex color images. In IEEE
International Conference on Multimedia Computing and Systems, 2000.

[188] Y. Zhong, K. Karu, and A. K. Jain. Locating text in complex color images.
Pattern Recognition, 28(10):1523 – 1535, 1995.

[189] P. Zhu and P. M. Chirlian. On critical point detection of digital shapes. IEEE
Transactions on PAMI, 17(8):737 – 748, 1995.

[190] S.C. Zhu and A. Yuille. Region competition: Unifying snakes, region grow-
ing, and bayes/mdl for multiband image segmentation. IEEE Transactions on
PAMI, 18(9):884 – 900, 1996.

Chapter 9

FACE DETECTION,
ALIGNMENT AND
RECOGNITION

Stan Z. Li

and Juwei Lu

9.1 Introduction

A face recognition system identifies faces in images and videos automatically
using computers. It has a wide range of applications, such as biometric au-
thentication, and surveillance, human-computer interaction, and multimedia
management. A face recognition system generally consists of four processing
parts as depicted in Fig. 9.1: face detection, face alignment, facial feature
extraction, and face classification. Face detection provides information about
the location and scale of each detected face. In the case of video, the found
faces may be tracked. In face alignment, facial components, such as eyes,
nose, and mouth and facial outline are located, and thereby the input face
image is normalized in geometry and photometry. In features extraction, fea-
tures useful for distinguishing between different persons are extracted from
the normalized face. In face classification, the extracted feature vector of
the input face is matched against those of enrolled faces in the database,
outputting the identity of the face when a match is found with a sufficient
confidence or as an unknown face otherwise.

The underlying problems can be treated using pattern recognition and
385

386 Face Detection, Alignment and Recognition Chapter 9

Face IDImage/Video
Aligned

Face
Face

Location,
Size & Pose

Feature
VectorFace

Detection

Tracking

Enrolled
Users

Feature
Matching

Feature
Extraction

Face
Alignment

Figure 9.1. Structure of a face recognition system.

machine learning techniques. There two central issues: (i) what features to
use to represent a face, and (ii) how to classify a new face image based on
the chosen representation. A capable face recognition system should be able
to deal with variations of face images in viewpoint, illumination, expression
and so on.

The geometric feature-based approach [44, 57, 101, 17] is based on the
traditional computer vision framework [81]. Facial features such as eyes,
nose, mouth, and chin are detected. Properties and relations (e.g. areas,
distances, angles) between the features are used as descriptors of faces for
recognition. Using this approach, Kanade built the first face recognition
system in the world [57]. Advantages include economy and efficiency in
achieving data reduction and insensitivity to variations in illumination and
viewpoint. Disadvantages are that so far, facial feature detection and mea-
surement techniques developed to date have not been reliable enough [25],
and geometric information only is insufficient for face recognition.

Great progress has been made in the past 15 or so years due to advances
in the template matching or appearance based approach [122]. Such an
approach generally operates directly on an image-based representation (i.e.
pixel intensity array). It extracts features in a face subspace from images,
instead of the over-abstract features. A face subspace is constructed to best
represent the face object only. Although it is much less general, it is more
efficient and effective for face recognition. In the eigenface [122] or PCA
method, the face space is spanned by a number of eigenfaces [111] derived
from a set of training face images by using Karhunen-Loeve transform or
the principal component analysis (PCA) [42]. A face image is efficiently
represented by a feature point (i.e. a vector of weights) of low (e.g. 40 or
lower) dimensionality. Such subspace features are more salient and richer for
recognition.

Face recognition performance has been much improved as compared to

Section 9.1. Introduction 387

that of the first automatic face recognition system of Kanade [57]. Nowadays,
face detection, facial feature location, and recognition can be performed for
image data of reasonable conditions, which was un-achievable by the pioneer
systems.

Although the progress has been encouraging, the task has also turned
out to be a very difficult endeavor [121]. Face recognition evaluation reports
such as [95, 1] and other independent studies indicate that the performance of
many state-of-the-art face recognition methods deteriorates with changes in
lighting, pose, and other factors [123, 18, 140]. The key technical challenges
are summarized in the following.
Immense Variability of Facial Appearance. Whereas shape and re-
flectance are intrinsic properties of a face object, the appearance (i.e. the
texture look) of a face is also subject to several other factors, including the
facial pose (or, equivalently, camera viewpoint), the illumination, facial ex-
pression, and various imaging parameters such as aperture, exposure time,
lens aberrations and sensor spectral response. All these factors are con-
founded in the image data, so that “the variations between the images of
the same face due to illumination and viewing direction are almost always
larger than the image variation due to change in face identity” [89]. The
complexity makes it very difficult to extract the intrinsic information of the
face objects from their respective images.

Highly Complex and Nonlinear Manifolds. As illustrated above, the
face manifold, as opposed to the manifold of non-face patterns, is highly non-
convex, and so is face manifolds of any individual under changes due pose,
lighting, facial ware and so on. As linear subspace method, such as princi-
pal component analysis (PCA) [111, 122], independent component analysis
(ICA) [10], or linear discriminant analysis (LDA) [12]) projects the data in a
high dimensional space, such as the image space, to a low dimensional sub-
space in an optimal direction in a linear way, they are unable to preserve the
non-convex variations of face manifolds necessary to differentiate between
different individuals. In a linear subspace, Euclidean distance and more gen-
erally M-distance, which are normally used in template matching, does not
apply well to the problem of classification between manifolds of face/nonface
manifolds and between manifolds of different individuals. This is a crucial
fact that limits the power of the linear methods to achieve highly accurate
face detection and recognition.

High Dimensionality and Small Sample Size. Another challenge is
the ability to generalize. A canonical face example used in face recognition

388 Face Detection, Alignment and Recognition Chapter 9

is an image of size 112 × 92 and resides in a 10304-dimensional real space.
Nevertheless, the number of examples per person available for learning is
usually much smaller than the dimensionality of the image space, e.g. < 10
in most cases; a system trained on so few examples may not generalize well
to unseen face instances. Besides, the computational cost caused by high
dimensionality is also a concern for real-time systems.

Methods for dealing with to the above problems are two ways. One is
to normalize face images in geometry and photometry. This way, the face
manifolds become simpler, i.e. less nonlinear and less non-convex, so that
the complex problems become easier to tackle. The other ways is to devise
powerful engines able to perform difficult nonlinear classification and regres-
sion and generalize better. This relies on advances in pattern recognition
and learning and clever applications of them.

Both prior and observation constraints are needed for such powerful en-
gines. Most successful approaches for tackling the above difficulties are based
on subspace modeling of facial appearance and statistical learning. Con-
straints about the face include facial shape, texture, head pose, illumination
effect. Recent advances allow these to be effectively encoded into the system
by learning from training data.

This chapter presents advanced techniques for face detection, face align-
ment, and face recognition (feature extraction and matching). The presen-
tation is focused on appearance and learning based approaches.

9.2 Face Detection

Face detection is the first step in automated face recognition. Its reliability
has a major influence on the performance and usability of the whole sys-
tem. Given a single image or a video, an ideal face detection system should
be able to identify and locate all faces regardless of their positions, scales,
orientations, lighting conditions, expressions, and so on.

Face detection can be performed based on several different cues: skin
color (for faces in color images), motion (for faces in videos), facial/head
shape, and facial appearance, or a combination of them. Prior knowledge
about them can be embedded into the system by learning from training data.

Appearance and learning based approaches have so far been the most
effective ones for face detection, and this section focuses on such approaches
for face detection. The reader is referred to recent surveys [32, 136] for other
methods. Great resources such as publications, databases, codes, etc. can
be found from face detection websites [41, 133].

Section 9.2. Face Detection 389

9.2.1 Appearance and Learning Based Approach

In appearance based approach, face detection is treated as an intrinsically
two-dimensional (2-D) problem. It is done in three steps: First, scan I
exhaustively at all possible locations (u, v) and scales s, resulting in a large
number of sub-windows x = x(u, v, s | I). Second, test for each x if it is a
face

H(x)
≥ 0 ⇒ x is a face pattern
< 0 ⇒ x is a nonface pattern

(9.1)

Third, post-process to merge multiple detects.
The key issue is the construction of a face detector which classifies a sub-

window into either face or nonface. Face and non-face examples are given as
the training set (See Fig. 9.2 for a random sample of 10 face and 10 nonface
examples). Taking advantage of the fact that faces are highly correlated, it is
assumed that human faces can be described by some low dimensional features
which may be derived from a set of example face images. Large variation
and complexity brought about by changes in facial appearance, lighting and
expression makes the face manifold highly complex [14, 110, 121]. Changes in
facial view (head pose) further complicate the situation. Nonlinear classifiers
are training to classify each subwindow into face or nonface. The following
gives a brief review of exiting work.

Figure 9.2. Face (top) and nonface (bottom) examples.

Turk and Pentland [122] describe a detection system based on a Principal
Component Analysis (PCA) subspace or eigenface representation. Moghad-
dam and Pentland [87] present an improved method for Bayesian density
estimation, where the high dimensional image space is decomposed into a
PCA subspace for prior distribution and the null space for the likelihood
distribution. Sung and Poggio [114] first partition the image space is into
several clusters for face and non-face clusters. Each cluster is then further
decomposed into the PCA and null subspaces. The Bayesian estimation is
then applied to obtain useful statistical features. Rowley et al. ’s system
[100] uses retinally connected neural networks. Through a sliding window,
the input images are examined after going through an extensive preprocess-

390 Face Detection, Alignment and Recognition Chapter 9

ing stage. Osuna et al. [91] train support vector machines to classify face
and non-face patterns. Roth et al. [99] use SNoW learning structure for
face detection. In these systems, a bootstrap algorithm is used to iteratively
collect meaningful non-face examples into the training set.

Viola and Jones [128, 127] build a successful face detection system, in
which AdaBoost learning is used to construct nonlinear classifier (earlier
work in application of Adaboost for image classification and face detection
can be found in [117] and [104]). There, AdaBoost is adapted to solving
the following three fundamental problems in one boosting procedure: (1)
learning effective features from a large feature set, (2) constructing weak
classifiers each of which is based on one of the selected features, and (3)
boosting the weak classifiers into a stronger classifier. Also, that work makes
ingenues use of several techniques for effective computation of a large number
of Haar wavelet like features. Such features are steerable filters [92, 128].
Moreover, the simple-to-complex cascade of classifiers structure makes the
computation even more efficient, which is in the principle of pattern rejection
[8, 30] and coarse-to-fine search [5, 36]. Each such feature has a scalar value
which can be computed very efficiently [109] from the summed-area table
[26] or integral image [128]. Their system is the first real-time frontal-view
face detector which runs at about 14 frame per second for a 320x240 image
[128].

Ability to deal with non-frontal faces is important for many real appli-
cations because statistics show that approximately 75% of the faces in home
photos are non-frontal [60]. A reasonable treatment for multi-view is the
view-based method [93], in which several face models are built, each describ-
ing faces in a certain view range. This way, explicit 3D modeling is avoided.
Feraud et al. [34] adopt the view-based representation for face detection,
and use an array of 5 detectors with each detector responsible for one view.
Wiskott et al. [130] build elastic bunch graph templates for multi-view face
detection and recognition. Gong and colleagues [45] study the trajectories
of faces in linear PCA feature spaces as they rotate, and use kernel support
vector machines (SVMs) for multi-pose face detection and pose estimation
[90, 70]. Huang et al. [51] use SVM’s to estimate facial poses.

In the system of Schneiderman and Kanade [105], multi-resolution in-
formation is used for different levels of wavelet transform. The algorithm
consists of an array of 5 face detectors in the view-based framework. Each
is constructed using statistics of products of histograms computed from ex-
amples of the respective view. It takes 1 min for a 320x240 image over only
4 octaves of candidate size according as reported in [105].

Li et al. [68, 67] present a multi-view face detection system, extending the

Section 9.2. Face Detection 391

work of [128, 127] and [105]. A new boosting algorithm called FloatBoost is
proposed to incorporate Floating Search [97] into AdaBoost. The backtrack
mechanism therein allows deletions of weak classifiers that are ineffective in
terms of the error rate, leading to a strong classifier consisting of fewer weak
classifiers. An extended Haar feature set is proposed for dealing with out-of-
plane rotations and a detector pyramid for improving the speed. A coarse-to-
fine, simple-to-complex architecture called detector-pyramid is designed for
the fast detection of multi-view faces. This work leads to the first real-time
multi-view face detection system in the world. It runs at 200 ms per image
of size 320x240 pixels on a Pentium-III CPU of 700 MHz.

Lienhart et al. [71] propose an extended set of rotated Haar features
for dealing with in-plane rotations. Also, they use Gentle Adaboost [37]
with small CART trees as base classifiers and show that this combination
outperforms that of Discrete Adaboost and stumps.

In the following, face processing techniques are presented, including pre-
and post-processing, neural network based methods and boosting based
methods. Given that the boosting learning with Haar-like feature approach
has achieved the best performance, the presentation will focus on such state-
of-the-art methods.

9.2.2 Preprocessing

Skin Color Filtering

Human skin has its own distribution that differ from that of most of nonface
objects. It can be used to filtering the input image to obtain candidate
regions of faces, and as a standalone face detector (not an appearance based
detector). A simple color based face detection algorithm can consists of two
steps: (1) segmentation of likely face regions and (2) region merge.

Skin color likelihood model, p(color | face), can be derived from skin
color samples. This may be done in the H (of HSV) color space or in the
normalized RGB color space (cf. a comparative evaluation in [138]). A
Gaussian mixture model for p(color | face) can give a better skin color
modeling [132, 135]. Fig. 9.3 shows a skin color segmentation map. A skin
colored pixel is found if p(H | face), where H is the hue component of the
pixel, is greater than a threshold (0.3), and its saturation (S) and value
(V) are between some upper and lower bounds. A skin color map consists
of a number of skin color regions which indicate potential candidate face
areas. Refined face regions can be obtained by merging adjacent similar and
homogeneous skin color pixels based on the color and spatial information.
Heuristic postprocessing could be performed to remove false detection. For

392 Face Detection, Alignment and Recognition Chapter 9

example, a human face contains eyes where the eyes correspond to darker
regions inside the face region.

Figure 9.3. Skin color filtering: Input image with single (a) and multiple (c)
people. Skin color filtered maps (b) and (d).

While a color based face detection system may work fast, however, the
color constraint alone is insufficient for achieving high performance face
detection, due to color variations for different lighting, shadow, and ethic
groups. Indeed, it is the appearance, albeit colored or gray levelled, rather
than the color that is essential for face detection. In fact, most successful
systems need not use color and achieve good performance.

Image Normalization

Preprocessing operations are usually performed to normalize the image pat-
tern in a subwindow in its size, pixel value distribution and lighting condi-
tion. These include resizing (say, 20x20 pixels), lighting correction, mean
value normalization, and histogram equalization. A simple lighting correc-
tion operation is to subtract a best fit plane I ′(x, y) = a × x + b × y + c
from the subwindow I(x, y), where the values of a, b and c can be estimated
using the least squares method. Fig. 9.4 gives an example of the effect. The
mean value normalization operation subtracts the mean value of the window
pattern from the window pixels so that the average intensity of all the pixels
in the subwindow is zero. See Fig. 9.5.

Multi-Gaussian Clustering

The distribution of training patterns is very complex because of the variety
of changes and high dimensionality. Therefore a single distribution is hard to
explain all such variations. Sung and Poggio [114] propose to deal with the

Section 9.2. Face Detection 393

Figure 9.4. Effect of lighting correction. (a): before illumination correction; (b):
best fit linear function; (c): after illumination correction.

Figure 9.5. Mean value normalization and histogram equalization. (a): original
image window; (b): linear stretch after mean value normalization; (c): histogram
equalization after mean value normalization.

complexity by dividing the face training data into Lf = 6 face clusters, and
nonface training data into Ln = 6 non-face clusters where cluster numbers
6 and 6 are empirically chosen. The clustering is performed by using a
modified k-mean clustering algorithm based on the Mahalanobis distance
[114]. Fig. 9.6 shows the centroids of the obtained Lf face clusters and Ln
non-face clusters. After the clustering, nonlinear classification is then based
on the partition.

9.2.3 Neural and Kernel Methods

Here we describe the methods of [100, 114]. In the training phase, a neu-
ral network (NN) classifier is trained by using normalized face and nonface
training images. A bootstrap algorithm is used to collect meaningful non-face
examples into the training set. In the test phase, the trained NN classifies
each subwindow into either face or nonface. The main issue here is to train
a nonlinear neural classifier by which highly nonlinear manifolds of face and

394 Face Detection, Alignment and Recognition Chapter 9

Figure 9.6. Centroids of six face clusters in (a) and six non-face clusters in (b)

nonface in the space of image subwindows are separated.
An NN is a fully connected feed-forward multi-layer perceptron. The

input feature vector can be simply the raw image in the subwindow or a
feature vector extracted from it. For the latter case, it can be a preprocessed
subimage [100] or vector of the distances from subspaces of face and nonface
clusters [114]. A back-propagation (BP) algorithm is used for the training.
Several copies of the same NN can be trained and their outputs combined by
arbitration (ANDing) [100] – hopefully this would give more reliable results
than can be obtained by using a single NN.

Nonlinear classification for face detection can also be done using kernel
support vector machines (SVMs) [91, 90, 70]. While such methods are able to
learn nonlinear boundaries, a large number of support vectors may result in
order to capture high nonlinearity. This would create an issue un-favorable
to real-time performance.

9.2.4 Boosting Based Methods

In AdaBoost based classification, a highly complex nonlinear classifier is
constructed as a linear combination of many simpler, easily constructible
weak classifiers [37]. In AdaBoost face detection [128, 127, 68, 71], each
weak classifier is build by thresholding on a scalar feature selected from an
overcomplete set of Haar wavelet like features [92, 117]. Such methods have
so far been the most successful ones for face detection.

Haar-Like Features

Viola and Jones propose four basic types of scalar features for face detection
[92, 128], as shown in Fig. 9.7. Recently, such features have been extended

Section 9.2. Face Detection 395

for dealing with head rotations [68, 71]. Each such feature has a scalar value
which can be computed very efficiently [109] from the summed-area table
[26] or integral image [128]. Feature k, taking the value zk(x) ∈ R, can be
considered as a transform from the n-dimensional (400-D if a face example x
is of size 20x20) data space to the real line. For a face example of size 20x20,
there are tens of thousands of such features. These form an over-complete
feature set for the intrinsically low-dimensional face pattern.

Figure 9.7. Rectangular Haar wavelet like features. A feature takes a scalar value
by summing up the white region and subtracting the dark region.

Learning Feature Selection

A weak classifier is associated with a single scalar feature; to find the best
new weak classifier is to choose the best corresponding feature. Adaboost
learning is used to select most significant features from the feature set. More
specifically, AdaBoost is adapted to solving the following three fundamental
problems in one boosting procedure: (1) learning effective features from a
large feature set, (2) constructing weak classifiers each of which is based
on one of the selected features, and (3) boosting the weak classifiers into a
stronger classifier.

The basic form of (discrete) AdaBoost [37] is for two class problems. A set
of N labelled training examples is given as (x1, y1), . . . , (xN , yN), where yi ∈
{+1,−1} is the class label for the example xi ∈ R

n. AdaBoost assumes that
a procedure is available for learning sequence of weak classifiers hm(x) (m =
1, 2, . . . ,M) from the training examples, with respect to the distributions
w

(m)
i of the examples. A stronger classifier is a linear combination of the M

396 Face Detection, Alignment and Recognition Chapter 9

weak classifiers

HM (x) =
∑M

m=1 αmhm(x)∑M
m=1 αm

(9.2)

where αm ≥ 0 are the combining coefficients. The classification of x is
obtained as ŷ(x) = Sign[HM(x)] and the normalized confidence score is
|HM (x)|. The AdaBoost learning procedure is aimed to derive αm and
hm(x).

Learning Weak Classifiers

A weak classifier is constructed by thresholding one of those features accord-
ing to the likelihoods (histograms) of the feature values for the target faces
and the imposter faces

h
(M)
k (x) = +1 ifzk(x) > τ

(M)
k (9.3)

= −1 otherwise (9.4)

where zk(x) is feature k extracted from x, and τ (M)
k is the threshold for weak

classifier k chosen to ensure a specified accuracy. The best weak classifier is
the one for which the false alarm is minimized:

k∗ = arg min
k
FA(h(M)

k (x)) (9.5)

where FA is the false alarm caused by h
(M)
k (x) (also w.r.t. w(M−1)). This

gives us the best weak classifier as

hM (x) = h
(M)
k∗ (x) (9.6)

Boosted Strong Classifier

AdaBoost leans to boost weak classifiers hm into a strong one HM effectively
by minimizing the upper bound on classification error achieved by HM . The
bound can be derived as the following exponential loss function [102]

J(HM) =
∑
i

e−yiHM (xi) =
∑
i

e−yi
∑M

m=1 αmhm(x) (9.7)

AdaBoost construct hm(x) by stagewise minimization of Eq.(9.7). Given the
current HM−1(x) =

∑M−1
m=1 αmhm(x), and the newly learned weak classifier

hM , the best combining coefficient αM for the new strong classifier HM (x) =
HM−1(x) + αMhM (x) minimizes the cost:

αM = arg min
α
J(HM−1(x) + αhM (x)) (9.8)

Section 9.2. Face Detection 397

The minimizer is

αM = log
1− εM
εM

(9.9)

where εM is the weighted error

εM =
∑
i

w
(M−1)
i 1[sign(HM (xi)) �= yi] (9.10)

where 1[C] is one if C is true, or 0 otherwise.
Each example is re-weighted after an iteration, i.e. w

(M−1)
i is updated

according to the classification performance of HM :

w(M)(x, y) = w(M−1)(x, y) exp (−αMyhM (x))
= exp (−yHM (x)) (9.11)

which will be used for calculating the weighted error or another cost for train-
ing the weak classifier in the next round. This way, a more difficult example
will be associated with a larger weight so that it will be more emphasized in
the next round of learning. The algorithm is summarized in Fig. 9.8.

0.(Input)
(1) Training examples Z = {(x1, y1), . . . , (xN , yN)},

where N = a+ b; of which a examples have yi = +1
and b examples have yi = −1;

(2) The number M of weak classifiers to be combined;
1.(Initialization)

w
(0)
i = 1

2a for those examples with yi = +1 or
w

(0)
i = 1

2b for those examples with yi = −1.
2.(Forward Inclusion)

For m = 1, . . . ,M :
(1) Choose optimal hm to minimize weighted error;
(2) Choose αm according to Eq.9.9;
(3) Update w(m)

i ← w
(m)
i exp[−yihm(xi)], and

normalize to
∑

i w
(m)
i = 1;

3.(Output)
H(x) = sign[

∑M
m=1 hm(x)].

Figure 9.8. AdaBoost Learning Algorithm.

398 Face Detection, Alignment and Recognition Chapter 9

FloatBoost Learning

AdaBoost attempts to boost the accuracy of an ensemble of weak classifiers
to a strong one. The AdaBoost algorithm [37] solved many of the practical
difficulties of earlier boosting algorithms. Each weak classifier is trained one
stage-wise to minimize the empirical error in a given distribution re-weighted
according classification errors of the previously trained classifier. It is shown
that AdaBoost is a sequential forward search procedure using the greedy
selection strategy to minimize a certain margin on the training set [102].

A crucial heuristic assumption made in such a sequential forward search
procedure is the monotonicity, i.e. that when adding a new weak classifier
to the current set, the value of the performance criterion does not decrease.
The premise offered by the sequential procedure can be broken-down when
the assumption is violated, i.e. when the performance criterion function is
non-monotonic. This is the first topic to be dealt with in this paper.

Floating Search [97] is a sequential feature selection procedure with back-
tracking, aimed to deal with non-monotonic criterion functions for feature
selection. A straight sequential selection method like sequential forward
search (SFS) or sequential backward search (SBS) adds or deletes one fea-
ture at a time. To make this work well, the monotonicity property has to
be satisfied by the performance criterion function. Feature selection with a
non-monotonic criterion may be dealt with by using a more sophisticated
technique, called plus-�-minus-r, which adds or deletes � features and then
backtracks r steps [113, 59].

The Sequential Floating Search methods [97] allows the number of back-
tracking steps to be controlled instead of being fixed beforehand. Specifically,
it adds or deletes � = 1 feature and then backtracks r steps where r depends
on the current situation. It is such a flexibility that amends limitations
due to the non-monotonicity problem. Improvement on the quality of se-
lected features is gained with the cost of increased computation due to the
extended search. The SFFS algorithm performs very well in several applica-
tions [97, 54]. The idea of Floating Search is further developed in [112] by
allowing more flexibility for the determination of �.

Let HM = {h1, . . . , hM} be the so-far-best set of M weak classifiers;
J(HM) be the criterion which measures the overall cost of the classifica-
tion function HM (x) =

∑M
m=1 hm(x) build on HM ; Jmin

m be the minimum
cost achieved so far with a linear combination of m weak classifiers for
m = 1, . . . ,Mmax (which are initially set to a large value before the iteration
starts). As shown in Fig. 9.9, the FloatBoost Learning procedure involves
training inputs, initialization, forward inclusion, conditional exclusion and

Section 9.2. Face Detection 399

0.(Input)
(1) Training examples Z = {(x1, y1), . . . , (xN , yN)},

where N = a+ b; of which a examples have
yi = +1 and b examples have yi = −1;

(2) The maximum number Mmax of weak classifiers;
(3) The cost function J(HM) (e.g., error rate made by HM), and

the maximum acceptable cost J∗.
1.(Initialization)

(1) w(0)
i = 1

2a for those examples with yi = +1 or
w

(0)
i = 1

2b for those examples with yi = −1;
(2) Jmin

m =max-value (for m = 1, . . . ,Mmax),
M = 0, H0 = {}.

2.(Forward Inclusion)
(1) M ←M + 1;
(2) Choose hM according to Eq.9.8;
(3) Update w(M)

i ← w
(M−1)
i exp[−yihM (xi)],

normalize to
∑

i w
(M)
i = 1;

(4) HM = HM−1 ∪ {hM};
If Jmin

M > J(HM), then Jmin
M = J(HM);

3.(Conditional Exclusion)
(1) h′ = arg minh∈HM

J(HM − h);
(2) If J(HM − h′) < Jmin

M−1, then
(a) HM−1 = HM − h′;

Jmin
M−1 = J(HM − h′); M = M − 1;

(b) if h′ = hm′ , then
re-calculate w(j)

i and hj for j = m′, . . . ,M ;
(c) goto 3.(1);

(3) else
(a) if M = Mmax or J(HM) < J∗, then goto 4;
(b) goto 2.(1);

4.(Output)
H(x) = sign[

∑M
m=1 hm(x)].

Figure 9.9. FloatBoost Algorithm.

output.
In Step 2 (forward inclusion), the currently most significant weak clas-

sifier is added one at a time, which is the same as in AdaBoost. In Step 3
(conditional exclusion), FloatBoost removes the least significant weak classi-
fier from HM , subject to the condition that the removal leads to a lower cost
than Jmin

M−1. Supposing that the removed weak classifier was the m′-th in

400 Face Detection, Alignment and Recognition Chapter 9

HM , then hm′ , . . . , hM will be re-learned. These are repeated until no more
removals can be done.

For face detection, the acceptable cost J∗ is the maximum allowable risk,
which can be defined as a weighted sum of missing rate and false alarm rate.
The algorithm terminates when the cost is below J∗ or the maximum number
M of weak classifiers is reached.

FloatBoost usually needs fewer weak classifiers than AdaBoost to achieve
a given objective J∗. One have two options with such a result: (1) Use the
FloatBoost-trained strong classifier with its fewer weak classifiers to achieve
similar performance as can be done by a AdaBoost-trained classifier with
more weak classifiers. (2) Continue FloatBoost learning to add more weak
classifiers even if the performance on the training data does not increase.
The reason for (2) is that even if the performance does not improve on the
training data, adding more weak classifiers may lead to improvements on
test data [102].

Cascade of Strong Classifiers

A boosted strong classifier effectively eliminates a large portion of nonface
subwindows while maintaining a high detection rate. Nontheless, such a
single strong classifier may not meet the requirement of extremely low false
alarm rate, e.g. 10−6 or even lower. A solution is to arbitrate between several
detectors (strong classifier) [100], e.g. using “AND” operation.

Viola and Jones [128, 127] further extend this idea by training a serial
cascade of a number of strong classifiers, as illustrated in Fig. 9.10. A strong
classifier is trained using bootstrapped nonface examples that pass through
the previously trained cascade. Usually, 10 to 20 strong classifiers are cas-
caded. In detection, subwindows which fail to pass a strong classifier will
not be further processed by the subsequent strong classifiers. This strategy
can significant speed up the detection, and reduce false alarm, but these are
achieved with a little sacrifice of the detection rate.

9.2.5 Post-Processing

A face may be detected several times at close locations or multiple scales.
False alarms may also occur but usually with less consistency than multiple
face detections. The number of the multiple detections at a close location
can be used as an effective indication for the existence of a face at the loca-
tion. The observation leads to a heuristic for resolving the ambiguity caused
by multiple detections and eliminate many false detections. A detection is
confirmed if the number of multiple detections is large enough, and multiple

Section 9.2. Face Detection 401

SC 1 SC nSC 2

N NN

FF F
...

x

Figure 9.10. A cascade of n strong classifiers (SC’s). The input is a subwindow x.
It is sent to the next SC for further classification only it has passed all the previous
SC’s as face (F) pattern; otherwise it exits as nonface (N). x is finally considered to
be a face when it passes all the n SC’s.

Figure 9.11. Merging Multiple Detections.

detections are merged into one consistent detect. This is practiced in most
face detection systems e.g. [114, 100]. Fig. 9.11 gives an illustration. The
image on the left shows a typical output of initial detection, where the face is
detected four times with four false alarms on the cloth. On the right is the fi-
nal result after merging. We can see that multiple detections are merged and
false alarms eliminated. Fig. 9.12 and Fig. 9.13 show some typical detection
examples.

9.2.6 Evaluation

AdaBoost learning based face detection methods have been the most effective
of all methods developed so far. In terms of detection and false alarm rates,
it is comparable to the neural network method of Henry Rowley [100]. But

402 Face Detection, Alignment and Recognition Chapter 9

Figure 9.12. Results of face detection in gray images. 42 faces are detected, 6
faces are missing, and no false alarms occur.

it is several times faster [128, 127].
Regarding the AdaBoost approach, the following conclusions can be made

in terms of different feature sets, boosting algorithms, weak classifiers, sub-
window sizes, and training set sizes according to studies in [128, 127, 68, 71]:

– A set of Haar-like features, which can be computed very efficiently
using the integral image, achieves true scale invariance and reduces
the initial image processing required for object detection significantly.
For the extended set of Haar features introduced in [71], the in-plane
rotated features increased the accuracy though frontal faces exhibit
little diagonal structures.

– AdaBoost learning can select best subset from a large feature set and
construct a powerful nonlinear classifier.

– The cascade structure significantly improves the speed and is effective
to reduce false alarms, but with a little sacrifice of the detection rate
[128, 127].

Section 9.2. Face Detection 403

Figure 9.13. Results of face detection in gray images. 21 faces are detected, with
one face with large rotation missing and one false detect in the first image.

– FloatBoost effectively improves booting learning result [68]. It needs
fewer weaker classifiers than AdaBoost to achieve a similar error rate,
or achieve a lower error rate with the same number of weak classifiers.
Such a performance improvement is achieved with the cost of longer
training time, about 5 times longer.

– Gentle Adaboost outperforms Discrete and Real Adaboost [71].

404 Face Detection, Alignment and Recognition Chapter 9

– It is beneficial not just to use the simplest of all tree classifiers, i.e.
stumps, as the basis for the weak classifiers, but representationally
more powerful classifiers such as small CART trees, which can model
second and/or third order dependencies.

– 20x20 is the optimal input pattern size for frontal face detection.

Face detection technologies have now been mature enough to meet min-
imum needs of many practical applications. However, much work is needed
before automated face detection can achieve performance comparable with
the human. The Harr+AdaBoost approach is effective and efficient. How-
ever, the current form has almost reached its power limit. Within such
a framework, possible improvements may be made by designing additional
new set of features complement to the existing ones and adopting more ad-
vanced learning techniques which could lead to classifiers which had complex
enough boundaries yet did not overfit.

9.3 Face Alignment

Both shape and texture (i.e. image pixels enclosed in the facial outline)
provide important clues useful for characterizing the face [13]. Accurate ex-
traction of features for the representation of faces in images offers advantages
for many applications, and is crucial for highly accurate face recognition and
synthesis. The task of face alignment is to accurately locate facial features
such as the eyes, nose, mouth and outline, and normalize facial shape and
texture.

Active Shape Model (ASM) [23] and Active Appearance Model (AAM)
[22, 29] are two popular models for the purpose of shape and appearance
modeling and extraction. The standard ASM consists of two statistical
models: (1) global shape model, which is derived from the landmarks in
the object contour; (2) local appearance models, which is derived from the
profiles perpendicular to the object contour around each landmark. ASM
uses local models to find the candidate shape and the global model to con-
strain the searched shape. AAA makes use of subspace analysis techniques,
PCA in particular, to model both shape variation and texture variation,
and the correlations between them. In searching for a solution, it assumes
linear relationships between appearance variation and texture variation and
between texture variation and position variation; and learns the two linear
regression models from training data. The minimizations in high dimensional
space is reduced in two models facilitate. This strategy is also developed in
the active blob model of Sclaroff and Isidoro [108].

Section 9.3. Face Alignment 405

ASM and AAM can be expanded in several ways. The concept, origi-
nally proposed for the standard frontal view, can be extended to multi-view
faces, either by using piecewise linear modeling [24] or nonlinear modeling
[98]. Cootes and Taylor show that imposing constraints such as fixing eye
locations can improve AAM search result [21]. Blanz and Vetter extended
morphable models and AAM to model relationship of 3D head geometry
and facial appearance [16]. Li et al. [69] present a method for learning 3D
face shape model from 2D images based on a shape-and-pose-free texture
model. In Duta et al. [28], the shapes are automatically aligned using pro-
crustes analysis, and clustered to obtain cluster prototypes and statistical
information about intra-cluster shape variation. In Ginneken et al. [124],
a K-nearest-neighbors classifier is used and a set of features are selected
for each landmark to build local models. Baker and colleagues [7] propose
an efficient method called “inverse compositional algorithm” for alignment.
Ahlberg [4] extends AAM to a parametric method called Active Appearance
algorithm to extract positions parameterized by 3D rotation, 2D transla-
tion, scale, and six Action Units (controlling the mouth and the eyebrows).
In direct appearance model (DAM) [50, 66], shape is modeled as a linear
function of texture. Using such an assumption, Yan et al. [131] propose
texture-constrained ASM (TC-ASM), which has the advantage of ASM in
having good localization accuracy and that of AAM in having insensitivity
to initialization.

The following describes ASM and AAM, DAM, TC-ASM. A training
set of shape-texture pairs is assumed to be available and denoted as Ω =
{(S0, T0)} where a shape S0 = ((x1, y1), . . . , (xK , yK)) ∈ R

2K is a sequence
of K points in the 2D image plane, and a texture T0 is the patch of pixel
intensities enclosed by S0. Let S be the mean shape of all the training
shapes, as illustrated in Fig. 9.14. All the shapes are aligned or warping
to the tangent space of the mean shape S. After that , the texture T0 is
warped correspondingly to T ∈ R

L, where L is the number of pixels in the
mean shape S. The warping may be done by pixel value interpolation, e.g.,
using a triangulation or thin plate spline method.

9.3.1 Active Shape Model

In ASM, a shape is represented as a vector s in the low dimensional shape
subspace, denoted Ss, in R

k spanned by the k (< 2K) principal modes
learned from the training shapes.

S = S + Us (9.12)

406 Face Detection, Alignment and Recognition Chapter 9

Figure 9.14. Two face instaces labelled with 83 landmarks and the mesh of the
mean shape.

where U is the matrix consisting of k principal orthogonal modes of variation
in {S0}. Because the training shapes have been aligned to the tangent space
of S, the eigenvectors in U is orthogonal to the mean shape S, i.e., UTS = 0,
and the projection from S to s is

s = UT (S − S) = UTS (9.13)

The local appearance models describing the typical images structure
around each landmark are obtained from the sampled profiles perpendic-
ular to the landmark contour. The first derivatives of the profiles are used
to build these models. For a landmark, the mean profile and g and the co-
variance matrix Sg can be computed from the example profiles directly. The
best candidate can by found by minimizing Mahalanobis distance between
the candidate profile g and mean profile g:

dist(g, g) = (g − g)TS−1
g (g − g) (9.14)

After relocating all the landmarks from local models, the result shape Ŝ
in the Ss can be derived from the likelihood distribution :

p(Ŝ|s) =
exp{−E(Ŝ|s)}

Z
(9.15)

where Z is the normalizing constant, and the corresponding likelihood energy
function can be defined as:

E(Ŝ|s) =
‖Ŝ − S′‖

2σ2
1

+
k∑
i=1

{‖s
′
i − si‖2
2εi

} (9.16)

where σ1 is a constant, εi is the i-th largest eigenvalue of the covariance
matrix of the training data {S0}, S′ ∈ R

2K is the projection of Ŝ in Ss, and
s′ is the corresponding shape parameters. The first term in Equ.(9.16) is the

Section 9.3. Face Alignment 407

Euclidean distance of Ŝ to the shape space Ss , and the second term is is the
Mahalanobis distance between s′ and s.

The maximum likelihood solution, sML = arg max
s∈Ss

p(Ŝ|s), is the projec-

tion of Ŝ to the shape space Ss, i.e.,

sML = UT (Ŝ − S) (9.17)

Its corresponding shape in R
2K is

S = S + UsML (9.18)

9.3.2 Active Appearance Model

After aligning each training shape S0 to the mean shape and warping the
corresponding texture T0 to T , the warped textures are aligned to the tangent
space of the mean texture T by using an iterative approach [22]. The PCA
model for the warped texture is obtained as

T = T + Vt (9.19)

where V is the matrix consisting of � principal orthogonal modes of variation
in {T}, t is the vector of texture parameters. The projection from T to t is

t = VT (T − T) = VTT (9.20)

By this, the L pixel values in the mean shape is represented as a point in
the texture subspace St in R

�.
The appearance of each example is a concatenated vector

A =
(

Λs
t

)
(9.21)

where Λ is a diagonal matrix of weights for the shape parameters allowing
for the difference in units between the shape and texture variation, typically
defined as rI. Again, by applying PCA on the set {A}, one gets

A = Wa (9.22)

where W is the matrix consisting of principal orthogonal modes of the vari-
ation in {A | for all training samples}. The appearance subspace Sa is mod-
elled by

a = WTA (9.23)

408 Face Detection, Alignment and Recognition Chapter 9

The search for an AAM solution is guided by the following difference
between the texture Tim in the image patch and the texture Ta reconstructed
from the current appearance parameters

δT = Tim − Ta (9.24)

More specifically, the search for a face in an image is guided by minimizing
the norm ‖δT‖. The AAM assumes that the appearance displacement δa and
the position (including coordinates (x, y), scale s, and rotation parameter θ)
displacement δp are linearly correlated to δT :

δa = AaδT (9.25)
δp = ApδT (9.26)

The prediction matrices Aa,Ap are to be learned from the training data by
using linear regression. In order to estimate Aa, a is displaced systematically
to induce (δa, δT) pairs for each training image. Due to large consumption
of memory required by the learning of Aa and Ap, the learning has to be
done with a small, limited set of {δa, δT}.

9.3.3 Modeling Shape from Texture

An analysis on mutual dependencies of shape, texture and appearance pa-
rameters in the AAM subspace models shows that there exist admissible
appearances that are not modeled and hence cannot be reached by AAM
search processing [50]. Let us look into relationship between shape and tex-
ture from an intuitive viewpoint. A texture (i.e. the patch of intensities)
is enclosed by a shape (before aligning to the mean shape); the same shape
can enclose different textures (i.e. configurations of pixel values). However,
the reverse is not true: different shapes can not enclose the same texture. So
the mapping from the texture space to the shape space is many-to-one. The
shape parameters should be determined completely by texture parameters
but not vice versa.

Then, let us look further into the correlations or constraints between the
linear subspaces Ss,St and Sa in terms of their dimensionalities or ranks. Let
denote the rank of space S by dim(S). The following analysis is made in [50]:

1. When dim(Sa)=dim(St)+dim(Ss), the shape and texture parameters
are independent of each other, and there exist no mutual constraints
between the parameters s and t.

2. When dim(St)<dim(Sa)<dim(St)+dim(Ss), not all the shape param-
eters are independent of the texture parameters. That is, one shape

Section 9.3. Face Alignment 409

can correspond to more than one texture configuration in it, which
conforms an intuition.

3. One can also derive the relationship dim(St)<dim(Sa) from Eq.(9.21)
and (9.22) the formula

Wa =
(

Λs
t

)
(9.27)

when that s contains some components which are independent of t.

4. However, in AAM, it is often the case where dim(Sa)<dim(St) if the
dimensionalities of Sa and St are chosen to retain, say 98%, of the
total variations [22]. The consequence is that some admissible texture
configurations cannot been seen in the appearance subspace because
dim(Sa)<dim(St), and therefore cannot be reached by the AAM search.
This a flaw of AAM’s modeling of its appearance subspace.

From the above analysis, It is concluded in [50] that the ideal model
should be such that dim(Sa)=dim(St) and hence that s completely linearly
determinable by t. In other words, the shape should be linearly dependent
on the texture so that dim(St ∪ Ss)=dim(St).

Direct Appearance Models

A solution to this problem is made by assuming that the shape is linearly
dependent on the texture [50, 66]:

s = Rt+ ε (9.28)

where ε = s − Rt is noise and R is a k × l projection matrix. Denoting
the expectation by E(·), if all the elements in the variance matrix E(εεT)
are small enough, the linear assumption made in Eq.(9.28) is approximately
correct. This is true as will be verified later by experiments. Define the
objective cost function

C(R) = E(εT ε) = trace[E(εεT)] (9.29)

R is learned from training example pairs {(s, t)} by minimizing the above
cost function. The the optimal solution is

R∗ = E(stT)[E(ttT)]−1 (9.30)

The minimized cost is the trace of the following

E(εεT) = E(ssT)−R∗E(ttT)R∗T (9.31)

410 Face Detection, Alignment and Recognition Chapter 9

DAM [50, 66] assumes that the facial shape is a linear regression func-
tion of the facial texture and hence overcomes a defect in AAM; the texture
information is used directly to predict the shape and to update the estimates
of position and appearance (hence the name DAM). Also, DAM predicts
the new face position and appearance based on the principal components of
texture difference vectors, instead of the raw vectors themselves as in AAM.
This cuts down the memory requirement to a large extent, and further im-
proves the convergence rate and accuracy.

Learning in DAM

The DAM consists of a shape model, two texture (original and residual)
model and two prediction (position and shape prediction) model. The shape,
texture models and the position prediction model (9.26) are built in the
same way as in AAM. The residual texture model is built using the subspace
analysis technique PCA. Abandoning AAM’s crucial idea of combining shape
and texture parameters into an appearance model, it predicts the shape
parameters directly from the texture parameters. In the following, the last
two models are demonstrated in detail.

Instead of using δT directly as in the AAM search (cf. Eq.(9.26), its
principal components, denoted δT ′, is used to predict the position displace-
ment

δp = RpδT
′ (9.32)

where Rp is the prediction matrix learned by using linear regression. To
do this, samples of texture differences induced by small position displace-
ments in each training image are collected, and PCA is performed to get the
projection matrix HT . A texture difference is projected onto this subspace
as

δT ′ = HT δT (9.33)

δT ′ is normally about 1/4 of δT in dimensionality. Results have shown that
the use of δT instead of δT ′ as in Eq.(9.32) makes the prediction more stable
and more accurate.

Assume that a training set be given as A = {(Si, T oi)} where a shape
Si = ((xi1, y

i
1), . . . , (x

i
K , y

i
K)) ∈ R

2K is a sequence of K points in the 2D im-
age plane, and a texture T oi is the patch of image pixels enclosed by Si. The
DAM learning consists of two parts: (1) learning R, and (2) learning H and
Rp: (1) R is learned from the shape-texture pairs {s, t} obtained from the
landmarked images. (2) To learn H and Rp, artificial training data is gener-
ated by perturbing the position parameters p around the landmark points to

Section 9.3. Face Alignment 411

obtain {δp, δT}; then learn H from {δT} using PCA; δT ′ is computed after
that; and finally Rp is derived from {δp, δT ′}.

The DAM regression in Eq.(9.32) requires much less memory than the
AAM regression in Eq.(9.25), typically DAM needs only about 1/20 of mem-
ory required by AAM. For DAM, there are 200 training images, 4 parame-
ters for the position: (x, y, θ, scale), and 6 disturbances for each parameter
to generate training data for the training Rp. So, the size of training data
for DAM is 200 × 4 × 6 = 4, 800. For AAM, there are 200 training im-
ages, 113 appearance parameters, and 4 disturbances for each parameter to
generate training data for training Aa. The size of training data for Aa is
200 × 113 × 4 = 90, 400. Therefore, the size of training data for AAM’s
prediction matrices is 90, 400+4, 800 = 95, 200, which is 19.83 times that for
DAM. On a PC, for example, the memory capacity for AAM training with
200 images would allow DAM training with 3,966 images.

DAM Search

The DAM prediction models leads to the following search procedure: The
DAM search starts with the mean shape and the texture of the input image
enclosed by the mean shape, at a given initial position p0. The texture dif-
ference δT is computed from the current shape patch at the current position,
and its principal components are used to predict and update p and s using
the DAM linear models described above. Note that the p can be computed
from δT in one step as δp = RT δT , where RT = RpHT , instead of two steps
as in Eqns.(9.32) and (9.33). If ‖δT‖ calculated using the new appearance
at the position is smaller than the old one, the new appearance and position
are accepted; otherwise the position is updated by amount κδp with varied
κ values. The search algorithm is summarized below:

1. Initialize the position parameters p0 (with a given pose); set shape
parameters s0 = 0;

2. Get texture Tim from the current position, project it into the texture
subspace St as t, reconstruct the texture Ta, and compute texture dif-
ference δT0 = Tim − Ta and the energy E0 = ‖δT0‖2;

3. Compute δT ′ = HT δT , get the position displacement δp = RpδT
′;

4. Set step size κ = 1;

5. Update p = p0 − κδp, s = Rt;

412 Face Detection, Alignment and Recognition Chapter 9

6. Compute the difference texture δT using the new shape at the new
position, and its energy E = ‖δT‖2;

7. If |E − E0| < ε, the algorithm is converged; exit;

8. If E < E0, then let p0 = p, s0 = s, δT0 = δT,E0 = E, goto 3;

9. Change κ to the next number in {1.5, 0.5, 0.25, 0.125, . . . , }, goto 5;

Texture-Constrained Active Shape Model

TC-ASM [131] imposes the linear relationship of direct appearance model
(DAM) to improve ASM search. The motivation is the following: ASM has
better accuracy in shape localization than AAM when the initial shape is
placed close enough to the true shape whereas the latter model incorporates
information about texture enclosed in the shape and hence yields lower tex-
ture reconstruction error. However, ASM makes use of constraints near the
shape only, without a global optimality criterion, and therefore the solution
is sensitive to the initial shape position. In AAM, the solution finding pro-
cess is based on the linear relationship between the variation of the position
and the texture reconstruct error. The reconstruct error δT is influenced
very much by the illumination. Since δT is orthogonal to St (projected back
to R

L) and dim(St)� dim(T), the dimension of the space {δT} is very high,
and it is hard to train the regression matrix Aa,Ap and the prediction of the
variance of position can be subject to significant errors. Also it is time and
memory consuming. TC-ASM is aimed to overcome the above problems.

TC-ASM consists of a shape model, a global texture model, K local
appearance (likelihood) models and a texture-shape model. The shape and
texture model are built based on PCA in the way as in AAM. TheK local ap-
pearance models are build from the sampled profiles around each landmark,
and the texture-shape model is learned from the pairs {(s,t)} obtained from
the landmarked images.

It assumes a linear relationship between shape and texture as in DAM.
The shape (∈ Ss) with a given texture (∈ St) can be approximately modelled
by Gaussian distribution:

s ∼ N(st,Λ′) (9.34)

where
st = Rt+ ε (9.35)

where ε is the noise, and Λ′ can be defined as diagonal matrix for simplicity.
The matrix R can be pre-computed from the training pairs {(s,t)} ob-

tained from the labelled images using the Least Square method. The matrix

Section 9.3. Face Alignment 413

R will map the texture to the mean shape of all shapes with the same tex-
ture, i.e., E(s| shape S with parameter s encloses the given texture t), and
it’s right to be the expectation of the distribution, i.e., st. Denoting:

RV T = RV T (9.36)

From Equ.(9.20) and Equ.(9.35), one can get

st = RV T (T − T) (9.37)

Then the prior conditional distribution of s ∈ Ss, for a given st can be
represented as:

p(s|st) =
exp{−E(s|st)}

Z ′ (9.38)

where Z ′ is the normalizing constant and the corresponding energy function
is:

E(s|st) =
k∑
i=1

‖si − sti‖2
2ε′i

(9.39)

TC-ASM search is formulated in the Bayesian framework. Intuitively,
one could assume ε′ = βε or ε′ = σ2I, where ε = (ε1, ..., εk)T is the k
largest eigenvalues of the covariance matrix of the training data {S0} and β
is a constant. Using the prior distribution of Equ.(9.38) and the likelihood
distribution in Equ.(9.16).

Let Ŝ be the shape derived from local appearance models, and st be
the predicted shape from the global texture constrains. Ŝ and st can be
considered to be independent each other, i.e.,

p(Ŝ, st) = p(Ŝ)p(st) and p(Ŝ|st) = p(Ŝ) (9.40)

Shape extraction is posed as a problem of maximum a posterior (MAP)
estimation. The posteriori distribution of s ∈ Ss is:

p(s|Ŝ, st) =
p(Ŝ|s, st)p(s, st)

p(Ŝ, st)
(9.41)

=
p(Ŝ|s)p(s|st)

p(Ŝ)
(9.42)

The corresponding energy is

E(s|Ŝ, st) = E(Ŝ|s) + E(s|st) (9.43)

414 Face Detection, Alignment and Recognition Chapter 9

And the MAP estimation can be defined as

sMAP = argmin
s∈Ss

E(s|Ŝ, st) (9.44)

The relationship between Ŝ, st and the MAP estimation s can be represented
as in Fig. (9.15), where the shape space, spanned by {e1, e2}, is assumed to
be 2-D.

Unlike ASM, TC-ASM uses the additional prior constrains between the
shape and the texture, and this helps to avoid stagnating at the local min-
imum location in the shape search, and tends to drive the shape to a more
reasonable position. The shape is driven by the local appearance model
instead of regression prediction as in AAM, so TC-ASM is more robust to
illumination variation than AAM. Unlike AAM, which need manually gen-
erate huge number of samples for training the regression matrix, TC-ASM
has much lower memory consuming for it’s training.

Figure 9.15. The relationship between Ŝ (found from local appearance models),
st (derived from the enclosed texture) and the MAP estimation s ∈ R

k.

The search in TC-ASM contains three main steps: (1) Search the candi-
date shape Ŝ using local appearance models, (2) Warp the texture enclosed
by the projection of Ŝ in Ss and compute st using the texture-shape matrix
R, (3) Make the MAP estimation from Ŝ and st, goto step (1) unless more
than K ∗ θ(0 < θ < 1) points in Ŝ are converged or Nmax iterations have
been done. A multi-resolution pyramid structure is used to improve speed
and accuracy.

9.3.4 Dealing with Head Pose

We illustrate by using multi-view DAM, a view-based approach with DAM
as the base algorithm. The whole range of views from frontal to side views
are partitioned into several sub-ranges, and one DAM model is trained to

Section 9.3. Face Alignment 415

represent the shape and texture for each sub-range. Which view DAM model
to use may be decided by using some pose estimate for static images. In the
case of face alignment from video, the previous view plus the two neighboring
view DAM models may be attempted, and then the final result is chosen to
be the one with the minimum texture residual error.

The full range of face poses are divided into 5 view sub-ranges: [−90◦,−55◦],
[−55◦,−15◦], [−15◦, 15◦], [15◦, 55◦], and [55◦, 90◦] with 0◦ being the frontal
view. The landmarks for frontal, half-side and full-side view faces are il-
lustrated in Fig. 9.16. The dimensions of shape and texture vectors before
and after the PCA dimension reductions are shown in Table 9.1 where the
dimensions after PCA are chosen to be such that 98% of the corresponding
total energies are retained. The texture appearances due to respective vari-
ations in the first three principal components of texture are demonstrated in
Fig. 9.17.

Figure 9.16. Frontal, half-side, and full-side view faces and the labeled landmark
points.

View #1 #2 #3 #4 #5
Fontal 87 69 3185 144 878
Half-Side 65 42 3155 144 1108
Full-Side 38 38 2589 109 266

Table 9.1. Dimensionalities of shape and texture variations for face data. #1
Number of landmark points. #2 Dimension of shape space Ss. #3 Number of pixel
points in the mean shape. #4 Dimension of texture space St. #5 Dimension of
texture variation space (δT ′).

The left side models and right side models are reflections of each other,
so models for views on one side, plus the ceter view, need be trained, eg
[−15◦, 15◦], [15◦, 55◦], and [55◦, 90◦] for the 5 models.

416 Face Detection, Alignment and Recognition Chapter 9

Mean 1st 2nd 3rd

Figure 9.17. Texture and shape variations due to variations in the first three
principal components of the texture (The shapes change in accordance with s = Rt)
for full-side (±1σ), half-side (±2σ), and frontal (±3σ) views. .

9.3.5 Evaluation

DAM

Table 9.2 compares DAM and AAM in terms of the quality of position and
texture parameter estimates [50], and the convergence rates. The effect of
using δT ′ instead of δT is demonstrated through DAM’, which is DAM minus
the PCA subspace modeling of δT . The initial position is a shift from the
true position by dx = 6, dy = 6. The ‖δp‖ is calculated for each image
as the averaged distance between corresponding points in the two shapes,
and therefore it is also a measure of difference in shape. The convergence is
judged by the satisfaction of two conditions: ‖δT‖2 < 0.5 and ‖δp‖ < 3.

Fig. 9.18 demonstrates scenarios of how DAM converges for faces of dif-
ferent pose [66]. By looking at ‖δT‖ (cf. Eq.(9.24)) as a function of iterate
number, and by looking at the percentage of images whose texture recon-
struction error δT is smaller than 0.2, it is concluded that DAM has faster

E(‖δT‖2) std(‖δT‖2) E(‖δp‖) std(‖δp‖) cvg rate
DAM 0.156572 0.065024 0.986815 0.283375 100%
DAM’ 0.155651 0.058994 0.963054 0.292493 100%
AAM 0.712095 0.642727 2.095902 1.221458 70%
DAM 1.114020 4.748753 2.942606 2.023033 85%
DAM’ 1.180690 5.062784 3.034340 2.398411 80%
AAM 2.508195 5.841266 4.253023 5.118888 62%

Table 9.2. Comparisons of DAM, DAM’ and AAM in terms of errors in estimated
texture (appearance) parameters δT and position δp and convergence rates for the
training images (first block of three rows) and test images (second block).

Section 9.3. Face Alignment 417

Figure 9.18. DAM aligned faces (from left to right) at the 0-th, 5-th, 10-th,
and 15-th iterations, and the original images for (top-bottom) frontal, half-side and
full-side view faces.

convergence rate and smaller error than AAM. When the face is undergone
large variation due to stretch in either the x or y direction, the model fitting
can be improved by allowing different scales in the two directions. This is
done by splitting the scale parameter into two: sx and sy.

The DAM search is fairly fast. It takes on average 39 ms per iteration
for frontal and half-side view faces, and 24 ms for full-side view faces in an
image of size 320x240 pixels. Every view model takes about 10 iterations to
converge. If 3 view models are searched with per face, as is done with image
sequences from video, the algorithm takes about 1 second to find the best
face alignment.

TC-ASM

Experiments are performed in both training data and testing data and results
are compared with ASM and AAM. A data set containing 700 face images
with different illumination conditions and expressions selected from the AR
database[82] is used in our experiments. They are all in frontal view with
out-of-plane rotation within [−10◦,10◦]. 83 landmark points of the face are
labelled manually. 600 images are randomly selected for the training set and
the other 100 for testing.

TC-ASM are compared with ASM and AAM using the same data sets.
The shape vector in the ASM shape space is 88 dimensional. The texture
vector in the AAM texture space is 393 dimensional. The concatenated vec-
tor of 88+393 dimensions is reduced with the parameter r = 13.77 to a 277
dimensional vector which retains 98% of the total variation. Two types of
experiments are presented: (1) comparison of the position accuracy and (2)

418 Face Detection, Alignment and Recognition Chapter 9

comparison of the texture reconstruct error.

Position Accuracy

Consider the displacement D, i.e., the point-point Euclidean distance (in
pixels) between the found shape and the manually labelled shape. One mea-
sure is the percentage of resulting shapes whose displacements are smaller
than a given bound, given an initial displacement condition. Statistics calcu-
lated from 100 test images with different initial positions show that TC-ASM
significantly improves the accuracy with all different initial conditions [131].
Stabilities of ASM and TC-ASM can be compared based the average stan-
dard deviation of the shape results obtained with different initial positions
deviated from the ground truth, say by approximately 20, pixels. Results
show TC-ASM is more stable than ASM to initialization.

Texture Reconstruction

The global texture constrains used in TC-ASM can improve the accuracy
of texture matching in ASM. Results from [131] suggest that the texture
accuracy of TC-ASM is close to that of AAM while its position accuracy is
much better than AAM. Fig. 9.19 gives an example comparing the sensitivity
of AAM and TC-ASM to illumination. While AAM is more likely to result in
incorrect solution, TC-ASM is relatively robust to the illumination variation.

Figure 9.19. Sensitivity of AAM (upper) and TC-ASM (lower) to illumination
condition not seen in the training set. From left to right are the results obtained at
the 0-th, 2-th, and 10-th iterations.

In terms of speed, the standard ASM is a fast algorithm, and TC-ASM is

Section 9.4. Face Recognition 419

computationally more expensive but still much faster than AAM. The train-
ing of TC-ASM is very fast, which takes only about one tenth of AAM. In
our experiment (600 training images, 83 landmarks and P-III 700 computer),
TC-ASM takes on average 32 ms per iteration, which is twice of ASM (16
ms), while only one fifth of AAM(172 ms). The training time of AAM is
more than two hours, while TC-ASM is only about 12 minutes.

9.4 Face Recognition

To date, the appearance-based learning framework has been most influential
in the face recognition (FR) research. Under this framework, the FR problem
can be stated as follows: Given a training set, Z = {Zi}Ci=1, containing C
classes with each class Zi = {zij}Ci

j=1 consisting of a number of localized face

images zij , a total of N =
∑C

i=1Ci face images are available in the set. For
computational convenience, each image is represented as a column vector
of length J(= Iw × Ih) by lexicographic ordering of the pixel elements, i.e.
zij ∈ R

J , where (Iw×Ih) is the image size, and R
J denotes the J-dimensional

real space. Taking as input such a set Z, the objectives of appearance-
based learning are: (1) to find based on optimization of certain separability
criteria a low-dimensional feature representation yij = ϕ(zij), yij ∈ R

M and
M � J , with enhanced discriminatory power; (2) to design based on the
chosen representation a classifier, h : R

M → Y = {1, 2, · · · , C}, such that h
will correctly classify unseen examples ϕ(z, y), where y ∈ Y is the class label
of z.

9.4.1 Preprocessing

Figure 9.20. Left: Original samples in the FERET database [3]. Middle: The
standard mask. Right: The samples after the preprocessing sequence.

It has been shown that irrelevant facial portions such as hair, neck, shoul-
der and background often provide misleading information to the FR systems
[20]. A normalization procedure is recommended in [95], using geometric
locations of facial features found in face detection and alignment. The nor-

420 Face Detection, Alignment and Recognition Chapter 9

malization sequence consists of four steps: (1) the raw images are translated,
rotated and scaled so that the centers of the eyes are placed on specific pix-
els, (2) a standard mask as shown in Fig. 9.20:Middle is applied to remove
the non-face portions, (3) histogram equalization is performed in the non
masked facial pixels, (4) face data are further normalized to have zero mean
and unit standard deviation. Fig. 9.20:Right depicts some samples obtained
after the preprocessing sequence was applied.

9.4.2 Feature Extraction

The goal of feature extraction is to generate a low-dimensional feature repre-
sentation intrinsic to face objects with good discriminatory power for pattern
classification.

PCA Subspace

In the statistical pattern recognition literature, Principle Component Anal-
ysis (PCA) [55] is one of the most widely used tools for data reduction and
feature extraction. The well-known FR method, Eigenfaces [122] built on
the PCA technique, has been proved to be very successful. In the Eigen-
faces method [122], the PCA is applied to the training set Z to find the N
eigenvectors (with non zero eigenvalues) of the set’s covariance matrix,

Scov =
1
N

C∑
i=1

Ci∑
j=1

(zij − z̄)(zij − z̄)T (9.45)

where z̄ = 1
N

∑C
i=1
∑Ci

j=1 zij is the average of the ensemble. The Eigen-
faces are the first M(≤ N) eigenvectors (denoted as Ψef) corresponding to
the largest eigenvalues, and they form a low-dimensional subspace, called
“face space” where most energies of the face manifold are supposed to lie.
Fig. 9.21(1st row) shows the first 6 Eigenfaces, which appear as some re-
searchers said ghostly faces. Transforming to the M -dimensional face space
is a simple linear mapping: yij = ΨT

ef (zij − z̄), where the basis vectors
Ψef are orthonormal. The subsequent classification of face patterns can be
performed in the face space using any classifier.

Dual PCA Subspaces

The Eigenfaces method is built on a single PCA, which suffers from a major
drawback, that is, it can not explicitly account for the difference between
two types of face pattern variations key to the FR task: between-class vari-
ations and within-class variations. To this end, Moghaddam et al. [86]

Section 9.4. Face Recognition 421

proposed a probabilistic subspace method, also known as dual Eigenfaces.
In the method, the distribution of face pattern is modelled by the intensity
difference between two face images, ∆ = z1 − z2. The difference ∆ can
be contributed by two distinct and mutually exclusive classes of variations:
intrapersonal variations ΩI and extrapersonal variations ΩE . In this way,
the C-class FR task is translated to a binary pattern classification problem.
Each class of variations can be modelled by a high-dimensional Gaussian
distribution, P (∆|Ω). Since most energies of the distribution are assumed
to exist in a low-dimensional PCA subspace, it is shown in [86] that P (∆|Ω)
can be approximately estimated by

P (∆|Ω) = P (z1 − z2|Ω) = exp(−‖y1 − y2‖2 /2)/β(Ω) (9.46)

where y1 and y2 are the projections of z1 and z2 in the PCA subspace, and
β(Ω) is a normalization constant for a given Ω. Any two images can be
determined if come from the same person by comparing the two likelihoods,
P (∆|ΩI) and P (∆|ΩE), based on the maximum-likelihood (ML) classifica-
tion rule. It is commonly believed that the extrapersonal PCA subspace as
shown in Fig. 9.21(2nd row) represents more representative variations, such
as those captured by the standard Eigenfaces method whereas the intraper-
sonal PCA subspace shown in Fig. 9.21(3rd row) accounts for variations due
mostly to changes in expression. Also, it is not difficult to see that the two
Gaussian covariance matrices in P (∆|ΩI) and P (∆|ΩE) are equivalent to the
within- and between-class scatter matrices of Linear Discriminant Analysis
(LDA) mentioned later respectively. Thus, the dual Eigenfaces method can
be regarded as a quadratic extension of the so-called Fisherfaces method [12].

Other PCA Extensions

The PCA-based methods are simple in theory, but they started the era of
the appearance-based approach to visual object recognition [121]. In addi-
tion to the dual Eigenfaces method, numerous extensions or variants of the
Eigenfaces method have been developed for almost every area of face re-
search. For example, a multiple-observer Eigenfaces technique is presented
to deal with view-based face recognition in [93]. Moghaddam and Pentland
derived two distance metrics, called distance from face space (DFFS) and
distance in face space (DIFS), by performing density estimation in the origi-
nal image space using Gaussian models, for visual object representation [87].
Sung and Poggio built six face spaces and six non-face spaces, extracted the
DEFS and DIFS of the input query image in each face/non-face space, and
then fed them to a multi-layer perceptron for face detection [114]. Tipping

422 Face Detection, Alignment and Recognition Chapter 9

Figure 9.21. Visualization of four types of basis vectors obtained from a normal-
ized subset of the FERET database.. Row 1: the first 6 PCA bases. Row 2: the
first 6 PCA bases for the extrapersonal variations. Row 3: the first 6 PCA bases
for the intrapersonal variations. Row 4: the first 6 LDA bases.

and Bishop [118] presented a probabilistic PCA (PPCA), which connects
the conventional PCA to a probability density. This results in some addi-
tional practical advantages, e.g. (i) In classification, PPCA could be used
to model class-conditional densities, thereby allowing the posterior proba-
bilities of class membership to be computed; (ii) The single PPCA model
could be extended to a mixture of such models. Due to its huge influences,
the Eigenfaces [122] was awarded to be the “Most influential paper of the
decade” by Machine Vision Applications in 2000.

ICA-based Subspace Methods

PCA is based on Gaussian models, that is, the found principal components
are assumed to be subjected to independently Gaussian distributions. It
is well-known that the Gaussian distribution only depends on the first and
second order statistical dependencies such as the pair-wise relationships be-
tween pixels. However, for complex objects such as human faces, much of the
important discriminant information, such as phase spectrum, may be con-
tained in the high-order relationships among pixels [9]. Independent Com-

Section 9.4. Face Recognition 423

ponent Analysis (ICA) [61], a generalization of PCA, is one such method
which can separate the high-order statistics of the input images in addition
to the second-order statistic.

Figure 9.22. Left: PCA bases vs ICA bases. Right: PCA basis vs LDA basis.

The goal of ICA is to search for a linear non-orthogonal transformation
B = [b1, · · · ,bM] to express a set of random variables z as linear combina-
tions of statistically independent source random variables y = [y1, · · · ,yM],

z ≈
M∑
m=1

bmym = By, BBT �= I, p(y) =
M∏
m=1

p(ym) (9.47)

These source random variables {ym}Mm=1 are assumed to be subjected to
non-Gaussian such as heavy-tailed distributions. Compared to PCA, these
characteristics of ICA often lead to a superior feature representation in terms
of best fitting the input data, for example in the case shown in Fig. 9.22:Left.
There are several approaches for performing ICA, such as minimum mutual
information, maximum neg-entropy, and maximum likelihood, and reviews
can be found in [61, 43]. Recently, ICA has been widely attempted in FR
studies such as [72, 9], where better performance than PCA-based methods
was reported. Also, some ICA extensions like ISA [52] and TICA [53] have
been shown to be particularly effective in view-based clustering of un-labeled
face images [65].

LDA-based Subspace Methods

Linear Discriminant Analysis (LDA) [35] is also a representative technique
for data reduction and feature extraction. In contrast with PCA, LDA is a
class specific one that utilizes supervised learning to find a set of M(� J)

424 Face Detection, Alignment and Recognition Chapter 9

feature basis vectors, denoted as {ψm}Mm=1, in such a way that the ratio of
the between- and within-class scatters of the training image set is maximized.
The maximization is equivalent to solve the following eigenvalue problem,

Ψ = arg max
Ψ

∣∣ΨTSbΨ
∣∣

|ΨTSwΨ| , Ψ = [ψ1, . . . , ψM], ψm ∈ R
J (9.48)

where Sb and Sw are the between- and within-class scatter matrices, having
the following expressions,

Sb =
1
N

C∑
i=1

Ci(z̄i − z̄)(z̄i − z̄)T =
C∑
i=1

Φb,iΦT
b,i = ΦbΦT

b (9.49)

Sw =
1
N

C∑
i=1

Ci∑
j=1

(zij − z̄i)(zij − z̄i)T (9.50)

where z̄i is the mean of class Zi, Φb,i = (Ci/N)1/2(z̄i − z̄) and Φb =
[Φb,1, · · · ,Φb,c]. The LDA-based feature representation of an input image
z can be obtained simply by a linear projection, y = ΨTz.

Fig. 9.21(4th row) visualizes the first 6 basis vectors {ψi}6i=1 obtained by
using the LDA version of [79]. Comparing Fig. 9.21(1-3 rows) to Fig. 9.21(4th
row), it can be seen that the Eigenfaces look more like a real human face
than those LDA basis vectors. This can be explained by the different learn-
ing criteria used in the two techniques. LDA optimizes the low-dimensional
representation of the objects with focus on the most discriminant feature ex-
traction while PCA achieves simply object reconstruction in a least-square
sense. The difference may lead to significantly different orientations of fea-
ture bases as shown in Fig. 9.22:right. As a consequence, it is not difficult
to see that when it comes to solving problems of pattern classification such
as face recognition, the LDA based feature representation is usually superior
to the PCA based one (see e.g. [12, 19, 137]).

When Sw is non-singular, the basis vectors Ψ sought in Eq.9.48 corre-
spond to the first M most significant eigenvectors of (S−1

w Sb). However, in
the particular tasks of face recognition, data are highly dimensional, while
the number of available training samples per subject is usually much smaller
than the dimensionality of the sample space. For example, a canonical ex-
ample used for recognition is a (112 × 92) face image, which exists in a
10304-dimensional real space. Nevertheless, the number (Ci) of examples
per class available for learning is not more than ten in most cases. This
results in the so-called small sample size (SSS) problem, which is known

Section 9.4. Face Recognition 425

to have significant influences on the design and performance of a statistical
pattern recognition system. In the application of LDA into FR tasks, the
SSS problem often gives rise to high variance in the sample-based estimation
for the two scatter matrices, which are either ill- or poorly-posed.

There are two methods for tackling the problem. One is to apply linear
algebra techniques to solve the numerical problem of inverting the singular
within-class scatter matrix Sw. For example, the pseudo inverse is utilized
to complete the task in [116]. Also, small perturbation may be added to Sw
so that it becomes nonsingular [49, 139]. The other method is a subspace
approach, such as the one followed in the development of the Fisherfaces
method [12], where PCA is firstly used as a pre-processing step to remove
the null space of Sw, and then LDA is performed in the lower dimensional
PCA subspace. However, it should be noted at this point that the discarded
null space may contain significant discriminatory information. To prevent
this from happening, solutions without a separate PCA step, called direct
LDA (D-LDA) methods have been presented recently in [19, 137, 79].

Input: A training set Z with C classes: Z = {Zi}Ci=1, each class contains
Zi = {zij}Ci

j=1 face images, where zij ∈ R
J .

Output: An M -dimensional LDA subspace spanned by Ψ, an M × J matrix
with M � J .

Algorithm:
Step 1. Find the eigenvectors of ΦT

b Φb with non-zero eigenvalues,
and denote them as Em = [e1, . . . , em], m ≤ C − 1.

Step 2. Calculate the first m most significant eigenvectors (U) of Sb
and their corresponding eigenvalues (Λb) by U = ΦbEm and
Λb = UTSbU.

Step 3. Let H = UΛ−1/2
b . Find eigenvectors of HT (Sb + Sw)H, P.

Step 4. Choose the M(≤ m) eigenvectors in P with the smallest
eigenvalues. Let PM and Λw be the chosen eigenvectors and
their corresponding eigenvalues respectively.

Step 5. Return Ψ = HPMΛ−1/2
w .

Figure 9.23. The pseudo code implementation of the LD-LDA method

The basic premise behind the D-LDA approach is that the null space of
Sw may contain significant discriminant information if the projection of Sb

426 Face Detection, Alignment and Recognition Chapter 9

is not zero in that direction, while no significant information, in terms of
the maximization in Eq.9.48, will be lost if the null space of Sb is discarded.
Based on the theory, it can be concluded that the optimal discriminant
features exist in the complement space of the null space of Sb, which has
M = C − 1 nonzero eigenvalues denoted as v = [v1, · · · , vM]. Let U =
[u1, · · · ,uM] be theM eigenvectors of Sb corresponding to theM eigenvalues
v. The complement space is spanned by U, which is furthermore scaled by
H = UΛ−1/2

b so as to have HTSbH = I, where Λb = diag(v), and I is the
(M ×M) identity matrix. The projection of Sw in the subspace spanned
by H, HTSwH, is then estimated using sample analogs. However, when
the number of training samples per class is very small, even the projection
HTSwH is ill- or poorly-posed. To this end, a modified optimization criterion

represented as Ψ = arg max
Ψ

|ΨT SbΨ|
|ΨT SbΨ+ΨT SwΨ| , was introduced in the D-LDA

of [79] (hereafter LD-LDA) instead of Eq.9.48 used in the D-LDA of [137]
(hereafter YD-LDA). As will be seen later, the modified criterion introduces
a considerable degree of regularization, which helps to reduce the variance of
the sample-based estimates in ill- or poorly-posed situations. The detailed
process to implement the LD-LDA method is depicted in Fig. 9.23.

The classification performance of traditional LDA may be degraded by
the fact that their separability criteria are not directly related to their clas-
sification accuracy in the output space [74]. To this end, an extension of
LD-LDA, called DF-LDA is also introduced in [79]. In the DF-LDA method,
the output LDA subspace is carefully rotated and re-oriented by an iterative
weighting mechanism introduced into the between-class scatter matrix,

Sb,t =
C∑
i=1

C∑
j=1

�ij,t(z̄i − z̄j)(z̄i − z̄j)T (9.51)

In each iteration, object classes that are closer together in the preceding
output space, and thus can potentially result in mis-classification, are more
heavily weighted (through �ij,t) in the current input space. In this way,
the overall separability of the output subspace is gradually enhanced, and
different classes tend to be equally spaced after a few iterations.

Gabor Feature Representation

The appearance images of a complex visual object are composed of many
local structures. The Gabor wavelets are particularly aggressive at captur-
ing the features of these local structures corresponding to spatial frequency
(scale), spatial localization, and orientation selectively [103]. Consequently,

Section 9.4. Face Recognition 427

it is reasonably believed that the Gabor feature representation of face images
is robust against variations due to illumination and expression changes [73]

Figure 9.24. Gabor filters generalized at 5 scales ν ∈ U = {0, 1, 2, 3, 4} and 8
orientations µ ∈ V = {0, 1, 2, 3, 4, 5, 6, 7} with σ = 2π.

The kernels of the 2D Gabor wavelets, also known as Gabor filters have
the following expression at the spatial position �x = (x1, x2) [27],

Gµ,ν(�x) =
‖κµ,ν‖2
σ2 exp(−‖κµ,ν‖

2 ‖�x‖2
2σ2)[exp(ikµ,ν�x)− exp(−σ2/2)] (9.52)

where µ and ν define the orientation and scale of the Gabor filter, which is a
product of a Gaussian envelope and a complex plane wave with wave vector
κu,v. The family of Gabor filters is self-similar, since all of them are generated
from one filter, the mother wavelet, by scaling and rotation via the wave
vector kµ,ν . Fig. 9.24 depicts commonly used 40 Gabor kernels generalized at
5 scales ν ∈ U = {0, 1, 2, 3, 4} and 8 orientations µ ∈ V = {0, 1, 2, 3, 4, 5, 6, 7}
with σ = 2π. For an input image z, its 2D Gabor feature images can be
extracted by convoluting z with a Gabor filter, gµ,ν = z ∗ Gµ,ν , where ∗
denotes the convolution operator. Thus, a total of (|U| × |V|) Gabor feature
images gµ,ν can be obtained, where |U| and |V| denote the sizes of U and V

respectively.
In [73], all the Gabor images gµ,ν are down sampled, and then concate-

nated to form an augmented Gabor feature vector representing the input face
image. In the sequence, PCA or LDA is applied to the augmented Gabor
feature vector for dimensionality reduction and further feature extraction
before it is fed to a classifier. Also, it can be seen that due to the similarity

428 Face Detection, Alignment and Recognition Chapter 9

between the Gabor filters, there is a great deal of redundancy in the overcom-
plete Gabor feature set. To this end, Wiskott et al. [130] proposed to utilize
the Gabor features corresponding to some specific facial landmarks, called
Gabor jets instead of the holistic Gabor images. Based on the jet represen-
tation, the Elastic Graph Matching (EGM) was then applied for landmark
matching and face recognition. The Gabor-based EGM method was one of
the top performers in the 1996/1997 FERET competition [95].

Mixture of Linear Subspaces

Although successful in many circumstances, linear appearance-based meth-
ods including the PCA- and LDA-based ones may fail to deliver good per-
formance when face patterns are subject to large variations in viewpoints,
illumination or facial expression, which result in a highly non convex and
complex distribution of face images. The limited success of these methods
should be attributed to their linear nature. A cost effective approach to
address the non convex distribution is with a mixture of the linear models.
The mixture- or ensemble- based approach embodies the principle of “divide
and conquer”, by which a complex FR problem is decomposed into a set
of simpler ones, in each of which a locally linear pattern distribution can
be generalized and dealt with by a relatively easy linear solution (see e.g.
[93, 114, 38, 15, 75, 39, 77]).

From the designer’s point of view, the central issue to the ensemble-based
approach is to find an appropriate criterion to decompose the complex face
manifold. Existing partition techniques, whether nonparametric clustering
such as K-means [48] or model-based clustering such as EM [84], unanimously
adopt similarity criterion, based on which similar samples are within the
same cluster and dissimilar samples are in different clusters. For example, in
the view-based representation [93], every face pattern is manually assigned
to one of several clusters according to its view angle with each cluster cor-
responding to a particular view. In the method considered in [114] and [38],
the database partitions are automatically implemented using the K-means
and EM clustering algorithms respectively. However, although such criterion
may be optimal in the sense of approximating real face distribution for tasks
such as face reconstruction, face pose estimation and face detection, they
may not be good for the recognition task considered in the section. It is not
hard to see that from a classification point of view, the database partition
criterion should be aimed to maximize the difference or separability between
classes within each “divided” subset or cluster, which as a sub-problem then
can be relatively easy to be “conquered” by a linear FR method.

Section 9.4. Face Recognition 429

Input: A training set Z with C classes: Z = {Zi}Ci=1, each class contains
Zi = {zij}Ci

j=1 face images.
Output: K maximally separable clusters {Wk}Kk=1, each class of images Zi

are assigned into one of K clusters.
Algorithm:

Step 1. Calculate z̄i = 1
Ci

∑Ci
j=1 zij for class Zi where i = [1 · · · C].

Step 2. Randomly partition {z̄i}Ci=1 into K initial clusters {Wk}Kk=1,
calculate their cluster center {wk}Kk=1, and initial Ŝt by Eq.9.53.

Step 3. Find ẑk = arg min
z̄i∈Wk

{
(z̄i −wk)T (z̄i −wk)

}
, k = [1 · · · K].

Step 4. Compute distances of ẑk to other cluster centers:
dkh = (ẑk −wh)T (ẑk −wh), h = [1 · · · K].

Step 5. Find the cluster ĥ so that ĥ = arg max
h

{dkh}, h = [1 · · · K],

and re-set ẑk ∈ Wĥ
.

Step 6. Update the cluster centers wk and recompute the total scatter St.
Step 7. if Ŝt < St then Ŝt = St; return to Step 3;

else proceed to Step 8; /* Maximal St has been found. */
Step 8. Return current K clusters {Wk}Kk=1 and their centers {wk}Kk=1.

Figure 9.25. The pseudo code implementation of the CSC method.

With such a motivation, a novel method of clustering based on sepa-
rability criterion (CSC) was introduced recently in [75]. Similar to LDA,
the separability criterion is optimized in the CSC method by maximizing a
widely used separability measure, the between-class scatter (BCS). Let Wk

denote the k-th cluster, k = [1 · · · K] with K: the number of clusters. Rep-
resenting each class Zi by its mean: z̄i, the total within-cluster BCS of the
training set Z can be defined as,

St =
K∑
k=1

∑
z̄i∈Wk

Ci · (z̄i −wk)
T (z̄i −wk) (9.53)

where wk = (
∑

z̄i∈Wk
Ci · z̄i)/(

∑
z̄i∈Wk

Ci) is the center of the cluster Wk.
Eq.9.53 implies that a better class-separability intra cluster is achieved if
St has a larger value. The clustering algorithm maximizes St by iteratively
reassigning those classes whose means have the minimal distances to their

430 Face Detection, Alignment and Recognition Chapter 9

own cluster centers, so that the separability between classes is enhanced
gradually within each cluster. The maximization process can be implemented
by the pseudo codes depicted in Fig. 9.25.

With the CSC process, the training set Z is partitioned into a set of sub-
sets {Wk}Kk=1 called maximally separable clusters (MSCs). To take advantage
of these MSCs, a two-stage hierarchical classification framework (HCF) was
then proposed in [75]. The HCF consists of a group of FR sub-systems, each
one targeting a specific MSC. This is not a difficult task for most traditional
FR methods such as the YD-LDA [137] used in [75] to work as such a sub-
system in a single MSC with limited-size subjects and high between-class
separability.

Nonlinear Subspace Analysis Methods

In addition to the approach using mixture of locally linear models, another
option to generate a representation for nonlinear face manifold is with glob-
ally nonlinear approach. Recently, the so-called kernel machine technique
has become one of the most popular tools for designing nonlinear algorithms
in the communities of machine learning and pattern recognition [125, 106].
The idea behind the kernel-based learning methods is to construct a non-
linear mapping from the input space (RJ) to an implicit high-dimensional
feature space (F) using a kernel function φ : z ∈ R

J → φ(z) ∈ F. In the
feature space, it is hoped that the distribution of the mapped data is lin-
earized and simplified, so that traditional linear methods could perform well.
However, the dimensionality of the feature space could be arbitrarily large,
possibly infinite. Fortunately, the exact φ(z) is not needed, and the nonlinear
mapping can be performed implicitly in R

J by replacing dot products in F

with a kernel function defined in the input space R
J , k(zi, zj) = φ(zi) ·φ(zj).

Examples based on such a design include support vector machines (SVM)
[125], kernel PCA (KPCA) [107], kernel ICA (KICA) [6], and Generalized
Discriminant Analysis (GDA, also known as kernel LDA) [11].

In the kernel PCA [107], the covariance matrix in F can be expressed as

S̃cov =
1
N

C∑
i=1

Ci∑
j=1

(φ(zij)− φ̄)(φ(zij)− φ̄)T (9.54)

where φ̄ = 1
N

∑C
i=1
∑Ci

j=1 φ(zij) is the average of the ensemble in F. The
KPCA is actually a classic PCA performed in the feature space F. Let
g̃m ∈ F (m = 1, 2, . . . ,M) be the first M most significant eigenvectors of
S̃cov, and they form a low-dimensional subspace, called “KPCA subspace”

Section 9.4. Face Recognition 431

in F. For any face pattern z, its nonlinear principal components can be
obtained by the dot product, (g̃m · (φ(z)− φ̄)), computed indirectly through
the kernel function k(). When φ(z) = z, KPCA reduces to PCA, and the
KPCA subspace is equivalent to the Eigenface space introduced in [122].

As such, GDA [11] is to extract a nonlinear discriminant feature repre-
sentation by performing a classic LDA in the high-dimensional feature space
F. However, GDA solves the SSS problem in F simply by removing the null
space of the within-class scatter matrix S̃b, although the null space may con-
tain the most significant discriminant information as mentioned earlier. To
this end, a kernel version of LD-LDA [79], also called KDDA, is introduced
recently in [78]. In the feature space, the between- and within-class scatter
matrices are given as follows,

S̃b =
1
N

C∑
i=1

Ci(φ̄i − φ̄)(φ̄i − φ̄)T (9.55)

S̃w =
1
N

C∑
i=1

Ci∑
j=1

(φ(zij)− φ̄i)(φ(zij)− φ̄i)T (9.56)

where φ̄i = 1
Ci

∑Ci
j=1 φ(zij). Through eigen-analysis of S̃b and S̃w in the fea-

ture space F, KDDA finds a low-dimensional discriminant subspace spanned
by Θ, an M ×N matrix. Any face image z is first nonlinearly transformed
to an N × 1 kernel vector,

γ(φ(z)) = [k(z11, z), k(z12, z), · · · , k(zccc , z)]T (9.57)

Then, the KDDA-based feature representation y can be obtained by a linear
projection: y = Θ · γ(φ(z)).

9.4.3 Pattern Classification

Given the feature representation of face objects, a classifier is required to
learn a complex decision function to implement final classification. Whereas
the feature representation optimized for the best discrimination would help
reduce the complexity of the decision function, easy for the classifier design,
a good classifier would be able to further learn the separability between
subjects.

Nearest Feature Line Classifier

The nearest neighbor (NN) is a simplest yet most popular method for tem-
plate matching. In the NN based classification, the error rate is determined

432 Face Detection, Alignment and Recognition Chapter 9

by the representational capacity of a prototype face database. The represen-
tational capacity depends two issues: (i) how the prototypes are chosen to
account for possible variations; (ii) how many prototypes are available. How-
ever, in practice only a small number of them are available for a face class,
typically from one to about a dozen. It is desirable to have a sufficiently
large number of feature points stored to account for as many variations as
possible. To this end, Stan et al. [64] proposed a method, called the nearest
feature line (NFL), to generalize the representational capacity of available
prototype images.

Figure 9.26. Generalizing two prototype feature points y1 and y2 by the feature
line y1y2. A query feature point y is projected onto the line as point b.

The basic assumption behind the NFL method is based on an experi-
mental finding, which revealed that although the images of appearances of
the face patterns may vary significantly due to differences in imaging pa-
rameters such as lighting, scale, orientation, etc., these differences have an
approximately linear effect when they are small [121]. Consequently, it is
reasonable to use a linear model to interpolate and extrapolate the proto-
type feature points belonging to the same class in a feature space specific to
face representation such as the Eigenfaces space. In the simplest case, the
linear model is generalized by a feature line (FL), passing through a pair of
prototype points (y1,y2), as depicted in Fig. 9.26. Denoting the FL as y1y2,
the FL distance between a query feature point y and y1y2 is defined as

d(y,y1y2) = ‖y − b‖, b = y1 + ς(y2 − y1) (9.58)

where b is y’s projection point on the FL, and ς = (y−y1)·(y2−y1)
(y2−y1)·(y2−y1) is a position

parameter relative to y1 and y2. The FL approximates variants of the two
prototypes under variations in illumination and expression, i.e. possible face
images derived from the two. It virtually provides an infinite number of
prototype feature points of the class. Also, assuming that there are Ci > 1
prototype feature points available for class i, a number of Ki = Ci(Ci− 1)/2
FLs can be constructed to represent the class, e.g. Ki = 10 when Ci = 5.

Section 9.4. Face Recognition 433

As a result, the representational capacity of the prototype set is significantly
enhanced in this way.

The class label (y) of the query feature point y can be inferred by the
following NFL rule,

Decide y = i∗ if d(y,yi∗j∗yi∗k∗) = min
1≤i≤C

min
1≤j<k≤Ci

d(y,yijyik) (9.59)

The classification results do not only determine the class label y, but also
provide a quantitative position number ς∗ as a by-product which can be used
to indicate the relative changes (in illumination and expression) between the
query face and the two associated face images yi∗j∗ and yi∗k∗ .

Regularized Bayesian Classifier

LDA has its root in the optimal Bayesian classifier. Let P (y = i) and p(z|y =
i) be the prior probability of class i and the class-conditional probability
density of z given the class label is i, respectively. Based on the Bayes
formula, we have the following a posteriori probability P (y = i|z), i.e. the
probability of the class label being i given that z has been measured,

P (y = i|z) =
p(z|y = i)P (y = i)∑C
i=1 p(z|y = i)P (y = i)

(9.60)

The Bayes decision rule to classify the unlabeled input z is then given as,

Decide y = j if j = arg max
i∈Y

P (y = i|z) (9.61)

The Eq.9.60 is also known as the maximum a posteriori (MAP) rule, and it
achieves minimal misclassification risk among all possible decision rules.

The class-conditional densities p(z|y = i) are seldom known. However,
often it is reasonable to assume that p(z|y = i) is subjected to a Gaussian
distribution. Let µi and Σi are the mean and covariance matrix of the class
i, we have

p(z|y = i) = (2π)−J/2|Σi|−1/2 exp [−di(z)/2] (9.62)

where di(z) = (z− µi)TΣ−1
i (z− µi) is the squared Mahalanobis (quadratic)

distance from z to the mean vector µi. With the Gaussian assumption, the
classification rule of Eq.9.61 turns to

Decide y = j if j = arg min
i∈Y

(di(z) + ln |Σi| − 2 lnP (y = i)) (9.63)

The decision rule of Eq.9.63 produces quadratic boundaries to separate dif-
ferent classes in the J-dimensional real space. Consequently, this is also

434 Face Detection, Alignment and Recognition Chapter 9

referred to as quadratic discriminant analysis (QDA). Often the two statis-
tics (µi,Σi) are estimated by their sample analogs,

µi = z̄i, Σi =
1
Ci

Ci∑
j=1

(zij − z̄i)(zij − z̄i)T (9.64)

LDA can be viewed as a special case of QDA when the covariance structure
of all classes are identical, i.e. Σi = Σ. However, the estimation for either
Σi or Σ is ill-posed in the small sample size (SSS) settings, giving rise to
high variance. This problem becomes extremely severe due to Ci � J in
FR tasks, where Σi is singular with rank≤ (Ci − 1). To deal with such
a situation, a regularized QDA, built on the D-LDA idea and Friedman’s
regularization technique [40], called RD-QDA is introduced recently in [80].
The purpose of the regularization is to reduce the variance related to the
sample-based estimation for the class covariance matrices at the expense of
potentially increased bias.

In the RD-QDA method, the face images (zij) are first projected into the
between-class scatter matrix Sb’s complement null subspace spanned by H,
obtaining a representation yij = HTzij . The regularized sample covariance
matrix estimate of class i in the subspace spanned by H, denoted by Σ̂i(λ, γ),
can be expressed as,

Σ̂i(λ, γ) = (1− γ)Σ̂i(λ) +
γ

M
tr[Σ̂i(λ)]I (9.65)

where

Σ̂i(λ) =
1

Ci(λ)
[(1− λ)Si + λS] , Ci(λ) = (1− λ)Ci + λN (9.66)

Si =
Ci∑
j=1

(yij − ȳi)(yij − ȳi)T , S =
C∑
i=1

Si = N ·HTSwH (9.67)

ȳi = HT z̄i, and (λ, γ) is a pair of regularization parameters. The classifica-
tion rule of Eq.9.63 then turns to

Decide y = j if j = arg min
i∈Y

(
di(y) + ln |Σ̂i(λ, γ)| − 2 lnπi

)
(9.68)

where di(y) = (y − ȳi)T Σ̂−1
i (λ, γ)(y − ȳi) and πi = Ci/N is the estimate of

the prior probability of class i. The regularization parameter λ (0 ≤ λ ≤ 1)
controls the amount that the Si are shrunk toward S. The other parameter

Section 9.4. Face Recognition 435

γ (0 ≤ γ ≤ 1) controls shrinkage of the class covariance matrix estimates
toward a multiple of the identity matrix. Under the regularization scheme,
the classification rule of Eq.9.68 can be performed without experiencing high
variance of the sample-based estimation even when the dimensionality of the
subspace spanned by H is comparable to the number of available training
samples, N .

RD-QDA has close relationship with a series of traditional discriminant
analysis classifiers, such as LDA, QDA, nearest center (NC) and weighted
nearest center (WNC). Firstly, the four corners defining the extremes of the
(λ, γ) plane represent four well-known classification algorithms, as summa-
rized in Table 9.3, where the prefix ‘D-’ means that all these methods are
developed in the subspace spanned by H derived from the D-LDA technique.
Based on Fisher’s criterion (Eq.9.48) used in YD-LDA [137], it is obvious
that the YD-LDA feature extractor followed by an NC classifier is actually a
standard LDA classification rule implemented in the subspace H. Also, we
have Σ̂i(λ, γ) = α

(S
N + I

)
= α

(
HTSwH + I

)
when (λ = 1, γ = η), where

α =
(

tr[S/N]
tr[S/N]+M

)
and η = M

tr[S/N]+M . In this situation, it is not difficult to
see that RD-QDA is equivalent to LD-LDA followed by an NC classifier. In
addition, a set of intermediate discriminant classifiers between the five tra-
ditional ones can be obtained when we smoothly slip the two regularization
parameters in their domains. The purpose of RD-QDA is to find the optimal
(λ∗, γ∗) that give the best correct recognition rate for a particular FR task.

Table 9.3. A series of discriminant analysis algorithms derived from RD-QDA.
Algs. D-NC D-WNC D-QDA YD-LDA LD-LDA

λ 1 0 0 1 1
γ 1 1 0 0 η

Σ̂i(λ, γ) 1
M tr[

S
N]I 1

M tr[
Si
Ci

]I Si
Ci

S
N α

(S
N + I

)

Neural Networks Classifiers

Either linear or quadratic classifiers may fail to deliver good performance
when the feature representation y of face images z is subject to a highly
non convex distribution, for example, in the case depicted in Fig. 9.27:Right,
where a nonlinear decision boundary much more complex than the quadratic
one is required. One option to construct such a boundary is to utilize a
neural network classifier. Fig. 9.27:Left depicts the architecture of a general
multilayer feedforward neural network (FNN), which consists of one input-

436 Face Detection, Alignment and Recognition Chapter 9

layer, one hidden-layer and one output-layer. The input-layer has M units
to receive the M -dimensional input vector y. The hidden layer is composed
of L units, each one operated by a nonlinear activation function hl(·), to
nonlinearly map the input to an L-dimensional space R

L, where the patterns
are hoped to become linearly separable, so that linear discriminants can be
implemented by the activation function f(·) in the output layer. The process
can be summarized as,

tk(y) = f

{∑L

j=0
h

(∑M

i=0
whjiyi

)
· wokj

}
(9.69)

where whji and wokj are the connecting weights between neighboring layers of
units.

Figure 9.27. Left: A general multilayer feedforward neural network; Right: An
example requires complex decision boundaries.

The key to the neural networks is to learn the involved parameters. One
of the most popular methods is the backpropagation algorithm based on er-
ror gradient descent. The most widely used activation function in both
hidden and output units of a BP network is a sigmoidal function given by
f(·) = h(·) = 1/(1+ e(·)). Most BP like algorithms utilize local optimization
techniques. As a result, the training results are very much dependent on
the choices of initial estimates. Recently, a global FNN learning algorithm is
proposed in [120, 119]. The global FNN method was developed by address-
ing two issues: (i) characterization of global optimality of an FNN learning
objective incorporating the weight decay regularizer, and (ii) derivation of
an efficient search algorithm based on results of (i). The FR simulations
reported in [120] indicate that the global FNN classifier can perform well
in conjunction with various feature extractors including Eigenfaces [122],
Fisherfaces [12] and D-LDA [137].

Section 9.4. Face Recognition 437

In addition to the classic BP networks, the radial basis function (RBF)
neural classifiers have recently attracted extensive interests in the commu-
nity of pattern recognition. In the RBF networks, the Gaussian function
is often preferred as the activation function in the hidden units, hl(y) =
exp(−‖y − ui‖ /σ2

i), while the output activation function f(·) is usually a
linear function. In this way it can be seen that the output of the RBF
networks is actually a mixture of Gaussians. Consequently, it is generally
believed that the RBF networks possess the best approximation property.
Also, the learning speed of the RBF networks is fast due to locally tuned
neurons. Attempts to apply the RBF neural classifiers to solve FR problems
have been reported recently. For example, in [31], an FR system built on a
LDA feature extractor and an enhanced RBF neural network, produced one
of the lowest error rates reported on the ORL face database [2].

Support Vector Machine Classifiers

Assuming that all the examples in the training set Z are drawn from a dis-
tribution P (z, y) where y is the label of the example z, the goal of a classifier
learning from Z is to find a function f(z, α∗) to minimize the expected risk:

R(α) =
∫
|f(z, α)− y|dP (z, y) (9.70)

where α is a set of abstract parameters. Since P (z, y) is unknown, most tra-
ditional classifiers, such as Nearest Neighbor, Bayesian Classifier and Neural
Network, solve the specific learning problem using the so-called empirical
risk (i.e. training error) minimization (ERM) induction principle, where
the expected risk function R(α) is replaced by the empirical risk function:
Remp(α) = 1

N

∑N
i=1 |f(zi, α)− yi|. As a result, the classifiers obtained may

be entirely unsuitable for classification of unseen test patterns, although they
may achieve the lowest training error. To this end, Vapnik and Chervonenkis
[126] provide a bound on the deviation of the empirical risk from the expected
risk. The bound, also called Vapnik-Chervonenkis (VC) bound holding with
probability (1− η) has the following form:

R(α) ≤ Remp(α) +

√
1
N

(
h

(
ln

2N
h

+ 1
)
− ln

η

4

)
(9.71)

where h is the VC-dimension as a standard measure to the complexity of
the function space that f(zi, α) is chosen from. It can be seen from the
VC bound that both Remp(α) and (h/N) have to be small to achieve good
generalization performance.

438 Face Detection, Alignment and Recognition Chapter 9

Figure 9.28. A binary classification problem solved by hyperplanes: (A) Arbitrary
separating hyperplanes; (B) the optimal separating hyperplanes with the largest
margin.

Based on the VC theory, the so-called support vector machines (SVMs)
embody the Structural Risk Minimization principle, which aims to minimize
the VC bound. However, often it is intractable to estimate the VC dimension
of a function space. Fortunately, it has been shown in [125] that for the
function class of hyperplanes: f(z) = w · z + b, its VC dimension can be
controlled by increasing the so-called margin, which is defined as the minimal
distance of an example to the decision surface (see Fig. 9.28). The main idea
behind SVMs is to find a separating hyperplane with the largest margin as
shown in Fig. 9.28, where the margin is equal to 2/ ‖w‖.

For a binary classification problem where yi ∈ {1,−1}, the general opti-
mal separating hyperplane sought by SVM is the one that,

Minimizes : P =
1
2
‖w‖2 + ζ

∑n

i=1
ξi (9.72)

subject to yi(wTzi + b) ≥ 1 − ξi, ξi ≥ 0, where ξi are slack variables, ζ
is a regularization constant, and the hyperplane is defined by parameters
w and b. After some transformations, the minimization in Eq.9.72 can be
reformulated as

Maximizing : D =
∑N

i=1
αi − 1

2

∑N

i=1

∑N

j=1
αiαjyiyjzi · zj (9.73)

subject to 0 ≤ αi ≤ ζ and
∑N

i=1 αiyi = 0, where αi are positive Lagrange
multipliers. Then, the solution, w∗ =

∑N
i=1 α

∗
i yizi and b∗ = yi − w∗ · zi

(α∗
i > 0), can be derived from Eq.9.73 using quadratic programming. The

support vectors are those examples (zi, yi) with α∗
i > 0.

Section 9.4. Face Recognition 439

For a new data point z, the classification is performed by a decision
function,

f(z) = sign (w∗ · z + b∗) = sign

(∑N

i=1
α∗
i yi(zi · z) + b∗

)
(9.74)

In the case where the decision function is not a linear function of the
data, SVMs firstly map the input vector z into a high dimensional feature
space by a nonlinear function φ(z), and then construct an optimal separat-
ing hyperplane in the high dimensional space with linear properties. The
mapping φ(z) is implemented using kernel machine techniques as it is done
in KPCA and GDA. Examples of applying SVMs into the FR tasks can be
found in [94, 56, 47, 76].

9.4.4 Evaluation

In this section, we introduce several experiments from our recent studies on
subspace analysis methods. Following standard FR practices, any evaluation
database (G) used here is randomly partitioned into two subsets: the training
set Z and the test set Q. The training set consists of N(=

∑C
i=1Ci) images:

Ci images per subject are randomly chosen. The remaining images are used
to form the test set Q = G − Z. Any FR method evaluated here is first
trained with Z, and the resulting face recognizer is then applied to Q to
obtain a correct recognition rate (CRR), which is defined as the fraction
of the test examples correctly classified. To enhance the accuracy of the
assessment, all the CRRs reported here are averaged over ≥ 5 runs. Each
run is executed on a random partition of the database G into Z and Q.

Linear and Quadratic Subspace Analysis

The experiment is designed to assess the performance of various linear and
quadratic subspace analysis methods including Eigenfaces, YD-LDA, LD-
LDA, RD-QDA and those listed in Table 9.3. The evaluation database used
in the experiment is a middle-size subset of the FERET database. The
subset consists of 606 gray-scale images of 49 subjects, each one having more
than 10 samples. The performance is evaluated in terms of the CRR and
the sensitivity of the CRR measure to the SSS problem, which depends on
the number of training examples per subject Ci. To this end, six tests were
performed with various values of Ci ranging from Ci = 2 to Ci = 7.

The CRRs obtained by RD-QDA in the (λ, γ) grid are depicted in Fig. 9.29.
Also, a quantitative comparison of the best found CRRs and their corre-
sponding parameters among the seven methods is summarized in Table 9.4.

440 Face Detection, Alignment and Recognition Chapter 9

Figure 9.29. CRRs obtained by RD-QDA as functions of (λ, γ). Top: Ci = 2, 3, 4;
Bottom: Ci = 5, 6, 7.

The parameter λ controls the degree of shrinkage of the individual class co-
variance matrix estimates Si toward the within-class scatter matrix, (HTSwH).
Varying the values of λ within [0, 1] leads to a set of intermediate classifiers
between D-QDA and YD-LDA. In theory, D-QDA should be the best per-
former among the methods evaluated here if sufficient training samples are
available. It can be observed at this point from Fig. 9.29 that the CRR
peaks gradually moved from the central area toward the corner (0, 0) that
is the case of D-QDA as Ci increases. Small values of λ have been good
enough for the regularization requirement in many cases (Ci ≥ 3). How-
ever, both of D-QDA and YD-LDA performed poorly when Ci = 2. This
should be attributed to the high variance of the estimates of Si and S due
to insufficient training samples. In this case, Si and even S are singular
or close to singular, and the resulting effect is to dramatically exaggerate
the importance associated with the eigenvectors corresponding to the small-
est eigenvalues. Against the effect, the introduction of another parameter
γ helps to decrease the larger eigenvalues and increase the smaller ones,
thereby counteracting for some extent the bias. This is also why LD-LDA
greatly outperformed YD-LDA when Ci = 2. Although LD-LDA seems to
be a little over-regularized compared to the optimal RD-QDA(λ∗, γ∗), the
method almost guarantees a stable sub-optimal solution. A CRR difference
of 4.5% on average over the range Ci ∈ [2, 7] has been observed between the
top performer RD-QDA(λ∗, γ∗) and LD-LDA. It can be concluded therefore

Section 9.4. Face Recognition 441

that LD-LDA should be preferred when insufficient prior information about
the training samples is available and a cost effective processing method is
sought.

Table 9.4. Comparison of correct recognition rates (CRRs) (%).
Ci = 2 3 4 5 6 7

Eigenfaces 59.8 67.8 73.0 75.8 81.3 83.7
D-NC 67.8 72.3 75.3 77.3 80.2 80.5

D-WNC 46.9 61.7 68.7 72.1 73.9 75.6
D-QDA 57.0 79.3 87.2 89.2 92.4 93.8
YD-LDA 37.8 79.5 87.8 89.5 92.4 93.5
LD-LDA 70.7 77.4 82.8 85.7 88.1 89.4

(η) 0.84 0.75 0.69 0.65 0.61 0.59
RD-QDA 73.2 81.6 88.5 90.4 93.2 94.4

(λ∗) 0.93 0.93 0.35 0.11 0.26 0.07
(γ∗) 0.47 0.10 0.07 0.01 1e-4 1e-4

In addition to the regularization, it is found that the performance of
the LDA-based methods can be further improved with an ensemble-based
approach [75]. The approach uses cluster analysis techniques like the K-
mean and the CSC method mentioned earlier to form a mixture of LDA
subspaces. Experiments conducted on a compound database with 1654 face
images of 157 subjects and a large FERET subset with 2400 face images of
1200 subjects indicate that, the performance of both YD-LDA and LD-LDA
can be greatly enhanced under the ensemble framework. The average CRR
improvement that has been observed so far is up to 6%− 22%.

Nonlinear Subspace Analysis

Applications of kernel-based methods in face research have been widely re-
ported (see e.g. [69, 63, 58, 134, 78, 62]). Here, we introduce two experiments
to illustrate the effectiveness of the kernel-based discriminant analysis meth-
ods in FR tasks. Both the two experiments were conducted on a multi-view
face database, the UMIST database [46], consisting of 575 images of 20 peo-
ple, each covering a wide range of poses from profile to frontal views.

The first experiment provided insights on the distribution of face pattern
in four types of subspaces generalized by utilizing the PCA [122], KPCA
[107], LD-LDA [79] and KDDA [78] algorithms respectively. The projections
of five face subjects in the first two most significant feature bases of each

442 Face Detection, Alignment and Recognition Chapter 9

Figure 9.30. Distribution of five subjects in four subspaces, upper A: PCA-based,
upper B: KPCA-based, lower A: LD-LDA-based, and lower B: KDDA-based.

subspace are visualized in Fig. 9.30. In Fig. 9.30:upper, the visualized are
the first two most significant principal components extracted by PCA and
KPCA, and they provide a low-dimensional representation for the samples
in a least-square sense. Thus we can roughly learn the original distribution
of the samples from Fig. 9.30:upper A, where it can been seen that the dis-
tribution is as expected non convex and complex. Also, it is hard to find any
useful improvement in Fig. 9.30:upper B for the purpose of pattern classifi-
cation. Fig. 9.30 depicts the first two most discriminant features extracted
by LD-LDA and KDDA respectively. Obviously these features outperform,
in terms of discriminant power, those obtained by using the PCA like tech-
niques. However, subject to limitation of linearity, some classes are still
non-separable in Fig. 9.30:lower A. In contrast to this, we can see the lin-
earization property of the KDDA-based subspace as shown in Fig. 9.30:lower
B, where all of classes are well linearly separable.

The second experiment compares the CRR performance among the three
kernel-based methods, KPCA [107], GDA (also called KDA) [11] and KDDA

Section 9.4. Face Recognition 443

Figure 9.31. A comparison of CRR based on a RBF kernel, k(z1, z2) =
exp

(− ||z1 − z2| |2/σ2
)
. A: CRR as a function of the parameter σ2 with best found

M∗. B: CRR as a function of the feature number M with best found σ∗.

[78]. The two most popular FR algorithms, Eigenfaces [122] and Fisherfaces
[12], were also implemented to provide performance baselines. Ci = 6 images
per person were randomly chosen to form the training set Z. The nearest
neighbor was chosen as the classifier following these feature extractors. The
obtained results with best found parameters are depicted in Fig. 9.31, where
KDDA is clearly the top performer among all the methods evaluated here.
Also, it can be observed that the performance of KDDA is more stable and
predictable than that of GDA. This should be attributed to the introduction
of the regularization, which significantly reduces the variance of the estimates
of the scatter matrices arising from the SSS problem.

Other Performance Evaluations

Often it is desired in the FR community to give the overall evaluation and
benchmarking of various FR algorithms. Here we introduce several recent
FR evaluation reports in literature. Before we proceed to an evaluation,
it should be noted at this point that the performance of a learning-based
pattern recognition system is very data/application-dependent, and there is
no theory that is able to accurately predict them for unknown-distribution
data/new applications. In other words, some methods that have reported
almost perfect performance in certain scenarios may fail in other scenarios.

To date, the FERET program incepted in 1993 has made a significant
contribution to the evaluation research of FR algorithms by building the
FERET database and the evaluation protocol [3, 96, 95]. The availability of
the two later issues has made it possible to objectively assess the laboratory

444 Face Detection, Alignment and Recognition Chapter 9

algorithms under close to real-world conditions. In the FERET protocol, an
algorithm is given two sets of images: the target set and the query set. The
target set is a set of known facial images, while the query set consists of
unknown facial images to be identified. Furthermore, multiple galleries and
probe sets can be constructed from the target and query sets respectively.
For a pair of given gallery G and probe set P, the CRR is computed by
examining the similarity between the two sets of images. Table 9.5 depicts
some test results reported in the Sep96 FERET evaluation [95]. B-PCA and
B-Corr are two baseline methods, based on PCA and normalized correlation
[122, 88]. D-Eigenfaces is the dual Eigenfaces method [86]. LDA.M [115]
and LDA.U1/U2 [33, 141] are three LDA based algorithms. GrayProj is
a method using grayscale projection [129]. EGM-GJ is the Elastic Graph
Matching method with Gabor Jet [130]. ‘X’ denotes an unknown algorithm
from Excalibur Corporation. It can be seen that among these evaluated
methods D-Eigenfaces, LDA.U2 and EGM-GJ are the three top performers.
Based on the FERET program, the Face Recognition Vendor Tests (FRVT)
that systematically measured commercial FR products were also developed,
and the latest FRVT 2002 reports can be found in [1].

Table 9.5. CRR performance rank of algorithms in the Sep96 FERET evaluation
[95].

on FB Probes on Duplicate I Probes
Algorithms G1 G2 G3 G4 G5 G6 G1 G2 G3 G4 G5

B-PCA 9 10 8 8 10 8 6 10 5 5 9
B-Corr 9 9 9 6 9 10 10 7 6 6 8

X 6 7 7 5 7 6 3 5 4 4 3
Eigenfaces 4 2 1 1 3 3 2 1 2 2 3

D-Eigenfaces 7 5 4 4 5 7 7 4 7 8 10
LDA.M 3 4 5 8 4 4 9 6 8 10 6

GrayProj 7 8 9 6 7 9 5 7 10 7 6
LDA.U1 4 6 6 10 5 5 7 9 9 9 3
LDA.U2 1 1 3 2 2 1 4 2 3 3 1
EGM-GJ 2 3 2 2 1 1 1 3 1 1 1

Recently, Moghaddam [85] evaluated several unsupervised subspace anal-
ysis methods, and showed that dual PCA (dual Eigenfaces) > KPCA > PCA
≈ ICA, where > denotes “outperform” in terms of the average CRR mea-
sure. Compared to these unsupervised methods, it is generally believed that

Bibliography 445

algorithms based on LDA are superior in FR tasks. However, it is shown
recently in [83] that this is not always the case. PCA may outperform LDA
when the number of training sample per subject is small or when the training
data non-uniformly sample the underlying distribution. Also, PCA is shown
to be less sensitive to different training datasets. More recent evaluation
results of subspace analysis methods in different scenarios can be found in
Table 9.6, where LDA is based on the version of [33, 12], PPCA is the prob-
abilistic PCA [118] and KICA is the kernel version of ICA [6]. The overall
performance of linear subspace analysis methods was summarized as LDA >
PPCA > PCA > ICA, and it was also observed that kernel-based methods
are not necessarily be better than linear methods [62].

Table 9.6. CRR performance rank of subspace methods in [62].
Rank 1 2 3 4 5 6 7
Pose KDA PCA KPCA LDA KICA ICA PPCA

Expression KDA LDA PPCA PCA KPCA ICA KICA
Illumination LDA PPCA KDA KPCA KICA PCA ICA

Acknowledgments

Portions of the research in this chapter use the FERET database of facial
images collected under the FERET program [96]. The authors would like to
thank the FERET Technical Agent, the U.S. National Institute of Standards
and Technology (NIST) for providing the FERET database.

Bibliography

[1] Web site of face recognition vendor tests (FRVT). http://www.frvt.org.
[2] Web site of ORL face database: http://www.cam-orl.co.uk/facedatabase.html.

Released by AT&T Laboratories Cambridge.
[3] Web site of FERET, http://www.itl.nist.gov/iad/humanid/feret/. Released by

Image Group, Information Access Division, ITL, NIST, USA, March 2001.
[4] J. Ahlberg. “Using the active appearance algorithm for face and facial feature

tracking”. In IEEE ICCV Workshop on Recognition, Analysis and Tracking
of Faces and Gestures in Real-time Systems, pages 68–72, Vancouver, Canada,
July 13 2001.

[5] Y. Amit, , D. Geman, and K. Wilder. “Joint induction of shape features and tree
classifiers”. IEEE Transactions on Pattern Analysis and Machine Intelligence,
19:1300–1305, 1997.

446 Face Detection, Alignment and Recognition Chapter 9

[6] F. R. Bach and M. I. Jordan. “Kernel independent component analysis”. Com-
puter Science Division, University of California Berkeley, Available as Techni-
cal Report No. UCB/CSD-01-1166, November 2001.

[7] S. Baker and I. Matthews. “Equivalence and efficiency of image alignment al-
gorithms”. In Proceedings of IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, volume 1, pages 1090–1097, Hawaii, December
11-13 2001.

[8] S. Baker and S. Nayar. “Pattern rejection”. In Proceedings of IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pages 544–
549, June 1996.

[9] M. Bartlett, J. Movellan, and T. Sejnowski. “Face recognition by independent
component analysis”. IEEE Transactions on Neural Networks, 13(6):1450–
1464, Nov. 2002.

[10] M. S. Bartlett, H. M. Lades, and T. J. Sejnowski. Independent component
representations for face recognition. Proceedings of the SPIE, Conference on
Human Vision and Electronic Imaging III, 3299:528–539, 1998.

[11] G. Baudat and F. Anouar. “Generalized discriminant analysis using a kernel
approach”. Neural Computation, 12:2385–2404, 2000.

[12] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman. “Eigenfaces vs. Fisher-
faces: Recognition using class specific linear projection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 19(7):711–720, July 1997.

[13] D. Beymer. “Vectorizing face images by interleaving shape and texture com-
putations”. A. I. Memo 1537, MIT, 1995.

[14] M. Bichsel and A. P. Pentland. “Human face recognition and the face image
set’s topology”. CVGIP: Image Understanding, 59:254–261, 1994.

[15] C. M. Bishop and J. M. Winn. “Non-linear bayesian image modelling”. In
ECCV (1), pages 3–17, 2000.

[16] V. Blanz and T.Vetter. “A morphable model for the synthesis of 3d faces”. In
SIGGRAPH’99 Conference Proceedings, pages 187–194, 1999.

[17] R. Brunelli and T. Poggio. “Face recognition: Features versus templates”. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 15(10):1042–1052,
1993.

[18] R. Chellappa, C. Wilson, and S. Sirohey. “Human and machine recognition of
faces: A survey”. PIEEE, 83:705–740, 1995.

[19] L.-F. Chen, H.-Y. M. Liao, M.-T. Ko, J.-C. Lin, and G.-J. Yu. “A new LDA-
based face recognition system which can solve the small sample size problem”.
Pattern Recognition, 33:1713–1726, 2000.

[20] L.-F. Chen, H.-Y. M. Liao, J.-C. Lin, and C.-C. Han. “Why recognition in
a statistics-based face recognition system should be based on the pure face
portion: a probabilistic decision-based proof”. Pattern Recognition, 34(7):1393–
1403, 2001.

[21] T. Cootes and C. Taylor. ”Constrained active appearance models”. Proceedings
of IEEE International Conference on Computer Vision, 1:748–754, 2001.

[22] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance models. In
ECCV98, volume 2, pages 484–498, 1998.

Bibliography 447

[23] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham. “Active shape models:
Their training and application”. CVGIP: Image Understanding, 61:38–59, 1995.

[24] T. F. Cootes, K. N. Walker, and C. J. Taylor. View-based active appearance
models. In Proc. Int. Conf. on Face and Gesture Recognition, pages 227–232,
2000.

[25] I. J. Cox, J. Ghosn, and P. Yianilos. “Feature-based face recognition using
mixture-distance”. In Proceedings of IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pages 209–216, 1996.

[26] F. Crow. “Summed-area tables for texture mapping”. In SIGGRAPH, volume
18(3), pages 207–212, 1984.

[27] J. G. Daugman. “Complete discrete 2-d gabor transform by neural network
for image analysis and compression”. IEEE Trans. On Acoustics, Speech and
Signal Processing, 36(7):1169–1179, July 1988.

[28] N. Duta, A. Jain, and M. Dubuisson-Jolly. ”automatic construction of 2-d shape
models”. IEEE Transactions on Pattern Analysis and Machine Intelligence,
23(5):433–446, 2001.

[29] G. J. Edwards, T. F. Cootes, and C. J. Taylor. “Face recognition using active
appearance models”. In Proceedings of the European Conference on Computer
Vision, volume 2, pages 581–695, 1998.

[30] M. Elad, Y. Hel-Or, and R. Keshet. “Pattern detection using a maximal rejec-
tion classifier”. Pattern Recognition Letters, 23:1459–1471, October 2002.

[31] M. J. Er, S. Wu, J. Lu, and H. L. Toh. “Face recognition with radial basis
function (RBF) neural networks”. IEEE Transactions on Neural Networks,
13(3):697–710, May 2002.

[32] B. K. L. Erik Hjelmas. “Face detection: A survey”. Computer Vision and
Image Understanding, 3(3):236–274, September 2001.

[33] K. Etemad and R. Chellappa. “Discriminant analysis for recognition of human
face images”. J. Optical Soc. Am. A, 14(8):1724–1733, August 1997.

[34] J. Feraud, O. Bernier, and M. Collobert. “A fast and accurate face detector
for indexation of face images”. In Proc. Fourth IEEE Int. Conf on Automatic
Face and Gesture Recognition, Grenoble, 2000.

[35] R. Fisher. “The use of multiple measures in taxonomic problems”. Ann. Eu-
genics, 7:179–188, 1936.

[36] F. Fleuret and D. Geman. “Coarse-to-fine face detection”. International Jour-
nal of Computer Vision, 20:1157–1163, 2001.

[37] Y. Freund and R. Schapire. “A decision-theoretic generalization of on-line
learning and an application to boosting”. Journal of Computer and System
Sciences, 55(1):119–139, August 1997.

[38] B. J. Frey, A. Colmenarez, and T. S. Huang. “Mixtures of local linear subspaces
for face recognition”. In Proceedings of The IEEE Conference on Computer
Vision and Pattern Recognition, Santa Barbara, CA, June 1998.

[39] B. J. Frey and N. Jojic. “Transformation-invariant clustering using the em
algorithm”. IEEE Transactions on Pattern Analysis and Machine Intelligence,
25(1):1–17, JANUARY 2003.

[40] J. H. Friedman. “Regularized discriminant analysis”. Journal of the American
Statistical Association, 84:165–175, 1989.

448 Face Detection, Alignment and Recognition Chapter 9

[41] R. Frischholz. The face detection homepage. http://home.t-
online.de/home/Robert.Frischholz/face.htm.

[42] K. Fukunaga. Introduction to statistical pattern recognition. Academic Press,
Boston, 2 edition, 1990.

[43] M. Girolami. “Advances in Independent Component Analysis.”. Springer-
Verlag, Berlin, 2000.

[44] A. J. Goldstein, L. D. Harmon, and A. B. Lesk. “Identification of human faces”.
Proceedings of the IEEE, 59(5):748–760, May 1971.

[45] S. Gong, S. McKenna, and J. Collins. “An investigation into face pose distri-
bution”. In Proc. IEEE International Conference on Face and Gesture Recog-
nition, Vermont, 1996.

[46] D. B. Graham and N. M. Allinson. “Characterizing virtual eigensignatures for
general purpose face recognition”. In H. Wechsler, P. J. Phillips, V. Bruce,
F. Fogelman-Soulie, and T. S. Huang, editors, Face Recognition: From Theory
to Applications, NATO ASI Series F, Computer and Systems Sciences, volume
163, pages 446–456. 1998.

[47] G. Guo, S. Li, and K. Chan. “Face recognition by support vector machines”. In
Proceedings of Fourth IEEE International Conference on Automatic Face and
Gesture Recognition 2000, Grenoble, France, March 2000.

[48] J. Hartigan. “Statistical theory in clustering”. Journal of Classification, 2:63–
76, 1985.

[49] Z.-Q. Hong and J.-Y. Yang. “Optimal discriminant plane for a small number
of samples and design method of classifier on the plane”. Pattern Recognition,
24(4):317–324, 1991.

[50] X. W. Hou, S. Z. Li, and H. J. Zhang. “Direct appearance models”. In Proceed-
ings of IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, volume 1, pages 828–833, Hawaii, December 11-13 2001.

[51] J. Huang, X. Shao, and H. Wechsler. “Face pose discrimination using support
vector machines (SVM)”. In Proceedings of International Conference Pattern
Recognition, Brisbane, Queensland, Australia, 1998.

[52] A. Hyvrinen and P. Hoyer. “Emergence of phase and shift invariant features by
decomposition of natural images into independent feature subspaces”. Neural
Computation, 12:1705–1720, 2000.

[53] A. Hyvrinen and P. Hoyer. “Emergence of topography and complex cell prop-
erties from natural images using extensions of ica”. In Proceedings of Advances
in Neural Information Processing Systems, volume 12, pages 827–833, 2000.

[54] A. Jain and D. Zongker. Feature selection: evaluation, application, and samll
sample performance. IEEE Trans. on PAMI, 19(2):153–158, 1997.

[55] L. Jolliffe. Principle Component Analysis. New York: Springer-Verlag, 1986.
[56] K. Jonsson, J. Matas, J. Kittler, and Y. Li. “Learning support vectors for

face verification and recognition”. In Proceedings of Fourth IEEE Interna-
tional Conference on Automatic Face and Gesture Recognition 2000, Grenoble,
France, March 2000.

[57] T. Kanade. Picture Processing by Computer Complex and Recognition of Hu-
man Faces. PhD thesis, Kyoto University, 1973.

Bibliography 449

[58] K. I. Kim, K. Jung, and H. J. Kim. “Face recognition using kernel principal
component analysis”. IEEE Signal Processing Letters, 9(2):40–42, FebFebruary
2002.

[59] J. Kittler. “Feature set search algorithm”. In C. H. Chen, editor, Pattern
Recognition in Practice, pages 41–60. NorthHolland, Sijthoff and Noordhoof,
1980.

[60] A. Kuchinsky, C. Pering, M. L. Creech, D. Freeze, B. Serra, and J. Gwizdka.
”FotoFile: A consumer multimedia organization and retrieval system”. In Pro-
ceedings of ACM SIG CHI’99 Conference, Pittsburg, May 1999.

[61] T.-W. Lee. “Independent Component Analysis: Theory and Applications.”.
Kluwer Academic, 1998.

[62] J. Li, S. Zhou, and C. Shekhar. “A comparison of subspace analysis for face
recognition”. In Proceedings of the 28th IEEE International Conference on
Acoustics, Speech, and Signal Processing, Hong Kong, China, April 2003.

[63] S. Z. Li, Q. D. Fu, L. Gu, B. Scholkopf, Y. M. Cheng, and H. J. Zhang. “Kernel
machine based learning for multi-view face detection and pose estimation”. In
Proceedings of 8th IEEE International Conference on Computer Vision, Van-
couver, Canada, July 2001.

[64] S. Z. Li and J. Lu. “Face recognition using the nearest feature line method”.
IEEE Transactions on Neural Networks, 10:439–443, March 1999.

[65] S. Z. Li, X. G. Lv, and H. .Zhang. “View-based clustering of object appear-
ances based on independent subspace analysis”. In Proceedings of The Eighth
IEEE International Conference on Computer Vision, volume 2, pages 295–300,
Vancouver, Canada, July 2001.

[66] S. Z. Li, S. C. Yan, H. J. Zhang, and Q. S. Cheng. “Multi-view face alignment
using direct appearance models”. In Proceedings of IEEE International Con-
ference on Automatic Face and Gesture Recognition, Washington, DC, 20-21
May 2002.

[67] S. Z. Li, Z. Zhang, H.-Y. Shum, and H. Zhang. “FloatBoost learning for clas-
sification”. In Proceedings of Neural Information Processing Systems, pages –,
Vancouver, Canada, December 9-14 2002.

[68] S. Z. Li, L. Zhu, Z. Q. Zhang, A. Blake, H. Zhang, and H. Shum. “Statistical
learning of multi-view face detection”. In Proceedings of the European Confer-
ence on Computer Vision, volume 4, pages 67–81, Copenhagen, Denmark, May
28 - June 2 2002.

[69] Y. Li, S. Gong, and H. Liddell. “Constructing facial identity surfaces in a
nonlinear discriminating space.”. In Proceedings of IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, Hawaii, December
2001.

[70] Y. M. Li, S. G. Gong, and H. Liddell. “Support vector regression and classi-
fication based multi-view face detection and recognition”. In IEEE Int. Conf.
Oo Face & Gesture Recognition, pages 300–305, France, March 2000.

[71] R. Lienhart, A. Kuranov, and V. Pisarevsky. “Empirical analysis of detection
cascades of boosted classifiers for rapid object detection”. Mrl technical report,
Intel Labs, Dec 2002.

450 Face Detection, Alignment and Recognition Chapter 9

[72] C. Liu and H. Wechsler. “Comparative assessment of independent component
analysis (ica) for face recognition”. In Proceedings of the 2nd International
Conference on Audioand Video-based Biometric Person Authentication, Wash-
ington D. C., March 22-24 1999.

[73] C. Liu and H. Wechsler. “Gabor feature based classification using the enhanced
fisher linear discriminant model for face recognition”. IEEE Transactions on
Image Processing, 11(4):467–476, April 2002.

[74] R. Lotlikar and R. Kothari. “Fractional-step dimensionality reduction”. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(6):623–627,
2000.

[75] J. Lu and K. Plataniotis. “Boosting face recognition on a large-scale database”.
In Proceedings of the IEEE International Conference on Image Processing,
pages II.109–II.112, Rochester, New York, USA, September 2002.

[76] J. Lu, K. Plataniotis, and A. Venetsanopoulos. “Face recognition using feature
optimization and ν-support vector learning”. In Proceedings of the IEEE Inter-
national Workshop on Neural Networks for Signal Processing, pages 373–382,
Falmouth, MA., USA, September 2001.

[77] J. Lu, K. Plataniotis, and A. Venetsanopoulos. “Boosting linear discriminant
analysis for face recognition”. In Proceedings of the IEEE International Con-
ference on Image Processing, Barcelona, Spain, September 2003.

[78] J. Lu, K. Plataniotis, and A. Venetsanopoulos. “Face recognition using kernel
direct discriminant analysis algorithms”. IEEE Transactions on Neural Net-
works, 14(1), January 2003.

[79] J. Lu, K. Plataniotis, and A. Venetsanopoulos. “Face recognition using LDA
based algorithms”. IEEE Transactions on Neural Networks, 14(1), January
2003.

[80] J. Lu, K. Plataniotis, and A. Venetsanopoulos. “Regularized discriminant anal-
ysis for the small sample size problem in face recognition”. Accepted for publi-
cation in Pattern Recognition Letter, July 2003.

[81] D. Marr. Vision. W. H. Freeman and Co, San Francisco, 1982.
[82] A. Martinez and R. Benavente. “The AR face database”. Technical Report 24,

CVC, June 1998.
[83] A. M. Martnez and A. C. Kak. “PCA versus LDA”. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 23(2):228–233, 2001.
[84] G. McLachlan and D. Peel. “Finite Mixture Models”. John Wiley & Sons, 2000.
[85] B. Moghaddam. “Principal manifolds and probabilistic subspaces for visual

recognition”. IEEE Transactions on Pattern Analysis and Machine Intelligence,
24(6):780–788, June 2002.

[86] B. Moghaddam, T. Jebara, and A. Pentland. “Bayesian face recognition”.
Pattern Recognition, 33:1771–1782, 2000.

[87] B. Moghaddam and A. Pentland. “Probabilistic visual learning for object repre-
sentation”. IEEE Transactions on Pattern Analysis and Machine Intelligence,
7:696–710, July 1997.

[88] H. Moon and P. Phillips. “Analysis of pca-based face recognition algorithms”.
In K. Bowyer and P. Phillips, editors, Empirical Evaluation Techniques in Com-
puter Vision, pages 57–71. Calif.:IEEE CS Press, Los Alamitos, 1998.

Bibliography 451

[89] Y. Moses, Y. Adini, and S. Ullman. “Face recognition: The problem of com-
pensating for changes in illumination direction”. In Proceedings of the European
Conference on Computer Vision, volume A, pages 286–296, 1994.

[90] J. Ng and S. Gong. “performing multi-view face detection and pose estimation
using a composite support vector machine across the view sphere”. In Proc.
IEEE International Workshop on Recognition, Analysis, and Tracking of Faces
and Gestures in Real-Time Systems, pages 14–21, Corfu, Greece, September
1999.

[91] E. Osuna, R. Freund, and F. Girosi. “Training support vector machines: An
application to face detection”. In CVPR, pages 130–136, 1997.

[92] C. P. Papageorgiou, M. Oren, and T. Poggio. “A general framework for object
detection”. In Proceedings of IEEE International Conference on Computer
Vision, pages 555–562, Bombay, India, 1998.

[93] A. P. Pentland, B. Moghaddam, and T. Starner. “View-based and modular
eigenspaces for face recognition”. In Proceedings of IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pages 84–91, 1994.

[94] P. Phillips. “Support vector machines applied to face recognition”. In
M. Kearns, S. Solla, and D. Cohn, editors, NIPS’98. 1998.

[95] P. J. Phillips, H. Moon, S. A. Rizvi, and P. J. Rauss. The FERET evaluation
methodology for face-recognition algorithms. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(10):1090–1104, 2000.

[96] P. J. Phillips, H. Wechsler, J. Huang, and P. Rauss. “The FERET database
and evaluation procedure for face recognition algorithms”. Image and Vision
Computing J, 16(5):295–306, 1998.

[97] P. Pudil, J. Novovicova, and J. Kittler. “Floating search methods in feature
selection”. Pattern Recognition Letters, 15(11):1119–1125, 1994.

[98] S. Romdhani, A. Psarrou, and S. Gong. “Learning a single active face shape
model across views”. In Proc. IEEE International Workshop on Recognition,
Analysis, and Tracking of Faces and Gestures in Real-Time Systems, Corfu,
Greece, 26-27 September 1999.

[99] D. Roth, M. Yang, and N. Ahuja. “A snow-based face detector”. In Proceedings
of Neural Information Processing Systems, 2000.

[100] H. A. Rowley, S. Baluja, and T. Kanade. “Neural network-based face de-
tection”. IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(1):23–28, 1998.

[101] A. Samal and P. A.Iyengar. “Automatic recognition and analysis of human
faces and facial expressions: A survey”. Pattern Recognition, 25:65–77, 1992.

[102] R. Schapire, Y. Freund, P. Bartlett, and W. S. Lee. “Boosting the margin:
A new explanation for the effectiveness of voting methods”. The Annals of
Statistics, 26(5):1651–1686, October 1998.

[103] B. Schiele and J. L. Crowley. “Recognition without correspondence using mul-
tidimensional receptive field histograms”. International Journal of Computer
Vision, 36(1):31–52, 2000.

[104] H. Schneiderman. “A Statistical Approach to 3D Object Detection Applied to
Faces and Cars” (CMU-RI-TR-00-06). PhD thesis, RI, 2000.

452 Face Detection, Alignment and Recognition Chapter 9

[105] H. Schneiderman and T. Kanade. “A statistical method for 3d object detection
applied to faces and cars”. In Proceedings of IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 2000.

[106] B. Schölkopf, C. Burges, and A. J. Smola. “Advances in Kernel Methods -
Support Vector Learning”. MIT Press, Cambridge, MA, 1999.

[107] B. Schölkopf, A. Smola, and K. R. Müller. Nonlinear component analysis as a
kernel eigenvalue problem. Neural Computation, 10:1299–1319, 1999.

[108] S. Sclaroff and J. Isidoro. “Active blobs”. In Proceedings of IEEE International
Conference on Computer Vision, Bombay, India, 1998.

[109] P. Y. Simard, L. Bottou, P. Haffner, and Y. L. Cun. “Boxlets: a fast convolution
algorithm for signal processing and neural networks”. In M. Kearns, S. Solla,
and D. Cohn, editors, Advances in Neural Information Processing Systems,
volume 11, pages 571–577. MIT Press, 1998.

[110] P. Y. Simard, Y. A. L. Cun, J. S. Denker, and B. Victorri. “Transformation
invariance in pattern recognition - tangent distance and tangent propagation”.
In G. B. Orr and K.-R. Muller, editors, Neural Networks: Tricks of the Trade.
Springer, 1998.

[111] L. Sirovich and M. Kirby. “Low-dimensional procedure for the characterization
of human faces”. Journal of the Optical Society of America A, 4(3):519–524,
March 1987.

[112] P. Somol, P. Pudil, J. Novoviova, and P. Paclik. “Adaptive floating search
methods in feature selection”. Pattern Recognition Letters, 20:1157–1163, 1999.

[113] S. D. Stearns. “On selecting features for pattern classifiers”. In Proceedings of
International Conference Pattern Recognition, pages 71–75, 1976.

[114] K.-K. Sung and T. Poggio. “Example-based learning for view-based human face
detection”. IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(1):39–51, 1998.

[115] D. L. Swets and J. Weng. “Using discriminant eigenfeatures for image re-
trieval”. IEEE Transactions on Pattern Analysis and Machine Intelligence,
18:831–836, 1996.

[116] Q. Tian, M. Barbero, Z. Gu, and S. Lee. “Image classification by the foley-
sammon transform”. Opt. Eng., 25(7):834–840, 1986.

[117] K. Tieu and P. Viola. “Boosting image retrieval”. In Proceedings of IEEE
Computer Society Conference on Computer Vision and Pattern Recognition,
volume 1, pages 228–235, 2000.

[118] M. Tipping and C. Bishop. “Probabilistic principal component analysis”. Jour-
nal of the Royal Statistical Society, Series B., 61:611–622, 1999.

[119] K. A. Toh. “Global optimization by monotonic transformation”. Computational
Optimization and Applications, 23:77–99, October 2002.

[120] K.-A. Toh, J. Lu, and W.-Y. Yau. “Global feedforward neural network learning
for classification and regression”. In M. Figueiredo, J. Zerubia, and A. K. Jain,
editors, Proceedings of the Energy Minimization Methods in Computer Vision
and Pattern Recognition, Sophia Antipolis, France, September 3-5 2001.

[121] M. Turk. “A random walk through eigenspace”. IEICE Trans. Inf. & Syst.,
E84-D(12):1586–1695, December 2001.

Bibliography 453

[122] M. A. Turk and A. P. Pentland. “Eigenfaces for recognition”. Journal of
Cognitive Neuroscience, 3(1):71–86, March 1991.

[123] D. Valentin, H. Abdi, A. J. O’Toole, and G. W. Cottrell. “Connectionist models
of face processing: A survey”. Pattern Recognition, 27(9):1209–1230, 1994.

[124] B. van Ginneken, A. F. Frangi, J. J. Staal, B. M. ter Haar Romeny, and M. A.
Viergever. ”a non-linear gray-level appearance model improves active shape
model segmentation”. In Proceedings of Mathematical Methods in Biomedical
Image Analysis, 2001.

[125] V. N. Vapnik. “The Nature of Statistical Learning Theory”. Springer-Verlag,
New York, 1995.

[126] V. N. Vapnik. “An overview of statistical learning theory”. IEEE Transactions
on Neural Networks, 10(5):439–443, September 1999.

[127] P. Viola and M. Jones. “Rapid object detection using a boosted cascade of sim-
ple features”. In Proceedings of IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, Kauai, Hawaii, December 12-14 2001.

[128] P. Viola and M. Jones. “Robust real time object detection”. In IEEE ICCV
Workshop on Statistical and Computational Theories of Vision, Vancouver,
Canada, July 13 2001.

[129] J. Wilder. “Face recognition using transform coding of grayscale projection
projections and the neural tree network”. In R. J. Mammone, editor, Artifi-
cial Neural Networks with Appli-cations in Speech and Vision, pages 520–536.
Chapman Hall, 1994.

[130] L. Wiskott, J. Fellous, N. Kruger, and C. V. malsburg. ”face recognition by
elastic bunch graph matching”. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 19(7):775–779, 1997.

[131] S. C. Yan, C. Liu, S. Z. Li, L. Zhu, H. J. Zhang, H. Shum, and Q. Cheng.
“Texture-constrained active shape models”. In Proceedings of the First Inter-
national Workshop on Generative-Model-Based Vision (with ECCV), Copen-
hagen, Denmark, May 2002.

[132] J. Yang, W. Lu, and A. Waibel. “Skin-color modeling and adaptation”. In
Proceedings of the First Asian Conference on Computer Vision, pages 687–694,
1998.

[133] M.-H. Yang. Resources for face detection.
http://vision.ai.uiuc.edu/mhyang/face-detection-survey.html.

[134] M.-H. Yang. “Kernel eigenfaces vs. kernel fisherfaces: Face recognition using
kernel methods”. In Proceedings of the Fifth IEEE International Conference on
Automatic Face and Gesture Recognition, Washinton D.C., USA, May 2002.

[135] M.-H. Yang and N. Ahuja. “Gaussian mixture model for human skin color
and its application in image and video databases”. In Proc. of the SPIE Conf.
on Storage and Retrieval for Image and Video Databases, volume 3656, pages
458–466, San Jose, Jan. 1999.

[136] M.-H. Yang, D. Kriegman, and N. Ahuja. “Detecting faces in images: a survey”.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(1):34–58,
2002.

[137] H. Yu and J. Yang. “A direct lda algorithm for high-dimensional data with
application to face recognition”. Pattern Recognition, 34:2067–2070, 2001.

454 Face Detection, Alignment and Recognition Chapter 9

[138] B. D. Zarit, B. J. Super, and F. K. H. Quek. “Comparison of five color models
in skin pixel classification”. In IEEE ICCV Workshop on Recognition, Analysis
and Tracking of Faces and Gestures in Real-time Systems, pages 58–63, Corfu,
Greece, September 1999.

[139] W. Zhao, R. Chellappa, and J. Phillips. “Subspace linear discriminant analysis
for face recognition”. Technical Report, CS-TR4009, Univ. of Maryland, 1999.

[140] W. Zhao, R. Chellappa, A. Rosenfeld, and P. Phillips. Face recognition: A
literature survey. Technical Report, CFAR-TR00-948, University of Maryland,
2000.

[141] W. Zhao, A. Krishnaswamy, R. Chellappa, D. Swets, and J. Weng. “Discrim-
inant analysis of principal components for face recognition”. In H. Wechsler,
P. Phillips, V. Bruce, F. Soulie, and T. Huang, editors, Face Recognition: From
Theory to Applications, pages 73–85. Springer-Verlag, 1998.

Chapter 10

PERCEPTUAL INTERFACES

Matthew Turk

and Mathias Kölsch

A keyboard! How quaint.

— Scotty, in the film Star Trek IV: The Voyage Home (1986)

10.1 Introduction

Computer vision research has traditionally been motivated by a few main
areas of application. The most prominent of these include biological vision
modeling, robot navigation and manipulation, surveillance, medical imaging,
and various inspection, detection, and recognition tasks. In recent years, a
new area, often referred to as perceptual interfaces, has emerged to mo-
tivate an increasingly large amount of research within the machine vision
community. The general focus of this effort is to integrate multiple per-
ceptual modalities (such as computer vision, speech and sound processing,
and haptic I/O) into the user interface. For computer vision technology in
particular, the primary aim is to use vision as an effective input modality
in human-computer interaction. Broadly defined, perceptual interfaces are
highly interactive, multimodal interfaces that enable rich, natural, and ef-
ficient interaction with computers. More specifically, perceptual interfaces
seek to leverage sensing (input) and rendering (output) technologies in order
to provide interactions not feasible with standard interfaces and the common
triumvirate of I/O devices: the keyboard, mouse and monitor.

The motivation behind perceptual interfaces is twofold: (1) the chang-
ing nature of computers and (2) the desire for a more powerful, compelling

455

456 Perceptual Interfaces Chapter 10

user experience than what has been available with graphical user inter-
faces (GUI) and the associated WIMP (windows, icons, menus, pointing de-
vices) implementations. As computers evolve away from their recent past—
desktop machines used primarily for word processing, spreadsheet manipula-
tion, and information browsing—and move toward new environments with a
plethora of computing form factors, uses, and interaction scenarios, the desk-
top metaphor will become less relevant and more cumbersome. Keyboard-
based alphanumeric input and mouse-based 2D pointing and selection can
be very limiting, and in some cases awkward and inefficient, modes of in-
teraction. Neither mouse nor keyboard, for example, is very appropriate for
communicating 3D information or the subtleties of human emotions.

Moore’s Law has driven computer hardware over the decades, increasing
performance (measured in various ways) exponentially. This observation
predicts an improvement in chip density in five years by a factor of ten; in
ten years by a factor of one hundred; and in twenty years by a factor of ten
thousand. Unfortunately, human capacity does not grow at such a rate (if
at all) so there is a serious problem in scaling human-computer interaction
as machines evolve. It is unlikely that a user interface paradigm developed
at an early point in the Moore’s Law curve will continue to be appropriate
much later on.

New computing scenarios, such as in automobiles and other mobile envi-
ronments, rule out many traditional approaches to user interaction. Comput-
ing is becoming something that permeates daily life, rather than something
people do only at distinct times and places. In order to accommodate a
wider range of scenarios, tasks, users, and preferences, interfaces must be-
come more natural, intuitive, adaptive, and unobtrusive. These are primary
goals of research in perceptual interfaces.

We will certainly need new and different interaction techniques in a world
of small, powerful, connected, ubiquitous computing. Since small, powerful,
connected sensing and display technologies should be available, there has
been increased interest in building interfaces that use these technologies to
leverage the natural human capabilities to communicate via speech, ges-
ture, expression, touch, etc. While these are unlikely to completely replace
tradition desktop and GUI-based interfaces, they will complement existing
interaction styles and enable new functionality not otherwise possible or con-
venient.

In this chapter, we seek to communicate the motivations and goals of
perceptual interfaces, to enumerate the relevant technologies, to discuss the
integration of multiple modalities, and to describe in more detail the role of
computer vision in human-computer interaction. We cover vision problems,

Section 10.2. Perceptual Interfaces and HCI 457

constraints, and approaches that are apropos to the area, survey the state of
the art in computer vision research applied to perceptual interfaces, describe
several near-term applications, and suggest promising research directions.

10.2 Perceptual Interfaces and HCI

Human-computer interaction (HCI) is the study of people, computer tech-
nology, and the ways these influence each other. In practice, HCI involves
the design, evaluation, and implementation of interactive computing systems
for human use. The discipline has its early roots in studies of human perfor-
mance in manufacturing industries. Human factors, or ergonomics, originally
attempted to maximize worker productivity by designing equipment to re-
duce operator fatigue and discomfort. With the arrival of computers and
their spread into the workforce, many human factors researchers began to
specialize in the various issues surrounding the use of computers by people.
Human-computer interaction is now a very broad interdisciplinary field in-
volving computer scientists, psychologists, cognitive scientists, human factors
researchers, and many other disciplines, and it involves the design, imple-
mentation, and evaluation of interactive computer systems in the context of
the work or tasks in which a user is engaged [30].

As one element of human-computer interaction, the user interface is typ-
ically considered as the portion of a computer program with which the user
interacts; i.e., the point of contact between the human and the computer.
Shneiderman [124] describes five human factors objectives that should guide
designers and evaluators of user interfaces:

1. Time to learn

2. Speed of performance

3. Rate of errors by users

4. Retention over time

5. Subjective satisfaction

Shneiderman also identifies the accommodation of human diversity as
a major goal and challenge in the design of interactive systems, citing the
remarkable diversity of human abilities, backgrounds, motivations, personal-
ities, and work styles of users. People have a range of perceptual, cognitive,
and motor abilities and limitations. In addition, different cultures produce
different perspectives and styles of interaction, a significant issue in today’s
international markets. Users with various kinds of disabilities, elderly users,

458 Perceptual Interfaces Chapter 10

When Implementation Paradigm

1950s Switches, punch cards, lights None

1970s Command-line interface Typewriter

1980s WIMP-based graphical user interface Desktop

2000s Perceptual interfaces Natural interaction

Table 10.1. The evolution of user interface paradigms

and children all have distinct preferences or requirements to enable a positive
user experience.

In addition to human factors considerations for human-computer inter-
action in the context of typical workplace and consumer uses of computers,
the cutting-edge uses of computer technology in virtual and augmented real-
ity systems, wearable computers, ubiquitous computing environments, and
other such scenarios demands a fresh view of usability and user interface de-
sign. Theoretical and experimental advances (such as the concept of Fitts’
Law [39]) have to be translated into new arenas, which also require new anal-
yses of usability. Despite the apparent ubiquity of graphical user interfaces,
they are not the answer to all interactive system needs.

Historically, a few major user interface paradigms have dominated com-
puting. Table 10.1 describes one view of the evolution of user interfaces. In
the early days of computing, there was no real model of interaction—data
was entered into the computer via switches or punched cards and the output
was produced (some time later) via punched cards or lights. The second
phase began with the arrival of command-line interfaces in perhaps the early
1960s, first using teletype terminals and later with electronic keyboards and
text-based monitors. This “typewriter” model—where the user types a com-
mand (with appropriate parameters) to the computer, hits carriage return,
and gets typed output from the computer—was spurred on by the develop-
ment of timesharing systems, and continued with the popular Unix and DOS
operating systems.

In the 1970s and 1980s, the graphical user interface and its associated
desktop metaphor arrived, often described by the acronym WIMP (windows,
icons, menus, and a pointing device). For over two decades, graphical inter-
faces have dominated both the marketplace and HCI research, and for good
reason: WIMP-based GUIs have provided a standard set of direct manipu-
lation techniques that largely rely on recognition rather than recall. That is,

Section 10.2. Perceptual Interfaces and HCI 459

GUI-based commands can typically be easily found and do not have to be
remembered or memorized. Direct manipulation is appealing to novice users,
it is easy to remember for occasional users, and it can be fast and efficient for
frequent users [124]. Direct manipulation interfaces, in general, allow easy
learning and retention, encourage exploration (especially with “Undo” com-
mands) and the can give users a sense of accomplishment and responsibility
for the sequence of actions leading to the completion of a task or subtask.
The direct manipulation style of interaction with graphical user interfaces
has been a good match with the office productivity and information access
applications that have been the “killer apps” of computing to date.

However, as computing changes in terms of physical size and capacity,
usage, and ubiquity, the obvious question arises: What is the next major
generation in the evolution of user interfaces? Is there a paradigm (and its
associated technology) that will displace GUI and become the dominant user
interface model? Or will computer interfaces fragment into different models
for different tasks and contexts? There is no shortage of HCI research areas
billed as “advanced” or “future” interfaces—these include various flavors of
immersive environments (virtual, augmented, and mixed reality), 3D inter-
faces, tangible interfaces, haptic interfaces, affective computing, ubiquitous
computing, and multimodal interfaces. These are collectively called “post-
WIMP” interfaces by van Dam [138], a general phrase describing interaction
techniques not dependent on classical 2D widgets such as menus and icons.

The (admittedly grandiose) claim of this chapter is that the next domi-
nant, long-lasting HCI paradigm is what many people refer to as perceptual
interfaces:

Perceptual User Interfaces (PUIs) are characterized by interaction tech-
niques that combine an understanding of natural human capabilities
(particularly communication, motor, cognitive, and perceptual skills)
with computer I/O devices and machine perception and reasoning.
They seek to make the user interface more natural and compelling by
taking advantage of the ways in which people naturally interact with
each other and with the world—both verbal and non-verbal commu-
nications. Devices and sensors should be transparent and passive if
possible, and machines should both perceive relevant human commu-
nication channels and generate output that is naturally understood.
This is expected to require integration at multiple levels of technolo-
gies such as speech and sound recognition and generation, computer
vision, graphical animation and visualization, language understanding,
touch-based sensing and feedback (haptics), learning, user modeling,

460 Perceptual Interfaces Chapter 10

and dialog management. (Turk and Robertson [136])

There are two key features of perceptual interfaces. First, they are highly
interactive. Unlike traditional passive interfaces that wait for users to enter
commands before taking any action, perceptual interfaces actively sense and
perceive the world and take actions based on goals and knowledge at various
levels. (Ideally, this is an “active” interface that uses “passive,” or non-
intrusive, sensing.) Second, they are multimodal, making use of multiple
perceptual modalities (e.g., sight, hearing, touch) in both directions: from
the computer to the user, and from the user to the computer. Perceptual
interfaces move beyond the limited modalities and channels available with
a keyboard, mouse, and monitor, to take advantage of a wider range of
modalities, either sequentially or in parallel.

Perceptual UI

Computer Human

Visualization

Perception

Multimodal

Figure 10.1. Information flow in perceptual interfaces.

The concept of perceptual interfaces is closely related to multimodal,
multimedia, and recognition-based interfaces, as depicted in Fig. 10.1. Mul-
timodal interfaces tend to focus on the input direction (input to the com-
puter) and are most often extensions to current GUI and language based
interfaces. Multimedia interfaces describe the presentation of various media
to users, along with some (again, GUI-based) interaction techniques to con-
trol and query the media sources. Interfaces based on individual recognition
technologies (such as speech, vision, pen-gesture) focus on the individual
recognition technologies, with little integration across modalities. Although
each of these classes has significant overlap with the idea of perceptual in-
terfaces, none of them provides a clear conceptual model, or an overarching
interaction paradigm, to the user.

Section 10.2. Perceptual Interfaces and HCI 461

Sensing/perception
Cognitive skills

Social skills
Social conventions
Shared knowledge

Adaptation

sight sound touch

taste (?) smell (?)

Sensing/perception
Cognitive skills

Social skills
Social conventions
Shared knowledge

Adaptation

vision user modeling

speech

taste (?) smell (?)

haptics

learning graphics

Figure 10.2. Models of interaction: human-human interaction and perceptual
human-computer interaction.

The general model for perceptual interfaces is that of human-to-human
communication. While this is not universally accepted in the HCI com-
munity as the ultimate interface model (e.g., see [121, 122, 123]), there are

462 Perceptual Interfaces Chapter 10

several practical and intuitive reasons why it makes sense to pursue this goal.
Human interaction is natural and in many ways effortless; beyond an early
age, people do not need to learn special techniques or commands to commu-
nicate with one another. There is a richness in human communication via
verbal, visual, and haptic modalities, underscored by shared social conven-
tions, shared knowledge, the ability to adapt and to model the other person’s
point of view, that is very different from current computer interfaces, which
essentially implement a precise command-and-control interaction style. Fig-
ure 10.2 depicts natural interaction between people and, similarly, between
humans and computers. Perceptual interfaces can potentially effect improve-
ments in the human factors objectives mentioned earlier in the section, as
they can be easy to learn and efficient to use, they can reduce error rates by
giving users multiple and redundant ways to communicate, and they can be
very satisfying and compelling for users.

People are adaptive in their interactions. Despite an abundance of ambi-
guity in natural language, people routinely pursue directions in conversation
intended to disambiguate the content of the message. We do the same task
in multiple ways, depending on the circumstances of the moment. A com-
puter system that can respond to different modalities or interaction methods
depending on the context would allow someone to perform a given task with
ease whether he or she is in the office, in the car, or walking along a noisy
street. Systems that are aware of the user and his or her activities can make
appropriate decisions on how and when to best present information.

A number of studies by Reeves and Nass and their colleagues [96, 109,
95] provide compelling evidence that human interaction with computers
and other communication technologies is fundamentally social and natural.
These studies have produced similar (though typically reduced) social effects
in human-computer interaction as are found in person to person interactions.
The general approach to this work has been to choose a social science finding
regarding people’s behaviors or attitudes, and to determine if the relevant
social rule still applies (and to what magnitude) when one of the roles is filled
by a computer rather than a human. For example, will users apply do norms
of politeness or gender stereotypes to computers? In general, which social
rules will people apply to computers, and how powerful are these rules?

Such studies have found that social responses are automatic and uncon-
scious, and can be elicited by basic cues. People show social responses to
cues regarding manners and politeness, personality, emotion, gender, trust,
ethics, and other social concepts. Much of the research in “social inter-
faces” has focused on embodied conversational agents, or lifelike characters,
that use speech and language processing to communicate with a human user

Section 10.2. Perceptual Interfaces and HCI 463

[4, 3, 16, 1]. Although the application of these findings is not simple and
straightforward, there are implications for future HCI technologies, and per-
ceptual interfaces in particular. An interface that perceives, reasons, and acts
in a social manner—even imperfectly—is not too far removed from people’s
current conceptual models of the technology.

Despite technical advances in speech recognition, speech synthesis, com-
puter vision, and artificial intelligence, computers are still, by and large,
deaf, dumb, and blind. Many have noted the irony of public restrooms that
are “smarter” than computers because they can sense when people come and
go, and act appropriately, while a computer may wait all night for a user
(who has gone home for the evening) to respond to the dialog that asks “Are
you sure you want to do this?” While general purpose machine intelligence
is still a difficult and elusive goal, our belief is that much can be gained by
pursuing an agenda of technologies to support the human-to-human model
of interaction. Even if the Holy Grail of perceptual interfaces is far in the
future, the near-term benefits may be transformational, as component tech-
nologies and integration techniques mature and provide new tools to improve
the ways in which people interact with technology.

In addition to the general goal of interfaces that better match human ca-
pabilities and provide a more natural and compelling user experience, there
are immediate application areas that are ripe for early perceptual interface
technologies. The computer game industry is particularlly compelling, as it
is large and its population of users tend to be early adopters of new technolo-
gies. Game interfaces that can perceive the user’s identity, body movement,
and speech, for example, are likely to become very popular. Another group
of people who may have a lot to gain from early perceptual interfaces are
users with physical disabilities. Interfaces that are more adaptable and flex-
ible, and not limited to particular ways of moving a mouse or typing keys,
will provide a significant benefit to this community.

Several other areas—such as entertainment, personal robotics, multime-
dia learning, and biometrics—would clearly seem to benefit from initial ad-
vances in perceptual interfaces. Eventually, the applications of technologies
and sense, perceive, understand, and respond appropriately to human be-
havior appear to be unlimited.

What is necessary in order to bring about this vision of perceptual inter-
faces? A better understanding of human capabilities, limitations, and pref-
erences in interaction is important, including physical, social, and cognitive
aspects. Advances in several technical areas, some quite old and some rela-
tively new, are also vital. Speech understanding and generation (i.e., speech
recognition, natural language processing, speech synthesis, discourse mod-

464 Perceptual Interfaces Chapter 10

eling, and dialogue management) are vital to leverage the natural modality
of spoken language, as well as other sound recognition and synthesis tools
(e.g., in addition to words, systems should recognize a sneeze, a cough, a
loud plane passing overhead, a general noisy environment, etc.). Computer
graphics and information visualization are important to provide richer ways
of communicating to users. Affective computing [105] may be vital to un-
derstand and generate natural interaction, especially subtle cues to aspects
of humor and irony, and appropriate context-dependent displays of emo-
tion (or lack thereof). Haptic and tangible interfaces (e.g., [7, 57]) which
leverage physical aspects of interaction may also be important in building
truly perceptual interfaces. User and task modeling (e.g., [52, 53]) is key to
understanding the whole context of interaction.

Computer vision is also a vital element of perceptual interfaces. Whether
alone or in conjunction with other perceptual modalities, visual information
provides useful and important cues to interaction. The presence, location,
and posture of a user may be important contextual information; a gesture
or facial expression may be a key signal; the direction of gaze may disam-
biguate the object referred to in language as “this” or “that thing.” The
next section of the chapter describes the scope of computer vision research
and development as it relates to this area of perceptual interfaces.

In addition to advances in individual component areas, the integration
of multiple modalities is of fundamental importance in perceptual interfaces.
Both lower-level fusion techniques and higher-level integration frameworks
will be necessary to build interactive, multimodal interfaces that provide a
compelling, natural user experience.

10.3 Multimodal Interfaces

A multimodal interface is a system that combines two or more input modal-
ities in a coordinated manner. Perceptual interfaces are inherently multi-
modal. In this section, we define more precisely what we mean by modes
and channels, and discuss research in multimodal interfaces and how this
relates to the more general concept of perceptual interfaces.

Humans interact with the world by way of information being sent and
received, primarily through the five major senses of sight, hearing, touch,
taste, and smell. A modality (informally, a mode) refers to a particular
sense. A communication channel is a course or pathway through which in-
formation is transmitted. In typical HCI usage, a channel describes the inter-
action technique that utilizes a particular combination of user and computer
communication—i.e., the user output/computer input pair or the computer

Section 10.3. Multimodal Interfaces 465

output/user input pair1. This can be based on a particular device, such as
the keyboard channel or the mouse channel, or on a particular action, such
as spoken language, written language, or dynamic gestures. In this view,
the following are all channels: text (which may use multiple modalities when
typing in text or reading text on a monitor), sound, speech recognition,
images/video, and mouse pointing and clicking.

Unfortunately, there is some ambiguity in the use of the word mode in
HCI circles, as sometimes it is used to mean “modality” and at other times it
means “channel.” So are multimodal interfaces “multi-modality” or “multi-
channel?” Certainly every command line interface uses multiple modalities,
as sight and touch (and sometimes sound) are vital to these systems. The
same is true for graphical user interfaces, which in addition use multiple
channels of keyboard text entry, mouse pointing and clicking, sound, images,
etc.

What then distinguishes multimodal interfaces from other HCI technolo-
gies? As a research field, multimodal interfaces focus on integrating sensor
recognition-based input technologies such as speech recognition, pen gesture
recognition, and computer vision, into the user interface. The function of
each technology is better thought of as a channel than as a sensing modal-
ity; hence, in our view, a multimodal interface is one that uses multiple
modalities to implement multiple channels of communication. Using multi-
ple modalities to produce a single interface channel (e.g., vision and sound to
produce 3D user location) is multisensor fusion, not a multimodal interface.
Similarly, using a single modality to produce multiple channels (e.g., a left-
hand mouse to navigate and a right-hand mouse to select) is a multichannel
(or multi-device) interface, not a multimodal interface.

An early prototypical multimodal interfaces was the “Put That There”
prototype system demonstrated at MIT in the early 1980s [10]. In this sys-
tem, the user communicated via speech and pointing gestures in a “media
room.” The gestures served to disambiguate the speech (Which object does
the word “this” refer to? What location is meant by “there?”) and effected
other direct interactions with the system. More recently, the QuickSet ar-
chitecture [18] is a good example of a multimodal system using speech and
pen-based gesture to interact with map-based and 3D visualization systems.
QuickSet is a wireless, handheld, agent-based, collaborative multimodal sys-
tem for interacting with distributed applications. The system analyzes con-
tinuous speech and pen gesture in real time and produces a joint semantic
interpretation using a statistical unification-based approach. The system

1Input means to the computer; output means from the computer.

466 Perceptual Interfaces Chapter 10

supports unimodal speech or gesture as well as multimodal input.
Multimodal systems and architectures vary along several key dimensions

or characteristics, including:

– The number and type of input modalities;
– The number and type of communication channels;
– Ability to use modes in parallel, serially, or both;
– The size and type of recognition vocabularies;
– The methods of sensor and channel integration;
– The kinds of applications supported.

There are many potential advantages of multimodal interfaces, including
the following [101]:

– They permit the flexible use of input modes, including alternation and
integrated use.

– They support improved efficiency, especially when manipulating graph-
ical information.

– They can support shorter and simpler speech utterances than a speech-
only interface, which results in fewer disfluencies and more robust
speech recognition.

– They can support greater precision of spatial information than a speech-
only interface, since pen input can be quite precise.

– They give users alternatives in their interaction techniques.
– They lead to enhanced error avoidance and ease of error resolution.
– They accommodate a wider range of users, tasks, and environmental

situations.
– They are adaptable during continuously changing environmental con-

ditions.
– They accommodate individual differences, such as permanent or tem-

porary handicaps.
– They can help prevent overuse of any individual mode during extended

computer usage.

Oviatt and Cohen and their colleagues at the Oregon Health and Science
University (formerly Oregon Graduate Institute) have been at the forefront
of multimodal interface research, building and analyzing multimodal systems
over a number of years for a variety of applications. Oviatt’s “Ten Myths
of Multimodal Interaction” [100] are enlightening for anyone trying to un-
derstand the area. We list Oviatt’s myths in italics, with our accompanying
comments:

Section 10.3. Multimodal Interfaces 467

Myth #1. If you build a multimodal system, users will interact multi-
modally. In fact, users tend to intermix unimodal and multimodal
interactions; multimodal interactions are often predictable based on
the type of action being performed.

Myth #2. Speech and pointing is the dominant multimodal integration pat-
tern. This is only one of many interaction combinations, comprising
perhaps 14all spontaneous multimodal utterances.

Myth #3. Multimodal input involves simultaneous signals. Multimodal
signals often do not co-occur temporally.

Myth #4. Speech is the primary input mode in any multimodal system that
includes it. Speech is not the exclusive carrier of important content in
multimodal systems, nor does it necessarily have temporal precedence
over other input modes.

Myth #5. Multimodal language does not differ linguistically from unimodal
language. Multimodal language is different, and often much simplified,
compared with unimodal language.

Myth #6. Multimodal integration involves redundancy of content between
modes. Complementarity of content is probably more significant in
multimodal systems than is redundancy.

Myth #7. Individual error-prone recognition technologies combine multi-
modally to produce even greater unreliability. In a flexible multimodal
interface, people figure out how to use the available input modes effec-
tively; in addition, there can be mutual disambiguation of signals that
also contributes to a higher level of robustness.

Myth #8. All users’ multimodal commands are integrated in a uniform
way. Different users may have different dominant integration patterns.

Myth #9. Different input modes are capable of transmitting comparable
content. Different modes vary in the type and content of their infor-
mation, their functionality, the ways they are integrated, and in their
suitability for multimodal integration.

Myth #10. Enhanced efficiency is the main advantage of multimodal sys-
tems. While multimodal systems may increase efficiency, this may not
always be the case. The advantages may reside elsewhere, such as
decreased errors, increased flexibility, or increased user satisfaction.

468 Perceptual Interfaces Chapter 10

A technical key to multimodal interfaces is the specific integration levels
and technique(s) used. Integration of multiple sources of information is gen-
erally characterized as “early,” “late,” or somewhere in between. In early
integration (or “feature fusion”), the raw data from multiple sources (or
data that has been processed somewhat, perhaps into component features)
are combined and recognition or classification proceeds in the multidimen-
sional space. In late integration (or “semantic fusion”), individual sensor
channels are processed through some level of classification before the results
are integrated. Figure 10.3 shows a view of these alternatives. In practice,
integration schemes may combine elements of early and late integration, or
even do both in parallel.

Sensor 1

Sensor 2

Feature
space

Classification Output

(a)

Sensor 1

Sensor 2

Classification

Output
Feature
space

Classification

(b)

Figure 10.3. (a) Early integration, fusion at the feature level. (b) Late integration,
fusion at the semantic level.

There are advantages to using late, semantic integration of multiple
modalities in multimodal systems. For example, the input types can be
recognized independently, and therefore do not have to occur simultane-
ously. The training requirements are smaller, O(2N) for two separately
trained modes as opposed to O(N2) for two modes trained together. The
software development process is also simpler in the late integration case, as

Section 10.3. Multimodal Interfaces 469

exemplified by the QuickSet architecture [148]. Quickset uses temporal and
semantic filtering, unification as the fundamental integration technique, and
a statistical ranking to decide among multiple consistent interpretations.

Multimodal interface systems have used a number of non-traditional
modes and technologies. Some of the most common are the following:

– Speech recognition

Speech recognition has a long history of research and commercial de-
ployment, and has been a popular component of multimodal systems
for obvious reasons. Speech is a very important and flexible commu-
nication modality for humans, and is much more natural than typing
or any other way of expressing particular words, phrases, and longer
utterances. Despite the decades of research in speech recognition and
over a decade of commercially available speech recognition products,
the technology is still far from perfect, due to the size, complexity,
and subtlety of language, the limitations of microphone technology,
the plethora of disfluencies in natural speech, and problems of noisy
environments. Systems using speech recognition have to be able to
recover from the inevitable errors produced by the system.

– Language understanding

Natural language processing attempts to model and understand hu-
man language, whether spoken or written. In multimodal interfaces,
language understanding may be hand-in-hand with speech recognition
(together forming a “speech understanding” component), or it may be
separate, processing the user’s typed or handwritten input. Typically
the more a system incorporates natural language, the more users will
expect sophisticated semantic understanding from the system. Current
systems are unable to deal with completely unconstrained language,
but can do quite well with limited vocabularies and subject matter.
Allowing for user feedback to clarify and disambiguate language input
can help language understanding systems significantly.

– Pen-based gesture

Pen-based gesture has been popular in part because of computer form
factors (PDAs and tablet computers) that include a pen or stylus as
a primary input device. Pen input is particularly useful for deictic
(pointing) gestures, defining lines, contours, and areas, and specially-
defined gesture commands (e.g., minimizing a window by drawing a
large “M” on the screen). Pen-based systems are quite useful in mobile

470 Perceptual Interfaces Chapter 10

computing, where a small computer can be carried, but a keyboard is
impractical.

– Magnetic, inertial, etc. sensors for body tracking

Sturman’s 1991 thesis [131] thoroughly documented the early use of
sensors worn on the hand for input to interactive systems. Magnetic
tracking sensors such as the Ascension Flock of Birds2 product, vari-
ous instrumented gloves, and sensor- or marker-based motion capture
devices have been used in multimodal interfaces, particularly in im-
mersive environments (e.g., see [50]).

– Non-speech sound

Non-speech sounds have traditionally been used in HCI to provide
signals to the user: e.g., warnings, alarms, and status information.
(Ironically, one of the most useful sounds for computer users is rather
serendipitous: the noise made by many hard drives that lets a user
know that the machine is still computing, rather than hung.) However,
non-speech sound can also be a useful input channel, as sound made by
users can be meaningful events in human-to-human communication—
e.g., utterances such as “uh-huh” used in backchannel communication
(communication events that occur in the background of an interaction,
rather than being the main focus), a laugh, a sigh, or a clapping of
hands.

– Haptic input and force feedback

Haptic, or touch-based, input devices measure pressure, velocity, location—
essentially perceiving aspects of a user’s manipulative and explorative
manual actions. These can be integrated into existing devices (e.g.,
keyboards and mice that know when they are being touched, and pos-
sibly by whom). Or they can exist as standalone devices, such as the
well-known PHANTOM device by SensAble Technologies, Inc.3 (see
Fig. 10.4), or the DELTA device by Force Dimension.4 These and most
other haptic devices integrate force feedback and allow the user to expe-
rience the “touch and feel” of simulated artifacts as if they were real.
Through the mediator of a hand-held stylus or probe, haptic explo-
ration can now receive simulated feedback including rigid boundaries

2http://www.ascension-tech.com
3http://www.sensable.com
4http://www.forcedimension.com

Section 10.3. Multimodal Interfaces 471

of virtual objects, soft tissue, and surface texture properties. A tempt-
ing goal is to simulate all haptic experiences and to be able to recreate
objects with all their physical properties in virtual worlds so they can
be touched and handled in a natural way. The tremendous dexter-
ousity of the human hand makes this very difficult. Yet, astonishing
results can already be achieved, for example with the CyberForce de-
vice which can produce forces on each finger and the entire arm. The
same company, Immersion Corp.5, also supplies the iDrive, a hybrid
of a rotary knob and joystick input interface to board computers of
BMW’s flagship cars. This is the first attempt outside the gaming
industry to bring haptic and force-feedback interfaces to the general
consumer.

Figure 10.4. SensAble Technologies, Inc. PHANTOM haptic input/output device
(reprinted with permission).

– Computer vision

Computer vision has many advantages as an input modality for multi-
modal or perceptual interfaces. Visual information is clearly important
in human-human communication, as meaningful information is con-

5http://www.immersion.com

472 Perceptual Interfaces Chapter 10

veyed through identity, facial expression, posture, gestures, and other
visually observable cues. Sensing and perceiving these visual cues from
video cameras appropriately placed in the environment is the domain
of computer vision. The following section describes relevant computer
vision technologies in more detail.

10.4 Vision Based Interfaces

Vision supports a wide range of human tasks, including recognition, navi-
gation, balance, reading, and communication. In the context of perceptual
interfaces, the primary task of computer vision (CV) is to detect and rec-
ognize meaningful visual cues to communication—i.e., to “watch the users”
and report on their locations, expressions, gestures, etc. While vision is one
of possibly several sources of information about the interaction to be com-
bined multimodally in a perceptual interface, in this section we focus solely
on the vision modality. Using computer vision to sense and perceive the user
in an HCI context is often referred to as Vision Based Interaction, or Vision
Based Interfaces (VBI).

In order to accurately model human interaction, it is necessary to take
every observable behavior into account [69, 68]. The analysis of human
movement and gesture coordinated with speech conversations has a long
history in areas such as sociology, communication, and therapy (e.g., Scheflen
and Birdwhistell’s Context Analysis [115]). These analyses, however, are
often quite subjective and ill-suited for computational analysis. VBI aims
to produce precise and real-time analysis that will be useful in a wide range
of applications, from communication to games to automatic annotation of
human-human interaction.

There is a range of human activity that has occupied VBI research over
the past decade; Fig. 10.5 shows some of these from the camera’s viewpoint.
Key aspects of VBI include the detection and recognition of the following
elements:

– Presence and location – Is someone there? How many people? Where
are they (in 2D or 3D)? [Face detection, body detection, head and
body tracking]

– Identity – Who are they? [Face recognition, gait recognition]
– Expression – Is a person smiling, frowning, laughing, speaking...? [Fa-

cial feature tracking, expression modeling and analysis]
– Focus of attention – Where is a person looking? [Head/face tracking,

eye gaze tracking]

Section 10.4. Vision Based Interfaces 473

(a) (b)

(c) (d)

Figure 10.5. Some common visual cues for VBI. (a) User presence and identity.
(b) Facial expression. (c) A simple gesture. (d) A pointing gesture and focus of
attention.

– Body posture and movement – What is the overall pose and motion of
the person? [Body modeling and tracking]

– Gesture – What are the semantically meaningful movements of the
head, hands, body? [Gesture recognition, hand tracking]

– Activity – What is the person doing? [Analysis of body movement]

Surveillance and VBI are related areas with different emphases. Surveil-
lance problems typically require less precise information and are intended not
for direct interaction but to record general activity or to flag unusual activ-
ity. VBI demands more fine-grained analysis, where subtle facial expressions
or hand gestures can be very important.

These computer vision problems of tracking, modeling and analyzing hu-
man activities are quite difficult. In addition to the difficulties posed in
typical computer vision problems by noise, changes in lighting and pose, and
the general ill-posed nature of the problems, VBI problems add particular
difficulties due to the fact that the objects to be modeled, tracked, and rec-

474 Perceptual Interfaces Chapter 10

ognized are people, rather than simple, rigid, non-changing widgets. People
change hairstyles, get sunburned, grow facial hair, wear baggy clothing, and
in general make life difficult for computer vision algorithms. Robustness in
the face of the variety of human appearances is a major issue in VBI research.

The main problem that computer vision faces is an overload of informa-
tion. The human visual system effortlessly filters out unimportant visual
information, attending to relevant details like fast moving objects, even if
they are in the periphery of the visible hemisphere. But this is a very com-
plex computational task. At the low level in human vision, a great deal
of pre-processing is done in the retina in order to decrease the bandwidth
requirements of the nervous channel into the visual cortex. At the high
level, humans leverage a priori knowledge of the world in ways that are not
well understood computationally. For example, a computer does not simply
know that objects under direct sunlight cast sharp shadows. The difficult
question is how to extract only relevant observations from the visual infor-
mation so that vision algorithms can concentrate on a manageable amount of
work. Researchers frequently circumvent this problem by making simplify-
ing assumptions about the environment, which makes it possible to develop
working systems and investigate the suitability of computer vision as a user
interface modality.

In recent years, there has been increased interest in developing practical
vision-based interaction methods. The technology is readily available, inex-
pensive, and fast enough for most real-time interaction tasks. CPU speed has
continually increased following Moore’s Law, allowing increasingly complex
vision algorithms to run at frame rate (30 frames per second, fps). Fig-
ure 10.6 shows a history of available clock cycles per pixel of a VGA-sized
video stream with a top-of-the-line CPU for the PC market over the last 35
years. Higher processing speeds, as well as the recent boom in digital imaging
in the consumer market, could have far reaching implications for VBI. It is
becoming more and more feasible to process large, high resolution images in
near real-time, potentially opening the door for numerous new applications
and vision algorithms.

Fast, high-resolution digital image acquisition devices and fast processing
power are only as effective as the link between them. The PC market has
just recently seen a revolution in connector standards. Interface speeds to
peripheral devices used to be orders of magnitude lower than the connection
speed between the motherboard and internal devices. This was largely due
to the parallel (32 bit or more) connector structure for internal boards and
serial links to external devices. The introduction of Firewire (also called 1394
and i-Link) in 1995 and more recently USB 2.0 pushed interface speeds for

Section 10.4. Vision Based Interfaces 475

0.01

0.1

1

10

100

1000

1970 1975 1980 1985 1990 1995 2000 2005

C
P

U
 c

lo
ck

 c
yc

le
s

p
er

 p
ix

el
 (

64
0x

48
0x

30
)

1

10

100

1000

10000

100000

co
st

 i
n

 U
S

D
 p

er
 c

yc
le

 p
er

 p
ix

el

Figure 10.6. CPU processing power over the last 35 years. Each “+” data
point denotes the release of the fastest CPU for the PC market from one of the
major manufacturers. Multiple data points per year are shown if one manufacturer
released multiple CPUs that year or competing manufacturers’ CPUs were released
that year. The available clock cycles per pixel per frame of a video stream with 30
full frames per second of size 640x480 pixels determine the y-value. The “o” data
points describe the cost in US $ per MHz CPU speed.

peripheral devices into the same league as internal interfaces. While other
high-speed interfaces for external devices exist (e.g., ChannelLink), they have
not made inroads to the consumer market.

Using computer vision in human-computer interaction can enable interac-
tion that is difficult or impossible to achieve with other interface modalities.
As a picture is worth a thousand words to a person, a video stream may be
worth a thousand words of explanation to a computer. In some situations,
visual interaction is very important to human-human interaction—hence,
people fly thousands of miles to meet face to face. Adding visual interac-
tion to computer interfaces, if done well, may help to produce a similarly
compelling user experience.

Entirely unobtrusive interfaces are possible with CV because no special
devices must be worn or carried by the user (although special, easily-tracked
objects may be useful in some contexts). No infrastructure or sensors need to
be placed in the interaction space because cameras can cover a large physical
range. In particular, no wires or active transmitters are required by the user.
A camera operates extremely quietly, allowing input to a computer without

476 Perceptual Interfaces Chapter 10

disturbing the environment. Also, modern cameras can be very lightweight
and compact, well-suited for mobile applications. Even in environments
unsuitable for moving or exposed parts, cameras can be utilized since a
camera can be completely encapsulated in its housing with a transparent
window.

The cost of cameras and their supporting hardware and software has
dropped dramatically in recent years, making it feasible to expect a large
installed based in the near future. Software for image and video processing
(e.g., for movie and DVD editing) has entered the consumer market and is
frequently pre-installed, bundled with a computer’s operating system.

The versatility of a camera makes it reasonable and compelling to use as
an interface device. A camera may be used for several different purposes,
sometimes simultaneously. For example, a single camera, affixed to a per-
son’s head or body, may function as a user interface device by observing
the wearer’s hands [73]; it can videotape important conversations or other
visual memories at the user’s request [58]; it can store and recall the faces
of conversation partners and associate their names [112]; it can be used to
track the user’s head orientation [140, 2]; it can guide a museum visitor by
identifying and explaining paintings [111].

As a particular example of VBI, hand gesture recognition offers many
promising approaches for interaction. Hands can operate without obstruct-
ing high-level activities of the brain such as sentence-forming, thus being
a good tool for interface tasks while thinking. Generating speech, on the
other hand, is said to take up general-purpose brain resources, impeding
the thought process [66]. Hands are very dextrous physical tools, and their
capabilities have been quite successfully employed in the HCI context in con-
junction with devices such as the keyboard and mouse. Human motor skills
are, in many cases, easily trained to execute new tasks with high precision
and incredible speeds. With the aid of computer vision, we have the chance
to go beyond the range of activities that simple physical devices can capture
and instead to let hands gesture with all their capabilities. The goal is to
leverage the full range of both static hand postures and dynamic gestures in
order to communicate (purposefully or otherwise) and perhaps to command
and control. Data gloves accomplish some of this goal, yet they have an
unnatural feel and are cumbersome to the user.

10.4.1 Terminology

This subsection reviews the essential terminology relevant to vision based
interaction. Current VBI tasks focus on modeling (and detecting, tracking,

Section 10.4. Vision Based Interfaces 477

recognizing, etc.) one or more body parts. These parts could be a face,
a hand, a facial feature such as an eye, or an entire body. We will inter-
changeably call this the object of focus, the feature of attention, or simply
the “body part.”

Determining the presence (or absence) of an object of focus is the problem
of detection and has so far primarily been applied to people detection [43]
and face detection [155, 49]. Strictly speaking, the output is binary (“person
present” versus “no person present”), but typically the location of the object
is also reported. Object localization is sometimes used to describe the special
case that the presence of an object is assumed and its location is to be
determined at a particular point in time. Registration refers to the problem of
aligning an object model to the observation data, often both object position
and orientation (or pose). Object tracking locates objects and reports their
changing pose over time [43].

Although tracking can be considered as a repeated frame-by-frame de-
tection or localization of a feature or object, it usually implies more than
discontinuous processing. Various methods improve tracking by explicitly
taking temporal continuity into account and using prediction to limit the
space of possible solutions and speed up the processing. One general ap-
proach uses filters to model the object’s temporal progression. This can be
as simple as linear smoothing, which essentially models the object’s inertia.
A Kalman filter [63] assumes a Gaussian distribution of the motion pro-
cess and can thus also model non-constant movements. The frequently used
Extended Kalman Filter (EKF) relieves the necessity of linearity. Particle
filtering methods (or sequential Monte Carlo methods [34], and frequently
called Condensation [55] in the vision community) make no assumptions
about the characteristics of underlying probability distributions but instead
sample the probability and build an implicit representation. They can there-
fore deal with non-Gaussian processes and also with multi-modal densities
(caused by multiple, statistically independent sources) such as arise from
object tracking in front of cluttered backgrounds. In addition to the filter-
ing approach, different algorithms can be used for initialization (detection)
and subsequent tracking. For example, some approaches detect faces with a
learning-based approach [139] and then track with a shape and color based
head tracker [8].

Recognition (or identification) involves comparing an input image to a
set of models in a database. A recognition scheme usually determines con-
fidence scores or probabilities that defines how closely the image data fits
each model. Detection is sometimes called recognition, which makes sense
if there are very different classes of objects (faces, cars, and books) and one

478 Perceptual Interfaces Chapter 10

of them (faces) must be recognized. A special case of recognition is verifica-
tion or authentication, which judges whether the input data belongs to one
particular identity with very high confidence. An important application of
verification is in biometrics, which has been applied to faces, fingerprints,
and gait characteristics [17].

A posture is a static configuration of the human body—for example, sit-
ting and thinking or holding a coffee cup or pen. Gestures are dynamic
motions of the body or body parts, and can be considered as temporally
consecutive sequences of postures. Hand and arm gestures in particular are
covered extensively in the social sciences literature, especially in conversa-
tional and behavioral psychology [36, 69, 86, 87, 108]. As a result, the term
gesture is often used to refer to the semantic interpretation that is asso-
ciated with a particular movement of the body (e.g., happiness associated
with a smile). We limit our attention in this chapter to a mostly syntactic
view of “gesture” and “gesture recognition,” leaving the difficult problem of
semantic interpretation and context [26, 86] to others.

Facial gestures are more commonly called facial expressions. Detecting
and tracking facial features are typically the first steps of facial expression
analysis, although holistic appearance-based approaches may also be feasible.
Subsequent steps try to recognize known expressions (e.g., via FACS action
units [37]) and to infer some meaning from them, such as the emotional state
of the human [6, 9].

The parameter set for a rigid body consists of its location (x, y, z) in
3D space and its orientation (rx, ry, rz) with respect to a fixed coordinate
frame. Deformable objects such as human faces require many parameters
for an accurate description of their form, as do articulated objects such as
human bodies. An object’s appearance describes its color and brightness
properties at every point on its surface. Appearance is caused by texture,
surface structure, lighting, and view direction. Since these attributes are
view-dependent, it only makes sense to talk about appearance from a given
viewpoint.

The view sphere is an imaginary sphere around the object or scene of in-
terest. Every surface point of the sphere defines a different view of the object.
When taking perspective into account, the object’s appearance changes even
for different distances, despite a constant viewing angle. Vision techniques
that can detect, track, or recognize an object regardless of the viewing angle
are called view-independent; those that require a certain range of viewing
angles for good performance, for example frontal views for face tracking, are
called view-dependent.

Section 10.4. Vision Based Interfaces 479

10.4.2 Elements of VBI

VBI techniques apply computer vision to specific body parts and objects of
interest. Depending on the application and environmental factors, it may
be most useful to search for or track the body as a whole, individual limbs,
a single hand, or an artifact such as a colored stick held by the user. VBI
techniques for different body parts and features can complement and aid
each other in a number of ways.

1. Coarse-to-fine hierarchy: Here, in a sequence of trackers which are
targeted to successively more detailed objects, each stage benefits from
the results of the previous stage by drastically reducing the search
space. For example, whole-body detection limits the search space for
face detection. After the face is detected in a scene, the search for
particular facial features such as eyes can be limited to small areas
within the face. After the eyes are identified, one might estimate the
eye gaze direction [129].

2. Fine-to-coarse hierarchy: This approach works in the opposite way.
From a large number of cues of potential locations of small features,
the most likely location of a larger object that contains these features
is deduced. For example, feature-based face recognition methods make
use of this approach. They first try to identify prominent features
such as eyes, nose, and lips in the image. This may yield many false
positives, but knowledge about the features’ relative locations allows
the face to be detected. Bodies are usually attached to heads at the
same location: thus, given the position of a face, the search for limbs,
hands, etc., becomes much more constrained and therefore simpler [91].

3. Assistance through more knowledge: The more elements in a scene
that are modeled, the easier it is to deal with their interactions. For
example, if a head tracking interface also tracks the hands in the image,
although it does not need their locations directly, it can account for
occlusions of the head by the hands (e.g., [146]). The event is within
its modeled realm, whereas otherwise occlusions would constitute an
unanticipated event, diminishing the robustness of the head tracker.

Face tracking in particular is often considered a good anchor point for
other objects [135, 24], since faces can be fairly reliably detected based on
skin color or frontal view appearance.

480 Perceptual Interfaces Chapter 10

Person-level, Whole Body & Limb Tracking

VBI at the person-level has probably produced the most commercial appli-
cations to date. Basic motion sensing is a perfect example how effective VBI
can be in a constrained setting: the scene is entirely stationary, so that frame-
to-frame differencing is able to detect moving objects. Another successful
application is in traffic surveillance and control. A number of manufactur-
ers offer systems that automate or augment the push button for pedestrian
crossings. The effectiveness of this technology was demonstrated in a study
[137] that compared the number of people crossing an intersection during the
“Don’t Walk” signal with and without infrastructure that detected people
in the waiting area on the curb or in the crossing. The study found that in
all cases these systems can significantly decrease the number of dangerous
encounters between people and cars.

Motion capture has frequently been used in the film industry to animate
characters with technology from companies such as Adtech, eMotion, Mo-
tion Analysis, and Vicon Motion Systems. In optical motion capture, many
IR-reflecting markers are placed on an artist’s or actor’s body. Typically
more than five cameras observe the acting space from different angles, so
that at least two cameras can see each point at any time. This allows for
precise reconstruction of the motion trajectories of the markers in 3D and
eventually the exact motions of the human body. This information is used
to drive animated models and can result in much more natural motions than
those generated automatically. Other common applications of motion cap-
ture technology include medical analysis and sports training (e.g., to analyze
golf swings or tennis serves).

Detecting and tracking people passively using computer vision, without
the use of markers, has been applied to motion detection and other surveil-
lance tasks. In combination with artificial intelligence, it is also possible to
detect unusual behavior, for example in the context of parking lot activity
analysis [47]. Some digital cameras installed in classrooms and auditori-
ums are capable of following a manually selected person or head through
pan-tilt-zoom image adjustments. Object-based image encoding such as de-
fined in the MPEG-4 standard is an important application of body tracking
technologies.

The difficulties of body tracking arise from the many degrees of freedom
of the human body. Adults have 206 bones which are connected by over
230 joints. Ball and socket joints such as in the shoulder and hip have three
degrees of freedom (DOF): They can abduct and adduct, flex and extend,
and rotate around the limb’s longitudinal axis. Hinge joints have one DOF

Section 10.4. Vision Based Interfaces 481

and are found in the elbow and between the phalanges of hands and feet.
Pivot joints also allow for one DOF; they allow the head as well as radius
and ulna to rotate. The joint type in the knee is called a condylar joint.
It has two DOF because it allows for flexion and extension and for a small
amount of rotation. Ellipsoid joints also have two DOF, one for flexion and
extension, the other for abduction and adduction (e.g., the wrist’s main joint
and the metacarpophalangeal joint as depicted in Fig. 10.8). The thumb’s
joint is a unique type, called a saddle joint; in addition to the two DOF
of ellipsoid joints, it also permits a limited amount of rotation. The joints
between the human vertebrae each allow limited three DOF motion, and all
together they are responsible for the trunk’s flexibility.

Recovering the degrees of freedom for all these joints is an impossible feat
for today’s vision technology. Body models for CV purposes must therefore
abstract from this complexity. They can be classified by their dimensionality
and by the amount of knowledge versus learning needed to construct them.

The frequently used 3D kinematic models have between 20 and 30 DOF.
Figure 10.7 shows an example, in which the two single-DOF elbow- and
radioulnar joints have been combined into a two-DOF joint at the elbow. In
fact, the rotational DOF of the shoulder joint is often transferred to the elbow
joint. This is because the humerus shows little evidence of its rotation, while
the flexed lower arm indicates this much better. Similarly, the rotational
DOF of the radioulnar joint can be attributed to the wrist. This transfer
makes a hierarchical model parameter estimation easier.

Most of the vision-based efforts to date have concentrated on detecting
and tracking people while walking, dancing, or performing other tasks in a
mostly upright posture. Pedestrian detection, for example, has seen meth-
ods employed that had previously shown success in face detection, such as
wavelets [99] and a combination of depth information and a learning method
[162].

Two systems with comprehensive functionality, Pfinder [145] and W4
[48], both show well how CV must be tailored to the task and properties of the
particular environment. First, they rely on a static camera mounting, which
gives the opportunity to model the background and achieve fast and reliable
segmentation of moving foreground objects. Second, they make assumptions
of the body posture; namely, they expect a mostly upright person. This can
be easily distinguished from other moving objects such as cars or wind-blown
objects. Third, heuristics about the silhouettes enable classification of a few
typical postures or actions such as carrying an object, making use of the fact
that only a small number of scenarios are likely for a person entering the
field of view.

482 Perceptual Interfaces Chapter 10

3 3

3

33 2 1

2

1

1 1

1 1

2

often modeled as:

2 2 2

humerus
radius
ulna

femur
tibia
fibula

1
1

Figure 10.7. The “sausage link man” shows the structure of a 3D body model.
The links can have cylindrical shape, but especially the trunk is more accurately
modeled with a shape with non-circular cross section.

Hands

Hands are our most dextrous body parts, and they are heavily used in both
manipulation and communication. Estimation of the hands’ configuration is
extremely difficult due to the high degrees of freedom and the difficulties of
occlusion. Even obtrusive data gloves6 are not able to acquire the hand state
perfectly. Compared with worn sensors, CV methods are at a disadvantage.
With a monocular view source, it is impossible to know the full state of the
hand unambiguously for all hand configurations, as several joints and finger
parts may be hidden from the camera’s view. Applications in VBI have to
keep these limitations in mind and focus on obtaining information that is
relevant to gestural communication, which may not require full hand pose
information.

Generic hand detection is a largely unsolved problem for unconstrained
settings. Systems often use color segmentation, motion flow, and background
subtraction techniques, and especially a combination of these, to locate and
track hands in images. In a second step and in settings where the hand is the
prominent object in view, a shape recognition or appearance-based method
is often applied for hand posture classification.

6Data gloves are gloves with sensors embedded in them that can read out the fingers’
flexion and abduction. Their locations and orientations in 3D space are often tracked with
supplemental means such as electromagnetic trackers.

Section 10.4. Vision Based Interfaces 483

distal phalanges
middle phalanges
proximal phalanges

DIP
PIP

MCP

metacarpals
carpals
radius
ulna

1

1

2

1

1

3 11

thumb IP
thumb MP

TMC

MCC

Figure 10.8. The structure of the hand. The joints and their degrees of freedom:
distal interphalangeal joints (DIP, 1 DOF), proximal interphalangeal joints (PIP, 1
DOF), metacarpophalangeal joints (MCP, 2 DOF), metacarpocarpal joints (MCC,
1 DOF for pinky and ring fingers), thumb’s interphalangeal joint (IP, 1 DOF),
thumb’s metacarpophalangeal joint (MP, 1 DOF), and thumb’s trapeziometacarpal
joint (TMC, 3 DOF).

Anatomically, the hand is a connection of 18 elements: the five fingers
with three elements each, the thumb-proximal part of the palm, and the
two parts of the palm that extend from the pinky and ring fingers to the
wrist (see Fig. 10.8). The 17 joints that connect the elements have one,
two, or three degrees of freedom (DOF). There are a total of 23 DOF, but
for simplicity the joints inside the palm are frequently ignored as well as
the rotational DOF of the trapeziometacarpal joint, leaving 20 DOF. Each
hand configuration is a point in this 20-dimensional configuration space. In
addition, the hand reference frame has 6 DOF (location and orientation).
See Braffort et al. [12] for an exemplary anthropomorphic hand model.

It is clearly difficult to automatically match a hand model to a point in
such a high-dimensional space for posture recognition purposes. Lin et al.
[80] suggest limiting the search to the interesting subspace of natural hand

484 Perceptual Interfaces Chapter 10

configurations and motions, and they define three types of constraints. Type
I constraints limit the extent of the space by considering only anatomically
possible joint angles for each joint (see also earlier work by Lee and Kunii
[77]). Type II constraints reduces the dimensionality by assuming direct
correlation between DIP and PIP flexion. Type III constraints limit the
extent of the space again by eliminating generally impossible configurations
and unlikely transitions between configurations. With a seven-dimensional
space they cover 95% of configurations observed in their experiments.

An introduction to the state of the art in hand modeling and recognition
can be found in a survey by Wu and Huang [152]. One of the early papers
that described whole hand tracking and posture classification as real-time
input was written by Fukumoto et al. [42]. They moved a cursor around
on a projection screen by making a pointing hand posture and moving the
hand within a space observed from two cameras. Two different postures
can be distinguished (thumb up and down) with various interpretations to
control a VCR and to draw. The paper also deals with the problem of
estimating the pointing direction. Cutler and Turk [23] use a rule-based
system for gesture recognition in which image feature are extracted by op-
tical flow. The location and trajectory of the hand(s) constitutes the input
to various simple interfaces such as controlling musical instruments. Mysli-
wiec [94, 107] tracks the hands by detecting the hands anew in every frame
based on a skin color model. Then a simple, hand-specific heuristic is used
to classify the posture and find the index fingertip. Freeman and Roth [41]
use histograms of edge orientations in hand images to distinguish different
gestures. Moghaddam and Pentland [90] apply a density estimation to the
PCA-transformed edge images and obtain a scale-invariant shape similarity
measure. GREFIT [98] uses fingertip locations in 2D images to deduce pos-
sible 3D configurations of view-dependent hand images with an underlying
anatomical hand model with Type I constraints. Zhu et al. [163] combine
color segmentation with frame differencing to find hand-like objects, using
higher-level dynamic models together with shape similarity based on image
moments to distinguish gestures. They observed that it was easier and more
reliable to classify gestures based on their motion trajectory than on finger
configurations.

View independence is a significant problem for hand gesture interfaces.
Wu and Huang [151] compared a number of classifiers for their suitability to
view-independent hand posture classification.

The above approaches operate in the visible light spectrum and do not
use any auxiliary aids such as marked gloves. Segmenting the hand from the
background is much simplified by using infrared (IR) light. Since the skin

Section 10.4. Vision Based Interfaces 485

reflects near-infrared light well, active IR sources placed in proximity to the
camera in combination with an IR pass filter on the lens make it easy to
locate hands that are within range of the light source. Dorfmüller-Ulhaas
and Schmalstieg [32] use special equipment: users must wear gloves with
infrared-reflecting markers, the scene is illuminated with IR light sources,
and a pair of cameras is used for stereo vision. The system’s accuracy and
robustness are quite high even with cluttered backgrounds. It is capable
of delivering the accuracy necessary to grab and move virtual checkerboard
figures.

Hand and Arm Gestures in 4D

The temporal progression of hand gestures, especially those that accompany
speech, are generally composable into three stages: pre-stroke, stroke, and
post-stroke [86]. The pre-stroke prepares the movement of the hand. The
hand waits in this ready state until the speech arrives at the point in time
when the stroke is to be delivered. The stroke is often characterized by a peak
in the hand’s velocity and distance from the body. The hand is retracted
during the post-stroke, but this phase is frequently omitted or strongly influ-
enced by the gesture that follows (similar to coarticulation issues in speech
processing).

Automatic sign language recognition has long attracted vision researchers.
It offers enhancement of communication capabilities for the speech-impaired
and deaf, promising improved social opportunities and integration. For ex-
ample, the signer could wear a head-mounted camera and hand a device to
his or her conversation partner that displays the recognized and translated
text. Alternatively, a text-to-speech module could be used to output the sign
language interpretation. Sign languages exist for several dozen spoken lan-
guages, such as American English (ASL), British English, French, German,
and Japanese. The semantic meanings of language components differ, but
most of them share common syntactic concepts. The signs are combinations
of hand motions and finger gestures, frequently augmented with mouth move-
ments according to the spoken language. Hand motions are distinguished by
the spatial motion pattern, the motion speed, and in particular by which
body parts the signer touches at the beginning, during, or the end of a sign.
The finger configuration during the slower parts of the hand movements is
significant for the meaning of the gesture. Usually, uncommon words can
be spelled out as a concatenation of letter symbols and then be assigned
to a context-dependent symbol for more efficient signing. Trained persons
achieve speeds that equal that of conversational speech.

486 Perceptual Interfaces Chapter 10

Most CV methods applicable to the task of sign language recognition have
extracted feature vectors composed of hand location and contour. These fea-
ture vectors have their temporal evolution and variability in common with
feature vectors stemming from audio data; thus, tools applied to the speech
recognition domain may be suited to recognizing the visual counterpart of
speech as well. An early system for ASL recognition [127] fed such a feature
vector into a Hidden Markov Model (HMM) and achieved high recognition
rates for a small vocabulary of mostly unambiguous signs from a constrained
context. However, expansion into a wider semantic domain is difficult; the
richness of syntactic signs is a big hurdle for a universal sign language recog-
nition system. The mathematical methods that perform well for speech
recognition need adaptation to the specifics of spatial data with temporal
variability. What is more, vision-based recognition must achieve precision in
two complementary domains: very fast tracking of the position of the hand
in 3D space and also exact estimation of the configuration of the fingers of
the hand. To combine these requirements in one system is a major challenge.
The theoretical capabilities of sign language recognition—assuming the CV
methods are fast and precise enough—can be evaluated with glove-based
methods in which research has a longer history (e.g., [93, 79]).

Wu and Huang [150] present a review of recognition methods for dynamic
gestures up to 1999. Overall, vision-based hand gesture recognition has
not yet advanced to a stage where it can be successfully deployed for user
interfaces in consumer-grade applications. The big challenges are robustness,
user independence, and some measure of view independence.

Head and Face

Head and face detection and tracking contributes an essential component to
vision based interfaces. Heads and faces can safely be presumed to be present
and visible for almost all kinds of human tasks. Heads are rarely occluded
entirely, and they convey a good deal of information about the human, such
as identity and focus of attention. In addition, this is an attractive area of
research in computer vision because the appearance variability of heads and
faces is limited yet complex enough to touch on many fundamental problems
of CV. Methods that perform well on head or face detection or tracking may
also perform well on other objects. This area of VBI has therefore received
the most attention and its maturity can be observed by the existence of
standard evaluation methods (test databases), the availability of software
tools, and commercial developments and products. This progress raises the
question of whether at least parts of the problem are solved to a degree that

Section 10.4. Vision Based Interfaces 487

computers can satisfactorily perform these tasks.
Applications of the technology include face detection followed by face

recognition for biometrics, for example to spot criminals at airports or to
verify access to restricted areas. The same technology can be useful for per-
sonalized user interfaces, for example to recall stored car seat positions, car
stereo volume, and car phone speed dial lists depending on the driver. Head
pose estimation and gaze direction have applications for video conferencing.
A common problem occurs when watching the video of one’s interlocutor on a
screen while the camera is next to the monitor. This causes an apparent offset
of gaze direction which can be disturbing if eye contact is expected. CV can
be used to correct for this problem [44, 156]. Head tracking has been used
for automatically following and focusing on a speaker with fixed-mounted
pan/tilt/zoom cameras. Future applications could utilize face recognition to
aid human memory and attempts are already being made to use face de-
tection and tracking for low bandwidth, object-based image coding. Face
tracking is usually a prerequisite for efficient and accurate locating of facial
features and expression analysis.

Face tracking methods can be characterized along two dimensions: whether
they track a planar face or a 3D face, and whether they assume a rigid or
a deformable face model. The usual tradeoffs apply: a model with more
degrees of freedom (DOF) is harder to register with the image, but it can be
more robust. For example, it may explicitly handle rotations out of the im-
age plane. Planar methods can only deal with limited shape and appearance
variation caused by out-of-plane rotations, for instance by applying learn-
ing methods. Fixed shape and appearance models such as polygons [130],
ellipses [8], cylinders [74], and ellipsoids [84], are efficient for coarse head
tracking, especially when combined with other image features such as color
[8]. Models that can describe shape and/or appearance variations have the
potential to yield more precise results and handle varying lighting conditions
and even sideways views. Examples for 2D models are Snakes [147], Eigen-
faces [134, 103], Active Shape Models [21] and Active Appearance Models
(AAM) [20, 154], Gabor and other wavelets [75, 104, 160, 38], and methods
based on Independent Component Analysis (ICA). 3D model examples are
3D AAM [33], point distribution models [45, 78], and meshes [27, 157].

The major difficulties for face detection arise from in-plane (tilted head,
upside down) and out-of-plane (frontal view, side view) rotations of the head,
facial expressions (see below), facial hair, glasses, and, as with all CV meth-
ods, lighting variation and cluttered backgrounds. There are several good

488 Perceptual Interfaces Chapter 10

surveys of head and face VBI7, including face detection [155, 49], face recog-
nition [153, 46], and face tracking [54].

Facial Expression Analysis, Eye Tracking

Facial expressions are an often overlooked aspect of human-human commu-
nication. However, they make a rich contribution to our everyday life. Not
only can they signal emotions and reactions to specific conversation topics,
but on a more subtle level, they also regularly mark the end of a contextual
piece of information and help in turn-taking during a conversation. In many
situations, facial gestures reveal information about a person’s true feelings,
while other bodily signals can be artificially distorted more easily. Specific
facial actions, such as mouth movements and eye gaze direction changes,
have significant implications. Facial expressions serve as interface medium
between the mental states of the participants in a conversation.

Eye tracking has long been an important facility for psychological ex-
periments on visual attention. The quality of results of automatic systems
that used to be possible only with expensive hardware and obtrusive head-
mounted devices is now becoming feasible with off-the-shelf computers and
cameras, without the need for head-mounted structures.8 Application de-
ployment in novel environments such as cars is now becoming feasible.

Face-driven animation has begun to make an impact in the movie indus-
try, just as motion capture products did a few years earlier. Some systems
still require facial markers, but others operate without markers. The gener-
ated data is accurate enough to animate a virtual character’s face with ease
and with a degree of smoothness and naturalness that is difficult to achieve
(and quite labor intensive) with conventional, scripted animation techniques.

Facial expressions in general are an important class of human motion that
behavioral psychology has studied for many decades. Much of the computer
vision research on facial expression analysis has made use of the Facial Action
Coding System (FACS) [37] (see Fig. 10.4.2), a fine-grained classification of
facial expressions. It describes on the order of 50 individual “action units”
(AU) such as raising the upper lip, stretching the lips, or parting the lips,
most of which are oriented on a particular facial muscle and its movements.
Some AU are combinations of two muscles’ movements, and some muscles
have more than one AU associated with them if contracting different parts
of the muscle results in very different facial expressions. Expressions such

7See also the chapter Face Detection and Recognition in this volume.
8See, for example, the Arrington Research, Inc. ViewPoint EyeTracker remote camera

system (http://www.tobii.se).

Section 10.4. Vision Based Interfaces 489

AU Facial
expression

FACS
description

AU Facial
expression

FACS
description

1 inner brow
raiser

2 outer brow
raiser

4 brow lower 5 upper lid
raiser

6 brow lower 10 upper lip
raiser

Figure 10.9. Some of the action units of the Facial Action Coding System
(FACS) [37].

as a smile are composed of one or more AU. AU thus do not carry semantic
meaning, they only describe physical deformations of skin and facial tissues.
FACS was originally developed so that human observers could succinctly
describe facial expressions for use in behavioral psychology. While many de-
grees of freedom allow for precise distinction of even the most subtle facial
notions—even distinction between natural and purposefully forced smiles is
said to be possible—the high expressiveness also poses additional challenges
over less fine-grained classifications, such as the semantics-oriented classifi-
cation into facial expressions caused by emotions (for example happiness and
anger).

For eye tracking, a coarse-to-fine approach is often employed. Robust and
accurate performance usually necessitates brief user training and constant

490 Perceptual Interfaces Chapter 10

lighting conditions. Under these conditions, the eye gaze direction can be
accurately estimated despite moderate head translations and rotations.

According to a survey by Donato et al. [31], most approaches to auto-
matic analysis of facial expression are either based on optical flow, global
appearance, or local features. The authors re-implemented some of the most
promising methods and compared their performance on one data set. Op-
tical flow methods (such as [85]) were used early on to analyze the short
term, dynamical evolution of the face. Naturally, these require an image se-
quence of the course of a facial expression, and do not apply to static images,
due to the lack of motion information. These methods were found to per-
form significantly better when the image is not smoothed in a pre-processing
step. This leads to the conclusion that small image artifacts are important
when it comes to tracking and/or recognizing facial gestures. Another hint
that high spatial frequencies contribute positively stems from comparing the
performance of Gabor wavelets. Using only high-frequencies had a less detri-
mental effect than using only low-frequencies, compared to the baseline of
unrestricted Gabor filters.

Approaches using Gabor filters and Independent Component Analysis
(ICA), two methods based on spatially constrained filters, outperformed
other methods such as those using PCA or Local Feature Analysis [102]
in the investigation by Donato et al. [31]. The authors conclude that lo-
cal feature extraction and matching is very important to good performance.
This alone is insufficient, however, as the comparison between global and lo-
cal PCA-based methods showed. Good performance with less precise feature
estimation can be achieved with other methods (e.g., [161].

Global methods that do not attempt to separate the individual contrib-
utors to visual appearances seem to be ill-suited to model multi-modal dis-
tributions. Refinement of mathematical methods for CV tasks, such as ICA,
appears to be promising in order to achieving high accuracy in a variety of
appearance-based applications such as detection, tracking, and recognition.
Optical flow and methods that do not attempt to extract FACS action units
are currently better suited to the real-time demands of VBI.

Handheld Objects

Vision based interfaces that detect and track objects other than human body
parts—that is, handheld objects used in interaction—have a high potential
for successful commercial development in the transition period from tradi-
tional to perceptual interfaces. Tracking such objects can be achieved more
reliably than tracking high DOF body parts, and they may be easier to use

Section 10.4. Vision Based Interfaces 491

than free-form gestures. Handheld artifacts can be used in much the same
way as one’s hands, for example to make pointing gestures, to perform rhyth-
mic commands, or to signal the spatial information content of sign languages.
Possible useful objects include passive wands [143], objects with active trans-
mitters such as LEDs9, and specially colored objects—in fact, anything that
is easily trackable with CV methods. An alternative approach to having
fixed-mounted cameras and tracking moving objects is to embed the camera
in the moving object and recognize stationary objects in the environment
or egomotion to enable user interaction. Since detecting arbitrary objects is
very hard, fiducials can make this reverse approach practical [72].

10.4.3 Computer Vision Methods for VBI

In order for a computer vision method to be suitable for VBI, its performance
must meet certain requirements with respect to speed, precision, accuracy,
and robustness. A system is said to experience real-time behavior if no delay
is apparent between an event (occurrence) and its effect. Precision concerns
the repeatability of observations for identical events. This is particularly
important for recognition tasks and biometrics: only if the VBI consistently
delivers the same result for a given view can this information be used to
identify people or scenes. Accuracy describes the deviation of an observation
from ground truth. Ground truth must be defined in a suitable format. This
format can, for example, be in the image domain, in feature space, or it can be
described by models such as a physical model of a human body. It is often
impossible to acquire ground truth data, especially if no straightforward
translation from observation to the ground truth domain is known. In that
case, gauging the accuracy of a VBI method may be quite difficult.

Robustness, on the other hand, is easier to determine by exposing the
VBI to different environmental conditions, including different lighting (flu-
orescent and incandescent lighting and sunlight), different users, cluttered
backgrounds, occlusions (by other objects or self-occlusion), and non-trivial
motion. Generally, the robustness of a vision technique is inversely propor-
tional to the amount of information that must be extracted from the scene.

With currently available hardware only a very specific set of fairly fast CV
techniques can be used for truly interactive VBI. One of the most important
steps is to identify constraints on the problem (regarding the environment or
the user) in order to make simplifying assumptions for the CV algorithms.

9Head trackers can utilize this technology to achieve high accuracy and short la-
tencies. One commercial product is the “Precision Position Tracker,” available at
http://www.worldviz.com.

492 Perceptual Interfaces Chapter 10

These constraints can be described by various means. Prior probabilities are
a simple way to take advantage of likely properties of the object in question,
both in image space and in feature space. When these properties vary signif-
icantly, but the variance is not random, principal component analysis, neural
networks and other learning methods frequently do a good job in extracting
these patterns from training data. Higher-level models can also be employed
to limit the search space in the image or feature domain to physically or
semantically possible areas.

Frequently, interface-quality performance can be achieved with multi-
modal or multi-cue approaches. For example, combining the results from a
stereo-based method with those from optical flow may overcome the restric-
tions of either method used in isolation. Depending on the desired tradeoff
between false positives and false negatives, early or late integration (see
Fig. 10.3) lends itself to this task. Application- and interface-oriented sys-
tems must also address issues such as calibration or adaptation to a particular
user, possibly at runtime, and re-initialization after loss of tracking. Systems
tend to become very complex and fragile if many hierarchical stages rely on
each other. Alternatively, flat approaches (those that extract high-level infor-
mation straight from the image domain) do not have to deal with scheduling
many components, feedback loops from higher levels to lower levels, and
performance estimation at each of the levels. Robustness in computer vision
systems can be improved by devising systems that do not make irrevoca-
ble decisions in the lower layers but instead model uncertainties explicitly.
This requires modeling of the relevant processes at all stages, from template
matching to physical object descriptions and dynamics.

All computer vision methods need to specify two things. First, they need
to specify the mathematical or algorithmic tool used to achieve the result.
This can be PCA, HMM, a neural network, etc. Second, the domain to which
this tool is applied must be made explicit. Sometimes this will be the raw
image space with gray scale or color pixel information, and sometimes this
will be a feature space that was extracted from the image by other tools in a
pre-processing stage. One example would be using wavelets to find particular
regions of a face. The feature vector, composed of the image-coordinate
locations of these regions, is embedded in the domain of all possible region
locations. This can serve as the input to an HMM-based facial expression
analysis.

Section 10.4. Vision Based Interfaces 493

Edge and Shape Based Methods

Shape properties of objects can be used in three different ways. Fixed shape
models such as an ellipse for head detection or rectangles for body limb
tracking minimize the summative energy function from probe points along
the shape. At each probe, the energy is lower for sharper edges (in the inten-
sity or color image). The shape parameters (size, ellipse foci, rectangular size
ratio) are adjusted with efficient, iterative algorithms until a local minimum
is reached. On the other end of the spectrum are edge methods that yield un-
constrained shapes. Snakes [67] operate by connecting local edges to global
paths. From these sets, paths are selected as candidates for recognition that
resemble a desired shape as much as possible. In between these extremes lie
the popular statistical shape models, e.g., the Active Shape Model (ASM)
[21]. Statistical shape models learn typical deformations from a set of train-
ing shapes. This information is used in the recognition phase to register
the shape to deformable objects. Geometric moments can be computed over
entire images or alternatively over select points such as a contour.

These methods require sufficient contrast between the foreground object
and the background, which may be unknown and cluttered. Gradients in
color space [119] can alleviate some of the problems. Even with perfect
segmentation, non-convex objects are not well suited for recognition with
shape-based methods since the contour of a concave object can translate
into a landscape with many, deep local minima in which gradient descent
methods get stuck. Only near-perfect initialization allows the iterations to
descend into the global minimum.

Color Based Methods

Compelling results have been achieved merely by using skin color properties,
e.g., to estimate gaze direction [116] or for interface-quality hand gesture
recognition [71]. This is because the appearance of skin color varies mostly in
intensity while the chrominance remains fairly consistent [114]. According to
Zarit et al. [159], color spaces that separate intensity from chrominance (such
as the HSV color space) are better suited to skin segmentation when simple
threshold-based segmentation approaches are used. However, some of these
results are based on a few images only, while more recent work examined
a huge number of images and found an excellent classification performance
with a histogram-based method in RGB color space as well [61]. It seems
that simple threshold methods or other linear filters achieve better results
in HSV space, while more complex methods, particularly learning-based,
nonlinear models do well in any color space. Jones et al. [61] also state

494 Perceptual Interfaces Chapter 10

that Gaussian mixture models are inferior to histogram-based approaches,
which makes sense given the multi-modality of random image scenes and the
fixed amount of Gaussians available to model this. The CAMShift algorithm
(Continuously Adaptive Mean Shift) [11, 19] is a fast method to dynamically
parameterize a thresholding segmentation which is able to deal with a certain
amount of lighting and background changes. Together with other image
features such as motion, patches or blobs of uniform color, this makes for a
fast and easy way to segment skin-colored objects from backgrounds.

Infrared Light: One “color” is particularly well suited to segment human
body parts from most backgrounds, and that is energy from the infrared (IR)
portion of the EM spectrum. All objects constantly emit heat as a function
of their temperature in form of infrared radiation, which are electromagnetic
waves in the spectrum from about 700nm (visible red light) to about 1mm
(microwaves). The human body emits the strongest signal at about 10µm,
which is called long wave IR or thermal infrared. Not many common back-
ground objects emit strongly at this frequency in modest climates, therefore
it is easy to segment body parts given a camera that operates in this spec-
trum. Unfortunately, this requires very sensitive sensors that often need
active cooling to reduce noise. While the technology is improving rapidly in
this field, the currently easier path is to actively illuminate the body part
with short wave IR. The body reflects it just like visible light, so the il-
luminated body part appears much brighter than background scenery to a
camera that filters out all other light. This is easily done for short wave IR
because most digital imaging sensors are sensitive this part of the spectrum.
In fact, consumer digital cameras require a filter that limits the sensitivity
to the visible spectrum to avoid unwanted effects. Several groups have used
IR in VBI-related projects (e.g., [113, 32, 133]).

Color information can be used on its own for body part localization,
or it can create attention areas to direct other methods, or it can serve
as a validation and “second opinion” about the results from other methods
(multi-cue approach). Statistical color as well as location information is thus
often used in the context of Bayesian probabilities.

Motion Flow and Flow Fields

Motion flow is usually computed by matching a region from one frame to
a region of the same size in the following frame. The motion vector for
the region center is defined as the best match in terms of some distance
measure (e.g., least-squares difference of the intensity values). Note that
this approach is parameterized by both the size of the region (“feature”) as

Section 10.4. Vision Based Interfaces 495

well as the size of the search neighborhood Other approaches use pyramids
for faster, hierarchical flow computation; this is especially more efficient for
large between-frame motions. The most widely used feature tracking method
is the “KLT” tracker. The tracker and the selection of good features to track
(usually corners or other areas with high image gradients) are described by
Shi and Tomasi [120]. KLT trackers have limitations due to the constancy
assumption (no change in appearance from frame to frame), match window
size (aperture problem), and search window size (speed of moving object,
computational effort).

A flow field describes the apparent movement of entire scene components
in the image plane over time. Within these fields, motion blobs are defined as
pixel areas of (mostly) uniform motion, i.e., motion with similar speed and
direction. Especially in VBI setups with static camera positions, motion
blobs can be very helpful for object detection and tracking. Regions in
the image that are likely locations for a moving body part direct other CV
methods and the VBI in general to these “attention areas.”

The computational effort for tracking image features between frames in-
creases dramatically with lower frame rates since the search window size has
to scale according to the tracked object’s estimated maximal velocity. Since
motion flow computation can be implemented as a local image operation that
does not require a complex algorithm or extrinsic state information (only the
previous image patch and a few parameters), it is suited for on-chip com-
putation. Comprehensive reviews of optical flow methods can be found in
Barron et al. [5] and Mitiche and Bouthemy [89].

Texture and Appearance Based Methods

Information in the image domain plays an important role in every object
recognition or tracking method. This information is extracted to form im-
age features: higher-level descriptions of what was observed. The degree
of abstraction of the features and the scale of what they describe (small,
local image artifacts or large, global impressions) have a big impact on the
method’s characteristics. Features built from local image information such
as steep gray-level gradients are more sensitive to noise; they need a good
spatial initialization and frequently a large collection of those features is re-
quired. Once these features are found, they need to be brought into context
with each other, often involving an iterative and computationally expensive
method with multiple, interdependent and thus more fragile, stages.

If instead the features are composed of many more pixels, cover a larger
region in the image, and abstract to more complex visuals, the methods are

496 Perceptual Interfaces Chapter 10

usually better able to deal with clutter and might flatten the hierarchy of
processing levels (since they already contain much more information than
smaller-scale features). The benefits do not come without a price, in this
case increased computational requirements.

Appearance based methods attempt to identify the patterns that an ob-
ject frequently produces in images. The simplest approach to comparing one
appearance to another is to use metrics such as least squared difference on
a pixel-by-pixel basis, i.e., the lowest-level feature vector. This is not very
efficient and is too slow for object localization or tracking. The key is to
encode as much information as possible in an as small as possible feature
vector—to maximize the entropy.

One of the most influential procedures uses a set of training images and
the Karhunen-Loève transform [65, 81]. This transformation is an orthogo-
nal basis rotation of the training space that maximizes sample variance along
the new basis vectors and is frequently known in the computer vision liter-
ature as principal component analysis (PCA) [59] and is directly related to
singular value decomposition (SVD). In the well-known Eigenfaces approach,
Turk and Pentland [134] applied this method to perform face detection and
recognition, extending the work by Kirby and Sirovich for image representa-
tion and compression [70]. Active Appearance Models (AAMs) [20] encode
shape and appearance information in one model, built in a two-step process
with PCA. Active Blobs [118] are similar to AAM. In these approaches, the
observed object appearance steers object tracking by guiding initialization
for subsequent frames, similar to the concept of the Kalman filter. During
training, a parameterization is learned that correlates observation-estimation
error with translational offsets.

A Gabor wavelet is a sine wave enveloped by a Gaussian, modeled after
the function of the human visual cortical cell [106, 60, 29, 25]. Wavelets are
well suited to encode both spatial and frequency information in a compact,
parameterized representation. This alleviates problems of FFT approaches
where all local spatial information is lost. Feris et al. [117] showed good
face tracking performance with a hierarchical wavelet network, a collection
of collections of wavelets. Each feature is represented by a set of wavelets,
enabling tracking in the manner of KLT trackers, but comparatively more
robust to lighting and deformation changes.

Another approach to learn and then test for common appearances of
objects is to use neural networks; however, in some cases their performance
(in terms of speed and accuracy) has been surpassed by other methods.
One extremely fast detection procedure proposed by Viola and Jones [139]
has attracted much attention. In this work, very simple features based on

Section 10.4. Vision Based Interfaces 497

intensity comparisons between rectangular image areas are combined by Ada-
boosting into a number of strong classifiers. These classifiers are arranged in
sequence and achieve excellent detection rates on face images with a low false
positive rate. The primary advantage of their method lies in the constant-
time computation of features that have true spatial extent, as opposed to
other techniques that require time proportional to the area of the extent.
This allows for very high speed detection of complex patterns at different
scales. However, the method is rotation-dependent.

A more complete review of appearance-based methods for detection and
recognition of patterns (faces) can be found in Yang et al.’s survey on face
detection [155].

Background Modeling

Background modeling is often used in VBI to account for (or subtract away)
the non-essential elements of a scene. There are essentially two techniques:
segmentation by thresholding and dynamic background modeling.

Thresholding requires that the foreground object has some unique prop-
erty that distinguishes it from all or most background pixels. For example,
this property can be foreground brightness, so that a pixels with values above
a particular gray scale intensity threshold are classified as foreground, and
values below as belonging to the background. Color restrictions on the back-
ground are also an effective means for simple object segmentation. There, it
is assumed that the foreground object’s color does not appear very frequently
or in large blobs in the background scene. Of course, artificial coloring of
the foreground object avoids problems induced by wildly varying or unknown
object colors—e.g., using a colored glove for hand detection and tracking.

Dynamic Background Modeling requires a static camera position. The
values of each pixel are modeled over time with the expectation to find a
pattern of values that this pixel assumes. The values may be described by
a single contiguous range, or it may be multi-modal (two or more contigu-
ous ranges). If the value suddenly escapes these boundaries that the model
describes as typical, the pixel is considered part of a foreground object that
temporarily occludes the background. Foreground objects that are station-
ary for a long time will usually be integrated into the background model
over time and segmentation will be lost. The mathematics to describe the
background often use statistical models with one or more Gaussians [48].

498 Perceptual Interfaces Chapter 10

Temporal Filtering and Modeling

Temporal filtering typically involves methods that go beyond motion flow to
track on the object or feature level, rather than at the pixel or pattern level.
For example, hand and arm gesture recognition (see subsection Hand and
Arm Gestures in 4D on page 485) requires temporal filtering.

Once the visual information has been extracted and a feature vector has
been built, general physics-based motion models are often used. For example,
Kalman filtering in combination with a skeletal model can deal with resolving
simple occlusion ambiguities [146]. Other readily available mathematical
tools can be applied to the extracted feature vectors, independently of the
preceding CV computation. Kalman filtering takes advantage of smooth
movements of the object of interest. At every frame, the filter predicts the
object’s location based on the previous motion history. The image matching
is initialized with this prediction, and once the object is found, the Kalman
parameters are adjusted according to the prediction error.

One of the limitations of Kalman filtering is the underlying assumption
of a Gaussian probability. If this is not the case, and the probability func-
tion is essentially multi-modal as it is the case for scenes with cluttered
backgrounds, Kalman filtering cannot cope with the non-Gaussian obser-
vations. The particle filtering or factored sampling method, often called
Condensation (conditional density propagation) tracking, has no implicit as-
sumption of a particular probability function but rather represents it with
a set of sample points of the function. Thus, irregular functions with mul-
tiple “peaks”—corresponding to multiple hypotheses for object states—can
be handled without violating the method’s assumptions. Factored sampling
methods [55] have been applied with great success to tracking of fast-moving,
fixed-shape objects in very complex scenes [76, 28, 14]. Various models, one
for each typical motion pattern, can improve tracking, as shown by Isard
and Blake [56]. Partitioned sampling reduces the computational complexity
of particle filters [82]. The modeled domain is usually a feature vector, com-
bined from shape-describing elements (such as the coefficients of B-splines)
and temporal elements (such as the object velocities).

Dynamic gesture recognition, i.e., recognition and semantic interpreta-
tion of continuous gestures and body motions, is an essential part of percep-
tual interfaces. Temporal filters exploit motion information only to improve
tracking, while the following methods aim at detecting meaningful actions
such as waving a hand for goodbye.

Discrete approaches can perform well at detecting spatio-temporal pat-
terns [51]. Most methods in use, however, are borrowed from the more

Section 10.4. Vision Based Interfaces 499

evolved field of speech recognition due to the similarity of the domains: multi-
dimensional, temporal, and noisy data. Hidden Markov Models (HMMs)
[15, 158] are frequently employed to dissect and recognize gestures due to
their suitability to processing temporal data. However, the learning meth-
ods of traditional HMMs cannot model some structural properties of moving
limbs very well.10 Brand [13] uses another learning procedure to train HMMs
that overcomes these problems. This allows for estimation of 3D model con-
figurations from a series of 2D silhouettes and achieves excellent results. The
advantage of this approach is that no knowledge has to be hard-coded but
instead everything is learned from training data. This has its drawbacks
when it comes to recognizing previously unseen motion.

Higher-level Models

To model a human body or its parts very precisely such as is required for
computer graphics applications, at least two models are necessary. One com-
ponent describes the kinematic structure of the skeleton, the bone connec-
tions and the joint characteristics. Even complex objects such as the entire
human body or the hand can thus—with reasonable accuracy—be thought
of as a kinematic chain of rigid objects. The second component describes
the properties of the flesh around the bones, either as a surface model or as
a volumetric model. Very complex models that even describe the behavior
of skin are commonplace in the animation industry. Additional models are
frequently used to achieve even greater rendering accuracy, such as models
of cloth or hair.

Computer vision can benefit from these models to a certain degree. A
structural, anatomical 3D model of the human body has advantages over a
2D model because it has explicit knowledge of the limbs and the fact that
they can occlude each other from a particular view [110]. Given a kinematic
model of the human body (e.g., [77]), the task to estimate the limb locations
becomes easier compared to the case when the knowledge of interdependency
constraints is lacking. Since the locations and orientations of the individual
rigid objects (limbs, phalanges) are constrained by their neighboring chain
links, the effort to find them in the image decreases dramatically.

It is important for VBI applications to exploit known characteristics of
the object of interest as much as possible. A kinematic model does exactly
that, as do statistical models that capture the variation in appearance from

10Brand [13] states that the traditional learning methods are not well suited to model
state transitions since they do not improve much on the initial guess about connectivity.
Estimating the structure of a manifold with these methods thus is extremely suboptimal
in its results.

500 Perceptual Interfaces Chapter 10

a given view point or the variation of shape (2D) or form (3D). Often the
model itself is ad hoc, that is, it is manually crafted by a human based on
prior knowledge of the object. The model’s parameter range is frequently
learned from training data.

Higher-level models describe properties of the tracked objects that are
not immediately visible in the image domain. Therefore a translation be-
tween image features and model parameters needs to occur. A frequently
used technique is analysis by synthesis in which the model parameters are
estimated by an iterative process. An initial configuration of the model is
back-projected into the image domain. The difference between projection
and observation then drives adjustment of the parameters, following another
back-projection into the image domain and so forth until the error is suf-
ficiently small (e.g., see Kameda et al. [64] and Ström et al. [130]). These
methods lack the capability to deal with singularities that arise from am-
biguous views [92]. When using more complex models that allow methods
from projective geometry to be used to generate the synthesis, self-occlusion
is modeled again and thus it can be dealt with. Stenger et al. [128]. use
a recently proposed modification of the Kalman filter, the so-called an “un-
scented Kalman filter” [62] to align the model with the observations. Despite
speed and accuracy advantages over more traditional approaches, the main
drawbacks of all Kalman-based filters however is that they assume a uni-
modal distribution. This assumption is most likely violated by complex,
articulated objects such as the human body or the hand.

Particle filtering methods for model adjustment are probably better suited
for more general applications because they allow for any kind of underlying
distribution, even multi-modal distributions. Currently, their runtime re-
quirements are not immediately suitable for real-time operation yet, but
more efficient modifications of the original algorithm are available.

Real-time Systems, Frame Rate, Latency, Processing Pipelines

Most user interfaces require real-time responses from the computer: for feed-
back to the user, to execute commands immediately or both. But what
exactly does real-time mean for a computer vision application?

There is no universal definition for real-time in computer terms. However,
a system that responds to user input is said to operate in real-time if the
user of the system perceives no delay between action command and action.
Hence, real-time pertains to a system’s ability to respond to an event without
noticeable delay. The opposite would be a delayed response, a response after
a noticeable processing time. Mouse input, for example, is usually processed

Section 10.4. Vision Based Interfaces 501

in real-time; that is, a mouse motion is immediately visible as a mouse
pointer movement on the screen. Research has shown that delays as low as
50ms are noticeable for visual output [142, 83]. However, people are able to
notice audible delays of just a few milliseconds since this ability is essential
to sound source localization.

The terms frame rate and latency are well-suited to describe a CV sys-
tem’s performance. The (minimum, maximum, average) frame rate deter-
mines how many events can be processed per time unit. About five frames
per second is the minimum for a typical interactive system. The system
latency, on the other hand, describes the time between the event occurrence
and the availability of the processed information. As mentioned above, about
50ms is tolerable for a system’s performance to be perceived as real-time.

20ms 40ms 50ms 20ms

histogram
normalization

segmentation
face

recognition
applications

Figure 10.10. A four-stage pipeline processing of a video stream.

To illustrate the difference between frame rate and latency, imagine a
pipeline of four processors as shown in Fig. 10.10. The first one grabs a frame
from the camera and performs histogram normalization. The normalized
image frame is input to the second processor which segments the image
into regions based on motion flow and color information, and then outputs
the frame to the third processor. This processor applies an AAM for face
recognition. The recognized face is input to the last processor which performs
a saliency test and the uses the information to drive various applications.
Altogether this process takes 20ms + 40ms + 50ms + 20ms = 130ms per
frame. This is the latency: input is available after 130ms as output. The
frame rate is determined by the pipeline’s bottleneck, the third processor. A
processed frame is available at the system output every 50ms, that is, the
frame rate is maximal 20fps.

If the input occurs at a rate higher than 20fps, there are two options for
pipelined systems:

A) Every frame is processed. A 10 second input sequence with 30fps
for example has 300 frames. Thus it requires 300f/20fps = 15s to process
them all. The first frame as available 130ms after its arrival, thus the last

502 Perceptual Interfaces Chapter 10

frame is available as output 5s130ms after its input. It also means that
there must be sufficient buffer space to hold the images, in our example for
5s∗30fps = 150 frames. It is obvious that a longer input sequence increases
the latency of the last frame and the buffer requirements. This model is
therefore not suitable to real-time processing.

B) Frames are dropped somewhere in the system. In our pipeline exam-
ple, a 30fps input stream is converted into at most a 20fps output stream.
Valid frames (those that are not dropped) are processed and available in at
most a constant time. This model is suitable to real-time processing.

P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4

ms

ms

ms

ms

ms

ms

ms

ms

ms

ms

ms

ms

ms

ms

ms

ms

ms

ms

ms

ms

ms

ms

ms

ms

ms

ms

ms

ms

ms

60

40

0

20

140

120

100

80

220

200

180

160

300

280

260

240

340

320 ms

ms

130ms

10

130ms

146.7ms

130ms

146.3ms

2

4

4

4

7

130ms

130ms

130ms

130ms

5

11

7

9

7

5
9

7

7

10

8

8

11

1

5

6

7

5

5

7
8

1

3

4

2

2

1

1
2

3

5

6

7

8

9

10

340

260

280

300

320

140

160

180

200

1

1

220

240

3

3

5

5

100

4

1

120

3

40

60

80

ms

ms

ms

ms

1

0

20

2

ms

5

1

2

3

4

5

7

8

7

8

6

1

2

3

4

9

9

10

11

3

2

146.7ms

1

1

130ms
2

4

7

8

7

130ms

4

3

163.3ms

180ms

Figure 10.11. An example of pipelined processing of frames, with and without
buffering inside the pipeline. Buffering is indicated with arrows. The example on
the right uses feedback from stage 3 to avoid unnecessary processing and increased
latency.

Section 10.4. Vision Based Interfaces 503

Dropping frames, however, brings about other problems. There are two
cases: First, there is no buffer available anywhere in the system, not even
for partial frames. This is shown on the left hand side in Fig. 10.11. In
our example, the first processor has no problems keeping up with the input
pace, but the second processor will still be working on the first frame when it
receives the second frame 33.3ms after arrival of the first. The second frame
needs to be dropped. Then the second processor would idle for 2 ∗ 33.3ms−
40ms = 26.7ms. Similar examples can be constructed for the subsequent
pipeline stages.

Second, frames can be buffered at each pipeline stage output or input.
This is shown in the center drawing of Fig. 10.11. It assumes no extra
communication between the pipeline stages. Each subsequent stage requests
a frame as soon as it completed processing one frame, and the preceding
stage keeps the latest processed frame around in a buffer until it can replace
it with the next processed frame. In the example, the second frame would be
buffered for 6.7ms at the transition to the second processor, the third frame
for 2∗40ms−2∗33.3ms = 13.3ms, the fourth for 3∗40ms−3∗33.3ms = 20ms,
etc. The highest latency after the 2nd stage would be for every fifth frame,
which is buffered for a total of 5 ∗ 40ms − 5 ∗ 33.3ms = 33.3ms before
processing. Then in fact the next processed frame (frame number 7) is
finished being processed already and is sent to stage 3 instead of the buffered
frame, which is dropped. These latencies can accumulate throughout the
pipeline. The frame rate is maximal (20fps) in this example, but some of
the frames’ latencies have increased dramatically.

The most efficient method in terms of system latency and buffer usage
facilitates pipeline feedback from the later stages to the system input, as
shown on the right in Fig. 10.11. The feedback is used to adjust every
stages’ behavior in order to maximize utilization of the most time critical
stage in the pipeline. Alternatively to the scenario shown, it is also possible
to buffer frames only buffered before the first stage, and feed them into the
system with a speed that the pipeline’s bottleneck stage can keep up with.
This is not shown, but it completely avoids the need for in-pipeline buffering.
Note that even in this efficient scenario with pipeline feedback the increased
frame rates in comparison to the leftmost case are bought with an increase
in average latency.

Examples of architectures that implement component communication
and performance optimizing scheduling are the “Quality-Control Manage-
ment” in the DirectShow subsystem of Microsoft’s DirectX technology and
the “Modular Flow Scheduling Middleware” [40].

504 Perceptual Interfaces Chapter 10

10.4.4 VBI Summary

Vision-Based Interfaces have numerous applications; the potential of VBI
has only begun to be explored. But computational power is getting to a
stage where it can handle the vast amounts of data of live video streams.
Progress has been made in many relevant areas of computer vision; many
methods have been demonstrated that begin to provide human-computer in-
terface quality translation of body actions into computer commands. While
a large amount of work is still required to improve the robustness of these
methods, especially in modeling and tracking highly articulated objects, the
community has begun to take steps towards standardizing interfaces of popu-
lar methods and providing toolkits for increasingly higher level tasks. These
are important steps in bringing the benefits of VBI to a wider audience.

The number of consumer-grade commercial applications of computer vi-
sion has significantly increased in recent years, and this trend will continue
driven by ongoing hardware progress. To advance the state of the art of
VBI—at the intersection of the disciplines of CV and HCI—it is vital to es-
tablish evaluation criteria, such as benchmarks for the quality and speed of
the underlying methods and the resulting interfaces. Evaluation databases
must be made accessible for all components of VBI (such as those already
available for faces), both for static images and increasingly dynamic data for
real-time video processing.

10.5 Brain-Computer Interfaces

Perhaps the ultimate interface to computers would be a direct link to the
thoughts and intentions of the user, a “Your wish is my command” model
of interaction, involving no physical action or interpretation of any kind.
While this kind of mind-reading technology is not likely to be developed in
the foreseeable future, the nascent research area of Brain-Computer Inter-
faces (BCI) is perhaps a step in this direction. BCI technology attempts to
perceive commands or control parameters by sensing relevant brain activity
of the user. While not fitting completely within the perceptual interface
model of natural human-human interaction, BCI may eventually be an inte-
gral component of perceptual interfaces. The computer vision community’s
extensive experience with learning, statistical, and other pattern recognition
methods and techniques can be of tremendous value to this new field.

A Brain-Computer Interface does not depend on the brain’s normal out-
put channels of peripheral nerves and muscles, but instead measures elec-
trical activity either at the scalp or in the cortex. By measuring the elec-

Section 10.5. Brain-Computer Interfaces 505

troencephalographic (EEG) activity at the scalp, certain features of the EEG
signal can be used to produce a control signal. Alternatively, implanted elec-
trodes can be used to measure the activity of individual cortical neurons or
an array of neurons. These technologies have primarily been targeted to
be used by people with neuromuscular impairments that prevent them from
communicating via conventional methods. In recent years, researchers have
begun to consider more general uses of the technologies. A review by Wolpaw
et al. [144] notes that while the rising interest in BCI technologies in recent
years has produced exciting developments with considerable promise, they
are currently low-bandwidth devices with a maximum information transfer
rate of 10 to 25 bits per minute, and this rate is likely to improve only
gradually.

Wolpaw et al. argue that, in order to make progress in brain-computer
interfaces, researchers must understand that BCI is not simply mind reading
or “wire-tapping” the brain, determining a person’s thoughts and intentions
by listening in on brain activity. Rather, BCI should be considered as a new
output channel for the brain, one that is likely to require training and skill
to master.

“Brain-Machine Interface” [97] is the traditional term as it grew out of
initial uses of the technology: to interface to prosthetic devices. Sensors were
implanted primarily in motoric nerves in the extremities and a one-to-one
function was typically used to map the sensor outputs to actuator control
signals. “Brain-Computer Interface” more accurately captures the neces-
sity for computational power between the neuro-sensors and the controlled
devices or application-specific software. As the sensors increasingly move
into the brain (intracortical electrodes) and target not only motoric nerves
but generic neurons, the mapping from neuron activity to (desired, normal,
or pathologic) output becomes less direct. Complex mathematical models
translate the activity of many neurons into a few commands—computational
neuroscience focuses on such models and their parameterizations. Mathe-
matical models that have proven to be well suited to the task of replicating
human capabilities, in particular the visual sense, seem to perform well for
BCIs as well—for example, particle and Kalman filters [149]. Two feature
extraction and classification methods frequently used for BCIs are reviewed
in Ebrahimi et al. [35].

Figure 10.12 schematically explains the principles of a BCI for prosthetic
control. The independent variables, signals from one or many neural sensors,
are processed with a mathematical method and translated into the depen-
dent variables, spatial data that drives the actuators of a prosthetic device.
Wolpaw et al. [144] stress that BCI should eventually comprise three levels

506 Perceptual Interfaces Chapter 10

Figure 10.12. The control path of a closed-loop BCI. Figure reprinted with
permission from Nicolelis et al. [97].

of adaptation. In the first level, the computational methods (depicted in
the right upper corner of Fig. 10.12) are trained to learn the correlation be-
tween the observed neural signals and the user’s intention for arm movement.
Once trained, the BCI then must translate new observations into actions. We
quote from [144]: “However, EEG and other electro-physiological signals typ-
ically display short- and long-term variations linked to time of day, hormonal
levels, immediate environment, recent events, fatigue, illness, and other fac-
tors. Thus, effective BCIs need a second level of adaptation: periodic online
adjustments to reduce the impact of such spontaneous variations.”

Since the human brain is a very effective and highly adaptive controller,
adaptation on the third level means to benefit from the combined resources of
the two adaptive entities brain and BCI. As the brain adapts to the demands
and characteristics of the BCI by modifying its neural activity, the BCI
should detect and exploit these artifacts and communicate back to the brain
that it appreciates the effort, for example through more responsive, more
precise, or more expressive command execution. This level of adaptation is

Section 10.6. Summary 507

difficult to achieve, but promises to yield vastly improved performance.
The number of monitored neurons necessary to accurately predict a task

such as 3D arm movement is open to debate. Early reports employed open-
loop (no visual feedback to the study subject) experiments with offline model
building and parameterization. Those studies suggest by extrapolation that
between 400 and 1350 neurons are necessary, depending on the brain area in
which the sensors are implanted [141]. A more recent study by Taylor et al.
provided real-time visual feedback and repeatedly updated the mathemati-
cal model underlying the translation function from neurons to the controlled
object [132, 97]. They used only 18 neurons to achieve sufficient performance
for a 2D cursor task, with the closed-loop method being significantly supe-
rior to the open-loop method. Currently, up to about 100 neurons can be
recorded simultaneously. All currently used electro-physiological artifacts
can be detected with a temporal resolution of 10ms to 100ms, but some
develop only over the course of many seconds.

In addition to the “input” aspect of BCIs, there are several examples
of the reverse technology: computers connecting into the sensorimotor sys-
tem providing motor output to the human (see [22]). Well-known examples
include heart pace makers and cochlear implants, which directly stimulate
auditory nerves, obviating the need for a mechanical hearing mechanism.
Another device is able to prevent tremors caused by Parkinson’s disease or
“Essential Tremor” by blocking erroneous nervous signals from reaching the
thalamus where they would trigger involuntary muscle contractions [88].

10.6 Summary

The topic of perceptual interfaces is very broad, covering many technolo-
gies and their applications in advanced human-computer interaction. In
this chapter we have attempted to give an overview of perceptual interfaces
and go a bit deeper into how the field of computer vision can contribute to
the larger goal of natural, adaptive, multimodal, interactive interfaces. Vi-
sion based interaction (VBI) is useful in itself, providing information about
human identity, location, movement, and expression through non-invasive
and non-intrusive methods. VBI has many near-term application areas, in-
cluding computer games, accessibility, intelligent environments, biometrics,
movement analysis, and social robots.

If the technical goal of building perceptual interfaces can be achieved to
any reasonable degree, the ways in which people interact with computers—
and with technology in general—will be transformed significantly. In addi-
tion to computer vision, this will require advances in many areas, includ-

508 Perceptual Interfaces Chapter 10

ing speech and sound recognition and synthesis, natural language process-
ing, user modeling, haptic and tangible interfaces, and dialogue modeling.
More difficult yet, it will require collaboration and integration among these
various research areas. In recent years, several workshops and conferences
have begun to focus on these issues, including the Workshop on Percep-
tual/Perceptive User Interfaces (PUI), the International Conference on Mul-
timodal Interfaces (ICMI), and International Conference on Intelligent User
Interfaces (IUI). In addition, large major conference that atract a wide vari-
ety of participants—such as CHI and SIGGRAPH—now frequently showcase
perceptual interface research or demonstrations.

As the separate technical communities continue to interact and work
together on these common goals, there will be a great need for multimodal
data sets for training and testing perceptual interfaces, with task data, video,
sound, etc., and associated ground truth. Building such a database is not
an easy task. The communities will also need standard benchmark suites for
objective performance evaluation, similar to those that exist for individual
modalities of speech, fingerprint, and face recognition. Students need to
be trained to be conversant with multiple disciplines, and courses must be
developed to cover various aspects of perceptual interfaces.

The fact that perceptual interfaces have great promise but will require
herculean efforts to reach technical maturity leads to the question of short-
and medium-term viability. One possible way to move incrementally toward
the long-term goal is to to “piggyback” on the current paradigm of graph-
ical user interfaces. Such a “strawman perceptual interface” could start by
adding just a few new events in the standard event stream that is part of
typical GUI-based architectures. The event stream receives and dispatches
events of various kinds: mouse movement, mouse button click and release,
keyboard key press and release, window resize, etc. A new type of event—a
“perceptual event”—could be added to this infrastructure that would, for
example, be generated when a person enters the visual scene in front of the
computer; or when a person begins to speak; or when the machine (or object
of interest) is touched; or when some other simple perceptual event takes
place. The benefit of adding to the existing GUI event-based architecture
is that thousands upon thousands of developers already know how to deal
with this architecture and how to write event handlers that implement vari-
ous functionality. Adding even a small number of perceptual events to this
structure would allow developers to come up with creative novel uses for
them, and help lead to their acceptance in the marketplace.

This proposed development framework leads raises several questions.
Which percepual events would be most useful and feasible to implement?

Bibliography 509

Is the event-based model the best way to bootstrap perceptual interfaces?
Can we create perceptual events that are reliable enough to be useful? How
should developers think about non-deterministic events (as opposed to cur-
rent events, which are for all practical purposes deterministic)? For example,
will visual events work when the lights are turned off, or if the camera lens
is obstructed?

There are numerous issues, both conceptual and practical, surrounding
the idea of perceptual interfaces. Privacy is one of the utmost importance.
What are the implications of having microphones, cameras, and other sensors
in computing environments? Where does the data go? What behavioral
parameters are stored or sent elsewhere? To have any chance of success,
these issues must be dealt with directly, and it must be made clear to users
exactly where the data goes (and does not go). Acceptance of perceptual
interfaces depends on instilling confidence that one’s privacy is not violated
in any way.

Some argue against the idea of interface technologies that attempt to
be intelligent or anthropomorphic, claiming that HCI should be character-
ized by direct manipulation, providing the user with predictable interac-
tions that are accompanied by a sense of responsiblity and accomplishment
[121, 122, 123, 126, 125]. While these arguments seem quite appropriate
for some uses of computers—particularly when a computer is used as a tool
for calculations, word processing, and the like—it appears that future com-
puting environments and uses will be well suited for adaptive, intelligent,
agent-based perceptual interfaces.

Another objection to perceptual interfaces is that they just won’t work,
that the problems are too difficult to be solved well enough to be useful. This
is a serious objection—the problems are, indeed, very difficult. It would not
be so interesting otherwise. In general, we subscribe to the “If you build
it, they will come” school of thought. Building it is a huge and exciting
endeavor, a grand challenge for a generation of researchers in multiple disci-
plines.

Bibliography

[1] E. Andr and T. Rist. Presenting through performing: on the use of multiple
lifelike characters in knowledge-based presentation systems. In Proceedings of
the 5th international conference on Intelligent user interfaces, pages 1–8. ACM
Press, 2000.

[2] R. Azuma, J. W. Lee, B. Jiang, J. Park, S. You, and U. Neumann. Tracking in
Unprepared Environments for Augmented Reality Systems. ACM Computers
& Graphics, 23(6):787–793, December 1999.

510 Perceptual Interfaces Chapter 10

[3] G. Ball and J. Breese. Emotion and Personality in a Conversational Character.
In Workshop on Embodied Conversational Characters, pages 83–84, October
1998.

[4] G. Ball, D. Ling, D. Kurlander, J. Miller, D. Pugh, T. Skelly, A. Stankosky,
D. Thiel, M. van Dantzich, and T. Wax. Lifelike computer characters: the per-
sona project at Microsoft. In J. Bradshaw, editor, Software Agents. AAAI/MIT
Press, 1997.

[5] J. L. Barron, D. J. Fleet, and S. S. Beauchemin. Performance of Optical Flow
Techniques. Int. Journal of Computer Vision, 12(1):43–77, 1994.

[6] J. N. Bassili. Emotion recognition: The role of facial movement and the relative
importance of upper and lower areas of the face. Journal of Personality and
Social Psychology, 37:2049–2059, 1979.

[7] J. Biggs and M. A. Srinivasan. Haptic interfaces. In K. Stanney, editor, Hand-
book of Virtual Environments. Lawrence Earlbaum, Inc., 2002.

[8] S. Birchfield. Elliptical head tracking using intensity gradients and color his-
tograms. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 232–237, June 1998.

[9] M. J. Black and Y. Yacoob. Recognizing Facial Expressions in Image Sequences,
Using Local Parameterized Models of Image Motion. Int. Journal of Computer
Vision, 25(1):23–48, 1997.

[10] R. A. Bolt. Put-That-There: Voice and Gesture in the Graphics Interface.
Computer Graphics, ACM SIGGRAPH, 14(3):262–270, 1980.

[11] G.R. Bradski. Real-time face and object tracking as a component of a percep-
tual user interface. In IEEE Workshop on Applications of Computer Vision,
pages 142–149, 1998.

[12] A. Braffort, C. Collet, and D. Teil. Anthropomorphic model for hand ges-
ture interface. In Proceedings of the CHI ’94 conference companion on Human
factors in computing systems, April 1994.

[13] M. Brand. Shadow Puppetry. In ICCV, 1999.
[14] L. Bretzner, I. Laptev, and T. Lindeberg. Hand gesture recognition using multi-

scale colour features, hierarchical models and particle filtering, 2002.
[15] H. Bunke and T. Caelli, editors. Hidden Markov Models in Vision, volume

15(1) of International Journal of Pattern Recognition and Artificial Intelligence.
World Scientific Publishing Company, 2001.

[16] J. Cassell. Embodied conversational interface agents. Communications of the
ACM, 43(4):70–78, 2000.

[17] T. Choudhury, B. Clarkson, T. Jebara, and A. Pentland. Multimodal Person
Recognition using Unconstrained Audio and Video. In Proceedings of the Second
Conference on Audio- and Video-based Biometric Person Authentication, 1999.

[18] P. R. Cohen, M. Johnston, D. McGee, S. Oviatt, J. Pittman, I. Smith, L. Chen,
and J. Clow. Quickset: Multimodal interaction for distributed applications. In
Proceedings of the Fifth International Multimedia Conference (Multimedia ’97),
pages 31–40. ACM Press, 1997.

[19] D. Comaniciu, V. Ramesh, and P. Meer. Real-Time Tracking of Non-Rigid
Objects Using Mean Shift. In IEEE CVPR, volume 2, pages 142–149, 2000.

Bibliography 511

[20] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active Appearance Models. In
Proc. European Conference on Computer Vision, pages 484–498, 1998.

[21] T.F. Cootes and C.J. Taylor. Active Shape Models: Smart Snakes. In Proceed-
ings of the British Machine Vision Conference, pages 9–18. Springer-Verlag,
1992.

[22] W. Craelius. Bionic Man: Restoring Mobility. Science, 295(5557):1018–1021,
February 2002.

[23] R. Cutler and M. Turk. View-based Interpretation of Real-time Optical Flow
for Gesture Recognition. In Proceedings of the Third IEEE Conference on Face
and Gesture Recognition, Nara, Japan, pages 416–421, April 1998.

[24] T. Darrell, G. Gordon, M. Harville, and J. Woodfill. Integrated Person Tracking
Using Stereo, Color, and Pattern Detection. In Proc. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 601–609, June 1998.

[25] J. G. Daugman. Complete Discrete 2D Gabor Transform by Neural Networks
for Image Analysis and Compression. IEEE Trans. Acoustics, Speech, and
Signal Processing, 36:1169–1179, 1988.

[26] J. Davis and M. Shah. Visual Gesture Recognition. In Vision, Image, and
Signal Processing, volume 141, pages 101–106, April 1994.

[27] D. DeCarlo and D.N. Metaxas. Optical Flow Constraints on Deformable Models
with Applications to Face Tracking. Int. Journal of Computer Vision, 38(2):99–
127, 2000.

[28] J. Deutscher, A. Blake, and I. Reid. Articulated Body Motion Capture by An-
nealed Particle Filtering. In Proc. IEEE Conf on CV and Pattern Recognition,
volume 2, pages 126–133, 2000.

[29] R. DeValois and K. DeValois. Spatial Vision. Oxford Press, 1988.
[30] A. Dix, J. Finlay, G. Abowd, and R. Beale. Human-Computer Interaction,

Second Edition. Prentice Hall Europe, 1998.
[31] G.a Donato, M.S. Bartlett, J.C. Hager, P. Ekman, and T.J. Sejnowski. Clas-

sifying Facial Actions. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 21(10):974–989, October 1999.

[32] K. Dorfmüller-Ulhaas and D. Schmalstieg. Finger Tracking for Interaction in
Augmented Environments. In IFAR, 2001.

[33] F. Dornaika and J. Ahlberg. Face Model Adaptation using Robust Matching
and the Active Appearance Algorithm. In IEEE Workshop on Applications of
Computer Vision (WACV), pages 3–7, December 2002.

[34] A. Doucet, N. de Freitas, and N. J. Gordon, editors. Sequential Monte Carlo
Methods in Practice. Springer-Verlag, 2001.

[35] T. Ebrahimi, J.-M. Vesin, and G. Garcia. Brain-Computer Interface in Multi-
media Communication. IEEE Signal Processing Magazine, January 2003.

[36] D. Efron. Gesture, Race and Culture. King’s Crown Press, New York, 1941.
[37] P. Ekman and W.V. Friesen. The facial action coding system: A technique for

the measurement of facial movement. Consulting Psychologists Press, 1978.
[38] R. Feris, V. Krueger, and R. Cesar Jr. Efficient Real-Time Face Tracking

in Wavelet Subspace. In ICCV’01 Workshop on Recognition, Analysis and
Tracking of Faces and Gestures in Real-Time Systems, Vancouver, BC, Canada,
2001.

512 Perceptual Interfaces Chapter 10

[39] P. M. Fitts. The information capacity of the human motor system in controlling
the amplitude of movement. Journal of Experimental Psychology, 47:381–391,
1954.

[40] A.R.J. Franois and G.G. Medioni. A Modular Software Architecture for Real-
Time Video Processing. In Proceedings of the International Workshop on Com-
puter Vision Systems, July 2001.

[41] W. T. Freeman and M. Roth. Orientation histograms for hand gesture recog-
nition. In Proceedings of the International Workshop on Automatic Face and
Gesture Recognition, pages 296–301. IEEE Computer Society, June 1995.

[42] M. Fukumoto, Y. Suenaga, and K. Mase. Finger-Pointer: Pointing Interface by
Image Processing. Computers & Graphics, 18(5):633–642, 1994.

[43] D.M. Gavrila. The Visual Analysis of Human Movement: A Survey. Computer
Vision and Image Understanding, 73(1):82–98, 1999.

[44] J. Gemmell, L. Zitnick, T. Kang, and K. Toyama. Software-enabled Gaze-aware
Videoconferencing. IEEE Multimedia, 7(4):26–35, Oct-Dec 2000.

[45] S. B. Gokturk, J.-Y. Bouguet, and R. Grzeszczuk. A Data-Driven Model for
Monocular Face Tracking. In Proc. Intl. Conference on Computer Vision, pages
701–708, 2001.

[46] S. Gong, S. McKenna, and A. Psarrou. Dynamic Vision: From Images to Face
Recognition. Imperial College Press, World Scientific Publishing, May 2000.

[47] W.E.L. Grimson, C. Stauffer, R. Romano, and L. Lee. Using adaptive tracking
to classify and monitor activities in a site. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 22–29, June 1998.

[48] I. Haritaoglu, D. Harwood, and L.S. Davis. W4̂: Real-Time Surveillance of Peo-
ple and their Activities. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(8), August 2000.

[49] E. Hjelm̊as and B.K. Low. Face Detection: A Survey. Computer Vision and
Image Understanding, 83(3):236–274, September 2001.

[50] T. Höllerer. User Interfaces for Mobile Augmented Reality Systems. PhD thesis,
Columbia University, Department of Computer Science, 2003.

[51] P. Hong, M. Turk, and T.S. Huang. Gesture Modeling and Recognition Using
Finite State Machines. In Proceedings of the Fourth International Conference
on Automatic Face and Gesture Recognition, Grenoble, France, pages 410–415.
IEEE Computer Society, March 2000.

[52] E. Horvitz, J. Breese, D. Heckerman, D. Hovel, and K. Rommelse. The Lumiere
Project: Bayesian User Modeling for Inferring the Goals and Needs of Software
Users. In Proceedings of the Fourteenth Conference on Uncertainty in Artificial
Intelligence, July 1998.

[53] E. Horvitz and T. Paek. Harnessing Models of Users’ Goals to Mediate Clar-
ification Dialog in Spoken Language Systems. In Proceedings of the Eighth
International Conference on User Modeling, July 2001.

[54] C. Hu and M. Turk. Computer Vision Based Face Tracking. Technical report,
UCSB Computer Science, 2003.

[55] M. Isard and A. Blake. Condensation – Conditional Density Propagation for
Visual Tracking. International Journal on Computer Vision, 1998.

Bibliography 513

[56] M. Isard and A. Blake. A mixed-state CONDENSATION tracker with auto-
matic model-switching. In ICCV, pages 107–112, 1998.

[57] H. Ishii and B. Ullmer. Tangible bits: Towards seamless interfaces between
people, bits, and atoms. In Proceedings of CHI’97, pages 234–241, 1997.

[58] T. Jebara, B. Schiele, N. Oliver, and A. Pentland. DyPERS: Dynamic Personal
Enhanced Reality System. In Image Understanding Workshop, November 1998.

[59] I. T. Jolliffe. Principal Component Analysis. Springer-Verlag, 1986.
[60] J. Jones and L. Palmer. An Evaluation of the Two Dimensional Gabor Filter

Methods of Simple Receptive Fields in Cat Striate Cortex. J. Neurophysiology,
58:1233–1258, 1987.

[61] M. J. Jones and J. M. Rehg. Statistical Color Models with Application to Skin
Detection. Int. Journal of Computer Vision, 46(1):81–96, Jan 2002.

[62] S. J. Julier, J. K. Uhlmann, and H. F. Durrant-Whyte. A new approach for
filtering nonlinear systems. In Proc. American Control Conference, pages 1628–
1632, June 1995.

[63] R. E. Kalman. A New Approach to Linear Filtering and Prediction Problems.
Transactions of the ASME Journal of Basic Engineering, pages 34–45, 1960.

[64] Y. Kameda, M. Minoh, and K. Ikeda. Three dimensional pose estimation of an
articulated object from its silhouette image. In Proceedings of Asian Conference
on Computer Vision, pages 612–615, 1993.

[65] K. Karhunen. Über Lineare Methoden in der Wahrscheinlichkeitsrechnung.
Annales Academiae Scientiarum Fennicae, 37:3–79, 1946.

[66] L. Karl, M. Pettey, and B. Shneiderman. Speech versus Mouse Commands for
Word Processing Applications: An Empirical Evaluation. Int. J. Man-Machine
Studies, 39(4):667–687, 1993.

[67] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. In
Proc. Intl. Conference on Computer Vision, pages 259–268, 1987.

[68] A. Kendon. Some methodological and theoretical aspects of the use of film
in the study of social interaction. Emerging Strategies in Social Psychological
Research, pages 67–91, 1979.

[69] A. Kendon. Conducting interaction; Patterns of behavior in focused encounters.
Studies in Interactional Sociolinguistics 7. Cambridge University Press, 1990.
edited by John J. Gumperz.

[70] M. Kirby and L. Sirovich. Application of the Karhunen-Loève Procedure for
the Characterization of Human Faces. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 12(1):103–108, January 1990.

[71] R. Kjeldsen and J. Kender. Finding Skin in Color Images. In Proceedings
of the International Conference on Automatic Face and Gesture Recognition,
pages 312–317, October 1996.

[72] N. Kohtake, J. Rekimoto, and Y. Anzai. InfoPoint: A Device that Provides a
Uniform User Interface to Allow Appliances to Work Together over a Network.
Personal and Ubiquitous Computing, 5(4):264–274, 2001.

[73] T. Kurata, T. Okuma, M. Kourogi, and K. Sakaue. The Hand Mouse: GMM
Hand-color Classification and Mean Shift Tracking. In Second International
Workshop on Recognition, Analysis and Tracking of Faces and Gestures in Real-
time Systems, July 2001.

514 Perceptual Interfaces Chapter 10

[74] M. La Cascia, S. Sclaroff, and V. Athitsos. Fast, Reliable Head Tracking under
Varying Illumination: An Approach Based on Registration of Texture-Mapped
3D Models. IEEE Trans. on Pattern Analysis and Machine Intelligence, 22(4),
April 2000.

[75] M. Lades, J. Vorbrüggen, J. Buhmann, J. Lange, W. Konen, C. von der Mals-
burg, and R. Würtz. Distortion Invariant Object Recognition In The Dynamic
Link Architecture. IEEE Trans. on Pattern Analysis and Machine Intelligence,
42(3):300–311, March 1993.

[76] I. Laptev and T. Lindeberg. Tracking of multi-state hand models using particle
filtering and a hierarchy of multi-scale image features. Technical Report ISRN
KTH/NA/P-00/12-SE, Department of Numerical Analysis and Computer Sci-
ence, KTH (Royal Institute of Technology), September 2000.

[77] J. Lee and T.L. Kunii. Model-Based analysis of hand posture. IEEE Computer
Graphics and Applications, 15(5):77–86, 1995.

[78] Y. Li, S. Gong, and H. Liddell. Modelling Faces Dynamically Across Views and
Over Time. In Proc. Intl. Conference on Computer Vision, 2001.

[79] R.-H. Liang and M. Ouhyoung. A Real-time Continuous Gesture Recognition
System for Sign Language. In Proceedings of the Third International Conference
on Automatic Face and Gesture Recognition, pages 558–565. IEEE Computer
Society, April 1998.

[80] J. Lin, Y. Wu, and T.S. Huang. Modeling the Constraints of Human Hand
Motion. In Proceedings of the 5th Annual Federated Laboratory Symposium,
2001.

[81] M. M. Loève. Probability Theory. Van Nostrand, 1955.
[82] J. MacCormick and M. Isard. Partitioned sampling, articulated objects, and

interface-quality hand tracking. In Proc. European Conf. Computer Vision,
2000.

[83] I. S. MacKenzie and S. Ware. Lag as a determinant of human performance in
interactive systems. In Proceedings of the ACM Conference on Human Factors
in Computing Systems - INTERCHI, pages 488–493, 1993.

[84] M. Malciu and F. Preteux. A Robust Model-Based Approach for 3D Head
Tracking in Video Sequences. In Proc. IEEE Intl. Conference on Automatic
Face and Gesture Recognition (AFGR), pages 169–174, 2000.

[85] K. Mase. Recognition of Facial Expression from Optical Flow. IEICE Trans.,
74(10):3474–3483, 1991.

[86] D. McNeill. Hand and Mind: What Gestures Reveal about Thoughts. University
of Chicago Press, 1992.

[87] D. McNeill, editor. Language and Gesture. Cambridge University Press, 2000.
[88] Medtronics, Inc. Activa Tremor Control Therapy, 1997.
[89] A. Mitiche and P. Bouthemy. Computation and analysis of image motion: A

synopsis of current problems and methods. International Journal of Computer
Vision, 19(1):29–55, 1996.

[90] B. Moghaddam and Alex Pentland. Probabilistic visual learning for object
detection. In Proceedings of the Fifth International Conference on Computer
Vision, pages 786 –793, June 1995.

Bibliography 515

[91] A. Mohan, C. Papageorgiou, and T. Poggio. Example-based Object Detection
in Images by Components. IEEE (PAMI), 23(4):349–361, April 2001.

[92] D.D. Morris and J.M. Rehg. Singularity Analysis for Articulated Object Track-
ing. In CVPR, 1998.

[93] K. Murakami and H. Taguchi. Gesture Recognition Using Recurrent Neural
Networks. In ACM CHI Conference Proceedings, pages 237–242, 1991.

[94] T.A. Mysliwiec. FingerMouse: A Freehand Computer Pointing Interface. Tech-
nical Report VISLab-94-001, Vision Interfaces and Systems Lab, The University
of Illinois at Chicago, October 1994.

[95] C. Nass and Y. Moon. Machines and mindlessness: Social responses to com-
puters. Journal of Social Issues, 56(1):81–103, 2000.

[96] C. Nass, J. Steuer, and E. Tauber. Computers are Social Actors. In ACM
CHI’94, pages 72–78, 1994.

[97] M.A.L. Nicolelis. Action from thoughts. Nature, 409:403–407, January 2001.
[98] C. Nolker and H. Ritter. GREFIT: Visual recognition of hand postures. In

Gesture-Based Communication in HCI, pages 61–72, 1999.
[99] M. Oren, C. Papageorgiou, P. Sinha, E. Osuna, and T. Poggio. Pedestrian

Detection Using Wavelet Templates. In Proc. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 1997.

[100] S. L. Oviatt. Ten myths of multimodal interaction. Communications of the
ACM, 42(11):74–81, November 1999.

[101] S. L. Oviatt, P. R. Cohen, L. Wu, J. Vergo, L. Duncan, B. Suhm, J. Bers,
T. Holzman, T. Winograd, J. Landay, J. Larson, and D. Ferro. Designing the
user interface for multimodal speech and gesture applications: State-of-the-art
systems and research directions. Human Computer Interaction, 15(4):263–322,
2000.

[102] P. S. Penev and J. J. Atick. Local Feature Analysis: A General Statistical
Theory for Object Representation. Netork: Computation in Neural Systems,
7(3):477–500, 1996.

[103] A. Pentland, B. Moghaddam, and T. Starner. View-Based and Modular
Eigenspaces for Face Recognition. In Proc. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 84–91, June 1994.

[104] M. L. Phillips, A. W. Young, C. Senior, C. Brammer, M. Andrews, A. J. Calder,
E. T. Bullmore, D. I Perrett, D. Rowland, S. C. R. Williams, A. J. Gray, and
A. S. David. A Specific Neural Substrate for Perceiving Facial Expressions of
Disgust. Nature, 389:495–498, 1997.

[105] R.W. Picard. Affective Computing. MIT Press, 1997.
[106] D. A. Pollen and S. F. Ronner. Phase Relationship between Adjacent Simple

Cells in the Visual Cortex. Science, 212:1409–1411, 1981.
[107] F. K. H. Quek, T. Mysliwiec, and M. Zhao. FingerMouse: A Freehand Pointing

Interface. In Proc. Int’l Workshop on Automatic Face and Gesture Recognition,
pages 372–377, June 1995.

[108] F. Quek, D. McNeill, R. Bryll, C. Kirbas, H. Arslan, K.E. McCullough, N.
Furuyama, and R. Ansari. Gesture, Speech, and Gaze Cues for Discourse Seg-
mentation. In IEEE Conference on Computer Vision and Pattern Recognition,
volume 2, pages 247–254, June 2000.

516 Perceptual Interfaces Chapter 10

[109] B. Reeves and C. Nass. The Media Equation: How People Treat Computers,
Television, and New Media Like Real People and Places. Cambridge University
Press, September 1996.

[110] J.M. Rehg and T. Kanade. Model-Based Tracking of Self-Occluding Articu-
lated Objects. In Proceedings of the 5th International Conference on Computer
Vision, pages 612–617, June 1995.

[111] J. Rekimoto. NaviCam: A Magnifying Glass Approach to Augmented Reality
Systems. Presence: Teleoperators and Virtual Environments, 6(4):399–412,
1997.

[112] B.J. Rhodes. The wearable remembrance agent: a system for augmented mem-
ory. Personal Technologies Journal; Special Issue on Wearable Computing,
pages 218–224, 1997.

[113] Y. Sato, Y. Kobayashi, and H. Koike. Fast Tracking of Hands and Fingertips in
Infrared Images for Augmented Desk Interface. In Fourth IEEE International
Conference on Automatic Face and Gesture Recognition, March 2000.

[114] D. Saxe and R. Foulds. Toward robust skin identification in video images. In
2nd Int. Face and Gesture Recognition Conf., September 1996.

[115] A. E. Scheflen. Communication and regulation in psychotherapy. Psychiatry,
26(2):126–136, 1963.

[116] B. Schiele and A. Waibel. Gaze tracking based on face-color. In Proceedings
of the International Workshop on Automatic Face- and Gesture-Recognition,
pages 344–349, June 1995.

[117] R. Schmidt-Feris, J. Gemmell, K. Toyama, and V. Krüger. Hierarchical Wavelet
Networks for Facial Feature Localization. In Proc. of the 5th International
Conference on Automatic Face and Gesture Recognition, May 2002.

[118] S. Sclaroff and J. Isidoro. Active Blobs. In Proc. Intl. Conference on Computer
Vision, 1998.

[119] K.-H. Seo, W. Kim, C. Oh, and J.-J. Lee. Face Detection and Facial Feature
Extraction Using Color Snake. In Proc. IEEE Intl. Symposium on Industrial
Electronics, volume 2, pages 457–462, July 2002.

[120] J. Shi and C. Tomasi. Good features to track. In Proc. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Seattle, June 1994.

[121] B. Shneiderman. A nonanthropomorphic style guide: overcoming the humpty
dumpty syndrome. The Computing Teacher, 16(7), 1989.

[122] B. Shneiderman. Beyond intelligent machines: just do it! IEEE Software,
10(1):100–103, 1993.

[123] B. Shneiderman. Direct Manipulation for Comprehensible, Predictable and
Controllable User Interfaces. In Proceedings of IUI97, 1997 International Con-
ference on Intelligent User Interfaces, Orlando, FL [124], pages 33–39.

[124] B. Shneiderman. Designing the User Interface: Strategies for Effective Human-
Computer Interaction. Addison Wesley, 3rd edition, March 1998.

[125] B. Shneiderman. The Limits of Speech Recognition. Communications of the
ACM, 43(9):63–65, September 2000.

[126] B. Shneiderman, P. Maes, and J. Miller. Intelligent Software Agents vs. User-
Controlled Direct Manipulation: A Debate, March 1997.

Bibliography 517

[127] T.E. Starner and A. Pentland. Visual Recognition of American Sign Language
Using Hidden Markov Models. In AFGR, Zurich, 1995.

[128] B. Stenger, P.R.S. Mendonça, and R. Cipolla. Model-Based 3D Tracking of an
Articulated Hand. In Proc. Conf. Computer Vision and Pattern Recognition,
volume 2, pages 310–315, December 2001.

[129] R. Stiefelhagen, J. Yang, and A. Waibel. Estimating focus of attention based
on gaze and sound. In Workshop on Perceptive User Interfaces. ACM Digital
Library, November 2001. ISBN 1-58113-448-7.

[130] J. Ström, T. Jebara, S. Basu, and A. Pentland. Real Time Tracking and
Modeling of Faces: An EKF-based Analysis by Synthesis Approach. In ICCV,
1999.

[131] D. J. Sturman. Whole Hand Input. PhD thesis, MIT, February 1992.
[132] D.M. Taylor, S.I. Helms Tillery, and A.B. Schwartz. Direct Cortical Control of

3D Neuroprosthetic Devices. Science, June 2002.
[133] C. Tomasi, A. Rafii, and I. Torunoglu. Full-Size Projection Keyboard for Hand-

held Devices. Communications of the ACM, 46(7):70–75, July 2003.
[134] M. Turk and A. Pentland. Eigenfaces for Recognition. J. Cognitive Neuro-

science, 3(1):71–86, 1991.
[135] M. Turk, C. Hu, R. Feris, F. Lashkari, and A. Beall. TLA Based Face Tracking.

In 15th International Conference on Vision Interface, May 2002.
[136] M. Turk and G. Robertson. Perceptual User Interfaces. Communications of

the ACM, 43(3):32–34, March 2000.
[137] U.S. Department of Transportation, Federal Highway Administration. Evalu-

ation of Automated Pedestrian Detection at Signalized Intersections, August
2001.

[138] A. van Dam. Post-wimp user interfaces. Communications of the ACM,
40(2):63–67, 1997.

[139] P. Viola and M. Jones. Robust Real-time Object Detection. Int. Journal of
Computer Vision, 2002.

[140] G. Welch, G. Bishop, L. Vicci, S. Brumback, K. Keller, and D. Colucci. The
HiBall Tracker: High-Performance Wide-Area Tracking for Virtual and Aug-
mented Environments. In Proceedngs of the ACM Symposium on Virtual Reality
Software and Technology (VRST), December 1999.

[141] J. Wessberg, C.R. Stambaugh, J.D. Kralik, P.D. Beck, M. Laubach, J.K.
Chapin, J. Kim, S.J. Biggs, M.A. Srinivasan, and M.A.L. Nicolelis. Real-time
prediction of hand trajectory by ensembles of cortical neurons in primates.
Nature, 408(361), 2000.

[142] C.D. Wickens. The effects of control dynamics on performance. In K. Boff,
K. Kaufman, and J. Thomas, editors, Handbook on perception and human per-
formance – cognitive processes and performance, volume 2, chapter 39. Wiley
Interscience, 1986.

[143] A. Wilson and S. Shafer. XWand: UI for Intelligent Spaces. In CHI, 2003.
[144] J.R. Wolpaw, N. Birbaumer, D.J. McFarland, G. Pfurtscheller, and T.M.

Vaughan. Brain-computer interfaces for communication and control. Clini-
cal Neurophysiology, 113(6):767–791, June 2002.

518 Perceptual Interfaces Chapter 10

[145] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland. PFinder: Real-Time
Tracking of the Human Body. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 19(7):780–785, July 1997.

[146] C.R. Wren and A.P. Pentland. Dynamic Models of Human Motion. In Pro-
ceedings of the Third International Conference on Automatic Face and Gesture
Recognition, pages 22–27. IEEE Computer Society, April 1998.

[147] H. Wu, T. Yokoyama, D. Pramadihanto, and M. Yachida. Face and Facial
Feature Extraction from Color Image. In Proc. IEEE Intl. Conference on Au-
tomatic Face and Gesture Recognition (AFGR), pages 345 –350, Oct 1996.

[148] L. Wu, S. L. Oviatt, and P. R. Cohen. Multimodal integration – a statistical
view. IEEE Transactions on Multimedia, 1(4):334–331, December 1999.

[149] W. Wu, M. J. Black, Y. Gao, E. Bienenstock, M. Serruya, A. Shaikhouni, and
J. P. Donoghue. Neural decoding of cursor motion using a kalman filter. In
Neural Information Processing Systems, NIPS, Dec 2002.

[150] Y. Wu and T.S. Huang. Vision-based gesture recognition: A review. In An-
nelies Braffort, Rachid Gherbi, Sylvie Gibet, James Richardson, and Daniel
Teil, editors, Gesture-Based Communication in Human-Computer Interaction,
volume 1739 of Lecture Notes in Artificial Intelligence. Springer Verlag, Berlin
Heidelberg, 1999.

[151] Y. Wu and T.S. Huang. View-independent Recognition of Hand Postures. In
CVPR, volume 2, pages 84–94, 2000.

[152] Y. Wu and T.S. Huang. Hand Modeling, Analysis, and Recognition. IEEE
Signal Processing Magazine, May 2001.

[153] W. Zhao, R. Chellappa, and A. Rosenfeld. Face Recognition: A Literature
Survey. Technical Report Technical Report CAR-TR948, UMD CfAR, 2000.

[154] J. Xiao, T. Kanade, and J. Cohn. Robust Full-Motion Recovery of Head by
Dynamic Templates and Re-registration Techniques. In Proc. IEEE Intl. Con-
ference on Automatic Face and Gesture Recognition (AFGR), May 2002.

[155] M.-H. Yang, D.J. Kriegman, and N. Ahuja. Detecting Faces in Images: A
Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence,
24(1):34–58, 1 2002.

[156] R. Yang and Z. Zhang. Eye Gaze Correction with Stereovision for Video-
Teleconferencing. In European Conference on Computer Vision, May 2002.

[157] R. Yang and Z. Zhang. Model-Based Head Pose Tracking With Stereo Vision.
In Proc. IEEE Intl. Conference on Automatic Face and Gesture Recognition
(AFGR), pages 255–260, 2002.

[158] S.J. Young. HTK: Hidden Markov Model Toolkit V1.5, December 1993. En-
tropic Research Laboratories Inc.

[159] B.D. Zarit, B.J. Super, and F.K.H. Quek. Comparison of Five Color Models in
Skin Pixel Classification. In Workshop on Recognition, Analysis, and Tracking
of Faces and Gestures in Real-Time Systems, pages 58–63, September 1999.

[160] J. Zhang, Y. Yan, and M. Lades. Face Recognition: Eigenface, Elastic Match-
ing, and Neural Nets. Proceedings of the IEEE, 85(9):1423–1435, 1997.

[161] Z. Zhang. Feature-based facial expression recognition: Sensitivity analysis and
experiments with a multilayer perceptron. International Journal of Pattern
Recognition and Artificial Intelligence, 13(6):893–911, 1999.

Bibliography 519

[162] L. Zhao and C.E. Thorpe. Stereo- and Neural Network-Based Pedestrian De-
tection. IEEE Tran. on Intelligent Transportation Systems, 1(3), 2000.

[163] Y. Zhu, H. Ren, G. Xu, and X. Lin. Towart Real-Time Human-Computer
Interaction with Continuous Dynamic Hand Gestures. In Proceedings of the
Conference on Automatic Face and Gesture Recognition, pages 544–549, 2000.

SECTION III:
PROGRAMMING FOR
COMPUTER VISION

One of the more overlooked areas in computer vision is its programming
aspect. Because of the heavy dependence of computer vision on image and
range data, the proper programming environment has to efficiently handle
and manipulate such data. It also has to contain the fundamental operations
such as input/output and basic operations such as image convolution and 2D
blob extraction. This allows the programmer to concentrate on prototyping
the algorithm currently being researched.

There are two chapters in this final section that addresses the issue of
programming for computer vision. In Chapter 11, Bradski describes the
well-known Open Source Computer Vision Library (OpenCV). OpenCV is
a collection of C and C++ source code and executables that are optimized
for real-time vision applications. He shows how a variety of applications
such as stereo, tracking, and face detection can be easily implemented using
OpenCV.

In Chapter 12, François highlights and addresses architecture level soft-
ware development issues facing researchers and practitioners in the field of
Computer Vision. A new framework, or architectural style, called SAI, is
introduced. It provides a formalism for the design, implementation and
analysis of software systems that perform distributed parallel processing of
generic data streams. Architectural patterns are illustrated with a number
of demonstration projects ranging from single stream automatic real-time
video processing to fully integrated distributed interactive systems mixing
live video, graphics and sound. SAI is supported by an open source archi-
tectural middleware called MFSM.
520

Chapter 11

OPEN SOURCE
COMPUTER VISION
LIBRARY
(OPENCV)

Gary Bradski

11.1 Overview

The Open Source Computer Vision Library (OpenCV for short [1, 14]) is
a collection of C and C++ source code and executables that span a wide
range of computer vision algorithms. The code is optimized and intended
for real time vision applications. Popular application areas supported by
OpenCV algorithms in decreasing order of coverage are: Human-computer
interaction; Video security; Robotics and image retrieval; and factory in-
spection/machine vision. Look for a full handbook on OpenCV due from
Springer by the end of 2003 [12]. OpenCV supports Windows and Linux
but the code is well behaved and has been ported to many other platforms.
Tested compilers include Intel’s compiler version 6.0 or higher, MSVC++ 6.0
or higher, Borland C++ 5.5 or higher, and GNU C/C++ 2.95.3 or higher.

OpenCV is distributed under a BSD style license (see Appendix 11.6).
This license allows for royalty free commercial or research use with no re-
quirement that the user’s code be free or open. Intel Labs
(http://www.intel.com/research/mrl/index.htm) media group
(http://www.intel.com/research/mrl/research/media.htm) undertook devel-

521

522 Open Source Computer Vision Library Chapter 11

opment of this library for the following reasons:

– Computer vision algorithms are being studied for their implications
on future computer architecture. Optimized code is needed for these
studies.

– We wanted to advance external computer vision research by creating
an optimized infrastructure which would avoid the need for others to
endlessly reinvent and re-optimize common algorithms.

– We wanted to hasten the adoption of computer vision applications out
in the market by lowering the algorithmic “barrier to entry” for firms
seeking to add computer vision functionality to their products.

OpenCV’s main information website is located at:
http://www.intel.com/research/mrl/research/opencv. This site contains point-
ers to the user group and the download site.

The user group is at: http://groups.yahoo.com/group/OpenCV/ [4]. To
join the user group, you must first register (free) for Yahoogroups
(http://groups.yahoo.com/) and then sign up for OpenCV at:
http://groups.yahoo.com/group/OpenCV/join. The user group is the forum
for reporting bugs, discussing problems, technical issues, posting/reading
calls for papers, jobs etc. This is an active group with thousands of members.
You control at any time whether you want to read it on the web only (no
emails) or get daily summaries or every posting. We do not distribute names
or email addresses from the list to outside parties.

The download site is on SourceForge at:
http://sourceforge.net/projects/opencvlibrary/ [6]. At this site you can ob-
tain the various release versions of OpenCV for Windows and Linux, docu-
mentation files, and the foil set [5] from which many of the images in this
chapter were taken.

11.1.1 Installation

Under Windows
Installation 1 under Windows is straightforward. Download the windows
executable installation from the SourceForge site to a directory on your local
disk and run it. The script installs OpenCV, registers DirectShow filters and
does other post-installation procedures. After it is finished, you may start
using OpenCV, you do not need to compile OpenCV into binaries except if
you want debug files.

1Adapted with permission from the INSTALL file that comes with the download [6].

Section 11.1. Overview 523

It is also possible to build core OpenCV binaries manually from the
source code distribution for Linux (though, the executable installation in-
cludes sources as well). To build manually from the Linux source, do the
following.

+ Download and unpack the OpenCV-*.tar.gz package somewhere, e.g.
C:\MySoft\(the root folder is referred further as
<opencv_root>). The tree should look like:
<opencv_root>

_dsw
cv

include
src
make

cvaux
...

...

+ Add <opencv_root>\bin to the system path. Under Windows 9x/ME
this is done by modifying autoexec.bat. Under NT/2000/XP it
can be done by instantly at MyComputer--right button click-->
Properties->Advanced->Environment Variables.

+ Highgui requires graphic libraries by default, so remove
HAVE_JPEG, HAVE_TIFF and HAVE_PNG from preprocessor
definitions and libjpeg.lib, libtiff.lib, libpng.lib and
zlib.lib from linker command line. The resultant Highgui will
be able to read & write most of jpeg’s, bmp’s, uncompressed
tiff’s, pxm’s and sun raster images; capture video from AVI
or camera via VFW and write AVIs via VFW.

Building OpenCV from sources

You need to have some C/C++ compiler. Below are some variants
considered:

=== Microsoft Visual C++ (6.0 or higher) ===:
This is a preffered variant, because most of the demos
are written for it (i.e. using MFC).

* If you are going to build DirectShow filters, acquire and
setup DirectX SDK as described in
<opencv_root>\docs\faq.htm or
<opencv_root>\cv\include\cvstreams.h.

524 Open Source Computer Vision Library Chapter 11

* If you are going to build MIL-enabled version highgui,
setup MIL include and library paths in Developer Studio.

* If you are going to build MATLAB wrappers, you need to have
MATLAB C/C++ interface libraries and setup Developer Studio
properly. Read opencv/interfaces/matlab/readme.txt for
details

* If you are going to build TCL\TK demo applications
(including with the source package only), you will need
TCL\TK and BWidgets. The easiest way to obtain both is to
download and install ActiveTcl from
http://www.activestate.com. After installing ActiveTCL:
- add <tcl_root>\bin to the system path (if installer
didn’t do it),

- add <tcl_root>\include and <tcl_root>\lib to Developer
Studio search paths (tools->options->directories)

Open <opencv_root>_dsw\opencv.dsw.

Choose from menu Build->Batch Build->Build

Wait and enjoy. If you want to debug OpenCV directshow
filters, register them using regsvr32
(e.g. regsvr32 <opencv_root>\bin\CamShiftd.ax)

=== Other compilers ===
In case of other compilers you still can build the core
libraries (cv,cvaux,highgui), algorithmic tests and samples
(<opencv_root>\samples\c).
The following compilers are supported by default:

=== Intel compiler 6.0 or greater ===

run nmake /f makefile.icl in the root OpenCV folder.

Because the produced binaries should be compatible with
Visual C++, you can then use the DLLs with VisualC++
-build applications etc.

=== Borland C++ 5.5 (free) or greater ===

run make -f makefile.bcc in the root OpenCV folder.

Before running compilation, make sure <BorlandC_root>\bin is

Section 11.1. Overview 525

in the system path and <BorlandC_root>\bin\bcc32.cfg
contains:
-I<BorlandC_root>\bcc\include -L<BorlandC_root>\bcc\lib
-L<BorlandC_root>\bcc\lib\psdk
(where <BorlandC_root> denotes the root folder of Borland C++
installation)

=== GNU C/C++ 2.95.3 or greater ===

Run mingw32-make -f makefile.gcc in the root OpenCV folder.

Make sure that <gcc_root>\bin is in the system path.
To build VFW-enabled highgui, read instructions in
<opencv_root>\otherlibs_graphics\readme.txt

How to test built OpenCV binaries in Windows
Run algorithmic tests: <opencv_root>\bin\cvtest.exe. This will pro-

duce cvtest.sum and cvtest.lst. cvtest.sum should contain all OK’s.
Or, run samples at <opencv_root>\samples\c. (Note: some of the demos
need AVI or Camera, e.g. motempl.c)

How to add support for another compiler
Look at <opencv_root>\utils\gen_make.py. It looks at .dsp files in

the specified folders and generates makefiles for all compilers it knows. GCC
is now handled a little bit ugly because the linker couldn’t handle long lists
of files and it wasn’t known if it was possible to use temporary inline files
instead.

Under Linux
There are no pre-built binaries for the Linux version (because of different

C++-incompatible versions of GCC in different distributions), so you will
have to build it from sources. The following has been tested on RedHat 8.0
(GCC 3.2) and SuSE 8.0 (GCC 2.95.3). To build fully-functional libraries
and demos in Linux, use:

+ motif (LessTif or OpenMotif) with development files.
configure script assumes it is at /usr/X11R6/lib &
/usr/X11R6/include/Xm.

+ libpng, libjpeg and libtiff with development files.

+ libavcodec from ffmpeg 0.4.6(pre) + headers.
Earlier version does not fit because of changed interface and
because of the GPL license (newer version is LGPL).

526 Open Source Computer Vision Library Chapter 11

However, static linking is still prohibited for non-GPL software
(such as OpenCV),
so:

get CVS snapshot of ffmpeg from ffmpeg.sourceforge.net
./configure --enable-shared
make
make install
you will then have: /usr/local/lib/libavcodec.so &

/usr/local/include/ffmpeg/*.h

+ For building demo applications only:
fltk 1.1.x (1.1.1 is the preferred one at the moment of writing
this doc) with development files.
If you do not have it, get it from www.fltk.org. In case of
RPM-based distribution it is possible to build fltk RPMs by

rpmbuild -ta fltk-x.y.z-source.tar.gz (for RH 8.x) or
rpm -ta fltk-x.y.z-source.tar.gz (for others).

+ For demo applications only:
TCL/TK 8.3.x with development files + BWidgets >=1.3.x.
Take bwidgets here: http://sourceforge.net/projects/tcllib/

Now build OpenCV:
======

a) If your distribution uses RPM, you may build RPMs via:
rpmbuild -ta OpenCV-x.y.z.tar.gz" (for RH 8.x) or
rpm -ta OpenCV-x.y.z.tar.gz" (for others)

where OpenCV-x.y.z.tar.gz should be put into
/usr/src/redhat/SOURCES/ or similar folder.

The command will build OpenCV-x.y.z.*.rpm (there is no
OpenCV-devel, everything is in one package)

then install it by:
rpm -i --nodeps OpenCV-x.y.z.*.rpm

--nodeps is needed in this version, because it can not find
libavcodec.so, even if it is in the path (a weird bug
somewhere).

b) If your distribution does not support RPM, build and install it
in *nix traditional way:

./configure --with-apps # or simply ./configure

Section 11.1. Overview 527

make
make install # as root
ldconfig # as root

both a&b (post-install))

The default installation path is /usr/local/lib and
/usr/local/include/opencv,
so you need to add /usr/local/lib to /etc/ld.so.conf (and run
ldconfig after).

How to test OpenCV under Linux:

– run /usr/local/bin/cvtest

– or, compile and run simple c examples at /usr/local/share/opencv/samples,
e.g. g++ ‘opencv-config –cxxflags‘ -o morphology morphology.c ‘opencv-
config –libs‘. Plain gcc won’t work because of unresolved c++ specific
symbols (located in highgui)

– or, run /usr/local/bin/{cvlkdemo—cvcsdemo—cvenv—vmdemotk}.

11.1.2 Organization

When you have set up OpenCV, the directory organization will be something
like (slightly different for Linux):

C:\Program Files\OpenCV -- Location
_dsw -- Build files under windows
apps -- Demo application files
bin -- Binaries, dlls, filters ...
cv -- Source Code
cvaux -- "Experimental" Source Code
docs -- Manuals
filters -- DirectShow filters
interfaces -- ch interpretive C, Matlab
lib -- Static link libraries
otherlibs -- highgui interface and camera support
samples -- Simple code usage examples
tests -- source and data for test code
utils -- cvinfo code and other utilities

apps: The apps directory contains the following:

528 Open Source Computer Vision Library Chapter 11

C:\Program Files\OpenCV\apps -- Location
CamShiftDemo -- Track color probability distributions
Common -- Camera routines
cvcsdemo -- Color tracker application
cvlkdemo -- Optical flow application
HaarFaceDetect -- Viola-Jones Boosted face detection
HaarTraining -- Training code for Boosted face detection
Hawk -- EiC Interpretive C interface
HMMDemo -- Face recognition using HMMs
StereoDemo -- Depth detection from stereo correspondence
Tracker3dDemo -- 3D tracking with multiple cameras
VMDemo -- Interpolated view (morph) between 2 images
vmdemotk -- Interpolated view application

Of special interest here is the manual in the “Hawk” directory which
details some of the functions in Highgui (see below) which make it easy to
display an image or video in a window. One line routines can be used to at-
tach a menu and/or sliders to the window which can be used to interactively
control OpenCV routines operating in the window. The Hidden Markov
Model (HMM) Demo does face recognition using horizontal HMMs across a
face feeding into a vertical HMM down a face to do 2D face recognition.

The StereoDemo is a console-based application that uses cvcam for video
capture and highgui for visualization (both in otherlibs directory). To run
this demo you need two USB cameras compatible with DirectShow that can
run simultaneously pair. Creative WebCam is an example of such a cam-
era. Two different cameras types might be also work (not tested). You will
need to register ProxyTrans.ax and SyncFilter.ax DirectShow filters from
opencv\bin folder using regsvr32.exe utility or opencv\bin\RegisterAll.bat
batch command file. The demo lets you calibrate the intrinsic and extrinsic
parameters for the two cameras by automatically tracking a checkerboard
pattern of known size and then finds stereo correspondence between the two
image streams and converts that to a disparity or depth map.

Tracker3dDemo demonstrates the 3D calibration of multiple cameras (2
or more) into one coordinate frame and then the 3D tracking of multiple
objects from multiple views.
docs: The docs directory contains the html based manual (index.htm, faq.htm),
the license file (see Appendix 11.6) and directories describing some of the
applications and tutorial papers.
filters: The filters directory contains code to build the following computer
vision filters:

Section 11.1. Overview 529

C:\Program Files\OpenCV\filters -- Location
CalibFilter -- Calibrate camera lens via checkerboard
CamShift -- Meanshift robust object tracker
Condens -- Condensation particle filter tracker
Kalman -- Kalman filter
ProxyTrans -- Automatic filter calls your code
SyncFilter -- For use with multiple cameras
Tracker3dFilter -- 3D tracking with multiple cameras

otherlibs: The otherlibs directory contains the camera connection code
(cvcam) and highgui which can be used to put up a window with still or
video images and attach menus and controls to control video processing
within the window.
samples: The samples directory is a good place to look for simple code
examples of many of the functions in OpenCV.

11.1.3 Optimizations

OpenCV has two defining characteristics: (1) It spans a very wide range
of functions and (2) the code is fairly well optimized for speed. Figure
11.1 shows what code is open, what is not and how things relate to one
another. As with Intel’s other performance libraries [3], when you build your
application, you link against a dynamic library file, for example cv.lib. At
run time, an optimized C dynamic link library stub, cv.dll is loaded. This
stub will try to determine what processor it is running on and if the processor
is identified, it will look for a dll file that is specifically optimized for that
processor. For example, on a Pentium 4, the specially optimized code is
OptCVw7.dll. If such a file is found, cv.dll will swap itself out for this file.
If the processor type cannot be determined or the corresponding optimized
file cannot be found, OpenCV runs optimized C by default.

OpenCV’s C code is algorithmically optimized. The processor specific
code is further optimized with in-line assembly, memory alignment, cache
considerations and takes advantage where possible of the internal SIMD
arithmetic MMX and SSE processors. OpenCV no longer depends on In-
tel’s Image Processing Library, but some demos still require it. Again, as
long as you have the set of dlls on your machine, you can just compile/run
OpenCV applications and the switcher code inside the cv.dll will take care of
loading the correct one and will take advantage of the performance primitive
ippcv code described below.

530 Open Source Computer Vision Library Chapter 11

Figure 11.1. Structure of OpenCV. Used with permission from [5, 6]

ippCV [2]

OpenCV comes from Intel’s research labs and is fully open and free to use.
Intel has many other software tools that come from other internal teams such
as the Software System’s Group. This other software is released as commer-
cial software products. Such products include the VTune code profiler, the
Intel Compiler and the multi-threading pre-processor macros. Of interest
here are Intel’s Integrated Performance Primitives (IPP) and specifically the
60 or so computer vision functions included under “ippCV”. You can get
information about IPP by going to
http://developer.intel.com/software/products/ipp/ippvm20/.

The “primitives” part of the Integrated Performance Primitives refers to
functions that operate mostly on vectors, matrices and simple structures.
These functions are re-entrant and stateless. Thus, the IPP functions tend
to be easy to interface to and work well embedded in streaming data systems.

ippCV contains many fewer functions than OpenCV, but the functions
are optimized on a wider variety of platforms. The platform support includes:

Section 11.1. Overview 531

IA32 Intel
Itanium Architecture
Intel StrongARM Microarchitecture
Intel XScale Microarchitecture.

Intel IPP supports various operating systems:

32-bit versions of Microsoft Windows
64-bit versions of Microsoft Windows Microsoft
Windows CE
Linux32
Linux64
ARM Linux.

Inside ippCV, the followig computer vision functions are supported:

Image pyramid (resample & blur)
Filters - Laplace, Sobel, Scharr,
Erode, Dilate
Motion gradient
Flood fill
Canny edge detection
Snakes
Optical flow.

Of course, there are many other non-computer vision functions supported in
2500 functions that make up IPP. IPP includes support for image processing,
compression, signal processing, audio and video codecs, matrix operations
and speech recognition.

Other performance libraries

Two other libraries which serve as higher level wrappers to IPP are of in-
terest: The signal processing library and the image processing library [3].
OpenCV was designed to work well with both IPP and these libraries. The
functions covered by the Signal Processing and Image Processing libraries
follow.

Signal Processing Functions:
Data manipulation,
windowing,
conversion,
arithmetic and logical operations

532 Open Source Computer Vision Library Chapter 11

Filters and Transforms
Statistics, Audio
Signal generation

Image Processing Functions:
Data manipulation,
arithmetic and logical functions,
copy and conversions
Geometric operations (scale, rotate, warp)
Color conversion,
alpha composite,
gamma correction
General and specific filters FFT, DCT, wavelet transform

A final separate library to be aware of is the Math Kernel Library (MKL)
which contains the full set of linear algebra and matrix manipulation rou-
tines.

11.2 Functional Groups: What’s Good for What

In the Windows directory hierarchy, the OpenCV manual is located at
C:\Program Files\OpenCV\docs\index.htm. In the manual, the functions
are broken up into the following groups:

M1. BASIC STRUCTURES AND OPERATIONS
Helper structures
Array structures
Arrays Manipulation
Matrix Operations
Dynamic Data Structures
Sequences
Sets
Graphs
Writing and Reading Structures

M2. IMAGE PROCESSING AND ANALYSIS
Drawing Functions
Gradients,
Edges and Corners Sampling,
Interpolation and Geometrical Transforms
Morphological Operations
Filters and Color Conversion

Section 11.2. Functional Groups: What’s Good for What 533

Pyramids and the Applications
Connected components
Image and contour moments
Special Image Transforms
Histogram Recognition Functions
Utility Functions

M3. STRUCTURAL ANALYSIS
Contour Processing Functions
Geometric Comparison Functions
Planar Subdivisions (Triangulation)

M4. MOTION ANALYSIS AND OBJECT TRACKING
Accumulation of Background Statistics
Motion Templates
Object Tracking
Optical Flow
Estimators: Kalman, Condensation

M5. OBJECT RECOGNITION
Eigen Objects (PCA)
Hidden Markov Models

M6. CAMERA CALIBRATION AND 3D RECONSTRUCTION
M7. EXPERIMENTAL FUNCTIONALITY

Statistical Boosting
Stereo Correspondence
3D Tracking with Multiple Cameras

M8. GUI AND VIDEO ACQUISITION
Easy User Interface Creation
Image I/O, display and converstion
Video I/O functions
WaitKey/Init system/AddSearchPath

M9. BIBLIOGRAPHY
M10. CVCAM CAMERA I/O MANUAL

Exit Camera
GetCamerasCount
GetProperty
Init
Pause
PlayAVI
Resume
SelectCamera
SetProperty

534 Open Source Computer Vision Library Chapter 11

Start
Stop

In the next subsection (11.2.1), we will first give an overview of the functions
by area in the manual. In the following subsection (11.2.2) we will give some
brief ideas of what function might be good for what task. A final subsection
(11.2.3) discusses what’s in the demos and sample code.

11.2.1 By Area

Below, “M#” refers to the manual sections outlined above.

M1: Structures and Matrices

The first section of the manual begins by describing structures for represent-
ing sub-pixel accurate points and rectangles. This is followed by array and
image structures and functions for creating, releasing, copying, setting and
other data manipulations of vector or matrix data. Image and matrix logic,
arithmetic and conversion are unified and described here along with basic
statistical measures such as sums, averages, STD, mins, maxs and norms.

OpenCV contains a full set of linear algebra routines optimized for small
and typical image sized matrices. Examples of these functions are ma-
trix multiplication, dot products, cross products, transpose, inversion, SVD,
Eigen images, covariance, Mahalanobis distance, matrix log, power and expo-
nential, Cartesian to Polar conversion and back along with random matrices.

Dynamic structures such as linked lists, queues and sets designed to work
with images are described. There are also a full set of Graph and Tree
structures such as support Delaunay triangulation. This chapters ends with
functions that support reading and writing of structures.

M2 Image Processing

The second chapter of the manual covers a wide variety of image processing
and analysis routines. It starts off with a basic set of line, conic, poly and text
drawing routines which were included to help in real time labeling and debug.
Next, gradient, edge finding and corner detection routines are described.
OpenCV allows some useful sampling functions such as reading pixels from
an arbitrary line in an image into a vector, or extracting a sub-pixel accurate
rectangle or quadrangle (good for rotation) from an image.

A full set of Morphological operations [37] on image objects are sup-
ported along with other basic image filtering, thresholding, integral (progres-
sive sum images) and color conversion routines. These are joined by image

Section 11.2. Functional Groups: What’s Good for What 535

pyramids, connected components, standard and gradient directed flood fills.
For rapid processing, one may find and process gray level or binary contours
of an image object.

A full range of moment processing routines are supported including nor-
mal, spatial, central, normalized central and Hu moments [23]. Hough [26]
and distance transforms are also present.

In computer vision, histograms of objects have been found very useful for
finding, tracking and identifying objects, including deforming and articulat-
ing objects. OpenCV provides a large number of these types of operations
such as creating, releasing, copying, setting, clearing, thresholding and nor-
malizing multi-dimensional histograms. Statistical operations on histograms
are allowed and most of the ways of comparing two histograms to each other
are supported such as correlation, Chi-Square, Intersection [38, 35] and
Earth Mover’s distance [34, 33, 32]. Pair-wise geometrical histograms are
covered in manual section M3.. In addition, you can turn histograms into
probability densities and project images into these probability spaces for
analysis and tracking. The chapter ends with support for most of the ma-
jor methods of comparing a template to image regions such as normalized
cross-correlation absolute difference etc.

M3: Structural Analysis

Once grey or binary level image object contours are found (see subsection
M2 above) there are many operations that allow you to smooth, simplify
and compare contours between objects. These contour routines allow rapid
finding of polynomial approximations to objects, bounding boxes, area of
objects, boundary lengths and shape matching.

Image geometry routines allow one to fit lines, boxes, minimum enclosing
circles and ellipses to data points. This is where you’ll find routines like
KMeans, convex hulls and convexity defect analysis along with minimum
area rotated rectangles. Also in this manual section is support for 2D pair-
wise geometrical histograms as described in [24]. This chapter ends with
routines that give full support to Delaunay triangulation.

M4: Motion analysis and tracking

This chapter starts with support for learning the background of a visual scene
in order to segment objects by background differencing. Objects segmented
by this method, or any other method may then be tracked by converting
successive segmentations over time into a Motion History image (MHI) [17,
13]. Routines can take the gradient of MHIs to further find global and

536 Open Source Computer Vision Library Chapter 11

segmented motion regions.
The chapter then moves on to object tracking, first covering tracking of

probability regions in images via the MeanShift and CamShift algorithms
[11]. Tracking by energy minimizing Snakes [27] is also supported. Next, 4
methods of tracking by optical flow are discussed using Horn and Schunck’s
algorithm [22], Lucas and Kanade [30], Block matching, and or recom-
mended way, Lucas and Kanade in Image Pyramids [8].

This chapter concludes with two key tracking algorithms, Kalman Filter
and Condensation Tracker based on particle filtering. There is an excellent
tutorial on Kalman tracking at [41]. For Condensation see
http://www.dai.ed.ac.uk/CVonline/LOCAL COPIES/ISARD1/
condensation.html

M5: Object Recognition

This chapter covers two key techniques in object recognition, Eigen objects
and hidden Markov Models (HMMs). There are many other recognition
techniques in OpenCV however from Histogram intersection [36] in M2 to
Boosted classifers in M7. The HMMs in this section allow HMMs to feed into
other HMMs. One of the OpenCV demos uses horizontal HMMs feeding into
a vertical HMM, termed “embedded HMM” (eHMM), to recognize faces.

M6: Camera Calibration and 3D

OpenCV supports a full set of functions for doing intrinsic (internal camera
parameters and lens distortions) and extrinsic (cameras location with respect
to the outside world or other cameras) camera calibration. After calibration,
one may then call functions to un-distort a lens or to track objects in 3D (see
below). Most of these techniques were developed in [43, 45, 44, 21, 10, 9],
but we added routines for finding and tracking checkerboard corners in order
to help fill the matrices needed for calibration. In addition, there are routines
for calculating the homography matrix, finding the fundamental matrix and
finding the epipolar lines between two images. Using calibrated, epipolar
aligned images allows us to do “view morphing”, that is, to synthesize a a
new object view as a weighted linear combination of the two existing views.
Other techniques for stereo correspondence and multi-camera tracking are
supported in manual chapter M7.

This chapter further supports tracking objects in 3D. One way of doing
this is to track a checkerboard object with a calibrated camera. More general
ways of tracking 4 or more non-coplaner points on an object using weak-
strong perspective iteration (POSIT algorithm) [18] are detailed.

Section 11.2. Functional Groups: What’s Good for What 537

M7: Recent “Experimental” Routines

The “experimental routines” would better be tilted “recent routines”. This
chapter includes support for AdaBoost for face (or other object) detection.
Routines support both boosted learning and recognition of objects. Fol-
lowing this are routines for finding stereo correspondence where we tried to
combine the best of the faster methods to get good, dense but fast corre-
spondence. Note that to do stereo, you should align the cameras as parallel
as possible so that the views cover as much of the same scene as possible.
Monocular areas not covered by both cameras can cause shearing when the
foreground object moves into the monocular area. Finally, routines support-
ing tracking objects using multiple (2 or more) cameras are described.

M8: GUI and Video I/O

This manual section covers image and video input and display from disk
or cameras (for Windows or Linux) that are contained in the “HighGUI”
library. Windows install places source code for this in
C:\Program Files\OpenCV\otherlibs\highgui.

Display is covered first with functions that allow you to put up a window
and display video or images there. You can also attach sliders to the window
which can be set to control processing parameters that you set up. Functions
supporting full mouse events are also available to make interacting with
images and video easy. A series of functions follow that handle reading and
writing images to disk as well as common image conversions.

The next part of manual section M8 discusses functions for video I/O
from either disk or camera. Writing AVIs may be done with various types
of compression including JPEG and MPEG1.

M9: Bibliography

This manual section contains a short bibliography for OpenCV although
many citations are placed directly in the function descriptions themselves.

M10:

This last section of the manual is actually a sub-manual devoted to single or
multiple camera control and capture under Windows or Linux . The library
for this under Windows is placed in the directory
C:\Program Files\OpenCV\otherlibs\cvcam

538 Open Source Computer Vision Library Chapter 11

11.2.2 By Task

This section will give an all too brief suggestions of what functions might be
good for a few of the popular vision tasks. Note that any of the below may
operate over multiple scales by using the image pyramid functions described
in manual section M2.
Camera Calibration, Stereo Depth Maps Camera calibration is di-
rectly supported by OpenCV as discussed in section 11.2.1, M6. There are
routines to track a calibration checkerboard to sub-pixel accuracy and to
use these points to find the camera matrix and lens distortion parameters.
This may then be used to mathematically un-distort the lens or find the
position of the camera relative to the calibration pattern. Two calibrated
cameras may be put into stereo correspondence via a routine to calculate the
Fundamental matrix and then another routine to find the epipolar lines.

From there, the “experimental section” of the manual, M7 above has fast
routines for computing stereo correspondence and uses the found correspon-
dence to calculate a depth image. As stated before, it is best if the cameras
are aligned as parallel as possible with as little monocular area left in the
scene as possible.
Background Subtraction, Learning and Segmentation There are dozens
of ways that people have employed to learn a background scene. Since this
is a well used and often effective “hack”, I’ll detail a method even if it is not
well supported by OpenCV. A survey of methods may be found in [39]. The
best methods are long and short term adaptive. Perhaps the best current
method is described in Elgammal et. al’s 2000 paper [19] where not the pixel
values themselves, but the distribution of differences is adaptively learned
using Kernel estimators. We suspect that this method could be further im-
proved by the use linear predictive adaptive filters, especially Lattice filters
due to their rapid convergence rates.

Unfortunately, the above techniques are not directly supported in OpenCV.
Instead, there are routines for learning mean and variance of each pixel (see
“Accumulation of Background Statistics” in manual section M4). Also in-
side OpenCV, one could instead use the Kalman filter to track pixel values,
but the normal distribution assumption behind the Kalman filter does not
fit well with the typical bi-modal distribution of pixel values over time. The
Condensation particle filter may be better at this though at a computational
cost for sampling. Within OpenCV, perhaps the best approach is just to use
k-means with 2 or 3 means incrementally adapted over a window of time as
each new pixel value comes in using the same short-long scheme as employed
by Elgammal in [19].

Section 11.2. Functional Groups: What’s Good for What 539

Once a background model has been found, a thresholded absolute differ-
ence cvAbsDiff of the model with the current frame yields the candidate
foreground regions. The candidate regions are indicated in a binary mask
image where “on” = foreground candidate, “off” = definite background.
Typically this is a gray scale, 8 bit image so that “on” is a value of 255 and
“off” is a value of zero.
Connected Components The candidate foreground region image above
will be noisy, and at he image will be filled with pixel “snow”. To clean it
up, spurious single pixels need to be deleted by performing a morpholog-
ical erode followed by a morphological dilate operation. This operation is
called “morphological open” and can be done in one shot using the OpenCV
function cvMorphologyEx using a 3x3 pixel cross shaped structuring element
using the enumerated value CV SHAPE CROSS and performing the open
operation using CV MOP OPEN with one iteration.

Next we want to identify and label large connected groups of pixels,
deleting anything “too small”. The candidate foreground image is scanned
and any candidate foreground pixel (value = 255) found is used as a flood
fill seed start point to mark the entire connected region using the OpenCV
cvFloodFill function. Each region will be marked by a different number by
setting the cvFloodFill “newVal” to the new fill value. The first found region
is marked with 1, then 2 ... up to a max of 254 regions. In cvFloodFill, the
lo and up values should be set to zero, a CvConnectedComp structure should
be passed to the function, flags should be set to 8. Once the region is filled,
the area of the fill is examined (it is set in CvConnectedComp). If the area
filled is below a minimum area size threshold Tsize, that area is erased by
flooding it with a new value of zero newVal = 0 (regions that are too small
are considered noise). If the area was greater than Tsize, then it is kept and
the next fill value incremented subject to it being less than 255.

Getting rid of branch movement, camera jitter

Since moving branches and slight camera movement in the wind can cause
many spurious foreground candidate regions, we need a false detection sup-
pression routine such as described in pages 6-8 of Elgammal et. al’s paper
[19]. Every labeled candidate foreground pixel i has its probability recal-
culated by testing the pixel’s value against each of its neighboring pixel’s
probability distribution in a 5x5 region around it N5x5. The maximum back-
ground probability calculation is assigned to that foreground pixel:

PN5x5(ix,y(t)) = max
j∈N5x5

P (ix,y(t)|Bj), (11.1)

540 Open Source Computer Vision Library Chapter 11

where Bj is the background sample for the appropriate pixel j in the 5x5
neighborhood. If the probability of being background is greater than a
threshold TBG1 , then that candidate foreground pixel is labeled as back-
ground. But, since this would knock out too many true positive pixels, we
also require that the whole connected region C also be found to be proba-
bilistically a part of the background:

PC =
∏
i∈C

PN5x5(i). (11.2)

A former candidate foreground pixel is thus demoted to background if:

(PN5x5(i) > TBG1) ∧ (PC(i) > TBG2) (11.3)

where TBG1 and TBG2 are suppression thresholds.
Stereo Background Subtraction This is much like the above, except we
get a depth map from two or more cameras. The basic idea is that you
can also statistically learn the depth background. In detection mode you
examine as foreground only those regions that are in front of your known
background. The OpenCV camera calibration and stereo correspondence
routines are of great help there (Manual sections M6 and M7).
People Tracking There are innumerable ways to accomplish this task. One
approach is to fit a full physical model to a person in a scene. This tends to
be slow and is not supported in OpenCV and so won’t be discussed further.
For multiple cameras, one can look to the experimental section of the man-
ual, M7 above where multiple tracked areas are put into 3D correspondence.
Other typical methods of tracking whole people are to sample a histogram
(M2 Histogram functions) or template (M2 MatchTemplate) from a person,
then scan through the future frames back-projecting histogram intersections,
earth mover distances or template match scores to create a probability of per-
son image. The mean shift or CamShift algorithms (M4) can then track the
recognition peaks in these images. Alternatively, people could be represented
as a sequence of vertically oriented color blobs as done in [42]. This could
be accomplished in OpenCV by use of cvKMeans2 described in M3 to cluster
colors, or just by using the image statistical functions described in the array
statistics section of M1, or by using the undocumented texture descriptors
in the experimental section (look for “GLMC” in cvaux.h). A “probabilities
of match” image can be made this way and tracked by meanshift as above.

Another people tracking approach if you can get adequate background-
foreground segmentation is to use the Motion History Templates and Motion
Gradients as described in manual section M4.

Section 11.2. Functional Groups: What’s Good for What 541

Face Finding and Recognition The good way of doing this is by the
Viola-Jones method as described in [40] and fully implemented in OpenCV
(see section M7 in the manual and the accompanying demo app in the apps
section of the OpenCV directory.

Face recognition may be either done through Eigen images or embedded
Hidden Markov Models (see manual section M5), both of which have working
demos in the apps directories.
Image Retrieval Image retrieval is typically done via some form of his-
togram analysis. This is fully supported via the histogram learning and
comparison functions described in manual section M2.
Gesture Recognition for Arcade Perhaps the best way if you can get
adequate background-foreground segmentation is to use the Motion History
Templates and Motion Gradients as described in manual section M4. For
recognition, depending on your representation, you may use the histogram
functions described in M2, Mahalanobis distances in M1 or do some sort of
“Eigen trajectories using Eigen objects in M5. If hand shape is also required,
one can represent the hand as a gradient histogram and use the histogram
recognition techniques in M2.

The calibration, stereo and/or 3D tracking routines described in M6 and
M7 can also help segment and track motion in 3D. HMMs from section M5
can be used for recognition.
Part Localization, Factory Applications OpenCV was not built to sup-
port factory machine vision applications, but it does have some useful func-
tionality. The camera calibration (manual section M6), stereo routines (M7)
can help with part segmentation. Templates can be compared with the
MatchTemplate function in M2. Lines may be found with the Canny edge
detector or Hough transform in M2.

There are routines for the sub-pixel accurate location of corners, rectan-
gles and quadrangles. Where to move can be aided by distance transforms.
Adaptive thresholds can help segment parts and Pyramid operations can do
things over multiple scales, all in M2.

Part shapes can be analyzed and recognized through the extensive collec-
tion of contour operators in M2. Motion can be analyzed and compensated
for using optical flow routines in M4. Kalman and Condensation particle fil-
ters for smoothing, tracking or predicting motion are supported as described
in M4.
Flying a Plane Autonomous or semi-autonomous planes are popular now
for sport or military applications. It turns out that a plane can be flown
knowing only the horizon line. Assume that a camera has been installed
such that the direction of heading is the exact center of the image and that

542 Open Source Computer Vision Library Chapter 11

level flight corresponds to the horizontal image scan lines being tangent to
the earth’s curvature. It then turns out that knowing the horizon line is
enough to fly the plane. The angle of the horizon line is used for roll control
and the perpendicular distance from the line to the center of the image tells
the pitch of the plane.

All we need then is a fast, robust way of finding the horizon line. A
simple heurstic for finding this line was developed by Scott Ettinger [20].
Basically, we find the line through the image that minimizes the variance
on both sides of the line (sky is more like sky than ground and vice versa).
This may be simply done every frame by creating an image pyramid (in
manual section M2) of the aerial scene. On a much reduce scale image find
the variance above and below the horizontal line through the center of the
image using image (Array) statistics (M1). We then systematically move
and rotate the line until variance is minimized on both sides of the line. We
can then advance to a larger or full scale to refine the line angle and location.
Note that every time we move the line, we need not re-calculate the variance
from scratch. Rather, as points enter a side, their sum is added to that sides
variance and lost points are subtracted.
OCR The Hough transform (HoughLines) for lines in manual section M2 can
be used to find the dominant orientation of text on a page. The machinery
used for statistically boosted face finding described in M7 could also be used
for either finding individual letters, or finding and recognizing the letters.
The Russian team created extremely fast letter recognition by thresholding
letters, finding contours (cvFindContours M2), simplifying the contours rep-
resenting the contours as trees of nested regions and holes, and matching the
trees as described in the Contour Processing Functions in M3.

The author has had quite good results from using the embedded Hidden
Markov Model recognition techniques described in manual section M5 on
text data. There are demos for both these routines (but applied to faces not
text) included in the apps directory of OpenCV.

11.2.3 Demos and Samples

The demo applications that ship with OpenCV are:

CamShiftDemo, cvcsdemo

This is a statistically robust probability distribution mode tracker. It is
based on making the tracking window of the mean shift algorithm dynamic
– this supports visual objects that can resize themselves by moving within
he visual field. But due to this, if your probability distributions are not

Section 11.2. Functional Groups: What’s Good for What 543

compact (e.g. if they diffuse all over the image), CamShift will not work and
you should switch to just Meanshift. For the demo, the distribution that
CamShift tracks is just the probability of color that you selected from the
video stream of images.

CamShiftDemo is the same as cvcsdemo, just using a tcl interface.

LKDemo, cvlkdemo

This is a real time Lucas-Kanade in image pyramid tracking demo. Note
that Lucas-Kanade is a window based tracker and windows are ambiguous
at object boundaries. Thus, windows on a boundary may tend to slide or
stick to the the background or foreground interior. The LKDemo is the same
as cvlkdemo, the later just uses a tcl interface.

HaarFaceDetect, HaarTraining

This is a slight modification to Viola-Jones AdaBoost Face detector which
used Haar type waveletts as weak feature detectors. Training code (but
not the raw face database), trained parameters and working real time face
detection are included here.

Hawk

Hawk is a window based interactive C scripting system for working with
OpenCV functions. It uses EiC interpretive C as its engine – some of High-
GUI grew out of this. See other interfaces, Section 11.5 below for what has
replaced this earlier interface.

HMMDemo

This is a working HMM based face detection demo complete with a sample
database to train on2. This demo has HMMs across the face feeding into a
vertical HMM down the face which makes the final decision. You may add to
the database by live camera. The HMM technique works well except we give
it uniform priors (uniformly cut up the image) to initialize training. If faces
are not precisely aligned, the facial features will be blurred. This structural
blurring leaves lighting as a stronger, though accidental, feature and so this
application tends to be lighting sensitive. Putting in actual eye, nose, mouth
priors into the model would probably minimize lighting dependence, but we
have not tried this yet.

2Some early members of the Russian OpenCV development team form the training
database images.

544 Open Source Computer Vision Library Chapter 11

StereoDemo

This is a console-based stereo depth calculation application that uses cvcam
for video capture and highgui for displaying the images. See the readme file
in ...\apps \StereoDemo for how to run this application. You will need two
USB cameras that are compatible with DirectShow that can run together.
Creative WebCam is an example of such a camera. Two different cameras
might be also OK.

This application allows automatic calibration of the cameras via tracking
a checkerboard and then running to develop the disparity/depth image.

Tracker3dDemo

This demo uses 2 or more cameras calibrated together to track blobs in 3D.

VMDemo, vmdemotk

This demo, complete with sample images in the Media subdirectory uses the
epipolar lines between two calibrated views to morph (interpolate) camera
views anywhere between two views of an object. VMDemo and vmdemotk
are the same except that the later uses tcl and the former uses direct show
filters.

Sample Code

On the Windows install, the sample code can be found at:
C:\Program Files\OpenCV\samples\c. The same directory also contains
some test images that the some of the sample code operates on.

The sample codes are just simple examples of use of the following rou-
tines:

squares.c -- Uses contours to find colored rotated squares.
pyramid_segmentation.c -- Uses image pyramids for color segmentation.
motempl.c -- Using motion templates to track motion
morphology.c -- Uses morphological operators.
laplace.c -- Use of laplace operator on image.
kmeans.c -- Find clusters by K-Means algorithm.
kalman.c -- Track by the Kalman filter.
fitellipse.c -- Best fit of ellipse to data.
ffilldemo.c -- Use of flood fill.
facedetect.c -- Uses AdaBoost based face detector.
edge.c -- Uses Canny operator to edges in an image.
drawing.c -- Demos the drawing functions.
distrans.c -- Demos the distance transform function.
DemHist.c -- Demos use of several of the Histogram functions.

Section 11.3. Pictorial Tour 545

Figure 11.2. M1: Contour Tree. A binary image may described as a nested series
of regions and holes. Used with permission from [5, 6]

delaunay.c -- Performs Delaunay triangulation of an image.
convexhull.c -- Finds convex hull of a set of points.

11.3 Pictorial Tour

This section displays selected pictorial examples of some of the functions in
OpenCV.

11.3.1 Functional Groups

Manual section M1

This manual functional group contains static structures, image and array
creation and handling, array and image arithmetic and logic, image and
array statistics and many dynamic structures. Trees are one structure and
as an example, a binarized image may be described in a tree form as a nested
series of regions and holes as shown in figure 11.2. Such trees may be used
for letter recognition for example.

Manual section M2

This functional group contains the basic image processing operations. For
example, the Canny edge detector allows one to extract lines one pixel thick.
The input is shown in figure 11.3 and the output is shown in figure 11.4.

Morphological operators, used to clean up and isolate parts of images are
used quite a bit in machine and computer vision. The most basic operations
are dilation (growing existing clumps of pixels) and erosion (eating away at

546 Open Source Computer Vision Library Chapter 11

Figure 11.3. M2: Canny edge detector example input. Used with permission
from [5, 6]

Figure 11.4. M2: Canny edge detector example output. Used with permission
from [5, 6]

existing clumps of pixels). To do this, one uses a morphological kernel that
has a “control point” and a spatial extent as shown in figure 11.5.

Figure 11.5 shows morphology in 2D. Morphology can also be used in
higher dimensions such as considering image brightness or color values as a
surface in 3D. Morphological erode and dilate can be combined in different
ways such as to “close” an object by dilation followed by erode, or “open”
which erodes followed by dilation. Gradients and bump removal or isolation
can also be done as shown in figures 11.6 and 11.7.

The types of thresholding operations that OpenCV supports are graphi-
cally portrayed in figure 11.8

For computer vision, sensing at different resolutions is often necessary.

Section 11.3. Pictorial Tour 547

Figure 11.5. M2: Morphological kernel with control point and extent and exam-
ples of how it grows (dilates) and shrinks (erodes) pixel groups in an image. Used
with permission from [5, 6]

Figure 11.6. M2: Morphological examples. Used with permission from [5, 6]

548 Open Source Computer Vision Library Chapter 11

Figure 11.7. M2: More morphological examples. Used with permission from [5, 6]

Figure 11.8. M2: OpenCV image threshold options. Used with permission
from [5, 6]

Section 11.3. Pictorial Tour 549

Figure 11.9. M2: Scale and Laplacian image pyramids. Used with permission
from [5, 6]

OpenCV comes with an image pyramid or Laplacian pyramid function as
shown in figure 11.9.

Flood fill is a graphics operator that is also used in computer vision for
labeling regions as belonging together. OpenCV’s floodfill can additionally
fill upwards or downwards. Figure 11.10 shows an example of flood filling.

In addition to Canny edge detector, one often wants to find dominant
straight lines in an image even if there might be discontinuities in those lines.
The Hough transform is a robust method of finding dominant straight lines
in an image. In figure 11.11 we have the raw image of a building and figure
11.12 shows the dominant lines found by the Hough transform.

The final example we’ll show from chapter M2 is Borgefors’ distance
transform [7]. The distance transform calculates the approximate distance
from every binary image pixel to the nearest zero pixel. This is shown in

550 Open Source Computer Vision Library Chapter 11

Figure 11.10. M2: OpenCV FloodFill. Used with permission from [5, 6]

Figure 11.11. M2: Hough transform raw image. Used with permission from [5, 6]

Section 11.3. Pictorial Tour 551

Figure 11.12. M2: Lines found by the Hough transform for lines. Used with
permission from [5, 6]

Figure 11.13. M2: Distance transform raw image. Used with permission from [5,
6]

figures 11.13 and 11.14 where the raw image is thresholded and distance
transformed.

Manual section M3

The contour processing functions can be used to turn binary images into
contour representations for much faster processing. The contours may be
simplified and shapes recognized by matching contour tress or by Maha-
lanobis techniques. This is depicted in figure 11.15 for a text recognition
application.

552 Open Source Computer Vision Library Chapter 11

Figure 11.14. M2: Distance transform. Used with permission from [5, 6]

Figure 11.15. M3: Contour recognition for OCR. Contours are found, simplified
and recognized. Used with permission from [5, 6]

Manual section M4

This section supports motion analysis and object tracking. The first thing
supported is background segmentation. Using running averages for means
and variances, the background may be learned in the presence of moving
foreground and shown in sequence in figure 11.16.

Once background-foreground segmentation has been accomplished in a
frame, one can use the Motion History Image (MHI) functions to group and
track motions. cvUpdateMotionHistory creates an MHI representation by
overlaying foreground segmentations one over another with a floating point

Section 11.3. Pictorial Tour 553

Figure 11.16. M4: Learning the background in the presence of moving foreground
and segmenting the two. Used with permission from [5, 6]

554 Open Source Computer Vision Library Chapter 11

Figure 11.17. M4: The smaller circles and lines are segmented motion of limbs,
the larger circle and line is global motion. The final frame uses outer contour based
shape recognition to recognize the pose. Used with permission from [5, 6]

value equal to the system time stamp in mili-seconds. From there, gradients
(cvCalcMotionGradient) of the MHI can be used to find the global motion
(cvCalcGlobalOrientation), flood filling can segment out local motions
(cvSegmentMotion). Contours of the most recent foreground image may be
extracted and compared to templates to recognize poses (cvMatchShapes).
Figure 11.17 shows from left to right a downward kick, raising arms, lowering
arms and recognizing a “T” pose. The smaller circles and lines are segmented
motion of limbs, the larger circle and line is global motion.

CAMSHIFT (Continuously Adapting Mean-Shift) algorithm described in
[11] uses statistically robust probability mode tracker (Mean-Shift) algorithm
to track the mode of visual probability distributions, in this case flesh as
shown in figure 11.18.

Snakes are a classic boundary tracking algorithm based on smoothed
gradient energy minimization seen in figure 11.19.

Manual section M5

There are two recognition functions in this manual section: Eigen objects
and embedded hidden Markov models. For Eigen objects, If you think of an

Section 11.3. Pictorial Tour 555

Figure 11.18. M4: CAMSHIFT – adaptive window based tracking of the mode
of a probability distribution, in this case, probability of flesh. Used with permission
from [5, 6]

Figure 11.19. M4: Snake based tracking. Used with permission from [5, 6]

556 Open Source Computer Vision Library Chapter 11

Figure 11.20. M5: Eigen idea – explain most of the variance in a lower dimension.

image as a point in a huge dimensional space (one dimension per pixel), then
it seems reasonable that similar objects will tend to cluster together in this
space. Eigen objects takes advantage of this by creating a lower dimensional
space “basis” that captures most of the variance between these objects as
depicted in figure 11.20 with a face image basis depicted at bottom. Once
a basis has been learned , we can perform face recognition by projecting a
new face into the face basis and selecting the nearest existing face as being
the same person with confidence proportional to the distance (Mahalanobis
distance) from the new face. Figure 11.21 shows a recognition example using
this basis.

Another object recognition technique is based on nested layers of Hidden
Markov Models (HMMs) [31]. Horizontal HMMs look for structure across
the face and then feed their scores into an HMM that goes vertically down
the face as shown at left in figure 11.22. This is called an embedded HMM
(eHMM). At right in the figure is the default initialization for the eHMM
to start its viterbi training. Figure 11.23 shows the training and recognition
process using eHMMs.

Section 11.3. Pictorial Tour 557

Figure 11.21. M5: Eigen face recognition example. Used with permission from [5,
6]

Figure 11.22. M5: Embedded HMM for recognition. On left, the horizontal-
>vertical HMM layout, on the right is the default initialization for the HMM states.
Used with permission from [5, 6]

558 Open Source Computer Vision Library Chapter 11

Figure 11.23. M5: Training and recognition using an embedded HMM. Used with
permission from [5, 6]

Manual section M6

Functions in this section are devoted to camera calibration, image rectifica-
tion and 3D tracking. We start with a function that helps track corners in a
calibration checkerboard cvFindChessBoardCornerGuesses which is shown
in operation in figure 11.24.

When a sequence of calibration points has been tracked,
cvCalibrateCamera_64d can be used to extract camera calibration param-
eters. One may then use these results to un-distort a lens as shown in figure
11.25.

After calibration, one may track a calibration checkerboard and use it
to determine the 3D location of the checkerboard in each frame. This may
be used for game control as shown in figure 11.26. OpenCV also includes
support for tracking arbitrary non-planar objects using the POSIT (Pose
Iteration) algorithm which iterates between weak perspective (3D objects
are 2D planes sitting at different depths) and strong perspective (objects

Section 11.3. Pictorial Tour 559

Figure 11.24. M6: Tracking a calibration checkerboard. Used with permission
from [5, 6]

560 Open Source Computer Vision Library Chapter 11

Figure 11.25. M6: Raw image at top, un-distorted image at bottom after cali-
bration. Used with permission from [5, 6]

Section 11.4. Programming Examples Using C/C++ 561

are 3D) interpretation of points on objects. With mild constraints, POSIT
rapidly converges to the true 3D object pose which may also be used to track
3D objects.

Not shown here, but in the experimental manual section M7 are functions
that further use calibrated cameras for stereo vision and 3D Modeling. We
next pictorially describe some of the demos that ship with OpenCV.

11.3.2 Demo Tour

This subsection shows some images of some of the demos that ship with
OpenCV. Not shown is our version [28] of the Viola-Jones face tracker [40],
and also not shown is the 2-video camera stereo demo. Shown below are
screen shots of the Calibration demo and the control screen for the multiple
camera 3D tracking experimental demo in figure 11.27. Also shown are color
based tracking using CAMSHIFT, Kalman Filter and Condensation in figure
11.28. Figure 11.29 shows the HMM based face recognition demo (also good
for letter recognition) and finally optical flow in figure 11.30.

11.4 Programming Examples Using C/C++

Windows setup tips:

To get programs to compile in MSVC++, there are some things you must
do.

– release or debug mode. MSVC++ can make either release or debug
code. OpenCV ships with only release code (you can build debug
yourself). If a link error comes up requesting “cvd.lib” you are in
debug mode. Go to the Build menu, select Set Active Configuration
and set it to release code.

– Include and Library file paths must be set. Go to the Tools menu,
select Options. Click on the Directories tab. Under “Show Directories
for”, select Include files. Set the include path for

C:\Program Files\OpenCV\cv\include
C:\Program Files\OpenCV\cvaux\include
C:\Program Files\OpenCV\otherlibs\cvcam\include
C:\Program Files\OpenCV\otherlibs\highgui

Next, select Library files and set the path for C:\Program Files\OpenCV\lib.

– To avoid “unreferenced” function errors in link, go to Project, select
Settings and click on the Link tab. Under “Object/library modules”
add cv.lib cvcam.lib highgui.lib.

562 Open Source Computer Vision Library Chapter 11

Figure 11.26. M6: Tracking a 3D object for game control. Used with permission
from [5, 6]

Section 11.4. Programming Examples Using C/C++ 563

Calibration Demo:

Multi-Camera 3D Tracking:

Figure 11.27. Demos: Automatic checkerboard tracking for camera calibration
above and control screen for multiple camera 3D below. Used with permission
from [5, 6]

564 Open Source Computer Vision Library Chapter 11

Condensation Particle Filter Based Tracking:

Kalman Filter Based Tracking:

CAMSHIFT Based Tracking:

Figure 11.28. Demos: From top to bottom, CAMSHIFT tracking, Kalman Filter
and Condensation. Used with permission from [5, 6]

Section 11.4. Programming Examples Using C/C++ 565

Figure 11.29. Demos: Embedded HMM based face recognition. Used with
permission from [5, 6]

Figure 11.30. Demos: Lucas-Kanada in pyramid optical flow demo. Used with
permission from [5, 6]

566 Open Source Computer Vision Library Chapter 11

– Finally, make sure the windows path has C:\Program Files\OpenCV\bin
in it and that you’ve run RegisterAll.bat there at least once.

11.4.1 Read Images from Disk

The program below reads an image from disk (either from the command
line or “Mface.jpg” by default) and performs pyramid based color region
segmentation controlled by two interactive sliders. The input and output
along with slider controls is shown in figure 11.31.

#ifdef _CH_
#pragma package <opencv>
#endif

#ifndef _EiC
#include "cv.h"
#include "highgui.h"
#include <math.h>
#endif
IplImage* image[2] = { 0, 0 }, *image0 = 0, *image1 = 0;
CvSize size;
int w0, h0,i;
int threshold1, threshold2;
int l,level = 4;
int sthreshold1, sthreshold2;
int l_comp;
int block_size = 1000;
float parameter;
double threshold;
double rezult, min_rezult;
CvFilter filter = CV_GAUSSIAN_5x5;
CvConnectedComp *cur_comp,min_comp;
CvSeq *comp;
CvMemStorage *storage;
CvPoint pt1, pt2;

void ON_SEGMENT(int a) {
cvPyrSegmentation(image0, image1, storage, &comp,

level, threshold1, threshold2);
l_comp = comp->total;
i = 0;
min_comp.value = 0;
while(i<l_comp)
{

cur_comp = (CvConnectedComp*)cvGetSeqElem (comp, i, 0);

Section 11.4. Programming Examples Using C/C++ 567

if(fabs(CV_RGB(255,0,0)- min_comp.value)>
fabs(CV_RGB(255,0,0)- cur_comp->value))
min_comp = *cur_comp;

i++;
}
cvShowImage("Segmentation", image1);

}

int main(int argc, char** argv) {
char* filename = argc == 2 ? argv[1] : (char*)"Mface.jpg";
if((image[0] = cvLoadImage(filename, 1)) == 0)

return -1;
cvNamedWindow("Source", 0);
cvShowImage("Source", image[0]);
cvNamedWindow("Segmentation", 0);
storage = cvCreateMemStorage (block_size);
image[0]->width &= -(1<<level);
image[0]->height &= -(1<<level);
image0 = cvCloneImage(image[0]);
image1 = cvCloneImage(image[0]);
// segmentation of the color image
l = 1;
threshold1 =255;
threshold2 =30;
ON_SEGMENT(1);
sthreshold1 = cvCreateTrackbar("Threshold1", "Segmentation",

&threshold1, 255, ON_SEGMENT);
sthreshold2 = cvCreateTrackbar("Threshold2", "Segmentation",

&threshold2, 255, ON_SEGMENT);
cvShowImage("Segmentation", image1);
cvWaitKey(0);
cvDestroyWindow("Segmentation");
cvDestroyWindow("Source");
cvReleaseMemStorage(&storage);
cvReleaseImage(&image[0]);
cvReleaseImage(&image0);
cvReleaseImage(&image1);
return 0;

}
#ifdef _EiC main(1,"pyramid_segmentation.c");
#endif

568 Open Source Computer Vision Library Chapter 11

Figure 11.31. Program: Pyramid Segmentation input, output. Used with per-
mission from [5, 6]

11.4.2 Read AVIs from Disk, or Video from a Camera

The following code example shows how to read an AVI movie from a disk,
and how to get images directly from the video camera.

#ifdef _CH_
#pragma package <opencv>
#endif

#ifndef _EiC
#include "cv.h"
#include "highgui.h"
#include
<ctype.h>
#endif

int main(int argc, char** argv) {
CvCapture* capture = 0;

if(argc == 1 || (argc == 2 && strlen(argv[1]) == 1 &&
isdigit(argv[1][0])))
capture = cvCaptureFromCAM(argc == 2 ? argv[1][0] - ’0’ : 0);

else if(argc == 2)
capture = cvCaptureFromAVI(argv[1]);

if(capture)
{

Section 11.4. Programming Examples Using C/C++ 569

IplImage* gray = 0;
IplImage* laplace = 0;
IplImage* colorlaplace = 0;
IplImage* planes[3] = { 0, 0, 0 };
cvNamedWindow("Laplacian", 0);
for(;;)
{

IplImage* frame = 0;
int i;
if(!cvGrabFrame(capture))

break;
frame = cvRetrieveFrame(capture);
if(!frame)

break;
if(!gray)
{

for(i = 0; i < 3; i++)
planes[i] = cvCreateImage(

cvSize(frame->width,frame->height), 8, 1);
laplace = cvCreateImage(cvSize(frame->width,frame->height),

IPL_DEPTH_16S, 1);
colorlaplace = cvCreateImage(cvSize(frame->width,

frame->height), 8, 3);
}
cvCvtPixToPlane(frame, planes[0], planes[1], planes[2], 0);
for(i = 0; i < 3; i++)
{

cvLaplace(planes[i], laplace, 3);
cvConvertScaleAbs(laplace, planes[i], 1, 0);

}
cvCvtPlaneToPix(planes[0], planes[1], planes[2], 0,

colorlaplace);
colorlaplace->origin = frame->origin;
cvShowImage("Laplacian", colorlaplace);
if(cvWaitKey(10) >= 0)

break;
}
cvReleaseCapture(&capture);

}
cvDestroyWindow("Laplacian");
return 0;

}
#ifdef _EiC
main(1,"laplace.c");
#endif

570 Open Source Computer Vision Library Chapter 11

11.5 Other Interfaces

There are other ways to “talk” to OpenCV beyond compiled C. We detail
three main methods below: Ch, Matlab and Lush.

11.5.1 Ch

What is Ch?

Ch is a superset of C interpreter. It is designed for cross- platform scripting,
2D/3D plotting and numerical computing. Ch was originally designed and
implemented by Harry H. Cheng [16]. It has been further developed and
maintained by SoftIntegration, Inc. [15, 25]

Ch supports 1999 ISO C Standard (C99), classes in C++, POSIX, X11/Motif,
OpenGL, ODBC, XML, GTK+, Win32, CGI, 2D/3D graphical plotting,
socket/Winsock, C LAPACK, high level numeric functions, and shell pro-
gramming.

The extensions in Ch provide the simplest possible solution for numeri-
cal computing and visualization in C/C++ domain. Ch can interface with
C/C++ binary libraries and be embedded in other application programs and
hardware.

What is Ch OpenCV Package

Ch OpenCV package is Ch binding to OpenCV. Ch OpenCV package is
included in the distribution of OpenCV. With Ch OpenCV, C (or C++)
programs using OpenCV C functions can readily run in Ch without compila-
tion. Both Ch Standard/Professional/Student Edition and OpenCV runtime
library are needed to run Ch OpenCV.

Contents of Ch OpenCV Package

Ch OpenCV package contains the following directories

1. OpenCV - Ch OpenCV package

– OpenCV/demos — OpenCV demo programs in C readily to run
in Ch

– OpenCV/bin — OpenCV dynamical library and commands

– OpenCV/dl — dynamically loaded library

– OpenCV/include — header files

– OpenCV/lib — function files

Section 11.5. Other Interfaces 571

2. Devel - Files and utilities used to build Ch OpenCV package using
native C compiler and Ch SDK

– Devel/c — chdl.c C wrappers and Makefile’s

– Devel/createchf — bare OpenCV headers

– Devel/include — Ch OpenCV-specific include files

Where to get Ch and Setup Ch OpenCV

Ch OpenCV can be installed in your computer following instruction below.
Here we assume <CHHOME> is the directory where Ch is installed, for
example if Ch is installed in C:/Ch, then C:/Ch should be used instead of
<CHHOME>. We also assume <OPENCV HOME> is the directory where
OpenCV is installed. For example, if OpenCV is installed in C:/Program
Files/OpenCV, then <OPENCV HOME> should also be substituted by
C:/Program Files/OpenCV.

1. If Ch has not been installed in your computer, download and install
Ch from http://www.softintegration.com

2. Move the directory OpenCV to <CHHOME>/package/opencv.
<CHHOME>/package/opencv becomes the home directory of
CHOPENCV HOME for Ch OpenCV package. If you do not want
to move the directory, you should add a new path to the system
variable ppath for package path by adding the following statement
in system startup file <CHHOME> /config/chrc or individual user’s
startup file chrc in the user’s home directory ppath = stradd(ppath,
“<OPENCV HOME> /interfaces/ch;”); <OPENCV HOME> /inter-
faces/ch/ opencv becomes the home directory CHOPENCV HOME
for Ch OpenCV package.

3. Add the system variable ipath in system startup file indicated in the
previous step by adding the following statement. ipath = stradd(ipath,
“<CHOPENC V HOME> /include;”); This step will not be necessary
if the following code fragment is in application programs.

#ifdef _CH_
#pragma package <opencv>

#endif

572 Open Source Computer Vision Library Chapter 11

Run Demo Programs in Directory demos:

1. start ch

2. type program name such as ’delaunay.c’

Update Ch OpenCV Package for Newer Versions of OpenCV

As discussed above how to integrate Ch and OpenCV, the update of Ch
OpenCV package for newer versions of OpenCV can be done as follows:

(1) Install Ch SDK from http://www.softintegeration.com.

(2) Go to ./Devel subfolder and run update_ch.ch that does the
following:
+ Copies headers from <OPENCV_HOME>/cv/include and
<OPENCV_HOME>/otherlibs/highgui to Devel/include subfolder

+ Generates Devel/createchf/*.h files containing bare
function lists

+ Processes each function list with c2chf
+ Moves *.chf files generated by c2chf to ./OpenCV/lib
subfolder and *_chdl.c files to ./Devel/c/<libname>

+ Removes automatically generated wrappers that have
manually created counterparts in *_chdl.c.

+ Builds .dl files using Ch SDK and places them to
./OpenCV/dl

+ Copies OpenCV DLLs to bin subfolders
+ Copies C samples from <OPENCV_HOME>/samples/c to
./OpenCV/demos

(3) Copy the resultant folder ./OpenCV which contains Ch
OpenCV package to <CHHOME>/package/OpenCV

Programming example

Below is an example called morphology.c. In this example, functions cvErode()
and cvDilate() are called. The prototypes of functions are as follows.

void cvErode(const CvArr* sourceImg, CvArr* DestImg,
IplConvKernel*, int iterations);

void cvDilate(const CvArr* sourceImg, CvArr* DestImg,
IplConvKernel* B, int iterations);

Section 11.5. Other Interfaces 573

These two functions perform erosion and dilation on a source image,
respectively. Parameter B is a structuring element that determines the shape
of a pixel neighborhood over which the minimum is taken. If it is NULL, a 33
rectangular structuring element is used. Parameter iterations is the number
of times erosion is applied. Four callback functions Opening(), Closing(),
Erosion(), Dilation() were declared in this example. For function Opening(),
it will carry out erosion first, then dilation. But for Closing(), it goes the
opposite way. Function Erosion() and Dilation() perform only erosion and
dilation, respectively. The source code of program morphology.c is listed as
follow:

#ifdef _CH_
#pragma package <opencv>
#endif

#include <cv.h>
#include <highgui.h>
#include <stdlib.h>

#include <stdio.h>

//declare image object
IplImage* src = 0; IplImage* image = 0; IplImage* dest = 0;

//the address of variable which receives trackbar position update
int pos = 0;

//callback function for slider, implements opening
void Opening(int id) {

id;
cvErode(src,image,NULL,pos);
cvDilate(image,dest,NULL,pos);
cvShowImage("Opening&Closing window",dest);

}

//callback function for slider, implements closing
void Closing(int id) {

id;
cvDilate(src,image,NULL,pos);
cvErode(image,dest,NULL,pos);
cvShowImage("Opening&Closing window",dest);

}

//callback function for slider, implements erosion
void Erosion(int id) {

id;

574 Open Source Computer Vision Library Chapter 11

cvErode(src,dest,NULL,pos);
cvShowImage("Erosion&Dilation window",dest);

}

//callback function for slider, implements dilation
void Dilation(int id) {

id;
cvDilate(src,dest,NULL,pos);
cvShowImage("Erosion&Dilation window",dest);

}

int main(int argc, char** argv) {
char* filename = argc == 2 ? argv[1] : (char*)"baboon.jpg";
if((src = cvLoadImage(filename,1)) == 0)

return -1;

//makes a full copy of the image including header, ROI and data
image = cvCloneImage(src);
dest = cvCloneImage(src);

//create windows for output images
cvNamedWindow("Opening&Closing window",1);
cvNamedWindow("Erosion&Dilation window",1);

cvShowImage("Opening&Closing window",src);
cvShowImage("Erosion&Dilation window",src);

cvCreateTrackbar("Open","Opening&Closing window",&pos,10,Opening);
cvCreateTrackbar("Close","Opening&Closing window",&pos,10,Closing);
cvCreateTrackbar("Dilate","Erosion&Dilation window",&pos,10,Dilation);
cvCreateTrackbar("Erode","Erosion&Dilation window",&pos,10,Erosion);

cvWaitKey(0);
//releases header and image data
cvReleaseImage(&src);
cvReleaseImage(&image);
cvReleaseImage(&dest);
//destroys windows
cvDestroyWindow("Opening&Closing window");
cvDestroyWindow("Erosion&Dilation window");

return 0;
}

Section 11.5. Other Interfaces 575

Figure 11.32. Interface CH: Raw image and after 8 dilations.

Results are shown in figure 11.32. On the left in figure 11.32 is the
original image, at right is the image after dilation. The dilation iterations
was set to 8.

11.5.2 Matlab

After installing OpenCV, you’ll find the Matlab interface at C:/Program
Files/ OpenCV/interfaces/matlab. These are source and executables for
MATLAB wrappers for OpenCV.

To install wrappers, set path in the MATLAB to the “toolbox/opencv”
subfolder of this folder and, optionally, to “toolbox/opencv/demos” sub-
folder. Wrappers for OpenCV functions can be run in two ways:
cvwrap(’<FunctionName>’, parameters) where FunctionName is opencv func-
tion without cv prefix, or just use cvFunctionName(parameters).

To build matlab wrappers you need to add the<matlab folder>/extern/include
folder to include path (within Developer Studio) and<matlab folder>/extern/lib
/win32; <matlab folder>/extern/lib/win32/microsoft/msvc60 folders to lib
path.

Contents of Matlab OpenCV Package

As of this writing, the interface is not complete and we welcome more mex
file contributions. At this time the interface has:

576 Open Source Computer Vision Library Chapter 11

cvadaptivethreshold.m
cvapproxpoly.m
cvcalcopticalflowpyrlk.m
cvcanny.m
cvcontourarea.m
cvcontourboundingrect.m
cvcontourperimeter.m
cvdilate.m
cvdisttransform.m
cvdrawcontours.m
cverode.m
cvfindcontours.m
cvfloodfill.m
cvgoodfeaturestotrack.m
cvlaplace.m
cvmatchtemplate.m
cvminmaxloc.m
cvprecornerdetect.m
cvpyrdown.m
cvpyrup.m
cvsobel.m
cvthreshold.m
cvupdatemotionhistory.m
cvwrap.dll -- the mex wrapper

The demo directory contains:

’Canny Demo’, ’cannydemo’
’Contour Demo’, ’contdemo’
’Flood Fill Demo’, ’filldemo’
’Optical Flow Demo’, ’flowdemo’

Programming example

Matlab is perhaps the tersest programming language. The code below runs
the Canny edge detector with (low,high) thresholds set to (120,200) with
resulting input/output shown in figure 11.33.

I = imread(’Clone.jpg’); %Read in an image
C = cvcanny(I(:,:,2), 120,200,3); %Apply canny with thresholds (Low,High)

%(120,200), sobel size 3
imshow(C); %Show the image
imwrite(C,’CloneCanny.bmp’,’bmp’); %Save image

Section 11.5. Other Interfaces 577

Figure 11.33. Interface Matlab: Left image is the input, right image is after
running Canny on it with low/high threholds 120/200. .

11.5.3 Lush

For Linux and Unix systems, Yann LeCun and Leon Bottou developed
Lush [29], an object-oriented programming language with a simplified Lisp-
like syntax where C may be mixed freely with simple Lisp. Lush is intended
for researchers, experimenters, and engineers interested in large-scale numer-
ical and graphic applications.

Lush is Free Software (under the GPL license) and runs on GNU/Linux,
Solaris, and Irix. They claim a few days learning curve or your money back.

Main features are:

– A very clean, simple, and easy to learn Lisp-like syntax.

– A compiler that produces very efficient C code and relies on the C compiler
to produce efficient native code (no inefficient bytecode or virtual machine).

– An easy way to interface C functions and libraries, and a powerful dynamic
linker/loader for object files or libraries (.o, .a and .so files) written in other
compiled languages.

– The ability to freely mix Lisp and C in a single function.

– A powerful set of vector/matrix/tensor operations.

– A huge library of over 10,000 numerical routines, including full interfaces to
GSL, LAPACK, and BLAS.

– A library of image and signal processing routines.

578 Open Source Computer Vision Library Chapter 11

– An extensive set of graphic routines, including an object-oriented GUI toolkit,
an interface to OpenGL/GLU/GLUT, and a soon-to-be-available interface to
the OpenInventor scene rendering engine.

– An interface to the Simple Directmedia Layer (SDL) multimedia library, in-
cluding a sprite class with pixel-accurate collision detection.

– Sound and video grabbing (using ALSA and Video4Linux).

– Several libraries for machine learning, neural net, statistical estimation, Hid-
den Markov Models (gblearning, Torch, HTK).

– libraries for computer vision (Intel Vision Library), and 3D scene rendering
(OpenInventor, available soon).

– bindings to the JavaVM API and to the Python C API (available soon).

Lush is geared towards research and development in signal processing,
image processing, machine learning, computer vision, bio-informatics, data
mining, statistics, simulation, optimization, and artificial intelligence.

11.6 Appendix A

OpenCV has a “BSD” style license that basically allows royalty free com-
mercial and research use subject to citation of the library. In particular, you
may use it in a for profit product without the need to open your product to
others. The license is as follows:

By downloading, copying, installing or using the software you
agree to this license. If you do not agree to this license, do not
download, install, copy or use the software.

Intel License Agreement
For Open Source Computer Vision Library

Copyright (C) 2000, 2001, Intel Corporation, all rights reserved.
Third party copyrights are property of their respective owners.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistribution’s of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistribution’s in binary form must reproduce the above

Section 11.7. Appendix B 579

copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* The name of Intel Corporation may not be used to endorse or
promote products derived from this software without specific
prior written permission.

This software is provided by the copyright holders and
contributors ‘‘as is’’ and any express or implied warranties,
including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose are
disclaimed. In no event shall the Intel Corporation or
contributors be liable for any direct, indirect, incidental,
special, exemplary, or consequential damages (including, but not
limited to, procurement of substitute goods or services; loss of
use, data, or profits; or business interruption) however caused
and on any theory of liability, whether in contract, strict
liability, or tort (including negligence or otherwise) arising in
any way out of the use of this software, even if advised of the
possibility of such damage.

11.7 Appendix B

Partial “thank you” list for OpenCV:

Original OpenCV committee (vision, functionality proposals etc.):

Dr. Gary Bradski, Vadim Pisarevsky
Prof. Trevor Darrell
Prof. Irfan Essa
Prof. Jitendra Malik
Prof. Pietro Perona
Prof. Stan Sclaroff
Prof. Carlo Tomasi

People who helped to make OpenCV real (if you noticed some names
are missing, please mail to vadim.pisarevsky@intel.com)
--
Name Company (time of Remarks

contribution/
cooperation)

Alekseev, Aleksey Intel Corp. IppCV testing
Boldyrev, Sergey Intel Corp. rpm spec, linux makefiles

580 Open Source Computer Vision Library Chapter 11

Breen, Ed ??? EiC intepreter
Devernay, Frederic INRIA (?) cvcam patch (Linux version)
Don Murray PointGrey PointGrey SDK and patches

for stereo gest. rec. code
Dubey, Premnath ??? cvcam patch (Windows vers.)
Halsall, Chris Open Source O-Reilly papers on OpenCV,

Solutions Inc. calibration app for Linux
patches for Linux version

Khamenya, Valery BioVisioN AG OpenCV CVS repository at
SourceForge

Rodyushkin, Konstantin Intel Corp. OpenCV to 3dFace
Schaefer, Dirk MD-Mathematische Original code for

Dienste GmbH Bayer->RGB pattern conv.
Veretennikov, Eugene Intel Corp. Testing, comp. geo. functs
Wayne W. Cheng SoftIntegration Ch C/C++ intepreter, OpenCV

Ch toolbox (proposal + SDK)
Muehlmann, Karsten Lehrstuhl fur Another stereo corresp.

Informatick V code (not included yet)
Bouguet, Jean-Yves Intel Calibration and 3D
Nefian, Ara Intel eHMM
Davies, Bob Intel Coding, test, user group
Grzeszczuk, Radek Intel Robust line fit

Active OpenCV forum participants (who helped us): Barbaresi,
Abramo Betti, Gabriele Cao, Ning Cawkwell, Jack Chen, Gen-Nan
Cheng, Michael Fritz, Frank Iannizotto, Giancarlo Lu, Le Kunz,
Clay Ming, Li Philomin, Vasanth Zayed, Mohamed Rocha, Jairo
Stewart, James Andr.

BUG reports:

Small, Daniel;
Carlos Andres Rocha;
Shavit, Adi;
Zivkovic, Zoran
and other people from OpenCV forum at www.yahoogroups.com

Bibliography

[1] Open source computer vision library (opencv) main page. Available at:
http://www.intel.com/research/mrl/research/opencv.

[2] Located at http://developer.intel.com/software/products/ipp/ippvm20/.
[3] Intel performance libraries. Located at

http://developer.intel.com/software/products/perflib/.
[4] Opencv user group. Located at: http://groups.yahoo.com/group/OpenCV/.

Bibliography 581

[5] Opencv course foilset. Located at: http://prdownloads.sourceforge.net/
opencvlibrary/CVPR01 course.zip?download.

[6] Opencv download site. Located at: http://sourceforge.net/projects/opencvlibrary/.
[7] G. Borgefors. Distance transformations in digital images. Computer Vision,

Graphics and Image Processing, pages 34, 344–371, 1986.
[8] J.-Y. Bouguet. Pyramidal implementation of the lucas kanade feature tracker.

The paper is included into OpenCV distribution (algo tracking.pdf), 2000.
[9] J.-Y. Bouguet and P. Perona. Camera Calibration from Points and Lines in

Dual-Space Geometry. Technical report, California Institute of Technology,
1998.

[10] J.-Y. Bouguet and P. Perona. Camera calibration from points and lines in the
reciprocal space. Submitted to European Conference on Computer Vision, 1998.

[11] G. Bradski. Computer vision face tracking as a component of a perceptual user
interface. IEEE WACV’98, included into OpenCV distribution (camshift.pdf),
1998.

[12] G. Bradski, J-Y. Bouguet, and V. Pisarevsky. Computer vision recipes with
opencv (working title). Springer. In Press, Winter 2003.

[13] G. Bradski and J. Davis. Motion segmentation and pose recognition with mo-
tion history gradients. IEEE WACV’00, pages 214–219, 2000.

[14] G. Bradski. The opencv library. Dr. Dobb’s Journal, pages 120–125, 2000.
[15] H.H. Cheng. The ch language environment user’s guide. SoftIntegration, Inc.

In http://www.softintegration.com, 2002.
[16] H.H. Cheng. Scientific computing in the ch programming language. Scientific

Programming, Vol. 2, No 3, pages 49–75, Fall, 1993.
[17] J. Davis and Bobick. The representation and recognition of action using tem-

poral templates. MIT Media Lab Technical Report, page 402, 1997.
[18] D.F. DeMenthon and L.S. Davis. Model-based object pose in 25 lines of code.

In Proceedings of ECCV ’92, pages pp. 335–343, 1992.
[19] A. Elgammal, D. Harwood, and L. Davis. Non-parametric model for background

subtraction. 6th European Conference of Computer Vision, 2000.
[20] S. M. Ettinger, M. C. Nechyba, P. G. Ifju, and M. Waszak. Vision-guided

flight stability and control for micro air vehicles. Proc. IEEE Int. Conference
on Intelligent Robots and Systems see http://www.mil.ufl.edu/ nechyba/mav/,
2002.

[21] Heikkila and Silven. A four-step camera calibration procedure with implicit
image correction. CVPR97, 1997.

[22] B.K.P. Horn and B.G. Schunck. Determining optical flow. Artificial Intelligence,
pages 17, pp. 185–203, 1981.

[23] M. Hu. Visual pattern recognition by moment invariants. IRE Transactions on
Information Theory, pages 8:2, pp. 179–187, 1962.

[24] J. Iivarinen, M. Peura, J. Srel, and A. Visa. Compari-
son of combined shape descriptors for irregular objects. 8th
British Machine Vision Conference, BMVC’97, online version at
http://www.cis.hut.fi/research/IA/paper/publications/bmvc97/bmvc97.html,
1997.

582 Open Source Computer Vision Library Chapter 11

[25] SoftIntegration Inc. The ch language environment sdk user’s guide.
http://www.softintegration.com, 2002.

[26] J. Matas, C. Galambos, and J. Kittler. Progressive probabilistic hough trans-
form. British Machine Vision Conference, 1998.

[27] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models.
International Journal of Computer Vision, pages pp. 321–331, 1988.

[28] A. Kuranov, R. Lienhart, and V. Pisarevsky. An empirical analysis of boosting
algorithms for rapid objects with an extended set of haar-like features. Technical
Report MRL-TR-July02-01, Intel Corporation, 2002.

[29] Y. LeCun and L. Bottou. Lush programing language.
http://lush.sourceforge.net/index.html, 2002.

[30] B. Lucas and T. Kanade. An iterative image registration technique with an
application to stereo vision. Proc. of 7th International Joint Conference on
Artificial Intelligence (IJCAI), pages 674–679, 1981.

[31] A. Nefian and M. Hayes. Hidden markov models for face recognition.
[32] Y. Rubner and C. Tomasi. Texture metrics. Proceeding of the IEEE Interna-

tional Conference on Systems, Man, and Cybernetics, San-Diego, CA, pages
pp. 4601–4607, October 1998.

[33] Y. Rubner, C. Tomasi, and L.J. Guibas. Metrics for distributions with ap-
plications to image databases. Proceedings of the 1998 IEEE International
Conference on Computer Vision, Bombay, India, pages pp. 59–66, January
1998.

[34] Y. Rubner, C. Tomasi, and L.J. Guibas. The earth mover’s distance as a
metric for image retrieval. Technical Report STAN-CS-TN-98-86, Department
of Computer Science, Stanford University, September 1998.

[35] B. Schiele and J.L. Crowley. Object recognition using multidimensional recep-
tive field histograms. In ECCV (1), pages 610–619, 1996.

[36] B. Schiele and J.L. Crowley. Recognition without correspondence using multi-
dimensional receptive field histograms. In International Journal of Computer
Vision, pages 36 (1), pp. 31–50, January 2000.

[37] J. Serra. Image analysis and mathematical morphology. Academic Press, 1982.
[38] M. J. Swain and D. H. Ballard. Color indexing. International Journal of

Computer Vision, Vol. 7, No. 1, pages 11–32, 1991.
[39] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers. Wallflower: Principles and

practice of background maintenance. ICCV’99, 1999.
[40] P. Viola and M. Jones. Robust real-time object detection. International Journal

of Computer Vision, 2002.
[41] G. Welch and G. Bishop. An introduction to the kalman filter. Technical Re-

port TR95-041, University of North Carolina at Chapel Hill. Online version is
available at http://www.cs.unc.edu/˜welch/kalman/kalman filter/kalman.html,
1995.

[42] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland. Pfinder: Real-
time tracking of the human body. Technical Report 353, MIT Media Lab-
oratory Perceptual Computing Section Technical Report, 1997, available at:
http://pfinder.www.media.mit.edu/projects/pfinder/.

Bibliography 583

[43] Z. Zhang. Parameter estimation techniques: A tutorial with application to
conic fitting. Image and Vision Computing Journal, 1996.

[44] Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions
on Pattern Analysis and Machine Intelligence, pages 22(11):1330–1334, 2000.

[45] Z. Zhang. Flexible camera calibration by viewing a plane from unknown ori-
entations. International Conference on Computer Vision (ICCV’99), Corfu,
Greece, pages 666–673, September 1999.

Chapter 12

SOFTWARE ARCHITECTURE
FOR COMPUTER VISION

Alexandre R.J. François

12.1 INTRODUCTION

This chapter highlights and addresses architecture level software develop-
ment issues facing researchers and practitioners in the field of Computer
Vision. A new framework, or architectural style, called SAI, is introduced.
It provides a formalism for the design, implementation and analysis of soft-
ware systems that perform distributed parallel processing of generic data
streams. The SAI style is illustrated with a number of Computer Vision
related examples. A code-level tutorial provides a hands-on introduction to
the development of image stream manipulation applications using MFSM,
an open source architectural middleware implementing the SAI style.

12.1.1 Motivation

The emergence of comprehensive code libraries in a research field is a sign
that researchers and practitioners are seriously considering and addressing
software engineering and development issues. In this sense, the introduction
of the Intel OpenCV library [2] certainly represents an important milestone
for Computer Vision. The motivation behind building and maintaining code
libraries is to address reusability and efficiency, by providing a set of “stan-
dard” data structures and implementations of classic algorithms. In a field
like Computer Vision, with a rich theoretical history, implementation issues
are often regarded as secondary to the pure research components outside

585

586 Software Architecture for Computer Vision Chapter 12

of specialty subfields, such as Real-Time Computer Vision (see e.g. [27]).
Nevertheless, beyond reducing development and debugging time, good code
design and reusability are key to such fundamental principles of scientific
research as experiment reproducibility and objective comparison with the
existing state of the art.

For example, these issues are apparent in the subfield of video process-
ing/analysis, which, due to the conjunction of technical advances in various
enabling hardware performance (including processors, cameras and storage
media) and high priority application domains(e.g. visual surveillance [3]),
has recently become a major area of research. One of the most spectacular
side effects of this activity is the amount of test data generated, an impor-
tant part of which is made public. The field has become so rich in analysis
techniques that any new method must almost imperatively be compared to
the state-of the art in its class to be seriously considered by the community.
Reference data sets, complete with ground truth data, have been produced
and compiled for this very purpose (see e.g. [6, 7, 8, 9]). Similarly, a reli-
able, reusable and consistent body of code for established–and “challenger”–
algorithms could certainly facilitate the performance comparison task. Some
effort is made toward developing open platforms for evaluation (see e.g. [19]).
Such properties as modularity contribute to code reuse, and fair and consis-
tent testing and comparison. However, building a platform generic enough to
not only accommodate current methods, but also allow to incorporate other
relevant algorithms, some of them not yet developed, is a major challenge.
It is well known in the software industry that introducing features that were
not planned for at design time in a software system is a least an extremely
hard problem, and generally a recipe for disaster. Software Engineering is
the field of study devoted to addressing these and other issues of software
development in industrial settings. The parameters and constraints of indus-
trial software development are certainly very different of that encountered in
a research environment, and thus Software Engineering techniques are often
unadapted to the latter.

In a research environment, software is developed to demonstrate the va-
lidity and evaluate the performance of an algorithm. The main performance
aspect on which algorithms are evaluated is of course the accuracy of their
output. Another aspect of performance is measured in terms of system
throughput, or algorithm execution time. This aspect is all the more rel-
evant as the amount of data to be processed increases, leaving less and less
time for storing and off-line processing. The metrics used for this type of per-
formance assessment are often partial. In particular, theoretical complexity
analysis is but a prediction tool, which cannot account for the many other

Section 12.1. Introduction 587

factors involved in a particular system’s performance. Many algorithms are
claimed to be “real-time.” Some run at a few frames per second, but “could
be implemented to run in real-time,” or simply will run faster on the next
generation machines (or the next...). Others have been the object of care-
ful design and specialization to allow a high processing rate on constrained
equipment. The general belief that increasing computing power can make
any system (hardware and software) run faster relies on the hidden or im-
plied assumption of system scalability, a property that cannot and should
not be taken for granted. Indeed, the performance of any given algorithm
implementation is highly dependent on the overall software system in which
it is operated (see e.g. [20]). Video analysis applications commonly involve
image input (from file or camera) and output (to file or display) code, the
performance of which can greatly impact the perceived performance of the
overall application, and in some cases the performance of the individual al-
gorithms involved in the processing. Ideally, if an algorithm or technique is
relevant for a given purpose, it should be used in its best available imple-
mentation, on the best available platform, with the opportunity of upgrading
either when possible.

As Computer Vision is maturing as a field, and finds new applications
in a variety of domains, the issue of interoperability becomes central to its
successful integration as an enabling technology in cross-disciplinary efforts.
Technology transfer from research to industry could also be facilitated by
the adoption of relevant methodologies in the development of research code.

If these aspects are somewhat touched in the design of software libraries,
a consistent, generic approach requires a higher level of abstraction. This
is the realm of Software Architecture, the field of study concerned with the
design, analysis and implementation of software systems. Shaw and Garlan
give the following definition in [26]:

“As the size and complexity of software systems increase, the de-
sign and specification of overall system structure become more
significant issues than the choice of algorithms and data struc-
tures of computation. Structural issues include the organiza-
tion of a system as a composition of components; global control
structures; the protocols for communication, synchronization and
data access; the assignment of functionality to design elements;
the composition of design elements; physical distribution; scaling
and performance; dimensions of evolution; and selection among
design alternatives. This is the Software Architecture level of
design.”

588 Software Architecture for Computer Vision Chapter 12

They also provide the framework for architecture description and anal-
ysis used in the remainder of this chapter. A specific architecture can be
described as a set of computational components, and a their inter-relations,
or connectors. An architectural style characterizes families of architectures
that share some patterns of structural organization. Formally, an architec-
tural style defines a vocabulary of components and connector types, and a
set of constraints on how instances of these types can be combined to form
a valid architecture.

If Software Architecture is a relatively young field, software architectures
have been developed since the first software was designed. Classic styles
have been identified and studied informally and formally, their strengths and
shortcomings analyzed. A major challenge for the software architect is the
choice of an appropriate style when designing a given system, as an architec-
tural style may be ideal for some applications, while unadapted for others.
The goal here is to help answer this question by providing the Computer
Vision community with a flexible and generic architectural model. The first
step toward the choice–or the design–of an architectural style is the identi-
fication and formulation of the core requirements for the target system(s).
An appropriate style should support the design and implementation of soft-
ware systems capable of handling images, 2-D and 3-D geometric models,
video streams, various data structures, in a variety of algorithms and com-
putational frameworks. These applications may be interactive and/or have
real-time constraints. Going beyond pure Computer Vision systems, pro-
cessing of other data types, such as sound and haptics data, should also
be supported, in a consistent manner, in order to compose large scale inte-
grated systems, such as immersive simulations. Note that interaction has a
very particular status in this context, as data originating from the user can
be both an input to an interactive Computer Vision system, and the output
of a vision-based perceptual interface subsystem.

This set of requirements can be captured under the general definition of
cross-disciplinary dynamic systems, possibly involving real-time constraints,
user immersion and interaction. A fundamental underlying computational
invariant across such systems is distributed parallel processing of generic data-
streams. As no existing architectural model could entirely and satisfactorily
account for such systems, a new model was introduced.

12.1.2 Contribution

SAI (Software Architecture for Immersipresence) is a new software architec-
ture model for designing, analyzing and implementing applications perform-

Section 12.1. Introduction 589

ing distributed, asynchronous parallel processing of generic data streams.
The goal of SAI is to provide a universal framework for the distributed im-
plementation of algorithms and their easy integration into complex systems
that exhibit desirable software engineering qualities such as efficiency, scala-
bility, extensibility, reusability and interoperability. SAI specifies a new ar-
chitectural style (components, connectors and constraints). The underlying
extensible data model and hybrid (shared repository and message-passing)
distributed asynchronous parallel processing model allow natural and effi-
cient manipulation of generic data streams, using existing libraries or native
code alike. The modularity of the style facilitates distributed code devel-
opment, testing, and reuse, as well as fast system design and integration,
maintenance and evolution. A graph-based notation for architectural de-
signs allows intuitive system representation at the conceptual and logical
levels, while at the same time mapping closely to processes.

MFSM (Modular Flow Scheduling Middleware) [12] is an architectural
middleware implementing the SAI style. Its core element, the FSF library, is
a set of extensible classes that can be specialized to define new data structures
and processes, or encapsulate existing ones (e.g. from libraries). MFSM is an
open source project, released under the GNU Lesser General Public License
[1]. A number of software modules regroup specializations implementing
specific algorithms or functionalities. They constitute a constantly growing
base of open source, reusable code, maintained as part of the MFSM project.
The project also includes extensive documentation, including user guide,
reference guide and tutorials.

12.1.3 Outline

This chapter is a hands on introduction to the design of Computer Vision
applications using SAI, and their implementation using MFSM.

Section 12.2 is an introduction to SAI. Architectural principles for dis-
tributed parallel processing of generic data streams are first introduced, in
contrast to the classic Pipes and Filters model. These principles are then
formulated into a new architectural style. A graph-based notation for archi-
tectural designs is introduced. Architectural patterns are illustrated through
a number of demonstration projects ranging from single stream automatic
real-time video processing to fully integrated distributed interactive systems
mixing live video, graphics and sound. A review of key architectural prop-
erties of SAI concludes the section.

Section 12.3 is an example-based, code-level tutorial on writing images
stream processing applications with MFSM. It begins with a brief overview

590 Software Architecture for Computer Vision Chapter 12

of the MFSM project and its implementation of SAI. Design and implemen-
tation of applications for image stream manipulation is then explained in
detail using simple examples, based on those used in the online MFSM user
guide. The development of specialized SAI components is also addressed at
the code level. In particular, the implementation of a generic image data
structure (object of an open source module) and its use in conjunction with
the OpenCV library in specialized processes are described step by step.

In conclusion, Section 12.4 offers a summary of the chapter and some
perspectives on future directions for SAI and MFSM.

12.2 SAI: A SOFTWARE ARCHITECTURE MODEL

This section is an introduction to the SAI architectural model for distributed
parallel processing of generic data streams.

The most common architectural styles for data stream processing ap-
plications are derived from the classic Pipes and Filters model. It is, for
example, the underlying model of the Microsoft DirectShow library, part
of the DirectX suite [24]. After a brief review of the Pipes and Filters ar-
chitectural style, of its strengths and weaknesses, a new hybrid model is
introduced, that addresses the identified limitations while preserving the
desirable properties. This new model is formally defined as the SAI ar-
chitectural style. Its component and connector types are defined, together
with the corresponding constraints on instances interaction. The underlying
data and processing models are explicited and analyzed. Simultaneously,
graphical symbols are introduced to represent each element type. Together
these symbols constitute a graph-based notation system for representing ar-
chitectural designs. Architectural patterns are illustrated with a number
of demonstration projects ranging from single stream automatic real-time
video processing to fully integrated distributed interactive systems mixing
live video, graphics and sound. Finally, relevant architectural properties of
this new style are summarized.

12.2.1 Beyond Pipes and Filters

The Pipes and Filters model is an established (and popular) model for data
stream manipulation and processing architectures. In particular, it is a clas-
sic model in the domains of signal processing, parallel processing and dis-
tributed processing [10], to name but a few. This section first offers an
overview of the classic Pipes and Filters architectural style, emphasizing its
desirable properties, and highlighting its main limitations. A hybrid model
is then outlined, that aims at addressing the limitations while preserving the

Section 12.2. SAI: A Software Architecture Model 591

Source filter Sink filterTransform filter

FILTER

PIPE

Figure 12.1. Pipes and Filters.

desirable properties.

The Pipes and Filters Style

In the Pipes and Filters architectural style, the components, called filters
have a set of inputs and a set of outputs. Each component reads (and
consumes) a stream of data on its input and produces a stream of data on
its output. The processing will usually be defined so that the component
processes its input incrementally, so that it can starts producing an output
stream before it is finished receiving the totality of its input stream, hence
the name filter. The connectors are pipes in which the output stream of a
filter flows to the input of the next filter. Filters can be characterized by their
input/output behavior: source filters produce a stream without any input;
transform filters consume an input stream and produce an output stream;
sink filters consume an input stream but do not produce any output. Figure
12.1 presents an overview. Filters must be strictly independent entities: they
do not share state information with other filters, the only communication
between filters occurs through the pipes. Furthermore, a filter’s specification
might include restrictions about its input and output streams, but it may
not identify its upstream and downstream filters. These rules make the
model highly modular. A more complete overview can be found in [26],
including pointers to in-depth studies of the classic style and its variations
and specializations.

The Pipes and Filters style has a number of good properties that make it
an attractive and efficient model for a number of applications. It is relatively
simple to describe, understand and implement. It is also quite intuitive, and
allows to model systems while preserving the flow of data. Some interest-
ing properties result from the modularity of the model. Because of the

592 Software Architecture for Computer Vision Chapter 12

well-defined and constrained interaction modalities between filters, complex
systems described in terms of data streams flowing from filter to filter are
easily understandable as a series of well defined local transformations. The
implementation details of each filter are irrelevant to the high level under-
standing of the overall system, as long as a logical definition of their behavior
is specified (input, transformation and output). The localization and isola-
tion of computations facilitates system design, implementation, maintenance
and evolution. Reversely, filters can be implemented and tested separately.
Furthermore, because filters are independent, the model naturally supports
parallel and distributed processing.

These properties of the model provide an answer to some of the soft-
ware issues highlighted in the introduction. Because of their independence,
filters certainly allow reusability and interoperability. Parallelism and dis-
tributability, to a certain extent, should contribute to efficiency and scalabil-
ity. It would seem that it is a perfect model for real-time, distributed parallel
processing of data streams. However, a few key shortcomings and limitations
make it unsuitable for designing cross-disciplinary dynamic systems, possibly
involving real-time constraints, user immersion and interaction.

The first set of limitations is related to efficiency. If the pipes are first-
in-first-out buffers, as suggested by the model, the overall throughput of a
Pipes and Filters system is imposed by the transmission rate of the slowest
filter in the system. If filters independence provide a natural design for paral-
lel (and/or distributed) processing, the pipes impose arbitrary transmission
bottlenecks that make the model non optimal. Figure 12.2 illustrates inef-
ficiency limitations inherent to the distribution and transmission of data in
Pipes and Filters models. Each filter’s output data must be copied to its
downstream filter(s)’ input, which can lead to massive and expensive data
copying. Furthermore, the model does not provide any consistent mecha-
nism to maintain correspondences between separate but related streams (e.g.
when the results of different process paths must be combined to produce a
composite output). Such stream synchronization operations require data
collection from different repositories, possibly throughout the whole system,
raising not only search-related efficiency issues, but also dependency-driven
distributed buffer maintenance issues. These can only be solved at the price
of breaking the strict filter independence rule, e.g. by the introduction of a
higher level system manager.

The second set of limitations is related to the simplicity of the model. As
they are not part of the data streams, process parameters (state data stored
in the filters) are not modeled consistently with process data (input data
streams). As a result, the pure Pipes and Filters model is ill-suited for de-

Section 12.2. SAI: A Software Architecture Model 593

Persistent data

a0, a1, a2, a3 A

B

C

D

b0, b1, b2

c0, c1

?

a0, a1, a2, a3

b0, b1, b2

c0, c1

?

d0=f(a0,b0,c0)

A

B

C

D

c1, c0 d0=f(a0,b0,c0)

a3, a2, a1, a0

b2, b1, b0

b2, b1, b0

a3, a2, a1, a0

c1, c0

a3, a2, a1, a0

b2, b1, b0

b2, b1, b0

a3, a2, a1, a0

Processing Volatile dataProcessing Volatile datat0 < t1< t2 < t3

Data buffering
at the source

Data buffering
at the consumer

Figure 12.2. Distributed parallel processing of data streams with the Pipes and
Filters model.

signing interactive systems, which can only be done at the price of increased
filter complexity, and deviations from some of the well-defined constraints
that make for the model’s attractive simplicity. For example, a common
practice for interaction in Pipes and Filters systems is to provide access to
the parameters (possibly at run-time) through “control panels.” This solu-
tion however necessitates a separate mechanism for processing and applying
the interaction data. This is for example the solution adopted in Microsoft’s
DirectShow, which relies on the Microsoft Windows message-based graphical
interface for parameter access. Such external solutions however only bypass,
and do not address, the fundamental inability of the style to consistently
model general feed-back loops, i.e. subsystems in which some processes are
affected by some other processes’ outputs. This is a direct result of the strict
communication rules between filters, and in particular of the constraint that
filters not share any state information. Yet feed-back loops are a common
pattern in dynamic systems, including interactive systems: interaction is in-
deed a processing loop in which a user is involved (as illustrated in section

594 Software Architecture for Computer Vision Chapter 12

A

B

C

D

a0, b0, c0, d0

a3

a2, b2

a1, b1, c1

Pulse

Volatile data

t0 < t1< t2 < t3
M

es
sa

ge
 p

as
si

ng

Persistent data

Processing

S
hared m

em
ory

d0=f(a0,b0,c0)

Figure 12.3. A hybrid shared repository and message passing model for dis-
tributed parallel processing of data streams.

12.2.3).
A careful consideration of system requirements in the target context of

applicability guided a re-evaluation of the Pipes and Filters model, and the
formulation of modified constraints that preserve the positive aspects while
addressing the limitations identified above. Note that other properties were
also considered, that are out of the scope of this overview (e.g. run-time sys-
tem evolution). These will only be mentioned when relevant in the remainder
of this chapter.

A Hybrid Model

A few key observations, resulting from the analysis of system requirements for
real-time interactive, immersive applications, allow to formulate principles
and concepts that address the shortcomings identified above. Figure 12.3
offers a synopsis.

Time A critical underlying concept in all user-related application domains
(but by no means limited to these domains) is that of time. Whether implic-
itly or explicitly modeled, time relations and ordering are inherent properties
of any sensory-related data stream (e.g. image streams, sound, haptics, etc.),
absolutely necessary when users are involved in the system, even if not on-line
or in real-time. Users perceive data as streams of dynamic information, i.e.
evolving in time. This information only makes sense if synchronization con-

Section 12.2. SAI: A Software Architecture Model 595

straints are respected within each stream (temporal precedence) and across
streams (precedence and simultaneity). It follows that time information is a
fundamental attribute of all process data, and should therefore be explicitly
modeled both in data structures and in processes.

Synchronization is a fundamental operation in temporal data stream ma-
nipulation systems. It should therefore also be an explicit element of the
architectural model. A structure called pulse is introduced to regroup syn-
chronous data. Data streams are thus quantized temporally (not necessarily
uniformly). As opposed to the Pipes and Filters case, where data remains lo-
calized in the filters where it is created or used, it is grouped in pulses, which
flow from processing center to processing center along streams. The process-
ing centers do not consume their input, but merely use it to produce some
output that is added to the pulse. This also reduces the amount of costly
data copy: in a subgraph implemented on a platform with shared memory
space, only a pointer to the evolving pulse structure will be transmitted from
processing center to processing center. Note that such processing centers can
no longer be called filters.

Parallelism Figure 12.4 illustrates system latency, which is the overall com-
putation time for an input sample, and throughput or output rate, inverse
of the time elapsed between two consecutive output samples. The goal for
high quality interaction is to minimize system latency and maximize system
throughput. In the sequential execution model, latency and throughput are
directly proportional. In powerful computers, this usually results in the la-
tency dictating the system throughput as well, which is arguably the worst
possible case. In the Pipes and Filters model, filters can run in parallel.
Latency and throughput are thus independent. Because of the parallelism,
system latency can be reduced in most cases with careful design, while sys-
tem throughput will almost always be greatly improved. The sequential
behavior of the pipes, however, imposes on the whole system the throughput
of the slowest filter. This constraint can actually be relaxed to yield an asyn-
chronous parallel processing model. Instead of being held in a buffer to be
processed by order of arrival, each incoming pulse is processed on arrival in
the processing center, concurrently with any other pulse already being pro-
cessed in the cell. Achievable throughput is now optimal. It will actually be
achieved if no hardware or software resources become exhausted (e.g. com-
puting power, memory, bus bandwidth, etc.). Of course, an asynchronous
model requires to explicitly implement synchronization when necessary, but
only then.

596 Software Architecture for Computer Vision Chapter 12

Time
(process execution)

Sequential processing

Pipes Asynchronous

Interval
= latency

Latency

Interval

Process 1

Process 2

Process 3

Process 4

Latency

Interval

Concurrent processing

Figure 12.4. Advantage of parallelism for time sensitive applications. Processes
2 and 3 are independent; Process 4 depends on both 2 and 3. With a sequential
execution model, the system latency introduced by the processing also constrains the
achievable system throughput, as the maximum output rate is inversely proportional
to the interval between the completion of the processes of two consecutive time
samples. Parallel processing allows to decorrelate latency and throughput, usually
resulting in a reduction in latency and a large increase in throughput. In the Pipes
and Filters model, the sequential behavior of the pipes imposes on the whole system
the throughput of the slowest filter. In contrast, an asynchronous parallel model
allows to achieve optimal throughput.

Data classes The Pipes and Filters model explicitly separates data streams
and process parameters, which is both a valid functional distinction, and
a source of inconsistency in the model, leading to important limitations as
explained above. A re-consideration of this categorization, in the context of
temporal data streams processing, reveals two distinct data classes: volatile
and persistent.

Volatile data is used, produced and/or consumed, and remains in the
system only for a limited fraction of its lifetime. For example, in a video
processing application, the video frames captured and processed are typically
volatile data: after they have been processed, and maybe displayed or saved,
they are not kept in the system. Process parameters, on the other hand,

Section 12.2. SAI: A Software Architecture Model 597

must remain in the system for the whole duration of its activity. Note that
their value can change in time. They are dynamic yet persistent data.

All data, volatile or persistent, should be encapsulated in pulses. Pulses
holding volatile data flow down streams defined by connections between the
processing centers, in a message passing fashion. They trigger computations,
and are thus called active pulses. In contrast, pulses holding persistent in-
formation are held in repositories, where the processing centers can access
them in a concurrent shared memory access fashion. This hybrid model
combining message passing and shared repository communication, combined
with a unified data model, provides a universal processing framework. In
particular, feed-back loops can now be explicitly and consistently modeled.

From the few principles and concepts outlined above emerged a new
architectural style. Because of the context of its development, the new style
was baptized SAI, for “Software Architecture for Immersipresence.”

12.2.2 The SAI Architectural Style

This section offers a more formal definition of the SAI architectural style.
Graphical symbols are introduced to represent each element type. Together
these symbols constitute a graph-based notation system for representing ar-
chitectural designs. In addition, when available, the following color coding
will be used: green for processing, red for persistent data, blue for volatile
data. Figure 12.5 presents a summary of the proposed notation.

In the remainder of this chapter, the distinction between an object type
and an instance of the type will be made explicitly only when required by
the context.

Components and connectors

The SAI style defines two types of components: cells and sources. Cells are
processing centers. They do not store any state data related to their compu-
tations. The cells constitute an extensible set of specialized components that
implement specific algorithms. Each specialized cell type is identified by a
type name (string), and is logically defined by its input data, its parameters
and its output. Cell instances are represented graphically as green squares.
A cell can be active or inactive, in which case it is transparent to the system.
Sources are shared repository of persistent data. Source instances are repre-
sented as red disks or circles. Two types of connectors link cells to cells and
cells to sources. Cell to source connectors give the cell access to the source
data. Cell to cell connectors define data conduits for the streams. The se-
mantics of these connectors are relaxed compared to that of pipes (which

598 Software Architecture for Computer Vision Chapter 12

Cell

Passive Pulse:�
persistent data

Stream�
(message passing)

Active Pulse:�
volatile data

Source
(shared repository)

Figure 12.5. Summary of notation for SAI designs. Cells are represented as
squares, sources as disks or circles. Source-cell connections are drawn as double or
fat lines, while cell-cell connections are drawn as thin arrows crossing over the cells.
When color is available, cells are colored in green (reserved for processing); sources,
source-cell connections, passive pulses are colored in red (persistent information);
streams and active pulses are colored in blue (volatile information).

are FIFO queues): they do not convey any constraint on the time ordering
of the data flowing through them.

Cell and source instances interact according to the following rules. A cell
must be connected to exactly one source, which holds its persistent state
data. A source can be connected to an arbitrary number of cell, all of which
have concurrent shared memory access to the data held by the source. A
source may hold data relevant to one or more of its connected cells, and
should hold all the relevant data for each of its connected cells (possibly
with some overlap). Cell-source connectors are drawn as either double or fat
red lines. They may be drawn across cells (as if cells were connected together
by these links) for layout convenience. Volatile data flows in streams, which
are defined by cell-to-cell connections. A cell can be connected to exactly
one upstream cell, and to an arbitrary number of downstream cells. Streams
(and thus cell-cell connections) are drawn as thin blue arrows crossing over
the cells.

Section 12.2. SAI: A Software Architecture Model 599

Data model

Data, whether persistent or volatile, is held in pulses. A pulse is a carrier for
all the synchronous data corresponding to a given time stamp in a stream.
Information in a pulse is organized as a mono-rooted composition hierarchy
of node objects. The nodes constitute an extensible set of atomic data units
that implement or encapsulate specific data structures. Each specialized
node type is identified by a type name (string). Node instances are identified
by a name. The notation adopted to represent node instances and hierarchies
of node instances makes use of nested parentheses, e.g.: (NODE TYPE ID
“Node name” (...) ...). This notation may be used to specify a cell’s output,
and for logical specification of active and passive pulses.

Each source contains a passive pulse, which encodes the instantaneous
state of the data structures held by the source. Volatile data flows in streams,
that are temporally quantized into active pulses. Pulses are represented
graphically as a root (solid small disk) and a hierarchy of nodes (small cir-
cles); passive pulses may be rooted in the circle or disk representing the
source.

Processing model

When an active pulse reaches a cell, it triggers a series of operations that
can lead to its processing by the cell (hence the “active” qualifier). Pro-
cessing in a cell may result in the augmentation of the active pulse (input
data), and/or update of the passive pulse (process parameters). The pro-
cessing of active pulses is carried in parallel, as they are received by the cell.
Since a cell process can only read the existing data in an active pulse, and
never modify it (except for adding new nodes), concurrent read access will
not require any special precautions. In the case of passive pulses, however,
appropriate locking (e.g. through critical sections) must be implemented to
avoid inconsistencies in concurrent shared memory read/write access.

Dynamic data binding

Passive pulses may hold persistent data relevant to several cells. Therefore,
before a cell can be activated, the passive pulse must be searched for the
relevant persistent data. As data is accumulated in active pulses flowing
down the streams through cells, it is also necessary for a cell to search each
active pulse for its input data. If the data is not found, or if the cell is not
active, the pulse is transmitted, as is, to the connected downstream cells.
If the input data is found, then the cell process is triggered. When the
processing is complete, then the pulse, which now also contains the output

600 Software Architecture for Computer Vision Chapter 12

Pulse Handle Filter

Nodes and filters: Type(name) Pointer

B(b2) C(c2) A(a1)

D(d1) B(b1)

C(c3) C(c1)

A(a1)

B(b1)

C(c1)

Figure 12.6. Pulse filtering. Each cell is associated with its required volatile and
persistent data structures, in the form of substructures called active and passive
filters (respectively). Pulses are searched for these structures in an operation called
filtering, which results in the creation of handles that can be used during processing
for direct access to relevant nodes.

data, is passed downstream.
Searching a pulse for relevant data, called filtering, is an example of run-

time data binding. The target data is characterized by its structure: node
instances (type and name) and their relationships. The structure is specified
as a filter or a composition hierarchy of filters. Note that the term filter
is used here in its “sieving” sense. Figure 12.6 illustrates this concept. A
filter is an object that specifies a node type, a node name or name pattern
and eventual subfilters corresponding to subnodes. The filter composition
hierarchy is isomorphic to its target node structure. The filtering operation
takes as input a pulse and a filter, and, when successful, returns a handle
or hierarchy of handles isomorphic to the filter structure. Each handle is
essentially a pointer to the node instance target of the corresponding filter.
When relevant, optional names inherited from the filters allow to identify
individual handles with respect to their original filters.

The notation adopted for specifying filters and hierarchies of filters is
nested square brackets. Each filter specifies a node type, a node instance
name or name pattern (with wildcard characters), an optional handle name,
and an eventual list of subfilters, e.g.: [NODE TYPE ID “Node name” han-
dle id [...] ...]. Optional filters are indicated by a star, e.g.: [NODE TYPE ID
“Node name” handle id]*.

When several targets in a pulse match a filter name pattern, all corre-
sponding handles are created. This allows to design processes whose input
(parameters or stream data) number is not fixed. If the root of the active

Section 12.2. SAI: A Software Architecture Model 601

filter specifies a pattern, the process method is invoked for each handle gen-
erated by the filtering (sequentially, in the same thread). If the root of the
passive filter specifies a pattern, only one passive handle will be generated
(pointing to the first encountered node satisfying the pattern).

Architectural design specification

A particular system architecture is specified at the conceptual level by a set of
source and cell instances, and their inter-connections. Specialized cells may
be accompanied by a description of the task they implement. Source and cell
instances may be given names for easy reference. In some cases, important
data nodes and outputs may be specified schematically to emphasize some
design aspects. Section 12.2.3 contains several example conceptual graphs
for various systems.

A logical level description of a design requires to specify, for each cell, its
active and passive filters and its output structure, and for each source, the
structure of its passive pulse. Table 12.1 summarizes the notations for logical
level cell definition. Filters and nodes are described using the nested square
brackets and nested parentheses notations introduced above. By convention,
in the cell output specification, (x) will represent the pulse’s root, (.) will
represent the node corresponding to the root of the active filter, and (..) will
represent its parent node.

ClassName CELL TYPE ID
(ParentClass)
Active filter [NODE TYPE ID “Node name” handle id

[...] ...]
Passive filter [NODE TYPE ID “Node name” handle id

[...] ...]
Output (NODE TYPE ID

“default output base name–more if needed”
(...) ...)

Table 12.1. Notations for logical cell definition.

12.2.3 Example Designs

Architectural patterns are now illustrated with demonstration projects rang-
ing from single stream, automatic real-time video processing to fully inte-
grated distributed interactive systems mixing live video, graphics and sound.

602 Software Architecture for Computer Vision Chapter 12

The projects are tentatively presented in order of increasing complexity, in-
teractivity and cross-disciplinary integration. Each project is briefly intro-
duced, its software architecture described and analyzed. Key architectural
patterns, of general interest, are highlighted. These include feed-back loops,
real-time incremental processing along the time dimension, interaction loops,
real-time distributed processing, mixing and synchronization of multiple in-
dependent data streams.

Real-Time Video Segmentation And Tracking

The development of real-time video analysis applications was actually a steer-
ing concern during the development of the SAI style. The system presented
here was used as a testbed for the implementation, testing and refinement
of some fundamental SAI concepts [18].

The video analysis tasks performed are low level segmentation and blob
tracking. The segmentation is performed by change detection using an adap-
tive statistical color background model (the camera is assumed stationary).
A review of background maintenance algorithms can be found in [28]. Blob
tracking is performed using a new multi-resolution algorithm whose descrip-
tion is out of the scope of this overview.

Figure 12.7 shows the conceptual level architecture of the software sys-
tem. It is build around a single stream going through a number of cells. The
graph can be decomposed into four functional subgraphs: capture, segmen-
tation, tracking, visualization. The stream originates in the video input cell,
which produces, at a given rate, pulses containing an image coming either
from a live capture device or a video file. This cell and its source consti-
tute the capture unit of the application. The stream then goes through the
segmentation unit, which is analyzed below. Coming out of the segmenta-
tion, the stream goes through a tracking cell. The result visualization unit
is composed of a rendering and a display subunits. Rendering of a persistent
structure (here, the tracking graph) will be illustrated in a more general con-
text in another example below (“Live Video in Animated 3-D Graphics”).
The display cell simply puts on the screen its input images, in this case the
composite frames produced by the renderer.

A very interesting aspect of this system, and certainly the most innovative
when it was introduced, is the asynchronous parallel implementation of the
segmentation algorithm, which contains a feed-back loop. The correspond-
ing conceptual graph is also a flow graph of the algorithm. Each input frame
is compared with a statistical background model. For each pixel, a decision
is made whether it is an observation of the background or of an occluding

Section 12.2. SAI: A Software Architecture Model 603

Live input

Background comparison

Connected components

Tracking Rendering

Display
(composite image)

Background update

+ RGB input frame

+ foreground binary mask

+ labeled components image

+ composite image

Segmentation

Background
Model

Tracking
Graph

Capture

Tracking

Display

Figure 12.7. Conceptual graph for real-time color background model-based seg-
mentation and multi-resolution graph tracking application.

element. The output is a foreground binary mask. This comparison is per-
formed by the background comparison cell. Each pulse, after going through
this cell, contains the input image and a binary foreground image, which
is used by the connected components cell to produce a labeled components
image, added to the pulse. The input image and the labeled components
image are used by the background update cell to update the distributions
in the background model. Since the comparison and the update cells both
use the persistent background model, they are both connected to a com-
mon source that holds the background model structure. This path forms a
feed back loop in which the result of the processing of each frame is used to
update the adaptive background model. Because of the asynchrony of the
processing, by the time the background model is updated with the result of
the processing of a given frame, many other frames might have been com-
pared to the model. In this particular context, the quality of the result is not
affected–in fact, it is common practice in background model maintenance to
perform only partial updates at each frame, in order to reduce computational
load–and the overall system throughput permitted by this design is always
significantly larger than that achievable in a sequential design. Another type
of parallelism is illustrated in the branching of the stream to follow indepen-
dent parallel paths. After coming out of the connected components cell, the

604 Software Architecture for Computer Vision Chapter 12

stream follows a path to the update cell, and another path through tracking
and finally visualization. While pulse-level multithreading principally im-
proves throughput, stream-level parallelism has a major impact on latency.
In this case, the result of the processing should be used as soon as possible
for visualization and for update, in no arbitrarily imposed order. As long
as computing resources (in a general sense) are available, and assuming fair
scheduling, the model allows to achieve minimal latency.

Figure 12.8 shows two non consecutive frames from one of the PETS
2002 [7] test sequences, with tracked blobs and their trajectories over a few
frames. Figure 12.9 presents three consecutive output frames obtained from
the processing of professional racquetball videos. The ball and the players
are detected and tracked in real-time. In both cases, the original colors have
been altered to highlight the blobs or the trajectories in the color to grey
scale conversion required for printing.

Quantitative performance metrics are discussed below, in section 12.2.4.
In the case of live video processing, the throughput of the system impacts
the quality of the results: a higher throughput allows the background model
to adapt to changing conditions more smoothly.

The modular architecture described here can be used to test different
algorithms for each unit (e.g. segmentation algorithms) in an otherwise
strictly identical setting. It also constitute a foundation platform to which
higher levels of processing can be added incrementally. The SAI style and
its underlying data and processing models not only provide the necessary
architectural modularity for a test platform, but also the universal modeling
power to account for any algorithm, whether existing or yet to be formu-
lated. In conjunction, the same platform also ensures that the best possible
performance is achievable (provided correct architectural design and careful
implementation of all the elements involved).

Real-Time Video Painting

The Video Painting project was developed as a demonstration of the real-
time video stream processing ability provided by the SAI architectural style.
It also provided valuable insight on the design and implementation of al-
gorithms performing incremental processing along the time dimension, i.e.
between different samples in a same stream.

The technical core of the application is a feature-based, multi-resolution
scheme to estimate frame to frame projective or affine transforms [21]. These
transforms are used to warp the frames to a common space to form a mosaic.
The mosaic image itself is a persistent structure that evolves as more images

Section 12.2. SAI: A Software Architecture Model 605

Figure 12.8. Object segmentation and tracking results in a PETS02 test sequence.
The examples shown are two sample output composite frames taken at different
times in the original video. The original colors have been altered to highlight the
segmented blobs (in white) in the color to grey scale conversion required for printing.

are processed, hence the name Video Painting.
In a traditional sequential system, the transform between each pair of

consecutive frames would be computed, and each frame would be added to
the mosaic by combination of all the transforms between a reference frame
and the current frame. Figure 12.10 shows the application graph for the SAI
design. A live input unit creates the single stream, with frames captured from
a camera. A simple cell computes the image pyramid associated with each
input frame, and necessary for the multi-resolution frame-to-frame trans-
form estimation performed by the next downstream cell. Comparing two
samples of the same stream requires to make one persistent, which becomes
the reference. Transforms are thus computed between the current frame and
a reference frame. For the algorithm to work properly, though, the com-

606 Software Architecture for Computer Vision Chapter 12

Figure 12.9. Segmentation and tracking of the players and the ball in professional
racquetball video. The examples shown are three consecutive output composite
frames. The original colors have been altered to highlight the trajectories (in white)
in the color to grey scale conversion required for printing.

pared frames cannot be too far apart. The reference frame must therefore
be updated constantly. Because of the asynchrony of the processing, the ref-
erence frame is not necessarily the frame “right before” the current frame in
the stream. The simplistic handling of frames relationships in the sequential
model is no longer sufficient. Accurate time stamps allow a more general ap-

Section 12.2. SAI: A Software Architecture Model 607

proach to the problem. The transforms computed between two frames are no
longer implicitly assumed to relate two consecutive frames, separated from
a fixed time interval, but between two frames of arbitrary time stamps. For
efficiency reasons, the mosaic is also computed incrementally. A persistent
image containing the latest available version of the mosaic is maintained.
Each new frame is warped and pasted on a copy of the mosaic by computing
the accumulated transform from the frame to the mosaic reference frame.
To that effect, with the mosaic is also stored the accumulated transform
from the time stamp of the reference mosaic frame to the time stamp of the
latest frame added, which is the time stamp for the mosaic. When a new
frame is processed, the transform from the mosaic time stamp to the frame
is computed by linear interpolation using the transform computed between
the frame and the reference frame. This is possible only because time is an
explicit component of the model. The transform is then composed with the
accumulated transform to produce a new accumulated transform, used to
warp the current frame to mosaic space. After pasting of the warped frame,
the updated mosaic image is copied into the persistent mosaic image to be-
come the latest reference. The accumulated transform is also updated. Note
that a locking mechanism (e.g. critical section) is necessary to ensure consis-
tency between the persistent mosaic and the accumulated transform as they
are accessed by different threads. In this design, the updated mosaic is also
added to the active pulse so that the dynamic stream of successive mosaics
can be viewed with an image display cell. Figure 12.11 shows two example
mosaics painted in real-time from a live video stream. The horizontal black
lines are image warping artifacts.

This application is an example where system latency and throughput di-
rectly impact the quality of the results. The transform estimation process
degrades with the dissimilarity between the frames. A lower latency allows
faster reference turnaround and thus smaller frame to frame dissimilarity.
Higher throughput allows to build a finer mosaic. Embedding established al-
gorithms into a more general parallel processing framework allows to achieve
high quality output in real-time. Furthermore, explicit handling of time rela-
tionships in the design might give some insight on real-time implementations
of more complex mosaic building techniques, e.g. involving global constraints
to correct for registration error accumulation.

Handheld Mirror Simulation

The Virtual Mirror project [16, 15] started as a feasibility study for the
development and construction of a handheld mirror simulation device.

608 Software Architecture for Computer Vision Chapter 12

Live input

Image pyramid
computation

Transform
estimation

Mosaic generation

Latest reference
image

Latest mosaic

Display
(mosaic)

+ input frame

+ image pyramid

+ transform

+ mosaic

Figure 12.10. Conceptual graph for Video Painting application (real-time mo-
saicking).

The perception of the world reflected through a mirror depends on the
viewer’s position with respect to the mirror and the 3-D geometry of the
world. In order to simulate a real mirror on a computer screen, images of the
observed world, consistent with the viewer’s position, must be synthesized
and displayed in real-time. This is of course geometrically impossible, but
with a few simplifying assumptions (e.g. planar world), the image transform
required was made simple yet convincing enough to consider building an
actual device. The current prototype system (see Figure 12.12) is comprised
of an LCD screen manipulated by the user, a single camera fixed on the
screen, and a tracking device. The continuous input video stream and tracker
data is used to synthesize, in real-time, a continuous video stream displayed
on the LCD screen. The synthesized video stream is a close approximation
of what the user would see on the screen surface if it were a real mirror.

Figure 12.13 shows the corresponding conceptual application graph. The
single stream application does not involve any complicated structure. The
stream originates in a live video input cell. A tracker input cell adds position
and orientation data to the stream. A mirror transform cell uses the syn-
chronous image and tracking data to synthesize the mirror simulation image,
which is then presented to the user by an image display cell.

The two major difficulties in this application are (1) synchronizing the

Section 12.2. SAI: A Software Architecture Model 609

Input frame size

Figure 12.11. Video Painting results.

various input streams (video and tracking data) to compute a consistent
result; and (2) displaying the result with a low enough latency and a high
enough throughput to produce a convincing simulation. The use of pulses
in the SAI model makes synchronization a natural operation, involving no

610 Software Architecture for Computer Vision Chapter 12

Camera

Tracker controller

Handheld device

Figure 12.12. The Virtual Mirror system (handheld mirror simulation).

superfluous delays or computations. The asynchronous parallel processing
model allow high frame rates and low latency.

The essential purpose of this system is interaction. Interaction can be
seen as a particular data stream loop feeding the user with a perceptual rep-
resentation of the internal model (experience), collecting the users reaction
through various sensory devices and modifying the state of the internal model
accordingly (influence). From the systems point of view, these data streams
are volatile, and the processes involved in producing and processing them
are of the same nature as those carrying procedural internal evolution tasks.
Here, the internal model is the mirror, implicit in the computations carried
by the mirror transform cell. The user experiences the system through the
image displayed on the handheld screen, and influences it by moving her
head or the screen.

Note that the way live video (frames) and corresponding tracker data
are synchronized in the application as described in the conceptual graph
is based on the assumption that the delay between the frame capture in
the Camera input cell (push mechanism acting as pulse trigger), and the
capture of tracker data in the Tracker input cell (pull mechanism), is small
enough that no inconsistency can be perceived. This approach happens to
work in this case, even when the system is running on a modest platform,
but certainly does not generalize to synchronization in more sophisticated
settings. This illustrates the flexibility of the SAI style, that allows to devise
general structures, as well as simplified or ad hoc design when allowed by

Section 12.2. SAI: A Software Architecture Model 611

Camera input

Tracker input

Mirror transform

Mirror image display

+ input frame

+ camera and user
positions and orientations

+ mirror image
(from user’s viewpoint)

U
ser

Figure 12.13. The Virtual Mirror application graph.

the application.
This project also illustrates the power of SAI for system integration. The

modularity of the model ensures that components developed independently
(but consistently with style rules) will function together seamlessly. This
allows code re-use (e.g. the image node, and the live video capture and
image display cells already existed), and distributed development and testing
of new node and cell types. The whole project was completed in only a few
months with very limited resources.

The mirror simulation system can be used as a research platform. For
example, it is a testbed for developing and testing video analysis techniques
that could be used to replace the magnetic trackers, including face detection
and tracking, and gaze tracking. The device itself constitutes a new generic
interface for applications involving rich, first-person interaction. A straight-
forward application is the Daguerréotype simulation described in [22]. Be-
yond technical and commercial applications of such a device, the use of video
analysis and graphics techniques will allow artists to explore and interfere
with what has always been a private, solitary act, a person looking into a
mirror.

IMSC Communicator

The IMSC Communicator is an experimental extensible platform for remote
collaborative data sharing. The system presented here is an early embodi-

612 Software Architecture for Computer Vision Chapter 12

ment of a general research platform for remote interaction. From a Computer
Vision point of view, the architectural patterns highlighted here directly ap-
ply to the design of distributed processing of multiple video streams.

Popular architectures for communication applications include Client/Server
and Peer To Peer. Different elements of the overall system are considered
separate applications. Although these models can either be encapsulated or
implemented in the SAI style, a communication application designed in the
SAI style can also be considered as a single distributed application graph, in
which some cell to cell connections are replaced with network links. From
this point of view, specific network architectures would be implemented in
the SAI style, as part of the overall distributed application.

The core pattern of the Communicator is a sequence of cells introducing
network communication between two independent subgraphs. Figure 12.14
shows an example sequence comprising encoding, compression and network-
ing (send) on the emitting side, networking (receive), decompression and
decoding on the receiving side. The encoding cell flattens a node structure
into a linear buffer so that the structure can later be regenerated. This
encoding can be specific of various data types, as is the case for the exam-
ple described here. A general encoding scheme could for example be based
on XML. The output of an encoding cell is a character string (binary or
text). The compression cell takes as input the encoded character string,
and produces a corresponding compressed buffer. The compression scheme
used can be input data dependent, or generic, in which case it should be
lossless. For the first experiments, a simple compression cell, and matching
decompression cell, were developed, that encapsulate the open source LZO
library [25] for real-time lossless compression/decompression. Note that the
compression step is optional. The networking cells are responsible for pack-
etizing and sending incoming character strings on one side, and receiving
the packets and restoring the string on the other side. Different modalities
and protocols can be implemented and tested. The first networking cells
were implemented using Windows Sockets, using either TCP/IP or UDP.
The decompression cell regenerates the original character string from the
compressed buffer. The decoding cell regenerates the node structure into a
pulse, from the encoded character string.

Once a generic platform is available for developing and testing data trans-
fer modalities, support for various specific data types can be added. The very
first test system supported video only, using existing live video capture and
image display cells. For the next demonstration, a new live capture cell for
both image and sound was developed using Microsoft DirectShow [24]. An-
other new cell was developed for synchronized rendering of sound and video,

Section 12.2. SAI: A Software Architecture Model 613

A

Encode

Compress

Send

+ a

+ encoded a

+ compressed
 data

A

B

+ a

+ b

Receive

Decompress

Decode

+ compressed
 data

+ encoded a

+ a

B

+ b

Network

Figure 12.14. Simple generic networking for distributed applications.

also using DirectShow.
Figure 12.15 shows the conceptual graph for an early embodiment of the

2-way communicator, with example screen shots. A background replacement
unit, based on the segmentation by change detection presented above in sec-
tion 12.2.3, was added to the capture side to illustrate how the modularity
of the architecture allows to “plug-and-play” subgraphs developed indepen-
dently. Having different processing of video and sound also demonstrates the
advantages of adopting an asynchronous model, and of performing synchro-
nization only when necessary, in this case in the display cell.

Live Video in Animated 3-D Graphics

The example presented in this section is a real-time, interactive application
requiring manipulation of heterogenous data streams [14]. A video stream
(captured live or read from a file) is used as surface texture on an animated
3-D model, rendered in real-time. The (virtual) camera used for rendering
can be manipulated in real-time (e.g. with a gamepad or through a head
tracking device), making the system interactive. This system was devel-
oped to illustrate the design of a scene graph-based graphics toolkit, and
the advantages provided by the SAI style for manipulating independently
and synchronizing different data streams in a complex interactive (possibly
immersive) setting.

From a Computer Vision point of view, this example illustrates how the
SAI style allows to manipulate video streams and geometric models in a

614 Software Architecture for Computer Vision Chapter 12

Data Encoding

Video capture

Compression

Net Send

Display

Net Receive

Decompression

Data Decoding

Data Encoding

Video capture

Compression

Net Send

Display

Net Receive

Decompression

Data Decoding

Network
Background

segmentation
and substitution

Background
segmentation

and substitution

Figure 12.15. Conceptual graph for an early version of the IMSC Communicator,
with support for video (synchronized image and sound).

consistent framework. The same architectural patterns generalize to manip-
ulating generic data streams and persistent models.

Figure 12.16 shows the system’s conceptual graph. The graph is com-
posed of four functional subgraphs, corresponding to four independent streams,
organized around a central source that holds the 3-D model representation
in the form of a scene graph, and various process parameters for the different
connected cells. The rendering stream generates images of the model. The
control stream updates the (virtual) camera position based on user input.
Together, the rendering and control units (including the shared source) form
an interaction loop with the user. The animation stream drives the dynamic
evolution of the 3-D model. The texturing stream places images captured

Section 12.2. SAI: A Software Architecture Model 615

from a video source (camera or file) in the texture node in the scene graph.
Interaction and modeling are now analyzed in more detail.

Figure 12.16. Conceptual graph for integrating real-time rendering of an ani-
mated 3-D model with live video mapping and interactive camera control.

Interaction As observed above, interaction is a particular data stream loop
feeding the user with a perceptual representation of the internal model (ex-
perience), collecting the users reaction through various sensory devices and
modifying the state of the internal model accordingly (influence). From the
systems point of view, these data streams are volatile, and the processes
involved in producing and processing them are of the same nature as those
carrying procedural internal evolution tasks, and are thus modeled consis-
tently in the SAI style.

Any such interaction subsystem, an example of which is the user loop on
the right half of figure 12.16, will involve instances of cells belonging to a few
typical functional classes: inputs, effectors, renders, displays. Input collect
user input and generate the corresponding active pulses on streams. These
components encapsulate such devices as mouse, keyboard, 3-D tracker, etc.
Effector cells use the input data to modify the state of the internal model
(including possibly process parameters). In this example, the effector is the
camera control cell. In some cases, the data produced by the input device
requires some processing in order to convert it into data that can be used
by the effector. This is the case for example with vision-based perceptual
interfaces, in which the input device is a camera, which produces a video
stream that must be analyzed to extract the actual user input information.

616 Software Architecture for Computer Vision Chapter 12

Such processes can be implemented efficiently in the SAI style (see e.g. [18]),
and be integrated consistently in an interactive application graph. Rendering
and display elements produce and present a perceptual view of the internal
model to the user, closing the loop. Display cells encapsulate output devices,
such as screen image display, stereo image displays, sound output, etc. Note
that in some cases, e.g. for haptics, input and display functions are handled
by the same device.

For interaction to feel natural, latency (or lag: the delay between input
action and output response) must be kept below a threshold above which
the user will perceive an inconsistency between her actions and the resulting
system evolution. This threshold is dependent on the medium and on the
application, but studies show that latency has a negative effect on human
performance [23]. For example, human performance tests in virtual environ-
ments with head-coupled display suggest a latency threshold of the order of
200ms above which performance becomes worse, in terms of response time,
than with static viewing [11]. The same study also suggests that latency has
a larger impact on performance than frame update rate. System throughput
(including higher data bandwidth) is more related to the degree of immersive-
ness, and could influence perceived latency. In any case, it is quite intuitive
and usually accepted that interactive systems can always benefit from lower
latency and higher throughput. A careful design, an appropriate architecture
and an efficient implementation are therefore critical in the development of
interactive applications.

Renderers are an example of simultaneous manipulation of volatile and
persistent data. A rendering cell produces perceptual instantaneous snap-
shots (volatile) of the environment (persistent) captured by a virtual device
such as microphone or camera, which is itself part of the environment model.
The intrinsic parallelism and synchronization mechanism of the SAI style are
particularly well suited for well defined, consistent and efficient handling of
these type of tasks. The rendering stream is generated by an instance of
the Pulsar cell type, a fundamental specialized component that produces
empty pulses on the stream at a given rate. In this example, the render-
ing cell adds to the pulse an image of the 3-D model, synthesized using the
OpenGL library. Persistent data used by the rendering, apart from the scene
graph, include a virtual camera, and rendering parameters such as the light-
ing model used, etc. An image display cell puts the rendered frames on the
screen.

User input streams can follow either a pull or push model. In the pull
approach, which is used in this example, a Pulsar triggers a regular sampling
of some input device encapsulated in a user input cell and corresponding

Section 12.2. SAI: A Software Architecture Model 617

data structures. The state of the device is then used in a control cell to
affect the state of the model, in this case the position and parameters of the
virtual camera. In a push approach, more suitable for event based interfaces,
the input device triggers the creation of pulses with state change induced
messages, which are then interpreted by the control cell.

Rendering and control are two completely independent streams, which
could operate separately. For example the exact same application could
function perfectly without the control stream, although it would no longer
be interactive. Decoupling unrelated aspects of the processing has some
deep implications. For example, in this system, the responsiveness of the
user control subsystem is not directly constrained by the performance of the
rendering subsystem. In general, in an immersive system, if the user closes
her eyes, moves her head and then reopens her eyes, she should be seeing
a rendering of what she expects to be facing, even if the system was not
able to render all the intermediate frames at the desired rate. Furthermore,
the system can be seamlessly extended to include “spectators” that would
experience the world through the user’s “eyes” but without the control, or
other users that share the same world but have separate interaction loops
involving different rendering, display and input modalities. All such loops
would then have the same status with respect to the shared world, ensuring
consistent read and write access to the persistent data.

Modeling The world model itself can evolve dynamically, independently of
any user interaction. Simulating a dynamic environment requires the use
of models that describe its state at a given time, and the way it evolves in
time. These models are clearly persistent (and dynamic) data in the sys-
tem. Implementing the necessary SAI elements requires to carefully discrim-
inate between purely descriptive data, processes, and process parameters,
and analyze how these model elements interact in the simulation. The de-
sign described in [14] for 3-D modeling is directly inspired from VRML [5]
and the more recent X3D [4]. The main descriptive structure of the model
is a scene graph, which constitutes a natural specialization of the FSF data
model. Figure 12.17 illustrates node types involved in the scene graph model.
Descriptive nodes, such as geometry nodes and the Shape, Appearance, Ma-
terial and Texture nodes, are straightforward adaptations of their VRML
counterparts. The VRML Transform node, however, is an example of se-
mantic collapse, combining a partial state description and its alteration. A
transform should actually be considered as an action, applied to a coordi-
nate system. It can occur according to various modalities, each with specific
parameter types. Consequently, in our model, geometric grouping is han-

618 Software Architecture for Computer Vision Chapter 12

dled with Coordinate System nodes, which are purely descriptive. In order
to provide a complete state description in a dynamic model, the Coordinate
System node attributes include not only origin position and basis vectors,
but also their first and second derivatives. Various transforms are imple-
mented as cells, with their specific parameter nodes, that are not part of the
scene graph (although they are stored in the same source). Scene graph ele-
ments can be independently organized into semantic asset graphs, by using
the Shared Instance node, instances of which can replace individual node
instances in the scene graph, as illustrated for a material node in Figure
12.17.

Scene graph root

Assets

Materials

Coordinate system

Shape Appearance Geometry

Material Shared instance

Generic node

Pulse root

Figure 12.17. Scene graph model in the SAI style, as proposed in [14].

Animation, i.e. scene evolution in time, is handled by cells implementing
specific processes, whose parameter nodes are not part of the scene graph
itself. This ensures that both persistent data, such as the scene graph, and
volatile data, such as instantaneous description of graph components evo-
lution, are handled consistently. This aspect is critical when simultaneous
independent processes are in play, as it is often the case in complex simula-
tions. Process parameters can also evolve in time, either as a result of direct
feed-back or through independent processes.

The analytical approach followed for modeling, by separating descrip-
tive data, processes, and process parameters, supported by a unified and
consistent framework for their description and interaction, allows to inte-
grate seamlessly 3-D graphics, video streams, audio streams, and other me-

Section 12.2. SAI: A Software Architecture Model 619

Figure 12.18. A rendered frame of the (animated) 3-D model with texture
mapping from a live video stream.

dia types, as well as interaction streams. All these independent streams are
in effect synchronized by the well defined and consistent use of shared data,
in this case the scene graph and the virtual camera.

Figure 12.18 shows a rendered frame of a world composed of four spheres
and four textured rectangles, rotating in opposite directions. Two fixed
lights complete the model. A video stream captured live is used as texture
for the rectangles. Although this setting is not immersive (in the interest of
the picture), the same system can easily made immersive by modifying the
scene. The user may be placed in the center of the world, itself modeled by a
cylindrical polygonal surface on which a video stream, possibly pre-recorded
from a panoramic camera system, is texture-mapped in real-time. The user,
maybe using a head mounted display, only sees the part of the environment
she is facing, and may control her viewing direction using a head tracker.

This application illustrates the flexibility and efficiency of the SAI archi-
tectural style. In particular, thanks to the modularity of the framework, core
patterns (e.g. rendering, control, animation, etc.) can be effortlessly mixed
and matched in a plug-and-play fashion to create systems with unlimited
variations in the specific modalities (e.g. mouse or tracker input, screen or
head mounted display, etc.).

620 Software Architecture for Computer Vision Chapter 12

12.2.4 Architectural Properties

By design, the SAI style preserves many of the desirable properties identi-
fied in the Pipes and Filters model. It allows intuitive design, emphasizing
the flow of data in the system. The graphical notation for conceptual level
representations give a high level picture that can be refined as needed, down
to implementation level, while remaining consistent throughout. The high
modularity of the model allows distributed development and testing of par-
ticular elements, and easy maintenance and evolution of existing systems.
The model also naturally supports distributed and parallel processing.

Unlike the Pipes and Filters style, the SAI style provides unified data
and processing models for generic data streams. It supports optimal (theo-
retical) system latency and throughput thanks to an asynchronous parallel
processing model. It provides a framework for consistent representation and
efficient implementation of key processing patterns such as feed-back loops
and incremental processing along the time dimension. The SAI style has
several other important architectural properties that are out of the scope of
this overview. These include natural support for dynamic system evolution,
run-time reconfigurability, self monitoring, etc.

A critical architectural property that must be considered here is perfor-
mance overhead. Some aspects of the SAI data and processing models, such
as filtering, involve non trivial computations, and could make the theory im-
practical. The existence of fairly complex systems designed in the SAI style
and implemented with MFSM show that, at least for these examples, it is
not the case.

A closer look at how system performance is evaluated and reported is
necessary at this point. It is not uncommon to provide performance results
in the form: “the system runs at n frames per second on a Processor X sys-
tem at z {K,M,G}Hz.” For example, the segmentation and tracking system
presented in the last section runs at 20 frames per second on 320x240 pixels
frames. The machine used is a dual processor Pentium 4 @ 1.7 GHz with
1Go memory. Note that the system does not only perform segmentation
and tracking: it also reads the frames from a file on disk or from a cam-
era, produces a composite rendering of the analysis results, and displays the
resulting images on the screen. In order to make the results reproducible,
the hardware description should include the hard drive and/or camera and
interface, the graphics card, and how these elements interact with each other
(e.g. the mother board specifications), etc. In practice, such a detailed de-
scription of the hardware setting is tedious to put together, and probably
useless, since reproducing the exact same setting would be difficult and even

Section 12.2. SAI: A Software Architecture Model 621

undesirable. Another inaccuracy in the previous report is that it implies that
20 frames per seconds is the best achievable rate in the described conditions
(which is incidentally not the case). Reporting best case performance is not
very useful, as a system that takes up all the computing power to produce a
relatively low level output, meaningful only in the context of a larger system,
is not of much use beyond proof of concept. If the algorithm is going to be
used, an evaluation of its computational requirements as part of a system is
necessary.

Performance descriptions of the type described above only provide a par-
tial and fuzzy data point that alone does not allow to predict for example
how the system will perform on another (hopefully) more powerful hardware
platform, or how it will scale up or down in different conditions (frame rate,
image resolutions, etc.). Theoretical tools such as algorithmic complexity
analysis can certainly help in the prediction, if the properties of the other
elements involved in the overall system is understood. Hardware components
can certainly be sources of bottlenecks, for example disk speed (for input or
output) and camera rate can be limiting factors. On the software side, it
is also necessary to understand not only the contribution of each algorithm,
but also that of the environment in which they are implemented.

Figure 12.19 shows new experimental scalability tests performed on ap-
plications designed in the SAI style. The results are in accordance with
those reported in [18]. The figure plots processing load, in percent, against
processing rate, in frames per seconds, for an application performing video
capture, segmentation by change detection, and result visualization, and the
same plot for the same application with the segmentation turned off (the im-
age displayed is the input). Both applications scale linearly with respect to
throughput. All conditions being equal, the difference in slope between the
two curves characterizes the processing load imposed by the segmentation
part. Note that these tests were performed on a dual processor machine, so
that the processor load is an average of the load of both processors. Because
of the parallelism (in this case multithreading), the overall load is balanced
between the two processors (by the operating system in this case). As a
result, the system is completely oblivious to the 50% cpu load barrier. The
figure also plots system latency, in ms, against processing rate, for both ap-
plications. The latency remains constant as long as system resources are
available. In a sequential system, the latency would be directly proportional
to the throughput, and in fact dictate the maximum achievable throughput.
When a bottleneck is encountered (or some resources are exhausted), latency
increases and system performance degrades. The segmentation application
performance (in terms of latency) starts degrading around 55 frames per sec-

622 Software Architecture for Computer Vision Chapter 12

Figure 12.19. Scalability with respect to throughput.

onds, although the system can still achieve rates above 70 frames per second
in these conditions.

These plots suggest that: (1) as long as computing resources are avail-
able, the overhead introduced by the SAI processing model remains constant,
and (2) the contribution of the different processes are combined linearly. In
particular, the model does not introduce any non-linear complexity in the
system. These properties are corroborated by empirical results and experi-
ence in developing and operating other systems designed in the SAI style.
Theoretical complexity analysis and overhead bounding are out of the scope
of this overview.

12.3 MFSM: AN ARCHITECTURAL MIDDLEWARE

This section is an example-based, code-level tutorial on the use of the MFSM
architectural middleware for implementing image stream manipulation ap-
plications designed in the SAI style. It begins with a brief overview of the
MFSM project and its implementation of SAI. Design and implementation of

Section 12.3. MFSM: An Architectural Middleware 623

applications for image stream manipulation is then explained in detail using
simple examples, based on those used in the online MFSM user guide. A
first example illustrates application setup and cleanup, application graph el-
ements instantiation and connection. The development of specialized nodes
is explained with a study of the implementation of a generic image data
structure (object of an open source module). The use of this node type in
a specialized process is explained with a study of the implementation of a
custom cell used in the first example. Finally, a more complex example il-
lustrates shared memory access for incremental computations along the time
dimension.

This section constitute an image-oriented, self contained complement to
the online user guide [12].

Disclaimer The code appearing in this section was developed by the author,
and is part of open source modules and examples released under the GNU
Lesser General Public License [1]. They are available for download on the
MFSM web site [12]. This code is provided here in the hope that it will be
useful, but without any warranty; without even the implied warranty of mer-
chantability or fitness for a particular purpose. Complete license information
is provided in the downloadable packages.

12.3.1 MFSM overview

MFSM (Modular Flow Scheduling Middleware) [12] is an architectural mid-
dleware implementing the core elements of the SAI style. MFSM is an open
source project, released under the GNU Lesser General Public License [1].
The goal of MFSM is to support and promote the design, analysis and im-
plementation of applications in the SAI style. This goal is reflected in the
different facets of the project.

– The FSF library is an extensible set of implementation-level classes
representing the key elements of SAI. They can be specialized to define
new data structures and processes, or encapsulate existing ones (e.g.
from operating system services and third-party libraries).

– A number of software modules regroup specializations implementing
specific algorithms or functionalities. They constitute a constantly
growing base of open source, reusable code, maintained as part of the
MFSM project. Related functional modules may be grouped into li-
braries.

– An evolving set of example applications illustrates the use of FSF and
specific modules.

624 Software Architecture for Computer Vision Chapter 12

Application layerLow-level
services and

libraries

Middleware layer

Software components
inheritance hierarchy

Components
instantiation

Interaction
devices

Local
Storage

Libraries

FSF

Shared repository Persistent data access

Volatile data stream Processing

Figure 12.20. Overall system architecture suggested by MFSM.

– An evolving set of documents provides reference and example material.
These include a user guide, a reference guide and various tutorials.

Figure 12.20 shows the overall system architecture suggested by MFSM.
The middleware layer provides an abstraction level between low-level services
and applications, in the form of SAI software elements. At the core of this
layer is the Flow Scheduling Framework (FSF) [13, 17], an extensible set of
foundation classes that implement SAI style elements. The generic extensi-
ble data model allows to encapsulate existing data formats and standards as
well as low-level service protocols and APIs, and make them available in a
system where they can interoperate. The hybrid shared repository and mes-
sage passing communication and parallel processing model supports control,
asynchronous concurrent processing and synchronization of data streams.
The application layer can host a data-stream processing software system,
specified and implemented as instances of SAI components and their rela-
tionships.

Section 12.3. MFSM: An Architectural Middleware 625

In its current implementation, the FSF library contains a set of C++
classes implementing SAI elements: the source, the nodes and pulses, the
cells, the filters, the handles. It also contains classes for two implementation
related object types: the factories and the System. A brief overview of
each object type is proposed below. An online reference guide [12] provides
detailed interface description and implementation notes for all the classes
defined in the FSF library.

Source The source class is fairly simple. It holds a single passive pulse,
and keeps a list of pointers to connected cells. Note that connectors are not
implemented as objects, but simply lists of pointers in the components. This
results from the simplicity of the role played by connectors in the SAI style.
In particular, they do not perform any computation. Sources also perform
garbage collecting on their passive pulse when notified of a structural change
by a connected cell.

Nodes and pulses The FSF library contains a base node class, that imple-
ments connectivity elements for building hierarchical structures. Specialized
node classes, encapsulating or implementing specific data structures, will be
derived from the base class. In FSF, from The base node class are derived
two specific classes for active and passive pulse respectively. These serve
as root nodes for active and passive pulse which are node hierarchies. An-
other node specialization is provided in FSF, that implements nodes holding
atomic type values (integer, floating point, boolean, string, etc.). These are
called TypeNodes, and are implemented as template instances of a template
classe, itself derived from a non template TypeNodeBase class (to allow un-
determined pointers to a TypeNode object).

Cells The FSF library contains a base cell class, that implements cell-cell
and cell-source connectivity mechanisms (lists of pointers). It also imple-
ments all the computation associated with the parallel processing of active
pulses. In MFSM, in each cell, each active pulse is processed in a sepa-
rate thread. Each passive filtering operation is also carried in a separate
thread. As a result, some precautions must be taken for concurrent data
access. Thanks to inheritance and virtual functions, when implementing
a specialized cell derived from the base cell, only the specific computation
must be coded, in an overloaded process virtual member funtion. All the
events leading to the call to this process function, including filtering, will
be automatically performed. A cell can be active or inactive. For efficiency
purposes, passive filtering only occurs when the cell is activated (activation
fails if passive filtering fails), and when explicitely notified by the source,
after a cell notified the source of a structural change in the passive pulse.

626 Software Architecture for Computer Vision Chapter 12

Filters Two sets of classes are implemented, for active and passive filters re-
spectively. For each, a template class derived from a non template base class
provides support for intantiating filters corresponding to any node type. The
non template base class allows to have pointers to undetermined filters (e.g.
in cells). The filter objects also implement the filtering functionality. Ac-
tive filtering instantiates and returns a list of active handles, passive filtering
instantiates and returns a list of passive handles.

Handles Two sets of classes are implemented, for active and passive handles
respectively. Active handle simply provide a pointer to a node in an active
pulse. An optional handle ID, inherited during the filtering operation, allows
to identify the node with respect to the filter. Passive handles play the
additional role of locks for node deletion and garbage collecting (not required
in active pulses). When a cell removes a node, it does not destroy it, but
marks it as deleted, so it is not used in subsequent filtering operations. The
cell must notify the source, which in turns notify all connected cells to re-
filter the passive pulse, and initiates a garbage collecting process, which will
physically deleted the node when is it free of handles from ongoing process.

Factories Class factories are used to instantiate objects at run time, whose
type is not known at compile time. Since cells and nodes constitute extensible
sets of specialized object types derived from respective base classes, Cell and
Node factories a necessary for instantiating cells and nodes at run time,
and modify application graphs dynamically. Node factories also allow to
instantiate filters for the corresponding node type.

System By convention, any application using FSF must have a single in-
stance of the System type, a pointer to which is available as a global variable,
defined in the FSF library. This object provides the reference clock, and holds
the lists of node and cell factories available for building application graphs.
In order to use a module in an application, its node and cell factories must
be declared and registered with the system instance.

12.3.2 A First Image Manipulation Example

The online MFSM user guide [12] describes a simple program (called ex1)
that generates a stream at a given frame rate, and displays the time stamp
of each pulse in both ms and in h/m/s formats. The example in this section
performs a similar task, but instead of being written to the standard output,
each formatted time stamp string is written into a newly created image (using
Intel’s OpenCV [2]). This first example will be called eximg1.

Section 12.3. MFSM: An Architectural Middleware 627

Application design and specifications.

Before building a design, and after identifying the system requirements, it is
useful to know what building elements are available. This simple application
involves a (single) stream, so the first concern is the origin of the stream.
FSF contains a fundamental cell type that generates empty pulses at a given
frame rate. It is called Pulsar, and table 12.2 shows its specifications. It
does not have any input. It has one parameter, of integral type, whose value
is the time delay between two consecutive output pulses.

fsf::CPulsar FSF PULSAR
(fsf::CCell)
Active filter (no input)
Passive filter [FSF INT32 NODE “Pulse delay”]
Output (FSF ACTIVE PULSE “Root”)

Table 12.2. fsf::CPulsar logical cell definition.

In this section, it is assumed that a cell is available, that is capable
of looking up the time stamp of each incoming active pulse, creating and
image, and printing the formatted time stamp in the image. The actual
implementation of this cell is addressed later, in the section 12.3.3. Table
12.3 shows the cell specifications.

myspace::CMyCellImg MY CELL IMG
(fsf::CCell)
Active filter [FSF ACTIVE PULSE “Root”]
Passive filter [FSF PASSIVE PULSE “Root”]
Output (IMAGE IMAGE “Image”)

Table 12.3. myspace::MyCellImg logical cell definition.

The open source Display Module defines and implements a cell that can
display an image into a window. Table 12.3 shows the ImageDisplay cell
specifications.

Given these elements, it is now straightforward to formulate a design
for eximg1, from one instance of Pulsar, one instance of MyCellImg and
one instance of ImageDisplay. Figure 12.21 shows the resulting conceptual
application graph.

The next few sections explain in detail how to code the simple application

628 Software Architecture for Computer Vision Chapter 12

display::CImageDisplay IMAGE DISPLAY
(fsf::CCell)
Active filter [IMAGE IMAGE “Image”]
Passive filter [FSF FLOAT32 NODE “Display zoom”]
Output (no output)

Table 12.4. display::ImageDisplay logical cell definition.

Image synthesis
(Image module,OpenCV)

Image display
(Image module)

Pulsar

Figure 12.21. Conceptual level graph for the first image manipulation example,
eximg1.

in C++: setting up the system, building and running the application graph,
and cleaning-up the objects allocated.

Getting started

The first mandatory step in using the FSF library is to allocate the unique
system object, that provides the reference clock, and holds the node and cell
factories available. The nodes and cells defined in each module used must be
registered. Factories can be registered in any order. They are not necessary
for pre-coded application graphs, although they are used by the scripting
module functions (see below). Factories are necessary for dynamic, run-time
application graph building and/or modification, which is out of the scope
of this introduction. Each module is required to declare and implement a
function called RegisterFactories for registering factories in the system
for all nodes and cells implemented in the module.

// create the system
fsf::AllocateSystem();

Section 12.3. MFSM: An Architectural Middleware 629

// register system factories
fsf::RegisterFactories();

// register module factories
image::RegisterFactories();
display::RegisterFactories();

// register myspace factories
myspace::RegisterFactories();

Building the graph

A scripting module (namespace scripting) provides shortcut functions to
instantiate sources and cells, instantiate nodes and place them in source
pulses, connect cells to other cells and to sources. The convention followed
in the parameter order for stream connections is to plug a downstream cell
into an upstream cell. The name “scripting” comes from the fact that the
functions provided by this module are coding equivalents of user actions in
an interactive system. In particular, the scripting module uses aspects of the
MFSM implementation that are related to dynamic system evolution, such
as class factories. Note that the scripting module itself does not implement
any node or cell class and thus does not register any factory (there is no
scripting::RegisterFactories).

The code for building an application graph instantiates and connects all
the elements of the conceptual graph. In this simple example, the graph
can be divided into three functional parts: the pulsing unit built around
the Pulsar instance, the image synthesis unit built around the MyCellImg
instance, and the display unit built around the ImageDisplay instance. Each
subgraph in this case corresponds to one source and one cell (minimal com-
puting units).

Each minimal unit, consisting of one cell and one source whose pulse
contains the cell’s parameters, can be coded following these steps:

– Instantiate the source.

– Instantiate the parameter node(s). Each node is placed in the source’s
passive pulse hierarchy. Optional steps for each node include setting
its name and data member initial values.

– Instantiate the cell. Optional steps include setting the output base
name, the active and passive filters. The cell is then connected to its

630 Software Architecture for Computer Vision Chapter 12

source, and to the cell directly upstream on the active stream, if any.

These principles can be used as guidelines and adapted to code any graph.
The following code builds the graph for the example, first the pulsar unit,
then the image synthesis unit, and finally the image display unit. Success-
ful instantiation of all graph elements is checked, as failure to register the
appropriate factories will result in the failure to instantiate a given cell or
node.

// build graph
bool bSuccess=true;

/////////////////
// Pulsar unit //
/////////////////

// create the source
fsf::CSource *pPSource=new fsf::CSource;
bSuccess &= (pPSource!=NULL);

// parameter node: pulse delay
fsf::Int32Node *pPulseDelay =
static_cast<fsf::Int32Node*>(scripting::CreateNode(
std::string("FSF_INT32_NODE"),pPSource->GetPulse()));

bSuccess &= (pPulseDelay!=NULL);
if(bSuccess)
{
// set name
pPulseDelay->SetName(std::string("Pulse delay"));
// set parameter values
long nPulseDelay=static_cast<long>((1000.0f/fPulseRate)-1);
pPulseDelay->SetData(nPulseDelay);

}

// cell
fsf::CCell *pPcell =
static_cast<fsf::CCell*>(scripting::CreateCell(
std::string("FSF_PULSAR")));

bSuccess &= (pPcell!=NULL);
if(bSuccess)
{

Section 12.3. MFSM: An Architectural Middleware 631

// connect with source
scripting::ConnectSource(pPcell,pPSource);

}

//////////////////////////
// Image synthesis unit //
//////////////////////////

// create the source
fsf::CSource *pMySource=new fsf::CSource;
bSuccess &= (pMySource!=NULL);

// cell
fsf::CCell *pMyCell =
static_cast<fsf::CCell*>(scripting::CreateCell(
std::string("MY_CELL_IMG")));

bSuccess &= (pMyCell!=NULL);
if(bSuccess)
{
// connect with source
scripting::ConnectSource(pMyCell,pMySource);

// connect with Pcell
scripting::ConnectUpstreamCell(pMyCell,pPcell);

}

//////////////////
// Display unit //
//////////////////

// create the source
fsf::CSource *pDisplaySource=new fsf::CSource;
bSuccess &= (pDisplaySource!=NULL);

// parameter node: display zoom
fsf::Float32Node *pDisplayZoom=static_cast<fsf::Float32Node*>(
scripting::CreateNode(
std::string("FSF_FLOAT32_NODE"),pDisplaySource->GetPulse()));

bSuccess &= (pDisplayZoom!=NULL);
if(bSuccess)

632 Software Architecture for Computer Vision Chapter 12

{
// set name
pDisplayZoom->SetName(std::string("Display zoom"));
// set parameter values
pDisplayZoom->SetData(1.0f);

}

// cell
fsf::CCell *pDisplayCell =
static_cast<fsf::CCell*>(scripting::CreateCell(
std::string("IMAGE_DISPLAY")));

bSuccess &= (pDisplayCell!=NULL);
if(bSuccess)
{
// connect with source
scripting::ConnectSource(pDisplayCell,pDisplaySource);

// connect with Pcell
scripting::ConnectUpstreamCell(pDisplayCell,pMyCell);

}

// Check everything went OK...
if(bSuccess==false)
{
cout << "Some elements in the graph could not be instantiated."

<< endl;
return (-1);

}

Running the graph

Once the graph is completed, the cells must be activated. The Pulsar in-
stance is the origin of the active stream and starts generating empty pulses
as soon as it is activated. The MyCellImg instance, once activated, will pro-
cess incoming pulses in parallel, asynchronously. The ImageDisplay instance
will render the images produced by the MyCellImg instance on the screen.
The cells can be started in any order.

// run the cells
pMyCell->On();
pPcell->On();

Section 12.3. MFSM: An Architectural Middleware 633

pDisplayCell->On();

Although this aspect is not evident in this simple example, cells can
be turned on and off at any time during the execution of the application,
elements (sources and cells) can be connected and disconnected at any time,
new ones can be created and existing ones destroyed at any time.

Because the Display Module relies on the Microsoft Windows Operat-
ing System to display images on the screen, the console application must
explicitly provide for a mechanism to dispatch and process messages for
the display window. The following code serves this purpose. At the same
time, the GetAsyncKeyState function is used to check whether the Q key is
pressed, to exit the loop.

// message loop for windows
// + check for ’Q’ key (VK_Q id 0x51) pressed
MSG msg;
while(((GetAsyncKeyState(0x51)&0x1)==0)

&& ::GetMessage(&msg, NULL, 0, 0))
{
::TranslateMessage(&msg);
::DispatchMessage(&msg);

}

This is the only MS Windows specific code in the application.

Clean-up

The following code stops the cells, disconnects and destroys the different
elements instantiated when building the graph, and finally deallocates the
unique global FSF system instance. The scripting module provides high level
functions to disconnect cells and source.

// Stop the cells
pPcell->Off();
pMyCell->Off();
pDisplayCell->Off();

// Clean up
scripting::DisconnectSource(pPcell);
scripting::DisconnectStream(pPcell);
delete pPcell;

634 Software Architecture for Computer Vision Chapter 12

Figure 12.22. Screen shot of the display window for eximg1.

delete pPSource;

scripting::DisconnectSource(pMyCell);
scripting::DisconnectStream(pMyCell);
delete pMyCell;
delete pMySource;

scripting::DisconnectSource(pDisplayCell);
scripting::DisconnectStream(pDisplayCell);
delete pDisplayCell;
delete pDisplaySource;

// Deallocate system
fsf::FreeSystem();

Running the program

The example implementation allows to specify the pulse rate on the command
line (the default rate is 15 Hz). Figure 12.22 shows a screen shot of the display
window.

12.3.3 Custom Elements

If one of the goals of MFSM is to allow rapid design and development of
applications from existing modules, one of its main strengths is to allow easy
specification and implementation of custom elements that will interoperate
seamlessly with existing or third party components.

The example developed in the previous section, eximg1, makes use of an
instance of a cell type called myspace::MyCellImg, whose task is to look
up the time stamp of each incoming active pulse, format it and print the

Section 12.3. MFSM: An Architectural Middleware 635

resulting string into a newly created image. In this section, the design
and implementation of specialized SAI elements (nodes and cells) is illus-
trated on the customized elements of eximg1. First, the generic image node
image::CImage implemented in the open source Image Module is described.
Then, the design and implementation of the myspace::MyCellImg cell type,
which makes use of the image::CImage, are detailed step by step.

A custom node type: image::CImage

One solution when designing the image node was to encapsulate an existing
image structure. Unfortunately, each image processing library comes with
its own image structure. Committing to a given library might prevent ac-
cess to other libraries, and prove restrictive in the long term. The image
node defined in the Image Module provides a minimum representation to
ensure its compatibility with existing image structures (in particular that
used in OpenCV). However the image node does contain any field specific of
particular image formats, to ensure the widest compatibility. When needed,
more specific image nodes may be derived from this base image node for
leveraging specific library features. Because of inheritance properties, these
specialized image nodes will be usable with all processes defined for the base
image node.

Any node type specialization must be derived from the base node fsf::CNode
or a derived node. A node type is characterized by an identification string
(used to link it to its factory). A complete node type description includes a
list of data members and member functions, and a short description of its
semantics.

The image node is derived from the character buffer node defined in the
FSF library. An image buffer is indeed a character buffer. The smallest set
of parameters needed to make the character buffer usable as an image buffer
are the image width and height, the number of channels and the pixel depth.
Since some libraries require data line alignment for optimal performance, the
actual aligned width (width step) must also be stored. A utility protected
member function is used to compute the aligned width.

class CImage : public fsf::CCharBuffer
{
protected:
int m_nNbChannels; // Number of channels
int m_nDepth; // Pixel depth IMAGE_DEPTH_*

int m_nWidth; // Image width

636 Software Architecture for Computer Vision Chapter 12

int m_nHeight; // Image height
int m_nWidthStep; // Aligned width (in bytes)

// utility protected member function
int ComputeWidthStep(bool bNoAlign=false);

Any custom node class must implement a number of constructors: the
default constructor, all the constructors defined in the the base node class
(these must define default values for the local data members), additional
constructors for specifying local data members initial values, and the copy
constructor. When necessary, the virtual destructor must also be overloaded.

public:
// Default constructor
CImage() : CCharBuffer(),
m_nNbChannels(3), m_nDepth(IMAGE_DEPTH_8U),
m_nWidth(0), m_nHeight(0), m_nWidthStep(0) {}

// Constructors with default values for local data members
CImage(fsf::CNode *pParent, DWORD dwTime=0)
: CCharBuffer(pParent,dwTime),
m_nNbChannels(3), m_nDepth(IMAGE_DEPTH_8U),
m_nWidth(0), m_nHeight(0), m_nWidthStep(0) {}

CImage(const string &strName,
fsf::CNode *pParent=NULL, DWORD dwTime=0)

: CCharBuffer(strName,pParent,dwTime),
m_nNbChannels(3), m_nDepth(IMAGE_DEPTH_8U),
m_nWidth(0), m_nHeight(0), m_nWidthStep(0) {}

// Constructors with local data members initial values input
CImage(int nWidth, int nHeight,

int nNbChannels=3, int nDepth=IMAGE_DEPTH_8U,
fsf::CNode *pParent=NULL, DWORD dwTime=0)

: CCharBuffer(pParent,dwTime),
m_nNbChannels(nNbChannels), m_nDepth(nDepth),
m_nWidth(nWidth), m_nHeight(nHeight), m_nWidthStep(0) {}

CImage(const string &strName, int nWidth, int nHeight,
int nNbChannels=3, int nDepth=IMAGE_DEPTH_8U,
fsf::CNode *pParent=NULL, DWORD dwTime=0)

Section 12.3. MFSM: An Architectural Middleware 637

: CCharBuffer(strName,pParent,dwTime),
m_nNbChannels(nNbChannels), m_nDepth(nDepth),
m_nWidth(nWidth), m_nHeight(nHeight), m_nWidthStep(0) {}

// Copy constructor
CImage(const CImage&);

No destructor overload is needed here, since the destructor for the char-
acter buffer parent class takes care of deallocating the buffer if needed.

The custom node class must also overload a number of virtual functions
which characterize the node:

– operator= : assignment operator.

– Clone : returns a copy of the node. This virtual function is neces-
sary for run-time polymorphism. It allows to allocate an instance of
a specialized node class without knowing the specific type at compile
time.

– GetTypeID : returns the factory mapping key.

// Assignment operator
CImage& operator=(const CImage&);

// Cloning: necessary for run-time polymorphism
virtual fsf::CNode *Clone() { return new CImage(*this); }

// Factory mapping key
virtual void GetTypeID(string &str)
{ str.assign("IMAGE_IMAGE"); }

A set of member functions provides basic access to local data members
(set and get operations). A memory allocation function and high level pa-
rameter and image data (buffer content) copy functions complete the set of
tools offered by the image node.

void CopyParameters(const CImage&);
void CopyImageData(const CImage&);

// Image parameters setting
void SetWidth(int nWidth) { m_nWidth=nWidth; }
void SetHeight(int nHeight) { m_nHeight=nHeight; }

638 Software Architecture for Computer Vision Chapter 12

void SetNbChannels(int nNbChannels) { m_nNbChannels=nNbChannels; }
void SetPixelDepth(int nDepth) { m_nDepth=nDepth; }
void SetWidthStep(int nWidthStep) { m_nWidthStep=nWidthStep; }

// Image parameters access
int Width() const { return m_nWidth; }
int Height() const { return m_nHeight; }
int NbChannels() const { return m_nNbChannels; }
int PixelDepth() const { return m_nDepth; }
int WidthStep() const { return m_nWidthStep; }

// Memory allocation
void Allocate(bool bNoAlign=false);

};

When an image node instance is created, its parameters must be set.
Constructors provide default values, set functions allow to change the values
explicitly. The corresponding buffer must then be allocated by a call to the
Allocate function. The image node instance can then be used for processing.

Any module must define a RegisterFactories function that registers
its node and cell factories with the system. Following is the code for the
image::RegisterFactories function. Apart from the image node
image::CImage, the module also implements a number of cells that provide
access to its various data members. Their description can be found in the
module documentation, available online [12]. Since an example of cell fac-
tory registration is provided in the next section, the code for cell factory
registration has been ommitted below.

void image::RegisterFactories()
{
using namespace fsf;
using namespace image;

if(g_pSystem==NULL) return;

// Node factories
g_pSystem->RegisterNodeFactory(std::string("IMAGE_IMAGE"),
new CNodeFactory<CImage>(std::string("Image node"),
strAlex("Alexandre R.J. Francois")));

// Cell factories

Section 12.3. MFSM: An Architectural Middleware 639

...
}

A custom cell type: myspace::MyCellImg

The MyCellImg cell type was introduced above in section 12.3.2, when it was
used in the design of eximg1. Table 12.3 presents its the logical definition.

Any cell type specialization must be derived from the base cell fsf::CCell
or a derived cell. A cell type is characterized by an identification string (used
to link it to its factory). A complete cell type description includes the active
and passive filters, the process output, a list of data members and member
functions, and a short description of the process.

Any custom cell must implement the default constructor, and overload a
number of virtual functions which characterize the cell:

– GetTypeID : returns the factory mapping key.

– Process : the Process function is the only one requiring significant
coding, as it is the place to specialize the behavior of the cell.

– When the function is called, the binding has already succeeded and it
is executed in a separate thread.

– For the cell to be useful, the process function must be described care-
fully. In particular, the way the input is processed and any output
generated should be carefully documented.

The following code is the declaration for the corresponding class
myspace::CMyCellImg, derived from fsf::CCell.

class CMyCellImg : public fsf::CCell
{
public:
CMyCellImg();

// factory mapping key
virtual void GetTypeID(std::string &str)
{ str.assign("MY_CELL_IMG"); }

// specialized processing function
virtual void Process(fsf::CPassiveHandle *pPassiveHandle,
fsf::CActiveHandle *pActiveHandle,
fsf::CActivePulse *pActivePulse);

640 Software Architecture for Computer Vision Chapter 12

};

The constructor sets the default output name base, and instantiates both
passive and active filters from the corresponding template classes.

CMyCellImg::CMyCellImg()
: CCell()
{
// default output name
m_strOutputName.assign("Image");
// set the filters
m_pPassiveFilter =
new fsf::CPassiveFilter<fsf::CPassivePulse>(
std::string("Root"));

m_pActiveFilter =
new fsf::CActiveFilter<fsf::CActivePulse>(
std::string("Root"));

}

The specific behavior of a cell type is encoded in its overloaded process
function. When the process function is executed, filtering of passive and ac-
tive streams has succeeded. The active and passive handles are thus bound
to the nodes satisfying the filters. When the filters are complex (i.e. hier-
archies of filters), the passive and active handles point to their respective
roots.

void CMyCellImg::Process(fsf::CPassiveHandle *pPassiveHandle,
fsf::CActiveHandle *pActiveHandle,

fsf::CActivePulse *pActivePulse)
{

First, a pointer to the target node in the active pulse (in this case, the
root) is retrieved from the active handle. In this simple example, the process
does not use any persistent data: the passive filter is defined such that the
passive handle points to the root of the passive pulse. There is no need to
get an explicit pointer to this node.

fsf::CNode *pNode =
static_cast<fsf::CNode*>(pActiveHandle->GetNode());

The node time stamp is retrieved using the fsf::CNode::GetTime func-
tion. In this implementation, the time stamp is expressed in milliseconds.
The equivalent time in hour/minute/second format is computed as follows:

Section 12.3. MFSM: An Architectural Middleware 641

long h=(pNode->GetTime()/3600000);
long m=((pNode->GetTime()-h*3600000)/60000);
long s=(pNode->GetTime()-h*3600000-m*60000)/1000;

The data to be output has been computed, it must now be placed into
an image. The output image, of type image::CImage, is created by a call
to one of the constructors. The constructor sets the parent pointer in the
newly created node instance, but does not place the node in the parent’s
list of subnodes. This will be done after all computations on the node have
been completed. This ensures that eventual concurrent filtering processes
not take into account nodes that are not ready for use outside of the context
in which they were created. Note that the default output base name defined
in fsf::CCell is a string object, and requires locking (using the associated
CriticalSection object) to avoid problems during concurrent access. After
a call to the image node constructor, the image buffer is allocated, and
initialized with the value 0.

// Create image
m_csOutputName.Lock();
image::CImage *pImage =
new image::CImage(m_strOutputName,320,240,
3,image::IMAGE_DEPTH_8U,
pNode,fsf::g_pSystem->GetTime());

m_csOutputName.Unlock();

// Allocate buffer
pImage->Allocate();
// Fill in with 0
memset(pImage->Data(),0,pImage->Size());

Once the image node instance is ready, it must be made available to the
OpenCV functions, through an appropriate header. The code below creates
an OpenCV image header corresponding to the image node parameters, an
links the header to the actual image buffer.

// Use OpenCV

CvSize size;
size.width=pImage->Width();
size.height=pImage->Height();

642 Software Architecture for Computer Vision Chapter 12

// Create IPL image header
IplImage *pIplImage =
cvCreateImageHeader(size,IPL_DEPTH_8U,pImage->NbChannels());

// Link image data
pIplImage->imageData=pImage->Data();
pIplImage->origin=IPL_ORIGIN_BL;

The various results are placed into formatted character strings, which are
printed in the image using the OpenCV cvPutText function.

CvFont font;
cvInitFont(&font,CV_FONT_VECTOR0,0.8,0.8,0.0,2.0);

char str[255];
sprintf(str,"Pulse time stamp:");
cvPutText(pIplImage,str,cvPoint(15,200),&font,

CV_RGB(255,255,255));

sprintf(str,"%d ms",pNode->GetTime());
cvPutText(pIplImage,str,cvPoint(15,150),&font,

CV_RGB(255,255,255));

sprintf(str,"%d h %2d min %2d s",h,m,s);
cvPutText(pIplImage,str,cvPoint(15,100),&font,

CV_RGB(255,255,255));

When done with using OpenCV, the image header can be deleted. Note
that only the header is deleted, as the image node (including its image buffer)
is the product of the process function.

cvReleaseImageHeader(&pIplImage);

Finally, all computations on the image node being completed, the node
can be registered in its parent’s list of subnodes.

pNode->AddComponent(pImage);
}

At this point, the newly created imge node is part of the active pulse.
When the process function returns, a number of operations are then carried
by the cell, resulting in the transmission of the augmented active pulse to all
downstream cells.

Section 12.3. MFSM: An Architectural Middleware 643

Pulsar

Image synthesis
(Image module,

Image display
(Image module)

Last time

Figure 12.23. Conceptual graph for slightly more complex image manipulation
example.

In order for the cell to be usable in the system, a corresponding cell
factory must be registered. Following is the code for the
myspace::RegisterFactories function.

void myspace::RegisterFactories()
{
using namespace fsf;
using namespace myspace;

g_pSystem->RegisterCellFactory(std::string("MY_CELL_IMG"),
new CCellFactory<CMyCellImg>(
std::string("My cell: image"),
std::string("Alexandre R.J. Francois"));

}

12.3.4 A Shared Memory Access Example

This section describes a slightly more complex example, eximg2, an image
version of the user guide example ex2, which computes and displays the pulse
frequency on the stream. The application graph (see figure 12.23 is very sim-
ilar to that of eximg1. They only differ by their image synthesis unit: which
is now built around an instance of a cell type called myspace::MyCellImg2.

Computing a pulse frequency requires to compute the time delay between
two consecutive pulses. Some data must therefore be shared between the
threads processing each pulse: the time stamp of the last pulse processed is
saved in a node on the passive pulse. It serves as the reference time from
which to compute the time delay when the next pulse is processed. The

644 Software Architecture for Computer Vision Chapter 12

following code instantiates and connects the elements of the image synthesis
unit for eximg2. Thanks to the modularity of SAI, this image synthesis unit
directly replaces that of the previous example, without any modification to
the rest of the application graph.

//////////////////////////
// Image synthesis unit //
//////////////////////////

// create the source
fsf::CSource *pMySource=new fsf::CSource;
bSuccess &= (pMySource!=NULL);

// last time stamp
fsf::Int32Node *pLastTime =
static_cast<fsf::Int32Node*>(scripting::CreateNode(
std::string("FSF_INT32_NODE"),pMySource->GetPulse()));

bSuccess &= (pLastTime!=NULL);
if(bSuccess)
{
// set name
pLastTime->SetName(std::string("Last time"));

}

// cell
fsf::CCell *pMyCell =
static_cast<fsf::CCell*>(scripting::CreateCell(
std::string("MY_CELL_IMG2")));

bSuccess &= (pMyCell!=NULL);
if(bSuccess)
{
// connect with source
scripting::ConnectSource(pMyCell,pMySource);

// connect with Pcell
scripting::ConnectUpstreamCell(pMyCell,pPcell);

}

The myspace::MyCellImg2 cell type is in appearance quite similar to
myspace::MyCellImg. Table 12.5 shows its logical definition.

Section 12.3. MFSM: An Architectural Middleware 645

myspace::CMyCellImg2 MY CELL IMG2
(fsf::CCell)
Active filter [FSF ACTIVE PULSE “Root”]
Passive filter [FSF INT32 NODE “Last time”]
Output (IMAGE IMAGE “Image”)

Table 12.5. myspace::MyCellImg2 logical cell definition.

The difference in the passive filter is reflected in the constructor code, as
follows.

CMyCellImg2::CMyCellImg2()
: CCell()
{
// default output name
m_strOutputName.assign("Image");
// set the filters
m_pPassiveFilter =
new fsf::CPassiveFilter<fsf::Int32Node>(
std::string("Last time"));

m_pActiveFilter =
new fsf::CActiveFilter<fsf::CActivePulse>(
std::string("Root"));

}

The overloaded process function encodes the specific behavior of the
myspace::MyCellImg2 cell type.

void CMyCellImg2::Process(fsf::CPassiveHandle *pPassiveHandle,
fsf::CActiveHandle *pActiveHandle,
fsf::CActivePulse *pActivePulse)

{

First a pointer to the target node in the passive pulse is retreived from
the passive handle. In this case, it is a node of type fsf::Int32Node, which
contains the value of the last time stamp read. Initialization of this value is
handled in the reset case described below.

fsf::Int32Node *pLastTime =
static_cast<fsf::Int32Node*>(pPassiveHandle->GetNode());

646 Software Architecture for Computer Vision Chapter 12

A pointer to the target node in the active pulse, in this case the root of
the pulse, is also retrieved, from the active handle.

fsf::CNode *pNode =
static_cast<fsf::CNode*>(pActiveHandle->GetNode());

The first time this process function is executed, the passive node contain-
ing the last time stamp value must be set to the value of the time stamp of
the current active pulse, and no significant time difference can be produced.
This section will be executed each time the m bReset flag, data member of
the fsf::CCell class, is set to true.

if(m_bReset)
{
pLastTime->SetData(pNode->GetTime());
m_bReset=false;

}

When the reset flag is not set, the regular processing is carried as follows.

else
{

First and foremost, the value of the last time stamp is collected from
the passive node. The value in the node is updated immediately with the
current time stamp value, so that it is available as soon as possible for even-
tual parallel processes. In a strict parallel implementation, this read/write
sequence should be placed in a critical section. In this simple example, the
possible side effect is neglected. It can be made apparearent by increasing
the requested throughput until it becomes too high for the system on which
the application is running. The throughput computed by this cell then be-
comes an integer fraction of the actual throughput because the reading and
the updating sequence of the time stamp values is no longer in effect atomic.

DWORD dwLastTime=pLastTime->GetData();
pLastTime->SetData(static_cast<long>(pNode->GetTime()));

The remainder of the function code is quite similar to that of
CMyCellImg::Process. The output image is created, its data buffer allo-
cated and set to 0.

Section 12.3. MFSM: An Architectural Middleware 647

m_csOutputName.Lock();
image::CImage *pImage =
new image::CImage(m_strOutputName,320,240,

3,image::IMAGE_DEPTH_8U,
pNode,fsf::g_pSystem->GetTime());

m_csOutputName.Unlock();

pImage->Allocate();
memset(pImage->Data(),0,pImage->Size());

A corresponding OpenCV header is created and linked to the image data
buffer.

// Use OpenCV

CvSize size;
size.width=pImage->Width();
size.height=pImage->Height();

// Create IPL image header
IplImage *pIplImage =
cvCreateImageHeader(size,IPL_DEPTH_8U,pImage->NbChannels());

// Link image data
pIplImage->imageData=pImage->Data();
pIplImage->origin=IPL_ORIGIN_BL;

Computed values are placed in a string, which is then written in the
image buffer using the OpenCV cvPutText function.

CvFont font;
cvInitFont(&font,CV_FONT_VECTOR0,0.8,0.8,0.0,2.0);

char str[255];
sprintf(str,"Pulse delay:");
cvPutText(pIplImage,str,cvPoint(15,200),&font,

CV_RGB(255,255,255));

sprintf(str,"%d ms",pNode->GetTime()-dwLastTime);
cvPutText(pIplImage,str,cvPoint(15,150),&font,

CV_RGB(255,255,255));

648 Software Architecture for Computer Vision Chapter 12

Figure 12.24. Screen shot of the image display window for eximg2.

sprintf(str,"%.2f Hz",1000.0f/(pNode->GetTime()-dwLastTime));
cvPutText(pIplImage,str,cvPoint(15,100),&font,

CV_RGB(255,255,255));

When all OpenCV related operations are completed, the image header
can be deleted.

cvReleaseImageHeader(&pIplImage);

Finally, the output image node is added to its parent’s list of subnodes.

pNode->AddComponent(pImage);
}

}

The example implementation allows to specify the pulse rate on the com-
mand line (the default rate is 15 Hz). Figure 12.24 show a screen shot of the
image display window.

12.4 CONCLUSION

12.4.1 Summary

The first part of this chapter introduced SAI, a software architecture model
for designing, analyzing and implementing applications performing distributed,
asynchronous parallel processing of generic data streams. The goal of SAI is
to provide a universal framework for the distributed implementation of al-
gorithms and their easy integration into complex systems that exhibit desir-
able software engineering qualities such as efficiency, scalability, extensibility,
reusability and interoperability.

Section 12.4. Conclusion 649

SAI specifies a new architectural style (components, connectors and con-
straints). The underlying extensible data model and hybrid (shared reposi-
tory and message-passing) distributed asynchronous parallel processing model
allow natural and efficient manipulation of generic data streams, using ex-
isting libraries or native code alike. The modularity of the style facilitates
distributed code development, testing, and reuse, as well as fast system de-
sign and integration, maintenance and evolution. A graph-based notation for
architectural designs allows intuitive system representation at the conceptual
and logical levels, while at the same time mapping closely to processes.

Architectural patterns were illustrated through a number of Computer
Vision-related demonstration projects ranging from single stream automatic
real-time video processing to fully integrated distributed interactive systems
mixing live video, graphics, sound, etc. By design, the SAI style preserves
desirable properties identified in the classic Pipes and Filters model. These
include modularity and natural support for parallelism. Unlike the Pipes and
Filters model, the SAI style allows to achieve optimal (theoretical) system
latency and throughput, and provides a unified framework for consistent rep-
resentation and efficient implementation of fundamental processing patterns
such as feed-back loops and incremental processing along the time dimension.

The second part of the chapter was a code-level tutorial on MFSM, an
architectural middleware implementing the SAI style. Its core element, the
FSF library, is a set of extensible classes that can be specialized to define
new data structures and processes, or encapsulate existing ones (e.g. from
libraries). MFSM is an open source project, released under the GNU Lesser
General Public License. A number of software modules regroup specializa-
tions implementing specific algorithms or functionalities. They constitute a
constantly growing base of open source, reusable code, maintained as part of
the MFSM project. The project is also thoroughly documented, and com-
prises a user guide, a reference guide and various tutorials.

Simple example applications illustrated the design and implementation of
image stream manipulation applications using the SAI style and the MFSM
middleware. In particular, the implementation of a generic image node (ob-
ject of an open source module) and its use in conjunction with the OpenCV
library in specialized cells were described step by step.

12.4.2 Perspectives

The SAI architectural style exhibit properties that make it relevant to re-
search, educational and even industrial projects .

Thanks to its modularity, it can accommodate today’s requirements while

650 Software Architecture for Computer Vision Chapter 12

preparing for tomorrow’s applications. Using the SAI style for research can
not only save time by avoiding to re-develop existing modules, it can also
reduce the technology transfer time once the research has matured.

SAI also allows distributed development of functional modules, and their
seamless integration into complex systems. The modularity of the design also
allows gradual development, facilitating continuing validation and naturally
supporting regular delivery of incremental system prototypes. A number of
cross-disciplinary research projects, in addition to those described above in
section 12.2.3, are already leveraging these properties. They are producing
real-time, interactive systems spanning a range of research domains.

Using the SAI style for developments in research projects can also reduce
the technology transfer time once the technology has matured. From an
industry point of view, the SAI style allows fast prototyping for proof-of-
concept demonstrations.

For education, SAI allows to efficiently relate classroom projects to the
realities of the research laboratory, and of industrial software development.
A project-oriented Integrated Media Systems class based on SAI, and apply-
ing the distributed development model, was taught at USC in the Fall 2002
semester at the advance graduate level. Rather than having small teams
of students develop a same, simple complete project, the small teams first
implemented complementary parts of an overall, much more complex project
(distributed soccer game). After six weeks of distributed development, snac-
tioned by careful incremental cross-testing, all the pieces were put together
to produce a playable system. The course was an outstanding success, and
regular graduate and undergraduate courses based on this model are in the
planning.

Beyond the ones highlighted in the context of this chapter, the SAI
style has several important desirable architectural properties that make it a
promising framework for many applications in various fields. These proper-
ties include natural support for dynamic system evolution, run-time recon-
figurability, self monitoring, etc. Application of SAI in various contexts is
currently being explored (e.g. interactive immersive systems). Short term
technical developments for SAI include development of a Graphical User
Interface for system architecture design. Architecture validation and moni-
toring and analysis tools will be gradually integrated.

Finally, from a theoretical point of view, because of the explicit distinc-
tion between volatile and persistent data, SAI is a unified computational
model that bridges the conceptual and practical gap between signal (data
stream) processing on the one hand, and the computation of higher level data
(persistent, dynamic structures) on the other hand. As such, it might prove

Section 12.5. Acknowledgments 651

to be not only a powerful tool for implementing, but also for modeling and
reasoning about problems spanning both aspects. An example is Computer
Vision.

12.5 ACKNOWLEDGMENTS

The following (then) graduate students were involved in some of the projects
presented in section 12.2.3: Dr. Elaine Kang (Video Painting, Virtual
Mirror), Maurya Shah (IMSC Communicator–networking and compression),
Kevin Zhu (IMSC Communicator–video and sound capture and synchronized
rendering).

This work has been funded in part by the Integrated Media Systems Cen-
ter, a National Science Foundation Engineering Research Center, Coopera-
tive Agreement No. EEC-9529152. Any Opinions, findings and conclusions
or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect those of the National Science Foundation.

This work was supported in part by the Advanced Research and Devel-
opment Activity of the U.S. Government under contract No. MDA-908-00-
C-0036.

Bibliography

[1] Gnu Lesser General Public License. URL http://www.gnu.org/copyleft/
lesser.html.

[2] Intel Open Source Computer Vision Library. URL http://www.intel.com/
research/mrl/research/opencv/.

[3] Visual surveillance resources. URL http://visualsurveillance.org.
[4] X3D: Extensible 3D international draft standards, iso/iec fcd 19775:200x.

URL http://www.web3d.org/technicalinfo/specifications/ISO_IEC_
19775/index.% html.

[5] VRML 97: The Virtual Reality Modeling Language, iso/iec 14772:1997,
1997. URL http://www.web3d.org/technicalinfo/specifications/ISO_
IEC_14772-All/in% dex.html.

[6] PETS01: Second IEEE International Workshop on Performance Evalua-
tions of Tracking and Surveillance, December 2001. URL http://pets2001.
visualsurveillance.org.

[7] PETS02: Third IEEE International Workshop on Performance Evalua-
tions of Tracking and Surveillance, June 2002. URL http://pets2002.
visualsurveillance.org.

[8] PETS-ICVS: Fourth IEEE International Workshop on Performance Evalua-
tions of Tracking and Surveillance, March 2003. URL http://petsicvs.
visualsurveillance.org.

652 Software Architecture for Computer Vision Chapter 12

[9] PETS-VS: Joint IEEE International Workshop on Visual Surveillance and Per-
formance Evaluations of Tracking and Surveillance, October 2003. URL http:
//vspets.visualsurveillance.org.

[10] G. R. Andrews. Foundations of multithreaded, parallel and distributed program-
ming. Addison Wesley, 2000.

[11] K. W. Arthur, K. S. Booth, and C. Ware. Evaluating 3d task performance for
fish tank virtual worlds. ACM Transactions on Information Systems, 11(3):
239–265, 1993.

[12] A. R.J. François. Modular Flow Scheduling Middleware. URL http://mfsm.
sourceForge.net.

[13] A. R.J. François. Semantic, Interactive Manipulations of Visual Data. PhD the-
sis, Dept. of Computer Science, University of Southern California, Los Angeles,
CA, 2000.

[14] A. R.J. François. Components for immersion. In Proceedings of the IEEE Inter-
national Conference on Multimedia and Expo. Lausanne, Switzerland, August
2002.

[15] A. R.J. François and E. Kang. A handheld mirror simulation. In Proceedings
of the IEEE International Conference on Multimedia and Expo, pages Vol II:
745–748. Baltimore, MD, July 2003.

[16] A. R.J. François, E. Kang, and U. Malesci. A handheld virtual mirror. In ACM
SIGGRAPH Conference Abstracts and Applications proceedings, page 140. San
Antonio, TX, July 2002.

[17] A. R.J. François and G. G. Medioni. A modular middleware flow schedul-
ing framework. In Proceedings of ACM Multimedia 2000, pages 371–374. Los
Angeles, CA, November 2000.

[18] A. R.J. François and G. G. Medioni. A modular software architecture for real-
time video processing. In Springer-Verlag, editor, IEEE International Workshop
on Computer Vision Systems, pages 35–49. Vancouver, B.C., Canada, July
2001.

[19] C. Jaynes, S. Webb, R. M. Steele, and Xiong Q. An open development envi-
ronment for evaluation of video surveillance systems. In PETS02, pages 32–39.
Copenhagen, Denmark, June 2002.

[20] M. B. Jones and J. Regehr. The problems you’re having may not be the prob-
lems you think you’re having: results from a latency study of Windows NT.
In Proceeedings of the Seventh Workshop on Hot Topics in Operating Systems.
Rio Rico, AZ, 1999.

[21] E.Y. Kang, I. Cohen, and G.G. Medioni. A graph-based global registration for
2d mosaics. In ICPR00, pages Vol I: 257–260, 2000.

[22] M. Lazzari, A. François, M. L. McLaughlin, J. Jaskowiak, W. L. Wong, Ak-
barian M., Peng W., and Zhu W. Using haptics and a ”virtual mirror” to
exhibit museum objects with reflective surfaces. In Proceedings of the 11th
International Conference on Advanced Robotics. Coimbra, Portugal, July 2003.

[23] I. S. McKenzie and C. Ware. Lag as a determinant of human performance in
interactive systems. In Proceedings of the ACM Conference on Human Factors
in Computing Systems - INTERCHI, pages 488–493, 1993.

[24] Microsoft. DirectX. URL http://www.microsoft.com/directx.

Bibliography 653

[25] M. F.X.J. Oberhumer. LZO. URL http://www.oberhumer.com/opensource/
lzo.

[26] M. Shaw and D. Garlan. Software Architecture - Perspectives on an Emerging
Discipline. Prentice Hall, Upper Saddle River, NJ, 1996.

[27] D. Terzopoulos and C. M. Brown, editors. Real-Time Computer Vision. Cam-
bridge University Press, 1995.

[28] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers. Wallflower: Principles
and practice of background maintenance. In Proceedingsz of the International
Conference on Computer Vision, pages 255–261, 1999.

