

ptg

Successful

SOFTWAREDEVELOPMENT

Prentice Hall PTR
Upper Saddle River, NJ 07458
www.informit.com/ph

S C O T T E . D O N A L D S O N • S T A N L E Y G . S I E G E L

2 N D E D I T I O N

www.informit.com/ph

ptg

Library of Congress Cataloging-in-Publication Data

Donaldson, Scott E.
Successful software development / Scott E. Donaldson, Stanley G. Siegel.—2nd ed.

p. cm.
Rev. ed. of: Cultivating successful software development. c1997.
Includes bibliographical references and index.
ISBN 0-13-700777-9

1. Computer software—Development. I. Siegel, Stanley G. II. Donaldson, Scott E.
Cultivating successful software development. III. Title.

QA76.76.D47 D655 2000
005.1 2—dc21

00-059839

Editorial/production supervision: Patti Guerrieri
Acquisitions editor: Paul Petralia
Marketing manager: Bryan Gambrel
Manufacturing manager: Alexis Heydt
Editorial assistant: Justin Somma
Cover design director: Jerry Votta
Cover designer: Talar Agasyan
Art director: Gail Cocker-Bogusz
Interior design: Meg Van Arsdale

© 2001, 1997 Prentice Hall PTR
Prentice-Hall, Inc.
Upper Saddle River, NJ 07458

Prentice Hall books are widely used by corporations and government agencies
for training, marketing, and resale.

The publisher offers discounts on this book when ordered in bulk quantities.
For more information, contact: Corporate Sales Department, Phone: 800-382-3419;
Fax: 201-236-7141; E-mail: corpsales@prenhall.com; or write: Prentice Hall PTR,
Corp. Sales Dept., One Lake Street, Upper Saddle River, NJ 07458.

CMM, Capability Maturity Model, and Capability Maturity Modeling are registered
trademarks of Carnegie Mellon University. CMMI and CMM Integration are service
marks of Carnegie Mellon University. Information Productivity is a registered
trademark of Strassmann, Inc. Object Measurement and OM are registered
trademarks of Scott E. Donaldson and Stanley G. Siegel. All other products or
services mentioned in this book are the trademarks or service marks of their
respective companies or organizations.

All rights reserved. No part of this book may be reproduced, in any form or by any means,
without permission in writing from the publisher.

This product is printed digitally on demand.

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-700777-9

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Pearson Education Asia Pte. Ltd.
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

ptg

To the memory of Roy G. Donaldson and Edythe and Julius Siegel

Also to:

Melanie
Stephanie

Laura

Bena
Gary and Amy

Deborah and Robert
Rachel and Daniel

ptg

This page intentionally left blank

ptg

Preface xi

Authors’ Biographies xxviii

Science Applications International Corporation xxxii

Acknowledgments xxxiv

Chapter 1
Business Case 1

1.1 Introduction 1

1.2 Business Case Key Ideas 8

1.3 What Makes Good Business Sense? 12

1.4 Software Systems Development Concepts 26

1.5 Product “Goodness” and Process “Goodness” 32

1.6 Requisite Software Systems Development Disciplines 36

1.7 Generic Four-Stage Software Systems
Development Life Cycle 41

1.8 User, Buyer, and Seller Organizations Involved
in Software Systems Development 44

1.9 Obstacles to Improving Software Systems
Development Cultures 46

vii

Contents

ptg

1.10 Alternative Approaches to Software Process Improvement 52

1.11 Preview of the Rest of Book 58

Chapter 2
Project Planning Process 63

2.1 Introduction 63

2.2 Project Planning Key Ideas 65

2.3 Life Cycle Role in Project Planning 67

2.4 Ideal, Real, and Realistic Project Planning 78

2.5 Risk Assessment and Project Planning 95

2.6 Project Planning Process 100

2.7 Project Plan Contents 110

2.8 Project Planning Summary 116

Chapter 3
Software Systems Development Process 119

3.1 Introduction 119

3.2 Software Systems Development Process Key Ideas 124

3.3 Software Systems Development Process Overview 126

3.4 Customer 132

3.5 Seller Process Engineering Group 136

3.6 Customer/Seller Development Team and Change
Control Board (CCB) 139

3.7 Seller Senior Management 162

3.8 Software Systems Development Process Summary 164

Chapter 4
Change Control Process 173

4.1 Introduction 173

contents

viii

ptg

4.2 Change Control Process Key Ideas 178

4.3 Planned and Unplanned Change 181

4.4 The Processing of Changes 187

4.5 Examination of the Change Control Board 207

4.6 Paperwork Support of the Change Control Board 224

4.7 Change Control Process Summary 258

Chapter 5
Product and Process Reviews 263

5.1 Introduction 263

5.2 Product and Process Reviews Key Ideas 267

5.3 A Taxonomy of Product and Process Reviews 269

5.4 Combining Reviews for Software Audits 296

5.5 Product and Process Reviews Summary 371

Chapter 6
Measurement 381

6.1 Introduction 381

6.2 Measurement Key Ideas 393

6.3 Product Integrity 396

6.4 Process Integrity 419

6.5 Capability Maturity Model (CMM) for Software 436

6.6 Other Process-Related Measurements 447

6.7 Measurement Summary 462

Chapter 7
Cultural Change 477

7.1 Introduction 477

7.2 Cultural Change Key Ideas 491

contents

ix

ptg

7.3 Process Engineering Group (PEG) 493

7.4 Seller Project Participants and Project Managers 529

7.5 Buyer/User Project Management 535

7.6 Buyer/User Senior Management 538

7.7 Seller Senior Management 540

7.8 Cultural Change Summary 542

Chapter 8
Process Improvement Planning 545

8.1 Introduction 545

8.2 SEE Implementation Planning Key Ideas 555

8.3 Key SEE Implementation Planning Issues 559

8.4 Making Successful Software Development Happen 668

Appendix A
How to Measure Strategic Information Management (SIM) 671

A.1 Strategic Information Management 671

A.2 Quantifying Strategic Information Management 676

A.3 Diagnostic Areas and Diagnostic Criteria 678

A.4 OM Measurement Map and Measurement Trends 683

A.5 Summary 688

Appendix B
List of Figures 691

Appendix C
List of Tables 703

Bibliography 705

Index 729

contents

x

ptg

xi

Preface

We must not promise what we ought not, lest we be called on to perform what we cannot.

—Attributed to Abraham Lincoln, speech delivered before the first
Republican convention of Illinois, May 29, 1856, The Writings of
Abraham Lincoln, ed. Arthur B. Lapsley, vol. 2, p. 249 (1905).

Successful Software Development means “the
ability to produce ‘good’ software systems
‘consistently’”

Customers want software systems to do what they are supposed to do, to be de-
livered on time, to be delivered for the agreed-upon cost, and to satisfy any
other criteria they may specify. Sellers want the systems they develop to do
what the customer wants, to be delivered ahead of schedule or on time, to earn
them a reasonable profit, and to satisfy any other criteria that may govern the
way they do business. Software systems satisfying both customer and seller cri-
teria are “good.” Customers and sellers also want their criteria satisfied “con-
sistently.” The software development business should not be a lottery.

This book is a practitioner’s guide for achieving successful software
development.

Making It Happen means “implementing a
‘way’ of successful software development”

There is no one “way” to develop software systems. If there were, software
systems development would have been reduced to an assembly-line process
long ago. People with diverse experiences and educational disciplines

ptg

contribute to advances in software development methodologies, processes,
techniques, practices, and tools. This rich diversity brings about different
“ways” to develop “good” software systems “consistently.”

This book is a practitioner’s guide for making successful software devel-
opment happen in a way that makes sense for your environment.

Who Should Read This Book?

The software development business is centered on a relationship between a
customer and a seller of software products and services. So, this book is for
both software customers and software sellers. More specifically, the intended
audience is anyone who performs one or more of the following activities:

♦ Develops software products and software-related products
♦ Directly manages people who do the above
♦ Manages the above managers
♦ Buys/uses products from the above
♦ Educates the people above

Individuals have used the first edition of this book to complement their par-
ticular expertise. Customers have used this book to refine their business deal-
ings with sellers. Sellers have used this book to establish or refine their “way”
of developing software systems for their customers. Sellers have also used the
book to provide in-house training to their marketing personnel so the mar-
keters better understand what their businesses are selling. Customers and
sellers have used the book to train their human resource personnel so they
better understand what skill sets are needed for the software development
business. Universities have used the book in graduate schools to teach how to
be successful in the software development business.

For the software customer, we explain and illustrate mechanisms to effec-
tively communicate to the software seller (1) what you want, (2) when you
want it, and (3) how much you want to pay for it.

For the software seller, we explain and illustrate the mechanisms to effec-
tively communicate (1) to your customer your understanding of what the cus-
tomer wants and (2) among your project team members how you are going to
give the customer what the customer wants.

For the educator, we provide supplemental training materials for the class-
room. This material is packaged in a separately available study guide that
consists of the following items:

preface

xii

ptg

♦ Over 500 pages that recast the book’s contents as presentation material.
This material is organized by chapter and lays out the material in the order
that it appears in the chapter. Most of the book’s figures, or adaptations of
these figures, appear in this material.

♦ Sample questions for homework assignments.
♦ Sample class project.
♦ Sample course syllabus.

Educators can use the above material in conjunction with the companion Web
site at www.phptr.com/ptrbooks/ptr_0130868264.html to develop courses
based on the book’s material. These courses can be part of a corporate train-
ing program or a college or university curriculum. The study guide material
is adapted from our teaching experience in both of these environments.

Regarding the presentation material in the study guide, we note that students
can use this material without an instructor as a companion to the book. Exam-
ple uses of this material as a companion to the book include:

♦ Before reading a chapter or part of a chapter from the book, the student can
go to the corresponding study guide pages to get a quick look at the chap-
ter or chapter part.

♦ While reading a chapter or chapter part, the student can, in parallel, look at
the corresponding study guide pages. Sometimes a different look at the
same material can facilitate learning.

♦ After reading a chapter or chapter part, the student can go to the corre-
sponding study guide pages for review purposes and quickly recall key
points, concepts, and book illustrations.

How Is This Software Development Book Different
from Other Such Books?

Lots of things go into making successful software development happen.
Among the important things, effective communication, risk reduction, and an or-
ganizational “way” of successful software development stand out and are threaded
throughout this book.

Effective communication means “transmitting information, thought, or feeling
so that it is satisfactorily received or understood [emphasis added].”1 At the risk

preface

xiii

1This definition is adapted from words used in one of the definitions for “communicate” given in Mer-
riam-Webster’s Collegiate Dictionary, Tenth Edition (Springfield, MA: Merriam-Webster, Inc., 2000). We
note that some dictionaries include the notion of “effective” in the definition of “communicate” (see,
for example, Webster’s II New College Dictionary [Boston, MA: Houghton Mifflin Company, 1995]; this
dictionary actually comments on the notion of “effectiveness”). We have chosen to risk redundancy in
the eyes of some by coupling “effective” to “communication.” Our rationale is that we want to stress
the notion that the person who transmits information, thought, or feeling is obliged to carry out this
transmission so that it is, in fact, satisfactorily received or understood.

www.phptr.com/ptrbooks/ptr_0130868264.html

ptg

of oversimplification, people understand the mechanics of creating software
code, but both the customer and seller have trouble understanding each
other. Customers have said, “We thought we told the developers what we
thought we wanted, but what they delivered is not what we wanted.” Sellers
have said, “We thought we understood what the customer was trying to tell
us, but come to find out, what we delivered is not what the customer
wanted.” Therefore, for us,

preface

xiv

Successful software development is first and foremost an ongoing
exercise in effective communication between the customer and the
seller throughout a software project.

Risk reduction means “reducing the likelihood that software systems develop-
ment products will (1) not be delivered on time, (2) not be delivered within
budget, and (3) not do what the seller and customer mutually agreed that the
products are supposed to do.”

Simply stated, people understand there are risks with creating software code.
However, many people do not assess risk, allocate appropriate resources to
mitigate risk, monitor risk, and decide how to deal with risk. Customers have
said, “We don’t have documented requirements, but we expect the system to
do what it is supposed to do.” In response to such customer requests, sellers
have said, “No problem! The software should do what you want and we will
deliver it on time.” Therefore, for us,

Successful software development is also an ongoing exercise in risk
reduction.

An organizational “way” of successful software development means “a set of
processes that an organization uses to develop and maintain software and
software-related products.” We proceed from the premise that, as we said
earlier, there is no one way to build software systems. Again, at the risk of
oversimplification, customers have said, “We don’t have time to stop and
plan the work to be done, just get started coding.” Sellers have said, “We
know what the users need, so let’s get started.” Therefore, for us,

A “way” of developing software systems consists of processes that
(1) promote effective communication throughout software systems de-
velopment and (2) continually reduce risk.

We present processes based on fundamental engineering and process princi-
ples that include (1) project planning, (2) change control, and (3) product and

ptg

process reviews. We present a language-based measurement technology2 for
evaluating software processes and the products they yield. We explain how
to use such measurements to improve your processes and products. We ex-
plain how to plan process improvement to help bring about improvement in
the way you develop software systems. We explain why the ideas presented
work, give you suggestions on how you can make them work, and offer in-
sights into what may not work.

An organizational “way” of doing business needs to incorporate such things
as the lessons learned from people’s experiences and previous software
development projects. If the organizational “way” includes such experiences
and lessons learned, known and/or anticipated risks are reduced, but not
necessarily eliminated. Also, effective customer/seller communication re-
duces misunderstandings, thereby reducing the risk that a software product
will not satisfy its criteria.

This book, therefore, presents you with techniques for effectively communi-
cating and reducing risk. We explain and illustrate fundamental engineering
and process principles for you to consider when Making It Happen in your
environment.

We stress that these techniques have been successfully implemented on real-
world software systems development projects and programs. The size of
these projects and programs ranges from tens of thousands of dollars to
hundreds of millions of dollars.

How Is the Book Organized?
Figure P–1 shows the title and purpose of each of the book’s eight chapters.
More specifically, these chapters address the following topics:

Chapter 1 The first chapter presents the business case for setting up a “con-
sistent” way of doing software systems development. The chap-
ter also presents some fundamental concepts and terms used
throughout the book. These terms and concepts establish a work-
ing vocabulary to facilitate effective communication.

Chapter 2 The second chapter presents techniques for project planning and
reducing risks. Many organizations develop project plans and
then start working. For us, planning is just one part of an organi-
zation’s “way” of developing software systems.

Chapter 3 The third chapter presents an organizational “way” (or process)
for developing software systems—an organizational software

preface

xv

2Here, language-based measurement technology means “a measurement technology that associates lan-
guage familiar to the intended audience with numbers arranged on value scales.”

ptg

xvi

Figure P–1 This eight-chapter book, organized as shown, gives you practical and proven guidance for answering the ques-
tion, “How can you make successful software systems development happen?”

Makes the business case for setting up a consistent way of doing software
systems development and introduces fundamental concepts needed for the rest
of the book.

Provides practical guidance for effectively planning software systems
development work by factoring in project risks to allocate project resources.

Defines principles for putting together an organizational software systems
development process that fosters success and illustrates these principles by
defining a top-level process that you can use to formulate a process framework
for your environment.

Defines change control board (CCB) mechanics and provides practical guidance
for setting up a CCB for your software systems development process; the CCB is
the most critical process element because it addresses the communications
problems that plague any software project.

Describes basic processes associated with the various reviews called out in
Chapter 3 as a means for reducing software systems development risk, thereby
enhancing the likelihood of success.

Provides practical guidance for measuring the “goodness” of products and the
“goodness” of the software systems development process that produced the
products. The focus is on how to use measurement to achieve consistent
product and process “goodness”—that is, to achieve successful software
systems development.

Addresses human issues bearing upon organizational cultural change during
implementation of your systems engineering environment (SEE), where the SEE
defines your desired way of engineering software systems.

Provides practical guidance on how to write an SEE implementation plan to
establish the framework for doing the things discussed in the preceding
chapters.

Chapter 1
Business Case

Chapter 2
Project Planning

Process

Chapter 3
Software
Systems

Development
Process

Chapter 4
Change Control

Process

Chapter 5
Product and

Process
Reviews

Chapter 6
Measurement

Chapter 7
Cultural Change

Chapter 8
Process

Improvement
Planning

Purpose

ptg

systems development process. In effect, this “way” of doing busi-
ness helps to set the stage for the rest of the book. There are many
“best practices” for software development. The question is, “How
do these practices interface with one another?” The organizational
“way” presented consists of a set of related processes that em-
body fundamental engineering and process principles that specif-
ically address effective communication and risk reduction. The
organizational “way” presented contains a project planning
process, a change control process, product and process review
processes, and a measurement process. We define and explain
roles, responsibilities, activities, and communication linkages. We
present this “way” of developing software systems for your
consideration when defining your way of doing business. We
stated above a key principle regarding software development—
successful software development is an ongoing exercise in risk re-
duction. In the third chapter, when we present a “way” for
developing software systems for your consideration, we stress the
following corollary to this key principle:

If you decide under certain particular circumstances that
it may make better sense not to follow your organizational
way of doing business, then you should keep in mind that
you might be increasing software systems development risk.

Chapter 4 No matter how well a project is planned, it is almost axiomatic
that things will change once the project gets underway. There-
fore, the fourth chapter presents the fundamental process of
change control. This chapter also addresses the communications
problems that plague any software systems development project.
Sometimes the customer believes that the requirements were ef-
fectively communicated to the developer. Sometimes the devel-
oper believes the customer requirements were understood.
Subsequent to developer implementation of the requirements,
the customer and developer may have vastly different perspec-
tives regarding requirements satisfaction. This chapter offers
guidance for reducing the likelihood of such disconnects arising
in your environment.

Chapter 5 For us, “consistent” software development involves the systems
disciplines of management, development, and product assur-
ance. The fifth chapter presents product and process reviews
from the perspectives of these three systems development disci-
plines. This chapter focuses on how reviews help customers
and/or sellers gain visibility into project progress and risk so that
intelligent, informed decisions can be made with respect to what
needs to be done next.

Chapter 6 Measurement for the sake of measurement is a waste of time and
resources. The sixth chapter presents practical guidance on how

preface

xvii

ptg

to express meaningful measurement in everyday language that
the intended audiences agree to and understand. Meaningful
measurement contributes to (1) successful software systems de-
velopment projects and (2) improvements in the “way” software
systems are developed.

Chapter 7 Pressures such as competition generally push organizations to con-
tinue to improve their skill sets, processes, and products. The sev-
enth chapter addresses people issues associated with maturing the
organization’s “way” of doing business. Getting software systems
development processes on paper to document this “way” is a chal-
lenge. However, getting people in the organization to help build
this “way” and then follow it is an even more imposing challenge.
We present ideas for how to deal with this challenge.

Chapter 8 Finally, the eighth chapter presents guidance for planning im-
provements to your “way” of developing software systems. This
chapter helps you select concepts from the preceding chapters to
develop a process improvement approach. We discuss how to fac-
tor lessons learned from following your “way” of doing business
or from not following your “way” into improvement activities.
Also, we present other candidate practices for your consideration
for improving your “way” of developing software systems.

Table P–1 highlights in more specific terms what you will learn from each
chapter.

preface

xviii

Table P–1 Chapter Highlights.

Chapter Title and Purpose What You Will Learn

1 Business Case—(1) makes the business • What successful software development means.
case for setting up a “consistent” way of • Why investing in software process
doing software systems development improvement to achieve consistently “good”
and (2) introduces fundamental con- products makes good business sense.
cepts needed for the rest of the book. • Business way refinement/transformation

is first and foremost a cultural change exercise.
• Successful software development must be a

customer/seller partnership, where the “seller” is
the software systems development enterprise and
the “customer” is the buyer/user of what the seller
provides.

• The ideas in the book are scalable—they apply to
customer/seller partnerships of almost any size.

• The ideas in this book encompass customer/seller
partnerships in any business environment (e.g.,
commercial, government).

• Why the software development business does not
have to be a lottery.

ptg

preface

xix

Table P–1 Continued

Chapter Title and Purpose What You Will Learn

1 Business Case (continued) • Why successful software development is not
inextricably tied to individual heroics to get the job
done.

• Why there is no one way to build software systems
and how this viewpoint influences the way to
achieve successful software development.

• Why prescriptively applying an organization’s
business way makes good business sense.

• What “prescriptive application of an organization’s
business way” means and why prescriptive
application holds the key to institutionalizing the
business way.

• Definitions of key terms needed for the rest of the
book (e.g., software, software process, software
process capability, software process maturity,
prescriptive application, product and process
“goodness,” software process improvement, life
cycle, culture).

• The role of organizational commitment in making
successful software development happen.

• Effective customer/seller communication is a key
element of successful software development.

• A key mechanism for effecting good customer/
seller communication is the change control
board (CCB).

• People are the most important success factor—not
automated tools.

• Requisite software systems development
disciplines for achieving success—management,
development, product assurance.

• Obstacles to effecting cultural change.
• Making software development success happen

extends far beyond (1) management edicts,
(2) assembling a team of experienced and good
people, and (3) a five-minute conversation with a
customer and a three-week coding frenzy.

• Alternative approaches to refining/transforming an
organization’s business way.

• A systems engineering environment (SEE) provides
a means for making successful software
development happen—whether systems are
developed sequentially or in parallel.

• The SEE consists of a process component
(application development process environment
[ADPE]) and a technology component (ADTE).

2 Project Planning Process—provides • The project plan is a living contract that binds
practical guidance for effectively the customer/seller partnership by setting
planning software systems develop- forth the work that the seller’s management,
ment work. development, and product assurance

disciplines accomplish and the customer’s
management approves.

ptg

Table P–1 Continued

Chapter Title and Purpose What You Will Learn

2 Project Planning Process (continued) • Life cycle’s role in project planning.
• Planning is an ongoing negotiation between the

buyer/user and seller.
• How to account for the interaction among the

requisite disciplines—management, development,
and product assurance—throughout the project life
cycle.

• How to plan for change.
• Contrasting views of work accomplishment—ideal,

real, and realistic—and their impact on project
planning.

• How to construct a simple, but powerful, risk
assessment approach for project planning use.

• How to incorporate risk reduction explicitly into a
project plan budget.

• How to construct a risk-reduced project plan.
• How to develop an ADPE element defining an

organization’s project planning process.

3 Software Systems Development • Contractual agreements that can arise in the
Process—(1) defines principles for software systems development business.
putting together an organizationwide • How to write a “good” statement of work
software systems development process (SOW), where the SOW is a customer vehicle
framework that fosters success and for communicating to the seller what he/she
(2) illustrates these principles by wants.
defining a top-level process that you • How the seller can constitute a project team
can use as a starting point for defining and define associated responsibilities
a software development business way to accomplish project plan work.
for your environment. • How the customer can effectively interact with the

seller project team.
• How the seller can define a software systems

development process that (1) explicitly includes the
customer throughout the process and (2) can
incorporate any product development life cycle.

• How to plug the seller organization and the
customer organization(s) into the software systems
development process so that both sides know how
business is to be transacted.

• More about “prescriptive application” of the
software systems development process.

• How to address process issues in those
environments where numerous software systems
development projects are unfolding more or less in
parallel.

• How does a life cycle plug into the software
systems development process.

• How level of detail and organizational scope are
two major considerations in defining an
organizational software systems development
process.

• How the software systems development process
can plug into a systems development process.

preface

xx

ptg

Table P–1 Continued

Chapter Title and Purpose What You Will Learn

3 Software Systems Development Process • How to design a form that helps track a product as
(continued) it winds its way through the software systems

development process.
• What are the responsibilities of the customer and

the seller after the seller delivers the product to the
customer.

• How to develop an ADPE element defining an
organization’s software systems development
process.

• Why this element is a good place to begin setting
up an ADPE.

4 Change Control Process—defines change • Why miscommunication can plague any software
control board (CCB) mechanics and systems development project.
provides practical guidance for • How the customer and seller can have dramatically
setting up CCBs for your software different views of the state of a product and
projects. what to do to reduce the likelihood of such

different views arising.
• How to manage unplanned change as well as

planned change.
• Why management of all change is crucial to

achieving successful software systems
development.

• How the need for managing all change mandates a
CCB concept that extends far beyond the traditional
configuration management control board concept.

• Change control mechanics of the software systems
development process.

• How to establish seller and customer accountability
through the CCB.

• The three scenarios governing all of change control:
1. Do we want something new or different?
2. Is something wrong?
3. Should we baseline the product?

• CCB mechanics (e.g., what to record at CCB
meetings, CCB role in traversing a project life cycle,
who should be the CCB chairperson, what should
be the CCB voting mechanism, what is contained in
a CCB charter, how is a CCB meeting conducted,
how frequently should the CCB meet).

• The information requirements for CCB minutes.
• How to write CCB minutes.
• When are CCB hierarchies appropriate and how

they should be set up.
• How to design change control forms that make

sense for an organizational way of doing business.
• How to develop an ADPE element defining the

workings of CCBs in a software systems
development process.

preface

xxi

ptg

Table P–1 Continued

Chapter Title and Purpose What You Will Learn

5 Product and Process Reviews—describes • Principles pertaining to the purpose of reviews.
the basic processes associated with the • How to resolve key issues regarding
various reviews called out in Chapter 3 the review process involving peers.
as a means for reducing software • The mechanics of document reviews and
systems development risk and thereby acceptance testing that an independent
achieving success. product assurance organization conducts.

• How to make software requirements testable so
that the software systems development process can
be brought to a successful conclusion.

• What a software audit is and its relationship to
reviews.

• The key role that acceptance testing plays in
harmonizing seller and customer understanding of
what the delivered software system and supporting
databases are to contain.

• Senior management visibility needs and how
reviews can help meet these needs.

• How technical editing can be incorporated into the
software systems development process to help
prevent compromising good engineering work.

• Technical editing suggestions that can be used as a
starting point for constructing an organizational
technical editing guide.

• How to develop ADPE elements addressing (1)
independent product assurance, (2) peer reviews,
and (3) the acceptance testing cycle.

6 Measurement—provides • Knowing when it makes sense to try to improve
practical guidance for measur- the software systems development process.
ing product “goodness” and the • How to avoid “measurement for the sake of
“goodness” of the software systems measurement” activities.
development process that produced the • How to use an easy-to-learn and easy-to-apply
products. The focus is on how to use measurement technique, called Object
measurement to achieve consistent Measurement, that you can use to measure
product and process “goodness.” almost anything, including product

and process “goodness.”
• How to establish benchmarks to give meaning

to product and process measurements.
• How to measure customer satisfaction.
• How to quantify the concept of product integrity as a

means for assessing software product “goodness.”
• How to extend the quantified product integrity

concept to the software systems development
process domain to assess process “goodness.”

• How to use the product “goodness” metric to track
product evolution through the software systems
development process to head off product
development problems.

• How to set up value scales for measuring product
and process “goodness” in any environment.

• How to measure the “goodness” of the process
described in Chapter 3.

preface

xxii

ptg

Table P–1 Continued

Chapter Title and Purpose What You Will Learn

6 Measurement (continued) • How to apply Object Measurement to alternative
software business improvement approaches, such
as those developed by the Software Engineering
Institute.

• How to develop other product and process metrics
in addition to those developed using Object
Measurement.

• How to integrate measurement into the software
systems development process.

• How to couple product and process measurements
to facilitate improvements in the way software
systems are developed.

• How to develop an ADPE element to (1) quantify
where an organization is productwise and
processwise, (2) quantify differences from this
baseline assessment, (3) establish quantitative
product and process goals, (4) quantify progress
toward achieving these goals, and (5) define the
approach for incorporating process and product
improvements based on the measurement activity.

7 Cultural Change—addresses human • How to anticipate and manage the cultural
issues bearing on bringing about changes that go hand in hand with any
organizationwide cultural change program designed to refine or alter the
during implementation of your software systems development process
systems engineering environment (SEE). through the establishment of an SEE.

• The role in bringing about cultural change of the
organization responsible for writing the ADPE
elements and seeing to it that they are implemented
and continually improved.

• How to deal with the challenges to ADPE
implementation arising from the seller project-level
individuals who will have to adapt to the ADPE
practices that govern their work.

• How to deal with the challenges to ADPE
implementation arising from those customer
individuals responsible for giving direction to seller
project managers for accomplishing project work.

• The impact on customer senior management that
ADPE implementation brings about.

• The key role that seller senior management plays in
effecting software systems development cultural
change through ADPE implementation.

• How business pressures affect seller senior
management support for ADPE implementation
and how to alleviate these pressures.

• How “prescriptive application” of the software
systems development process relates to
empowerment and bringing about cultural change.

• The customer’s role in ADPE implementation.
• The role of training in effecting cultural change

associated with ADPE implementation.

preface

xxiii

ptg

Table P–1 Continued

Chapter Title and Purpose What You Will Learn

7 Cultural Change (continued) • How to sell ADPE implementation as a career
growth opportunity.

• The organizational factors bearing upon how long
it takes to bring about cultural change.

• Why an ADPE element defining the ADPE element
development and updating process is intimately
tied to organizational cultural change.

• How to develop an ADPE element defining the
ADPE element development and updating process.

8 Process Improvement Planning— • How to write an SEE implementation plan
provides practical guidance on how to whose accomplishment can bring about
write an SEE implementation plan. This organizationwide software process
plan serves as a roadmap for doing the improvement.
things discussed in the preceding • Factors bearing on the following 19 key SEE
chapters. implementation issues and how to address these

issues in an SEE implementation plan:
1. What are timeline considerations for SEE

implementation tasks and their phasing?
2. How should ADPE elements be phased in?
3. What ADPE elements should be included in

your SEE?
4. How should the ADPE be constituted—

(1) from a small number of elements (i.e.,
approximately ten), each with tens of pages or
more, or (2) from a large number of elements
(i.e., tens or more), each consisting of a couple of
pages, or (3) some combination of (1) and (2)?

5. How frequently should an ADPE element be
updated?

6. What amount of detail should be included in
individual ADPE elements?

7. How can you define a plan for an application
development technology environment (ADTE)
for your organization?

8. How do you package ADPE elements and
related items?

9. How should ADPE implementation be handled
if your organization is small?

10. What is an austere SEE implementation
approach?

11. How can mentoring and coaching be leveraged
to facilitate implementation of ADPE practices?

12. What strategies can be adopted to meet the
cultural change challenges posed by SEE
implementation?

13. How do you deal with the business reality of the
almighty dollar in bringing about ADPE
implementation?

14. How do you account for the reality that people
within an organization span a broad spectrum of
willingness to adapt to the engineering
environment?

preface

xxiv

ptg

Table P–1 Continued

Chapter Title and Purpose What You Will Learn

8 Process Improvement Planning 15. Who should develop the SEE in your
(continued) organization?

16. How do you frame an SEE implementation
policy?

17. How do you plan ADPE implementation
improvement at the project level?

18. How can process and product measurement be
integrated with your organizational process?

19. How should you structure an SEE
implementation plan?

Appendix A How to Measure Strategic Information • What strategic information management (SIM)
Management (SIM)—provides you with is.
insight into applying Object Measure- • How to measure the improvements of an
ment outside a software context. organization’s performance in terms of SIM.

• Why the quantification of SIM is of interest.

preface

xxv

ptg

What Are the Book’s Main Features?

This book features the following items to help you make successful software
development happen in your environment:

♦ Annotated outlines to help you overcome the blank-page syndrome in
committing to writing down your desired “way” of doing business.

♦ Over 200 figures to help you quickly assimilate ideas and their
relationships.

♦ A list of key ideas at the outset of each chapter to help you work your way
through the chapter and organize what you want to take from it.

♦ Process diagrams that you can easily adapt to your environment so that
(1) if you are a seller, you can set up a way of consistently producing
“good” software systems, and (2) if you are a customer, you can direct a
seller to work with you to give you what you want, on time, and within
budget.

♦ Worked-out examples containing sufficient detail so that you can adapt the
concepts illustrated to your organization.

♦ An easy-to-learn and easy-to-apply measurement technique, called Object
Measurement,3 that you can use to measure almost anything, including
product “goodness” and process “goodness.”

♦ Easy-to-assimilate techniques for analyzing your organizational culture
and determining how to evolve this culture toward achieving success in
the software business.

♦ A simple and powerful technique to (1) assess software project risk and
(2) produce a risk-reduced project plan, thereby increasing the likelihood
of project success.

♦ Detailed treatment of 19 key process improvement issues that explains
how to construct a process improvement program that makes sense for
your organization.

♦ An index that facilitates quick retrieval of concepts, outlines, and techniques.

At the end of the book, we include an annotated bibliography. Most of the
bibliographic entries have been selected because of their practitioner bent.
This bibliography is intended to (1) point you to alternative treatments of top-
ics that we discuss, (2) help you gain greater insight into topics that we ad-
dress, and (3) help you pursue topics that we only touch upon that may be of
greater interest to you.

We stress that this book is not tied to the use of any particular software sys-
tems development technology. You will find this book helpful whether you

preface

xxvi

3Object Measurement®, or OM®, is a registered trademark owned by Scott E. Donaldson and Stanley
G. Siegel.

ptg

are using object-oriented technology, Unified Modeling Language (UML),
automated tools, prototyping, or some combination of these and other
technologies.

How Does an Organization Institutionalize Its Engineering
and Process Principles?

The book’s central concept for housing an organization’s “way” of doing soft-
ware systems development business is the systems engineering environment
(SEE). The SEE consists of the following two complementary components:

♦ An application development process environment (ADPE)
♦ An application development technology environment (ADTE)

The ADPE is that set of policies, guidelines, procedures, and standards defin-
ing an organization’s “way” of doing business. These entities we call “ADPE
elements.” The ADTE is that set of technologies (e.g., personal computers,
networks, and automated tools) used to develop the organization’s software
products and software-related products.

The book focuses on the ADPE because its elements define the software sys-
tems development process. We show you how to capture software develop-
ment concepts in a handful of these elements. We also give you practical
guidance for taking the words in these elements and infusing them into your
organization. This infusion (i.e., institutionalizing) is perhaps the most
challenging aspect of maturing your organization’s software systems
development capability—because change is mostly emotional, not cognitive.

Please join us now by turning to Chapter 1.

preface

xxvii

ptg

Scott E. Donaldson
Corporate Vice President
Science Applications International Corporation (SAIC)

Mr. Donaldson has spent over 24 years providing a broad range of software
engineering experience in the public, private, and commercial industries. His
experience includes the following:

♦ As chief technology officer for an SAIC organizational unit doing hun-
dreds of millions of dollars of business a year, he was involved with inter-
nal research and development efforts within the organization. He also
helped the organization increase its business base through new customer
contacts. Concurrently with these responsibilities, he served as deputy to
the manager of a $65 million business unit.

♦ As an SAIC program manager for a five-year, $400 million systems man-
agement and integration program, he put in place many of the ideas de-
scribed in this textbook. This effort represented a significant cultural shift
for the customer.

♦ As an SAIC deputy program manager of a $215 million information tech-
nology (IT) program, he had significant management responsibilities and a
demonstrated track record in managing large IT programs. This program
received 11 consecutive “excellent” award fee ratings from the customer.
Concurrently, he served in the key role as the director of the Software En-
gineering Process Group (SEPG). He was responsible for the technical con-
tent of the approximately 100 delivery orders that produced more than
4,000 deliverables. He was responsible for shaping the program’s key tech-
nical approaches—with responsibility for planning and staffing all deliv-

xxviii

Authors’ Biographies

ptg

ery orders. He was also responsible for developing and refining method-
ologies guiding the development of customer software systems and over-
saw quality and performance metrics.

♦ As the advanced systems director for Martin Marietta, he interacted with
senior engineering staff to develop and implement alternative technology
transfer strategies for speech/signal processing applications. He con-
ducted senior-level technical assessments of both state-of-the-art and
cutting-edge underwater acoustic signal processing systems. Actions in-
cluded innovative activities, including assessing advanced computer archi-
tectures such as single instruction, multiple data (SIMD) stream designs for
fine-grain parallelism, and multiple instruction, multiple data (MIMD)
stream designs for large-grain parallelism.

♦ As the deputy director of the Intelligent Systems Laboratory (ISL) for
Gould, Inc., he used artificial intelligence techniques to contribute to the
design, development, and implementation of advanced computing tech-
niques for underwater acoustic signal detection and classification. He used
structured analysis, design, and construction techniques. He also con-
tributed to software prototyping efforts using a hybrid of blackboard state
representation and control combined with constraint-based and model-
based reasoning techniques.

♦ As the vice president and chief operating officer of Computer Dynamics
Products, Inc., he directed the software engineering team in the design and
development of microcomputer-based products, developed and produced
supporting documentation, established software distribution networks,
and supervised the customer support group. More than 1,250,000 copies of
the product (a database system) have been delivered to the installed
customer base.

♦ As an associate director for System Planning Corporation, he developed
and managed IT and supporting applications systems. He acquired exten-
sive experience in the development and implementation of the Long-
Range Resources Planning System enabling fiscal planners to examine the
feasibility of alternative Department of Defense acquisition plans, and sup-
porting defense planning activities such as the “Five Year Defense Plan.”
This effort was a high-level, nationally visible effort involving the Secre-
tary of Defense and the White House.

♦ As a military officer, he worked as an information systems development
officer for the Defense Communications Agency and as an analyst support-
ing the Joint Chiefs of Staff.

Mr. Donaldson holds a bachelor’s degree in operations research from the
United States Naval Academy, as well as a master’s degree in systems man-
agement from the University of Southern California. He is an adjunct faculty
member in the Department of Computer Science and Information Systems at
American University in Washington, DC.

authors’ biographies

xxix

ptg

Stanley G. Siegel
Vice President
Science Applications International Corporation (SAIC)

Dr. Siegel is a recognized expert in software engineering methodologies and
has 30 years of progressive experience in systems analysis and software engi-
neering. Trained as a physicist, he has successfully applied problem-solving
skills to a broad range of analysis tasks. He has co-authored three software
engineering textbooks and written software engineering articles that have ap-
peared in technical journals. He is also an international lecturer on software
product assurance and software process improvement. Dr. Siegel has served
as a senior technical advisor and director on a wide spectrum of projects in
areas such as software engineering methodology assessment, software re-
quirements analysis, software testing and quality assurance, mathematical
support for software-algorithm development, and technology assessment.
His experience includes the following:

♦ As Chief Scientist for SAIC on a five-year, $400 million systems integra-
tion program, he helped the program manager put in place many of the
ideas in this textbook. He helped shape the strategic direction of the
program.

♦ As a senior software engineer for SAIC, he was a member of a Software En-
gineering Process Group (SEPG) responsible for helping institute software
systems development cultural change throughout a large government
agency. In support of the agency’s transition from disparate information
software systems development to a more homogeneous agencywide de-
velopment environment, he developed and maintained the software-
related component of a systems engineering environment (SEE), which
consisted of software policies, standards, guidelines, and procedures that
governed development of the agency’s information systems. He was re-
sponsible for incorporating SEE concepts from the Software Engineering
Institute’s Capability Maturity Model® for Software into the SEE. He was
also responsible for presenting seminars on software product assur-
ance and software requirements specification in support of SEE
implementation.

♦ As a senior software engineer for SAIC, he did consulting work for a major
telecommunications firm, helping the firm set up an SEE.

♦ As a senior systems analyst for the Grumman Corporation (now Northrop
Grumman), he served as a senior technical advisor and quality assurance
analyst on a $23 million effort to produce a mobile command and control
system for the Marine Corps. He audited software requirements specifica-
tions, assisted in the development of a software quality program plan ac-
cording to DOD-STD-2168, assisted in planning and reviewing software
test documentation, and formulated an algorithm to perform coordinate
transformations in support of communications message processing.

authors’ biographies

xxx

ptg

♦ As a product assurance analyst and advisor for several intelligence agency
projects for the Grumman Corporation, he provided technical direction for
the development and implementation of a software quality assurance pro-
gram. He reviewed software requirements specifications for consistency
and completeness with respect to customer-specified system-level require-
ments. He was also responsible for overseeing the development and execu-
tion of tests prepared from these software requirements specifications.

♦ While at the Grumman Corporation, he co-authored a software product as-
surance textbook that was published in 1987. A number of the ideas in the
book Successful Software Development have their roots in this 1987 book.

♦ As a senior systems analyst with a company that the Grumman Corpora-
tion subsequently purchased, he analyzed the U.S. Navy Command and
Control System (NCCS). He defined measures of effectiveness, developed
an evaluation methodology, and performed an evaluation of alternative
NCCS network concepts. As a software quality assurance analyst, he au-
dited software specifications for a carrier-based command and control sys-
tem, and audited mathematical specifications for the Tomahawk and
Harpoon cruise missiles. He co-authored the first textbook on software
configuration management. He was also product assurance manager for a
ten-person organization.

♦ As a computer specialist/mathematician for the U.S. Department of De-
fense, he did performance evaluations of the Worldwide Military Com-
mand and Control System (WWMCCS) Honeywell 6000 computers. He
also analyzed strategic command and control problems, with emphasis on
simulation of the National Military Command System (NMCS), which in-
cluded analysis of the strategic warning sensor systems and supporting
communications networks. He was responsible for the management of the
development of a simulation model of NMCS operations and participated
in the development of a prototype simulation system to support NMCS
free-play exercises on limited nuclear exchanges.

♦ As a systems programmer for the National Oceanic and Atmospheric Ad-
ministration (NOAA), U.S. Department of Commerce, he did systems pro-
gramming on NOAA’s Control Data Corporation (CDC) 6000 computer
systems. He also served as an instructor, training NOAA’s meteorologists
in the use of these systems. He wrote a manual that CDC published de-
scribing the debugging features of the CDC FORTRAN Extended compiler.
He directed an effort to pinpoint deficiencies in the operation of the NOAA
computer systems and to improve their throughput.

Dr. Siegel holds a doctor’s degree in theoretical nuclear physics from Rutgers
University. He is an adjunct faculty member in the Department of Computer
Science and Information Systems at American University in Washington, DC.

authors’ biographies

xxxi

ptg

Science Applications International Corporation (SAIC) is the largest employee-
owned research and engineering company in the United States. Based in San
Diego and international in scope, SAIC offers a broad range of expertise in tech-
nology development and analysis, systems development and integration, tech-
nical support services, and high technology hardware and software products.
SAIC scientists and engineers work to solve complex technical problems of sig-
nificance to federal, commercial, and international customers in a variety of
market areas, including energy, environment, government, health care, tech-
nology, information technology, Internet, and transportation.

Founded by a small group of scientists in 1969, SAIC, a Fortune 500 company,
has had a continuous record of growth in its financial performance and tech-
nical scope. SAIC attributes its success to a decentralized, flexible working
environment that promotes and rewards technical excellence, individual ini-
tiative, and entrepreneurship. The company’s ability to attract and retain the
best qualified people, coupled with an environment that fosters team build-
ing, has led to over 30 years of sustained growth—with over 40,000 employ-
ees, offices in over 150 cities worldwide, and annual revenues exceeding $5
billion.

Bob Beyster, SAIC’s founder, chairman, and chief executive officer, credits
the success of the company to its employee ownership culture. The hallmark
of SAIC through the years has been the principle that “those who contribute
to the company should own it, and the ownership should reflect an individ-
ual’s contribution and performance as much as feasible.”

From the start, SAIC was established for professional people who sought to
perform superior scientific and technical work, who wanted a stake and a
voice in the company’s development and direction, and who expected fair re-
wards for doing excellent work. SAIC’s successful track record demonstrates
that employee ownership creates the incentives and the environment for ex-
cellence and growth.

xxxii

Science Applications
International Corporation

ptg

SAIC has a corporate commitment to software process improvement. The
focus of this commitment is to build software systems that do what customers
want them to do and to deliver these systems on time and within budget—
consistently.

Science Applications International Corporation

xxxiii

ptg

Chapter 8 • Software Systems Development Process

xxxiv

He who praises everybody, praises nobody.

—Attributed to Samuel Johnson, “Johnsonia,” The European Mag-
azine and London Review, January 1785, p. 55.

Over the period of years that we worked on this book, many people helped or
otherwise supported us in our efforts. We acknowledge those individuals
here.

We thank William Bryan for giving us carte blanche to use material that he
previously published with one of us. He unhesitatingly granted this permis-
sion at the outset of this project.

Regarding the first edition, we wish to acknowledge the following indivi-
duals:

To Gary Donaldson, we are grateful for his insight into the social and cul-
tural factors governing organizational change. We especially appreciate
his help with Chapter 7. Our experience with the first edition showed us
how far-reaching was his guidance to us.

We thank the reviewers of early drafts of some chapters. Their comments
helped us adjust the book’s tone and orientation.

We wrote this book while employed full time with Science Applications In-
ternational Corporation. We are grateful to many of our colleagues and
co-workers for helping us organize our thoughts and enrich our experi-
ence. To our colleague Janet Vasak go our special thanks for her support
from the time the book was just an idea. We are grateful to Larry Peck

Acknowledgments

ptg

acknowledgments

xxxv

for his support. We thank Andy Meranda for his help reviewing the
page proofs.

To Paul Becker, now with Addison Wesley (which is part of the Pearson
Education family), we wish to express our appreciation for his encour-
agement and support throughout the first-edition project.

Regarding the second edition (which we wrote while employed full time with
Science Applications International Corporation), we wish to acknowledge the
following individuals:

To Jeffrey Pepper, vice president of Prentice Hall PTR, we appreciate his
professional insight and thoughtful guidance regarding what helps
make a book successful in the marketplace. We are grateful for his will-
ingness to apply the resources of his organization to make this edition
happen.

We thank Paul Petralia of Prentice Hall PTR, who was given the day-to-
day responsibility for making the second edition happen. His pleasant
demeanor throughout the project made the press of deadlines less
painful than it might otherwise have been. We acknowledge the enthu-
siastic support of his staff throughout this project. They left no doubt in
our minds that they were committed to making this edition look good.

To Dr. Stefan Shrier, we are grateful for his keen insights regarding mathe-
matical issues associated with Chapter 6. He took time out from his busy
schedule to accommodate us. He made valuable suggestions regarding
our additions to Chapter 6 in the second edition.

To Lou Pearson go our thanks for her help with obtaining permissions for
both the first and second editions.

To our colleague Michael Bowers, we appreciate his encouragement
and understanding while we pushed hard to meet book production
deadlines.

In the years following the appearance of the first edition, we received feed-
back from co-workers, customers, and students. They offered us insights
that helped us augment and refine our thinking. We appreciate these
insights.

Any book project cannot be accomplished without some impact on home life.
To our families, we express our gratitude for their patience while we took a
lot of time away from them on evenings and weekends to write the first edi-
tion and produce the second edition under a very tight schedule. Because this
time can never be reclaimed, we are grateful for their understanding. Special
thanks go to Bena Siegel. Not only did she offer encouragement throughout
the time spent on the first edition, she also offered encouragement during the
periods of intense activity associated with producing the second edition.

ptg

This page intentionally left blank

ptg
Method goes far to prevent Trouble in Business: For it makes the Task easy, hinders Confusion,
saves abundance of Time, and instructs those that have Business depending, both what to do
and what to hope.

—William Penn (1644–1718), Some Fruits of Solitude in
Reflections & Maxims, no. 403, p. 70 (1903, reprinted 1976).

1.1 Introduction
The “ways” the software industry develops software systems and products
need to be changed. This assertion is not just our opinion. It is shared by
many in the industry.

The following point/counterpoint examples echo this need for change:

“Deliver the software on time and within budget—for a change!”
“Stop making last-minute requests for new capabilities!”

“Make the software do what I asked for!”
“Help me out—state what you really want.”

“Stop providing short-term fixes for long-term problems.”
“Stop moving up the delivery date.”

“Shipping six releases per month is not acceptable.”
“Provide us the resources for adequate testing.”

1

chapter 1chapter 1
Business Case

ptg

“Reduce the number of overlapping systems.”
“Establish an architecture we can work toward.”

“Reduce our organization’s dependency on individuals.”
“Provide them with additional professional mobility.”

“Develop new systems with lower life cycle costs.”
“Provide resources for implementing a new way of doing business.”

The above examples are sound bites from customer/developer dialogues or
from dialogues within an organization in the software development business.

This book is an experience-based response to the need for change in the software
industry. That is, this book offers “how-to-do-it” guidance for refining or trans-
forming the way an organization develops software systems and products.

Customers want software systems to satisfy certain criteria. Although there
are many criteria, typically these include wanting systems that (1) do what
they are supposed to do, (2) are delivered on time, and (3) are delivered for
the agreed-on costs. Likewise, sellers (i.e., companies that build software sys-
tems) want the systems they develop to satisfy certain criteria, and typically
these include developing systems that (1) do what customers want, (2) are de-
livered ahead of schedule or on time, and (3) generate reasonable profits. We
believe that “good” software systems are those that satisfy both customer and
seller criteria.

We also believe that customers and sellers want their criteria satisfied consis-
tently. Success in the software development business is not a one-shot deal.
The software business should not be a lottery. For us, successful software devel-
opment means “the ability to produce ‘good’ software systems consistently.”

Successful software development is a delicate balance among business factors
such as the following:

♦ There is no one “way” to develop software systems.
♦ Achieving organizational consistency is, in part, a planned cultural-change

journey that implements desired engineering behavior.
♦ People are the most important factor in software development.
♦ Software development is a customer/seller partnership where both parties

actively participate and agree on what needs to be done.
♦ Effective customer/seller communication increases the likelihood of satis-

fying the agreed-on criteria.
♦ Software development is an ongoing exercise in risk reduction.
♦ People need to grow professionally and their experiences and knowl-

edge should be folded into the organization’s way of doing software
development.

♦ Documented organizational processes need to be applied in a way that
makes sense for a particular software development project.

Chapter 1 • Business Case

2

ptg

♦ Measurement is a means for effecting software systems development
improvement.

♦ Measurement needs to be expressed in everyday language used by the or-
ganization to be meaningful; otherwise, measurement may be of little
value.

This book addresses all the above factors.

If we take a 100,000-foot view of this book, it is an ordered compilation of
lessons learned regarding how to do the following:

♦ Communicate effectively throughout a software systems development
effort.

♦ Reduce risk throughout a software systems development effort.
♦ Set up an organizational “way” of doing business that fosters consistency

across efforts.

The above three factors are intertwined in the following sense:

Chapter 1 • Business Case

3

Setting up an organizational “way” of doing business that fosters
consistency means putting in place organizationwide mechanisms for
communicating effectively and reducing risk.

Thus, as Figure 1–1 illustrates, this book presents ideas for making a planned
transition from an ill-defined business way to a well-defined business way
for developing software systems. By ill-defined business way, we mean “an in-
dividual-based way of doing business that is (1) not well understood organi-
zationwide, and (2) undocumented.” By well-defined business way, we mean
“an organization-based way of doing business that is (1) well understood or-
ganizationwide, and (2) documented.”

For many organizations, people produce software by some amorphous
process. In fact, software often emerges from the individual heroics of the
people doing the work. As indicated in Figure 1–1, Sam, Pam, and Ham each
has his/her own way of getting the job done. Over time, they undoubtedly
learned how to interface with one another (spending long nights and week-
ends together does breed familiarity). Sam, Pam, and Ham are undoubtedly
very capable—otherwise, they would probably be replaced. But, from the or-
ganization’s perspective, Sam’s, Pam’s, and Ham’s ways of doing business
are ill-defined. That is, it is not clear how the organization would explain to an
outsider how the organization does business. For example, would the organi-
zation explain to a potential new customer, “Sam, Pam, and Ham will work
with you to build your software system”? Such an explanation would proba-
bly not give potential customers much confidence that the organization is ca-
pable of producing quality products. Nor does the explanation provide much
insight into how the organization develops software systems.

ptg

Software development is a customer/seller partnership. Therefore, once a po-
tential new customer becomes a customer, the former “outsider” is now part
of the software systems development process. If you were the customer,
would you be concerned if, for example, Sam couldn’t make it to the office
one day and only he knows how to do a time-critical part of your job? Or,
would you be concerned with what might happen if, midway through your
job, Sam and Pam get married and leave the company and no one knows
what needs to be done to finish your job?

In this book, we explain how to evolve the way a customer/seller partnership
develops software systems; (1) from one that may largely depend on heroes
doing their own things, (2) to one that blends individual heroic practices into
an organizational way of doing business. This organizational way we assign the
label well-defined business way in Figure 1–1. This well-defined “way” consists
of software development methodologies, processes, techniques, practices,
and tools that people use to develop software systems. This book explains how
putting in place an organizational way of doing business serves to stabilize
an organization. As we explain, the organizational way is infused with checks
and balances that act to keep work on track (i.e., they foster consistency). Fur-
thermore, an organizational way of doing business promotes professional

Chapter 1 • Business Case

4

Ill-Defined Business Way

Where you may be now

Sam’s
Process

Pam’s
Process

Ham’s
Process

Where you may want to be later

Well-Defined Business Way

TRANSITION—HOW?

Making Successful Software

Development Happen
Organizational
Process

Figure 1–1 This book offers ideas on how to transition to well-defined software systems develop-
ment practices to make successful software development happen.

ptg

mobility, thereby reducing personnel turnover. Since there is no one way to
develop software systems, this book offers you guidance on how to achieve
this stability in a manner that makes sense for your organization.

What does “transitioning to a well-defined business way” mean? The short
answer is that an organization needs to incorporate into its culture (i.e., insti-
tutionalize) a well-understood and documented way of doing business that
people can then prescriptively apply to individual software systems develop-
ment projects. By prescriptively applied, we mean “application of the docu-
mented way consistent with available time and resources.”1

The concept of prescriptive application of the documented way of doing business is
central to this book. This concept has its roots in the first business factor listed
earlier that bears on making successful software development happen. That
factor is “There is no one ‘way’ to develop software systems.” Regarding this
factor, the following observation is borne out by experience:

Chapter 1 • Business Case

5

There is no one “way” to build software systems. If there were,
software systems development would have been reduced to an assem-
bly-line process long ago. However, we believe that there are funda-
mental principles whose application can increase the likelihood that
software systems development projects will be successful.

Since there is no one “way” to build software systems, it therefore follows
that, to achieve consistency in building “good” software products, an organi-
zation must set up a way of doing business that allows for adaptation to the situation
at hand. That is, the organizational way of doing business must be based on
the principle of prescriptive application. How people choose to prescriptively
apply the way of doing business depends, in part, on their experience and ed-
ucation. If an organization sets up a way of doing business that mandates that
people put aside their experience and education, people are likely to leave the
organization.

Furthermore, no “way” of doing business can anticipate all contingencies. Sit-
uations arise where decisions are made to “not follow” one or more of the
processes that define the organization’s way of doing business. Such situa-
tions can be viewed as a dynamic risk-assessment exercise. That is to say,
people should carefully consider the consequences of not following the orga-
nization’s way of doing business. Furthermore, “not following the organiza-
tion’s way” is not an admission that the organization’s way of doing business

1As we subsequently explain, we use the word prescriptive in a sense that we borrow from a doctor’s
use of the term prescription. A doctor diagnoses a patient’s condition and, based on this diagnosis, the
doctor prescribes a certain dosage of medication. Likewise, an individual working on a software pro-
ject diagnoses a particular situation and, based on this diagnosis, prescribes the process dosage that
makes sense for that situation.

ptg

is not needed. After all, if the people in the organization contribute to the def-
inition of the business way, then the business way should account for many,
but not all, contingencies. Since some emergencies can be anticipated, the
business way can incorporate some emergency contingencies. Over time, as
the organization accumulates experience, additional contingencies can be
folded into the business way.

We need to stress another point about making the transition shown in Figure
1–1 happen. Even with time and resources, the critical element of transition-
ing to well-defined development processes is an organization’s commitment
to make the transition. Commitment involves people. Top-down support and
bottom-up action need to be visible, consistent, and rewarded; else the critics
are heard and the transition is delayed.

Chapter 1 • Business Case

6

Without top-down support and bottom-up action, successful soft-
ware development, as we have defined it, will not happen—that is,
“good” software products will not be developed consistently.

We also need to make a point regarding the role of tools (i.e., the role of au-
tomation) in making the transition shown in Figure 1–1 happen. Part of the
institutionalized way of doing business may involve automated development
tools, such as computer aided software engineering (CASE) tools. However,
we believe that the need for change cannot be satisfied simply with more au-
tomated development tools. Tools can help, but without commitment by peo-
ple to a “new way of doing business,” the need for change will remain
unfulfilled.

In closing this section, we make two additional observations regarding Figure
1–1. These observations and supporting explanations are the following:

♦ The ideas in this book are scalable—that is, they apply to customer/seller part-
nerships of almost any size.

♦ If you are a seller organization responsible for a couple of software pro-
jects, we offer you guidance on how to pick and choose from the com-
munication and risk reduction techniques to set up a “way” to develop
software systems that makes sense for your situation.

♦ If you are a seller organization responsible for major programs, each
consisting of a number of software projects, we offer you guidance on
how to set up a process framework that can be adapted to any program
and any project within a program.

♦ If you are a customer soliciting a software seller for a major effort, we
offer you guidance on what you should include in your solicitation so
that you and the seller can work in partnership to give you the software
systems that satisfy your criteria.

♦ If you are an organization that formerly did software systems develop-
ment in-house but now wishes to outsource all or part of this work, we

ptg

offer you guidance on how to include in your outsourcing agreement
requirements for business processes that blend with your culture.

♦ The ideas in this book apply to organizations with (1) little or no documented
processes and a staff of heroes; (2) some documented processes and some heroes;
and (3) well-documented processes and some heroes.
♦ If your organization has already embarked on an effort to reduce staff

turnover because of burnout from repeated staff heroics to get the job
done, we offer you guidance on how to involve the staff in proceeding
with the cultural change underlying the “new way.”

♦ If your organization is toward the right end of the spectrum in Figure
1–1 (i.e., you have largely achieved organizationwide consistency in
software systems development), we offer you guidance on how to re-
fine what you have already done so that, for instance, you can gain a
competitive edge in the marketplace.

The plan for the remainder of this chapter is the following:

♦ In Section 1.2—Business Case Key Ideas, we present the key ideas that
you can expect to extract from this chapter.

♦ In Section 1.3—What Makes Good Business Sense?, we explore why it
makes good business sense for an organization to take the time to alter its
way of doing software development to achieve consistency.

♦ In Section 1.4—Software Systems Development Concepts, we define and
explain several fundamental concepts to help us effectively communicate
the book’s ideas.

♦ In Section 1.5—Product “Goodness” and Process “Goodness,” we explain
a key aspect of our definition of successful software development, namely,
what constitutes product and process “goodness.”

♦ In Section 1.6—Requisite Software Systems Development Disciplines,
we introduce the roles of those who should be involved in software pro-
jects if consistently “good” products are to be produced.

♦ In Section 1.7—Generic Four-Stage Software Systems Development Life
Cycle, we introduce a life cycle concept that folds in the requisite software
systems development disciplines. We use this concept in subsequent chap-
ters to define project-specific life cycles.

♦ In Section 1.8—User, Buyer, Seller Organizations Involved in Software
Systems Development, we introduce the three archetypal parties that in-
teract on most software projects and relate these parties to the disciplines
introduced in Section 1.6.

♦ In Section 1.9—Obstacles to Improving Software Systems Development
Cultures, we set the stage for the discussion in subsequent chapters on the
relationship between making successful development happen and cultural
change.

♦ In Section 1.10—Alternative Approaches to Software Process Improve-
ment, we introduce the key concept of systems engineering environment

Chapter 1 • Business Case

7

ptg

(SEE); the SEE provides the basis in subsequent chapters for offering guid-
ance on how an organization can improve the way it does software sys-
tems development to produce “good” software products consistently.

♦ In Section 1.11—Preview of the Rest of the Book, we give a summary of
each of the remaining chapters.

1.2 Business Case Key Ideas
Figure 1–2 lists the key ideas that you can expect to extract from this chapter.
We begin each chapter with such a list to facilitate your task of mining the
chapter’s contents to meet your specific needs. To help you navigate through
this chapter, we briefly explain these key ideas here. Their full intent will be-
come apparent as you read through the chapter.

1. Successful software development means “the ability to produce ‘good’
software systems consistently.”
Software development is a customer/seller partnership where both
parties actively participate and agree on what needs to be done.
“Good” software systems are those that satisfy both customer and
seller criteria.

2. There is no one “way” to build software systems.
If there were, software systems development would have been reduced
to an assembly-line process long ago. There are, however, fundamental
principles whose application can increase the likelihood that software
systems development will be successful.

3. Even with time and resources, the critical element of transitioning to well-
defined development processes is an organization’s commitment to make the
transition.
Top-down support and bottom-up action need to be visible, consistent,
and rewarded; else the critics are heard and the transition is delayed.
Without top-down support and bottom-up action, successful software
development is next to impossible to achieve.

4. Setting up an organizational “way” of doing business that fosters consis-
tency means putting in place organizationwide mechanisms for communi-
cating effectively and reducing risk.
These mechanisms include checks and balances that act to keep soft-
ware development work on track, thereby reducing risk and fostering
consistency.

5. Key to making successful software development happen is prescriptively ap-
plying the organizational “way” of doing business.
A doctor diagnoses a patient’s condition and, based on this diagnosis,
the doctor prescribes a certain dosage of medication. Likewise, an indi-
vidual working on a software project diagnoses a particular situation

Chapter 1 • Business Case

8

ptg

Chapter 1 • Business Case

9

Business Case Key Ideas

1. Successful software development means “the ability to produce ‘good’
software systems consistently.”

2. There is no one “way” to build software systems.

3. Even with time and resources, the critical element of transitioning to well-
defined development processes is an organization’s commitment to make the
transition.

4. Setting up an organizational “way” of doing business that fosters consis-
tency means putting in place organizationwide mechanisms for communi-
cating effectively and reducing risk.

5. Key to making successful software development happen is prescriptively ap-
plying the organizational “way” of doing business.

6. To unify many software development management concepts that are scat-
tered around under different names, our concept of software extends be-
yond computer code (or programs).

7. As a software organization gains in software process maturity, it institution-
alizes its software process through a systems engineering environment (SEE).

8. “Goodness” is a multidimensional concept that depends on your point of view.

9. Attaining and maintaining software product integrity on a software project
requires judicious application of three groups of disciplines—development,
product assurance, and management.

10. A fundamental principle underlying successful software systems develop-
ment is that of dividing the development effort into some set of stages.

11. Three archetypical parties interact on most software projects—the user,
buyer, and seller.

12. Cultivating successful software systems development (i.e., bringing about
software development cultural change) extends far beyond (1) management
edicts, and (2) assembling a team of experienced and good people.

13. The software business should not be a lottery.

14. The jury is still out on how to quantify the benefits associated with reshap-
ing an organization’s culture so that it is capable of producing “good” soft-
ware consistently.

15. The business world may change, but certain things do not change when it
comes to achieving software development success.

Figure 1–2 Here are key ideas explained in this chapter. These ideas set the context for many of the concepts ad-
dressed in the succeeding chapters.

ptg

Chapter 1 • Business Case

10

and, based on this diagnosis, prescribes a certain dosage of the organiza-
tional “way” that makes sense for that situation.

6. To unify many software development management concepts that are scat-
tered around under different names, our concept of software extends be-
yond computer code (or programs).
Our conceptual definition of software includes not only computer code
but also all associated documentation that represents an immature
form of the code (e.g., requirements specification documentation and
design specification documentation). Therefore, planning for software
process improvement encompasses activities other than the “coding”
activity.

7. As a software organization gains in software process maturity, it institution-
alizes its software process through a systems engineering environment
(SEE).
This environment consists of policies, guidelines, procedures, and stan-
dards, as well as hardware and software tools. Institutionalization en-
tails building and refining an infrastructure and a corporate culture
that support the methods, practices, and procedures of the business so
that they endure after those who originally defined them have gone.

8. “Goodness” is a multidimensional concept that depends on your point of
view.
What is important to one person may not be important to another per-
son. We take the position that good people produce good products and
that good processes produce good products. The label we put on the
concept of “goodness” is integrity. One dictionary definition of integrity
is “completeness.” A customer/seller partnership defines process
“goodness” by mutually deciding on product characteristics that make
a product complete. Similarly, this partnership defines process “good-
ness” by mutually deciding on those process characteristics that make
a process complete.

9. Attaining and maintaining software product integrity on a software project
requires judicious application of three groups of disciplines—development,
product assurance, and management.
Proper understanding of process begins with a top-level understand-
ing of the roles these disciplines should play on a software project if
the project is to turn out products with integrity.

10. A fundamental principle underlying successful software systems develop-
ment is that of dividing the development effort into some set of stages.
Lacking physical characteristics, software is inherently difficult to see.
One way of raising the visibility of software systems development
work is to divide the work into pieces or stages. The idea of dividing a
software project into smaller, more manageable pieces gives rise to the

ptg

notion of attributing a life cycle to software development (and mainte-
nance). There is no unique way to divide software systems develop-
ment into stages (i.e., there is no such entity as “the life cycle”). What is
important is that the development is divided into some set of stages to
facilitate development of the software and the management of the
project.

11. Three archetypical parties interact on most software projects—the user,
buyer, and seller.
The user generally is the one with the requirements that the software is
being developed to satisfy. The buyer generally is the agent for the user
and thus can be thought of as a surrogate user. The seller is hired by the
buyer to create the software system for the user. If the user, buyer, and
seller organizations have corresponding development, product assur-
ance, and management personnel, the likelihood of achieving a soft-
ware product with integrity is increased.

12. Cultivating successful software systems development (i.e., bringing about
software development cultural change) extends far beyond (1) management
edicts, and (2) assembling a team of experienced and good people.
Some people are receptive to change—others are not. People are not
afraid of change, they are afraid of what they will lose if change
occurs.

13. The software business should not be a lottery.
Most people lose when they play a lottery. Occasionally, people win
small amounts of money and they may play again, hoping they will do
better the next time or maybe even win big. However, most people lose
and rarely are there big winners.

14. The jury is still out on how to quantify the benefits associated with reshap-
ing an organization’s culture so that it is capable of producing “good” soft-
ware consistently.
People use such concepts as Return on Investment (ROI), Information
Productivity, Management Value-added, and Balanced Scorecard to
quantify the business case for reshaping an organization’s software
development culture. Because of the uncertainty on how to quantify
the business case, organizations may have trouble seeing the bene-
fits and convincing decision makers of the payoffs of striving for
consistency.

15. The business world may change, but certain things do not change when it
comes to achieving software development success.
Certain fundamental software development principles are necessary
for successful software development. Chief among these principles are
(1) effective communication, (2) risk deduction, and (3) an organiza-
tional “way” of doing business.

Chapter 1 • Business Case

11

ptg

1.3 What Makes Good Business Sense?
The purpose of this section is to discuss if investing in software process im-
provement to achieve consistently “good” products makes good business
sense. As we discuss, one of the difficulties associated with quantifying what
makes good business sense regarding software process improvement activi-
ties is that the jury is still out on how this quantification should be expressed.

The approach in this section is the following:

♦ We start from the dictionary definition of business.
♦ We explain why it makes good business sense to strive for consistency.
♦ We explain that the road to achieving consistency is paved with cultural

change.
♦ We describe and contrast different viewpoints on how to express the value

that software process improvement activities add to the business of soft-
ware systems development.

♦ We explain why these contrasting viewpoints make it difficult for organi-
zations to see the benefits of such activities and express the payoffs of striv-
ing for consistency.

♦ We cite quantitative evidence that investing in software process improve-
ment does benefit an organization.

♦ We explain why (1) it is not cheap to reshape an organization’s culture so
that it is capable of producing “good” software consistently, and (2) after
an organization’s culture has been reshaped, it is not cheap to keep the cul-
ture where it is or make it better.

♦ We assert that (1) the costs associated with software process improvement
activities are worth it, and (2) the succeeding chapters of the book illustrate
why such costs are worthwhile.

♦ We conclude the section by touching on the views of visionaries who assert
that the business world is changing dramatically. We assert that certain
things do not change when it comes to achieving software development
success. Among all the important things, effective communication, risk reduc-
tion, and an organizational “way” of doing business stand out.

The dictionary gives the following as one definition of business:

A usually commercial or mercantile activity engaged in as a means of
livelihood.2

What does livelihood mean? From an individual’s viewpoint, livelihood could
mean “taking home a pay check to use the money any way he/she wants.”
From an organization’s viewpoint, livelihood could mean “making a profit
and growing the business.” Therefore, what makes good business sense

Chapter 1 • Business Case

12

2Merriam-Webster’s Collegiate Dictionary, Tenth Edition (Springfield, MA: Merriam-Webster, Inc., 2000).

ptg

depends, in part, on your viewpoint. This book presents ideas for blending
these two seller viewpoints for the benefit of both.

In addition to the seller perspective, we need to keep in mind that the cus-
tomer perspective also impacts what makes good business sense. As we
stated at the outset of this chapter, the software development business is a
customer/seller partnership. In this book, sellers and their customers encom-
pass the following example partnerships:

♦ A company that responds to a customer solicitation (such as a request for
proposal [RFP]) for software products and services.

♦ A company that develops and sells software products and related services
to the general public.

♦ An organization within a company that provides software products and
services to other parts of the company.

In the first two cases above, competitive pressures often govern the extent to
which the sellers can earn a livelihood. In the third case, the extent to which
the seller can earn a livelihood often is governed by whether top company
management perceives the organization as contributing to the company’s
bottom line.3 In all cases, if the customers have confidence that they will get
what they want consistently, they will generally give the sellers more business
and may even refer others to the sellers. The end result is that the sellers con-
tinue to stay in business (and may even flourish doing so).

The software business is in its infancy when compared to businesses like con-
struction, or even relatively “young” businesses like aircraft and automobile
manufacturing. We generally expect that when houses or bridges are con-
structed, they will not collapse. We generally expect that automobiles we
drive and airplanes that we fly in will get us to our destinations. Unfortu-
nately, the same outlook regarding consistency cannot generally be projected
for the software business—for all three cases cited above.

Many people generally expect that Version 1.0 of the software that they buy
for their personal computers will have major bugs. Furthermore, customers
who contract with software sellers to build custom systems generally expect
that the systems will not do what they are supposed to do, will be delivered
late, and will be delivered over budget.4 Many companies outsource work
that internal organizations provided for reasons that include the following:
(1) late deliveries, (2) cost overruns, and (3) unsatisfied requirements.

Chapter 1 • Business Case

13

3In this third case, if top company management is not satisfied with this internal seller organization,
the management may choose to do away with the organization and hire an outside contractor to pro-
vide the software development support. This approach is referred to as outsourcing.
4For an interesting counter view from someone who, by his own admission, has written extensively
about software failure, see R. L. Glass, “Is There Really a Software Crisis,” IEEE Software, vol. 15, no. 1
(January/February 1998), pp. 104–105. We also note that Glass wrote a book in 1998 entitled Software
Runaways (Upper Saddle River, NJ: Prentice Hall PTR, 1998). The purpose of this book is to present
lessons learned from massive software failures (the book describes sixteen such failures). So that the
intent of his book will not be misunderstood, Glass states on page 6 that “I do not believe in the exis-
tence of a software crisis.”

ptg

Given these expectations, one might wonder:

♦ Does it really pay for a company to outsource to another company that has
an ill-defined way of developing software systems?

♦ Does it make good business sense to strive for consistent software devel-
opment?

♦ Is there a good business case for refining or transforming from an ill-
defined business way to a well-defined business way?

These questions do not have easy answers. The answers depend, in part, on
your particular set of circumstances. However, we believe that making suc-
cessful software development happen involves defining an organizational
“way” of business that fosters consistency across an organization.

In much of the remainder of this section, we address the above three ques-
tions as a group using the following approach:

♦ We explain why striving for consistency benefits the customer, the seller
organization, and the individuals within the seller organization.

♦ We explain why there is a lack of agreement within the industry on how to
quantify the business case for process improvement. In particular, we
briefly address alternative ways for quantifying the business case. The al-
ternatives we consider are Return on Investment, Information Productiv-
ity, Management Value-added, and Balanced Scorecard.

Consistency

To make a case for why it makes good business sense to strive for consistency,
we look at another business that offers dramatic insight into why consistency is
important. That business is the United States’ space program, which, interest-
ingly, is about the same age as the software business. In its early days (1950s),
the American public, if not the world at large, expected America’s rocket ships
to blow up on the launch pads or otherwise fail. In the 1960s, as the country pur-
sued putting men on the moon, success seemed to have bred success. In 1969,
the stream of successes culminated in men landing on the moon—and return-
ing home safely. In the 1970s and 1980s, the space shuttle program enjoyed suc-
cess after success, and the public’s expectation was that consistently good
launches were a given. Then, in 1986, the Challenger disaster occurred. Follow-
ing the disaster, successful launches were no longer a given—at least in the
public’s eye. An increasing number of launches were halted and subsequently
rescheduled because of the greater number of tests and checks that detected
things that needed to be fixed before the rockets could be fired. The bottom line
here is that consistency was restored—but at tremendous cost. And, it was
apparently not until after the loss of life viewed by people around the world
that this cost was deemed acceptable.

Chapter 1 • Business Case

14

ptg

Regarding the software business, it is uncertain whether disasters on the
scale of Challenger have occurred. However, it is not uncommon for newspa-
pers to report on software failures leading to business disruptions, people or in-
stitutions suffering large financial losses,5 and people getting killed or injured.

We believe that developing software systems should not be a lottery. Most peo-
ple lose when they play a lottery. Occasionally, people win small amounts of
money and they may play again, hoping they will do better the next time or
may even win big. However, most people lose and rarely are there big winners.

The plain fact is that software is part of almost anything we come in contact
with or use—telephones, home appliances (e.g., bread-making machines), au-
tomobiles, medical devices (e.g., pace makers, medicine dispensing devices
such as IVs and insulin pumps), television sets, and, of course, the Internet, to
name a few. Because of software’s ubiquity, more and more people depend
on software to get on with their lives. Therefore, the business reality facing
the software industry is the following:

Chapter 1 • Business Case

15

5In the fall of 1985, the Bank of New York, acting as a clearing agent for government securities, had a
computer system failure that prevented the bank from delivering securities to buyers and making
payments to sellers. The bank was forced to borrow $24 billion overnight, mostly from the Federal Re-
serve Bank of New York, to balance its accounts. The interest on that borrowing amounted to about $5
million. This incident was the subject of a congressional investigation (“The Federal Reserve Bank of
New York Discount Window Advance of $22.6 Billion Extended to Bank of New York,” Hearing Be-
fore the Subcommittee on Banking, Finance, and Urban Affairs, U.S. House of Representatives, Serial
No. 99-65, December 12, 1985). It was reported in computer trade journals (e.g., “Bank Blames Night-
mare on Software Flop,” Computerworld, December 16, 1985, pp. 1, 12) and in newspapers such as the
Wall Street Journal (“A Computer Snafu Snarls the Handling of Treasury Issues,” November 25, 1985,
p. 58) and The Washington Post (“Computer Snarled N.Y. Bank,” December 13, 1985, pp. D7–D8).

While the general public may harbor doubts about the ability of
software to work as advertised, people expect more from software
and will turn to those software providers who can better meet their
expectations.

As we stated at the outset of this chapter, many people also recognize the need
for software providers to better meet their customers’ expectations. For exam-
ple, in 1984, the U.S. Department of Defense (DoD) established the Software En-
gineering Institute (SEI) at Carnegie Mellon University through a competitive
procurement process. The mission of the SEI is to provide leadership in ad-
vancing the state of the practice of software engineering to improve the quality
of systems that depend on software. The SEI accomplishes this mission by pro-
moting the evolution of software engineering from an ad hoc, labor-intensive
activity to a discipline that is well managed and supported by technology.

During the 1990s, the SEI played a major part in introducing benchmarks into
the software community for assessing the capability of an organization to
produce “good” software systems consistently. These benchmarks took the
form of a collection of models, each given the primary designator of

ptg

Capability Maturity Model®, or CMM® for short.6 The most prominent
among these models is the CMM for Software. Both customers and sellers use
this model to improve and/or assess their software systems development
practices. For example, many sellers use the CMM for Software to assess how
mature their organization’s practices are. Customers use this model as a
means to compare various sellers against one another to determine which
seller is better able to produce software systems to meet the customers’ needs.

Even though the DoD chartered the SEI for national interests, the SEI’s reach
extends worldwide. Commercial firms, as well as firms that do business with
governments, strive to get what is known as an “SEI rating.” In some cases,
customers soliciting bids for work they want done may bar firms from com-
peting for the work if the firms do not have a certain minimum SEI rating.

In the beginning of the 21st century, the SEI built on its CMM efforts by inte-
grating the various CMMs to achieve consistency across the several models.
The project, known as Capability Maturity Model IntegrationSM (CMMISM), is
a collaborative effort with government and industry.7

Another example of the recognition of the need for software providers to bet-
ter meet their customers’ expectations is the work done by the International
Organization for Standards (ISO). This organization produced a series of
management standards labeled ISO 9000. Just as firms in the 1990s strove to
get an SEI rating, firms that compete in the international marketplace strive to
get what is known as ISO 9000 certification.8

Considerable controversy exists within the software industry as to the value
of SEI ratings and ISO 9000 certification in determining the ability of organi-
zations to produce “good” software consistently. In part, people having sec-
ond thoughts about striving for these ratings and certifications spur this
controversy. Some organizations with elevated SEI ratings may do no better
in (1) delivering products on time, or (2) delivering “quality” products better
than organizations dominated by a collection of Sams, Pams, and Hams. This
controversy provides some insight into what is standing in the way of people
in the software business producing “good” software consistently.

Consider, for example, the following remarks regarding SEI ratings and ISO
9000 certification made by no less an authority than Bill Curtis, an author of
the CMM for Software:9

Chapter 1 • Business Case

16

6CMM, Capability Maturity Model, and Capability Maturity Modeling are registered in the U.S.
Patent and Trademark Office to Carnegie Mellon University.
7CMMI and CMM Integration are service marks of Carnegie Mellon University.
8The centerpiece of the ISO 9000 series is ISO 9001, whose title is “Quality Systems—Model for Qual-
ity Assurance in Design/Development, Production, Installation, and Servicing.” To obtain certifica-
tion, a firm calls in outside auditors. These auditors use the standard as a basis for determining that
the firm can design, develop, produce, etc., products (such as software) and services with quality. The
definition of quality given in the standard is linked to satisfying customer needs.
9B. Curtis, “Which Comes First, the Organization or Its Processes?,” IEEE Software, vol. 15, no. 6 (No-
vember/December 1998), p. 10.

ptg

Software development organizations face an array of process standards,
with ISO 9000-3, ISO 15504, and several flavors of Capability Maturity
Models among the most prominent. Are all of these standards equally effective,
or do some provide better guidance for process improvement? Why do some or-
ganizations with development processes “certified” under one or another of
these standards still suffer delivery and quality problems?

Curtis then answers his latter question:

. . . improving your processes is not enough—you must change your or-
ganization [emphasis added]. The benefits from implementing a process stan-
dard may prove elusive if an organization’s most dysfunctional traits are
allowed to undermine new practices. Mandating quality practices is often not
sufficient to produce quality results. Improved processes must be nourished in
an organizational culture that perceives them as a logical implementation of its
professional values.

We are in full agreement with Curtis’ assertions about the intimate relation-
ship between process improvement and cultural change. We devote Chapter
7 to this topic.

We have concluded our explanation of why striving for consistency benefits
the customer, the seller organization, and the individuals within the seller or-
ganization. Our explanation is essentially that the alternative for striving for
consistency is treating software development as a lottery. We also explained
that the road to achieving consistency is paved with cultural change.

We now turn our attention to why there is a lack of agreement within the in-
dustry on how to quantify the business case for process improvement. For this
purpose, we address the concepts of (1) Return on Investment, (2) Information
Productivity®,10 (3) Management Value-added, and (4) Balanced Scorecard.

Return on Investment (ROI)

Changing an organization generally comes about only at great expense. The
business question that thus naturally arises is the following:

What can the organization expect to get in return for this considerable ex-
pense associated with changing or refining the way it does software systems
development?

Often when making a business case to senior management for the need to im-
prove the organization’s “way” of doing business, it is necessary to present

Chapter 1 • Business Case

17

10Information Productivity® is a registered trademark owned by Strassmann, Inc. It should be noted
that Paul A. Strassmann, founder of Strassmann, Incorporated, has been involved in the information
industry since the 1950s. He has worked for commercial firms and the U.S. government. He has pub-
lished over 150 articles on information management and information worker productivity.

ptg

the Return on Investment (ROI) being proposed. Like many other issues in
the software industry, there is no one way to present ROI.

Controversy exists within the software industry regarding (1) how to mea-
sure ROI in this context, and (2) whether ROI is, in fact, an appropriate metric
for assessing the value of changing the way an organization does software
systems development. Our objective here is to present you with alternative
viewpoints about ROI to help you decide what makes sense for your particu-
lar set of circumstances.

The effort and costs involved with reshaping an organization from one that
may be dominated by heroes to one that has an organizationwide way of pro-
ducing software systems is considerable. For example, industry experience
shows that for an organization of several hundred people doing tens of mil-
lions of dollars of software business a year, it costs hundreds of thousands of
dollars and several years to elevate the organization to the middle level of the
SEI rating scale (i.e., Level 3). In addition, keeping an organization at that
level involves ongoing expense that is not negligible. This example is not
unique. Others in the software industry encountered comparable expenses
and time frames. The SEI reports that since 1987 the median time it has taken
to move from (1) Level 1 to Level 2 is twenty-seven months, and (2) Level 2 to
Level 3 is twenty-four months.11

In 1998, a United States Air Force organization, the Software Engineering Di-
vision of the Ogden (Utah) Air Logistics Center, achieved SEI Level 5 (the
first known U.S. government agency, federal or state, to achieve this level).
This organization consists of approximately 420 people and is responsible for
developing and maintaining software systems and managing software pro-
jects. In particular, the organization develops and maintains aircraft opera-
tional flight programs, mission planning systems, and automatic test
equipment. The May 1999 issue of CrossTalk, the Journal of Defense Software
Engineering, contained a series of articles documenting the organization’s
rise up the CMM ladder. One of these articles was titled “Benefits Realized
from Climbing the CMM Ladder.” The purpose of this article was to “demon-
strate the positive aspects of process improvement according to the . . . Capa-
bility Maturity Model . . . for software.”12 Regarding the notion of ROI, the
first page of this four-page article contained the following statements:

The original title of this article was “The Return on Investment from
Climbing the CMM Ladder.” The term return on investment, however, has
a precise definition within the business community that requires specific
knowledge of cause and effect regarding changes to processes or methods and

Chapter 1 • Business Case

18

11Software Measurement and Analysis Team, “Process Maturity Profile of the Software Community—
1999 Mid-Year Update,” Software Engineering Institute and Carnegie Mellon University, August
1999. The CMM for Software consists of five levels—Level 1 being the lowest and Level 5 being the
highest. The focus of a Level 1 organization is on heroics to get work done; the focus of a Level 5 orga-
nization is on continuous improvement to quantitatively refine how work gets done.
12L. G. Oldham, D. B. Putman, M. Peterson, B. Rudd, and K. Tjoland, “Benefits Realized from Climb-
ing the CMM Ladder,” CrossTalk, The Journal of Defense Software, vol. 12, no. 5 (May 1999), p. 7.

ptg

the accompanying improvements in cost and productivity. Unfortunately, it is
only when an organization reaches CMM Level 4 that the employees under-
stand their processes in quantitative terms and can tie specific actions to
process capability changes.

With the above caveat, the article goes on to describe the qualitative and
quantitative benefits the organization derived from ascending the CMM lad-
der. It should be noted that a companion article reported that it took the orga-
nization approximately 7.5 years to go from Level 1 to Level 5 (the
organization began its process improvement program in 1991 and achieved
Level 5 in July 1998).13

To understand some of the issues associated with determining ROI, we pro-
vide the following extracts from the Oldham et al. article cited to show in
some detail how the Air Force calculated and interpreted ROI:

♦ Although these figures [regarding the quantitative benefits] will be exact,
we estimate their accuracy to be within 20 percent. Even with this uncer-
tainty, we will show that the savings realized by the Air Force are worth
the investment made (p. 7).

♦ This article is concerned with the overall investment in process improve-
ment and the returns and benefits realized within the two software devel-
opmental product lines [i.e., the aircraft operational flight programs and
the mission planning systems]. . . . our experience has been that quantita-
tive gains within the automatic test product line have been difficult, if not
impossible, to substantiate (p. 7).

♦ In an attempt to put a value on the return to the Air Force from the invest-
ment [the organization] made in process improvement, a few basic tenets
were established. First, since this and most software maintenance organi-
zations—including those in the private sector—provide essentially a level-
of-effort service to the customer, savings were computed based on cost per
unit of deliverable product multiplied by the number of units delivered
per year, i.e., cost per line of code or cost per test program set times the
number delivered per year. Second, based on general business practices,
an investment in process improvement for any given year will be assumed
to be responsible, in part, for actual and projected savings garnered in the
following five years. Third, . . . we assume that most savings resulted from
the process improvements institutionalized through this program. With
these conditions in mind, the estimated return on investment for this di-
vision [i.e., the Software Engineering Division] was a ratio of about 19-
to-1. In other words, the Air Force received, in the form of additional
software enhancements to the F-16 aircraft weapons systems and other
weapons systems, nearly 20 dollars for every dollar invested14 [in process

Chapter 1 • Business Case

19

13P. W. Cosgriff, “The Journey to CMM Level 5: A Time Line,” CrossTalk, The Journal of Defense Soft-
ware, vol. 12, no. 5 (May 1999), p. 5.
14Emphasis added.

ptg

improvement]. To date, this is well in excess of $100 million worth of
weapons and test system enhancements and fixes (p. 9).

In the bibliography at the end of this book, we summarize an article that ap-
peared in August 1995 entitled “Return on Investment (ROI) from Software
Process Improvement as Measured by US Industry.” One section of the article
is entitled “Return on Investment Definition.” This section, which spans more
than one page of the article’s thirteen pages, presents and discusses textbook
ROI definition, government ROI definition, and industry ROI definition. This
discussion offers interesting insight into the challenges associated with trying
to determine ROI from software process improvement. The article concludes
with some statements regarding the applicability of the ROI concept to the
software industry. We give the following extract from these statements:15

Many people, including the research participants [in the study reported
on in the article] and pundits from the literature, contend that ROI is non-
quantifiable—too many problems with it and not enough evidence to know
whether it is actually the process improvements that are causing the effects.
One assumption was made that productivity improvements will occur at a 5%
rate per year through technology improvements without doing anything to im-
prove process. . . . Other assumptions point to the Hawthorne effect that any-
thing under study will change.

Perhaps some of these assertions are valid in a limited sense, but until
some method of standardizing the collection and analysis of data is de-
fined, there will be no way of determining how accurately process im-
provement returns can be predicted or measured [emphasis added]. What
the research does show, however, is that positive benefits for software process
improvement based on the CMM do exist. The extent of the benefits vary be-
tween organizations and between maturity levels, but even level 1 organiza-
tions have experienced productivity and schedule improvements. . . .

Of course, there is another problem associated with determining ROI. Many
businesses are loath to publish ROI information because it straddles the line
of proprietary information. After all, if a company were to provide insight
into how, and to what extent, it achieves ROI in its software process improve-
ment sphere, it might be compromising its competitive advantage. However,
in the case of a government agency, such as the one cited above, “propri-
etary” is generally not an issue. The different business interests of commercial
firms versus government agencies make available ROI data somewhat
skewed. These different interests also underlie why the government may de-
fine ROI one way and industry may define ROI another way, as indicated in
the cited article.

Chapter 1 • Business Case

20

15J. Brodman and D. Johnson, “Return on Investment (ROI) from Software Process Improvement as
Measured by Industry,” Software Process—Improvement and Practice, Pilot Issue (August 1995), p. 47.

ptg

Information Productivity
Further compounding the issue of costs associated with software process im-
provement is the fact that others have proposed ways besides ROI to assess
the value added of doing process improvement. Notable in this area is work
done by Paul Strassmann. In his book Information Productivity: Assessing the
Information Management Costs of US Industrial Corporations, Strassmann builds
a case for focusing on Information Productivity as a key, if not dominant, in-
dicator of the effectiveness of a company’s “way” of doing business.

Strassmann provides the following very broad definition of information cost:16

It includes all costs of managing, coordinating, training, communicating,
planning, accounting, marketing and research. Unless an activity is clearly a
direct expense associated with delivering to a paying customer a product or
service it will be classified as an information expense.

We interpret information cost to include costs associated with software process
improvement activities.

Strassmann notes that a little more than half of the employees in the U.S.
workplace devote themselves to information creation, information distribu-
tion, and information consumption. He argues that, prior to the information
age (which manifests itself, in part, by this workplace statistic), the U.S. econ-
omy relied on productivity of land, labor, and capital as its most important
resource. Now, he argues, what counts is Information Productivity. In ex-
plaining the purpose of his book, he states the following:17

Until recently [the book was published in 1999] almost all the efforts on
measuring effectiveness have been concentrated on assessing the productivity
of every occupation except that of managers and professionals. The managers
evaluate everybody else. The owners of firms have now realized that it is the
managers and the professionals who make the critical difference in the fortunes
of a firm. Managerial and professional wages and salaries now consume over
forty percent of all compensation expenses. With recognition of these facts
comes the urgency to treat information management as if it were any other re-
source. It is the purpose of this book to show how that can be done by concen-
trating on measuring the productivity of information.

To set the stage for why he thinks businesses should start turning their attention
to Information Productivity (as opposed to ROI and other traditional business-
health indicators), Strassmann cites the following statistics regarding the charac-
teristics of the thousands of U.S. industrial corporations that he looked at:

♦ Ninety-two percent of firms incurred higher expenses for information
management than for the costs of ownership of their net capital assets. This

Chapter 1 • Business Case

21

16P. A. Strassmann, Information Productivity: Assessing the Information Management Costs of US Industrial
Corporations (New Canaan, CT: The Information Economics Press, 1999), p. 62.
17Ibid., p. x.

ptg

makes the utility of asset-based ratios (such as . . . ROI . . .) questionable as
a measure of performance. . . .

♦ There was no relationship between the costs of information management
and profitability. . .

♦ There was no relationship between the estimated costs of information tech-
nology and profitability . . .18

Thus, Strassmann’s views on what is important regarding determining busi-
ness effectiveness in general (and from our viewpoint, software process im-
provement in particular) contrasts markedly from the previously cited
references on ROI.

Management Value-added

We need to make an additional observation about Strassmann’s views. Ap-
proximately a decade before he published his book on Information Produc-
tivity, he wrote a book titled The Business Value of Computers: An Executive’s
Guide. In his introduction to this book, Strassmann begins as follows:19

There is no relationship between expenses for computers and business
profitability. This book will show you why. You will find that similar com-
puter technologies can lead either to monumental successes or dismal failures.

My purpose is to shift your attention from information technology to the
executives who manage it. The difficulty in discovering the business value of
computers lies in their managerial applications. Computers on which you run
information systems can deliver productivity gains. In isolation, they are just
pieces of metal, plastic or glass. Therefore, my discussions will not deal with
the worth of computers. Only Management Value-added, with or without
computers, will tell you if computers produce a business payoff.

Strassmann discusses how Management Value-added is related to something he
calls Return-on-Management, or R-O-M. He goes on to explain that “R-O-M is
an absolute measure of [business] performance, in contrast to ROI or ROE [re-
turn on equity]” (p. 134). The point here is that, by extending Strassmann’s
logic regarding the utility of conventional measures of business effectiveness
such as ROI, we might conclude the following:

If conventional measures such as ROI miss the boat regarding determining
overall business effectiveness, then it is probably not surprising that such con-
ventional measures miss the boat regarding determining the effectiveness of
specific aspects of a business. In particular, it is probably not surprising that a
measure such as ROI misses the boat in helping to determine the effectiveness

Chapter 1 • Business Case

22

18Ibid., p. xiv.
19P. A. Strassman, The Business Value of Computers: An Executive’s Guide (New Cannan, CT: The Infor-
mation Economics Press, 1990), p. xvii.

ptg

of software process improvement activities that are folded into the business of
developing software systems.

Balanced Scorecard
We mention briefly another approach to assessing business effectiveness that
gained prominence in the 1990s—the Balanced Scorecard.20 This approach
contrasts with Strassmann’s approach and the ROI approach previously dis-
cussed. It is an additional indicator of the diversity of opinion that exists re-
garding how to determine whether decisions to improve a business make
good business sense. While the Balanced Scorecard addresses business per-
formance in a context far broader than software process improvement, it has,
in fact, been used in a software process improvement context.21

The opening paragraph of the preface to The Balanced Scorecard explains the
origins of the approach. This paragraph reads as follows:22

The origins of this book can be traced back to 1990 when the Nolan Nor-
ton Institute, the research arm of KPMG, sponsored a one-year multicompany
study, “Measuring Performance in the Organization of the Future.” The study
was motivated by a belief that existing performance-measurement approaches,
primarily relying on financial accounting measures, were becoming obsolete.
The participants believed that reliance on summary financial-performance
measures were hindering organizations’ abilities to create future economic
value. David Norton, CEO of Nolan Norton, served as study leader and
Robert Kaplan as an academic consultant [Norton and Kaplan authored the
book]. Representatives from a dozen companies—manufacturing and service,
heavy industry and high-tech—met bi-monthly throughout 1990 to develop a
new performance-measurement model.

In a nutshell, the Balanced Scorecard measures business effectiveness (for the
purpose of giving corporate decision makers quantitative insight into how to
improve the business) along the following four dimensions (which the book
calls “perspectives”):23

♦ Financial. The generic measures of this perspective are ROI and economic-
value added (EVA).

Chapter 1 • Business Case

23

20R. S. Kaplan and D. P. Norton, The Balanced Scorecard: Translating Strategy into Action (Boston, MA:
Harvard Business School Press, 1996).
21P. Ferguson, G. Leman, P. Perini, S. Renner, and G. Seshagiri, “Software Process Improvement
Works! Advanced Information Services Inc.,” Software Engineering Institute and Carnegie Mellon
University Technical Report CMU/SEI-99-TR-027 (November 1999), Appendix A (“The AIS Ap-
proach to the Balanced Scorecard”).
22R. S. Kaplan and D. P. Norton, The Balanced Scorecard: Translating Strategy into Action (Boston, MA:
Harvard Business School Press, 1996), p. vii.
23Adapted from R. S. Kaplan and D. P. Norton, The Balanced Scorecard: Translating Strategy into Action
(Boston, MA: Harvard Business School Press, 1996), p. 44.

ptg

♦ Customer. The generic measures of this perspective are satisfaction, reten-
tion, market, and account share.

♦ Internal. The generic measures of this perspective are quality, response
time, cost, and new product introductions.

♦ Learning and Growth. The generic measures of this perspective are em-
ployee satisfaction and information system availability.

We note that Strassmann incorporates EVA into his definition of Information
Productivity.24 Thus, while Strassmann and Kaplan/Norton differ in their ap-
proaches to assessing business effectiveness, their approaches and the ROI
approach overlap to some extent. For example, Kaplan and Norton incorpo-
rate ROI into their financial perspective, Strassmann incorporates EVA into
his key measure of Information Productivity, and Kaplan and Norton incor-
porate EVA into their customer perspective.

So what is the bottom line regarding the preceding discussion of ROI, Infor-
mation Productivity, Management Value-added, and Balanced Scorecard for
measuring business effectiveness?

Chapter 1 • Business Case

24

24P. A. Strassmann, Information Productivity: Assessing the Information Management Costs of US Industrial
Corporations (New Canaan, CT: The Information Economics Press, 1999), p. 63.

The jury is still out on how to quantify the benefits associated with
reshaping an organization’s culture so that it is capable of producing
“good” software consistently.

Because of this uncertainty, organizations may have trouble seeing the bene-
fits and convincing decision makers of the payoffs of striving for consistency.
However, as we briefly discussed, there is quantitative evidence that invest-
ing in software process improvement does benefit an organization.

There are costs associated with this investment. These cost include (1) people
needed to guide defining the “way” of developing software; (2) training of se-
nior, program, and project management; (3) implementation of organizational
processes; (4) assessing the organization’s progress; and (5) maintaining the or-
ganizational “way.” Because of these costs, it is not cheap to reshape an organi-
zation’s culture so that it is capable of producing “good” software consistently.
Furthermore, compounding the business case is another consideration. After
an organization’s culture has been reshaped, it is not cheap to keep the culture
where it is or make it better.

Are these costs worth it? We think so. The succeeding chapters of this book il-
lustrate why such costs (and other costs) are worthwhile.

In closing this section, we address briefly one other topic bearing on what
makes good business sense in making successful software development hap-
pen. This topic has to do with the way some people assert that the business
world has changed because of the Internet and related technologies such as
e-mail.

ptg

Rapid Pace of Business
Richard Oliver, in his book The Shape of Things to Come: Seven Imperatives for Win-
ning in the New World of Business, writes the following in his opening chapter:25

Rapid globalization and technological change have affected the lives
of every person involved in business for at least the last half of this [20th]
century. . . . Neither force alone, globalization nor technology, could have cre-
ated this new world of business, but together they have revolutionized the en-
vironment for every individual, business, and organization around the world. I
refer to this new world of business as a “global village.”

Davis and Meyer, in their book BLUR: The Speed of Change in the Connected
Economy, express thoughts similar to those of Oliver’s. In their opening re-
marks, Davis and Meyer explain the book’s title and write as follows:26

An “economy” is the way people use resources to fulfill their desires. The
specific ways they do this have changed several times through history, and are
shifting yet again—this time driven by three forces—Connectivity, Speed, and
the growth of Intangible value.

Because we are so newly caught up in the whirlwind of this transition, we
are experiencing it as a BLUR. The BLUR of Connectivity, as players become
so intimately connected that the boundaries between them are fuzzy [including
the boundary between customer and seller]; the BLUR of Speed, as business
changes so fast it’s hard to get your situation in focus; and the BLUR of Intan-
gible value, as the future arrives at such a pace that physical capital becomes
more liability than asset. Increasingly, value resides in information and rela-
tionships—things you can’t see at all and often can’t measure.

The arrangements we are all used to, like working for money, paying for
goods and services, and maintaining clear boundaries between one organiza-
tion and another are all blurring.

Even if we accept the above authors’ assertions that the business world is
changing dramatically, we assert that certain things do not change when it
comes to achieving software development success. Among all the important
things, effective communication, risk reduction, and an organizational “way” of
doing business stand out. Enterprisewide business processes that promote
these three things are therefore key to achieving software development suc-
cess. Furthermore, the “BLUR of Speed” that Davis and Meyer write about

Chapter 1 • Business Case

25

25R. W. Oliver, The Shape of Things to Come: Seven Imperatives for Winning in the New World of Business
(New York: McGraw-Hill/BusinessWeek Books, 1999), p. 1.
26S. Davis and C. Meyer, BLUR: The Speed of Change in the Connected Economy (New York: Warner
Books, Inc., 1999), p. 1.

ptg

means, among other things, that people conduct business at a markedly accel-
erated pace. Therefore, more than ever, it has become a business imperative
to increase the likelihood that software systems development will be done
right the first time.

We conclude this section with a recap of the following key points:

♦ We generally expect that when houses or bridges are constructed, they will
not collapse. We generally expect that automobiles we drive and airplanes
that we fly in will get us to our destinations. Unfortunately, the same outlook
regarding consistency cannot generally be said for the software business.

♦ It is not cheap to reshape an organization’s culture so that it is capable of
producing “good” software consistently. Furthermore, after the organiza-
tion’s culture has been reshaped, it is not cheap to keep the culture where it
is or make it better. The road to achieving consistency is paved with cul-
tural change.

♦ Finally, there is no one way to build software systems. If there were, soft-
ware systems development would have been reduced to an assembly-line
process long ago. However, we believe that there are fundamental engi-
neering and process principles whose application can increase the likeli-
hood that software systems development projects will be successful. The
remainder of this book explains and illustrates these principles.

11.4 Software Systems Development Concepts
To understand more specifically how to transition to a “new way of doing
business,” we need to establish a working vocabulary of concepts. We do not
intend to present all software or software-related concepts, but we do want to
introduce or review some fundamental concepts. This section presents the
following concepts:

♦ Software
♦ Software-related products
♦ Software process, capability, performance, and maturity
♦ Systems engineering environment (SEE)
♦ Culture

Software What do we mean when we use the word “software”? Classically,
software has been looked on as computer code (or programs) that, once in-
stalled on computer hardware, makes the hardware do its intended job. We
find this viewpoint too restrictive in presenting our ideas on software process
improvement. To unify many existing software systems development man-
agement concepts that are scattered around under different names, we prefer
to think of software in more panoramic terms.

Chapter 1 • Business Case

26

ptg

Specifically, in this book, software is formally defined as “information that has
the following three distinguishing characteristics:

♦ Structured with logical and functional properties
♦ Created and maintained in various forms and representations during the

software systems development life cycle
♦ Tailored for machine processing in its fully developed state”

As shown in Figure 1–3,27 we use a sponge to represent software. A sponge is
used throughout the book to portray software’s susceptibility to change.

Software systems development typically proceeds from broadly defined
statements of customer needs, to a specification of how these needs are to be
designed into the system, to the construction of the physical entity that is the
system. In engineering parlance, this evolutionary process is often described
in terms of a life cycle. Such customer need statements are frequently ex-
pressed in terms of what the customer wants done. Besides being derived

Chapter 1 • Business Case

27

Structured with logical and
functional properties.

INFORMATION

= Created and maintained in
various forms and representations

during its life cycle.

Tailored for machine processing
in its fully developed state.

SOFTWARE

Figure 1–3 Our concept of software consists of three characteristics that distinguish soft-
ware from other types of information.

27E. H. Bersoff, V. D. Henderson, and S. G. Siegel, Software Configuration Management: An Investment in
Product Integrity (Englewood Cliffs, NJ: Prentice Hall, 1980), p. 10. The discussion of the software con-
cept in this chapter is adapted from W. L. Bryan and S. G. Siegel, Software Product Assurance: Tech-
niques for Reducing Software Risk (Englewood Cliffs, NJ: Prentice Hall PTR, 1988), pp. 36 ff.

ptg

from a customer need statement (commonly called a “requirements specifica-
tion”), computer code is also based on a specification of how (commonly
called a “design”) the customer need statements are to be implemented. Con-
sequently, computer code operating in the customer’s environment can be
viewed as the fully developed state of the information embodied in design
and requirements specifications tailored for machine processing. In other
words, these specifications and computer code—with its many possible rep-
resentations, such as source and object code on various media (e.g., disks,
tapes, microprocessor chips, paper)—can be viewed as different forms and
representations of a set of information with logical and functional properties
(i.e., information specifying a sequence of functions to be accomplished).

Consequently, our conceptual definition of software includes not only com-
puter code but also all associated documentation that represents an immature
form of the code. For example, both the software requirements specification
documentation and the software design specification documentation are con-
sidered software. Suppose we had defined software to be simply “computer
code.” Then, strictly speaking, software systems development process im-
provement would be restricted to consideration of computer code develop-
ment. Such development activities would involve only overseeing the
activities of coding, testing, recoding, retesting, etc., until the code is deter-
mined to be ready for customer delivery.

As illustrated in Figure 1–4, software is also the specification documentation
that leads to computer code. To understand the concepts presented in this

Chapter 1 • Business Case

28

= Specification Documentation
SOFTWARE

Computer Code

01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101

Figure 1–4 Our definition of software encompasses both specification documentation and com-
puter code. Computer languages and database languages are merging. Consequently, our notion of
computer code includes these blended languages.

ptg

book, you need to be constantly aware of our definition of software. If you
consider software only as computer code, you will often be confused in the
pages that follow. Examples of software include the following:

♦ Requirements specification. This document specifies what functions a
system is to perform. In general, some functions will be performed by
hardware, people, and computer code. Thus, a requirements specification
usually consists of information, only some of which is software.

♦ Design specification. This document specifies how a requirements specifi-
cation is to be implemented. In contrast to the customer-oriented language
of a requirements specification, the language of a design specification is
couched in computer terminology.

♦ Computer source code and computer object code. Source code is the first
step in a two-step process by which software physically interacts with
computer hardware. Source code is (or at least should be) produced from a
design specification and is written in one of the many source code lan-
guages. These languages are based on logic constructs and syntax rules
that bridge the gap between the way people think in solving problems and
the way computer hardware functions in solving problems. To effect com-
munication with this hardware, these languages must be processed by
other software called compilers and assemblers, which produce object
code. This latter code directly communicates with the hosting computer
hardware in the binary language of zeros and ones that the hardware can
understand.
With the advent of computer-aided software engineering (CASE) tools,
source code can be automatically generated from CASE design documen-
tation. From this perspective, source code can be viewed as if it were object
code. In the future, CASE technology may replace the coding activity, just
as compilers and assemblers replaced machine-level coding.

♦ Computer code executing on hardware. This concept is perhaps the most
difficult to visualize. It is the information embodied in object code that
streams through the logic circuits of computer hardware, making the hard-
ware do its intended job.

Computer languages and database languages are merging. In the past,
computer code acted on data. However, the distinction between these two
complementary technologies is blurring. Consequently, sometimes, we
think of database management systems and their associated databases as
software.

Software-related Products Besides considering the preceding examples of
software, it is often convenient to discuss and associate other software-related
products with our concept of software. As shown in Figure 1–5, these soft-
ware-related products are not a form of software but rather serve to provide
additional insight into the software. Such software-related products include
the following:

Chapter 1 • Business Case

29

ptg

♦ User’s manuals. This documentation explains to a user how to use the sys-
tem containing software.

♦ Test documentation. This documentation describes the strategy and spe-
cific test steps for exercising the system containing software to determine
that the software is making the system do what it is supposed to do.

♦ System concept documentation. This documentation describes in broad
terms what a system that is to contain software is intended to do.

Given this definition of software (and software-related products), we address
the concept of “software process” and related concepts.28 According to Mer-
riam-Webster’s Dictionary, a process is “a series of actions or operations (lead-
ing to) an end.”29 The Institute of Electrical and Electronics Engineers (IEEE)
defines a process as “a sequence of steps performed for a given purpose; for
example, the software development process.”30

Chapter 1 • Business Case

30

Test Documentation

System Concept Documentation User’s Manual

Database

REPRESENTATIVE SOFTWARE-RELATED PRODUCTS

SYSTEM
ABC

TEST
PROCEDURE

TEST
PLAN

DATA

Figure 1–5 Software-related products augment and complement our definition of software.

28The discussion of software process and related concepts here is adapted from M. C. Paulk, B. Curtis,
M. B. Chrissis, and C. V. Weber, “Capability Maturity Model for Software, Version 1.1,” Software En-
gineering Institute and Carnegie Mellon University Technical Report CMU/SEI-93-TR-24 (February
1993), pp. 3 ff.
29This definition is adapted from Merriam-Webster’s Collegiate Dictionary, Tenth Edition (Springfield,
MA: Merriam-Webster, Inc., 2000). The words “leading to” were substituted for “conducing to.”
30IEEE Std 610.12-1990, “IEEE Standard Glossary of Software Engineering Terminology,” The Institute
of Electrical and Electronics Engineers, Inc. (1990), p. 57.

ptg

Software Process A software process can be defined as a set of activities,
methods, practices, and transformations that people use to develop and
maintain software and associated products (e.g., project plans, design docu-
ments, code, test cases, and user manuals). As an organization matures, the
software process becomes better defined and more consistently implemented
through the organization.

Software Process Capability The range of expected results that can be
achieved by following a software process can be thought of as an organiza-
tion’s software process capability. This capability provides one means of pre-
dicting the most likely outcomes to be expected from the next software
project that the organization undertakes.

Software Process Performance The actual results achieved by following a
software process can be referred to as software process performance. This
performance focuses on the results achieved, while software process capabil-
ity focuses on results expected. Based on the attributes of a specific project
and the context within which it is conducted, the actual performance of the
project may not reflect the full process capability of the organization; i.e., the
capability of the project is constrained by its environment. For instance, radi-
cal changes in the application or technology undertaken may place a project’s
staff on a learning curve that causes their project’s capability, as well as per-
formance, to fall short of the organization’s full process capability.

Software Process Maturity The extent to which a specific process is explic-
itly defined, managed, measured, controlled, and effective can be thought of
as an organization’s software process maturity. Maturity implies a potential
for growth in capability. Also, maturity indicates both the richness of an orga-
nization’s software process and the consistency with which it is applied in
projects throughout an organization. This maturity is usually supported
through documentation and training, and the process is continually being
monitored and improved by its users. Software process maturity implies that
the productivity and quality resulting from an organization’s software
process are known and can be improved over time through consistent gains
in the discipline achieved by using its software process.

Systems Engineering Environment (SEE) As a software organization gains
in software process maturity, it institutionalizes its software process through
a systems engineering environment. As we subsequently discuss, this envi-
ronment consists of policies, guidelines, procedures, and standards, as well as
hardware and software tools. Institutionalization entails building and refin-
ing an infrastructure and a corporate culture that support the methods, prac-
tices, and procedures of the business so that they endure after those who
originally defined them have gone.

Culture Software process improvement is an ongoing exercise of elevating
software process maturity. Bringing about software process improvement re-
quires bringing about cultural change within an organization. Thus, to de-
scribe software process improvement techniques, an understanding of the

Chapter 1 • Business Case

31

ptg

elusive term culture is needed. Figure 1–6 defines culture; this definition is
taken from the field of psychology.31 Throughout this book, we expand on the
notions embodied in this definition of culture to explain software process im-
provement techniques.

1.5 Product “Goodness” and Process “Goodness”

What is a “good” software product? What is a “good” software systems de-
velopment process? “Goodness” is a multidimensional concept that depends
on your point of view. What is important to one person may not be important
to another person. We take the position that good people produce good prod-
ucts and that good processes produce good products. Evidence abounds that
“good” software(-related) products can be produced without a defined soft-
ware development process. Evidence also abounds that turning out such
products consistently more often than not depends on having a defined soft-
ware systems development process.

A developer of software(-related) products wants to stay in business. It is ax-
iomatic that “staying in business” is strongly tied to customer satisfaction,
which can be expressed in many ways. First and foremost, a product should do
what the customer wants it to do. In addition, when a customer pays a devel-
oper to develop software products, the customer wants these products to be

Chapter 1 • Business Case

32

31E. H. Schein, “Organizational Culture,” American Psychologist, vol. 45, no. 2 (February 1990), p. 111.

Basic Assumptions Pattern
(Correct way to perceive, think, and feel)

● a pattern of basic assumptions
● invented, discovered, or developed by a given group
● as the group learns to cope with its problems of external adaptation and internal integration
● that has worked well enough to be considered valid and therefore,
● is taught to new members as the
● correct way to perceive, think, and feel in relation to those problems.

Culture is

Group Problems

Figure 1–6 A definition of “culture.”

ptg

delivered according to some established schedule and for some established
amount of money. In this book, we choose to fold considerations such as these
into our concept of “product goodness.” More specifically, “product goodness”
includes an attribute related to the content of the product itself (i.e., it does what
it is supposed to do) as well as attributes related to the development of that
product (e.g., being developed on time and within budget).

For us, then, “product goodness” is a multidimensional concept. The label we
put on this concept is integrity. One dictionary definition of integrity is “com-
pleteness.”32 For us, completeness is tied to multiple perspectives and attrib-
utes. Often people think of goodness from one perspective (e.g., manager or
developer) or in terms of an attribute (e.g., budget, schedule, or require-
ments). Our integrity concept allows for blending multiple perspectives and
attributes. For example, a manager may think of product goodness as the
product being delivered on time and/or within budget. A developer may
think of product goodness as the product doing what the customer wants.
We think of product goodness as product integrity that folds in all of the per-
spectives and attributes. We say that the product has integrity if the product
is delivered on time, within budget, and doing what the customer wants. We
believe that it is not “good” enough to develop a product to do what the cus-
tomer wants, if the product is ten weeks late and costs three times its original
estimate. Product integrity is tied to certain attributes that characterize its
content and the way it was developed.

We recognize that the attributes we may choose to fold into our notion of
“product integrity” would not necessarily be the same as the attributes that
you would choose. Consequently, this book allows you to mold the product
integrity concept to the needs of your organization. To help you do this
molding, we introduce here one way to define product integrity based on the
considerations previously discussed. This definition provides you with a
starting point to define product integrity that makes sense for your organiza-
tion. Therefore, one definition of a software product with integrity33 is one
that:

♦ Fulfills customer needs
♦ Can be easily and completely traced through its life cycle
♦ Meets specified performance criteria
♦ Meets cost expectations
♦ Meets delivery expectations

Chapter 1 • Business Case

33

32It should be noted that the dictionary gives a spectrum of definitions for integrity. For example, one
dictionary defines the word integrity as follows: 1. firm adherence to a code of especially moral or
artistic value: INCORRUPTIBILITY; 2. an unimpaired condition: SOUNDNESS; and 3. the quality or
state of being complete or undivided: COMPLETENESS. Merriam-Webster’s Collegiate Dictionary, Tenth
Edition (Springfield, MA: Merriam-Webster, Inc., 2000).
33The discussion of the product integrity concept is adapted from Bryan and Siegel, Software Product
Assurance, pp. 73 ff.

ptg

In Chapter 6, we show you how to quantify product integrity. The approach
there is to illustrate this quantification in specific terms. We do that by using
the preceding definition of product integrity. However, the quantitative treat-
ment given in Chapter 6 is general so that you will be able to apply it to your
definition of product integrity.

Several observations of the five integrity attributes are worth making.

Fulfills Customer Needs A product that has the integrity attribute of fulfill-
ing customer needs is one that satisfies stated customer requirements. The
point is that software systems development is a challenge to the inventive na-
ture of both the customer and the developer. They get ideas and try to flesh
them out during subsequent development stages. At any particular point in
this development process, they generally do not have all the answers regard-
ing how well the software system will satisfy customer needs. Thus, to a cer-
tain extent, software systems development is a process of trial and error in
which each error makes the customer and the developer a little smarter re-
garding how they should proceed (if they are willing to learn from their mis-
takes). But this trial-and-error process is simply another way of saying that
change is indigenous to software systems development. The developer devel-
ops, and then the customer and the developer analyze the results of this de-
velopment. In response to the analytic results, they change their minds. The
developer develops some more, and the cycle continues until they achieve
what they want—or they run out of time or money. From the perspective of
software development management, achieving closure between the customer
and the developer includes other important considerations that should be
constantly kept in mind. These considerations are embodied in the other
product integrity attributes.

Can Be Easily and Completely Traced Through Its Life Cycle A product
whose evolution lacks the integrity attribute of traceability lies at the heart of
the classical software maintenance problem. If the software life cycle is diffi-
cult or impossible to trace, either the software must be forever frozen, or its
subsequent evolution becomes a high-risk venture with a small likelihood of
a good return on the development investment.

Meets Specified Performance Criteria A product that has the integrity at-
tribute of meeting specified performance criteria can be viewed as a special case
of the first attribute—fulfilling the customer’s needs. What are performance cri-
teria? Generally, performance criteria address such issues as the following:

♦ How many? For example, a customer may have a requirement for the soft-
ware to process ten thousand incoming messages.

♦ How often? For example, a customer may have a requirement for the soft-
ware to suffer no more than two failures during a month.

♦ How long? For example, a customer may have a requirement for the soft-
ware to operate eighteen hours a day.

Chapter 1 • Business Case

34

ptg

On some software systems development projects, significance is attached to
the difference between a functional requirement (what the software is to do)
and a performance criterion (how well the software is to perform). For exam-
ple, a developer may be paid a certain amount for producing software that
meets all functional requirements, and be paid a bonus for producing soft-
ware whose operation exceeds specified performance criteria. On other soft-
ware projects, there may be no reason to distinguish between “customer
needs” and “performance criteria,” in which case our first (i.e., fulfills cus-
tomer needs) and third (i.e., meets specified performance criteria) product in-
tegrity attributes merge into a single attribute.

Meets Cost and Delivery Expectations A product that has the integrity at-
tributes of meeting cost and delivery expectations focuses attention on the
effectiveness of the software systems development process that yields the
software products. Accordingly, these integrity attributes reflect manage-
ment’s effectiveness in getting the job done. Part of the software manager’s
job is to plan the software development cycle, direct others to produce
software products, and control activities during plan execution. This job, in
part, is one of managing project budget and schedule. A product that has
the integrity attributes of meeting cost and delivery expectations can also
be viewed as a special case of fulfilling customer needs. Generally, a customer
stipulates (1) what is to be done (and how well), (2) how much he or
she is willing to pay, and (3) how long he or she is willing to wait for the
software.

Now, just as we define product integrity in terms of attributes such as the
ones previously discussed, we can similarly define a concept called “process
integrity” to characterize “process goodness.” What are the analogues to
product attributes? In simple terms, a process is made up of components,
which in turn are made up of activities. An example of a process component
would be “project planning”; examples of activities associated with this
process component would be the following:

♦ The software developer reviews a customer statement of need, communi-
cates with the customer, and assembles a project planning team.

♦ The software developer formulates resource estimates based on the cus-
tomer statement of need.

♦ The software developer business manager calculates dollar estimates from
the resource estimates.

So, as we will show in Chapter 6, we can define process integrity in terms of
process components and associated activities. As we explain there, measuring
product integrity and process integrity enables you to measure the “good-
ness” of the products and the “goodness” of the software systems develop-
ment process used to develop the products.

Chapter 1 • Business Case

35

ptg

1.6 Requisite Software Systems Development Disciplines

Proper understanding of process begins with a top-level understanding of the
roles of those who should be involved with a software project if it is to turn out
products with integrity. For this purpose, consider Figure 1–7.34 This figure de-
picts three groups of related disciplines—development, product assurance,
and management. Attaining and maintaining software product integrity on a
software project requires judicious application of these three groups of disci-
plines. We believe that achieving product integrity is accomplished with the in-
terplay of all three discipline groups.

Chapter 1 • Business Case

36

34Adapted from W. L. Bryan, C. Chadbourne, and S. G. Siegel, Tutorial: Software Configuration Manage-
ment (Los Alamitos, CA: IEEE Computer Society Press, 1980), p. 452.

Senior and Project
MANAGEMENT

PRODUCT WITH INTEGRITY

Software Systems Development Disciplines

Analysis
Design Engineering
Production (Coding)
Unit/Subsystem Test

Installation
Documentation

Training
DEVELOPMENT

Quality
Assurance (QA)
Verification &

Validation (V&V)
Test & Evaluation (T&E)

Configuration Management (CM)
PRODUCT ASSURANCE

Figure 1–7 The requisite software systems development disciplines for attaining and maintaining
software product integrity are development, product assurance, and management.

ptg

Development Disciplines Development disciplines are typified by the fol-
lowing activities: analysis, design engineering, production (coding), unit/
subsystem testing, installation, documentation, and training. The developers
need to be disciplined technically and managerially to cope with a soft-
ware project at all stages of development—from requirements definition
through operational use. Part of this coping means knowing what technical
and dollar resources are needed to get the job done, when these resources are
needed, and then applying them vigorously in the right mix at the right time.
These resource allocation tasks are typically the responsibility of manage-
ment within the development group. The developers need to ensure not only
that adequate documentation is produced but also that it is produced
systematically.

What do we mean by “systematically”? Software in the form of documenta-
tion produced out of sequence—for example, computer code developed be-
fore a design specification—can disrupt traceability back to customer needs
and thus detract from the product’s integrity. Systematically produced soft-
ware, particularly in the form of documentation, serves to maintain visibility
of the evolving software product for management and the customer. We be-
lieve such visibility increases the likelihood of a good return on the develop-
ment investment.

A frequent problem during software systems development is the develop-
ment group’s reluctance to have someone review its work. The development
group needs to accept and support review activities as constructive, allied,
and indispensable to the success of the project. It is counterproductive for the
developers not to have their work reviewed. For example, if computer code is
reviewed and it is discovered that several of the key customer requirements
have not been incorporated, then management can start working on the issue
before it becomes a problem. Management’s job of making resource allocation
decisions is more difficult if managers cannot judge where the developers are
in the development process. Developers should take advantage of the review
resources to increase the likelihood of successfully meeting the customer’s re-
quirements. The development organization must be ever cognizant of the
customer and of the need for accurately and completely communicating pro-
ject progress—and problems—to management and to the customer.

Product Assurance Disciplines The product assurance group’s disciplines
provide management with a set of checks and balances with respect to the
state of the software. These checks and balances offer a measure of assurance
that product integrity is attained and maintained. The product assurance
group includes four disciplines—quality assurance (QA), verification and
validation (V&V), test and evaluation (T&E), and configuration management
(CM). As illustrated in Figure 1–8, the product assurance disciplines of QA,
V&V, and T&E can be represented as a set of comparison activities where
“what is expected” is compared to “what is observed.” The fourth discipline
is the formal control (CM) of software changes. Product assurance acts as a
checking and balancing mechanism on the software systems development ac-

Chapter 1 • Business Case

37

ptg

Chapter 1 • Business Case

38

SOFTWARE
PRODUCT

Quality Assurance (QA)

Verification & Validation (V&V)

SOFTWARE
PRODUCT

PREDECESSOR
PRODUCT

PRODUCT
STANDARDS

PROCESS
STANDARDS

REQUIREMENTS

SOFTWARE PROCESS

Product Assurance

Test & Evaluation (T&E)

Configuration Management (CM)

COMPUTER
CODE

DESIGNREQUIREMENTS

01

SOFTWARE
PRODUCT

CHANGES PRODUCT
UPDATE

ΔΔ+

Figure 1–8 Product assurance is the integrated application of the three comparison processes
of QA, V&V, T&E, and the CM process that formally controls changes.

ptg

Chapter 1 • Business Case

39

tivities, and it provides management with insight into the development
process. This mechanism helps to stabilize the software systems development
process by giving it visibility and traceability.

In a constructive, nonconfrontational, nonjudgmental way, product assur-
ance plays the role of the devil’s advocate. There is a natural inclination to
view anyone who reviews someone else’s work as an adversary (the “bad
guy”), but when performed properly, product assurance supports and con-
tributes to the software systems development process. By performed properly
we mean, for example, “benevolent (but probing) questioning of a software
product’s contents.” The object of the questioning should always be determi-
nation of the extent to which the product conforms to customer requirements,
thereby helping to achieve convergence between the customer and the devel-
oper. By establishing agreed-upon procedures for constructive interchange
among the management, development, and product assurance groups, prod-
uct assurance can institutionalize a set of checks and balances serving both
management and the developers throughout the software life cycle.

Typically, the development disciplines and the product assurance disciplines
perceive project progress from different viewpoints. Developers tend to look
for solutions that “work” but often do not worry how the solutions “will not
work.” Product assurance tends to look at developer solutions from the view
of how the solutions “work” and “will not work.” This second look both
helps to ensure that the customer’s needs are being satisfied and increases the
likelihood of a good return on the development investment.

The product assurance disciplines provide management with insight as to the
state of the software. For example, it is Friday afternoon and the product as-
surance group has just completed performing the agreed-upon acceptance
test procedures for software code that is due for installation at the customer’s
site on Monday morning. Assume that the product assurance tester(s)
recorded five instances (i.e., test incident reports) when “what was expected”
to happen was different from “what was observed.” The test incident reports
(TIRs) are not judgmental but simply record the differences. Subsequently,
the TIRs are provided to management. Management can focus its attention
and resources on those areas that must be redone for Monday’s release. Also,
management may make a decision that directs the developers to work on the
two most important TIRs. Product assurance is directed to rerun the accep-
tance tests and make sure new secondary and tertiary errors do not develop
as a result of the new or changed computer code. Assuming all goes well and
no new errors are introduced, on Monday morning the software code is re-
leased to the user community with accompanying release notes. These release
notes inform the users that (1) there are known problems that exist and (2)
resolutions to these problems are being sought. Through the use of agreed-
upon testing procedures, management was able to make an informed, intelli-
gent decision as to where to allocate project resources to meet the Monday
morning deadline. At the same time, management was able to (1) effectively
communicate to the user community the state of the software and (2) manage
user community expectations of what the state was.

ptg

Product assurance also needs to confirm that product development is disci-
plined by providing the procedures for creating and controlling baselines and
baseline updates—configuration management (CM).35 To confirm that prod-
uct development is disciplined, product assurance needs to apply a balanced
blend of product assurance activities commensurate with project complexity
and importance. How is this balanced blend realized? Management, develop-
ers, and product assurance mutually agree on what makes sense to do consis-
tent with project schedules and resource constraints. That is, product
assurance is prescriptively applied.

It is particularly important to note that product assurance does not normally
address the “goodness” of a product through subjective judgments. Product
assurance primarily addresses the degree to which a product satisfies cus-
tomer requirements. Requirements satisfaction is determined through objec-
tive comparisons. A software product is “good,” by our definition, if it
embodies all customer requirements and does not embody anything the cus-
tomer did not ask for.36

Management The disciplines in the management group provide direction
to development and product assurance activities to effect synergism among
these activities. This group consists of the disciplines of senior management
and project management. Senior management provides direction generally at
the level above a particular project organization and promulgates corporate
guidelines and policies. Typically, this direction concentrates on sorting
things out with respect to two or more projects that may be competing for
corporate resources. In this book, when we refer to senior management, we
mean (unless otherwise indicated) “the person or organization to which the
project manager reports.”

Senior management has a key role to play at the outset of a project. It must
see to it that a project is given stature within the corporate structure commen-
surate with the project’s importance as perceived by senior management, its
complexity, and its projected cost. Lacking this stature, the project may be
pushed to the bottom of the corporate stack and thereby be stifled in the com-
petition for limited corporate resources and thus lose visibility within the
overall corporate context. Senior management must also ensure that a quali-
fied project manager is assigned to lead the project. In addition, senior man-
agement must delineate the project manager’s responsibilities, particularly
with respect to the product assurance disciplines. It must give the project
manager sufficient authority to marshal adequate corporate resources to sup-

Chapter 1 • Business Case

40

35A baseline is an approved snapshot of the system at a given point in its evolution. As the word liter-
ally implies, baseline is a line that establishes a formal base for defining subsequent change. Without a
baseline (i.e., reference point), the notion of change is meaningless. While a baseline is being estab-
lished, it may be revised one or more times. These drafts are not baseline updates. As used in this
book, baseline update refers to each “approved reissue” of a baseline after the baseline is first
established.
36Remember, in Chapter 6, we will show you how to quantify product “goodness” in terms that make
sense for your organization.

ptg

port product development. Senior and project management must establish a
well-defined accountability chain so that “who is supposed to do what for
whom” is clearly understood at project outset and throughout product
development.

Project management provides direction to the development and product as-
surance groups at the level of day-to-day activity associated with product de-
velopment. Project management must also adequately distribute project
resources between development and product assurance organizational enti-
ties. The practice in the software industry has too often been to dump re-
sources into the development disciplines in an attempt to meet
fast-approaching product delivery dates. The all-too-typical mad scramble to
meet delivery dates often comes about because management did not ensure a
front-end investment, particularly in the product assurance disciplines.

The principle of “pay now versus pay much more later” is an issue that both
senior and project management must face squarely at the outset of a project.
Many managers probably do not find it difficult to accept the need for front-
end endeavors and concomitant expenditures in order to increase the proba-
bility of project success. What is generally difficult for managers to appreciate
is the extent to which they must act to effect a disciplined approach to prod-
uct development and to effect a balanced application of available resources to
the development and product assurance disciplines. The project manager, in
particular, must see himself or herself as a catalyst to be added continually to
project activity to stimulate interaction between the development and prod-
uct assurance disciplines and to make things happen effectively. This book
offers some techniques (but no formulas!) for performing this catalysis.

1.7 Generic Four-Stage Software Systems
Development Life Cycle

Lacking physical characteristics, software is inherently difficult to see. This
inherent lack of visibility must be addressed to keep software systems devel-
opment focused. One fundamental way of raising the visibility of software
systems development work is to divide the work into pieces or stages. The
idea of dividing a software project into smaller, more manageable pieces
gives rise to the notion of attributing a life cycle to software development
(and maintenance).

The stages in a life cycle are analogous to courses in a meal. Just as a meal is
divided into courses so that it can be consumed without causing indigestion,
so a software project is divided into courses that individually are easier to
manage than the uncut whole. There is no unique way to divide software sys-
tems development into stages. What is important is that the development is
divided into some set of stages to facilitate development of the software and

Chapter 1 • Business Case

41

ptg

the management of the project. The principle is to divide the development ef-
fort into some set of stages.

The life cycle concept became part of the computer sciences literature in the
1960s. Since that time, a variety of life cycle concepts have appeared in the en-
gineering literature. In this book, our life cycle concept focuses on the interac-
tions of the requisite disciplines of development, product assurance, and
management. Figure 1–9 illustrates our software development life cycle
model that has four generic development stages and a review area.

The stages symbolize the activities of the development disciplines and the cus-
tomer’s use of the developed software system. The review area symbolizes (1)
the activities of the product assurance disciplines associated with reviews, (2)
the outputs from the development disciplines, and (3) the activities of the man-
agement disciplines associated with deciding what to do next based on the re-
views and other factors. The review area also includes other activities of the
development discipline coupled to management decision making.

Each software systems development effort requires a unique set of the devel-
opment, product assurance, and management disciplines. These required dis-

Chapter 1 • Business Case

42

Product Assurance

Management

USE
”Development” Stage

HOW
Development Stage

BUILD
Development

Stage

WHAT
Development

Stage

What
Next

?

Review Area

Figure 1–9 Our four-stage generic life cycle blends the requisite software systems
development disciplines of development, product assurance, and management.

ptg

ciplines will interact throughout the development effort—i.e., throughout the
life cycle.

Development Reduced to the simplest terms, there are four development
stages of software maturation:

♦ What—Specification of WHAT the software is to do.
♦ How—Specification of HOW the software is to do the WHAT.
♦ Build—Development or BUILD of the computer code that implements the

HOW.
♦ Use—Operational deployment or USE of the computer code to perform the

WHAT.

Although developers may not USE the software, they will probably need to
provide software maintenance. The arrows leading into the Review Area rep-
resent the development disciplines submitting their work from each stage to
independent Product Assurance for review.

Product Assurance Product assurance serves as a checking (nonjudgmental
examination of results) and balancing (alternative viewpoint of progress)
mechanism on the product development activities performed. Product assur-
ance disciplines include the following four processes:

♦ Quality assurance (QA). QA checks whether the software or software
processes conform to established standards and identifies software or soft-
ware processes that do not conform to standards.

♦ Verification and validation (V&V). V&V checks for any oversights or de-
viations from customer requirements and predecessor products and identi-
fies them.

♦ Test and evaluation (T&E). T&E, which exercises the coded form of soft-
ware, checks for shortfalls from requirements and design documents and
identifies them. T&E is a special case of V&V.

♦ Configuration management (CM). CM balances the need to make changes
with a visible, traceable, and formal way to control those changes. The
need for change arises primarily from the application of the other three
product assurance processes.

There is no uniformity in the software engineering community regarding the de-
finitions of QA, V&V, T&E, and CM. The preceding definitions have proven to
be a useful way of describing the control mechanism and the classes of review
checks that need to be instituted on software systems development efforts.

Management Management, in concert with product developers and prod-
uct assurers, uses product assurance results to gain insight into product de-
velopment work to make intelligent, informed decisions about what to do
next. It is essential to recognize that, unlike the stages in human develop-
ment, a software life cycle stage is not something that is passed through once,

Chapter 1 • Business Case

43

ptg

never to be revisited. From the point of view of software systems develop-
ment, any life cycle stage may be revisited a number of times before the soft-
ware is retired. This notion of stage revisits is a key element of planning for,
and accomplishing, any software systems development effort. Therefore, a
management decision may be made to revisit a previous or current life cycle
stage to modify work already accomplished or to proceed to a subsequent life
cycle stage. Thus, the life cycle is traversed by a series of one or more revisits
to a life cycle stage.

For a particular software systems development effort, each generic stage un-
folds into one or more stages defining the particular work to be accomplished
in terms that the customer and developer mutually understand. This unfold-
ing, or instantiation, gives visibility to that particular effort, thereby helping
the customer and developer mutually progress in their understanding of the
remaining work that needs to be accomplished. Note that the life cycle con-
cept implies a sequence of stages, but multiple stages may be ongoing in par-
allel. For example, some members of the development effort may be working
in the HOW stage on a draft design specification, while other members are
working on a refinement of the requirements from the WHAT stage. Thus,
software systems development proceeds iteratively through a life cycle via
synergistic interplay among the following: (1) product developers, (2) prod-
uct assurers, and (3) management.

1.8 User, Buyer, and Seller Organizations Involved
in Software Systems Development

As we explained, the development, product assurance, and management
groups must interact on any software project if software products with in-
tegrity are to result. However, to appreciate more fully the implications of
this concept in terms of an actual project environment, we need to say some-
thing about the three archetypical parties that interact on most software pro-
jects. As Figure 1–10 shows, these parties are the following:

♦ The user of the software system. This party generally is the one with the
requirements that the software is being developed to satisfy.

♦ The buyer of the software system. This party generally is the agent for the
user and thus can be thought of as a surrogate user. The buyer typically in-
teracts with the seller in seeing to it that the software system is being de-
veloped in accordance with user requirements. Sometimes the buyer and
the user are the same. The buyer and the user are the “customer” to whom
we have been referring in preceding discussions. In subsequent discus-
sions, we generally use the terms customer and buyer/user interchangeably.

Chapter 1 • Business Case

44

ptg

♦ The seller of the software system. This party is hired by the buyer to cre-
ate the software system for the user.

If the user, buyer, and seller organizations have corresponding develop-
ment, product assurance, and management personnel, the likelihood of
achieving a software product with integrity is increased. For example, the
seller should have a project manager and of course developers who produce a
product as requested by the customer. The seller should have a product as-
surance group that reviews the products before they are shown to the
customer. Correspondingly, the buyer/user should have a project manager
who should interface with the seller project manager. Also, the buyer/user
should have a staff skilled in the development disciplines to support the
buyer/user project manager. Finally, the buyer/user should have a staff
skilled in the product assurance disciplines to review the products received
from the seller.

Chapter 1 • Business Case

45

$ $

PRODUCT
WITH

INTEGRITY

PRODUCT
ASSURANCEDEVELOPMENT

MANAGEMENT

PRODUCT
WITH

INTEGRITY

PRODUCT
ASSURANCEDEVELOPMENT

MANAGEMENT

PRODUCT
ASSURANCE

PRODUCT
WITH

INTEGRITY

DEVELOPMENT

MANAGEMENT

Has requirements
that need to
be satisfied.

Agent for User Organization
ensures that software system

satisfies requirements.

Creates software
system for

User Organization.

USER
Organization

BUYER
Organization

SELLER
Organization

Figure 1–10 The three archetypical organizations that interact on most software projects may or may not have the requisite
software systems development disciplines for attaining and maintaining software product integrity.

ptg

1.9 Obstacles to Improving Software Systems
Development Cultures

This book approaches software process improvement as a cultural change ex-
ercise that modifies one or more of the factors making up the previously in-
troduced definition of culture. This section presents some of the impediments
to effecting cultural change. This presentation lays the groundwork for the
technical issues that this book addresses.

As depicted in Figure 1–11, cultivating software development cultural change
involves more than the following elements:

♦ Management edicts
♦ Team of experienced and good people
♦ Casual conversations with the customer

Management Edicts As discussed earlier, software systems development is
an activity that requires many disciplines. It is rare that one individual pos-
sesses all the required skills to effect successful system development. In addi-
tion, it is basic human nature that creative people want to contribute to the
culture that they work and live in. Therefore, management edicts may result
in short-term gains. These gains are often nullified by mounting resistance
and resentment that management is not willing to listen to the people who
actually have to do the work. On the other hand, the antithesis of manage-
ment edicts—pure democracy—is also not the answer; a democratic approach

Chapter 1 • Business Case

46

Do it!
This is

what I want.

No problem!
I'll have it for

you soon.

1 2 3

Figure 1–11 Cultivating successful software systems development extends far beyond (1) management edicts, (2) assembling
a team of experienced and good people, and (3) a five-minute conversation with a customer and a three-week coding frenzy.

ptg

to systems development can often result in not ever completing what needs
to be done. Someone has to be in charge. Thus, effecting software systems de-
velopment cultural change involves a careful blending of both extremes—dic-
tatorship and democracy.

Let us illustrate the preceding remarks—first regarding dictatorship and then
regarding democracy. Many project managers view independent product as-
surance as an impediment to getting the job done. Managers of project man-
agers simply cannot edict that project managers will do product assurance.
Experience has shown that project managers will perform product assurance
in a perfunctory fashion or will state that the development staff will take care
of product assurance. It is thus senior management’s job to sell project man-
agement on the idea that independent product assurance contributes to a
product’s integrity. Project managers believe that their senior management
does not understand what really needs to be done to get a product out the
door and satisfy the customer. From their perspective, senior management is
too far removed from the day-to-day realities. Rather than through edict, se-
nior management needs to work with project managers to show in budget
and schedule terms that independent product assurance is necessary to get a
product out the door and satisfy the customer. An objective of this book is to
provide senior management with insight into how to work with their project
managers to effect cultural change in the product assurance realm.

Regarding pure democracy, turning the running of the project ship over to
the entire development team is a recipe for shipwreck. Somebody has to be in
charge to ensure that the project stays on course. Thus, another objective of
this book is to provide project management (on both the developer and cus-
tomer sides) with guidance on how to run a project like a participa-
tory democracy—that is, having someone in charge, and at the same time,
having this leader listening to the development team members. For this pur-
pose, we detail a concept that we call a change control board (CCB) where
participatory democracy works. Project work stays focused, and the partici-
pants definitely contribute.

Team of Experienced and Good People Good people—that is, people with
the applicable software systems development skills highlighted earlier—need
to be blended on a software systems development effort to achieve success.
The trend in the software industry is toward teaming—because, in part, sys-
tems are increasing in complexity. Thus, in general, no one corporation has
the full complement of skills available to tackle the problem. (We also recog-
nize that there are political reasons for teaming.) Even if a corporation is sta-
ble, personnel turnover and technology advancements demand continual
examination of the corporate culture. Thus, assembling a team of good people
requires a careful blending of the associated cultural diversity.

Compounding the challenge is the fact that each company itself consists of
various software systems development cultures. For example, cultural
clashes can arise in the independent product assurance area. For some com-
panies, this independent product assurance is not a part of the culture. Senior

Chapter 1 • Business Case

47

ptg

management on both the development and customer side often recognize
that independent product assurance is one way of avoiding repetition of past
problems. Yet, at the working level, project managers on both the develop-
ment and customer side, as well as the development team members, are often
reluctant to adapt to the “new” idea of independent product assurance. Their
past “successes” (without independent product assurance) makes acceptance
of this form of cultural change difficult. We hope to provide management, de-
velopers, and product assurers with insight on how to blend corporate and
customer cultures to achieve software systems development success.

Casual Conversations with the Customer Software systems development
is a challenge to the inventive nature of both the customer and the developer.
They get ideas and try to flesh them out during subsequent development
stages. Software systems development is a partnership that requires contin-
ual participation by both the customer and the developer. The notion that a
customer states requirements and the developers go away and produce a
working system with little or no subsequent interaction with the customer
does not work. Both participants need continual visibility into the develop-
ment process and products. No matter how well each participant thinks he or
she understands the requirements at project outset, the reality is that both
participants progress in their understanding of what needs to be done as the
project proceeds.

Sellers are in the business of solving problems and providing solutions. In the
commercial world, this approach translates into sellers making money. In the
noncommercial or government environment, this approach translates into ca-
reer advancement. There is a tendency in both environments for the develop-
ers to sign up for doing the job before the job’s scope of effort is well
bounded. Consequently, the customer’s expectations are set that the job is
well understood and that the necessary resources are in hand to complete the
job. In the zeal to make money or to advance a career, an effort to manage the
customer’s expectations of what is really needed often falls by the wayside.
Managing customer expectations is a culture change problem. Another of our
objectives is to provide guidance on managing customer expectations.

To illustrate the preceding remarks, a commonly occurring software systems
development problem is that of producing “user friendly systems.” Figure
1–12 illustrates, in the extreme, how customer/developer misunderstandings
regarding what “user friendly” means can lead to customer dissatisfaction.

Software process improvement is a cultural change that takes time. It is an ex-
ercise that is accomplished in concert with existing work. Senior management
cannot afford to put today’s work on hold while a new development environ-
ment is established. However, progress is needed in effecting the change to
stay in business and advance careers. William Bridges, in his work on effect-
ing cultural change, stresses the following in this regard:37

Chapter 1 • Business Case

48

37William Bridges, Managing Transitions: Making the Most of Change (Reading, MA: Addison-Wesley
Publishing Company), 1991, p. 82.

ptg

When a business or industry is going through a profound transforma-
tion—and there is hardly one that is not doing so today—competition blinds
people to the real challenge, which is capitalizing on that change. Competing
for market share in today’s markets is like fighting for deck chairs on the
Titanic.

In other words, many people do not capitalize on the change because of the
realities of staying in business and advancing individual careers. This con-
stant change produces a wide spectrum of obstacles. Figure 1–13 illustrates a
frequently encountered problem in the software industry—“I don’t have time
to document my computer code.”

Too frequently, developers focus only on computer code, which is just one
component of software. Part of software systems development cultural
change is institutionalizing the software definition that encompasses both
documentation and computer code. Once this definition is institutionalized,
project planning can account for the resources needed for the documentation.
Given the appropriate resources to develop documentation and computer
code, the likelihood of successful software systems development efforts
increases.

Many people in the software industry believe that, with the advent of com-
puter-aided software engineering (CASE) technology, the documentation
problem is a memory from a bygone era. While CASE technology produces

Chapter 1 • Business Case

49

Figure 1–12 Customer/developer misunderstandings arising during software systems develop-
ment—such as the meaning of “user-friendly system”—can adversely affect customer expectations.

ptg

some of the required documentation form of software, the technology gener-
ally does not produce documentation that senior management readily under-
stands. The technologists understand the matrices and engineering diagrams
that this technology turns out. Unfortunately, many of the people making the
decisions regarding project resource allocation simply cannot relate to these
CASE outputs. Sensitized to this potential problem, project management can
set aside the appropriate resources and plan for the adaptation of CASE out-
puts to meet the needs of senior management and others.

Some people are receptive to change—others are not. In the latter category
are those people who have achieved success in the past doing development
their way. As shown in Figure 1–14, these people can be quite stubborn and
disruptive to effecting software process improvement. Often they have not
bought into the organization’s mission regarding software process improve-
ment. The Not-Invented-Here (NIH) syndrome manifests itself in different
flavors depending on where the individual is in the organization’s hierarchy.
If a senior manager suffers from the NIH syndrome, the impact on an organi-
zation can be significant. The senior manager exerts influence over immediate
subordinates and others. The result is a counterculture that can splinter the
organization, causing it to work at cross purposes. If a project manager
suffers from the NIH syndrome, the organizational impact can be more easily
contained through senior management (assuming senior management does
not suffer from the NIH syndrome). One of the objectives of this book is to
provide guidance on how to achieve organizational buy-in from people who

Chapter 1 • Business Case

50

Figure 1–13 “My schedule simply doesn’t permit me or my coworkers to document before we code.
Anyway, the documentation is too difficult to keep up to date because the code keeps changing.”

ptg

are resistant to change. However, it should be recognized that not all people
will accept change. There will always be outliers.

Other cultural change challenges that we address in this book are highlighted
by the following quotations:

“Now is not the time to sit with the customer and my software develop-
ment staff to mutually agree on what needs to be done next. Besides, my
customer is paying me to figure out what he really needs. All I need to
do is demonstrate the system to him after we are finished coding—and
then he will know what he really wants.”

“Our Software Engineering Process Group is tying my hands with this silly
procedure that defines the way we are supposed to do business with the
customer. Even my customer thinks the procedure is too bureaucratic.
Besides, before I came to this place to work, I already knew how to work
with customers who wanted me to produce working computer systems.”

“Why do I need an independent product assurance group looking over my
shoulder? My engineering staff is experienced and knows how to turn
out good products. They are better able to write and execute acceptance
test procedures than any outsiders could.”

“I don’t see why I have to keep a written record of my interactions with
the customer. I trust her, and she trusts me. Besides, the only written

Chapter 1 • Business Case

51

Try it this way.

I’ve got my own way of doing
things. I’ve been successful in the past.

I don’t need some process improvement
group telling me how to

do my job.

Figure 1–14 An impediment to software process improvement—the Not-Invented-Here (NIH)
syndrome.

ptg

record that counts is the customer’s letter of acceptance of the products
that I and my staff deliver.”

“Another project is running into schedule and cost problems. The cus-
tomer just called and said that our development team is not building
what the customer needs.”

“I’m the government customer. Why can’t I go around the contractor man-
agement and tell the developers how to do their job?”

“I don’t understand. I’ve worked with this company before, and this cur-
rent effort just doesn’t match up with what they’ve done in the past.”

“I don’t care what our software development plan says. The customer
wants the system tomorrow. If we can’t deliver, he’ll take his business
elsewhere.”

“I told you what I wanted you to do, and I assumed that you understood
what I meant. But what you just delivered is not what I asked for!”

“How can you tell me that what you just delivered is what I asked for?
This is not what I asked for, and I am not going to accept it!”

People are not afraid of change, they are afraid of what they will lose if
change occurs. One of our objectives is to provide insight into how to over-
come such fears.

1.10 Alternative Approaches to Software
Process Improvement

How do we overcome the obstacles to effecting cultural change to realize
software process improvement? There is no simple answer. Many people in
the software industry have been working this problem. Early system devel-
opment efforts were concerned with keeping the hardware up and running.
As the hardware stabilized and became less expensive, the emphasis in sys-
tems development shifted to software engineering considerations.

The demand for more intelligent information technology systems is increas-
ing as enterprises attempt to implement effective knowledge strategies. What
is needed are systems that process data and produce information that enables
the enterprise decision makers to make informed decisions. Such systems are
intertwined with many organizational facets of the enterprise, and the life of
a system generally exceeds the tenures of individuals within the enterprise.
One consequence of this continuing trend is that systems are increasing in
their complexity, and thus software systems development is resource inten-
sive. Concomitant with the resource and system complexity issues is the
recognition by enterprises that they need to reduce their dependence on tran-
sient system developers. The decision makers are searching for more effective
software systems development strategies. There are no simple solutions.

Chapter 1 • Business Case

52

ptg

Figure 1–15 illustrates three possible approaches for effecting software
process improvement within an enterprise—management edicts, corporate
process improvement policy, and systems engineering environment.

Management Edicts As an enterprise grows, so does its complexity. An in-
dividual’s capability to maintain pace with the expansion correspondingly di-
minishes. Replicated across an enterprise, the management edict approach
often leads to the competing fiefdoms or subcultures. Over the long term, the
result undermines organizational effectiveness. More organizational re-
sources are poured into internecine struggles rather than being directed to-
ward furthering the goals of the enterprise.

Corporate Process Improvement Policy As an enterprise recognizes its ex-
panding requirements for effective knowledge strategies, it often formalizes
its vision for software process improvement with corporate policy. Such pol-
icy heightens the corporate awareness of the need to change the way software
systems are developed. Often this approach does not reach down to the day-
to-day working level of activities. Changing how the “work in progress”
needs to be accomplished is disruptive and can lead to unhappy customers.
While well-intentioned, this first step in software process improvement often
falls short of influencing how systems are actually developed.

Systems Engineering Environment (SEE) This software process improve-
ment approach extends down to the day-to-day development activities. As
discussed in this book, the SEE (1) accounts for the increasing complexity of
issues associated with enterprise growth, (2) accommodates the problems of
transient developers, and (3) serves to overcome development subcultures
within an enterprise. The SEE consists of two complementary components:

Chapter 1 • Business Case

53

Systems Engineering Environment

Application
Development

Process
Environment

(ADPE)

Application
Development
Technology

Environment
(ADTE)

Do it

my way!

OK, Boss!
CorporateProcessImprovementPolicy

1 2 3

Figure 1–15 Alternative approaches to software process improvement—(1) management edict, (2) organizational policy, and (3)
systems engineering environment (SEE). This book focuses on the SEE approach.

ptg

♦ Application Development Process Environment (ADPE)—the set of those
policies, guidelines, procedures, and standards defining the processes for
developing deliverable products (i.e., documents or computer code or
databases). A policy is a high-level statement of principle or course of ac-
tion governing software activity. A guideline stipulates a sequence of
broadly stated steps for producing a software product or accomplishing a
software process. A procedure is a detailed prescription for the sequence of
steps to accomplish some software-related activity. A standard stipulates
format and content conventions for software products or stipulates activity
conventions for software processes. The ADPE is a framework for bringing
about consistent product development.

♦ Application Development Technology Environment (ADTE)—the tech-
nology as embodied in hardware and software development tools, and as-
sociated procedures for their use, required to develop products. These
tools include, but are not limited to, CASE tools, programming language
compilers, LAN application development tools, PC application develop-
ment tools, database management systems, configuration management
tools, and project management tools.

This book provides guidance on how to develop and implement application
development process environment (ADPE) elements (i.e., policies, guidelines,
procedures, and standards) to support the practical development of software
products. This environment helps to increase the likelihood of developing us-
able products on time and within schedule by infusing engineering discipline
into the process. Through this discipline infusion, the development process is
transformed from an ill-defined process (i.e., lacking repeatability) to a well-
defined process (i.e., one that is visible and traceable). We believe that visibility
and traceability enable both customer and product developer management to
communicate effectively with one another. They can make intelligent, in-
formed decisions regarding how product development should proceed. This
communication helps to remove ambiguities and misunderstandings. We be-
lieve practitioners are better positioned to (1) provide the customer with usable
products, (2) repeat their successes and avoid their mistakes, and (3) reduce re-
liance on individuals for these repeatable successes.

We recognize that some in the software industry have observed that software
engineering is not a discipline. Peter J. Denning, former President of the Asso-
ciation for Computing Machinery (ACM), made the following observation:38

Software engineering is not a discipline. Its practitioners cannot systemat-
ically make and fulfill promises to deliver software systems judged by their
customers as usable and dependable, on time and fairly priced. The illusion
that software engineers possess a discipline has produced the major breakdown
called the software crisis.

Chapter 1 • Business Case

54

38P. Denning, “Designing a Discipline of Software Design,” Proceedings of the 7th SEI CSEE Conference,
San Antonio, Texas, January 1994 (Berlin, Germany: Springer-Verlag, 1994). Abstract of Keynote
Address.

ptg

Denning’s statements have much merit. However, we believe that software
systems development can be disciplined. This book is about the practical ap-
plication of software engineering principles. We describe techniques for in-
jecting discipline into the software systems development process. Since this
book is intended for practitioners, our emphasis is on practical means for dis-
ciplining the process. By practical, we mean “application of techniques consis-
tent with available time and resources.” We label this type of application
“prescriptive application.” Software systems development is not a cookie-
cutter exercise. Management skill in applying available techniques is a key in-
gredient to achieving software systems development success. This book
offers guidance for prescriptively applying these techniques.

But this book is more than an exposition on the engineering techniques to select
for building usable software products. It is one thing to come up with ADPE ele-
ments. It is another thing to have these elements adopted and practiced within an
organization. Thus, this book delves into the cultural change considerations
needed to bring about ADPE adoption by the people making up an engineering
organization. We address organizational culture questions such as the following:

♦ How do you involve the individuals in an organization in the definition of
ADPE elements to achieve their buy-in to the changes that ADPE imple-
mentation implies?

♦ How does a seller involve the customer in the ADPE development and
implementation?

♦ How does a seller extend the cultural change activity associated with
ADPE implementation beyond the seller’s environment into the customer’s
environment?

♦ How can seller senior management support be orchestrated to facilitate
ADPE implementation?

♦ How frequently should promulgated ADPE elements be updated to tune
their effectiveness without disrupting the overall state of the development
environment associated with changing the elements?

♦ How do you promulgate ADPE elements? How many? How often? What
sequence?

♦ Given that there are always organizational outliers, what are reasonable
goals to set for how much of an organization ADPE implementation
should encompass?

♦ How do you sell engineering activities such as product assurance when
seller organizational players and/or customers question the value added
of these activities?

♦ How do you encourage change within an organization while at the same
time avoiding organizational fragmentation into competing subcultures?

♦ How should sellers deal with customers who are not prepared to buy into
one or more key ADPE elements of the seller’s process?

♦ How should customers negotiate with sellers on what makes sense to do
on a development effort?

Chapter 1 • Business Case

55

ptg

As many of these questions suggest, transitioning to a software systems
development process that is repeatable, risk-contained, and businesslike in-
volves blending (1) cultural, (2) organizational, and (3) engineering consider-
ations. As illustrated in Figure 1–16, our approach to achieving this blending
is through the development and implementation of a systems engineering en-
vironment (SEE).

Chapter 1 • Business Case

56

FUTURE

Project 3Project 2Project 1

N O W

Consistent
Software Systems

Development

Systems Engineering Environment

Application
Development

Process
Environment

(ADPE)

Application
Development
Technology

Environment
(ADTE)

Figure 1–16 A systems engineering environment (SEE) provides a means for effecting consistent soft-
ware systems development—whether systems are developed sequentially or in parallel. For parallel sys-
tems development, the SEE also provides a means for coordinating these development activities, thereby
potentially leveraging resources and adding value to individual projects.

ptg

A feature of this book is the attention given to communications issues. More
than anything else, the software industry has unequivocally demonstrated
that customer/seller faulty communication underlies a majority of software
systems development problems. This book addresses techniques for
improving customer/seller communication. In particular, this book
elaborates on how to improve communications by bringing the requisite
disciplines (i.e., product assurance, development, and management) to-
gether in a businesslike forum. This forum provides a management
mechanism where issues are discussed, actions are assigned, and decisions
are made. Such mechanisms are easy to set up, and they are extremely
powerful.

Another feature of this book is our emphasis on the prescriptive application
of the techniques described. When it comes to applying almost any software
engineering technique, there are no fixed rules. After introducing techniques,
we present specific suggestions for adapting these techniques to different or-
ganizational setups. Clearly, what makes sense to do processwise on a five-
person project within an organization in all likelihood will not make sense to
do on a twenty-five-person project (and vice versa) without some adaptation.
What makes sense for an aging system scheduled for retirement does not nec-
essarily make sense for a new development effort. We address these adapta-
tion considerations, which we put under the umbrella of the previously
described notion of “prescriptive application.”

Another feature of this book is our approach to transitioning from ill-
defined to well-defined software development practices (i.e., improving
process maturity). Practice within the industry tends to focus on so-called
maturity levels. Improving software process maturity is correspondingly
articulated in terms of achieving Process Maturity Level 1, 2, 3. . . . This
book focuses on what are termed by some in the software industry as key
process areas or process areas that make up a given maturity level. We des-
cribe software process improvement in terms of ADPE elements that address
these key process areas. From our perspective, software process maturity
improvement is an exercise in ADPE element implementation. Implementation
means “the promulgation of ADPE elements, and the prescriptive application
of these elements by an organization.” And, as we stated previously, this
prescriptive application is tantamount to a cultural change within the
organization.

Finally, another feature of this book is the scope of our cultural change per-
spective. The trend in industry is for corporations to team to win business.
Thus, when such wins occur, the cultural change associated with setting up
an ADPE extends beyond the confines of a single corporation. More and
more, winning sellers are a united nations in microcosm. Customers of course
are not interested in dealing with an engineering polyglot. The challenge to a
winning seller is to blend this corporate diversity so that a customer sees a
unified engineering organization. This book addresses the sticky issues asso-
ciated with blending diverse corporate cultures.

Chapter 1 • Business Case

57

ptg

1.11 Preview of the Rest of Book

Figure 1–17 is an overview of the entire book. In the following paragraphs,
we give a summary of each of the remaining chapters.

Chapter 1 • Business Case

58

Process

Plan the Work to
Be Accomplished

Evolve
Software

Perform
Technical
Oversight

Conduct CCBs, Reviews and
Decide What to Do Next

CCB

Business

CaseChapter 1

Business
Case

USER
Organization

BUYER
Organization

Risk-Reduced
Project Plan

SELLER
Organization

Process
Environment

Technology
Environment

Systems Engineering
Environment (SEE)

Chapter 2

Project
Planning
Process

Chapter 3

Software
Systems

Development
Process

Chapter 4

Change
Control
Process

SELLER
Organization

Software
with IntegrityWhat

does the
customer

really
want? BUYER

Organization
USER

Organization

SOFTWARE

Management

Life Cycle
Stages

Require-
ments

Definition

Design Code

ACTIVITIES

Operational
UseSystems

Disciplines

Development

Product Assurance

Review
Area

How

Use

BuildW
ha

t
Product

Assurance

Management

Design

Operational Use

Re
qu

ire
m

en
ts

D
ef

in
iti

on Code

Project
Plan

REVIEW

$ $

$ $

Product
Assurance

Development

Management

CCB

Product
Assurance

Development

Management

Process

Figure 1–17 This figure provides an overview of this book.

ptg

Chapter 2—Project Planning Process The purpose of this chapter is three-
fold. First, it explains that there are key process elements within any life cycle.
Specifically, we show how the life cycle concept brings to the fore the key
process elements of (1) product assurance, (2) management review, (3) itera-
tion within the seller organization during product development, and (4) itera-
tion between the seller and buyer/user during product development. This
section shows how this need for iteration naturally arises from the interplay
among the user, buyer, and seller as each refines his or her understanding of

Chapter 1 • Business Case

59

Developers Product Assurance
Organization

Senior and Project
Management

Quality Assurance
Verification and Validation
Test and Evaluation
Configuration Management

Ill-Defined Well-Defined

BEFORE

Measurement

Process Engineering Group

AFTER

SEE
Implementation

Plan

Policy

Guideline

Seller
Approval

Customer
Concurrence

Procedure

Standard

REVIEW

Before After

Metrics Metrics

Project 1 Project 3
Project 2

Consistent Software
Systems Development

Seller
Approval

Customer
Concurrence

?
? ?

?

Chapter 5

Product
and

Process
Reviews

Chapter 6

Measurement

Chapter 7

Cultural
Change

Chapter 8

Process
Improvement

Planning

Process
Improved Process

Figure 1–17 Continued

ptg

what needs to be done as a project’s life cycle unfolds. We stress that, at any
given point, a project may be in more than one life cycle stage. A consequence
of this reality for the practitioner is that this paralleling of activity needs to be
accounted for in project planning and project tracking.

Second, the chapter explains how the life cycle concept is a key element of the
software project planning process. We use life cycle examples to demonstrate
this concept. We discuss project risk assessment and the way to integrate this
activity into project planning. We introduce a matrix whose columns are life
cycle stages and whose rows are the disciplines of management, develop-
ment, and product assurance. Each entry in the matrix is one or more tasks
associated with a life cycle stage and one of these disciplines. These tasks are
the entities that define the technical approach in a project plan. Three cases
are illustrated: (1) classical system development (including so-called “mainte-
nance”), (2) prototyping, and (3) information engineering.

Third, this chapter includes guidance on how to develop a project planning
process for your organization. We pull together the concepts discussed in the
chapter and detail the project planning process activities, major communica-
tion paths, and individual roles and responsibilities. We then present an an-
notated outline for a project planning ADPE element.

Chapter 3—Software Systems Development Process This chapter starts with
a discussion of software process and software development organizations. We
present an example software systems development process. Also, we discuss
each of the process’s major elements: customer, seller process engineering group,
customer/seller development team, change control board, seller senior manage-
ment, and major communication paths. We stress that an organization’s software
systems development process should be “prescriptively” applied to each project
because no two projects are the same. In addition, we present an annotated out-
line for a development process ADPE element.

Chapter 4—Change Control Process This chapter is devoted to answering the
question, “What does the customer really want?” In this chapter, we show how
the CCB is used to address the communications problems that plague any soft-
ware project. We introduce the notions of planned change and unplanned change
and show how they are a natural fallout of any march around the life cycle. We
discuss how the classical configuration management CCB concept needs to be
generalized to consider both programmatic as well as product changes, so that
the seller and user/buyer are not surprised as the project life cycle unfolds. We
talk about the inevitability of change and the need to plan for change. We talk
about the processing of software changes and illustrate this processing for a de-
sign specification, a requirements document, and for an incident report. Next we
address who sits on the board, what decisions it makes, and how it operates.
Also, we describe the paperwork needed to support CCB operation. We close the
chapter by presenting an annotated outline for a CCB ADPE element.

Chapter 5—Product and Process Reviews This chapter addresses the sub-
ject of software product reviews and software systems development process

Chapter 1 • Business Case

60

ptg

reviews. The purpose of product and process reviews is to give decision mak-
ers and other software systems development project participants visibility
into the project state of affairs. These reviews serve to lessen guesswork on
what to do next. We present a set of software product and project process re-
view concepts organized by management, development, and product assur-
ance disciplines. We illustrate the review concepts with examples drawn
from the real world. This chapter presents annotated outlines for a peer re-
view guideline, an independent product assurance policy, and an acceptance
testing cycle procedure.

Chapter 6—Measurement This chapter addresses the subject of metrics.
Measurement for the sake of measurement is a waste of time and resources.
This chapter presents measurement techniques that enable you to measure
software products (i.e., product integrity measurement) and software systems
development processes (i.e., process integrity measurement) in everyday
terms familiar—and therefore meaningful—to your organization. We explain
and illustrate general measurement formulas. We also apply these techniques
to the Software Engineering Institute’s Capability Maturity Model for Soft-
ware. This chapter concludes with an annotated outline for a measurement
guideline. Appendix A contains material that illustrates how to measure
items of interest outside a software context. The intent of this appendix is to
give interested readers insight into how to measure almost anything. The ex-
ample deals with measuring the extent to which information technology con-
tributes to the accomplishment of an organization’s mission.

Chapter 7—Cultural Change This chapter deals with human issues bearing
on effecting cultural change. The chapter presents views from the following
perspectives: (1) the organization responsible for developing and promulgat-
ing process elements, (2) seller project participants and project managers, (3)
buyer/user project management, (4) buyer/user senior management, and (5)
seller senior management. Here we talk about what to expect when trying to
implement an SEE. We talk time scales for effecting change. We look at how
to win people over, and we talk about when it is prudent to give up on some
individuals. Also, we discuss the key role senior management plays in mak-
ing cultural change happen. This chapter includes an annotated outline for
defining and improving ADPE elements.

Chapter 8—Process Improvement Planning This chapter, which concludes
the book, talks about SEE implementation planning. We provide guidance on
how to write an SEE implementation plan to establish the framework for
doing the things discussed in the preceding chapters. We have chosen to end
the book by discussing what should normally be done first in bringing about
software process improvement through an SEE—namely planning. It is sim-
ply easier to discuss SEE implementation planning once you understand the
key issues to address in the plan. We present and discuss nineteen issues that
may be important for an organization regarding SEE implementation. We
provide annotated outlines for an SEE implementation plan, a configuration
management guideline, a project tracking guideline, a software development
life cycle definition guideline, and a document templates standard.

Chapter 1 • Business Case

61

ptg

This page intentionally left blank

ptg

It’s a bad plan that can’t be changed.

—Publilius Syrus, Moral Sayings (First century B.C.E.).

2.1 Introduction

This chapter provides you with guidance for effectively planning software
systems development work. We refer to the document containing planning
information as the “project plan.” In some systems development communi-
ties, the plan is called a “software development plan.” The project plan is a
gauge used, in part, to think through what needs to be done, to estimate how
much the effort may cost, and to determine whether software systems devel-
opment work is unfolding as it was envisioned.

Just as the software systems development process is iterative, so too is the
planning process. No matter how well a project has been planned, there will
always be changes. We stress that the project plan should be a living docu-
ment. Although many people agree with this point, they still experience re-
peated difficulties in managing the anticipated, but unknown, change. The
message here is that project planning involves (1) planning the work to be ac-
complished before the work begins and (2) planning how to manage the
changes to this work as the work is being accomplished. Thus, project

63

chapterchapter 2
Project Planning
Process

ptg

planning, like software systems development, is an exercise in change
management.

The emphasis in this chapter is on the project planning process. We present
the activities involved with putting together a project plan, as well as the pro-
ject plan’s contents. Also, we give you an outline for a project plan to help
you overcome the blank-page syndrome. A key to running any good busi-
ness—software development or otherwise—is effective business processes. In
the software world, one element crucial to software systems development
success is the project planning process.

We need to stress one more point at the outset regarding project plan-
ning. While much of what we have to say is from the seller perspective,
we also address the customer perspective. The project plan is indeed a
seller document. However, the project plan is not developed in a vacuum.
It is usually developed in response to a customer’s or surrogate cus-
tomer’s (e.g., marketing organization or venture capitalist) statement of
need. In this book, we refer to such a statement as a “statement of work,” or
SOW for short. One key SOW issue that we address is that of SOW risk
assessment.

With no pun intended, the plan for this chapter is the following:

♦ In Section 2.2—Project Planning Key Ideas, we present the key ideas that
you can expect to extract from this chapter.

♦ In Section 2.3—Life Cycle Role in Project Planning, we bring together the
Chapter 1 concepts of a generic life cycle, project disciplines, and project
players to show you how they bear on the planning process.

♦ In Section 2.4—Ideal, Real, and Realistic Project Planning, we discuss
the planning process in terms of three instantiations of a generic life
cycle.

♦ In Section 2.5—Risk Assessment and Project Planning, we discuss proj-
ect risk assessment and how to integrate this activity into project
planning.

♦ In Section 2.6—Project Planning Process, we present you with guidance
for developing an Application Development Process Element (ADPE) that
defines the project planning process for your organization’s Systems Engi-
neering Environment (SEE).

♦ In Section 2.7—Project Plan Contents, we discuss project plan content.
This discussion pulls together the project planning process concepts intro-
duced in the preceding sections to give you ideas on how to generate a
project plan.

♦ In Section 2.8—Project Planning Summary, we summarize the chapter’s
key points by presenting an annotated outline of an ADPE procedure as a
starting point for defining or refining your organization’s project plan de-
velopment process.

Chapter 2 • Project Planning Process

64

ptgProject Planning Key Ideas

1. Planning requires a software systems development life cycle to provide a
framework for considering the specific tasks to be accomplished.

2. Planning needs to account for the interaction among management, develop-
ment, and product assurance disciplines throughout the project life cycle.

3. Planning is an ongoing negotiation between the CUSTOMER and the
SELLER.

4. Planning maps out the envisioned technical approach, resources, schedule,
and milestones for the transition from the current state to a desired state.

5. Planning should incorporate the need for change.

6. Planning needs to assess risk to determine the appropriate mix of manage-
ment, development, and product assurance.

7. Planning is required for any software systems development effort, and it
is captured in a project plan ranging from a one-page memo to a sizable
document.

Chapter 2 • Project Planning Process

65

Figure 2–1 Successful software systems development requires good planning. Here are key project planning concepts
explained in this chapter. These key ideas are your guide to planning for software systems development success.

2.2 Project Planning Key Ideas

Figure 2–1 lists the key ideas that you can extract from this chapter. To intro-
duce you to this chapter, we briefly explain these key ideas. Their full intent
will become apparent as you go through this chapter.

1. Planning requires a software systems development life cycle to provide a
framework for considering the specific tasks to be accomplished.
Here, we expand on the generic life cycle concept introduced in Chap-
ter 1. From this generic life cycle, we “derive” examples of project-
specific life cycles. This chapter offers you ideas for how such
project-specific life cycles naturally bring to the fore the tasks that need
to be incorporated in the project plan to accomplish the work defined
in the customer’s SOW.

2. Planning needs to account for the interaction among management, develop-
ment, and product assurance disciplines throughout the project life cycle.

ptg

How do you transform through project planning the software systems
development process into a business proposition in which both the
customer and seller are accountable for their decisions? This chapter
offers you ideas for incorporating a businesslike forum into your soft-
ware systems development project. This forum—which we call a
change control board (CCB)—is a key element of dealing with the in-
evitable change that arises during any software systems development
effort. Our CCB concept is a generalization of the classical configura-
tion management concept of configuration control board.

3. Planning is an ongoing negotiation between the CUSTOMER and the SELLER.
Underlying this negotiation process is the art of gaining closure be-
tween the customer and seller regarding SOW content before the pro-
ject begins, and regarding anticipated, but unknown, changes during
project plan accomplishment. This chapter offers to both the user/
buyer and the seller ideas for accomplishing this negotiation in a win-
win manner.

4. Planning maps out the envisioned technical approach, resources, schedule,
and milestones for the transition from the current state to a desired state.
This transition sets the overall boundary conditions for the project
planning activity. This chapter offers you ideas for relating the project
life cycle, project tasks, resource and schedule constraints, and risk to
planning for this transition.

5. Planning should incorporate the need for change.
It is evident from Syrus’s quote at the start of the chapter that this is
not a new idea. However, too many people view the project planning
process as an exercise in fantasy. If you do not plan for change, your
project will likely waste a lot of time and money in thrashing instead of
progressing. This chapter offers you ideas for making “plan for
change” integral to your project planning process.

6. Planning needs to assess risk to determine the appropriate mix of manage-
ment, development, and product assurance.
There is a strong correlation between project risk and the way resources
should be allocated during project planning to these three sets of disci-
plines to mitigate risks. This chapter offers you ideas for doing this risk as-
sessment and resource allocation.

7. Planning is required for any software systems development effort, and it is
captured in a project plan ranging from a one-page memo to a sizable
document.
The world of software systems development spans orders of magni-
tude of complexity. Just as it does not make sense to use a pile driver to
crack a nut, so too it does not make sense to shoehorn the project plan-
ning activity into a “one size fits all” framework. Many contractual ve-
hicles exist for establishing a formal working relationship between a

Chapter 2 • Project Planning Process

66

ptg

seller and a customer. The nature of these vehicles has some impact on
the software systems development process. We touch upon these dif-
ferent vehicles.

2.3 Life Cycle Role in Project Planning

In what sense does software have a life cycle? At the beginning of a project,
the software is in a state of infancy—its features are outlines and sketchy defi-
nitions. Later in the project, these outlines and sketches are filled in with de-
tail on structure, processing, and data; the software acquires a distinctive
“personality.” Ultimately (barring sickness, such as faulty design), the soft-
ware achieves its fully developed state when it becomes operational and ages
gracefully through a metamorphosis resulting from the incorporation of en-
hancements, new capabilities, and fixes to latent defects.

The concept of life cycle can be viewed as a tool to explain the activities in-
volved with bringing software from a relatively amorphous state in some-
one’s or some enterprise’s head to a finished state in which the operating
software code does useful work. A life cycle helps management acquire in-
sight into the software systems development process. For example, consider
the situation depicted in Figure 2–2. Often the purpose of a software systems
development project is to bring about a transition from a manual or a legacy
automated system to a new/improved automated system. As Figure 2–2 indi-
cates and as we subsequently explain, a development life cycle integrates the
systems disciplines of development, product assurance, and management.

The numbered tasks (i.e., 1, 2, 3, 4, 5, 6) represent one software systems devel-
opment path that integrates development, product assurance, and manage-
ment disciplines. The development disciplines are represented by the four
generic development stages of WHAT (task 1), HOW (task 2), BUILD (task 4),
and USE (task 5). Each stage yields one or more software or software-related
products. In the earlier stages of the software life cycle, requirements specifi-
cations are typically produced. These specifications express the WHAT that is
to be done. In subsequent stages, design specifications (HOW) and computer
code and databases (BUILD) are typically produced.

Throughout this book, we rely on the life cycle concept to explain and
amplify software systems development process concepts. It is therefore im-
portant for you to realize at the outset that a life cycle “stage” is not some-
thing that is passed through once, never to be revisited. As we mentioned in
Chapter 1, from the viewpoint of software systems development, any life
cycle stage may be revisited a number of times before the software system
falls into disuse (i.e., dies). We prefer to think of a revisit to a life cycle stage
as the enhancing, correcting, and/or adapting of what was done during the
previous visit to that stage. Revisits are nothing more than “maintenance” in

Chapter 2 • Project Planning Process

67

ptg

Chapter 2 • Project Planning Process

68

5

Task: Convert the what to the how
to proceed with the transition.

2

Task: Construct
the envisioned
new/improved
system from
the how.

4

Task: Manage
other life
cycle tasks.

6

Task: Analyze
what needs
to be done
to effect the
transition.

1

Task: Perform
product
assurance
activities to
gain insight
into project
progress.

3

TRANSITION—HOW? New/Improved
System

Existing
System

Manual Legacy Modernized

Product Assurance

Management

USE
”Development” Stage

HOW
Development Stage

BUILD
Development

Stage

WHAT
Development

Stage

What
Next

?

Review Area

Task: Use the built system, analyze
feedback, and decide what to do next.

Figure 2–2 Software systems development projects transition manual or automated legacy systems to new/improved sys-
tems. A development life cycle brings to the fore the disciplines and tasks needed to (1) effect a successful transition and (2)
respond to postdeployment needs.

ptg

the dictionary sense of the word (namely, “the act of keeping in existence or
continuance; the act of keeping in a specified state”1). In this book, we there-
fore adopt the attitude that “maintenance” is an integral part of the activities
associated with any life cycle stage. Therefore, we do not distinguish between
software systems development and software systems maintenance. The re-
quired disciplines and processes are the same.

As shown in Figure 2–2, the product assurance disciplines are represented in
the review area, along with the management disciplines. Product assurance
activities (task 3) provide developers with alternative views of the product
under development (e.g., requirements specification), and management with
insight to where the developers are in the development process. Product
assurance seeks to compare life cycle products with one another to deter-
mine the extent to which they logically follow from one another and the ex-
tent to which they conform to the customer’s stated needs. This comparison
helps to build a thread that explicitly traces a product to products from pre-
decessor stages (or products from the same stage—such as an earlier draft of
a specification document)—which, in turn, raises the visibility of the software
systems development process. The management activities (task 6) include
oversight of the development activities and product assurance support activi-
ties. Management uses the visibility provided by product assurance to make
decisions on what to do next. For example, after management reviews prod-
uct assurance test results, the management may decide to revisit the WHAT
stage if it is believed that the customer needs are not being met by the
software code.

The number of life cycle stages utilized on a particular project is a function of
how much visibility is desired (and affordable). This number may also be a
function of organizational policies. For example, your organization may have
a policy stipulating that for planning purposes, all projects should be parti-
tioned into a specified number of stages. Furthermore, once a project is under
way, it may be desirable to change the number of stages planned and agreed
to at the outset of the project. Examples that might change the number of
stages include the following: changes to the project budget, changes to the
customer’s desire to have more visibility into the development process, or
changes to customer delivery dates. The idea of partitioning a software sys-
tems development effort into stages is useful for avoiding management indi-
gestion. Just as a number of factors govern how someone chooses to slice up
the elements of a meal before consuming it, so too there may be a number of
factors governing how a life cycle should be partitioned. The fundamental
point is that there is no single “preferred” partition of the life cycle that
should be applied to all projects.

Chapter 2 • Project Planning Process

69

1Random House Webster’s College Dictionary (New York: Random House, 1999). We have conjoined
words in the first definition given for “maintenance” with words given in the first and third defini-
tions of “maintain.”

ptg

The project team members perform the following generic software systems
development tasks to transition from an existing system to a new/improved
one:

♦ Analyze what needs to be done to effect the transition from the existing sys-
tem to the new/improved system.

♦ Convert the what to the how to proceed with the transition.
♦ Perform product assurance activities to gain additional insight into project

progress.
♦ Construct the envisioned new/improved system from the how.
♦ Use the built system, analyze feedback, and decide what to do next.

We illustrate this fundamental point of transition with two examples: (1) off-
the-shelf software and (2) software maintenance (i.e., life cycle stage revisits).
These examples provide insight into what we mean by software systems de-
velopment. This insight is needed to clarify the scope of the project planning
process as we deal with it in this book.

Example 1—Off-the-Shelf Software

Our first example deals with an enterprise or organization that decides to rid it-
self of typewriters and bring in personal computers with word processing soft-
ware. Here, the office is effecting a transition from a manual system to an
automated system. At this point, some of you are saying, “This is not software
systems development! It is just a simple equipment purchasing exercise.”

First, consider how the word processing vendor developed the word process-
ing software. One typical scenario is that the vendor’s marketing organiza-
tion assesses the marketplace to determine WHAT the user community wants
in a word processing package. This marketing organization is a surrogate
customer (i.e., surrogate buyer/user) for the vendor’s product development
organization. The development organization, presumably working with the
marketing organization, transforms the vendor’s WHAT into a HOW. Here,
such things as the nature of the user interface (e.g., pull-down menus) takes
shape. Then, the product development organization BUILDs to the HOW and
WHAT to produce the word processing product. Before releasing the product
for sale, the vendor may test-market the product (typically called “beta test-
ing”) to work out problems and refine features. Subsequently, the vendor re-
leases the product for sale where it is USEd by customers.

Now, consider things from the perspective of an actual customer purchasing
the equipment and word processing software. The purchase of this material
presumably did not take place in a vacuum. Someone in the customer’s orga-
nization compiled a list of capabilities (i.e., requirements) that the equipment
and word processing software needed to satisfy. Among other things, then,
somebody presumably needs to determine whether the installed system satis-

Chapter 2 • Project Planning Process

70

ptg

fies the requirements. In addition, once the office personnel start using the in-
stalled equipment, new requirements may emerge—which may or may not
be satisfied by more off-the-shelf software applications.

In terms of our generic life cycle, then, we say that the WHAT stage corre-
sponds to compiling the list of capabilities. What about the other stages in the
generic life cycle? How do they come into the picture? Typically, many per-
sonal computer software packages have to be installed before they can be
used. Installation typically involves the selection of various combinations of
options. Deciding which options to select depends on the buyer’s WHATs.
These WHATs may include a need for grammar checking, synonym finding,
and foreign language spell checking. Thus, by comparing the WHATs to the
available options, the buyer selects the options needed to meet these require-
ments. This selection activity can be viewed as the HOW stage of off-the-shelf
systems development.

It should be noted that there may also be other factors governing this option
selection—such as hardware constraints (e.g., available memory, available
hard disk space). Once this selection is accomplished, the buyer enters the IN-
STALL command and BUILDs the word processing system to USE the word
processor thus developed that satisfies the requirements. Since it is generally
a good idea to check that the INSTALL proceeded properly, the installed sys-
tem should be turned over to product assurance to determine whether all the
required capabilities have been properly installed. Then, the word processing
system can be turned over to the enterprise/office users for training and for
operational USE.

From the preceding discussion, it would seem that, in general, there is more
to using off-the-shelf software than opening the shrink wrap and popping the
media into the hardware. Planning for activities such as those just dis-
cussed can make the development of off-the-shelf systems relatively free
from pain.

One final comment about this off-the-shelf systems development example:
Many off-the-shelf purchases frequently evolve toward the use of software
customized to the particular needs of the purchaser (by means other than se-
lecting vendor-supplied options)—either by modifying vendor-supplied soft-
ware or producing new software. If for no other reason, planning for such
inevitable migrations saves additional time and money. Furthermore, plan-
ning for such migrations at the time of original purchase pays even greater
dividends. Among other things, the plan needs to address what happens if
the vendor-supplied software does not do what was asked for in the SOW.

Example 2—Software Maintenance (i.e., Life Cycle Stage Revisits)

Our second example deals with an enterprise or organization that currently
has an automated system and wants to upgrade this system to incorporate
new features and fix latent defects. In the software engineering literature, this

Chapter 2 • Project Planning Process

71

ptg

scenario is frequently termed “software maintenance.” In this book, we
choose to include this type of project in the domain of software systems de-
velopment. In other words, we believe that software maintenance requires
the same activities and disciplines as new software development.

For software maintenance, the WHAT stage is the (1) specification of the re-
quirements for new features, (2) restatement of the unsatisfied requirements
(i.e., bugs), and (3) possible modification (i.e., enhancements) of existing re-
quirements. The HOW stage is the specification of the design of the new fea-
tures, the corrections to the design to correct the bugs, and the augmentation
of the design to incorporate enhancements.2 The BUILD stage corresponds to
the development of code from the requirements and design specifications.

Thus, in this book, software systems development spans the gamut from the
purchase of off-the-shelf software to classical maintenance. So, in terms of
Figure 2–2, we see that software systems development—whether it involves
the (1) development of computer code where none previously existed, (2)
purchase of off-the-shelf code, or (3) maintenance of existing code—involves
the tasks shown in Figure 2–2. Every project plan, then, needs to incorporate
these tasks to some degree. As we subsequently explain, the particular char-
acter of these tasks is a function of how the generic life cycle is instantiated.

To summarize the preceding discussion, the key project planning principal is
the following:

The tasks in a project plan is the seller’s “how-to-do-it” response to a cus-
tomer’s statement of need (e.g., SOW). These tasks are simply a statement of
how (1) the products emerging from each life cycle stage are to be developed,
(2) this product development activity is to be managed, (3) the products are to
be checked for compliance with customer needs (i.e., product assurance), and
(4) project accomplishment is to be checked for compliance with the project plan
(i.e., process assurance).

Figure 2–3 lays out the preceding project planning principle in “tabular”
form. The figure illustrates that the tasks to be performed by management,
development, and product assurance can take place in one or more life cycle
stages. In addition, the figure also shows that the change control board (CCB)
provides a forum for review of task accomplishment during the project. The
project plan is a description of the tasks that the seller team, working with the
customer, are to (iteratively) perform through the life cycle that transitions
the customer from the existing system to the new/upgraded system. During
the project, no matter how well a project is initially planned, the details of
what actually happens differ from what was planned. The change control
board (CCB) provides a forum to discuss what needs to be done to respond to

Chapter 2 • Project Planning Process

72

2For legacy systems with little or no documentation, it may be necessary for the developers to spend
time examining the existing computer code to understand how the code works before they specify a
design for the new features. However, design options may be limited because of the existing design.

ptg

Chapter 2 • Project Planning Process

73

Task . . .

Task . . .

Task . . .

Task . . .

Task . . .

Task . . .

Task . . .

Task . . .

Task . . .

CCB
Product

AssuranceDevelopment

Management

Review
Area

How

Use

BuildWhat

Task . . .

Task . . .

Task . . .

Task . . .

Task . . .

Task . . .

Task . . .

Task . . .

Task . . .

Task . . .

Task . . .

Task . . .

Task . . .

Task . . .

Task . . .

Task . . .

Task . . .

Task . . .

Task . . .

Task . . .

Task . . .

Task . . .

Task . . .

Task . . .

Task . . .

Task . . .

Task . . .

USEBUILDHOWWHAT

Management

Development

Product

Product Assurance

Customer/
Seller
Interaction

Change Control Board
(CCB)

What
Next

?

Systems
Disciplines

Life Cycle
Stages

Figure 2–3 The generic software systems development life cycle provides a starting point for identifying management,
development, and product assurance tasks to be accomplished on your project.

ptg

the changes that occur. As decisions are made with respect to what needs to
be done next, the project plan is updated to reflect the refined understanding
of what needs to be done to ensure a successful project. Updating the project
plan as the project unfolds is critical to project success. The updated plan of-
fers the seller the means for ensuring that the development is proceeding
profitably. In many instances, the updated plan offers the customer the
means for ensuring the development is proceeding within budget.

Another aspect about the life cycle concept needs to be stressed. A life cycle
stage is a conceptual way of visualizing a related set of software systems de-
velopment activities. On an actual software project, these activities are, in gen-
eral, not restricted to a particular time interval (even though in project
planning they are typically assigned to a particular time from, for example,
the first two months of the project). Revisits make it clear that WHAT activi-
ties, for example, may be performed during various time intervals through-
out a project. Thus, on a real software project, WHAT, HOW, BUILD, and
USE activities will be interspersed with one another.

Furthermore, at any given point within a project, some members of the pro-
ject team may be doing, for example, HOW work, while other members may
be doing WHAT work. Consequently, a project may be in more than one life
cycle stage at the same time. Even though we represent the life cycle concept
as a sequence of stages, this sequencing of related project activities does not,
in general, occur on an actual software systems development project.

A software life cycle is in reality a series of recycles through part or all of a se-
quence of stages that begins with a statement of customer need and ends with
customer acceptance of software code and supporting databases operating in
the customer’s environment in accordance with this need. Any software sys-
tems development process must explicitly incorporate this series of recycles.
Otherwise, it does not account for the customer/seller mutual refinement of
understanding that is integral to any software systems development effort.

The following question naturally arises: What if I can’t define a specific life cycle
for my project? Suppose, for example, that the customer tells the seller to code
first and ask questions later (a frequent occurrence in the real world). Alterna-
tively, consider the case when a seller does not define a life cycle for a project
and tells the customer that the seller’s developers are going to code first and
ask questions later. We assert that even in such circumstances, you can use
the generic life cycle to help identify the tasks to be accomplished. In fact, if
defining a life cycle proves to be a stumbling block, you can use the generic
life cycle model during project planning to work with a customer to help de-
fine a life cycle appropriate to the work at hand. That is, the generic life cycle
can be used as a tool for defining a project-specific life cycle—and, in the
process of defining this life cycle, the tasks to be performed will emerge.

The role of the life cycle as portrayed in Figure 2–3 can be viewed as a task defi-
nition checklist. For example, by looking at the intersection of Management with
the WHAT life cycle stage, the following planning guidance naturally emerges:

Chapter 2 • Project Planning Process

74

ptg

Part of managing the project must include oversight of the development of
a requirements specification (or, in the case of a “maintenance” project, the
oversight of the development of a modification to an existing requirements
specification).

Similarly, by looking at the intersection of Product Assurance with the
WHAT life cycle stage, the following planning guidance naturally emerges:

Product assurance must include review of a requirements specification
(update), including drafts of this specification.

The following question also naturally arises: What if the customer does not care
how the product is developed?

We refer to this situation as one in which the customer lacks “visibility” into
the seller’s development process. How does the seller know when the cus-
tomer’s needs are satisfied by the developed software system? How does the
seller know how much it will cost to develop the required product? One way
for the seller to approach this situation is to try to get the customer to agree
that no matter what the seller delivers, the product is acceptable and payment
is made. If the customer considers the risks associated with such an approach,
a possible solution may arise such that the seller gets the buyer to accept in-
termediate products and partial payments are made. Other factors (e.g., pos-
sible customer job loss, untested technologies, large sums of money, loss of
life) may also influence the customer’s thinking. As the customer’s risks in-
crease, the customer’s involvement often increases. To mitigate the risks, the
customer may even hire consultants to provide additional insight (i.e., visibil-
ity) into the project. Since the project plan is a living document, the project
plan provides both the customer and seller a tool that gives them visibility
into project progress or lack of progress.

Figure 2–4 provides you with the next level of detail regarding the perspec-
tives of the customer (i.e., user/buyer) and the seller. As shown in the figure,
both the customer and the seller can have management, development, and
product assurance personnel. Each group of disciplines has its own perspec-
tive with respect to what is required in a project plan that covers the spec-
trum of development activities, yet remains flexible enough to respond to the
anticipated, but unknown, changes.

One of the exceptions to this balance between customer and seller organiza-
tions is in product assurance. The customer organization may not have prod-
uct assurance personnel. If the customer starts to question the value added of
product assurance activities, the seller should listen carefully. The customer
may not truly understand what it is that product assurance does to reduce the
risk of not accomplishing the project. Conversely, the seller organization may
not have product assurance personnel. If the seller does not present product
assurance activities as part of the project plan, the customer should question

Chapter 2 • Project Planning Process

75

ptg

Chapter 2 • Project Planning Process

76

CCB
Product

AssuranceDevelopment

Management

DISCIPLINES LIFE CYCLE STAGES
WHAT HOW BUILD USE

Can the requirements
be satisfied within
available resources?

Can I accept
the system?

CUSTOMER (User/Buyer) Organization:
Has requirements that need to be satisfied.

What is it that I
really want?

How has the
SELLER accounted
for the agreed-
upon WHAT ?

Does the
constructed
system
incorporate
the agreed-
upon HOW ?

Is the delivered
system what I
really want?

Are our
requirements
testable?

Does the HOW
logically follow
from the WHAT ?

Does the
delivered system
do what it is
supposed to do?

Are the
enhancements
and/or repairs
incorporated?

MANAGEMENT
Senior and Project

QA
V&V
T&E
CM

Analysis
Design

Engineering
Production
(Coding)

Unit Testing
Subsystem Testing

Installation
Training

DEVELOPMENT

PRODUCT
ASSURANCE

Change Control Board
(CCB)

CUSTOMER/SELLER

INTERACTION

$ $

$ $

Figure 2–4 Consistent project planning records management, development, and product assurance responses to what needs
to be done. These responses are tasks that the different disciplines are to accomplish. These tasks make up the heart of the
project plan. In addition, no matter how well planning is done, unknown, but expected, changes will arise. The change control
board (CCB) is a forum for systematically accounting for such changes. The project plan needs to incorporate CCB activities to
account for responding to these deviations.

ptg

Chapter 2 • Project Planning Process

77

DISCIPLINES LIFE CYCLE STAGES
WHAT HOW BUILD USE

Can the requirements
be satisfied within
available resources?

Is the system
ready to be
delivered?

SELLER Organization:
Creates software system for User Organization.

What is it that
the CUSTOMER
really wants?

How do we
account for
the agreed-
upon WHAT ?

How do we
construct the
agreed-upon
HOW ?

How do we
enhance
and/or repair
the built system?

Are the
CUSTOMER
requirements
testable?

Does the HOW
logically follow
from the WHAT ?

Does the
built system
do what it is
supposed to do?

Are the
enhancements
and/or repairs
incorporated?

MANAGEMENT
Senior and Project

QA
V&V
T&E
CM

Analysis
Design

Engineering
Production (Coding)

Unit Testing
Subsystem Testing

Installation
Training

DEVELOPMENT

PRODUCT
ASSURANCE

whether or not the seller’s organization is mature enough in its systems de-
velopment processes to ensure success.

The customer’s senior- and project-level management evaluate the seller’s
“proposal to do work” or “actual performance of agreed-upon work” in
terms of whether or not the seller can satisfy the requirements within the
available resources (i.e., dollars, time, and people). As the seller proceeds
through the software systems development life cycle, the customer decides
whether the system is acceptable. From the customer’s and seller’s perspec-
tives, the fundamental question is the following: Are the requirements em-
bodied in the software system? Both the customer and seller interact
throughout the visits and revisits to the life cycle stages to answer this funda-
mental question. The notion that the customer hands over a set of require-
ments and then comes back towards the end of the project to review what has
been done is a prescription for failure. From the beginning, the seller’s prod-
uct assurance organization should be asking whether or not the requirements
are testable. If the requirements are testable, then it can be demonstrated to
the customer that the fundamental question is being partially answered as the
project proceeds. As indicated in Figure 2–4, this customer/seller interaction
takes place, in part, at change control board meetings.

Figure 2–4 Continued

ptg

In Chapter 1, we introduced a generic four-stage life cycle. In the next section,
we give several illustrations of how to transform this generic life cycle into a
specific set of stages and associated tasks that can then be used to plan a spe-
cific software systems development effort.

2.4 Ideal, Real, and Realistic Project Planning

The planning process is essential to successful software systems develop-
ment. As illustrated in Figure 2–5, planning begins with the fundamental un-
derstanding of what is to be built, how the software system is to be built,
actually building the system, and how the system is to be used in the opera-
tional environment. Critical to a successful development effort is reviewing
development activities on a periodic and event-driven basis to ensure that
(1) customer requirements are being incorporated correctly and (2) informa-
tion is available for making intelligent decisions on what to do next.

Figure 2–5 shows that the generic life cycle can be tailored to a life cycle that
makes sense for your particular situation. By utilizing seller and customer ex-
periences, a specific set of affordable life cycle stages and systems disciplines
activities can be defined. Specific management, development, and product as-
surance tasks, milestones, schedules, and resources can be defined for each
life cycle stage. Integral to the interaction between the customer and seller is
the CCB. The CCB is a business forum in which the customer and seller inter-
act to ensure that what the customer wants is built. Many, if not most, soft-
ware systems development projects suffer from poor communications—
customer to seller, seller to customer, developer to user, product assurance
staff to managers, etc. The CCB helps to reduce the communication risks. We
cannot overemphasize the importance of the CCB. Plan on establishing a CCB
as soon as possible.

At this point, we describe, in a simplified way, the software development ac-
tivities associated with illustrative life cycles. In particular, we illustrate the
following three potential life cycles:

♦ Traditional systems engineering. A six-stage life cycle that uses systems
engineering to produce detailed specification documentation and com-
puter code.

♦ Prototyping. A three-cycle life cycle that uses prototyping to refine re-
quirements that are not well understood.

♦ Information engineering. A six-stage life cycle that uses information engi-
neering to develop a logical design that is then used to generate the physical
implementation using a computer-aided software engineering (CASE) tool.

These three examples provide additional insight into the planning of soft-
ware systems development projects. The purpose here is merely to introduce

Chapter 2 • Project Planning Process

78

ptg

these “tailored” life cycles for your consideration when you define your own
specific management, development, and product assurance tasks. These life
cycles are presented from the seller’s perspective because the seller is respon-
sible for developing the product. In some instances, the SOW may specify
that a customer’s life cycle is to be used. The seller’s project plan should take

Chapter 2 • Project Planning Process

79

Product
Assurance

Management

Design

Operational
Use

Code

Re
qu

ire
m

en
ts

D
ef

in
iti

on Review
Area

How

Use

BuildWhat

Product Assurance

Development

Management

USEBUILDHOWWHAT

Operational

Use

CodeDesignReq’ts

DefinitionSystems
Disciplines

Life Cycle
Stages

TAILORED LIFE CYCLE

Customer/
Seller
Interaction

Change Control Board
(CCB)

CCB
Product

AssuranceDevelopment

Management

Manage the other tasks.
Perform product assurance
on the products produced
in the other tasks.

Convert the what to the how
to proceed with the transition.

Figure 2–5 Using your experience to tailor the generic life cycle, you define the specific management, development, and
product assurance tasks to be accomplished, and associated estimated resources, milestones, and schedule.

ptg

into account a learning curve for implementing what may be an unfamiliar
software systems development life cycle.

Traditional Systems Engineering
Life Cycle Example

The first of our three life cycle examples is Figure 2–6. This figure depicts the
generic four-stage life cycle as the following six-stage systems engineering
life cycle:

♦ Requirements definition
♦ Preliminary design
♦ Detailed design
♦ Coding
♦ Production/Deployment
♦ Operational use

Each of the six stages is described below.

Requirements Definition Stage Activity in this stage focuses on what the
software is to do—that is, the functions to be performed by the integrated op-
eration of hardware, software, and people. At this stage of the software life
cycle, it may not be evident what each of these three generic system compo-
nents is to do. The boundaries separating these components from one another
may be amorphous. However, these boundaries will be better understood as
the actual project work unfolds. Over the life cycle of the system, the elements
of this subset may change as decisions are made regarding what the hard-
ware is to do and what the people are to do (and hence what the software is
to do).

The management tasks include monitoring the assessed risk and planning risk-
mitigation strategies as needed. Management refines planned budgets and
schedules. It is important to establish the change control board (CCB) early
on in the life cycle. As the project progresses, both the customer and seller re-
fine their understanding of what needs to be done. These project dynamics
result in the need to refine planned activities. To specify and agree to refine-
ments, the customer and seller use the CCB meetings as a forum for recording
the agreed-upon refinements. Assessing risk, planning risk-mitigation strate-
gies, detailing budgets, holding CCBs, etc., continue throughout the life cycle
stages (as indicated by the dashed arrow in the figure). Once the software
system is built, management decides whether the system is ready to ship to
the customer. Input into this decision comes from the visibility that the prod-
uct assurance acceptance testing activities provide. Acceptance testing helps
management answer the following question: Does the built system do what it
is supposed to do? Once the system is shipped to the customer, seller man-
agement solicits customer feedback to ensure, in part, proper system opera-

Chapter 2 • Project Planning Process

80

ptg

Chapter 2 • Project Planning Process

81

SYSTEMS

DISCIPLINES

LIFE CYCLE STAGES

WHAT HOW BUILD USE
REQUIREMENTS

DEFINITION

Monitor Risk

Plan Risk
Mitigation

Refine Planned
Budgets, Schedules

Hold CCBs

Develop
Operational
System Concept

Define
Requirements
– functional
– interface
– performance
– operating
– life cycle
– economic
– political
– physical

Examine
Requirements for
– SOW congruency
– testability
– consistency

Prepare Test Plans

Perform
Requirements and
Design V&V

Determine
Standards
Conformance

Begin Test
Procedure
Development

Perform
Requirements and
Design V&V

Complete Test
Procedures

Examine Design,
etc., for Detail
Adequacy

Conduct
Acceptance
Testing

Examine Products
for Mutual
Consistency

Conduct On-site
Acceptance
Testing

Baseline Products

Monitor
Operational Use

Archive Incident
Reports and
Change Requests

Allocate
Requirements to
Hardware and
Software

Define Major
Subsystems

Define Subsystem
Structure

Describe Data Flow

Describe Processes

Specify
Quantitative
Performance
Criteria

Expand
Preliminary Design
to Permit Coding

Conduct Peer
Reviews

Design Required
Databases

Develop User
Documentation

Transform Design
into Computer
Code

Construct
Databases

Demo Evolving
System

Conduct Code
Walkthroughs, Unit
and Integration
Testing

Mass Produce
Computer Code
and User
Documentation

Package Tested
Code and
Documentation

Ship Package to
Customer

Provide Training

Monitor
Operational Use

Compile User
Feedback

Prepare Proposal
to Respond to
User Feedback

Decide Whether
System Is Ready
to Ship

Solicit Customer
Feedback

Monitor Customer
Feedback

Determine
Follow-on Work

PRELIMINARY
DESIGN

DETAILED
DESIGN

PRODUCTION
DEPLOYMENT

OPERATIONAL
USE

CODING

SELLER Organization

The Change Control Board (CCB) is a
CUSTOMER/SELLER forum convened periodically
throughout the project’s life cycle to
(1) manage product development and project change,
(2) record associated decisions, and
(3) manage expectations.

CUSTOMER/SELLER INTERACTION

MANAGEMENT

DEVELOPMENT

SENIOR MANAGEMENT
AND

PROJECT MANAGEMENT

PRODUCT
ASSURANCE

QUALITY ASSURANCE

VERIFICATION
&

VALIDATION

TEST & EVALUATION

CONFIGURATION
MANAGEMENT

ANALYSIS

DESIGN ENGINEERING

PRODUCTION (CODING)

UNIT TESTING
SUBSYSTEM TESTING

INSTALLATION

TRAINING

CCB
Product

AssuranceDevelopment

Management

$ $

Figure 2–6 This six-stage life cycle gives added visibility to the design activity by dividing the HOW into two sepa-
rate stages—PRELIMINARY DESIGN and DETAILED DESIGN. Such added visibility is desirable when the HOW is as-
sessed to be particularly risky. The example activities shown above need to be addressed in the project plan for
each life cycle stage. The plan should account for multiple iterations of the activities shown in correspondence with
the risk assessed for these activities.

ptg

tion. During operational use, management monitors customer feedback and
determines if there is follow-on work.

The development tasks include developing an operational system concept. De-
pending on the overall size of the project, the concept may consist of a one-
page graphic, a detailed written report, or something in between. The
description of each software function embodied in the operational system
concept may simply be a one-sentence definition or one or more paragraphs
amplifying particular aspects of the function (e.g., its scope, qualitative per-
formance, characteristics, and/or subfunctions). For example, a requirements
specification for a system to count the number of rain days during a month
may contain a statement such as the following:

The software shall maintain monthly counts of the number of days during
the month when rain fell.

As the project unfolds, the Requirements Definition Stage may be revisited
and the requirements specification may be further detailed as follows:

If rain totaling at least 0.02 inch fell during the 24-hour period, the num-
ber of rain days shall be incremented by one.

Various standards exist for writing software requirements specifications. The
Institute of Electrical and Electronics Engineers (IEEE) produces one such
standard.3 This standard, first issued in 1984 and republished with revisions
in 1994, defines eight characteristics of a good requirements specification.
These characteristics include “unambiguous,” “complete,” and “traceable.”
This standard provides guidance on how to write an unambiguous and com-
plete software requirements specification.

The product assurance tasks include examining the requirements for SOW con-
gruency, correctness, ambiguity, completeness, consistency, stability, verifia-
bility, modifiability, and traceability. The seller’s product assurance
personnel may begin preliminary testing work by delineating a test strategy.
The product assurance tasks include asking the following fundamental ques-
tion: Are the requirements testable? If the requirements are not testable, it is
hard, if not impossible, to demonstrate to the customer that the software sys-
tem fulfills the customer’s needs.

Preliminary Design Stage Activity in this stage focuses on making the tran-
sition from what the software is to do to how the software is to accomplish the
what.

The management tasks continue from the requirements definition stage. CCB
meetings are held as often as necessary to ensure the customer and seller
agree on how the requirements are designed into the envisioned computer

Chapter 2 • Project Planning Process

82

3“IEEE Recommended Practice for Software Requirements Specifications.” IEEE Standard 830-1993
(New York: Institute of Electrical and Electronics Engineers, Inc., April 8, 1994).

ptg

code. The frequency of CCB meetings may increase just before and just after
agreed-upon milestones. The increased meeting frequency helps to keep the
management informed on the project’s progress so that it can respond to any
potential problems immediately. We have found that when there is more
communication, the customer’s expectations are met more often, and the
seller’s insight into what its project team can actually accomplish is well un-
derstood. Consequently, the customer gets what is wanted, and the seller
does a better job of estimating what needs to be done to ensure successful
completion.

The development tasks include allocating the functions defined in the Require-
ments Definition Stage to software and hardware (if this allocation was not
performed in the Requirements Definition Stage). The outline of what eventu-
ally will become computer code is specified. Major subsystems are defined,
and the top-level structure within each of these subsystems is broken out.
Data-flows into and out of the system are described together with the pro-
cessing within each subsystem that transforms inflows to outflows. Quantita-
tive performance criteria (e.g., how fast, how accurate, how frequent) are
specified.4

The product assurance tasks include verifying and validating the requirements
and preliminary design, determining whether the requirements and prelimi-
nary design conform to established project standards, and developing test
procedures in accordance with the test strategy.

Detailed Design Stage Activity in this stage focuses on expanding the de-
sign outline from the preceding stage.

The management tasks are essentially the same as during the preliminary de-
sign stage. Management needs to monitor closely the schedules and to get to-
gether with the customer as soon as it is apparent that there is a schedule slip.
Simply stated, good management is no surprises.

The development tasks include prescribing the software structure in sufficient
detail to permit coding. Consider the following simple example. Assume that
the preliminary design specification contains the following statement:

Sum the hourly rainfall amounts [for day x]. If the sum is greater than
0.02 inch, increment the value of RAINDAYS in file PRECIPCOUNT.

Chapter 2 • Project Planning Process

83

4Such quantitative performance criteria may sometimes be specified in the Requirements Definition
Stage. For example, a customer may want a message processing system that, because of known mes-
sage volumes, must be capable of processing a specified number of messages per hour. Frequently,
however, quantitative performance criteria derive from qualitative statements of customer require-
ments. These quantitative criteria thus represent how to accomplish what the customer asked for—and
thus represent design. For example, a customer may have a qualitative requirement for display of re-
alistic animation of human motion. From this (qualitative) requirement for realistic (as opposed to,
say, freeze-frame or jerky) animation may be derived a (quantitative) software design performance
criterion of a specified number of display images that the software must produce each second on a
video device.

ptg

Assume that the preliminary design specification is expanded during this
stage and the following additional detail (bolded text) is added:

Sum the hourly rainfall amounts [for day x]. If the sum is greater than
0.02 inch, add 1 to the value of RAINDAYS in file PRECIPCOUNT.

Ideally, the level of detail in the Detailed Design Stage should be such that the
activity in the Coding Stage is little more than a simple transcription into
some computer language of the words in the design documentation. The de-
tailed design for software is like an engineering drawing of a hardware com-
ponent showing all the parts, their dimensions, their interconnections, and
the material from which they are to be constructed. Also during the Detailed
Design Stage, the databases needed for system operation are designed. In ad-
dition, user documentation (i.e., manuals prescribing the commands and
other procedures for operating the software) is developed.

The product assurance tasks include verifying and validating the requirements
with the detailed design, and examining the design for detail adequacy. Prod-
uct assurance also prepares plans and procedures for testing the software
code in subsequent stages. Completing the test plans and procedures is a
time-consuming exercise. In addition, many times the development work
does not finish as planned, and the product assurance schedules are affected.
Project planning activities should account for such potential schedule
slippages.

Coding Stage Activity in this stage focuses on turning the detailed design
into language that computer hardware can understand.

The management tasks include deciding whether the computer code is ready
to ship to the customer. This management decision is tied, in part, to the CCB
meetings that take place, and the testing that the developers and product as-
surance personnel conduct. Assume that early in the life cycle the customer
and seller management establish the CCB as one forum for obtaining agree-
ment. As the project life cycle unfolds, the customer and seller management
routinely meet to discuss and agree upon what needs to be done. The product
assurance personnel work with the developers both to ensure that the re-
quirements are testable and that the design specifications logically follow
from the testable requirements. Test plans and detailed test procedures are
developed and presented to the customer. The test procedures lay out the
button-pushing steps to be performed. The procedures simply compare what
is specified to be seen (as detailed in the requirements and design specifica-
tions) with what is actually observed (as detailed in the actual computer
code) by the testers. If what is specified matches what is observed, then the
seller management can make an informed decision to ship the product to the
customer. This simple example illustrates an approach for determining “ac-
ceptance criteria” that can be presented to a potential customer. Using this
approach, both seller and customer management can make an informed deci-
sion to ship and accept the product.

Chapter 2 • Project Planning Process

84

ptg

The development tasks include coding activities that ultimately yield a product
for end use by the user in the user’s own environment. CASE technology has
blended the design and coding stages; moreover, it helps the developers lay
out the logical design and also provides an automated capability to generate
the physical computer code. In addition, CASE technology has shifted some
of the burden of computer code generation from the developers to software
tools. Regardless of how the computer code is generated, the code must be
tested at multiple levels as it is being put together and on completion of this
integration. This testing helps to assure that the computer code embodies the
detailed design and the user’s needs.

The product assurance tasks include acceptance testing, as well as examining
the software or software-related products for mutual consistency. Customer-
approved acceptance test plans and procedures, in part, can help make accep-
tance of a product a moot point. From the seller’s perspective, acceptance
testing is a value-added discipline. From the customer’s perspective, accep-
tance testing helps to reduce the risk of not getting what is needed.

Production/Deployment Stage Activity in this stage focuses on (1) produc-
ing the software code after satisfactory completion of all testing in the Coding
Stage, (2) packaging the tested software code (with user documentation), and
(3) shipping it to the customer for operational use.5

The management tasks include monitoring the delivery of the product to the
customer and solicitating customer feedback on the project activities. Such
feedback is used to improve the overall software systems development
process.

The development tasks include tailoring the product, if the product is intended
for a range of customers with specialized needs, from the Coding Stage to
these needs. In conjunction with this tailoring, testing similar to that per-
formed in the Coding Stage is conducted to provide a degree of assurance
that the tailored product conforms to customer needs.

The product assurance tasks include performing on-site installation and accep-
tance testing, as well as ensuring that the product(s) are baselined in accor-
dance with organizational standards.

Operational Use Stage Activity in this stage focuses on use of the software
by the customer in her or his environment.

The management tasks include monitoring customer feedback on the perfor-
mance of the product and determining potential follow-on work.

The development tasks include monitoring the operational use of the product,
compiling and analyzing customer feedback (particularly user feedback), and
preparing development proposals to respond to the user feedback. A

Chapter 2 • Project Planning Process

85

5For some organizations, “producing” the software code may mean “mass-producing” the software
code. Such organizations may produce hundreds, thousands, or millions of copies of the software
code for distribution to their customer community.

ptg

by-product during this stage is customer detection of latent software defects
and customer definition of enhancements or new capabilities that precipitate
revisits to one or more of the preceding stages.

The product assurance tasks include testing bug fixes and archiving problems
that were not solved (test incident reports) and change requests that were not
incorporated into the product.

Prototyping Life Cycle Example

Figure 2–7 depicts the following three-cycle prototyping life cycle:6

♦ Definition Cycle. The objective of this cycle is to define the overall system
concept and the set of requirements that the prototype is to satisfy. The
user’s perspective of the system via the user’s interface is specified. In ad-
dition to defining the human computer interface, all other interfaces to the
system’s surrounding environment are established and validated. The em-
phasis is on defining all data flowing in and out of the system, and the for-
mat and manner of data transmission. The primary evaluators for this
cycle are from the end-user community. The end users’ objectives are fo-
cused on evaluating the needs and effectiveness of the human computer
interface. The operational concept is validated in terms of ease of use, ease
of learning, timeliness and appropriateness of outputs, and complementa-
tion of the users’ abilities. The primary output of the Definition Cycle is the
skeleton version of the prototype.

♦ Application Cycle. The object of this cycle is to evaluate the design of the
system. This refinement cycle is characterized by extensive knowledge ac-
quisition efforts with the domain experts. The design is evaluated in terms
of both the chosen knowledge representation and the accompanying
problem-solving methods. The primary evaluators for this cycle are the ex-
perts. The primary objective is to verify and validate the knowledge and
problem-solving methods as an accurate representation and model of cogni-
tive skills brought to bear in solving the stated problem. The main portions
of the system architecture and design are considered complete. The primary
output of the Application Cycle is the essential version of the prototype.

♦ Transition Cycle. The objective of this cycle is to achieve customer accep-
tance of the system as a deliverable product. This acceptance entails a de-
tailed evaluation of the system design as a whole. Additional functionality
not deemed essential, and consequently deferred until this cycle, is

Chapter 2 • Project Planning Process

86

6This discussion is an adaptation of D. A. Fern and S. E. Donaldson, “Tri-Cycle: A Prototype Method-
ology for Advanced Software Development,” Twenty-Second Annual Hawaii International Conference on
System Sciences (HICSS-22), IEEE Catalog No. 89TH0243-6, Volume II, Software Track (Los Alamitos,
CA: IEEE Computer Society Press, 1989), pp. 377–386. The conference, held in Hawaii on January 5–6,
1989, was sponsored by the University of Hawaii in cooperation with the Association for Computing
Machinery, the IEEE Computer Society, and the Pacific Research Institute for Information Systems
and Management.

ptg

Chapter 2 • Project Planning Process

87

SYSTEMS

DISCIPLINES

LIFE CYCLE STAGES

WHAT HOW BUILD
DEFINITION CYCLE

WHAT HOW BUILD
APPLICATION CYCLE

WHAT HOW BUILD USE
TRANSITION CYCLE

Establish Project Scope, Controls, and
Standards

Develop Prototype Project Plan

Obtain End-user’s Concurrence

Define Problem Statement

Describe Initial Prototype Concept

Identify Critical Success Factors

Specify Prototype Requirements

Examine Prototype Concepts

Develop Prototype Shell or Mock-up
(i.e., Skeleton Prototype)

Developing User Interface

Perform Unit, Module, and
System Testing

Define Test Strategy and Testing Data

Compare Prototype Requirements with
Skeleton Prototype

Revise Scope, Controls, and Standards

Revise Project Plan

Obtain Domain Experts’ Concurrence

Revise Prototype Concept and
Requirements

Specify New Prototype Requirements

Define Problem Solving Strategies

Develop Major Prototype Functionality
(i.e., Essential Prototype)

Obtain Required Data

Perform Unit, Module, and
System Testing

Prepare Acceptance Test Procedures

Compare Prototype Requirements
with Essential Prototype

Revise Scope, Controls, and Standards

Finalize Project Plan

Obtain Customer Acceptance

Finalize Prototype Concept and
Requirements

Specify Host Environment
Modifications

Develop All Prototype Functionality
(i.e., Final Prototype)

Perform Unit, Module, and
System Testing

Perform Acceptance Test Procedures

Compare Prototype Requirements
with Final Prototype

SELLER Organization

The Change Control Board (CCB) is a
CUSTOMER/SELLER forum convened periodically
throughout the project’s life cycle to
(1) manage product development and project change,
(2) record associated decisions, and
(3) manage expectations.

CUSTOMER/SELLER INTERACTION

MANAGEMENT

DEVELOPMENT

WORK PLANNING

MANAGEMENT REVIEW

PRODUCT
ASSURANCE

TESTING

VERIFICATION
&

VALIDATION

SPECIFICATION

EVOLUTION
(CODING)

UNIT TESTING

SUBSYSTEM TESTING

CCB
Product

AssuranceDevelopment

Management

$ $

Figure 2–7 This prototyping life cycle gives added visibility to the (1) evolving customer requirements, (2) most difficult re-
quirements to be implemented, and (3) transition from the development environment to the operational environment.

ptg

resolved. For example, issues such as the integration and handling of ex-
ceptional cases are resolved and implemented during this cycle of system
evolution. Additional rounds of knowledge acquisition may be necessary
to include the deferred functionality. The increased depth of the software
must be consistent with design decisions made earlier in the process. Thus,
some components of these so-called “nonessential” software modules are
addressed in this cycle. The primary output of the Transition Cycle is the
final version of the prototype.

This model of software development is a blend of evolutionary prototyping
and classical software management techniques that progresses through three
refinement cycles (i.e., Definition, Application, and Transition). The entire
process, which can consists of one or more iterations through the three refine-
ment cycles, culminates with a clear and concise problem statement, a com-
plete set of requirements and associated specifications, a succinct statement of
the system concept, and an operational (albeit, possibly incomplete) proto-
typed system. This prototyping model attempts to instill increased discipline
into the prototype development process. This model also brings together four
diverse groups of people: system developers, domain experts, end users, and
customers. Each group has different interests, concerns, and motivations for
the development of a system. The prototyped system provides a common
language through which they can communicate their views and serves as a
tangible means to analyze and evaluate system requirements and concepts.

Information Engineering Life Cycle Example

Figure 2–8 depicts the following six-stage information engineering (IE) life cycle:

♦ Information Strategy Planning
♦ Business Area Analysis
♦ Business Systems Design
♦ Technical Design
♦ Construction
♦ Retirement

In general, management, development, and product assurance systems disci-
plines come into play during each IE life cycle stage. These three systems dis-
ciplines for IE software systems development projects are described as
follows:

♦ Management tasks involve both the senior and project management ensur-
ing that what is needed is built correctly. These tasks are the following:
♦ Work Planning. Refining the work plan, including the scope of the work,

schedule, staff, and other resources required for the life cycle stage.

Chapter 2 • Project Planning Process

88

ptg

89

SYSTEMS

DISCIPLINES

LIFE CYCLE STAGES

WHAT HOW BUILD
INFORMATION

STRATEGY PLANNING
BUSINESS AREA

ANALYSIS
BUSINESS SYSTEMS

DESIGN
TECHNICAL

DESIGN
CONSTRUCTION RETIREMENT

WHAT HOW BUILD WHAT HOW BUILD USE

ISP<–>Standard
Project Plan<–>
Check List

ISP<–>ISP

ISP Test Strategy
Section

Baseline
Project Plan . . .

ERD<–>Standard
Analysis Plan<–>
Check List

ERD<–>Subject
Areas

ISP Test Strategy
Section

Baseline
Project Plan . . .

User Screens<–>
Standard

Design Plan<–>
Check List

Procedures<–>
Processes

Proc. Action
Diagrams<–>
Process Action
Diagrams

Test Proc. for User
Screens, Data
Transfer. . .

Baseline Design
Plan, Records . . .
Update Plans . . .

Physical
Database<–>
Standard
Develop Plan<–>
Check List

Physical
Database<–>
Records, Link
Records, Fields
Load Modules
<–>Dialog Flow,
Procs. . . .

Perform Test
Procedures in
Development
Environment

Baseline
Development
Plan, Databases
. . .Update Plans . . .

Application Pgms.,
Tables, Views
<–>Standards
Implement Plan
<–>Standard

Table Views<–>
Physical Database,
Application
Programs<–>
Source Code

Perform Test
Procedures in
Operational
Environment

Baseline
Implementation
Plan, Tables, Pgms.
. . .Update Plans . . .

Affected Data<–>
Standard
Retire Plan<–>
Check List

Affected Data and
Programs<–>
Implementation
Plan

Reperform Test
Procedures
Because of
Affected Data and
Programs

Baseline
Retirement Plan,
Catalog and Archive
Products

SELLER Organization

The Change Control Board (CCB) is a
CUSTOMER/SELLER forum convened periodically
throughout the project’s life cycle to
(1) manage product development and project change,
(2) record associated decisions, and
(3) manage expectations.

CUSTOMER/
SELLER
INTERACTION

MANAGEMENT

DEVELOPMENT

WORK PLANNING

MANAGEMENT REVIEW

PRODUCT ASSURANCE

QUALITY ASSURANCE

TEST & EVALUATION

CONFIGURATION
MANAGEMENT

VERIFICATION
&

VALIDATION

INFORMATION GATHERING

DATA ANALYSIS

INTERACTION ANALYSIS

ACTIVITY ANALYSIS

Info. Needs

Project Plan

Architectures

Consistency
Checks

Business Model
Review

Design Plan
Consistency Checks

Design Model
Review

Test Plan Review

Consistency Checks

Unit Tests

Module Tests

System Tests

Consistency Checks

Acceptance Test
Results Review

Retirement Plan
Review

Scope

Standards

Project Plan

Scope

Standards

Analysis Plan

Scope

Standards
Implementation
Planning

Scope

Standards
Development Plan

Training Needs and
Schedule

Retirement Plan

Infor. Arch.

Business System
Arch.

Technical Arch.

Process Logic

Entity Life Cycle

Process Action
Diagrams

Procedure Action
Diagrams

Source Code Application
Programs

Affected
Applications

User Notification

Functions

Function
Dependencies

Processes

Process
Dependencies

Procedures

Dialog Flow

Load Module
Definitions

Cutover Affected
Procedures

Hardware
Disposition

Subject Areas Entity Types

Relationships

Attributes

Records

Link Records

Fields

Physical Database
Model

Data Transfer

Tables

Views

Affected Data

Organization

Critical Success
Factors

Info Needs

Business Systems
Knowledge

User Screens

On-line Help

Target Envr.

User and Admin.
Manuals

Cutover Schedules Retire Schedule

System Component
Disposition

CCB
Product

AssuranceDevelopment

Management

$ $

Figure 2–8 This information engineering life cycle gives added visibility to enterprisewide (1) information
needed to support development of business systems, (2) data, (3) activities needed to process the data, and
(4) activity/data interaction.

Chapter 2 • Project Planning Process

ptg

♦ Management Review. Verifying the completeness and consistency of each
stage’s results.

♦ Development tasks add increased detail and specificity as work in a given
stage proceeds. These tasks are the following:
♦ Information Gathering. Obtaining the knowledge necessary to under-

stand customer needs and the relationship of those needs to the cus-
tomer’s overall business and obtaining information about the data and
activities associated with the business.

♦ Data Analysis. Developing and refining information about the data—be-
ginning with defining high-level activities in the Information Strategy
Planning and Business Area Analysis Stages and continuing through
construction of physical database models during the Technical Design
Stage.

♦ Activity Analysis. Developing and refining information about business
activities, from identifying business functions to generating and main-
taining source code.

♦ Interaction Analysis. Assessing the effect of the business activities and
data on each other.

♦ Product Assurance tasks provide the development project with a system of
checks and balances. These checks and balances are realized through the
integrated application of the following four processes:
♦ Quality Assurance. Checks whether the software conforms to established

standards and exposes parts that don’t conform. If under “standards”
are included things like software development plans, the QA process
checks whether the product development process itself conforms to
what the software development staff said it was going to do. Thus, with
these definitions, product quality and process quality mean, respec-
tively, conformance with product standards and conformance with
process standards.

♦ Verification and Validation. Checks for any oversights or deviations from
customer requirements and predecessor products and exposes them.

♦ Test and Evaluation. Exercises software code and data, checks for short-
falls from requirements and design documents and then exposes them.
T&E is thus a special case of V&V.

♦ Configuration Management. Balances the need to make changes with a vis-
ible, traceable, and formal way to control those changes. The need for
change arises primarily from the application of the other three product
assurance processes.

Figure 2–8 shows the individual tasks to be performed in a given life cycle
stage. The following is an interpretation of these tasks:

♦ For the Work Planning task during the Information Strategy Planning
Stage (first row, first column, of IE life cycle work stages), the scope of the
work to be performed and the standards to be followed during the life cycle
stages are often defined by the customer management, reviewed by seller

Chapter 2 • Project Planning Process

90

ptg

project staff, and approved by both the customer and seller management.
The project plan is defined by the seller project staff, then reviewed and ap-
proved by both customer and seller management.

♦ For the Management Review task during the Information Strategy Plan-
ning Stage (second row, first column, of IE life cycle work stages), the infor-
mation needs of the organization, the project plan, and the supporting
architectures are defined by project staff, then reviewed and approved by
both customer and seller management.

♦ For the Information Gathering task during the Information Strategy Plan-
ning Stage (third row, first column, of IE life cycle work stages), the project
team performs this task using project work groups and facilitated workshop
sessions, such as joint requirements planning (JRP) and joint application de-
sign (JAD) sessions. Programmatic experts and customer representatives
supply information about the customer’s mission, organization, critical success
factors, and information needs in order to plan the project work group sessions.
Seller project team members and customer representatives jointly develop
the agenda, invite the attendee list, and conduct the workshops with middle-
level customer organization managers. Information is collected about the or-
ganization, information architecture, and technical architecture. Quality
assurance tables are constructed, capturing key quality characteristics for or-
ganization data and activities. After the information has been analyzed,
workshops are conducted with the customer’s top-level managers and staff.
Following each workshop, minutes are prepared and the information that
has been gathered is analyzed.

♦ For the Data Analysis task during the Business Area Analysis Stage (fourth
row, second column, of IE life cycle work stages), the data are analyzed for
the customer’s business area. The subject areas identified in the Information
Strategy Planning Stage are expanded in detail and evolve into the defini-
tions for entity types, relationships, and attributes, which are captured in an en-
tity relationship diagram (ERD). Partitioning, attribute classification, and
value derivation lead to an entity hierarchical diagram (EHD). Together,
these two types of diagrams form the logical data model that is a picture of
the data required and their relationships for the defined business area.

♦ For Activity Analysis during the Business Area Analysis Stage (fifth row,
second column, of IE life cycle work stages), the functions and their depen-
dencies defined in the Information Strategy Planning Stage are further de-
composed into processes (and corresponding process dependencies). The
hierarchical relationships of the activities performed by the business are
determined, as well as the description of what each process does and what
entity types each process affects. A dependency analysis is performed to
relate the lowest-level processes to each other to validate that all the activi-
ties have been identified. The result of this activity analysis is a set of de-
pendency diagrams and an activity hierarchy diagram.

♦ For Interaction Analysis during the Business Area Analysis Stage (sixth
row, second column, of IE life cycle work stages), the processes are related
to the entity types, attributes, and relationships. Changes to each entity

Chapter 2 • Project Planning Process

91

ptg

type by various processes—from their creation to termination—are ana-
lyzed and documented in an entity life cycle or entity state transition dia-
gram (also referred to as life cycle analysis). This step validates the data
and processes by verifying that the entire life cycle of the particular entity
type is addressed. As part of the interaction analysis, the process logic for
the lowest-level processes is defined and represented as process action dia-
grams. These process definitions are part of the building blocks for the
Business Systems Design Stage.

♦ For the Quality Assurance task during any IE life cycle stage, process and
product quality are checked, respectively, by (1) checking a product
against a standard for that product and (2) checking a process against a plan
defining how the process is to be carried out. For example, to check for
process quality in the Business Area Analysis Stage, a checklist is derived
from the analysis plan and is used as the basis for determining whether the
engineering process defined in the plan is followed. An example of a prod-
uct QA check in the Business Area Analysis Stage would be comparing an
Entity Relationship Diagram (ERD) against a standard defining how ERDs
are to be constructed.

♦ For the Verification and Validation task during any IE life cycle stage, a
product is checked against predecessor products. For example, this activity
checks that an ERD, defined in the Business Area Analysis Stage, is carry-
ing through the intent of the subject areas, defined in the Information Strat-
egy Planning Stage.

♦ For the Test and Evaluation task during early IE life cycle stages, test plan-
ning documentation indicating what testing is to be performed is prepared;
during later IE stages, test procedure documentation indicating how the
testing is to be performed is prepared. For example, in the Business Sys-
tems Design Stage, a test plan is developed that specifies what tests are to
be performed to exercise user screens, on-line help, . . . that were defined dur-
ing the Information Strategy Planning Stage.

♦ For the Configuration Management task during any IE life cycle stage,
plans and products are baselined and updated in a controlled manner. For
example, the analysis plan that is initially created in the Business Area
Analysis Stage is baselined; the initial version of the project plan (baselined
during the Information Strategy Planning Stage) is updated.

Project planning for traditional systems engineering, prototyping, or informa-
tion engineering systems development tasks not only entails a fundamental
understanding of life cycles but also requires insight into the hazards that
typically arise in the real world of software systems development. The fol-
lowing discussion describes alternative project planning views of the work to
be accomplished.

Project Planning Views

Figure 2–9 depicts these three views of project work accomplishment:

Chapter 2 • Project Planning Process

92

ptg

Chapter 2 • Project Planning Process

93

Seller Project

Team

Route

Project
Plan

Hazards

Customer

CCB

Decision Forum

Next Left
Change Control Board

(CCB)

Lack of
Documentation Personnel

Turnover

Unanticipated
Requirements
(Changes)

What do we
do next?

Realistic Planning View of Work Accomplishment3

Seller Project

Team

Route

Project
Plan

Hazards

Lack of
DocumentationPersonnel

Turnover

Unanticipated
Requirements
(Changes)

What do we
do next?

Real View of Work Accomplishment2

Seller Project

Team

Keep
going!

Ideal View of Work Accomplishment1

First Task

Next Task

Next Task

Next Task Route

Project
Plan

Figure 2–9 Although the shortest distance between two points is a straight line,
project planning needs to account for the hazards that typically arise in the real
world of software systems development. Successful software systems develop-
ment involves planning for the hazards and establishing a means—the CCB—for
managing the hazards that can jeopardize project completion.

ptg

♦ Ideal view of work accomplishment. The ideal view puts the seller project
team (i.e., management, development, and product assurance staff) on a
straight-line development path from the first task to be accomplished to
the envisioned software system to be developed. The tasks are laid out in a
sequential and somewhat overlapping sequence from beginning to end.
The project team starts with the first task and drives towards the next task,
then the next task, etc. The ideal view of work accomplishment can result
in ideal project plans that understate what is needed to get the job done.

♦ Real view of work accomplishment. It is difficult, if not impossible, to
plan every step along the way. No matter how well a plan is put together,
there is always a difference between planned and actual. The real view of
work accomplishment puts the seller project team on a straight-line devel-
opment path, but the team realizes that there are real-life hazards in the
way of a successful development effort. One frequent hazard is personnel
turnover. People change jobs, move, get married, and retire. Another haz-
ard is the lack of project documentation, such as requirements specifica-
tions, domain knowledge, mission statements, and so on. Then, of course,
there are those unanticipated requirements that the customer did not antic-
ipate at project start. The seller project team is faced with deciding what to
do next to navigate around these hazards. The real view of work accom-
plishment poses a planning challenge to account for these hazards.

♦ Realistic planning view of work accomplishment. The realistic planning
view puts the seller project team on a straight-line development path, but
the team realizes that the real-life hazards can be dealt with and/or
avoided. The team deals with these real-life hazards by planning a CCB
mechanism into their project plan. The CCB provides the team with a deci-
sion forum to review progress, analyze hazards, and discuss alternative so-
lutions. At this forum representatives from both the seller and the
customer meet to discuss and decide what to do next to respond to and/or
avoid real or potential hazards. If personnel turnover is a potential prob-
lem, a CCB decision might be to cross-train personnel. If there is a lack of
documentation (e.g., requirements specification) for a legacy system, a
CCB decision might be to substitute an existing user’s manual for the re-
quirements specification and then to develop a specification. If unantici-
pated requirements need to be addressed, then the CCB can decide what to
do next. We are not suggesting that every decision needs to take place at a
CCB. However, when decisions could affect project deliverables, schedule,
resources, or project plan accomplishment, then we recommend a meeting
between the customer and seller. Good management is no surprises. A
subsequent CCB meeting can record the fact that a customer/seller meet-
ing did take place, decisions were made, and action items assigned. Peo-
ple’s memories fade quickly, and writing things down helps to avoid
potential misunderstandings. The point here is that a project plan needs to
account for CCB-like meetings to handle the changes and/or hazards that
are a part of any software systems development effort.

Successful software systems development projects involve (1) assessing the
risk of accomplishing the customer’s statement of work, (2) allocating appro-

Chapter 2 • Project Planning Process

94

ptg

priate resources to mitigate the identified risks, (3) monitoring the risks
throughout the project, and (4) deciding how to deal with the risks. The next
section describes an approach for risk assessment and risk-derived resource
allocation while developing and maintaining a project plan.

2.5 Risk Assessment and Project Planning

Developing a project plan includes the determination that a project is high
risk, medium risk, or low risk. As shown in Figure 2–10, risk criteria are
applied to a customer’s SOW to help determine the risk associated with the

Chapter 2 • Project Planning Process

95

Risk Assessment

Project Labor $$$ Percentages by Requisite Discipline

Risk Assessment Result

Risk

Risk Reduction

Customer

SOW

High

Medium

Low

Management

Development

Product Assurance

Risk-Assessed Project

Risk Criteria

Figure 2–10 Project planning involves assessing the risk of accomplishing the cus-
tomer’s statement of work. Product assurance serves to mitigate the project risk and
should therefore be commensurate with the assessed risk.

ptg

project. The assessed risk is represented by a propeller-driven airplane.
Hopefully, a good job is done assessing the risk, and the seller’s project team
can see it coming. Appropriate management, development, and product as-
surance resources can be allocated for risk reduction. We define risk reduction
to mean “reducing the likelihood that software systems development prod-
ucts will (1) not be delivered on time, (2) not be delivered within budget, and
(3) not do what the seller and customer mutually agreed that the products are
supposed to do.”

Our approach for allocating appropriate management, development, and product
assurance resources is repeatable. This approach includes the following:

♦ A set of risk assessment criteria derived from both your organization’s and
industry-wide experience correlating project characteristics with project
outcome.7

♦ Iteration among the parties involved with applying these criteria to
achieve consensus.

Figure 2–11 shows an example set of risk criteria used for risk assessment and
corresponding risk-derived resource allocation percentages. Your organiza-
tion will have its own set of risk criteria. It is important to establish a database
of risk criteria for your software systems development projects. You should
involve both the project team staff and your business and finance staff in
establishing your organization’s risk criteria. Risk comes in many forms.

Resource estimating is not an exact science, but if the risk assessment criteria
provided in Figure 2–11 are applied to a given SOW by different groups
within your organization, the outcomes of this risk assessment would be pre-
dominantly one of the three risk categories (high, medium, and low). High-
risk projects demand more risk reduction; therefore, product assurance is
allocated twenty percent of the resources, management is allocated fifteen
percent for oversight, and development is allocated sixty-five percent.
Medium-risk projects require less risk reduction, and low-risk projects re-
quire even less.

The rationale underlying the percentages in the pie charts is the following:8

♦ The medium-risk pie chart is assumed to be the “average software systems
development project.” Industry experience shows that allocating approxi-
mately ten percent of the total project labor to product assurance is a good risk
reduction strategy for a broad range of projects. This experience is the basis

Chapter 2 • Project Planning Process

96

7One way to define a set of risk criteria is to review your organization’s projects and compile a list of
lessons learned.
8See, for example, the following references for insights into product assurance budget percentages:
1. K. Shere, Software Engineering and Management (Englewood Cliffs, NJ: Prentice Hall, 1988), pp.

80–93.
2. R. Dunn, Software Defect Removal (New York: McGraw-Hill Book Company, 1984), p. 60.

ptg

Chapter 2 • Project Planning Process

97

A project is high risk if two or more of the following criteria
apply:

● Unique application
● Lack of up-to-date documentation
● Inexperienced development staff
● No schedule slack
● Uncertain requirements
● Multiple customers
● Subcontractor labor hours at least 50% of total
 development labor hours. Associated risks: less
 management flexibility, subcontractor rate increases.
● Software failure results in death, injury, or large financial
 loss to either the customer or seller.

A project is low risk if the project is not high or medium risk
and if three or more of the following criteria apply:

● Application domain well understood
● Up-to-date documentation
● Experienced development staff
● Flexible schedule
● Requirements certain
● Customer not new to the seller
● Software failure does not result in death, injury, or large
 financial loss to either customer or seller.

A project is medium risk if the project is not high risk and if
two or more of the following criteria apply:

● Application domain not well understood
● Documentation not up-to-date
● Some inexperienced development staff
● Little schedule slack
● Some major requirements uncertain
● First-time customer for seller
● Subcontractor labor hours between 25% and 50% of total
 development labor hours. Associated risks: reduced
 management flexibility, subcontractor rate increases.
● Software failure results in high visibility within customer
 community.

If the project does not match two of the medium-risk criteria
above, the project is then assessed against the low-risk criteria.
If the project does not match three of the low-risk criteria, the
project is considered medium risk.

Medium-Risk Project

Low-Risk Project

Risk Criteria Risk Assessment
% Risk-Derived

Resource Allocation

High Risk

Medium Risk

High-Risk Project

Low Risk

10%

10%

15%

20%

10%

5%

85%

80%

65%

Management

Development

Product Assurance

123456789*0#

Figure 2–11 Assessing project risk during project planning is key to allocating dollar resources for risk-reduced project plan
accomplishment. The risk criteria shown are examples illustrating the approach. They are a starting point for constructing your
own criteria tailored to the needs of your environment.

ptg

for the medium-risk product assurance percentage. It has been our general
practice to allocate in the neighborhood of ten percent of the project labor to
management. This practice is reflected in the medium-risk pie chart. Conse-
quently, eighty percent of the project labor is allocated to development.

♦ In general, the high-risk criteria that are listed substantially increase pro-
ject risk over the risks embodied in the medium-risk criteria. Thus, the
high-risk product assurance percentage is determined by doubling the
medium-risk product assurance percentage (i.e., 2*0.10 = 0.20). The high-
risk management percentage is determined by increasing the medium-risk
management percentage by fifty percent (i.e., 0.10*1.5 = 0.15). Conse-
quently, sixty-five percent of the project labor is allocated to development.

♦ The low-risk product assurance percentage is determined by halving the
corresponding medium-risk percentage (i.e., 0.5*0.10 = 0.05). Since it has
been our general practice to allocate ten percent of the project labor to
management, the low-risk management percentage is the same as the
medium-risk management percentage (i.e., 0.10). Consequently, eighty-five
percent of the project labor is allocated to development.

♦ The more criteria that apply within a given category, the more firmly estab-
lished is the risk for that category, and less leeway from the percentages
shown should be considered. For example, if four high-risk criteria apply to
an SOW, then the greater is the likelihood that the project may run into trou-
ble. Consequently, the resource allocation should be in close conformance to
the high-risk percentages shown. If, on the other hand, risk criteria apply to
an SOW from more than one risk category, then more leeway should be al-
lowed in allocating resources to management, development, and product as-
surance. For example, an SOW might have one high-risk criterion (e.g.,
unique application) and two medium-risk criteria (e.g., little schedule slack,
some major requirements uncertain). Even though this SOW would be clas-
sified as medium risk, it may be prudent to allocate resources somewhere be-
tween the high-risk percentages and the medium-risk percentages.

It is important for the participants involved in the risk assessment process to
achieve consensus. The purpose of the consensus is to allow differences that
may result from the application of the risk criteria to be given visibility to all the
participants. In this manner, all the participants evolve toward a joint
understanding of the risk associated with completing the software systems de-
velopment project on time, within budget, and in compliance with documented
customer requirements. In general, resource estimating is, at best, educated
guesswork. Despite the proliferation of resource-estimating models, estimat-
ing resources required to do a software systems development effort cannot be
solely reduced to an exercise of plugging numbers into a set of formulas.

Figure 2–12 delineates our logic for applying risk criteria to a customer’s
SOW. The procedure for applying these criteria is the following:

♦ The high-risk criteria are to be considered first. If any two of the listed crite-
ria apply to the SOW, the project is categorized as high risk, and the high-risk

Chapter 2 • Project Planning Process

98

ptg

Chapter 2 • Project Planning Process

99

Yes

Yes

Yes

No

No

No

Risk Assessment and Risk-Derived Resource Allocation

Low Risk

10%
5%

85%

Medium Risk

10%
10%

80%

Management

Development

Product Assurance (Risk Reduction)

High Risk

15%

20%

65%

Project is
high risk

Apply high-risk
criteria to

customer SOW

Match ≥ 2
criteria?

Project is
medium risk

Project is
medium risk

Apply medium-
risk criteria to

customer SOW

Match ≥ 2
criteria?

Project is
low risk

Apply low-risk
criteria to

customer SOW

Match ≥ 3
criteria?

Risk Resource Allocation Risk Reduction

Figure 2–12 This logic illustrates how risk criteria can be applied to determine whether a project is
high, medium, or low risk. This logic offers you insight into developing your own risk assessment ap-
proach on the basis of your own risk criteria. The assessed project risk is used to allocate resources
among the management, product assurance, and development disciplines. The dollars allocated to
product assurance serve to reduce project risk.

ptg

pie chart applies. Consequently, sixty-five percent of the project labor dollars
are to be assigned to development, fifteen percent to management, and
twenty percent to product assurance. (Note: The high-risk criterion related
to subcontractor labor hours is not known in detail until the project planning
staff lays out the detailed development approach. However, in some cases, it
is a priori known that subcontractor labor will be a majority of the develop-
ment team labor. If the amount of subcontractor labor is not a priori known,
then this criterion may be introduced in subsequent iterations of the cost es-
timates, particularly if it is uncertain whether a project should be classified as
high risk or medium risk. A similar comment applies to the medium-risk cri-
terion related to subcontractor labor hours.)

♦ If the SOW is not determined to be high risk, then the medium-risk criteria
are to be considered. If any two of the medium-risk criteria shown apply to
the SOW, the project is categorized as medium risk and the medium-risk
pie chart applies. Consequently, eighty percent of the project labor dollars
are to be assigned to development, ten percent to management, and ten
percent to product assurance.

♦ If the SOW is not determined to be high or medium risk, then the low-risk
criteria are to be considered. If any three of the low-risk criteria shown
apply to the SOW, the project is categorized as low risk, and the low-risk
pie chart applies. Consequently, eighty-five percent of the project labor
dollars are to be assigned to development, ten percent to management, and
five percent to product assurance.

♦ If the preceding steps do not yield a criteria match, then the project is as-
sumed to be medium risk, and the medium-risk pie chart applies.

This risk assessment logic can also be applied at the task level, sub-task level,
etc. Furthermore, as the project unfolds, this logic can be applied on a periodic
or event-driven basis as a part of your overall risk management approach.

Our risk assessment approach folds experience into rules of thumb designed
to provide top-down, risk-derived resource allocation estimates. As subse-
quently explained, these risk-derived resource allocations are compared with
bottom-up, detailed task-derived resource estimates. This top-down, bottom-
up comparison typically involves several iterations to reconcile the scope of
work within perceived budget constraints.

In the next section, we integrate the project planning concepts of life cycle,
change management, risk assessment, and resource allocation, and discuss
ideas on how to generate a project plan.

2.6 Project Planning Process

The purpose of this section is to provide you with guidance for developing an
ADPE element that defines the project planning process for your organiza-
tion. Our approach is to pull together the concepts discussed in preceding
sections of this chapter.

Chapter 2 • Project Planning Process

100

ptg

The heart of your project planning ADPE element should be a process flow
diagram. Figure 2–13 presents such a diagram based on the ideas discussed
earlier. You can use this diagram as a starting point to define your project
planning process. We walk you through this diagram to give you specific in-
sight into how you can adapt this diagram to your environment. The discus-
sion that follows is keyed to the numbers in the shaded boxes and the labeled
arrows in the figure.

Figure 2–13 consists of the following responsible agents, major project plan-
ning process activities, and major communication paths:

♦ Responsible agents:
♦ Customer
♦ Seller Senior Management
♦ Seller Project Manager
♦ Seller Development Manager
♦ Seller Product Assurance Manager
♦ Seller Business Manager
♦ Seller Project Planning Staff consisting of Seller Development Manager,

Seller Product Assurance Manager, and Seller Project Manager
♦ Major project planning process activities:

♦ Provides SOW Containing Work Requirements to Seller
♦ Review SOW, Communicate with Customer, and Assemble Project

Planning Team
♦ Perform Risk Assessment and Determine Risk-Derived Resource

Allocation
♦ Develops Development, Product Assurance, and Management Ap-

proaches and Corresponding Task-Derived Resource Estimates
♦ Calculates Task-Derived Dollar Estimates
♦ Calculates Risk-Derived Dollar Estimates
♦ Reconcile Task-Derived Dollar Estimates with Risk-Derived Dollar Esti-

mates and Integrate Approaches
♦ Major communication paths:

♦ SOW (i.e., Statement of Work)
♦ Questions and Clarifications
♦ Risk-Derived Resource Allocation Percentages
♦ Risk-Assessed SOW
♦ Task-Derived Resource Estimates
♦ Development, Product Assurance, and Management Approaches
♦ Task-Derived Dollar Estimates
♦ Risk-Derived Dollar Estimates
♦ Integrated Approaches
♦ Reconciled Cost Estimates
♦ Risk-Reduced Project Plan

Chapter 2 • Project Planning Process

101

ptg

Seller Senior Management

Seller Project Manager

Seller Development Manager

Seller Product Assurance Manager

Seller Business Manager

Seller Project Planning Staff

Seller Business Manager

(e.g., Medium Risk Scenario where
Risk-Derived Resource Allocation =
● Development = 80%
● Product Assurance = 10%
● Management = 10%)

Risk
Perform
Risk
Assessment
and
Determine
Risk-
Derived
Resource
Allocation

Resource
Allocation

Seller Senior Management

Seller Project Manager

Seller Development Manager

Seller Product Assurance Manager

Seller Business Manager

Review SOW,
Communicate
with Customer,
and Assemble
Project
Planning Team

Questions
&

Clarification

Integrated
Approaches

Development,
Product

Assurance,
and

Management
Approaches

Task-Derived
Dollar Estimates

Risk-Derived
Dollar Estimates

Reconciled
Cost Estimates

Develops
Development,
Product Assurance,
and Management
Approaches and
Corresponding
Task-Derived
Resource Estimates

Calculates Task-Derived Dollar Estimates

(e.g., Task-Derived Dollar Estimates =
● Development = $100K
● Product Assurance = $25K
● Management = $15K)

Customer

Customer
SOW

CUSTOMER

Provides
SOW
Containing
Work
Requirements
to Seller

Risk-Reduced Project Plan

1 2 3
0 . =

4 5 6 +
7 8 9 –
C = / *

Seller Business Manager

Calculates Risk-Derived Dollar Estimates

(e.g., Risk-Derived Dollar Estimates =
● Total Project = $100K/0.80 = $125K
● Product Assurance = $125K * 0.10 = $12.5K
● Management = $125K * 0.10 = $12.5K)

1 2 3
0 . =

4 5 6 +
7 8 9 –
C = / *

Seller Development Manager

Seller Product Assurance Manager

Seller Project Manager

Seller Business Manager

Management

What
Next

?

Development

Product Assurance

Reconcile Task-Derived
Dollar Estimates with
Risk-Derived Dollar Estimates
and Integrate Approaches

3

4

5

6

2

1

7

$100K

$25K

$15K

$140K

Dev

PA

Mgt

Total

Task-
Derived

$12.5K

$12.5K

$125K

Risk-
Derived

Task-Derived Development Dollar Estimate

Task-Derived Resource Estimates

Risk-Assessed SOW

Ri
sk

-D
er

iv
ed

 R
es

ou
rc

e
A

llo
ca

tio
n

Pe
rc

en
ta

ge
s

SOW

SOW

Operational
Use

CodeDesign
Require-
ments

Definition

Management

Development

Product
Assurance

Systems
Disciplines

Life Cycle
Stages

ACTIVITIES

Figure 2–13 The software project planning process is risk-based and development driven. The planning process in-
volves (1) assessing risks associated with meeting customer requirements, (2) defining resource percentages for de-
velopment, product assurance, and management based on this assessment, (3) developing corresponding
approaches and task-derived resource estimates, (4) reconciling task-derived and risk-derived resource estimates,
and (5) integrating the approaches. The end result is a risk-reduced project plan with increased likelihood for suc-
cessful accomplishment.

ptg

We walk you through Figure 2–13 in terms of the preceding elements and
their interaction during the project planning process. Also, we provide a sim-
ple example to clarify key points.

1. Provides SOW Containing Work Requirements to Seller. The starting
point for the project planning process is the statement of what the cus-
tomer wants the seller to do. The customer’s requirements are packaged
into an SOW. The customer provides the seller with an SOW in which
the level of detail can vary from a list of simple one-line statements to a
document spanning hundreds of pages. No matter where in this spec-
trum an SOW lies, it will generally precipitate questions from the seller.

2. Review SOW, Communicate with Customer, and Assemble Project
Planning Team. The customer delivers the SOW to seller management.
Depending on your organization, this management may be the (1) soft-
ware project manager, (2) software project manager’s boss, (3) manager
responsible for generating business, (4) project planning manager, or
(5) some combination of these. This management carefully examines the
SOW contents. In general, this examination will generate a list of questions
that will require customer clarifications (e.g., what the meaning is of cer-
tain deliverables requested, what the customer is to furnish to the seller,
where the work is to be performed, what is the schedule slack). Seller
management needs to get answers to these questions before a realistic
project plan can be written. Depending on the SOW size and complexity,
seller management may have to iterate a number of times with the cus-
tomer before SOW questions are answered.
Generally, SOW examination is also coupled with the assembling of the
project planning team, which is responsible for putting the words on
paper. Depending on your organization, this team may consist of (1) indi-
viduals from a group dedicated to writing project plans, (2) individuals
who will perform and manage the work called out in the project plan, or
(3) some combination of these.

3. Perform Risk Assessment and Determine Risk-Derived Resource Allo-
cation. A candidate list of managers who make up this management is
the (1) senior management (e.g., a corporate vice president), (2) project
manager, (3) development manager(s), (4) product assurance manager,
and (5) business manager (i.e., the manager responsible for contractual
matters). Depending on your organization, more than one of these man-
agers may be the same person.
Earlier in this chapter, we showed you how to set up criteria for doing
risk assessment. Your version of these criteria is to be applied here. The
result of applying your risk criteria to the SOW is a risk-assessed SOW. The
purpose of this risk assessment is to gauge the possibilities of not being
able to accomplish the tasks set forth in the SOW.

Assume that you have performed the risk assessment and you have de-
termined that the project is medium risk.

Chapter 2 • Project Planning Process

103

ptg

As we showed earlier, this risk assessment should be coupled to the per-
centage of project labor resources to be allocated respectively to the
development, product assurance, and management disciplines. Your ver-
sion of these percentages should be applied here to produce what we call
risk-derived resource allocation percentages. As explained earlier, these
percentages are used as top-down guidance that are compared with the
development, product assurance, and management task-derived resource
estimates in subsequent activities of the project planning process.
Before we proceed to the next project planning process activity, several
observations are in order regarding the risk-derived resource allocation
just described.
♦ If you are a seller, you need to ensure that the risk assessment criteria

you use are reasonably unambiguous so that the application of these
criteria by different people or organizations give repeatable results.
Here, “repeatable” means that if the criteria are applied by different in-
dividuals or organizations, the results will cluster in one risk category.
Earlier in this chapter, we gave you three sets of example criteria defin-
ing high-, medium-, and low-risk projects. These criteria are derived
from actual project experience and did, indeed, produce repeatable re-
sults in the sense defined here.

♦ Both sellers and customers need to understand what risks mean.

Since our example project is assumed to be medium risk, the risk-derived re-
source allocation percentages are assumed to be eighty percent for develop-
ment, ten percent for product assurance, and ten percent for management.
These percentages are used later in the cost estimation calculations to com-
pare this resource allocation guidance with detailed planning estimates. The
next step is to develop a development approach that is supported with prod-
uct assurance and management activities.

4. Develops Development, Product Assurance, and Management Ap-
proaches and Corresponding Task-Derived Resource Estimates. This
box includes the activities associated with putting the words on paper to
generate the project plan document. The heart of this activity is the for-
mulating of the technical details of the (1) development approach the devel-
opers intend to follow to meet the customer’s SOW requirements,
(2) product assurance approach to support this development approach, and
(3) management approach to guide the developers and effect synergism be-
tween them and the product assurance team. These three approaches are
then used to develop task-derived resource estimates for accomplishing the
approaches.
The seller project planning staff is responsible for these activities. Ideally,
this staff should consist of the people who actually perform/manage the
work set forth in the plan. In some organizations, this ideal may not be
realized because some of these people are already performing on other

Chapter 2 • Project Planning Process

104

ptg

projects. Some organizations in which work is periodically or continually
coming in may have a cadre of people dedicated to project planning, or
available on a part-time basis for project planning. Whatever the organi-
zational setup, the subprocess of writing the project plan consists of the
following activities (although described sequentially, actual accomplish-
ment of these activities may overlap depending on such factors as simi-
larities between the project to be planned and previously accomplished
projects):

4a. Defines Development Approach and Development Task-Derived
Resource Estimate. The seller development manager defines the de-
velopment approach by tailoring the generic four-stage life cycle to
the SOW content as discussed earlier in this chapter. Remember that
the purpose of adopting a life cycle for the project is to bring to the
fore a sequence of development tasks (and corresponding product as-
surance and management tasks) that need to be accomplished. The
life cycle adopted is nothing more than a high-level task template.
We note that this tailoring process is not necessarily unique. That is,
depending on how much visibility the seller and the customer may
want into the development process, it may be desirable to slice one or
more stages into multiple stages. For our simple example, Figure 2–13
shows a tailored life cycle consisting of four stages. This four-stage
life cycle shows a single stage for requirements definition and a single
stage for design. This four-stage breakout may be a perfectly logical
way to address SOW content. However, if, for example, the software
requirements are uncertain, it may be cost-beneficial to break this sin-
gle stage into a Preliminary Requirements Definition Stage and a De-
tailed Requirements Definition Stage. With this approach, you can
reduce the risk of spending too much time trying to settle on require-
ments specifics by first settling on broader requirements issues.
From the tasks called out in the development approach, the seller de-
velopment manager generates a task-derived resource estimate. This
estimate is typically expressed in terms of labor hours needed to ac-
complish the product development tasks. To standardize this re-
source estimation process, you may want to develop a set of
worksheets that contains task names as rows and hours as columns,
where the hours columns may depend on project risk. For example,
for the development of a design document on a high-risk project, you
may want to produce multiple drafts for review before going final,
whereas on a low-risk project, a single draft may suffice. In your or-
ganization, you may break out these hours into various labor cate-
gories (e.g., analyst, senior designer, designer, trainer). Typically,
each labor category has an hourly rate associated with it so that the
hours can be converted to dollars or whatever unit of currency is
used in your organization. The development approach becomes the
driver for the product assurance and management approaches.

Chapter 2 • Project Planning Process

105

ptg

4b. Defines Product Assurance (PA) Approach and PA Task-Derived
Resource Estimate Based on Development Approach and Risk. The
seller product assurance manager defines the product assurance ap-
proach by using the SOW and the tasks identified in the develop-
ment approach. In laying out this approach, this manager assures
that all products called out in the development approach are re-
viewed. This manager uses the SOW as a double check on the devel-
oper’s approach to ensure that no SOW requirements have been
overlooked.

Like the seller development manager, the seller product assurance
manager generates a task-derived resource estimate. Again, to stan-
dardize this resource estimating within your organization, you may
want to develop a set of worksheets that contains product assurance
task names as rows and hours as columns, where the hours columns
may depend on project risk. For example, for a design document on a
high-risk project, multiple drafts may be produced, each one requir-
ing a product assurance review, whereas on a low-risk project, only
one draft requiring product assurance review may be produced.

4c. Defines Management Approach and Management Task-Derived
Resource Estimate Based on Development Approach and Risk. The
seller project manager defines the management approach by using
the SOW and the tasks identified in the development approach. In
laying out this approach, this manager assures that all products
called out in the development approach are given appropriate visibil-
ity through the development of an adequate number of drafts. As
part of laying out this approach, the seller project manager needs to
assure that the development approach calls out adequate drafts. Like
the product assurance manager, the project manager uses the SOW as
a double check on the developer’s approach to ensure that no SOW
requirements have been overlooked.
Like the seller development manager, the seller project manager gen-
erates a task-derived resource estimate. Again, to standardize this re-
source estimating within your organization, you may want to
develop a set of worksheets that contains management task names as
rows and hours as columns, where the hours columns may depend
on project risk. For example, for a high-risk project, you may want to
have weekly CCB meetings, whereas on a low-risk project, monthly
meetings may suffice for management visibility purposes. The project
manager should ensure that the resource estimate includes project
participation by the project manager’s manager and other senior
managers within the organization. Again, the extent of this senior
management involvement is a function of project risk—the higher the
risk, the greater the need for senior management involvement.

We stress throughout this chapter the need to plan for anticipated, but
unknown, change throughout project accomplishment. To address this

Chapter 2 • Project Planning Process

106

ptg

need, all three managers involved with laying out the project plan must
fold into their approaches CCB meetings throughout the project. In par-
ticular, when doing resource estimates, these managers need to ensure
that they allocate hours for CCB participation and related activities such
as minutes preparation and presentation of responses to action items.
Furthermore, the project plan needs explicitly to address the role of the
CCB in managing project change. For example, it can specify a suggested
format for CCB minutes and call for the development of a CCB charter
(or include the charter itself). One shortcut way of handling the CCB role
is to cite an ADPE element governing CCB operation that your organiza-
tion has incorporated into its engineering environment. Chapter 4 gives
details on how such an element can be put together.

5. Calculates Task-Derived Dollar Estimates. This box includes the activi-
ties associated with converting the task-derived resource estimates from
labor hours to labor dollars. This conversion to task-derived dollar estimates
provides a common base for comparison, whereas labor hours by labor
category do not.
5a. Calculates Task-Derived Development Labor-Dollar Estimate. The

seller business manager uses the development task-derived labor-
hour estimate to calculate the development task-derived labor-dollar
estimate. Assume that the development labor-dollar estimate is
$100,000.

5b. Calculates Task-Derived Product Assurance Labor-Dollar Estimate.
The seller business manager uses the product assurance task-derived
labor-hour estimate to calculate the product assurance task-derived
labor-dollar estimate. Assume that the product assurance labor-
dollar estimate is $25,000.

5c. Calculates Task-Derived Management Labor-Dollar Estimate. The
seller business manager uses the management task-derived labor-hour
estimate to calculate the management task-derived labor-dollar esti-
mate. Assume that the management labor-dollar estimate is $15,000.

At this point in our project planning process, the following has been assumed:
♦ The project is medium risk (development, product assurance, and manage-

ment resource allocation percentages are eighty percent, ten percent, and
ten percent, respectively).

♦ A four-stage life cycle is to be used for developing development, product
assurance, and management approaches.

♦ The development ($100,000), product assurance ($25,000), and manage-
ment ($15,000) labor-dollar estimates total $140,000.

The next activity is to calculate risk-derived dollar estimates using the risk as-
sessment resource allocation percentages and the development labor-dollar
estimate.

Chapter 2 • Project Planning Process

107

ptg

6. Calculates Risk-Derived Dollar Estimates. This box includes the ac-
tivities associated with using the risk-derived resource allocation per-
centages and the task-derived development labor dollars to calculate
risk-derived dollar estimates.
6a. Calculates Total Risk-Derived Project Labor-Dollar Estimate Based

on Development Labor Dollars. The seller business manager simply
divides the development labor-dollar estimate by the risk-derived de-
velopment resource allocation percentage to calculate the total risk-
derived project labor-dollar estimate.
Using the $100,000 development approach example given above, the
total risk-derived project labor-dollar estimate becomes $100,000/0.80
= $125,000. The risk-derived guidance indicates that the total labor re-
sources needed for the project is the amount $125,000. This number
does not include hardware, software, communication lines, etc., that
may be needed to accomplish the SOW tasks.

6b. Calculates Risk-Derived Product Assurance Labor-Dollar Estimate.
The seller business manager simply multiplies the total risk-derived
project labor-dollar estimate by the risk-derived product assurance
resource allocation percentage to calculate the risk-derived product
assurance labor-dollar estimate.
For the example just given, the risk-derived product assurance labor-
dollar estimate becomes $125,000*0.10 = $12,500.

6c. Calculates Risk-Derived Management Labor-Dollar Estimate. The
seller business manager simply multiplies the total risk-derived project
labor-dollar estimate by the risk-derived management resource alloca-
tion percentage to calculate the risk-derived product assurance labor-
dollar estimate.
For the example just given, the risk-derived management labor-dollar
estimate becomes $125,000*0.10 = $12,500.

At this point in the project planning process example, it has been assumed
that the task-derived dollar estimates versus the risk-derived dollar estimates
are as follows:

♦ Development—$100,000 versus $100,000.
At this point in the project planning process, both development estimates
are always the same. As shown above, the task-derived development labor
dollars and the corresponding risk percentage are used to calculate the
overall risk-derived project labor dollars. The total risk-derived project
labor dollars are then multiplied by the product assurance and manage-
ment risk-derived resource allocation percentages to account for assessed
risk. As shown next, it may be necessary to revisit the development
approach to rethink what needs to be done. Such revisits trigger adjust-
ments to the product assurance and management approaches, as well as
corresponding resource requirements.

Chapter 2 • Project Planning Process

108

ptg

♦ Product assurance—$25,000 versus $12,500.
♦ Management—$15,000 versus $12,500.

The next activity is to reconcile the differences between the task-derived esti-
mates and the risk-derived estimates for product assurance ($25,000 versus
$12,500) and for management ($15,000 versus $12,500).

7. Reconcile Task-Derived Estimates with Risk-Derived Estimates and
Integrate Approaches. This activity integrates the work performed in the
preceding steps. The responsible agents for performing this integration
are the development manager, product assurance manager, project man-
ager, and business manager. They review the approaches and remove in-
consistencies. They harmonize development and product assurance
approaches to ensure that all products developed are subjected to prod-
uct assurance review—unless there are extenuating circumstances (such
as tight schedules that only may permit cursory product assurance of
some product drafts). They harmonize development and management
approaches to ensure that on all tasks, management has insight into the
status of the work through such activities as CCBs, scheduled audits, and
project reviews.
If the task-derived and risk-derived estimates are consistent (e.g., within
ten percent of each other), then the task-derived approaches and esti-
mates are ready to be included in the project plan. However, your organi-
zation will need to agree on the definition of consistent. You may decide
that consistency is described in absolute values, e.g., estimates within
$5,000 of each other are considered consistent.
In the example given, the product assurance task-derived estimate
($25,000) is one hundred percent greater than the risk-derived estimate
($12,500). In addition, the management task-derived estimate ($15,000) is
twenty percent greater than the risk-derived estimate ($12,500). Clearly in
this example, there appears to be a misunderstanding of what needs to be
done. The product assurance people may not fully understand what the
developers are proposing. Perhaps, the product assurance people have
had past experiences that they believe justify the $25,000.
If the estimates are not consistent (as in the example), the following three
alternatives are to be considered:
7a. Bring Task-Derived Estimates (and Corresponding Approaches)

into Line with Risk-Derived Estimates. In this case, the responsible
managers need to reevaluate their respective approaches and their re-
sultant resource estimates to attempt to resolve these differences.
Resolution may include reconsideration of the risk-derived resource
percentages. For example, if it turns out that application of the risk
criteria leads to a project that is on the border between two risk cate-
gories (such as being just barely high risk because it satisfied the min-
imum number of criteria to place it in the high-risk category), it may
be desirable to allow more leeway in the consistency check between
risk-derived and task-derived estimates. If the responsible managers

Chapter 2 • Project Planning Process

109

ptg

and the project planning staff cannot resolve their differences, then
senior management should be brought in to break the deadlock.

7b. Redo Development Approach and Corresponding Estimate and It-
erate. After careful consideration of the existing estimates, it may be
necessary to revisit the development approach and iterate through
the process to create a new development approach and correspond-
ing new resource estimate. This rethinking process may help to clar-
ify where the estimates significantly differ.

7c. Combine Items 7a and 7b in Some Manner. It may be necessary to
combine some realignment of the task-derived and risk-derived esti-
mates, with a revisit to the development approach.

Once there is agreement, the managers review the integrated approaches
and coordinate the reconciled cost estimates for inclusion into the project
plan.

The output of these seven activities is a risk-reduced project plan. This plan is
then delivered to the customer. After customer review of the plan, one or
more of the listed activities may have to be repeated—even though Activity 2
included interaction with the customer to clarify SOW issues. The following
are typical reasons why one or more drafts of a project plan may have to be
produced before the customer and the seller converge on project plan con-
tents (part of this process may include SOW revision):

1. The customer may not understand the risk assessment process (e.g., Who or
what is at risk—the seller’s profit? The utility of the customer’s products?).

2. The customer may not have sufficient money to buy the project plan’s ap-
proach. In this case, the customer may have to revise the SOW to reduce
its scope (e.g., remove deliverables).

3. The customer may not understand the value that the product assurance
resources adds to the project and may therefore balk at paying for these
resources.

A project plan development process output is the risk-reduced project plan.
As is indicated in Figure 2–13, the project plan is a living contract between the
customer and seller. The next section presents suggestions on what you may
want to put into your project plan.

2.7 Project Plan Contents

A project plan needs to respond to the customer’s SOW. Some SOWs state the
specific format, down to the font, font size, margins, spacing, etc., and some
SOWs leave the project plan format up to the seller organization. Regardless

Chapter 2 • Project Planning Process

110

ptg

of the SOW, we offer for your consideration the information content delin-
eated in Figure 2–14.9

Consider the following suggested project plan contents:

♦ Project Overview. This section sets the project context.
♦ Purpose—We recommend that you include a statement of the purpose

for which the project is planned to accomplish. This helps to communi-
cate your high-level understanding of the customer’s requirements.

Chapter 2 • Project Planning Process

111

9It should be noted that in some cultures what we call a “project plan” is referred to as a “software de-
velopment plan.”

Project
Overview

Sets the project context
by defining the
purpose, background,
project goals, scope,
assumptions and
constraints, and
reference documents.

Project Risk and
Risk Mitigation

Specifies the project
technical and
programmatic risks
and uncertainties and
defines a risk and
uncertainty mitigation
approach.

Project Resource
Requirements

Defines the required
people, hardware,
software, and other
costs (e.g., travel).

Product Assurance
Approach

Defines the product
assurance tasks to
support management
and development
tasks.

Development
Approach

Defines the technical
tasks to accomplish
the project goals.

CUSTOMER

Organization

SELLER

Organization

BUYER

Organization

USER

Organization

Risk-Reduced Project Plan

$ $

1

27

Management
Approach

Defines the approach
for managing the
development tasks and
interacting with the
customer via the
change control board
(CCB).

Project Work
Schedule

Defines the schedule
to accomplish the
management,
development, and
product assurance
tasks.

36

45

Figure 2–14 The project plan is a living contract between the CUSTOMER and
SELLER that sets forth the work that the seller’s management, development, and prod-
uct assurance disciplines accomplish and the customer management approves. This
figure shows suggested project plan topics and a suggested order for these topics.

ptg

♦ Background—Part of this understanding may be communicated in a his-
torical summary of how and why the project came into being. We rec-
ommend that you include an overview graphic of the current software
system, if appropriate.

♦ Project Goals—To help highlight the specific goals to be achieved as a result
of the project, we recommend that you include an overview graphic of the
envisioned software system. In short, the graphic in the Background sub-
section and the graphic in the Project Goals subsection represent where the
system is today and where the system will be when you are done. Such be-
fore and after graphics help the project team to think through what needs
to be done. Such graphics also help to orient new staff.

♦ Project Scope—The project scope defines the project boundaries and in-
terfaces with other entities, including other contractors and government
agencies, if appropriate.

♦ Assumptions and Constraints—The assumptions and constraints are
listed, discussed, and form, in part, the basis on which the project plan
is written. For example, project deadlines depend upon the receipt of in-
formation and/or feedback in a timely fashion. If such an assumption
does not hold, the plan may need to be changed to accommodate the
change in schedule. Constraints dealing with such things as funding,
time, and interfaces are also listed and discussed.

♦ Project Risk and Risk Mitigation. This section specifies the technical and
programmatic risks identified as a result of your risk assessment.
♦ Identified Risks—Each risk is listed, and an explanation of the potential

impact it may have on the accomplishment of the SOW tasks is
presented.

♦ Risk Mitigation—A risk mitigation approach is presented for each of the
identified risks. If appropriate, the mitigation approach may include
customer actions that may require some negotiation.

The next three sections of the project plan define the seller’s overall technical
approach. As suggested in our risk assessment approach and project plan de-
velopment process, the management, development, and product assurance
approaches are related to the perceived project risks in terms of the tasks to
be performed and the resources required to perform them.

♦ Management Approach. This section defines the management oversight,
coordination, and review activities for the project.
♦ Project Team Organization—We suggest that an organization chart detail-

ing the project team be included and described in terms of the specific
organizational elements performing the work. Key personnel, rationale
for their selection, and corresponding résumés are also recommended.
If subcontractors are to be used, then their participation is identified
and reporting channels are discussed. If appropriate, for positions that
have not yet been staffed, identify the specific qualifications to be used
in your selection process.

♦ Management Oversight and Reviews—This section details the types and
frequency of management reviews, status reports, and project meetings.

Chapter 2 • Project Planning Process

112

ptg

For traditional systems engineering projects, management activities in-
clude monitoring project risk and progress, soliciting and monitoring
customer feedback, and deciding whether the software system is ready
to be shipped to the customer. For prototyping projects, management
activities include obtaining end-user concurrence on human-to-
computer interfaces, domain expert concurrence on the software repre-
sentation of the problem being solved, and customer acceptance of the
prototyped system. For information engineering projects, management
activities include reviewing the information needs of the software sys-
tem users; the business and design models; and the module, system and
acceptance test results. Regardless of project type (e.g., traditional, pro-
totyping, information engineering), we recommend that you plan for a
change control board (CCB) forum to help (1) manage product develop-
ment and project change, (2) record associated decisions, and
(3) manage expectations.

♦ Development Approach. This section defines how the development team
tailored the generic four-stage life cycle to the SOW content. The de-
velopment tasks drive the software systems development effort; they need
to be accomplished in order to respond to the customer’s needs. Remem-
ber that depending on how much visibility the seller and the customer
may want into the development process, it may be desirable to slice one or
more life cycle stages into multiple stages. Each stage can be described in
terms of the tasks to be performed. We recommend that each task be de-
scribed in terms of task objectives, techniques, and tools to be used. Also,
specific milestones to be achieved and deliverables to be developed are
detailed.
For traditional systems engineering projects, development activities in-
clude developing operational system concepts, defining requirements, al-
locating requirements to hardware and software, describing data flow,
conducting peer reviews, designing required databases, conducting code
walkthroughs, providing training, and monitoring operational use.
For prototyping projects, development activities include describing initial
prototype concepts, specifying prototype requirements, developing user
interfaces, revising concepts and requirements, developing major proto-
typing functionality, specifying host environment modifications, and final-
izing prototype concepts and requirements.
For information engineering projects, development activities include defin-
ing critical success factors, information needs, subject areas, entity types,
entity relationships, processes and process dependencies, process action
diagrams, procedure action diagrams, physical database models, and es-
tablishing cutover schedules.
Remember, the development approach becomes the driver for the product
assurance and management approaches.

♦ Product Assurance Approach. This section defines the product assurance
approach by using the customer’s SOW and the tasks identified in the de-
velopment approach. The product assurance approach details the checks

Chapter 2 • Project Planning Process

113

ptg

and balances to be used to help ensure that each developed software sys-
tems product satisfies the customer’s requirements. Checks and balances
are realized, in part, through quality assurance, verification and validation,
test and evaluation, and configuration management. Product assurance re-
sponsibilities are detailed for and tied to the development tasks.
For traditional systems engineering projects, product assurance activities
include examining the requirements for SOW congruency, testability, and
consistency; preparing test plans; determining standards conformance;
completing test procedures; conducting acceptance testing; baselining
products; and archiving incident reports and change requests.
For prototyping projects, product assurance activities include defining test
strategies and test data; comparing prototype requirements with the skele-
ton prototype; preparing acceptance test procedures; and performing ac-
ceptance testing.
For information engineering projects, product assurance activities include
comparing the information strategy plan with a project standard; writing
the test strategy; baselining the project documentation; comparing the en-
tity relationship diagram with identified subject areas for consistency;
comparing procedure action diagrams with process action diagrams for
consistency; performing test procedures in the operational environment;
and comparing the implementation plan with a project standard.
The product assurance approach supports the development approach and
provides managers and developers with additional insight into the status
of the development activities.

♦ Project Work Schedule. This section contains the integrated schedule of
the management, development, and product assurance approaches. A
schedule of deliverables can be presented in a table.

♦ Project Resource Requirements. This section identifies the resources re-
quired to perform the effort described by the management, development,
and product assurance approaches. We recommend that your resource re-
quirements take risk into account as just described.

A table detailing the staff hours by task can be provided. The required hard-
ware and software can be detailed. In addition, other appropriate costs, such
as travel, can be presented.

As shown in Figure 2–15, the project plan is based on the customer state-
ment of work. Tailoring the generic four-stage life cycle to the specific situa-
tion helps you to plan what needs to be done and what resources are
required.

As part of your organization’s project planning process, we recommend you
consider what systems disciplines (i.e., management, development, and
product assurance) are needed during each tailored life cycle stage. This con-
sideration helps to define the tasks to be accomplished during the software
systems development project.

Chapter 2 • Project Planning Process

114

ptg

Chapter 2 • Project Planning Process

115

Project Plan for . . .

Management Approach

Development Approach

Manage the other tasks throughout the project life
cycle via the Change Control Board (CCB).

Life Cycle Stage 1
 Requirements Definition
Life Cycle Stage 2
 Design
Life Cycle Stage 3
 Code
Life Cycle Stage 4
 Operational Use (if the seller is to support the
 system after delivery)

Task 1
 Define requirements.
Task 2
 Specify design to satisfy requirements.
Task 3
 Produce code from design.
Task 4
 Install code at user site(s) and prepare fixes,
 enhancements, and new capabilities by revisiting
 previous tasks.

Product Assurance Approach

Project Schedule

Project Deliverables

Task Name

Day of Month
January 2001

30 6 13 20

Define Req’ts

Review Req’ts

Define Design

Task 1
 Perform QA on requirements.
Task 2
 Perform QA and V&V on design.
Task 3
 Perform CM and T&E on coded system.
Task 4
 Perform QA, V&V, T&E, and CM on fixes,
 enhancements, and new capabilities.

1. Requirements Specification
2. Design Specification
3.

Task

Task

Review
Area

How

Use

BuildWhat

Task

Task

Task

Task

Task

Task

Task

Task

Product Assurance

Development

Management

USEBUILDHOWWHAT

Operational

Use

CodeDesignReq’ts

DefinitionSystems
Disciplines

Life Cycle
Stages

Product
Assurance

Management

Design

Operational
Use

Code

Re
qu

ire
m

en
ts

D
ef

in
iti

on Tailored
Life

Cycle

TaskTask

1

1

2

3

4

5

2

3

Customer

Statement

of Work

(SOW)

Figure 2–15 The project plan defines the seller’s development, management, and product assurance tasks that respond
to a customer’s statement of work (SOW). These tasks emerge by considering the intersection of each life cycle stage
with each system discipline.

ptg

2.8 Project Planning Summary

In this chapter, we focused on the concepts of life cycle, project disciplines,
project players, risk assessment, and a project plan development process. We
also discussed the contents of a project plan and suggested a plan outline.
You can use this outline as a starting point for defining specific project plans.
These concepts can be integrated into an ADPE procedure that details your
organization’s project plan development process.

As illustrated in Figure 2–16, you can use the following annotated outline of
an ADPE procedure as a starting point for defining your organization’s pro-
ject plan development process.

The project planning procedure may consist of the following sections:

♦ Purpose. This section states the purpose of the procedure. The purpose sets
the context and establishes the authority for the procedure. Specific pur-
poses may include the following:
♦ Activities performed by your organizational elements (e.g., your organi-

zation may have a product test element that is responsible for what we
call T&E).

♦ Roles of your organizational elements (e.g., your organization may have
a training element that supplies people to a project who write user’s
manuals and give presentations to customers).

♦ Guidance on time spent for project planning activities (e.g., target time
for producing a project plan).

♦ Background. This section provides an overview of the project planning re-
sponsibilities, project plan structure, and possible project plan categories.
These categories can help to establish the types of work done by your orga-
nization. For example, your organization may build only software systems
using traditional systems engineering techniques or information engineer-
ing methodologies. Regardless, it is important to define the spectrum of
project plans your organization develops or wants to develop.

♦ Project Plan Development Process Overview. This section provides an
overview of the high-level activities of your project plan development
process. We recommend that you develop an overview graphic that de-
picts the high-level activities, their inputs and output, and their interac-
tions with one another. We also recommend that the detailed steps and
individual responsibilities be presented in an appendix. Critical to success-
ful implementation of the project plan development process is effective
communication of the overall process that is supported with the necessary
detail for implementation.

♦ Project Plan Development Process. This section provides the next level of
detail of the project plan development process. We recommend that you
develop a graphic that depicts this level of process activity. This section

Chapter 2 • Project Planning Process

116

ptg

Chapter 2 • Project Planning Process

117

[Your Organization’s Name and Logo] Document #

Date

Document #

Date

1.0 PURPOSE

[Your Organization’s Name] Procedure

Project Plan Development Process

This section states the purpose of the element. The purpose is to delineate your organization’s
project planning process.

2.0 BACKGROUND

This section gives an overview of project planning responsibilities, project plan contents, and
project plan types (e.g., traditional systems engineering or information engineering).

3.0 PROJECT PLAN DEVELOPMENT PROCESS OVERVIEW

This section presents a high-level overview of your organization’s project planning process. The
overview introduces the high-level steps involved with developing a project plan. It is important to
stress that the steps may be performed sequentially, and/or concurrently, depending upon the
particular planning situation.

4.0 PROJECT PLAN DEVELOPMENT PROCESS

This section defines, details, and walks through the high-level project planning steps. A figure
detailing the high-level steps helps to explain how individual responsibilities and activities
interact. Depending on the level of detail appropriate for your organization, appendices can be
used to explain the steps and responsibilities in greater detail.

5.0 ROLES AND RESPONSIBILITIES

This section presents the major organizational responsibilities for (1) preparing and reviewing the
project plan, and (2) negotiating with the customer prior to, during, and subsequent to project plan
preparation to resolve SOW and project plan issues.

APPENDICES

Appendices can contain details for carrying through the instructions set forth in the body of the
procedure. For example, appendices might include such things as (1) elaborations on one or more
of the steps called out in Section 4 (for instance, if one step called out in Section 4 is “Do risk
assessment,” then an appendix might include the actual risk assessment procedure—such as the
one described in this chapter); (2) a matrix indicating, for each step called out in Section 4, who
has the primary responsibility and backup responsibility for performing that step (this matrix
would be an elaboration of what is called out in Section 5 if this section did not delineate
responsibilities down to the individual step level); and (3) example life cycles to be used for laying
out product development approaches.

Figure 2–16 This illustration shows an annotated outline for getting you started defining an ADPE
procedure for your project planning procedure.

ptg

walks the reader through the entire process, but remember that the appen-
dix can contain additional details and responsibilities.

♦ Roles and Responsibilities. This section provides a short description of
the major organization units involved in the planning process. We recom-
mend that a matrix detailing individual responsibilities by task be pre-
pared. Depending upon the matrix size, you may want to make it an
appendix.

♦ Appendices. Appendices are added as necessary. The main body of the
procedure states the basics, and the appendices can add additional detail
that embodies lessons learned or can provide tutorial information. As an
organization matures in its engineering business processes, we recom-
mend that the lessons be captured and incorporated into your ADPE ele-
ments. As people in your organization move on to other jobs, etc., their
knowledge can be incorporated into your ADPE elements that serve, in
some degree, as part of your organization’s corporate memory.

Here are some project planning suggestions:

♦ Ensure that your project plan accounts for the resources required for revis-
its to other life cycle stages.

♦ Use a life cycle and your experiences to help you establish realistic project
planning views of the work to be accomplished.

♦ Plan for a change control mechanism, such as a CCB, to help manage the
anticipated, but unknown, change that accompanies any software systems
development project.

♦ Include risk assessment in your project planning process, and collect
meaningful data that help your organization increase its confidence in its
resource estimates.

♦ Remember that risk assessment can be applied at the subtask level, as well
as throughout the software systems development life cycle.

♦ Educate your staff on your organization’s project plan development
process so that they can understand what they are supposed to do, and
contribute to and improve the process.

We have completed our discussion of the project plan development process.
The next chapter assumes that you have a software systems development
project, and shows you how to define a process for moving products through
your organization for delivery to your customer.

Chapter 2 • Project Planning Process

118

ptg

chapter 3

All my life I’ve known better than to depend on experts. How could I have been so stupid, to let
them go ahead?

—President John F. Kennedy,
conversation with Theodore C. Sorensen concerning the Bay
of Pigs invasion; Quoted in Sorensen, Kennedy, p. 309 (1965).

3.1 Introduction

One measure of successful software systems development is the ability to
produce good products (i.e., products with integrity) with good processes
(i.e., processes with integrity) consistently. Achieving this type of consistency
depends primarily on the presence of the following two factors:

♦ People with know-how. Skilled people are the most important part of suc-
cessful software systems development. But having people with the neces-
sary know-how to turn out good products is not sufficient if good products
are to be turned out consistently.

♦ An understanding of the “organizational way of doing business,” that is,
“process” of building software systems. Left to their own devices, people
do things their own way. Consistency requires an organizational way of
doing things. Furthermore, from a long-term business viewpoint, under-
standing the software process cannot be limited to a few key individuals.

119

Software Systems
Development
Process

chapter 3

ptg

Successful software systems development is a delicate balance among (1) en-
abling people to grow professionally, (2) documenting processes embodying the
experiences and knowledge of the people in the organization, (3) using know-
how to apply such processes appropriately to a set of circumstances, and (4) re-
fining processes based on the experience gained by applying the processes.

What do we mean by “software process”? In this book, we define a software
process as “a set of activities, methods, practices, and transformations that
people use to develop and maintain software and the associated products
(e.g., project plans, design documents, code, test cases, and user’s manuals).”1

Figure 3–1 illustrates people using a software process to develop and main-
tain software and associated products. However, many software develop-
ment organizations do not follow a documented process or way of doing
business. “Good” products can be produced; nevertheless, without a docu-

Chapter 3 • Software Systems Development Process

120

1M.C. Paulk et al., “Capability Maturity Model for Software, Version 1.1,” Software Engineering Insti-
tute Report CMU/SEI-93-TR-24, Carnegie Mellon University, Pittsburgh, PA, February 1993, p. 3.

TESTS

SOFTWARE

Data
Elements

Document

Software and Associated ProductsSoftware Process

User’s Manual

Activities

Write
Module

Integrate
Module

Methods

Step 3
Step 4Step 1

Step 2
. . .

Practices

Design, Code,
Test . . .

Design, Code,
Test . . .

Transformations

(a + b)2 =
(a2 + b2 + 2ab)

USE

USE

PROCESS

Figure 3–1 People use a software process to develop and maintain software and associated products.

ptg

mented process, it is difficult, if not impossible, for an organization to institu-
tionalize a software process that consistently produces products that do what
they are suppose to do, on time, and within budget.

Our concept of a software systems development process is tied to the concept
of organization. In this book, organization means “an administrative and func-
tional structure that operates to produce systems with software content.” Fig-
ure 3–2 gives examples of this concept in terms of five software project
combinations. A software project is “a planned undertaking whose purpose is
to produce a system or systems with a software content.”

Project combination One represents an organization that consists of one soft-
ware project, whereas combination Two consists of two projects. Combina-
tion Three represents a program that is “a collection of software projects
bound by a common goal or a common customer/seller agreement.” Combi-
nation Four represents an organization with multiple programs. Finally, com-
bination Five represents an organization that may cut across company (or
government agency) lines. In the case of companies, this cross-cutting situa-
tion can arise when multiple contractors support a program or project.

This chapter describes an example organizational software systems develop-
ment process. You can use this example as a starting point to formulate (or
enhance) a corresponding process for your environment. By formulate we
mean “documenting a software systems development process that your orga-
nization may already use or would like to use.”

Such an organizational process provides an integrating framework for devel-
oping and implementing a systems engineering environment (SEE). Once the
process is documented in an Application Development Process Environment
(ADPE) element and implemented, other elements can be developed to pro-
vide additional detail. For example, our example process includes a change
control board (CCB), but this chapter’s discussion does not contain the de-
tailed guidelines one would expect for setting up and running a CCB. We rec-
ommend that detailed guidance be contained in another ADPE element (e.g.,
a CCB guideline). Our example process also requires peer reviews, but this
chapter’s discussion does not contain detailed peer review guidance. The
point is that once the organizational software systems development process is
defined, additional detail can be provided in other ADPE elements.2

The plan for this chapter is the following:

♦ In Section 3.2—Software Systems Development Process Key Ideas, we
present the key ideas that you can expect to extract from this chapter.

Chapter 3 • Software Systems Development Process

121

2In this book, we provide additional insight into our example organizational software systems devel-
opment process in other chapters. For example, Section 3.5 discusses the seller process engineering
group’s responsibility for project planning. However, Chapter 2 provides the lower-level planning de-
tails and responsibilities. In effect, Chapter 3 is an ADPE element (i.e., Organizational Software Sys-
tems Development Process Policy) that is supported by a Chapter 2 ADPE element (i.e., Project
Planning Procedure).

ptg

Chapter 3 • Software Systems Development Process

122

Company Alpha Company Beta

5

4

3

2

1

Program X Program Y Program Z

Program X

Project A Project B

Project

A B

Software Organizations

Program X Program Y Program Z

Figure 3–2 This figure shows five example software organizations based on software project
groupings.

ptg

♦ In Section 3.3—Software Systems Development Process Overview, we
introduce key software systems development principles and a software
systems development process. This process sets the context of discussion
for the rest of the chapter. The process offers you a starting point for devel-
oping a similar software systems development process for your place of
business. Without a documented process, heroes make “it” happen. When
the heroes move on, the organization generally regresses, and success be-
comes chancey until new heroes emerge. A documented process helps an
organization avoid an overreliance on heroic efforts. The following major
process elements are introduced: customer, seller process engineering
group; customer/seller development team; change control board (CCB);
seller senior management; and the major communication paths. Each of
these elements is subsequently described in following sections.

♦ In Section 3.4—Customer, we provide tips for the customer for writing a
“good” statement of work (SOW) that tells a seller what the customer
wants. The SOW initiates the software systems development process. Writ-
ing a “good” SOW is not easy. Goodness is defined at the topmost level to
mean “avoiding ambiguity and stipulating deliverables consistent with
available time and money.” Without a good SOW, a software systems de-
velopment effort is in trouble at its inception. We call out issues for the cus-
tomer to consider when writing an SOW.

♦ In Section 3.5—Seller Process Engineering Group, we discuss how the or-
ganizational software systems development process is taken into account
when the seller develops a project plan in response to a customer’s SOW.
This section augments the Chapter 2 discussion of the project planning
process. We point out those seller activities that we believe should be
planned for, regardless of specific life cycle. For example, regardless of life
cycle, we believe the seller should conduct peer reviews for the evolving
products.

♦ In Section 3.6—Customer/Seller Development Team and Change Control
Board (CCB), we focus the discussion on customer and seller communi-
cation and also on seller development team activities. We address the
following:
♦ Customer project manager
♦ Seller development team activities that include communicating with the

customer; evolving software products (i.e., documents, computer code,
databases); conducting peer reviews; providing independent product
assurance; performing technical editing; and performing project-level
technical oversight

♦ Product tracking form
♦ Change control board (CCB)
Some of these concepts are treated in more detail in subsequent chapters
(e.g., Chapter 4 examines CCB mechanics).

♦ In Section 3.7—Seller Senior Management, we highlight the organiza-
tional software systems development process review and approval respon-
sibilities of these managers.

Chapter 3 • Software Systems Development Process

123

ptg

♦ In Section 3.8—Software Systems Development Process Summary, we
summarize the key points developed in the chapter. We include an anno-
tated outline of an Application Development Process Environment (ADPE)
policy for defining a software systems development process.

3.2 Software Systems Development Process Key Ideas

Figure 3–3 lists the key ideas that you can expect to extract from this chapter.
To introduce you to this chapter, we briefly explain these key ideas. Their full
intent will become apparent as you go through the chapter.

1. If you are a customer, specify in your request for proposal (RFP) that the
seller define a software systems development process that involves you via a
CCB-like mechanism.
You should structure your RFP to require the seller to define the partic-
ulars of the seller’s software systems development process. Have the
seller document this process in an ADPE element signed by you and
the seller. This element should be revisited and updated no more fre-
quently than every year.

2. The software systems development ADPE element should contain the fol-
lowing: (1) generic activities performed by seller organizational elements
(including the development, management, and product assurance activities)
in developing software products for delivery to the customer and (2) the
roles of the customer and the seller organizational elements in performing
these activities.
The generic activities should encompass the spectrum of activities from
the receipt of a customer SOW to customer feedback on the delivered
products.

3. Include in the ADPE process element a figure showing the process in terms
of the (1) generic activities, (2) major communications paths connecting the
activities, (3) organization responsible for performing each activity, and
(4) products produced.
The software systems development process figure establishes the
“way” business is to be conducted between the customer and seller.
The explicit labeling of activities and communication paths and detail-
ing organizational responsibilities defines the terms to be used by
everyone. People understand what individual responsibilities are and
how their particular contribution fits into the bigger picture.

4. Seller senior management should empower the project manager to apply
prescriptively the generic activities in the ADPE process element.

Chapter 3 • Software Systems Development Process

124

ptg

Chapter 3 • Software Systems Development Process

125

Software Systems Development Process
Key Ideas

1. If you are a customer, specify in your request for proposal (RFP) that the
seller define a software systems development process that involves you via a
CCB-like mechanism.

2. The software systems development ADPE element should contain the fol-
lowing: (1) generic activities performed by seller organizational elements
(including the development, management, and product assurance activities)
in developing software products for delivery to the customer and (2) the
roles of the customer and the seller organizational elements in performing
these activities.

3. Include in the ADPE process element a figure showing the process in terms
of the (1) generic activities, (2) major communications paths connecting the
activities, (3) organization responsible for performing each activity, and (4)
products produced.

4. Seller senior management should empower the project manager to apply
prescriptively the generic activities in the ADPE process element.

5. Concurrent with development of the process ADPE element, the seller
should develop and periodically present briefings to the customer and seller
personnel on the element’s contents.

6. To establish closure between the seller and customer regarding product de-
livery and acceptance, include in the ADPE process element a form that the
customer returns upon product receipt and a form that the customer returns
stating whether the product is accepted as delivered or requires changes.

Figure 3–3 Successful software systems development is repeatable if an organization has a well-understood and docu-
mented product development process that it follows. Without such a process, the organization must rely on the heroics of
individuals. Here are key process concepts explained in this chapter.

The software systems development process element should therefore
be written so that it allows the project manager to perform the activities
in the order and to the extent consistent with project schedules and
available resources. The process ADPE element should not be written
as a cookbook. There is no one way to build software. Step-by-step
processes that are to be mechanically followed simply cannot account
for the spectrum of contingencies that can arise during software sys-
tems development. People are the most important part of the process.
However, the process helps to provide consistent software develop-
ment. When people make a considered decision to apply prescriptively

ptg

the documented process, the decision needs to be communicated so
that everyone understands what resources the process requires and
what products are to be produced.

5. Concurrent with development of the process ADPE element, the seller
should develop and periodically present briefings to the customer and seller
personnel on the element’s contents.
People need an opportunity to ask specific questions on how the soft-
ware systems development process affects their day-to-day activities.

6. To establish closure between the seller and customer regarding product de-
livery and acceptance, include in the ADPE process element a form that the
customer returns upon product receipt and a form that the customer returns
stating whether the product is accepted as delivered or requires changes.
Customer satisfaction is tied, in part, to customer feedback. Customer
acceptance forms provide the customer (i.e., buyer/user) another op-
portunity to comment on the delivered product. As subsequently ex-
plained, we suggest that customer feedback concerning a delivered
product can be expressed as (1) accepted as delivered, (2) accepted
with minor changes, or (3) rejected.

3.3 Software Systems Development Process Overview

As stated earlier, there is no one way to build software systems. If there were,
software systems development would have been reduced to an assembly-line
operation long ago. However, we believe there are fundamental development
principles that help increase the likelihood of software systems development
success. Software systems development principles provide the foundation for
(1) examining an existing organizational software systems development
process, or (2) defining an organizational development process. As subse-
quently described, we believe the following principles provide this foundation:

♦ Plan the work to be done before doing it.
♦ Obtain agreement on defined responsibilities.
♦ Establish and empower self-directed work teams.
♦ Establish checks and balances.
♦ Maintain continual customer and seller interaction.
♦ Monitor project progress.
♦ Mentor project managers and train work teams.
♦ Provide interim review on project progress.
♦ Provide feedback on deliverables.
♦ Improve the software systems development process.

Chapter 3 • Software Systems Development Process

126

ptg

We believe these principles are fundamental to an organization’s way of
doing software systems development business.

In what sense does software systems development involve a “process” or “a
way of doing business”? If an organization is in its beginnings or infancy,
there may be an idea or concept of how to conduct the software systems de-
velopment business, but the process may not be well-defined. However, the
concept may be well understood by a few key individuals. As the organiza-
tion matures, the development process may mature, and more individuals
may understand the process. At the other end of the spectrum are well-
established organizations. In such organizations, there may be a “defined”
development process, but it may not be documented. Of course, there are or-
ganizations, both new and well established, that do have documented organi-
zational software systems development processes. Regardless of what your
particular situation may be, the concept of “process” can be viewed as a tool
to communicate and explain the activities involved with consistently devel-
oping software systems that (1) are delivered on time, (2) are delivered within
budget, and (3) do what the customers want the systems to do.

Figure 3–4 is an overview of our example organizational software systems
development process. Our example process starts with a customer’s state-
ment of work (SOW) and ends with customer feedback regarding the deliv-
ered products (and supporting services). This process allows for the
planning, evolving, and reviewing of products (i.e., documents, computer
code, data) for delivery to the customer. The figure has round-edged rectan-
gles, rectangles, and labeled arrows. The round-edged rectangles represent
customer-related responsibilities, and the rectangles represent the seller-
related responsibilities. The labeled arrows represent major communication
paths and associated information.

As shown in Figure 3–4, our example organizational process consists of the
following major elements:

♦ Customer
♦ Seller Process Engineering Group
♦ Customer/Seller Development Team (i.e., customer project manager, seller

development team)
♦ Change Control Board (CCB)
♦ Seller Senior Management
♦ Major communication paths

Figure 3–4 also shows the following responsible agents and associated
process activities:

♦ Customer. Prepares SOW, Negotiates Agreement, and Reviews Delivered
Products for Acceptance.

Chapter 3 • Software Systems Development Process

127

ptg

128

CUSTOMER/SELLER DEVELOPMENT TEAM

Organizational Software Systems Development Process

SELLER DEVELOPMENT TEAM

“Day-to-Day” Coordination
and

Technical Guidance

Evolving Product(s)

Deliverable Status

Approved
Deliverable

Items to Be
Resolved

Negotiated
Agreement

Items for the Record and
Issues for Customer Concurrence

Evolving Products
and Technical Guidance

Plans the Work
to Accomplish
the Customer’s
SOW Tasks

Seller Process Engineering Group
Statement of Work (SOW)

Seller Project Plan

Negotiated Agreement

Communicates
with Seller
Project Manager

Customer Project Manager

Change Control Board (CCB)

Customer/Seller Project Management
Hold Project CCB Meetings,
 Project Reviews, and Decide
 What to Do Next

CCB

Minutes

Items for
the Record

Technical
Guidance

and
Evolving
Products

Seller Project Manager Lead Developer
Communicates
with Customer
Project Management
and Evolves
Software Product(s)

Lead Developer or Moderator

Technical
Feedback

Document

Project Plan

Audited
Material

Edited
Material

Reviewed
Material

Product Assurance Manager

Technical Editor

Seller Management

Establishes
Project Files

Conducts
Peer
Reviews

Seller Senior Management

Reviews and
Approves
Product(s)
for Delivery
to Customer

Provides
Independent
Product
Assurance

Performs
Technical
Editing

Performs
Project-level
Technical
Oversight

Computer Code

Data

01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101

Prepares SOW, Negotiates
Agreement, and Reviews
Delivered Products for
Acceptance

Customer

Tracking

Form

CCB

Product
Assurance

Development

Management

Deliverable
Coordinated

at Project Level

Figure 3–4 Our example organizational software systems development process is a closed-looped
process that starts and ends with the customer.

Chapter 3 • Software Systems Development Process

ptg

♦ Seller Process Engineering Group. Plans the Work to Accomplish the
Customer’s SOW Tasks.

♦ Customer Project Manager. Communicates with Seller Project Manager.
♦ Seller Project Manager. Communicates with Customer Project Manage-

ment and Evolves Software Product(s).
♦ Lead Developer. Establishes Project Files.
♦ Lead Developer or Moderator. Conducts Peer Reviews.
♦ Product Assurance Manager. Provides Independent Product Assurance.
♦ Technical Editor. Performs Technical Editing.
♦ Seller Management. Performs Project-level Technical Oversight.

The software systems development process activities are linked together by
the major communication paths. As shown in Figure 3–4, along each commu-
nication path information is transferred from one process element to another.
The information transferred consists of the following items:

♦ Statement of Work (SOW)
♦ Seller Project Plan
♦ Negotiated Agreement
♦ Items for the Record
♦ Technical Guidance and Evolving Products
♦ “Day-to-Day” Coordination and Technical Guidance
♦ Items for the Record and Issues for Customer Concurrence
♦ Evolving Products and Technical Guidance
♦ Tracking Form
♦ Evolving Products (i.e., documents, computer code, or data)
♦ Technical Feedback
♦ Audited Material
♦ Edited Material
♦ Reviewed Material
♦ Deliverable Coordinated at Project Level
♦ Items to Be Resolved
♦ Approved Deliverable
♦ Deliverable Status

As shown in Figure 3–4, the process starts in the upper right-hand
corner when the customer prepares a statement of work (SOW) that details
what the customer wants. The seller’s process engineering group “plans the
work to accomplish the customer’s SOW tasks” and provides the customer
with a seller project plan. Upon mutual agreement, the customer provides the
seller with a negotiated agreement which triggers the customer and seller

Chapter 3 • Software Systems Development Process

129

ptg

development activities.3 These activities involve management, development,
and product assurance systems disciplines.

The seller project manager “communicates with the customer and evolves the
software product(s).” Regardless of how the products evolve, the seller devel-
opment team (1) establishes project files, (2) conducts peer reviews, (3) pro-
vides independent product assurance,4 (4) performs technical editing, and
(5) performs project-level technical oversight. The seller development team
evolves the products and communicates with the customer project manager
to discuss issues that require customer concurrence.

The customer project manager “provides technical guidance to the seller
project manager” as the project unfolds. Both the customer and the seller
project managers “hold project CCBs, project reviews, and decide what to do
next.” After the project products are coordinated by the customer and seller
project managers, the products are sent to the seller senior management for
review and approval before being delivered to the customer.

The seller senior management may identify items to be resolved before the
product is delivered to the customer. In this case, the seller development
team resolves the items and resubmits the product to the seller senior man-
agement for approval. If all items are resolved, the approved deliverable is pro-
vided to the customer for acceptance. The customer provides feedback on the
deliverable status with respect to its acceptability.

One question someone may ask is, “How could my existing organizational
life cycle development activities and technologies fit into the example organi-
zational software systems development process?” As shown in Figure 3–5,
your existing life cycle development activities plug into the following seller
development team activities:

♦ Seller Process Engineering Group. Plans the Work to Accomplish the
Customer’s SOW Tasks.

♦ Seller Project Manager. Communicates with the Customer Project Man-
agement and Evolves Software Product(s).

Our example organizational process is independent of a specific life cycle.
The process requires, regardless of life cycle and supporting technology, that
the preceding process activities be performed to some degree. Your existing
life cycle may be traditional systems engineering, prototyping, or information

Chapter 3 • Software Systems Development Process

130

3Notice that the customer/seller development team encompasses both customer and seller activities.
We believe that both parties must actively participate in the development process. Without such joint
participation, the risk of the project failing increases. The notion that a customer provides the seller
with an SOW containing requirements and then checking on the project, say, six months later, is a
prescription for disaster. At the same time, the customer needs to be careful not to get so involved that
such involvement gets in the way of the seller doing the job.
4Notice that this seller rectangle has a drop shadow. As we subsequently explain, we use this shadow
to denote independent product assurance support provided to the Seller Project Manager.

ptg

131

CUSTOMER/SELLER DEVELOPMENT TEAM

Organizational Software Systems Development Process

SELLER DEVELOPMENT TEAM

Plans the Work

to Accomplish

the Customer’s

SOW Tasks

Communicates
with Seller
Project Manager

Customer Project Manager

Change Control Board (CCB)

Customer/Seller Project Management

Hold Project CCB Meetings,
 Project Reviews, and Decide
 What to Do Next

Lead Developer
Communicates

with Customer

Project Management

and Evolves

Software Product(s)

Lead Developer or Moderator

Product Assurance Manager

Technical Editor

Seller Management

Establishes
Project Files

Conducts
Peer
Reviews

Reviews and
Approves
Product(s) for
Delivery to
Customer

Provides
Independent
Product
Assurance

Performs
Technical
Editing

Performs
Project-level
Technical
Oversight

Prepares SOW, Negotiates
Agreement, and Reviews
Delivered Products for
Acceptance

Customer

Your
Life

Cycle

How

Use

BuildWhat

CCB

Minutes

Tracking

Form

Evolving Product(s)

Document

Computer Code

Data

01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101

Seller Project Manager

Seller Process Engineering Group

CCB

Product
Assurance

Development

Management

Seller Senior Management

Figure 3–5 The software systems development process is independent of product development life cycle
and specific product development technologies. The figure shows where you would introduce your life
cycle(s) to adapt the process to your organization.

Chapter 3 • Software Systems Development Process

ptg

engineering. As subsequently explained, regardless of the life cycle, as a
minimum, the project plan and the corresponding negotiated agreement
should take into consideration these process activities.

Each of the major elements, corresponding information, and their interaction
with one another is detailed in the next four sections.

3.4 Customer

Our organizational software systems development process begins with the cus-
tomer. As shown in Figure 3–4, the customer, among other responsibilities, pre-
pares an SOW detailing what the customer wants the seller to do. In the
software industry, the SOW can manifest itself in widely different ways. An
SOW is called by a variety of different names, such as request for proposal, re-
quest for contractor services, or solicitation. In some environments, the SOW
may be as short as one sentence or a couple of paragraphs. In other environ-
ments, the SOW can manifest itself as a detailed document consisting of hun-
dreds or even thousands of pages. Other SOWs fall somewhere in between.

There are many types of SOWs. Specific SOW types include the following:

♦ Firm fixed price
♦ Fixed price redetermination
♦ Fixed price incentive
♦ Fixed price level of effort
♦ Time and material
♦ Cost plus incentive fee
♦ Cost plus award fee
♦ Cost plus fixed fee
♦ Letter contracts
♦ Delivery order
♦ Basic ordering agreement
♦ Government owned, contractor operated

Regardless of the type of SOW, in general, SOWs contain the same basic ele-
ments. Because of the varying risks associated with software systems devel-
opment efforts, SOWs may specify different management approaches and
incentives. However, writing a good SOW is difficult. It is difficult to know
exactly what is needed. We all get smarter about what we are doing as we do
it, but no matter how well an SOW is written, change happens. The flip side
of this situation is that writing a corresponding project plan is also difficult.
Therefore, depending upon the software systems development effort, the
SOW can allow for change as the project proceeds by calling for revisits to
tasks to update previously developed products.

Chapter 3 • Software Systems Development Process

132

ptg

Figure 3–6 summarizes twelve tips that are intended to help people who are
writing SOWs to overcome the blank-page syndrome. These tips derive from
lessons learned using SOWs to do project planning.

SOW Tip 1—Background

The first tip encourages the customer to provide background on the organiza-
tion, its mission, policies, etc. Background establishes the authority for the
work and lets the potential sellers know the SOW is probably real. The back-
ground also helps to set some context for the seller. However, as any experi-
enced seller would say, if the SOW is the first time the seller understands the
potential customer’s background, the likelihood the seller will “win” the
work is slim. It helps if the seller understands the potential customer.

SOW Tip 2—Points of Contact

The second tip is aimed at increasing effective communication between the
customer and potential seller. Single points of contact help to reduce the con-
fusion of what is really wanted and when.

SOW Tip 3—Task Specification

The third tip is the heart of what the customer wants the seller to do. Typi-
cally, it is useful if the customer specifies what is required and the seller re-
sponds with how the what is to be accomplished and with the dollar amount
the customer is willing to spend. Allowing the seller to respond with how en-
ables the seller to relate previous successful projects and software systems de-
velopment processes to the work being requested. The customer can specify
the degree of innovation the potential seller should propose or even suggest
the criteria for evaluating the seller’s proposal.

SOW Tip 4—SOW Writers

The fourth tip stresses the importance of the customer’s internally coordinat-
ing buyer and user requirements. Such coordination takes time and can affect
schedules. Many false starts in software systems development arise from in-
consistent or uninformed understandings of what the customer wants.

SOW Tip 5—Task Deliverables

The fifth tip suggests that each task produce a deliverable or provide a sup-
porting service. For example, a customer SOW task requires the seller to de-
velop a requirements specification document. The customer also wants to
review interim progress on the specification’s evolution in terms of a topic out-
line and an annotated outline. The customer’s dilemma, in part, is to balance
visibility into the deliverable’s progress with cost and schedule implications of
requiring the seller to produce three deliverables instead of one final deliver-
able. Many factors need to be considered when deciding how many deliver-

Chapter 3 • Software Systems Development Process

133

ptg

134

Statement of Work (SOW) Tips

$ $

BUYER
Organization

USER
Organization

CUSTOMER

Customer
Prepares SOW, Negotiates
Agreement, and Reviews Delivered
Products for Acceptance

1. Background—Give background on your organization to include mission, policies governing seller work, legislative commitments,
level of understanding of seller software systems development practices.

2. Points of Contact—Specify points of contact, including who will be the customer [project] managers interfacing with seller
personnel during work accomplishment. At a minimum, a point of contact who has decision-making authority during work
accomplishment should be specified. This individual will participate in CCB meetings and will be empowered to provide direction
to the seller during work accomplishment.

3. Task Specification—Specify the individual tasks that you want the seller to accomplish. Examples of such tasks are the following:
● Develop and maintain a project plan
● Write a requirements specification to include two drafts and one final draft
● Prepare a user’s manual
● Write an acceptance test plan
● Develop and execute acceptance test procedures

4. SOW Writers—If the buyer and user are from two different organizations, ensure that they jointly prepare the SOW to reduce the
likelihood of conflicting direction to the seller at project start-up.

5. Task Deliverables—Specify deliverables for each task. Such deliverables generally include both products and services. If the
deliverable is a service, include a requirement for some written piece of correspondence that the seller sends you on completion
of service delivery.

6. Due Dates—Specify delivery dates for deliverables, but keep in mind that such dates should be subject to negotiation (via the CCB
mechanism) as the project proceeds.

7. SOW Value—Give some indication of the size of how much you are willing to spend (in some environments, this information may
be prohibited for inclusion in a SOW). Keep in mind that during the project planning activity you and the seller may have to iterate
on cost versus work to be performed as both sides get a better understanding of what needs to be done.

8. Life Cycle—Give some idea of the type of life cycle you would like the seller to try to follow in accomplishing the work. For
example, if your SOW is for a new system, indicate that you would like to follow a specific life cycle or let the seller propose one.
When you lay out your tasks, allow for revisits to life cycle stages. For example, call for a requirements specification at month two
and then call for a requirements specification at month seven.

9. Existing Seller Practices—If the seller has established engineering practices (e.g., the seller has the analogs to ADPE elements that
spell out these practices), reference these practices. Similarly, if your organization has policies and procedures that sellers are
supposed to follow, reference these items. If, for some reason, the work you want done makes it impractical to use your
organization’s policies and procedures, indicate which ones are to be waived, and why.

10. Change Control Board (CCB)—Call for a CCB-like mechanism to be used throughout the work to maintain visibility into project
progress, to provide a trace of this progress, to provide a catalyst for replanning, and to establish a channel for customer/seller
dialogue and interaction.

11. Risk Assessment—Request the seller to assess the risk of accomplishing the work in your SOW. Request that the seller specify the
risk assessment criteria. Also, ask the seller to specify risk mitigation strategies.

12. SOW Revisions—Recognize that your SOW may have to be revised one or more times before coming to closure with the seller.

Figure 3–6 The SOW (Statement of Work) is the customer’s statement of what the customer wants the seller to do. The
figure gives tips to help buyers/users write an SOW.

ptg

ables should be required. In general, the greater the up-front visibility into a
product, the greater the likelihood that once the final product is delivered it will
not have to undergo significant change. However, with less visibility into the
product, the greater the likelihood that there will be a gross disconnect in ex-
pectations and the deliverable will have to be reworked. To balance cost and
visibility, perhaps some of the deliverables can undergo less, but mutually
agreed upon, review and approval before delivery to the customer.

SOW Tip 6—Due Dates

The sixth tip is to set due dates for deliverables. However, this tip will also re-
mind everyone that, as the project unfolds, there may be a requirement to ad-
just the due dates. For many contracts there may be only a few designated
customer people (e.g., contracting official) who can legally bind the customer
with a seller. Furthermore, there may be cases in which any changes to the
negotiated agreement can be changed only by the contracting official. If the
contracting official is responsible for multiple contracts, it may be impractical
to get the contracting official to sign off on every schedule change. In such sit-
uations, we suggest that the customer and seller project managers mutually
agree to a new schedule, record the agreement at a CCB, and subsequently re-
port the change to the contracting official. We also suggest that project
managers be given this authority if the (1) schedule change is not outside the
overall negotiated agreement’s period of performance, and (2) overall
contract value does not change.

SOW Tip 7—SOW Value

The seventh tip is aimed at trying to save everyone time and money. If it is pos-
sible, it is useful for the customer to give some approximation of the dollar
value of the SOW. It makes little sense for a seller to give a million dollar answer
to a hundred thousand dollar problem. Just as it is difficult to write a good
SOW, it is also difficult to write a responsive proposal (e.g., project plan).

SOW Tip 8—Life Cycle

The eighth tip recommends that the seller either specify a preferred life cycle
or let the seller recommend one. It is important that the seller explain how
either life cycle fits into the seller organization’s software systems develop-
ment process or way of doing business.

SOW Tip 9—Existing Seller Practices

The ninth tip encourages the seller, if appropriate, to inform the customer of
internal seller practices, particularly policies and procedures that are to be
followed. If the customer does not want the seller to follow such practices,
then the ones that are waived should be by mutual agreement. There are cer-
tain engineering practices that many sellers require their organizations to fol-
low (this situation may be true for the customer as well). Not following

Chapter 3 • Software Systems Development Process

135

ptg

recognized engineering practices may open the seller to possible criticism,
but if the customer agrees, then there should not be a problem.

SOW Tip 10—Change Control Board (CCB)

The tenth tip encourages the use of a CCB to provide visibility into the project
and a forum for dealing with the unknown, but anticipated, change that ac-
companies any software systems development project. In general, we suggest
for projects of at least six months’ duration, to establish a CCB meeting fre-
quency of no less than monthly. At the beginning, it is preferable to meet
more frequently—even weekly. Within these broad guidelines, allow meeting
frequency to vary as project events dictate. For projects shorter than six
months, CCB meetings held every two weeks is a good starting frequency for
governing the project. As the project unfolds, you can adjust this frequency as
project events dictate—but try to meet at least monthly. To maintain effective
process control, CCB meetings must take place throughout a project.

SOW Tip 11—Risk Assessment

The eleventh tip suggests that the customer require the seller to perform a
risk assessment for accomplishing the work specified in the SOW. The seller
should explain the specific risk criteria and corresponding risk mitigation
strategies.

SOW Tip 12—SOW Revisions

The twelfth tip is offered as a planning factor. Multiple SOW revisions may
be necessary, as well as multiple proposals.

As explained in the next section, the SOW is eventually incorporated into a
negotiated agreement that authorizes the seller to start working. The person
responsible for overseeing the technical work to be performed is the customer
project manager.

3.5 Seller Process Engineering Group

As shown in Figure 3–4, the customer interacts with the seller process engi-
neering group (PEG) that is responsible for planning the work to accomplish
the customer’s SOW tasks.5 The PEG is also responsible for (1) assessing

Chapter 3 • Software Systems Development Process

136

5There are a number of factors influencing how an organization decides to perform project planning.
Such factors include: how long an organization has existed, how experienced the people are in writing
project plans, and how consistent each plan needs to be to be responsive to customers’ SOWs. If your
organization is relatively new or is new at project planning, then you may want to have your PEG
(usually consisting of experienced people) be responsible for project planning as your organization
starts up. Once the organization reaches critical mass and project teams settle into a routine with their
customers, the PEG’s emphasis can shift from planning the projects to providing guidance to project
management and quality assurance oversight for project plans. As the organization matures, the proj-
ect planning responsibilities can be reassessed.

ptg

management, development, and product assurance methodologies, (2) estab-
lishing, coordinating, and implementing organization policies, guidelines,
standards, and procedures within an systems engineering environment
(SEE), and (3) providing technical training and project consultation.

Why give the PEG the responsibility for project planning? Would it not be
better to make the (eventual) project manager responsible for planning the
project? Centralized planning by the PEG (or the centralized coordination of
the planning) enables the seller to develop and evolve consistent procedures
for responding to customers’ SOWs.6 The PEG is in a position to look across
multiple planning efforts and determine what works and what does not.
Thus, the PEG can help set in place consistent practices for (1) performing
planning start-up activities, (2) selecting the project team members, (3) deter-
mining the management, development, and product assurance approaches,
(4) establishing the cost estimate, (5) preparing and reviewing the project plan
for presentation to the customer, and (6) negotiating with the customer.

The PEG assembles a project planning team that uses the customer’s SOW,
the organizational software systems development process, and a life cycle to
develop a project plan containing project-specific tasks for building the prod-
ucts the customer wants. The customer’s SOW details what the customer
wants in terms of products and services. The organizational process specifies
processes that are to be performed during each project. For example, our or-
ganizational process states, in part, that each project should have a CCB-like
mechanism. In addition, our process states that peer reviews, independent
product assurance, technical editing, etc., are to performed during each proj-
ect. The project plan specifies how the what is to be accomplished. Figure 3–7
presents an overview of this project planning concept and consists of the fol-
lowing three panels:

♦ Project-Specific Process Planning. The seller project planning team “pre-
scriptively applies” the organizational software systems development
process to the customer’s SOW. Here, prescriptively applies means “adapting
organizational process activities to project realities (e.g., budget and sched-
ule constraints).” We use the qualifier “prescriptive” to convey that, once
the SOW is examined and diagnosed, the project planning team sets the or-
ganizational process dosage (e.g., how many CCB meetings are needed,
how many peer reviews are needed, how many product assurance reviews
are needed, how much technical editing is needed, etc.).

♦ Project-Specific Management, Development, and Product Assurance
Task Planning. Given the realities of the customer’s SOW and an assess-

Chapter 3 • Software Systems Development Process

137

6As an organization matures its project planning practices, it may decide to transition the actual proj-
ect planning details to the individual project teams. The PEG can then serve as a (1) centralized coor-
dinator of project planning, (2) quality assurance reviewer of each project plan, and (3) coach/mentor
for project planners. In other words, as the organization matures, project planning responsibilities can
be delegated to other organizational elements.

ptg

138

Plans the Work
to Accomplish
the Customer’s
SOW Tasks

Seller Process Engineering

Group

Review
Area

How

Use

BuildWhat

Product
Assurance

Management

Design

Operational
Use

Code

Re
qu

ire
m

en
ts

D
ef

in
iti

on

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Product Assurance

Development

Management

Plan for Anticipated, but Unknown, Change via Periodic Change

Control Board (CCB) Meetings Throughout Project Life Cycle.

USEBUILDHOWWHAT

Operational
Use

CodeDesignReq’ts
DefinitionSystems

Disciplines

Life Cycle
Stages

TaskTask

Organizational Software
Systems Development Process

Customer Statement of Work (SOW)

Prescriptive
Application

CCB

Project-Specific Management, Development, and Product Assurance Task Planning

Project-Specific Process Planning

SOW
Tasks

Seller’s Project Planning Outputs Project Software Systems
Development Process

Project-Specific Planning Outputs

Seller Schedule

Seller Budget

Risk-Reduced
Project Plan

Seller Schedule

Tailored
Life Cycle

Project Plan

Customer Budget

Task
Planning

Figure 3–7 The customer’s SOW, the organizational software systems development process, and the life
cycle set the context for planning the project-specific work.

ptg

ment of how much of the organizational process should be applied, the
project planning team constructs the tasks to be performed. They lay out
an appropriate life cycle and decide how to integrate the organizational
process activities. The life cycle is tailored to project specifics for the man-
agement, development, and product assurance tasks necessary to produce
the products and services the customer wants. The result of the task plan-
ning is two-fold: (1) a risk-reduced project plan, and (2) a corresponding
project software systems development process. Once a project plan is pre-
pared, reviewed, and approved by seller senior management, the plan is
delivered to the customer for consideration and subsequent negotiation.

♦ Project-Specific Planning Outputs. The risk-reduced project plan contains
specific tasks with a proposed schedule and corresponding budget. The
tasks express how the work is to be performed to produce products and
services that the customer asked for in the SOW. The project software sys-
tems development process is embodied in the project plan and is consistent
with the planned schedule, budget, and work to be accomplished.

As a result of the PEG planning the work (or coordinating the planning), the
organizational process is adapted to an SOW to define management, develop-
ment, and product assurance tasks appropriate to the SOW. This adaptation,
defined in the project plan, details the specific life cycle steps, techniques, and
tools needed to develop project-specific products. Once the customer receives
the project plan, negotiations take place. Once the negotiations are concluded,
a negotiated agreement (which embodies the project plan) is used by the
customer/seller development team to guide the work to be done.

3.6 Customer/Seller Development Team
and Change Control Board (CCB)

As shown in Figure 3–4, the customer/seller development team consists of
the customer project manager and the seller development team. Team mem-
bers meet at the project change control board (CCB) to hold project reviews
and decide what to do next. CCB meetings produce formal minutes that
capture project decisions, action items, and discussion.

Customer Project Manager

The customer project manager is the counterpart to the seller project man-
ager. Figure 3–8 shows how the customer and seller project managers interact
with each other. The customer project manager coordinates on a “day-to-
day” basis with the seller project manager and provides technical guidance to
the seller development team, primarily through the seller project manager.
This relatively informal day-to-day communication happens through conver-

Chapter 3 • Software Systems Development Process

139

ptg

sations on the telephone or, for example, during a conversation when both
people are standing around the coffee machine taking a break. Many times
these “informal” communications affect project deliverables, schedule, and
resources. Sometimes the customer project manager receives technical guid-
ance or insight from the seller project manager and/or the development
team. For example, the seller may provide the customer insight into the tech-
nical feasibility of using computer aided software engineering (CASE) tech-
nology. The customer may use this seller-provided technical guidance to
assess the cost and schedule impact on the project.

The customer project manager also provides more formal communication to
the seller through the CCB where specific action items, due dates, and re-

Chapter 3 • Software Systems Development Process

140

Customer Project Manager

Items for the Record
and

Issues for Customer Concurrence

Evolving Products
and

Technical Guidance

Technical Guidance
and

Evolving Products

Items for the Record

Communicates
with Seller Project

Manager

“Day-to-Day” Coordination
and

Technical Guidance

Communicates with Seller

Seller Project Manager

CCB
Product

AssuranceDevelopment

Management

Customer Project Manager

Figure 3–8 The customer project manager and the seller project manager constantly communicate with each other.
Such communication includes technical guidance, day-to-day coordination on project activities, items for the record,
and issues for customer concurrence. This type of manager-to-manager communication helps to increase the likeli-
hood that the evolving products will embody what the customer wants.

ptg

sponsibilities are assigned. The customer/seller development team holds
CCB meetings to discuss specific items for the record. The customer may pro-
vide technical guidance to the seller regarding, for example, required changes
to the schedule. The customer project manager can also receive technical
guidance or recommendations from the seller development team. For ex-
ample, the seller may provide guidance to the customer regarding alternative
approaches for meeting the new schedule requirements. The seller may also
seek technical guidance from the customer regarding a particular product.
For example, the seller may need clarification on specific requirements that
are to be incorporated into the requirements specification. Furthermore, the
CCB serves as a forum for the customer project manager to discuss seller
items for the record or issues that require the customer’s concurrence.

Regardless of the communication paths shown in Figure 3–8, it is important
that customer/seller communications be captured and made a part of the
project records. Informal communications can be simply written down in a
short memo (handwritten is okay) and be incorporated into the more formal
CCB meeting minutes.7

Seller Development Team

The seller development team is responsible for accomplishing the work speci-
fied in the negotiated agreement. The team includes the following roles: (1) a
seller project manager, (2) a lead developer, (3) product assurance personnel,
(4) a technical editor, and (5) management for the project manager. Depend-
ing on the negotiated agreement, one team member may perform one or
more roles. For example, if the project is relatively small, the seller project
manager may also serve in the role of the lead developer. The project team
performs the following “generic” product development activities:

♦ Communicates with Customer Project Management and Evolves Software
Product(s).

♦ Establishes Project Files.
♦ Conducts Peer Reviews.
♦ Provides Independent Product Assurance.
♦ Performs Technical Editing.
♦ Performs Project-level Technical Oversight.

We use the phrase “generic product development activities” for two reasons.
First, as previously discussed, when the project is being planned, the seller’s or-
ganizational software systems development process is prescriptively applied
to the customer’s SOW to account for budget and schedule realities. An ap-
propriate life cycle is tailored to contain project-specific management,

Chapter 3 • Software Systems Development Process

141

7Chapter 4 discusses the CCB mechanism in detail.

ptg

development, and product assurance tasks. The resulting project plan contains
the specific life cycle steps, techniques, tools, and resources needed to evolve
and deliver project-specific products. Second, the project plan then undergoes
negotiation with the customer, and the result (hopefully!) is a negotiated
agreement. This agreement contains the final project-specific details.

We now describe the generic activities just listed. Remember, our example or-
ganizational process requires that the generic product development activities
are to be performed to some degree and in some order on any software sys-
tems development project. The degree and sequence of these generic activi-
ties are a function, in part, of the project goals and scope, and resource and
schedule constraints. These generic activities are designed to help reduce the
risk inherent in any software systems development project. The following
discussion provides additional detail on the generic activities.

Seller Development Team: Communicates with Customer Project Manage-
ment and Evolves Software Product(s) The seller project manager is the
front-line manager responsible for carrying out the work specified in the
negotiated agreement. The seller project manager (1) is the “day-to-day” pri-
mary point-of-contact with the customer project manager, (2) supervises the
seller development team, (3) updates the project plan (e.g., revises schedules
as the project unfolds) within the scope of the negotiated agreement,
(4) works with the product assurance manager to define and implement
product assurance plans, (5) maintains cost/schedule control of management
and development resources,8 and (6) is a participant in the evolution of the
required software products.

The seller project manager is a proactive management position in which the
manager takes the initiative to communicate with the customer as needed.
The seller project manager frequently communicates with the customer to
verify assumptions, clarify understandings of what needs to be done, and re-
solve known and/or anticipated risks. We use the term “frequently” to stress
the point that the software products are not to be evolved without the partici-
pation of the customer. Again, the notion of the customer throwing a list of
requirements over a fence to the seller developers and then checking on
progress, say, six months later, is a prescription for failure. The seller project
manager must be a proactive communicator.

The seller project manager also evolves the following software products:

♦ Document. Words and graphics on paper packaged into a document.
♦ Computer code. Computer code on magnetic media packaged into a sys-

tem or system modification.
♦ Data. Data packaged into a database on magnetic media.

Chapter 3 • Software Systems Development Process

142

8In our organizational software systems development process, the product assurance manager con-
trols project product assurance resources and the scheduling of these resources. This control is one
way of making product assurance “independent.” In many organizations, the project manager con-
trols all project resources, including product assurance.

ptg

These products result from the accomplishment of the project-specific man-
agement, development, and product assurance tasks detailed in the negoti-
ated agreement. Figure 3–9 illustrates the notion of evolving the software
products.

Chapter 3 • Software Systems Development Process

143

Communicates
with Customer
Project Manage-
ment and Evolves
Software Product(s)

Seller Project Manager

Evolves Software Product(s)

Computer Code

Evolving Products

Document

Data

01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101

SOFTWARECONCEPT

Data
Elements

A—Z

Data
Elements

A—M

Data
Elements

A—B

Specification

Main

Subroutine A

Subroutine A

Subroutine B

Subroutine A

Subroutine B

1.01.0

1.2

1.1

1.0
1.1
1.2

N.0

Annotated
Outline

Topic Outline

Figure 3–9 Evolves software product(s) means “applying the process activities that take a
product from a vaguely defined concept to a completely filled-in product that embodies customer’s
requirements.”

ptg

A software product typically starts out as a concept or idea. As the project un-
folds, the products take shape. For example, a requirements document
evolves from a topic outline, to an annotated outline, to a detailed specifica-
tion. As the requirements specification takes shape, the computer code also
takes shape. Early in the project, there is a concept of what the computer code
will do and how it may be organized. As the requirements specification
evolves to a design specification, the computer code takes on additional
shape. Equally important is the evolution of data. Simply stated, as the
project unfolds, data evolve.9

Often complementing the software products are services. Example services
include training the user community on the developed software product or
providing hot-line support to users who have questions on how to use the
product in an operational environment. Typically, a service is work that is re-
quired by the negotiated agreement and whose primary purpose is not to
produce a software product. Figure 3–10 illustrates example services. Other
example services include such things as conference support and demonstra-
tions. If support materials (e.g., conference brochures) are not deliverables,
they should still be peer reviewed, technically edited, etc. The seller project
manager should give visibility to the preparation and delivery of services. Ex-
ample ways to achieve visibility are (1) seller monthly progress reports,
(2) letters informing the customer project manager that services were pro-
vided, (3) e-mail messages, and (4) CCB minutes.

Regardless of whether products are produced or services are provided, as the
project unfolds, the customer and seller increase their understanding of what
needs to be done in order to accomplish the project’s tasks. Typically, this in-
creased understanding results in changes to what was planned in the project
plan and what was agreed to in the negotiated agreement. To accommodate
these changes, the seller development team, in concert with the customer,
makes adjustments to the project management, development, and product as-
surance tasks. Figure 3–11 illustrates this point.

The seller project manager prescriptively applies the project software systems
development process to the negotiated agreement. As a result, adjustments
are made to task-level activities. For example, toward the end of the Design
Stage, the product assurance personnel compare the design specification with
the requirements specification to check for requirements traceability. It is dis-
covered that the design (1) contains three requirements that are not in the re-
quirements specification, and (2) does not address two requirements that are
in the requirements specification. On examination and discussion, the cus-
tomer agrees with the seller that the new requirements are needed things the
customer wants, but the customer still wants the seller to include the two

Chapter 3 • Software Systems Development Process

144

9When the customer writes the SOW, it is important for the customer to state how much of the prod-
uct evolution should be customer-approved before the seller proceeds from one evolution to the next.
For example, if the final product is a requirements specification, does the customer approve a topic
outline before the seller proceeds to evolve an annotated outline? Customer approvals affect cost and
schedule.

ptg

“missing” requirements. In addition, the period of performance cannot be ex-
tended, the project budget cannot be increased, and, of course, the seller
wants to keep the customer happy. (Set aside for the moment the issue of
how three new requirements found their way into the design.) Since the bud-
get cannot be increased, the seller project manager proposes that some of the
deliverables be combined into a single document. This potential solution
keeps the schedule and budget intact but reduces the scope of the planned
documents. Assuming that the proposal is acceptable to the customer, the
work to be performed using the project development process is adjusted and

Chapter 3 • Software Systems Development Process

145

Communicates with
Customer Project
Management and
Evolves Software
Product(s)

Seller Project Manager

Example Service Associated with Software Products
● Training
● Conference support
● Hot-line support
● Demonstrations

Service: Software systems development often requires services or
supporting work to be performed that complements the products
being produced. The negotiated agreement specifies the types of
services required and the corresponding duties to be performed.

DEMO

Service

User’s
Conference

Figure 3–10 Services, like the products, are planned in accordance with the organizational soft-
ware systems development process.

ptg

Communicates with
Customer Project
Management and
Evolves Software
Products

Seller Project Manager

Project Software Systems
Development Process

Negotiated Agreement

Prescriptive
Application

Seller’s Project Accomplishments Project Procedures

Project Management, Development, and Product Assurance Task Replanning

Project Process Replanning

Project Outputs

Document

Data

Main
Module A
Module B

Procedure B
Step 1
Step 2

Step N

Procedure A
Step 1
Step 2

Step N

Data
Elements

A—Z

01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101

Computer Code

Project Schedule

Project Budget

Risk-Reduced
Project Plan

Review
Area

How

Use

BuildWhat

Product
Assurance

Management

Design

Operational
Use

Code

Re
qu

ire
m

en
ts

D
ef

in
iti

on

Specification

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Product Assurance

Development

Management

Plan for Anticipated, but Unknown, Change via Periodic Change

Control Board (CCB) Meetings Throughout Project Life Cycle.

USEBUILDHOWWHAT

Operational
Use

CodeDesignReq’ts
DefinitionSystems

Disciplines

Life Cycle
Stages

TaskTask

CCB

Tailored
Life Cycle

Task
Replanning

Figure 3–11 The seller development team prescriptively applies the project’s development process to the
negotiated agreement that embodies the seller’s project plan. The results of this prescriptive application
are: (1) products (and associated services) and (2) project-level development procedures that are consis-
tent with the resource expenditures, completed work schedules, and work accomplished.

ptg

the project proceeds. If the proposal is not accepted, additional discussion is
necessary. Regardless, the project development process needs to be applied
prescriptively to the negotiated agreement.

The seller project manager is also responsible for developing project-specific
procedures or step-by-step instructions for performing recurring task activi-
ties. For example, as part of the organization’s application development
process environment (ADPE), there may exist a configuration management
(CM) guideline delineating suggestions for implementing CM on a project.
The seller project manager can use the guideline to help develop a project-
specific procedure for CM.

Seller Development Team: Establishes Project Files The lead developer
for each deliverable product is responsible for establishing the project files.
The minimum set of files required may or may not be specified in the negoti-
ated agreement. However, establishing the product’s project file is one of the
first steps for ensuring that the product is properly formatted, coordinated,
reviewed, and approved. To aid the lead developer performing the steps to
deliver a product to the customer, we suggest the use of a product tracking
form. Figure 3–12 presents an overview of a generic product tracking form
that is tied to our example organizational software systems development
process.

The form tracks the software product through the organizational process of
peer reviews, product assurance support, technical editing, project-level and
organization-level management review and approval, and customer receipt
and acceptance. The lead developer is responsible for (1) conducting or estab-
lishing peer reviews, (2) coordinating with product assurance personnel,
(3) coordinating with technical editor(s) when the product is a document,
(4) ensuring that the product is ready for management review and approval,
and (5) tracking the product throughout the software systems development
process.

The form literally makes the process visible and, in effect, provides the lead
developer with a self-auditing technique to help ensure that the process is fol-
lowed. Hopefully not, but if the customer has a problem with a delivered
product, the tracking form can help provide some insight into what was done
and what was not done.

The form is particularly useful to project and senior management. It provides
management with some insight into how and when the product was pro-
duced. For example, when the product and the tracking form are presented to
the program manager for review and approval, the program manager knows
who within the organization is involved with the development of the prod-
uct. For those products produced by newer members of the organization, the
program manager may decide to spend a little extra time to ensure that the
product is ready for delivery to the customer. In those cases where the prod-
uct may need some additional attention before delivery to the customer, the
program manager may ask the project manager to improve the product.

Chapter 3 • Software Systems Development Process

147

ptg

Chapter 3 • Software Systems Development Process

148

SELLER DEVELOPMENT TEAM

Seller Project Manager Lead Developer
Communicates
with Customer
Project Management
and Evolves
Software Product(s)

Establishes
Project Files

Conducts
Peer
Reviews

Provides
Independent
Product
Assurance

Performs
Technical
Editing

Performs
Project-level
Technical
Oversight

Tracking

Form

Product Tracking Form

Peer Reviewers

PA Reviewers

Technical Editors

Project, Senior Managers
(project level)

Senior Managers
(organization level)

Customer

Lead Developer or Moderator

Product Assurance Manager

Technical Editor

Seller Management

SOFTWARE

Evolving Product(s)

Document

Computer Code

Data

01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101

Figure 3–12 The lead developer of a product is responsible for establishing the necessary project files and tracking the prod-
uct through the development process. The tracking form, as its name implies, is used, in part, to track a product as it pro-
gresses through the software systems development process.

ptg

Subsequently, if appropriate, the program manager may decide additional
training or mentoring is needed within the organization. Perhaps when the
program manager is convinced that project managers understand what to do,
the final approval authority for certain products may be delegated to the
project managers.

Figure 3–13 shows an example tracking form linked to our example organiza-
tional software systems development process. To help you use this form, we
explain how the tracking form is constructed. The form layout assumes an or-
ganization consisting of a collection of projects headed by a program man-
ager. The program manager is supported by project managers who have
front-line, day-to-day responsibility for the projects. The layout also assumes
that the organization includes (1) a Deliverable Support Center (DSC) that
provides document production support and a centralized product repository,
(2) an independent product assurance organization, and (3) a process engi-
neering group (PEG) responsible for defining and implementing a systems
engineering environment (SEE).

The example form consists of the following sections:

♦ Project File Establishment at Deliverable Support Center (DSC)
♦ Technical Review of Product
♦ Final Coordination with DSC
♦ Project File Management
♦ Comments/Issues
♦ Management Review and Approval
♦ Customer Receipt and Approval

The tracking form corresponds to a product working its way through our
software systems development process. As the tracking form indicates, estab-
lishing the project files is first, and receiving the customer’s approval is last.
However, there is no one way through the process, and therefore, there is no
one way to use the tracking form. In addition, the way a product is tracked is
tied, in part, to the product type. In general, the tracking form is used in its
entirety to track a document. For example, if the document is a seller project
plan, then the process engineering group representative and business man-
ager may be required to concur or nonconcur before the plan is submitted to
the program manager for approval. In general, the tracking form is used in its
entirety to track the evolution of a computer code or database deliverable.
However, certain signatures may not be required. For example, a technical
editor does not review computer code or a database. Regardless, it is the lead
developer’s responsibility to work closely with other project and/or organi-
zation people to ensure that the product goes through the software systems
development process. We briefly describe next each section of the form. This
description also offers insight into what we mean by prescriptive application
of the software systems development process.

Chapter 3 • Software Systems Development Process

149

ptg

150

[Form Issue Date][Form Number]

SELLER DELIVERABLE TRACKING FORM

PROJECT FILE ESTABLISHMENT at Deliverable Support Center (DSC)

Product Title:

TECHNICAL REVIEW OF PRODUCT

Peer Reviewer or Moderator Technical Editor (documents only)

FINAL COORDINATION WITH DSC

Deliverable Support Center Manager

MANAGEMENT REVIEW AND APPROVAL

Project Manager concur signature date

COMMENTS/ISSUES

Lead Developer

Product Assurance Reviewer or Manager Project-level Technical Oversight Management

PROJECT FILE MANAGEMENT

Hardcopy filed at

Lead Developer Electronic copy filed at

Lead Developer(s):

Contributor(s):

Product Control Number:

Contract Number/Name:

Date and Time Product Is Due To Customer:

CUSTOMER RECEIPT AND APPROVAL

nonconcur

Process Engineering Group Representative concur signature datenonconcur

Business Manager (costing) concur signature datenonconcur

Program Manager

Received Customer Receipt
of Deliverable Form

Received Customer
Acceptance of Deliverable
Form

Received written notification that

deliverable requires additional

work and notified Project Manager

on receipt

approved
for release

signature dateother
action

Delivery and Distribution Representative signature date

Charge Number:

Figure 3–13 Here is an example of a seller deliverable tracking form that can be used with our orga-
nizational software systems development process.

ptg

Project File Establishment at Deliverable Support Center (DSC) Section
The seller project manager decides who the lead developer is for each re-
quired product. The lead developer obtains a tracking form from the DSC
manager and establishes the required project files. This form section pro-
vides, in part, the DSC with the necessary information for coordinating activi-
ties with the lead developer as the product evolves. It is the lead developer’s
responsibility to (1) indicate on the form who is going to do what, and in
what order, and (2) obtain the necessary signatures.

In general, a form action is completed when the indicated signatory signs the
tracking form. For those form actions requiring concurrence or nonconcur-
rence, the action is completed when the indicated signatory checks the appro-
priate box and signs the form. We stress that when someone nonconcurs, the
lead developer should try to resolve any issue with the person. If the situa-
tion cannot be worked out or if the lead developer is not available, the sig-
natory is required to detail the reasons for the nonconcurrence in the
comments/issues section. The tracking form is then forwarded to the next
indicated person.

Technical Review of Product Section The technical review of a product
may proceed serially or in parallel, depending on the particular situation. The
peer reviewer signature indicates that one or more peer reviews were con-
ducted. The technical editor signature indicates that a document underwent
technical editing. The product assurance signature indicates that a document
has been audited, or computer code or a database has been tested according
to the customer/seller agreed-upon set of procedures. If the testing is not
done, the lead developer indicates in the comment section the reason for not
testing and the corresponding risks. Project-level technical oversight is a
seller management prerogative.

Final Coordination with DSC Section Before the product is submitted to
seller management for review and approval, the DSC manager and lead de-
veloper package the product in the form it is to be delivered to the customer.
This final coordination provides an opportunity to specify last-minute deliv-
ery instructions.

Project File Management Section The lead developer is responsible for in-
dicating where the product can be located and ensuring that the product is
filed appropriately.

Comments/Issues Section Anyone involved in the product evolution
writes explanatory information in this section. For example, the project man-
ager may indicate to the delivery and distribution person that an extra copy is
needed. The program manager may indicate that additional information is
needed for a cover letter.

Management Review and Approval Section This section implies a se-
quence. In general, the project manager reviews the product before submitting
it to the program manager. Once the product is approved for release to the cus-

Chapter 3 • Software Systems Development Process

151

ptg

tomer, the program manager gives the product to the delivery and distribution
person. As indicated previously, when the product is a seller project plan, the
process engineering group representative and the business manager review the
product before submitting it to the program manager.

Customer Receipt and Approval Section In addition to the product, the
lead developer also provides the program manager with a cover letter, a cus-
tomer receipt form, and a customer acceptance of deliverable form. The cover
letter informs the customer of the specific product being delivered and any
special circumstances surrounding the product’s development. The customer
receipt form is a self-addressed, return receipt that informs the seller that the
product is received by the customer. Figure 3–14 provides an example receipt
form.

The customer receipt form is used to establish closure between the customer
and seller regarding product delivery. Such a form helps to reduce the like-
lihood of a product being delivered to the wrong individual. When the
product is delivered to the customer project manager or designated represen-
tative, the customer signs the form. Upon receipt by the Deliverable Support
Center (DSC), the designated DSC representative updates the tracking form
in the central repository and informs the lead developer.

A customer acceptance of deliverable form is also delivered to the customer
project manager. Figure 3–15 is an example of such a form.

The customer acceptance of deliverable form is used to establish closure be-
tween the customer and seller regarding the state of the delivered product.
Such a form helps customer feedback. When the product is delivered to the
customer project manager (or designated representative), the customer re-

Chapter 3 • Software Systems Development Process

152

[Form Number] [Form Issue Date]

CUSTOMER RECEIPT OF DELIVERABLE FORM

I acknowledge receipt of the following [Project Name] (Contract #) deliverable:

[Title of Deliverable]

Product Control Number: [Actual product control or release number]

Project Manager: [Name of Project Manager]

Customer Signature Date of Receipt

Figure 3–14 Here is an example of a customer receipt of deliverable form that can be used with our
organizational software systems development process. The return address is on the reverse side.

ptg

views the deliverable, decides the deliverable status, signs the form, and
returns it to the seller. In this example, the deliverable status can be (1) ac-
cepted as written, (2) accepted with minor changes, or (3) requires changes to
be negotiated. The time period for customer review is detailed in the negoti-
ated agreement. The negotiated agreement also details what customer ac-
ceptance means. Regardless, on receipt by the DSC, the designated DSC

Chapter 3 • Software Systems Development Process

153

[Form Issue Date][Form Number]

CUSTOMER ACCEPTANCE OF DELIVERABLE FORM

Is accepted
as written.

OTHER COMMENTS:

MINOR REQUIRED CHANGES:

This deliverable:

The following deliverable, as required by [customer/seller contract name/number] has been
received and reviewed in accordance with the negotiated agreement:

To: [Seller name and address, and, possibly, project/program name]

Attn: [Name of seller organization responsible for maintaining deliverable Depository]

[Title of Deliverable]

[Product Control Number]

[Name of Seller Project Manager]

Customer Signature Date Signed

Is accepted with minor
changes as indicated below.

Requires changes
to be negotiated.

Figure 3–15 Here is an example of a customer acceptance of deliverable form that can be used
with our organizational software systems development process.

ptg

representative updates the tracking form in the central repository and in-
forms the lead developer. If the customer indicates that there are required
changes, then the DSC representative informs the lead developer, the seller
project manager, and the seller program manager. The seller management
then decides how to respond to the “required changes.” The DSC representa-
tive then updates the tracking form in the central repository.

Figure 3–16 summarizes the seller DSC functions. The specific responsibilities
vary with the way an organization is set up. For example, if your organiza-
tion has only one project, you may decide that a DSC is really a project func-
tion. If on the other hand your organization has multiple projects and they
range from one-person projects to twenty-person projects, you may decide
that a DSC is a necessity. Furthermore, the one-person projects generally can-
not afford the cost of full-time personnel to provide technical editing, so the

Chapter 3 • Software Systems Development Process

154

Seller Product Production Facility and Product Repository:

Deliverable Support Center (DSC)

● Establishes and maintains project files
● Provides technical editing of documents
● Establishes final document format

● Reproduces documents
● Tracks and reports status of deliverables

SCHEDULE

Deliverable

Support

Figure 3–16 This figure shows our example seller Deliverable Support Center functions.

ptg

DSC could provide this service. The larger projects may have their own tech-
nical editors, and in this case, these project editors could follow the DSC
guidelines for formatting documents.

Up to this point in our discussion of the seller development team generic ac-
tivities, we have covered (1) communicating with the customer project man-
agement and evolving software products, and (2) establishing project files.
We now are going to describe the generic activity that deals with peer
reviews.

Seller Development Team: Conducts Peer Reviews The lead developer (or
moderator) is responsible for ensuring that the evolving products are peer re-
viewed. As shown in Figure 3–17, peer reviews provide the lead developer
with technical feedback that is used to refine the evolving product.

Peer reviews help the lead developer repeat successful approaches used by
colleagues and avoid pitfalls. These insights serve to stabilize the developer’s
approach and help increase confidence that the product does what it is sup-
pose to do. Time and resources should be planned for conducting peer
reviews.

There are many types of peer reviews. For this organizational software sys-
tems development process, the lead developer conducts, as a minimum, ei-
ther one-on-one peer reviews or scheduled peer reviews.

One-on-one peer reviews seek to increase the confidence that a product is
complete and appropriate. A colleague who is familiar with the product or
has similar experiences provides the lead developer with experienced-based
insights. The lead developer and a colleague get together to discuss a portion
of the product (e.g., a chapter of a document). As the lead developer provides
the colleague with product details, the colleague asks questions and provides
suggestions. Because of the limited scope of the review, one-on-one peer re-
views do not require large blocks of time and can occur on a frequent basis.
The lead developer is responsible for taking notes, following up on the re-
viewer suggestions, and keeping track of how much time is spent on each
product. Such time tracking can be used to improve future planning
estimates.

Scheduled peer reviews are larger in scope and usually only involve technical
personnel. Depending on the size of a project, scheduled peer reviews may
require a moderator who is responsible for scheduling, organizing, and con-
ducting the review. We recommend that the moderator be a project member.
However, the moderator should not be the seller project manager or lead de-
veloper, because they could intimidate other reviewers and suppress candid
remarks. Scheduled peer reviews should last from two to four hours and in-
clude three to six reviewers. The principal goal of the review is to identify
technical issues, not to develop technical solutions. Checklists are useful tools
to guide the review. The moderator can ask the project developers to prepare
checklists for the review. In addition to administrative duties (e.g., reserving

Chapter 3 • Software Systems Development Process

155

ptg

Chapter 3 • Software Systems Development Process

156

a meeting room, assigning the role of scribe to someone), the moderator is
also responsible for developing a summary of the review and distributing it
within two days. To improve future planning efforts, the lead developer
should be responsible for keeping track of how much time is spent on
peer-reviewing each product.

Seller Development Team: Provides Independent Product Assurance The
product assurance manager is responsible for providing the required inde-
pendent product assurance support to the project. (Our organizational soft-

Conducts
Peer
Reviews

Lead Developer or Moderator

SOFTWARE

Evolving Products

Computer Code

Technical Feedback

01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101

Peer: A person who has equal standing with another in rank,
class, or age.

● Technically complete
● Appropriate to the task
● Language appropriate to intended audience
● Technically correct
● Technically sound basis for next step in
 development life cycle

Peer Review: A colleague or colleagues check a product for technical
completeness and appropriateness.

Peer

Review

Data

Document

Figure 3–17 The peer review balances the product developer’s approach with the insights of other people having applica-
ble and comparable experience.

ptg

ware systems development process assumes the organization has a product
assurance manager who is responsible for providing product assurance sup-
port to all projects within the program.) The seller project manager is respon-
sible for coordinating with the product assurance manager for support for
each evolving product. Ensuring that the project has the appropriate amount
of independent product assurance support requires clear communication be-
tween (1) the product assurance manager and the seller project manager, and
(2) the product assurance personnel and the seller development team
developers.

“Independence” is a function of the following three dimensions:

• Organizational. Organizational independence can vary from no indepen-
dence (the product assurance manager reports to the seller project man-
ager) to total independence (the product assurance manager reports to the
highest levels of management within the organization).

• Budgetary. Budgetary independence can vary from no independence (the
product assurance budget is completely controlled by the seller project
manager) to total independence (the product assurance budget is com-
pletely controlled by the product assurance manager).

• Product development. Product development independence can vary from
no independence (product assurance personnel expend labor helping to
build a product, such as writing a section of a requirements specification)
to total independence (product assurance personnel do not expend labor
helping to build a product). However, not helping to build a product is not
the same thing as not helping to shape a product. Product assurance
can and should have a significant impact on how a product eventually
turns out.

What do we mean by independent product assurance? “Independent” product
assurance can vary greatly, and it should be accounted for during project
planning. Figure 3–18 shows that product assurance helps to reduce project
schedule and budget risks by conducting reviews of the evolving products.

The assigned product assurance personnel provide the planned-for support
for each evolving product. Product assurance support consists of the inte-
grated application of (1) quality assurance (QA), (2) verification and valida-
tion (V&V), (3) test and evaluation (T&E), and (4) configuration management
(CM). The outputs of these activities are generally audited material that con-
tains the results of comparing “what is expected” to “what is observed.” The
application of these product assurance activities helps to reduce risk, and
provide an additional assurance that the product does what it is supposed
to do.

Seller Development Team: Performs Technical Editing The technical edi-
tor is responsible for ensuring that a document lacks ambiguity, uses
language appropriate to the intended audience, is internally consistent, con-

Chapter 3 • Software Systems Development Process

157

ptg

Chapter 3 • Software Systems Development Process

158

Provides
Independent
Product
Assurance

Product Assurance Manager

Product assurance reduces rework through the following four processes:

Process and Product Quality Assurance (QA) to check that
something called for in a process or product standard has not
been omitted or given short shrift.

Verification and Validation (V&V) to check that the elements of
a product chain are mutually congruent.

Test and Evaluation (T&E) to check (1) requirements testability
and (2) that code and databases satisfy customer requirements
before delivery.

Configuration Management (CM) to check that agreed-upon
changes are incorporated.

Evolving Products

Computer
Code

Audited Material

01

Product assurance reduces schedule and budget risks via product
reviews throughout the project to support timely decision making.

Product

Assurance

Saves
Rework

Standard

Design

Computer
Code

01

Design

Req’ts

Updated
Product

Req’ts

Product

Document

Computer Code

01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101

Data

Figure 3–18 Independent product assurance is a key element of successful software systems development processes.

ptg

forms to organizational standards, and contains no grammatical or spelling
errors. As shown in Figure 3–19, technical editors work hard to improve the
presentation of the document without materially changing the technical con-
tent. The technical editor also ensures that the document as a whole hangs to-
gether by checking that (1) text and figures are coordinated, (2) the table of
contents matches document content, and (3) the index matches document
content. Technical editing should be accounted for during project planning.

Seller Development Team: Performs Project-level Technical Oversight
Seller management is responsible for providing technical guidance to help
ensure (1) consistent use of engineering principles, (2) reuse of existing docu-
ments, computer code, or databases, and (3) prescriptive application, at the

Chapter 3 • Software Systems Development Process

159

Performs
Technical
Editing

Technical Editor

Evolving Products

Edited Material

Technical editing is an important, but often overlooked, activity
in the software systems development process.

The focus of technical editing is to convert text to finished prose
that sings with clarity.

● Clear
● Unambiguous
● Language appropriate to intended audience
● Internally consistent
● Text and figures coordinated
● Conforms to language and format standards
● No grammatical or spelling errors
● Table of contents and index match document content

Document

Document

”

”

¶

2

#

”

”

”

¶

2

#

”

Figure 3–19 Technical editing is an important, but often overlooked, activity in the software systems development effort.

ptg

project level, of management, development and product assurance disci-
plines, techniques, and tools. Figure 3–20 depicts this technical guidance.

Seller management, in effect, acts as a technical director by providing
experience-based guidance to the seller development team. For example, con-
sider a situation in which the seller development team is helping the customer
migrate a legacy system to a new software language, database management
system, and platform. Although the development team members have relevant
experience they have never migrated a system as large or complicated. To help
the team members scale up their experience, the seller project manager requests

Chapter 3 • Software Systems Development Process

160

Performs
Project-level
Technical
Oversight

Seller Management

Evolving Products

Reviewed Material

01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101

Project-level technical oversight is provided by the project manager’s
management or others. Typically, the amount of technical oversight is
a management prerogative and is related to project complexity, size,
and importance. Technical oversight helps the project manager repeat
previous project successes and avoid the pitfalls of past project failures.

● Consistent use of engineering principles
● Possible reuse of existing products
● Prescriptive use of management, development, and
 product assurance disciplines, techniques, and tools

Technical

Oversight

Document

Computer Code

01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101

Data

Figure 3–20 Project-level technical oversight helps the seller development team avoid potential problems by infusing the
experience of others into the technical management of the project (i.e., the “I’ve been there” factor).

ptg

the seller program manager to review the current situation and provide a san-
ity check. The seller program manager reviews the project and makes some
suggestions to the seller project manager and team members. In addition, the
seller program manager seeks out a database expert whose particular expertise
is in large-scale data conversion efforts. This expert comes on site for a few days
to provide some guidance on how to recognize and avoid potential perfor-
mance problems. The end result is that evolving products are reviewed, and the
development team uses the corresponding feedback to stay on track.

Change Control Board (CCB)

The change control board (CCB) is a management support tool that provides
a forum for discussing management, development, and product assurance ac-
tivities. Our concept of a CCB extends far beyond the traditional configura-
tion management (CM) control board concept. Simply stated, no matter how
well the customer writes the SOW, no matter how well the seller writes a cor-
responding project plan, and no matter how well the customer and seller ne-
gotiate the final agreement, once the project begins, things start to change.
Furthermore, changes persist throughout the project. Therefore, the CCB is a
business forum where the customer and seller can discuss how to deal with
this unknown, but anticipated, change. Figure 3–21 illustrates this concept.

CCB meetings help to foster effective communication between the customer
and seller by acting as a catalyst to achieve closure between the parties re-
garding actions and decisions pertaining to product development. Discus-
sions take place, action items are assigned, and decisions are recorded in CCB
minutes. The CCB is a decision-making body where software systems devel-
opment is conducted in an accountable and auditable manner.

In general, CCB meeting output consists of technical guidance and evolving
products. The customer can provide technical guidance to the seller or vice
versa. The seller provides the customer with evolving products for interim or
final customer review and approval. Conversely, the customer provides the
seller with a reviewed evolving product.

As shown in Figure 3–4, the overall result of the interaction between the cus-
tomer/seller development team is a deliverable that has been coordinated at
the project level. The deliverable product is now ready to be submitted to the
seller senior management for review and approval.

Chapter 3 • Software Systems Development Process

161

ptg

3.7 Seller Senior Management

Seller senior management is responsible for reviewing the deliverable at the
organizational level to confirm that there are no items to be resolved. If there
are items to be resolved, seller senior management (in our example, the pro-
gram manager) gets together with the seller development team, typically the

Chapter 3 • Software Systems Development Process

162

Hold Project CCB
Meetings, Project
Reviews, and
Decide What to
Do Next

Customer/Seller Project Management

Seller Management

Customer

Change Control Board (CCB)

Change Control Board (CCB) provides the customer and seller with
a business forum to make informed decisions on what to do next
as both parties increase their understanding of what needs to
be done.

● Improves communication and understanding
● Makes decisions

● Approves change
● Makes no change
● Revises change approach

● Records decisions in CCB minutes

Change

Control

CCB
Product

AssuranceDevelopment

Management

CCB
Minutes

CCB

Product
Assurance

Development

Management

Figure 3–21 The CCB is a key element of successful software systems development processes.

ptg

seller project manager and the lead developer, to decide how to resolve the
items.

The program manager ensures that the deliverable conforms to the systems en-
gineering environment (SEE) policies, guidelines, procedures, and standards.
We cannot stress enough this management responsibility. Successful imple-
mentation of an organizational process involves the participation, cooperation
and support from everyone involved. However, senior management must set
the tone. If senior management is not supportive, the task of implementing an
organizational process is made more difficult. Typically, someone or some part

Chapter 3 • Software Systems Development Process

163

Reviews and
Approves
Product(s) for
Delivery to
Customer

Seller Senior Management

Deliverable Coordinated
at Project Level

Approved Deliverable

Review and approval of product(s) for delivery to the
customer is provided by the seller’s senior management.
This management also is responsible for ensuring that the
seller development team prescriptively applies the project’s
development process to the negotiated agreement, which
embodies the seller’s project plan.

● Outstanding items resolved
● Conforms to systems engineering environment
 policies, guidelines, procedures, and standards
● Cover letter listing the deliverable(s) as detailed in
 the negotiated agreement

Review

and

Approval

Figure 3–22 Seller senior management ensures, in part, that the seller development teams implement the organizational
software systems development process.

ptg

of an organization is assigned the responsibility for implementing an organiza-
tional process. Assigning someone or an organizational element (e.g., seller
process engineering group) to be responsible is a good first step, but without
the corresponding resources and authority, the task takes longer and costs
more. Figure 3–22 illustrates the seller senior management responsibility.

When the deliverable is submitted to the program manager, it is packaged
with its tracking form, cover letter, customer receipt of deliverable form, and
customer acceptance of deliverable form. Remember, the tracking form con-
sists of the following sections:

♦ Project File Establishment at Deliverable Support Center (DSC)
♦ Technical Review of Product
♦ Final Coordination with DSC
♦ Project File Management
♦ Comments/Issues
♦ Management Review and Approval
♦ Customer Receipt and Approval

The program manager checks the sections to see how the product was tracked.
The program manager reviews each of the tracking form sections (except the
Customer Receipt and Approval because it has not yet been filled in) to deter-
mine how the product made its way through the development process. For ex-
ample, if the product is a document, then the technical editor signature should
appear in the technical review section. If the product is a document, computer
code or a database, then the product assurance reviewer or manager signature
should appear in the technical review section. If the product is computer code
and there is no product assurance signature, the program manager checks the
comments section to see if there is a reason for no testing. If the product is a pro-
ject plan, the program manager checks, and double-checks, the cost estimate
provided by the business manager. If the deliverable is a product assurance
plan, the program manager checks to make sure that the product assurance
manager and the seller project manager have technically reviewed and agreed
to the plan. Assuming that there are items to be resolved, then the program
manager gets together with the appropriate people to find out what the story is.
Given that everything gets worked out, the program manager approves the
product for delivery, signs the cover letter, and forwards the package to the per-
son who is going to deliver the approved deliverable to the customer.

On receipt of the seller’s approved deliverable, the customer signs the cus-
tomer receipt of deliverable form and provides it to the seller. After the cus-
tomer reviews the deliverable, the customer fills out the customer acceptance
of deliverable form and provides the deliverable status to the seller.

Chapter 3 • Software Systems Development Process

164

ptg

3.8 Software Systems Development Process Summary

The organizational software systems development process defines the way an
organization develops software systems. Although there is no one way to de-
velop software systems, the following principles should be considered in any
organizational process:

♦ Plan the work to be done before doing it.
♦ Obtain agreement on defined responsibilities.
♦ Establish and empower self-directed work teams.
♦ Establish checks and balances.
♦ Maintain continual customer and seller interaction.
♦ Monitor project progress.
♦ Mentor project managers, and train work teams.
♦ Provide interim review on project progress.
♦ Provide feedback on deliverables.
♦ Improve the software systems development process.

Chapter 3 • Software Systems Development Process

165

The organizational process should be applied prescriptively to each
project because no two projects are the same.

In this sense, the process provides a consistent approach to developing soft-
ware systems and allows the particular circumstances of a project to influence
how the work is to be done. For example, an organization’s software systems
development process may require that all computer code be tested before it is
delivered to the customer. However, one potential customer is not willing to
pay for such testing. In this case, the seller may decide not to take on the work
because the risk is too high and the company’s reputation could be seriously
damaged if the project were to fail. On the other hand, the seller may be able
to convince the potential customer to relieve the seller of the consequences for
software failure, and so the seller decides to take on the work. Regardless of
the particular situation, people’s knowledge and experience should be used
to help determine how much of the process is to be applied.

Two major factors govern organizational process definition: (1) level of detail
and (2) organizational scope. Figure 3–23 shows a way to relate these two fac-
tors to one another.

The level of detail defining an organization’s software systems development
process may span a broad spectrum. In some organizations, it may make
sense simply to define the major activities that all projects must perform and
then leave it up to each project to apply prescriptively these activities. Here,

ptg

apply prescriptively means “in a manner that makes sense in terms of factors
such as project budget, project schedule, and the threat to human life that
software failure may pose.” In other organizations, the software projects may
be so similar that it makes sense to define a detailed step-by-step procedure
because “one size fits all.”

Figure 3–23 also indicates that the scope of a software systems development
process may or may not coincide with an organization within an enterprise.

Chapter 3 • Software Systems Development Process

166

Enterprise

Multiple, Not
Necessarily

Similar, Projects
Across

Enterprises

Multiple
Similar Projects

Across
Enterprises

Multiple,
Not Necessarily
Similar, Projects

Multiple
Similar Projects

Single Project

Level of
DetailStep-by-Step

Procedure
Recommended

Order for
Performing

Major Activities

Required
Major

Activities

Organizational
Scope

Broad Policy
Statement

Organizational Software

Systems Development Process

Organizational Scope

vs.

Level of Detail

Figure 3–23 This figure indicates that the level of detail and organizational scope are two major considerations in defin-
ing a software systems development process in an application development process environment (ADPE) element.

ptg

At one end of the spectrum, an organization may be a single project, and at
the other end, an organization may be an entire enterprise. Therefore, an or-
ganizational process may be written for a single project, or for multiple simi-
lar projects, multiple not necessarily similar projects, projects spanning more
than one enterprise, projects across entire enterprise, etc.

Considering these two dimensions helps to shape the organizational process. For
example, the final review and approval responsibility can be vastly different for
a single project organization versus an organization that cuts across enterprises
and includes subcontractors working with a prime contractor. In the latter case,
the process may allow the subcontractors to have certain limited responsibilities,
but final release authority may be reserved for the prime contractor.

For those organizations that develop software systems embedded in larger
systems, the software systems development process needs to plug into the
systems development process. At a minimum, the software process should
hook periodically into the system process to ensure that software product de-
velopment is synchronized with the development of interfacing system com-
ponents. One visible and accountable way of plugging into the systems
development process is through CCB meetings involving the principals re-
sponsible for these interfacing components. Figure 3–24 illustrates this point.

In general, the software and systems processes should share common activi-
ties such as peer reviews, independent product assurance, and technical edit-
ing. One activity the systems process needs to account for that generally is
not prominent in the software process is that of subsystem integration. This
activity is concerned with making sure that the individual software process
components fit and work together as prescribed in system-level specifica-
tions. Sometimes these specifications may include interface requirements
and design specifications prescribing the what and how of the subsystem
connections.

When defining the organizational software systems development process,
you have to be careful not to turn the process into a paper drill. The process
cannot take on the air of bureaucracy. If the staff members perceive that fol-
lowing the process covers them with paperwork, they will seek ways to cir-
cumvent the process. If the percentage of people circumventing the process is
on the rise and/or is considerable (say, at least thirty percent), then the
process may indeed be bureaucratic and needs to be changed. Remember that
cries of bureaucracy are typical during the period immediately following
process implementation and for weeks or even months thereafter. Before re-
sponding too quickly to the cries, it is important to let the process settle in.
You need to track and respond to everyone’s suggestions. In general, the
larger the organization, the longer the settling-in period. Remember, too, that
through prescriptive application of the process to individual projects, experi-
enced staff will generate paperwork in amounts appropriate to the schedule
and budget constraints of their projects. On the other hand, less experienced
staff may either generate too little paperwork (because they are less certain
about what to do and may be forced to shortcut some activities) or too much

Chapter 3 • Software Systems Development Process

167

ptg

paperwork (because they are less certain about how much is enough). Men-
toring of these individuals can facilitate the generation of the appropriate
amount of paperwork across an organization.

To focus application development process environment (ADPE) develop-
ment efforts, it is helpful to begin by defining the organizational software
systems development process and capturing it in an ADPE element. This or-
ganizational element establishes the context for most subsequent elements.
As shown in Figure 3–25, the subsequent elements serve to address in more
detail one or more items called out in the ADPE organizational process ele-
ment. For example, the organizational process may include a CCB. The me-

Chapter 3 • Software Systems Development Process

168

Organizational Systems Development Process

Organizational Software

Systems Development Process

Figure 3–24 The software systems development process can plug into a systems development process via change con-
trol board meetings.

ptg

169

[Your Organization’s Name and Logo] Document #

Date

[Your Organization’s Name] Policy

Product Development Process

[Your Organization’s Name and Logo] Document #

Date

[Your Organization’s Name] Guideline

Change Control Board

Prepared by:
[Your Organization’s Name and Address]

Organizational Software

Systems Development Process

Management

Product
AssuranceDevelopment

CCB

Subsequent Step

First Step

Figure 3–25 It is useful to define the organizational software systems development process first.

ptg

chanics of this item can then be addressed in an ADPE element on the CCB
and/or on configuration management. The organizational software sys-
tems development process acts as an integrating agent for the other ADPE
elements.

You can use the annotated outline of an ADPE policy shown in Figure 3–26 as
a starting point for defining your organization’s software systems develop-
ment process.

The software systems development process policy may consist of the follow-
ing sections:

♦ Purpose. This section states the purpose of the policy. The purpose sets the
context and establishes the authority for the policy.

♦ Background. This section provides an overview of your organization, busi-
ness, customers, and types of contractual vehicles (e.g., firm fixed price,
time and material, cost plus fix fee, letter contract) that you use to conduct
business.

♦ Software Systems Development Process Overview. This section describes
your software systems development process. The key part of this section is
a diagram showing this process. This diagram should delineate your or-
ganizational elements, as well as your customer’s. Your process should
contain a planning element, a change control mechanism, and customer
feedback. The process provides guidance for evolving your entire ADPE in
a self-consistent manner.

♦ Software Systems Development Elements and Their Interactions. This
section describes all the elements and the way that they interact with one
another during software systems development.

♦ Project Files. This section describes the way your organization is to set up
its files for tracking, storing, and maintaining your deliverables. In addi-
tion to the issues listed in the figure, you should keep this system simple.

♦ Appendices. Appendices can contain examples of a tracking form, cover
letter, customer receipt of deliverable form, and customer acceptance of
deliverable form.

We have completed our discussion of our organizational software systems
development process concept. The next chapter deals with the change control
process and the change control board (CCB). As you will discover, our con-
cept of a CCB extends far beyond the traditional configuration management
(CM) control board.

Chapter 3 • Software Systems Development Process

170

ptg

Chapter 3 • Software Systems Development Process

171

[Your Organization‘s Name and Logo] Document #

Date

Document #

Date1.0 PURPOSE

[Your Organization‘s Name] Policy

Software Systems Development Process

This section states the purpose of the element. This purpose is the following:
● Identify the generic activities performed by your organizational elements (e.g., project

management organization, product assurance organization, process engineering group [PEG],
training organization, deliverable support center) in developing a software product (i.e.,
documentation, computer code, database) for delivery to your customer.

● Describe the roles of customer organizational elements and your organizational elements in
performing these generic activities. The generic activities in this procedure should encompass
the spectrum from SOW receipt by your organization to product delivery to the customer and
feedback from the customer regarding the delivered product (i.e., whether the product is
accepted or requires changes). The purpose of this element should not be a description of how to
do various software product development activities (e.g., object-oriented design, software
requirements specification).

2.0 BACKGROUND

This section gives an overview of your organization, your business, your customers, and the types
of contractual vehicles you use to conduct business (e.g., fixed price, memorandum of
understanding, time and materials).

3.0 SOFTWARE SYSTEMS DEVELOPMENT PROCESS OVERVIEW

This section describes your software systems development process. The key part of this section is
a diagram showing this process. This diagram, which should be walked through in this section,
should delineate your organizational elements and those of your customer’s involved in software
systems development. Do not forget to include a CCB mechanism to manage change. This diagram
should serve as the context for other ADPE elements. It thus provides guidance evolving your
entire ADPE in a self-consistent manner.

4.0 SOFTWARE SYSTEMS DEVELOPMENT ELEMENTS AND THEIR INTERACTIONS

This section describes how your software systems development elements defined in the preceding
section interact with each other during software systems development, review and approval,
delivery, and customer acceptance.

5.0 PROJECT FILES

This section describes the way your organization is to set up its files for tracking, storing, and
maintaining your repository of deliverables. It should deal with such issues as the (1) definition of
the project file concept, (2) project file location, (3) deliverable control numbers, (4) way that
products are filed (in general, how “filing” is accomplished depends on product type (i.e.,
document, code, database), (5) check-in and check-out procedures, and (6) project closeout.

APPENDICES

Appendices can contain such things as (1) deliverable tracking forms, (2) deliverable cover letter
templates, (3) acronyms, and (4) definitions of key terms.

Figure 3–26 An annotated outline for getting you started in defining a software systems develop-
ment process for your organization. This ADPE element outline can also be used to define a process
that you already (informally) have in place and that you want to improve.

ptg

This page intentionally left blank

ptgHe who rejects change is the architect of decay. The only human institution which rejects change
is the cemetery.

—Prime Minister Harold Wilson,
speech to the Consultative Assembly of the Council of Europe, Stras-
bourg, France, January 23, 1967. Text from The New York Times,
January 24, 1967.

4.1 Introduction

Generally, the customer has some idea of what a software system is to do.
However, the customer usually does not know exactly what a software sys-
tem is to do. Probably the most fundamental aspect of software systems de-
velopment is iteratively determining what the customer wants and then
developing products to satisfy these wants. In this chapter, we turn our atten-
tion to describing controls that can be instituted on a software systems devel-
opment project to achieve convergence between what the customer thinks the
software system is to do and what the seller thinks the customer wants the
software system to do—with the ultimate result that the seller produces what
the customer wants (and can use).

The change control board (CCB) can be used to institute controls for achiev-
ing convergence between the customer and seller. This chapter details the
CCB concept and provides you with guidance for setting up a CCB for your

173

chapter 4
Change Control
Process

chapter 4

ptg

software systems development process. We believe that the CCB can effec-
tively deal with customer (i.e, user/buyer) and seller communication issues
dealing with software systems development. However, this is not to say that
the CCB is the only effective mechanism for communicating with the cus-
tomer.1

In this chapter, we show how the CCB can, and should, be used to address
the communications problems that plague any software systems development
project. As the comic strip in Figure 4–1 illustrates, communications misun-
derstandings plague everyday life.

In his opening remark to the to-be-debugged prisoner, the prison doctor
shown in the first frame of the strip is undoubtedly unaware that he is mis-
communicating his prescription to the inmate. In fact, in the absence of the re-
maining frames, most readers of the first frame would probably interpret the
doctor’s words as he had intended. Unfortunately, both the spoken and the
written word are frequently misinterpreted.

It should not be surprising, then, that particularly in the world of software
systems development, where the need for specificity is paramount, the conse-
quences of misinterpretation can cause discomfort—or worse. For example,
consider the comic strip in Figure 4–2. This comic strip models a typical inter-
action between a customer and a vendor of off-the-shelf software. The first
frame of the comic strip intimates that the customer (peasant) seems to be
sure of his requirements for a potion that the wizard is vending. This frame
also makes it evident that the wizard seems to understand what the peasant
really wants. Unfortunately, the third frame of the comic strip makes it evi-
dent that, at least from the perspective of the peasant, a misunderstanding
has arisen. It is important to note from the frame that, from the perspective of
the wizard, there is no misunderstanding.

Chapter 4 • Change Control Process

174

Figure 4–1 It is easy to miscommunicate. (The Wizard of Id, May 16, 1994. Reproduced by permis-
sion of Johnny Hart and Creators Syndicate, Inc.)

1As previously stated, our CCB concept extends far beyond the traditional configuration management
(CM) control board concept. One aspect of software product development change control is certainly
CM, but as you read this chapter, we present our expanded concept of change control.

ptg

In the real world of software systems development, the fact that the customer
and seller can have diametrically opposite views of the state of a product can
have overwhelming consequences. Consider, for example, the following
statement from an actual software specification document:

“The exception information will be in the XYZ file, too.”

Just as the wizard in Figure 4–2 interpreted the word “life” in the peasant’s
requirements statement to mean “age,” the programmer interpreted “too” in
the above specification to mean, “Another place the exception information ap-
pears is the XYZ file.” Unfortunately, what the customer really wanted this
statement to mean was, “Another type of information that appears in the XYZ
file is the exception information.” In fact, this information was not duplicated
elsewhere. So, just as the peasant’s “age” requirement misinterpretation led
to an irreversible situation (assuming the wizard had no potion anti-
dote), so the customer’s “too” led to the loss of valuable and unrecoverable
information. The cost of the lost information was about half a million
dollars.2

Figure 4–3 generalizes the off-the-shelf software scenario in Figure 4–2 to the
general case of software systems development. The king in the comic strip in
Figure 4–3 is the archetypical software customer. The king has some idea
of what he wants—but he does not know exactly. Perhaps the most funda-
mental aspect of software systems development is iteratively determining
what the customer wants and then developing products to satisfy these
wants.

Chapter 4 • Change Control Process

175

Figure 4–2 Sometimes the customer believes that he effectively communicates his requirements,
and the developer believes he understands what the customer communicated. Subsequent to devel-
oper implementation of the “requirements,” the customer and developer may have vastly different
perspectives regarding requirements satisfaction. (The Wizard of Id, October 11, 1984. Reprinted by
permission of Johnny Hart and Creators Syndicate, Inc.)

2This example is taken from D. C. Gause and G. M. Weinberg, Are Your Lights On? How to Figure Out
What the Problem Really Is. (Boston: Little, Brown, and Company, 1982), pp. 73–74.

ptg

Many system development efforts (whether or not they involve software) em-
body attempts to improve how things work without being precisely sure of
what is wanted. This imprecision is perhaps implicit in Figure 4–3 in the
broad-scoped question the king puts to the wizard, “Can you stop the rain?”
Often, software systems development efforts begin with such customer
thoughts as the following:

♦ Wouldn’t it be nice if I could do such and such?
♦ What I really need is a system that will do
♦ Today I do processes X, Y, Z . . . separately. It would be more efficient if I

could integrate X, Y, Z . . . into a single system.

From the software systems developer’s perspective, development, once initi-
ated (by such customer thoughts as those just listed), may be pushed along by
developer thoughts like the following:

♦ I think the customer would be happier if I could make his system do such
and such instead of what it does now.

♦ Although the design I have developed meets customer needs, now I realize
that there are other designs that will meet these needs more efficiently.

♦ I now have a better understanding of what the customer wants, so I think
that I will implement his new capability as follows

The key point about these customer and developer thoughts and Figure 4–3 is
related to time and money. To help make successful software systems devel-
opment happen, the fourth frame in Figure 4–3 should really be merged with
the first frame. Before a lot of time and money are wasted in taking the next
step in a software systems development effort (the second and third frames in

Chapter 4 • Change Control Process

176

Figure 4–3 A customer and a developer refine their understandings of what needs to be done to
build a software system satisfying customer requirements. This mutual refinement of understanding
continues throughout the development life cycle. The change control board (CCB) provides the wiz-
ard and king with a business forum to achieve this mutual refinement. The end result is successful
software systems development. (The Wizard of Id, September 30, 1983. Reproduced by permission of
Johnny Hart and Creators Syndicate, Inc.)

ptg

the figure encapsulate this presumably wasted time and money), the wizard
needs an answer to his question, “What is it you really want?”

As illustrated in Figure 4–3, both the wizard and the king mutually progress
in their understanding of what needs to be done as the project proceeds. Suc-
cessful software systems development thus requires a mechanism that allows
the wizard and king to process the changes that arise from this natural mu-
tual refinement of understanding. That software systems development mech-
anism is the change control board (i.e., CCB). The CCB’s primary purpose is
to serve as a forum for managing these anticipated, but unknown, changes.

In this chapter, we describe a change control process critical to achieving con-
vergence between what the king thinks he wants and what the wizard thinks
the king wants. The ultimate result of the change control process, as em-
bodied in the CCB, is that the wizard produces what the king wants (and
can use).

The plan for this chapter is the following:

♦ In Section 4.2—Change Control Process Key Ideas, we present the key
ideas that you can expect to extract from this chapter.

♦ In Section 4.3—Planned and Unplanned Change, we define the scope of
the process of change control. We begin by introducing a dictionary defini-
tion of the word change. We use this definition to set the stage for our dis-
cussion of planned changes and unplanned changes. The section asserts
that achieving convergence between the customer and seller is tantamount
to saying the following:

A customer’s wants migrate through a sequence of changes and ulti-
mately become a product embodying the wizard’s (and hopefully the king’s)
perception of these wants.

The section then asserts that, in terms of a project’s life cycle, this migra-
tory process can be further described as a planned sequence of transitions
from one life cycle stage to a subsequent one overlaid by unplanned transi-
tions within stages, or back to preceding stages or forward to succeeding
stages.

♦ In Section 4.4—The Processing of Changes, we define for the seller the
change control mechanics of the software systems development process.
We step through the processing of product and programmatic changes
using the CCB.

♦ In Section 4.5—Examination of the Change Control Board, we focus on
the mechanics of the CCB itself. The preceding section focused on the role
of the CCB in the overall product and programmatic change control
process. In this section, we focus on who sits on the board, what decisions
the board makes, and how the board operates.

Chapter 4 • Change Control Process

177

ptg

♦ In Section 4.6—Paperwork Support of the Change Control Board, we dis-
cuss why paperwork is necessary in the change control process. We also
show how to develop and use a set of change control forms. In addition,
we provide a format for recording CCB minutes.

♦ In Section 4.7—Change Control Process Summary, we summarize the key
points developed in the chapter. It includes an annotated outline of an
ADPE guideline for describing the workings of CCBs in the software sys-
tems development process. You can use this outline as a starting point for
defining how CCBs are to be incorporated into your environment. This sec-
tion also provides a transition to the next chapter.

4.2 Change Control Process Key Ideas

Figure 4–4 lists the key ideas that you can extract from this chapter. To intro-
duce you to this chapter, we briefly explain these key ideas. Their full intent
will become more apparent as you go through the chapter.

1. Every software systems development project should be governed by a board
that meets periodically involving the buyer/user and seller.
Constitute this board with the disciplines of management, develop-
ment, and product assurance. Remember, on some projects—particu-
larly small ones—the same individual can represent more than one
discipline. Give this board any name consistent with your business cul-
ture. In this book, we label this board the “Change Control Board
(CCB)” because of its role in controlling the changes that inevitably
arise on any software systems development project. This chapter offers
you guidance for establishing CCBs in your organization.

2. If product assurance is not part of your culture, use the CCB mechanism to
foster the idea of the need for an independent agent providing alternative
insight into project progress to support more effective decision making.
Use a project outsider initially to serve in this product assurance role.
We believe that it is important to have an organization independent
from the development organization in helping management make in-
telligent, informed decisions regarding how a software systems devel-
opment project should proceed. This chapter shows you how, through
the CCB, an independent product assurance organization acts as a
decision-making catalyst.

3. If you are a seller, develop a software systems development process that in-
volves the buyer/user through a CCB-like mechanism.
If the buyer/user is reluctant to participate in a software systems de-
velopment process, use the approach “try it, you might like it.” As a
seller, your role is to elevate software systems development to a
businesslike proposition. The CCB establishes an accountability

Chapter 4 • Change Control Process

178

ptg

Chapter 4 • Change Control Process

179

Change Control Process Key Ideas

1. Every software systems development project should be governed by a board
that meets periodically involving the buyer/user and seller.

2. If product assurance is not part of your culture, use the CCB mechanism to
foster the idea of the need for an independent agent providing alternative
insight into project progress to support more effective decision making.

3. If you are a seller, develop a software systems development process that in-
volves the buyer/user through a CCB-like mechanism.

4. If you are a buyer/user, mandate in your contract that the seller establish a
CCB mechanism, involving you, that governs the software systems develop-
ment project.

5. Establish the CCB rules of engagement at project outset through a CCB
charter.

6. Record minutes of every CCB meeting.

7. Some projects may be of sufficient complexity to require a hierarchy of
CCBs to focus project decision making.

8. For projects of at least six months’ duration, establish a CCB meeting fre-
quency of no less than monthly.

9. It is a good idea for buyers/users and sellers each to hold in-house CCB-like
meetings throughout a software systems development project for purposes of
reaching consensus before meeting with each other.

10. The minutes of each CCB meeting should explicitly indicate that the in-
volved parties agreed to the content of the minutes.

11. Document in an ADPE element the CCB role in your environment.

Figure 4–4 Here are key change control concepts explained in this chapter.

mechanism for both the seller and the buyer/user that enables software
systems development to proceed in businesslike fashion. In addition,
software systems development is susceptible to tinkering on the part of
both sellers and buyers/users. This tinkering breeds a certain informal-
ity among the parties involved in software systems development. This
chapter offers you guidance for elevating software systems develop-
ment to a businesslike proposition to mitigate the risks that plague any
software project. Since it is easy to change software, the urge to change
software products can be almost overwhelming. In this chapter, we
offer you suggestions for controlling such urges.

ptg

4. If you are a buyer/user, mandate in your contract that the seller establish a
CCB mechanism, involving you, that governs the software systems develop-
ment project.
Only a few things should be mandated on any software systems devel-
opment effort—the CCB is one of these. This chapter builds a case for
why it is in the best interests of a buyer/user to direct the seller to es-
tablish a CCB mechanism involving both parties. We explain why a
buyer/user (i.e., customer) cannot simply tell the seller what is wanted
and when it is wanted, and then walk away until the seller delivers the
developed software system to the buyer/user.

5. Establish the CCB rules of engagement at project outset through a CCB
charter.
This chapter offers you guidance for constructing a CCB charter.

6. Record minutes of every CCB meeting.
At a minimum, these minutes should include (1) a summary of the is-
sues discussed, (2) the decisions made, (3) the action items assigned,
(4) the responsible agent for each action item, and (5) the date each as-
signed action is to be completed. The breadth and depth of CCB min-
utes should be iteratively and mutually determined by the involved
parties. The basic guideline is “how much visibility do the involved
parties need to manage change without getting bogged down in
bureaucracy?” Key to elevating software systems development to a
businesslike proposition is establishing seller and user/buyer account-
ability. This chapter offers you guidance for addressing this account-
ability issue through CCB minutes.

7. Some projects may be of sufficient complexity to require a hierarchy of
CCBs to focus project decision making.
Often, software to be developed is part of the development of other
system components. This chapter offers you guidance for constructing
a CCB hierarchy to target project complexity issues arising from this
added complexity.

8. For projects of at least six months’ duration, establish a CCB meeting fre-
quency of no less than monthly.
At the beginning, it is preferable to meet more frequently—even weekly.
Within these broad guidelines, allow meeting frequency to vary as pro-
ject events dictate. For projects shorter than six months, CCB meetings
every two weeks is a good starting frequency for governing the project.
As the project unfolds, you can adjust this frequency as project events
dictate—but try to meet at least monthly. To maintain effective process
control, CCB meetings must take place throughout a project. This chap-
ter offers suggestions for regulating meeting frequency.

9. It is a good idea for buyers/users and sellers each to hold in-house CCB-like
meetings throughout a software systems development project for purposes of
reaching consensus before meeting with each other.

Chapter 4 • Change Control Process

180

ptg

The purpose of these “in-house CCB meetings” is to allow for the ex-
pressing of dissenting opinions while at the same time not compromis-
ing each party’s business interests during “joint (i.e., buyers/users and
sellers) CCB meetings.” This chapter offers guidance for harmonizing
in-house CCB meetings with joint CCB meetings.

10. The minutes of each CCB meeting should explicitly indicate that the in-
volved parties agreed to the content of the minutes.
It is a good idea to start each CCB meeting with a review of the min-
utes from the preceding meeting to allow for correction to the minutes
in the presence of the involved parties. Software systems development
success critically depends on all parties agreeing to be accountable for
their decisions.

11. Document in an ADPE element the CCB role in your environment.
This chapter gives you ideas for documenting the role of the CCB in
the context of your organization’s software systems development
process.

4.3 Planned and Unplanned Change

We set the context for our discussion of planned and unplanned change by turn-
ing to the dictionary. We note that the word change can be used as a noun or a
verb. The following are dictionary definitions of these two uses of the word:3

change n: the act, process, or result of changing
change v: to make different in some particular; to make radically different

We borrow from both the noun and verb definitions for our concept of change.
For us change means “the result of making different in some particular.”

We explain our change concept by applying these two dictionary definitions
to software systems development. For this purpose, we consider the follow-
ing two examples:

1. Let us suppose that we have a design specification for a system that was
produced from a requirements specification for that system. Let us fur-
ther suppose that (1) the requirements specification specifies “what” the
system is to do and (2) the design specification specifies “how” to do the
“what.” We look on the design specification as follows:

“The result of making the requirements specification different in some
particular (i.e., specifying how to do the “what” described in the requirements
specification).”

Chapter 4 • Change Control Process

181

3Merriam-Webster’s Collegiate Dictionary, Tenth Edition (Springfield, MA: Merriam-Webster, Inc., 2000).

ptg

2. Let us suppose that we have some mass-produced computer code that
was deployed to customer sites for operational use. Let us further sup-
pose that when users used this code, it didn’t do what it was supposed to
do. That is, the code had “bugs”—in other words, deviations from what
the customer and seller had previously agreed that the code was sup-
posed to do. Finally, let us suppose that the bugs were fixed. That is, the
deployed code was revisited and the bugs were removed and a new re-
lease of the code was produced. We look upon the revisited mass-
produced computer code as follows:

“The result of making the deployed code different in some particular
(i.e., the new release of the “fixed” code).”

Now that we have discussed what we mean by change in the context of soft-
ware systems development, we discuss why change needs to be controlled.
For this purpose we return to the wizard and king.

Achieving convergence between the king and the wizard is tantamount to
saying the following:

A customer’s wants migrate through a sequence of changes and ultimately
become a product embodying the wizard’s (and hopefully the king’s) perception
of these wants.

This migratory process can be further described as follows:

The migratory process is a planned sequence of transitions from a life cycle
stage to a subsequent stage overlaid by unplanned transitions within stages or
back to preceding stages or forward to succeeding stages.

We refer to a planned transition from one life cycle stage to a subsequent
stage as evolutionary change because such a change embodies the orderly
(i.e., planned) growth of the software from one level of detail to a greater
level of detail. We refer to the overlay of unplanned transitions within stages
or back to preceding stages or forward to succeeding stages as revolutionary
changes because each such change embodies an unanticipated alteration to
the planned growth of the software. Figure 4–5 illustrates our concept of
these two categories of change.

As shown in the upper half of Figure 4–5, planned change follows a direct
path from one life cycle stage to a review area to another life cycle stage. For
example, the planned software systems development activities transition
from the (1) WHAT Development Stage to the (2) Review Area to the (3) HOW
Development Stage to the (4) Review Area to the (5) BUILD Development Stage to
the (6) Review Area to the (7) USE Development Stage to the (8) Review Area.

In contrast, unplanned change follows an indirect path from one life cycle
stage to a review area back to a life cycle stage, to a life cycle stage, etc. As

Chapter 4 • Change Control Process

182

ptg

Chapter 4 • Change Control Process

183

Unplanned Change (i.e.,
revolutionary change) is (1) the
unanticipated change within a
stage or (2) an unplanned
transition from one stage to a
succeeding stage (or stages) or
to a preceding stage (or stages).

USE
Development Stage

HOW
Development Stage

Review
Area

Product
Assurance

Management

Planned Change (i.e.,
evolutionary change) is the
orderly growth of software
from one level of detail
developed in one life cycle
stage to a greater level of
detail developed in the
next stage.

BUILD
Development

Stage

WHAT
Development

Stage

USE
Development Stage

HOW
Development Stage

Review

Area

Product
Assurance

Management

WHAT
Development

Stage

BUILD
Development

Stage

8

3

6

7

82

46

1

5

14 12

13

9 11

10

7

2 4

3

51

Figure 4–5 Software systems development projects involve planned growth in greater levels of de-
tail, and unplanned transitions within a life cycle stage or between stages.

shown in the lower half of Figure 4–5, the software systems development ac-
tivities transition from planned changes (i.e., (1) to (2) to (3) to (4)) to un-
planned changes as a result of review area activities that necessitate an
unplanned revisit to the (5) WHAT Development Stage. The development con-
tinues on a planned path (i.e., (6) to (7) to (8) to (9) to (10)), and then as a
result of review area activities, it is necessary to revisit the (11) BUILD Devel-

ptg

opment Stage. The development then continues on a planned path (i.e., (12) to
(13) to (14)). Regardless of the type of change, it is important to recognize the
change and respond to it appropriately.

Consider the following examples of planned (i.e., evolutionary) and unplanned
(i.e., revolutionary) change. The context for these examples is a six-stage life
cycle: (1) requirements definition, (2) preliminary design, (3) detailed design,
(4) coding, (5) production/deployment, and (6) operational use. However,
these examples are not limited to a six-stage life cycle.

♦ Suppose that a preliminary design specification for a software system, de-
rived from a requirements specification for that system, listed the functions
each of three software subsystems is to perform. Suppose that a detailed
design specification describes how each of these functions is to be per-
formed by computer code. This description of “how” is just an embodi-
ment of the orderly growth of the software system and is thus an example
of a planned change.
This example has two important points. First, the requirements specification
did not have to be updated as the design took shape; therefore, resources did
not have to be spent to update the requirements documentation. Second,
since the design followed from the requirements, the design embodied the
developers’ perception of what the customer wanted.

♦ Suppose that during the development of the detailed design specification
in the preceding example it was discovered that a fourth subsystem (in ad-
dition to the three subsystems identified in the preliminary design specifi-
cation) was incorporated into the detailed design because the developers
thought this additional subsystem was needed to satisfy the intent of the
requirements specification.
Presumably this fourth subsystem was not noticed during the develop-
ment of the preliminary design specification because, for instance, the ab-
sence of design detail did not make manifest this requirements satisfaction
issue. The modification (i.e., change) of the preliminary design specifica-
tion to incorporate this fourth subsystem (presumably after the detailed
design specification is approved) is an alteration to the orderly growth of
the software that was not anticipated at the time the software was evolving
from the Requirements Definition Stage to the Preliminary Design Stage.
This modification is thus an unplanned change.
In contrast to the preceding example, the addition of the fourth subsystem
resulted in expending additional resources to update the preliminary de-
sign. Achieving convergence between the customer and the seller resulted
in a sequence of changes—planned and unplanned. Generally, sellers do
not reflect all changes (or maintenance of software products) in their proj-
ect plans or resource estimates. Also, note that it was not necessary to up-
date the requirements specification; had it been necessary, even more
resources would have been spent.

• Suppose that computer code was developed from the detailed design spec-
ification in the preceding example, tested, and then deployed for opera-

Chapter 4 • Change Control Process

184

ptg

tional use. Suppose further that sometime subsequent to this deployment,
a malfunction was discovered in the computer code. This malfunction,
which was not noticed during predeployment testing, resulted from a mis-
interpretation of the detailed design specification. Modification of the com-
puter code to correct this malfunction is an alteration to the orderly growth
of the software that was not anticipated at the time the software was
evolving from the Coding and Production/Deployment Stages to the Op-
erational Use Stage. This correction is thus an unplanned change.

♦ Suppose that in the preceding example a review of the detailed design
specification was scheduled to determine the feasibility of refining some of
the functions in one or more of the software’s subsystems (e.g., to make
them operate more efficiently). As a result of this feasibility study, suppose
that the detailed design specification was modified to incorporate these en-
hancements to the existing functions and that the computer code was also
modified to incorporate these enhancements. These modifications to the
detailed design specification and the computer code represent the orderly
growth of the (already operational) software system and are thus examples
of planned changes.

♦ Suppose that the feasibility study referred to in the preceding example, in
addition to specifying refinements to existing functions, revealed a logic
flaw in the detailed design that had heretofore gone undetected during op-
erational use of the computer code. As a result of this feasibility study, sup-
pose that the detailed design specification was modified to correct this logic
flaw (as well as incorporating the enhancements to the existing functions)
and that the computer code was also modified to correct this logic flaw.
These modifications to the detailed design specification and computer code
to correct this latent logic flaw constitute alterations to the orderly growth of
the software that were not anticipated at the time the software was evolving
from the Detailed Design Stage to subsequent stages. These design and code
modifications are thus examples of unplanned changes.

♦ Suppose that, as a result of operational use of the computer code referred to
in the three preceding examples, a need arose to add new functions to one or
more of the existing subsystems. Suppose further that, as a result of this iden-
tified need, the requirements specification was augmented to incorporate
these new functions and the preliminary design specification, detailed de-
sign specification, and computer code were correspondingly modified to in-
corporate these new functions. These modifications to these four software
products represent the orderly growth of the (already operational) software
system and are thus examples of planned changes. Alternatively, it could be
argued that these modifications were not anticipated at the time the software
was evolving prior to first operational use and thus are examples of un-
planned changes. From this latter perspective, it thus follows that any new
capabilities added to an operational system are unplanned.

Hopefully, these simple examples provide you with some insight into the mi-
gratory process of achieving convergence between the customer and seller.

Chapter 4 • Change Control Process

185

ptg

As the seller transitions from one life cycle stage to another, there may be un-
planned transitions within stages or back to preceding stages or forward to
succeeding stages. Software is malleable, and this intrinsic characteristic con-
tributes to the ease with which software development projects can get into
trouble. In this chapter we focus on techniques for establishing and maintain-
ing control over this high susceptibility to change, thereby reducing the likeli-
hood of encountering trouble during the life cycle. In describing these
techniques, we frequently find it convenient to distinguish between planned
and unplanned changes.

The distinction between planned and unplanned change is sometimes
blurred, as the last example indicates. What difference does it make what
kind of change it is? The prime reason that this distinction is important is to
assure that all changes are given the requisite visibility and are handled in a
unified way. Let us hasten to explain this somewhat paradoxical statement.
Many people in the software development world do not recognize that the
planned transitions of software from stage to stage are a form of change, i.e.,
that they are evolutionary changes as defined here. Lacking this perception,
these people exercise little or no control over this evolving software. Conse-
quently, instead of achieving convergence between the customer and seller,
the opposite frequently happens. To illustrate this point, consider the follow-
ing story based on the authors’ actual experiences (names in this and other
stories have been changed).

Why Control Planned Change?—A Story
Tom Smith was the seller’s project manager for the development

of a large management information system called ATLANTIS. He de-
creed that a succession of baselines was to be established, one at the
end of each life cycle stage to serve as a point of departure for efforts
in the next stage. However, Tom did not view this succession of base-
lines as planned changes to be controlled. He wanted his software en-
gineers to be able to introduce different ideas easily “if they found a
better way to do things.”

Tom’s engineers thus did not regard the preceding baseline as a
rigid specification, and as a result the next baseline did not logically
follow from its predecessor. There were plenty of surprises for every-
one who read the current baseline. The customer’s and seller’s under-
standing of what the customer wanted were not converging.

In Tom’s view, each baseline superseded its predecessor. His con-
cept was strengthened by his contractual list of deliverables—the con-
tract called only for a single delivery of each software product and did
not suggest maintaining any software product. It is important to note
that “maintaining” means that if, for example, when the design specifi-
cation did not follow from the requirements specification, the require-
ments should be updated, or the design should be brought in line with
the requirements. In addition, since the software engineers could intro-
duce different ideas without customer agreement, the system being

Chapter 4 • Change Control Process

186

ptg

built did not reflect what the customer wanted, but rather what the en-
gineers thought the customer might want.

Tom’s logic was that not having to maintain the baselines saved him
time and money and, from his viewpoint, increased the likelihood that
his project would be completed on schedule and within budget. Tom’s
product assurance organization kept pointing out that he had no visibil-
ity into what was going to be in a baseline until it was produced. It was
also pointed out that by allowing the software engineers to discard each
baseline as its successor was produced, they had destroyed all traceabil-
ity in his project. He had effectively lost all control over his project. The
product assurance reports were an embarrassment to Tom, particularly
when his senior management began asking questions about the reports.
So Tom took the obvious step to solve what he perceived his problem to
be—he disbanded his product assurance organization!

By this time, however, the customer was observing the fledgling
system undergoing integration testing. The customer’s observations
told him that the project was going to be late and over budget. System
ATLANTIS did not come close to solving his needs. Without hesitation,
the customer terminated the contract to avoid further loss, and System
ATLANTIS was never heard of again.

The moral of the story is that all change—both planned and unplanned—
must be controlled (and maintained) in order to attain visibility and traceabil-
ity in a project. We distinguish between the two categories of change
primarily to assure that planned change is not omitted or overlooked.

A secondary reason for distinguishing between planned and unplanned
changes is that they do have some different attributes. One such attribute is
direction. Planned change always moves forward from baseline to a succeed-
ing baseline, much the same way that human development evolves. Un-
planned changes, on the other hand, may cause transitions either within a
stage, back to a preceding stage, or forward to a succeeding one. Particularly
important are the revisits to baselines resulting from unplanned changes,
with the result that all project baselines are maintained, and visibility and
traceability are retained.

Another attribute distinguishing these two types of change is that unplanned
change processing is often more tightly time-constrained than planned
change processing. This time constraint generally has an impact on some of
the details of the change evaluation and approval steps, as we explain in sub-
sequent sections.

4.4 The Processing of Changes

In the preceding section, we divided software changes into planned change
and unplanned change. Regardless of the category, changes are inevitable on
any software project having more than one life cycle stage. As a project

Chapter 4 • Change Control Process

187

ptg

progresses through the life cycle, a baseline is created at the end of each stage.
Each baseline embodies what was done during a given stage. This planned
sequence of baselines represents the orderly growth of the software during
the project life cycle. By our definition, each of these “orderly” baselines is a
planned change.

Unplanned changes are also inevitable on any software project of any com-
plexity. These changes arise from our fallibilities as human beings, from our
general lack of complete experience, and from our inability to communicate
perfectly among ourselves. Because of these limitations, it becomes necessary
to make unplanned changes continually to correct misperceptions or misun-
derstandings. From stage to stage, we gain more insight and knowledge on a
project and recognize the need to change the results of the current stage and
of other stages. The larger and more complex the project, the larger and more
convoluted the communications paths and the more likely the need for un-
planned change.

Unplanned changes can also cause revisits to previous stages. These revisits
precipitate baseline updates. Note that the update of a revisited baseline is an
unplanned change. As a result of this change, baselines between the revisited
baseline and the current baseline (i.e., intermediate baselines) must also be
updated (as scheduled activities) to maintain visibility and traceability. Thus,
the intermediate baseline updates are planned changes, according to our
definition.

One final observation is in order before we present a short story about change
on an actual software project. Unplanned changes often precipitate planned
changes. If the unplanned changes are inevitable, then planned changes are
also inevitable. It is important to acknowledge this inevitability of change on
a software project.

Our objective in establishing and maintaining control of changes is not to pre-
vent change but to control it. To understand why we adopt this objective,
consider the following story.

The Inevitability of Change—A Story
As project manager on a new software development project, Mike

Brown decided that success to him meant delivery of all software prod-
ucts on time and within budget. To this end he decreed that there
would be absolutely no changes allowed on his project. A succession
of baselines was to be developed during the life cycle. However, Mike
did not consider these planned changes to be changes at all, but rather
the normal progress of software development. He informed all his soft-
ware engineers of his decision to prohibit change. He stated that each
baseline would be a one-time delivery only, that is, a baseline would
not be updated after issuance. Thus, not only did he save time and
money by not processing changes, but also he conserved resources
through elimination of document maintenance.

Chapter 4 • Change Control Process

188

ptg

As the project went on, the software engineers found this rigid pol-
icy unworkable. During development and testing, the programmers
discovered discrepancies in the current or preceding baselines (e.g., in-
congruities between the design document and the baselined require-
ments document). Several engineers had ideas for changes that they
believed would have a beneficial effect on the final product. Since no
changes were allowed on this project, the engineers had recourse to
only two alternatives: (1) they could ignore the desirable or needed
changes, or (2) they could ignore the strictures against making
changes. Since the engineers were trying to solve the problems, most
of them chose to make the changes without informing their manager.
After all, they reasoned, it was easy to effect the changes in both docu-
mentation and code, and unit testing should uncover any problems
arising from making code changes.

The project proceeded blissfully for a number of months. Mike was
supremely confident that he had discovered the road to project suc-
cess. Then the ax fell—integration of the code modules began. Unac-
countably (to Mike at least), integration testing yielded a seemingly
unending stream of reports of problems with the software code. At the
same time, Mike’s users, witnessing the integration tests, complained
that the system performed functions they had not asked for and that it
did not perform some functions they had requested. To his dismay,
Mike watched helplessly while his project passed its delivery date and
budget ceiling, with no certainty as to when a system satisfying his
customers’ needs could be obtained.

In this story, Mike Brown tried to prevent change. The result was disaster. As
the software engineers acquired experience on the project, they saw things
not previously perceived or recognized. These insights gave rise to the need
for changes, which Mike had prohibited, with disastrous results. Since
change on a software project is inevitable, we believe it makes better sense to
acknowledge the existence of change and to attempt to control it.

Preventing all changes has the appeal of apparently not perturbing schedules
and budgets, but as this story illustrates, there are substantial risks with this
approach. The need for extensions of schedules and budgets is likely to be-
come evident in the late stages of a project. Schedules and budgets may also
change as a result of controlled changes, but in a controlled and visible
manner.

To ensure that candidate software changes are processed in a visible and
traceable manner, a controlling mechanism is needed to channel these candi-
date changes to the appropriate project participants. We call this controlling
mechanism the change control board (CCB). In Figure 4–6, we portray the
CCB as a control tower that controls the movement of software (1) from life
cycle stage to life cycle stage for a six-stage life cycle (namely, Requirements
Definition, Preliminary Design, Detailed Design, Coding, Production/Deploy-
ment, and Operational Use) and (2) in and out of the Review Area.

Chapter 4 • Change Control Process

189

ptg

Chapter 4 • Change Control Process

190

Operational
Use

Production/
Deployment

Preliminary
Design

Detailed
Design

Review Area

CHANGE

CONTROL BOARD

(CCB)

8

1 4

7 6

2 3

5

C
o
d
i
n
g

R
e
q
u
i
r
e
m
e
n
t
s

D
e
f
i
n
i
t
i
o
n

Figure 4–6 The change control board (CCB) is the forum for the control activity
for the change process conducted during the review of changes.

As we proceed through this example life cycle, the need arises to consider one
or more candidate changes to the software product under development or to
previously developed products. To address this need (which may occur at
any point within a life cycle stage), we symbolically show a line from a life
cycle stage to the CCB tower in the Review Area (e.g., from (4) Coding Stage to
(5) CCB tower). In the Review Area, we assess the candidate changes, deter-
mine their impact on the software development effort, and make appropriate
decisions. These decisions include specifying the following:

♦ What to do with the candidate changes—e.g., implement them, reject them,
or hold them in abeyance.

♦ Which software products to modify—e.g., none, the one currently under
development, products developed in previously visited life cycle stages.

♦ What revisits, if any, to make to other life cycle stages.

ptg

Readers who have some background in configuration management will im-
mediately recognize the CCB as the control organization historically used by
the CM process to control modifications and enhancements to a system. On
some projects, the CCB may also control changes to the computer code. In our
context, the CCB performs the broader function of managing all change on a
software project during all life cycle stages. This change management func-
tion encompasses both planned and unplanned change, and software in both
textual (document) and coded forms.

Although Figure 4–6 shows a path from the outer loop into the Review Area
near the end of each stage, this diversion path may occur anywhere within a
stage. For planned changes, the diversion occurs whenever a software prod-
uct is generated. If a product goes through several drafts, there is a diversion
path for each draft. The end of each stage does not occur until the software
product(s) comprising the baseline for that stage has (have) been approved.

For unplanned changes, the diversion path into the Review Area may connect
to any point within the stage. For example, a developer at any point during
the Coding Stage may detect a facet of the design omitted during the Detailed
Design Stage. The designer submits a report of this omission, and the review
process is initiated. Or during the Preliminary Design Stage a user may notice
a requirement that has not surfaced before. The user immediately initiates the
review process by submitting a request for change. Consequently, there can
be a multitude of paths connecting any life cycle stage in Figure 4–6 to the
Review Area.

The diversion down the path to the Review Area occurs whenever a change
arises. That is, every change—whether planned or unplanned, large or small,
of major or minor impact—is reviewed and evaluated by the change control
process. The timing of the review and evaluation is set by your organization.
For high-risk projects, you may decide to hold a CCB once a week. Regard-
less, the paths that a change takes during the change control process are con-
trolled by the CCB. In Figure 4–7, we have magnified the Review Area to show
generically how the change control process works in more detail, using the
analogy of train tracks and switches.

The product that proceeds down the path into the Review Area may be an out-
put of software development being proposed as a new baseline, such as a de-
sign document or the code for a software module, or it might be a change
request (CR) or an incident report (IR) defining a potential problem observed
on the system. We refer to this product as a review initiator. If the review ini-
tiator is a new or updated software part, then the initiator contains the pro-
posed change. A review initiator that is a CR or an IR usually does not specify
a change, but rather the need for a change.

The review initiator passes through one or more of the following change con-
trol process actions: freezing, auditing, and analyzing. The results of the
analysis include (1) revisiting the audit action, (2) revisiting preceding life
cycle stages, (3) proceeding to the next life cycle stage, or (4) going to a

Chapter 4 • Change Control Process

191

ptg

Chapter 4 • Change Control Process

192

To Life Cycle Stage N

From Life Cycle Stage N

Life Cycle Review Area

To Succeeding
Life Cycle Stages

To Preceding
Life Cycle Stages

Analyze

Audit

Freeze

CCB

Audit Report

CCB Minutes

Audit
Report

Analysis
Report

Analysis
Report

Identified Review Initiator

Review Initiator

Figure 4–7 CCB control can be likened to the process of redirecting a train by
switches.

specific life cycle stage. Each change control process action is described below
in the following paragraphs.

Change Control Process Action—Freezing
the Review Initiator

The first action in the change control process shown in Figure 4–7 is to
“freeze” the review initiator. The purpose of freezing the review initiator is to
establish the basis for the review and control. Unless the software product

ptg

initiating the change is frozen during the review, approval or disapproval of
the change becomes meaningless. To understand why change becomes mean-
ingless in the absence of freezing, consider the following story, which illus-
trates the relationship between freezing and change definition.

In retail businesses, cash register operations are reviewed at the
end of a shift or a workday. This review is conducted to verify that the
cashier keeps an accurate accounting of transactions. Closeout of a
cashier’s drawer involves totaling the cashier’s sales and counting the
cash in the drawer. These amounts are reconciled against the preced-
ing baseline for this audit, which is the amount of the money in the
drawer at the start of the shift. That is, the cashier’s sales plus the
amount of money in the drawer at the start of the shift should equal
the amount of money in the drawer at closeout.

An important aspect of this closeout process is that the cashier
must terminate all cash register operations during the closeout. That is,
the cashier must make no sales, receive no payments, and make no
change. Effectively, the contents of the cash drawer and the sales for
that cashier are frozen while the closeout (review) is conducted.

Consider the implications of trying to close out a cashier’s drawer
at a busy fast-food store while the cashier continues to make sales,
receive payments, and make change. The checker determines and
records the total sales at the beginning of the closeout. Of course, the
cashier will add to these sales as the cash is being counted, but the
checker will not have a record of their amount. As the checker is count-
ing the amount of cash in the register, the cashier is adding to and sub-
tracting from the various denominations in the drawer, both counted
and uncounted. Modifications to the counted amounts are, of course,
not recorded by the checker.

When the checker completes the cash count, the checker calculates
the sum of the cash amount at the beginning of the shift plus the total
sales. The checker expects this sum and the cash count to be equal for
successful closeout, but the checker will not find that to be true so long
as the cashier continues to do business. Redetermining the total sales
or recounting the current cash will change the amounts compared but
will not change the end result—the inequality will persist as long as the
cashier continues to do business, i.e., as long as the checker does not
freeze the operation of the register and the contents of the cash
drawer.

Imagine the frustration and futility of trying to close out under the circum-
stances cited in this story. Any count of the cash in the drawer would be
meaningless—it would not represent the total cash in the drawer at any mo-
ment in time. Under these circumstances, conduct of a closeout would be a
waste of time.

Similarly, as indicated in Figure 4–7, a software product must first be
“frozen” if its review is to be meaningful. For example, the result of a review

Chapter 4 • Change Control Process

193

ptg

might be the establishment of the software product initiating a review as a
baseline. If the product has meanwhile been modified substantially, then the
baselined product does not represent the current product. And if the CCB di-
rects the originator to make certain specific modifications to the product, the
originator may be unable to respond fully and correctly if the product has al-
ready been changed in the specified portions that were to be modified.

The choice of the concept of freezing is deliberate. The action here is not to
cast a software part in concrete, that is, to attempt to prevent forever any
change to that software part. Rather, our intent in freezing is to control
change. When a change becomes necessary and is approved, the software
item can be thawed, changed, and then refrozen. In this manner, we can ac-
commodate change while still maintaining continuous visibility into the cur-
rent state of the software and traceability of the software from one change to
subsequent ones.

A part of the freezing process is the identification function. Each software
product and its contents should be identified at the time of freezing the prod-
uct. It is not significant which organization (e.g., the development or the
product assurance organization) performs this identification. Since identifica-
tion is largely a subjective exercise, one organization should perform all iden-
tification throughout the life cycle. In this manner, consistency is achieved in
application of the identification standards prescribed for a project.

Identification entails attaching a label to the review initiator itself and to each
part of the review initiator. These labels provide visibility into the planned or
unplanned change being reviewed. Without these labels, people are reduced
to referring to software as, for example, “the second paragraph of the latest
version of the preliminary design” or “that piece of code that failed last Tues-
day.” Such references are often not specific enough to be useful in communi-
cating among project members. In fact, nonlabeled references could be
extremely misleading. Consider, for instance, the “latest” version of a prelim-
inary design. Two people attempting to discuss the second paragraph of their
latest version of a preliminary design may each be discussing a different en-
tity. It is entirely possible that a person might not receive an issue of a docu-
ment. It is even more likely that a person receiving an unidentified document
would confuse it with other unidentified issues of the document. The person
might, as a result, ignore the new document (considering it to be the same as
the old document) or subsequently consult the old document because the per-
son does not recognize that a newer edition exists.

Change Control Process Action—Auditing
the Review Initiator

The second action in the change control process shown in Figure 4–7 is to audit
the identified review initiator. Because Chapter 5 discusses auditing in detail,
we only touch upon the subject here. Auditing entails comparing the review

Chapter 4 • Change Control Process

194

ptg

initiator with one or more other items. These items could be a set of standards,
a preceding baseline, a preceding draft of the identified review initiator, or the
software requirements specification. Those items used in the comparison are a
function of the nature of the review initiator, as we illustrate later in this section.
The objective of auditing is to make visible the discrepancies between the iden-
tified review initiator and the items with which it is compared. These discrep-
ancies are documented in an audit report, which along with the identified
review initiator itself is submitted to the CCB for consideration.

Change Control Process Action—Analyzing
the Review Initiator

We next consider the “control tower” in Figure 4–7 labeled “CCB.” The CCB
represents the decision-making body that determines the disposition of each
change. Its function is analogous to the control tower in a railroad switching
yard, determining the destination of the rolling stock by using switches.

The first determination that the CCB makes is whether further analysis of the
identified review initiator is needed prior to CCB determination of its dispo-
sition. Generally, the CCB would bypass this analysis only for small problems
with evident solutions that can be quickly implemented. For example, pre-
sented with a preliminary design specification and an audit report listing dis-
crepancies observed in the preliminary design specification, the CCB may
decide that the discrepancies in the audit report make the changes required
obvious enough so that no further analysis is needed. For example, a discrep-
ancy might state that the preliminary design is incomplete in that it has not
addressed one of the functions in the requirements specification. On the other
hand, the CCB may consider that further analysis of a discrepancy should be
conducted to define sufficiently the change needed. For example, a section in
the detailed design is ambiguous or cannot be understood, or a discrepancy
indicates that the preliminary design specification and the requirements spec-
ification are inconsistent in that the design is based on achieving a substan-
tially faster response time than was required.

Figure 4–7 shows that the analyze function supports the CCB but is not part
of the CCB meeting. When the CCB decides that analysis of the identified re-
view initiator is needed, it effectively turns the switch in Figure 4–7 to route
the identified review initiator to the organization doing the analysis. Upon
completion of the analysis, that organization generally returns the identified
review initiator and the results of its analysis to the CCB.

The nature of the analysis differs according to the type of change proposed
and the directions provided by the CCB. The analysis might consist of one of
the following:

♦ A complete investigation into the impact of the change and the resources
required to implement it (e.g., for a change request).

Chapter 4 • Change Control Process

195

ptg

♦ A formulation of the precise change to be made (e.g., for an incident report
that clearly requires a code change, or for a discrepancy in an audit report
that points to ambiguous text).

♦ A determination of the scope of the problem and the exact changes re-
quired to implement a solution (e.g., for an incident report whose cause is
not immediately obvious, or whose solution may require changes in a
number of different software parts).

The CCB may, of course, direct that other analyses of a problem or a pro-
posed change be performed.

When the CCB directs that a proposed change be analyzed, the analysis is
often conducted by the seller’s development organization, although on occa-
sion other organizations may be involved in the analysis. For example, the
buyer’s product assurance organization may analyze a proposed change to a
product assurance plan. When the analysis is completed, the results are pre-
sented to the CCB for further consideration of the proposed change.

The identified review initiator, the audit report, and the analysis report are
the technical inputs to the CCB for determination of the disposition of the
change. The analysis report formulates the proposed change (if the change is
not already indicated on the identified review initiator) and assesses its
impact.

For planned changes, the audit report records discrepancies between the pro-
posed change (a proposed new or updated baseline) and the requirements
specification and between the proposed change and the predecessor baseline.
Other considerations affecting the CCB’s decisions may be political (e.g., as-
suagement of a user who may feel that he or she has been ignored), schedule
(e.g., the effect of making changes to the date that the system becomes opera-
tional), or economic (e.g., the amount of money remaining to effect changes).
Based on these considerations, the CCB decides on a disposition of each
change. This decision is analogous to throwing a switch to determine the path
in the software life cycle subsequently taken. For example, if the CCB accepts
a software product developed during a given life cycle stage (a planned
change) and establishes it as a baseline, the path chosen leads to the begin-
ning of the next life cycle stage. The CCB may decide that a software product
requires reworking before it is acceptable; in this case, the path selected re-
turns to the current life cycle stage.

When the CCB approves an unplanned change, revisits to one or more life
cycle stages may be necessary. For example, a change request may cause a re-
turn to the Requirements Definition Stage to amend the requirements specifi-
cation, with subsequent revisits to the other stages in succession as the
change is implemented in a sequence of planned changes. As another exam-
ple, approval of an incident report arising during acceptance testing may
cause a revisit to the Detailed Design Stage to modify the design, followed by
coding of the change and its testing. In some circumstances, the CCB may

Chapter 4 • Change Control Process

196

ptg

direct a revisit to a succeeding stage. For example, an incident report written
on an operational system may result in a revisit to the Detailed Design Stage
to correct the problem. While performing that correction, a coding error is
discovered, and the CCB, in approving its resulting code correction, may
specify a revisit to the Coding Stage.

The decisions that the CCB makes are documented in CCB meeting minutes.
These minutes allow management and project participants to see what is hap-
pening on a project, and make software changes manifest and traceable from
their origination to their archiving.

The alternative path in Figure 4–7 from the analysis process to the audit
process (indicated by white arrow heads) might be considered for use in
some circumstances. For example, suppose the audit of a draft preliminary
design document reveals that a section of the design has been stated ambigu-
ously. The development organization rewrites the section and normally pre-
sents its proposed resolution to the CCB. The CCB might approve the
proposed resolution, and the approved change would be made to the prelimi-
nary design document. But suppose the revision to the section in the prelimi-
nary design document does not solve the problem (e.g., the section is still
ambiguous) or introduces a new problem (e.g., the revised section is inconsis-
tent with a later chapter in the document). These defects in the revision may
not be evident to the CCB, particularly if the revision is substantial in scope
or depth. If the CCB baselines the document as revised, false starts may occur
as the project proceeds from its faulty baseline, thereby wasting considerable
resources.

How does the CCB become aware of such defective revisions? Following the
normal path shown in Figure 4–7 (i.e., indicated by the black arrow heads),
the CCB may not become aware of these defects until the design document is
next updated or until the software produced in the next stage is audited. At
this point, considerable time and money may have been wasted. To avoid
such waste, the alternate path shown with white arrow heads in Figure 4–7
could be used. In this case, the development organization, on completion of
its analysis, provides its proposed resolution directly to the audit organiza-
tion. The auditors would reaudit the revised section of the preliminary design
document and send both the revised section and the audit results to the CCB
for its consideration. Any remaining ambiguities, inconsistencies, or other
discrepancies are made manifest to the CCB before it determines the disposi-
tion of the proposed change. Through the use of the alternative path rather
than the normal path, discrepancies may surface earlier in the life cycle,
thereby avoiding subsequent wastage. Of course, conducting the reaudit will
cost money and take time, but it potentially will save much more money and
time. Using the alternative path is a specific instance of the philosophy of
“pay now versus pay much more later.”

Now that we have described the change control process shown generically
in Figure 4–7, we illustrate this process with the following three specific
examples:

Chapter 4 • Change Control Process

197

ptg

♦ Planned change. Presentation of a draft detailed design specification at the
end of the Detailed Design Stage.

♦ Unplanned change. Submission at any point in the life cycle of a proposed
amendment to the requirements.

♦ Unplanned change. Submission by a user of an incident report while the
system is in operational use.

Change Control Process Example
of Planned Change—Change Control
for a Draft Detailed Design Specification

For this example, we assume that a project has been in the Detailed Design
Stage of the life cycle in Figure 4–6 and that the development organization
has just produced a draft of the detailed design specification. The draft de-
tailed design specification has been diverted into the Review Area. The pro-
cessing of this planned change is shown in Figure 4–8.

The draft detailed design specification is first frozen by placing a copy under
the control of the product assurance organization. In other words, from this
point on, the draft detailed design specification cannot be changed without
CCB action. If the draft detailed design specification exists on an electronic
medium, copies of both the electronic medium form and the hard-copy form
are placed under control. At this time, the draft detailed design specification
is also identified by the product assurance organization if it was not identi-
fied by the development organization. Identification entails labeling both the
document itself and its contents.

The draft detailed design specification is next presented to the auditors in the
product assurance organization,4 who compare it with the following three
documents:

♦ The CCB-approved requirements specification (on this project, this docu-
ment has been established as the Requirements Baseline).

♦ The approved preliminary design specification (on this project, this docu-
ment is the predecessor baseline to the draft detailed design specification).

♦ The standards established for this project.

As a result of this comparison process, the auditors produce an audit report
describing their findings in terms of the discrepancies observed in the course
of the comparisons.

Chapter 4 • Change Control Process

198

4It is not mandatory that a separate product assurance organization conduct this audit. We advocate
an independent product assurance organization for performing this and other audits, but alternatives
are possible. It is essential that the audits be conducted, regardless of what organization conducts
them. However, the organization conducting the audits should be objective and unbiased.

ptg

199

To the Detailed Design Life Cycle Stage

From the Detailed Design Life Cycle Stage

Life Cycle Review Area

Analyze

Audit

Freeze

CCB

Audit Report

Audit
Report

Draft Detailed
Design Specification

Proposed
ResolutionCCB Minutes

Approved Detailed
Design Specification

Approved Changes to
Preceding Baselines

Draft Detailed
Design Specification

Approved Changes
to Detailed Design
Specification

Identified Review Initiator

OK

Rework

+

To the
Coding
Life Cycle
Stage

OK OK

Δ

✓✓✓

✘ ✓ ✘
✓✓✓
✘✓✓

✓✓✓

✘ ✓ ✘
✓✓✓
✘✓✓

$

Approved
Requirements
Specification

Standards

Approved
Preliminary Design
Specification

To Preceding
Life Cycle

Stages

Figure 4–8 Change control of a planned (i.e., evolutionary) change—submission of a draft detailed
design specification.

Chapter 4 • Change Control Process

ptg

The draft detailed design specification and the audit report are presented to the
CCB for its consideration. Each discrepancy in the audit report is considered
individually. The first decision the CCB makes on a discrepancy is whether
the discrepancy must be analyzed to provide further information on which the
CCB can base its decision. If analysis is necessary, the discrepancy is sent to the
organization designated by the CCB (typically the development organization),
which determines the cause of the discrepancy, assesses its impact on the proj-
ect, and proposes a resolution to the discrepancy (i.e., the precise change pro-
posed). This information is provided by the analyzing organization to the CCB.

The CCB considers the resolution recommended for each discrepancy and
either approves the resolution, rejects it, or returns it to the analyzing organi-
zation for further investigation.

When all the discrepancies have been considered and resolved, the CCB con-
siders whether to baseline the draft detailed design specification in light of
the (1) audit report on it, (2) CCB’s own perusal of the document, and (3) ap-
proved resolutions to the audit report discrepancies. The CCB makes one (or,
in some circumstances that are subsequently discussed, more than one) of the
following decisions relative to the detailed design specification, resulting in
an exit from the review area to the life cycle stages as shown by the three-way
switch in Figure 4–8 and as indicated with bold text in the following list:

♦ The CCB approves the draft detailed design specification and establishes it
as the Detailed Design Baseline. With this baseline established, the project
can proceed to the Coding Life Cycle Stage. It is not necessary for the
audit report to show no discrepancies for this decision to be made. The
CCB may decide to establish the Detailed Design Baseline with discrepan-
cies still outstanding, if the discrepancies were considered sufficiently
small in number and impact.
Such outstanding discrepancies would subsequently be resolved by the
CCB. These resolutions might, among other things, require that changes be
made to the Detailed Design Baseline, i.e., that the baseline be updated.
The review process for this proposed update to the Detailed Design Base-
line would be identical to that shown in Figure 4–8, except that the detailed
design baseline would be used for the audit instead of the approved Pre-
liminary Design Baseline.

♦ The CCB sends the draft detailed design specification back to the develop-
ers for reworking, along with a list of discrepancies and their resolutions.
In this case, the CCB decision is to proceed to the Detailed Design Life
Cycle Stage. The approved resolutions are implemented, and the draft de-
tailed design specification is updated. When the draft detailed design spec-
ification has been updated in response to the discrepancy list, the updated
draft detailed design specification is again subjected to the review illus-
trated in Figure 4–8.

♦ The CCB approves changes that require updates to preceding baselines.
These baselines might be, for example, the Requirements Baseline or the
Preliminary Design Baseline. The need for such changes might arise from

Chapter 4 • Change Control Process

200

ptg

discrepancies observed during the audit. The proposed resolution of a dis-
crepancy may reveal that the cause of the discrepancy lies not in the draft
detailed design specification but in one of the preceding baselines. As a re-
sult of the CCB decision to change one or more of the preceding baselines,
the path is taken to the stage where each baseline to be updated was origi-
nally developed (i.e., to Preceding Life Cycle Stages). (A result of this re-
visit to a life cycle stage could be that it triggers more revisits. These
subsequent revisits might be forward in the life cycle, or backward, or
might skip stages.) As each baseline is updated, it is reviewed in the same
fashion as shown in Figure 4–8. Note that this CCB decision may be made
in addition to one of the two decisions just given.

The preceding example is representative of the change control process as it
applies to planned changes. The names of your specific software products
and life cycle stages may vary from those in Figure 4–8, but the basic process
remains the same.

A question that arises after consideration of the preceding example is “What
does the development organization do while this review process is in
progress?” After all, the review process must take some time for the conduct of
an audit, for analysis of discrepancies, and for the considerations of the CCB.
Does the development organization simply mark time (at considerable ex-
pense) during this review period? The answer to the question is that the devel-
opers should not be idle during this review period following development of a
draft software product. There are usually a number of productive things they
can do. If there are incomplete portions of the draft software product currently
under review, the developers can finish those portions and have them ready for
the next issue of the software product. They can assist in the completion of other
software products being developed in the current life cycle stage. They can start
their planning and preliminary work for the subsequent life cycle stage.
Through informal liaison and discussions with the auditors, the developers can
find out about discrepancies uncovered by the auditors in the software product
under review, investigate them, and be prepared with recommended resolu-
tions when they are formally received. And usually the developers are in-
volved in the analysis of discrepancies and in the deliberations of the CCB.

We now illustrate the Figure 4–7 change control process for two revolution-
ary changes—first for a proposed amendment to requirements, and second
for a user report of unexpected behavior in an operational system.

Change Control Process Example
of Unplanned Change—Change Control
for a Proposed Amendment to Requirements

An amendment to the requirements on a project can be originated at any time
during the life cycle. Whenever it is originated, the amendment is submitted
for review as shown in Figure 4–9. The proposed amendment to requirements

Chapter 4 • Change Control Process

201

ptg

Chapter 4 • Change Control Process

202

To Life Cycle Stage N

From Life Cycle Stage N

Life Cycle Review Area

Analyze

Audit

Freeze

CCB

Audited Currently (and Possibly Previously) Proposed
Amendment to Requirements

Audited Proposed Amendment
to Requirements

Currently Proposed Amendment
to Requirements

Impact Assessment
CCB Minutes

Approved Amendment
to Requirements

Rejected Amendment
to Requirements

Identified Review Initiator
Approved
Requirements
Specification

Previously Proposed
Amendments to
Requirements

To the
Requirements

Definition
Life Cycle Stage

✘
✓

Reqs

Δ

OK
Reqs

✓

Reqs

Δ
$

✓

Reqs

Δ✓

Reqs

Δ✓

Reqs

Δ

Reqs

Δ

Figure 4–9 Change control of an unplanned (i.e., revolutionary) change—a proposed amendment to
requirements.

ptg

is first frozen by the product assurance organization. This action entails as-
signing an identification label and placing a copy of the proposed amend-
ment under control by putting it in a master file of proposed amendments to
requirements.

The auditors next compare the proposed amendment with the following items:

♦ The requirements specification (i.e., the Requirements Baseline), to deter-
mine whether the amendment is truly a change to the requirements and to
ascertain which of these requirements the proposed amendment affects.

♦ Previously submitted amendments to requirements, to determine whether
the proposed amendment has previously been proposed (i.e., whether the
proposed amendment duplicates one previously considered or currently
being processed).

The proposed amendment is then submitted to the CCB, whose first decision
is to determine whether the proposed amendment should be analyzed. In
general, the proposed amendment is assigned to an investigating organiza-
tion (typically the development organization) for analysis in a specified time
frame. However, the CCB might bypass this step if it were not considered
necessary. For example, if the audit determines that a proposed amendment
is a duplicate of one previously considered by the CCB, there is no need to
analyze the proposed amendment a second time—the CCB has already made
its decision relative to this proposed amendment. In such a case, the CCB
might proceed directly to reject the more recent submission of the proposed
amendment. This rejection is unrelated to the CCB decision on the first sub-
mission of the proposed amendment and merely reflects that the CCB will
not consider the later submission.

If the CCB decides that the proposed amendment to requirements needs to be
analyzed, the investigating organization performs the analysis and prepares
an impact assessment. This impact assessment contains the following
information:

♦ An assessment of the impact of the proposed change on the project soft-
ware products, i.e., what must be changed and how.

♦ An assessment of the impact of the proposed change on project resources
such as time, manpower, and costs.

♦ A delineation of the benefits and liabilities of possible alternatives to the
proposed change.

With the impact assessment in hand, the CCB determines the disposition of
the proposed amendment to requirements. As shown in Figure 4–9, the CCB
throws the switch in one of the two following directions:

♦ The CCB may approve the amendment to requirements. When this deci-
sion is made, the path to the Requirements Definition Life Cycle Stage is

Chapter 4 • Change Control Process

203

ptg

taken. There the developers implement the approved change to the re-
quirements by updating the Requirements Baseline. Note that all other es-
tablished baselines will usually also have to be updated to maintain
congruence among the baselines.

♦ The CCB may reject the proposed amendment to requirements. In this
case, the originator of the proposed amendment is informed of the deci-
sion, the proposed amendment is archived (for reference in case the same
amendment is proposed again), and the project continues the path to the
Life Cycle Stage N (where stage N is decided by the CCB).

Observe in the foregoing example that an amendment to requirements (an
unplanned change), when approved, gave rise to a set of updates to currently
established baselines (planned changes). Note also that the process shown in
Figure 4–9 is independent of whatever life cycle stage the project is in when
the proposed amendment to requirements is originated.

Our second example on unplanned change deals with an incident report. We
discuss an incident report from a user of an operational system, describing an
abnormal or unexpected behavior of the system.

Change Control Process Example
of Unplanned Change—Change Control
for an Incident Report

The change control process in this example is initiated by an incident report
(IR) generated by a user actually using the system during the Operational Use
Stage. As in our preceding two examples, the first step in the review process
is to freeze the review initiator (i.e., the IR). The product assurance organiza-
tion assigns a label to the IR and places a copy of the IR under control by
putting it in a master file of incident reports.

The auditors conduct an audit at this point by checking the archive to see
whether the incident reported in the IR has previously been reported and/or
resolved. If the IR is a duplicate of a pending IR (one that has not yet been re-
solved), the CCB, at its first decision point, may decide to reject the IR (the
project team is currently trying to resolve the incident under another IR), to
dispense with further processing of the IR, and to return to the Operational
Use Stage. If the IR is not a duplicate or is a duplicate that was thought to be
previously resolved (it appears that the previous resolution did not resolve
the incident), the CCB generally sends the IR to an investigating organization
(typically, the development organization) for analysis.

In this example, as shown in Figure 4–10, the analysis determined that a cor-
rection to the code was necessary to resolve the incident. The development
organization prepares a proposed code change, but rather than sending it

Chapter 4 • Change Control Process

204

ptg

Chapter 4 • Change Control Process

205

Audit
(Independent
System Test)

To the Operational Use Life Cycle Stage

From the Operational Use Life Cycle Stage

Life Cycle Review Area

Analyze

Freeze

Incident
Report

Test Report

Proposed
Code

Change

CCB Minutes

Approved Code
Change

Rejected
Incident
Report

Identified Review Initiator

Previous
Incident
Reports

To the
Production/

Deployment
Life Cycle

Stage

IR

OK

CCB

IR

IR

TR

Audit
(Archive Check)

√

✘
✓Δ

IR

Figure 4–10 Change control of an unplanned (i.e., revolutionary) change—a user-submitted incident
report.

ptg

back to the CCB, it uses the alternative route introduced in Figure 4–7 (indi-
cated in Figure 4–10 with white arrow heads) by sending the proposed code
change to the system test team to be audited.

The test team, a group independent from the development organization (e.g.,
product assurance organization), audits the proposed change by conducting
system tests of the provisionally changed software code. That is, the test team
takes the changed software code, integrates it with the existing code, and tests
the resulting system in a live or nearly live environment. The purpose of these
tests is to ascertain whether the reported incident is successfully resolved by the
code change and whether any deterioration of other system capabilities results
from the change. The test team reports its findings to the CCB.

The CCB, using its switch capabilities, can direct the IR along the following
three paths, shown in Figure 4–10:

♦ If the test report indicates that the incident has not been satisfactorily re-
solved, the CCB may direct that the investigating organization reanalyze
the IR and prepare a new proposed change.

♦ If the test report indicates that the proposed code change has satisfac-
torily resolved the incident without harmful side effects (i.e., without in-
troducing problems in other system capabilities), the CCB may approve
the proposed change and route it to the Production/Deployment
Life Cycle Stage for production and dissemination of the modified
software.

♦ The CCB may decide to reject the IR, in which case return is made to the
Operational Use Life Cycle Stage and the originator is informed of the ac-
tion. Such an action might be taken if the IR is a duplicate of a pending IR
or if the IR does not represent a problem with the software code (e.g., it
may have resulted from an operator error or from a user’s misperception
of the system’s capabilities).

The foregoing example shows only one of several routes that an IR might take
during the change control process. For example, the resolution of the IR
might be to modify one or more baselines, to amend the software require-
ments, or to modify one of the other project products (say, a user’s manual).
We have looked at the change control process in some detail. Our discussion
and illustrations show that the focal point of this processing is the change
control board. It is now time to explore the CCB in more depth—to ascertain
what it is and how it works.

As a final note for this section, we point out that the change control process
discussed in this section—with the CCB as the focus of all change process-
ing—is not the only way to process software changes. When you are imple-
menting your change control process, you need to assess the risk of not
channelling all changes through a CCB-like mechanism.

Chapter 4 • Change Control Process

206

ptg

4.5 Examination of the Change Control Board

In the preceding section, we showed that the change control board (CCB) was
the central element in the change control process. We introduced the CCB as
a decision-making body establishing baselines, approving discrepancy reso-
lutions, directing revisits to life cycle stages, and authorizing updates of base-
lines. In this section, we focus on this board and discuss who sits on it, what
decisions it makes, how it operates, what is contained in a CCB charter, and
how a CCB meeting is conducted. The purpose of this in-depth examination
is to bring to light the important considerations associated with planning for,
establishing, and sustaining this central element in the change control
process.

CCB Composition—Who Sits on the CCB?

The following three software systems development disciplines that contribute
to the achievement of software product integrity should sit on the CCB:

♦ Management. Including both senior and project management.
♦ Development. Including analysis, design engineering, production (cod-

ing), unit and subsystem testing, installation, documentation, and training.
♦ Product assurance. Including quality assurance, verification and valida-

tion, test and evaluation, and configuration management.

Because the synergistic efforts of these three disciplines are needed to achieve
software products with integrity and because the CCB is the forum that is
central to the product assurance function of change control, it seems only rea-
sonable that the CCB should include all three disciplines in its membership.
The CCB should have representatives on it from management, from the de-
velopers, and from the product assurance practitioners. However, this does
not mean that a CCB should be permanently staffed with a representative
from each subfunction just mentioned. For example, a CCB does not have to
be permanently staffed with a coding representative and a training represen-
tative, among others. Many CCB meetings are not concerned with coding or
training. The CCB should be permanently staffed with at least one represen-
tative from management, from development, and from product assurance,
with additional representation provided according to the subject matter
under consideration at any particular meeting. Remember that the CCB is a
forum for the exchange of information, whose purpose is to make change
control decisions. It is essential to this purpose to have representation from
and interaction among all concerned parties relative to whatever matter is
under consideration.

Chapter 4 • Change Control Process

207

ptg

In this discussion of representation on the CCB, we have not said which ar-
chetypical project participant (i.e., user, buyer, and seller) provides the repre-
sentatives. After all, user, buyer, and seller project participants may have its
own project management, as well as its own development and product assur-
ance staffs. Which archetypical participant should provide representatives to
the CCB? We believe they all should. Ideally, the CCB should include man-
agement, development, and product assurance representatives from the user,
from the buyer, and from the seller. It may not always be practical to have all
these representatives (for example, the user may be many thousands of miles
away from the buyer and seller), but to the extent possible the CCB should be
established as an integrated one. What better forum exists for interaction of
the user, buyer, and seller in the control of change on a project? Such a CCB
greatly increases the visibility of the changes under consideration and of the
viewpoints of all project participants. The result should be better change con-
trol decisions.

Up to this point, we have discussed the CCB as if it were a single board man-
aging all change. In practice, many projects will have more than a single CCB
to manage change within a project. Several factors are involved in the deci-
sion regarding how many CCBs to establish on a project, as discussed in the
following paragraphs.

One of these factors is the individual and collective needs and concerns of the
user, the buyer, and the seller. Figure 4–11 shows the effect of this factor on
the establishment of CCBs. The figure shows how organizational units of the
user, the buyer, and the seller, encompassing the disciplines of management,
development, and product assurance, can meet together to form an inte-
grated CCB. The shadings in the figure indicate various combinations of the
user, buyer, and seller joining in an integrated CCB:

♦ User/buyer CCB. A user/buyer CCB might meet to consider baselining the
requirements specification, prior to its delivery to the seller for fulfillment.

♦ User/seller CCB. A user/seller CCB might consider the resolution of inci-
dents arising in operational software, provided the incidents had no im-
pact on cost and schedule. If such incidents did impact cost and/or
schedule, the buyer would be most interested in participating in the
discussion.

♦ Buyer/seller CCB. A buyer/seller CCB might be convened, for example, to
consider a draft detailed design document, in which the user would have a
minor interest.

♦ User/buyer/seller CCB. We consider this CCB the preferred option.

Some people may argue that creating a CCB consisting of buyer and seller
personnel is inherently unworkable. Project managers, either buyer or seller,
would generally rather not have unpleasant or unfavorable news (such as the
need to make a large number of changes to a software product that should be
near the end of its development) divulged in a public forum. It is human

Chapter 4 • Change Control Process

208

ptg

nature to put off public disclosure of an organization’s problems in the expec-
tation that timely solutions to the problems can be developed within the orga-
nization. If such solutions can be found, there is no need to make the
problems public. On the other hand, if such solutions are not forthcoming,
the problems may have to be surfaced publicly at some later date, when they
generally would be more difficult and costly to solve. The CCB provides a
forum where such problems can be made visible and where the entire project
team can focus on their solution. The earlier in the life cycle that problems are
introduced to the CCB, the more likely it is that a software product with in-
tegrity can be achieved. The authors have seen numerous cases in which joint
buyer/seller CCBs have proven quite workable in resolving problems.

Chapter 4 • Change Control Process

209

Management

POSSIBLE CCB ORGANIZATIONAL COMBINATIONS

Development
Product

Assurance

CHANGE
CONTROL

BOARD
(CCB)

User Organization

Buyer Organization Seller Organization

C
o
m
b
i
n
a
t
ion s

Figure 4–11 CCBs provide forums for units of each organization within the user/buyer/seller triumvi-
rate—or for pairs of these organizations, or for all three organizations—to interact continually and
effectively on a software development project for the purpose of managing change.

ptg

In some circumstances, one of these organizations (i.e., user, buyer, or seller)
may validly wish to convene a CCB comprised only of members of its own
organization. For example, the seller may wish to hold a CCB meeting with
only seller personnel present to consider the first draft of a document that
will eventually be baselined. This CCB would increase the likelihood that the
document had product integrity before it was presented to the buyer and
user. When this seller CCB is satisfied with the document, it would be pre-
sented to an integrated buyer/seller CCB for consideration as a baseline.

CCB Hierarchies—How Many CCBs?

A second factor in determining the number and kind of CCBs to establish is
the system development issues that might be faced on a project. Figure 4–12
shows a hierarchy of system development issues, along with a sample of each
issue and a CCB that might be established to handle the issue. The hierarchy
shown is not unique; we use it here for expository purposes. In the figure, the
level of hierarchy is indicated by appropriate indentation. Within every proj-
ect, there are system issues and, in many projects, system external interface is-
sues to be addressed. Within the system, there are subsystem issues and
inter-subsystem interface issues to be considered (for systems having major,
identifiable subsystems). Within each subsystem, there are hardware, soft-
ware, and internal (hardware/software) interface issues to be resolved.

Sample issues like those suggested in Figure 4–12 exist for almost every proj-
ect, but all the CCBs shown in the figure would not necessarily be established
on every project. Which ones should be established for a project vary from
project to project. The key elements to consider when deciding whether an
issue is significant enough to merit creation of a separate CCB include project
size and complexity, and criticality and importance of the issue within a proj-
ect. Those issues for which CCBs are not established are subsumed by the
next highest issue in the hierarchy for which a CCB is established. For ex-
ample, on a small project, only a System CCB might be established. All the is-
sues shown in Figure 4–12 would be considered by this System CCB.
Consider, on the other hand, a very large project where each subsystem is an
operational system in itself. In this case, the full spectrum of CCBs shown in
Figure 4–12 might be constituted.

Because the focus of this book is on software, we have shaded the software
issue in the hierarchy and the Software CCB in Figure 4–12. Most software is-
sues are handled at this level. However, you should be aware that some
software-related issues are handled at other levels in the issue hierarchy. For
instance, see the sample issue for subsystem in Figure 4–12—the considera-
tion of design specifications clearly has software-related aspects as well as
hardware-related aspects. On some projects, the software issue is refined into
subissues for which separate CCBs are established. The authors are familiar
with a project, for example, in which a Software Incident Report CCB and a
Software Change Request CCB were established.

Chapter 4 • Change Control Process

210

ptg

Chapter 4 • Change Control Process

211

SYSTEM DEVELOPMENT

ISSUE HIERARCHY

SAMPLE ISSUE

Can I add this new function to
my system in 3 months?

Are the design specifications for
functions F14 and F15 of
Subsystem S1 mutually
consistent?

Should I buy or build a black box
to perform system function F1?

Is the computer code in
conformance with the design
specification?

Do the software database
organization and hardware disk
access times allow lookup of a
Los Angeles telephone number
within one second?

Should altitude transmitted from
Subsystem S1 to Subsystem S2
be in units of feet or nautical
miles?

What messages can I pass from
my system to System Q via
existing Communications Link L1?

CCB HIERARCHY

System External
Interfaces

Inter-subsystem
Interfaces

Internal
Interfaces

Software

Hardware

Subsystem

System System
CCB

Sub-
system

CCB

Sub-
system

Interface
CCB

Intersystem
CCB

Hardware
CCB

Software
CCB

HW/SW
CCB

Figure 4–12 A CCB hierarchy generally derives from the hierarchy of issues associated with system
development and their perceived significance.

A third factor to consider in planning for the establishment of CCBs is the
level of expertise needed for each CCB. Consider a CCB whose members are
managers of the various organizations represented at the CCB. Such a CCB
would have difficulty making informed decisions on issues involving the
technical details of the project. The management-oriented members of the
CCB may not have the technical background to understand the problems or
resolutions presented to them. A similar difficulty arises if the CCB consists
of engineers and staff personnel and is faced with making decisions

ptg

concerned with project policy. This latter CCB probably would not have the
expertise or the authority in policy concerns to make proper decisions.

A solution to these difficulties is to staff the CCB with both managers and
technical personnel from the management, development, and product assur-
ance disciplines. This solution carries the disadvantage that, for some period
of time, every member of the CCB would be noncontributing. Each situation
needs to be evaluated so that there is an effective use of project personnel.

Another solution is to create several CCBs, each having a restricted area of
decision making and a membership with the appropriate level of expertise.
One approach that we have seen function successfully using such levels is to
constitute a CCB composed of managers from the management, develop-
ment, and product assurance disciplines, and a CCB composed of technical
personnel from the three disciplines. The scope of the management-level CCB
extends to resource allocation, budgets, schedules, and policies; technical de-
tails are not considered. On the other hand, the technical-level CCB concen-
trates on the detailed technical aspects of the project. Matters arising at a CCB
meeting that do not fall within the appropriate level of expertise of that CCB
are referred to the other CCB.

In planning for the CCBs to use on a project, at least three factors should be
considered:

♦ Involvement of the user, buyer, and seller.
♦ System development issues to be handled.
♦ Levels of expertise required.

Applying these factors to their extreme could lead to the creation of a bewil-
dering array of CCBs, whose prime effort would probably be deciding what
the area of responsibility for each CCB should be! We certainly do not suggest
going to an extreme. We are suggesting that these three factors should be ra-
tionally considered in the context of each project when planning the estab-
lishment of a hierarchy of CCBs.

A real-world example of the results of considering these CCB planning fac-
tors is shown in Figure 4–13. This figure shows the hierarchy of CCBs and
their relationship to the seller’s development and product assurance staffs on
a large project. This project is a “system of systems.” Each subsystem is a
large, independently operating system, interfacing with the other subsystems
via high-speed data links. The CCB hierarchy consists of a buyer/user
management-level system CCB and a buyer/seller technical-level software
CCB for each subsystem.

Note in Figure 4–13 that the relationship between the Software CCB for Sub-
system Y and the seller’s development and product assurance staffs for Sub-
system Y is one of technical guidance and is not a line of authority. Note
also that the domains of concern for the two levels of CCB overlap—the

Chapter 4 • Change Control Process

212

ptg

Chapter 4 • Change Control Process

213

LARGE PROJECTS SOFTWARE CCB HIERARCHY

Provides management guidance to one or more
lower-level management or technical CCBs

Purpose:

Audits software
specifications

Tests software
code
Audits corrections to
specifications and tests
corrections to code

Provides primarily technical
guidance to seller development
and product assurance staffs
regarding the development of, and
changes to, Subsystem Y

Purpose:

Has visibility at the technical level
of how Subsystem Y is developed
and maintained

Perspective:

Technical details of Subsystem Y
capabilities and malfunctions,
and cost and schedule implications
of implementing these capabilities
and correcting these malfunctions

Typical
Domain of
Concern:

Perspective: Has visibility at the “big picture” level of how a
system and constituent subsystems are developed

Typical
Domain of
Concern:

Cost, schedule, external interface, and
intersubsystem issues pertaining to development
of the system

Buyer/User
Management-Level

System CCB

Buyer/Seller
Technical-Level

Software CCB for
Subsystem 1

Prepares
software
specifications

Prepares
software code
Prepares
corrections to
specifications
and code

Seller Subsystem Y
Product Assurance

Staff

Seller Subsystem Y
Development Staff

Buyer/Seller
Technical-Level

Software CCB for
Subsystem Y

Figure 4–13 Sample (software) CCB hierarchy organized along management/technical and user/buyer/seller lines illustrating
how management and technical CCB guidance effects and affects software change.

management-level CCB addresses some technical issues, and the technical-
level CCB addresses some managerial issues.

But not every product assurance manager is faced with large-sized projects.
You might well ask for an example of a CCB hierarchy for a medium-sized or
small-sized project. Figure 4–14 is a modified version of the CCB hierarchy
for large-sized projects and represents a hierarchy for medium/small-sized
projects that the authors have planned and implemented.

ptg

The CCB hierarchy for large-sized projects has been modified in the following
ways:

♦ All subsystem CCBs have been removed, except for that for Subsystem Y.
♦ The retained Subsystem Y CCB has been labeled as the Software CCB (for

the entire system).
♦ The domains of concern of the two remaining CCBs have been redefined so

that the management-level CCB does not address any technical issues and
the technical-level CCB does not address any management issues.

Chapter 4 • Change Control Process

214

MEDIUM/SMALL PROJECTS SOFTWARE CCB HIERARCHY

Provides management guidance to one or more
lower-level management or technical CCBs

Purpose:

Provides primarily technical guidance to seller development
and product assurance staffs regarding the development of, and
changes to, software—technical issues only

Purpose:

Has visibility at the technical level of how software is
developed and maintained

Perspective:

Technical details of software capabilities and malfunctions,
and cost and schedule implications of implementing these
capabilities and correcting these malfunctions

Typical
Domain of
Concern:

Perspective: Has visibility at the “big picture” level of how a
system and constituent subsystems are developed

Typical Domain
of Concern:

Cost, schedule, external interface, and intersubsystem issues
pertaining to development of the system—management issues only

Buyer/User
Management-Level

System CCB

Audits software specifications

Tests software code

Audits corrections to specifications
and tests corrections to code

Prepares
software
specifications

Prepares
software code

Prepares corrections
to specifications and code

Seller Product
Assurance Staff

Seller Development
Staff

Buyer/Seller
Software

CCB

Figure 4–14 Sample (software) CCB hierarchy for medium-sized or small-sized projects.

ptg

However, do not be misled by these two examples. Many variations are pos-
sible and have been implemented to satisfy particular project needs. Some
variations may employ only a single CCB; others may use numerous CCBs.
The number of possible CCB hierarchies is great, affording the opportunity to
tailor a hierarchy that is suitable for each particular project.

Thus far in this section we have examined CCB composition and hierarchies
of CCBs. We now turn our attention to CCB operation. Here we consider the
types of decisions a CCB makes, the voting mechanism it uses to arrive at a
decision, and the person who should chair the CCB. (Although in the follow-
ing discussion we refer to “the” CCB, we intend for the discussion to apply to
any appropriate CCB in a hierarchy.)

CCB Decisions—What Types
of Decisions Are Made?

The CCB is a decision-making body. As the change control organization, its
primary functions are to establish baselines and to resolve discrepancies,
change requests, and incident reports that come before it. When considering a
draft baseline, the CCB may elect either to (1) accept the draft and establish a
baseline, (2) establish a baseline subject to later resolution of outstanding dis-
crepancies, or (3) reject the draft baseline. Acceptance is not necessarily predi-
cated upon there being no outstanding discrepancies against the draft
baseline. Although such a goal is desirable, practical considerations often dic-
tate that the CCB establish a baseline and postpone resolution of any out-
standing discrepancies to some later agreed-upon date. Rejection of a draft
baseline could be based on its noncongruence with its predecessor baseline or
its requirements, or on other discrepancies, such as its internal inconsistency
or its failure to satisfy specified standards. When the CCB rejects a draft base-
line, it provides a list of approved changes to the draft baseline. The develop-
ment organization reworks the draft baseline to incorporate the changes and
submits the revised draft baseline to the CCB for approval.

The CCB can make basically the same decisions relative to discrepancies,
change requests, and incident reports. As shown in Figure 4–15, these deci-
sions are to (1) approve a change, (2) make no change, and (3) revise the
change approach. The individual nuances of these decisions relative to dis-
crepancies, change requests, and incident reports are discussed in the follow-
ing paragraphs. Note in Figure 4–15 that the decision process is initiated by
submission of a change control form.

Let us consider first the decisions that the CCB can make relative to the resolu-
tion of a discrepancy uncovered by an audit. A discrepancy, quite simply, is “an
incongruity (i.e., a difference) observed as a result of comparing (i.e., an audit)
a software product with the ground truth.” The CCB can approve the proposed
resolution of the discrepancy to change the draft baseline or another baseline. It

Chapter 4 • Change Control Process

215

ptg

can reject the proposed-resolution and order the reanalysis of the discrepancy
by the investigating organization. Finally, the CCB can close out the discrep-
ancy with no action being required. This latter decision could be based on sev-
eral circumstances. The discrepancy could be a duplicate of another
discrepancy that had already been resolved. The discrepancy could have re-
sulted from a misunderstanding by the auditor. For example, if the auditor is
uncertain about a point, the auditor may write a discrepancy to prompt the
CCB to consider whether a problem indeed exists. If the CCB decides no prob-
lem exists, the CCB closes out the discrepancy with no action being required.

Regarding a change request, the CCB can make one of three decisions: it can
(1) accept it (and have the change implemented), (2) reject it (in which case
the originator is notified and the change request is archived), or (3) require its

Chapter 4 • Change Control Process

216

CCB DECISIONS USING CHANGE CONTROL FORMS

CHANGE
CONTROL

BOARD

Analyze

Decisions

Approve
Change

Make No
Change

Make
Change

Notify
Originator

&
Archive

Form

Revise
Change

Approach

Originator

Change Control Form

Subject

Event
Description

Approval

Figure 4–15 The decisions that the CCB can make relative to a change control form.

ptg

reanalysis. The decision to accept the proposed change may mean that the
next life cycle stage is entered. Rejection of the proposed change may result
with continuation of the current life cycle stage, when the originator of the
change request is informed of the decision and project work continues. If the
change request must be reanalyzed, it is returned to the investigating organi-
zation. The investigators will return the change request to the CCB after
completing its reanalysis, and the CCB will again consider it for approval.

Next we consider CCB decisions relative to incident reports. Observe how Fig-
ure 4–15 applies here. The CCB can decide to (1) approve a change that resolves
the incident, (2) reject an incident as requiring no action to be taken, or (3) re-
quire reanalysis of the incident by the investigating organization. An approved
change can take several forms. To correct the problem that the incident re-
ported, a change to the software code and/or to one or more of the documents
previously developed on the project can be required. These documents could
be either software documents or software-related documents (e.g., a user’s
manual). An approved change could also require an enhancement to the
software. Such a change would be made to the Requirements Baseline.

For a variety of reasons, an incident report (IR) can be rejected with no require-
ment for any action to be taken. A similar incident report may have been previ-
ously considered and rejected or approved for a change that has not yet been
implemented, or a similar IR may have been previously submitted and be under
consideration currently. The duplicate incident report in these three instances
would not be considered further; the originator of the incident report would be
notified of the CCB decision and the incident report archived. Another reason
for rejecting an IR with no action to be taken is that the incident report could be
the result of operator or user error. It could have resulted from a misunder-
standing of the software operation on the part of the user who originated it.

CCB Operations—How Does the CCB
Decide What to Do Next?

Having discussed the decisions that the CCB may make, we now consider
how the CCB arrives at those decisions (i.e., CCB voting mechanisms). Such
mechanisms include the following:

♦ One-person one-vote
♦ One-organization one-vote
♦ Consensus vote
♦ Single-person vote

One choice for a CCB voting mechanism is to give each board member one vote
and to specify that the majority effects a decision (what constitutes a majority
must be specified in the directive establishing the CCB). To those of us raised in
a democratic tradition, this voting mechanism has obvious appeal: all views are
considered equally, and everyone is a part of the decision process (and

Chapter 4 • Change Control Process

217

ptg

therefore probably more interested in the proceedings). But watch out! This
form of voting mechanism could lead to stacking the vote by one organization.
For example, if the seller’s entire development organization came to a CCB
meeting, it might outvote the rest of the membership and make all the decisions
conform to its organization’s wishes. Another disadvantage of the one-person
one-vote voting mechanism is that politics could be introduced into the voting
process. “If I vote to approve items A and B that you are interested in getting ap-
proved, will you vote to approve items C and D that I am interested in getting
approved?” The result is CCB decisions based on vote trading and not on the
technical merits of each item considered.

A possible modification to the one-person one-vote voting mechanism would
be to give a vote to each organization represented on the CCB rather than to
each individual. This method loses some of its democratic appeal—indeed, it
is a republican process. (Note that both “democratic” and “republican” begin
with a lower-case letter!) But it still keeps everyone involved in the decision
process. The possibility of politicking still exists in this method, but the ability
to stack the vote is prevented—the number of votes remains constant, regard-
less of how many members of one organization attend a meeting.

Another voting mechanism to consider is to achieve a consensus among the
board members on each item under consideration. By consensus we mean “the
informal agreement (no vote counting) of most of those present at a meeting.”
This method permits the expression of all viewpoints and retains the interest
of all board members. It is more expeditious than voting by individuals or or-
ganizations, and it tends to inhibit politicking. But what if the CCB cannot
achieve consensus? No decision can be made in such a case, unless a mecha-
nism to break deadlocks has been included in the CCB’s charter. Such an es-
cape mechanism might be to give all the votes to a single person when it is
necessary to break a deadlock.

Giving all the votes to a single person (say, for the moment, the chairperson of
the CCB) could be the voting mechanism used by a CCB under all circum-
stances. Such a method certainly fosters decision-making, but it may quickly
stifle the interest of the other board representatives. If the chairperson never
considers their views, listens to their comments, or consults with them prior to
making a decision, they will have little interest in the CCB proceedings or even
in attending the meetings. The chairperson must recognize his or her potential
for limiting participation and take positive measures to encourage input and
discussion from all CCB members. The chairperson needs the visibility that
their input provides if he or she is to make good change control decisions.

CCB Leadership—Who Should Be
the CCB Chairperson?

We need to say a few words here about the chairperson of the CCB. The selec-
tion of this person is especially important when he or she has all the votes.
Under the other voting mechanisms, the selection of the chairperson is less

Chapter 4 • Change Control Process

218

ptg

critical, the primary duties of the chairperson in these cases being to keep the
board on track with its agenda and to keep discussion focused on the issues.
So let us consider possible choices for CCB chairperson when all the votes for
the board are given to that person. To enlarge the scope of the selection, let us
further assume that the CCB is composed of buyer and seller representatives.
Table 4–1 shows for several candidates some considerations pertinent to the
selection of a CCB chairperson.

You can observe from that table that there are advantages and disadvantages
to selecting any of the candidates listed there. On each project, you must
weigh the considerations given in this and the preceding paragraphs and in
Table 4–1 in selecting a CCB chairperson and a CCB voting mechanism for
making decisions.

CCB Charter—What Is Contained
in a CCB Charter?

A CCB charter spells out the specific scope of CCB activities. The following
discussion provides a recommended charter outline, suggested boilerplate
wording for sections 1 and 3, and guidance for other sections (enclosed
within brackets). The CCB charter may contain the following sections:

Chapter 4 • Change Control Process

219

Table 4–1 Advantages and Disadvantages of Candidates for CCB Chairperson.

CCB Chairperson
Candidate Advantage(s) Disadvantage(s)

Seller’s project manager • Responsible for project development • May not have the buyer’s interests at heart
and maintenance

• Probably most technically competent
of managerial personnel

Buyer’s project manager • Bears the prime responsibility to the • May not be technically competent to
user for product integrity render reasonable decisions regarding

• Puts up the money to fund the software changes
project

Seller’s product • Change control is one of PA repre- • May be biased toward seller’s interests at
assurance (PA) sentative’s prime responsibilities the expense of the buyer
representative • May be too technically oriented, slighting

management considerations

Buyer’s product • Change control is one of PA repre- • May not be sensitive to certain project
assurance (PA) sentative’s prime responsibilities issues that may affect the feasibility
representative n of implementing changes

napproved

Seller’s and buyer’s • Buyer and seller equally represented • Has potential for deadlock
project managers, • Buyer and seller bear the prime
serving jointly responsibility for the project within

own organizations

ptg

♦ 1.0 CCB PURPOSE. The purpose of the [Project Name] Change Control
Board (CCB) is to ensure that [Project Name] product changes and related
programmatic changes (i.e., consideration of proposed cost and schedule
changes) are processed in a visible and traceable manner. The CCB is the
forum in which (1) [Project Name] project participants get together to dis-
cuss what needs to be done, (2) responsible agents are assigned for per-
forming agreed-upon work, and (3) decisions and assigned actions are
recorded.

♦ 2.0 CCB MEMBERSHIP. [This section lists organizational titles of manage-
ment, the product development organization, and the product assurance
organization who are to be regular attendees at the CCB. All these organi-
zations are required. If the CCB is to include third parties, their organiza-
tional titles are listed. The minimum requirement for seller management
representation is the seller project leader, and for the customer, the cus-
tomer project leader. This section also contains a statement that other orga-
nizations may be invited by the seller and/or customer project leaders on
an as-needed basis. In addition, this section indicates the organization re-
sponsible for documenting the meeting. As an option, this section can indi-
cate that the chairperson will designate someone from the seller project
team on a rotating basis to be responsible for documenting the meeting.]

♦ 3.0 CCB CHAIRPERSON. The chairperson is [indicate one of the following:
customer project manager, seller project manager, or alternates; if there are to be
joint chairpersons, indicate some combination of these entities]. The chairperson
will manage the meeting in such a manner that input and discussion are
encouraged from all attendees. Product and programmatic decision au-
thority rests with the chairperson and is made a matter of record in the
meeting documentation.

♦ 4.0 CCB ACTIVITIES. [This section lists the activities that the CCB is to
perform. This section also specifies the CCB meeting frequency. The mini-
mum requirement for this frequency is monthly. The specification of CCB
activities can be as detailed as management desires. Examples of such ac-
tivities are listed below. This list is intended to be a starting point for defin-
ing CCB responsibilities. In general, a particular CCB will have some
subset of these responsibilities or adaptations of these responsibilities.
♦ Reviewing a schedule of software and data product deliverables to de-

termine whether these deliverables are being produced on time and
within budget.

♦ Prioritizing efforts to be undertaken.
♦ Reviewing proposed changes to a requirements or design or database

specification, or some other product.
♦ Considering a customer or internal proposal to alter the work called out

in a project plan.
♦ Approving patch code (i.e., an emergency repair that permits continued

use of operational software capabilities until a permanent change can be
implemented).

Chapter 4 • Change Control Process

220

ptg

♦ Logging incident reports (IRs) that product assurance has prepared de-
scribing the difference between a product under review and related pre-
decessor products and/or standards governing the development of that
product.

♦ Deciding on a labeling scheme (i.e., configuration identification) for
products (i.e., documentation, computer code, and databases [draft and
final]).

♦ Reviewing a product (such as a design document) to determine whether
previously approved changes have been incorporated.

♦ Approving a product assurance plan.
♦ Reviewing a product assurance report that documents inconsistencies

between a product and a predecessor product (e.g., inconsistencies
between a software design specification and a software requirements
specification).

♦ Reviewing the results of an acceptance test showing discrepancies be-
tween output generated by the code and output specified in require-
ments and design documentation from which the code was presumably
developed.

♦ Approving a documentation standard that is to govern the format and
content of products to be produced on a project.

♦ Recording CCB minutes.
♦ Reviewing CCB minutes from the previous CCB meeting to confirm

their accuracy.
♦ Reviewing a dry run of a presentation of project status that is eventually

to be given to senior management.
♦ Reviewing, approving, and, if necessary, recording changes to the docu-

mentation of the preceding CCB meeting.]

♦ 5.0 CCB MEETING DOCUMENTATION. [This section specifies the in-
formation to be recorded at the CCB meeting. At a minimum, the following
information is required:

♦ Meeting date, time, and duration.
♦ List of attendees (first and last name of each) and their organizations.
♦ Discussion (documentation of this discussion can be as detailed as man-

agement desires; at a minimum, it should provide the context for associ-
ated decisions made and action items assigned during the meeting).

♦ Existing action items (i.e., open action items and ones closed during the
meeting being documented; each action item should be described in at
least one complete sentence).

♦ New action items (the guidance for existing action items applies here,
too).

♦ Summary of action items (running list of all items to date showing the
responsible individual{s}, status, date assigned, date due).

♦ Decisions made.
♦ Time and place of next meeting.]

Chapter 4 • Change Control Process

221

ptg

The types of change control forms that are to be used to define, track, and
manage changes should be indicated. It is helpful to include sample forms as
attachments to the charter.

In addition to the minimum information required, other information bearing
on discussions, decisions, and action items can be attached to the meeting
documentation. For example, such information may include the following:
screen designs, memorandum for the record, and e-mail messages.

CCB Meeting Conduct—How Is a CCB
Meeting Conducted?

The specific manner in which a CCB meeting is to be conducted depends on
its purpose and scope as defined in the CCB charter. However, there are sev-
eral general considerations for conducting a CCB meeting. These considera-
tions are addressed in the following paragraphs.

Prior to a CCB meeting, the chairperson may choose to prepare an agenda.
Once the CCB becomes institutionalized on a project, this activity may be un-
necessary. In particular, the CCB minutes format, once it has stabilized,
serves as a general agenda for a CCB meeting. Experience shows that after
two or three meetings, the participants generally agree upon a minutes for-
mat that is satisfactory for supporting CCB operation.

The chairperson may choose to run the meeting or designate someone else to
perform this function. The meeting should begin with review of the minutes
from the preceding meeting. To expedite this review, the chairperson may
choose to distribute copies of these minutes to attendees prior to the meeting.
Following the review, attendees should be given the opportunity to offer
changes to the minutes. If these changes are agreed to by others, they should
be made a matter of record in the minutes of the current meeting. The min-
utes of the current meeting should then reflect that (1) the minutes of the pre-
ceding meeting were approved with the changes cited or (2) in the case that
no changes were made, the minutes were approved as written.

Next, the actions cited in the minutes of the preceding meeting that were to
be accomplished by the current meeting should be individually addressed.
Decisions reached regarding these actions should be recorded. New actions
resulting from these decisions should be recorded and individuals responsi-
ble for these actions should be assigned, as well as dates when these actions
are to be completed. The discussion pertaining to CCB actions should be in-
corporated into the minutes. The record of this discussion should be as de-
tailed as mutually agreed to by CCB participants or as directed by the CCB
chairperson. New action items should be recorded, and the information on
outstanding action items resulting from CCB actions should be updated.

Next, new business (e.g., new change proposals, and depending on the
CCB scope, programmatic changes such as revised product delivery dates,

Chapter 4 • Change Control Process

222

ptg

changes in CCB participants, [proposed] changes in personnel assignments
impacting product development) should be addressed and made a matter of
record. New action items resulting from this new business discussion should
be recorded.

If two different projects require coordination, the CCB meeting should also
consider issues requiring coordination of the activities of CCBs for each proj-
ect. To coordinate the activities of these two CCBs, it may be necessary to en-
sure that participants in one CCB attend the other CCB at appropriate times.
This coordination activity should be given visibility in the CCB minutes
through the assignment of action agents and corresponding due dates. Alter-
natively, the next scheduled meeting of these two CCBs may be designated as
a joint CCB involving participants from both CCBs. The meeting should be
closed by specifying the time and place of the next CCB meeting. Copies of
the CCB minutes should be distributed to all CCB attendees and nonpartici-
pants desiring visibility into the project (e.g., management). It is also useful to
send a copy to a centralized project file.

Regarding the amount of detail to include in CCB meeting minutes, the fol-
lowing considerations apply:

♦ The basic purpose of the minutes is to provide the CCB decision makers
the information needed to make intelligent, informed decisions regarding
how the program should proceed. Since memories tend to fade over time,
the amount of detail needed depends, in part, on CCB meeting fre-
quency—more frequent meetings generally imply a need for less detail.

♦ The seller project manager, in concert with the customer project manager,
may choose to use CCBs as a forum for doing some product development
(e.g., specify user-friendly requirements in testable terms). In this case, the
CCB minutes can contain considerable detail. Such detail often expedites
product completion, since these details can be directly coordinated with
the customer at the CCB. Then, this agreed-upon material can be directly
incorporated into the product to be delivered.

♦ For programs that are planned to span a year or more, the amount of detail
included in CCB minutes should be governed by the risks associated with
personnel turnover. More detailed minutes will facilitate transitions associ-
ated with seller project turnover and will lessen the impact of technical
staff turnover.

This discussion completes our examination of the CCB. We have now dis-
cussed the types of changes on a project, the process of change control, and
the organization at the focus of this process. To complete our study of soft-
ware change control, we need only discuss the paperwork supporting the
change control process. The next section addresses this topic. Strictly speak-
ing, paperwork support of the CCB is a bookkeeping function.

Chapter 4 • Change Control Process

223

ptg

4.6 Paperwork Support of the Change Control Board

Paperwork! The very mention of the word probably makes you grimace. Yet
the paperwork support of the change control board (CCB) is essential if the
change control process is to be visible and traceable. Our definition of “paper-
work” encompasses both hard copy and electronic copy. Your organization
will need to decide the appropriate mix of hard copy and electronic copy to
support your change control process.

In this section, we discuss why paperwork is necessary in change control and
then show you how to develop and use a set of change control forms and
CCB minutes. We take this approach (rather than presenting “the” forms or
minutes that you must use) because you will want to tailor your change con-
trol forms and minutes to your particular project and environment. To this
end, we first derive a typical set of forms needed to support the CCB. We pro-
vide guidelines on forms design, and then lead you through the design of one
of these forms, the incident report. We show you examples of the other
needed forms—software change notice, change request, and an impact as-
sessment. We present three general scenarios covering all the situations that
could precipitate a software change and illustrate the use of the sample forms
in these scenarios. We conclude the section with a discussion of CCB minutes
and how they can be used with or in lieu of change control forms.

CCB Paperwork—What Forms Are Needed?

Is paperwork really necessary to support the change control process? The au-
thors have not met anyone who would not agree that some paperwork is nec-
essary to control change. Paperwork appears to be widely viewed as a
“necessary evil.” Perhaps it would seem less evil if one considered that the al-
ternative (no paperwork) might well lead to statements by the project partici-
pants such as the following:

♦ Exactly what change am I being asked to approve?
♦ I’ve got an angry user on the telephone. Does anyone remember what

problem she reported last month?
♦ No, I haven’t made that change—I didn’t know it had been approved.
♦ I’m ready to make the change now, but I forget the details of the elegant

solution that our recently departed guru recommended. Does anyone
know how I can reach him?

♦ You were right—this problem is the same one we had last fall. I’ve found
the report of the old problem, but I can’t find out how we solved it. I guess
I’ll have to solve it all over again.

Statements like these indicate a lack of visibility and traceability in the change
control process. Forms make manifest the visibility and traceability that the

Chapter 4 • Change Control Process

224

ptg

CCB provides to the change control process. The use of a form to record a
problem, to recommend that a change be made, or to indicate a CCB decision
immediately captures that event and makes it uniformly visible to all project
participants. Instead of becoming the subject of guesswork, the event is made
concrete.

Capturing the event and using cross-references between forms provides
traceability between events connected with the change control process. Fig-
ure 4–16 illustrates the concept that forms (in conjunction with the CCB) give
visibility and traceability to the change control process.

In the figure, a change control Event p (e.g., the occurrence of an incident at a
user site) has been recorded on FORM TYPE A. A subsequent Event q (e.g., the
promulgation of a notice announcing an approved change) causes form TYPE
B to be generated. The act of recording Events p and q has made the change

Chapter 4 • Change Control Process

225

Figure 4–16 Forms, in conjunction with the CCB, give visibility and traceability to the change con-
trol process.

Originator

Event q:

Approved
change

Reference:

Form TYPE A

Change Control Form
TYPE B

Subject

Event
Description

Approval

VISIBILITY AND TRACEABILITY

Analyze

Decision:
Approve Change

Make
Change

Originator

Event p:

Incident at a
user site

Reference:

Form TYPE B

Change Control Form
TYPE A

Subject

Event
Description

Approval

Visibility

Traceability

Originator

Change Control Form
TYPE A

Subject

Event
Description

Approval

Event p:Incident at auser site

CHANGE
CONTROL

BOARD

ptg

control process more visible. Visibility between the forms is symbolically
shown in the figure by the arrow connecting forms TYPE A and TYPE B.

In the figure, Event q is related to Event p. For example, Event p could be an
incident, while Event q could be the promulgation of the resolution to the in-
cident. Traceability between Events p and q is symbolically shown in the fig-
ure by the arrow connecting the two-way reference between the forms. On
the actual forms that we discuss later in this section, traceability between
these events is attained by a pointer to FORM TYPE B placed on FORM
TYPE A, and by a pointer to FORM TYPE A placed on FORM TYPE B.

Note that this figure does not imply that every project event is recorded on a
form. Indeed, the opposite is true—many events on a software project are not
recorded on forms (e.g., a meeting of a CCB).

The fundamental questions to ask yourself include the following:

♦ What forms are needed?
♦ How are change control visibility and traceability achieved?
♦ How should existing forms be used?
♦ How should unplanned and planned changes be processed?

To answer these fundamental questions, we suggest that you consider the fol-
lowing categorization of changes that includes one more level of depth than
unplanned and planned change. This categorization we characterize by the
following three questions:

♦ Unplanned Change. Do we want something not already in the software or
something that extends what is already there? Briefly stated: Do we want
something new or different?
Is something in the software at variance with the requirements specifica-
tion? Briefly stated: Is something wrong?

♦ Planned Change. Should we establish this product as a new or updated
baseline? Briefly stated: Should we baseline this product?

We contend that this categorization includes all possible changes to the soft-
ware in a system.

Next you need to choose a set of forms to support the change control process.
We do not recommend that you construct the change control process to
match existing forms, but rather the reverse. Table 4–2 lists the basic events in
the change control process events (i.e., initiation, freezing, audit, analysis, de-
cision, and implementation), and some information to be recorded about each
event. All these events shown in the table result in providing information rel-
ative to a pending change. However, the information obtained from an audit
is generally recorded in an audit report (possibly a collection of other change
control forms), and no separate change control form is needed to support this

Chapter 4 • Change Control Process

226

ptg

event. The information gathered from the change control process events
listed in Table 4–2 is captured on change control forms.

You can derive a set of forms by allocating the basic change control process
events to various forms as you answer the following questions presented earlier:

♦ Do we want something new or different?
♦ Is something wrong?
♦ Should we baseline this product?

Note that each change control process event for a category must be recorded
either (1) on one of the forms you decide to use or (2) in some other estab-
lished place, such as CCB minutes. Table 4–3 shows a set of forms resulting
from one of our allocations of the change control process events.

Observe from the table that we chose not to record the implementation event
on any form used to answer the question, “Do we want something new or
different?” This omission is deliberate—when the CCB approves a change to
add something new or different, the implementation almost always initially
involves the updating of the requirements specification. The republication of

Chapter 4 • Change Control Process

227

Table 4–2 For each event in the change control process, information must be recorded to provide visibility
and traceability to the process.

Event Information to Be Recorded

Initiation Identification of the originator and of the environment, statement of the problem

Freezing Identification of the problem

Audit Discrepancies uncovered

Analysis Cause, impact, and recommended resolution

Decision CCB action

Implementation Statement of what is to be changed

Table 4–3 A Set of Forms to Support the Change Control Process.

Category Form Process Events Recorded

Do we want something new or different? • Change Request (CR) • Initiation, freezing, decision

• Impact Assessment (IA) • Analysis

Is something wrong? • Incident Report (IR) • Initiation, freezing, analysis,
decision

• Software Change Notice (SCN) • Implementation

Should we baseline this product? • No additional forms

ptg

the requirements specification is sufficient notice of the implementation of the
unplanned change.

You usually do not need a form to provide visibility and traceability to the
process of baselining a planned change. A form is not needed simply because
the information that would be recorded on such a form is recorded someplace
else. The initiation event information is found within the change itself, that is,
within the proposed new or updated software baseline. The identification of
the change is generally added to the software baseline during the freezing
event. The results of the audit are recorded in an audit report. The analysis of
the audit findings is recorded and presented to the CCB in a report. The deci-
sion of the CCB is recorded in the CCB minutes. Implementation of the
change—when the change is approved—is indicated on the change itself.
Therefore, no additional forms are required to support baseline change
processing.

The names given to these change control forms vary widely in the industry.
For example, others may term what we call an incident report a software
trouble report, a system problem report, or a discrepancy report. The names
given the forms are typically important to your organization. We prefer,
for example, the term “incident report” (IR) because of its less pejorative
connotations.

Similarly, the set of forms in Table 4–3 is not unique—that is, it is not the only
set of forms that could be specified to support the software change control
process. For example, the U.S. Department of Defense uses a form called an
engineering change proposal (ECP) that is a combination of our change re-
quest and impact assessment forms. You might want to designate for each of
your projects your own set of forms based on a different allocation of process
events to forms. The set that we propose is provided primarily for exemplifi-
cation purposes, although in our experience it has proven to be a workable
and effective set.

CCB Paperwork—How Do You Design Change
Control Process Forms?

We now describe how you can design your change control process forms. For
this purpose, we work through a sample problem of how to design the IR
form. We then present you with examples of the other forms in the set we
specified in Table 4–3. You might want to design your own forms for your
particular project and its environment, or you might tailor the sample forms
that we provide to suit your project and environment.

In designing forms, keep in mind the following considerations. Most impor-
tant is that the various forms capture the data you need to record. Of almost
as great importance is consideration for the people who will be filling out the
forms. Each form should be simple to fill out. It should be easy to read and

Chapter 4 • Change Control Process

228

ptg

should clearly label each item as to what is wanted. The form should indicate
acceptable values if a range of values or a code is used. Make it easy for the
person filling out the form, and you will be rewarded with complete and cor-
rect data entry. Make it difficult for the person filling out the form, and you
will get inaccurate, incomplete, and invalid data entered.

As shown in Table 4–4, generally, every change control form should contain
information about the following categories:

♦ Originator. Includes information not only on the initiator of the form but
also on each person who fills out a part of the form in response to an event.

♦ Subject. Concerned with identifying what the form is addressing, whether
it is documentation or software code. The subject is the same for all events
recorded on a form. Therefore, subject information need be placed on a
form only once, regardless of how many events are recorded on the form.
Event description is recorded for every event covered by a form.

♦ Event description. List the specific data elements used to describe the
event description. The elements can vary widely, depending upon the
event recorded and the desires of each project’s management.

♦ Approval. May not be needed for all events and should be placed on the
form only for events that do require them, as specified in project policy
directives.

If a form records data on more than one event, information in some categories
must be recorded for each event (e.g., the originator category or the event de-
scription category). The specification of data elements and layout of a change
control form depend upon the project and the software environment in which
the form will be used. To show you how Table 4–4 can be applied to the de-
sign of a form, we next develop (in a sample problem) the design of an inci-
dent report.

Chapter 4 • Change Control Process

229

Table 4–4 Generic Content of a Change Control Form.

Category Content

Originator Information in this category must identify the person filling out the form and the person’s
organization and telephone number, so that the person can answer questions relative to
the data the person enters. If the form records several events, each person filling out a part
of the form must be identified.

Subject The subject of the form, be it document, computer code, or database, must be precisely
identified, including its environment, if appropriate, so that a reader can locate it or
reconstruct it, if necessary.

Event description This category contains the information that is to be recorded about each event. It might
describe a problem, the impact of an incident, the recommended resolution of an incident,
or the approved disposition of a proposed change.

Approval Some events may require the approval of one or more authorities before further action can
occur. For such events, the form must record these approvals.

ptg

Designing an Incident Report Form—
A Sample Problem

Background and Problem As part of the seller’s product assurance plan-
ning group at the beginning of a medium-sized project,5 you have decided to
implement a set of forms for supporting the change control process. One of
these forms is an incident report (IR). This form is to be used to record data
for the unplanned change control events of initiation, freezing, analysis, and
decision when something in the software is apparently wrong (see Table 4–3).
When designing this IR form, you should give at least one reason for each
item included on the form.

Solution Approach The IR form we are designing will record data for four
change control process events (i.e., initiation, freezing, analysis, and deci-
sion). We first decide on each content element for each event, using Table 4–4
as a guideline. For example, the initiation event includes the following con-
tent elements: name, organization, and telephone number of the incident
originator. Then we lay out these content elements so that the format is un-
derstandable, easy to use, and well organized. Figure 4–17 is the result of this
form-design process.

We now explain in detail how we arrived at the figure.

♦ Initiation Event. The name, organization, and telephone number of the in-
cident originator are placed on the IR form so that the originator may be
contacted should questions arise. Organization and full telephone number
are important here, since the IR may be originated by anyone in the user’s,
buyer’s, or seller’s organization.
Next, the IR form should record the subject of the incident, that is, the docu-
ment or computer code involved in the incident and its environment. This in-
formation allows a reader of the IR to locate its subject or to reconstruct it, as
may be necessary to analyze or audit the IR. The form records the date and
time of the incident for traceability. The incident could result from a problem
in the documentation or in the executable code. For a document, the docu-
ment name, label, page, and paragraph number are required to locate the
subject of the incident. For the executable code, we want the release number
and the version number to pinpoint which code is involved in the incident. If
the incident arose while executing a test procedure, the test procedure label,
test case number, and test step label must be provided.
The IR form must provide for a full description of the incident—this ele-
ment states what is perceived to be wrong. The originator should be able to
indicate an urgency desired for incident resolution (high, medium, or low)
and, if desired, a suggested resolution to assist and guide the incident ana-
lyst. For executable code incidents, the IR form should indicate whether
the incident could be duplicated during a run, after a restart, or after a

Chapter 4 • Change Control Process

230

5By a medium-sized project, we mean a project having roughly ten to twenty persons working on it full-
time.

ptg

Chapter 4 • Change Control Process

231

INITIATION

EVENT

ANALYSIS

EVENT

DECISION

EVENT

IMPLEMENTATION

EVENT POINTER

FREEZING

EVENT

INCIDENT REPORT

Control Number: _______ Date/Time of Incident: __/__/__ ____

Organization:____________________Originator: Name:__________________ Tel. No. :________________

Source:

Document Name:__ Identifier:_______________

Page:_________________ Paragraph:____________

Executable Code:_________________ Release No.:__________ Version No.:_____________

During Test

Incident Duplicated During Run After Restart After Reload Attachments

Procedure:_____ Step:_____

Incident Description:

Suggested Resolution:

Continuation Page Urgency: __________ (High, Medium, Low)

Analyst: Name:_______________ Tel. No. :_________________ Date: __/__/__

Incident Cause:

Incident Impact:

Recommended Resolution:

Continuation Page

CCB Decision: Approved Date: __/__/__

Reinvestigate Date Reinvestigation Due: __/__/__

SCN Control No.:_______________ Date SCN Control No. Assigned: __/__/__

No Action Required

Chairperson: _____________________

-

Figure 4–17 Example of an incident report (IR) form and associated events that it documents.

ptg

reload. In case the description of the incident or the suggested resolution
exceeds the size of the space allocated, a box should be provided to indi-
cate that initiation event data are continued on another page. A box should
also be provided to indicate the presence of attachments, such as listings or
printouts. All this information helps the analyst resolve the incident. No
approvals are generally required for this event. In some environments,
project management might require approval of an IR by the originator’s
supervisor, to prevent unnecessary or improper IRs from being initiated.

♦ Freezing Event. The only element on the IR form required to support this
event is the IR control number. This number is important in referencing the
incident (visibility) and in tracking the incident (traceability). It consists of
the last two digits of the current year, followed by a hyphen and a four-
digit sequence number. This labeling assignment is generally performed
by a member of the product assurance organization, and it is not necessary
to record the identity of the person performing that task.

♦ Analysis Event. Since the subject was identified in the initiation event sec-
tion of the IR form, there is no need to repeat it here. However, the IR form
must indicate the name of the person filling out the analysis-event section
of the form, since the analyst is in general not the same individual as the
incident initiator. Because this project is medium-sized, we assume that the
number of seller project personnel is small enough that we can omit the an-
alyst’s organization and merely include her or his telephone extension.
The analyst must indicate on the IR form the analysis of the incident cause
and of the incident’s impact on the project, and a recommended resolution
of the incident. This resolution may recommend that a change be made or
that no action be taken as a result of the IR. If a change is recommended,
the precise change recommended should be included in the recommended
resolution. Provision should be made for a continuation sheet for the event
description, if necessary. No approvals are generally required for this
event. In some environments, approval of the analyst’s work by his or her
supervisor might be required.

♦ Decision Event. In our approach to change control processing, the CCB is
always responsible for this event. Thus, no entry on the IR form is needed
to indicate who fills out this section. The subject can also be omitted from
this section, since it already appears on the IR form. The event description
is the CCB decision. The allowable CCB decisions are the following:
change approved, no action required, or reinvestigate (with reinvestigation
due date stipulated). The signature of the CCB chairperson is needed on
the IR form for approval of the decision.

In addition to using data elements for the four events served by the IR form,
we add for traceability one data element—a possible cross-reference to an
SCN—from the implementation event. This information is generally recorded
by a member of the product assurance organization. No originator, subject, or
approval data are recorded for this event, because they are recorded on the
SCN referenced.

Chapter 4 • Change Control Process

232

ptg

Chapter 4 • Change Control Process

233

Using the foregoing data elements and adding elements for the dates of
change control events for traceability purposes, we developed the IR form
shown in Figure 4–17. The figure also shows the change control events that
the form documents. Since different people usually fill out the elements for
each event, the form has been organized and ruled into a separate part for
each event.

The sample problem shows how the generic content specified in Table 4–4
was applied as appropriate to each of the events covered by the form. The
form was also specifically tailored to the project for which it was designed.
This latter feature is very important. Organizations usually redesign their
change control forms from project to project, even when the project team re-
mains relatively the same. Generally, such changes are made because each
project is organized somewhat differently, or the software environment is
changed, or the change control process is modified. Such changes may neces-
sitate changing the change control forms too. That is why we do not give you
the only forms that should be used, but instead give you examples and guide-
lines on how to develop your own forms.

The sample problem developed a form for an incident report to record the
change control process events specified in Table 4–3 (i.e., initiation, freezing,
analysis, and decision). The IR form answered the question “Is something
wrong?”

Examples of the remaining forms specified in Table 4–3 (i.e., software change
notice, change request, and impact assessment) are shown in Figures 4–18,
4–19, and 4–20, respectively.

Change Control Form—Software
Change Notice (SCN)

Figure 4–18 presents an example of a software change notice. This form
records information from the implementation event. When an IR requiring
changes to document(s) and/or code is approved by the CCB, the changes are
made by preparing change pages for the document(s) and by modifying a
copy of the currently baselined source code. The change is then accomplished
by placing the change pages and modified source code under control, accom-
panied by an SCN to notify all project participants that the changes have been
made. One SCN can serve as the implementation notice for multiple IRs.
Notice that, per Table 4–4, Figure 4–18 contains originator data, subject iden-
tification (IR reference), event description (changes implemented), and ap-
provals. Changes implemented can be continued on another page.

We note that some organizations find it useful to attach to the SCN form the
(1) actual changed pages of the documents that have been changed and
(2) changed program listings of the code that has been changed. This is
one way to get approved software product updates quickly to project
participants.

ptg

Chapter 4 • Change Control Process

234

SOFTWARE CHANGE NOTICE

Date: __/__/__

Originator: Name:_______________ Organization:_______________ Tel. No.:_______________

Change Implemented:

Continuation Page

Software Development Manager:_____________________________ Date: __/__/__

Incident Report (IR)
Control No.

Type of Software
(Doc. or Code)

Version/
Revision

Software
Identifier

Software
Name

Product Assurance Manager:________________________________

Project Manager:___

Date: __/__/__

Date: __/__/__

Approval:

Control Number: _______ -

Figure 4–18 Example of a software change notice (SCN) form.

ptg

Chapter 4 • Change Control Process

235

INITIATION

EVENT

ANALYSIS

EVENT POINTER

DECISION

EVENT

FREEZING

EVENT

CHANGE REQUEST

Date: __/__/__

Originator: Name:_______________ Organization:_______________ Tel. No. :_________________

Description of Change:

Justification of Change:

Continuation PageUrgency: __________ (High, Medium, Low)

Impact Assessment (IA) Control Number:_______________ Date: __/__/__

CCB Decision: Approved Date: __/__/__

Reinvestigate Date Reinvestigation Due: __/__/__

In Scope

Title:

Impact on System Use and Operation:

Reject

Out of Scope

Chairperson:____________________

Control Number: _______ -

Figure 4–19 Example of a change request (CR) form and associated events that it documents.

ptg

Chapter 4 • Change Control Process

236

IMPACT ASSESSMENT

Date: __/__/__

Analyst: Name:_______________ Organization:_______________ Tel. No.:_________________

Change Request (CR) Control No.: _____________

Continuation Page

Title: __

Technical Analysis:
Design Approach:

Documentation Affected:

Code Affected:

Testing Approach:

Impact Analysis:
Schedule Considerations:

Labor Considerations:

Cost Considerations:

Continuation Page

Alternatives:

Continuation Page

Control Number: _______ -

Figure 4–20 Example of an impact assessment (IA) form.

ptg

Change Control Form—Change Request (CR)

Figure 4–19 is an example of a change request form. The CR records the initia-
tion of a request for a change, as well as the freezing and decision events. A
CR is initiated whenever something new or different is desired by any project
participant. The CR describes the change desired, the justification for making
the change, and the impact on the use and operation of the system of imple-
menting the requested change.

Notice from Figure 4–19 that a CCB-approval decision could be adjudged as
either within the scope of existing contracts or out of scope of existing con-
tracts (thus requiring modification of those contracts). In addition to incorpo-
rating into the CR data elements for the initiation, freezing, and decision
events, we include for traceability a cross-reference to the impact assessment
form for this CR from the analysis event. The form is organized and ruled
into separate parts for each person filling out the form. Provision has been
made to continue initiation event data on a separate page.

Change Control Form—Impact
Assessment (IA)

Figure 4–20 shows an example of an impact assessment form. This form
records the results of the analysis event of the unplanned change control
process when something new or different is desired. The IA is filled in as a re-
sult of a CR.

The event description on the IA form is composed of three parts:

♦ Technical analysis. The approach to be used in designing the proposed
change, the software (documentation and code) affected by making the
change, and the approach to be used in testing the system after the code
has been changed.

♦ Impact analysis. Considerations of schedule, labor, and costs to implement
the proposed change.

♦ Alternatives. A brief discussion of alternatives to the proposed change,
with benefits and liabilities provided for each alternative.

Each part may be continued on another page.

Now that we have a sample set of forms, let’s take a look at how they might
be used in an organization’s change control process. In Figure 4–21, we pre-
sent scenarios showing the use of the change control process forms and the
interaction of the forms with the CCB. Each of these scenarios deals with one
of the three following questions (recall Table 4–3) related to unplanned and
planned change:

Chapter 4 • Change Control Process

237

ptg

♦ Do we want something new or different?
♦ Is something wrong?
♦ Should we baseline this product?

To illustrate how an organization’s change control process may work, we de-
scribe each of the three scenarios. We also provide examples of filled-out
change control forms in Figures 4–22 through 4–25.

Chapter 4 • Change Control Process

238

Do We Want Something New or Different?

ALL POSSIBLE SOFTWARE CHANGE CONTROL SCENARIOS

CCB

Change
Request

Impact
Assessment

Planned
Change
Control
Process

CCB

Is Something Wrong?

CCB

Incident
Report

Wrong
RightedCCB

Incident
Report

(analyzed)

Should We Baseline This Product? (case 1)

Should We Baseline This Product? (case 2)

CCB

New or
Changed
Software
Product

Continue
Life CycleCCB

Software
Change
Notice

Software
Change
Notice

CCB

New or
Changed
Software
Product

CCB

Incident
Report

Incident
Report

(analyzed)

Audit
Report

Audit
Report

Analysis
Report

Figure 4–21 Scenarios showing the use of the change control forms.

ptg

Chapter 4 • Change Control Process

239

Completed by
change

requester

Completed by Product
Assurance when CCB

directs that IA be
prepared

Completed at
CCB

Meeting

Completed by
Product Assurance
when CR received

CHANGE REQUEST

Control Number: _______

Originator: Name:_______________ Organization:_______________ Tel. No. :_________________

Description of Change:

Justification of Change:

Continuation PageUrgency: __________ (High, Medium, Low)

Impact Assessment (IA) Control Number:_______________ Date: ____/____/____

CCB Decision: Approved Date: _________/____/_______

Reinvestigate Date Reinvestigation Due: __/__/__

In Scope

Title:

Impact on System Use and Operation:

Reject

Out of Scope

Chairperson:____________________

Tom Green National Meals 909/555-9567

MEAL PLANNER Database Update Capability

Provide the capability to add foods (and their

The capability is needed for two reasons:

a. We need to be able to use local and regional names for foods

b. We need to be able to use local and regional foods not currently
in the database (e.g., she-crab soup).

Our nutritionists can use local names

and foods, avoiding manual labor and need to remember unfamiliar
names.

High

March

Mary White

1998X

X

24

currently in the database (e.g., "snap beans" for "string beans").

associated data) to the database. A capacity of up to 500 additional
foods should be provided.

98-0019

98-0012 Mar20 98

Date: ____/____/____ 15 Mar 98

Figure 4–22 Example of a completed change request (CR) form, showing the use of the form in answering the question
“Do we want something new or different?”

ptg

Chapter 4 • Change Control Process

240

IMPACT ASSESSMENT

Control Number: ________ Date: ___/____/___

Analyst: Name:_______________ Organization:_______________ Tel. No.:_________________

Change Request (CR) Control No.: _____________

Continuation Page

Title: __

Technical Analysis:
Design Approach:

Documentation Affected:

Code Affected:

Testing Approach:

Impact Analysis:
Schedule Considerations:

Labor Considerations:

Cost Considerations:

Continuation Page

Alternatives:

Continuation Page

Completed by
analyst in

development
organization

Hugh Brown Development 8197

98-0019

MEAL PLANNER Database Update Capability

Create an additional subsystem for database update. Include data entry, data

System Specification, Requirements Specification, Design Specification,

Code for additional subsystem will be all new. MMI (Man-Machine Interface) Subsystem

Updated product must be acceptance tested by our company T&E Group. Particular
attention must be focused on user interface, storage capacity limits, and system performance.

5 months, starting about 1 May 1998

18 person-months

$150,000

Users could inform us of the database modifications needed. We could update the database
and send them a new database. This alternative would cost less, but may not be satisfactory to users in
terms of responsiveness and their dependence on our company for database updates.

will need to be modified for this capability.

User’s Manual

 validation, and database update functions. Modify current user interface.

Completed by
Product Assurance

when CCB directs that
IA be prepared

98-0012 20 98Mar

Figure 4–23 Example of a completed impact assessment (IA) form for the change request (CR) 98-0019.

ptg

Chapter 4 • Change Control Process

241

99 01 22 0900Date/Time of Incident: ___/___/___ _____

Completed by
analyst in

development
organization

Completed by Product
Assurance when IR

received

Completed by Product
Assurance

Completed by
CCB chairperson

Completed by
user

INCIDENT REPORT

Control Number: ____________

Organization:_______________Originator: Name:__________________ Tel. No. :_________________

Source:

Document Name:_______________________________________ Identifier:_________________

Page:_________________ Paragraph:____________

Executable Code:_________________ Release No.:__________ Version No.:__________

During Test

Incident Duplicated During Run After Restart After Reload Attachments

Procedure:_____ Step:_____

Incident Description:

Suggested Resolution:

Continuation Page Urgency: __________ (High, Medium, Low)

Analyst: Name:_______________ Tel. No. :_________________ Date: _________

Incident Cause:

Incident Impact:

Recommended Resolution:

Continuation Page

CCB Decision: Approved Date: ________

Reinvestigate Date Reinvestigation Due: __/__/__

SCN Control No.:_______________ Date SCN Control No. Assigned:

No Action Required

Chairperson: _____________________

8226John Blue

The subroutine to convert grams to ounces (GRAMTOOZ)

For a single food entry, user must divide results by

In module GRAMTOOZ, change line 85 to
QUOZ=0.03527*QUGR

100. For meals entered in grams, the user must calculate results
manually.

is scaled incorrectly—100 times too high.

990130

99-0012

210/555-2467Nutrition, Ltd.Jane Black

X

X X

98-2 1.2

Whenever a quantity in grams is entered in MEALPLANNER, all the output
numbers are outlandishly high. See attached listing for the results of entering “steak, 225 grams.”

Correct gram-to-ounce converter.

Medium

Bob Redman

X
990214

99–0030 990217

X

Figure 4–24 Example of a completed incident report (IR) form, showing use of the form in answering the question “Is
something wrong?”

ptg

Chapter 4 • Change Control Process

242

SOFTWARE CHANGE NOTICE

Control Number: __________ Date: ___/___/___

Originator: Name:_______________ Organization:___________________ Tel. No.:_____________

Change Implemented:

Continuation Page

Software Development Manager:_____________________________ Date: ___/___/___

Incident Report (IR)
Control No.

Type of Software
(Doc. or Code)

Version/
Revision

Software
Identifier

Software
Name

Product Assurance Manager:________________________________

Project Manager Ann Whitemarsh

Jim Brownlee 99 02 18

Bill Blackburn 17 Feb 99

Feb 21 1999:___

Date: ___/___/___

Date: ____/____/____

Approval:

Completed by Product
Assurance when IR

received

99-0030

Nancy Greenfield Product Assurance 2194

99-0012Code3.44.2.1.14GRAMTOOZ

99 02 17

Figure 4–25 Example of a competed software change notice (SCN) for the incident report (IR) 99-0012.

ptg

Change Control Process Scenario One—Do We
Want Something New or Different?

The first scenario is initiated by a desire for something not already in the soft-
ware or something that extends what is already there. (This change control
process is introduced in Figure 4–9.) As illustrated in Figure 4–22, the origina-
tor, Tom Green, initiates this unplanned change by describing the change as
follows:

Provide the capability to add foods (and their associated data) to the data-
base. A capacity of up to 500 additional foods should be provided.

Tom fills out the rest of the upper part of the CR. This CR is presented to the
CCB, which assigns it to an analysis group. The product assurance organiza-
tion fills out the middle part of the CR for traceability by assigning the IA
Control No. of 98-0012 on March 20, 1998.

As shown in Figure 4–23, the assigned analyst, Hugh Brown, documents the
results of the analysis in an IA, which is then submitted to the CCB. Hugh
documents the technical and impact analysis.

With the IA in hand, the CCB makes a decision on the disposition of the CR.
As shown in Figure 4–22, the results of this decision are added to the bottom
part of the CR. Notice that the CCB considers this change to be out of scope of
the existing contract. The contract will thus have to be changed prior to the
actual implementation of the change. Since, in our example, the CCB decision
was to approve the proposed change, the planned change control process is
initiated (after the contract is modified) as the now-approved change is re-
flected in successive baseline updates, starting with the system specification.

Change Control Process Scenario Two—
Is Something Wrong?

The second scenario is initiated by the question of something being at vari-
ance with the requirements specification. (This change control process is in-
troduced in Figure 4–10.) As illustrated in Figure 4–24, the originator, Jane
Black, initiates this (potentially) unplanned change by describing the incident
as follows:

Whenever a quantity in grams is entered in MEAL PLANNER, all the
output numbers are outlandishly high. See attached listing for the results of
entering “steak, 225 grams.”

Jane, who can be any project participant, fills out the rest of the upper part of
the IR.

Chapter 4 • Change Control Process

243

ptg

This scenario is initiated when any project participant fills out the upper part
of an IR. The IR is introduced to the CCB, which assigns it to an analysis orga-
nization. As shown in Figure 4–24, the analyst, John Blue, fills out the middle
portion of the IR with his analysis of the IR, and returns it to the CCB. John
documents the incident cause and impact, and recommended resolution.
When the CCB makes its decision, the decision portion of the IR is filled out.
The example change in this scenario was approved by the CCB. The develop-
ers prepare the approved change, and when the change is ready for imple-
mentation, an SCN is issued. Figure 4–25 is an example of a filled-out SCN
that might result from the IR shown in Figure 4–24. With the change made,
the original wrong has been righted in a visible, traceable, and hence manage-
able manner.

There is a variation to this scenario that arises occasionally at certain user in-
stallations. A number of such installations must operate around the clock.
Many of these installations are operated by the U.S. government, but increas-
ingly more of them operate in the private sector (for example, some mail-order
systems and some point-of-sale systems). For these installations, a failure in
their computer-based systems can have serious consequences. When something
goes wrong with their software, these users have an emergency situation. Is the
change control process bypassed for such emergencies? Not at all. A procedure
that is responsive to the emergency situation and yet maintains control should
be developed in the product assurance plan for systems at such installations.

One procedure to handle such situations that we have observed in successful
operation is as follows: When a site liaison representative of the seller (re-
sponsible for continued system maintenance) is notified by site personnel of
an emergency situation, the representative contacts the appropriate software
analyst. The analyst evaluates the problem to ensure that there is sufficient
data to repair it, that the problem is not the result of improper system usage
by the operator, and that the problem is not a duplicate of an incident report.
The analyst then proceeds to resolve the problem by the most expedient
means available. When the analyst has a solution, the analyst contacts, by
telephone, at least one member of the CCB (using teleconferencing facilities, if
possible) to obtain approval prior to disseminating the solution. When ap-
proval is obtained, the analyst sends the necessary corrections to the site hav-
ing the problem. No attempt is made to obtain a solution that is elegant or
efficient or that will last beyond the time required to develop a permanent
correction. What is desired is a solution that quickly returns the site to opera-
tional status and that prevents further system degradation.

When the solution has been sent to the site, the analyst fills out an IR on the
incident and on the next working day submits the IR (to obtain a permanent
solution) and the temporary solution (other sites may need the same tempo-
rary fix) to the CCB.

In this procedure, notice that the basic change control process is abbreviated but
not omitted. Even in these emergency circumstances, a CCB meeting of sorts is
convened. Visibility and traceability are maintained under all circumstances.

Chapter 4 • Change Control Process

244

ptg

Change Control Process Scenario Three—
Should We Baseline This Product?

This scenario deals with planned change and is initiated by the question of es-
tablishing a product as a new or updated baseline. (This change control process
is shown in Figure 4–8.) The change control process is initiated by presentation
of the draft of a software product proposed as a new or updated baseline. This
product is audited, and an audit report is provided to the CCB. The CCB assigns
an analysis organization (usually the development organization) to analyze the
discrepancies contained in the audit report. The results of this analysis are pre-
sented to the CCB in a report that provides a recommended resolution of each
discrepancy. The CCB makes a decision on how to resolve each discrepancy
and then decides whether to baseline the software product. Once the product is
baselined, the project continues along its life cycle.

This scenario has a variation that is used by some organizations (case 2 in Fig-
ure 4–21). In this variation, when the CCB receives the audit report on a pro-
posed new or updated baseline, it does not have every discrepancy in the
audit report analyzed and reported upon (with a recommended resolution) in
an analysis report. A certain number of discrepancies can be easily and
quickly resolved at the CCB meeting. For example, an inconsistency in the
spelling of the software system name or an ambiguous term that is readily
clarified can be quickly resolved. For such discrepancies, there is no need to
spend additional resources to analyze the problem and to document a recom-
mended resolution—the CCB can make an immediate decision on each.

In this variation, when the CCB receives the audit report, it considers each
discrepancy in turn. If a discrepancy can be readily resolved, the CCB makes
an immediate decision on it. If a discrepancy is not readily resolvable at the
CCB meeting, the CCB directs that an IR be created describing the discrep-
ancy. This IR is processed just as any other IR is processed. As shown in Fig-
ure 4–21, the IR is analyzed (typically, by the development organization) and
returned to the CCB with the results of the analysis indicated as IR (ANA-
LYZED). If the CCB approves a change as a result of this IR, an SCN is issued
when the change is implemented.

Another important facet of CCB operation is the production and maintenance
of formal minutes for every CCB meeting. Let us now describe and illustrate
this important bookkeeping task in detail.

CCB Minutes

The minutes of a CCB meeting are essential to provide an accurate, precise,
and thus visible account of the proceedings of the CCB, both for the CCB
members and for other project participants. The minutes provide a recorded
view into what was said and decided at a CCB meeting. The minutes record

Chapter 4 • Change Control Process

245

ptg

the status of software products and changes and each action decided upon.
For each action, responsibility is assigned and a schedule for its accomplish-
ment is established. The series of CCB meeting minutes forms a trace of the
functioning of the CCB over the project life cycle.

Have you ever left a meeting feeling that you understood what had been de-
cided at the meeting, only to discover in a later discussion with a colleague
that the colleague’s understanding differed from yours? Have you ever
known a meeting decision to be overlooked and forgotten because it was not
written down? If you are a senior manager, have you ever wondered whether
a project under your cognizance was progressing satisfactorily? These situa-
tions can be corrected by publication of meeting minutes. To convince you
further of the benefit of publishing CCB meeting minutes, we provide you
with the following story, which is an adaptation from an actual project.

Lack of Visibility of Project Meetings—A Story
Paul Little, the seller’s project manager on Project PQR, was famil-

iar with CCBs but did not believe in their value. He authorized the
leader of his development group, Peter Anderson, to make changes in
computer code (deviating from the design specifications) as Peter saw
fit. Paul met frequently with the user/buyer; usually Paul was the only
person from the seller’s company present. No record of any of the
meetings with the customer was ever made.

Near the beginning of Project PQR, a lengthy meeting between the
user/buyer (i.e., customer) and seller was held (at the customer’s re-
quest) to ensure that the requirements for the project were clearly un-
derstood. The requirements review meeting was attended by most of
the seller’s project staff and by a number of users. During the meeting,
a question was raised about the briefly stated requirement that “all
data entries shall be fully validated.” A user stated that the Project PQR
system was to perform all the data entry validation checks performed
by the existing system (which Project PQR was replacing), plus several
new and more complex data validation checks that were urgently
needed. Unfortunately, the current system was not well documented,
and no list of the current data validation checks existed. The user
agreed to “dig out” from current computer source code all the current
data validation checks and to inform the seller what these checks were.
No minutes were kept of this meeting on user needs.

A week later, the user orally presented to Peter (the seller’s devel-
opment group leader) a number of data entry validation checks for the
current system. Peter noted these items but did not see fit to publish
the list or to keep any written record of his meeting with the user. He
followed up the meeting by assigning data validation checks to appro-
priate development group members. A month later, Peter suddenly
resigned from the company to accept an opportunity with another
company.

Chapter 4 • Change Control Process

246

ptg

Mary Rose, head of the seller’s test team (who was not present at
the requirements review meeting), was unable to obtain a list of the
data validation checks to be performed by the Project PQR system. In
frustration, she designed tests to ascertain that the system performed
data validation checks that seemed reasonable to her. (Unfortunately,
what her tests ascertained fell far short of the user’s needs in this area.)

On the day before the Project PQR system was to be demonstrated
to the user prior to delivery, Paul told his (new) development group
leader, Sally Vines, that at his meeting with the user that morning, the
user said he was anxiously awaiting demonstration the next day of one
of the new, complex data validation checks (first introduced at the re-
quirements review meeting). Sally was surprised. She told Paul that
she had never heard of the requirement and certainly had not pro-
grammed it. Paul was aghast. He told Sally that two months before, at
one of his meetings with the user, the user had asked whether that spe-
cific capability would be in the delivered system. Paul had confidently
told the user that the desired capability would be in the first delivery of
software code.

Frantically, Sally and her group set about to add the missing capa-
bility in the few hours still left. Regrettably, they did not succeed in
getting the new capability to work properly at the next morning’s
demonstration. In fact, at the demonstration it soon became evident
that their frantic efforts had caused several other previously checked-
out data validation checks to work improperly. Concerned by the
improper performance of the system, the user requested additional
demonstration of all the data entry validation checks that he needed.
This demonstration revealed that none of the new capabilities had
been coded and that a number of capabilities used by the current sys-
tem had been omitted. The user was greatly upset and refused to ac-
cept the software. With much chagrin, the seller’s project team went
back to work and a few months later delivered to the user a software
system that the user found acceptable. Paul, the project manager, had
departed one month earlier to seek employment elsewhere.

In our story, it turned out that no one remembered the data entry validation
checks introduced at the requirements review meeting. Everyone assumed that
the list of validation checks the user gave Peter contained all the checks that the
user desired. Since the list of validation checks that the user gave to Peter was
never written down, but rather was passed along orally, some checks got lost in
the oral transfers. The abrupt departure of Peter caused loss of the only infor-
mation the seller had about data entry validation checks to be incorporated in
the new system. These problems could have been avoided if minutes of each
meeting had been recorded and published. The developers would have had
visibility into what to develop. The testers would have had visibility into what
to test. The user would have had visibility into what he would be receiving in
his completed system. The departure of the development group leader would

Chapter 4 • Change Control Process

247

ptg

not have had an impact on this visibility. The production of minutes here
would have saved considerable time and money for the project.

We now turn our attention to the mechanics of keeping track of what the CCB
does. Let us consider first who should record the minutes of a CCB meeting.
Some people consider taking minutes to be a purely clerical job and would
use a person trained in secretarial skills (e.g., shorthand) for this task. Such a
person would generally not be involved in the discussion within the CCB and
therefore could devote full attention to keeping the minutes. A CCB secretary
with shorthand skills could produce a verbatim transcript of a CCB meeting if
required. On the negative side, a person with secretarial skills generally is not
technically cognizant of the CCB discussion and therefore might not know
when CCB decisions had been reached.

Another possible CCB secretary would be a member of the development staff
responsible for implementing CCB-approved changes. Such a person would
be most knowledgeable on the software and possible changes to it, i.e., in un-
derstanding what the CCB discusses and decides. However, that very under-
standing would probably involve the person in the subjects under discussion
and distract her or him from the secretarial duties. Further, the person’s orga-
nizational allegiance may bias her or his recording.

A member of the product assurance organization could serve as CCB secre-
tary. This person certainly would be technically cognizant of the CCB discus-
sions and decisions. The PA practitioner may well get involved in the CCB
discussion, but such involvement is usually focused on the CCB reaching a
decision rather than on the decision itself. Since the product assurance practi-
tioner is not involved in implementing software changes, the practitioner is
likely to have a dispassionate viewpoint of the proceedings. This neutral
viewpoint should be reflected in the recording of the minutes.

What should be recorded in the CCB minutes? The most fundamental items
to record are the results of discussions of agenda items, action assignments,
and decisions of the CCB. These items could be quite wide-ranging (depend-
ing upon the CCB charter for a project). However, the most important sub-
jects relative to its change control responsibilities are software products and
software changes. The status of each item discussed and the action taken on
each must be recorded in the minutes. Other subjects that should be recorded
include the results of audits and of tests, the establishment of baselines, and
the implementation of software products and changes. At the end of the min-
utes, a summary of actions to be taken is included, with responsibility for ac-
tion and due date explicitly stated. A suggested format for CCB minutes is
presented in Figure 4–26.

Rationale for including some of the items shown in Figure 4–26 follows:

♦ An identifier and date—to give visibility to the minutes and to make them
traceable.

Chapter 4 • Change Control Process

248

ptg

Chapter 4 • Change Control Process

249

Memorandum Date: ____/____/______
Identification Number

To:
From:
Subject:
Reference:

Distribution [see bottom]
[Typically, the memo is from the CCB secretary]
Minutes of System XYZ Change Control Board (CCB) Meeting
[Typically, the minutes from the preceding CCB meeting are cited here]

5.0 [Time and place of next CCB meeting]

1.0 [Date of Meeting]

2.0 [List of meeting attendees and their organizational affiliation]

2.1 [List of organizations not represented at the meeting who typically participate]

3.0 CCB Actions

[The subparagraphs under this paragraph contain a record of what happened at the meeting to
include things such as the following:

● Approval of and changes, if any, to the minutes of the preceding CCB meeting (or
 meetings)

● Presentation and/or disposition of IRs, SCNs, CRs, IAs, TIRs

● Discussion of audit (including test) findings and decisions regarding how discrepancies are
 to be resolved

● Presentation (or overview) of a candidate software baseline (i.e., a draft product such as a
 draft design specification in conjunction with a design review)

● Turnover of computer code from the development organization to the product assurance
 organization for (acceptance) testing

● Discussion of new issues (such as a new capability for which a CR has not yet been
 formulated)]

4.0 Action Items

[This paragraph lists the who/what/when resulting from the items addressed in paragraph 3.0 as
assigned during the meeting, typically by the CCB chairperson:]

Number Action Item Action Agent Due Date Paragraph Reference

[Action
item
identifier]

[Brief
description
of action]

[Organization of
individual responsible
for the action]

[Date action
is to be
completed]

[Pointer to subparagraph
in paragraph 3.0 that gives
the context for the action]

Distribution:

[Listed here are the individuals or organizations that are to receive copies of the minutes. This
list typically includes all individuals listed in paragraph 2.0 and management personnel who
desire visibility into the status of System XYZ.]

Figure 4–26 Format for CCB minutes.

ptg

♦ A list of attendees and their organizational affiliation—to record who
participated in the decision-making.

♦ A list of organizations not represented at the meeting—to record whose
viewpoints were not considered in the decision-making.

♦ The status of the minutes of the preceding meeting, including any neces-
sary corrections—to assure that the trace of CCB minutes is correct and
accurate.

♦ The time and place of the next meeting—to give visibility to the schedule
for the next meeting.

♦ A list of people receiving copies of the minutes—to inform each recipient
who else has received the information contained in the minutes (and to ex-
pand project visibility outside the CCB meeting participants, if desired).

Recording the status of the minutes of the preceding meeting is particularly
important for traceability purposes. The minutes should show that the pre-
ceding meeting minutes were correct as recorded or that they needed specific
corrections and were approved as corrected.

A copy of the minutes should be distributed to every person who attends the
meeting. Copies should also be sent to each member of the CCB who was not
present at the meeting and to appropriate senior managers. These minutes let
them know exactly what happened at the meeting. The presence of the names
of senior managers in the distribution list of the minutes contributes to mak-
ing management visible to project participants.

Next, let us briefly consider the mechanics of a CCB meeting relative to the
keeping of minutes. The first item of business at every CCB meeting is to con-
sider the minutes of the preceding meeting. Any corrections desired are intro-
duced, considered, and either approved or disapproved. If there are no
corrections, the minutes are approved without correction. Otherwise, the
minutes are approved as corrected.

As each item on the agenda is discussed and a decision is made, the CCB sec-
retary records that decision. When the secretary is not sure what decision has
been reached by the CCB, the secretary should stop the proceedings and as-
certain precisely what was decided. At the end of the CCB meeting, the secre-
tary should summarize the decisions made by the CCB and the actions to be
taken.

To close out this section, we present and discuss minutes of four different
types of CCBs. The minutes follow the format shown in Figure 4–26. The four
types of meetings are as follows:

♦ A software CCB considering a planned change (see Figure 4–27).
♦ A software CCB considering unplanned changes (see Figure 4–28).
♦ A test incident CCB considering the results of an acceptance test (see Fig-

ure 4–29).

Chapter 4 • Change Control Process

250

ptg

Chapter 4 • Change Control Process

251

Memorandum June 1, 1998
MPCCB - 98/8

To:
Thru:
From:
Subject:
Reference:

Distribution
Mary White, MEAL PLANNER CCB Chairperson
Jim Limerick, MEAL PLANNER CCB Secretary
Minutes of MEAL PLANNER CCB Meeting
(a) MEAL PLANNER CCB minutes MPCCB - 98/7 dated May 22, 1998

1.0 Date of Meeting: May 29, 1998

2.0 Attendees:

Tom Green

Mary White
Polly Lemonsky
Jim Limerick
Ned Rosebud
Stan Tanbrook

Ann Whitemarsh
Bill Blackburn
Hugh Brown
Jim Brownlee
Walt Silverstone

3.0 CCB Actions

User/Management

Buyer/Management [chairperson]
Buyer/Development
Buyer/Development [secretary]
Buyer/Development
Buyer/Product Assurance

Seller/Management [project manager]
Seller/Development [manager]
Seller/Development
Seller/Product Assurance [manager]
Seller/Product Assurance

3.1 Reference (a) was approved as published.

3.2 Action items from previous meetings resolved: none.

3.3 Hugh Brown presented an overview of Version 1.4 of MP-01, Software Requirements
Specification for System MEAL PLANNER. This version is the result of applying CR
98-0019 to the previous version. CR 98-0019 added the capability to update the MEAL
PLANNER database.

3.4 Stan Tanbrook presented an audit report documenting the results of auditing Version 1.4
of MP-01. After considering the audit report, the board made the following disposition of
the audit report findings:

3.4.1 Findings 1, 3, 4, 5, 8, 10, 11, 14, 17, 19, and 20 had recommended resolutions
proposed by the auditor or by a board member. These resolutions were approved by the
board for implementation (i.e., revision of Version 1.4 of MP-01). These approved
changes are identified as IR 98-0097.

3.4.2 Findings 6, 7, 9, 12, 15, and 16 require further analysis. IRs 98-0098, 98-0099, 98-
0100, 98-0101, 98-0102, 98-0103, respectively, will be originated by the Seller/Product
Assurance Group for these findings. The IRs are assigned to the Seller/Development Group
for investigation and analysis.

3.4.3 Findings 2, 13, and 18 require no action to be taken. After discussion, the board
decided that these findings represented misunderstandings by the auditor and that no
problems existed.

2.1 Organizations Not Represented: none.

Figure 4–27 Minutes of a software CCB meeting considering a planned change.

ptg

Chapter 4 • Change Control Process

252

5.0

4.0 Action Items

Number Action Item Action Agent Due Date

Next Meeting: Monday, June 8, 1998, at 2:00 p.m. in the Main Conference Room.

Distribution:
All attendees
Tim Graystone [Buyer/General Manager]
Al Plumtree [Seller/President]

3.0 CCB Actions (continued)

3.5 Ned Rosebud raised the issue as to whether the user had a need to delete foods from the
database. (CR-98-0019 asked only for the capability to add foods to the database.) Tom
Green, the originator of CR 98-0019, stated that, while he only asked specifically to add
foods, he implied in the title of the CR (‘‘. . . database update capability‘‘) that he also had
a need for the capability to delete foods. The board moved to add this capability to
Version 1.4 of MP-01, identifying this change as approved IR 98-0104.

3.6 The board took no action on baselining Version 1.4 of MP-01, pending the resolution of
IRs 98-0098 through 98-0103, and the implementation of approved IRs 98-0097 and
98-0104.

98-212

98-213

98-214

98-215

Implement IR 98-0097

Analyze IRs 98-0098
through 98-0103

Implement IR 98-0104

Baseline MEAL
PLANNER Requirements
Specification Version 1.4

Seller/Development

Seller/Development

Seller/Development

MPCCB

July 1, 1998

July 8, 1998

July 15, 1998

July 16, 1998

Paragraph
Reference

3.4.1

3.4.2

3.5

3.6

Figure 4–27 Continued

ptg

Chapter 4 • Change Control Process

253

Memorandum
February 12, 1999

MPCCB - 99/6

To:
Thru:
From:
Subject:
Reference:

Distribution
Bob Redman, MEAL PLANNER CCB Chairperson
Jim Limerick, MEAL PLANNER CCB Secretary
Minutes of MEAL PLANNER CCB Meeting
(a) MEAL PLANNER CCB minutes MPCCB - 99/5 dated February 5, 1999

1.0 Date of Meeting: February 12, 1999
2.0 Attendees:

Jim Limerick
Bob Redman
Harriet Rose

Bill Blackburn
John Blue
Jim Brownlee
Nancy Greenfield
Walt Silverstone
Ann Whitemarsh

3.0 CCB Actions

Buyer/Product Assurance [secretary]
Buyer/Management [chairperson]
Buyer/Product Assurance

Seller/Development [manager]
Seller/Development
Seller/Product Assurance [manager]
Seller/Development
Seller/Product Assurance
Seller/Management [project manager]

3.1 Reference (a) was approved with the following modification:

3.1.1 Paragraph 3.3: Add Nutrition, Ltd., to the list of sites to which Release 99-3 will be
delivered.

3.2 Action item from previous meeting was resolved as follows:

3.2.1 Action item #99-0032, second installation of Release 99-3: Bill Blackburn stated that
the installation of Release 99-3 at National Meals was completed with only a few minor
problems. The installation notes remain the only item to be completed for the
installation. Delivery of the installation notes will be carried as an action item for the
Seller/Development Group; action due by March 15, 1999.

3.3 Harriet Rose stated that an emergency incident had been reported by Diet Plus, Inc., two
days ago. It was assigned control number IR 99-0015. The incident involved the
calculation of the total calories in a meal. John Blue, with the concurrence of Ann
Whitemarsh and Bob Redman, had sent a patch to Diet Plus, Inc., by wire, but did not test
the patch. The board moved that the Seller/Product Assurance Group test the patch
immediately, and that the Seller/Development Group determine a permanent fix by
February 17.

IR No.

99-0010

99-0012

Presenter

Nancy
Greenfield

John Blue

Disposition

No action
required

Approved

Due Date

Feb 17, 1999

Feb 18, 1999

Notify
originator

Submit SCN

Action Action Agent

Seller/Product
Assurance

Seller/
Development

3.4 Recommended resolutions to the following IRs were presented to the board and the
following decisions were made:

2.1 Organizations Not Represented: Buyer/Development Group
 User/Management

Figure 4–28 Minutes of a software CCB meeting considering unplanned changes.

ptg

Chapter 4 • Change Control Process

254

5.0

4.0 Action Items

Number Action Item Action Agent Due Date
Paragraph
Reference

Next Meeting: Friday, February 19, 1999, at 10:00 a.m. in the Main Conference Room.

Distribution:

All attendees
Tim Graystone [Buyer/General Manager]
Tom Green [User/Management]
Polly Lemonsky [Buyer/Development]
Al Plumtree [Seller/President]

3.0 CCB Actions (continued)

3.4 Recommended resolutions to the following IRs were presented to the board and the
following decisions were made:

99-0046 Deliver installation note
to National Meals.

Test patch for IR 99-
0015

Analyze IR 99-0015

Notify originator of IR
99-0010 no action
required.

Seller/Development

Seller/Product
Assurance

Seller/Development

Mar 15, 1999

Feb 10, 1999

Feb 17, 1999

3.2.1

3.3

3.3

3.4

99-0047

99-0048

99-0049

99-0050

99-0051

Feb 17, 1999

Feb 18, 1999

Feb 19, 1999

Seller/Product
Assurance

Seller/Development

Seller/Development

3.4

3.4

Submit SCNs for IRs
99-0012 and 99-0014

Reanalyze IR 99-0013

IR No.

99-0014

99-0013

Presenter

Nancy Greenfield

John Blue

Disposition

Approved

Reinvestigate

Submit SCN

Action

Reanalyze IR

Due Da te

Feb 18, 1999

Feb 19, 1999

Action Agent

Seller/
Development

Seller/
Development

Figure 4–28 Continued

ptg

Chapter 4 • Change Control Process

255

Memorandum November 13, 2000
SCCB - 2000/40

To:
Thru:
From:
Subject:
Reference:

Distribution
Sally Plum, SHAPES CCB Chairperson
Helen Gray, SHAPES CCB Secretary
Minutes of SHAPES CCB Meeting
(a) SHAPES CCB minutes SCCB - 2000/39 dated November 5, 2000

1.0 Date of Meeting: November 10, 2000

2.0 Attendees:

Jane Black
Bill Blackburn
Amy Blue
Hugh Brown
Jim Brownlee
Helen Gray
Nancy Greenfield
Jack Lemon
Sally Plum
Peter Rose
Ann Whitemarsh

3.0 CCB Actions

User/Management
Seller/Development [manager]
Buyer/Product Assurance
Seller/Development
Buyer/Product Assurance [manager]
Seller/Product Assurance
Seller/Development
Seller/Development
Buyer/Management [CCB chairperson]
Buyer/Product Assurance
Seller/Management [project manager]

3.1 Reference (a) was approved as published.

3.2 Action items from previous meetings resolved: none.

3.3 Release 2000-3, Version 2.1 was turned over to the Seller/Development Group.

3.4 Amy Blue [Buyer/Product Assurance test leader] presented to the board 105 TIRs
(numbered 2000-1006 through 2000-1110). There was extensive discussion of TIRs
2000-1024 through 2000-1032, which describe problems related to the new menus
defined in the SHAPES Detailed Design Specification. Bill Blackburn
[Seller/Development manager] indicated that he would have his staff give particular
attention to this set of problems.

3.5 It was agreed that the Seller/Development Group would return the Release 2000-3
software code to the Buyer/Product Assurance Group on November 20, 2000, for
additional testing.

5.0

4.0 Action Items: none.

Next Meeting: November 20, 2000, at 3:00 p.m. in the Auxiliary Conference Room.

Distribution:
All attendees
Tim Graystone [Buyer/General Manager]
Sue Pinkerton [Buyer/Development]
Al Plumtree [Seller/President]

2.1 Organizations Not Represented: Buyer/Development Group

Figure 4–29 Minutes of a Test Incident CCB meeting.

ptg

♦ A software turnover CCB considering the results of resolving TIRs6 (see
Figure 4–30).

Note that these example CCB minutes have representatives from the user, the
buyer, and the seller. For clarity, instead of using fictitious organizations in
these figures, we indicate each person’s organization by his/her affiliation
(user, buyer, or seller) and group (management, development, or product as-
surance). We also indicate in brackets information as to position (e.g., man-
ager, secretary, chairperson) for some of the CCB members in order to show
how these positions relate to the CCB. The bracketed information would not
normally appear in CCB minutes.

Figure 4–27 shows the minutes of a CCB considering a planned change,
namely, CR 98-0019 to System MEAL PLANNER. This change request had
previously been approved by the CCB. Hugh Brown (from the development
organization) presented an overview of a draft of the revised version of the
MEAL PLANNER Software Requirements Specification. Hugh was followed
by Stan Tanbrook (from the buyer’s product assurance group) who presented
an audit report on the draft software product. The CCB considered all the
findings in the audit report. For eleven of these findings, the CCB felt no need
for further analysis and approved them for implementation. These findings
resulted in changes to be made to the software requirements specification. An
incident report (IR 98-0097) was written to cover this set of approved
changes, in order to give them visibility and accountability (i.e., to enable
them to be tracked until implemented). The CCB decided that six of the audit
report findings required further analysis before the CCB made a decision. In-
cident reports were originated for each of these findings. The CCB decided
that no action was required on three of the audit report findings. The auditor
may have been unsure about whether discrepancies existed, and so gave the
issues visibility by reporting them as findings. The broad representation on
the CCB, with its range of viewpoints, was able to resolve these issues as not
being discrepancies. One of the buyers raised the issue of an apparent incon-
sistency, not previously observed, in change request CR 98-0019. The CCB de-
cided that a capability desired by the user was missing from the software
requirements specification and directed that it be added (identifying the
change as IR 98-0104 for visibility and traceability).

Figure 4–28 shows the minutes of a CCB considering an unplanned change.
Notice that a correction has been made to the minutes of the previous meet-
ing (paragraph 3.1.1). Whether corrected or not, minutes of the previous
meeting should always be approved by the CCB. Under paragraph 3.0, the
CCB minutes document the (1) handling of an action item from a previous

Chapter 4 • Change Control Process

256

6A test incident report (TIR) is a special case of an incident report. TIRs can be generated by a test
team when they execute a set of test procedures constructed from a test plan and specification docu-
ment (e.g., requirements and design specifications). The expected results specified in the test docu-
mentation are compared with the observed results obtained from computer code execution. If the
expected results do not match the observed results, the tester generates a TIR detailing the differences.

ptg

257

Memorandum November 21, 2000
SCCB - 2000/41

To:
Thru:
From:
Subject:
Reference:

Distribution
Sally Plum, SHAPES CCB Chairperson
Helen Gray, SHAPES CCB Secretary
Minutes of SHAPES CCB Meeting
(a) SHAPES CCB minutes SCCB - 2000/40 dated November 13, 2000

1.0 Date of Meeting: November 20, 2000

2.0 Attendees:
Jane Black
Bill Blackburn
Amy Blue
Hugh Brown
Jim Brownlee
Helen Gray
Nancy Greenfield
Jack Lemon
Sally Plum
Peter Rose
Ann Whitemarsh

3.0 CCB Actions

User/Management
Seller/Development [manager]
Buyer/Product Assurance
Seller/Development
Buyer/Product Assurance [manager]
Seller/Product Assurance
Seller/Development
Seller/Development
Buyer/Management [CCB chairperson]
Buyer/Product Assurance
Seller/Management [project manager]

3.1 Reference (a) was approved as published.

3.2 Action items from previous meetings resolved: none.

Distribution:
All attendees
Tim Graystone [Buyer/General Manager]
Sue Pinkerton [Buyer/Development]
Al Plumtree [Seller/President]

2.1 Organizations Not Represented: Buyer/Development Group

3.3 Release 2000-3, Version 2.2 was turned over to the Buyer/Product Assurance Group.

3.4 Of the 105 TIRs turned over at the CCB meeting on November 10, 2000, 100 TIRs have
been corrected via code changes (TIRs 2000-1006 through 2000-1085 and 2000-1091
through 2000-1110).

3.5 Bill Blackburn stated that TIR 2000-1086 was the result of the improper operation of the
system by the Buyer/Product Assurance Group and therefore no corrective action was
required. Jim Brownlee said that he would correct the pertinent test procedure to
provide appropriate clarification to the testers.

3.6 Bill Blackburn submitted TIRs 2000-1111 through 2000-1130. He indicated that
solutions and associated code had been developed for TIRs 2000-1111, 2000-1123, and
2000-1127 through 2000-1130. He also indicated that resolutions for the remaining new
TIRs have not yet been developed. There was some discussion about TIR 2000-1124,
which Bill Blackburn felt may not really be a problem because the SHAPES
Requirements Specification was vague in the area of concern. Bill Blackburn stated that
he wrote TIR 2000-1124 to obtain clarification on the matter. The board decided that the
issue raised in TIR 2000-1124 was indeed a problem.

3.7 It was agreed that the Buyer/Product Assurance Group would return Release 2000-3.
Version 2.2 to the Seller/Development Group on November 29, 2000.

Action Items: none.

Next Meeting: November 29, 2000, at 3:00 p.m. in the Auxiliary Conference Room.5.0

4.0

Figure 4–30 Minutes of a Software Turnover CCB meeting.

ptg

meeting, (2) consideration of an emergency incident that occurred two days
before, and (3) processing of four incident reports. Notice that all these items
resulted in the generation of additional action items, which are summarized
in paragraph 4.0. As shown in paragraph 3.4, IR 99-0012 was approved, and a
software change notice needs to be submitted. An SCN would be prepared
and submitted by one of the seller development staff. Note that the approval
should also be indicated on the actual IR. Observe in paragraph 2.1 that rep-
resentatives of two groups normally present at the CCB meeting did not at-
tend this one. In the distribution list at the end of the minutes, the names of
the missing representatives are included so that they can be apprised of the
meeting results.

CCB meetings generally are not held solely to discuss one type of change. In
general, a CCB considers both planned and unplanned changes at the same
meeting.

The minutes shown in Figures 4–29 and 4–30 relate to consecutive CCB meet-
ings that might occur during an acceptance testing cycle. The interaction of a
Test Incident CCB and a Software Turnover CCB provide visibility into the
acceptance testing cycle used to determine whether a software product is
ready to be delivered to a customer.

Figure 4–29 shows that the 105 TIRs were written in the testing period prior
to the Test Incident CCB, and Figure 4–30 shows that the code was developed
in response to 100 TIRs prior to the Software Turnover CCB. A traceability
thread can be seen linking the minutes in Figure 4–29 (paragraph 3.4) and the
minutes in Figure 4–30 (paragraph 3.4).

In all the minutes shown in Figures 4–27 through 4–30, note that senior man-
agement of both the buyer and the seller is included in the distribution of the
minutes. From these minutes, senior management gains visibility into the
progress of the project. These sample minutes complete our discussion of
the important bookkeeping task of keeping and publishing CCB minutes.

This discussion completes our examination of the forms that support the
change control process. In this section, we have shown that paperwork is nec-
essary to provide visibility and traceability in the change control process. We
discussed how you could develop the forms that you might need on a project.
We also provided a set of forms as examples and illustrated their use. Finally,
we provided a sample format for CCB minutes and several examples of how
you may decide to record CCB decisions and actions.

4.7 Change Control Process Summary

In this chapter, we focused on the mechanics of change control. After present-
ing the two broad classes of change that are continually occurring on a soft-
ware project (planned change and unplanned change), we discussed in depth

Chapter 4 • Change Control Process

258

ptg

the process of change control, the organization and procedures to accomplish
it, and the paperwork to support it. We pointed out and illustrated that the
focal point of the change control process is the CCB. This most important or-
ganization is the control activity for the entire change control process.

The role we defined for the CCB in this chapter is broader in scope—regard-
ing planned change control and unplanned document change control—than
is generally granted to it by others. Perhaps some readers would be more
comfortable in referring to this group as a committee—the title used is imma-
terial. What is important is that a group like the one we have here called a
CCB be established to control the change process in a disciplined, visible, and
traceable manner.

We have presented the CCB as a decision-making body controlling software
changes. The CCB must consider each planned or unplanned change. But
how does the CCB know whether to approve, disapprove, reanalyze, etc.,
each change? To formulate an answer to this question, recall our discussion of
the technical inputs to the CCB—the review initiator, the audit report, and
the analysis report.

As illustrated in Figure 4–31, you can use the following annotated outline of
an ADPE CCB guideline as a starting point for defining how CCBs may be in-
corporated into your software systems development environment.

The CCB guideline may consist of the following sections:

♦ Purpose. This section states the purpose of the guideline. The purpose is to
provide guidance for establishing CCBs, defining the role of CCBs in proj-
ect efforts, and conducting CCB meetings. Specific purposes of the guide-
line may include:
♦ Your organization’s CCB concept
♦ Definition of CCB participants
♦ Methods for documenting CCB meetings
♦ Guidance for developing a CCB charter
♦ Guidance for conducting CCB meetings

♦ Background. This section provides an overview of the software systems
development organization, and the types of products and services the or-
ganization provides to its customers.

♦ Change Control Board Overview. This section presents an overview of the
CCB concept. This material contains some tutorial information, and lessons
learned by members of seller and customer staff. Management, develop-
ment, and product assurance disciplines are presented and discussed in
terms of the skills each discipline provides to a project. It is important to
present a definition of what type of meeting constitutes a CCB meeting. Re-
member, not every project meeting with the customer needs to be a CCB. A
project meeting may be defined as a CCB meeting when some combination
of the following items affects project success: (1) decisions (affecting project

Chapter 4 • Change Control Process

259

ptg

Chapter 4 • Change Control Process

260

[Your Organization’s Name and Logo] Document #

Date

Document #

Date
1.0 PURPOSE

[Your Organization’s Name] Guideline

Change Control Board (CCB)

This section states the purpose of the element. The purpose is to provide guidance for
establishing CCBs, defining the role of CCBs in project efforts, and conducting CCB meetings.
Specific purposes of the guideline may include CCB concept and participants, methods for
documenting CCB meetings, and guidance for CCB charters and for conducting CCB meetings.

2.0 BACKGROUND

This section gives an overview of the software systems development organization and the types of
products and services that the organization provides to its customers.

3.0 CHANGE CONTROL BOARD OVERVIEW

This section presents an overview of the CCB concept. This material contains some tutorial
information (e.g., how the CCB can help the customer and seller organizations better
communicate with each other) and representative decisions, action items, or discussions.
Management, development, and product assurance disciplines are presented and discussed in
terms of the skills each discipline provides to a project.

4.0 CCB IMPLEMENTATION CONSIDERATIONS

This section defines and walks through the process of establishing a CCB. CCB scope of activities
is discussed in terms of (1) programmatic issues, (2) product development issues, (3) product
change issues, and (4) product assurance issues. It is useful to present examples of possible
issues. The ground rules for interaction between the seller and customer are defined.

The section also defines the methods for documenting CCB meetings and internal project
meetings. A sample format for a CCB charter and a sample format for CCB minutes are provided.
How a CCB meeting is conducted is also detailed.

APPENDICES

Appendices can contain details for carrying through the guidance set forth in the body of the
guideline. For example, appendices might include such things as templates for CCB minutes and
CCB charters.

Figure 4–31 An annotated outline for getting you started in defining a CCB guideline.

ptg

deliverables, schedule, or resources) are made, (2) action items are as-
signed, and/or (3) issues are discussed. Representative project decisions,
action items, and discussions may be presented. For example,
♦ Decisions changing a deliverable due date, specifying deliverable for-

mat and content, directing that no more product assurance testing is
required.

♦ Actions items to prepare a document outline by a due date, to investi-
gate the impact on product delivery using relational database technol-
ogy versus object-oriented technology.

♦ Discussions regarding the ability to complete a task within the remain-
ing project resources, proposed changes to the project plan, test incident
reports generated during acceptance testing.

The section also details what organizational units are CCB participants.
This discussion defines what specific organizational elements make up the
management, development, and product assurance groups. For example,

. . . the product assurance group is assigned the responsibility for pro-
viding management with insight into product status. The product assur-
ance group is an independent organization and provides the following
skills: (1) quality assurance, (2) verification and validation, (3) acceptance
test and evaluation, and (4) configuration management. . . .

♦ CCB Implementation Considerations. This section defines and walks
through the process for establishing a CCB. CCB scope of activities is
discussed in terms of (1) programmatic issues, (2) product development
issues, (3) product change issues, and (4) product assurance issues. Ex-
amples of the possible issues are presented. The ground rules for
interaction between the seller and customer are defined.
The section also defines the methods for documenting CCB meetings and
internal project meetings. A sample format for a CCB charter and a sample
format for CCB minutes are provided. How a CCB meeting is to be con-
ducted is also detailed.

♦ Appendices. Appendices are added as necessary. The appendices provide
the place where you can add additional detail without breaking up the text
in the main body. For example, you may want to have an appendix that
contains an annotated CCB charter outline. In the main body you can sim-
ply make your point about the charter and refer the reader to the appendix
for the details. Appendices can also contain change control processes, such
as the one we discussed in the chapter, and supporting change control
forms.

We have completed our discussion of the change control process in this chap-
ter. However, in discussing the change control process, we made frequent ref-
erence to the audit function. The allusions to auditing in the context of change
control in this chapter should make you better prepared to appreciate the im-
portance of the audit function discussed in the next chapter.

Chapter 4 • Change Control Process

261

ptg

This page intentionally left blank

ptg

chapter 5chapter 5

Asking a working writer what he thinks about critics is like asking a lamp-post what it feels
about dogs.

—Christopher Hampton (b. 1946), British playwright.
© by Christopher Hampton 1977.

5.1 Introduction

The captain who went down with the Titanic was informed—so history
tells—that his ship was in iceberg-infested waters. Although he (and his crew
and passengers) may have indeed felt that the Titanic was unsinkable, would
he (and his crew and passengers) not have been better off knowing where the
icebergs were and how big they were, so that he had an option of navigating
around them?

We believe that each software systems development project should be ap-
proached with the candid realization that each project is a voyage through
iceberg-infested waters. No matter how well customers and/or sellers believe
they understand what is needed to be done, there are unknown icebergs (e.g.,
unsatisfied requirements, schedule slippages, and cost overruns). Customers
and/or sellers need to be able to see such icebergs and steer clear of them to
the extent prudently possible.

This chapter focuses on how customers and/or sellers can gain visibility into
project icebergs associated with software systems development processes and

263

Product and
Process Reviews

ptg

the resultant products. As shown in Figure 5–1, the purpose of product and
process reviews is to give decision makers and other software systems devel-
opment project participants visibility into the project state of affairs. These re-
views serve to lessen guesswork on what to do next.

Just as the captain of the Titanic and his crew needed iceberg detectors, the
captain of the software project ship and the captain’s crew need product and
process state detectors. Product and process reviews serve to give decision
makers and other project participants visibility into the project state of af-
fairs—so that they can better anticipate the project future. Moreover, this visi-
bility serves to reduce the likelihood of shocking surprises regarding product
state.

This chapter presents techniques for detecting and steering clear of project
icebergs. We label these techniques “software product reviews” and “soft-
ware systems development process reviews.”

At the most fundamental level, a review is “a comparison of an entity against
a ground truth pertaining to that entity.” As a result of this comparison,

Chapter 5 • Product and Process Reviews

264

Software
Product

What next?

Process

Figure 5–1 Reviews give visibility into processes and resultant software products. With this visibil-
ity, management, development, and product assurance personnel can make intelligent, informed
decisions regarding what to do next on a software project.

ptg

discrepancies between the entity and the ground truth may be uncovered.
Figure 5–2 depicts this concept for products and processes.

Ground truth is an established benchmark against which, by comparison,
change is detected. If the ground truth is found to be faulty, it needs to be cor-
rected and then reestablished as the new ground truth. We use the following
two classes of ground truth:

♦ Product ground truth includes standards, requirements, predecessor prod-
ucts, design, the product itself, and some combination of products. For ex-
ample, a software detailed design specification can be compared against
the following product ground truth:
♦ A documentation standard that was used to develop the specification.
♦ A previously developed and approved requirements specification that

was used as the WHAT for the design.
♦ A previously developed and approved preliminary design specification

that specified at a top level how the WHAT in the requirements specifi-
cation is to be implemented.

♦ Itself

Chapter 5 • Product and Process Reviews

265

Software
Product

Software Product Review

Software Systems Development Process Review

Process Ground Truth

Application

Development Process

Environment

(ADPE)

Product Ground Truth

Standards

Requirements

Predecessor Products

Design

Product Itself

Compare

Compare

Project Software Systems
Development Process

Figure 5–2 The heart of product and process reviews is ground truth.

ptg

Regarding self-comparison, a product can be compared against itself for
inconsistencies, ambiguities, grammatical weaknesses, spelling errors,
TBDs (to be determined). Regarding comparison against standards, a
product can be compared against standards governing the product format
and/or content (i.e., a quality assurance comparison).

♦ Process ground truth includes, in this book, one or more application devel-
opment process environment (ADPE) elements. For example, a project’s
peer review process can be compared against guidance provided in an
ADPE Peer Review element. As another example, a project’s CCB opera-
tion can be compared against guidance offered in an ADPE CCB element.

This chapter details reviews that are limited to the project level. It is at this
level that visibility into product and process state is of prime importance.
However, many of the review concepts that we address can also be applied at
other organizational levels.

The plan for this chapter is the following:

♦ In Section 5.2—Product Reviews and Process Reviews Key Ideas, we pre-
sent the key ideas that you can expect to extract from this chapter.

♦ In Section 5.3—A Taxonomy of Product and Process Reviews, we present
a set of software product and project process review concepts organized by
management, development, and product assurance disciplines. We illus-
trate the review concepts with examples drawn from the real world.

♦ In Section 5.4—Combining Reviews for Software Audits, we introduce
software product and software process audits. We present the software
product audit concept and then provide two audit examples using soft-
ware documents. We also discuss how audits are used in conjunction with
the CCB. The first software document audit example (i.e., Automatic
Donut-Making System) stresses how requirements and design documenta-
tion are used during a product audit. The second software document audit
example (i.e., System PREDICT) stresses how project documentation is
used to uncover discrepancies that represent potential icebergs.
We then examine two more software product audit examples. The first ex-
ample (i.e., System SHAPES) illustrates how a requirements specification,
a design specification, a test plan, test procedures, and test incident reports
(TIRs) are used to test a system. The second example (i.e., System LOOK-
OUT) stresses the testability of requirements.
We then present the software process audit concept and set the stage for a
more in-depth examination of software systems development processes
using measurement techniques discussed in Chapter 6.

♦ In Section 5.5—Product and Process Reviews Summary, we summarize
the key points developed in the chapter. We include annotated outlines for
(1) ADPE policy for product assurance, (2) ADPE guideline for peer re-
views, and (3) ADPE procedure for acceptance testing. You can use these
outlines as a starting point for developing ADPE elements addres-
sing product and process reviews that can be incorporated into your
environment.

Chapter 5 • Product and Process Reviews

266

ptg

5.2 Product and Process Reviews Key Ideas

Figure 5–3 lists the key ideas that you can expect to extract from this chapter.
To introduce you to this chapter, we briefly explain these key ideas. Their full
intent will become apparent as you go through this chapter.

1. To achieve visibility into product and project state, couple product and
process reviews to the CCB.
Without this visibility, the CCB decision-making function is compromised.

2. Visibility into product state is achieved through a broad spectrum of reviews
ranging from the nontechnical (e.g., editing) to the technical (e.g., peer re-
views, product assurance reviews) to the programmatic (e.g., periodic man-
agement reviews).

3. A standing CCB agenda item should be the reporting of product assurance
reviews.
This item can range from a brief mention that a review took place to a
consideration of each incident report that product assurance generates.

4. Product reviews can be extremely labor intensive, especially the product as-
surance testing activity.
The payoff for this labor expenditure is reduced risk of doing things
over again. Our project planning guidance is not to skimp on resources
for product review. Cursory (or rubber-stamp) product review is gen-
erally wasted effort.

5. Product assurance review results should be presented to the CCB in neutral
terms to avoid skewing the decision-making process.
Product assurance should make sure each incident report is reasonably
self-contained to facilitate decision making.

6. Submit document deliverables to an editor before delivery.
Misspellings and poor grammar can quickly deflate seller credibility in
the eyes of the customer, even if the work is sound technically. More-
over, some misspellings and grammatical errors can undermine techni-
cal content.

7. Schedule project reviews with the management above the project level at a
frequency that is at least 25 percent of the project duration.
Project reviews help to ensure that senior management has visibility
into a project.

8. Management should ensure that peer reviews are incorporated into the soft-
ware systems development process. In general, management should not par-
ticipate in the reviews.
Management should work with the technical staff to reach an agree-
ment as to what information resulting from peer reviews should
be made available to what level of management. Peer reviews are

Chapter 5 • Product and Process Reviews

267

ptg

Chapter 4 • Change Control Process

268

Product and Process Reviews Key Ideas

1. To achieve visibility into product and project state, couple product and
process reviews to the CCB.

2. Visibility into product state is achieved through a broad spectrum of reviews
ranging from the nontechnical (e.g., editing) to the technical (e.g., peer re-
views, product assurance reviews) to the programmatic (e.g., periodic man-
agement reviews).

3. A standing CCB agenda item should be the reporting of product assurance
reviews.

4. Product reviews can be extremely labor intensive, especially the product as-
surance testing activity.

5. Product assurance review results should be presented to the CCB in neutral
terms to avoid skewing the decision-making process.

6. Submit document deliverables to an editor before delivery.

7. Schedule project reviews with the management above the project level at a
frequency that is at least 25 percent of the project duration.

8. Management should ensure that peer reviews are incorporated into the soft-
ware systems development process. In general, management should not par-
ticipate in the reviews.

9. Seller management should establish policy regarding what review informa-
tion is appropriate for disclosure to the buyer/user at a CCB.

10. At a minimum, document in an ADPE element the product assurance role in
your environment.

Figure 5–3 Product and process reviews help the seller develop products that conform to the customer’s requirements. These
key ideas are your guide to keeping your software systems development process and resultant products on track.

primarily intended for candid technical interchange among developers.
This comment is not meant to imply that management can never partic-
ipate in a peer review. Each organization decides what is best for its
particular situation.

9. Seller management should establish policy regarding what review informa-
tion is appropriate for disclosure to the buyer/user at a CCB.
Balance must be achieved between maintaining customer confidence in
seller candor and customer use of review results to bash the seller.

10. At a minimum, document in an ADPE element the product assurance role in
your environment.

ptg

In this element, you may want to include some guidance regarding
other reviews such as peer reviews, editing, and management reviews.
Alternatively, you may want to address these reviews in separate
ADPE elements.

5.3 A Taxonomy of Product and Process Reviews

The reviews described in this chapter are primarily associated with the seller
development team. As indicated by the areas highlighted in dark gray in Fig-
ure 5–4, product and process reviews involve the seller project manager, the
lead developer, the product assurance manager, the technical editor, seller
management, and the change control board (CCB).

Because many of the product and process reviews support CCB activity, the
customer also is involved in these review activities. Furthermore, because
these reviews should be integrated with any software systems development
process, buyers/users reading this chapter may want to incorporate these
concepts into their requests for seller services.

There is no unique way to categorize product and process reviews. Figure 5–5
shows that we choose to categorize the software product and project process
reviews along the lines of the three systems disciplines introduced in Chap-
ter 1—i.e., management, development, and product assurance.

Our review taxonomy addresses the visibility issues associated with reducing
software systems development risk. Each of the reviews in our taxonomy
provides insight into the state of the software development project. This in-
sight helps the customer and/or developer make intelligent, informed deci-
sions on what to do next.

The taxonomy shown in Figure 5–5 and the entries in the taxonomy are in-
tended to be a starting point for you to design your own review taxonomy
and set of entries. For example, the taxonomy shows peer reviews and technical
edit as software product reviews performed by developers; not shown are
types of testing that developers perform. Developers working alone often
perform levels of testing below the system level, such as the testing of the
logic structure of a separately compilable piece of computer code. From the
review perspective, we consider such testing activity a “self review.” That is,
a review that involves only the party who created the product under review.
We do not show such “self reviews” in Figure 5–5. If, on the other hand, a de-
veloper invites someone else such as another developer to witness and subse-
quently comment on such testing, then that activity could be considered a
peer review (with overtones of both product and process review).

If the taxonomy shown in Figure 5–5 complements your organization, then
you can list your corresponding set of entries for the taxonomy. This set may
(1) include some of the entries shown, (2) delete some of the entries (e.g., you

Chapter 5 • Product and Process Reviews

269

ptg

CUSTOMER/SELLER DEVELOPMENT TEAM

Organizational Software Systems Development Process

SELLER DEVELOPMENT TEAM

Evolving Product(s)

Plans the Work
to Accomplish
the Customer’s
SOW Tasks

Seller Process Engineering Group

Communicates
with Seller
Project Manager

Customer Project Manager

Management

Product
AssuranceDevelopment

CCB

Change Control Board (CCB)

Customer/Seller Project Management
Hold Project CCB Meetings,

 Project Reviews, and Decide

 What to Do Next

CCB

Minutes

Seller Project Manager Lead Developer

Communicates
with Customer
Project Management
and Evolves
Software Product(s)

Document

Project Plan

Establishes
Project Files

Seller Senior Management

Reviews and
Approves
Product(s) for
Delivery to
Customer

Data

01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101

APPROVED

Prepares SOW, Negotiates
Agreement, and Reviews
Delivered Products for
Acceptance

Customer

Lead Developer or Moderator

Product Assurance Manager

Technical Editor

Seller Management

Conducts
Peer
Reviews

Provides
Independent
Product
Assurance

Performs
Technical
Editing

Performs
Project-level
Technical
Oversight

01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101

Computer Code

Tracking

Form

Figure 5–4 This chapter’s discussion focuses on key software product and software systems development process reviews.
The seller development team performs these reviews at the project level.

ptg

may not consider technical edit as a type of review; rather it is simply part of
your document production process), and/or (3) include new entries (e.g.,
types of testing that developers perform, types of project tracking that devel-
opers perform).

If the taxonomy shown in Figure 5–5 does not complement your organiza-
tion, then you can use the taxonomy to help you come up with ideas on how
to construct a taxonomy that may be more appropriate for your environment.
For example, you may not have an integrated product assurance organization
that performs quality assurance, testing, and configuration management. In-
stead, you may have a quality assurance organization, a testing organization,
and a configuration management organization. In this case, you may want to
replace the product assurance row in the taxonomy shown with three sepa-
rate rows—one for quality assurance, one for testing, and one for configura-
tion management. Then, in the testing row, for example, you might have in
the Software Product column, the types of testing that your testing organiza-
tion performs. Your testing organization may be responsible for all testing, in
which case the developers might not perform any testing. Or, your testing

Chapter 5 • Product and Process Reviews

271

Software Product

Programmatic Tracking
Technical Oversight

Peer Review
Technical Edit

Quality Assurance
Verification & Validation
Test & Evaluation
Self-Comparison

Management

Development

Product Assurance

Programmatic Tracking
Technical Oversight

Peer Review

Quality Assurance

Project

Review

Categories

Systems

Disciplines

Project Process

Project Software Systems
Development Process

Figure 5–5 This chapter describes key management, development, and product assurance reviews at the project level. The
reviews fall into two major categories—product and process.

ptg

organization might perform tests that complement and supplement testing
that the developers perform.

We assert throughout this book that there is no one way to do software sys-
tems development. Whatever way you choose to define your review taxon-
omy and its entries, reviews should provide visibility into what is going on
with respect to the products being developed and the processes used to de-
velop these products.

As shown in Figure 5–6, software product reviews involve complementary
management, development, and product assurance viewpoints. For example,
management may ask a programmatic tracking question such as the follow-
ing—“Is the product being developed on time and within budget?” Develop-
ers may examine the technical details of a software product at a peer review
and provide suggestions to the lead product developer. Product assurance re-
viewers may examine whether a software product conforms to established
standards. Each review serves different visibility needs.

Just as the different types of product reviews offer complementary views of a
product, the different types of process reviews offer complementary views of
the project’s software systems development process. As suggested by the
questions in Figure 5–7, these views serve different visibility needs.

We present both the product and process reviews from management, devel-
opment, and product assurance viewpoints in the following sections.

Management Reviews

Management provides the following types of programmatic tracking and
technical oversight for a specific software product:

♦ A project manager tracks the cost and schedule of product development.
This programmatic tracking gives visibility to cost and schedule issues sur-
rounding the development of a product. A project manager asks questions
such as the following: Is product development falling behind? Have un-
planned costs emerged that will impact the budget for delivering the prod-
uct on time?

♦ The project manager’s management (or other senior management) periodi-
cally provides technical oversight for a specific software product. Senior
management becomes involved with product development to mentor the
project manager to anticipate product development adversities (e.g., re-
quirements creep induced by a customer who has difficulty focusing on
product specifics or misunderstandings by seller developers of what the
customer wants). The amount of technical oversight is a management pre-
rogative and is related to a product’s complexity, size, and importance.
This oversight helps the project manager repeat previous successes. For
those cases in which the project has more than one layer of management,

Chapter 5 • Product and Process Reviews

272

ptg

Chapter 5 • Product and Process Reviews

273

Is the product being developed on time
and within budget?

Have you considered how you are going to address
the following issues: (1). . . , (2). . . , (3) . . . ?

You need to consider how you are going to
address the following product development
technical issues: (1) . . . , (2) . . . , (3)

I have checked your document for format,
grammar, spelling, and cogency. I have
indicated suggested changes to address
these matters.

Does the product conform to itself,
predecessor products, and
product standards?

Software
Product

Technical Edit

Peer Review

Product Assurance

Programmatic Tracking

Technical Oversight

-

Figure 5–6 Software product reviews address programmatic, technical, editorial, and conformance questions.

ptg

Chapter 5 • Product and Process Reviews

274

Is the application of the
project process consistent
with project budget and
schedule?

How are you prescriptively applying the
project process to the development of the product?

What is the plan for
applying the project
process to the
development of the
product?

Were the products
consistently developed in
accordance with the
project process?

Was the product developed
in accordance with the
project process?

Project-Level QA

Peer Review

Programmatic Tracking

Technical Oversight

Task Name

Develop Product 5

Perform Service 3

Develop Product 6

MarFebJan
2000

Dec
1999

Product-Level QA

Project Software Systems
Development Process

Figure 5–7 Project software systems development process reviews address programmatic, technical, and conformance
questions.

ptg

the project manager provides technical oversight to task leaders (i.e., the
next lower management layer).

Management provides the following types of programmatic tracking and
technical oversight of the project’s software systems development process:

♦ A project manager tracks project software systems development program-
matically. The programmatic tracking gives visibility to cost and schedule
issues surrounding the entire project (versus product-specific issues). A
project manager asks questions such as the following: Is the project falling
behind? Am I consistently late with my deliverables? Have unplanned
costs emerged that will impact the budget for delivering the project’s re-
maining products on time?

♦ The project manager’s management (or other senior management) periodi-
cally provides technical oversight for a specific project. Management be-
comes involved with a project to mentor the project manager to anticipate
project software systems development adversities (e.g., analysis paralysis
induced by blind adherence to the development process, or the lack of
effective and timely communication between the developers and the
buyers/users). The amount of technical oversight is a management prerog-
ative and is related to a project’s complexity, size, and importance. This
oversight helps the project manager repeat previous successes. For those
cases in which the project has more than one layer of management, the
project manager provides technical oversight to task leaders (i.e., the next
lower management layer).

Examples of management product and process reviews are presented in the
sections that follow.

Product Programmatic Tracking Figure 5–8 addresses the following type of
product programmatic tracking question: Is the product being developed on
time and within budget? Two examples of programmatic tracking discrepan-
cies are shown. One discrepancy involves a schedule slippage because the
lead developer was called away from the office. Fortunately, in this example,
the product’s delivery was not on the project’s critical path, and the delivery
could be slipped one week without impacting the overall project. The second
discrepancy involves a schedule acceleration due to peer reviews and prod-
uct assurance reviews of the design specification.

Such discrepancies might be reported (or uncovered) during the comparison
of a product under development against the cost and schedule governing the
development of that product. The cost and schedule, which should be ini-
tially specified in the project plan, serve as programmatic standards. This
product programmatic check provides a means for determining whether
(1) the standards should be adjusted (i.e., whether the schedule should be
changed or the budget should be changed, or both) or (2) the product should
be adjusted (i.e., whether the product requirements should be augmented or

Chapter 5 • Product and Process Reviews

275

ptg

cut back). When performed throughout a project and when performed in con-
junction with other reviews, these programmatic checks help to achieve con-
vergence between customer and seller expectations regarding the product.

Process Programmatic Tracking Figure 5–9 addresses the following type of
process programmatic tracking question: Is the application of the proj-
ect process consistent with project budget and schedule? The following three
examples of process programmatic tracking discrepancies are shown: (1) pro-
jected budget overruns, (2) schedule change, and (3) reduction in scope. The
timeline shown is for a four-month segment of the project involving two

Chapter 5 • Product and Process Reviews

276

Product Development Schedule, Labor Hours, Labor Dollars

Task Name December, 1999

30

January, 2000

6

(10 hours)

(16 hours)

(80 hours)

Develop Outline

Develop

Annotated

Outline

Develop Draft

Product Programmatic Tracking

Software
Product

Nonconformance

The project plan calls for a draft of the requirements specification to be delivered to the customer in one week.
The product lead developer was unexpectedly called away from the office for a week. The project is currently
understaffed so that no backup exists. The delivery of the draft requirements specification will thus be delayed
one week. There is no impact on the project budget resulting from this schedule slippage.

At the project CCB meeting held this week, the customer and the project manager agreed that acceptance
testing could begin a week earlier than stipulated in the project plan. This schedule acceleration resulted from
the solid design specification delivered two months ago. Because this specification was thoroughly peer
reviewed, and because product assurance cross-checked in detail this specification against the requirements
specification, development of the computer code proceeded more rapidly than originally planned. In addition,
the resources allocated to development of this computer code were underrun by 25 percent. This underrun will
be put towards next year’s project budget.

Figure 5–8 Product programmatic tracking helps provide insight into planned versus actual schedule and resource product
development issues.

ptg

products and one service; the timeline indicates planned schedules. The dis-
crepancy reports shown are assumed to be written sometime during Decem-
ber 1999, before the completion of Product 5.

Such discrepancies might be reported (or uncovered) during the comparison
of project in progress against the cost and schedule governing that project.
The cost and schedule, which should be initially specified in the project plan,
serve as programmatic standards. This process programmatic check provides
a means for determining whether (1) the standards should be adjusted

Chapter 5 • Product and Process Reviews

277

Segment of Project Schedule, Labor Hours, Labor Dollars

Task Name 1999

Dec

2000

Jan Feb Mar

(600 hours)

(100 hours)

Develop Product 5

Perform Service 3

Develop Product 6

Process Programmatic Tracking

(800 hours)

The development of Product 5 is currently scheduled to be completed by the end of December for 600 hours of
labor. To date, 500 hours have been expended because of two false starts precipitated by a misunderstanding
of customer requirements. To complete the development of Product 5 on time will require 300 additional
hours that have currently not been included in the project budget. If the budget is not augmented, the
development of Product 6 will be impacted.

At the project CCB meeting held this week, the customer and the project manager agreed that the performance
of Service 3 should be delayed one month so that the development of Product 6 could begin two weeks earlier
than currently planned. This schedule adjustment will not require adjustment to the project budget.

The project is currently three weeks ahead of schedule but 10 percent over budget. The customer is in the
process of sending an SOW amendment reducing the scope of Product 6 to allow the product to be developed
within the budget.

Nonconformance

Project

Figure 5–9 Process programmatic tracking helps to provide insight into planned versus actual schedule and resource issues
involved with the overall project.

ptg

(i.e., whether the schedule should be changed or the budget should be
changed, or both) or (2) the project should be adjusted (i.e., whether the pro-
ject scope should be augmented or cut back). When performed throughout a
project, these project-level programmatic checks help to achieve convergence
between customer and seller expectations regarding the overall project.

Product Technical Oversight Figure 5–10 addresses the following type of
product technical oversight question: Have you considered how you are

Chapter 5 • Product and Process Reviews

278

Product Technical Oversight

Experienced-Based
Guidance

Seller

Management

Upon reviewing the data conversion requirements document, I offer the following suggestions:

● Data conversion concepts included in the writeup are generally defined in easy-to-understand terms. However,
 the concepts should be illustrated with specific examples because the intended audience for this document is
 not familiar with the technical details of data conversion. For instance, the concept of the translate function
 should be augmented with one or more examples showing how the source data are to be changed in terms of
 length, type, and/or precision.

● A figure showing the overall conversion process does exist in the document, but the figure is not explained.
 Suggest that words be included that walk the reader through the process, from start to finish.

Upon reviewing the draft project plan, I offer the following suggestion:

● There does not appear to be a balance between the planned resources and the number of deliverables. Suggest
 you revisit the deliverables and see if you can combine them in some fashion so that they are more in balance
 with the resource estimate.

I suggest. . .

Software
Product

Figure 5–10 Here are some example remarks that a senior manager might pass along to a project manager or to a project
team member on the context or orientation of a software(-related) product.

ptg

going to address the following issues: (1) . . . , (2) . . . , and (3) . . . ? Two ex-
amples of product technical oversight are shown. Such remarks might be dis-
cussed after the seller management has an opportunity to review the
products, but before the products are shown to the customer.

The management remarks are based primarily on personal or known experi-
ences that have been successful or unsuccessful. The example remarks con-
cerning the data conversion requirements document suggest that the team
may understand the conversion process, as evidenced by the reference to the
figure showing the overall conversion process. However, management is sug-
gesting that the figure should be described in more detail so that the reader
(e.g., a customer) clearly understands what is going to happen. Such explana-
tion may result in the developer’s discovering something that was over-
looked or the customer’s pointing out something that was not previously
discussed with the seller. In this example, one intent of the product technical
oversight is to remove any ambiguities in what is needed to be done before
the data are converted.

Regarding the second management comment on the overall conversion process
in the data conversion requirements document, the suggestion is made to ex-
plain a figure. The developers may think that figures included in documents
are self-evident. Here, management is bringing to bear its experience in work-
ing with customers to ensure that a product clearly communicates.

The seller management remarks concerning the draft project plan suggest
that the planning team may understand the technical side of the planning
problem but does not fully appreciate the resources required to produce the
deliverables. The seller developers on the planning team are engineers who
think in terms of computer code. Sometimes they may read “Cadillac” where
the buyer/user intended “Chevrolet.” Here, the seller management is sug-
gesting that the developers rethink their approach and see if they can balance
the number of deliverables with the planned resources.

Process Technical Oversight Figure 5–11 addresses the following type of
process technical oversight question: How are you prescriptively applying
the project process to the development of the product? One example of
process technical oversight is shown. In this example, the seller management
offers suggestions regarding the project’s software development process.

In the example the seller senior manager suggests that the development team
keep track of how long the peer reviews are taking. In the future, the devel-
opment team can use this historical information to help it better plan required
resources. In addition, the seller senior manager suggests that the CCB meet-
ings be modified to track “new” requirements as they are discovered. As in-
dicated in the manager’s remarks, the schedule cannot be slipped; therefore,
implementing new requirements may mean that additional resources are
needed. However, additional resources are not always the solution to
implementing more requirements. Other approaches include “phased
implementation”—that is, putting some requirements in one product and ad-
dressing the remainder in a follow-on product.

Chapter 5 • Product and Process Reviews

279

ptg

Development Reviews

Development product and process reviews include peer reviews and techni-
cal editing. Peer reviews can range from “one-on-one” sessions between the
lead developer and a peer (or a couple of peers) to “formal scheduled” ses-

Chapter 5 • Product and Process Reviews

280

Process Technical Oversight

Experienced-Based
Guidance

Upon reviewing the project-level process, I offer the following suggestions:

● When conducting your peer reviews, I suggest that you keep track of how long they take so that you can use
 this information in future project planning.

● Having participated in a series of CCB meetings, I have observed that the customer’s technical people have a
 tendency to introduce new requirements or changes to existing requirements. Since the project schedule cannot
 be changed, I suggest that you talk to the seller project manager about what requirements can and cannot be
 fulfilled within the existing budget and schedule. I understand that new requirements will be discovered,
 but you’ll never get there if you cannot get agreement on what is to be included for this first release. You can
 offer to track the new requirements or changes for future releases.

● It appears that the customer is not reviewing the delivered products in a timely fashion. Unfortunately, the
 customer does not have enough people or time to respond. I believe you need to modify your project process.
 I suggest that you talk to the customer project manager and offer to brief the customer staff within 5 working
 days after you deliver a product. At this briefing your staff can walk the customer staff through the
 deliverable contents, and the customer staff can provide your staff with the necessary feedback.

Seller

Management

I suggest. . . Project Software Systems
Development Process

Figure 5–11 Here are some example remarks that a senior manager might pass along to a project manager or to a project
team member regarding the project-level software systems development process.

ptg

sions during which materials are distributed to the reviewers (e.g., three to
six reviewers) in advance of the scheduled time. As discussed in the follow-
ing paragraphs, the reviews are technical in nature. Generally, management
does not directly participate but should be informed about the reviews.

Development conducts the following types of peer reviews of the evolving
product and technical edits of documents:

♦ Product peer reviews involve detailed technical interchange among devel-
opers to help the lead developer better implement what the customer
wants. For example, the peer review can help the lead developer present
material consistent with the product’s intended audience. If the audience
consists of novices, then the material should include explanations of fun-
damental or basic concepts. On the other hand, if the audience consists of
experts, the material does not have to devote so much attention to the
basics.

♦ Technical editing helps to ensure that the document content is communi-
cated unambiguously to the targeted audience and that the product con-
forms to accepted documentation standards. Technical editing focuses on
technical content presentation to ensure that the product is cogent and
unambiguous.

Development conducts the following type of peer reviews of the project’s
software systems development process:
♦ Project process peer reviews involve detailed technical interchange among

developers to help the lead developer detail the steps necessary to develop
a software product within the context of the project’s software systems de-
velopment process. For example, the peer review can help the lead devel-
oper decide on the appropriate mix of process review activities (e.g.,
product peer reviews, technical edits, and/or product assurance reviews)
to apply to a software product.

Examples of development product and process reviews are presented in the
following paragraphs.

Product Peer Reviews Figure 5–12 addresses the following type of product
peer review statement:

You need to consider how you are going to address the following product
development technical issues: (1) . . . , (2) . . . , and (3)

Example product peer review comments are shown for (1) a software docu-
ment, (2) a software-related document, (3) computer code, and (4) data.

The lead developer gets together with one or more peers to discuss a product
or some portion of a product. As suggested in Figure 5–12, the peers ask
questions and provide suggestions to the lead developer. For example, the
peers suggest that the response time requirement in the requirements

Chapter 5 • Product and Process Reviews

281

ptg

specification is not testable. The peers point out that the requirement does not
define a time interval over which response time is to be measured. Note that
the issue of testability is occurring during requirements specification. In this
example, the seller developers are trying to ensure closure with the customer
on what the customer wants by making sure each requirement is testable.

Process Peer Reviews Figure 5–13 addresses the following type of process
peer review question: What is the plan for applying the project process to the
development of the product? Three examples of process peer review com-

Chapter 5 • Product and Process Reviews

282

Lead Developer
Peers

Software Document—Requirements Specification

Section six, paragraph five, of the requirements specification lists performance requirements
for the man-machine interface. In particular, the response time requirement, as currently
written, is not testable because it does not define a time interval over which response time
is to be measured.

Software-Related Document—User’s Manual

The manual needs to include figures showing sample screen displays for all the functional
capabilities shown in Section 6.

Computer Code

The module that calculates automobile fuel economy does not contain comments indicating
the formulas being programmed.

Data

The data model specifies an entity type VIDEO_STORE. Attributes are not specified
for this entity type.

Software
Product

Product Peer Review

Figure 5–12 Here are examples of product peer review comments for a software document, soft-
ware-related document, computer code, and data.

ptg

ments are shown: (1) requirements specification development, (2) computer
code development, and (3) database development.

The lead developer gets together with one or more peers to discuss the soft-
ware development process or some portion of the process. As suggested in
the figure, the peers ask questions and provide suggestions to the lead de-
veloper. For example, the peers suggest that the lead developer use informa-
tion engineering techniques and tools to develop the database. Specific
recommendations are made regarding the process of detailing subject areas
in terms of entity types, their relationships, and then attributes. The seller de-

Chapter 5 • Product and Process Reviews

283

Lead Developer
Peers

Requirements Specification Development

To reduce the likelihood of false starts, it is suggested that you plan for a development
sequence that allows for an outline, an annotated outline, a draft, and a final version
of the specification. Be sure to account for peer reviews, technical editing, and product
assurance reviews.

Computer Code Development

Remember that our project software systems development process requires that each
module is subject to code walkthroughs and unit testing. Also, the results of your unit
test walkthroughs need to be recorded in your software development folders.

Database Development

Suggest that you use information engineering techniques and tools to develop the
database. Start with subject areas and then detail each area with the entity types, their
relationships, and attributes. Be sure to get customer acceptance at each stage to
avoid going down the wrong path.

Process Peer Review

Project Software Systems
Development Process

Figure 5–13 Here are examples of process peer review comments for the development of a require-
ments specification, computer code, and a database.

ptg

velopers are also trying to ensure closure with the customer by suggesting
the lead developer obtain customer acceptance of what has been done and
what needs to be done as the project proceeds through its life cycle.

Technical Editing of Software and Software-Related Documents Figure
5–14 addresses the following type of technical edit statements: I have checked

Chapter 5 • Product and Process Reviews

284

Technical Editing

Software Requirements Specification for System ABC

1.0 Introduction

Four score and seven years ago Company BBB started. The company desires to enter
the information technology age; System ABC is the company’s entree into this age.
This document specifies the functional capabilities to be supported by the software
subsystem of System ABC.

2.0 System overview

The purpose of System ABC is to help Company BBB administrative staff prepare
monthly status reports. More specifically, this system will provide the following
capabilities:

• • • •

Eighty-seven

•

shall

Nuclear Weapon’s User Manual

• • • •

3.0 Weapon Deployment

• • • •

Enter A = NOGO
 The following message will be displayed on the screen:

Nuclear weapons may now be deployed

• • • •

Is this word spelled correctly? The
preceding context seems to suggest that
the word should be “not.”

Checks that document (text and figures) conforms to document format standards,
uses cogent and unambiguous language, and contains no spelling errors.

Figure 5–14 Here are examples of technical edits for two types of software(-related) documents.

ptg

your document for format, grammar, spelling, and cogency. I have indicated
suggested changes to address these matters. A number of technical edits are
illustrated.

A technical editor must be careful not to change the meaning of the author’s
words. However, a technical editor should give visibility to uncertainties by
raising questions. Note the last technical edit at the bottom of the figure.
There is a world of difference between “now” and “not.” Some technical edits
can have earth-shaking consequences.

Figure 5–15 lists some technical editing tips. These tips derive from lessons
learned editing hundreds of documents.1

In some situations, time does not permit a thorough technical edit. It is there-
fore a good idea to prioritize items such as those shown in the figure. What is
critical to your organization regarding documents should be at the top of the
list. For example, if you have a customer who has certain “trigger” words or
phrases (e.g., “execute the tasks” should be replaced with something like
“perform the tasks”) that the customer always reacts to in a negative way,
you may want to develop a checklist to be used when editing the customer’s
documents. Such a checklist is particularly useful when you are rushing to
get something to the customer.

Product Assurance Reviews

Product assurance product reviews include quality assurance (QA); verifica-
tion and validation (V&V); test and evaluation (T&E); and self-comparison.
Product assurance for a product supports timely management decision mak-
ing by answering questions such as the following:

♦ Is the product under development conforming to the product standards?
(i.e., product quality assurance [QA] check)

♦ Does the product under development (1) logically follow from the prede-
cessor product and (2) conform to customer requirements? (i.e., verifica-
tion and validation [V&V] check)

♦ Is the software system code congruent with the requirements and design
specifications? (i.e., test and evaluation [T&E] check)

♦ Does the product have the following characteristics: (1) internally con-
sistent, (2) unambiguous, (3) free of grammatical weaknesses, (4) free
of spelling errors, and (5) free of “to be determined” items? (i.e., self-
comparison check)

Product assurance process reviews include QA at a product level (i.e., using
one product to check a project’s software systems development process) and

Chapter 5 • Product and Process Reviews

285

1We thank Peter Keefe for allowing us to incorporate the material in Figure 5–15 in this book.

ptg

286

Technical Editing Tips

Items to Check

✓All required elements of a complete deliverable document are present
✓Cover letter follows template
✓Acceptance of deliverable and receipt of deliverable forms have correct document title
✓Front cover follows document template format
✓Title page information is consistent with front cover and cover letter
✓Contents and figure lists have correct page references
✓All pages are printed and are numbered correctly
✓All figures, tables, photographs, and other diagrams are included
✓Header information is correct and appears on the correct pages

Scan for Format Errors
● Incorrect or incorrectly placed headers (check landscape pages carefully)
● Widow and orphan lines
● Incorrect numbering sequence
● Wrong bullet format
● Incorrect spacing between paragraphs and sections
● Too much white space
● Unacceptable illustrations (e.g., cannot read text, poor placement on the page)
● Nonstandard margins

Line-by-Line Edit
● Does the document read well?
● Do the sentences flow one to the next in a logical, “connected” manner?
● When applicable, has the document template been followed?
● Are abbreviations, acronyms, symbols, and numbers used correctly?
● Are there misspellings?
● Are document titles italicized?
● Are i.e. and e.g. used properly and not overused?
● Are bulleted lists in a parallel style?
● Are one-word, two-word, and hyphenated terms like database consistently used?
● Is the capitalization of titles, proper names, and project-specific terms consistent in the
 document?
● Is capitalization used judiciously and not overdone?
● Are sentences complete?
● Are verb tenses correct?
● Is there agreement between subjects and verbs (e.g., “minutes” is a plural noun)?
● Are compound adjectives hyphenated when necessary for readability?
● Are “that” and “which” used correctly?
● Do sentences have end punctuation?
● Is punctuation used correctly with quotation marks (e.g., in American English,
 periods always go inside)?
● Are hyphens, em-dashes, and en-dashes used correctly?
● Is the serial comma used correctly? (Note: Practices vary. Reference or develop a
 style guide to set the practice for your organization.)
● Is the semicolon used between phrases containing commas?
● Is the apostrophe used correctly to show possessions and contractions?

Note: If meaning is uncertain, consult with the document author before editing the uncertainty!

Figure 5–15 This figure presents a starting point for constructing a set of technical editing tips for
documents.

ptg

project level (i.e., using more than one product to check a project’s software
systems development process). Product assurance for a project’s software
systems development process supports timely management decision making
by answering questions for a specific product (i.e., product level) or a collec-
tion of products (i.e., project level). Such questions include the following:

♦ Is the development of the product conforming to the project’s software sys-
tems development process? (i.e., process quality assurance [QA] check at
the product level)

♦ Is the development of the project’s products conforming to the project’s
software systems development process? (i.e., process quality assurance
[QA] check at the project level)

Both product and process reviews often provide discrepancy reports that are
given to project decision makers, such as the project manager. To facilitate de-
cision making and to avoid biasing the decision process, the reports should
provide context and use neutral language. Sufficient detail should be pro-
vided to (1) clarify issues to be decided and (2) make it easy to obtain addi-
tional information pertaining to these issues.

Examples of product assurance product and process reviews are presented in
the following sections.

Product Quality Assurance When performing a software product quality
assurance (QA) check, the software product is compared with product stan-
dards (i.e., various ground truths) established for a project. The software
product is assessed as to its conformance with each standard in this set. This
type of QA comparison (audit) may result in considerable savings in re-
sources due to a timely audit. For example, assume that an apparent design
error is uncovered prior to commencement of coding. It is cheaper to fix the
design, than to fix the computer code and the design.

Figure 5–16 presents two examples of product quality assurance (QA) dis-
crepancy examples: (1) design document and (2) requirements specification.
The design document discrepancy is reported in terms of a module missing
an error exit. The requirements document discrepancy is reported in terms of
nonconformance with the documentation standard.

Product Verification and Validation When performing a product verifica-
tion and validation (V&V) check, the software product is compared against a
ground truth composed of two items—the predecessor software product and
the requirements specification. The comparison of a software product with a
predecessor software product is labeled as verification, and the comparison
of a software product with the requirements specification is labeled as valida-
tion. A special case of this comparison process exists when the predecessor
product of a software product being audited is the requirements specifica-
tion. The requirements specification is the only item in the ground truth in
this case, and the comparison of the software product with the requirements

Chapter 5 • Product and Process Reviews

287

ptg

specification is both a verification and validation.

Figure 5–17 presents two verification and two validation (V&V) discrepancy
examples. The verification discrepancies show how a detailed design
document does not logically follow from the preliminary design document.
For example, the detailed design document refers to Subsystem S13, but the
preliminary design specification makes no reference to Subsystem S13. Some-
how this subsystem made its way into the detailed design specification. This
discrepancy is an example of how a document does not logically follow from
its predecessor document. Furthermore, the validation discrepancies show
how requirements and design specifications can be inconsistent with one
another.

For both verification and validation, the comparison determines whether the
two products are congruent. As we discuss in the next section, determining

Chapter 5 • Product and Process Reviews

288

Standards

Product Quality Assurance (QA)

Software
Product

Nonconformance

Subsection 4.2 of the design document defines the five software modules that make up
Subsystem S2. Four of these modules are specified as having error exits. No error exits,
however, have been specified for module MS2(3) of this subsystem. Paragraph 7.3.4 of
the programming standard stipulates that all modules should have error exits. This
apparent discrepancy between the description of module MS2(3) and the programming
standard should be resolved for compliance.

The System ABC Requirements Specification does not conform to paragraph 2.1.6 of the
company’s documentation standard. Paragraph 2.1.6 of the documentation standard
stipulates that every requirements specification must state its database backup and
restoration needs. The System ABC Requirements Specification is silent on this issue.
For completeness, this apparent omission should be addressed.

Figure 5–16 Here are examples of product quality assurance (QA) discrepancies that might be un-
covered during the comparison of a product under development against one or more standards gov-
erning the development of that product.

ptg

Chapter 5 • Product and Process Reviews

289

Product Verification and Validation (V&V)

Software Product Predecessor Product Requirements

Nonconformance

Subsection 1.3 of the detailed design document (System Architecture) provides a summary description of each of the
system’s subsystems. This description includes a reference to Subsystem S13. Section 2.2 of the preliminary design
specification, which specifies the system’s subsystems, makes no reference to a Subsystem S13. This apparent
discrepancy should be resolved for consistency.

Subsystem 3.6 of the detailed design document (System Displays) defines the format and content of each of the
displays that can be generated at a user terminal. In describing the time that may elapse to generate displays, this
section contains the following statement: “The amount of time required to generate the display shown in figure
3.6-3 depends in part upon the scale specified by the user for the map background. If this scale is greater than
fifty (50) miles to the inch, the software will require at least five (5) seconds to generate and display the map
following completion of the user input requesting generation of the display.” This statement appears to be
inconsistent with the response time performance requirement specified in subsection 3.1 of the preliminary design
specification, viz., the response time between entry of a display request and the display of a response must be less
than 4 seconds. (This performance requirement is derived from paragraph 6.7 in the requirements specification.)
This apparent discrepancy should be resolved for consistency.

Verification Discrepancies

The detailed design specifies that the search algorithm in module S4.8 will sequentially search the tray table to
determine which trays are currently lined up at their discharge chutes (and therefore must be tilted to discharge
their contents). This design logically follows from the preliminary design specification, which stated in paragraph
3.4.2 that subsystem S4 would, for each increment of tray sorter travel, tilt all trays aligned with their discharge
chutes. However, analysis indicates that a sequential search would be too slow to satisfy paragraph 5.2.2 of the
requirements specification, which specified that the system must be capable of tilting all 980 trays of the tray
sorter on any one increment of tray sorter travel. This apparent discrepancy should be resolved for conformance.

Paragraph 6.2 of the requirements specification states that the system must be available 24 hours per day, 7 days
per week. The preliminary design specification does not address this requirement. This discrepancy should
be resolved for completeness.

Validation Discrepancies

Nonconformance

Figure 5–17 Here are examples of product verification and validation (V&V) discrepancies that might be uncovered during the
comparison of a product under development against a predecessor product and the requirements for that product.

ptg

congruency is a two-step process. The auditor first must find software parts
in both products that match as to subject, and then must determine whether
those software parts match in content. For example, suppose an auditor is
comparing a preliminary design specification (PDS) with a requirements
specification (RS). Assume that the auditor finds a paragraph in the require-
ments specification on the subject of drawing circles. The auditor searches the
preliminary design specification for material on that subject and finds an en-
tire section devoted to drawing circles. Having found a match in subject be-
tween the two products, the auditor next compares the paragraph in the RS
with the section in the PDS to see whether they have the same content. If the
only difference between these two software parts is the greater detail that is
anticipated in the PDS, the auditor has located a pair of congruent parts in the
two products. That is, if a software part or parts in one product matches in
subject and content a software part or parts in the other product, then the
software parts are congruent. If a software part in one product does not
match in subject any software part in the other product, then an incongruity
exists. An incongruity also exists if a software part or parts in one product
matches in subject a software part or parts in the other product, but does not
match in content. These and all other incongruities are reported as discrepan-
cies. Finding software parts that match in subject is generally not a trivial
task. Congruence between software products can be a one-to-one, a many-
to-one, or a one-to-many relationship. Further, where incongruities exist,
there may be parts in one product that have no match in subject in the other
product.

Product Test and Evaluation Figure 5–18 presents three test and evaluation
(T&E) discrepancy examples. The first example presents a T&E discrepancy
in which the expected results of the circle command did not match the ob-
served results. In fact, in this case, an ellipse was drawn instead of a circle.
This type of error may not be as easily discovered by examining the source
code. However, when the tester executes the test steps and tries to match the
expected result with the observed result, the discrepancy is easily discovered.

The second product T&E discrepancy example deals with another discrep-
ancy of expected results versus observed results. In this case, an error mes-
sage was expected, but instead, the tester observed a bar graph. Again, this
discrepancy is easily discovered by executing the test procedures.

The third product T&E discrepancy deals with a user’s manual discrepancy.
The manual describes the word processor’s hyphenation capability. When the
user actually used the hyphenation capability, the word processor’s function-
ality was different from what was described in the manual. As shown in Fig-
ure 5–18, the word mission was broken in the wrong place, and no hyphen
was inserted.

Product Self-Comparison Figure 5–19 presents six self-comparison exam-
ples that include the following discrepancy types:

Chapter 5 • Product and Process Reviews

290

ptg

Chapter 5 • Product and Process Reviews

291

Product Test and Evaluation (T&E)

Computer Code Design Requirements

In step 16 of test procedure 4-2, the expected response to the terminal command “CIRCLE (8, 10.4,5)” was that a
circle would be drawn on the terminal display at coordinates (8, 10.4) with a radius of 5 units. The actual result
of the entry of this command was the display of an ellipse on the terminal, centered at coordinates (8, 10.4) with
a minor axis of 10 units and a major axis of 14 units.

Upon entry of the command “GRAPH (BAR)” at step 98 of test procedure 6A (having previously entered the
parameters for a bar graph in preceding test steps), a bar graph was displayed on the terminal with alternate
bars going up and down with bar magnitudes 200 times larger than the values previously entered. What was
expected at this step was the display of an error message stating that negative values were not allowed in
drawing bar graphs.

Page 109 of the word processor user’s manual indicates that to turn on hyphenation, choose Auto Hyphenation
from the Text menu. The manual also indicates that, per Section 7.2 in the word processor design specification,
this choice causes words to be automatically hyphenated using the hyphenation points contained in the word
processor’s dictionary. When Auto Hyphenation was selected, the word “mission” appearing at the end of
a line was broken as follows:

 mi
 ssion.

That is, per Section 4 in the word processor requirements specification that cites the dictionary to be incorporated
into the word processor, the word was broken in the wrong place, and no hyphen was inserted.

Nonconformance

Figure 5–18 Here are examples of product test and evaluation (T&E) discrepancies that might be uncovered during the testing
of computer code.

♦ Internal inconsistencies. The top shaded box describes a discrepancy deal-
ing with the number of terminals that can be supported by the system. One
paragraph states 50 terminals and another paragraph suggests that up to
15 users can be supported at the same time.

ptg

292

Paragraph 4.3.4.5 (Number of Terminals to Be Supported) of the requirements specification
indicates that the system is to be capable of supporting up to fifty (50) terminals. The
paragraph appears to be inconsistent with the discussion in section 1 that suggests
that between one (1) and fifteen (15) users will be able to access the system simultaneously.
This apparent discrepancy should be resolved for consistency.

Section 1 of the design document (System Overview) contains several different spellings of
the same system name (e.g., FRAMAS, FRAMUS, FRUMAS). These discrepancies should
be corrected for consistency.

Subsection 3.1 of the requirements specification (Performance Requirements) contains the
following statement: “The system response time to a user query input at a terminal device
shall not exceed three (3) seconds.” The definition of “system response time” does not appear
to be specified anywhere in the document. Does it mean, for example, “the time that elapses
between the instant the user presses the RETURN key on the terminal device at the end
of his query until the instant the system’s response to the query first appears on the
terminal’s display device”? This point should be clarified.

The second sentence of the fourth paragraph of section 1 of the design specification is not
understood. This issue should be addressed for the sake of clarity.

Section 5 of the requirements specification is entitled “Performance Requirements.”
Subsection 5.4 (Response Time Requirements) is listed as To Be Determined (TBD). For
completeness, this descrepancy should be addressed.

Section 2 of the requirements specification (System Overview), which contains a discussion
of the system capabilities to be automated (i.e., capabilities to be supported by software
functions), does not contain a corresponding discussion of the capabilities to be supported
by computer hardware and communications equipment. For completeness, this issue should
be addressed.

Software Product Software Product

Product Self-Comparison

Internal inconsistencies
Ambiguities
Grammatical weaknesses
Spelling errors
TBDs

Figure 5–19 Here are examples of product self-comparison discrepancies that might be uncovered
during the comparison of a product under development against itself.

ptg

Another consistency example is briefly described in the second shaded
box. The description points out the fact that the system name has several
different spellings within the same document. The discrepancy report
points out that this inconsistency needs to be resolved.

♦ Ambiguities. The third shaded box deals with ambiguities associated with
a requirements specification. The phrase “system response time” is not de-
fined in the document. The definition can have a significant impact on the
design of the system. Such a discrepancy should be clarified.
Another example of an ambiguity is pointed out in the fourth shaded box.
A particular paragraph in a design specification is not understood. As
stated in the discrepancy report, this ambiguity should be resolved so that
there is no misunderstanding of how things are suppose to work.

♦ Completeness. The fifth shaded box describes a discrepancy in a require-
ments specification dealing with system capabilities that are to be auto-
mated. It appears that one section of the requirements specification states
that certain system capabilities are to be supported by software. However,
the specification is silent as to what software capabilities are to be sup-
ported by hardware and communications equipment. This issue should be
resolved for completeness.

♦ Spelling errors. Although the figure does not show a speling error,2 such
errors can substantially reduce the credibility of a document.

♦ TBDs. The bottom shaded box shows how To Be Determined (TBD) can be
used to highlight the fact that something needs to be resolved. By using a
TBD, the item is not lost or forgotten. However, like all discrepancies,
TBDs need to be resolved as well.

To aid in product self-comparison activities, checklists can be developed to
help the reviewer catch different types of discrepancies. Again, for those cus-
tomers who may have particular hot buttons, the checklists can help to in-
crease customer satisfaction.

Process Quality Assurance at Product Level Figure 5–20 presents two pro-
cess quality assurance (QA) discrepancies at a product level. The first process
QA discrepancy shows how a seller’s software systems development process
was not followed for a product (i.e., a requirements specification) that was
delivered to the customer. The second example indicates that part of a soft-
ware systems development process was not followed but that another part of
the process helped to identify potential problems.

A project-specific process is adapted from the organizational process, pre-
sumably during project planning. The process QA check provides a means
for determining whether the standards should be adjusted (i.e., whether the
process should be changed—either at the project level or at the organizational

Chapter 5 • Product and Process Reviews

293

2We know that “speling” error should be “spelling” error.

ptg

Chapter 5 • Product and Process Reviews

294

The requirements specification that was delivered to the customer last month was returned
for a major rewrite because it did not address human interface issues. A review of the
product tracking form and project CCB minutes showed that no peer reviews were
conducted on the document, even though project procedures mandate that at least one peer
review be conducted on any deliverable. The project peer review checklist for requirements
specifications contains a check for human interface issues.

Release 4.1 of System QUICK was delivered on time, within budget, and met customer
requirements as confirmed on the acceptance of deliverable form received last week from
the customer. The development of the computer code and its testing complied with all
process activities established for the project—except that no code walkthroughs were
conducted. Apparently, the extensive unit and integration testing that was conducted
brought to light logic flaws that were fixed prior to acceptance testing. This latter testing
brought to light several misunderstandings regarding customer requirements. These
misunderstandings were resolved with the customer at acceptance testing CCB meetings.

Software
Product

Process Quality Assurance (QA) at a Product Level

Nonconformance

Project Software Systems
Development Process

Project Procedures

Procedure B
Step 1
Step 2

Step N

Procedure A
Step 1
Step 2

Step N

Figure 5–20 Here are examples of process quality assurance (QA) discrepancies that might be un-
covered (or reported) during the comparison of a product under development (or that has finished
development) against the project-specific software systems development process.

ptg

Chapter 5 • Product and Process Reviews

295

A review of the project files for Project A shows that deliverables are consistently
delivered late. A review of the correspondence surrounding the development of the
Project A Project Plan indicates that the customer requirements were cited as being
highly uncertain. This review also indicated that the project staff, including the project
manager, had little experience in developing products in the Project A application area.
The product delivery dates cited in the project plan did not appear to have accounted
for the impact on product development pace stemming from the uncertain customer
requirements.

The organizational software systems development process mandates that each project
shall have a CCB that meets with the customer at least monthly. An audit of the files
of the recently completed Project A indicates that either (1) no CCB meetings took
place or, if such meetings were held, (2) no minutes were prepared. The audit also shows
that all deliverables specified in the Project A Project Plan were delivered on or before
the dates specified in the project plan. The project files contain completed acceptance
of deliverable forms for five of the project’s eight deliverables. These forms indicate
that the five deliverables were accepted as delivered. The status of the remaining three
deliverables is unknown.

Process Quality Assurance (QA) at a Project Level

A

Project A

Nonconformance

Project Software Systems
Development Process

Project Procedures

Procedure B
Step 1
Step 2

Step N

Procedure A
Step 1
Step 2

Step N

Figure 5–21 Here are examples of process quality assurance (QA) discrepancies that might
be uncovered (or reported) during the comparison of a project against the project-specific
software systems development process.

level) or, if the product is still under development, whether the product
should be adjusted (e.g., through more peer reviews).

Process Quality Assurance at Project Level Figure 5–21 presents two
process quality assurance (QA) discrepancies at a project level. The first proc-
ess QA example deals with a review of a project’s files that indicates that de-
liverables are consistently delivered late. Several actions may result from this
process QA check across the project. First, the seller and customer did not

ptg

come to closure on the requirements. It is also apparent that the seller project
staff may need training specific to the types of products required. Finally, ad-
ditional project planning training may be necessary.

The second process QA example deals with a project that is not holding rec-
ommended CCB meetings with the customer, but the project’s deliverables
seem to be acceptable to the customer. In this case, it may be that the or-
ganization’s recommendation for a CCB monthly meeting may need to be
reconsidered. It may be that every other month is frequent enough for CCB
meetings. However, before changing the recommended CCB meeting fre-
quency, the process QA check should be performed for similar projects. De-
pending on the results, then consideration should be given to see whether the
recommended CCB meeting frequency should be changed.

A project-specific process is adapted from the organizational process, pre-
sumably during project planning. The process QA check at the project level
(i.e., across the project’s deliverables versus just one product) provides a
means for determining whether the standards should be adjusted (i.e.,
whether the process should be changed—either at the project level or at the
organizational level) or confirming that the process is working (i.e., consis-
tently producing products with integrity). When performed across projects,
these process QA checks help to improve the organizational software systems
development process and the resultant products.

5.4 Combining Reviews for Software Audits

In Chapter 3, we discussed how reviews (i.e., peer reviews, technical editing,
independent product assurance, and management technical oversight) can be
a part of an organization’s software systems development process. In this
chapter, we have expanded upon the Chapter 3 reviews by presenting and
discussing the following taxonomy of product and process reviews:

♦ Management Reviews
♦ Product Programmatic Tracking
♦ Process Programmatic Tracking
♦ Product Technical Oversight
♦ Process Technical Oversight

♦ Development Reviews
♦ Product Peer Reviews
♦ Process Peer Reviews
♦ Technical Editing of Software and Software-Related Documents

♦ Product Assurance Reviews
♦ Product Quality Assurance

Chapter 5 • Product and Process Reviews

296

ptg

♦ Product Verification and Validation
♦ Product Test and Evaluation
♦ Product Self-Comparison
♦ Process Quality Assurance at Product Level
♦ Process Quality Assurance at Project Level

As we have previously discussed, these product and process reviews can be
performed individually. Now we want to illustrate the value of combining
these reviews. We refer to these combined reviews as a “software audit.” The
following discussion makes it evident that what we call a review is a form of
what the dictionary calls an audit. One dictionary definition of audit is the
following:

audit n: an official examination of records or accounts to check their
accuracy3

As with most concepts in this book, there is no one way for combining these
reviews for software audits.4 We discuss one approach to provide you with a
starting point for combining these reviews in a way that makes sense for your
organization. We have chosen to subdivide software audits into the following
two types:

♦ Software product audits. During a software systems development project,
the seller develops a product. The seller compares the product against
what the customer asked for. If the comparison yields discrepancies, then
the product (and/or what the customer asked for) is changed until the dis-
crepancies are resolved. Comparing software products against one another
to determine whether these products are being developed logically and are
congruent with what the customer asked for is what we term “software
product audits.”
As discussed in this section, software product audits consist of some com-
bination of the four software product reviews performed by product assur-
ance—namely, Product Quality Assurance, Product Verification and
Validation, Product Test and Evaluation, and Product Self-Comparison.
We discuss how software product audits are coupled to the CCB.

♦ Software process audits. The seller uses software systems development
processes to develop the project’s required products. As the project un-
folds, the seller can compare the project’s software systems development
processes against organizational processes. Also, the seller can compare
project processes against what was said in the negotiated agreement with
the customer. These comparisons are what we term “software process
audits.”

Chapter 5 • Product and Process Reviews

297

3The American Heritage Desk Dictionary (Boston, MA: Houghton Mifflin Company, 1981).
4The scope of an audit depends on many factors. Consequently, an audit could consist of a single
product or process review.

ptg

As discussed in this section, software process audits consist of some com-
bination of the four process reviews performed by management, develop-
ment, and product assurance—namely, Process Programmatic Tracking,
Process Technical Oversight, Process Peer Review, and Process Quality
Assurance. We discuss how software process audits are coupled to the
software development organization and the process engineering group.

Before proceeding with our discussion of audits, we need to make one addi-
tional point. It is not important what you call the various comparisons that
you may incorporate into your way of doing business. You may want to call
your comparisons something besides reviews and/or audits because your
business culture uses these terms in a sense that differs from the way we de-
fine them. You may want to distinguish between individual comparisons and
combinations of comparisons as we do in this chapter. The bottom line re-
garding reviews and audits is the following:

Chapter 5 • Product and Process Reviews

298

Such comparisons should be performed to give visibility into what
is going on with respect to the products being developed and the
processes used to develop these products. Armed with this visibility,
project participants can make intelligent, informed decisions regarding
what to do next, thereby increasing the likelihood of making successful
software development happen.

Software Product Audits

Software product auditing begins whenever a draft software product, a
software-related product, a change request (CR), or an incident report (IR) is
produced and frozen. The auditing process ends with the delivery of an audit
report to the CCB.

Figure 5–22 illustrates how software(-related) product audits for documents
are coupled with the CCB.5 Note that this process is independent of any par-
ticular life cycle model. This draft software document is presented to the
product assurance organization6 for comparison (i.e., audit) against the docu-
ment’s ground truth. The audit itself compares the draft software product
against the ground truth.

The ground truth for a software document consists of an approved require-
ments specification, an approved life cycle stage N-1 product (i.e., predeces-

5CRs and IRs follow the same software product auditing process. Refer to Chapter 4 for the detailed
discussion of how CRs and IRs are coupled to the CCB.
6The independent product assurance organization is our recommended choice for performing the
comparison of the product against the ground truth. If your organization does not have an indepen-
dent product assurance organization, this comparison should be performed by an individual or orga-
nization that did not construct the product.

ptg

299

Life Cycle Review Area

CCB

Audit Report

Audit
Report

Proposed Resolution
CCB Minutes

To
Succeeding
Life Cycle
Stages

Δ

✓✓✓

✘ ✓ ✘
✓✓✓
✘✓✓

✓✓✓

✘ ✓ ✘
✓✓✓
✘✓✓

$

To Preceding
Life Cycle

Stages

Ground Truth

ΔΔ

APPROVEDΔΔ ΔΔ

Directed Modifications
(change needed)

To Life Cycle Stage N

Life Cycle Stage N
Approved Product

(no change needed)

Directed
Modifications

(change needed)

ANALYZE
Development

AUDIT
Product Assurance

FREEZE
Product Assurance

Standards

R

Compares

DRAFT

Approved
Requirements
Specification

Approved
Life Cycle
Stage N-1
Product

From Life Cycle Stage N

Life Cycle Stage N
Draft Product

Figure 5–22 This figure shows an overview of the auditing process for software and software-
related products.

ptg

sor product), and product standards. Notice that the ground truth can be
used for quality assurance checking (i.e., software product compared with
product standards), and verification and validation checking (i.e., software
product compared against predecessor product and requirements). In addi-
tion, comparison of a software document to itself is also routinely performed
in a software product audit. You can combine QA, V&V, and self-comparison
techniques to conduct software product audits.

As a result of this comparison, discrepancies between the draft software
product and the ground truth may be uncovered. These discrepancies are
documented in a software product audit report, which is presented to the
CCB for its disposition. Figure 5–23 delineates a suggested format for a soft-
ware product audit report.

The product audit report consists of the following sections: Introduction, Ref-
erences, Procedure, Findings, Conclusions, and Recommendations. Notice in
the audit report that the auditor’s objective findings (i.e., Section 4) are clearly
separated from any of the auditor’s subjective opinions (i.e., Sections 5 and 6).
Also observe that, in addition to discrepancies uncovered by quality assur-
ance, verification and validation, and self-comparison processes, various
discrepancies may be uncovered as a result of the development of a traceabil-
ity matrix.7

The first action that the CCB takes upon receipt of the audit report is to
process the discrepancies uncovered. Approaches in which the CCB can
record and process the discrepancies include the following:

♦ Assign the entire product audit report to the development organization for
analysis; the resulting analysis report provides recommended resolution
for every discrepancy.

♦ Categorize discrepancies into those whose resolution is apparent and those
whose resolution is not apparent; process the former category immedi-
ately; create an IR for every discrepancy in the latter category; process the
IRs.8 Selectively creating IRs provides better visibility and traceability than
processing the audit report without creating IRs. However, there is a price
to pay for this increased visibility and traceability: increased resources are
required to handle and process the IRs.

♦ Create an IR for every discrepancy in the product audit report; process the
IRs. These IRs are handled and processed just like those IRs created as a re-
sult of incidents resulting from use of a deployed system. A product audit
report is still prepared in this method, but there is no need to report the

Chapter 5 • Product and Process Reviews

300

7A traceability matrix is a document that traces each software part in a requirements specification to
its corresponding software part(s) in each subsequent software product and to the test documentation
whose execution validates the requirements embodied in the software part.
8The change control process for incident reports (IRs) is discussed, in part, in Chapter 4 using Figure
4–10. The developers complete the analysis portion of the IR, the CCB makes its decision, and if a
change is approved, a software change notice (SCN) is used to promulgate the change.

ptg

Chapter 5 • Product and Process Reviews

301

Software Product Audit Report Title Date
Document Number

Section 1. Introduction
1.1

1.2

1.3

1.4

Purpose. State the purpose of the audit report, which is to provide the results of an audit
of a particular software product for a particular project.
Identification. Identify the software that was audited, the date the software audit was
completed, and the auditors’ names.
Project references. Provide a brief summary of the references applicable to the history and
development of the project under which the audit was conducted.
Overview. Provide a brief overview of the report contents.

Section 2. References
List all the references applicable to the report.

Section 3. Procedure
Describe the procedure used to conduct the audit. Reference the specific documents or entities
used in the process. List any assumptions made or any constraints imposed relative to the audit.

Section 4. Findings
Present the objective findings uncovered during the audit organized as shown below.
4.1

4.2

4.3

4.4

4.5

4.6

4.7

Conformance to standards. Report the findings of the quality assurance check in terms of
structure, format, content, or methodology. (The applicable standards may be externally
imposed, such as government [buyer/user] standards imposed on a contractor [seller], and/or
internally imposed, such as corporate or project management guidelines and/or
ADPE elements.)
Software identification. Present the results of identifying the software parts. A representation
of the configuration of the parts may be provided here or placed in an appendix. List any
difficulties in labeling the parts.
Traceability matrix. Show the traceability between the requirements specification and the
software product. Detail disconnects between the requirements specification and the
software product, and between the preceding baseline and the software product.
Results of verification. Present the discrepancies observed as a result of verifying the
software product (i.e., comparing it against a predecessor product or products).
Results of validation. Present the discrepancies observed as a result of validating the
software product (i.e., comparing it against the requirements for the product). [In some
circumstances, it may be useful to consolidate 4.3, 4.4, and 4.5 to avoid repetition.]
Results of self-comparison. Present the discrepancies uncovered from comparing the
software product against itself to assess the clarity, consistency, completeness, and testability
(if applicable) of the product.
Bookkeeping. List the software parts that were changed as a result of an update to the
software product. Also list the approved changes (i.e., the change requests and incident
reports) incorporated into the software product.

Section 6. Recommendations
Provide the auditors’ recommendations as a result of conducting the audit. This section
represents the auditors’ judgment and is thus primarily subjective.

Section 5. Conclusions
Present the conclusions formulated by the auditors based upon the audit findings. It should be
noted that the conclusions represent the auditors’ judgment and are thus primarily subjective,
as contrasted to the objective findings given in Section 4.

Figure 5–23 Here is a suggested format for a software product audit report.

ptg

discrepancies uncovered in the audit. Here, the product audit report sim-
ply summarizes and categorizes the discrepancies as IRs. Again, for the in-
creased visibility and traceability afforded by this method, there is an
increased price to pay for handling and processing the IRs. Note that the
processing of every IR requires time and money, even if the discrepancy
documented by the IR has small impact and its resolution is immediately
obvious.

These three approaches are listed in ascending order of visibility, traceability,
cost, and time. If human life is at stake and/or large financial losses are a pos-
sibility, you may want to use some form of the third approach where an IR is
created for every discrepancy. At the beginning of a project, the CCB should
carefully weigh the benefits and liabilities of these three approaches when es-
tablishing its mode of operation.

Once an approach is chosen, the discrepancies are analyzed and subsequently
the analyzers present to the CCB a recommended resolution for each discrep-
ancy. With a recommended resolution available from the analysis report, the
CCB proceeds to make its decision on each discrepancy in the product audit
report. Such decisions are recorded in the minutes of the CCB.

The CCB decides, as a result of the product audit report and analysis by the
developers, either that no changes are needed for the draft product or that the
draft product does need changing. If no changes are needed or only a few
changes with relatively minor impact still remain unresolved, the draft prod-
uct for life cycle stage N is approved and established as a baseline.9 If changes
are needed, the modifications directed by the CCB are made in the current
stage to the draft product for life cycle stage N, or previous stages are revis-
ited to change software documents in the ground truth, namely, either the re-
quirements specification or approved products from previous stages. When
changes are made to the draft product for stage N, the draft product, when
changed, will be reintroduced to the product auditing process. When a revisit
to a previous stage is directed, the approved product for that stage is updated
and the product auditing process for the revisited stage is initiated. Such re-
visits cost time and money, but these revisits are what maintainability is all
about. A draft product cycles through the product audit and control process
as many times as necessary until the CCB decides that no changes to the draft
product are needed or that the remaining unresolved discrepancies are few
enough and of minor impact. In either case, the product is baselined.

Software product auditing applies to all software products, whether the soft-
ware is documentation or computer code. However, there are differences in
the details of the process, depending upon whether the software is documen-

Chapter 5 • Product and Process Reviews

302

9IRs may require minor or major changes to the draft product. The CCB may decide that the draft
product does not need to be changed for the moment. Regardless, the IRs and corresponding changes
need to be tracked. Eventually, each IR needs to be resolved—e.g., the CCB decides to make the
change (because of an IR), the CCB decides to make the change in the future, or the CCB decides that
the change will never be made.

ptg

tation or code. These differences are addressed in the following examples. Be-
fore we present software product audit examples, we discuss in more detail
the nature of product discrepancies that might be discovered.

It must be noted that a product discrepancy does not necessarily represent
something that is wrong with a software product. A discrepancy, quite sim-
ply, is an incongruity10 observed as a result of comparing a software product
with the ground truth. It is possible, of course, that a discrepancy represents
something that is wrong in the software product. But a discrepancy could
also represent something that is wrong with the ground truth. If the ground
truth is incorrect, it must be corrected and then be reestablished as the
ground truth. Furthermore, a discrepancy could result from a misunder-
standing or an invalid assumption derived from the ground truth. In this
case, the ground truth should be clarified and the software product modified
to reflect the clarification of the ground truth. Finally, it is possible that a dis-
crepancy does not really represent an incongruity between a software prod-
uct and the ground truth. Upon analysis of the discrepancy, it is determined
that there was a misunderstanding of the ground truth and/or the software
product. The discrepancy is not a discrepancy, it is a mistake.

Consider the situation where an auditor is not sure whether an incongruity
exists. If the auditor does not report this possible incongruity and it does in-
deed exist, an incongruity would not be made visible. Therefore, the auditor
faced with this situation should report the possible incongruity. Other project
personnel in the CCB forum should be able to resolve whether the discrep-
ancy exists. If it does not exist, it is simply rejected by the CCB. This approach
of “when in doubt, report” is designed to prevent discrepancies from slipping
through the cracks. However, this approach should not be carried to ex-
tremes. The introduction of an excessive number of frivolous discrepancies
wastes time and money.

Managers particularly should be aware that every discrepancy does not nec-
essarily represent something wrong with the software product being audited.
We have often seen busy managers base their evaluation of a new software
product purely upon the number of discrepancies uncovered in a software
product audit, as if every discrepancy represented an error in the new prod-
uct. The preceding paragraph shows how unfair such an evaluation may be—
the discrepancies might represent problems with the new product, problems
with the ground truth, or no problems at all. A manager can make a better
evaluation if the manager bases it not on the number of discrepancies in the
audit report but on the decisions the CCB makes on the discrepancies uncov-
ered by the audit. Analysis of such decisions would reveal how many and
how substantial are the changes to be made to the software product and to
the ground truth. This information would provide a better evaluation of the
new software product than would a count of the discrepancies in the audit re-

Chapter 5 • Product and Process Reviews

303

10An incongruity is an absence of congruence; that is, an incongruity is a part in a software product
that cannot be associated with any part in another, related software product or itself.

ptg

port. Discrepancies that result in no changes being made to any product
should not be considered in evaluating either the software product or the
ground truth.

A discrepancy should be reported in specific, objective, and neutral terms
and should contain the rationale for addressing the discrepancy. A discrep-
ancy should be specific in designating the software part(s)—in the software
product being audited and/or in the ground truth—that are incongruous and
in stating what the incongruity is. The report of a discrepancy should objec-
tively state facts and should neither express opinions nor make assumptions.
A discrepancy report should be neutral in that it does not assert that either
the software product or ground truth is wrong, but only that they differ. A
properly worded discrepancy would not include statements such as these:

♦ “Section 1 of the document is poorly worded and is therefore difficult to
understand.”

♦ “The reliability requirement is nonsensical. Whoever wrote it obviously
has no understanding of how software operates.”

♦ “Although the design meets all its requirements, the design of the database
retrieval capability, in my opinion, is too cumbersome to function in an op-
timum manner.”

Software product auditing seeks to determine (1) whether each part in a soft-
ware product has an antecedent in a predecessor product, and, conversely,
(2) whether each part in this predecessor product has a subsequent part in the
software product. Through this two-way comparison, auditing establishes
the extent to which the two products are congruent.11

There are several ways for an auditor to determine these antecedent/prede-
cessor part matches. One way is to search the entire predecessor product for
each software part in the software product to locate all subject matches. Since
the predecessor product is searched from beginning to end for each software
part in the software product, this method is thorough because this method
finds all subject matches. However, this method can be extremely time-
consuming and expensive. This high resource expenditure generally makes
searching the entire predecessor product for each software product part not
feasible for software products of some size. A practical alternative
part-matching method is shown in Figure 5–24.

In this alternative part-matching method, the following two comparisons are
made:

♦ Antecedent comparison. Each part in the software product is compared
with the predecessor product to locate a part that matches in subject.

Chapter 5 • Product and Process Reviews

304

11This two-way comparison can also be applied when one or both of the products are software-related
products (e.g., a requirements specification [software product] and a user’s manual [software-related
product]).

ptg

Notice that the search does not necessarily have to cover the entire
predecessor product for each software product part—the search continues
only until the first matching part is found. For example, in the upper panel
of Figure 5–24, part p is compared with the predecessor product until a
subject match is found. Then part q and part r are similarly matched. No-
tice that parts q and r both match to the same part in the predecessor prod-
uct. This relationship is a one-to-many relationship in terms of the
predecessor product (one) to the software product (parts q and r).

Chapter 5 • Product and Process Reviews

305

Software
Product

Predecessor
Product

Part p

Part r

Antecedent Comparison

Subsequent Comparison

Part q

Software
Product

Predecessor
Product

Part x

Part y

Software Product Auditing

Figure 5–24 Software product auditing establishes the extent to which the two products are
congruent.

ptg

♦ Subsequent comparison. This comparison for finding subject matches is
the converse of the antecedent comparison. Each part in the predecessor
product is compared with the software product to locate a part that
matches in subject. For example, in the lower panel of Figure 5–24, part x is
compared with the software product until a subject match is found. Then
part y is similarly matched. Notice in this case that parts x and y both
match to the same part in the software product. This relationship is a
many-to-one relationship in terms of the predecessor product (parts x and
y) to the software product (one).

This two-way comparison finds, in a nominal amount of time, all one-to-one,
many-to-one, and one-to-many relationships. Predecessor product discon-
nects (parts in the predecessor product that have no subject matches in the
software product) and software product disconnects (parts in the software
product that have no subject matches in the predecessor product) are also
identified. It is considerably less time-consuming than searching the entire
predecessor product for each software product part.

To clarify the foregoing concepts, consider the following examples. These ex-
amples describe the audit of highly simplified software products. The overall
purpose is to explain how software product auditing, as we define it, is actu-
ally done. The software products used in the examples are simplifications of
real software products.

Software Document Audit Example—Automatic Doughnut-Making System
Assume that you have been designated to audit the software design specifica-
tion for an automated doughnut-making system (ADMS) that is under devel-
opment. Figure 5–25 shows the operational concept for the ADMS.
Essentially, ADMS enables a person to make doughnuts. The person is
walked through the process by following a set of instructions that are dis-
played on a monitor. Once the instructions are completed, ADMS combines
and processes the ingredients to produce the doughnuts that are requested.
When completed, ADMS is to consist of a set of hardware components that
can be programmed via a set of software instructions to (1) take as input bak-
ing ingredients, (2) combine and process these ingredients, and (3) produce
doughnuts of different shapes, sizes, and flavors as output.

A functional requirements specification for the software for this system has
been produced and baselined. A highly simplified version of this require-
ments specification is shown in Figure 5–26.

A draft of the software design specification has just been produced and is
now ready for audit. This software design specification is partially shown in
Figure 5–27.

Remember, a software product audit involves antecedent comparison (soft-
ware product compared against predecessor product) and subsequent com-
parison (predecessor product compared against software product). In this
simplified example, the requirements specification represents the predecessor

Chapter 5 • Product and Process Reviews

306

ptg

Chapter 5 • Product and Process Reviews

307

Automated Doughnut-Making System (ADMS)

Baking
Ingredients

Doughnuts of
Different Shapes,
Sizes, and Flavors

Combine
and Process
Ingredients

FLOUR

Figure 5–25 This figure shows the operational concept for the Automated Doughnut-Making System
(ADMS).

product, and the design specification represents the software product to be
audited. Therefore, for the purposes of this example design audit, the an-
tecedent comparison consists of comparing the design specification with the
requirements specification; and the subsequent comparison consists of
comparing the requirements specification with the design specification.

Now, on the basis of the requirements and design specifications provided,
what discrepancies might you observe as you audit the design specification?

First, you would determine the matches in subject between the requirements
specification and the design specification. Even though these specifications
are simplified products, you can use the two-way comparison method de-
scribed earlier to locate subject matches. The antecedent and subsequent com-
parisons yield results shown in Figure 5–28. This method locates all the
subject matches that exist in this case, as can be verified by a quick scan of the
two specifications (feasible only because the specifications are so simple).
Notice the following results:

♦ Antecedent comparison. In the design specification, the Cut function is
found in 2.3.3 (i.e., this component will cut out doughnuts), 2.3.3a.1 (i.e.,
this module cuts doughnuts with a hole in each one), and 2.3.3a.2 (i.e., this
module cuts doughnuts without holes).

ptg

Chapter 5 • Product and Process Reviews

308

Functional Requirements Specification for the Programmable

Subsystem of the Automated Doughnut-Making System (ADMS)

1.0 INTRODUCTION

This document specifies the functions that the programmable (i.e., software) subsystem of
the Automated Doughnut-Making System (ADMS) performs. ADMS takes baking
ingredients as input and, through user-selectable functions, combines and processes these
ingredients to output doughnuts of different shapes, sizes, and flavors.

2.0 SYSTEM OVERVIEW

ADMS consists of the following two subsystems:

a. Hardware Subsystem (requirements separately documented)

b. Software (Programmable) Subsystem that allows the user to select functions to be
 performed through a hardware control panel.

3.0 SOFTWARE SUBSYSTEM FUNCTIONS

The Software Subsystem shall perform the functions listed in the subparagraphs below.

3.1 Input Processing Function

This function shall drive all hardware components that receive doughnut ingredients.

3.2 Recipe Processing Function

This function shall combine and process doughnuts in accordance with hardware-resident
recipe templates selected from a control panel [future ADMS versions may provide a
capability to input recipe templates resident on compact disks]. The following set of
primitive control panel instructions shall be accommodated [recipe template selection shall
be handled through the Hardware Subsystem]:

3.2.1 Add.

3.2.2 Mix.

3.2.3 Roll.

3.2.4 Cut.

3.2.5 Bake.

3.2.6 Fill.

3.2.7 Dust.

 Add the ingredients specified to the bowl.

Mix the ingredients in the bowl at the speed and for the time specified.

Roll out the mixture on the cutting board.

Cut out the dough for either regular (with hole) or filled doughnuts.

Bake the doughnuts for the time and at the temperature specified.

Fill doughnuts with ingredients specified.

Dust doughnuts with ingredients specified.

3.3 Output Processing Function

This function shall drive all hardware components that package the baked doughnuts.

Date
Document Number

Figure 5–26 Here is a simplified functional requirements specification for the Programmable Sub-
system of the Automated Doughnut-Making System. This specification is the ground truth for the
audit of the design specification for this system.

ptg

Design Specification for the Programmable Subsystem of the

Automated Doughnut-Making System (ADMS)

• • •
2.0 SOFTWARE SUBSYSTEM ARCHITECTURE

• • •
2.2 Ingredient Receipt Component

• • •

• • •

2.3 Recipe Processing Component

2.3.1 Mix Module.

a. Purpose. This module will alternately add specified ingredients to the
 mixing bowl and mix the contents of the bowl for specified times.

• • •
2.3.2 Roll Module.

• • •
2.3.3 Cut Component.

a. Purpose. This component will cut out doughnuts. It consists of the following
 two modules:

1. Regular Cut Module. This module cuts doughnuts with a hole in each one.

2. Fill Cut Module. This module cuts doughnuts without holes.

• • •
2.3.4 Bake Module.

• • •
2.3.5 Fill Module.

• • •
2.3.6 Glaze Module.

• • •

2.4 Doughnut Packaging Component

• • •

Date
Document Number

Figure 5–27 Here is a partial design specification for the Programmable Subsystem of the Auto-
mated Doughnut-Making System.

Chapter 5 • Product and Process Reviews

309

ptg

3.0
3.1
3.2

3.2.2
3.2.3

3.2.4

3.2.5
3.2.6
?????
3.3

Software Subsystem Functions
Input Processing Function
Recipe Processing Function
Mix
Roll

Cut

Bake
Fill

Output Processing Function

Antecedent Comparison

Software Product Auditing

2.0
2.2
2.3

2.3.1
2.3.2
2.3.3

2.3.3a1

2.3.3a2

2.3.4
2.3.5
2.3.6
2.4

Software Subsystem Architecture
Ingredient Receipt Component
Recipe Processing Component
Mix Module
Roll Module
Cut Component

Regular Cut Module

Fill Cut Module

Bake Module
Fill Module
Glaze Module
Doughnut Packaging Component

ADMS
Requirements Specification

(Predecessor Product)

ADMS
Design Specification
(Software Product)

*3
*3.1
*3.2
3.2.1

*3.2.2

*3.2.3
*3.2.4
*3.2.5
*3.2.6
3.2.7
*3.3

Software Subsystem Functions
Input Processing Function
Recipe Processing Function
Add

Mix

Roll
Cut
Bake
Fill
Dust
Output Processing Function

Subsequent Comparison

2.0
2.2
2.3

2.3.1

2.3.2
2.3.3
2.3.4
2.3.5
?????
2.4

Software Subsystem Architecture
Ingredient Receipt Component
Recipe Processing Component
Mix Module

Roll Module
Cut Component
Bake Module
Fill Module

Doughnut Packaging Component

ADMS
Requirements Specification

(Predecessor Product)

*This matching was initially determined during the comparison shown in antecedent comparison above.

ADMS
Design Specification
(Software Product)

Figure 5–28 This figure illustrates the results of doing a two-way comparison of the ADMS requirements and design specifi-
cations. As shown, each comparison yields a disconnect (i.e., ?????).

ptg

In the requirements specification, the Cut function is found in 3.2.4 (i.e.,
Cut out the dough for either regular [with hole] or filled doughnuts).
Therefore, this example antecedent comparison picks up the one-to-many
relationship connected with the Cut function—in other words, the one ref-
erence in the predecessor product to the many references in the software
product.

♦ Subsequent comparison. In the requirements specification, the Add func-
tion is found in 3.2.1 (i.e., Add the ingredients specified to the bowl), and
the Mix function is found in 3.2.2 (i.e., Mix the ingredients in the bowl at
the speed and time specified).
In the design specification, the Add and Mix functions are found in 2.3.1
(i.e., this module will alternately add specified ingredients to the mixing
bowl and mix the contents of the bowl for specified times).
Therefore, this subsequent comparison picks up the many-to-one relation-
ship connected with the Add and Mix requirements with the Mix design—
in other words, the many references in the predecessor product to the one
reference in the software product.

Also notice that two disconnects are located. The antecedent comparison re-
veals that the Glaze module in the design specification (i.e., 2.3.6) has no
match in the requirements specification. Evidently a developer (probably ex-
pressing his or her personal taste, no pun intended) added a capability to the
design to produce glazed doughnuts, a capability not contained in the re-
quirements. This disconnect would be reported as a discrepancy. The CCB
must decide whether this glaze capability is not desired and thus should be
removed from the design specification, or whether this capability, initially
overlooked, is indeed desired, in which case the requirements specification
would be amended to incorporate this capability.

The other disconnect becomes evident with the subsequent comparison. The
design specification does not address the requirement to dust doughnuts (i.e.,
3.2.7). This omission is also a discrepancy to be reported to the CCB.

Your next step in the audit process is to determine whether the parts of the
design specification and the requirements specification that match in subject
also match in content. In this example, we provide little content in the specifi-
cations. However, in the content that is provided, there is one incongruity.
When requirements specification paragraph 3.2.2 for mixing is compared
with design specification paragraph 2.3.1a, you should observe that the re-
quirement that mixing be done at specified speeds is omitted from the design
specification. This omission would be reported as a discrepancy.

This example illustrates the mechanics of determining the congruence of two
software products using antecedent and subsequent comparisons. You
should not be misled by the ease with which our deliberately simple software
products could be audited. In the real world, auditing of voluminous specifi-
cations is a labor-intensive task. Although auditing can consume considerable

Chapter 5 • Product and Process Reviews

311

ptg

resources, it potentially saves even more resources through early detection of
problems. Auditing is another example of the concept of “pay now versus
pay much more later.”

This task of assessing congruence between software products can be simpli-
fied by the developer of the products. The developer might include in each
software part of each product the labels identifying the matching software
parts in the predecessor product and in the requirements specification. Alter-
natively, the developer might produce a traceability matrix, linking software
product part labels to part labels in the predecessor product and in the re-
quirements specification. For either comparison method, the auditor should
verify the accuracy and the completeness of the information provided.

Software Document Audit Example—System PREDICT To close out this
discussion of software document audits, we present an example that illus-
trates the concepts of uncovering and reporting discrepancies. The example is
cast in the form of a product audit of a system preliminary design specifica-
tion for a software system called System PREDICT. This system is to predict
the point differential of a football game based on information pertaining to
the two teams involved in a game. Instead of presenting the entire audit
report, only the findings of the audit have been included.

Figure 5–29 shows a one-page requirements specification for System PRE-
DICT. Assume that this specification constitutes the requirements baseline for
this software development effort. In addition to this requirements specifica-
tion, there is a preliminary design specification for System PREDICT. Figure
5–30 shows a draft of the preliminary design specification.

Assume that you are an auditor whose task is to audit this preliminary design
specification draft against the System PREDICT Requirements Baseline
shown in Figure 5–29. Also, assume you are to submit your findings to a CCB
whose function is to determine whether this draft preliminary design specifi-
cation should become the System PREDICT Preliminary Design Baseline. In
addition, assume that this baseline will be used to develop a detailed design
from which computer code will be developed. Finally, assume that an auditor
should ideally be a neutral, objective reporter of discrepancies, that the audi-
tor should be as specific as possible in reporting discrepancies, and that the
auditor should offer rationale to justify why each discrepancy should be ad-
dressed. With these assumptions and with the information contained in Fig-
ures 5–29 and 5–30, what discrepancies between the documents shown in
these figures might you, as an auditor, report to the CCB?

Figure 5–31 contains findings of the software product audit. In the following
discussion, we comment on these findings to provide insight into (1) the way
in which an audit might be conducted and (2) the specifics of what an audit
might uncover.

In the auditor’s finding 1, the auditor goes through each of the seven classes
(i.e., a, b, c, d, e, f, and g) of information listed in Figure 5–29 and comments
on what has been done in carrying them through to preliminary design. Here

Chapter 5 • Product and Process Reviews

312

ptg

Chapter 5 • Product and Process Reviews

313

1.0 INTRODUCTION

This requirements specification delineates the capabilities for a system called PREDICT.
The overall purpose of this system is to predict the point difference of a football game based
on certain information regarding the two teams involved in the game. This information is
delineated in section 2.

2.0 SYSTEM INFORMATION REQUIREMENTS

System PREDICT shall require the following information to compute point differential
predictions:

a.

b.

c.

d.

e.

f.

g.

The overall won-lost record of each team in all regular season games played prior to
the game whose outcome is to be predicted.

The total number of points scored and allowed by each team in all regular season games
prior to the game whose outcome is to be predicted.

The scores of any previous regular season games involving the two teams.

Injuries to key players on each team.

The likely weather conditions at game time and the previous performance of each
team under similar conditions.

Which team is playing at home.

The effect of the game on each team’s playoff chances.

3.0 SYSTEM FUNCTIONS

System PREDICT shall, given the information in section 2, predict the point differential
between the two teams to within 25 percent of the actual point differential.

Requirements Specification

for System PREDICT

March 15, 1998
PRED-S1

Version 1.1

Figure 5–29 Here is a simplified functional requirements specification for System PREDICT. This
specification is the ground truth for the audit of the preliminary design specification for this system.

ptg

Preliminary Design Specification

for System PREDICT

April 14, 1998
PRED-D1

Draft XXX

1.0 INTRODUCTION

This specification sets forth the preliminary design for System PREDICT, whose overall purpose is to predict the point
differential of a football game based on certain information regarding the two teams playing the game. This specification
thus delineates the algorithm for computing this point differential in terms of the seven factors specified in the System
PREDICT Requirements Specification.

2.0 SYSTEM PREDICT ALGORITHM

Using the values from Table PRED-D1-1, compute point differential, PD, by (1) subtracting the Team 2 value in the table
from the corresponding Team 1 value, (2) multiplying this difference by a weighting factor, and (3) summing these results
over all seven factors. That is, PD is computed from the following mathematical formula:

where
wj = 1 for j = 1, 2, 4, 5, 7
wj = 2 for j = 3
wj = 3 for j = 6.

If PD is greater than zero, Team 1 is predicted to beat Team 2 by PD points; otherwise, Team 2 is predicted to be the
winner (unless PD = 0, in which case the game is rated a tossup).

PD = [(Factor Team 1)j – (Factor Team 2)j]wj
7

Σ
j = 1

Table PRED-D1-1

Factor # Factor Definition Team 1

(Factor Team 1)1

(Factor Team 1)2

(Factor Team 1)3

(Factor Team 1)4

(Factor Team 1)5

(Factor Team 1)6

(Factor Team 1)7

Team 2

(Factor Team 2)1

(Factor Team 2)2

(Factor Team 2)3

(Factor Team 2)4

(Factor Team 2)5

(Factor Team 2)6

(Factor Team 2)7

If the team won-lost record is at least 0.500, give the team 1 point;
otherwise, give the team 0.

If the total number of points scored by the team minus the total number of
points allowed by the team in all previous regular season games is greater
than zero, give the team 1 point; otherwise, give the team 0.

Let X be the average of the point differential in any previous regular
season game involving the two teams (computed by subtracting Team 2’s
from Team 1’s score and divided by the number of games played). If X is
greater than zero, give Team 1, 1 point and Team 2, –1 point; otherwise,
give Team 2, 1 point and Team 1, –1 point.

If N is the number of key players on the team who will miss the game
because of injury, give the team –N points.

If the weather conditions at game time are C and the team has won more
often than it has lost under these conditions during the regular season, give
the team 1 point; otherwise, give the team –1 point.

If the team is playing at home, give the team 1 point; otherwise, give the
team 0.

If the team is in playoff contention, give the team 1 point; otherwise, give
the team 0.

1

2

3

4

5

6

7

Figure 5–30 Here is a draft of the preliminary design specification for System PREDICT.

314

ptg

315

Discrepancies Uncovered from an Audit of the

System PREDICT Preliminary Design Specification

April 21, 1998
PRED-D1

Draft XXX

An audit of draft XXX of the System PREDICT Preliminary Design Specification (PDS) against
the Requirements Baseline (RB) has been performed. The following discrepancies between the
two items were uncovered during the audit:

1. The RB lists seven classes of information that are to be used to predict the point differential.
For each of these classes, the PDS appears to make some assumptions regarding how the
information in the class is to contribute to the point differential. These assumptions are
listed below. Therefore, to ensure that the requirements set forth in the RB are being
properly interpreted, it is suggested that these assumptions be reviewed, and if deemed
appropriate, be reflected in the RB. Also listed below are some apparent discrepancies
between the RB and PDS. It is suggested that these discrepancies be resolved.

a. The PDS assumes that the intent of the RB regarding a team’s won-lost record is that, if it
has a non-losing record, then the team is given 1 point in computing the point
differential. The RB is silent as to the quantitative relationship between a team’s won-lost
record and its contribution to the point differential (i.e., in contrast to the PDS, another
possible interpretation of the RB requirement is that the larger the difference between a
team’s wins and its losses, the greater should be the contribution to the point differential
[assuming the team’s wins exceed its losses]).

 b. The PDS assumes that the intent of the RB regarding a team’s point differential is that, if a
team has scored more than it has allowed, then the team is given 1 point in computing
the point differential. As was the case with the won-lost information class, the RB is
silent as to the quantitative relationship between a team’s point differential and its
contribution to the predicted point differential of the game (e.g., in contrast to the PDS,
another possible interpretation of the RB requirement is that the larger the difference
between the number of points the team has scored and the number of points it has
allowed, the greater should be the contribution to the predicted point differential of the
game [assuming the points scored exceed the points allowed]).

c. The PDS assumes that the intent of the RB regarding the scores of any previous regular
season games involving the two teams is that, if the average of the point differential of
these scores is greater than zero, then Team 1 is given 1 point in computing the point
differential of the game to be played and Team 2 is given –1 point. As was the case with
the preceding two information classes, the RB is silent as to the quantitative relationship
between the point differential in previous games played by the two teams and its
contribution to the point differential of the game to be played (e.g., in contrast to the PDS,
another possible interpretation of the RB requirement is that the most recent game
played between the two teams should count more than previous encounters, which is not
reflected in a simple average over previous scores [it should be noted that the RB is
somewhat ambiguous in that it does not indicate whether previous regular season games
are restricted to the current season or include previous seasons, and, if so, how many
previous seasons; from the PDS, it would appear that the designer interpreted the RB to
encompass games played in the current and previous seasons, because the two teams
generally meet at most only twice during a regular season, so that, if the intent of the RB
was to include only the current season, there would be no need to perform the average
indicated in the PDS]). It should also be noted that the PDS is silent on what value is to
be assigned to the predicted point differential if the average point differential in previous
games is exactly zero. The PDS should cover this contingency so that programmers can
specify this logical possibility in the code they will write for System PREDICT.

Figure 5–31 Findings of an audit of the System PREDICT Preliminary Design Specification against
the System PREDICT Requirements Specification.

ptg

316

Discrepancies Uncovered from an Audit of the

System PREDICT Preliminary Design Specification

April 21, 1998
PRED-D1

Draft XXX

d. The PDS assumes that the intent of the RB regarding injuries to key players is that there is
a linear relationship between the number of key players injured and the number of points
to be subtracted from the point differential. The RB is silent as to this relationship, and
other relationships are, of course, possible (e.g., ones that take into account who the
injured player is—for example, a quarterback may be worth twice as much to a team as a
key defensive player).

e. The PDS assumes that the intent of the RB regarding (predicted) weather conditions at
game time is that, if a team won more games than it lost under similar weather conditions
in the past, then 1 point is given to that team in computing the point differential. The RB is
silent as to the quantitative relationship between weather conditions and previous
performance under such conditions. Many other interpretations of the RB are of course
possible. Furthermore, the PDS does not appear to deal with the possibility that one or
both teams may be playing under weather conditions that one or both have not played
under previously (e.g., a team may be in its first season and may come from the South
where snow never falls, and may be playing a team in blizzardlike conditions).

f. The PDS assumes that playing at home is worth 1 point in the predicted point differential.
The RB is silent as to how much playing at home should be worth. Furthermore, the RB,
and thus the PDS, do not address the possibility that some games may be played at a
neutral location (i.e., where no team would be considered “home” in terms of fan support).
For completeness, this possibility should be addressed in the RB and PDS.

g. The PDS assumes that if a team is in playoff contention, then it is given 1 point in
computing the point differential. The RB is silent as to how much being in playoff
contention is worth in terms of computing predicted point differential. Of course, many
other quantitative relationships are possible (such as one that takes into account whether
the game being played will determine if one or both teams will be eliminated from
postseason play).

h. The PDS assumes that, to compute the predicted point differential, the results obtained
from each of the seven information classes are to be summed and weighted with the
weighting factors specified in the PDS. The RB offers no guidance as to how the
information classes are to be weighted with respect to one another. For completeness,
such guidance should probably be included in the RB.

2. The RB stipulates the following performance requirement for System PREDICT:

This performance requirement does not appear to be addressed in the PDS. That is, the PDS is
silent as to the estimated error associated with the mathematical formula given in the PDS for
computing predicted point differential. More fundamentally, it is not clear how the per-
formance can be proven a priori to be satisfied (e.g., it is not clear how it can be proven that
any mathematical relationship relating, say, injuries to key players and the effect of these
injuries on the score of a game, is accurate to within so many percentage points). It is
therefore suggested that the RB performance requirement cited above be reviewed to
determine whether it can be verified with respect to any formula that may be proposed in the
PDS. Is it the intent of the user to “verify” the formula by applying it to historical data (for
example, the scores involving all teams in the league for the past ten years) and adjusting the
formula parameters until agreement with these historical data is obtained with the desired
degree of accuracy? If so, then perhaps the RB should be modified to reflect this intent to
provide a more specific basis for design work.

“System PREDICT shall . . . predict the point differential between the two teams to
within 25 percent of the actual point differential.”

Figure 5–31 Continued

ptg

are explicit examples of how an auditor addresses the question of whether a
software product logically follows from a predecessor product and whether
a software product embodies what the customer asked for. In performing
these comparisons, we see how the auditor sheds light on the following
discrepancies:

♦ Potential ambiguities in the requirements baseline. For example, finding
l.c points out that the requirements baseline is silent as to the quantitative
relationship between the point differential in previous games played by
the two teams and its contribution to the point differential of the game to
be played.

♦ Potential omissions in the preliminary design specification. For example,
finding l.e points out that the preliminary design specification does not ap-
pear to deal with the possibility that one or both teams may be playing
under weather conditions that one or both have not played under previ-
ously. In addition, finding 1.f points out that the requirements baseline,
and thus the preliminary design specification, does not address the pos-
sibility that some games may be played at a neutral location.

Much of what the auditor has to say in finding 1 exemplifies the classical ar-
gument “Where do requirements end and where does design begin?” How-
ever, the auditor raises issues for the CCB that it may not have considered
when it approved the Requirements Baseline and that the CCB may wish to
address in the Requirements Baseline before design proceeds much further
(and requirements ambiguities become more difficult to resolve). Thus, the
auditor provides the vital function of raising the visibility of the software de-
velopment process to a level where apparently significant development is-
sues can be dealt with at a time when their resolution may cause little or no
schedule or resource impact. This example illustrates the “pay now versus
pay much more later” message.

Now, let’s look at the auditor’s second finding. In finding 2, the auditor
points out an apparent disconnect between requirements and design (i.e.,
something called for in the Requirements Baseline appears to have been omit-
ted in the design). The auditor then points out that the requirement omitted
from the design may need to be reconsidered because it is unclear how any
design developed can be proven to satisfy the omitted requirement. To help
the CCB deal with this issue, the auditor offers some suggestions as to how
the requirement may be stated in terms that designers and coders can deal
with. Again, it should be noted that in this finding the auditor raises the visi-
bility of the software development process to a level where the CCB can deal
with significant requirements issues long before they become deeply embed-
ded in design (and code).

Notice that the auditor’s findings are expressed in objective terms, using non-
inflammatory language. The findings are generally specific (in most cases
supported by example) and supported by rationale. The overall result is that

Chapter 5 • Product and Process Reviews

317

ptg

the auditor has probably provided the CCB with the information that it will
need to make intelligent, informed decisions about what should be done with
draft XXX of the preliminary design specification and whether the Require-
ments Baseline should be updated.

This example illustrates typical discrepancies uncovered during a software
product audit and how to report them. The product audit report makes ex-
plicit the assumptions used by the software developers in creating a design,
so that the CCB can confirm whether the assumptions are valid.

Software Systems Acceptance Testing Audits

In the preceding section, we described the auditing process for software in
the form of documentation. We now turn to the complementary auditing
process for software in its other form—when the software is computer code.
The generic model of the auditing process that we have just described in Fig-
ure 5–22 still applies when computer code is being audited. In this case in-
volving computer code, a life cycle product (i.e., code) is compared with its
ground truth (i.e., design and requirements specifications). Discrepancies ob-
served during the comparison are reported to the CCB. However, the details
of the computer code auditing process are substantially different from the
documentation auditing process.

We begin by looking at the preparations made prior to the conduct of the
computer code audit. This discussion is followed by an example that illus-
trates how to construct a test procedure. We next look at the auditing process
in detail and observe how the auditing (testing) cycle causes software code to
converge to a product with no or few discrepancies. This product then can be
delivered to the user.

When the life cycle software product to be audited is code, we term the process
test and evaluation (T&E). T&E is system level testing and is user oriented. T&E
is an assessment of whether software code is congruent with requirements and
design specifications. But in T&E we do not generally determine this congru-
ency by comparing source code listings (a document form of code) directly with
the requirements and design specifications. Rather, computer code is put in its
executable form and, through execution in a live or nearly live environment, is
indirectly compared with the two specifications through use of test plans and
procedures. Figure 5–32 illustrates this T&E concept.

This figure shows the connectivity between the product development world
and product assurance world. Both worlds come together during acceptance
testing. In the development world, requirements and design specifications
provide the basis for coding. They also provide the basis for an acceptance
test plan that, in turn, serves as the basis for test procedures.

Each test procedure specifies the results expected from performing specific
operations on computer code. When the specific operations are executed on

Chapter 5 • Product and Process Reviews

318

ptg

Chapter 5 • Product and Process Reviews

319

Compare

Execute

Live or Nearly Live Environment

EXPECTED

RESULTS

T
 &

 E
 L

in
k

a
g

e

COMPUTER
CODE

01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101

Product
Development

Product
Assurance

REQUIREMENTS DESIGN

TEST
PROCEDURE

ACCEPTANCE
TEST PLAN

Figure 5–32 T&E assesses the extent to which computer code embodies the design and requirements.

ptg

code, the actual results observed are recorded and compared with the ex-
pected results contained in the test procedures. Any differences between the
expected and observed results are reported as discrepancies. Thus, the re-
quirements and design specifications are the ground truth for this audit but
are involved in the audit comparison only indirectly (i.e., through the test
plans and procedures).

We stated before that T&E was conducted in a live or nearly live environment.
By live or nearly live environment we mean “an environment that is identical to or
closely approximates the environment in which the user operates.” The actual
testing occurs before the software system is delivered to the customer. This test-
ing is referred to in the literature by several names; we refer to it as acceptance
testing, because it usually occurs just before the customer accepts the system for
operational use. The purpose of acceptance testing is to demonstrate that oper-
ating computer code satisfies the user’s needs. Since the user’s needs include
operating the system in the user’s own environment, we must conduct the ac-
ceptance tests in a live or nearly live environment. Performing the tests in some
other environment (e.g., the development environment) would not demon-
strate that the computer code satisfies the user’s needs.

T&E activity is not confined to the coding and subsequent stages of the life
cycle. In fact, T&E activity extends throughout the life cycle. T&E generally
begins (1) right after the requirements specification is baselined or (2) in par-
allel with requirements specification development, with the initiation of ef-
forts to develop a test plan. A test plan is concerned with such items as test
organizations, test schedules, test resources, test personnel and their respon-
sibilities, the approach to be used to test the system, and, most important for
our current consideration, a list of tests to be executed during acceptance
testing. This list is derived from the requirements, with one or more tests
planned to be conducted to demonstrate the satisfaction of each re-
quirement.12 Thus, the test plan links tests to specific requirements. Figure
5–33 delineates an annotated outline for a test plan.

Subsequent to the baselining of the detailed design specification, each test
listed in the test plan is developed into a step-by-step test procedure that
demonstrates satisfaction of the requirements specified for the test in the test
plan. The steps in the procedures are designed to assess whether the require-
ment(s) to be demonstrated by the procedures have been satisfied by com-
puter code. Figure 5–34 shows an annotated test procedure format that builds
in traceability back to development documentation such as requirements and
design specifications, and test plans.

The OPERATOR ACTION and EXPECTED RESULTS columns are the most
important test procedure elements. The information in these columns links
the acceptance testing process to the development process.

Chapter 5 • Product and Process Reviews

320

12 Note that a single test could be used to demonstrate the satisfaction of more than one requirement.

ptg

321

Test Plan Title
Date
Document Number

Section 1. Introduction
This section gives introductory information regarding the project, the system to be tested, and the testing
approach as indicated in sections 1.1–1.4 below.

1.1

1.2

1.3

1.4

Purpose. Identify the project and stipulate the test plan purpose by indicating what the document contains
(e.g., organizational responsibilities, test approach, test schedule—that is, tell them what you are going to tell them).

Scope. Specify the project software releases/versions encompassed by the plan. For example, a project may extend
over several years with one or more software releases/versions scheduled per year. In this case, section
1.2 specifies which of these releases the plan addresses.

System Overview. Describe the system to be exercised by the testing approach specified in the plan. This overview
serves to identify aspects of the system operation that will be the focus of the plan’s testing approach (e.g.,
man-machine interface, data conversion accuracy and completeness). This section should include a conceptual
diagram showing how the system operates, including its external interfaces.

Testing Approach Overview. Give an overview of the approach specified in section 3. This overview is often of
particular interest to management, especially senior management (both seller and customer), who may have neither
the time nor the inclination to read section 3. For example, if section 3 spells out a multilevel approach to testing,
section 1.4 should briefly indicate the objective and scope of each of the test levels. This overview should be linked
to the conceptual diagram included in section 1.3. Sometimes, it may be desirable to eliminate this section and put
the testing approach overview in (1) an executive summary (for senior and other interested management) and/or
(2) the beginning of section 3.

Section 2. Applicable References
List all the references applicable to the test plan. In general, these references include project standards (such as
ADPE elements), a product assurance plan that establishes the context for project testing, and software specification
documents (such as requirements, design, and database specifications from which the code and databases to be tested
are developed).

Section 3. Testing Approach
Describe the approach (but not the detailed test steps—this information belongs in test procedures) to be used to test the
system described in section 1.3. This description includes specifying the types of tests to be performed (such as tests
designed to exercise system functions one by one without regard to how these functions may be used operationally, tests
designed to exercise sequences of functions that approximate operational use of the system, tests designed to stress the
system to its design and requirements limits and possibly beyond these limits). This description lists the specific tests to
be performed (but, again, not the test steps). For each of these tests, give it a name and specify its objective. Describe
how the test procedures for these tests are to be specified (e.g., the five-column format described elsewhere in this chapter).
Describe how test incidents are to be reported and CCB activity in connection with test incidents. For completeness, it is
often desirable to describe how this testing approach—which should be prepared and performed by a group independent
from the product development group—complements the testing approach that the product developers will use to ready
the code and databases for system-level testing by the independent test (product assurance) group. Product developers
typically perform unit and integration testing for this purpose. “Unit testing” is the exercising of a unit (a separably
compilable sequence of code statements to ascertain whether it meets design specifications; “integration testing” is the
exercising of progressively larger collection of units to check out the integrated operation of each collection of units; the
final step in integration testing is the exercising, as a single entity, of all the units in the system under development.

Figure 5–33 Here is a suggested format for a software test plan.

Chapter 5 • Product and Process Reviews

ptg

322

Test Plan Title Date
Document Number

Section 4. Test Management Requirements
Indicate how the testing described in section 3 is to be managed including a delineation of the responsibilities of each
project organization involved with testing (remember to include customer organizations if, as we recommend, you decide
to include customer participation in the testing process). Describe the CCB roles in test management [see subsequent
discussion in this chapter regarding these roles].

Section 5. Personnel Requirements
Delineate the responsibilities of those individuals who are to perform the testing (such as the test director, test witnesses,
and test operators). Remember to include customer personnel if, as we recommend, you decide to include the customer
in the testing process (e.g., as test witnesses, as CCB participants).

Section 6. Hardware Requirements
Describe the hardware (including communications and network equipment) needed to support testing. Describe the
configuration of hardware components on which the software and databases to be tested are to operate. Include any
hardware needed to support test procedure development and execution, and other hardware tools (such as simulators
that model the operation of external systems interfacing with the system to be tested).

Section 7. Software Requirements
Describe the software (including communications and network equipment) needed to support testing. Include the
software code and databases that are the objects of the testing. Also include software tools such as compilers, CASE
instruments (such as information engineering tools used to automatically generate code and databases from data and
process models), and simulators that may be used to model the user’s operational environment if the testing is not to be
performed in the user’s operational environment.

Section 8. Schedule
Specify the schedule for testing activities. Generally, the schedule should span the period between test plan publication
and the publication of a test report that gives the results of test procedure execution. Allow for updates to the test plan
and test procedures.

Section 9. Cost
Delineate the cost associated with the requirements called out in sections 4–7. Generally, an estimate of this cost should
appear in the project plan. If there is a product assurance plan that provides context for the T&E activity, this cost may be
delineated there, in which case section 9 can be omitted (or can simply point to the product assurance plan or other
sources containing the cost estimate). Even if other sources already contain a T&E cost estimate, it may still be a good
idea to include this section. Usually, the information contained in this section is more refined than estimates rendered
elsewhere because, in contrast to these other sources, the focus of this document is on T&E.

Appendices
Include in these optional appendices such things as acronyms, definitions of key terms, and process flow diagrams
bearing upon the testing approach. For example, if the plan is addressing the testing of a program to convert data from,
say, a flat file environment to a relational environment, an appendix describing the data conversion functions to be tested
(such as moving data unchanged, translating from one field length to another, transforming data from one set of units to
another via mathematical formulas) might be useful. Also, if it is decided to incorporate test procedures into the test plan
(as opposed to publishing them separately), it may be useful to house these procedures in appendices.

Figure 5–33 Continued

Chapter 5 • Product and Process Reviews

ptg

Chapter 5 • Product and Process Reviews

323

Describes the actions
taken by the person
executing the test
procedure. The
language in this
column is usually in
computerese (e.g., it
may be the entering
of a command
according to some
computer language
syntax).

Test XX.Y OBJECTIVE:

TITLE:

NOTES:

This area contains a statement that defines the objective of Test XX.Y.
This statement should come from the test plan.

This line contains the long title of the test procedure. This title should come
from the test plan.

This area provides general notes concerning the test procedure. Such notes
might include comments on how to execute the test procedure, an estimate
of the test duration, the specification of the requirements the procedure tests,
or a statement of resources (people, equipment) needed for this test.

STEP

N

OPERATOR ACTION PURPOSE EXPECTED RESULTS COMMENTS

[Document No.]
[Release/Version No.] [Page No.] [Date]

Describes the
expected response of
the system being
tested to the action
specified in the
OPERATOR ACTION
column. This
expected response is
generally derived
from requirements
and design spec-
ifications (and some-
times user’s manuals)
or some other written
documents that attest
to what the customer
and seller agreed that
the system is to do
and how it is to do it.
The person executing
the procedure
compares the system
response to the
Operator Action with
the information in this
column. If they do not
match, the person
writes a TIR. In this
way, execution of the
test is a formal
demonstration of
whether the system is
doing what the
customer and seller
said the system is to
do.

Contains additional
information such as
boundary data,
dependencies among
test steps, an estimate
of elapsed time
associated with
executing this step,
suggested excursions
from the test step, a
discussion of the
rationale for the step
or operator action, or
the test underlying
the step, and the
overall objective of a
subset of the test
steps in the entire
procedure. May also
contain pointers to
requirements and/or
design documentation
and/or other
documentation
bearing on the system
being tested.

Describes the reason
for the step. The
language in this
column is an
explanation in the
vernacular of the
operator action in
column 2 (i.e., in
terms that the
customer can
understand).

Figure 5–34 Here is a test procedure format that builds in traceability back to predecessor product
development documentation such as requirements and design specifications, and test plans.

ptg

Information on actions to be taken or commands to be used within a test step,
as well as on the results to be expected from those actions or commands, is ob-
tained from the design specification. The set of test procedures reflects both the
requirements and the design of the software system. Each test procedure
should contain within it a pointer to the requirement(s) that the procedure tests.

With this five-column format, there is traceability among the four documents
concerned with T&E: (1) requirements specifications, (2) design specifica-
tions, (3) test plan, and (4) test procedures. The requirements and design
specifications are the ground truth for the audit, and the test plan and proce-
dures are the specifications for the conduct of the acceptance tests.

The requirements specification establishes a list of functions that the software
is to perform. Software designers translate these requirements into a design
specification that designates subsystems and modules needed to satisfy the
requirements. The requirements specification and design specification are
often traced to each other through use of a traceability matrix. The test plan,
as already described, lists the tests to be performed during T&E and links
each test to one or more requirements. This linkage is usually added to the
traceability matrix, so that there is traceability from the requirements through
the specification documentation to the tests that demonstrate that computer
code satisfies the requirements. Finally, each test procedure should contain
pointers to the requirement(s) that the procedure tests and to the portions of
the detailed design that were used in the creation of the test procedures. This
traceability is important in determining that all requirements have been ac-
counted for in the test procedures, and, when differences are observed be-
tween the expected and actual results, in determining which requirements are
unsatisfied.

We recommend that the test procedures be written in the five-column format
shown in Figure 5–34, which we have successfully used on a number of pro-
jects. The elements of the test procedure format are as follows:

♦ Header. This section of the test procedure provides identification of the
test, states the objective of the test, gives the long title of the test, and pro-
vides notes on how to conduct the test, on the estimated duration of the
test, on requirements tested, and on test resources (e.g., test data) needed
for the test. The information for the identification of the test and the objec-
tive of the test comes from the test plan. This information provides explicit
traceability between the test procedure and the test plan.

♦ STEP. This column provides a (usually sequential) identifying number for
each step.

♦ OPERATOR ACTION. This column specifies the precise action taken by
the tester (e.g., entering a keyboard command, pressing a function key, se-
lecting a pull-down menu choice, turning a computer on/off, plugging in a
compact disk device) in executing a particular step. The information in this
column comes from the detailed design specification. Typically, the infor-
mation is described in computerese.

Chapter 5 • Product and Process Reviews

324

ptg

♦ PURPOSE. This column explains why the tester took the action specified
in column 2—that is, what the tester expects to accomplish by the tester’s
actions. Typically, the information is described in plain language used by
the customer. The PURPOSE should also be reviewed by the customer to
help ensure that the seller is implementing what the customer wants.

♦ EXPECTED RESULTS. This column describes the response of the system
to the action taken by the tester in column 2. The information in this col-
umn comes from the requirements and the detailed design specifications.
When the test is performed, the information in this column is compared
with observed results as each test step is executed in order to uncover any
discrepancies.

♦ COMMENTS. This column contains a variety of information that may be
useful to the tester. Figure 5–34 provides a number of suggestions for infor-
mation to put in this column.

Note particularly the linkages of the test procedure to the requirements speci-
fication and the detailed design specification in the header (under Notes) and
in the COMMENTS column of Figure 5–34.

Having introduced a test procedure format, we now illustrate in the follow-
ing example how to construct a test procedure using that format. Test proce-
dures are a key element in performing T&E. If a test procedure is not
properly constructed, the test procedure may not achieve its purpose of
demonstrating that operational computer code satisfies some specified
requirement(s).13

Acceptance Test Procedure Example—System SHAPES This section dis-
cusses preparations for an audit of a software product that is computer code.
This discussion presents an example that illustrates how to construct a five-
column test procedure that demonstrates the traceability among the (1) re-
quirements specifications, (2) design specifications, (3) test plan, and (4) test
procedures. Remember, the requirements and design specifications are the
ground truth for the audit, and the test plan and procedures are the specifica-
tions for the conduct of the acceptance tests.

Figure 5–35 shows a one-page extract from a requirements specification for a
software system called SHAPES. This system is to permit a user sitting at a
computer terminal with a display device to construct various geometric
shapes. In the discussion that follows, we show how to construct a test proce-
dure to exercise the circle-drawing capability.

The second document used to construct the five-column test procedure is a
design specification. Figure 5–36 shows a portion of the System SHAPES De-
sign Specification.

Chapter 5 • Product and Process Reviews

325

13Note: This example contains some mathematics, in particular some elementary analytic geometry. It
is not necessary to understand the mathematics in the following example to understand the T&E is-
sues dealt with. The mathematics has been included for completeness.

ptg

Chapter 5 • Product and Process Reviews

326

Table 1. Geometric Shapes to Be Constructed from User-Supplied Input

1. Circle

2. Square

3. Equilateral
 triangle

4. Circular arc

5. Ellipse

SHAPE INPUT

1. Radius, center of circle

2. Length of side, center of square

3. Length of side, center of triangle

4. Arc (1) radius, (2) angular width,
 and (3) center

5. Ellipse (1) semimajor axis, (2)
 semiminor axis, and (3) center

The purpose of System SHAPES is to permit a user sitting at a computer terminal with a display
device to construct various geometric shapes. To achieve this purpose, the system shall perform
the following functions:

1. Draw complete geometric shapes on a display in response to user-supplied inputs. The shapes
 that shall be accommodated are those listed in Table 1 below, which shows the corresponding
 user-supplied input.

2. The border of geometric shapes shall be one of the following as selected by the user:

Requirements Specification for System SHAPES

Date
Document Number

a. Solid line

b. Dashed line

c. Dotted line

Figure 5–35 Here is a portion of the SHAPES requirements specification that is one input to
SHAPES test procedure construction.

ptg

Chapter 5 • Product and Process Reviews

327

Design Specification for System SHAPES

Date
Document Number

• • •

2.2 Circle-Drawing Subsystem

This section describes the design of the Circle-Drawing Subsystem of System
SHAPES. The purpose of this subsystem is to draw circles on a display device based
on a user-supplied (1) circle radius, (2) circle center, and (3) code specifying the type
of border (namely, solid line, dashed line, or dotted line).

2.2.1 Computational Procedure

The following processing steps specify the operation of this subsystem:
1. Let the user-defined border codes be defined as follows:

A = solid line
B = dashed line
C = dotted line

2. If (x0,y0) are the coordinates of the circle center and R is the circle radius,
 then a point (x,y) on the circle is given by the following formula:

3. The above formula shall be used to compute the coordinates of a point on the
 circle. There are three cases to consider—one for each border desired. The
 processing steps for each case are specified below.

• • •

2.2.2 User Interface

To access the SHAPES Circle-Drawing Subsystem, the user shall utilize the
following command:

CIRCLE (RADIUS, X, Y), CODE

where

RADIUS = user-supplied radius in the format NN.NN , where NN.NN must
 lie in the range 0.50 to 10.00 inclusive. The first N is optional.

X = user-supplied abscissa of the circle center in the format ±
N.NN, where N.NN must lie in the range 0.00 to 5.00 inclusive.

Y = user-supplied ordinate of the circle center in the same format
 and having the same range as X.

[Note: The center of the display device is assumed to lie at (X,Y) = (0.00,0.00);
 the width of the device is assumed to be 25.00 units and its height is
 assumed to be 22.00 units.]

CODE = user-supplied border code whose allowable values are A, B, or C as
 defined in 2.2.1 above.

(x – x0)2 + (y – y0)2 = R2

Figure 5–36 Here is the circle-drawing portion of the design specification for System SHAPES.

ptg

Chapter 5 • Product and Process Reviews

328

Design Specification for System SHAPES

Date
Document Number

2.2.3 Error Conditions

Table 2.2-1 below defines the error diagnostics that shall be generated using the
algorithms specified in Appendix C whenever the command specified in 2.2.2
above is not used as indicated there.

Table 2.2-1. Circle-Drawing Subsystem Error Diagnostics and Their Causes

CE1

CE2

CE3

CE4

DIAGNOSTIC
CODE CAUSE(S)

Command name misspelled
(e.g., CIRCEL)
Command string parameter mistake
or punctuation error
[e.g., CIRCLE(3.50,0.50,),A]

Value of parameters out of range
[e.g., CIRCLE(11.09,0.50,0.00),B]

Value of parameter X and/or Y out
of range
[e.g., CIRCLE(5.67,0.50,7.05),C]

Value of border code out of range
[e.g., CIRCLE(3.00,0.50,0.50),D]

DIAGNOSTIC

COMMAND SYNTAX ERROR

RADIUS OUT OF RANGE

CENTER ABSCISSA AND/OR
ORDINATE OUT OF RANGE

BORDER CODE NOT A, B,
OR C

• • •

Figure 5–36 Continued

ptg

This specification and the requirements specification are needed to describe
(1) how the tester is to interact with System SHAPES during the test and
(2) what the tester expects to see as a result of this interaction.

Assume that these two specifications constitute respectively the Require-
ments Baseline and the Detailed Design Baseline for System SHAPES. Also
assume that you are a tester whose task is to perform acceptance testing on
System SHAPES. Assume further that you have already prepared a test plan
for this purpose and that Figure 5–37 shows an extract from this test plan that
defines tests for exercising the SHAPES circle-drawing capability.

This extract shows the following two tests to be performed: (1) Test CD.1
(Command CIRCLE Parameter Check) and (2) CD.2 (Command CIRCLE
Error Diagnostic Check). Using the five-column format shown in Figure 5–34,
how would you construct a test procedure for Test CD.1 defined in Fig-
ure 5–37?

In constructing this test procedure, keep in mind that it is to be part of a test
procedures document and that the execution of these test procedures is to be
used to test and retest the SHAPES software code until the CCB decides that
this code is ready for operational use.

Figure 5–38 shows the first three steps of a test procedure designed to imple-
ment Test CD.1 as defined in the SHAPES Test Plan extract given in Fig-
ure 5–37.

The layout is based on the five-column format previously introduced. Any
format is okay as long as it contains the information shown in the OPERA-
TOR ACTION and EXPECTED RESULTS columns. This information is the
linkage between product development activity and product assurance activ-
ity. The resultant tester comparison of the system response to the OPERA-
TOR ACTION with the EXPECTED RESULTS provides decision makers with
the means for determining whether the computer code and supporting data-
bases are doing what the customer wanted.

In the following discussion, we comment on Figure 5–38 to provide you with
insight into the specifics of how a test procedure is constructed from a test
plan and from design and requirements specifications.

At the top of the procedure in Figure 5–38, the overall objective of the test is
stated. This statement is essentially the same statement that appears in sub-
section 3.3.1 of the test plan shown in Figure 5–37. Thus, this statement pro-
vides explicit traceability between the test procedure and the test plan. It also
provides quick insight into the intent of the test. This quick insight is particu-
larly helpful when a test consists of hundreds of individual steps. Under such
circumstances, it is difficult to perceive, by looking at such a long list of steps,
what system design aspects or requirements the procedure is trying to test.
The statement of test objective appearing at the top of the procedure helps al-
leviate this difficulty. In a test procedure document consisting of hundreds or
thousands of tests (not uncommon for systems of even moderate complexity),

Chapter 5 • Product and Process Reviews

329

ptg

330

Test Plan for System SHAPES

• • •

3.3 Circle-Drawing Tests

This section defines the tests for exercising the circle-drawing capabilities of System SHAPES.
All tests are intended to be performed at a computer terminal with a display device. The computer
terminal will accept tester-supplied inputs, and the display device will show the SHAPES response
to these inputs. Two tests are defined—Test CD.1, which exercises the command CIRCLE with
in-range values as defined in section 2.2.2 of the design specification; and Test CD.2, which
exercises the error diagnostics defined in section 2.2.3 of the design specification.

3.3.1 Test CD.1 (Command CIRCLE Parameter Check)

The objective of this test is to verify that command CIRCLE draws circles when proper
command parameter values are input. Selected in-range values of the command
parameters will be input, and the displayed circles will be viewed to determine whether
they are constructed according to section 2.2.2 of the design specification as
illustrated below.

3.3.2 Test CD.2 (Command CIRCLE Error Diagnostic Check)

The objective of this test is to verify that the error diagnostics appearing in Table
2.2-1 of section 2.2.3 of the design specification are produced when command CIRCLE is
improperly used. Selected out-of-range values of the command parameters will be input,
and the display will be viewed to determine whether the diagnostics specified in
Table 2.2-1 appear.

• • •

CIRCLE(RADIUS,X,Y),CODE
(X, Y)

CODE = A

RADIU
S

Date
Document Number

Figure 5–37 Here is an extract from a test plan for System SHAPES showing circle-drawing tests
based on the SHAPES design specification.

ptg

Chapter 5 • Product and Process Reviews

331

Enter
CIRCLE(1.00,0.00,0.00),A

Enter
CIRCLE(5.00,0.00,0.00),B

Enter
CIRCLE(10.00,–0.50,–0.50),C

STEP

1.

2.

3.

4.

OPERATOR ACTION

System SHAPES Test Procedure

PURPOSE EXPECTED RESULTS COMMENTS

ABC-TProc-SHAPES1-33/R1
SHAPES Release 1.0 CD.1-1 December 7, 1999

A circle of radius 1.00
appears at the center
of the display with a
solid-line border.

A circle of radius 5.00
appears at the center
of the display with a
dashed-line border.

A circle of radius
10.00 centered at
(–0.50,–0.50) (i.e.,
slightly below and to
the left of the center
of the display)
appears on the
display with a dotted-
line border.

The display has
background
markings that allow
the tester to
determine visually
the x and y values of
the center and the
value of the radius.

Steps 1–10 explicitly
exercise section 2.2.2
of the SHAPES Design
Specification, which
implements the
capabilities specified
in the first line of
Table 1 in the
SHAPES
Requirements
Specification
and in paragraph 2 of
that specification.

To draw a circle of
radius 1.00 centered
at (0.00,0.00) with a
solid-line border.

To draw a circle of
radius 5.00 centered
at (0.00,0.00) with a
dashed-line border.

To draw a circle of
radius 10.00 centered
at (–0.50,–0.50) with a
dotted-line border.

Test CD.1 OBJECTIVE:

TITLE:

NOTES:

The objective of this test is to verify that command CIRCLE draws circles
when proper command parameter values are input.

Command CIRCLE Parameter Check

1. No improper parameter values are to be input (see Test CD.2).

2. In addition to the parameter values used in the test steps below, other
 (proper) values should also be input to extend the breadth and depth of
 the test.

• • •• • •• • •

Figure 5–38 Here is a portion of a System SHAPES test procedure derived from the System SHAPES
Test Plan extract (i.e., Test CD.1).

ptg

the absence of an objective for each test can make the comprehension of the
set of test procedures impossible. Particularly in these circumstances, a state-
ment of the overall objective of each test is essential for proper interpretation
and use of the document.

Below the statement of objective in the test procedure, the title of the test ap-
pears (i.e., Command CIRCLE Parameter Check in Figure 5–38). This title
generally augments the test identifier (i.e., Test CD.1 in Figure 5–38) shown to
the left of the statement of objective. The title provides insight into the nature
of the test (which in this case is a check of the parameters appearing in a user
command). As such, the test title complements the statement of objective ap-
pearing above it.

Below the test title are two notes that provide amplifying comments on the
test as a whole. Specifically, the notes in Figure 5–38 address the following
points:

♦ The first note essentially defines the scope of the test (namely, that only
proper parameter values are to be input). This note also points to another
test (using the test identifier CD.2) which will deal with improper (i.e., out-
of-range) parameter values. The former type of test is often termed positive
testing, while the latter type of test is often termed negative testing.

♦ The second note suggests some excursions from the written procedures
that should be performed. The excursions are for the purpose of extending
the breadth and depth of the test. The development of written test proce-
dures is generally an extremely labor-intensive activity. Consequently, it is
often simply not possible to write down all the test steps needed to exercise
comprehensively all or even most aspects of a requirement (or a set of re-
quirements) or a design (or sections of a design) that is the object of a par-
ticular test. To strike some sort of compromise between this real-world
constraint stemming from limited resources and the need to perform thor-
ough testing, a test procedure write-up often includes suggestions (such as
the one in the second note) for performing test steps that are not explicitly
shown in the write-up but that are straightforward variations or extensions
of test steps shown. In the context of the test procedure depicted in Figure
5–38, an example of such variations might be the following:
The purpose of the first test step shown in the figure is to draw a circle of
radius 1.00 in the center of the display with a solid border. The purpose of
the second step is to draw another circle with a different radius also in the
center of the display but with a dashed-line border. The purpose of the
third step is to draw another circle with a radius that differs from the radii
used in steps 1 and 2. Also, this third circle is to be centered somewhere
other than in the center of the display, and, in contrast to the first two cir-
cles, it is to have a dotted-line border. It is thus clear from these steps that
the strategy of test CD.1 is exactly that prescribed in subsection 3.3.1 in the
test plan shown in Figure 5–37. Namely, the strategy is to use selected in-
range values of CIRCLE parameters to construct different circles. From the

Chapter 5 • Product and Process Reviews

332

ptg

comments appearing in the COMMENTS column in Figure 5–38, it appears
that this strategy is also followed in steps 4 through 10 (which are not
shown in the figure). Now, from subsection 2.2.2 of the SHAPES Design
Specification, it is evident that there are many more in-range combinations
of parameter values for the CIRCLE command than can be incorporated
into ten steps in the manner indicated in Figure 5–38. On the other hand,
these combinations are clearly variations of the steps shown. Thus, for ex-
ample, one set of such variations of step 1 might be the following:

CIRCLE(R,0.00,0.00), A

where R is allowed to vary from 0.50 to 10.00—the minimum and maximum
values respectively for this parameter (as indicated in the design specifica-
tion)—in increments of, say, 0.1. Such an excursion from step 1 in the writ-
ten procedure would represent a fairly thorough testing of the capability to
draw solid-line circles centered at the center of the display whose radii com-
pletely cover the allowable range for this parameter.

The information in each of the three test steps shown is based primarily on
subsection 2.2.2 of the design specification (as noted in the COMMENTS col-
umn in Figure 5–38). For example, the information in the OPERATOR AC-
TION column (i.e., what the tester has to input to elicit a response from the
code being tested) is a particular realization of the command format specified
in that subsection. Also, the information in the EXPECTED RESULTS column
is derived directly from the design specified in that subsection. This heavy re-
liance on design documentation occurs frequently in test procedure develop-
ment work. The primary reason is that test procedures are generally written
at the “button-pushing” level of detail and that such detail is often not found
until the Detailed Design Stage of the life cycle.

A comment is in order before we describe the COMMENTS column. What
happens if the information needed for the OPERATOR ACTION and EX-
PECTED RESULTS columns is not present in the requirements specification
and/or design specification? The people putting the test procedures together
(e.g., product assurance) will need to ask the developers questions in order to
obtain the needed information. This interaction is an example of product as-
surance acting as a forcing function on the development process. By forcing,
we mean “the tester forces the developer to think through what the system is
supposed to do.” This forcing function helps everyone to think through the
implementation of the requirements and design.

Now, let us return our discussion to the COMMENTS column in Figure 5–38.
In addition to linking test steps back to the design specification, the COM-
MENTS column also links the steps back to the requirements specification.
Thus, through this linkage, it is possible after test step execution to determine
in specific terms the extent to which customer requirements (in this case, the
capability to draw circles on a display) are embodied in the computer code.
This information is precisely what a CCB needs to determine whether com-

Chapter 5 • Product and Process Reviews

333

ptg

puter code needs to be modified before it is delivered to the customer for
operational use.

Regarding the information in the EXPECTED RESULTS column, note that
this information needs to be expressed in terms that permit a tester to observe
the response of the system so that the tester can effect a meaningful compari-
son between this information and the actual system response. This compari-
son is the heart of the test execution activity, because from this comparison
come discrepancies. These discrepancies provide the basis for CCB action
regarding the release of the code for operational use.

The preceding discussion gives some idea how a test procedure can be con-
structed from a test plan and specification documentation. From this discus-
sion, you should now be able to construct a test procedure for Test CD.2
defined in subsection 3.3.2 of the test plan shown in Figure 5–37.14

Constructing a test procedure is not a mechanical exercise. There is a careful
balance of many factors that include the following: (1) number of steps to in-
clude, (2) time available to build and then exercise the test procedures,
(3) available resources, (4) criticality of the system (e.g., Could system failure
involve the loss of life?), (5) available documentation, and (6) agreement be-
tween the seller and customer regarding what the system is supposed to do.
Figure 5–39 summarizes our discussion on a way to build acceptance test
procedures.

The figure shows the linkage among the requirements specification, design
specification, and test procedures. For example, the requirements specifica-
tion can be used to fill in some of the EXPECTED RESULTS column. Section
3.4 of the requirements specification states the requirement that the system
shall display happy and sad faces in response to facial feature input. The de-
sign specification can be used to fill in some of the OPERATOR ACTION and
EXPECTED RESULTS columns. Section 7.2 of the design specification details
the command the operator uses to construct a happy face. It is important to
note that the specifications do not necessarily have to be bound documents.
The specifications could be any correspondence that a project deems official,
such as CCB minutes or memoranda between the customer and seller project
managers. Regardless, the five-column acceptance testing format helps ex-
plicitly to link software products and the customer/seller agreed-upon sys-
tem capabilities. The information in this figure is typically used to populate a
traceability matrix.

The set of test documentation discussed—test plan and test procedures—is
not the only set possible. For example, the U.S. government often adds an in-
termediate document. This document, the test specification, outlines each test
procedure prior to formulation of the procedure steps. Other variations of

Chapter 5 • Product and Process Reviews

334

14Creating test procedures is not an academic exercise. In constructing a test procedure for CD.2, you
will discover that the requirements specification is silent on a key point that results in a design specifi-
cation ambiguity.

ptg

Chapter 5 • Product and Process Reviews

335

Acceptance Test Procedure
3.4 Face-Making
 Capability
The system shall display
happy and sad faces in
response to facial feature
input. The allowable facial
features shall be specified
in the design.

7.2 Face Construction
 Command
To construct the happy
face below, use the
following command:

HAPPY_FACE(1,A,B)

P

COMMENTS

See Design Spec. ¶7.2.

EXPECTED RESULTSPURPOSE

HAPPY_FACE(1,A,B)

Test N

STEP #

14.

OPERATOR
ACTION

REQUIREMENTS

DESIGN

TEST
PROCEDURES

Figure 5–39 To demonstrate formally that a software system to be delivered does what the customer and seller agreed to, ac-
ceptance test procedures should be explicitly linked to the system development activities that yielded products reflecting this
agreement.

test documentation include the use of different names for test entities (e.g., a
test procedure may be known as a test case) or the use of a hierarchy of tests
(e.g., test groups/test procedures/test cases). None of these variations modi-
fies the primary concept we are discussing—that specific written test docu-
mentation derived from appropriate sections of the requirements and design
specifications must be developed prior to the beginning of acceptance tests.

ptg

Now that we have looked at the preparation of the test plan and test proce-
dures—activities that must precede the actual audit of the code—we are in a
position to discuss the auditing process itself. This process, which we term
“acceptance testing,” is shown in Figure 5–40.

The focal point of the acceptance testing process is acceptance test procedure
execution. The figure shows how test procedure execution couples (1) what
the requirements and design specifications say a software system is to do
with (2) what the software system actually does. When the tester executes a
test step, the tester observes the system’s response and compares this re-
sponse with what appears in the EXPECTED RESULTS column. If the results

Chapter 5 • Product and Process Reviews

336

Acceptance Testing Process

Test N

Test N

Test 1

STEP # PURPOSE EXP. RES. COM.
OPER.

ACTION

Execute Next
Test Step

Write TIR

YES

NO
=

?

REQUIREMENTS

ACCEPTANCE
TEST PLAN

DESIGN

TEST
PROCEDURES

Figure 5–40 This figure presents an overview of the acceptance testing process.

ptg

do not match, the tester writes a TIR and then executes the next test step. If
the results do match, the tester executes the next test step. For example, the
EXPECTED RESULTS column in the figure shows a happy face. However, as
shown in the figure, when the tester executes the test step, the tester observes
a scowling face on the computer screen. The tester compares the EXPECTED
RESULTS (happy face) with the observed results (scowling face). In this case,
since the results do not match, the tester writes a TIR and then executes the
next test step.

The output of test procedure execution is thus a set of TIRs that documents
discrepancies between specified operation and observed operation. It is then
up to customer and seller management to decide how these discrepancies are
to be resolved before the seller delivers the system to the customer. The cus-
tomer and seller management make this decision at a CCB.

In the following paragraphs we examine the TIR form in detail. However, be-
fore turning our attention to this form, we examine how to manage accep-
tance testing. For this purpose, we take the view that acceptance testing is a
cycle governed by two types of CCBs—Software Turnover CCB and Test Inci-
dent CCB. As we proceed through the testing cycle, we will see how these
two CCBs help to provide visibility into the computer code at every step in
the testing cycle. This visibility is captured through (1) CCB minutes, (2) TIRs,
(3) written test procedures, and (4) documented baselines. With this visibility,
we can trace the baseline changes and test incident reports. Visibility and
traceability are particularly important during the acceptance testing cycle.
Generally, the scheduled software code delivery date is rapidly approaching.
The software code is being changed frequently and rapidly. Without good
visibility and traceability, it is easy to lose control over the software. Test inci-
dents may be overlooked or go unreported; they may be misplaced and never
addressed. TIR resolutions requiring code corrections may be found, but the
code may not be corrected. Corrected code may never be retested, and harm-
ful side effects from code changes or improper corrections may never be un-
covered. The set of code being tested may not converge to a set suitable for
delivery to the customer, but may actually diverge with an increasing num-
ber of test incidents from testing cycle to testing cycle. Visibility and traceabil-
ity are essential if the seller development team is to achieve convergence with
what the customer wants.

Figure 5–41 shows the acceptance testing cycle that we now walk through. No-
tice that the focal points of the cycle are the Software Turnover CCB and the Test
Incident CCB. As we discuss, these CCBs are special cases of the CCB concept
discussed in Chapter 4. These CCBs are simply tailored to focus on the deter-
mination of whether a software system is ready to be shipped to the customer.

The starting point in our walkthrough of the acceptance testing cycle occurs
when the seller development team provides the software system to be tested
and the supporting material to the product assurance personnel at a Turn-
over CCB. Let us assume that the software system is a new system, that is,
one that has not yet had any acceptance testing. However, as we walk

Chapter 5 • Product and Process Reviews

337

ptg

Chapter 5 • Product and Process Reviews

338

Software
Turnover

CCB

Test
Incident

CCB

Seller Development Team

Acceptance Testing Cycle

Seller Development Team

Product Assurance Personnel

Product Assurance Personnel

Provides software
system & supporting
material to Product
Assurance personnel
at Turnover CCB

Analyze and resolve
TIRs

Build and calibrate
software system to
establish Test Baseline

Product Assurance Personnel

Turnover Material
● Source Code/Databases ● Build Instructions ● Known Problems ● Unit & Integration Test Results
● Calibration Data ● List of Code Modules/Databases to Be Turned Over for Testing
● (� 2nd Time Through –Resolved Test Incident Reports [TIRs] –Unresolved TIRs)

Execute the test
procedures, record
results, and submit
results at Test
Incident CCB

TIR

Seller Development Team

Product Assurance Personnel

Resolve TIRs

TIR

Unres
olve

dSTART TESTING

MORE TESTING

NO
MORE

TESTING

Test Baseline
New TIRs

&
Unresolved

TIRs

OPERATIONAL
BASELINE

Resolved TIRs &
Unresolved TIRs

Unresolved
TIRs

Turnover
Material

Resolved TIRs
&

Unresolved TIRs

START

HERE

OK
PA

PA
OK

FIgure 5–41 The interaction of the Software Turnover CCB and the Test Incident CCB during the acceptance testing cycle
raises the software system’s visibility and infuses it with traceability. The cycle continues until the customer and seller mutually
agree that the software system is ready to be released (i.e., “accepted by the customer”).

ptg

through the acceptance testing cycle, we also discuss software systems that
have had some acceptance testing.

What exactly is turned over at the CCB? There are a wide variety of answers
in response to this question. This variety may be a reflection of the variety of
organizations involved in software development and the variety of change
control procedures used by those organizations. In the following list, we state
the items that we believe should be turned over at the Software Turnover
CCB meeting:15

♦ Source code. This product is created by the developers and is subsequently
changed in the event that the resolution of a TIR requiring a change to the
code is approved by the CCB. The computer source code must therefore be
placed under configuration control at this point. Other source code deriva-
tive products, such as a computer source code listing or computer object
code, can be generated from computer source code.

♦ Build instructions. These instructions detail how to transform the source
code modules into an entity that constitutes the software system. These
build instructions enable the system builder (in the product assurance or-
ganization) to assemble the source code modules into a system for testing.

♦ Known problems. Problems associated with the turnover software become
baseline discrepancies that are documented as TIRs. Their submission to
the CCB provides visibility as to the software status and averts unneces-
sary testing.

♦ Unit and integration test results. The development organization conducts
unit and integration tests16 and records the results in test reports. These re-
ports indicate how these tests were conducted and detail the test out-
comes—including problems encountered and whether these problems
were corrected. Such unit and integration test results increase the visibility
of the state of the software code.

♦ Calibration data. These data consist of a set of input test data and a corre-
sponding set of output results data. For example, assume that the software
computer code adds two numbers together and produces a result. Input
test data are the numbers 4 and 5. The corresponding output results data
would be the number 9. Before the testers begin their testing, they want to
make sure that they are going to test the software computer code that the
development organization provided to the testers at the Software Turnover
CCB. The testers use the build instructions to assemble the source code
modules into a system for testing. Once the system is built, the testers
would use the calibration data (i.e., input test data [4,5] and output results

Chapter 5 • Product and Process Reviews

339

15We believe that this turnover list is independent of project organization. Note that this discussion is
also applicable to databases.
16By unit testing, we mean “the exercising of a unit (a separately compilable sequence of code state-
ments) to ascertain whether it meets design specifications.” By integration testing, we mean “the exer-
cising of progressively larger collections of units to check out the integrated operation of each
collection of units. The final step in integration testing is the exercising, as a single entity, of all units
in the system under development.”

ptg

data [9]) to exercise the built system. If the testers input the numbers 4,5
and the system produced the result of 12, then the testers would know that
they do not have the system they think they have.
The testers know that some software part is missing (e.g., it may not have
been turned over at a Software Turnover CCB) or it has been changed or
the build instructions may be incorrect. Basically, something that worked
before no longer works. Software could be missing parts or could be
changed and not be detected by this calibration test. The purpose of the
calibration data is to obtain a degree of comfort that the testers are reading
from the same sheet of music as the development organization—before the
testers expend resources executing the test procedures.
Calibration data are not used to test the software (the test procedures pro-
vide an independent set of data for testing) but to calibrate the software
system. It is important to calibrate the system before you expend resources
testing the wrong system.

♦ A list of code modules to be turned over for testing. This list identifies the
software parts delivered.

♦ (≥ 2nd time through: resolved test incident reports [TIRs] and unre-
solved TIRs). Resolved and unresolved TIRs come into play during the
second and subsequent times through the testing cycle. Resolved TIRs be-
come part of the software system that is built by the product assurance per-
sonnel for acceptance testing. Unresolved TIRs that are provided to the
Software Turnover CCB may have to be resolved before testing begins,
may not be resolved until later, or may be converted to incident reports
(IRs) or change requests (CRs).

The minutes of the Software Turnover CCB meeting should specify what was
turned over at the meeting, list the known software problems,17 establish pri-
orities for testing the software, and set a date when the testers will end their
testing and submit any TIRs they generate to the test incident CCB.

Following the Software Turnover CCB meeting, the software configuration
management personnel (of the product assurance organization) place the de-
livered source code modules under control. This controlled set of code is
given the name “Development Baseline” to signify that this code is what the
developers handed over for testing. Then, the product assurance organiza-
tion, using the build instructions provided at the turnover meeting, build an
executable software system that is given the name “Test Baseline.” The prod-
uct assurance testers then first execute the built system using the calibration
data to see whether they obtain the same outputs included with the calibra-
tion data that they received at the turnover meeting. If not, the modules in the
Development Baseline need to be checked (presumably by the developers) to

Chapter 5 • Product and Process Reviews

340

17As the seller development team members prepare the turnover material, they may find a problem
with the software code. The developers can record this newly discovered problem on a TIR and in-
clude it as part of the turnover material. TIRs are usually generated by the testers, but in this case the
developers generate the TIR.

ptg

see whether they were indeed the ones the developers used to generate the
output calibration data. If the product assurance testers are able to reproduce
the output calibration data, they use their previously written test procedures
to exercise the Test Baseline in a live or nearly live environment. As a result of
this testing, they may generate new TIRs.

The product assurance personnel execute the test procedures, record the re-
sults, and then submit the results at a Test Incident CCB. Before we describe
the role of the Test Incident CCB, we first discuss how TIRs are used during
testing. An example TIR form is shown in Figure 5–42.

The TIR form shown is an example only, designed to match our other change
control forms that we have discussed. This TIR form is a simplification and
amalgamation of the IR and SCN forms already presented. We chose this de-
sign for this form because the test incident report process is basically a simpli-
fied version of answering the question “Is something wrong?”

When a tester executing the test procedures observes a discrepancy, the tester
fills out the initiation event portion of the TIR and gives it to the bookkeeper18

in the product assurance organization. The bookkeeper assigns a control
number to the TIR in the freezing event portion of the TIR and presents all ac-
cumulated TIRs to the Test Incident CCB. At that meeting, the CCB might de-
cide that no action is required on the TIR or might decide to convert the TIR
either to an IR or a CR. Conversion to an IR might occur if the CCB
establishes the Operational Baseline19 at a subsequent CCB—any residual
TIRs are converted to IRs at that time. For any one of these three decisions,
the CCB chairperson fills out the decision event portion of the TIR. If the CCB
decides to send the TIR to the developers for resolution, no entry is made in
the decision event portion of the TIR.

The developer assigned to process a TIR fills out the analysis event portion of
the TIR. The developer adds a recommended resolution to the TIR and a list
of the software parts in the Development Baseline that the developer has
changed. At the subsequent Software Turnover CCB, all the TIRs that were
completed through the analysis event are reviewed. The CCB might decide
that no action is required on the TIR or that it should be converted to a CR.
For these decisions, the bottom portion of the TIR would be filled out by the
CCB chairperson. Otherwise, the Software Turnover CCB forwards the TIR to
the testers for retest. A tester retests the software system to determine
whether the incident has been resolved. The tester retests the system by reex-
ecuting the test procedure indicated on the TIR and observing at the TIR-
specified test step whether the observed and expected results now agree. If no

Chapter 5 • Product and Process Reviews

341

18The bookkeeping role can be performed in a variety of ways. For example, the bookkeeper can be
the tester or a member of the configuration management (CM) staff. When the testing activity in-
volves a lot of testers, it may be preferable to have a member of the CM staff serve as the single point
of contact for collecting TIRs. This approach increases the likelihood that all TIRs will be properly ac-
counted for.
19We use the term “Operational Baseline” to signify that the tested code is now ready for operational
use.

ptg

342

Control Number: _ _-_ _ _ _ Amendment: _______

Tester: Name:_______________ Telephone Extension:__________

FREEZING
EVENT

TEST INCIDENT REPORT

ANALYSIS
EVENT

INITIATION
EVENT

DECISION
EVENT

Executable Code/Database: Release No.:__________ Version No.:__________

Test: Incident Duplicated AttachmentsProcedure:_____ Step:_____

Incident Description:

Recommended Resolution:

Continuation Page

Analyst: Name:_______________ Telephone Extension:_______

CCB Decision: Resolved Date: ___/___/___

Not Resolved—Convert to:

CR Control No.:_______________

No Action Required

Chairperson:_____________________

Software/Data Name
Software/Data

Identifier Version/Revision
Type of Software/Data

(Doc. or Code)

Changed Software/Data:

Tester: Name:_______________ Telephone Extension:__________ Date: ___/___/___

Date: ___/___/___

Date/Time of Incident: ___/___/___ /_____

Retest: Incident Resolved Incident Not Resolved—See Amendment: ___________

RETEST
EVENT

IR

Figure 5–42 Example of a test incident report (TIR) form and associated events that it documents.

ptg

discrepancy appears, the tester indicates in the retest event portion of the TIR
that the incident has been resolved. At the next Test Incident CCB, the chair-
person indicates that the test incident has been resolved in the decision event
portion of the TIR, and the TIR is closed. However, if the tester still finds a
discrepancy as a result of retest, the tester indicates that fact in the retest
event portion of the TIR and initiates an amendment to the TIR (amendments
are labeled sequentially starting with the letter A). The amendment is written
on another TIR form and attached to the original TIR. The tester fills in the in-
cident description item of the TIR amendment according to the tester’s obser-
vations during retest. The development analyst fills in the analysis section of
the TIR amendment, and the tester completes the retest event on the amend-
ment. The TIR can continue around the acceptance testing cycle a number of
times, with the TIR and its amendments providing visibility as to what oc-
curred during each cycle and traceability from event to event. The TIR is
closed out eventually when the CCB approves the resolution of the test inci-
dent, converts it to an IR or a CR, or requires no code or document changes to
be made.

To further explain the TIR form, assume that the TIR shown in Figure 5–43
was generated. The context for this TIR is the previously discussed System
SHAPES. Assume further that we are using SHAPES to draw ellipses on a
map of the earth’s surface. The tester fills out the initiation event portion of
the form and submits it to the product assurance bookkeeper, who assigns it
the control number 99-1066.

TIR 99-1066 and all other TIRs written during this test period are submitted
to the next meeting of the Test Incident CCB. At this meeting, each TIR is dis-
cussed in turn; if the CCB can resolve a TIR at the meeting, it does so and
closes the TIR. For example, if the TIR is a duplicate or if it results either from
a misunderstanding by the tester or from an error in the test procedures, the
CCB usually decides to take no action on a TIR, and the TIR is closed. In the
case of an error in a test procedure, the testers correct the errant test proce-
dure and rerun the test. The CCB might also decide that a TIR represents a ca-
pability not currently contained in the requirements specification. Such a TIR
may be converted by the CCB to a change request, i.e., the CCB will consider
amending the requirements after an impact assessment has been made. The
TIR is closed, and the CR is processed. The CCB may also decide that it will
not change the requirements to respond to the TIR, in which case the TIR is
closed and the originator notified.

At this particular Test Incident CCB meeting, TIR 99-1066 is recognized as a
problem and is sent to the development organization for analysis. This analy-
sis provides insight into the question “Is something wrong?” The outcome of
this analysis can be one of the following:

♦ Something is wrong with the software system. Something needs to be
fixed, and the developers believe that it can be fixed before the next Soft-
ware Turnover CCB.

Chapter 5 • Product and Process Reviews

343

ptg

Control Number: _ _-_ _ _ _ Amendment: _______

Tester: Name:_______________ Telephone Extension:__________

TEST INCIDENT REPORT

Executable Code/Database: Release No.:__________ Version No.:__________

System Shapes

Test:

Amy Blue

99 1 0 6 6

2174

11/10/99-2130

2.199-3

EI2

Expected ellipse to be drawn with semimajor axis oriented north-south. When ellipse

with semimajor axis 5000 miles was drawn, semimajor axis was oriented northeast-southwest.

49 Incident Duplicated AttachmentsProcedure:_____ Step:_____

Incident Description:

Recommended Resolution:

Continuation Page

Analyst: Name:_______________ Telephone Extension:_______

CCB Decision: Resolved Date: ___________

Not Resolved—Convert to:

CR Control No.:_______________

No Action Required

Chairperson:_____________________

Software/Data Name
Software/Data

Identifier Version/Revision
Type of Software/Data

(Doc. or Code)

Changed Software/Data:

Jack Lemon

ELIPCALC
ELIPDRAW

5.2.1
5.2.4

1.6
2.1

Code
Code

1492 11/15/99

Register overflow. Use double precision arithmetic whenever
semimajor axis greater than 2000 miles.

Tester: Name:_______________ Telephone Extension:__________ Date: ___________

Date: ____________

Date/Time of Incident: ______________

Retest: Incident Resolved Incident Not Resolved—See Amendment: ___________

IR

X

X

X

=

Figure 5–43 Example of a completed test incident report (TIR) showing an incident resolved by
changing code. The first retest of the code demonstrated that the recommended code changes
were correct.

ptg

As the developers attempt to fix the software system, it becomes apparent
that the system cannot be fixed before the next Software Turnover CCB. In
this case, the seller development team explains at the next Turnover CCB
that the effort required to fix the system was considerably more than what
was thought to be case at the previous Test Incident CCB. At the Turnover
CCB, the decision makers can make decisions that include the following:
♦ The TIR needs to be resolved. In this particular case, the software sys-

tem needs to be fixed before the Operational Baseline is established. The
developers are directed to fix the system.

♦ The TIR is converted to an IR. In this particular case, the software
system does not need to be fixed before the Operational Baseline is
established.

♦ Something is not wrong with the software system. In this case, the seller de-
velopment team determines that no products need to be fixed. This situation
generally arises when a TIR is misunderstood at the Test Incident CCB.

The minutes of this Test Incident CCB should include a list of all TIRs submit-
ted, a list of resolved and unresolved TIRs, the designation of any software
capabilities that should be given particular attention because of the number
or impact of TIRs pertinent to those capabilities, and the date of the next Soft-
ware Turnover CCB meeting, at which the development organization will
turn the software back over to the product assurance organization for further
testing.

The development organization analyzes and attempts to resolve as many
TIRs as possible in the time period allotted. The analysis event portion of each
TIR resolved is filled out at this time. In the case of TIR 99-1066 two modules
were adjudged to be faulty by the analyst (from the development organiza-
tion), ELIPCALC and ELIPDRAW. The developers obtain a copy of each of
these two modules from the software development library and correct them
to resolve the test incident.

At the subsequent Software Turnover CCB meeting, all resolved TIRs are pre-
sented to the CCB. For TIRs requiring changes to code modules (such as TIR
99-1066), the corrected source code modules (including ELIPCALC and ELIP-
DRAW) are also turned over to the product assurance organization. In the
process of resolving TIRs, the development organization often uncovers addi-
tional discrepancies. It is important to note that such discrepancies might in-
clude areas of uncertainty in the various specifications for the project. These
discrepancies are reported as TIRs and introduced at this Software Turnover
CCB meeting. The minutes of this CCB meeting should document all TIRs re-
turned to the CCB and their resolutions, all new TIRs introduced at the meet-
ing, and the date when the Test Incident CCB would be held.

After this meeting, the product assurance organization substitutes the cor-
rected source code modules in the Development Baseline. The software sys-
tem (Test Baseline) is rebuilt to include the corrected code modules. Then the
testers exercise the Test Baseline again, using their test procedures. During

Chapter 5 • Product and Process Reviews

345

ptg

this testing period, particular attention is paid to the procedure test steps
where resolved TIRs were first observed. If a discrepancy still exists at a par-
ticular test step, an amendment to the TIR is prepared and attached to the
TIR. With regard to TIR 99-1066, the tester found no discrepancies at step 49
of procedure EL2, and so indicated that the incident was resolved in the retest
section of the TIR. At the next meeting of the Test Incident CCB, the decision
makers, noting that TIR 99-1066 had been resolved on retest, marked the deci-
sion event section to indicate that the incident had been resolved and then
closed the TIR.

The Test Incident CCB also decides when the testing cycle terminates. Ideally,
the cycle terminates when no TIRs result from the execution of the test proce-
dures and no residual unresolved TIRs exist. However, we live in a far from
ideal world and must have other mechanisms to allow us to exit the testing
cycle. Even if TIRs are outstanding at the end of a cycle, the CCB may elect to
terminate the cycle if the number of outstanding TIRs is relatively few and
the impact of the TIRs on system operation is relatively minor. Another con-
sideration is whether the software has tended toward stability in the last few
cycles. If the number of TIRs outstanding at the end of each cycle is steadily
decreasing, the system appears to be stable and is converging to the Opera-
tional Baseline. Other considerations regarding when to terminate the testing
cycle include the arrival of the required delivery date of the system to the cus-
tomer and the exhaustion of funds available to conduct testing. These last
two considerations often override any other considerations as to when to ter-
minate the testing cycle.

Regardless of the reason for terminating the acceptance testing cycle, all out-
standing TIRs should be converted to incident reports. These IRs are
processed as discussed in Chapter 4. It should be noted that when the testing
cycle is terminated, the system often has outstanding discrepancies. Although
this situation is less than ideal, the way IRs are processed provides a mecha-
nism for resolving them in a visible, traceable manner. This processing in-
creases the likelihood that the delivered product is readily maintainable.
These observations should provide some peace of mind to the user receiving
this software. At least the user knows what problems the user might face and
that someone is working on their solution.

Contrast the foregoing situation to a situation in which no testing cycle (with
its audit and control functions) is provided. On most projects, a testing period
is planned between the completion of coding/unit testing/integration testing
and the date of delivery of the software code to the customer. The delivery
date is usually fixed; it is generally very difficult to change a delivery date.
On the other hand, the date of completion of coding/unit testing/integration
testing frequently tends to slip toward the delivery date. The net result of
such slippage is a reduction of the testing period. Usually there are no plans
to pass through the testing period more than once. The testing period is often
viewed as a “kick-the-tires” final inspection just before delivery, from which
at most only a few discrepancies are expected. With this concept, no recycling

Chapter 5 • Product and Process Reviews

346

ptg

through a testing period is necessary. If there are only a few discrepancies in
the computer code, this approach works satisfactorily. But if there are any
substantial number of discrepancies, the testing period could become chaos
without any systematic way (i.e., defined acceptance testing cycle) of execut-
ing the test procedures, recording the results, filling out TIRs, and presenting
the TIRs to a Test Incident CCB. The testing period could become a time of
frenzied activity—testing, correcting code in response to test incidents, and
retesting all going on in parallel in a period of time that usually has been ab-
breviated because of slippage of the completion date of the computer code.
Reports of test incidents could be misplaced, corrected code could be over-
looked, code changes could counteract other code changes. When the deliv-
ery date arrives (and delivery will occur on the specified delivery date), the
state of the software is unknown. What discrepancies still exist? What dis-
crepancies have been overlooked? In the period of frenzied testing activity,
there is no time to document the changes made to the code or even to record
which modules were changed. Under these circumstances, maintenance of
the software becomes very difficult.

In this section, we looked in detail at the auditing process as it applies to com-
puter code. We showed how this audit of code against requirements and de-
sign specifications is accomplished by executing code operating in a live or
nearly live environment using written test procedures, the process we call
T&E. We pointed out how product assurance gives visibility during the ac-
ceptance testing cycle to the state of the Development and Operational Base-
lines through CCB minutes, TIRs, and written test procedures, and how it
provides traceability during the transition from the Development Baseline to
the Operational Baseline.

Requirements Testability Example—System LOOKOUT From the seller’s
perspective, the bottom line of the software systems development process is
to demonstrate formally that what the customer asked for is indeed embod-
ied in the computer code and supporting databases to be delivered. In this
book, we call this formal demonstration “acceptance testing.” A fundamental
premise of acceptance testing is that the functional capabilities that the
customer wants (i.e., functional requirements) are testable. A “testable
requirement” is one that satisfies the following criteria:

Chapter 5 • Product and Process Reviews

347

♦ The requirement is sufficiently defined to permit writing test proce-
dures that demonstrate whether or not the capability or capabilities
defined by the requirement are embodied in the computer code
and/or supporting databases.

♦ The test procedures are executable in a cost-effective manner.

Strictly speaking, a statement of functional capability that is not testable is not
a requirement. If the presence or absence of such capability cannot be for-
mally demonstrated, then it lies in an engineering netherworld. A key
software systems development process challenge then is determining re-

ptg

quirements testability so that the process can be brought to a successful
conclusion.

Determining that a requirement is testable is, in general, a nontrivial en-
deavor. As we have reiterated, both the seller and customer progress in their
understanding of what needs to be done as a project proceeds. This increased
understanding often has a direct impact on establishing requirements
testability as we now explain.

Elaborating on the preceding testability criteria, we say that a software re-
quirement is testable if we can describe a cost-effective exercise of the require-
ment that can be performed on the computer hosting the software code and
databases to be tested. Presumably such an exercise can then be broken down
into a set of test steps that a tester can perform and a corresponding set of ex-
pected results that a tester can compare with the observed operation of the
software code. As we have explained, the test procedure steps are accompa-
nied by a set of expected results. When the tester executes the test steps, the
tester compares the result of software code operation against these expected
results. If the results of this code operation do not agree with the expected re-
sults, the tester writes a test incident report to document this discrepancy. To
illustrate in specific terms what is involved with establishing requirements
testability, we examine a requirements specification. The purpose of this ex-
amination is to focus on what is involved with conceptualizing such test exer-
cises. Of course, strictly speaking, until such exercises are converted to
performable test steps, requirements testability has not been formally demon-
strated. Because test procedure development does not generally occur until
some time after requirements are presented (and documented), demonstrat-
ing requirements testability is, in fact, an open issue until test procedures are
written. Frequently, it is not until test procedure writing begins that testabil-
ity nuances surface—again, because of the increased understanding of what
needs to be done that naturally emerges when people are forced to think
through how to demonstrate capability.

To give you how-to-do-it insight into how to assess requirements testability
from a requirements specification (before test procedure writing), we look at
a requirements specification. This look will help you anticipate certain testa-
bility issues. However, keep in mind the previously mentioned caveat—until
test procedure writing begins, the contents of the requirements specification
may still need to be reworked to transform previously considered testable
statements into testable statements. It should be noted that the requirements
specification that we consider is adapted from an actual specification that
contained testability issues that were dormant for years until the project
adopted a formal approach to testing that included preparing written test
procedures derived from requirements (prior to adopting the formal testing
approach, the project used a cursory, “kick-the-tires” approach).

Figure 5–44 shows a two-page document entitled “Subsystem Requirements
Specification for Earth Surface Areas.” As section 1 of the document indicates,
a computer subsystem is supporting the operations of the meteorological

Chapter 5 • Product and Process Reviews

348

ptg

Chapter 5 • Product and Process Reviews

349

1.

2.

BACKGROUND AND PURPOSE

The meteorological satellite LOOKOUT monitors weather activity over various parts of the earth.
The LOOKOUT System Specification details the capabilities of this satellite. In support of this
monitoring, the LOOKOUT System Specification identifies a computer subsystem that allows the
users of the LOOKOUT System to define certain types of areas (defined below) on the earth’s
surface. These areas serve as references for weather observations (e.g., to observe what percent-
age of the time the area is cloudless). The purpose of this subsystem requirements specification
is to specify the capabilities for defining areas on the earth’s surface.

SUBSYSTEM OVERVIEW

The user defines earth surface areas by inputting data via a keyboard. The areas are four-sided
figures. The top and bottom sides lie along lines of constant latitude; the left and right sides lie
along lines of constant longitude. The result of keyboard entry is the display of the area on a CRT
device. The area is displayed overlaid on a map background showing land masses. The map
background will show lines of constant longitude as parallel straight lines and lines of constant
latitude as parallel straight lines intersecting the longitude lines at right angles.

The user is also provided a mouse that controls the position of a cursor on the CRT device. The
user can continuously display the latitude and longitude of the cursor.

As a user option, the user can display latitude and longitude lines on the map background. The
spacing between these lines is user specified (e.g., the user can specify that latitude lines appear
every 30' [thirty minutes] and longitude lines appear every 1.0˚ [one degree]). The user can obtain
hardcopy of the screen display from a printer. Figure 1 shows an example display of an area
overlaid on a map with latitude and longitude lines explicitly shown.

Figure 1. Four-Sided Area Displayed on Map Background with Latitude/Longitude Grid Lines

40˚30' N

40˚00' N

39˚30' N

37˚ W 36˚ W 35˚ W

Subsystem Requirements Specification

for

Earth Surface Areas
1 December 1998

LOOKOUT-SP-109/R3

Figure 5–44 This requirements specification provides the backdrop for illustrating the concept of
requirements testability.

ptg

Chapter 5 • Product and Process Reviews

350

1 December 1998
LOOKOUT-SP-109/R3
Page 2

3. SURFACE AREA REQUIREMENTS

To support quantitative analysis of weather observations made from the LOOKOUT satellite, the
subsystem shall provide the capability to define four-sided areas on the surface of the earth. These
areas shall conform to the following specifications and limitations:

a. Each area shall be oriented such that the north and south sides lie along lines of constant latitude,
 and the east and west sides lie along lines of constant longitude. (Note: These areas are spherical
 rectangles; the north and south sides in this type of rectangle are, in general, of unequal length.
 See Figure 2. When projected onto a flat surface where longitudes are parallel lines, a spherical
 rectangle appears to have equal north and south sides. See Figure 1.)

b. The maximum dimension of any side shall not exceed 80 nautical miles. (Note: If any side
 exceeds this maximum, the user shall be informed with a diagnostic.)

c. The maximum area of any rectangle shall not exceed 3600 square nautical miles. (Note: If the
 area exceeds this maximum, the user shall be informed with a diagnostic.)

d. All areas shall lie between 75˚ North and 75˚ South. (Note: If an area lies outside this region, the
 user shall be informed with a diagnostic.)

e. Each area shall be defined by specifying the latitude and longitude of its northeast and southwest
 vertices (see Figure 2).

f. The LOOKOUT database shall be capable of storing 200 areas (i.e., 200 pairs of vertices, with each
 vertex consisting of a latitude and a longitude—see Figure 2). (Note: If an attempt is made to
 store more than 200 areas, the user shall be informed with a diagnostic.)

Figure 2. A rectangular area on the earth’s surface, whose north and south sides lie along lines
 of constant latitude and whose east and west sides lie along lines of constant longitude,
 is defined by its southwest vertex at latitude LAT1 and longitude LON1 and its northeast
 vertex at latitude LAT2 and longitude LON2.

constant longitude

constant latitude

(LAT1, LON1)

(LAT2, LON2)

Spherical

Rectangle

Subsystem Requirements Specification

for

Earth Surface Areas

Figure 5–44 Continued

ptg

satellite system LOOKOUT. Among other things, LOOKOUT monitors
weather activity over various parts of the earth. In support of this monitoring,
the computer subsystem includes the capability to allow its users to define
rectangles on the earth’s surface (called “spherical rectangles”) that serve as
reference areas for weather observations (e.g., to observe what percentage of
the time the area is cloudless).

Section 3 of the requirements specification (page 2) defines six capabilities
(paragraphs 3.a to 3.f) regarding the spherical rectangles (as Figure 2 in the
requirements specification indicates, these rectangles are three-dimensional,
being defined on the earth’s curved surface). We analyze whether each of
these capabilities is testable. If a capability is not testable, we consider ways
in which the capability should be formulated so that it can be tested.

We stress at the outset that the testability issues that we address are precisely
the types of issues that the organization responsible for acceptance testing
(which we suggest should be an independent product assurance organiza-
tion) should address during software systems development. We also stress
that, just as requirements definition is an activity that continues throughout a
software project, so too is requirements testability assessment an activity that
continues throughout a software project.20

In the following discussion, we describe an exercise that might be performed
and what a tester might look for to determine whether computer code em-
bodies each of the six section 3 requirements.

♦ For requirements a and e (see Figure 5–44), the tester could define a rec-
tangle by entering the latitude and longitude of its northeast and south-
west vertices. The tester could then observe on the display device the
resultant figure to see whether its borders lie along the latitudes and
longitudes defined by the vertices (see Figure 1 in the requirements specifi-
cation). This observation can be quantified by using the following capabil-
ity cited in the second paragraph in section 2 of the specification:

The user is also provided a mouse that controls the position of the cur-
sor on the CRT device. The user can continuously display the latitude and
longitude of the cursor.

Thus, the tester can use the mouse to move along the rectangle’s borders
and observe whether the north and south sides lie along lines of constant
latitude and whether the east and west sides lie along lines of constant lon-
gitude, where the latitudes and longitudes are those specified in the input
vertices.

Chapter 5 • Product and Process Reviews

351

20Some parts of the subsequent discussion require knowledge of spherical trigonometry to be com-
pletely understood. However, it is not necessary to understand the mathematical details of this
discussion completely to understand the testability issues addressed. The mathematics has been in-
corporated into the discussion to illustrate in specific terms the types of mathematical issues that
testers may face in the real world. The mathematical issues discussed are derived from the authors’
actual software project experience.

ptg

The preceding discussion thus represents a test of the requirements a and e
in that it describes an exercise that a tester can perform to confirm that a
rectangle can be constructed that lies along lines of constant latitude and
longitude as defined by the latitude and longitude of the rectangle’s north-
east and southwest vertices. These two requirements are thus testable.
To illustrate further some potentially latent testability issues regarding
requirements a and e, we observe the following:
♦ The tester exploits the capability to display latitude and longitude val-

ues continuously using a mouse. Now, unless the tester has a very firm
hand, and depending on the sensitivity of the mouse/readout mecha-
nism, the readout of a scan along a rectangle border may show small
changes in values (e.g., running the mouse along the northern border
that is supposed to lie, say, at 30˚N may show readings varying be-
tween 29 degrees and 59 minutes and 30 degrees and 1 minute). No ac-
curacy requirements are stipulated in the requirements specification.
Thus, presumably such small variations may have no significance in
confirming border constancy. However, when a test procedure is writ-
ten along the lines just described to confirm the presence of the capabili-
ties in requirements a and e, an accuracy requirement may emerge when
the test procedure is reviewed by others.

♦ Had there been no latitude/longitude readout capability, and had there
not been the user option to display latitude and longitude lines on the
map background as indicated in paragraph 3 of section 2, then it may
have been necessary for the tester to instrument the code being tested so
that it displays such a background or otherwise indicates where the fig-
ure lies on the surface of the earth. The need to instrument code itself
creates a testability issue. When the code is instrumented, the issue
arises that the code being tested is not the code that is to be delivered to
the customer, since the instrumentation code will be removed from the
system to be delivered. Thus, when instrumenting code for testing pur-
poses, it becomes necessary to demonstrate that this code does not
change the system operation. That in itself can become a significant
challenge. Often what is done for display-oriented systems such as
LOOKOUT is to rely on visual comparison of screen displays and/or
printouts of these displays with and without the instrumentation code
to demonstrate that the presence of the instrumentation code has no
perceptible effect on the operation of the system. This visual compari-
son can be facilitated by printing out transparencies of the screen dis-
plays. The transparencies of a display with and without the
instrumentation code can then be overlaid on one another to demon-
strate that all parts of the display not including output from the
instrumentation code coincide.

♦ An ancillary issue that often arises in testing systems involving map
displays (and that is implicit in testing LOOKOUT) is the following:

How do you know that the display of maps (e.g., the display of
land masses and associated latitudes and longitudes as shown in
Figure 1 of the LOOKOUT Subsystem Requirements Specification)
is correct?

Chapter 5 • Product and Process Reviews

352

ptg

♦ This issue can be restated as follows:

What is the ground truth for the maps to be displayed?

♦ One way to address this issue is to have the customer supply paper
maps explicitly showing the map projection(s) and the map scale(s) that
the customer wants displayed. Then, using this map-projection and
map-scale information, transparencies of map displays at these projec-
tions and scales can be printed and then overlaid on the customer-sup-
plied maps. If the printout of land masses and associated latitude and
longitude lines coincide with the land masses and associated latitude
and longitude lines on the customer-supplied maps, then, by definition,
the display of maps is correct. Again, accuracy considerations may
come into play when determining how closely the computer printouts
have to match the customer-supplied maps.

♦ For requirements b and c (see Figure 5–44, section 3), it is necessary to per-
form mathematical computations in order to determine expected results.
To do these computations, it is necessary to know what model is being
used for the shape of the earth. This model is not indicated in the require-
ments specification. Requirements b and c are therefore untestable.
To see the significance of the need to prescribe an earth model, assume that
the requirements specification indicates elsewhere that the earth is a
sphere of radius R = 3440 nautical miles. With this assumption, it is then
possible to write down the distance and area formulas shown in Figure
5–45 that could be used to check requirements b and c. Using these formu-
las to compute rectangle side lengths and rectangle areas (in a manner like
that shown at the bottom of Figure 5–45), the tester could then define vari-
ous rectangles by specifying their northeast and southwest vertices such
that (1) some of these rectangles have one or more sides that exceed 80
nautical miles, (2) some of these rectangles have no sides exceeding 80 nau-
tical miles, (3) some of these rectangles have an area exceeding 3600 square
nautical miles, and (4) some of these rectangles have an area less than 3600
square nautical miles. The tester could thus enter these vertex pairs and
then observe on the display device the result of entering these pairs. In
those cases where the vertex pairs yield rectangle side lengths no greater
than 80 nautical miles and an area no greater than 3600 square nautical
miles, the display would presumably show the rectangles corresponding
to the vertex pairs input; otherwise, as section 3 of the requirements speci-
fication indicates, the display would presumably respond with some error
diagnostic indicating the offending length and/or area.
To illustrate further other testability issues regarding requirements b and c,
we observe the following:
♦ If the earth is not assumed to be a sphere (but, say, an ellipsoid), the dis-

tance and area formulas shown in Figure 5–45 may have to be modified
or replaced to account for deviation from sphericity. The extent to
which modification or replacement may be required depends, in
general, on the accuracy required; that is, for completeness the

Chapter 5 • Product and Process Reviews

353

ptg

Chapter 5 • Product and Process Reviews

354

Spherical Rectangle Mathematical Relationships

Examples:

1. (LAT1, LON1) = (30°S, 1°E) = (–0.5236, – 0.0175), (LAT2, LON2) = (29°S, 2°E) = (–0.5061, –0.0349),
 R = 3440 nautical miles

D = 3440 (–0.5061 + 0.5236) = 60.2 nautical miles
 D1 = 3440 (–0.0175 + 0.0349) cos(–0.5236) = 51.8 nautical miles
D2 = 3440 (–0.0175 + 0.0349) cos(–0.5061) = 52.4 nautical miles

 A = (3440)2 (–0.0175 + 0.0349) [sin(–0.5061) – sin(–0.5236)] = 3128 square nautical miles

2. (LAT1, LON1) = (29°N, 2°W) = (0.5061, 0.0349), (LAT2, LON2) = (30°N, 1°W) = (0.5236, 0.0175),
 R = 3440 nautical miles

D = 3440 (0.5236 – 0.5061) = 60.2 nautical miles
D1 = 3440 (0.0349 – 0.0175) cos(0.5061) = 52.4 nautical miles
 D2 = 3440 (0.0349 – 0.0175) cos(0.5236) = 51.8 nautical miles
 A = (3440)2 (0.0349 – 0.0175) [sin(0.5236) – sin(0.5061)] = 3128 square nautical miles

(LAT2, LON2)

(LAT1, LON1)

D

D2

D

D1

R = earth radius
cos = cosine function
sin = sine function

All angles are measured in radians.
One radian = 180°/� = 57.2957795131 . . . degrees, � = 3.14159265359

Latitudes above the equator are positive (e.g., 30°N = + 0.5236 radians).
Latitudes below the equator are negative (e.g., 30°S = – 0.5236 radians).
Longitudes to the west of the prime meridian are positive (e.g., 30°W = + 0.5236 radians).
Longitudes to the east of the prime meridian are negative (e.g., 30°E = – 0.5236 radians).
The above sign conventions assure that the distance and area formulas given above
yield positive values for any point on the earth’s surface.

D = R(LAT2 – LAT1) = great circle distance of east or west side of rectangle
D1 = R(LON1 – LON2)cos(LAT1) = small circle distance of south side of rectangle
D2 = R(LON1 – LON2)cos(LAT2) = small circle distance of north side of rectangle
A = R2(LON1 – LON2)[sin(LAT2) – sin(LAT1)] = area rectangle

Figure 5–45 This figure shows how to convert positions on the earth’s surface expressed as lati-
tude/longitude pairs to lengths and areas on that surface. The formulas shown are for a spherical
earth model.

ptg

requirements specification should probably indicate the accuracy re-
quired for distance and area computations.

♦ The requirements specification does not indicate that the LOOKOUT
CRT is to display the rectangle side length values and the area value.
Strictly speaking, then, the tester does not have to check for these val-
ues; the tester only has to check whether a rectangle is or is not accepted
by LOOKOUT. However, consider what might happen as the tester be-
gins writing test procedures to check requirements b and c. The tester’s
need to compute these values may plant the seed in the minds of the
LOOKOUT software system developers and, eventually, the customer
that it may be desirable to augment these requirements to include the
display of rectangle side lengths and areas. If these requirements were
augmented in this way, the tester would then have to compare the val-
ues the tester computes from formulas such as those shown in Figure
5–45 with the values appearing on the LOOKOUT CRT.

♦ It should be pointed out that the mathematical detail shown in Figure
5–45 would not need to be included in the requirements specification.
For testability purposes, it would be sufficient for the requirements
specification in Figure 5–44 to indicate (1) whether the earth model to be
used were spherical, ellipsoidal, or something else and (2) where the
particulars on the earth model to be used could be found (e.g., a stan-
dard reference on earth parameters). From this information, the tester
(and the software system developers) could find or otherwise derive the
formulas or algorithms for computing spherical rectangle side lengths
and areas.

♦ If the requirements specification were silent on the earth model to be
used but the tester and the developers recognized that an earth model is
needed to proceed with development and test preparation, some inter-
esting situations could arise if the developers assumed one earth model
and the tester assumed another model. This situation actually arose in
connection with the requirements specification upon which the LOOK-
OUT specification is based. The tester used a spherical earth model with
a radius R = 3440 nautical miles (a value often used to approximate a
nonspherical earth; this value is determined by making the volume of a
sphere equal to the volume of an ellipsoid that approximates the actual
earth shape having a polar radius of 3432 nautical miles and an equator-
ial radius of 3444 nautical miles). The developers used a spherical earth
model with a radius R = 3437.74677 . . . nautical miles (a value that is
used to define the nautical mile; this model is used to simplify naviga-
tional calculations). Figure 5–46 shows a spherical rectangle one degree
on each side in the region of the equator. The figure also shows the com-
putation of the area of this rectangle for these values of the radius. As
the figure indicates, from the tester’s perspective, the area of the rectan-
gle in question is too large to be accepted by the system (i.e., its area is a
little more than one square nautical mile larger than the maximum
value stipulated in requirement c). As the figure also indicates, from the
developers’ perspective the rectangle is not too large, having an area
slightly less than 3600 square nautical miles. As it turned out, when
the tester ran a test of requirement c, the system accepted the rectangle.
The tester thus wrote a TIR, because the tester expected, on the basis of
the calculation shown in Figure 5–46 for R = 3440 nautical miles, that

Chapter 5 • Product and Process Reviews

355

ptg

this rectangle had an area larger than the requirement c maximum. When
this TIR was brought to the attention of the developers, the developers
took exception to it. It then came to light that (1) each side was using dif-
ferent earth models and (2) the requirements specification was silent on
what earth model was to be used. More significantly, however, it also
came to light that underlying the rectangle parameters listed in the re-
quirements specification was the “requirement” to ensure that all rectan-
gles one degree on a side were to be accepted by the system. Because no
formal testing had been conducted for years, this implicit requirement
and the earth model testability issue had been dormant for years.

In summary regarding requirements b and c, in order to test these require-
ments, it is necessary to know the model being used for the shape of the
earth. The details of this shape depend on the accuracy required for

Chapter 5 • Product and Process Reviews

356

(3°N, 1°W)

(2°N, 2°W)

Does this rectangle satisfy requirement c (i.e., is its area � 3600 square nautical miles)?
The answer depends on the earth model.

For R = 3440 nautical miles,

 Area = (3440)2 (0.0174532925 . . .) [sin(3°) – sin(2°)] =
 3601.24409 . . . square nautical miles

For R = 3437.74677 . . . nautical miles,

 Area = (3437.74677 . . .)2 (0.0174532925 . . .) [sin(3°) – sin(2°)] =
 3596.5279 . . . square nautical miles

The nautical mile is defined such that the (great circle) distance between two points lying on
the same longitude separated by one degree of longitude is 60 nautical miles. The value of
the earth radius yielding this definition is 60/(1 degree expressed in radians) = 60/(0.0174532925
. . .) = 3437.74677079 . . . nautical miles. One nautical mile equals 1852 meters exactly, which
equals 6076.11548556 . . . international feet (= 1852/0.3048 international feet exactly).

Area = ?

Figure 5–46 This figure shows calculations for two spherical earth models—one for a model whose
radius is 3440 nautical miles and one for a model whose radius is used to define the nautical mile.

ptg

distance and area computations (e.g., required computational accuracies
may be such that it is sufficient to assume that the earth is a sphere, be-
cause changes to distance and areas that would result by assuming a non-
spherical earth would be smaller than the required accuracies of the values
of these quantities). Consequently, unless the requirements specification
were augmented to address earth-model (and computational accuracy) is-
sues, requirements b and c would have to be considered untestable.

♦ For requirement d (“all areas shall lie between 75˚ North and 75˚ South”),
the tester could extend the scope of the tests used to exercise requirements
a and e by including rectangles whose northern borders lie above 75˚ North
latitude and other rectangles whose southern borders lie below 75˚ South
latitude. As section 3 of the requirements specification indicates, vertex
pairs defining such rectangles would presumably cause the software to re-
spond with some error diagnostic indicating the offending border(s). How-
ever, there is a potential ambiguity in the statement of the requirement.
The potential ambiguity arises from the word “between.” Sometimes this
word is used in the inclusive sense so that in the case of requirement d, the
value “75” would be included; sometimes this word is used in the exclu-
sive sense so that in the case of requirement d, the value “75” would be ex-
cluded. Unless this sense is understood, a tester is unable to determine the
expected result for a rectangle whose northern border lies on 75˚N or for a
rectangle whose southern border lies on 75˚S. Of course, this potential am-
biguity could be removed by rewording the statement of the requirement
in one of the two following ways:

All areas shall lie between 75˚ North and 75˚ South inclusive.
All areas shall lie between 75˚ North and 75˚ South exclusive.

Thus, with the one caveat regarding the interpretation of the word “be-
tween,” requirement d can be considered testable.

♦ For requirement f, the tester could again extend the scope of the tests used
to exercise requirements a and e by entering up to 200 pairs of acceptable
vertices (vertex pairs that do not violate requirements b, c, and d). It should
be noted that, for repeatability, accomplishment of the testing of require-
ment f would probably benefit from automated support. For example, it
may be useful to store the (up to) 200 vertex pairs on some mass storage
device (say, a disk). Then, through a keyboard-entered command, these
pairs could be read into the system, each pair (quickly) generating a figure
on the display device and storing the figure on a mass storage device for
subsequent reproduction on a printer, so that the resultant hardcopy could
be carefully analyzed subsequent to test execution to explicitly check that
(at least selected) rectangles corresponding to the vertex pairs input were
properly generated. Following this exercise, the tester would attempt to
create additional rectangles in excess of 200 by entering additional vertex
pairs. As indicated on page 2 of the requirements specification in Figure
5–44, when the number of rectangles stored on the mass storage device ex-
ceeds 200, the system would presumably respond with some error diag-
nostic indicating that the system limit of 200 stored rectangles has been

Chapter 5 • Product and Process Reviews

357

ptg

exceeded. Thus, the preceding discussion indicates that requirement f is
testable. This discussion also indicates that testing this requirement would
probably be greatly facilitated by at least automating the process of enter-
ing test data.

To illustrate further other testability issues regarding requirement f, we ob-
serve the following:
♦ It would perhaps have been preferable to reword requirement f along the

following lines:
The LOOKOUT database shall be capable of storing between 1 and
200 areas inclusive.

Wording such as the above more precisely reflects the operational need for
the system. With a statement such as the above, the tester can prepare, in
the manner described earlier, any number of areas between 1 and 200 in-
clusive to demonstrate that the system is doing what the requirement stip-
ulates it should do. With the wording as given in Figure 5–45, the tester
would simply prepare 200 areas and see if they could be stored. But, per-
haps through some glitch in the computer code logic, trying to store, say,
167 areas might (erroneously) cause an error diagnostic to be issued. This
anomaly could potentially be overlooked. (It is also true that this anomaly
would be overlooked if the wording were as above and the tester chose not
to test every number of areas between 1 and 200, but rather chose a subset
of these cases.) While it might be argued that many would interpret the
wording of requirement f as it appears in Figure 5–45 along the lines given
above, some (including the customer) might interpret it some other way
(e.g., “the LOOKOUT database shall be capable of storing at least 200
areas”). To avoid such potential misinterpretations, it is preferable to word
required capabilities in terms that can be translated into unambiguously
defined exercises of the capabilities. The following are additional examples
of variations to the wording of requirement f that present some testing
(and, hence, testability) difficulties:

The LOOKOUT database shall be capable of storing a maximum of
200 areas.
The LOOKOUT database shall be capable of storing a minimum of
200 areas.

In the first example, what should happen if 201 areas are stored? Should
the system issue an error diagnostic? Should the tester prepare just two
sets of input data—one with exactly 200 areas and one with some number
of areas greater than 200? Should the tester, as we argued earlier, prepare
additional sets of input data with the number of areas varying between 1
and 200? If so, then isn’t the tester acting as if the requirement were, in fact,
stated as we said earlier, namely,

The LOOKOUT database shall be capable of storing between 1 and
200 areas inclusive.

In the second example, should the tester simply prepare just one set of
input data—namely, 200 areas? Or does the tester have to prepare progres-

Chapter 5 • Product and Process Reviews

358

ptg

sively larger numbers of areas since the requirement is open-ended? Also,
in an actual operational setup, how does a database start out with 200 en-
tries? Should an error diagnostic be issued if, at any time, the contents of
the database fall below 200 areas?

♦ When we introduced the definition of testability, we noted that the second
criterion for testability was the following:

The test procedures are executable in a cost-effective manner.
Sometimes this cost-effectiveness criterion places limitations on the testing
approach. In discussing the testability of requirement f, we hinted at a limi-
tation when we suggested that testing this requirement would probably be
greatly facilitated by at least automating the process of entering test data.
Now, suppose that, instead of the number 200, requirement f contained a
much larger number—say, 20,000 or 200,000. A testing approach that may
have been cost-effective for 200 areas may not be cost-effective for 20,000 or
200,000 areas. It was intimated that manually entering vertex pairs defin-
ing even 200 rectangles may be time-consuming—how much the more so
for 20,000 or 200,000 vertex pairs? Automated support may not be necessary
for the case of 200 because it may not take an inordinate time to prepare
manually this many data (“inordinate” is, of course, a relative term; what
may be inordinate in one environment may be acceptable in another); how-
ever, manually preparing one hundred or one thousand times this many
data may simply not be feasible, let alone cost-effective. Thus, if 200 were
replaced by a much larger number, the brute force testing approach of
manually generating and examining the 200 rectangles discussed earlier
would have to be replaced by some other approach if the requirement
were to be testable (e.g., statistical sampling where, for instance, the data-
base were automatically populated with 20,000 rectangles, and then, say,
100 of these rectangles were randomly selected from the database to see
whether they matched items that were in the list of 20,000 generated).

Figure 5–47 summarizes our discussion regarding the testability of the six
LOOKOUT software requirements listed on page 2 of the requirements speci-
fication in Figure 5–44. Figure 5–47 also gives a graphical depiction of each re-
quirement. The boxes showing the two untestable requirements (i.e., b and c)
are shaded in dark grey; the box showing the requirement that may or may
not be testable (i.e., d) is shaded in light grey.

We close this discussion of the important topic of requirements testability
with the following remarks reiterating and expanding upon key points from
this discussion:

1. The bottom line of the software systems development process is to
demonstrate formally that what the customer asked for is indeed embod-
ied in the computer code and supporting databases to be delivered. We
call this formal demonstration “acceptance testing.” Thus, requirements
testability lies along the critical path towards achieving successful
software systems development.

Chapter 5 • Product and Process Reviews

359

ptg

Chapter 5 • Product and Process Reviews

360

(LAT2, LON2)
Requirement e

(LAT1, LON1)

Requirement a

Requirement d

Requirement f

Database

constant latitude

constant
longitude

75°N

75°S

200

Requirement

a
b
c
d
e
f

Testable?

Yes
No
No

Maybe
Yes
Yes

 Reason/Comments

Mouse can trace borders to give latitude/longitude readout
No earth model specified
No earth model specified
Meaning of word “between” may be ambiguous
Mouse can give readout of vertex values for displayed rectangle
Replication of requirements a and e rationale/test

D � 80 nautical miles
D1 � 80 nautical miles
D2 � 80 nautical miles

Requirement b

A � 3600 square nautical miles

Requirement c

(LAT2, LON2)

(LAT1, LON1)

D

D2

D

D1

Figure 5–47 A summary of the testability of LOOKOUT software requirements.

ptg

2. We said that, for a requirement to be testable, it must satisfy the follow-
ing two criteria:

Chapter 5 • Product and Process Reviews

361

♦ The requirement is sufficiently defined to permit writing test proce-
dures that demonstrate whether or not the capability or capabilities
defined by the requirement are embodied in the computer code
and/or supporting databases.

♦ The test procedures are executable in a cost-effective manner.

As we explained, the first criterion contains a catch-22. Test procedures are
generally not written until design activity is under way. Until the “how” to
do the “what” in the requirements specification is defined in the design spec-
ification, the tester cannot, in general, completely specify the expected results
in test procedures. Thus, the testability of a requirement may not be fully
known until long after requirements specifications have been baselined and
rebaselined. However, as we illustrated in connection with several of the
LOOKOUT requirements, questions raised by testers as early as the initial
formulation of requirements serve to drive out testability issues. Because the
tester is in constant pursuit of being able to write down what is to happen
when the tester takes a certain action (i.e., what are the expected results of
this action), this pursuit acts as a forcing function on the development
process to highlight things the developers may not have considered as they
mold design from requirements. Thus, determining requirements testability
is an activity that, in many cases, continues through the acceptance testing
process itself. For, even as test procedures are executed and system behavior
is observed, the participants in the testing process may see things that they
had not previously anticipated. Often, these new observations bring to the
fore testability nuances. We illustrated in our discussion of the LOOKOUT
requirements how some of these nuances can appear long before test proce-
dure execution (e.g., what does “between” mean?)—how much the more so
during and after test procedure execution?

3. Allied with the observations in item 2 is the issue of determining how
much detail to incorporate into the requirements specification and what
properly belongs in the design domain. This issue has no unique resolu-
tion. The simple response to this issue is the following:

Include enough detail to respond to questions that are raised. If you do
not know the answers to some of the questions, include them as TBDs (“to-
be determined”) in the requirements specification or document (e.g., in
CCB minutes) that they are design issues.

For example, as Figure 5–47 reminds us, LOOKOUT requirements b and c are
not testable because no earth model is specified in the requirements specifica-
tion. When discussing these requirements, we pointed out that it would be
sufficient to cite a standard reference in which the earth model to be used
was defined to make these requirements testable. There would be nothing
wrong in pulling some of the material from that reference into the require-

ptg

ments specification—such as the earth model parameters (e.g., earth radius)
and the associated mathematical formulas for calculating lengths and areas
on the surface of that model. There would also be nothing wrong in putting
the mathematical formulas into a design specification since, strictly speaking,
these formulas specify the “how” of doing the “what” embodied in require-
ments b and c. Regarding requirements a and e, there is an issue regarding
side lengths that we did not consider when we discussed the testability of
these two requirements. This issue has to do with the case LAT1 = LAT2
and/or LON1 = LON2. The requirements specification is silent on these de-
generate cases (i.e., when the rectangle collapses to a line or a point). Of
course, the LOOKOUT user probably has no interest in these situations. But,
in fact, these situations may arise in practice because, for example, the user
may have inadvertently made a data entry error by setting the latitudes
equal to one another and/or setting the longitudes equal to one another.
Strictly speaking, such considerations impact on the testability of require-
ments a and e. These considerations fall into the domain of what is often re-
ferred to as “negative testing”—that is, testing how the system responds
when a capability is misused. Often such considerations are put off until the
design stage when the issue of error diagnostics is addressed. It is preferable,
however, to address such issues earlier. In fact, as Figure 5–44 shows and as
we mentioned, the LOOKOUT requirements specification does address some
of these system misuse considerations.
Another requirements versus design specification testability issue regarding
requirement e is that of data entry order. The requirements specification does
not explicitly indicate whether the first vertex entered is the southwest corner
or the northeast corner. The labeling in Figure 5–45 could be construed to imply
that the southwest corner is to be entered first since it is called (LAT1, LON1); on
the other hand, the wording in paragraph 3.e mentions the northeast vertex
first. It could be argued that this information is a “how” and not a “what” so
that it properly belongs in a design specification. Wherever it belongs, the
tester needs this information to specify expected results—and to do negative
testing (which, in this case, would be to enter the vertices in reverse order).

4. The discussion of the testability of requirements b and c brings to light a
challenge that typically faces a tester. If a tester does not have specific ex-
pertise in an area to be tested, it may be necessary for the tester to do
some detailed analysis of the implications of testing that area. Thus, in
the case of requirements b and c, the tester, if not conversant with compu-
tations on the surface of a sphere, would need to dust off his or her math-
ematics books to locate formulas that would help him or her generate
expected results. In general, a good tester need not be an expert on the
technical details of what he or she is to test. The tester does, however,
have to be able to invoke his or her analytical skills to seek answers to
questions raised by the capabilities he or she is to test.

Complementing software product audits are software process audits, which
are described in the next section.

Chapter 5 • Product and Process Reviews

362

ptg

Software Process Audits

The purpose of a software process audit is threefold:

♦ To ascertain the extent to which an organization is doing what it signed up
to do.

♦ To identify those process activities that may need to be improved.
♦ To provide the customer and seller visibility into the software develop-

ment process.

As we have discussed, many times the software development processes may
be in the heads of a few of the organization’s gurus. Although the gurus’
processes may not be documented, the processes are used. Many times the
products produced by the undocumented processes are well received by the
customer. However, in this book, we have also discussed that one measure of
successful software systems development is the ability to produce good prod-
ucts (i.e., products with integrity) with good processes (i.e., processes with in-
tegrity) consistently. It is hard, and some would say impossible, to achieve
such consistency over the long term without documenting “the organiza-
tion’s way of doing business.”

Additionally, we have discussed how successful software systems develop-
ment is a delicate balance among (1) enabling people to grow professionally,
(2) documenting processes embodying the experiences and knowledge of the
people in the organization, (3) using know-how to apply such processes ap-
propriately to a set of circumstances, and (4) refining processes based on the
experience gained by applying the processes.

We take the approach that a systems engineering environment (SEE) houses,
in part, the processes embodying the experiences and knowledge of people in
the organization. To refresh your memory, the SEE consists of the following
two complementary components:

♦ Application Development Process Environment (ADPE). The set of those
policies, guidelines, procedures, and standards defining the processes for
developing products (i.e., documents or computer code or databases). The
ADPE is a framework for bringing about consistent product development.

♦ Application Development Technology Environment (ADTE). The tech-
nology as embodied in hardware and software development tools, and as-
sociated procedures for their use, required to develop products.

Software process audits use ADPE elements as part of the ground truth. A
software process audit is the review of a process as it is being exercised, or
after it has been exercised, to determine whether it conforms to standards
defining processes. In this book, the “standards” are the ADPE elements
defining an organization’s way of doing the business of software systems de-

Chapter 5 • Product and Process Reviews

363

ptg

velopment and the negotiated agreement. Figure 5–48 illustrates an overview
of this audit process for a project’s software systems development process.

Figure 5–48 shows the auditing process beginning at life cycle stage N (i.e.,
while the software development process is being followed), but a process
audit could take place after all or part of the software development process
has been exercised. An auditor conducts the process audit by comparing the
software systems development process against the ground truth. Process au-
dits can be conducted by seller management, the lead developer, an indepen-
dent product assurance organization, or some combination of these entities.21

In our discussion of software product audits, ground truth includes (1) the
approved requirements specification, (2) the approved life cycle stage N-1
product, and (3) standards (recall Figure 5–22). As we discussed, the software
product ground truth can be used in product reviews and product audits.
The same types of statements can be made with respect to software process
audits. However, ground truth for software process audits includes (1) ADPE
elements and (2) the negotiated agreement. As was the case with product re-
views, you can combine various process reviews when you perform process
audits. For example, process ground truth can be used for process compari-
son techniques that include process programmatic tracking, process technical
oversight, process peer reviews, and process quality assurance at a product
and project level. Combining these comparison techniques is an example of
combining process reviews for software process audits.

As a result of process audits, discrepancies between the project’s software
systems development process and the ground truth may be uncovered. These
discrepancies are documented in a process audit report, which is presented to
the seller’s software organization for its disposition. Depending upon the
seller’s organization, the audit report may be presented to the program man-
ager who oversees several projects. Alternatively, the audit report may be
presented to the head of the seller’s software process engineering group. Cer-
tain audits may be called for by the seller’s project manager or the customer’s
project manager. Also, audits may be conducted by an outside organization
to determine whether your organization is conforming to your business prac-
tices. A potential customer may require such an outside audit before the cus-
tomer decides to do business with the seller. Regardless, Figure 5–49
delineates a suggested format for a software process audit report.

The software process audit report is similar to the software product audit re-
port. For example, the auditor’s objective findings (i.e., Section 4) are pre-
sented separate from any of the auditor’s subjective opinions (i.e., Sections 5
and 6). Also observe that, in addition to discrepancies uncovered by checking
the conformance to the ADPE elements, various discrepancies may be de-

Chapter 5 • Product and Process Reviews

364

21Chapter 8 discusses how the seller deliverable tracking form introduced in Chapter 3 can be coupled
to the measurement approach described in Chapter 6 to gain insight into how a project is following
the organization’s software systems development process at the project level.

ptg

365

Process Audit Report

Process
Audit
Report

Proposed Resolution

IMPROVEMENT
ACTION PLAN

Process OKAY
(no change
needed)

✓✓✓

✘ ✓ ✘
✓✓✓
✘✓✓

Y
N ✓ N

Y Y Y
N✓✓

✓✓✓

✘ ✓ ✘
✓✓✓
✘✓✓

Δ $

Directed Process
Modifications

(change needed)

Ground Truth

AUDIT
Auditor

Compares

At Life Cycle Stage N

ANALYZE

Process
Engineering Group

Software
Organization

ΔΔΔ

Negotiated Agreement
(including Project Plan)

Negotiated
Agreement

Policy

Guideline

Procedure

Standard

Seller
Approval

Customer
Concurrence

Application Development
Process Environment

(ADPE) Elements

Project
Software
Systems

Development
Process

OKAY

Project Software Systems
Development Process

✓✓

Figure 5–48 This figure shows an overview of the auditing process for software systems development
processes.

ptg

366

Software Process Audit Report Title Date
Document Number

Section 1. Introduction

1.1 Purpose. State the purpose of the audit report, which is to provide the results of an audit of a particular
 software systems development process for a particular project.

1.2 Identification. Identify the software systems development process that was audited, the date the software
 process audit was completed, and the auditors’ names.

1.3 Project references. Provide a brief summary of the references applicable to the history and development
 of the project under which the audit was conducted.

1.4 Overview. Provide a brief overview of the report contents.

Section 2. References

List all the references applicable to the report (e.g., the improvement action plan).

Section 3. Procedure

Describe the procedure used to conduct the audit. Reference the specific documents or entities used in the
process. List any assumptions made or any constraints imposed relative to the audit.

Section 4. Findings

Present the objective findings uncovered during the audit organized as shown below.

4.1 Conformance to Application Development Process Environment (ADPE) elements. Report the findings of
 the programmatic tracking, technical oversight, peer review, and/or quality assurance checks in terms of
 structure, format, content, or methodology.

4.2 Prescriptive application. Describe the prescriptive application of the ADPE element(s) to the project’s
 software systems development process(es). Detail disconnects between the elements and the software
 process.

4.3 Results of qualitative comparison. Present the discrepancies observed as a result of comparing the
 software systems development process against a simple checklist of process activities.

4.4 Results of quantitative comparison. Present the discrepancies observed as a result of comparing the
 software systems development process against the process activity value scales.

4.5 Bookkeeping. List the software systems development process changes that were incorporated as a result
 of an update to the software systems development process. Also list the approved changes (i.e., the changes
 as detailed in the improvement action plan) incorporated into the software systems development process(es).

Section 6. Recommendations
Provide the auditors’ recommendations as a result of conducting the audit. This section represents the auditors’
judgment and is thus primarily subjective.

Section 5. Conclusions

Present the conclusions formulated by the auditors based upon the audit findings. It should be noted that the
conclusions represent the auditors’ judgment and are thus primarily subjective, as contrasted to the objective
findings given in Section 4.

Figure 5–49 Here is a suggested format for a software process audit report.

ptg

Chapter 5 • Product and Process Reviews

367

scribed as a result of the prescriptive application22 of the ADPE elements to
the project’s software systems development processes. For example, an ADPE
element describing the organization’s peer review process may recommend
at least two peer reviews for each product. When the auditor checks how the
project is implementing this guidance, the auditor observes that the project is
conducting at least four reviews per product. The project believes that the in-
creased number of peer reviews helps to identify potential problems early. In
this case, a corresponding recommendation may be that the organization’s
peer review guidance be changed to increase the number of peer reviews per
product.

Other findings can be the result of the following comparisons:

♦ Qualitative comparison. Qualitative process audits combine process pro-
grammatic tracking, process technical oversight, process peer reviews, and
process quality assurance at a product and project levels. Qualitative
process audits can use checklists to record that a given process activity is
or is not being performed.

♦ Quantitative comparison. Quantitative process audits involve defining,
collecting, using, and communicating software systems development
process measurement. Quantitative process audits can use metrics to
calculate the extent to which each process activity is being performed.23

As illustrated in Figure 5–50, both qualitative and quantitative comparisons
use the ADPE as the ground truth. Qualitative and quantitative process audit
comparisons may be used to determine whether an organization is following
its business practices in developing its products. In addition, process audits
may be used to provide insight into which business practices need to be
added, removed, and/or improved.

To clarify the foregoing concepts, consider the following simple example.
First, let’s take a quick look at a qualitative comparison involving an organi-
zation’s software systems development process. Assume the software sys-
tems development process to be audited is the process that we discussed in
Chapter 3. Recall that a form is used to track a software product working its
way through the software systems development process activities. An audi-
tor can use this form as a simple checklist to compare qualitatively the pro-
ject’s use of the organizational software systems development process. The
auditor checks a series of these tracking forms and records the qualitative
observations on the example summary form shown in Figure 5–51.

22Remember, in Chapter 1 and elsewhere, we described “prescriptive application” as the practical ap-
plication of software systems engineering principles. By practical, we mean “application of techniques
consistent with available time and resources.” We do not believe that software systems development
is a cookie-cutter exercise (i.e., reduced to a simple set of step-by-step instructions). Skills in applying
management, development, and product assurance techniques are key ingredients to achieving soft-
ware systems development success.
23Chapter 6 deals with quantitative techniques in detail.

ptg

368

Policy

Software Process Auditing

Review
Area

Release X + 1
Requirements
Specification

Bug Fixes to
Release X code

[e.g., Deliverable Tracking Forms]

[e.g., Process Compliance Metrics]

Quantitative

Comparison

Qualitative

Comparison

Review
Area

Test Procedures

Application Development Process Environment

(ADPE)

CONFORM?

CONFORM?

Project Q Software Systems

Development Process

Project A Software Systems

Development Process

WHAT BUILD

HOW

USE

WHAT BUILD

HOW

USE

A

Q

Seller
Approval

Customer
Concurrence

Guideline

Seller
Approval

Customer
Concurrence

Procedure

Seller
Approval

Customer
Concurrence

Standard

Seller
Approval

Customer
Concurrence

Figure 5–50 Software process auditing establishes the extent to which project processes are congruent with organizational
processes documented in the ADPE.

ptg

369

QUALITATIVE OBSERVATIONS OF

SELLER DELIVERABLE TRACKING FORMS

[Form Number] [Form Issue Date]

COMMENTS/ISSUES

Product Type:
 -Document
 -Code
 -Database

Peer
 Review
Held?

Product
 Assurance
 Review?

Technical
 Edit?

Project-level
 Technical

 Oversight?

Final
Coordination
 with DSC?

Product
 Filed?

Product
Reviewed

 and
Approved?

Customer
Receipt

 Received?

Customer
 Acceptance
 Received?

Notification
 of

Additional
Work

 Received?
 Product Control
Number (PCN)

Control Number: _____–_______ Date: ____/____/____

Auditor:_______________________ Organization: _________________ Tel. No.:_____________

Continuation Page

Project: _______________

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Figure 5–51 Here is an example qualitative software process audit form that can be used with our organizational software
systems development process.

ptg

The auditor assigns a control number when the software organization (e.g.,
program manager, head of seller’s software process engineering group, seller
project manager, customer project manager) directs that an audit is to be con-
ducted. The auditor fills in the auditor’s name, organization, project being au-
dited, and the auditor’s telephone number. Then, as the auditor reviews each
of the deliverable tracking forms, the auditor records the observations in the
appropriate column on the qualitative software process audit form, which
becomes an attachment to the process audit report.

For example, assume that the auditor checks ten tracking forms and observes
that no peer reviews have taken place. This observation would be noted in
the software process audit, and a possible recommendation may be to start
conducting peer reviews. The auditor should also check the negotiated agree-
ment to see whether peer reviews were specifically excluded from this pro-
ject, and adjust from the observations as appropriate. Such situations might
arise when a customer requests a waiver from the seller’s business practices.
In this case, the seller should inform the customer of the attendant risks
associated with such a waiver.

To gain more insight regarding the extent to which each organizational
process activity is being performed by the project, a quantitative comparison
is needed. Quantitative comparison involves the use of metrics. The subject of
metrics is presented in detail in Chapter 6. To introduce the concept of quan-
titative comparison, we briefly present the following possible quantitative
outcomes:

♦ If the process audit shows that the process is being followed but that the
resultant products consistently lack integrity (e.g., are delivered late, do
not do what they are supposed to do), then the process should probably be
altered.

♦ If the process audit shows that the process is not being followed but that
the organization is consistently producing products with integrity, then the
practices that are being used need to be folded into the organization’s
process.

♦ If the process audit shows that the process is not being followed and that
the resultant products consistently lack integrity, then steps should be
taken to get the organization to follow the process consistently.

♦ If the process audit shows that the process is being followed and that the
resultant products have integrity, then the organization has a “good”
process that, at most, may need fine-tuning.

The details of the quantitative process audits will become more apparent
after you read Chapter 6. For the time being, we will simply state that pro-
cess measurement is a part of continual software systems development
process improvement. The software process audit helps to identify needed
process improvement areas.

Chapter 5 • Product and Process Reviews

370

ptg

Upon reviewing the software process audit report, the software organization
processes the discrepancies uncovered. Approaches that the software organi-
zation can use to process the discrepancies include the following:

♦ Assign the entire process audit report to the process engineering group for
analysis. This approach will result in a report providing recommended res-
olutions for every discrepancy.

♦ Categorize discrepancies into those whose resolution is apparent and those
whose resolution is not apparent. Apparent discrepancies are resolved
immediately. The remaining discrepancies are assigned to the process
engineering group for analysis that results in a report detailing
recommended resolutions for every discrepancy.

♦ Treat each discrepancy as a suggestion for improving the organizational
processes, and process each suggestion in accordance with the organiza-
tional continuous improvement process that is a part of the ADPE.

These three approaches provide the software organization with visibility into
potential process improvement areas. When the software organization de-
cides on which approach or combination of approaches to use, an improve-
ment action plan is prepared by the appropriate organizational entities.
Either process change is needed or no process change is needed. If changes
are needed, the modifications are made in accordance with the organizational
continuous improvement process. Whether or not change is needed, getting
the people in the organization to follow the processes may also be needed.

5.5 Product and Process Reviews Summary

Product and process reviews help to uncover discrepancies in software prod-
ucts and software systems development processes, respectively. Before the
CCB can approve changes to attain and maintain software products with in-
tegrity, the CCB must know the state of software products as they evolve, as
they are being built, and after they are delivered. Likewise, before the soft-
ware organization (e.g., program manager, head of seller’s software process
engineering group, seller project manager, customer project manager) can ap-
prove changes to attain and maintain software processes with integrity, the
organization must first know whether the processes are being used and to
what extent the processes are being used. This knowledge is acquired
through product and process audits that uncover discrepancies.

To help you define (or refine) your organization’s software engineering envi-
ronment, we offer annotated outlines for independent product assurance,
peer reviews, and acceptance testing. First, let us highlight product assur-
ance. As illustrated in Figure 5–52, you can use the following annotated out-
line of an ADPE policy as a starting point for defining your organization’s

Chapter 5 • Product and Process Reviews

371

ptg

[Your Organization’s Name and Logo] Document #

Date

Document #

Date

[Your Organization’s Name] Policy

Independent Product Assurance

1.0

2.0

3.0

PURPOSE

This section states the purpose of the element. This purpose is the following:

● Define your organization’s statement of principles governing independent product assurance
 activities
● Define product assurance processes and explain how they reduce software systems development
 risks
● Delineate the policy implementation responsibilities of organizational elements and/or individuals
 and, if desired, your customer(s)

This element should stress that independent product assurance provides insight (i.e., visibility) into
the (technical) state of a product so that customer and seller management can make informed
decisions regarding what to do next to evolve a product. By doing so, product development risk is
reduced because less rework is required to produce a product that complies with customer
requirements, thereby adding value to product development.

BACKGROUND

This section gives an overview of your organization, your business, your customers, and the types of
contractual vehicles you use to conduct business (e.g., fixed price, memorandum of understanding,
time and materials). It should explain in general terms your organization’s product assurance concept.
It should also explain the classes of products your organization develops (e.g., documents, computer
code, databases) that product assurance will focus on.

POLICY AND IMPLEMENTATION GUIDANCE

This section presents the specific elements of your product assurance policy and guidance for carrying
them out. Example elements include the following:

● Product Assurance Organization—indicate whether PA support is to be (1) centralized within a
 single organization or (2) part of each project team or (3) some other arrangement; indicate who is
 in charge of product assurance and the management reporting chain for that individual (i.e.,
 indicate what “independent” means in your organization).
● Product Assurance Processes—indicate the processes that PA is to perform in your organization
 (e.g., QA, V&V, T&E, and CM defined elsewhere in this book); indicate whether PA processes
 extend to the software systems development process (e.g., process QA as defined elsewhere in this
 book).
● Product Assurance and Project Planning—indicate the (quantitative) relationship between PA
 and risk reduction in allocating project resources in the project plan; indicate whether PA support
 is required for each project and, if not, indicate the PA exemption criteria (e.g., the customer has a
 product assurance organization or contractor).
● Project Product Assurance Plan—indicate your organization’s requirement for a project product
 assurance plan (e.g., the first project deliverable, an appendix to the project plan, informal
 agreement between the PA manager and project manager).
● Product Assurance Resource Management—indicate who is responsible for managing project
 PA resources (e.g., project manager, someone other than the project manager); this policy element
 is for some organizations a dimension of what “independence” means.
● Product Assurance Reporting—indicate PA reporting requirements (e.g., in objective terms only
 regarding discrepancies between a product and the ground truth for that product, or in subjective
 terms not necessarily related to the ground truth, or in some combination); indicate whether PA
 reports have the organizational clout to prevent a product from being released to the customer.

Figure 5–52 An annotated outline for getting you started defining an independent product assurance policy for
your organization.

ptg

[Your Organization’s Name and Logo] Document #

Date

Document #

Date

[Your Organization’s Name] Policy

Independent Product Assurance

3.0 POLICY AND IMPLEMENTATION GUIDANCE (continued)

● Product Assurance Membership in Change Control Boards (CCB)—indicate whether or not
 PA members are to be assigned permanently to each project CCB and what “assignment to a
 project CCB” means in terms of things such as attending CCB meetings, receiving copies of CCB
 minutes, raising product-related issues at CCB meetings (e.g., requirements testability).
● Product Assurance Acceptance Testing—indicate who is responsible for conducting the testing
 that your organization uses to determine that a software system and supporting databases can be
 released to the customer (in this book, this activity is called “acceptance testing”); indicate the role
 the CCB plays, if any, in the acceptance testing process (e.g., Turnover CCB and Test Incident
 CCB as discussed in this book); indicate the relationship, if any, between assessed project risk and
 the acceptance testing process (e.g., CCBs are mandatory for high-risk projects); indicate who is
 responsible for determining whether requirements are testable (e.g., product developers, product
 assurance staff).
● Product Assurance Audits—indicate the way in which product and process audits will be
 integrated with the software systems development process (e.g., audits will be made a matter of
 record in project CCB minutes, the manager of project managers will authorize periodic reviews of
 project files to give visibility to the extent of project conformance to the organization’s software
 systems development process).
● Product Assurance Procedures—indicate the means by which the organization responsible for
 product assurance will document its methods for carrying out the policy (e.g., procedure
 documenting how to perform a document audit).
● Incident Report Resolution—indicate the means to be used when management and the product
 assurance organization cannot resolve a PA incident report.
● Applicability and Authorized Deviations—indicate the scope of applicability of the policy (e.g.,
 all projects in your organization); indicate the means for obtaining authorization to deviate from
 the policy.

PRODUCT ASSURANCE POLICY IMPLEMENTATION RESPONSIBILITIES

This section delineates the responsibilities of each agent within your organization (e.g., project
manager, manager of project managers, manager of the process engineering group, product
assurance manager, product assurance analysts) for implementing the policy elements set forth in
Section 3. With customer approval, it may also be desirable to delineate the responsibilities of
customer agents (e.g., customer project manager) for policy implementation.

Appendices can contain such things as (1) a discussion of the various checks and balances that are
part of your organization’s software systems development process in addition to independent
product assurance (e.g., the reviews discussed in this chapter—peer reviews, technical editing, and
project-level technical oversight), (2) an elaboration of the organization’s product assurance
processes defined in the body of the policy (e.g., definition of acceptance testing documentation,
explanation of what V&V of a database means), and (3) project planning steps for estimating
management, development, and product assurance resources based on risk assessment.

4.0

APPENDICES

Figure 5–52 Continued

373

ptg

independent product assurance program. This outline consists of the follow-
ing sections:

♦ Purpose. This section states the purpose of the element. The purpose sets the
context, defines the product assurance (PA) processes (i.e., QA, V&V, T&E,
and CM), and delineates the implementation responsibilities for the policy.
These responsibilities are key because they are shared by the entire organiza-
tion, not just some independent “quality” organization that is not involved
with the day-to-day development activities and customer interactions. This el-
ement should stress that independent PA reduces risk; it is not risk elimination.

♦ Background. This section provides an overview of your organization, busi-
ness, customers, and types of contractual vehicles that you use to conduct
business. Your organization’s PA concept can be presented, along with the
types of products and processes that the PA organization is to review.

♦ Policy and Implementation Guidance. This section presents specific PA
policy elements and guidance for carrying them out. This section can in-
clude the following:
♦ PA organization
♦ PA processes
♦ PA and project planning
♦ Project PA plans
♦ PA resource management
♦ PA reporting
♦ PA membership in CCBs
♦ PA acceptance testing
♦ PA audits
♦ PA procedures
♦ Incident report resolution
♦ Applicability and authorized deviations

♦ Product Assurance Policy Implementation Responsibilities. This section
delineates the individual responsibilities within your organization for im-
plementing the PA policy elements. For example, the seller project man-
ager’s responsibilities might include the following:

♦ Disseminate project product assurance policy to all project members
within the scope of the project manager’s responsibility.

♦ Provide required direction and guidance to the seller development team
to support implementation of internal and external product assurance
functions.

♦ Interact directly with designated product assurance personnel through-
out the development effort as defined by the project plan and ADPE
policies, guidelines, procedures, and standards.

♦ Appendices. Appendices can contain examples of the various types of
product and process reviews that are part of your organization’s software

Chapter 5 • Product and Process Reviews

374

ptg

systems development process. More detailed explanation can be provided
for the product assurance processes and the way that they influence your
project planning process.

The second annotated outline deals with peer reviews and is shown in Figure
5–53. This outline consists of the following sections:

♦ Purpose. This section states the purpose of the guideline. You can
highlight your organization’s peer review approach that may include a
delineation of implementation responsibilities, possible checklists, and cor-
responding instructions. This element should stress that peer reviews
(1) provide a controlled mechanism for refining products and processes,
(2) provide technical feedback to the lead developer or software organiza-
tion, and (3) are not a measure of the lead developer’s performance.

♦ Background. This section provides an overview of your organization, busi-
ness, customers, and types of contractual vehicles that you use to conduct
business. Your organization’s peer review concept can be presented and
should include, as a minimum, informal and formal (scheduled) reviews.

♦ Peer Review Guidance. This section presents guidance for preparing for
and conducting the organization’s peer reviews. Topics to be discussed in-
clude peer review roles, preparation guidance, kinds of reviews, duration
of the reviews, checklists, and forms.

♦ Appendices. Appendices can contain examples of various types of sample
review forms and checklists. Example checklists include peer review readi-
ness, requirements review, and design review. Example forms include peer
review invitation and peer review comments.

The third annotated outline deals with acceptance testing and is shown in
Figure 5–54. This outline consists of the following sections:

♦ Purpose. This section states the purpose of the procedure. This element
should stress that acceptance testing formally demonstrates that customer
and seller agreed-upon capabilities are embodied in the to-be-delivered
software code and supporting databases.

♦ Background. As with other ADPE elements, this section provides an
overview of your organization, business, customers, and types of contrac-
tual vehicles that you use to conduct business. This section introduces your
organization’s acceptance testing concept and the test documentation to be
used.

♦ Acceptance Testing Steps and Associated Organizational Responsibili-
ties. This section presents specific elements of your acceptance testing
steps and guidance for performing the steps. The acceptance testing
process, steps, and organizational responsibilities should be presented.

♦ Test Procedure Formatting Instructions. This section explains how to for-
mat test procedures. We recommend that your organization adopt the five-

Chapter 5 • Product and Process Reviews

375

ptg

[Your Organization’s Name and Logo] Document #

Date

Document #

Date

[Your Organization’s Name] Guideline

Peer Reviews

1.0

2.0

3.0

PURPOSE

This section states the purpose of the element. This purpose is the following:

● Define your organization’s approach [and, possibly, procedures] for preparing for and conducting
 product reviews primarily involving product developer and product assurance peers
● Delineate responsibilities for preparing for and conducting peer reviews
● Provide checklists and forms to facilitate and standardize peer review preparation and accomplishment
● Provide instructions for completing checklists and forms provided

This element should stress that peer reviews (1) provide a controlled mechanism for refining products, (2)
provide technical feedback to the lead developer, and (3) are not a measure of the lead developer’s
performance. In the literal sense, in a peer review, a colleague or colleagues check a product for technical
completeness and appropriateness. This review balances the product developer’s approach with the
insights of others having applicable and comparable experience. These insights serve to stabilize the
developer’s approach, thereby increasing confidence that the product does what it is supposed to do. This
element should also establish organizational policy regarding management participation in peer reviews.
The trade-off here is the need for management visibility into product development progress versus the
need for uninhibited technical exchange among peers.

BACKGROUND

This section gives an overview of your organization, your business, your customers, and the types of
contractual vehicles you use to conduct business (e.g., fixed price, memorandum of understanding, time
and materials). It should explain in general terms your organization’s need for peer reviews (e.g., to
reduce product rework thereby increasing product integrity) and the types of peer reviews that the
organization will use to meet this need. At a minimum, the following two types should be called out:

● Informal One-on-One—generally involve two product developers, do not require a scheduling or
 meeting protocol, but must be recorded and made part of project records.
● Formal (Scheduled)—generally involve multiple product developers, possible participation by experts
 from outside the organization and/or from other projects, product assurance staff, and possible
 participation by technical managers and/or the project manager and/or other managers; are scheduled
 so that invited participants can prepare and attend.

Sometimes, peer reviews are further categorized by format—meeting or walkthrough. The purpose of a
peer review meeting may be to address such things as (1) internal progress with respect to one or more
products, (2) requirements issues, and (3) resolution of schedule problems. The purpose of the walk-
through is to go through a product or part of a product in a structured manner to identify insufficiencies in
things required for completion (not to correct the insufficiencies). Insufficiencies are of two major
kinds—(1) those that, if not corrected, would prevent the item under review from conforming to its ground
truth and (2) those of an engineering aesthetic nature (e.g., an elegant computational approach versus a
brute force approach, a typographical error, a symmetric placement of buttons on a screen).

PEER REVIEW GUIDANCE

This section presents guidance for preparing for and conducting (1) informal one-on-one peer reviews, (2)
formal (scheduled) peer reviews, and (3) other types of peer reviews that your organization may need.
Topics to be addressed should include (1) peer review roles, (2) preparation guidance (e.g., package to
distribute to reviewers, review time estimates), (3) guidance on project factors governing the types and
kinds of peer reviews applicable (e.g., project size, risk, consequences of software failure), (4) guidance on
conducting peer reviews (e.g., duration, order of peer review activities, checklists and forms, review
follow-up activities). The peer review roles listed below, which have been more or less institutionalized
within the software industry, should be addressed. Also shown are some typical associated
responsibilities.

Figure 5–53 An annotated outline for getting you started defining a guideline explaining how to prepare for and
conduct peer reviews as part of your organization’s software systems development process.

ptg

[Your Organization’s Name and Logo] Document #

Date

Document #

Date

[Your Organization’s Name] Guideline

Peer Reviews

3.0 PEER REVIEW GUIDANCE (continued)
● Moderator

– Conducts peer review
– Steps through material calling for comments
– Maintains order and professional atmosphere
– Keeps review focused on stated objectives (in particular, preventing discussion of how to correct
 identified insufficiencies)
– Documents review results (e.g., using a form)

● Recorder

– Records (all) comments (e.g., using a form)
– Records all insufficiencies uncovered during the review (e.g., using a form)
– Finalizes recorded comments and insufficiencies following review completion
– Delivers finalized recorded comments and insufficiencies to previously designated individuals

● Product Developer

– Enlists reviewers
– Prepares and distributes review packages
– Schedules review in coordination with management and resolves scheduling conflicts
– Listens nondefensively and assimilates comments
– Implements appropriate changes in the item under review

● Reviewer(s)

– Reviews materials thoroughly
– Evaluates technical content
– Marks up review materials with complete, legible comments
– Completes review checklist (if applicable)
– Provides comments, raises questions, and identifies insufficiencies in a professional, nonoffensive
 manner

● Independent Product Assurance

– Checks that review preparation and conduct process is followed
– Tracks all review action items to closure

APPENDICES

Appendices can contain such things as (1) sample review forms and checklists, (2) instructions for completing
forms and checklists, (3) detailed procedures for conducting reviews to supplement the Section 3 guidance.
Examples of types of forms and checklists that might be included are the following:

● Peer Review Invitation Form
● Peer Review Comments Form
● Peer Review Readiness Checklists
● Requirements Review Checklist
● Design Review Checklist
● Database Design Checklist

● Computer Code Walkthrough Checklist
● Test Plan Review Checklist
● Test Procedure Review Checklist
● Document Outline Review Checklist
● Document Review Checklist

Figure 5–53 Continued

377

ptg

[Your Organization’s Name and Logo] Document #

Date

Document #

Date

[Your Organization’s Name] Procedure

Acceptance Testing Cycle

1.0 PURPOSE

This section states the purpose of the element. This purpose is the following:
● Define your organization’s statement of principles governing acceptance testing activities
● Define the steps in the acceptance testing processes
● Delineate the procedure implementation responsibilities of organizational elements and/or
 individuals and, if desired, your customer(s)
This element should stress that acceptance testing formally demonstrates that customer and seller
agreed-upon capabilities are embodied in the to-be-delivered software code and supporting databases.

BACKGROUND

This section gives an overview of your organization, your business, your customers, and the types of
contractual vehicles you use to conduct business. It should explain in general terms the organization’s
acceptance testing concept. It should also explain the names, types, and hierarchy of test
documentation to be used. You may use the following three-tiered hierarchy:
● Test Plan—specifies the test organization, test schedule, allocation of resources, the assignment of
 responsibilities, and the set of tests to be executed.
● Test Procedure—produced from the test plan by translating each test called out in the plan into a
 sequence of instructions to a tester.
● Test Incident Report (TIR)—is used during the acceptance testing process described in the
 procedure to track discrepancies between what was expected, as recorded in a test procedure, and
 what was observed during test procedure execution.

ACCEPTANCE TESTING STEPS AND ASSOCIATED ORGANIZATIONAL RESPONSIBILITIES

This section presents the specific elements of your acceptance testing steps and guidance for carrying
them out. Example elements include the following:
● Acceptance Testing Process Overview—presents the overall purpose of the steps in the
 acceptance testing cycle.
● Acceptance Testing Steps—describe the detailed steps in the acceptance testing process. Detailed
 steps include the following:
 1. Development team prepares computer code and/or databases to be tested.
 2. CM organization assists development team with the status accounting of development baseline.
 3. Development team conducts software/database turnover CCB.
 4. CM organization builds turned over code and/or databases into test baseline.
 5. Test organization exercises test baseline using previously approved test procedures.
 6. Test organization submits TIRs to test incident CCB for resolution.
 7. Development team corrects TIRs by changing source code, databases, design, etc.
● Organizational Responsibilities—This section delineates the responsibilities of each agent within
 your organization for implementing the acceptance testing steps. With customer approval, it may
 also be desirable to delineate the responsibilities of customer agents for procedure implementation.

TEST PROCEDURE FORMATTING INSTRUCTIONS

This section explains how to format test procedures. Each test step should include tester actions,
purpose of step, expected results, and comments.

TEST INCIDENT REPORT (TIR) INSTRUCTIONS

This section provides instructions for filling out the TIR. These instructions are linked to the
acceptance testing cycle steps and organizational responsibilities.

Appendices can contain such things as examples of test procedures, test incident reports, turnover CCB
minutes, and TIR CCB minutes.

2.0

3.0

4.0

5.0

APPENDICES

Figure 5–54 An annotated outline for getting you started defining an acceptance testing cycle procedure for your
organization.

ptg

column format that includes test step number, tester actions, test step pur-
pose, expected results, and comments.

♦ Test Incident Reporting (TIR) Instructions. This section provides instruc-
tions for filling out a TIR.

♦ Appendices. Appendices should be added as necessary. For instance, ap-
pendices can contain examples of test procedures and test incident reports.

We have completed our discussion of software product reviews and software
systems development process reviews. The next chapter deals with measure-
ment, and it details how you can set up metrics for products and processes.
The chapter provides you with guidance for measuring the “goodness” of
products and the “goodness” of the processes that produced the products.
The focus of the chapter is on how to use measurement to achieve consistent
product and process “goodness.”

Chapter 5 • Product and Process Reviews

379

ptg

This page intentionally left blank

ptg

chapter 6

There is no such thing as absolute value in this world. You can only estimate what a thing is
worth to you.

—Charles Dudley Warner, “Sixteenth Week,” My Summer
in a Garden (1871).

6.1 Introduction

Measurement for measurement’s sake is a waste of time and money. It is not
unusual for people to measure things simply because somebody—some edict,
or some policy—stipulates that things should be measured. Yes—measure-
ment certainly has a role to play in making software development successful.
But, unless this role is thought through, measurement can degenerate into a
meaningless exercise, as the cartoons in Figure 6–1 suggest. The purpose of
this chapter is to help you set up a role for measurement that makes sense for
your environment.

In the world of measurement, the term meaningless has a number of nuances
that we briefly explore. Our purpose for this brief exploration is to arrive at
what we believe is a fundamental measurement principle. Let us consider the
following:

381

Measurement

chapter 6

ptg

♦ It is meaningless to try to measure lengths down to the nearest sixteenth of
an inch with a ruler that contains only quarter-inch marks. This nuance
underlies the dialog in the first cartoon in Figure 6–1. In this cartoon, the
figures “53%” and “56%” are essentially the same, lacking any other in-
formation about the accuracy of the statistical measurements referenced.

♦ It is meaningless to try to measure things in a vacuum. There are many
ways to set measurement context. In this book, we take the stance that
measurements should be taken for the purpose of answering specific ques-
tions. In the second cartoon in Figure 6–1, the intended audience of the
measurement presentation may have a question that he wants answered,
but he is evidently hoping that the statistics he is seeing are not the answer
he may be looking for.

♦ It is meaningless to express measurements in language the intended audi-
ence cannot understand. We use the term foreign language to express the
idea that a means of communicating is not part of someone’s or some en-
tity’s vocabulary. It clearly makes no sense for someone to listen to a pre-
sentation in, say, Spanish, if that person never studied Spanish. Likewise, it
makes no sense to communicate measurements in a language that may be
foreign to an intended audience. For example, if the intended audience is
conversant with the language of statistics, it is certainly appropriate to use
statistics to express measurements (with the caveat cited above). If, on the
other hand, statistics is a foreign language for the intended audience, using
terms such as “mean,” “mode,” and “standard deviation” will be meaning-
less (unless, of course, the presentation includes a tutorial on statistical
concepts).

The preceding discussion leads us to the following fundamental measure-
ment principle that underlies much of the discussion in this chapter:

Chapter 6 • Measurement

382

Figure 6–1 Measurements need to be expressed in everyday terms that are familiar to the organiza-
tion; otherwise, they may be of little value.

ptg

Thus, measurement, like many of the other techniques in this book, is an exer-
cise in effective communication.

We present measurement techniques that enable you to measure software
products and software systems development processes in everyday terms fa-
miliar—and therefore meaningful—to your organization. We believe that un-
derstanding how to define, collect, use, and communicate measurement is a
significant contributor to successful software projects. Furthermore, we be-
lieve that successful software systems development is a continual improve-
ment exercise. Measurement is a means for effecting this improvement.

Figure 6–2 shows our conceptual framework for measuring software prod-
ucts and the process used to develop these products. We focus on two con-
cepts—product integrity and process integrity. Product integrity can be defined in
terms of product attributes and attribute value scales. For each product at-
tribute, an attribute value scale is defined in everyday terms familiar to your
organization. Similarly, process integrity can be defined in terms of process
components, component activities, and activity value scales. The revolving
arrows represent the interaction between product and process measurements.
Understanding such interactions helps refine your measurement activities.
As explained in this chapter, measuring product integrity and process in-
tegrity enables you to measure the “goodness” of the products and the
“goodness” of the software systems development process used to develop the
products.

To implement the conceptual framework shown in Figure 6–2, we use a gen-
eralized measurement technique that we developed called Object Measure-
ment®.1 This technique can be used to quantify almost any object. In the most
general case, we measure an object through its characteristics. For products,
we called these characteristics attributes; for processes, we called these charac-
teristics components and activities. Of course, there is nothing magic about these
labels; you can call the product and process entities that you want to measure
anything you want. We use these labels to illustrate product and process
measurement. The translation of these labels to your labels should be
straightforward.2

Chapter 6 • Measurement

383

Measurements need to be expressed in everyday terms that are fa-
miliar to the organization; otherwise, they may, at best, be of little
value.

1Object Measurement and OM® are registered trademarks owned by Scott E. Donaldson and Stan-
ley G. Siegel.
2We are deeply indebted to Dr. Stefan Shrier for his careful review of the mathematical issues under-
lying the OM technique. We particularly appreciated Dr. Shrier’s insights, which were often laced
with his droll sense of humor.

ptg

Thus, as Figure 6–3 indicates, we describe how to make measurement of
product “goodness” and process “goodness” happen in your organization by
using the general measurement technique OM. Through worked-out exam-
ples, we describe how to apply the technique. More important, these worked-
out examples illustrate down to the “how-to-do-it” level one of the
fundamental points about measurement made at the outset of this chapter—
that measurements should be taken for the purpose of answering specific
questions.

We wish to make an additional key point about the measurement approach
in this chapter. We show how OM makes it easy to integrate a measurement
program with the organization’s way of doing software systems develop-
ment business. That is, we offer you guidance on how to blend measurement
activity with the software systems development process framework that we
introduced in Chapter 3. An apt analogy here is that of the various gauges on
an automobile dashboard. These gauges help you determine such things as

Chapter 6 • Measurement

384

PROCESS with IntegrityPRODUCT with Integrity

SOFTWARE

Component Activities
xt ij = j th activity of the i th process

component which consists of N i
activities; i = 1, N; j = 1, N i

Process Components
xt i =i th component of the process
which consists of N components;

i = 1, N

Activity Value Scales

Attribute Value Scales

Product Attributes
at i = i th attribute of the product

characterized by n attributes; i = 1, n

PROCESS

Figure 6–2 This figure shows our conceptual framework for product and process measurement. Product measurement in-
volves identifying product attributes (ati) and corresponding value scales of interest to the organization. Process measurement
involves an additional layer of decomposition. Processes are decomposed into components (xti) and component activities (xtij).
Value scales are defined for each activity in terms that are meaningful to the organization.

ptg

how far you have gone and what may not be operating properly. So, too, do
measurements that are integrated with your business process help you deter-
mine such things as how far you have come in improving your business way
and what may need to be fixed.

In addition to using OM to quantify software product “goodness” and soft-
ware process “goodness,” we have used this measurement technique to
quantify abstract entities such as strategic information management. In Ap-
pendix A, we indicate how OM can be used to quantify strategic information
management and why quantification of this object is of interest.

Even though OM can measure almost anything, we need to stress that the
technique is not a measurement “silver bullet.” If you have a measurement
program that is already helping you effect continual process improvement,
you may find that OM can complement your measurement program and
make it even more robust. If you are new to the software measurement game,
you may find that OM can help you overcome the blank-page syndrome in
firing up a measurement program that makes sense for your organization.

Chapter 6 • Measurement

385

Making Software Measurement Happen

Organizational Process

Object Measurement

How “Good”?

SOFTWARE

®

Figure 6–3 In this chapter, we offer you guidance on how to measure product “goodness” and
process “goodness” using a general measurement technique called Object Measurement. (The
Object Measurement logo shown in this figure is a registered trademark owned by Scott E.
Donaldson and Stanley G. Siegel.)

ptg

This chapter also includes a section on other process-related measurements in
addition to product and process integrity. The purpose of that section is to il-
lustrate how more conventional types of measurements can be used either in
conjunction with measurements obtained from applying OM or instead of
measurements obtained from applying this technique.

In the remainder of this section, we set context for the subject of software
process and product measurement. We first discuss whether software process
improvement may even be applicable to your organization. We then briefly
review some measurement fundamentals.

The primary purpose of measurement is to bring about product and process
improvement so that the customer is satisfied with the seller’s products. This
purpose assumes that the product and process are worth improving. When
an organization seeks to achieve orders of magnitude improvement, Business
Process Reengineering (BPR)3 technology is often considered. Typically, a
business seeks to restructure its processes when it is losing money, or worse,
threatened with going out of business.

As illustrated in Figure 6–4, in many businesses, the software systems devel-
opment process is part of a much larger business process. It is often not clear
whether the overarching business process may prevent meaningful software
systems development process improvement. If such is the case, then no
amount of tinkering with the software systems development process will be
useful until the larger business process is first improved—or, in the extreme,
reengineered.

The Catch-22, then, is the following:

How do you know whether the software systems development process
needs to be improved if you don’t know whether the larger business process is
the real impediment to software systems development success in your business?

At the risk of oversimplification, this question translates into the following
process improvement/reengineering analogy:

A process that uses a hammer to drive screws cannot generally be im-
proved by redesigning the hammer; the process needs to be reengineered by re-
placing the hammer with a screwdriver.

Certain techniques grounded in common sense should bring about software
process improvement. If it turns out that applying these techniques does not
bring about improvement, then the problems lie elsewhere in the business. In
such instances, BPR may need to be invoked in a context far larger than your
software systems development process. Thus, if by applying the techniques

Chapter 6 • Measurement

386

3For a detailed discussion of BPR, see M. Hammer and J. Champy, Reengineering the Corporation (New
York: HarperBusiness, 1993).

ptg

we present in this chapter you do not realize process improvement, you may
need to look upward within your business to get at the real source of the
problem standing in the way of successfully producing software systems. For
example, your software systems development process may indeed be com-
pleting the development of software systems on time and within budget.
However, these systems may not get into the hands of the customers until

Chapter 6 • Measurement

387

Should we improve the software
development process?

INDUSTRY

Company A Company B Company C

Products

Business Process 1

Services

Business Process 2

Software
Development Process

Figure 6–4 Software systems development process improvement is tied to the state of your overall business process.

ptg

much later because of convoluted business processes associated with miles of
paper pushing. Clearly, in such circumstances, no amount of tinkering with
the software systems development process is going to solve the overarching
business process problem of on-time delivery of the systems to the customers.

One additional observation is in order here regarding BPR versus software
development process improvement. Improvement begins with a definition of
the software systems development process. This definition provides the over-
all context for more detailed processes. From the BPR perspective, if a busi-
ness has no defined and documented software systems development process,
then the definition of such a process and its implementation constitute a form
of BPR. Putting the software systems development process in place is the first
step in bringing order to a presumably ad hoc or chaotic situation. Once some
order has been established, it then makes sense to begin thinking about
improving what has been put in place.

This chapter deals with the concept of measurement as it applies to software
products and the process used to develop these products. Frequently, when
the software engineering literature addresses measurement, it uses the term
“metric.” IEEE Standard 610.12-1990 defines metric as follows:

A quantitative measure of the degree to which a system, component, or
process possesses a given attribute.

In truth, the term “metric” is used in various ways. For example, Baumert
and McWhinney, in the Software Engineering Institute Technical Report
CMU/SEI-92-TR-25, “Software Measures and the Capability Maturity
Model” (September 1992), offer the following definitions for the related terms
“measure,” “measurement,” and “metric” (p. B-2):

Measure n.—A standard or unit of measurement; the extent, dimen-
sions, capacity, etc. of anything, especially as determined by a stan-
dard; an act or process of measuring; a result of measurement. v. To
ascertain the quantity, mass, extent, or degree of something in terms
of a standard unit or fixed amount, usually by means of an instru-
ment or process; to compute the size of something from dimensional
measurements; to estimate the extent, strength, worth, or character of
something; to take measurements.

Measurement—The act or process of measuring something. Also a re-
sult, such as a figure expressing the extent or value that is obtained
by measuring.

Metric—In this document, metric is used as a synonym for measure.

To improve a software product or a process that produces the product, mea-
surement is needed. Figure 6–5 presents our concept of product and process
metrics. As stated in the figure caption, we use metric to mean “(1) a standard
or unit of measurement, or formula used to quantify something, and/or

Chapter 6 • Measurement

388

ptg(2) the values that the standard or formula may assume.” For example, in the
nonsoftware world, “foot” is a standard of measurement used to quantify the
length of something. The formula “area = length × width” is used to quantify
the region that a rectangle of a specified length and width occupies. The num-
ber calculated when an actual length and width are substituted into the
formula is also a metric.

Also note that the value scales are generally different for product and
process, but both scales range from a minimum value to a maximum value. In
this chapter, we look at the analogues to length, width, and area for software
development processes and resultant products. The challenge is to establish
units of measurements (or, equivalently, value scales) and a relatively pain-
less way to make measurements based on these value scales. In addition,
your measurements need to have benchmarks. As shown in Figure 6–6,
everyday measurements, such as a person’s weight, the time to run a certain
distance, and the number of calories a person needs to consume daily, have
meaning only when they can be related to certain standards, or benchmarks,
for those measurements.

For example, running a mile in less than four minutes is considered to be
“fast” even for the most highly trained runners. The 4-minute-mile bench-
mark has been established through many measurements made over many
years during athletic events. This cumulative measurement experience gives
meaning to the number “4-minute-mile” for people who are familiar with
track and field events. Likewise, if process and product measurements are to
be meaningful, benchmarks need to be established. Here, meaningful measure-

Chapter 6 • Measurement

389

Product Metric

Max. Value

SOFTWARE

Min. Value

Process Metric

Max. Value

Min. Value

PROCESS

Figure 6–5 The term “metric” is used in a variety of ways in the software engineering literature. We
use metric to mean “(1) a standard or unit of measurement, or formula used to quantify something
and/or (2) the values that the standard or formula may assume.”

ptg

Chapter 6 • Measurement

390

SOFTWARE

complete good

partial lacking

little bad

Process Conformance to ADPE

Benchmarks

early good

on time okay

late bad

Product “Goodness” Benchmarks

Caloric Intake Benchmarks

1600 calories too little

2000 calories okay

2400 calories too much

Weight Benchmarks

120 pounds underweight

140 pounds okay

160 pounds overweight

Mile-Time Benchmarks

6 minutes slow

5 minutes okay

4 minutes fast

PRODUCT with Integrity PROCESS with Integrity

PROCESS

Figure 6–6 To be meaningful, measurements must have benchmarks. Benchmarks need to be established for software prod-
ucts and software development process measurements, and the relationship between the product and process measurements.

ptg

ments means “the measurements can be used to determine whether and
where the product or process needs to be improved.” For example, to deter-
mine that a project’s development process is “good,” it is necessary to deter-
mine (1) whether “good” products are being produced and (2) whether the
project’s process “conforms” to the organization’s development process, as
defined in the organization’s application development process environment
(ADPE).

As we explain in this chapter, if a project is not conforming to the organiza-
tion’s process but is producing “good” products, then the organization may
need to (1) reconsider the development process definition, (2) work with the
project to conform to the defined, organizational process so that consistent
practices across projects can be achieved, or (3) reconsider the organizational
questions being answered by the metrics. Figure 6–7 illustrates the point
that measurement is tied directly to questions that are important to the
organization.

Customers want products that do what they are supposed to do. Customers
also want to have the products delivered on time and within budget. As
shown in Figure 6–7, software systems development measurement should
address fundamental questions such as the following:

♦ Am I producing “good” products? The name of the game is to produce
“good” products that satisfy the customer. Whether or not you are in busi-
ness to make a profit, your customer needs to be satisfied with your prod-
ucts. The measurement challenge is to determine what a “good” product
means. Consequently, as shown in the upper panel of the figure, the
“goodness” values are established from the customer’s viewpoint.

♦ Is my process consistently producing “good” products within budget?
Whether or not you are in business to make a profit, your process needs to
consistently produce “good” products. If you are in a profit-making situa-
tion, then your process should enable you to make your profit. If you are
not in a profit-making situation, then your process should enable you to
meet your budget. In either situation, the measurement challenge is to de-
termine what a “good” process means to your organization. Consequently,
as shown in the lower panel of the figure, the “goodness” values are
established from the seller’s viewpoint.

In this context, software process improvement becomes an exercise in evalu-
ating product “goodness” and process “goodness.” As Figure 6–7 illustrates,
a product is “good” if it does what it is supposed to do and is delivered on
time and within budget—so that the customer is satisfied. If the product is
not “good,” then the product, the process that produced the product, or both
need improvement. A process is “good” if it consistently yields good prod-
ucts such that the seller can make a profit or stay within a budget. If the
process is not “good,” then the process needs improvement. Measurement
needs to (1) be expressed in everyday terms so that the results make sense to
the organization and (2) integrate seller and customer perspectives.

Chapter 6 • Measurement

391

ptg

The plan for the rest of this chapter is the following:

♦ In Section 6.2—Measurement Key Ideas, we present the key ideas that
you can expect to extract from this chapter.

♦ In Section 6.3—Product Integrity, we show you how to quantify software
product attributes to help determine whether a customer is satisfied with
seller results. Our intent is to explain to you one approach for assessing
customer satisfaction in terms of an index that assigns a value to the in-
tegrity (i.e., completeness) of each product that comes out of the software
systems development process.

Chapter 6 • Measurement

392

Process

Improved Process

Consistently produces “good” products, with a profit or within budget

Inconsistently produces “good” products, sometimes with no profit,
and/or sometimes with budget overruns

Satisfied Customer, On Time, Within Budget

Unsatisfied Customer, Late, Over Budget

Product
“Goodness”

Scale
SOFTWARE

IMPROVED
SOFTWARE

Max. Value

Product “Goodness”

Min. Value

Product
“Goodness”

Scale

Max. Value

Process “Goodness”

Min. Value

Am I producing
“good” products?

Is my process
consistently
producing

“good” products
within budget?

Figure 6–7 What to measure should derive from questions that are important to the organization. Questions bring to the fore
(1) quantities to be measured and (2) value scales pertinent to these quantities. Measurements can be used to help improve
software development processes and the resultant products.

ptg

♦ In Section 6.4—Process Integrity, we show you how to measure the activi-
ties that make up your software systems development process to deter-
mine the correlation between these activities and producing products with
integrity. This correlation provides insight into the extent to which these
activities are, or are not, contributing to “good” products. Those activities
not contributing are candidates for modification or elimination. These
modifications and/or eliminations define what “process improvement”
means. The discussion in this section is tied to the software systems devel-
opment process described in Chapter 3. The purpose of this tie is to show
you in specific terms how to measure the software development process in
terms of its process components and activities. However, the measurement
approach is general and can be applied to your development process.

♦ In Section 6.5—Capability Maturity Model for Software (CMM), we de-
scribe how the product integrity and process integrity concepts can be ap-
plied to the Software Engineering Institute’s (SEI) widely known
framework for improving software development, the CMM for Software.

♦ In Section 6.6—Other Process-Related Measurements, we give you ideas
for defining process-related metrics, other than the product and process
integrity indexes. Our objective is not to be comprehensive, but rather to
be suggestive of supplementary ways that you can attack software
measurement.

♦ In Section 6.7—Measurement Summary, we summarize the key points de-
veloped in the chapter. We include an annotated outline of an ADPE
guideline to help you define an organizational approach for product and
process measurement. As explained in the chapter, our approach to mea-
surement is general in that it is independent of development technologies
and tools.

In Appendix A, we indicate (1) how Object Measurement can be used to
quantify strategic information management and (2) why quantification of this
object is of interest.

6.2 Measurement Key Ideas

Figure 6–8 lists the key ideas that you can expect to extract from this chapter.
To introduce you to this chapter, we briefly explain these key ideas. Their full
intent will become apparent as you go through this chapter.

1. Measurements need to be expressed in everyday terms that are familiar to the
organization; otherwise, they may, at best, be of little use.
Simply stated, if the people doing the day-to-day software systems de-
velopment work do not understand the measurements, the collected
measurement data may be counterproductive to your improvement ac-
tivities. This chapter offers you an approach for defining meaningful
measurements for your organization.

Chapter 6 • Measurement

393

ptg

Chapter 6 • Measurement

394

Measurement Key Ideas

1. Measurements need to be expressed in everyday terms that are familiar to the
organization; otherwise, they may, at best, be of little use.

2. Keep the measurement process simple—otherwise, it will die quickly. Simple
means “easy-to-collect data and easy-to-interpret information resulting from
these data.”

3. Establish benchmarks to give meaning to measurements. Without context,
process measurement is a waste of time.

4. Measure product integrity by (1) selecting product attributes to measure, (2)
defining value scales for each product attribute, (3) recording observed at-
tribute values, and (4) combining the recorded attribute values into a single
number called a product integrity index.

5. Measure process integrity by (1) selecting the software development process
components to measure, (2) selecting component activities to measure, (3)
defining value scales for each component activity, (4) recording observed ac-
tivity values, and (5) combining recorded activity values into a single number
called a process integrity index.

6. Customer satisfaction is the ultimate measure of software systems develop-
ment process value. If the process fails to yield products satisfying the cus-
tomer, the process needs repair.

7. Measure customer satisfaction by incorporating customer feedback on deliv-
ered products into the process.

8. Measurements should be a part of the software systems development process.

9. Document in an ADPE element the measurement process and the items to be
measured.

Figure 6–8 Successful software systems development is a continual improvement exercise. Measurement is a means for ef-
fecting this improvement. Here are key measurement concepts that are explained in this chapter.

2. Keep the measurement process simple—otherwise, it will die quickly. Simple
means “easy-to-collect data and easy-to-interpret information resulting from
these data.”
Our experience shows that many good-intentioned process measure-
ment programs do not survive because (1) data collection is too oner-
ous a task, and (2) the data collected are difficult to relate to process
improvement. This chapter offers suggestions for blunting these classi-
cal causes of measurement program failure.

ptg

3. Establish benchmarks to give meaning to measurements. Without context,
process measurement is a waste of time.
This chapter offers you ideas for establishing a framework for inter-
preting the measurements you make and collect. Many of us at one
time or another have been concerned about our weight. It is easy to
measure our weight. However, the resultant measurement is generally
of little value if, for example, our objective is to gain or lose weight. We
need weight benchmarks to know whether we are underweight, okay,
or overweight. Similarly, we need process benchmarks that can tell
whether the process that we have measured is underweight, okay, or
overweight with respect to, say, the integrity of delivered products that
the process yields. This chapter offers you ideas for constructing such
benchmarks.

4. Measure product integrity by (1) selecting product attributes to measure, (2)
defining value scales for each product attribute, (3) recording observed at-
tribute values, and (4) combining the recorded attribute values into a single
number called a product integrity index.
Many of our conventional measures, such as the “foot,” have their ori-
gin in objects that most people could recognize. A challenge in the soft-
ware process measurement game is to find analogues to such easily
recognized units of measure. This chapter offers you ideas for such
analogues. This chapter also offers you ideas for converting the multi-
dimensional product integrity concept into a one-dimensional index.
These ideas will, at the same time, give you insight into how you can
measure individual product integrity attributes or combinations of
these attributes—whatever attributes you may choose to quantify
product “goodness.”

5. Measure process integrity by (1) selecting the software development process
components to measure, (2) selecting component activities to measure, (3)
defining value scales for each component activity, (4) recording observed ac-
tivity values, and (5) combining recorded activity values into a single number
called a process integrity index.
This chapter offers you ideas for converting the multidimensional
process integrity concept into a one-dimensional index, and ideas
about how this index is related to the product integrity index. We ex-
plain how process integrity is a generalization of the product integrity
concept.

6. Customer satisfaction is the ultimate measure of software systems develop-
ment process value. If the process fails to yield products satisfying the cus-
tomer, the process needs repair.
This chapter offers you ideas for measuring customer satisfaction and
linking this measure to process activities. Through this linkage, we
offer you ideas for modifying process activities to increase customer
satisfaction.

Chapter 6 • Measurement

395

ptg

7. Measure customer satisfaction by incorporating customer feedback on deliv-
ered products into the process.
How can you get insight into what the customer thinks your software
systems development process is delivering? This chapter offers you
ideas for integrating within the process customer feedback on deliv-
ered products. We offer suggestions on how to measure this feedback
in terms that can be linked to process activities.

8. Measurements should be a part of the software systems development process.
Defining, collecting, using, and communicating measurement data
should be integrated into the development process and used, in part, to
improve the organization’s products and processes. However,
measurement for measurement’s sake is a waste of time and resources.
This chapter presents ideas on how to establish measurements that
can be integrated into your organization’s software development
activities.

9. Document in an ADPE element the measurement process and the items to be
measured.
A measurement process is an organized way of effecting software
systems development process improvement. This chapter gives you
ideas for documenting the measurement process, thereby helping you
organize your approach to software systems development process
improvement.

6.3 Product Integrity

Like other organizations, you want your organization to stay in business. It is
axiomatic that “staying in business” is strongly tied to customer satisfaction,
which can be expressed in many ways. The purpose of this section is to ex-
plain how the product integrity concept can be used to quantify “customer
satisfaction.”

Our approach in this section is the following:

♦ We use an example set of attributes to define an example product integrity
index.

♦ We use the example index to generate values for several different products
to show you how to do product “goodness” measurement using the index.

♦ We then give you a general formula for computing the index.
♦ The worked-out examples and the general formula enable you to apply

straightforwardly our product integrity measurement approach to your
environment.

Chapter 6 • Measurement

396

ptg

Figure 6–9 depicts the example set of attributes. We have chosen the five at-
tributes shown because they are often of interest to management and product
developers. These attributes are defined more specifically as follows:

at1 Fulfills specified customer needs (i.e., does what it is supposed to
do as recorded and agreed to by the customer and the seller).

at2 Can be easily and completely traced through its life cycle (i.e., is
“maintainable”—it can be easily updated to (1) incorporate new
things, (2) revise existing things, and (3) get rid of things no longer
deemed needed by the customer).

at3 Meets specified performance criteria (e.g., How many? How often?
How long?; these criteria are sometimes considered special cases of
customer needs—the first product integrity attribute).

at4 Meets cost expectations (i.e., costs what the customer and the seller
agreed that it should cost as expressed in a project plan or updates
to the plan).

Chapter 6 • Measurement

397

Meets delivery
expectations

(at
5
)

Meets specified
performance criteria

(at
3
)

SOFTWARE

Meets cost
expectations

(at
4
)

Can be easily
and completely
traced through

its life cycle
(at

2
)

Fulfills customer needs
(at

1
)

Product

Figure 6–9 Here is an example of a way to define product integrity in terms of attributes that are
often of interest to both management and product developers.

ptg

at5 Meets delivery expectations (i.e., is delivered in accordance with
schedules agreed to by the customer and the seller in a project plan
or updates to the plan).

Product integrity is thus a multidimensional concept that associates attributes
with a product. To use product integrity to quantify customer satisfaction, we
need a convenient way to quantify something with multiple dimensions
(here, something with five dimensions). The discussion that follows offers an
approach that can be used to quantify any multidimensional entity. This dis-
cussion also makes it evident how any subset of the five product attributes
we discuss, or any set of attributes you want to use, can be used to measure
customer satisfaction. The following treatment thus provides a general ap-
proach to using product integrity as a basis for measuring customer satisfac-
tion. Through experimentation with this general approach, you can define a
preferred approach to apply in your environment.

The mathematical and scientific disciplines often handle multidimensional
quantities with entities known as “vectors.” The scientific discipline of
physics, for example, uses vectors to describe many quantities (displacement,
velocity, acceleration, force, momentum—to name a few). To illustrate from
this list, the change of position of a particle is called a “displacement.” When
we go to work in the morning, we displace ourselves from our home to our
place of work. We can represent this displacement as an arrow on a map
drawn from the place on the map that is our home to a place on the map
where our office is. This arrow represents the (straight-line) distance from our
home to our office and the direction of this distance with respect to, say, some
reference frame, such as that used to define the four compass points. Figure
6–10 shows the concept of displacement in one, two, three, and n dimensions.

Figure 6–10 also shows how the length of the vector is calculated to deter-
mine the magnitude of the displacement. For example, we represent displace-
ments in three-dimensional space by specifying a triple of numbers (x1, x2, x3),
which defines the displacement of a point with respect to three mutually
perpendicular axes. These axes establish a scale of values in this space.

We use this notion of displacement in space to derive the idea of a product in-
tegrity index. The space of interest is product attribute space. That is, the axes
in this space, which we also refer to as product integrity space, are product at-
tributes. Figure 6–11 illustrates a three-dimensional product integrity space,
where the attribute axes are the quantities at1, at4, and at5 defined earlier.

By extension, then, if we want to quantify product integrity as it is defined by
the example set of five attributes introduced earlier, we can think of product
integrity as an entity in five-dimensional space. One axis in this space shows
how much a product “fulfills customer needs”; a second axis shows how the
evolution of the product “can be easily and completely traced through its life
cycle”; and so forth for the other product integrity attributes (unfortunately,

Chapter 6 • Measurement

398

ptg

since we live in a three-dimensional world, we cannot draw the five-
dimensional extension to Figure 6–11).

To understand how we can use these vector-related ideas for quantifying the
concept of product integrity as a means for measuring customer satisfaction,
consider the following five-dimensional vector:

Chapter 6 • Measurement

399

How long is a line?

Length = X
1

Length = X
1
+ X

2

One Dimension

X
1

X
1

Two
Dimensions

Three
Dimensions

n Dimensions

2 2

Length = X
1

+ X
2
 + X

3

X
1

X
3

X
2

X
2

2 2 2

Length = � X i

2

i =1

n

Figure 6–10 The idea for a product integrity index derives from the concept of the length of a
line in space. The figure shows how the length of a line can be portrayed in spaces of various
dimensions as the magnitude of a vector representing a displacement. The tail of the vector
represents the starting point, and the head of the vector represents the destination point. The
length of the vector represents the distance between the starting point and the destination
point. Similarly, the product integrity index is simply the length of a line in product attribute
space.

ptg

(6.3–1)

PI =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥ =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

a

a
a

N

CustNeeds
Traceable
PerfCrit

WithinBudget
OnTime

N

1

4

5

a
a

2

3

Chapter 6 • Measurement

400

A Three-Dimensional Product Integrity Vector

at 5 — meets delivery expectations

at 1 —fulfills customer needs

PI = Product Integrity Vector

at
4
—

meets cost
expectations

Product Goodness

Figure 6–11 Product integrity is a multidimensional concept associating a number of attributes
with a product. A vector is one way simply to represent a multidimensional concept. The figure
shows a three-dimensional product attribute space made up of three members from the example
set of five attributes introduced earlier. A vector in this space is the product integrity vector. Its
length is what we will use to measure product “goodness.” Our approach to measuring product
“goodness” is thus an exercise in measuring the length of the product integrity vector.

ptg

In Equation 6.3–1, PI is a vector in five-dimensional product integrity space
whose components, ati, are the example product integrity attributes defined
earlier. The quantity N is a normalization factor that establishes a “product
goodness scale.” As we subsequently explain, we choose N so that the length
of PI is restricted to the range from zero to one.

Now, to turn Equation 6.3–1 into a measurement tool, we consider the follow-
ing questions:

♦ How can we convert a five-dimensional quantity into a single quantity to
simplify measurement interpretation?

♦ What scales do we establish for the attributes?
♦ What relative weights do we assign to the attributes?
♦ How can we assign a scale of values for the single quantity?

Clearly, there are many sensible ways to address these questions.

The first question deals with simplifying measurement. As Equation 6.3–1 in-
dicates, multidimensional expressions of product integrity are possible. How-
ever, for simplicity, we have chosen to restrict ourselves to a one-dimensional
quantity to express product integrity quantitatively. Recalling Figure 6–11,
that quantity is the length of the product integrity vector PI (i.e., it is the five-
dimensional extension to the three-dimensional case shown in the figure).

As Figure 6–11 indicates, each product attribute dimension contributes to the
“length” of the vector PI. To convert the five-dimensional quantity in Equa-
tion 6.3–1 into a single quantity (to represent “quality” or “completeness”),
we calculate the “length” of the vector. We call the length of PI the Product
Integrity Index, or PIindex. As subsequently explained, this product integrity
vector length, PIindex, is simply the square root of the sum of the weighted
(wi) squares of the attributes ati divided by the normalization factor N.

The second question deals with attribute scales. Many people find it useful
and convenient to quantify things in terms of percentages. Thus, a convenient
range for an attribute scale goes from zero to one. Again, for simplicity, we
take the approach of limiting the attribute scales to the range zero to one.4

The third question deals with relative weights for product attributes. If we as-
sign the same scale to each attribute (namely, zero to one), we are weighting
each attribute equally. For simplicity, we will take this approach. However,
you may wish to emphasize one attribute more than the others. For example,
if you wanted to give “meets delivery expectations” double the importance of
any of the other attributes, you could set its scale to run from zero to two and
set the scales of the other attributes to run from zero to one. Equivalently, you

Chapter 6 • Measurement

401

4Note that we are mapping our attribute values to dimensionless scales. This mapping allows us to
combine the attribute values into a single quantity.

ptg

can keep all the scales the same and give prominence to selected attributes
through the use of weighting factors (wi). We show you how to introduce
such weighting factors.

The fourth question deals with establishing a value scale for the length of PI.
We select a scale for the magnitude of this vector by choosing a value for the
normalization factor N. Arguing as we did before, we simply select a scale
that ranges from zero to one. For equally weighted attributes, the value of N
then becomes the square root of the sum of the squares of the maximum val-
ues that the attributes ati can take on. For the case in which a product has five
attributes each with a maximum value of one, the value of N thus becomes
the square root of 5. We also show you how to compute N if the attributes are
not equally weighted.

On the basis of the preceding discussion of one way to address the four ques-
tions previously introduced, we can now define a product integrity index,
PIindex, that ranges from zero to one as follows:

(6.3–2)

where ati = product integrity attribute
n = number of product integrity attributes
wi = weighting factor for attribute ati
maximum [ati] = maximum value of ati.

Figure 6–12 presents three examples of how Equation 6.3–2 can be used. Ex-
ample 1 represents our software product that is characterized by five attributes.
Example 2 represents the case in which the attribute, at1—fulfilling customer
requirements, is considered twice as important as the other attributes. Example
3 represents the case in which attributes at2 and at3 are suppressed.

The product integrity index, PIindex, is normalized to one (i.e., restricted to
the range of zero to one). If you want to remove this normalization, then re-
move the denominator.

To illustrate how Equation 6.3–2 works, we need to define value scales for
each of our example software product attributes ati. There is a multiplicity of
ways such assignments can be made. Figure 6–13 shows one way to set up
value scales for these attributes.

This example is explained below, and it provides insight into ways that you
can make such assignments that are relevant to your organization.

PIindex

w at

w at

i i

i

i

n

i

n
= =

=

∑

∑

2

1

2

2

1

2(maximum[])i

Chapter 6 • Measurement

402

ptg

♦ For at1 (fulfills specified customer needs), we set up a three-value scale
based on an acceptance of deliverable form5 as follows:
♦ at1 = 1 if the customer returns the form indicating “accepted as

delivered.”
♦ at1 = 0.5 if the customer returns the form indicating “accepted with

minor changes.”
♦ at1 = 0 if the customer returns the form indicating “changes to be

negotiated.”
If we wanted to provide more insight into the percentage of requirements
fulfilled, we could count such requirements appearing in the product and
compare them against some ground truth showing what this number of re-
quirements should be (“shalls” in the language of requirements analysis).
For example, suppose the product were a requirements specification, and
suppose CCB minutes indicated that 40 requirements should be addressed

Chapter 6 • Measurement

403

Example 3—One or more attributes are suppressed

n = 5, all w i =1 except for w
2

= w
3

= 0
(i.e., the traceability and performance
requirements attributes are excluded),
all maximum at i = 1

Example 2 —One attribute is twice as important as any other attribute

n = 5, all w i = 1 except for w 1 = 2
(fulfilling customer requirements
twice as important as any other
attribute), all maximum at i = 1

Example 1—Equal weighting factors

n = 5, all w i = 1, all maximum at i = 1
� at i

2

i =1

5

5
PIindex =

� at i
2

i =1,4,5

3
PIindex =

4at
1
+� at i

2 2

i =2

5

8
PIindex =

Figure 6–12 This figure illustrates three ways in which the general formula for the product in-
tegrity index, PIindex, can be used.

5We explained in Chapter 3 that, as part of our software systems development process, we use an ac-
ceptance of deliverable form to obtain, in part, customer feedback. For this example, we have assigned
discrete values for the three possible customer evaluations.

ptg

Fulfills specified customer needs
(as recorded and agreed to)

(at
1
)

Changes to be negotiated
(at

1
 = 0.0)

Accepted with minor changes
(at

1
 = 0.5)

Accepted as delivered
(at

1
 = 1.0)

1.0

0.5

0.0

Product Integrity Index

(Plindex = 1.0)

(Plindex = 0.0)at
1

at
2

at
3

at
4

at
5

Accepted as delivered
Detailed written records throughout the life cycle
Accepted as delivered
Delivered for less than cost estimate
Delivered ahead of schedule

Changes to be negotiated
Only customer’s statement of work exists
Changes to be negotiated
Delivered for more than the cost estimate
Delivered late, ≥ twice the scheduled weeks

Example Product Integrity Attribute Value Scales

� at i
2

i = 1

5

5
PIindex =

0.0

1.0

PIindex

Meets cost expectations
(within costs or updated costs)

(at
4
)

Delivered for more than the cost
estimate

Delivered for less than cost estimate

Delivered for cost estimate

1.0

0.9

0.0

(at
4
 = 1.0)

(at
4
 = 0.9)

(at
4
 = 0.0)

Only customer’s statement of work exists

Written records for some portion of life
cycle

Detailed written records throughout the
life cycle

Can be easily and completely traced
through its life cycle

1.0

0.5

0.0

(maintainable)
(at

2
)

(at
2
 = 1.0)

(at
2
 = 0.5)

(at
2
 = 0.0)

Accepted with minor changes

Accepted as delivered

Meets specified performance criteria
(How many? How often? How long?)

(at
3
 = at

1
)

1.0

0.5

0.0 Changes to be negotiated

(at
3
 = 1.0)

(at
3
 = 0.5)

(at
3
 = 0.0)

Delivered late, � twice the number of
scheduled weeks

Delivered ahead of schedule

Meets delivery expectations
(within schedule, as planned or updated)

(at
5
)

Delivered within 10% of schedule

Delivered late

weeks late
scheduled weeks

1.0

0.9

0.0

(at
5
 = 1.0)

(at
5
 = 0.9)

at
5
 = 1 –

(at
5
 = 0.0)

Figure 6–13 This figure illustrates value scales for each of the five example product integrity attributes (ati) discussed. You will
want to set up attributes and value scales that make sense for your organization.

ptg

in the document but only 30 actually appeared when the document was
delivered (as determined by the customer). Then, for this example, if we
chose to use this counting approach to assign a value to at1, that value
would be (30/40) = 0.75.

♦ For at2 (can be easily and completely traced through its life cycle), the situa-
tion can become complicated. Depending on the product, traceability may
involve more than the product itself. For example, if the product is com-
puter code, then traceability involves the existence of predecessor products
such as design and requirements specifications. If the product is a require-
ments specification, then traceability typically involves documents that a
customer may supply, such as congressional legislation or corporate poli-
cies. More generally, traceability involves such things as product decisions
recorded at CCB meetings, internal project meetings, and recorded seller
and customer management conversations and e-mail between these two
parties. To keep things simple, we set up a crude three-value scale based
on the existence of records showing how the product evolved, as follows:
♦ at2 = 0 if nothing other than a customer-prepared statement of work

(SOW) exists calling for the development of the product.
♦ at2 = 0.5 if written records exist for some part of the project’s life cycle

showing how the product contents are what they are.
♦ at2 = 1 if detailed written records exist throughout the life of the project

showing how the product contents are what they are.
♦ For at3 (meets specified performance criteria), we simply set at3 = at1, since

performance criteria are often lumped with customer needs (if such is not
the case in your environment, then you can follow the suggestions previ-
ously offered for the attribute at1). That is, we use the following scale:
♦ at3 = 1 if the customer returns the form indicating “accepted as

delivered.”
♦ at3 = 0.5 if the customer returns the form indicating “accepted with

minor changes.”
♦ at3 = 0 if the customer returns the form indicating “changes to be

negotiated.”
♦ For at4 (meets cost expectations), we set up a three-value scale as follows:

♦ at4 = 1 if the product was delivered for less than the cost specified in the
project plan or as modified in CCB minutes.

♦ at4 = 0.9 if the product was delivered for the cost specified in the project
plan or as modified in CCB minutes.

♦ at4 = 0 if the product was delivered for more than the cost specified in
the project plan or as modified in CCB minutes.

Clearly, this scale places a slight premium on delivering for less than
planned cost. The scale also ranks a deliverable delivered for $1 more
than planned cost the same as a deliverable delivered for $3,000 more than
planned cost. Again, in your environment, you may not wish to place a
premium on delivery below cost—but the preceding example gives the

Chapter 6 • Measurement

405

ptg

idea for how you can establish such premiums (this remark applies also to
the attribute at5 [meets delivery expectations] in the following).

♦ For at5 (delivered on time), we set up a scale as follows:
♦ at5 = 1 if the product was delivered before the delivery date specified in

the project plan or before the delivery date as modified in CCB minutes.
♦ at5 = 0.9 if the product was delivered with no more than a 10 percent

schedule slippage. Here, “percent slippage” is calculated by taking the
length of time allocated in the project plan for preparing the product or
as modified in CCB minutes and dividing that time into the slippage
time and multiplying by 100. For example, if the product was scheduled
to be delivered 10 weeks after project start, but it was actually delivered
11 weeks after project start, then at5 = 0.9 because the slippage was
(1/10) × 100 = 10 percent.

♦ at5 = (1 – X), where X is the fraction of schedule slippage as just calcu-
lated. For example, if the product was scheduled to be delivered 10
weeks after project start, but it was actually delivered 13 weeks after
project start, then at5 = (1 – [3/10]) = 0.7. For all schedule slippages
greater than or equal to the original length of time to produce the deliv-
erable, at5 = 0 (for example, if a deliverable was to be developed over a
10-week period, any delays greater than or equal to 10 weeks result in
at5 = 0).

This scale places a slight premium on delivering early. Also, it favors on-
time product delivery while allowing for some planning leeway.

We now illustrate how to calculate PIindex in Equation 6.3–2 using the preced-
ing scales for the following example products: (1) a requirements specifica-
tion, (2) a new release of a legacy software system, (3) an updated user’s
manual, and (4) a new project plan.

Example 1—PIindex Calculation for a Requirements Specification

The product is a requirements specification. After delivery, the customer sent
back the acceptance of deliverable form showing “accepted with minor
changes.” Thus, at3 = at1 = 0.5. The product was delivered on time so at5 = 0.9.
The project plan called for 300 hours to be expended on the task to produce the
document, but only 275 hours were expended. Thus, at4 = 1. Written records
consisting of CCB minutes showing decisions underlying the document’s con-
tent exist for some part of the project. Thus, at2 = 0.5. The product integrity
index, PIindex, for this requirements specification is therefore the following:

Figure 6–14 shows how this requirements specification example can be
graphically presented.

PIindex = + + + + =0 5 0 5 0 5 1 0 9
5

0 72
2 2 2 2 2. . . .

. .

Chapter 6 • Measurement

406

ptg

407

PIindex
= 0.72

at
5

=

0.9

at
4

=

1.0

at
3

=

0.5

at
 2

=

0.5

at
1

=

0.5

� at i

2

i =1

5

5
PIindex = = = 0.72

1.0

0.5

0.0

1.0

0.5

0.0

0.0

0.5

1.0

0.0

1.0

0.0

0.9

1.0

0.
0

0.
91.

0

0.52 + 0.52 + 0.52 + 12 + 0.92

5

 Quantified Product Integrity Attributes

Fulfills specified customer needs
(at

1
)

Meets delivery
expectations

(at
5
)

Meets cost
expectations

(at
4
)

Meets specified
performance criteria

(at
3

= at
1
)

Can be easily &
completely

traced through
its life cycle

(at
2
)

Requirements

Specification

Accepted with minor changes
at

1
= 0.5

Accepted with minor changes
at

3
= 0.5

Written records for some portion
of life cycle

Delivered for less
than cost estimate

at
4

= 1.0

Delivered within 10% of schedule
at

5
= 0.9

� Accepted with minor changes
� Written records for some portion of life cycle
� Accepted with minor changes
� Delivered for less than cost estimate
� Delivered within 10% of schedule

Requirements
Specification

Product Integrity Index

at
2

= 0.5

Figure 6–14 This figure illustrates one way to display the results of quantifying the integrity of a software product (e.g., a re-
quirements specification). For the attribute values shown, PIindex = 0.72.

ptg

The top panel displays how PIindex is calculated given the recorded data, and
summarizes the product integrity attributes. The bottom panel provides addi-
tional detail into the attributes, their scales, and the recorded data. The bot-
tom panel displays the observed attribute values on a Kiviat-like diagram.
This diagram gives the next level of insight into the nature of the product
being measured. In particular, it shows the recorded value of each product in-
tegrity attribute plotted on the scale for that attribute.6

Example 2—PIindex Calculation for a New Release of a Legacy Software System

The product is a new release of a legacy software system. After delivery
(which was preceded by acceptance testing), the customer sent back the ac-
ceptance of deliverable form showing “accepted as delivered.” Thus, at1 =
at3 = 1. The product was supposed to be delivered 20 weeks after project start,
but was delivered 5 weeks late so at5 = (1 – [5/20]) = 0.75. The project plan
called for 3000 hours to be expended on the task to produce the system up-
grade, but only 2900 hours were expended. Thus, at4 = 1. No requirements or
design specifications exist. However, each code module has a header contain-
ing key information about the module’s contents and a version number. In
addition, written records consisting of CCB minutes showing decisions un-
derlying the code module changes exist throughout the acceptance testing
cycle. Thus, at2 = 0.5. The product integrity index, PIindex, for this new release
of the legacy system is therefore the following:

PIindex = + + + + =1 0 5 1 1 0 75
5

0 87
2 2 2 2 2. .

. .

Chapter 6 • Measurement

408

6It is important to note that, in general, when you are dealing with unequally weighted attributes
(which is not the case with the example shown in Figure 6–14), this situation can affect the way you
display your measurements. When you have unequally weighted attributes (i.e., all wi are not equal),
there are several possible ways of using the Kiviat-like diagram to display what is going on. Some of
these ways are the following:
• You can plot unequally weighted observed values. In this case, the length of a value scale in your display

ranges from the weight (wi) times the minimum attribute value (minimum [ati]) to the weight (wi)
times the maximum attribute value (maximum [ati]). For example, suppose that attribute at1 in Fig-
ure 6–14 had twice the weight as any of the other attributes (i.e., w1 = 2 and all the other wi = 1). In
this case, the length of the at1 value scale would run from a minimum value of zero (i.e., [w1] times
[minimum {at1}] = 2 times 0) to a maximum value of two (i.e., [w1] times [maximum {at1}] = 2
times 1), while the other attribute value scales would run from zero (i.e., [wi] times [minimum {ati}]
= 1 times 0, for i = 2, 3, 4, 5) to one (i.e., [wi] times [maximum {ati}] = 1 times 1, for i = 2, 3, 4, 5).

• You can plot equally weighted observed values. Each scale in this case would run from zero to one (in-
cluding the scale for at1). To show that at1 has twice the weight as any of the other attributes, you
could annotate the Kiviat-like diagram with a statement to this effect.

• You can plot unequally weighted and equally weighted observed values.
The bottom line here is to set up the display (Kiviat-like or otherwise) in a way that makes sense for
your organization.

ptg

Example 3—PIindex Calculation for an Updated User’s Manual

The product is an update to a user’s manual for a new release of a software sys-
tem that the seller maintains. The customer was uncertain about many things
that the manual should contain and constantly wanted to change its contents
(even up to the last minute). After delivery, the customer sent back the accep-
tance of deliverable form showing “changes to be negotiated.” Thus, at3 = at1 =
0. Because of the customer uncertainty and the many changes to the document,
the manual, which was supposed to be delivered 10 weeks after project start,
was delivered 5 weeks late, so at5 = (1 – [5/10]) = 0.50. The project plan called for
300 hours to be expended on the task to produce the user’s manual, but, because
of the numerous changes and schedule slippages, 360 hours were expended.
Thus, at4 = 0. Written records consisting of CCB minutes showing the change
track record of the document exist. These records also indicate that the cus-
tomer was alerted to potential schedule slippages and cost overruns because of
the document’s unsteady state. Thus, at2 = 0.5. The product integrity index,
PIindex, for this user’s manual update is therefore the following:

Example 4—PIindex Calculation for a New Project Plan

The product is a new project plan for the development of a software system.
The process engineering group, which is responsible for project planning, es-
timated that the plan, with one revision, would cost $3000 and would take 20
working days to deliver to the customer. The plan was actually delivered 24
working days after start, so that at5 = (1 – [4/20]) = 0.80. The actual cost to
produce the plan was $2700, so that at4 = 1. Besides the SOW, the customer
supplied needed reference material that was (1) referenced in the plan, (2)
used to construct a current system concept, (3) used to construct a system
concept after plan accomplishment, and (4) used to construct the technical ap-
proach. Thus, at2 = 1. The plan resulted in a contract, which implies that the
plan fully responded to the customer requirements stipulated in the SOW. In
addition, the contract implies customer acceptance of the project plan and is
therefore equivalent to the customer sending back the acceptance of deliver-
able form showing “accepted as delivered.” Thus, at3 = at1 = 1. The product
integrity index, PIindex, for this project plan is therefore the following:

Figure 6–15 summarizes the PIindex calculations for the preceding examples.

PIindex = + + + + =1 1 1 1 0 8
5

0 96
2 2 2 2 2.

. .

PIindex = + + + + =0 0 5 0 0 0 5
5

0 32
2 2 2 2 2. .

. .

Chapter 6 • Measurement

409

ptg

Chapter 6 • Measurement

410

1.0

0.5

0.0

1.00.50.0

0.0

0.5

1.0

0.0

0.9
1.0

0.
0

0.
91.
0

Requirements

Specification

PIindex = = 0.720.52 + 0.52 + 0.52 + 12 + 0.92

5
Fulfills specified customer needs

(at
1
)

Meets delivery
expectations

(at
5
)

Meets cost expectations
(at

4
) Meets specified

performance criteria
(at

3
= at

1
)

Can be easily
& completely

traced through
its life cycle

(at
2
)

1.0

0.5

0.0

1.00.50.0

0.0

0.5

1.0

0.0

0.9
1.0

0.
0

0.
751.

0

New Release

of Legacy

Software

System

PIindex = = 0.8712 + 0.52 + 12 +12+ 0.752

Fulfills specified customer needs
(at

1
)

Meets delivery
expectations

(at
5
)

Meets cost expectations
(at

4
) Meets specified

performance criteria
(at

3
= at

1
)

Can be easily
& completely

traced through
its life cycle

(at
2
)

1.0

0.5

0.0

1.00.50.0

0.0

0.5

1.0

0.0

0.9
1.0

0.
0

0.
51.

0

Updated

User’s

Manual

PIindex = = 0.3202 + 0.52 + 02 + 02 + 0.52

Fulfills specified customer needs
(at

1
)

Meets delivery
expectations

(at
5
)

Meets cost expectations
(at

4
) Meets specified

performance criteria
(at

3
= at

1
)

Can be easily
& completely

traced through
its life cycle

(at
2
)

1.0

0.5

0.0

1.00.50.0

0.0

0.5

1.0

0.0

0.9
1.0

0.
0

0.
81.
0

New Project

Plan

PIindex = = 0.9612 + 12 + 12 + 12 + 0.82

Fulfills specified customer needs
(at

1
)

Meets delivery
expectations

(at
5
)

Meets cost expectations
(at

4
) Meets specified

performance criteria
(at

3
= at

1
)

Can be easily
& completely

traced through
its life cycle

(at
2
)

2

5

55

� at i
2

i = 1

5

5
PIindex =

Figure 6–15 This figure illustrates PIindex for four software products. PIindex was calculated after the customer re-
ceived each product and returned the acceptance of deliverable form.

ptg

As we stated at the outset of this chapter, it is easy to measure our weight.
However, the resultant measurement is generally of little value if, for exam-
ple, our objective is to gain or lose weight. We need weight benchmarks to
know whether we are underweight, okay, or overweight. Similarly, we need
benchmarks for PIindex. For example, we can use the product integrity index
to establish norms for “product quality” or “completeness.” As you gain ex-
perience with this index, you can establish goals for various types of prod-
ucts, projects, and seller periods of performance. For example, you can
establish goals such as the following:

♦ Each release of a legacy system for which little or no documentation exists
shall have a product integrity index not less than 0.75.

♦ Each deliverable for each project whose ultimate objective is to produce a
new software system shall have a product integrity index not less than
0.85.

The examples discussed deal with calculating PIindex after a product is deliv-
ered to the customer. However, PIindex can also be used to quantify a prod-
uct’s integrity during its development, as well as after its delivery. As shown
in Figure 6–16, to apply PIindex during product development, (1) think of the
product development process as building a sequence of interim products
leading up to the delivered product (e.g., outline, annotated outline, rough
draft, etc.), and (2) measure the integrity of each of these interim products in a
way similar to the way that the integrity of the delivered product is
measured.

Assessing the integrity of these interim products can help the project man-
ager and the product development staff appropriately focus efforts to in-
crease the integrity of the to-be-delivered product. The figure shows how
each of the product integrity attributes can be interpreted for interim prod-
ucts. These interpretations are based on the interpretations given to these
attributes for the to-be-delivered product. You can set up a similar correspon-
dence for whatever interpretations you choose to give to your product
integrity attributes.

To aid in tracking the evolution of a product, it may be useful to plot the in-
terim PIindexes. Figure 6–17 illustrates this idea for a requirements specifica-
tion. PIindex and each of the product attributes (ati) are plotted. Such
juxtaposed plots can help the project manager to ensure that a product is
evolving as planned. These plots can also give the customer quantitative visi-
bility into the evolution of the deliverable.

As shown in the top panel of Figure 6–17, there are six reporting periods be-
fore the requirements specification is scheduled for delivery to the customer.
During the first reporting period, the requirements specification PIindex was
reported to be near 0.9. Looking down the period-1 column, you can see the
following:

Chapter 6 • Measurement

411

ptg

Chapter 6 • Measurement

412

(at
1
 = 0.0)

(at
1
 = 0.5)

(at
1
 = 1.0)

Only customer’s statement of work exists

Written records for some portion of
product’s development

Detailed written records during
product’s development

See at
1

See at
1

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0 See at
1

(at
2
 = 1.0) (at

3
 = 1.0)

(at
3
 = 0.5)

(at
3
 = 0.0)

(at
2
 = 0.5)

(at
2
 = 0.0)

PIindex PIindex PIindex PIindex

Produced late, ≥ twice the number of
scheduled days/weeks

Produced ahead of schedule

Produced within 10% of schedule

Produced late

days/weeks late

scheduled days/weeks

1.0

0.9

0.0

(at
5
 = 1.0)

(at
5
 = 0.9)

at
5
 = 1 –

(at
5
 = 0.0)

Meets delivery expectations
(within schedule, as planned or updated)

(at
5
)

Product needs to be
reworked—give me new draft
before proceeding

Product needs minor
changes—make them, then
proceed

Product needs no changes—
proceed

 Quantified Product Integrity Attributes for Interim Products

Start

Interim Interim Interim Delivered

Fulfills specified customer needs
(as recorded and agreed to)

(at
1
)

Can be easily and completely traced
through its life cycle

(maintainable)
(at

2
)

Meets specified performance criteria
(How many? How often? How long?)

(at
3
 = at

1
)

1.0

0.9

0.0

(at
4
 = 1.0)

(at
4
 = 0.9)

(at
4
 = 0.0)

Meets cost expectations
(within costs or updated costs)

(at
4
)

Produced for more than the cost estimate

Produced for less than the cost estimate

Produced at estimated cost

� at i
2

i = 1

5

5
PIindex =

Figure 6–16 The product integrity index, PIindex, can be used to quantify a product’s integrity during its development, as well
as after its delivery to the customer.

ptg

413

PIindex

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

Fulfills
specified
customer
needs
(at

1
)

Requirements Specification Evolution

Submitted reworked
annotated outline

Submitted
annotated outline

Submitted outline

Submitted draft
specification

Delivered
specification

Delivery

Only SOW exists

Reporting
Period 2

Reporting
Period 3

Reporting
Period 4

Reporting
Period 5

Reporting
Period 6

Reporting
Period 1

Only outline and
CCB minutes exist

Created detailed
written records

Did not document
interim conversations
with customer

Did not hold
peer reviews

Increase in PIindex due to:
• Reworked annotated
 outline
• Documented interaction
 with customer
• Use of additional
 resources
• Early submission of
 annotated outline

Decrease in PIindex due to:
• Undocumented interaction with customer
• Late submission of annotated outline

Decrease in PIindex due to:
• Undocumented interaction with customer
 resulting in minor changes to specification

Decrease in PIindex due to:
• Lack of peer reviews resulting in minor
 changes to specification

Used less than
planned

number of hours

Still used
less than

planned number
of hours

Used more than
planned number of
hours to catch up

Used less than
planned number

of hours

Delivered
specification
for less than
planned cost

Submitted
outline
on time

Submitted
annotated

outline
late Submitted

reworked
annotated

outline early

Submitted
draft

specification
on time

Delivered
specification

on time

Meets
delivery
expectations
(at

5
)

Meets cost
expectations
(at

4
)

Meets
specified
performance
criteria
(at

3
= at

1
)

Can be
easily &
completely
traced
through
its life cycle
(at

2
)

Figure 6–17 This figure illustrates how the product integrity index concept can be used to track the integrity of a prod-
uct as it evolves from the start of its development to the time it is delivered to the customer.

ptg

at1 The specified customer’s needs were met with an outline that
was approved.

at2 Only the customer’s SOW existed at the start of the project,
which is what you would expect.

at3 Performance criteria are set equal to customer’s needs.

at4 Cost expectations were exceeded.

at5 Delivery expectations were met.

The project seems to be going well, so the project manager told the team to
skip the next reporting period and report progress in period 3. To the proj-
ect manager’s surprise, when PIindex was reported in period 3, the value
had fallen to 0.5. Looking down the period-3 column, you can see the
following:

at1 The specified customer’s needs were not met with an annotated
outline that was not approved.

at2 The approved outline and CCB minutes existed, but other hall-
way and telephone conversations with the customer were not re-
flected in the CCB minutes.

at3 Performance criteria are set equal to customer’s needs.

at4 Cost expectations were exceeded.

at5 Delivery expectations were not met.

When PIindex dropped, it acted as an indicator that the project was not pro-
gressing as desired. Upon inspecting the attribute values, the project manager
was able to gain some insight into the situation. The project manager then as-
sembled the appropriate team members for a meeting to discuss the particu-
lars and make decisions about what to do next. The project manager decided
to have the team rework the annotated outline and discuss the results with
the customer. The interaction with the customer was to be documented so
that “what” the customer was saying would (1) not be forgotten and (2) could
be incorporated into the outline. The project manager also decided to bring in
a more senior person who had specific experience that could help the team
work the annotated outline. Finally, the project manager, in concert with the
team, decided to submit the reworked outline ahead of schedule, so that if
there were any last minute issues, they could be addressed before formal de-
livery to the customer. As can be seen in the period-4 results, the decisions
made resulted in an increase in PIindex. The story goes on, but the point is that
the PIindex value, the attributes, the attribute value scales, and the display of
the collected information help to focus attention on those areas of interest to

Chapter 6 • Measurement

414

ptg

the customer and the seller. Such focus helps to reduce project risk and in-
crease success.

Such juxtaposed plots can also help the project manager’s bosses gain visibil-
ity into project progress. Such insight is particularly useful when these bosses
have responsibility for multiple projects. By periodically reviewing such
plots, managers (and others) help to drive out what really matters to the cus-
tomer and the organization. Once a project or organization settles on what is
important (as reflected in the value scales), then the product integrity index
can help the project or organization follow a structured approach to improv-
ing the products it develops. We illustrate this fundamental idea as follows
for an organization that consists of a number of projects and which produces,
say, tens of deliverables a month:

♦ By looking at monthly reports of interim or final PIindex values, the head of
the organization (the program manager) can quickly see which of the tens
of deliverables (1) to be shipped out or (2) shipped out may be falling
short. Those deliverables with values near 1 probably do not need the pro-
gram manager’s attention. By definition, those deliverables embody what
the organization thinks is important. It is only the deliverables with values
far away from 1 that need attention. However, how far is “far away” will
be determined by the organization as it becomes more comfortable work-
ing with PIindex. For those deliverables needing attention, the program
manager can use Kiviat-like diagrams such as those shown in Figure 6–15
to see quickly why those products fell short. Thus, using PIindex to track
product development can help management at all levels further pinpoint
product shortfalls—before they become big headaches.

♦ Over time, as the database of PIindex values grows, the program manager
and others in the organization can observe trends in the “goodness” of
products being delivered. Trend analysis can help pinpoint those areas
where the organization can improve—and by how much. This insight can
be used to decide on corrective actions. For example, if such trend analysis
shows that most products with low PIindex values are that way because
they are delivered over budget, then the organization can take steps to im-
prove its resource-estimating procedure with some confidence that this
corrective action is the right thing to do. In addition, if the program
manager finds that on-time delivery is averaging less than 0.50, this statis-
tic may be a signal that project planning estimating techniques need
improvement.

Regardless of which form of the PIindex formula you decide on for your orga-
nization, compiling statistics based on PIindex can help you gain insight into
areas for product development process improvement.

We summarize our product measurement discussion in Figure 6–18,
which lists five steps to follow when setting up and collecting product

Chapter 6 • Measurement

415

ptg

416

Attribute at
1

Value Scale

Attribute Value Scales

Max. Value

Min. Value 0.0

1.0

Software ProductPRODUCT with Integrity

Product Integrity Measurement Steps

Requirements
Specification

SOFTWARE

Attribute at n
Value Scale

Attribute at
1

Value Scale

Product Attributes
Attribute at

1
—Customer Needs

Attribute at
2
—Maintainability

Attribute at
3
—Performance

Attribute at
4
—Cost

Attribute at
5
—Schedule

Attribute Value Scales

Max. Value

Min. Value 0.0

1.0

Attribute at
5

Value Scale

Decide on the questions that you want and/or need to address (e.g., am I producing “good” products?).

Select the products from your software systems development process that you want to measure
(e.g., requirements specification).

Identify the product attributes that you want to measure (e.g., for a requirements specification, you might
identify an attribute as “at 4—meets cost expectations”).

For each identified attribute (e.g., at 4), define a value scale in everyday terms that are familiar to the
organization (e.g., delivered for more than the cost estimate = 0.0, delivered for cost estimate = 0.9, and
delivered for less than cost estimate = 1.0).

Using the formulas given in this chapter, calculate the product integrity index value. For simplicity, use
the formulas that yield values between zero and one. Select weighting factors to reflect your perception
of the relative importance of your product attributes.

1

2

3

4

5

Product Attributes
at

i
= i th attribute of the product

characterized by n attributes; i = 1, n

Attribute at
1

• • • Attribute at n

Figure 6–18 This high-level procedure helps you through the product measurement steps based on the concepts and exam-
ples introduced so far in this chapter.

ptg

metrics. Our recommendation is to start simple and try a pilot measurement
program.

After you have decided on what questions you want answered and what
products you want to measure, you need to decide on the granularity
of your product measurements. We recommend that you do not select too
many product attributes at first. You do not want the measurement program
to take on a life of its own. You need to collect data and determine what at-
tributes are worth measuring. As the number of product attributes increases,
each attribute’s contribution to the measurement is reduced accordingly, but
you do not want too few, else you may not gain significant insight into the
answers to your questions. The key point here is that the steps in Figure 6–18
provide (1) a structured way of quickly focusing in on product weaknesses
and (2) a structured way of taking corrective action to correct these
weaknesses.

We want to make one final point in this section. How do you know when you
have improved the software systems development process? As shown in Fig-
ure 6–19, one way is to measure the average value of the PIindex for products
over a period of time.7 On the basis of the analysis of the PIindex attributes,
you can make adjustments to your software systems development process.
Then, you can measure the average value of PIindex for products developed
using the changed process. If the average value has increased, then the
process has probably been improved. This approach is an indirect method of
measuring process improvement. In the next section, we discuss how you can
directly measure your software systems development process for purposes of
finding ways to improve it.

Chapter 6 • Measurement

417

7There are at least two different ways that this average might be computed. One way is to simply take
the average of the values of PIindex for all the products that you are including in a given period of
time. A second method is to look at the average as the length of a vector whose components are the
average values of the corresponding attributes that went into computing PIindex for each of the prod-
ucts being included in the period of time. We illustrate these two methods by considering a very sim-
ple example consisting of two products. We assume for simplicity that only two product attributes are
included in the definition of product “goodness.” Also, to keep the computations simple, we will not
normalize the index values to the range zero to one. Let the values of the attributes for the first prod-
uct be, respectively, 0.3 and 0.4. PIindex for this product would then be the square root of 0.09 + 0.16,
or 0.5. Let the values of the attributes for the second product be, respectively, 0.4 and 0.0 so that
PIindex for this product would be 0.4. Using the first way of computing averages, the average value of
PIindex would be (0.5 + 0.4)/2 = 0.45. Using the second way of computing averages, the average value
of PIindex would be as follows:

0 3 0 4

2

0 4 0 0

2
0 403

2 2
. . . .

 . .
+

+
+

=⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

ptg

Chapter 6 • Measurement

418

January 1998
Sun Mon Tues Wed Thurs Fri Sat

February 1998
Sun Mon Tues Wed Thurs Fri Sat

March 1998
Sun Mon Tues Wed Thurs Fri Sat

April 1998
Sun

1 2 3 4

11

18

25

17

24

16

23

15

22

14

21

13

20

12

19

3029282726

1098

2

16

23

30

9

1

15

22

29

8
9

16

23

2

8

15

22

1
12

19

26

5

11

18

25

4

765

Mon Tues Wed Thurs Fri Sat

June 1998
Sun Mon Tues Wed Thurs Fri Sat

July 1998
Sun Mon Tues Wed Thurs Fri Sat

August 1998
Sun Mon Tues Wed Thurs Fri Sat

0.0

1.0

Data

0.0

1.0

Data

Indirect Organizational Level Process Measurement

Process Improved Process

Average
PIindex
Value

Average
PIindex
Value

PIindex

PIindex PIindex

PIindex

How do I know whether our software
development process has been

improved?

01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101

Computer
Code

01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101

Computer
Code01010101010101

01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101

Computer
Code01010101010101

01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101

Computer
Code

01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101

Computer
Code

Document

Document

1
8765432
1514131211109
22212019181716
29282726252423

3130

5

12

19

26

6

13

24

27

7

14

21

28

8

1

15

22

29

Document

Document

Figure 6–19 PIindex can be used indirectly to measure improvements in the organizational software development process.

ptg

6.4 Process Integrity

The purpose of this section is to give you guidance for defining a set of process
metrics that can be used in conjunction with the product integrity index dis-
cussed in the preceding section. Process integrity metrics can provide you with
input for improving your software systems development process.

As previously stated, one dictionary definition of process is the following:

A series of actions or operations leading to an end.

Chapter 3 described how to define our example software systems develop-
ment process. There, we showed you how to define the actions (activities)
and their relationships whose purpose is to produce software products (i.e.,
documents, computer software systems, and/or databases). Here, we show
you how to measure that software systems development process in terms of
its process components and component activities. Before we measure our ex-
ample process, we need to define process integrity.

Process integrity is defined as follows:

A process, when performed as part of software product development, has
integrity if the process components and associated component activities are
performed as part of product development in accordance with ADPE element
content.

As shown in Figure 6–20, by analogy to the product integrity index, PIindex,
we define a process integrity index, ProcIindex. The figure shows that process
integrity is more complicated than product integrity. Simply stated, PIindex is
two layers deep, and ProcIindex is three layers deep. At the first level, the
process is decomposed into components. At the second level, each process
component is decomposed into activities. At the third level, value scales are
defined for each activity.

The form of the process integrity equations is similar to the form of the prod-
uct integrity equation (i.e., Equation 6.3–2). At the first level, the process com-
ponent (xti) replaces the product attribute (ati) in the numerator. “Maximum
value of xti” replaces “maximum value of ati” in the denominator. At the sec-
ond level, the process component (xti) is analogously defined in terms of
process component activities (xtij).

To explain ProcIindex further, we discuss how to measure the software sys-
tems development process described in Chapter 3. As shown in Figure 6–21,
this process consists of the following four process components (xti):

xt1 Seller Project Planning—The Seller Process Engineering Group
is responsible for planning the work to be accomplished based
on a customer’s statement of work (SOW).

Chapter 6 • Measurement

419

ptg

xt2 Seller Development Team—This team is responsible for accom-
plishing the work specified in the project plan.

xt3 Customer/Seller Development Team—This team is responsible
for coordinating project activities with one another.

xt4 Seller Senior Management—This management level is responsi-
ble for reviewing and approving project products for delivery to
the customer.

There are seven process integrity measurement steps. To set the stage for ex-
plaining these steps, Figure 6–22 depicts how we define ProcIindex for our ex-
ample software systems development process. Now we will walk you
through the seven process integrity measurement steps.

Chapter 6 • Measurement

420

� w i xt i
i =1

N
2 2

� w i (maximum [xt i])
i =1

N
2 2

Proclindex =

� w ij xt ij
j = 1

2 2

xt i =

Process Integrity Index

N = number of organizational process components
w i = weighting factor for process component xt i
xt i = thei th process component
maximum [xt i] = maximum value of xt i

N i = number of activities making up process component xt i
w ij = weighting factor for activity xt ij of process component xt i
xt ij = the j th activity of the i th process component
maximum [xt ij] = maximum value of xt ij , for each j

N i

� w ij (maximum [xt ij])
j =1

2 2

N i

Figure 6–20 This figure presents the general formula for the process in-
tegrity index, ProcIindex, that is normalized to one.

ptg

CUSTOMER/SELLER DEVELOPMENT TEAM

Organizational Software Systems Development Process

SELLER DEVELOPMENT TEAM

Evolving Product(s)

Plans the Work
to Accomplish
the Customer’s
SOW Tasks

Seller Process Engineering Group

Communicates
with Seller
Program Manager

Customer Project Manager

Change Control Board (CCB)

Customer/Seller Project Management
Hold Project CCB Meetings,
 Project Reviews, and Decide
 What to Do Next

CCB

Minutes

Seller Project Manager Lead Developer
Communicates
with Customer
Project Management
and Evolves
Software Product(s)

Lead Developer or Moderator

Document

Project Plan

Product Assurance Manager

Technical Editor

Seller Management

Establishes
Project Files

Conducts
Peer
Reviews

Seller Senior Management

Reviews and
Approves
Product(s)
for Delivery
to Customer

Provides
Independent
Product
Assurance

Performs
Technical
Editing

Performs
Project-level
Technical
Oversight

Computer Code

Data

01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101

Tracking

Form

Process

Component

xt
1

Process

Component

xt
3

Process

Component

xt
2

Process

Component

xt
4

CCB

Product
Assurance

Development

Management

Prepares SOW, Negotiates
Agreement, and Reviews
Delivered Products for
Acceptance

Customer

Figure 6–21 The software systems development process can be measured by assessing specific process components. In this
example, four process components are shown.

ptg

Chapter 6 • Measurement

422

Activity xt
41

Activity xt
42

PROCESS with Integrity

Component Activities

Component xt
1

Component xt
4

Activity xt
11

Activity xt
12

Activity xt
13

Activity xt
14

Activity xt
15

Activity xt
16

Process Components

Organizational Software Systems

Development Process

Process Components

xt
i
= i th component of the process which consists

of N components; i = 1, N

Component xt
1
 Component xt N

Activity Value Scales

Component xt
1

Component xt
4

Activity xt
11

Value Scale
Activity xt 41
Value Scale

1.0

0.0

Activity xt
16

Value Scale
Activity xt

42
Value Scale

Max.
Value

Min.
Value

1.0

0.0

Max.
Value

Min.
Value

Component xt
1
— Seller Project Planning

Component xt
2
—Seller Development Team

Component xt
3
—Customer/Seller Development Team

Component xt
4
—Seller Senior Management

PROCESS

Component Activities

 xt
ij

= j th activity of the i th process component

which consists of N
i
 activities; i = 1, N ; j = 1, N

i

Activity Value Scales

Component xt
1

Activity xt
11

Activity xt
1N1

Component xt N

Component xt
1

Component xt N

Activity xt N 1

Activity xt
1N1

Value Scale
Activity xt NNN
Value Scale

Activity xt NNN

1.0

0.0

Activity xt
11

Value Scale
Activity xt N 1
Value Scale
Max.
Value

Min.
Value

1.0

0.0

Max.
Value

Min.
Value

Figure 6–22 The left-hand side of this figure represents our process measurement framework that is used to decompose a
process into its components and activities. Activity value scales are defined in terms meaningful to the organization. The right-
hand side of this figure represents how our example organizational software systems development process maps to our
framework.

ptg

Process Integrity Measurement Step 1

The first process measurement step is to decide on the questions we want
and/or need to address. Here, we are addressing the following question:

Is the organizational software systems development process producing
“good” products?

Process Integrity Measurement Step 2

The second process measurement step is to select the process components
from the organizational software systems development process that we want
to measure. We have selected the following four process components as pre-
viously described: (xt1) Seller Project Planning, (xt2) Seller Development Team,
(xt3) Customer/Seller Development Team, and (xt4) Seller Senior Manage-
ment. These four process components are the first layer of the process metric
calculation. Figure 6–23 illustrates how the process integrity index, ProcIindex,
is calculated by using these four process components.

Process Integrity Measurement Step 3

Before we calculate each process component, we need to identify the process
component activities that we want to measure. Each process component (xti)
needs to be defined in terms of specific activities (xtij). For example, Seller
Project Planning (xt1), is defined by its six process activities:

xt11 Seller reviews SOW, communicates with customer, and assem-
bles project planning team.

xt12 Seller performs risk assessment.

xt13 Seller Project Planning Team develops task-derived resource
estimates.

xt14 Seller Business Manager calculates task-derived dollar
estimates.

xt15 Seller Business Manager calculates risk-derived dollar estimates.

xt16 Seller Management reconciles task-derived dollar estimates with
risk-derived dollar estimates.

These six activities represent the second layer of process metric calculation
for a process component. Figure 6–24 gives a complete list of process activi-
ties for each of the four process components. Measuring activities can help to
identify those activities that are, or are not, contributing to customer satisfac-
tion. Those activities that are not contributing directly to customer satisfac-

Chapter 6 • Measurement

423

ptg

Chapter 6 • Measurement

424

Organizational Software Systems Development Process Measurement

1

1

1

1
xt

1

xt
3

xt
2xt

4

 SW

 Systems Dev.

Process

(xt
3
)—Customer/Seller

Customer Project
Manager

Seller Project
Manager

(xt
2
)—Seller Development Team

Technical
Editor

Product
Assurance
Manager

Lead Developer

Lead Developer
or Moderator

Seller
Management

Seller Project Manager

(xt
1
)—Seller Project Planning

Seller Process Engineering
Group

Project
Plan

Plans the

Work to

Accomplish the

Customer’s

SOW Tasks

 Seller Senior Management
Reviews and

Approves

Product(s) for

Delivery to

Customer

(xt
4
)—Seller Senior

Management

4
ProcIindex =

22xt
1

+ xt
2
 + xt

3
+ xt

4
2 2

Development Team

Figure 6–23 This figure illustrates how the process integrity index, ProcIindex, is calculated by using four process compo-
nents—(xt1) Seller Project Planning (which includes risk assessment), (xt2) Seller Development Team (which includes peer re-
views), (xt3) Customer/Seller Development Team (which includes CCB activity), and (xt4) Seller Senior Management (which
includes review and approval activities).

ptg

tion may be candidates for modification or elimination. We categorize such
modifications as process improvement activities.

Figure 6–25 illustrates how the process integrity index, ProcIindex, is further
defined and calculated by using the process activities for each of the four
components. As shown in the figure, Seller Project Planning and Seller Devel-
opment Team each consists of six activities; Customer/Seller Development
Team and Seller Senior Management each consists of two activities.

Process Integrity Measurement Step 4

Before measurement data can be collected, the third layer of the process met-
ric calculation needs to be performed. Specifically, the fourth process mea-
surement step is to define an activity value scale for each process activity.
Figures 6–26, 6–27, and 6–28 present example activity value scales for each of
the component activities. The activity value scales are expressed in everyday
terms.

Some of the activity value scales shown have only two values, while others
have three or four values. The values on the scale help to influence the

Chapter 6 • Measurement

425

(xt
11

)—Seller reviews SOW,
 communicates with
 customer and assembles
 project planning team

(xt
12

)—Seller performs risk
 assessment

(xt
13

)—Seller Project Planning
 Team develops task-
 derived resource estimates

(xt
14

)—Seller Business Manager
 calculates task-derived
 dollar estimates

(xt
31

)—Customer Project Manager
 provides technical guidance
 to Seller Project Manager

(xt
32

)—Seller and Customer Project
 Managers hold project CCBs

(xt
41

)—Seller Senior Management
 reviews project products to
 determine if products
 conform to ADPE

(xt
42

)—Seller Senior Management
 approves products for
 delivery to customer

(xt
1
)—Seller plans work based on

 customer’s SOW
(xt

2
)—Seller Development Team

 accomplishes work
 specified in the project plan

(xt
3
)—Customer/Seller

 Development Team
 members coordinate project
 activities with one another

(xt
4
)—Seller Senior Management

 reviews and approves
 project products for delivery
 to customer

(xt
15

)—Seller Business Manager
 calculates risk-derived
 dollar estimates

(xt
16

)—Seller Management
 reconciles task-derived
 dollar estimates with risk-
 derived dollar estimates

(xt
21

)—Seller Project Manager
 communicates with
 customer and evolves
 software products

(xt
22

)—Seller Lead Developer
 establishes project files

(xt
23

)—Seller Lead Developer
 conducts peer reviews

(xt
24

)—Seller Product Assurance
 Manager provides product
 assurance support

(xt
25

)—Seller Technical Editor
 performs technical editing

(xt
26

)—Seller Management
 performs project-level
 technical oversight

Organizational Software Systems Development Process Components and Associated Activities

Figure 6–24 Example activities for our organizational software systems development process.

ptg

Chapter 6 • Measurement

426

Organizational Software Systems Development Process Measurement

Seller

Project

Planning

1
xt

11

1
xt

14

1

1

1

1
1

1

xt
1xt

41

xt
3

xt
2xt

4

xt
42

1

1

xt
13

xt
121

1
xt

15

xt
16

 SW

 Systems Dev.

Process

xt
16
2

xt
1
=

xt
11

+2 xt
12

+2 xt
13

+2 xt
14

+2 xt
15

+2

6

2
xt

4
=

xt
41

+2 xt
42
2

1

1
xt

32

 Customer/Seller

 Development Team

xt
31

2
xt

3
=

xt
31

+2 xt
32
2

 Seller Senior

Management

xt
1

+ xt
2
 + xt

3
+ xt

4
2 2 2 2

4
ProcIindex =

Seller

Development

Team

1

1

1

1

1

1

xt
21

xt
24

xt
23

xt
25

xt
22

xt
26

xt
2
=

xt
21

+2 xt
22

+2 xt
23

+2 xt
24

+2 xt
25

+2

6

xt
26
2

Figure 6–25 To compute ProcIindex, each process component is decomposed into specific activities.

ptg

(xt 1)—Seller plans work based on customer’s SOW

(xt
11

)–Seller Reviews SOW, communicates
with customer, and assembles project

planning team
Seller reviewed SOW, communicated
with the customer, and assembled
project planning team
 (xt

11
 = 1.0)

Seller reviewed SOW and communicated
with the customer
 (xt

11
 = 0.5)

1.0

0.5

0.25

0.0

1.0

0.0

1.0

0.5

0.0

(xt
12

)–Seller performs risk assessment

Seller performed risk assessment on
customer’s SOW
 (xt

12
 = 1.0)

1.0

0.0

(xt
13

)–Seller Project Planning Team
develops task-derived resource estimates

Seller Project Planning Team analyzed
SOW tasks, used estimating work sheets,
and used expert judgment
 (xt

13
 = 1.0)

(xt
14

)–Seller Business Manager
calculates task-derived dollar estimates

Seller Business Manager calculated
task-derived dollar estimates
 (xt

14
 = 1.0)

1.0

0.0

(xt
15

)–Seller Business Manager
calculates risk-derived dollar estimates

Seller Business Manager calculated
risk-derived dollar estimates
 (xt

15
 = 1.0)

1.0

0.25

0.0

(xt
16

)–Seller Management reconciles
task-derived dollar estimates with

risk-derived dollar estimates
All managers agreed with reconciled
estimates
 (xt

16
 = 1.0)

All managers agreed and the senior
manager made a consensus decision
 (xt

16
 = 0.25)

All managers did not agree and the senior
manager made a unilateral decision
 (xt

16
 = 0.0)

Seller did not review SOW, but
communicated with the customer
 (xt

11
 = 0.25)

Seller did not communicate with customer
 (xt

11
 = 0.0)

Seller did not perform risk assessment on
customer’s SOW
 (xt

12
 = 0.0)

Seller Project Planning Team analyzed
SOW tasks and used expert judgment
 (xt

13
 = 0.50)

Seller Project Planning Team made up
numbers
 (xt

13
 = 0.0)

Seller Business Manager did not calculate
task-derived dollar estimates
 (xt

14
 = 0.0)

Seller Business Manager did not calculate
risk-derived dollar estimates
 (xt

15
 = 0.0)

Figure 6–26 Example activity value scales for the Seller Project Planning component of the
organizational process.

ptg

(xt 2)—Seller Development Team accomplishes work specified in project plan

(xt
21

)–Seller Project Manager
(communicates with cutomer and)*

evolves software products
Seller Project Manager tracked cost and
schedule (planned versus actual) on
periodic basis
 (xt

21
 = 1.0)

Seller Project Manager tracked cost and
schedule (planned versus actual) on an
ad hoc basis
 (xt

21
 = 0.5)

Seller Project Manager did not track cost
or schedule (planned versus actual)
 (xt

21
 = 0.0)

*Communication included in xt
3
.

1.0

0.5

0.0

1.0

0.25

0.0

1.0

0.75

0.25

0.0

(xt
22

)–Seller Lead Developer
establishes project files

Seller Lead Developer established project
files according to schedule
 (xt

22
 = 1.0)

Seller Lead Developer established project
files, but not according to schedule
 (xt

22
 = 0.25)

Seller Lead Developer did not establish
project files
 (xt

22
 = 0.0)

1.0

0.5

0.0

(xt
23

)–Seller Lead Developer
conducts peer reviews

Seller Lead Developer conducted only
documented peer reviews
 (xt

23
 = 1.0)

Seller Lead Developer conducted some
documented peer reviews
 (xt

23
 = 0.75)

Seller Lead Developer conducted
undocumented peer reviews
 (xt

23
 = 0.25)

Seller Lead Developer did not conduct
peer reviews
 (xt

23
 = 0.0)

(xt
24

)–Seller Project Assurance Manager
provides product assurance support

Seller Product Assurance Manager tracked
product assurance support (planned versus
actual) on a periodic basis
 (xt

24
 = 1.0)

Seller Product Assurance Manager tracked
product assurance support (planned versus
actual) on an ad hoc basis
 (xt

24
 = 0.5)

Seller Product Assurance Manager did not
track product assurance support (planned
versus actual)
 (xt

24
 = 0.0)

1.0

0.5

0.0

(xt
25

)–Seller Technical Editor
performs technical editing

Seller Technical Editor followed
organizational editing standards as
planned
 (xt

25
 = 1.0)

Seller Technical Editor followed
organizational editing standards as
planned, but did not edit entire deliverable
 (xt

25
 = 0.5)

Seller Technical Editor did not follow
organizational editing standards as
planned
 (xt

25
 = 0.0)

1.0

0.5

0.0

(xt
26

)–Seller Management performs
project-level technical oversight

Seller Management mentored and trained
Project Manager with respect to ADPE
requirements
 (xt

26
 = 1.0)

Seller Management did not mentor
Project Manager with respect to ADPE
requirements
 (xt

26
 = 0.5)

Seller Management did not mentor Project
Manager or provide training with respect
to ADPE requirement
 (xt

26
 = 0.0)

Figure 6–27 Example activity value scales for the Seller Development Team component of
our organizational process.

ptg

Chapter 6 • Measurement

429

(xt 4)—Seller Senior Management reviews and approves project products for delivery

(xt 3)—Customer/Seller Development Team members coordinate project activities
with one another

(xt
31

)–Customer Project Manager provides
technical guidance to Seller Project

Manager
Customer Manager communicates
mostly with Seller Manager
 (xt

31
 = 1.0)

Customer Manager communicates
mostly with Seller Development
Team members
 (xt

31
 = 0.5)

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

(xt
32

)–Seller and Customer Project
Managers hold project CCBs

Customer and Seller hold project CCBs
in accordance with ADPE guidance
 (xt

32
 = 1.0)

1.0

0.5

0.0

(xt
41

)–Seller Senior Management
reviews project products to determine

whether products conform to ADPE
Seller Senior Management reviews
products in accordance with ADPE
guidance
 (xt

41
 = 1.0)

(xt
42

)–Seller Senior Management
approves products for delivery to

customer

Seller Senior Management reviews
products, but not in accordance with
ADPE guidance
 (xt

41
 = 0.5)

Seller Senior Management does not
review products
 (xt

41
 = 0.0)

Customer Manager rarely communicates
with Seller Development Team
 (xt

31
 = 0.0)

Customer and Seller hold project CCBs,
but do not conduct them in accordance
with ADPE guidance
 (xt

32
 = 0.5)

Customer and Seller do not hold project
CCBs in accordance with ADPE
guidance
 (xt

32
 = 0.0)

Seller Senior Management approves
products, but not in accordance with
ADPE guidance
 (xt

42
 = 0.5)

Seller Senior Management approves
products in accordance with ADPE
guidance
 (xt

42
 = 1.0)

Seller Senior Management does not
approve products for delivery to customer
 (xt

42
 = 0.0)

Figure 6–28 Example activity value scales for the Customer/Seller Development Team and
Seller Senior Management components of our organizational process.

ptg

direction the organization wants to go. For example, in Figure 6–26, activity
(xt12)—Seller performs risk assessment—has two values (i.e., 0.0 and 1.0). In
this example, the organization (or perhaps the buyer) places importance on
risk assessments, and it is expected that this activity is to be done. If risk as-
sessment does not happen, a value of 0.0 is assigned. As will be shown, when
this value is plotted on a Kiviat-like diagram, it is readily apparent that this
activity has not been done.

When defining value scales, it is necessary to understand what specific
item(s) or action(s) trigger the activity that is to be measured. Such items or
actions are called measurement triggers. For example, for “(xt12)—Seller per-
forms risk assessment,” value scales can be defined as “Seller did not perform
risk assessment on customer’s SOW = 0.0,” and “Seller performed risk as-
sessment on customer’s SOW = 1.0.” You can use measurement triggers to
help assign values to process activities.

Activity value scales may provide an opportunity to show more gradual im-
provement in performing a specific activity. For example, in Figure 6–27, ac-
tivity (xt23)—Seller Lead Developer conducts peer reviews—has four values
(i.e., 0.0, 0.25, 0.75, and 1.0). In this example, the organization may have some
projects that routinely use peer reviews, and they have found them to be use-
ful. Therefore, the organization wants to change its development culture such
that all projects have peer reviews. However, it is recognized that it may take
some time to get everyone up to speed on how to conduct and to document
peer reviews. In some instances, some developers may be reluctant to have
their work reviewed, or some customers may not want to pay for such
reviews. Changing the culture may take time; therefore, the scale can accom-
modate incremental improvements, rather than an all-or-nothing approach.

Activity value scales can be established to measure customer, as well as seller,
activities. For example, in Figure 6–28, activity (xt31)—Customer Project Man-
ager provides technical guidance to Seller Project Manager—attempts to mea-
sure customer communication. In an effort to be responsive to customer
needs, potential confusion (with respect to what needs to be done next, or
what the “real” requirements are, etc.) can occur if clear communication
channels are not established. This value scale is set up to reward customer
and seller communication, but it emphasizes that the customer and seller
management should be talking with one another. The customer manager tells
the seller manager what is needed, and the seller manager supervises and di-
rects the seller development team members. Another example is activity
(xt32)—Seller and Customer Project Managers hold project CCBs. This value
scale is set up to measure if agreed-upon communication channels and deci-
sion making are being followed. The seller has established an ADPE element
for making decisions at CCBs, and the customer has agreed to this mecha-
nism. This value scale is set up to reward holding project CCBs in accordance
with the ADPE guidance. If the customer and seller do hold CCBs in accor-
dance with the guidance but are not happy with how the CCBs are working,
then the ADPE guidance can be changed. There is no one way to hold the

Chapter 6 • Measurement

430

ptg

CCB. However, if the customer and seller do not try to follow the guidance
that is based on their experiences, then it will be difficult, if not impossible, to
effect consistent practices or improvement to the practices.

Process Integrity Measurement Step 5

Figure 6–29 illustrates the four process components that we are interested in
measuring, and the sixteen corresponding component activities and scales.
The fifth process measurement step is to observe activity accomplishment
and to choose a corresponding scale value reflecting that accomplishment.
For example, for “(xt12)—Seller performed risk assessment,” we observe that
the customer’s SOW was assessed for risk according to our organization’s
risk assessment procedure. Thus, the observed activity accomplishment is
“Seller performed risk assessment on customer’s SOW,” and consequently
the corresponding scale value reflecting that accomplishment is 1.0.

Remember, the measurement trigger can be different for each activity. Thus,
to measure an entire process, a number of triggers are generally needed.

Process Integrity Measurement Step 6

The sixth process measurement step is to use the formulas given in this chap-
ter to calculate the process component value based on the activity values. For
simplicity, we use the formulas that yield values between zero and one. We
also select weighting factors that reflect our perception of the relative impor-
tance of our process component activities. For our example, we set all
weighting factors to one.

Electronic spreadsheets can be established to capture the measurement data,
calculate the metrics, and display the results. Figure 6–30 illustrates an
example of what the results may look like.

Process Integrity Measurement Step 7

Once all the activity values have been assigned, the seventh process measure-
ment step is to combine the process component values into a process integrity
index. In this example, the results are input into the ProcIindex equation. As
shown in the top panel of Figure 6–30, ProcIindex is equal to 0.59. By examin-
ing the details in the lower panel of the figure and referring to the
corresponding value scales, the following observations are made:

♦ Seller Project Planning (xt1) = 0.85. The seller reviewed the SOW, commu-
nicated with the customer to discuss any questions, and assembled a pro-
ject planning team. A risk assessment was performed, and the planning
team used its expert judgment to develop task-derived resource estimates.

Chapter 6 • Measurement

431

ptg

Chapter 6 • Measurement

432

Organizational Software Systems Development Process Measurement

Seller

Development

Team

Seller

Project

Planning

1.0

0.0

0.5

1.0

0.0
0.25

0.75

1.0

0.0 0.25

1.0

0.0

0.5

1.0

0.0
0.5

1.0
0.5

0.0

xt
21

1.0

0.0
0.25
0.5

xt
11

1.0

0.0

xt
14

xt
24

1.0

1.0

1.0

1.0
1.0

0.0

0.5

1.0 0.0

xt
1xt

41

xt
3

xt
2xt

4

xt
42

xt
23

xt
25

xt
22

1.0
0.5

0.0

1.0

0.0

xt
13

xt
12

xt
26

1.0

0.0
0.25

1.0

0.0
xt

15

xt
16

 SW

 Systems Dev.

Process

xt
2
=

xt
21

+2 xt
22

+2 xt
23

+2 xt
24

+2 xt
25

+2 xt
26
2

6

xt
1
=

xt
11

+2 xt
12

+2 xt
13

+2 xt
14

+2 xt
15

+2 xt
16
2

6

2
xt

4
=

xt
41

+2 xt
42
2

1.0

0.5

0.0

1.0 0.00.5
xt

32

 Customer/Seller

 Development Team

xt
31

2
xt

3
=

xt
31

+2 xt
32
2

 Seller Senior

Management

xt
1

+ xt
2
 + xt

3
+ xt

4
2 2 2 2

4
ProcIindex =

0.5 0.0

0.0

0.0

0.0

Figure 6–29 ProcIindex is defined and calculated in terms of process components, component activities, and activity value
scales.

ptg

Process Integrity Index

Quantified Process Components

1.0

0.5

0.0

1.0 0.00.5

xt
41

xt
42

6

2
xt

3
=

xt
31

+2 xt
32
2

2
xt

4
=

xt
41

+2 xt
42
2

Seller accomplishes work in context
of project plan, but is partially
following organizational product
development processes.

xt
2
= 0.56

Seller Senior Management is not
reviewing project products for
conformance to ADPE

xt
4
= 0.35

xt
3
= 0.50

Customer/Seller Development
Team is not holding project CCBs
in accordance with Seller ADPE
guidance

� Seller follows organizational planning process
� Seller is partially following organizational product development process
� Customer/Seller Development Team is not following Seller ADPE CCB guidance
� Seller Senior Management is not reviewing project products for ADPE conformance

Proclindex =

4

xt 1 + xt 2 + xt 3 + xt 4
2 2 2 2

=

0.0

1.0xt 4 =
0.35

xt 3 =
0.5

xt 2 =
0.56

xt 1 =
0.85

1.0

0.0

0.5

1.0 0.00.5

xt
31

xt
32

 Customer/Seller
Development Team

1.0

1.0

0.0

1.0

0.0 1.0

xt
1

xt
3

xt
2

xt
4

SW
Systems Dev.

Process

0.0

0.0

Project A

4
= 0.59

0.852 + 0.562 + 0.52 + 0.352

Seller
Project

Planning

1.0

1.0

0.5
0.25

0.25

0.0

0.0

xt
11

1.0

1.0
0.5

0.0

0.0

xt
14

1.0

0.0

xt
13

xt
12

1.0

0.0
xt

15

xt
16

6
xt

1
= xt

11
+2 xt

12
+2 xt

13
+2 xt

14
+2 xt

15
+2 xt

16
2

Seller follows organizational
planning process, but needs
to develop estimating
work sheets

xt
1
= 0.85

Proclindex for
Project A = 0.59

Seller
Development

Team

1.0

0.5

0.0 1.0

0.0
0.25

0.25

0.75

1.0

0.0

1.0

0.0

0.5

1.0

0.0
0.5

1.0

0.0
0.5

xt
21

xt
24

xt
23

xt
25

xt
22

xt
26

xt
2
= xt

21
+2 xt

22
+2 xt

23
+2 xt

24
+2 xt

25
+2 xt

26
2

 Seller Senior

Management

Figure 6–30 This figure illustrates one way to display the results of quantifying a software development process. On the basis
of the example measures, the process integrity index, ProcIindex, equals 0.59.

ptg

The seller business management calculated the task-derived and risk-
derived dollar estimates so that the management team could compare the
top-down risk estimate with the bottom-up task estimate. The seller man-
agers got together to discuss the estimates, and they could not agree. The
senior manager made a decision.

♦ Seller Development Team (xt2) = 0.56. The cost and schedule were tracked
on an ad hoc basis. The person who was assigned the Lead Developer posi-
tion established project files but did not do it according to the schedule.
The Lead Developer held peer reviews but they were not documented. The
independent product assurance support was tracked on a periodic basis.
The project documentation was only partially edited. Because of several
concurrent projects, the seller management did not mentor the seller
project management.

♦ Customer/Seller Development Team (xt3) = 0.50. The customer manage-
ment communicated with the seller developers, and there was some confu-
sion regarding requirements. This confusion was fostered by the fact that
the CCBs that were held did not document decisions regarding the
requirements.

♦ Seller Senior Management (xt4) = 0.35. The seller management was over-
loaded with work and did not take the time to review the work before
approving it for delivery to the customer.

At this point, we need to decide on whether our question—Is the organiza-
tional software systems development process producing “good” products?—
has been answered. We suggest meeting with the appropriate people to
examine the observations and discuss how to address the corresponding re-
sults. This measurement process helps to focus on what activities the organi-
zation needs to address. We would also suggest looking at the corresponding
product integrity results.

We summarize our process measurement discussion in Figure 6–31, which
lists seven steps to follow when setting up and collecting process metrics.
Our recommendation is to start simple and try a pilot measurement program.

After you decide on what questions you want answered, the process compo-
nents, and the process component activities you want to measure, you need
to decide on the granularity of your process measurements. We recommend
that you do not select too many process component activities at first. You
need to collect data and determine what activities are worth measuring. If
you have many activities, each activity’s contribution to the measurement is
reduced accordingly (unless weighting factors are used). However, you do
not want to measure too few activities, else you may not be gaining insight
into whether or not your process is consistently producing products that
satisfy your customer.

As a result of reviewing the preceding measurement observations, decision
makers can focus their attention (and potentially, resources) on those activi-

Chapter 6 • Measurement

434

ptg

Chapter 6 • Measurement

435

Process Integrity Measurement Steps

PROCESS with Integrity

Component Activities

 xt
ij

= j th activity of the i th process component

which consists of N
i
 activities; i = 1, N ; j = 1, N

i

Activity Value Scales

Component xt
1

Activity xt
11

Activity xt
1N1

Component xt N

Component xt
1

Component xt N

Activity xt N 1

Activity xt
1N1

Value Scale
Activity xt NNN
Value Scale

Activity xt NNN

Process Components
xt

i
= i th component of the process which consists

of N components; i = 1, N

Component xt
1

• • • Component xt N

1.0

0.0

Activity xt
11

Value Scale
Activity xt N 1
Value Scale
Max.
Value

Min.
Value

1.0

0.0

Max.
Value

Min.
Value

1

2

3

4

5

6

7

PROCESS

Decide on the questions that you want and/or
need to address (e.g., is my process consistently
producing “good” products within budget?).

Select the process components from your
software systems development process that you
want to measure (e.g., xt

1
—Seller Project

Planning).

Identify the process component activities that
you want to measure (e.g., for Seller Project
Planning, you might identify an activity such as
“xt

12
—Seller performs risk assessment”).

For each identified activity, define a value scale
in everyday terms that are familiar to the
organization. Identify the specific item(s) or
action(s) (i.e., measurement trigger[s]) that
triggers the activity to be measured. For
example, for Seller performs risk assessment,
you might define scale values as “Seller did not
perform risk assessment on customer’s SOW =
0.0”, and “Seller performed risk assessment on
customer’s SOW = 1.0”).

Use the measurement trigger when assigning a
value to each activity (e.g., for Seller performed
risk assessment, you observe that the
customer’s SOW was assessed for risk
according to the organization’s risk assessment
procedure; therefore, the assigned value = 1.0).

Using formulas given in this chapter, calculate
the process component value based on the
activity values. For simplicity, use the formulas
that yield values between zero and one. Select
weighting factors to reflect your perception of
the relative importance of your process
component activities.

Using the formulas given in this chapter,
combine the process component values into a
process integrity index value. For simplicity,
use the formulas that yield values between zero
and one. Select weighting factors to reflect
your perception of the relative importance of
your process components.

Figure 6–31 This high-level procedure helps you through the process measurement steps based on the concepts and exam-
ples introduced in this chapter.

ptg

ties that may need improvement or on questions that need to be answered.
The decision might be to take more measurements and review them carefully.
Perhaps, the software development process needs to be more closely fol-
lowed; maybe the process needs to be changed, or maybe the management is
overcommitted. Regardless, these measurements are expressed in everyday
terms to be used consistently to achieve customer satisfaction in terms of
value scales that make sense for your organization.

6.5 Capability Maturity Model (CMM) for Software

The purpose of this section is to show how the process integrity concept and
formulas discussed in the preceding sections can be applied to a widely
known framework for improving software systems development—the Capa-
bility Maturity Model (CMM) for Software developed by the Software Engi-
neering Institute (SEI).8 We assume that you are familiar with the CMM, and
you can skip this section without loss of continuity. However, to set context
and to link with the previous discussion of process measurement, we present
a brief summary of the model. A complete description of Version 1.1 of the
model can be found in the following publications (see the bibliography at the
end of this book for a brief description of each of these documents):

♦ Paulk, M. C., B. Curtis, M. B. Chrissis, and C. V. Weber, “Capability Matu-
rity Model for Software, Version 1.1,” Software Engineering Institute and
Carnegie Mellon University Technical Report CMU/SEI-93-TR-24,
February 1993.

♦ Paulk, M. C., C. V. Weber, S. M. Garcia, M. B. Chrissis, and M. Bush, “Key
Practices of the Capability Maturity Model, Version 1.1,” Software Engi-
neering Institute and Carnegie Mellon University Technical Report
CMU/SEI-93-TR-25, February 1993.

♦ Paulk, M. C., and others. The Capability Maturity Model: Guidelines for Improv-
ing the Software Process. Reading, MA: Addison-Wesley Publishing Com-
pany, 1995.

The CMM for Software (hereafter referred to as the CMM) summary given in
the following paragraphs is adapted from the first two documents in the list.

The CMM is a five-level road map for improving the software process. The
CMM is a guide (not a cookbook) for evolving toward a culture of software
engineering excellence. It is a model for organizational improvement. The
CMM provides a framework for improving software engineering practice.
The CMM provides guidelines for not only improving process management
but also for introducing technology into an organization. Furthermore, the

Chapter 6 • Measurement

436

8See the bibliography for a brief description of the SEI mission.

ptg

CMM is an underlying structure for consistent software process improve-
ment efforts. An organization can perform these exercises on itself to assess
its capability to produce good software products consistently. Customers can
perform corollary evaluation exercises on prospective software development
vendors to help assess the risk of doing business with those vendors. Figure
6–32 depicts the five maturity levels—(1) Initial, (2) Repeatable, (3) Defined,
(4) Managed, and (5) Optimizing.

As indicated in the figure, Level 1 organizations produce software by some
amorphous process that is only known to a few individuals or heros. During
the course of the project, the project leader ends up saying something like the
following:

We only have a few weeks before delivery. Kiss your spouses, boy friends,
girl friends, dogs, cats, whatever, goodbye for the next three weeks. By the way,
that includes nights and weekends, as well. That’s what it is going to take to
get it done.

With luck, the work somehow gets done. However, even in the best of cir-
cumstances, it is difficult to account for everything that is needed for success-
ful software development to take place. Therefore, the SEI defines each
maturity level as a layer in the foundation for continuous process improve-
ment. A maturity level is a well-defined evolutionary plateau9 on the path to-
ward becoming a mature software organization. Associated with each
maturity level (except Level 1) is a “software process capability” that de-
scribes the range of expected results from following a process.

As indicated in Figure 6–32, the software process is essentially ad hoc and
generally undisciplined for a Level 1 organization. A Level 1 organization’s
process capability is unpredictable because the software process is constantly
changed as the work progresses. Level 1 performance depends on the indi-
vidual capabilities of the staff and managers and varies with their innate
skills, knowledge, and motivations. Level 2 organizations focus on project
management. The process capability of an organization has been elevated by
establishing a disciplined process under sound management control. In con-
trast to a Level 1 organization, at Level 2 a repeatable process exists for soft-
ware projects. At Level 3, the focus shifts to establishing organizationwide
processes for management and engineering activities. Level 3 processes
evolve from the processes and success while achieving Level 2. At Level 2,
one or two projects may have repeatable processes, but at Level 3 all projects
use the processes. At Level 4, the measurements that have been put in place
at Level 2 and Level 3 are used to understand and control software processes

Chapter 6 • Measurement

437

9We have shown the levels to be parallel because we believe that most organizations operate at multi-
ple levels, at the same time. In contrast, the SEI literature presents the levels in a staircase-like fashion
to indicate that an organization needs to establish itself at one level before moving up to the next
level.

ptg

Chapter 6 • Measurement

438

Reality is that
organizations
operate at multiple
levels at the same time.

Lessons Learned

Continuous process improvement enabled by
quantitative feedback from process and from
testing innovative ideas and technologies.

Detailed measurements of software process and
product quality collected.

Both software process and products quantitatively

understood and controlled using detailed measures.

Software process for both management and
engineering activities is documented, standardized,
and integrated into organizationwide process.

All projects use process.

Basic project management processes established to
track cost, schedule, functionality.

Necessary process discipline in place to repeat

earlier successes with similar applications.

Software

Process

Maturity

Level

Software product (usually) produced by some
amorphous process.

Performance driven by competence and heroics of
people doing work.

There are few
Level 5 organizations.

Measurement
contributes to product
and process “quality.“

Peer reviews help
reduce errors.

Project planning is
key to Level 2
success.

Most organizations
operate at Level 1.

4

3

2

1

Software
Process

Software
Process

Software
Process

Managed

Defined

Repeatable

Initial (ad hoc)

Software
Process

???

STD

Software
Process

Optimizing

5

Figure 6–32 The Software Engineering Institute’s Capability Maturity Model for Software is a five-level road map for improving
an organization’s software systems development process. Each maturity level is a well-defined evolutionary plateau on the
path toward becoming a “mature” software organization.

ptg

and products quantitatively. At Level 5, continuous process improvement is
enabled by quantitative process feedback and technology insertion.

Each maturity level consists of “key process areas (KPAs)” that are defined
by “key practices.”10 Key process areas identify the issues that must be ad-
dressed to achieve a maturity level. KPAs are a cluster of related activities
that, when performed collectively, achieve a set of goals considered impor-
tant for enhancing process capability. KPAs are defined to reside at a single
maturity level.11 For example, as shown in Figure 6–33, associated with Level
2 are six KPAs—(1) Requirements Management, (2) Software Project Plan-
ning, (3) Software Project Tracking and Oversight, (4) Software Subcontract
Management, (5) Software Quality Assurance, and (6) Software Configura-
tion Management.

Associated with each of these six KPAs is a set of goals. For example, associ-
ated with the Software Project Planning KPA are three goals, one of which is
the following: “Software estimates are documented for use in planning and
tracking the software project.” Goals are associated with key practices which
are the policies, procedures, and activities that contribute most to the effective
institutionalization and implementation of a goal (and therefore a KPA). A
key practice can be associated with more than one goal.

Key practices are grouped into five common features—(1) Commitment to
Perform, (2) Ability to Perform, (3) Activities Performed, (4) Measurement
and Analysis, and (5) Verifying Implementation. The key practices that make
up the common features represent the “what needs to be done” or, simply
stated, the requirements. Although many practices contribute to success in
developing effective software, the key practices were identified because of
their effectiveness in improving an organization’s capability in a particular
key process area. Implementation of the key practices is the “how” part of in-
stitutionalization of KPAs.

With the preceding as background, we present the following simplified ex-
ample of how process integrity can be computed for each of the SEI maturity
levels or KPAs. This example is presented using the seven process measure-
ment steps:

Chapter 6 • Measurement

439

10Regarding the use of the word “key” here and elsewhere in the model, the description of the CMM
includes the following statements:

The adjective “key” implies that there are process areas (and processes) that are not key to achiev-
ing a maturity level. The CMM does not describe all the process areas in detail that are involved
with developing and maintaining software. Certain process areas have been identified as key de-
terminers of process capability; these are the ones described in the CMM.
Although other issues affect process performance, the key process areas were identified because of
their effectiveness in improving an organization’s software process capability. They may be con-
sidered the requirements for achieving a maturity level.

11This constraint may be removed in future versions of the model. The measurement approach subse-
quently discussed in this section is not tied to this constraint.

ptg

Chapter 6 • Measurement

440

Key Process Areas (KPAs)

1–Requirements Management
2–Software Project Planning
3–Software Project Tracking & Oversight
4–Software Subcontract Management
5–Software QA
6–Software CM

SEI CMM Level 2—Repeatable

Commitment to Perform

Describes the actions the organization must take
to ensure that the process is established and will
endure.

Ability to Perform

Describes the preconditions that must exist in
the project or organization to implement the
software process competently.

Activities Performed

Describes the roles and procedures necessary to
implement a key process area.

Measurement and Analysis

Describes the need to measure the process and
analyze the measurements.

Verifying Implementation

Describes the steps to ensure that the activities
are performed in compliance with the process
that has been established.

GOALS

KEY PRACTICES

KEY PROCESS AREA

COMMON FEATURES

Level 2 focuses on project-level KPAs.

Goals are achieved
by accomplishing
key practices.

Key practices represent
“what” needs to be
implemented.

Each organization decides
“how” to do each “what.”

Software
Process

Figure 6–33 Each maturity level consists of “key process areas (KPAs).” Each KPA is characterized, in part,
by “goals” and “key practices.”

ptg

Process Measurement Step 1

Decide on what questions you want and/or need to address. Is my project
performing activities associated with the Level 2 KPAs?

Process Measurement Step 2

Select the process components from your software systems development
process that you want to measure. As shown in Figure 6–34, we select the
Level 2 KPAs as the process components to be measured.

Process Measurement Step 3

Identify the process component activities that you want to measure. For each
Level 2 KPA, we identify the Activities Performed common feature as the
process component activities to be measured. For simplicity of explanation,

Chapter 6 • Measurement

441

Software
Process

SEI Level 2—Repeatable

Software Subcontract
Management

(xt 4)

Software Project Tracking
& Oversight

(xt 3)

Software Project Planning
(xt 2)

Software Configuration
Management

(xt 6)

Software Quality
Assurance

(xt 5)

Requirements Management
(xt 1)

Figure 6–34 A repeatable software process that has integrity is one that has the following six process components shown
above—(xt 1), (xt 2), (xt 3), (xt 4), (xt 5), and (xt 6).

ptg

Figure 6–35 shows only the detail for the Requirements Management KPA.12

The process component activities to be measured for Requirements Manage-
ment correspond to the activities labeled RM.AC.1, RM.AC.2, and RM.AC.3.
Other process component activities would be measured for the remaining
Level 2 KPAs.

Process Measurement Step 4

For each identified activity, define a value scale in everyday terms that are
familiar to the organization. Figure 6–36 shows our activity value scale defini-
tions for the Requirements Management activities. The (xt11) activity value
scale is continuous and is based on a percentage of the requirements
reviewed by the engineering group.13 The (xt12) activity value scale has
three discrete values designed to encourage review and incorporation of
changes to agreed-upon requirements before they are incorporated into the
project. The (xt13) activity value scale reflects either “yes” or “no.” This activ-
ity value scale was designed to stress whether or not the activity is being
performed.

Similarly, to compute integrity values for the other five KPAs, value scales for
each of the activities associated with each KPA would be defined. The
resulting Level 2 process “goodness” scale is shown in Figure 6–37.

Process Measurement Step 5

For each identified activity, observe activity accomplishment and choose a
corresponding scale value reflecting that accomplishment. Observations are
made, values are assigned, and values are recorded using a software
spreadsheet program.

Process Measurement Step 6

Using the formulas given in this chapter, calculate the process component
value based on the activity values. For simplicity, use the formulas that yield
values between zero and one. Select weighting factors to reflect your
perception of the relative importance of your process components.

Chapter 6 • Measurement

442

12In Figure 6–35, the term “allocated requirements” is used in the CMM to denote those system re-
quirements that are set apart (i.e., allocated) for implementation through software code.
13In the language of our book, “engineering group” is an organizational element encompassing devel-
opment disciplines.

ptg

Chapter 6 • Measurement

443

Commitment to Perform

Describes the actions the organization
must take to ensure that the process is
established and will endure.

Ability to Perform

Describes the preconditions that must
exist in the project or organization to
implement the software process
competently.

Activities Performed

Describes the roles and
procedures necessary to
implement a key process area.

Measurement and Analysis

Describes the need to measure
the process and analyze the
measurements.

Verifying Implementation

Describes the steps to ensure that
the activities are performed in
compliance with the process that
has been established.

RM.CO.1—The project follows a written organizational policy for managing the systems requirements
allocated to the software.

RM.AB.1—For each project, responsibility is established for analyzing the system requirements and
allocating them to hardware, software, and other system components.

RM.AB.2—The allocated requirements are documented.

RM.AB.3—Adequate resources and funding are provided for managing the allocated requirements.

RM.AB.4—Members of the software engineering group and other software-related groups are trained to
perform their requirements management activities.

RM.ME.1—Measurements are made and used to determine the status of the activities for managing the
allocated requirements.

RM.VE.1—The activities for managing the allocated requirements are reviewed with senior management
on a periodic basis.

RM.VE.2—The activities for managing the allocated requirements are reviewed with the project manager
on both a periodic and event-driven basis.

RM.VE.3—The software quality assurance group reviews and/or audits the activities and work products
 for managing the allocated requirements and reports the results.

KEY PRACTICES

REQUIREMENTS MANAGEMENT—Establish a common understanding between the customer and the software project of the customer’s
requirements
“Capability Maturity Model for Software, Version 1.1,” February 1993
CMU/SEI-93-TR-24, ESC-TR-93-177

(Level 2 Key Process Area)

GOALS

RM.GL.2—Software plans, products, and activities are kept consistent with the system requirements allocated to software.

RM.GL.1—System requirements allocated to software are controlled to establish a baseline for software engineering and management use.

RM.CO.1 RM.AB.1 RM.AB.2 RM.AB.3 RM.AB.4 RM.AC.1 RM.ME.1 RM.VE.1 RM.VE.2 RM.VE.3

RM.CO.1 RM.AB.3 RM.AB.4 RM.AC.2 RM.AC.3 RM.ME.1 RM.VE.1 RM.VE.2 RM.VE.3

RM.AC.1—The software engineering group reviews the allocated requirements before they are
incorporated into the software project.

RM.AC.2—The software engineering group uses the allocated requirements as the basis for software
 plans, work products, and activities.

RM.AC.3—Changes to the allocated requirements are reviewed and incorporated into the software
 project.

COMMON FEATURES

Figure 6–35 The Requirements Management process component (i.e., key process area) can be measured using the three ac-
tivities labeled RM.AC.1, RM.AC.2, and RM.AC.3.

ptg

Chapter 6 • Measurement

444

1.0

0.0

(xt
13

= 1.0)

(xt
13

= 0.0)

(xt
13

)–The software engineering group
uses the allocated requirements as the

basis for software plans, work products,
and activities.

Engineering group did not use
requirements as basis for work.

Engineering group used requirements
as basis for work.

(xt
11

=

1.0

0.0

(xt
11

= 0.0)

(xt
11

= 1.0)

(xt
11

)–The software engineering group
reviews the allocated requirements

before they are incorporated into the
software project.

Engineering group did not review
requirements.

Engineering group reviewed
requirements.

Engineering group reviewed some of
the requirements.

[# of requirements reviewed/
total # of requirements])

1.0

0.25

0.0

(xt
12

= 1.0)

(xt
12

= 0.25)

(xt
12

= 0.0)

(xt
12

)–Changes to the allocated
requirements are reviewed and

incorporated into the software project.

Changes to requirements were not
reviewed or incorporated into the
project.

Changes to requirements were
reviewed and incorporated into the
project.

Changes to requirements were not
reviewed, but were incorporated into
the project.

Figure 6–36 Example activity value scales for the three activities making up the Requirements Management key process area.

As shown in Figure 6–38, the generalized process integrity index formula is
used to establish the formulas necessary to measure the activities associated
with the Level 2 KPAs. As indicated in the figure, the formulas are normal-
ized so that the calculated values will fall between zero and one, and the
weighting factors are set equal to one.

Process Measurement Step 7

Using the formulas given in this chapter, combine the process component
values into a process integrity index value. For simplicity, use the formulas
that yield values between zero and one. Select weighting factors to reflect
your perception of the relative importance to your organization.

A formula for rolling the KPA integrity values up into a Level 2 integrity
index is shown in Figure 6–38. For the Requirements Management KPA (xt1),
there are 3 activities; hence, the square root of 3 in the denominator. For the
Software Project Planning KPA (xt2), there are 15 activities; hence, the square
root of 15 in the denominator for the formula. For the Software Project Track-
ing and Oversight KPA (xt3), there are 13 activities; for the Software Subcon-
tract Management KPA (xt4), there are 13 activities; for the Software Quality

ptg

Chapter 6 • Measurement

445

Software
Process

SEI Level 2

Process Integrity

Index (xt
1
)— Organization establishes a common understanding

between the customer and software project of the
customer’s requirements.

(xt
2
)— Organization establishes reasonable plans for

performing the software engineering and for managing
software projects.

(xt
3
)— Organization provides adequate visibility into actual

progress so that management can take effective actions
when a software project’s performance deviates
significantly from the software plans.

(xt
4
)— Organization selects qualified software subcontractors

and manages them effectively.
(xt

5
)— Organization provides management with appropriate

visibility into the process being used by software
projects and of the products being built.

(xt
6
)— Organization establishes and maintains the integrity of

 the products of the software project throughout the
project’s life cycle.

The key process area (KPA) activities are not performed.

Process
“Goodness”

Scale

Max. Value

Min. Value

Repeatable

� xt i
2

i = 1

6

6
ProcIindex =

0.0

1.0

Figure 6–37 The Level 2 process “goodness” scale ranges from a minimum value of 0.0 (i.e., activi-
ties not being performed in any KPA) to a maximum value of 1.0 (i.e., all activities being performed in
each KPA).

Assurance KPA (xt5), there are 8 activities; and for the Software Configuration
Management KPA (xt6), there are 10 activities. Thus, in terms of determining
an organization’s compliance with Level 2 KPAs and underlying practices,
the process integrity vector resides in a space of 62 dimensions (3 + 15 + 13 +
13 + 8 + 10). A similar approach can be used to compute process integrity
indices for the other CMM levels.

ptg

446

� w i xt i
i = 1

N
2 2

� w i (maximum [xt i])i = 1

N
2 2

Proclindex =

� w ij xt ij
j = 1

N i
2 2

� w ij (maximum [xt ij])
j = 1

2 2

xt i =

Process Integrity Index

N = number of organizational process components
w i = weighting factor for process component xt i
xt i = the i th process component
maximum [xt i] = maximum value of xt i

N i = number of activities making up process component xt i
w ij = weighting factor for activity xt ij of process component xt i
xt ij = the j th activity of the i th process component
maximum [xt ij] = maximum value of xt ij , for each j

� xt 1 j
2

j =1

3

3
xt 1 =

� xt 2 j
2

j =1

15

15
xt 2 =

� xt 3 j
2

j =1

13

13
xt 3 =

� xt 4 j
2

j =1

13

13
xt 4 =

� xt 5 j
2

j =1

8

8
xt 5 =

� xt 6 j
2

j =1

10

10
xt 6 =

SEI Level 2—Repeatable ProcIindex

N = 6, all wi = 1, all maximum [xt i] = 1

xt 1 = Requirements Management, xt 2 = Software Project Planning,
xt 3 = Software Project Tracking and Oversight, xt 4 = Software
Subcontract Management, xt 5 = Software Quality Assurance,
and xt 6 = Software Configuration Management

� xt i
2

i =1

6

6
ProcIindex =

xt 1 + xt 2 + xt 3 + xt 4 + xt 5 + xt 6
2 2 2 2 2 2

6
 =

N i

N 1 = 3, N 2 = 15, N 3 = N 4 = 13, N 5 = 8, N 6 = 10, all w ij = 1, all
maximum [xt ij] = 1

Figure 6–38 The process integrity index for CMM Level 2 can be defined using the activities for each of the six Key Process
Areas. For example, there are three activities for Requirements Management (i.e., xt 1), fifteen activities for Software Project
Planning (i.e., xt 2), etc.

ptg

6.6 Other Process-Related Measurements

In addition to product integrity and process integrity measurements, it may
be useful to establish other process-related measurements tied to one or more
components of the software systems development process. Again, the ques-
tion is, “What attributes of the software systems development process are of
interest to measure?” In part, the answer is tied to determining which activi-
ties contribute to “staying in business,” which is strongly tied to “customer
satisfaction.” “Customer satisfaction” can be expressed in many ways. In this
section, we show you how to effect process improvement, using an approach
other than product and process integrity indexes. Our approach consists of
the following two steps:

♦ The application of metrics to the software systems development process
activities to provide insight into the extent to which these activities are, or
are not, contributing to customer satisfaction (as expressed in terms of the
five product integrity attributes14).

♦ Those activities that are not contributing to customer satisfaction will be
modified (or eliminated) until they do. These modifications are what
“process improvement” means.

We now explain how to apply these two steps to derive a set of process met-
rics. The context for this discussion is our example organizational software
systems development process. This process is sufficiently general so that you
will be able to adapt it to your own environment.

The discussion that follows assumes that the organizational process is used to
govern a number of projects unfolding, more or less, in parallel. We measure
things on individual projects and then average these things over one or more
projects. From these averages, we derive findings about the underlying
software systems development process to effect its improvement.

In order to perform actual measurements of software systems development
processes, the preceding considerations need to be tempered by practical con-
siderations. Measurement involves collecting data and putting the data into a
meaningful form for process improvement purposes. These tasks cannot be
onerous because they will get in the way of software systems development
work—and measurement will not be performed. Thus, as we stressed in pre-
ceding sections, the metrics must be simple to collect and analyze. The price
for this simplicity is that the metrics are limited regarding the insight they
provide into process workings. For the near term, your approach should be to
collect some simple metrics to see if they help highlight activities that should

Chapter 6 • Measurement

447

14Remember, in Section 6.3, we explained the concept of product integrity in terms of the following
product attributes: (at1) fulfills customer needs, (at2) can be easily and completely traced through its
life cycle, (at3) meets specified performance criteria, (at4) meets cost expectations, and (at5) meets deliv-
ery expectations.

ptg

be changed to effect process improvement. Through this experience, you
can then determine whether you need more sophisticated measurement
techniques.

The simplicity criterion just mentioned means in a metrics context that we
simply count the number of times specific software systems development ac-
tivities are performed. To bring in customer satisfaction, we use the receipt of
deliverable and acceptance of deliverable forms. The Acceptance of Deliver-
able form provides customer feedback regarding each product delivered ac-
cording to the following three degrees of “customer satisfaction” (in
descending order of this satisfaction):

♦ The product is accepted as delivered
♦ The product is accepted with minor changes needed
♦ The product requires changes to be negotiated.

Clearly, the data on the acceptance of deliverable form do not provide de-
tailed insight into the extent to which the product fulfills specified customer
needs (i.e., product integrity attribute at1) or meets specified performance cri-
teria (i.e., product integrity attribute at3). In terms of overall process improve-
ment, these detailed considerations are not pertinent. For instance, our
example organizational software systems development process mandates
that, before computer code is delivered to the customer, it must be acceptance
tested. This acceptance testing activity does address the details of the product
integrity attributes at1 and at3 for that computer code product. In fact, if ac-
ceptance testing does demonstrate the presence of these attributes, customer
confirmation on the acceptance of deliverable form is a foregone conclusion.
The point is that (1) counting these forms, (2) putting these counts into the
three bins of degrees of customer satisfaction just listed, and then (3) relating
these counts to the number of times certain activities are carried out, does
provide gross insight into the effectiveness of these activities in the overall
software systems development process.

To relate the preceding discussion to actual process measurement, we discuss
some specific process-related metrics. We begin with a general process-
related metric and then illustrate it with specific examples. This general metric
and the associated examples are a starting point for defining a set of process-
related metrics to provide some insight into the state of your software systems
development process and to effect its improvement. We also consider other
metrics to illustrate additional process-related measurement ideas.

The general process-related metric is the following:

(6.6–1)
M

N ocActivity

Delq

qi

Del

i1 = =
∑ (Pr)

#

#

1

Chapter 6 • Measurement

448

ptg

M1q is the average number of times it takes to perform activity q in the organi-
zational software systems development process in producing the ith deliverable
before delivery. The quantity NProcActivityq i is the number of times the qth

process activity is performed on the ith deliverable before delivery. The quantity
#Del is the number of deliverables to include in the average. This number may
apply to a specific project or to a group of projects. For example, #Del may be the
number of deliverables produced on a project over a three-month period. As
another example, the quantity #Del may be the number of deliverables pro-
duced on all projects under the supervision of a particular seller senior man-
ager. Examples of the quantity NProcActivityq i are the following:

♦ Number of CCB meetings where the ith deliverable was discussed
♦ Number of peer reviews to produce the ith deliverable
♦ Number of product assurance reviews to produce the ith deliverable
♦ Number of technical edits to produce the ith deliverable
♦ Number of management reviews of the ith deliverable

The metric M1q can indicate the following, depending on #Del included in the sum:

♦ The extent to which the qth organizational software systems development
process activity is being used to produce deliverables

♦ The average number of times activity q is required to get a deliverable to
the customer

♦ The trend in the average number of times activity q is required to get a de-
liverable to the customer (this trend would be measured by collecting and
reporting the metric, for example, every month for a given value of #Del)

To illustrate M1q, let NProcActivityq i = NPeeri, the number of peer reviews re-
quired to produce the ith deliverable. Then, we define the metric MPeer related
to the organizational software systems development process peer review ac-
tivity as follows:

(6.6–2)

This metric is the average number of peer reviews required to produce deliv-
erables for delivery. If, for example, the sum in Equation 6.6–2 is restricted to
a single project, this metric indicates the following:

♦ The extent to which the peer reviews are being used on the project
♦ The average number of peer reviews required to get a deliverable to the

customer for that project

MPeer

NPeer

Del

i
i

Del

= =
∑ ()

#

#

1

Chapter 6 • Measurement

449

ptg

♦ If this metric were collected and reported, say, monthly, the trend in the
average number of peer reviews required to get a deliverable to the cus-
tomer for that project

If similar statistics were compiled for other projects, then we could determine
for subsequent project planning purposes how many peer reviews to include
in the cost and schedule of project plans. This information would serve to im-
prove the project planning process called out in your organizational software
systems development process because it would help to refine the costing and
scheduling algorithms.

However, the metric in Equation 6.6–2 does not explicitly address product in-
tegrity attributes. The following metric, which is an adaptation of Equation
6.6–2, illustrates how connection to these attributes can be made:

(6.6–3)

This metric is the average number of peer reviews required to produce deliv-
erables that are accepted by the customer (i.e., the customer returns the accep-
tance of deliverable form indicating “the product is accepted as delivered”);
the quantity #DelAcc is the number of such deliverables. If, for example, the
sum in Equation 6.6–3 is restricted to a single project, this metric indicates the
following:

♦ The average number of peer reviews required to get a deliverable accepted
by the customer for that project

♦ If this metric were collected and reported, say, monthly, the trend in the
average number of peer reviews required to get a deliverable accepted by
the customer for that project

If similar statistics were compiled for other projects, then we could see
whether there is a correlation between the number of peer reviews and cus-
tomer acceptance. Of course, other organizational software systems develop-
ment process activities influence customer acceptance. It is thus admittedly
an oversimplification to say that there is a single value for this average that
should be applied across all projects to enhance the likelihood of customer ac-
ceptance of products. For example, certain projects might involve the devel-
opment of complex products that by their nature would require more peer
reviews than less complex products would.

But the preceding metric could provide some insight into the correlation be-
tween the peer review activity and customer satisfaction as expressed on the
acceptance of deliverable form, as follows:

MPeerACC

NPeer

DelAcc

i
i

DelAcc

= =
∑ ()

#

#

1

Chapter 6 • Measurement

450

ptg

Suppose several projects have a track record of consistent product accep-
tance by the customer. Suppose also that the value of MPeerACC obtained by
averaging over these projects is, say, 3.5 (i.e., three to four peer reviews are
used to produce deliverables on these projects). Furthermore, suppose that (1)
several other projects have a track record of consistent deliverables requiring
“changes to be negotiated” and (2) the value of MPeerACC averaged over
these projects is, say, 0.5 (i.e., one or no peer reviews are used to produce deliv-
erables on these projects). Then, other organizational software systems de-
velopment process activities being equal (admittedly, a big “if,” but this “if”
could be examined by applying the instantiations of the metric M1q for these
activities), it could be surmised that there is some correlation between the peer
review activity and customer acceptance of products.

Of course, things generally turn out to be far more complicated than the sim-
ple situation just illustrated. To get a sense of such complications, we modify
the situation so that it reads as follows:

Suppose several projects have a track record of consistent product acceptance
by the customer. Suppose also that the value of MPeerACC averaged over these
projects is, say, 3.5 (i.e., on average, three to four peer reviews are used to pro-
duce deliverables on these projects). Furthermore, suppose that (1) several other
projects have a track record of consistent deliverables requiring “changes to be
negotiated” and (2) the value of MPeerAcc averaged over these projects is, say,
4.5. Then, if other organizational software systems development process activi-
ties were being applied consistently across both sets of projects (which could be
determined by applying the instantiations of the metric M1q to these activities),
the organizational software systems development process peer review activity
would need to be examined from perspectives such as the following: (1) Are there
fundamental differences between the way peer reviews are being utilized on one
set of projects versus the other set (e.g., are the peer reviews on the project set with
MPeerACC = 4.5 less formal with no written record of what was accom-
plished?)? (2) Are the two sets of projects fundamentally different in terms of the
nature of their products so that it is not meaningful to say that, because it takes
more peer reviews on these projects, the peer review process is less effective? For
(1), the process improvement response might be to modify the way that set of pro-
jects performs its peer reviews so that it mirrors the way the other set of projects
performs peer reviews. If this modification brings MPeerACC in line with the
value of this metric for the other set of projects, then the effectiveness of the peer
review activity would be demonstrated. For (2), the process improvement re-
sponse might be to modify the organizational software systems development
process to call out two approaches to peer reviews—one for projects that mirror
the one project set and the other that mirror the other project set. The result of this
organizational software systems development process modification would be
process improvement.

It should be noted that an assumption underlying this analysis is that if there
is a correlation between doing an activity N times and customer product ac-

Chapter 6 • Measurement

451

ptg

ceptance, then doing the activity much less than N or more than N is less de-
sirable. This assumption helps simplify the analysis. It is not possible to make
general statements about the validity of this assumption. You will need to see
what makes sense for your organization. For example, you may need to spec-
ify the number of times a given activity is to be performed. Then, you can ob-
serve the effect on customer acceptance of products and make adjustments
accordingly.

Metrics such as the one defined in Equation 6.6–3 can be extended to encom-
pass more than one organizational software systems development process ac-
tivity. This approach may be useful if it proves too difficult to correlate a
specific activity with customer satisfaction. For example, it may be more use-
ful to lump peer reviews and independent product assurance reviews into a
single metric. This metric might provide insight into the correlation between
detailed technical product reviews (which these activities are intended to ad-
dress) and customer satisfaction. Extending the Equation 6.6–3 idea, such a
metric might be the following:

(6.6–4)

This metric is the average number of peer reviews and independent product
assurance reviews required to produce deliverables that are accepted by the
customer (i.e., the customer returns the acceptance of deliverable form indi-
cating “the product is accepted as delivered”). As was the case in Equation
6.6–3, NPeeri is the number of peer reviews required to produce the ith deliver-
able accepted by the customer. Similarly, NPAi is the number of independent
product assurance reviews required to produce the ith deliverable accepted by
the customer. If, for example, the sum in Equation 6.6–4 is restricted to a sin-
gle project, this metric indicates the following:

♦ The average number of detailed product technical reviews (i.e., peer re-
views and independent product assurance reviews) required to get a deliv-
erable accepted by the customer for that project

♦ If this metric were collected and reported, say, monthly, the trend in the
average number of detailed product technical reviews required to get a de-
liverable accepted by the customer for that project

If similar statistics were compiled for other projects, then we could see if there
is a correlation between the number of detailed product technical reviews
and customer acceptance.

In addition to activity-specific metrics such as those just discussed, there are
metrics that can address product integrity attributes by simply counting the

MT vACC

NPeer NPA

DelAcc

i i
i

DelAcc

Re

()

#

#

=

+
=
∑

1

Chapter 6 • Measurement

452

ptg

number of deliverables over a specific period of time. For example, the fol-
lowing metric addresses the product integrity attribute of “at5—meets deliv-
ery expectations”:

(6.6–5)

This metric gives the percentage of deliverables delivered on time to the cus-
tomer during a specific period for certain projects, where “on time” is accord-
ing to delivery dates specified in project plans or CCB minutes. The quantity
#Del is the number of deliverables delivered during a specific period for spe-
cific projects. The quantity #DelOnTime is the number of these deliverables de-
livered on time. For example, #Del may be the number of deliverables
delivered during a particular month for all projects active during that month.
As another example, #Del may be the number of deliverables on a specific
project during the entire period the project was active. The preceding metric
provides insight into how well the organization is meeting planned sched-
ules. This insight, in turn, provides insight into the effectiveness of the project
planning activity in scheduling deliverables and the effectiveness of the CCB
activity in updating project plan schedules. Ideally, the organization should
strive to have %DelOnTime = 100 (all deliverables are delivered on time) for
whatever #Del encompasses. If %DelOnTime encompasses all projects and if
the value of this metric is significantly less than 100 (say, 50), then this statis-
tic would be used to investigate whether (1) certain organizational process ac-
tivities should be accomplished in less time and/or (2) the project planning
activity needs to be revised to set more realistic schedules. This investigation,
in turn, may precipitate changes to the activities in question—the end result
being organization process improvement.

Regarding the project planning activity, this activity precedes actual organi-
zation product development work. Yet, there are product integrity issues re-
garding this activity. Sometimes the customer pays for the product resulting
from this activity—namely, the project plan. If the cost of this activity has
been a major customer concern in the past, one metric that can possibly help
in this area is the following:

(6.6–6)

The metric AvPPlan$ is the average cost to produce a project plan resulting in
a project. PPlan$i is the cost to produce the ith project plan resulting in a pro-

AvPPlan

PPlan

ojects

i
i

ojects

$

($)

= =
∑

1

#

#

Pr

Pr

%
#

#
DelOnTime

DelOnTime
Del

= ⎡
⎣⎢

⎤
⎦⎥

×()
100

Chapter 6 • Measurement

453

ptg

ject. #Projects is the number of projects to include in the average. This average
can be computed over any period. Thus, for example, #Projects could be the
number of projects in a six-month period. By computing this average periodi-
cally (e.g., monthly), the trend in this average can be determined (e.g., the av-
erage cost to produce a project plan has declined at a rate of 10 percent per
month for the last six months). Also, the project plans to include in the sum
can be limited by defining #Projects appropriately. Thus, for example, the met-
ric in Equation 6.6–6 can be used to compute the average cost to produce a
project plan for a specific customer by limiting #Projects and PPlan$i to cus-
tomer “ABC Corporation” projects. This metric can also be used to define the
average cost of project plans for various categories of projects. For example,
by limiting #Projects and PPlan$i to “O&M” projects, we can compute the aver-
age project planning cost for O&M work. The metric AvPPlan$ can also help
set customer expectations regarding the cost of the organization’s project
planning process.

Embedded in the last metric is the number of iterations required to produce a
project plan before it results in a project. The following metric can give visibil-
ity into these iterations and thereby provide additional insight into how to
control project planning cost (and thereby increase the integrity of the project
planning part of the organization’s way of doing business):

(6.6–7)

The metric Av#PPlanΔ is the average number of drafts required to produce a
project plan resulting in a project. PPlanΔi is the number of drafts required to
produce the ith project plan resulting in a project. #Projects is the number of
projects to include in the average. This average can be computed over any pe-
riod. Thus, for example, #Projects could be the number of projects in a six-
month period. By computing this average periodically (e.g., monthly), the
trend in this average can be determined (e.g., the average number of drafts re-
quired to produce a project plan has declined at a rate of 10 percent per
month for the last six months). Also, the project plans to include in the sum
can be limited by defining #Projects appropriately. Thus, for example, the met-
ric in Equation 6.6–7 can be used to compute the average number of drafts re-
quired to produce a project plan for a specific customer, by limiting #Projects
and PPlanΔi to customer “ABC Corporation” projects. This latter statistic
could be used to determine whether there was a shortcoming in the project
planning process or a difficulty with a particular customer (or some combina-
tion of these two considerations). The metric in Equation 6.6–7 can also be
used to determine the number of drafts required to produce project plans for
various categories of projects. For example, by limiting #Projects and PPlanΔi

Av PPlan

PPlan

ojects

i
i

ojects

#
#

#

Δ

Δ

= =
∑ ()

1

Pr

Pr

Chapter 6 • Measurement

454

ptg

to “O&M” projects, we can compute the average number of drafts required to
produce project plans for O&M work. This statistic, in turn, can help refine
the project planning activity through scheduling algorithms that depend on
the type of work that the organization is being requested to do. For example,
if Av#PPlanΔ turns out to be 3.5 for O&M work and 1.5 for the development of
new software systems, and other factors being equal (e.g., there are no cus-
tomer dependencies), then we can inform customers that three to four meet-
ings between the customer and the organization will probably be required to
finalize an O&M project plan, while one to two meetings between the cus-
tomer and the organization will probably be required to finalize a new-
systems-development project plan.

One organizational software systems development process activity often
given special attention is acceptance testing.15 Unless specifically dictated by
the customer, software systems should not be delivered to the customer with-
out acceptance testing. Furthermore, customer involvement in the acceptance
testing CCBs is an effective way of assuring that the software system to be de-
livered does what it is supposed to do, that is, fulfills specified customer
needs and/or meets specified performance criteria. The following two met-
rics can be used to assess respectively the extent to which (1) software sys-
tems are being acceptance tested before delivery and (2) the customer
participates in acceptance testing CCB activity:

(6.6–8)

(6.6–9)

In Equation 6.6–8, the metric %SystemsAccTested gives the percentage of soft-
ware systems accepted tested during a specific period for certain projects.
The quantity #SystemsDel is the number of software systems delivered during
a specific period for specific projects. The quantity #AccTestedSystemsDel is the
number of these systems acceptance tested. For example, #SystemsDel may be
the number of software systems delivered during a particular month for all
projects active during that month. As another example, #SystemsDel may be
the number of systems delivered on a specific project during the entire period
that the project was active. Ideally, the organization should strive to have
%SystemsAccTested = 100 (all software systems are acceptance tested before de-

%
#

#
SysAccTestedwithCustomer

AccTestedSystemswithCustomer
SystemsAccTested

=
⎡

⎣
⎢

⎤

⎦
⎥ ×

()
100

%
#

#
SystemsAccTested

AccTestedSystemsDel
SystemsDel

=
⎡

⎣
⎢

⎤

⎦
⎥ ×

()
100

Chapter 6 • Measurement

455

15As discussed in Chapter 5, acceptance testing is the system-level testing that the seller performs be-
fore delivering the system to the customer. We recommend that the customer be involved in the ac-
ceptance testing process. In this way, what the customer receives at delivery is what the customer
expects.

ptg

livery) for whatever #SystemsDel encompasses. If %SystemsAccTested encom-
passes all projects and if the value of this metric is significantly less than 100
(say, 50), then this statistic would be used to investigate why acceptance test-
ing is not being performed. The reasons uncovered may precipitate changes
to one or more organizational process activities. If, for example, a reason un-
covered was that senior customer management issued edicts—at the eleventh
hour—that no acceptance testing be performed, then it may be necessary to
clarify the organizational software systems development process to ensure
seller senior management involvement with customer senior management
prior to planned acceptance testing. The end result of such changes to the ac-
tivities in question is organizational process improvement.

In Equation 6.6–9, the metric %SystemsAccTestedwithCustomer gives the percent-
age of the acceptance testing activity conducted with customer participation in
acceptance testing CCBs, during a specific period for certain projects. The quan-
tity #SystemsAccTestedwithCustomer is the number of software systems delivered
during a specific period for specific projects where the customer participated in
acceptance testing CCBs. The quantity #SystemsAccTested is the number of sys-
tems acceptance tested during this period for the specific projects in question.
Ideally, the organization should strive to have %SystemsAccTestedwithCustomer =
100 (all software systems are acceptance tested with customer involvement be-
fore delivery) for whatever #SystemsAccTested encompasses. The presumption
here is that, when test incident report (TIR) resolution involves the customer,
our first and third product integrity attributes are satisfied by definition.

Another potentially useful approach to assessing process effectiveness at a
gross level (i.e., independent of any particular organizational process activity)
is to do simple counts on the contents of the acceptance of deliverable form.
The following metric illustrates this approach for the case in which the con-
tents of the form indicate “Accept as Delivered” (analogous metrics can be
defined for the cases “Accept with Minor Changes” and “Requires Changes
to be Negotiated”):

(6.6–10)

This metric offers a variety of interpretations depending on how the factors in
the numerator and denominator are used. The scope of the metric depends on
the scope of the factors in the denominator. The quantities in this equation are
defined as follows:

♦ #FormAcc is the number of deliverables for which the organization has re-
ceived an acceptance of deliverable form indicating “Accept as Delivered.”

♦ #Unknown is the number of deliverables for which the organization has not
yet received an acceptance of deliverable form and for which an assumed
value will be assigned.

CustomerSatisfied
FormAcc Unknown

DelKnown DelUnknown
=

+
+

⎡
⎣⎢

⎤
⎦⎥

×
#

#
100

Chapter 6 • Measurement

456

ptg

♦ #DelKnown is the number of deliverables for which the organization has re-
ceived an acceptance of deliverable form.

♦ #DelUnknown is the number of deliverables for which the organization has
not yet received an acceptance of deliverable form.

♦ CustomerSatisfied is the percentage of deliverables for which the customer
has indicated “Accept as Delivered” and thus is a gross measure of posi-
tive customer perception of the organization.

The following example illustrates how this metric can be used:

Suppose we are interested in customer perception of the organization for a
two-month period across all projects. Suppose further that during this period
the organization delivered 100 deliverables and received 50 acceptance of de-
liverable forms, 25 of which indicated “Accept as Delivered.” In this case,
#DelKnown = 50, #DelUnknown = 50, and #FormAcc = 25. Regarding the
50 deliverables for which the forms have not yet been received, suppose we
conjecture that none of them will come back with “Accept as Delivered” (a
highly undesirable case for these outstanding deliverables, the worst case being
that all the forms come back indicating “Changes to Be Negotiated”). With this
conjecture, #Unknown = 0, and the value of CustomerSatisfied becomes 25
percent. If, on the other hand, we conjecture that they all will come back with
“Accept as Delivered,” #Unknown = 50, and the value of CustomerSatisfied
becomes 75 percent. These values then have the global interpretation that, for
the two-month period in question, the degree of customer satisfaction with or-
ganization products across all projects is no worse than 25 percent and no bet-
ter than 75 percent. If, in fact, there is a good likelihood that indeed most of the
outstanding acceptance of deliverable forms will come back with other than
“Accept as Delivered” indicated (as can be determined by querying the respon-
sible project managers), then the 25 percent figure would be more representa-
tive of the state of organization affairs regarding customer perceptions. In this
case, a detailed look at other metrics would be called for to see why the ap-
proval rating is so low. Equation 6.6–10 can also be used to assess customer
satisfaction solely on the basis of the known status of the deliverables. For this
assessment, the quantities #UnKnown and #DelUnknown are both set to
zero. Using the numbers just given, the value of CustomerSatisfaction for the
two-month period in question would then become 50 percent. This value would
have the following interpretation: “For the two-month period in question, half
the deliverables for which the customer returned acceptance of deliverable
forms were judged acceptable as delivered.”

The preceding discussion focused on metrics pertaining to organization
process improvement in a product integrity context. Other quantities, al-
though not directly related to process improvement, may offer insight into or-
ganization work profiles that could eventually be used to effect process
improvement. Regarding these profiles, questions such as the following
might be asked:

Chapter 6 • Measurement

457

ptg

♦ What is the average size project?
♦ What is the average project cost?
♦ How is the work distributed across the customer’s organization?

Regarding the first question, a metric such as the following, patterned after
the metric in Equation 6.6–6, might be helpful:

(6.6–11)

The metric AvProjectPersSize is the average number of organization employees
working on an organization project. ProjectPersSizei is the number of organiza-
tion employees working on the ith project. #Projects is the number of projects
to include in the average. This average can be computed over any period.
Thus, for example, #Projects could be the maximum number of projects active
in a six-month period. By computing this average periodically (e.g., monthly),
the trend in this average can be determined (e.g., the average project size
has declined at a rate of two people per month for the last six months).
Such trends, when coupled to trends derived from other metrics such as
CustomerSatisfied in Equation 6.6–10, may indicate general failure (or success)
of the organization process. For example, declining project size coupled with
increased customer satisfaction during the same period may indicate process
success because the organization is able to do good work with fewer people.
On the other hand, declining project size coupled with declining customer
satisfaction for the same period may indicate process failure because the
customer’s organization is taking its business elsewhere.

The project types to include in the Equation 6.6–11 sum can be limited by
defining #Projects appropriately. Thus, for example, Equation 6.6–11 can be
used to compute the project size for a specific customer by limiting #Projects
and ProjectPersSizei to ABC Corporation projects. This metric can also be used
to define the average project size for various categories of projects. For ex-
ample, by limiting #Projects and ProjectPersSizei to “O&M” projects, we can
compute the average project size for O&M work. Again, coupling these met-
rics to other metrics can provide insight into failure (or success) of the
organization process in particular spheres. For example, by limiting #Projects
and ProjectPersSizei to “O&M” projects, and by limiting the inputs to the
CustomerSatisfied metric in Equation 6.6–10 to O&M deliverables, we can gain
insight into how well, or poorly, the process may be working for O&M work.
For instance, a trend in O&M project size showing a decline and a customer
satisfaction trend for these projects for the same period showing an increase
may indicate process success for O&M work. That is, these two trends may in-
dicate that the organization is able to do good O&M work with fewer people.

Av ojectPersSize

ojectPersSize

ojects

i
i

ojects

Pr
#

#

= =
∑ ()Pr

Pr

Pr

1

Chapter 6 • Measurement

458

ptg

The following are some counting issues that need to be considered when
using the metric in Equation 6.6–11:

♦ Should product assurance personnel be included in ProjectPersSizei ?
♦ Should support personnel (e.g., technical editors) be included in

ProjectPersSizei ?

A global response to these issues is that values quoted for the metric should
indicate what ProjectPersSizei includes.

The second question in the list—what is the average project cost?—can be ad-
dressed by a metric analogous to the one given in Equation 6.6–11, namely

(6.6–12)

The metric AvProject$ is the average cost of an organization project. Project$i is
the cost of the ith project. #Projects is the number of projects to include in the
average. This average can be computed over any period. Thus, for example,
#Projects could be the maximum number of projects active in a six-month pe-
riod. By computing this average periodically (e.g., monthly), the trend in this
average can be determined (e.g., the average project cost has declined at a
rate of $10,000 per month for the last six months). Such trends, when coupled
to trends derived from other metrics such as CustomerSatisfied in Equation
6.6–10, may indicate general failure (or success) of the organization process.
For example, declining project cost coupled with increased customer satis-
faction during the same period may indicate process success because the
organization is able to do good work at reduced cost.

The project types to include in the Equation 6.6–12 sum can be limited by
defining #Projects appropriately. Thus, for example, Equation 6.6–12 can be
used to compute the project cost for a specific customer by limiting #Projects
and Project$i to ABC Corporation projects. This metric can also be used to de-
fine the average project cost for various categories of projects. For example,
by limiting #Projects and Project$i to “O&M” projects, we can compute the av-
erage project cost for O&M work. Again, coupling these metrics to other met-
rics can provide insight into failure (or success) of the organization process in
particular spheres. For example, by limiting #Projects and Project$i to “O&M”
projects and by limiting the inputs to the CustomerSatisfied metric in Equation
6.6–10 to O&M deliverables, we can gain insight into how well, or poorly, the
process may be working for O&M work. For instance, a trend in O&M project
cost showing a decline and a customer satisfaction trend for these projects for
the same period showing an increase may indicate process success for O&M

Av oject

oject

ojects

i
i

ojects

Pr

Pr

Pr

Pr

$

($)

= =
∑

1

#

#

Chapter 6 • Measurement

459

ptg

work. That is, these two trends may indicate that the organization is able to
do good O&M work at less cost.

The third question in the list—how is the work distributed across the cus-
tomer’s organization?—can be addressed, for example, by using the metrics
in Equations 6.6–11 and 6.6–12. As already discussed, these metrics can be
used to compute the average size and cost of projects for Office X. If we per-
form these computations across all customer offices that the organization
does business with, we generate a cost and manning profile of work across
the customer’s organization. By observing trends in these profiles and by cou-
pling these trends to the corresponding trends in the CustomerSatisfied metric
in Equation 6.6–10, we can gain insight into how well (or poorly) the organi-
zation is serving different client communities. We can use this insight to
sharpen the organization’s client focus and thereby increase its business base.
For example, if the trends in these metrics indicate that the organization is
serving the ABC Corporation poorly, the organization can give added atten-
tion to staffing its projects with, for example, more experienced personnel
than might otherwise be considered.

Table 6–1 summarizes this section by listing the metrics formulas and their
definitions.

Chapter 6 • Measurement

460

Table 6–1 Summary of Organization Process Improvement Metrics.

Metric Formula Definition

The average number of times it takes to perform activity q in the
organization software systems development process in
producing the ith deliverable before delivery

The average number of peer reviews required to produce
deliverables for delivery

The average number of peer reviews required to produce
deliverables that are accepted by the customer (i.e., the customer
returns the acceptance of deliverable form indicating “the
product is accepted as delivered”)

The average number of peer reviews and independent product
assurance reviews required to produce deliverables that are
accepted by the customer (i.e., the customer returns the
acceptance of deliverable form indicating “the product is
accepted as delivered”)

M1

ocActivity

Del
q

q i
i

Del

=
=
∑ ()NPr

#

#

1

MPeer

NPeer

Del

i
i

Del

=
=
∑ ()

1

#

#

MPeerACC

NPeer

DelAcc

i
i

DelAcc

=
=
∑ ()

1

#

#

MT vACC

NPeer NPA

DelAcc

i i
i

DelAcc

Re
#

#

=

+
=
∑ ()

1

(continued)

ptg

The percentage of deliverables delivered on time to the customer
during a specific period for certain projects, where “on time” is
according to delivery dates specified in project plans or CCB
minutes

The average cost to produce a project plan resulting in a project

The average number of drafts required to produce a project plan
resulting in a project

The percentage of software systems accepted tested during a
specific period for certain projects

The percentage of the acceptance testing activity conducted with
customer participation in acceptance testing CCBs, during a
specific period for certain projects

The customer perception of the seller organization

The average number of seller organization employees working
on a customer’s project

The average cost of a project

Chapter 6 • Measurement

461

%
#

#
DelOnTime

DelOnTime

Del
= ×⎡

⎣⎢
⎤
⎦⎥

()
100

AvPPlan

PPlan

ojects

i
i

ojects

$

($)

= =
∑

1

Pr

Pr

Av PPlan

PPlan

ojects

i
i

ojects

#
Pr

Pr

Δ

Δ

=
=
∑ ()

1

%

#

#

SystemsAccTested

AccTestedSystemsDel

SystemsDel

=

×
⎡
⎣⎢

⎤
⎦⎥

()
100

%

#

#

SysAccTestedwithCustomer

AccTestedSystemswithCustomer

SystemsAccTested

=

×
⎡
⎣⎢

⎤
⎦⎥

()
100

CustomerSatisfied

FormAcc Unknown

DelKnown DelUnknown

=

+

+
×⎡

⎣⎢
⎤
⎦⎥

()# #

#
100

Av ojectPersSize

ojectPersSize

ojects

i
i

ojects

Pr

Pr

Pr

Pr

=
=
∑ ()

1

Av oject

oject

ojects

i
i

ojects

Pr

Pr

Pr

Pr

$

($)

=
=
∑

1

Metric Formula Definition

ptg

6.7 Measurement Summary

Software systems development processes produce software products, such as
requirements specifications and computer code. A product can be measured
by assessing product attributes, and a process can be measured by assessing
its process components and corresponding activities. As shown in Figure
6–39, product and process measurements can be used to help improve soft-
ware systems development. However, numbers can be used to prove almost
anything. As Mark Twain once said, “There are three kinds of lies: lies,
damned lies, and statistics.”16

When you set out to establish your product and process metrics program, it is
important to think through ahead of time what the measurements are going
to be used for. With this purpose in mind, a measurement program can be
based on values that are significant to both the seller and the customer.

Chapter 6 • Measurement

462

SOFTWARE SYSTEMS DEVELOPMENT MEASUREMENT

Improved ProcessProcess

Process and Activity Measurement

Product Measurement

CODE

Software

Product
Attribute
Metrics

Process
Activity
Metrics

Improved Software

Req’ts
Spec

Requirements
Specification

01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101

CODE

01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101

Figure 6–39 Measurements can be used to help improve software systems development
processes and the resultant products.

16Mark Twain, on page 246 in his autobiography published in 1924, quotes this as a remark attributed
to Benjamin Disraeli (1804–1881), a British statesman. For background on this oft-used quote, see
S. Platt, ed., Respectfully Quoted: A Dictionary of Quotations from the Library of Congress (Washington, DC:
Congressional Quarterly Inc., 1992), p. 333.

ptg

A word of warning—be sensitive to the concern within your organization
that people may view product and process measurements as measuring
them. Asking such questions such as, “What is Sam’s productivity? Is he
turning out as many lines of code as Roger or Sally?” is tricky business. In
fact, we recommend that you avoid such direct questions. We suggest ques-
tions that probe the product or process may be more acceptable. Questions
such as, “Can we consistently produce products that satisfy our customer?
Do we have a development process that produces products that satisfy our
customer and make a profit?” may be of more value. Measurements must an-
swer questions that are important to the organization—otherwise, they are
not worth collecting. As Figure 6–40 illustrates, there are multiple viewpoints

Chapter 6 • Measurement

463

Process

Software Improved Software

Req’ts
Spec

Requirements
Specification

Improved Process

CODE CODE

01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101

01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101

Process

View 2—Project Process Measurement

Task 1
Task 2

Task N

•
•

•

Improved Task Performance

View 1—Organization Process Measurement

Views 3 and 4—Organization Product Measurement and

 Project Product Measurement

Task 1
Task 2

Task N

•
•

•

Figure 6–40 The product integrity index or process integrity index can be implemented
for organization and project perspectives.

ptg

when measuring products and process. These views apply to any organiza-
tion that consists of more than one software project. That is, the organization
has a process that each project adapts to its special needs to accomplish its
tasks. The organization is aiming to improve its software systems develop-
ment process and resultant products, while the project is aiming to improve
task-level performance and corresponding products. The project measure-
ments can be used as a feedback mechanism to improve the organizational
process. Figure 6–41 summarizes the possible relationship between the prod-
uct integrity index, PIindex, and the process integrity index, ProcIindex.

Your actual results depend on your specific set of circumstances. You need to
examine your measurements to understand how the results may guide your
product and process improvement activities. It is recommended that the data

Chapter 6 • Measurement

464

1

2

3

4

5

PIindex

High Scores

Low Scores

Medium
Scores

ProcIindex

High Scores

Low Scores

Medium
Scores

If the product integrity indexes are consistently high and the process integrity indexes are
consistently low, it may mean that you are not following your process but that you are
producing “good” products. Possibly, the development team is relying on the heroics of a
few people. If your goal is to have “good” products consistently produced by a “good”
process, then you may need to reconsider your process or goal.

If the product integrity indexes are consistently low and the process integrity indexes are
consistently high, look to change your process. This situation may mean that you are
following your process but that you are not producing “good” products.

If both integrity indexes are consistently low, it may be that you are not following
significant parts of your process.

If both integrity indexes are consistently high, then you may have to fine-tune your
process to push the indexes to one.

If both integrity indexes are consistently in the medium range, then you may have to make
changes to your process to elevate the indexes.

Am I producing
“good” products?

Is my process
consistently

producing “good”
products

within budget?

Figure 6–41 What is the relationship between your product and process integrity indexes? This figure suggests some
possible interpretations.

ptg

be collected, reviewed, and discussed on a routine schedule. Data collection is
a part of everyday work. Figure 6–42 illustrates this point.

An analog to integrated process measurement is the measurements that occur
as an automobile moves. Such integrated measurements include speed, avail-
able fuel, engine temperature, and oil level. Among other things, these mea-
surements indicate how well the automobile is functioning. These
measurements also indicate when the automobile’s performance may need to
be improved. Example performance improvement measurements include
measuring the miles traveled between stops for gas to provide insight into
fuel economy which, in turn, offers insight into which parts of the automobile
may need to be serviced.

In Figure 6–43, we summarize the product and process measurement steps,
and the possible relationships between the measurements. This figure can be
used as a guideline for setting up, observing, collecting, and analyzing your
measurements.

Chapter 6 • Measurement

465

Am I producing
“good” products?

Is my process
consistently

producing “good”
products

within budget?

Measurement-Integrated Organizational Process

Figure 6–42 Applying metrics to the software systems development process should be part of the process itself.

ptg

466

Improved Process

Improved Software

Requirements
Specification

CODE

•
•

•

Req’ts
Spec

CODE

PIindex

High Scores

Low Scores

Medium
Scores

ProcIindex

High Scores

Low Scores

Medium
Scores

Process

Software

Product Integrity Measurement Steps

Process Integrity Measurement Steps

Activity
1

Activity
N

● Decide on the questions that you want and/or need to address (e.g., am I producing
“good” products?).

● Select the products from your software systems development process that you want to
measure (e.g., requirements specification).

● Identify the product attributes that you want to measure (e.g., for a requirements
specification, you might identify an attribute as “at

4
—Meets cost expectations”).

● For each identified attribute (e.g., at
4
), define a value scale in everyday terms that are

familiar to the organization (e.g., delivered for more than the cost estimate = 0.0,
delivered for cost estimate = 0.9, and delivered for less than cost estimate = 1.0).

● Using the formulas given in this chapter, calculate the product integrity index value. For
simplicity, use the formulas that yield values between zero and one. Select weighting
factors to reflect your perception of the relative importance of your product attributes.

Possible Measurement Results ● If the product integrity indexes are consistently high and the process integrity
indexes are consistently low, it may mean that you are not following your
process but that you are producing “good” products. Possibly, the
development team is relying on the heroics of a few people. If your goal is to
have “good” products consistently produced by a “good” process, then you
may need to reconsider your process or goal.

● If the product integrity indexes are consistently low and the process integrity
indexes are consistently high, look to change your process. This situation
may mean that you are following your process but that you are not producing
“good” products.

● If both integrity indexes are consistently low, it may be that you are not
following significant parts of your process.

● Decide on the questions that you want and/or need to address (e.g., is my process
consistently producing “good” products within budget?).

● Select the process components from your software systems development process that you
want to measure (e.g., xt

1
—Seller Project Planning).

● Identify the process component activities that you want to measure (e.g., for Seller
Project Planning, you might identify an activity as “xt

12
—Seller performs risk

assessment”).
● For each identified activity, define a value scale in everyday terms that are familiar to the

organization. Identify the specific item(s) or action(s) (i.e., measurement trigger[s])
that triggers the activity to be measured. For example, for Seller performs risk
assessment, you might define scale values as “Seller did not perform risk assessment on
customer’s SOW = 0.0”, and “Seller performed risk assessment on customer’s SOW = 1.0”).

● Use the measurement trigger when assigning a value to each activity (e.g., for Seller performed risk assessment, you observe
that the customer’s SOW was assessed for risk according to the organization’s risk assessment procedure; therefore, the assigned
value = 1.0).

● Using formulas given in this chapter, calculate the process component value based on the activity values. For simplicity, use the
formulas that yield values between zero and one. Select weighting factors to reflect your perception of the relative importance of
your process component activities.

● Using the formulas given in this chapter, combine the process component values into a process integrity index value. For
simplicity, use the formulas that yield values between zero and one. Select weighting factors to reflect your perception of the
relative importance of your process components.

● If both integrity indexes are consistently high, then you may have to fine-tune your process to push the indexes to one.
● If both integrity indexes are consistently in the medium range, then you may have to make changes to your process to elevate the

indexes.

01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101

01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101

Figure 6–43 This high-level procedure is to help you through the product and process measurement steps based on the
concepts and examples introduced in this chapter.

ptg

You can use the annotated outline of an ADPE guideline in Figure 6–44 as a
starting point for defining your organization’s measurement program. This
outline consists of the following sections:

♦ Purpose. This section states the purpose of the guideline. The purpose sets
the context and establishes the authority for the guideline.

♦ Background and Measurement Issues. This section provides an overview
of your organization, business, customers, and types of contract vehicles
(e.g., fixed price, time, and materials) that you use to conduct business.
Measurement issues are identified and expressed in terms of specific ques-
tions that the organization or project wants or needs to have addressed.

♦ Product and Process Improvement Approach. This section defines how
the product and process measurement steps introduced in this chapter are
to be used. The section defines, details, and walks through the measure-
ment steps. It is recommended that high-level figures be used to explain
the steps. Depending on the level of detail appropriate for your organiza-
tion, appendices can be used to explain the steps and responsibilities in
more detail.

♦ Product and Process Measurements. This section defines the specific for-
mulas to be used to answer your specific set of questions. Example calcula-
tions can be given to show how to use the equations. Suggested reporting
formats may also be included.

♦ Roles and Responsibilities. This section presents the major organizational
responsibilities for the measurement program.

♦ Appendices. Appendices are added as necessary. The main body of the
guideline states the basics, and the appendices can add additional detail
that embodies lessons learned, or provide tutorial information. As an orga-
nization matures in its engineering business processes, we recommend that
the lessons be captured and incorporated into your ADPE elements. As
people in your organization move on to other jobs, their knowledge can be
incorporated into your ADPE elements, which serve, in part, as a piece of
your organization’s corporate memory.

In closing our discussion of the application of Object Measurement to prod-
uct and process “goodness,” we want to offer some additional remarks con-
cerning (1) alternatives to vector length for representing and computing
“goodness” indexes, (2) how our measurement concept can be extended to ar-
bitrary levels of detail, and (3) the static viewpoint of process measurement.

Alternatives to Vector Length for Computing Indexes When we discussed
measuring product “goodness,” we started by saying that product integrity is
a multidimensional concept that associates attributes with a product. In look-
ing for a way to quantify this multidimensional concept, we noted that math-
ematical and scientific disciplines often handle multidimensional quantities
with entities known as “vectors.” This association then led us to use the con-
cept of “vector length” as the basis for folding the measurements of a prod-

Chapter 6 • Measurement

467

ptg

Document #

Date
[Your Organization’s Name and Logo]

1.0 PURPOSE
This section states the purpose of the element. This purpose is the following:
● Identify the measurements to be performed to (1) quantify where your organization is product-

and process-wise, (2) quantify differences from this baseline assessment, (3) establish
quantitative process and product goals, and (4) quantify progress toward achieving these

 goals.
● Define the approach for incorporating process and product improvements based on the

measurement activity.

2.0 BACKGROUND AND MEASUREMENT ISSUES
This section gives an overview of your organization, your business, your customers, and the types
of contractual vehicles that you use to conduct business (e.g., fixed price, memorandum of
understanding, time and materials). It also identifies measurement issues that your organization
needs to address to improve the way it does software systems development business. One way to
structure these issues is to use the multiple views introduced in this chapter. Example issues are
the following:
● What is the likelihood of producing products with integrity?
● Is the product delivered on time?
● Is the product delivered within budget?
● Does the product do what the customer wants it to do?
● How maintainable is the product?
● How long does it take to get through our organizational development process?
● How are product integrity attributes quantified?
● How are process component activities quantified?

3.0 PRODUCT AND PROCESS IMPROVEMENT APPROACH
This section describes how the product and process measurement steps introduced in this chapter
are to be used.

4.0 PRODUCT AND PROCESS MEASUREMENTS
This section describes your responses to the Section 2 issues in terms of measurements to be
performed, including any mathematical formulas and other algorithms to be used to generate
numbers. This chapter provides you with a starting point for defining measurements for your
organization (e.g., product integrity index, process integrity index). This section can also include
example measurements using the mathematical formulas introduced in the section.

5.0 ROLES AND RESPONSIBILITIES
This section presents the major organizational responsibilities for performing and managing
product and process measurement activities.

APPENDICES
Appendices can contain such things as (1) mathematical derivations and other details underlying
any formulas introduced in the main body, (2) alternative measurements, (3) limitations of Section
4 measurements, (4) acronyms, and (5) definitions of key terms.

Document #
Date

[Your Organization‘s Name] Policy

Software Systems Development Process Metrics

Figure 6–44 An annotated outline for getting you started in defining a product and process measurement
approach for your organization. This ADPE element can also be used to refine a measurement approach
you already (informally) have in place.

ptg

uct’s attributes into a single number that we called a product integrity index,
or PIindex. We chose PIindex as a way to measure product “goodness.” In a
similar fashion, we defined a process integrity index, or ProcIindex. ProcIindex
folded measurements of the extent to which activities that make up a process
are performed into a single number. We chose ProcIindex as a way to measure
process “goodness.”

Throughout this book, we stress that there is no one “way” to develop soft-
ware systems. Similarly, there is no one way to measure, for example, prod-
uct “goodness” or process “goodness.” Earlier in this chapter, we illustrated
how to use OM as a way to measure product “goodness” and process “good-
ness.” To calculate values for a “goodness” index, we needed a computa-
tional mechanism. We based our computational mechanism on a physical
model of a line in space. This approach affords us the opportunity to “visual-
ize” what the product and process integrity indexes mean. Namely, these in-
dexes correspond respectively, roughly speaking, to the length of a line in
product attribute space and to a length of a line in process activity space. Of
course, we cannot really see such lines. The point is that, by abstracting from
the underlying mathematical model of a vector, we are afforded the opportu-
nity to sense what the indexes mean.

The preceding discussion leads to the following essential point regarding the
OM approach:

The most important part of this approach is setting up the value scales. As
we discussed earlier in this chapter, measurement results must be meaningful
to the intended audience. To make meaningfulness happen within the OM
framework means that the customer and seller need to mutually agree on the
(1) number of tick marks to put on each scale, (2) words to be used for the
marks, and (2) numeric values to associate with these words.

How to combine the measurements into a single number is less important.
But, again, the customer and seller need to agree on the computational proce-
dure to be used. And, of course, the overriding issue regarding the computa-
tional procedure is that the procedure needs to make sense to both the
customer and the seller.

We now illustrate another example computational procedure for PIindex (this
example can be straightforwardly extended to the computation of ProcIindex).
Again, as with the discussion earlier in this chapter, this example computa-
tional procedure is offered as a starting point for you to derive a computa-
tional procedure that you may feel more comfortable with than that given
earlier in the chapter. The example that we now offer is an adaptation of one
suggested to us by others during presentations of the material in this chapter.

Equation 6.3–2 gives the formula for computing PIindex from the measurements
of product attributes. As we stated earlier, because we based our computational
mechanism on a physical model of a line in space, the computational procedure
involves squaring numbers and taking square roots. Even though using such a

Chapter 6 • Measurement

469

ptg

computational procedure is not a burdensome task because of the wide avail-
ability of computational tools such as spreadsheets, we now present a compu-
tational procedure that does not involve squaring numbers and taking square
roots. This procedure has the advantage that, even for computations involving
five to ten attributes, PIindex can be quickly estimated in one’s head. We call this
computational procedure a linear one because it does not involve powers of at-
tribute measurements (and powers of weighting factors). The following for-
mula is a linear analog to Equation 6.3–2:

(6.7–1)

The quantities wi, ati, and maximum[ati] have the same definitions as those
given for these quantities in Equation 6.3–2. Earlier in this chapter, we ap-
plied Equation 6.3–2 (all weighting factors set to one, all value scales running
from zero to one, and the normalization factor chosen to restrict PIindex to the
range zero to one) to compute PIindex for several example products. With
these stipulations, we found, for instance, for a requirements specification, a
value for PIindex of 0.72. With these same stipulations, we find for this same
requirements specification, using Equation 6.7–1, the following result:

Thus, the value for PIindex obtained from Equation 6.7–1 is less than the value
obtained from Equation 6.3–2. This result is a general one; that is, Equation
6.3–2 yields results that are less than the corresponding ones obtained from
Equation 6.7–1 (they are equal for the cases PIindex = 0 and PIindex = 1). The
differences between the Equation 6.3–1 results and the corresponding Equa-
tion 6.7–1 results first increase and then decrease in going from PIindex values
near zero to PIindex values near one. In the requirements specification ex-
ample given above, this difference is 0.04. For the updated user’s manual ex-
ample given earlier in this chapter, Equation 6.3–2 gave 0.32 while Equation
6.7–1 gives the following result:

In this case, the difference is 0.12.

PIindex = + + + + =0 0 0 5 0 0 0 0 0 5
5

0 20
.

. .

PIindex = + + + + =0 5 0 5 0 5 1 0 0 9
5

0 68
.

. .

PIindex

w at

w at

i i
i

n

i i
i

n
= =

=

∑

∑
1

1

(maximum[])

Chapter 6 • Measurement

470

ptg

Regarding such differences, it is appropriate here to comment on the accu-
racy issue associated with setting up value scales and calculating index val-
ues obtained from measuring attributes. As we stated above, the construction
of value scales involves getting the customer and seller to mutually agree on
the (1) number of tick marks to put on each scale, (2) words to be used for the
marks, and (3) numeric values to associate with these words. Clearly, this
procedure is not an exact science. The procedure essentially involves a subjec-
tive process.17 For instance, in the product attribute “fulfills customer needs”
that we considered earlier in this chapter, we set up three tick marks—0.0, 0.5,
and 1.0. The 0.0 value corresponded to “changes to be negotiated.” This asso-
ciation involved making the subjective value judgment that the most undesir-
able situation that could arise after a product went through a product
development process was that the customer received a product that was at
gross variance with want he/she wanted. If the 0.0 value is to represent the
most undesirable situation regarding fulfilling customer needs, other descrip-
tions for this 0.0 value are certainly possible. For example, the customer
might have stipulated that certain requirements were absolutely critical and if
any one of these requirements were not addressed in the delivered product,
then that product would be considered unacceptable. Similarly, the 0.5 value
corresponded to “accepted with minor changes.” Issues associated with this
assignment include the following:

♦ How is “minor” defined?
♦ How many minor changes must there be in a document until the number is

so great that the collection of minor changes requires “changes to be
negotiated”?

♦ Why lump all collections of minor changes into a single value (0.5)?
♦ Why shouldn’t a product that requires, say, five minor changes be rated

higher than one requiring, say, ten minor changes?

Chapter 6 • Measurement

471

17Speaking somewhat loosely, at least some branches of science strive for objectivity when it comes to
measurement. For example, a research technique often used to objectively evaluate the efficacy of a
drug is the “double-blind procedure.” In this procedure, neither the researchers nor the subjects know
who is receiving the drug and who is receiving a placebo. Independent third parties who know which
subjects received which substances can then evaluate the results. These evaluators will have some de-
gree of confidence that the participants in the procedure did not influence outcomes (i.e., introduce
subjectivity) by the way they may have conducted themselves during the procedure. On the other
hand, some scientific procedures may not be objective, either by design or by the nature of what is
being studied. For example, wine-tasting procedures have at least some degree of subjectivity. What
constitutes “good-tasting wine” is, at the most fundamental level, determined by how a wine taster
reacts to his/her taste-bud sensations (and, perhaps, sense of smell). Some objectivity may be intro-
duced into the procedure by having a number of wine tasters participate in the procedure. The depen-
dence of the wine-tasting results on an individual wine-taster’s taste buds is thereby reduced by, say,
averaging in some sense the wine-tasting results on an individual wine-taster’s reactions. So, for in-
stance, if ten tasters participated in the evaluation, and nine of them sensed that the wine was cloy-
ingly sweet, the results might be reported as follows: In taste tests, 90% of the tasters reported that the
wine was cloyingly sweet. [Note: We are here using science in the broad sense of “methodological ac-
tivity, discipline, or study.” This definition of science is the third one given in Webster’s II New College
Dictionary (Boston: Houghton Mifflin Company, 1995).]

ptg

In dealing with these value assignment issues, we offer the following general
guidance:

♦ At the outset of your measurement activity, you should view the index val-
ues as indicators to spur closer looks at situations. If, for example, you have
index values set to the range zero to one, do not attach significance to dif-
ferences of a few hundredths or even a tenth or two. Look at index values
of a stream of products and note the ones that deviate by a few tenths from
the others. For example, the user’s manual considered earlier in this chap-
ter had an index value several tenths smaller than the index values of the
other three products considered—0.32 versus 0.72, 0.87, and 0.96.

♦ Over time, it may make sense to put more tick marks on your value scales as
people in your organization become acclimated to the measurement process.
At that stage, it may make sense to, for example, take the value scale for “ful-
fills customer needs” and put intermediate tick marks such as 0.25 and 0.75
(in addition to 0.5). Adding such tick marks means that now index value dif-
ferences of, say, 0.1 have significance so that indicator sensitivity associated
with index values has increased. As we stated at the outset of this chapter, it
is meaningless to try to measure lengths down to the nearest sixteenth of an
inch with a ruler that contains only quarter-inch marks.

♦ The bottom line is to get acclimated to a set of value scales and determine
how well they are helping you answer the questions that you wanted to
answer when you set up the value scales in the first place. If these ques-
tions are still the ones you want answered but the measurements are
falling short in helping you answer them, then refine the value scales or
come up with new ones. If these questions have changed, then decide on a
new or modified set of attributes to measure and set up the scales with a
small set of tick marks. Then, again, over time, refine the value scales.

In closing this discussion of alternatives to vector lengths for computing in-
dexes, we note that this discussion is just a glance at a multitude of considera-
tions regarding how to apply OM to measure multidimensional quantities. To
illustrate this point, we list below some considerations regarding value scale
definition that we did not address. You may want to experiment with some of
these considerations (or come up with some others) in setting up a measure-
ment program for your organization.

♦ The use of negative numbers on value scales.
♦ The use of value scales where the minimum value is a desired result and

the maximum value is an undesired result.
♦ The use of value scales containing irrational numbers, such as pi, as well as

rational numbers. Included in this consideration is setting up value scales
consisting at least in part of continuous values. Such continuous values
might, for example, be defined by a function that is continuous over some
interval pertinent to the measurement activity, such as the continuous
function y = x 2.

Chapter 6 • Measurement

472

ptg

One of our objectives in this chapter was to define and illustrate how to apply
Object Measurement to real-world measurement problems in the software
systems development domain. It was not our intent to give a comprehensive
treatment of this measurement technique.

Extending Measurement Formulas The formulas for the product and
process integrity indexes can be extended, if desired, to arbitrary levels of de-
tail. For example, regarding the process integrity index, if it is desired to par-
tition activities into subactivities, this extension can be accomplished as
follows:

(6.7–2)

where

Nij = number of subactivities making up activity xtij, the jth activity of
process component xti

wijk = weighting factor for subactivity xtijk of activity xtij

maximum[xtijk] = maximum value of xtijk, for each k

i is the process component label

j is the component activity label

k is the subactivity label

The subactivities are measured directly by setting up value scales for each
subactivity. Then, the contribution of each process component xti to the
process integrity index is computed from the xtij using the formula previously
given. And, finally, ProcIindex is computed from the xti using the formula pre-
viously given.

Corresponding comments apply to the product integrity index. For example,
each product attribute can be partitioned into subattributes (atij). The subat-
tributes are measured directly by setting up value scales for each subat-
tribute. Then, the contribution of each product attribute ati to the product
integrity index is computed from the atij using a formula like the one given
for computing xti from xtij. And, finally, PIindex is computed from the ati using
the formula previously given.

One final comment is in order regarding the process integrity index. We sug-
gest, that until you acquire experience using the formulas given down to the
activity level, you restrict your measurements to this level. Remember, for

xt

w xt

w xt

ij

ijk ijk

N

ijk ijk
k

N

k

ij

ij

= =
∑

∑
=

2 2

2 2

1

1

(maximum[])

Chapter 6 • Measurement

473

ptg

processes of even moderate complexity, the number of activities will gener-
ally be ten or more (the process considered earlier had sixteen activities).
Thus, unless some activities are heavily weighted, no one activity will make a
dominant contribution to the index. Consequently, if you partition the activi-
ties into subactivities, the contribution of any particular subactivity to
ProcIindex will not be dominant unless it is heavily weighted. Similar com-
ments apply to the use of subattributes to determine a product integrity index.

We say that a product has integrity if it manifests the attributes ati that we
have chosen for it. If we were not interested in quantifying these attributes,
then we would say that a product lacks integrity if one or more of the chosen
attributes is missing. When we quantify these attributes (as we have done in
this chapter), the product integrity index that we calculate from these quanti-
fied attributes is a way of saying how much integrity a product has. Thus, for
example, if we evaluate PIindex on a scale ranging from zero to one and if
PIindex = 0.60, then we say that the product is 60 percent along the way to-
ward manifesting the attributes chosen for it (or, equivalently, the product is
lacking in integrity by 40 percent).

Regarding process integrity, we say that a process, when performed as part of
software product development, has integrity if the components and associ-
ated activities that make up the process are performed as part of product de-
velopment in accordance with ADPE element content. By assigning value scales to
the activities (and, thus, by implication, to the components) and measuring
the extent to which the ADPE element activities are performed as part of
product development, when we calculate ProcIindex we are making a state-
ment about the extent to which the ADPE element activities and compo-
nents are performed as part of product development. Thus, for example, if
ProcIindex is set up to measure the project planning process component con-
sisting of, say, ten activities as specified in an ADPE element, and if by mea-
suring these activities while we are producing a project plan it turns out that
ProcIindex = 0.75 (on a scale ranging from zero to one), then we say that the
ADPE process used to produce the plan lacked integrity by 25 percent. By ex-
amining the associated Kiviat diagram or the activity values themselves, we
would obtain quantitative insight into the extent to which each project plan-
ning activity was carried out.

As we discussed, there are various combinations of PIindex and ProcIindex that
can arise in practice. By analyzing these combinations, an organization can
get insight into whether (1) ADPE processes need to be changed because fol-
lowing the processes (i.e., the processes had high integrity values) leads to
products with low integrity values, or (2) the organization is falling down in
performing certain ADPE activities and the resultant products have low in-
tegrity values, or (3) the ADPE processes are okay because they are being fol-
lowed and products with high values of integrity are being produced.

Static Viewpoint of Process Measurement Our previous discussion of
process measurement is in terms of process components, component activi-
ties, and activity value scales. We stressed the importance of observing and

Chapter 6 • Measurement

474

ptg

recording the degree to which component activities were performed. We
showed you how to set up various types of value scales (e.g., binary, discrete,
continuous) and suggested how you might use the observed results to im-
prove software systems development processes. We chose to introduce our
process measurement concept from this dynamic or performance-based
viewpoint. However, we did not want to leave you with the impression that
the performance-based viewpoint is the only way to implement process
measurement.

We believe that there is a static or nonperformance-based viewpoint that de-
serves your consideration when setting up a process measurement program.
Our car analogy in Figure 6–42 introduced the idea that performance-based
process measurements can indicate when the automobile’s performance may
need to be improved.18 However, there are times when performance does not
reflect the automobile’s primary value. For instance, when the automobile de-
signer sits down to improve the existing car line or to create a new car line,
the value of the automobile can be expressed in static terms. Here, we might
stress the importance of observing and recording the degree to which the au-
tomobile and supporting infrastructure exists. Is the design done? Is the de-
sign approved? Is the assembly line in place and ready to manufacture the
automobile? Has documentation been prepared for the automobile dealers
and their service departments? Once the automobiles are shipped to the deal-
erships, then the performance-based viewpoint might be more appropriate.
After the automobile is ready for the junk yard, nonperformance-based mea-
surements might be more useful than performance-based measurements. At
this point in the automobile’s life, the value might be expressed in terms of
automobile components that are still of value. From the junk-yard owner’s
viewpoint the automobile may have valuable parts that can be salvaged (e.g.,
the new set of tires you just bought before the car died). From the automobile
designer’s viewpoint there may be valuable lessons learned that can be incor-
porated into the next automobile design.

The point is that there is a temporal dimension that impacts the value of the
automobile. As a result, the automobile’s value can be expressed in terms of
performance, nonperformance, or some combination.

Just as the automobile’s value can be expressed in different terms, so can a
process’s value be expressed in different terms. For example, as an organiza-
tion is implementing an improved or new process, the value of the process
may be reflected by its design, approval, documentation, and associated
training. The design value scale values may be set up, for instance, as follows:

♦ 0.0 if the process design is not completed
♦ 0.5 if the process design is completed, but not approved
♦ 1.0 if the process design is completed and approved

Chapter 6 • Measurement

475

18Remember, the moving automobile represents software development processes at work and the
gauges represent measurement of that work.

ptg

Such a nonperformance-based value scale reflects the process’s early life. As
the process is implemented, then performance-based value scales, as we have
previously presented, can be constructed to reflect whether or not the process
is being followed. And as the process matures, its value scales can change yet
again. Regardless of how you choose to set up your measurement program,
we suggest you start simple.

We have completed our discussion of product and process measurement. The
next chapter is concerned with the human issues dealing with an organiza-
tion undergoing a cultural change. The chapter presents cultural change is-
sues from the following perspectives: (1) the organization responsible for
developing and promulgating process elements, (2) seller project participants
and project managers, (3) buyer/user project management, (4) buyer/user se-
nior management, and (5) seller senior management.

Chapter 6 • Measurement

476

ptg
Culture itself is neither education nor law-making; it is an atmosphere and a heritage.

—H. L. Mencken, Minority Report, p. 360 (1956). Published by
Alfred A. Knopf, a Division of Random House, Inc.

7.1 Introduction

Recall the following definition of culture introduced in Chapter 1; this defini-
tion is drawn from the field of psychology:

Culture is a pattern of basic assumptions invented, discovered, or devel-
oped by a given group as it learns to cope with its problems of external adapta-
tion and internal integration, that has worked well enough to be considered
valid and therefore is taught to new members as the correct way to perceive,
think, and feel in relation to those problems.1

For this chapter, it is not important to settle on a precise definition of culture.
This definition offers a sense of what the term may mean. With this admit-
tedly squashy baseline established, we have a point of departure for talking
about how cultural change is a part of any attempt to change the way an
organization develops software systems. Cultural change takes time and
teamwork.

477

chapter 7chapter 7
Cultural Change

1E. H. Schein, “Organizational Culture,” American Psychologist, vol. 45, no. 2 (February 1990), p. 111.

ptg

Redirecting the way that an organization develops software systems is part of
a cultural change process.2 Getting software systems development processes
on paper is a challenge. Changing the way people approach the software de-
velopment can prove to be even more difficult. When starting the journey to-
ward cultural change, it is important to anticipate difficulties that may be
encountered. Understanding the underlying dynamics goes a long way
toward easing the transition.

Change in the basic ways of perceiving, problem solving, and behavior re-
quires adopting a new frame of reference. New frameworks are frequently
viewed with a cautious, hesitant, and questioning attitude. This behavior is
commonly labeled as resistance. At the risk of oversimplification, this
resistance operates on two levels—visible and invisible.3

At the visible level, people resist change; at the invisible level people resist
loss. At the visible level, other people can observe the resistance; at the invis-
ible level, other people cannot observe the losses, doubts, and fears (real or
imagined) that reside in each individual (and within the group). Further-
more, at times, the individual who is resisting may not recognize the real
source of his or her resistance. When this multilevel aspect of resistance is not
recognized, there is a tendency to project negative motives onto those who
do not embrace a new proposal. This misunderstanding can lead to a
nonproductive cycle by all parties.

Pushing people to accept change does not work in the long term. Pulling peo-
ple with a vision of a better future works more effectively. To reach the stage
where people are open to a new, shared vision requires working through the
more basic emotional issues of fear, uncertainty, and loss. This “working
through” requires patience, support, and understanding, not blame. Endors-
ing a proposal for change will not occur until there is a feeling by key stake-
holders that individual needs and concerns are understood and will be
addressed. Figure 7–1 lists some losses, doubts, or fears that people may
struggle with when they are faced with change.

People commit to change for their own reasons, not for someone else’s. No
amount of rational discussion builds commitment. Change is not embraced
without the perception of personal gain and the opportunity to participate in
shaping the outcome. When establishing (or fine-tuning) your organization’s
process for evolving your software systems development environment, it is
important to allow individuals from all levels of the organization to have a
say in the development practices.

Chapter 7 • Cultural Change

478

2The discussion of the cultural change process in this chapter’s Introduction section is adapted from a
workshop entitled Managing Innovation, Strategic Performance Solutions Corporation, Silver Spring,
MD. Used by permission of Gary Donaldson, President.
3Resistance operates at many levels. For the purposes of our discussion, we have simplified our treat-
ment of resistance to two levels—visible and invisible. This simplification is sufficient for the engi-
neering issues addressed in this book.

ptg

Chapter 7 • Cultural Change

479

Cultivating Software Systems Development Success

Ill-Defined
Development Practices

SOFTWARE
PROCESS

Well-Defined
Development Practices

INDIVIDUALLOSS

INDIVIDUALLOSS

Loss of power or control
Loss of self-directed time (i.e., working on own agenda)
Fear of not having the right skill or competency
Loss of opportunity to grow individually
Loss of personal productivity
Loss of feeling that a person is an instrument of change
Loss of importance
Loss of recognition
Lack of contribution to organization
Lack of potential growth
Loss of status, either social or professional
Loss of self-esteem
Loss of flexibility and may be stuck in a rut
Loss of security and have to start over again
Not invented here
Fear of being a poor performer
Loss of credibility
Worry about having to owe things to other people
Loss of freedom of choice
Fear of people being stifled with new procedures

SOFTWARE
PROCESS

NIAP
???

STD

Figure 7–1 Losses, doubts, and fears contribute to a person’s unwillingness to make a transition (change) to a new way of
doing things. Often people view transition as a painful experience.

ptg

People may view the change (transition) as a losing proposition. By focusing
on a win-win situation you can go a long way toward easing the transition to
a new way of doing business. To design a win-win strategy requires both un-
derstanding and addressing the underlying concerns most people have re-
garding any new proposal. The underlying concerns range from trying to
understand why the change is necessary through questions related to gains
and losses that will be experienced. It is human nature to anticipate the worst
before giving credence to the new.

The losses (real or imagined) listed in Figure 7–1 can be found at all levels of
an organization. As implied in the figure, the organization may want to culti-
vate its ill-defined development practices into well-defined development
practices, but people want to understand how their making this change
(transition) affects them. People basically want to know the answers to the
following questions:

♦ What will change, remain the same, or be deleted?
♦ How pervasive and irreversible will the change be?
♦ What will be the personal impact?
♦ What will be lost?
♦ What will be gained?
♦ How fast will it happen?
♦ What control, support, and guarantees will everyone be given?

Honest answers to these questions will promote trust. False or misleading in-
formation used to coat over unpleasant feelings will sabotage commitment.
Everyone’s main concern is that individual circumstances and needs will be
fairly addressed, even if it means hearing difficult news and not getting what
one wants.

As a change agent you might ask, How can a perceived loss be reframed as a
net gain? To achieve this objective partially, a change agent needs to listen ac-
tively to what people say, explicitly and implicitly. For example, a person
may be arguing a technical point about a software system design issue, yet
may really be concerned about the impact of the proposed changes on that
person’s skill set. A change agent draws out the underlying concern, restates
the concern as a question that needs to be addressed, and facilitates an under-
standing of how the issue will be addressed to the benefit of the person. It is
important to accomplish this redirection without doing all the work for the
person (i.e., the person needs to contribute to the discussion). Change agents
often try to convince someone that the proposed change is the right thing to
do—trying to convince someone can be a frustrating experience. A more ef-
fective and powerful approach is for the change agent to help the other per-
son develop ownership of the situation. Facilitating ownership is
accomplished, in part, by helping the other people to discover their own
truths.

Chapter 7 • Cultural Change

480

ptg

Consider the following brief story about a manager’s resistance (visible and
invisible) to adopting a new way of doing business and a suggested way to
create a win-win situation:

A manager, who is a valuable contributor to the organization’s suc-
cess, is asked to help implement a change in the way software systems
are being developed. The change is not a radical departure from the
existing practice, but the change is not the manager’s idea. The man-
ager believes that adopting the new business practices will result in a
loss of power or control (in addition to other losses, doubts, and fears
listed in Figure 7–1).

As a result of these beliefs (real or imagined), the manager resists
adopting the new business practices. The manager communicates this
resistance, directly and indirectly, to the manager’s staff. The end re-
sult is that the manager’s part of the organization only partially imple-
ments the change (i.e., the new business practices). People view the
manager’s actions as “resistance to the change” when, in fact, the
manager is “resisting the loss of power or control.” That is, the man-
ager’s invisible resistance to loss translates into a visible resistance to
new business practices. The visible resistance is what people see (no
pun intended).

Consequently, some people implement the change, and some do
not. This manager’s visible resistance is a subtle and frequently uncon-
scious form of side-stepping change. This resistance undercuts the or-
ganization’s goal to implement a change that is intended to improve
the way the organization does business.

When a change agent asks the manager why there is so much re-
sistance, the manager avoids the question and responds by proudly
talking about the success the manager has achieved by applying cut-
ting-edge technologies. The manager makes several references to the
successful contributions of the next lower layer of technical manage-
ment, all of whom are 15 to 20 years younger than the manager. The
change agent actively listens to the manager and concludes that the
manager has lots of pride and has a self-image as a high-tech leader.

A potential way to overcome some of the manager’s resistance is
to sit down and talk to the manager about how the manager views the
change. It is important to get the manager to talk about the change and
how the manager perceives that the change will affect day-to-day activ-
ities. The discussion should include details involving the manager’s
role as a result of the change. The change agent should ask the man-
ager for suggestions on how to implement the new development
process. One area that can be explored is whether the manager would
be willing to mentor the organization’s younger staff on the new prac-
tices. The change agent can ask the manager for support to implement
the changes. Such an interaction may be perceived as a win-win for the
manager and the change agent.

Of course, the entire story is more complicated, but the point is that
change is emotional. People do not always directly communicate what
is on their minds, nor are they self aware of their own motivations.
These facts need to be dealt with as part of the cultural change journey.

Chapter 7 • Cultural Change

481

ptg

People are more likely to contribute when they feel that they have a hand in
creating the new order. Most people want to contribute to the well-being of
the organization. Sometimes they need a helping hand to see how their con-
tributions will make a difference. Pride of authorship drives motivation and
reduces anxiety as the pieces of the puzzle come together. Feeling a loss of
control over one’s destiny is crippling. Taking time to have the staff con-
tribute to the design and implementation of new initiatives serves as a power-
ful mechanism to overcome resistance.

Stakeholders are more at ease in accepting new ways of working when there
is (1) an understanding regarding the purpose of the change, (2) a picture of
the alternative way of operating, (3) a work plan to reach the goal, and (4) a
designated part each person can play in both the change process and the new
way of operating. Stakeholders need a clear picture and shared vision of how
the future ways of operating work together. A vision pulls a stakeholder for-
ward. Painting a shared vision reduces anxiety, fear, and resistance when fa-
cilitating change.

Stakeholders are more likely to support major change when they have a clear
sense of why the change is being proposed. They need to understand the dri-
ving forces and purpose. There needs to be a connection between the new
way of doing business and a compelling argument for the need for change.
Most people are not in touch with the urgency to change unless a crisis situa-
tion exists. Proactive change is typically more difficult to sell because many
stakeholders live in the present and may not see any immediate need. An ef-
fective strategy is to involve as many key people in gathering and analyzing
data that suggest change is required. Sharing findings with peers enhances
the probability of success more than having management dictate actions.

It is important to recognize that not all change is the same. There are two
basic levels of change: continuous and discontinuous. Continuous change
represents a fine-tuning and/or augmentation of existing traditions (e.g., in-
troduction of peer reviews into an existing software systems development
process). Discontinuous change requires a break from past traditions (e.g., in-
troduction of a software systems development process where no such process
existed before). Moving from a continuous state to a discontinuous state re-
quires a repositioning of thinking regarding values, assumptions, and behav-
iors. Many people confuse continuous change with discontinuous change. To
achieve cultural transformation requires a full commitment to discontinuous
change. The level of change that is going to take place affects the strategies for
implementing the change.

Continuous change gives power and dominance to operational management
strategies, where the focus is on “here and now” practical, production needs.
Discontinuous change places more emphasis on strategic leadership and tran-
sitional management. The focus is on the future. More emphasis is placed on
these two opposing perspectives. “Here and now” has a way of commanding
attention because it is in the moment, it is concrete and tangible, whereas a vi-
sion of the future state is less well defined.

Chapter 7 • Cultural Change

482

ptg

If there is not unequivocal commitment and support from top management,
the “here and now” forces will win, and the best that can be achieved is mod-
ification to existing beliefs without fundamental change. Balancing the de-
mands of these competing forces is the role of leadership and management.
Successful initiatives will fail if the frontline supervisors are not in line with
senior management. It is all too common that change initiatives become
frozen between the upper and middle echelons of the organization.

The Software Engineering Institute (SEI) and other organizations committed
to fostering software process improvement recognize that the capability to
engineer software systems successfully involves much more than talented
people and good technology. An important ingredient is a willingness of the
people to change the way that they do things for the greater good of the orga-
nization. One way to effect this change is through what the SEI refers to as
mastering team-based practices.4 If people are to build software systems by
applying their engineering skills in a team environment, they must also know
how to get along with one another. Establishing this interpersonal harmony is
a key ingredient to leveraging the application of engineering skills. The indi-
vidual who focuses on self and one’s own needs, giving little attention to the
needs of others on the project team, can more than cancel out the value of the
application of that person’s engineering skills. We believe this statement to be
true—even if that person has proven unparalleled skills in one or more
engineering areas such as analysis, design, coding, product assurance, and
training. We illustrate this key point with the brief story that follows.

Jan Talent was an experienced, bright, and talented technical man-
ager who understood the value of disciplined software systems devel-
opment. But Jan had difficulty putting group needs above her own.
More specifically, Jan balked at accepting alternative engineering ways
that she had not adopted herself.

Jan managed a number of software project managers, and she re-
ported to a program manager who managed several managers like
Jan. The program manager headed an organization that consisted of
these first- and second-line managers, a product assurance organiza-
tion, and a process engineering group (PEG) responsible for develop-
ing ADPE elements5 in concert with other managers. The PEG was
headed by a manager who reported to the program manager. When
the PEG promulgated ADPE elements, Jan chose to ignore those
processes in the elements that did not conform to her way of doing
things. She specifically directed her project managers to do things her
way. For example, if the PEG, in concert with input from other mem-
bers of the organization, established as policy that product assurance

Chapter 7 • Cultural Change

483

4B. Curtis, W. Hefley, and S. Miller, “People Capability Maturity ModelSM,” Software Engineering In-
stitute and Carnegie Mellon University Technical Report CMU/SEI-95-MM-02 (September 1995),
p. L4–31.
5Remember, the SEE consists of two complementary components—an application development
process environment (ADPE) and an application development technology environment (ADTE).

ptg

was to be a standing member of a project’s CCB, Jan chose to direct
her managers to bar product assurance from participating in CCB
meetings. The end result of Jan’s recalcitrance was that it contributed
to the fracture of the overall organization.

When the other managers at Jan’s level saw what Jan was doing,
some of them also chose to put group needs on the back burner and
ignored to varying degrees the way of doing business as defined in the
ADPE elements. They chose this course of action, in part, because their
customers were used to doing business in a less structured way than
that defined in the ADPE elements. These managers, along with Jan,
would use this argument with the program manager to gain relief from
doing business the ADPE way. This end-run approach naturally created
tensions among the PEG manager and Jan and some of the other man-
agers at Jan’s level. These tensions bred mutual disrespect among
these managers. Furthermore, this disrespect reached all the way
down to the working-level troops. Rather than sign up to the ADPE way
of doing business, these troops adopted the self-preservation ap-
proach and signed up to the business way promulgated to them by Jan
and their project managers. The end result of this state of affairs was
that instituting the ADPE culture was severely hampered. More signifi-
cantly from a business standpoint, this situation did not go unnoticed
by the customer.

As illustrated by the preceding two short stories, the people part of cultural
change is important. The processes that people use to develop software systems
are also important. The level of change being implemented is important.
Figure 7–2 illustrates these points by depicting a cultural evolution proc-
ess that accounts for people, processes, and the level of change being
implemented.

There is no one way to evolve an organization’s software systems develop-
ment culture, but we believe that you can use the depicted process to analyze,
evolve, implement, and refine (i.e., continuous change) or transform (i.e., dis-
continuous change) your organization’s software development culture. This
ongoing process enables an organization to implement either continuous and
discontinuous change or some combination.

Figure 7–2 has four rectangles that represent the following four responsible
agents and their associated process phases:

♦ Seller Program Manager. Analyzes Existing Culture
♦ Seller Management. Evolves a Vision of the Culture
♦ Seller Process Engineering Group (PEG) Manager. Plans, Evolves, and

Improves System Engineering Environment (SEE)
♦ Seller Management and Staff. Evolve Toward Vision of the Culture

These four phases are linked together by the major communication paths and
associated information. As shown in Figure 7–2, along each communication

Chapter 7 • Cultural Change

484

ptg

path information is transferred from one process phase to another. The infor-
mation transferred consists of the following items:

♦ Requirements for the Software Systems Development Culture
♦ Vision of the Culture
♦ Approved SEE Elements
♦ Suggested ADPE Improvements

As with most processes, feedback is present. We represent feedback with the
set of continuous arrows in the center of the figure. Each of the four phases is
discussed in the following paragraphs.

Chapter 7 • Cultural Change

485

Cultural Evolution Process

Seller Process Engineering Group

(PEG) Manager

Seller Program Manager

Seller Management

Evolves a Vision of the Culture

Feedback

Plans, Evolves, and Improves Systems
Engineering Environment

(SEE)

Seller Management and Staff

Evolve Toward Vision of the Culture

Software Organization

Analyzes Existing Culture
Requirements for the

Software Systems Development Culture
Suggested ADPE
Improvements

Approved ADPE
Elements

Vision of the
Culture

Figure 7–2 Changing a software systems development environment starts with establishing an understanding of the organiza-
tion’s overall existing culture.

ptg

Seller Program Manager—Analyzes
Existing Culture

Ideally, the cultural evolution process in Figure 7–2 starts when the Seller
Program Manager decides it is time for the software organization to analyze
the existing software systems development culture. Part of this self-examina-
tion involves establishing how the software systems development culture fits
into its higher-level organizational culture. There are many ways to describe
the different types of higher-level organizational cultures. We have chosen to
summarize culture types in terms of the following eleven characteristics: time
frame, focus, planning, change mode, management, structure, perspective,
motivation, development, communication, and leadership.6 Figure 7–3 lists
the following four higher-level organization cultures in terms of these eleven
characteristics:

Chapter 7 • Cultural Change

486

6L. Nelson, and F. Burns, “High performance programming: A framework for transforming organiza-
tions,” Transforming Work (Alexandria, VA: Miles River Press, 1984).

past

diffused

justification

punitive

fix blame

fragmented

self

avoid pain

survival

force-feed

enforcing

Reactive

- survive
- protect
- find fault
- worry about self

present

output

activity

adaptive

coordination

hierarchy

team

rewards

cohesion

feedback

coaching

Responsive

- set goals
- plan action
- solve problems
- build teams

future

results

strategy

planned

alignment

matrix

organization

contribution

attunement

feed forward

purposing

Proactive

- set mission and objectives
- plan long-range
- manage performance
- develop organization

flow

excellence

evolution

programmed

navigation

networks

culture

actualization

transformation

feed through

empowering

High Performance

- identify potentials
- navigate strategically
- manage evolution
- create metasystems

Time Frame

Focus

Planning

Change Mode

Management

Structure

Perspective

Motivation

Development

Communication

Leadership

Characteristics

Culture Type

Figure 7–3 This figure summarizes four types of organizational cultures. It is important for you to understand what your culture
is and what you want your culture to be before you begin planning a transformation.

ptg

♦ Reactive Culture. A culture in which people worry about themselves and
justify their existence. The organization is fragmented, diffused, and bu-
reaucratic. Management is constantly trying to fix blame for why some-
thing did not work out right. Management spends a lot of time defending
the status quo.

♦ Responsive Culture. A culture in which people build teams. The organiza-
tion solves problems and sets goals. Management and people pay attention
to trends in the industry and try to adjust organizational activities
accordingly. Management helps to coordinate activities and resources.

♦ Proactive Culture. A culture in which people develop the organization.
The organization plans for the long term and is results-oriented. Manage-
ment helps to align the organization’s resources with its mission and
objectives.

♦ High Performance Culture. A culture in which people and performance
outcomes are in rhythm with the organization’s mission. The organization
runs smoothly. The organization constantly strives to achieve excellence.
Management and people try to anticipate what industry trends will be.
Management navigates the organization through its evolution.

To exemplify the four culture types in Figure 7–3, we offer the following four
organizational behaviors associated with the “Change Mode” characteristic:

♦ Reactive Culture—Punitive Behavior. Change is punished, both on the in-
dividual and on the project levels.

♦ Responsive Culture—Adaptive Behavior. The organization is constantly
trying to keep up-to-date in its business practices. People are trained in the
classroom and at seminars. The organization funds internal support
groups that discuss ways to improve business practices.

♦ Proactive Culture—Planned Behavior. The organization plans for the fu-
ture and tries not to react to the present. The proactive culture takes the re-
sponsive culture another step up the maturity ladder and tries to anticipate
what the future may hold and then devises appropriate strategies.

♦ High Performance Culture—Programmed Behavior. The organization is
constantly learning from what it is doing and feeding this knowledge back
into what it does so that it can do better.

Now, consider the following four organizational behaviors associated with
the “Leadership” characteristic:

♦ Reactive Culture—Enforcing Behavior. The individual will perform the
business practices the organization’s way—the company’s way or the
highway.

Chapter 7 • Cultural Change

487

ptg

♦ Responsive Culture—Coaching Behavior. Management coaches/mentors
individuals or teams. Coaches/mentors help to guide development of
skills and improvement in performance.

♦ Proactive Culture—Purposing Behavior. The organization defines its pur-
pose for existing and the value-added services/products it provides to its
customer community.

♦ High Performance Culture—Empowering Behavior. The organization has
a self-directed workforce whose members are coowners in the organiza-
tion’s mission.

With an understanding of the organization’s overall culture, the software orga-
nization can better develop a statement of the requirements for the software
systems development culture. If the reality is that the organization’s overall
culture is predominantly reactive, then it may be unrealistic for the software or-
ganization to specify culture requirements that reflect the characteristics of a
high performance culture to be implemented in a year’s time frame.

Seller Management—Evolves a Vision
of the Culture

Given that a set of requirements for the software systems development cul-
ture is established and approved by the Seller Program Manager, then the
Seller Management, in concert with key stakeholders, evolves a vision of the
culture. This vision is expressed in terms of engineering process features that
include the following: planning, risk assessment, risk reduction, documenta-
tion, accountability, customer/seller interaction, and business method. For
example, as shown in Figure 7–4, the vision can be expressed by the organiza-
tion’s existing engineering process features and the organization’s envisioned
process features.

To change existing engineering process features, the organization needs to
(1) articulate what features are important to the organization, (2) acknowl-
edge the current status of the features, (3) define what the future status of the
features should be, and (4) make a commitment to change the engineering
process features. Commitment to change is critical for successful implementa-
tion of the vision of the culture. Without organizational commitment—top to
bottom, bottom to top, or some combination— it is difficult, if not impossible,
to implement the vision. In general, the less the commitment, the longer the
time frame for implementing the vision.

As shown in Figure 7–4, the SEE is where the organization’s business meth-
ods are housed. The organization’s vision of its software development envi-
ronment can be represented by the SEE. The SEE is an environment where
coordinated and consistent development of software systems can be accom-
plished. The Seller PEG Manager is the person who is responsible for the
evolution of the SEE.

Chapter 7 • Cultural Change

488

ptgSeller Process Engineering Group (PEG)
Manager—Plans, Evolves, and Improves
Systems Engineering Environment (SEE)

Given that an organization commits to implementing a vision of its engineer-
ing culture, then the Seller PEG Manager sets out to plan, evolve, and im-
prove the SEE. This phase will be discussed in detail, but for now, it is
important to understand that people at all levels in the organization need to
participate in evolving the SEE. With this multilevel participation, approved
ADPE elements (i.e., policies, guidelines, procedures, and standards) can be
promulgated for use. In some situations it is also desirable to have the
customer participate in evolving the ADPE elements.

Seller Management and Staff—Evolve Toward
Vision of the Culture

During the fourth cultural evolution process phase, the seller management
and staff use the approved ADPE elements, evolve toward the vision of the
culture, and provide suggested ADPE improvements to the Seller Program
Manager. Feedback to the top of the organization from the bottom and mid-
dle of the organization helps to demonstrate clearly to senior management
that people in the organization are committed to evolving the culture.

Chapter 7 • Cultural Change

489

Software Organization’s Vision of Culture

Happens after work starts

Rarely done

Rarely done

Sparse

Diffused

Informal

Unstructured

Existing
Process
Features

Happens before work starts

Consistently done

Provided by Product Assurance

Up-to-date

Obtained at CCB Meetings

Customer Project Manager
to Seller Project Manager

Systems Engineering
Environment (SEE)

Envisioned
Process
Features

Planning

Risk Assessment

Risk Reduction

Documentation

Accountability

Customer/
Seller Interaction

Business Method

Engineering
Process
Features

Figure 7–4 The vision of the software systems development culture helps to set the organization’s
strategic focus for process improvement.

ptg

We want to make one last point before we present our plan for the rest of this
chapter. Basic strategies for change include the following:
♦ Provide information and education. This strategy enables you to let the

people know how change is going to affect them. People need to learn the
skills and acquire the knowledge necessary to perform their roles and
responsibilities in the new culture.

♦ Exercise power. This strategy is both positive and negative. Positive con-
trol includes the use of resources to implement change. For example, senior
management can commit money for training. Negative control, however,
pushes people and demands that people behave in a certain manner. Al-
though negative control gets people’s attention for the short term, it can
lead to resistance and lack of commitment over time.

♦ Effect organizational norms and values. This strategy is aimed at impact-
ing what people believe is the way to do everyday business. For example,
an organization’s normative behavior might be reflected by people putting
forth minimum effort to get a job done. As a result, the organization may
decide to change this normative behavior. The organization wants every-
one to go the extra mile to get the job done. Organizational norms and val-
ues are what holds an organization together. Effecting change in norms
and values provides a lasting change—a new way of doing business that is
accepted as the way to do things.

These three strategies for change can be used like spices—individually, or be
blended together. We offer the following short examples:

♦ Education can reduce anxiety about a person’s role in the new way of busi-
ness. “The PEG has established a training program that includes work-
shops and seminars to learn the new ways of doing business. In addition,
support groups have been established to provide everyone with a forum
for discussing lessons learned while implementing the new ways of doing
business.”

♦ A positive use of power by a manager can affect a person’s schedule.
“There will be a meeting tomorrow to discuss our new organizational soft-
ware systems development process.”

♦ Power blended with information and education can help to ease a person’s
fear about change. “Sally will present a one-hour briefing to explain your
role in our new process.”

♦ A lasting organizational change is achieved, in part, through shared own-
ership of the new ways of doing business. “With the use of input from the
staff, the new organizational software systems development process
empowers the development teams to apply prescriptively the development
process to their particular projects.”

People want to understand the purpose of the cultural change (Why?), the
overall picture (What is the future going to look like?), the plan to effect the
change (How are we going to get there?), and the part each person is to play

Chapter 7 • Cultural Change

490

ptg

in the change (What is my role?). When explaining the cultural change, you
need to account for different personalities. You have to adapt your discus-
sions appropriately and blend your strategies carefully.

With respect to the rest of the chapter, our approach is to examine cultural
change issues associated with ADPE implementation from a number of orga-
nizational perspectives (including those of people like Jan Talent). The plan
for this chapter is the following:

♦ In Section 7.2—Cultural Change Key Ideas, we present the key ideas that
you can expect to extract from this chapter.

♦ In Section 7.3—Process Engineering Group (PEG), we address ADPE im-
plementation from the perspective of the organization responsible for writ-
ing the ADPE elements and seeing to it that they are implemented and
continually improved. Because of the PEG’s central role in effecting cul-
tural change within both the seller and the customer organizations, this
section is the most extensive in this chapter.

♦ In Section 7.4—Seller Project Participants and Project Managers, we ad-
dress the challenges to ADPE implementation from the perspective of the
seller project-level individuals who will have to adapt to the policies,
guidelines, procedures, and standards that will govern their work.

♦ In Section 7.5—Buyer/User Project Management, we discuss the chal-
lenges to ADPE implementation from the perspective of those individuals
who give technical direction to seller project managers for accomplishing
project work.

♦ In Section 7.6—Buyer/User Senior Management, we address the impact
on buyer/user senior management that ADPE implementation brings
about. Here, buyer/user senior management encompasses (1) the customer
management that is paying the seller to set up an ADPE, (2) the customer
management that is providing technical direction to the PEG manager, and
(3) levels of customer management that sit over (1) and (2).

♦ In Section 7.7—Seller Senior Management, we discuss the key role that
seller senior management plays in effecting software systems development
cultural change through ADPE implementation.

♦ In Section 7.8—Cultural Change Summary, we summarize the key points
developed in the chapter. We include a table of implementation guidance
associated with each of the perspectives considered.

7.2 Cultural Change Key Ideas

Figure 7–5 lists the key ideas that you can expect to extract from this chapter.
We briefly explain these key ideas. Their full intent will become apparent as
you go through this chapter.

Chapter 7 • Cultural Change

491

ptg

Chapter 7 • Cultural Change

492

Cultural Change Key Ideas

1. ADPE implementation is cultural change.

2. ADPE implementation requires management buy-in at all levels in an
organization.

3. If you are a seller, seriously consider putting into each manager’s salary re-
view the extent to which the manager has bought into ADPE implementation.

4. If you are a buyer/user, you should support training of your managers in
the “new” way of business that ADPE implementation defines.

5. ADPE practices must be sufficiently specific so that they convey something
that actually can be applied to develop software products, but they cannot
be so specific that they tie the hands of various people within an organiza-
tion and actually impede product development.

6. To overcome resistance, build upon those in the organization who embrace
implementing new ways of doing business.

7. Resistance to cultural change operates on multiple levels, two of which are
visible and invisible.

8. Change agents need to listen actively to what people say.

Figure 7–5 ADPE implementation strikes at the core of organizational and personal practice. Altering these practices is thus
tantamount to effecting cultural change at the organizational and personal level. Here are key cultural change concepts ex-
plained in this chapter. These key ideas are your guide to bringing about cultural change within your organization through ADPE
implementation.

1. ADPE implementation is cultural change.
To view implementation otherwise is a recipe for failure. Sellers must
take steps to ensure that seller management and staff are on board with
the ADPE way of doing business. Senior seller management must rec-
ognize that adopting ADPE practices involves growing pains. Simi-
larly, buyer/user senior management must recognize that changing the
way its organization does business with a seller is not going to happen
overnight—and cultural change can be painful.

2. ADPE implementation requires management buy-in at all levels in an
organization.
In particular, managers of the Jan Talents of the world need to impress
upon them that ADPE implementation is a requirement—not an option.

3. If you are a seller, seriously consider putting into each manager’s sal-
ary review the extent to which the manager has bought into ADPE
implementation.

ptg

At review time, each manager should be prepared to present to his or
her boss objective evidence of ADPE compliance (e.g., a folder of CCB
minutes). It takes more than asserting that the customer says
everything is fine.

4. If you are a buyer/user, you should support training of your managers in
the “new” way of business that ADPE implementation defines.
At a minimum, this training should consist of attendance at seller brief-
ings of ADPE element content. Buyer/user managers should attend
such briefings.

5. ADPE practices must be sufficiently specific so that they convey something
that actually can be applied to develop software products, but they cannot
be so specific that they tie the hands of various people within an organiza-
tion and actually impede product development.
ADPE elements should not be written in a cookie-cutter manner.

6. To overcome resistance, build upon those in the organization who embrace
implementing new ways of doing business.
Have these people pilot proposed ideas for ADPE elements. Nothing
succeeds like success. Trial-use ideas that gain the acceptance of work-
ing-level troops will gravitate quickly throughout an organization,
thus hastening cultural change. For example, if some in your organiza-
tion have experience with CCBs, invite others in your organization to
attend their CCB meetings to experience firsthand how the CCB works
in the real world.

7. Resistance to cultural change operates on multiple levels, two of which are
visible and invisible.
At the visible level, people resist change; at the invisible level, people
resist loss. At the visible level, other people can observe the resistance; at
the invisible level, other people cannot observe the losses, doubts, and
fears (real or imagined) that reside in each individual.

8. Change agents need to listen actively to what people say.
A change agent can become frustrated when trying to convince some-
one that the “new way” of doing things is the “right” thing to do.

7.3 Process Engineering Group (PEG)

This section addresses cultural change in terms of ADPE implementation
from the PEG perspective. The PEG is responsible for establishing, maintain-
ing, and updating the SEE. In this chapter, we focus on the PEG’s responsibil-
ities in the process domain—i.e., its ADPE responsibilities. We note that in the
software industry, a typical label given to the organization responsible for
software process matters is the “software engineering process group (SEPG).”

Chapter 7 • Cultural Change

493

ptg

In this section, we address a series of questions that include the following:

♦ What are some qualifications for people who work in the PEG?
♦ How do you establish PEG credibility?
♦ What type of comments and feedback on specific ADPE elements should

the PEG expect?
♦ How should the PEG be incorporated into an organization?
♦ What are some of the impediments to successful ADPE implementation?
♦ What can you do to set up a flexible ADPE?
♦ How do you fund a PEG?
♦ What can be done to get the customer to support the seller’s ADPE?
♦ How can the PEG address seller and customer cultural-change challenges?
♦ What are some of the individual responsibilities for implementing an

ADPE?
♦ What is “prescriptive application,” and how does it factor into ADPE

elements?
♦ How does the size of an organization affect ADPE implementation?
♦ How long should the PEG wait before updating an ADPE element?
♦ How specific should ADPE elements be—general guidance or step-by-step

procedures?

Each of these questions and others are discussed in the following paragraphs.
Some of these questions are discussed in more detail in Chapter 8. It is impor-
tant to note that there is no right set of answers. Our intention is to sensitize
you to potential challenges for your consideration as you take your cultural
change journey.

ADPE development and implementation are greatly facilitated if there is a
full-time PEG. Even then, as we subsequently discuss, making an ADPE hap-
pen poses a stiff challenge. But, if you choose to buy into the concepts hereto-
fore examined, we strongly recommend that you establish a PEG as a
standing organizational element. Sellers should encourage buyers to pay for
such an organization. Otherwise, sellers should bite the bullet and fund such
an organization.

Staffing a PEG can be a challenge. In any organization, good people are at a
premium—and your PEG must be staffed with good people. The following
are some general qualifications for good PEG people:

♦ Fifteen or more years of experience in the software industry, with some
personal experience in each of the disciplines of management, develop-
ment, and product assurance. Particularly important is experience working
with customers to help define software requirements.

Chapter 7 • Cultural Change

494

ptg

♦ Experience defining software systems development processes.
♦ Experience as a software systems development customer. This experience

can include interfacing with vendors of off-the shelf software products try-
ing to work out problems with the products.

♦ Software engineering teaching experience (including publication of papers
and books), preferably at professional conferences as opposed to the
classroom.

Regarding the teaching experience, it is interesting to note that the “creden-
tials” of publications can work against a PEG member if not handled care-
fully. A PEG staffed with full-time people can be perceived as an ivory tower
organization that has no sense of what it takes to get the job done. If PEG
members have written textbooks, they run the risk of having their ADPE
work being labeled “academic,” with little or no connection to the real world
of doing software systems development. Once this label is affixed, the people
working on projects tend to ignore the ADPE work turned out by such indi-
viduals. One way to avoid this scenario is for PEG staff to work closely with
project teams to show them—on the job—how the guidance in ADPE ele-
ments can play itself out in the real world—to the benefit of all involved. For
example, we believe that a key element of the software systems development
process is independent product assurance review. A PEG staff member
should review a document to show others the way that it is done, and the
value it adds to project work. Nothing can raise the credibility of the PEG
staff in the eyes of others more than demonstrating the process on real work.

Another comment is in order regarding the software engineering teaching ex-
perience. People, particularly project managers, who do not want to partici-
pate in the ADPE way may use the PEG textbook and publication credential
for disinformation purposes. That is, such managers will convey to their
staffs that the ADPE way is academic because it comes from a textbook. They
will then assert that the ADPE way has little or no applicability to their work.
If senior management directs subordinate management and staff to follow the
ADPE way, this disinformation attack can be contained if not thwarted. This
senior management direction can take many forms. For example, a senior
manager can simply deny a subordinate manager’s requests for going around
the ADPE way. Or, a senior manager can tie a subordinate manager’s salary
review to ADPE compliance. Of course, if a senior manager gets inundated
with requests for relief from the ADPE way from a majority of subordinate
managers, then it might be that the ADPE is out of sync with business reality.
However, sometimes there is a fine line between organizational insurrection
and simple resistance to cultural change. As we discuss in a subsequent sec-
tion, it is part of the job of seller senior management to sort out where the
organization is on this resistance spectrum.

One way to establish PEG credibility in the eyes of others that we have found
practical is to have at least one PEG member also concurrently serve as a tech-

Chapter 7 • Cultural Change

495

ptg

nical manager. Such an individual can serve, say, half time on the PEG staff
and half time as a front-line technical manager responsible for one or more
software systems development projects. This arrangement provides a “down-
in-the-trenches” feedback mechanism that can give the PEG good insight into
what makes sense to institute and what will not work. Furthermore, this
arrangement can help deflect criticism that the PEG resides in an ivory tower
and has no firsthand feel for what is involved with getting the job done. This
arrangement can be particularly effective if the technical manager supervises
project managers. In this circumstance, the technical manager can get good
insight into which ADPE practices make sense to standardize by observing
actual results on multiple projects. This circumstance also offers the PEG the
opportunity to enrich ADPE element content by offering examples of differ-
ent ways that certain principles laid out in ADPE elements can be imple-
mented. For instance, regarding an ADPE element defining CCB practices, a
technical manager of project managers has an opportunity to see different
ways in which CCB meeting information requirements are satisfied in meet-
ing minutes. One project may choose to record verbatim CCB discussions and
associated decisions, while another project may simply choose to condense
such information into a sentence or two per discussion/decision. This spec-
trum of practice will help the PEG refine the guidance in a CCB ADPE
element regarding what makes sense to record at a CCB meeting.

PEG credibility is absolutely essential if that organization is to be successful
in fulfilling its primary mission—transitioning the software systems develop-
ment process from ill-defined to well-defined development practices via
ADPE implementation. Why? Boiled down to its essence, the ADPE is a pre-
scription for acceptable engineering social behavior. As Figure 7–6 implies,
the practices set forth in the ADPE define the “right engineering thing to do.”
These practices establish norms of software systems development behavior
throughout an organization that help the system developer and the customer in-
teract harmoniously. Over time, these norms become institutionalized,
thereby precipitating software systems development cultural change within
both the seller and the customer organizations. In the absence of such norms,
software systems development within an organization will invariably degen-
erate into process anarchy—with little likelihood of consistent, successful
process repeatability.

However, it is basic human nature that people resist doing things in other
people’s ways. One reason for this resistance is that breaking habits (good,
bad, or otherwise) is generally painful. A corollary to this fact of life is that re-
sistance tends to magnify the more experienced the individual is. Thus, for
example, as shown in Figure 7–7, people such as Sam, Pam, and Ham within
a seller organization may have become accustomed to doing things their own
way. Their experience has taught them what is needed to get the job done.
They are naturally reluctant to cast aside what has worked for them in favor
of some other process simply because it is for the greater organizational good.
Thus, a critical element of PEG practice is to ensure that project staff is given

Chapter 7 • Cultural Change

496

ptg

Chapter 7 • Cultural Change

497

Making Successful Software Development Happen

Ill-Defined
Development Practices

SOFTWARE
PROCESS

Well-Defined
Development Practices

Application Development

Process Environment

(ADPE)

SOFTWARE
PROCESS

SYSTEMS ENGINEERING ENVIRONMENT IMPLEMENTATION

CULTURAL CHANGE

Process
Improvement

Product
Improvement

STD

???

Figure 7–6 Making successful software systems development happen involves cultural change
that, in part, is tied to ADPE implementation. The ADPE can be viewed as a code of software systems
development practices defining the “right engineering thing to do.”

an opportunity at least to comment on proposed ADPE elements as they are
being developed.

Furthermore, the PEG must make it evident to project staff that all com-
ments are indeed considered during element development or updating. The
PEG must also make it evident that not everybody’s comments can be

ptg

Chapter 7 • Cultural Change

498

Making Successful Software Systems Development Happen

Seller Organization

SYSTEMS ENGINEERING ENVIRONMENT IMPLEMENTATION

CULTURAL CHANGE

Product
Improvement

Process
Improvement

Organizational Software Systems
Development Process

Application Development

Process Environment

(ADPE)

Policy

Guideline

Procedure

Standard

Seller
Approval

Customer
Concurrence

Seller Organization

Sam’s
Process

Pam’s
Process

Ham’s
Process

Figure 7–7 Individuals within the seller organization (e.g., Sam, Pam, and Ham) should be given an
opportunity to contribute to the practices defined in the ADPE.

ptg

incorporated. The larger the organization, the more diverse the background
of its members. This diversity will, in general, give rise to a diverse set of
comments and attitudes that the PEG will have to struggle to accommodate.7

To provide insight into the challenge facing the PEG regarding its response to
comments on ADPE elements, it is useful to illustrate the types of diversity
that can arise from the community that a PEG serves. The following examples
relate to the ADPE elements discussed in previous chapters:

♦ Regarding an ADPE element governing project planning (Chapter 2), we
suggested that the element should use risk assessment as the basis for
planning allocation of resources to the management, development, and
product assurance disciplines. With respect to resource allocation strate-
gies, comments can range from “show me where in the industry it has been
established that 20 percent of project resources should be allocated to prod-
uct assurance for a high-risk project” to “your product assurance resource
percentages are too conservative for all risk categories.”

♦ Regarding an ADPE element governing the software system development
process (Chapter 3), we suggested that the process should identify the key
activities involved with developing and delivering a product to the cus-
tomer (e.g., peer review, technical editing, product assurance review).
With respect to these key activities, comments can range from “tell me the
order that I have to follow in performing these activities” to “give me the
freedom to pick which of these activities I need to apply to each of my
products.”

♦ Regarding an ADPE element governing CCB practice (Chapter 4), we sug-
gested that the element should offer guidance regarding CCB minutes.
With respect to this practice area, comments can range from “just tell me
that I need to take minutes” to “give me a detailed CCB minutes outline.”

♦ Regarding an ADPE element governing independent product assurance
(Chapter 5), we suggested that the element should offer guidance regard-
ing product assurance participation in CCB meetings. With respect to this
practice, comments can range from “it is a waste of time for product assur-
ance to participate in CCB meetings” to “I want product assurance to take
the minutes at every CCB meeting.”

The following two final comments are in order regarding the ADPE imple-
mentation suggested in Figure 7–7:

♦ “Organizational Software Systems Development Process” could apply to
any level within an enterprise. In general, an enterprise consists of an orga-
nizational hierarchy. At each level in the hierarchy, there may be certain

Chapter 7 • Cultural Change

499

7To offer you ideas for managing this struggle, we present a figure later in this chapter showing the
process for ADPE element development (i.e., Figure 7–10). We also provide an annotated outline for
an ADPE element (i.e., Figure 7–12) whose purpose is to detail the process of creating, coordinating,
promulgating, and updating ADPE elements.

ptg

policies, directives, and other enterprise legislative publications that define
acceptable enterprise practice. For example, an enterprise devoted to soft-
ware systems development may have an enterprisewide set of practices, and
all subordinate units have to tailor the enterprisewide practices to their
specific projects. However, there may be instances in which a customer
does not want the enterprisewide practices implemented for their particu-
lar project(s). In this case, the seller may have to create and implement an-
other set of practices. As can be seen, one PEG challenge is to achieve a
proper balance between (1) what may already exist that is applicable to the
PEG’s home organization and (2) what may need to be newly developed
(and that may need to depart from what already exists).

♦ “Sam’s or Pam’s or Ham’s Process” could apply to the entire software sys-
tems development process (as described in Chapter 3) or to any element of
that process (e.g., CCB operation as described in Chapter 4). The point here
is that process anarchy can manifest itself across a broad range. A constant
PEG challenge is to strike a balance between (1) giving Sam/Pam/Ham
leeway in doing their jobs and (2) setting up an organizationwide consis-
tent way of doing business. That is, the “organization’s process” should
provide a “consistent” approach that allows “diverse” implementations
based on specific project characteristics. However, the process should
prescribe a “minimum” set of required activities.

How should the PEG be incorporated into an organization?8 It is not possible
here to go into all the permutations for plugging a PEG into an organization.
Figure 7–8 shows some of these permutations or alternative organizational
arrangements. Using Figure 7–8, we offer the following general seller organi-
zational considerations:

♦ If your enterprise has a major program that will run for at least several
years, you may wish to establish a PEG within the program organization.
The first permutation in the figure illustrates this organizational setup. The
setup shown is for a program headed by a program manager, with several
project group managers (two are shown), who are responsible for manag-
ing two or more project managers. Each project manager is responsible for
managing one or more software systems development projects within the
program. A large project may have a project manager dedicated full time;
several small projects may be managed by a single project manager. The
PEG is positioned at the same level within the organization as the project
group managers and a product assurance manager, who provides inde-
pendent product assurance support to each project. If ADPE implementa-
tion is to take hold, the PEG should have the same organizational clout as
the project group managers and the product assurance manager. As we
previously emphasized, the PEG, through the ADPE, establishes the

Chapter 7 • Cultural Change

500

8This issue is discussed in more detail in Chapter 8 from the perspective of who should develop the
ADPE.

ptg

Chapter 7 • Cultural Change

501

Business
Area 3 Manager

[No Software Products]

Enterprise Manager

Business
Area 2 Manager

[Software Systems
Products]

Business
Area 1 Manager

[Products with Software]

2

Process Engineering

Group (PEG) Manager

Process Engineering

Group (PEG) Manager

Business Area 2
Manager

Software Division
Manager

Business Area 1
Manager

Major Program
Manager

3

Process Engineering

Group (PEG) Manager

Division Process

Engineering Group

(PEG) Manager

Process Engineering

Group (PEG) Manager

Product
Assurance Manager

Program Manager

Project Group
Manager

Project Group
Manager

Project Manager

1

Project Manager

Project Manager

Project Manager

Figure 7–8 This figure presents several different organizational arrangements involving the pro-
cess engineering group (PEG). Your organization may fit into one of these arrangements or some
combination of them. Some ADPE cultural change issues are independent of the organizational
arrangement—and some are not.

ptg

ground rules by which the managers and staff of the program are to oper-
ate. If it is organizationally subordinate to some of these managers, then
PEG products (such as ADPE elements) will simply be ignored when man-
agers higher in the organization feel more comfortable with their former
way of doing business—particularly if their customers are pressuring them
to revert to a former way of doing business.
We stress that, even if the PEG stands at the same level in the organization
as other managers who report directly to the program manager, successful
ADPE implementation is far from a foregone conclusion. If the program
manager does not fully support the ADPE implementation role of the PEG,
the first organizational setup shown in the figure can produce divisive in-
fighting between the project group managers and the PEG. For example, if
project group managers perceive that they can simply go around processes
detailed in ADPE elements by going to the program manager to ask for re-
lief, organizational practice will degenerate into disparate software devel-
opment processes—namely, a melange of Sam’s, Pam’s, and Ham’s
processes.
One way to avoid such an impediment to successful ADPE implementa-
tion is to put into each manager’s salary review the extent to which that
manager has bought into ADPE implementation.9 This approach is itself
not without peril, however, for reasons such as the following:
♦ The program manager has to set the example by fully supporting ADPE

implementation. Simply stated, the program manager must “walk the
talk.” If ADPE element X says that the program manager is responsible
for A, B, C, etc., then the program manager should manifestly carry out
those responsibilities. Sometimes, dogmatic adherence to business rules
can work against an organization. A program manager sometimes can
get caught between a rock and a hard place in trying to set the example
for subordinates (particularly if his or her salary reviews depend on
ADPE adherence). The program manager must keep the customer
happy because that is how the program manager is often evaluated by
superiors (“customer happiness” here means “continued business with
the customer”). Sometimes, the program manager may have to sacrifice
short-term customer happiness to achieve longer-term gains with the
customer, particularly in those instances in which ADPE implementa-
tion involves significant departure from the way that customer did
business with sellers in the past. On the other hand, sometimes the pro-
gram manager may have to deviate from ADPE-stipulated practice be-
cause to do otherwise would irreparably damage relations with the
customer.

♦ Establishing a reward system based, in part, on ADPE compliance can
be counterproductive. If project group managers and project managers
do not really buy into the ADPE culture, they will seek ways to circum-
vent the culture while giving the appearance of buying in. When this
situation develops, ADPE implementation becomes a sham, workers in
the trenches become disillusioned, and the PEG becomes a waste of pro-

Chapter 7 • Cultural Change

502

9This issue is discussed in more detail in Chapter 8.

ptg

gram resources. The impact on the overall program is that the program
organization degenerates into individual competing fiefdoms. Such or-
ganizational factiousness does not go unnoticed by the customer—and
can lead to loss of follow-on business.

The PEG must be particularly sensitive to setting up an ADPE that allows for
some management flexibility to do the following:

(1) Accommodate dilemmas such as those just posed (not only at the program
manager level, but also at the project group manager level and the project man-
ager level).—The challenge to the PEG is allowing sufficient flexibility in
ADPE ground rules while still prescribing a way of doing business that
is not one step away from anarchy. One useful way to deal with this
issue is to establish the following principle regarding application of
ADPE business rules:

The processes in ADPE element X are to be applied prescriptively—
that is, they are to be applied in a manner that is consistent with project
resources and schedule.

It should be noted that a corollary of this principle is that processes de-
fined in ADPE elements should rarely be “by the numbers.” That is,
ADPE elements should rarely include procedures that prescribe a single
order for accomplishing process activities. There is generally no one
way to lay out the individual steps making up a process.

(2) Avoid the emergence of project group manager countercultures as just de-
scribed.—The challenge to the PEG is to afford managers at all levels the
opportunity to comment on ADPE elements.

One additional observation is in order regarding the first PEG organizational
permutation shown in Figure 7–8. You may wish to go this organizational
route even if your enterprise already has an enterprisewide process improve-
ment program. Even if your enterprise has established enterprisewide
processes, the customer for your major program may have special ADPE re-
quirements that make adaptation of the enterprisewide processes awkward
or infeasible. In particular, if the customer is paying for a PEG and if that cus-
tomer is relatively new to disciplined software systems development, trying
to impose a highly disciplined enterprise software systems development cul-
ture on such a customer is not likely to succeed. Under such circumstances, it
is preferable to develop an ADPE specific to the customer needs and to bor-
row small pieces from the enterprise culture that would appear to be sellable
to the customer. For example, an enterprise culture may have its own
software systems development terminology that is foreign to or, worse,
anathema to a customer. For example, we have found that a culture with a
strong Department of Defense (DoD) flavor simply does not sit well with
some non-DoD organizations. While it may be true that cultural differences
may be more tied to words rather than concepts (e.g., one culture’s “Critical
Design Review” is another culture’s “Detailed Design Review”), still termi-
nology is part and parcel of a culture and is generally difficult to change

Chapter 7 • Cultural Change

503

ptg

without major disruption. It is better to use terminology that a customer is
comfortable with. When you are trying to sell a key process concept such as
independent product assurance, it is better to iterate with a customer on
product assurance terminology than to try blindly to impose terminology
from an enterprise culture that may turn off a customer.
♦ If your enterprise consists of several different business areas, not all of

which deal with software, then you may wish to set up a PEG within each
business area that deals with software. The second permutation in Figure
7–8 illustrates this organizational setup for an enterprise consisting of three
business areas, two of which deal with software. The issues and ap-
proaches for their resolutions discussed previously for the first permuta-
tion apply to each PEG within this second permutation.
It is difficult to establish general principles regarding the value of trying to
establish the same ADPE practices within each business area. On the sur-
face, it would appear that, if two software business areas are part of the
same enterprise, then the ADPE practices in one business area should at
least considerably overlap those in the other business area. However, as we
saw in discussing permutation 1, a lot of factors can influence successful
ADPE implementation—within the same organization. It should not be sur-
prising that when there are two (or more) organizations (even ones that are
part of the same enterprise culture), trying successfully to institute a com-
mon ADPE culture across these organizations may prove insurmountable.
For example, one business area may have a clientele who demands disci-
plined software systems development, while a second business area may
have a clientele who has little appreciation of even the rudiments of disci-
plined software systems development. In such a circumstance, it would
generally be counterproductive to try to institute the same ADPE imple-
mentation approach in both business areas. In particular, for the clientele
for which disciplined software systems development is not an issue, inde-
pendent product assurance would presumably not be an issue. Thus,
ADPE element content in this environment would not have to dwell on en-
gineering rationale for product assurance and the value its application
adds to projects. On the other hand, for clientele having little appreciation
for even the rudiments of disciplined software systems development,
ADPE element content would have to focus considerable attention on fun-
damentals such as risk reduction through product assurance and other
checking and balancing mechanisms. Even then, as we discussed in con-
nection with permutation 1, it is not evident that such clientele could be
persuaded to buy into such concepts.
Another potential impediment to establishing a common ADPE approach
across business areas is the differences in management styles between the
business areas. In discussing permutation 1, we stressed the key role that the
program manager plays in bringing about successful ADPE implementation.
In permutation 2, there is, in effect, a “program manager” for each business
area. Given the potential impediments to successful ADPE implementation
emanating from the program manager we cited in discussing permutation 1,

Chapter 7 • Cultural Change

504

ptg

it should not be surprising that successful ADPE implementation is strongly
tied to the management style of each business area manager in permutation 2.
Trying to align these management styles may not be in the best interests of
each business unit—and thus not in the best interests of the enterprise. How-
ever, as each business unit establishes and refines its ADPE practices, it may,
in fact, be possible to discern which of these practices can be elevated to cross-
business-area practices. In this way, separate ADPE cultures can be melded
over time. It may ultimately be possible to consolidate the individual business
area PEGs into a single PEG having a mandate for establishing and maintain-
ing ADPE practices across business areas.

♦ If your enterprise is in the software systems development business (or pri-
marily so) and if your business consists of a multitude of projects and pro-
grams of various sizes involving different customers, then you may wish to
establish an enterprise-level PEG. This organization would be responsible
for establishing ADPE elements for enterprisewide use. It may be necessary
to assign some members of this organization to one or more programs or pro-
jects (here, we are using the term “program” as we did in permutation 1—
namely, to denote a collection of projects) so that they can either develop
program/project-specific ADPE elements or tailor the enterprise-level
ADPE elements to the program/projects. Alternatively, it may be desirable
to assign some members full time to, say, a major program to act as a PEG for
that program. The third permutation in Figure 7–8 illustrates this organiza-
tional setup for a software division (i.e., primarily devoted to software) con-
sisting of a major program and two business areas. The division has a PEG,
and the major program has a PEG. Depending on factors such as those dis-
cussed in connection with permutation 1 (e.g., a customer unschooled in the
rudiments of disciplined software systems development), it may be neces-
sary for this program-level PEG to develop an ADPE specific to the program,
borrowing wherever feasible from the division-level ADPE elements.

♦ An important variation on the permutation 3 organizational setup is when
the major program involves subcontractors. In this case, it is essential to es-
tablish a PEG within the program organization. Simply farming out repre-
sentatives from the enterprise PEG to implant the enterprise ADPE culture
on the program will generally not work because the subcontractor cultures
have to be integrated with the culture of the prime contractor. In the real
world, the way this “integration” happens is that the subcontractor cul-
tures are subordinated to the prime contractor’s culture. This subordina-
tion is far from straightforward. On the one hand, the prime contractor is
responsible for satisfying the customer; the customer does not, in general,
see subcontractors—to the customer, there is just a seller. So, the prime
contractor and subcontractors have to appear to the customer as a single
culture. On the other hand, some of the subcontractors may be the prime
contractor’s competitors on other jobs. Thus, the prime contractor needs to
consider carefully how to train subcontractors in the ways of the prime
contractor’s culture. Regarding PEG staffing, one way to handle this situa-
tion is to staff it entirely with people from the prime contractor’s company

Chapter 7 • Cultural Change

505

ptg

only—so that the ADPE concepts are clearly the prime contractor’s. Alter-
natively, the prime contractor can staff the PEG with subcontractors as
well as prime contractor people. This approach offers the opportunity to
take the best from all the corporate cultures; it also facilitates subcontractor
buy-in.

♦ Sometimes, your company may be a subcontractor. If the project or pro-
gram you are working on has its own PEG, you may wish to try to become
part of this organization for reasons already alluded to. If the project or
program you are working on is to follow an ADPE that is part of the prime
contractor’s enterprise culture, then you should strive to get trained in the
ways of your prime. You may even wish, if it does not compromise your
competitive edge, to offer some of your company’s best practices for con-
sideration for incorporation into the prime’s ADPE.

Allied to organizational considerations are PEG funding considerations.
There are three straightforward funding arrangements—(1) seller organiza-
tion, (2) buyer/user organization, and (3) some combination of (1) and (2).
These funding arrangements depend in some instances on organizational
arrangements. We will not discuss the myriad of combinations. Instead, we
offer you the following suggestions to help you decide what type of funding
arrangement makes sense for your environment:

♦ Ideally, PEG funding should come from the buyer/user. This arrangement
establishes firm customer commitment to software process improvement
and the attendant cultural change.

♦ A buyer/user may want to hire only a seller with an ADPE already devel-
oped. To ensure that the seller molds this ADPE to the customer’s needs or
existing environment, the buyer/user may wish to call for this molding in
an RFP seeking prospective sellers. Furthermore, the buyer/user may wish
to stipulate that ADPE maintenance will be on the seller’s nickel after con-
tract award. With an arrangement of this type, the buyer/user should be
willing to allow the seller a larger fee than would be the case where the
buyer/user pays for ADPE maintenance. The rationale for this business
arrangement is that the seller is paying for business practices designed to
“do things right the first time.” Thus, the buyer/user should expect to re-
ward the seller for consistently giving the buyer/user working products
on time and within budget.

♦ In some types of contracts, particularly when the buyer/user is a govern-
ment organization, it may not be possible for PEG funding to be provided
by both the buyer/user and the seller. For example, for completion type
contracts tendered by the U.S. federal government, the government pur-
chases products and management from the seller. Included in “manage-
ment” is the “PEG and its products—such as ADPE elements.” In this case,
the seller is barred by law from contributing to ADPE element develop-
ment. However, the seller may be able to contribute to ADPE implementa-

Chapter 7 • Cultural Change

506

ptg

tion support activities such as seller staff training in engineering principles
underlying ADPE elements.

♦ In some circumstances, it may be desirable for the buyer/user and seller
jointly to fund the PEG—even to the extent of jointly staffing the organiza-
tion. This partnership arrangement may be particularly appropriate where
both the buyer/user and seller have roughly equal experience in software
systems development process improvement. In those cases in which both
the buyer/user and seller are process improvement neophytes, it may be
desirable to bring in an outside expert to act as a catalyst to direct the ef-
forts of both sides. We stress that the partnership arrangement is perhaps
the one most likely to bring about cultural change—because both sides
have literally bought into process improvement.

Another key consideration to achieving buyer/user buy-in to seller PEG ac-
tivity is illustrated in Figure 7–9. In this figure, we show a cover page for an
arbitrary ADPE element (such as a CCB guideline as discussed in Chapter 4
or a software systems development process policy as discussed in Chapter 3).

This cover page indicates that the ADPE element is part of an SEE that is gov-
erning a collection of software systems development projects (represented by
the balloons) being managed under the umbrella of an effort called Program
Z. The seller who prepared the element is the ABC Company. The signature
of the seller program manager, Big Kahuna, appears on the cover together
with the signature of the buyer/user program manager, Big Kahuna’s Coun-
terpart. These signatures are not just a formality to give an official look to a
document. The seller program manager’s signature testifies to the fact that
the ABC Company is committed on Program Z to the business practices set
forth in the ADPE element. The buyer/user program manager’s signature
testifies to the fact that the customer concurs with these business practices
and is committed to supporting them.

What does “the customer is committed to supporting these business prac-
tices” mean? We have stressed in preceding chapters that the business of soft-
ware systems development involves continual interaction between the
buyer/user and the seller. This continual interaction means that the
buyer/user’s behavior is an integral part of the seller’s business practices.
Thus, for example, we stressed in Chapter 5 that the CCB role in the accep-
tance testing process is critical for ensuring that the computer code to be de-
livered contains the capabilities that the customer asked for. We stressed that
the customer must participate in the acceptance testing CCBs if the customer
is to reduce misunderstandings regarding the capabilities to be included in
the delivered computer code. Thus, when the buyer/user program manager
signs the cover of an ADPE element governing the acceptance testing process,
that manager is committing the buyer/user organization to buyer/user test
CCB participation as set forth in the element.

We explained earlier in this chapter that institutionalizing the business prac-
tices in ADPE elements within the seller organization is a major PEG chal-

Chapter 7 • Cultural Change

507

ptg

Chapter 7 • Cultural Change

508

ABC Company

Document #

Date

ADPE Element
Title

Program Z

Seller Program Manager Approval:

Buyer/User Program Manager Concurrence:

Prepared by:

ABC Company

777 Lucky Drive
Arlington, VA 22202

Big Kahuna’s Counterpart Date

Figure 7–9 Although ADPE elements define seller software systems development business prac-
tices, buyer/user buy-in is recommended for successful ADPE implementation. Part of this buy-in
should include ADPE element sign-off by a buyer/user representative who is the organizational
counterpart to the seller manager who has ADPE element sign-off authority. This bipartisan sign-
off formalizes the commitment of both parties to conform to the culture embodied in the element.

ptg

lenge. But, as the preceding discussion suggests, that challenge is only half
the battle. If the buyer/user does not commit to these business practices too,
then ADPE implementation will come up short. Having the buyer/user pro-
gram manager sign off ADPE elements in a manner like that shown in Figure
7–9 is a start. This sign-off gives the buyer/user a club of sorts to effect cul-
tural change within the buyer/user organization. However, the PEG has to
work the problem from within the seller organization, too. Here, we mean
that the PEG has to work with seller management and staff to convince them
that ADPE business practices are really in the best interests of the customer.
Too often, frontline seller managers are caught between a rock and a hard
place when it comes to convincing their customers that ADPE practices are to
be preferred to the “old way of doing business.” On the one hand, these man-
agers, particularly more experienced ones, may not be totally convinced that
the ADPE way is the better way (as opposed to what they may have been ac-
customed to doing in the past). On the other hand, even if they believe in the
ADPE way, the customer may not feel comfortable with the ADPE way and
prefer “the customer’s old way.” Since frontline managers rightfully feel that
they must keep their customers happy, these managers often revert to the
customer’s old way.

How can the PEG address these cultural change challenges within both the
seller organization and the buyer/user organization? The answer to this
question is not simple. The following guidance helps you deal with this
question:

♦ The PEG must involve seller management and staff in ADPE element de-
velopment. This involvement helps achieve management and staff buy-in
to the practices that the PEG is responsible for setting up. We subsequently
define a top-level process for bringing about this involvement. This
process also offers some insight into what is involved with constructing
ADPE elements that will in fact establish the seller software systems
development culture.

♦ The PEG should submit draft ADPE elements for buyer/user review and
comment. This step is mandatory if the ADPE buyer/user concurrence
shown in Figure 7–9 is to happen.

♦ Special considerations govern ADPE content when the seller organization
consists of a broad band of experience (i.e., from staff right out of school to
grizzled veterans of software wars) and/or a mixture of software systems
development cultures (as would be the case if the seller organization is
made up of a prime contractor and a number of subcontractors). In these
situations, it is imperative to include some tutorial material in ADPE ele-
ments. The purpose of this tutorial material is to (1) define engineering
terms in the vernacular so that people can communicate unambiguously
with one another and (2) provide engineering rationale for the practices set
forth in the ADPE elements. Thus, for example, an ADPE element on the
CCB should offer rationale for why the CCB should be constituted with
representatives from the management, development, and product assur-

Chapter 7 • Cultural Change

509

ptg

ance disciplines (the discussion in Chapters 1 and 2 on the CCB can be a
useful starting point for this rationale). To ensure that such tutorial mater-
ial does not “get in the way” of the business practices that should be the
focus of ADPE elements, we suggest putting it in appendices. Even veter-
ans of software wars can benefit from such tutorial material (even if they
won’t admit it). Often, such veterans have learned their trade through trial
and error without understanding the engineering principles that underlie
their successful experiences. This tutorial material also helps seller man-
agement and staff field challenging questions from questioning customers
regarding the value of doing things the ADPE way. For example, cus-
tomers often question the value that product assurance adds to a software
systems development effort. To help seller management and staff respond
to such customer concerns, the PEG should include in ADPE elements
dealing with product assurance ideas such as the following:

Through the application of the four processes of QA, V&V, T&E, and
CM, product assurance raises the visibility of the software systems
development process. This visibility provides both the customer and seller
insight into the state of software products so that management can
intelligently decide what to do next regarding these products. In this
manner, the likelihood of product rework is reduced thereby increasing
the likelihood that products will be delivered on time and within
budget.

♦ Regarding the use of tutorial material in ADPE elements, one additional
comment is in order. The PEG should take pains to know its audience.
Nothing will turn off this audience more than ADPE elements that come
across as preachy and condescending. ADPE elements cannot simply say
do this or do that (even though some software veterans would argue that
they would prefer such an approach). We have argued that ADPE ele-
ments should be set up so that they can be prescriptively applied. The PEG
should use tutorial material to bring to the fore engineering principles to
guide management and staff in performing this prescriptive application.
For example, Chapter 4 explains that the CCB concept in its most effective
form extends far beyond the traditional CM role assigned to this body. One
extension to this traditional role that we have stressed is that this body can
be used to do product development. To drive home this point in an ADPE
element on the CCB, an appendix in this element should give an example
of how the CCB can be used in this role.

♦ A key component of the ADPE element development process should be
PEG briefings to management and staff on ADPE element content. Such
briefings should occur while the elements are under development and
after the elements are promulgated for use. The purpose of the briefings
during development is to obtain early feedback from the seller organiza-
tion on ADPE element content. This feedback also contributes to seller
management and staff buy-in. The purpose of the briefings after the ele-
ments are promulgated, where the audience should be both the seller and

Chapter 7 • Cultural Change

510

ptg

the buyer/user, is to ensure that the practices set forth in the element are
understood. In situations where there is a large seller organization (i.e.,
hundreds or more people) and there is a large buyer/user community,
briefings should be given periodically to ensure that all involved parties
are reached. Such briefings are best given to small numbers of people (tens
of people at most) to allow for interchange between the attendees and the
presenters. The PEG should use the briefings to convey to attendees the ex-
periences of others within the buyer/user and seller organizations using
the ADPE element being briefed. Such comments serve to enhance the
credibility of the element. It also sends a message to attendees who attend
later presentations that the practices in the element are, in fact, being insti-
tutionalized so that it is in the attendees’ best interests to get on board with
everybody else.

♦ In conjunction with briefings and less formal interactions between the PEG
and seller/customer staff, a technique that we found useful for planting cul-
tural change seeds is what we call “foam-board displays.” These are displays
of key extracts from ADPE elements or related briefing material created by
mounting these extracts or material on large pieces of foam board, poster
board, wood, and so forth. Here, “large” means tens of inches by tens of
inches (e.g., 30” × 40”). For example, to highlight the features of the project
planning risk assessment activity, it may be helpful to mount on a foam
board the risk assessment criteria and the associated resource allocation per-
centages (e.g., in the form of pie charts as discussed in Chapter 2). Such a
foam-board display can be used during a briefing on the project plan devel-
opment process and/or in a one-on-one discussion of risk assessment be-
tween a PEG member and a seller or customer staff member. Its size also
makes it ideal for wall mounting in prominent places. This approach to
transmitting ADPE concepts brings in subliminal forces to help bring about
cultural change. If you pass by a pie chart of resource allocation percentages
every day in and out of your office, that pie, over time, simply becomes in-
separable from other things you associate with your work environment—
even if you disagree with the percentages in the chart!

We now present and walk through in detail a top-level process that a PEG
can use to construct and improve upon ADPE elements. This process, shown
in Figure 7–10, factors in the ideas just addressed in the bulleted items. It is
based on the organizational setup discussed in connection with Figure 7–8
(permutation 1)—namely, a program, managed by a program manager, con-
sisting of a number software systems development projects, where the seller
program manager interfaces with a buyer/user program manager. As we
walk you through the figure, we point out variations to the process in the
figure that derive from different organizational setups.

Please note that Figure 7–10 offers you a starting point for laying out a more
detailed process that reflects your particular work environment and cus-
tomer/seller contractual relationship. We suggest that one element of your

Chapter 7 • Cultural Change

511

ptg

Customer

Reviews and
Comments on
Evolving ADPE
Elements

Customer

Concurs with
Seller Program
Manager

Customer

Provides Technical Guidance

Customer

Provides
Suggested
ADPE
Improvements

Seller Staff

Reviews and
Comments on
Evolving ADPE
Elements

Organizational ADPE Element Development Process

Seller Process Engineering Group

(PEG) Manager

Seller Program Manager

Plans, Evolves, and Improves Systems
Engineering Environment

(SEE)

Seller Management and Staff

Use Approved
ADPE Elements
and Provide
Suggested ADPE
Improvements

Reviews and
Approves
ADPE Element
for Use

Seller Management

Reviews and
Comments on
Evolving ADPE
Elements

ADPE
ELEMENT

Seller Program Manager

Seller
SEE

Implementation
Plan

Seller Process Engineering

Group Staff

Analyzes
Systems
Engineering
Processes

Reviews and
Approves SEE
Implementation
Plan and Provides
Suggested ADPE
Improvements

Seller Process Engineering

Group Staff

Evolves ADPE
Elements and
Integrates ADPE
Improvements

Selected
Processes

and
Candidate

ADPE
Improvements

Improvement
Areas

Evolving
ADPE

Elements

SEE
Implementation

Plan

Approved SEE
Implementation

Plan

Candidate ADPE
Improvements

Evolving
ADPE

Elements

Approved
ADPE

Elements

Suggested ADPE Improvements

Technical
Guidance

Figure 7–10 The development and improvement of ADPE elements involves customer personnel, seller management, and
seller staff. The figure depicts a top-level ADPE element development and improvement process involving these participants.

ptg

ADPE should be an element that defines what your ADPE element types are
(recall that in this book our ADPE element types are policy, guideline, proce-
dure, and standard). This element should also define the process for develop-
ing and improving ADPE elements. You may wish to incorporate a figure like
Figure 7–10 in such an ADPE element, together with a more detailed figure
that lays out the individual steps for ADPE development and improvement.
Figure 7–10 has the following eight rectangles that represent the responsible
seller agents and associated process activities:

♦ Seller Program Manager. Reviews and Approves SEE Implementation
Plan and Provides Candidate ADPE Improvements

♦ Seller Process Engineering Group (PEG) Manager. Plans, Evolves, and
Improves System Engineering Environment (SEE)

♦ Seller Process Engineering Group Staff. Analyzes Systems Engineering
Processes

♦ Seller Process Engineering Group Staff. Evolves ADPE Elements and In-
tegrates ADPE Improvements

♦ Seller Management. Reviews and Comments on Evolving ADPE Elements
♦ Seller Staff. Reviews and Comments on Evolving ADPE Elements
♦ Seller Program Manager. Reviews and Approves ADPE Elements for Use
♦ Seller Management and Staff. Use Approved ADPE Elements and Pro-

vide Suggested ADPE Improvements

Figure 7–10 also has the following shaded rounded-edge rectangles that rep-
resent the customer’s responsibilities and associated process activities:10

♦ Customer. Provides Technical Guidance
♦ Customer. Reviews and Comments on Evolving ADPE Elements
♦ Customer. Concurs with Seller Program Manager
♦ Customer. Provides Suggested ADPE Improvements

These process activities are linked together by the major communication
paths and associated information. As shown in Figure 7–10, along each com-
munication path information is transferred from one process activity to an-
other. The information transferred consists of the following items:

♦ SEE Implementation Plan
♦ Approved SEE Implementation Plan
♦ Candidate ADPE Improvements
♦ Technical Guidance (lighter print type indicates that customer may not

participate in seller ADPE development process)

Chapter 7 • Cultural Change

513

10The customer responsibilities and associated process activities are shaded to denote that many times
the customer is not involved with a seller’s ADPE development process. We recommend that the cus-
tomer participate, but we recognize that customer participation may not happen or even be practical.

ptg

♦ Improvement Areas
♦ Selected Processes and Candidate ADPE Improvements
♦ Evolving ADPE Elements
♦ Approved ADPE Elements
♦ Suggested ADPE Improvements

These seller/customer activities and communication paths are described (pri-
marily from the PEG’s perspective) as follows:

♦ The PEG manager is responsible for planning, evolving, and improving a
SEE. The PEG defines the ground rules for SEE implementation in an SEE
implementation plan11 that is provided to the seller program manager for
review and approval. If the customer is paying for SEE development,
someone within the customer organization with the organizational stature
of the seller program manager should also review and approve the imple-
mentation plan and provide technical guidance to the seller PEG manager.
The PEG manager is responsible for identifying improvement areas for
investigation by PEG staff.

♦ The PEG staff is responsible for investigating and evaluating systems engi-
neering processes, improvement areas, and candidate ADPE improve-
ments. To ensure customer and seller management/staff buy-in, these
investigations and evaluations should be done in concert with customer
personnel, seller management (from the program manager downward, in-
cluding the product assurance manager), and seller staff. For example, the
PEG staff may investigate and evaluate a new way for distributing CCB
minutes using a groupware software product. As part of the evaluation
process, the PEG may ask one of the projects to test out the new concept.
The project’s input helps to achieve management/staff buy-in because the
concept has been road tested by frontline project staff. The PEG investiga-
tions and evaluations, with some help from others, result in the identi-
fication of selected processes or candidate ADPE improvements for
incorporation into ADPE policies, guidelines, procedures, and standards.

♦ The PEG staff is responsible for evolving ADPE elements and integrating
ADPE improvements. Of all the activities shown in Figure 7–10, this activ-
ity is the most time-consuming. It consists of putting words and graphics
on paper to create draft elements and briefing seller and customer staff
along the way to ensure that ADPE content is addressing seller/customer
needs.
Putting words and graphics on paper to create the contents of an ADPE el-
ement is perhaps the most difficult part of the process shown in Figure
7–10. Ironically, even with expert writers, it is difficult to get something
down on paper that the seller and customer communities can relate to. Fol-

Chapter 7 • Cultural Change

514

11Chapter 8 addresses in detail the SEE implementation planning activity.

ptg

lowing are some suggestions for PEG staff to consider when taking on the
task of writing ADPE elements.
♦ Gauge your audience carefully so that you can determine how much tu-

torial material to include. Put the principles and elements essentials up
front. Relegate tutorial and amplifying material to appendices.

♦ Use figures to document processes and clarify principles. Use tables to
bring to the fore ADPE element essentials. For example, when writ-
ing an element for the CCB, consider putting in a figure such as the
triangle diagram that we have used throughout this book to clarify
the communications principles underlying the CCB concept. As another
example, when writing an ADPE policy element, consider putting
into a table the essential points of the policy. Such a table provides a
handy reference for the reader to grasp quickly the policy essence. Re-
member, depending on the amount of tutorial material you deem is nec-
essary to include, even ADPE policy elements can consist of tens of
pages.

♦ No matter how sophisticated your audience engineeringwise, define
terms. Despite valiant efforts by many professional organizations such
as IEEE, no standard set of software engineering terminology exists. For
example, what some engineers call “quality assurance” others call
“product assurance.” Part of establishing an engineering culture con-
sists of establishing a common language. The more dialects there are,
the greater is the likelihood of miscommunication.

♦ Ideally, each ADPE element should be put together by two people with
complementary outlooks on what the ADPE is supposed to be. One of
the ADPE authors should be a conceptual thinker who has the big pic-
ture of how all the elements are to fit together. The other ADPE author
should be a detail person who can turn concepts into organizationally
specific statements. As we stated earlier, it is good to have an ADPE au-
thor who spends part time as a senior manager responsible for seeing to
it that ADPE practices are implemented by subordinate managers and
staff. Another advantage to having a two-person team write an ADPE
element is that such an arrangement serves to avoid idea burnout.
Through the constant interaction between the two writers, ideas are
constantly coming to the fore (and one idea generally spawns others),
examined to see how they hold up under scrutiny, and refined to the
mutual satisfaction of the two writers. Furthermore, since two writers
necessarily have different experiences, the constant interaction between
the two serves to enrich the material that each would turn out if they
worked in isolation from one another.

♦ Above all, be receptive to comments and criticisms—and practice what
your elements preach. Nothing undermines PEG credibility more than
the appearance that community comments are not being addressed and
that the PEG is above following the ADPE practices.

We cannot stress enough the importance of soliciting seller/customer feed-
back through briefings while ADPE element drafts are being written. Even if
the PEG staff members who are writing an element are expert in the sub-
ject matter, not even experts can anticipate the myriad of issues and con-
cerns that seller management/staff and the customer may have. Nothing

Chapter 7 • Cultural Change

515

ptg

can give the impression of a PEG imprisoned in an ivory tower more than
a PEG that works in isolation from the community it is to serve.
If your environment consists of a seller organization made up of a prime con-
tractor and several subcontractors and/or a customer made up of a number
of organizations that have worked with different contractors in the past,
briefings on evolving ADPE content are mandatory. This situation is the most
challenging for the PEG because different seller cultures and different cus-
tomer cultures have to be blended into a single way of doing business. Such
cultural blending can take a long time. For example, if the seller and cus-
tomer organizations are each of the order of hundreds of people, this cultural
blending can take years. The PEG should keep this cultural change time scale
in mind when planning ADPE implementation. We do not know the
specifics of how this time scale changes with the size of the seller organiza-
tion and the size of the customer organization. We can say that, when the
customer organization is culturally inhomogeneous and the seller organiza-
tion is a confederation of subcontractors, the time scale for homogenizing the
various cultural differences will be protracted—and will become increas-
ingly protracted the larger the seller organization is and/or the larger the
customer organization. Conversely, the more culturally homogeneous the
seller organization is and/or the more culturally homogeneous the customer
organization is, the time scale for effecting cultural change will be corre-
spondingly shorter. Regarding these time scales, the PEG should also keep in
mind the following overriding consideration:

The time scale for effecting cultural change can be dramatically reduced
when the involved communities are more pliable. On the other hand, if
seller senior managers are set in their ways and/or customers insist on
doing business the “old way,” effecting cultural change can take a long
time (i.e., months to years)—even if the communities involved are of the
order of tens of people. The PEG must therefore constantly keep in mind
the fact of software systems development life that ADPE implementation
is first and foremost an exercise in selling (1) seller management on the
connectivity between ADPE business practices and what practices have
worked in the past, and (2) customers on the connectivity between ADPE
business practices and increased likelihood that the seller will deliver
products with integrity.

♦ Figure 7–10 indicates that, linked to the PEG staff responsibility of evolving
ADPE elements, are the customer responsibility and seller management and
staff responsibilities of reviewing and commenting on evolving ADPE ele-
ments. This linkage is critical to effecting cultural change through ADPE im-
plementation. Through this linkage, the customer and the seller organization
are afforded the opportunity to contribute and buy into the ADPE business
practices. These parties must take the time to go over this material and clar-
ify issues for the PEG. They should be specific. For example, it is not con-
structive for a seller manager to offer a comment on an independent product
assurance ADPE element that says in essence “I cannot live with this element
because the customer thinks that product assurance is a waste of money.” On

Chapter 7 • Cultural Change

516

ptg

the other hand, it is constructive for a seller manager in the context of this ex-
ample to offer a comment such as “I think I can sell my customer on product
assurance if the element addresses how product assurance adds value to
product development.” When commenting on ADPE elements, the review-
ers need to keep the following points in mind:
♦ The PEG staff is responsible for coordinating and integrating com-

ments. There will generally be a broad spectrum of comments that the
PEG receives. Some of these comments will be contradictory. For exam-
ple, one comment on an ADPE element having to do with the CCB sec-
retary might be “the project manager should take meeting minutes,”
while a comment from someone else might be “someone from the prod-
uct assurance organization should take meeting minutes.” Thus, it is
generally not possible to integrate all comments into a given element.
The PEG must be proactive in ensuring that the commenting communi-
ties are informed that each comment received is reviewed—even
though it may not be incorporated. If the PEG is not proactive in this re-
gard, (1) the commenting communities will soon stop commenting,
(2) resistance to adopting the ADPE practices will increase, (3) turmoil
between the PEG and other organizational elements will intensify, and
(4) cultural change will be retarded.

♦ If the customer and seller management and staff abdicate their ADPE
review responsibilities, they cannot subsequently say that they were un-
aware of the ADPE practices and did not follow them for that reason.
For the process in Figure 7–10 to work, all parties involved need to ap-
proach it with the attitude that successful software systems develop-
ment is a business and thus must be conducted in a businesslike
manner. To treat software systems development otherwise is inviting
engineering anarchy and project upheaval.

♦ The PEG’s perspective is organizationwide. A given manager’s perspec-
tive and those of staff members are generally more truncated. What may
make sense in a given manager’s domain simply may not make sense
throughout the entire organization. Often misunderstood is the notion
that “consistent business practice” is not equivalent to “one size fits all.”
This notion is a prime source of contention between the PEG and the rest
of the seller organization when it comes to evolving ADPE elements.
More specifically, this source of contention can be stated as follows:

In constructing ADPE elements, the PEG must define a set of practices
that can be applied uniformly across an organization. On the one hand,
the practices must be sufficiently specific so that they convey something
that actually can be applied to develop software products (i.e., the practices
offer a way of doing things). For example, as we discussed in Chapter 4,
an ADPE element on the CCB should specify (1) that meetings should be
documented in minutes and (2) what the information requirements are for
these minutes. On the other hand, the ADPE practices cannot be so spe-
cific that they tie the hands of various elements within an organization
and actually impede product development (i.e., one size does not fit all).
For example, as we discussed in Chapter 4, an ADPE element on the CCB
should not dictate the amount of detail to include in the CCB minutes;

Chapter 7 • Cultural Change

517

ptg

rather, the element should offer guidance that ties meeting minutes detail
to customer and seller management project visibility needs.

We need to make an additional point about ADPE element specificity
that we elaborate on in Chapter 8. In general, the more detailed an ele-
ment, the more often it may have to be changed because of the dynamics of
the seller and/or customer environment. For example, in Chapter 3 we in-
dicated that, in general, an ADPE element describing a seller’s software
systems development process should provide guidance on a cover letter
that the project or program manager is to use in releasing a product to the
customer. At one extreme, this ADPE element can be a fill-in-the-blanks
template where the only thing to be filled in is the product name and the
date on the letter. Such an approach certainly facilitates product release,
particularly in an environment where tens or hundreds of products may be
released in a month. However, if the addressee on the letter (e.g., a govern-
ment contracting officer or a vice president of a business enterprise)
changes, then that part of the ADPE element containing the addressee’s
name needs to be updated to reflect this change. At the other extreme, the
software systems development process ADPE element can simply say that
any product the seller releases to the customer needs to be accompanied by
a cover letter that the project manager prepares according to a format ac-
ceptable to the customer. In this case, the ADPE element does not need to
be changed when the product addressees change. In Chapter 8 we discuss
how to achieve a balance between ADPE element update frequency and
business practice institutionalization. The key issue here is effecting busi-
ness process improvement without disrupting cultural change.

This PEG challenge is the primary reason that we have stressed through-
out this book the notion of “prescriptive application” when it comes to setting
up ADPE elements. We have emphasized that management and staff should
be empowered to figure out the extent to which business practices in the ADPE
elements makes sense to apply on their particular projects (again, because
“one size does not fit all”). This PEG challenge is also the primary reason that
we have stressed throughout this book that, with the possible exception of ho-
mogeneous organizations where projects do not span a broad spectrum, spec-
ifying the order in which steps in an ADPE procedure are to be accomplished
is generally not a practical idea. Rather, we have emphasized that manage-
ment and staff should be empowered to figure out which order makes sense on
their particular projects (again, because “one size does not fit all”).

♦ As Figure 7–10 shows, once the seller PEG evolves ADPE elements and in-
tegrates any ADPE improvements into the elements, the seller program
manager is responsible for the review and approval of the evolving ADPE
elements. Linked to this responsibility is the responsibility of the customer
(i.e., buyer/user) program manager for concurring with the business prac-
tices set forth in the ADPE elements. Customer concurrence and seller pro-
gram manager approval can be made a matter of record by having these
managers sign and date the ADPE element cover sheet.
How does this management commitment manifest itself in an organiza-
tional setup that differs from the one in which the seller program manager

Chapter 7 • Cultural Change

518

ptg

approves and the customer concurs (see Figure 7–9)? The following are
some organizational variations (tied in part back to Figure 7–8) and some
associated suggestions for registering this management commitment:

♦ The third organizational arrangement in Figure 7–8 shows, among
other things, a PEG responsible for setting up an ADPE throughout
an entire software division consisting of a number of business
areas (two are shown) and a number of major programs (one is
shown). The PEG may publish a divisionwide set of ADPE elements.
To show commitment to these ADPE practices, each business area
manager can sign the elements or the cover page of the entire
document. Similarly, each major program manager may do likewise,
unless, as shown in the figure, the major program has its own PEG re-
sponsible for setting up an ADPE for that program. This case reduces to
the Figure 7–9 case with the possible additional proviso that this pro-
gram-specific ADPE will use, where feasible, elements of the division-
wide ADPE. This proviso can be made explicit by referencing the
divisionwide ADPE in the program-specific ADPE (if the customer
served by the program manager does not object). Alternatively, the pro-
gram manager can sign the divisionwide ADPE document with the un-
derstanding that the program’s ADPE overrides the divisionwide
ADPE in cases of conflict. To avoid bureaucracy, the divisionwide
ADPE should contain a caveat to this effect. Again, the reason why
many parts of a divisionwide ADPE may not be applicable to a major
program is because “one size does not fit all.” Implicit in the third orga-
nizational arrangement in Figure 7–8 is that the divisionwide ADPE
embodies, by definition, the software systems development culture of
the seller division. If the customer of the major program shown in Fig-
ure 7–8 is not another part of the seller’s enterprise (i.e., the customer is
another enterprise with its own separate culture), then it is unlikely that
this customer will readily buy into the division’s software systems de-
velopment culture—unless, of course, the customer contracted with the
seller for those business practices to be applied to the customer’s
program.

♦ What makes sense to do for small projects (i.e., where the number of
seller participants may be, say, five or less, including the project man-
ager and product assurance)? Because a small project can be implanted
in a wide variety of organizational environments, there is a spectrum of
responses to this question. The following is a sampling from this
spectrum:
♦ The project may be one of several in a small software company that is

running several projects of similar size. In this case, the entire com-
pany can be viewed like a major program shown in either the first or
third organizational arrangement in Figure 7–8. The PEG may be a
one-person organization, and may be staffed only part time. The
president of the company or a senior executive may be the PEG.
Here, the president of the company can sign the cover sheet of each
ADPE element to demonstrate to the customer the company’s com-
mitment to the customer. If the project is pivotal to the company, the
president can also urge the customer to sign on the cover sheet so
that both parties formalize their commitments to following the ADPE
business practices. This arrangement is particularly desirable if the

Chapter 7 • Cultural Change

519

ptg

customer wants the seller to tailor the company’s existing ADPE ele-
ments to the specific needs of the project. Furthermore, if the cus-
tomer is willing to pay for this tailoring, then the customer’s
signature should be mandatory.

♦ The project may be part of a company whose main line of business is
not software but that does have a software organization. In the ex-
treme, such an organization may not even have a PEG and may be
relying on externally produced software practice documents such as
IEEE standards, the SEI Capability Maturity Model for Software, ISO
9000 practices, textbooks, or some combination of these entities. In
this case, the head of the software organization can direct the project
manager to commit to using the externally produced “ADPE ele-
ments” in the project plan. If the software organization does have a
PEG, then, following the logic in the preceding small-company case,
the head of the software organization can sign the ADPE element
cover sheets. If the elements are being produced specifically for the
project (as may be the case if the first part of the project is to set up an
ADPE before actual product development is to begin), the head of
the software organization can direct the project manager to sign each
ADPE element cover sheet. In addition, to solidify customer commit-
ment to the ADPE business practices, the project manager may wish
to have the customer sign each ADPE element cover sheet.

♦ The project may be part of a systems development effort in which the
project is to develop software to drive one or more system compo-
nents. Such “embedded software” as it is typically referred to can be
critical to the overall operation of the system. It is not unusual for the
development of such embedded software to be hidden from the view
of managers responsible for the development of other system compo-
nents—particularly if the system under development contains a myr-
iad of subsystems (e.g., an automobile or an airplane). Often, the
development of embedded software is subject to the strictures of the
system-level analogues to ADPE elements. Even under such circum-
stances, it is important for the managers responsible for the embed-
ded software to give visibility to their business practices and give
visibility to their commitment to follow these practices. The customer
in these instances is typically another engineering organization. To
ensure that the software business practices meld with these other en-
gineering practices, the head of the software organization (which, in
the simplest of situations may be the software project manager)
should sign each ADPE element cover sheet. So, too, should the engi-
neering managers who are the customers for these software products
sign these cover sheets. We stress that all these suggestions regarding
embedded software developed on small software projects as we have
here defined “small” apply to embedded software in general. In fact,
the larger the size of the project responsible for producing embedded
software, the more important it is to apply the suggestions discussed
here. We close this discussion of embedded software and the
need for formal management commitment to ADPE practices, with
the following observation borne out by much software industry
experience:

Chapter 7 • Cultural Change

520

ptg

If all this signature business sounds like a lot of bureaucracy,
keep in mind that faulty embedded software can make its presence
painfully obvious when an automobile stops running, an airplane
stops flying, or a medical device kills or injures a patient.

♦ Next in the process in Figure 7–10 is the “rubber-meets-the-road step.”
Here, seller management and staff perform assigned work on seller pro-
jects using the approved ADPE elements. As discussed in preceding chap-
ters, this work is performed through interaction with the customer. Both
the customer and the seller get a firsthand feel for those ADPE business
practices that make sense—and those that seem to stand in the way of get-
ting work done. Because these practices represent in varying degrees a dif-
ferent way of doing business for the parties involved, determining what
makes sense and what seems to be standing in the way of getting work
done is far from straightforward.
As with anything new, there is a settling-in period. The PEG must be pre-
pared during this period to hear a lot of complaining. In the extreme, this
complaining can border on rebellion. Strong senior management support is
necessary to help weather the initial storm of protest due to the transition.
Gaining this support in itself may be a challenge because some of the com-
plaining may come from some senior managers.
It is important for senior management to stay the course during the period
immediately following ADPE element promulgation. Depending on seller
organization size, the settling-in period can span weeks to months—in
general, the larger the organization, the longer the period. After the set-
tling-in period, real issues and difficulties with the ADPE elements will
begin to surface. To lessen turmoil during the settling-in period, we sug-
gest that ADPE elements that are formally promulgated be derived from
the most successful practices that may already have been in place prior to
formal ADPE element promulgation. In this way, the practices appearing
in the elements are simply a codified version of many of the things that
people have already been doing. In many ways, the approved ADPE ele-
ments embody many lessons learned while developing software systems.
One way that we have found useful for laying the groundwork for prac-
tices that will eventually be folded into ADPE elements is to incorporate
some trial-balloon ADPE elements into the SEE implementation plan,
try them for a while, and then start the process of evolving the trial
elements.
We also need to emphasize that incorporating existing practices into ADPE
elements can be a two-edged sword. On the one hand, it can lessen the tur-
moil during the settling-in period as we have noted. On the other hand, it can
leave the impression with seller management and staff that they do not have
to read the elements—because they already know what the elements con-
tain. People will not read them—even those within the seller organization
who fully support the ADPE practices. One way for the PEG to address this
problem is to stress during ADPE element briefings (both prepromulgation

Chapter 7 • Cultural Change

521

ptg

and postpromulgation) that the elements need to be read from cover to
cover—even though the elements contain some “old” or “familiar” material.
The fact that people may be reluctant to read the ADPE elements poses an-
other challenge for the PEG. Seller management and staff are focused on
getting the work done for their customers. In many organizations, there is
not a lot of slack time (if there is, both seller and customer senior manage-
ment may start asking questions like “What the hell are people doing with
their time?”). So, reading ADPE elements is usually not high on people’s
list of priorities. On the one hand, if an element is too long, people will balk
at even picking it up. On the other hand, if the element is so short that it
does not help people do their jobs, it will not be worth reading. Chapter 8
addresses the issues associated with the number and size of ADPE ele-
ments needed to establish an ADPE.

♦ The “final” step in the Figure 7–10 process consists of the customer and
seller management and staff providing feedback to the seller program
manager regarding suggested ADPE improvements. With the feedback
coming from the middle and bottom of the organization to the top of the
organization, support for the engineering norms gets blended into the
ADPE elements. Complementing this “bottom-up” feedback is “top-
down” support from the seller program manager. The seller program man-
ager can make a strong statement of support for changing the culture by
participating in the change. This combination of feedback and support
helps to implement the ADPE elements.
Once the program manager reviews the feedback, candidate ADPE im-
provements are passed on to the PEG manager. The program manager may
pass the suggested ADPE improvements straight to the PEG manager for re-
view and comment. This “bottom-up” feedback precipitates revisits to one
more preceding steps in the process. As seller management and staff per-
form work for the customer by presumably following the ADPE practices,
improvements to these practices will generally become apparent. With the
caveats noted earlier about the settling-in period, the PEG needs to review
these suggestions and/or candidate ADPE improvements (depending on
how the program manager wants to set up the review cycle).
We suggest that the PEG get out into the workplace and experience firsthand
what is working and what is not. For example, the PEG can coordinate with
a project manager to attend a project CCB meeting to see how practices set
forth in a CCB ADPE element are playing out on a real project. The ADPE el-
ement that contains your version of Figure 7–10 should spell out a mecha-
nism for receiving comments on ADPE elements from the customer and
from the seller management and staff. One way that we have found useful is
to indicate that “suggestions should be in a memorandum and can be sub-
mitted to the program manager or PEG manager at any time.”
Chapter 8 discusses ADPE element update frequency. For the present, we
note that there are times when it may become necessary to distribute an in-
terim update to an element. By interim, we mean a “change to a relatively

Chapter 7 • Cultural Change

522

ptg

small portion of an element because something is proving to be unwork-
able or some conditions have changed since the element was promulgated
that invalidate something stated in the element.” For example, suppose an
ADPE element on the CCB is promulgated after the promulgation of an
ADPE element on the product development process. Suppose further that
this latter element included the CCB as part of the process and called it
“configuration control board.” Finally, suppose that while the CCB ADPE
element was being developed that it was decided by the customer and/or
seller management that “change control board” more accurately reflected
the concept called out in the product development process ADPE element
and being elaborated on in the CCB ADPE element. In this example, then,
it would be necessary to issue an interim update to the product develop-
ment process ADPE element to reflect this terminology change. A simple
way to handle this interim update would be to make it a part of a memo-
randum that might be used to promulgate the CCB ADPE element.

We have completed our walkthrough of Figure 7–10. To conclude this sec-
tion, we return to the following key points regarding the construction and
application of ADPE elements cited during this walkthrough:

♦ One size does not fit all. In constructing ADPE elements, the PEG must
define a set of practices that can be applied uniformly across an organiza-
tion. On the one hand, the practices must be sufficiently specific so that
they convey something that can actually be applied to develop software
products (i.e., the practices offer a way of doing things). On the other hand,
the ADPE practices cannot be so specific that they tie the hands of various
components within an organization and actually impede product
development.

♦ Prescriptively apply ADPE elements. The one-size-does-not-fit-all chal-
lenge is the primary reason that we stress throughout this book the notion
of “prescriptive application” when it comes to setting up ADPE elements.
We emphasize that management and staff should be empowered to figure
out the extent to which business practices in the ADPE elements makes
sense to apply on their particular projects. Specifying the order in which
steps in an ADPE procedure are to be accomplished is generally not a prac-
tical idea. Rather, management and staff should be empowered to figure
out which order makes sense on their particular projects. A possible excep-
tion to this empowerment principle is a homogeneous organization where
projects do not span a broad spectrum. In this circumstance, it may make
good business sense to specify an order for the steps specified in an ADPE
element—or, at least specify a preferred order.

To appreciate fully the implications of these statements, it is worthwhile to
probe what “prescriptive” fundamentally means. Since we have repeatedly
stated that the ADPE is a framework within which consistent software sys-
tems development can be successfully carried out, it is also worthwhile to
consider what “framework” fundamentally means.

Chapter 7 • Cultural Change

523

ptg

We turn to the dictionary. It turns out that “prescriptive” and “framework”
each has a broad range of definitions, depending on which dictionary is con-
sulted. We have taken definitions from the 2000-page The Random House Dic-
tionary of the English Language (the unabridged 1967 edition) because they
reflect the spirit of what we are trying to convey in engineering terms.

♦ Prescriptive—giving directions
♦ Framework—a skeletal structure designed to support or enclose something

To understand the way that we are using the term “prescriptive application”
of an ADPE element, we first need to explain how the qualifier “prescriptive”
applies to ADPE element content. ADPE elements are the most useful and re-
quire infrequent change when they “give directions.” By giving directions we
mean “giving guidance—not detailed, step-by-step instructions.” We recog-
nize that some people use the phrase “giving directions” to mean “giving
precise instructions.” Others use this phrase to mean something in between
our use and this precise-instruction use.

Thus, ADPE content should give directions to the extent that they provide
management and staff the starting point for tailoring to the specific needs of
their project work. In earlier chapters, we describe this tailoring by saying
that “management and staff apply the ADPE practices consistent with the
schedule and resource constraints of their projects.” People, particularly
those with experience, have to be given leeway to apply their experience. This
leeway we have expressed as “prescriptive application of the ADPE prac-
tices.” And it is this leeway that opens the door for people to adapt to the
ADPE culture.

We are thus using the phrase “prescriptive application” in the same sense
that “prescriptive” is used to qualify the word “grammar.” The same dic-
tionary defines prescriptive grammar as “grammar that is considered in terms
of what is correct, and therefore good usage.” Similarly, prescriptive application
of ADPE practices means “application that is good usage of available time and
resources.”

To understand the way that we are using the term “framework” as it applies
to the ADPE, we combine the notions of “leeway” and “prescriptive applica-
tion.” When an ADPE is a framework in the sense of “a skeletal structure de-
signed to support a way of doing things by bordering it with acceptable
practices” (borrowing from the dictionary definition), it cultivates cultural
change. Skeletal here means what we just said above, that is,

ADPE practices must be sufficiently specific so that they convey something
that actually can be applied to develop software products, but they cannot be so
specific that they tie the hands of various elements within an organization and
actually impede product development (i.e., one size does not fit all). That is, an

Chapter 7 • Cultural Change

524

ptg

ADPE that fosters cultural change is one that (1) is prescriptive in content and
(2) can be prescriptively applied.

These words are the bottom line regarding the PEG’s approach to bringing
about ADPE-based cultural change. The principal corollary to this bottom
line then is that the PEG should stay away from producing ADPE elements
that are recipelike practices. We believe that software systems development
cannot be reduced to a recipe of single instructions. People and their ability to
apply themselves cognitively to software systems development are the most
important ingredients (no pun intended) for achieving software systems
development success.

Figure 7–11 depicts this bottom line and its relationship to the notions of the
“ADPE as a business practice framework” and “prescriptive application of
these practices.”

In cultivating cultural change, the PEG must keep in mind the underlying
currents of people’s own experiences. Remember, Sam, Pam, and Ham—like
most people in the software industry—are naturally going to resist doing
things the organization’s way if they do not have room to maneuver. Some-
times, maneuvering can degenerate into subterfuge. The PEG must recognize
that, within any organization, interpretations of what “playing by the ADPE
rules” means will generally span a broad spectrum. Some people will try to
carry things out meticulously according to what is written (e.g., if a CCB is to
meet at least monthly, they will tend to meet more frequently; if a suggested
format for CCB minutes is included in an element, they will pattern their
minutes after that format and then some). Others will follow the spirit of the
ADPE rules but will be somewhat less fastidious in their application (e.g., if
an ADPE element calls for product assurance participation in CCB meetings,
they may have product assurance attend some meetings, but always copy
them on CCB minutes). And still others will draw a line in the sand and say
that they will simply not follow some ADPE practices (e.g., if an ADPE ele-
ment calls for customer participation in the acceptance testing process to de-
cide TIR resolutions, they will adopt the attitude that they know what the
customer wants so that the customer does not need to be involved in the
acceptance testing process).

To aid in ADPE implementation, we suggest that the PEG should focus its at-
tention on the people in the middle of the spectrum. Once these individuals
become more like the people who follow the ADPE rules meticulously, the re-
sistors will face increasing pressure to get on board. The PEG must also rec-
ognize that some people are never going to change—and that it is simply not
cost-effective to keep beating on those people to change. Remember, the cap-
tain who went down with the Titanic was informed—so history tells—that his
ship was in iceberg-infested waters. Like this captain, there are some in the
software industry who simply believe that software disaster cannot happen
to them—because their way of doing things is tried and true. If the PEG has
done a good job in following a process of getting organizational inputs to

Chapter 7 • Cultural Change

525

ptg

Available Available

Organizational Software
Systems Development
Process

Application Development

Process Environment

(ADPE)

B

U

S

I

N

E

S

S

P

R

A

C

T

I

C

E

S

B

U

S

I

N

E

S

S

P

R

A

C

T

I

C

E

S

Policy

Guideline

Procedure

Standard

Seller
Approval

Customer
Concurrence

Project Software Systems
Development Process

Project Procedures

Procedure B
Step 1
Step 2

Step N

Procedure A
Step 1
Step 2

Step N

Seller’s Project Accomplishments

Document

Data

Main
Module A
Module B

Data
Elements

A—Z

01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101
01010101010101

Computer Code

Specification

Prescriptive
Application

Figure 7–11 An ADPE that cultivates cultural change is one that establishes a business practice
framework. The framework should stay away from recipelike practices and allow for prescriptive
application.

ptg

mold an organizational practice framework in the manner suggested in Fig-
ure 7–11, then such outliers will self-destruct, eventually come on board, or
leave.

The PEG must carefully listen to its constituency. If outliers constitute a large
minority or a majority, then something is breaking down. The PEG must be
prepared to work with the organization to get a better handle on what is
working and change what is not. One word of caution is in order regarding
responding to cries for change. The PEG must be prepared to ride out this
storm. The PEG needs to distinguish between the turmoil resulting from (1)
the organization’s adapting to a new way of doing things and (2) awkward or
unworkable business practices. It is undesirable, at least in organizations con-
sisting of a hundred or more people, to change an ADPE element more fre-
quently than twelve to eighteen months. The guidance here is that the PEG
should plan for ADPE element change by allowing for a settling-in period
and then responding to organizational outcries for change.

One final comment is in order regarding Figure 7–11 and achieving cultural
change through ADPE implementation. Software industry experience shows
that an effective way to induce cultural change is to set up an organization
with a specific process improvement goal. In this circumstance, everybody
who comes into the organization is committed to this goal. By definition,
then, everybody is on board. It typically takes several years to elevate the
process maturity of an organization one SEI level.12

Figure 7–12 contains an annotated outline for helping you get started in
building an ADPE element around a process like that shown in Figure 7–10—
that is, an element that details the process of creating, coordinating, promul-
gating, and updating ADPE elements.

Our discussion of the PEG’s perspective in bringing about cultural change
through ADPE implementation has touched on the perspectives of others
within the seller and buyer/user organization. We now turn to these other
perspectives to highlight the other forces that play a key role in shaping
ADPE element content. Our discussion of these other perspectives must be
more general than the discussion of the PEG perspective in this section. It is
simply not feasible to consider in detail the myriad of organizational varia-
tions that exist in the software industry. Furthermore, because we discussed
at length the PEG perspective and because the PEG should be the focus of or-
ganizational process definition and improvement activity, many of the details
of the other perspectives have their roots in the PEG perspective already con-
sidered. For example, we discussed in connection with Figure 7–10 the roles
that seller senior management and buyer/user senior management play in
the ADPE element promulgation process. In particular, we explained the

Chapter 7 • Cultural Change

527

12In the early 1990s, Motorola set up an organization in India in this manner. This organization ele-
vated its software process to a very mature level (some reports indicated that the organization
achieved SEI Level 5, the most mature level in the SEI scheme) in the space of several years.

ptg

Chapter 7 • Cultural Change

528

[Your Organization’s Name and Logo] Document #

Date

Document #

Date

[Your Organization’s Name] [Element Type]

ADPE Elements

1.0 PURPOSE

2.0 BACKGROUND

3.0 RESPONSIBILITIES

4.0 ADPE IMPLEMENTATION PROCESS

5.0 ADPE ELEMENT DEFINITIONS AND FORMAT CONVENTIONS

APPENDIX

This section states the purpose of the element. This purpose is to define the types of elements
that make up your organization’s ADPE (e.g., policy, guideline, procedure, and standard). This
section should also indicate that this element describes the ADPE implementation and
improvement process. Furthermore, this section should indicate that this element identifies the
organizations responsible for (1) developing, (2) reviewing and commenting on, (3) approving, and
(4) promulgating ADPE elements.

This section gives an overview of the organization, project, and/or program to which the ADPE
elements are to be applied. This section should also define the concepts of SEE, ADPE, and ADTE
or their counterparts in your organization.

This section delineates the organizational responsibilities regarding the development, review,
approval, promulgation, and improvement of ADPE elements.

This section defines and walks through the process for establishing and maintaining the ADPE.
This section should contain your version of an organizational ADPE development process. Our
experience shows that, if you want to have a detailed breakout of the individual steps underlying
your version of the ADPE development process, this breakout should be placed in an appendix to
avoid overwhelming readers, particularly management, with detail.

This section defines the elements that make up your ADPE. It is helpful to put these definitions in
a table together with an example extract to illustrate the orientation of each element.

It is useful to have at least one appendix containing and explaining your step-by-step version of
your organizational ADPE development process.

Figure 7–12 An annotated outline for getting you started defining a process to govern ADPE element
development and improvement.

ptg

significance of having a senior seller manager such as a program manager
and this manager’s buyer/user counterpart each sign the cover sheet of an
ADPE element. We pointed out that these signatures are not just a formality
to give an official look to a document. The seller program manager’s signa-
ture testifies to the fact that the seller’s company is committed to the business
practices set forth in the ADPE element. The buyer/user program manager’s
signature testifies to the fact that the customer concurs with these business
practices and is committed to supporting them.

We begin with the seller project-level perspective, namely, that of the project
participants and the project manager.

7.4 Seller Project Participants and Project Managers

This section addresses ADPE implementation from the perspective of the
seller project-level individuals—i.e., members of the product development
organization, the managers who direct their efforts, and members of the
product assurance organization—who will have to adapt to the policies,
guidelines, procedures, and standards that will govern their work.

We address a series of questions that include the following:

♦ What do seller project participants and project managers feel when faced
with trying to conform to ADPE business practices?

♦ How do some seller project participants and project managers show their
resistance to or acceptance of the ADPE business practices?

♦ How can the PEG try to reduce resistance or increase acceptance?
♦ What are the special issues that arise when the seller organization is made

up of several different corporations, each with different software systems
development cultures?

Each of these questions and others are discussed below. As stated before,
there is no right set of answers. We offer the following discussion as food for
thought about cultural change.

ADPE development and implementation depends, in part, on such factors as
the age of the organization, organizational work experiences, how long the
employees have been with the organization, employee work experiences, and
management commitment. Regardless of these factors or other factors, when
a person is faced with change, there are questions that surface. For example, a
project participant who is going to attend a briefing about a new organiza-
tional product development process may ask questions or raise concerns that
include the following:

What is this process improvement stuff about? I’ve been doing fine with-
out it. Now I have to go to a briefing on some organizational product develop-

Chapter 7 • Cultural Change

529

ptg

ment process. What does this process mean to me? What is my role? Hey,
maybe this new process will let me make a contribution. After all, I do a pretty
good job.

There will be a full spectrum of reactions, and adapting to the ADPE way of
doing things generally means that people will have to modify their engineer-
ing behavior to some degree. This behavior modification generally causes
pain because people may perceive they are giving up something. In fact, they
may be giving something up, but at the same time, they may be gaining
something. For ADPE implementation to take hold, each individual must be-
lieve that the net gain in individual and organizational effectiveness more
than compensates for the loss associated with modifying personal behavior.
As shown in Figure 7–13, if the organization’s process is based on prescrip-
tive application of the ADPE way, the perceived individual loss of “freedom
to adapt” is countered by the freedom to adapt to the organization’s process.
Also, if the individual has a say in framing the organization’s process, the in-
dividual’s perceptions of loss of familiarity with doing things and the ability
to innovate are countered by incorporating into the organization’s process,
where feasible, the individual’s suggestions.

In mature organizations, the individual replaces personal loss with personal
gain and organizational gain. For example, if a project participant has been
working on essentially the same aging software system or systems for a num-
ber of years, (e.g., three to seven years), the participant feels comfortable with
the day-to-day tasks. Life is fairly routine. However, one day the customer
decides to replace the aging system and articulates something like the
following:

I want to replace our old system. I want to migrate from our current data-
base technology to an object-oriented database. The new software language
will be C++. I want to use a combination of CASE technology and . . . I need the
system yesterday. . . and I want the system to be independent of specific
individuals. . . . I don’t want to be held hostage . . . people are getting too
expensive. . . .

This story all sounds familiar. Maybe the technologies have changed, but
technologies always change. It is the last part of the customer’s comments
that are relatively new— “. . . independent of specific individuals . . . I don’t
want to be held hostage.” Of course the customer’s words could be different,
but the point is that project participants need to stay current and mobile. A
person who can work on several different types of projects has more flexibil-
ity and stability than someone who has too narrow a set of capabilities. We
are suggesting that, for the long haul, it is important, if not necessary, for an
individual to adapt, to some extent, to the organization’s way of doing
business. This adaptation helps the individual maintain professional mobility.

What does this cultural change via an ADPE mean for the project manager?
First, the project manager will probably have some of the same reactions as

Chapter 7 • Cultural Change

530

ptg

Chapter 7 • Cultural Change

531

Perceived individual losses:
● Freedom to adapt
● Familiarity bred by experience
● Ability to innovate

Individual gains:
● Broader spectrum of skills
● Increased professional mobility
● Greater marketability
● Independence from specific project

Organizational gains:
● Freedom to adapt
● Leverage individual skills by
 incorporating the individual’s
 suggestions
● Independence from the individual

Engineering Behavior
Modification

Seller Organization

Organizational Software Systems
Development Process

Application Development

Process Environment

(ADPE)

Seller Organization

NIAP

INDIVIDUALLOSS

INDIVIDUALLOSS

ORGANIZATIONAL

GAIN

INDIVIDUAL

GAIN

INDIVIDUAL

GAIN

Policy

Guideline

Procedure

Standard

Seller
Approval

Customer
Concurrence

Sam’s
Process

Pam’s
Process

Ham’s
Process

Figure 7–13 Individuals must perceive individual and/or organizational gains for ADPE implementation to take hold.

ptg

Chapter 7 • Cultural Change

532

the project participants. After all, project managers are humans too! Second,
project managers typically take on an additional leadership role. Not only do
they need to understand (to some degree) the technology that they are imple-
menting, but also they need to understand how to complement project partic-
ipants’ skill sets with each other and to match participants with specific
technical tasks that need to be performed. Project management is tricky busi-
ness, and the project manager’s skills cannot be reduced to cookie-cutter
steps. We suggest that project managers carefully examine ADPE engineering
processes and determine how, in specific terms, the processes will impact
what they do on a day-to-day basis. Consider the simple story that follows.

A project manager has a good relationship with the customer. The
customer has been used to calling up the manager or project partici-
pants and specifying system requirements over the phone. Sometimes
the customer talks about such requirements in face-to-face conversa-
tions. However, rarely do these requirements make their way into a re-
quirements specification document that is approved by the customer.
After all, Bob and Sally have been working on the project for years, and
they know what the customer wants. A new ADPE element is intro-
duced into the organization, and the new product development process
states that “all customer requirements should be (1) put in writing,
(2) reviewed for testability, and (3) approved, in writing, by the cus-
tomer.” The project manager’s reaction might be something like “my
customer is not going to be happy about this . . . this process is going
to slow down development activities.” On the other hand, the project
manager’s reaction might be “good . . . this is really going to help us to
think through the job better . . . it will take some convincing, but I’ll be
able to better manage the customer’s expectations of what needs to
be done, what resources are really required. . . .” In this case, it may be
that the project manager increases the control of the project, increases
personal productivity, increases the chance for potential growth, etc.
However, the project manager, the participants, and the organization
need to recognize that the desired changes regarding customer re-
quirements take time. Time is one reason why it is important for all or-
ganizational levels, and if possible, the customer, to be involved with
the cultural change journey.

The program manager, PEG manager, and others should also be working to ef-
fect the changes. In particular, what can the PEG do to support effecting the
change? As discussed earlier (see Figure 7–10), the PEG can set up an ADPE de-
velopment process that involves seller management, seller staff, and if possible,
customer personnel. The PEG should schedule a series of briefings to explain
ADPE elements. These briefings should answer the following basic questions:

♦ What is the purpose of the ADPE element?
♦ What does the ADPE element look like?
♦ How is the ADPE element to be implemented?

ptg

♦ Who is responsible for what?
♦ How soon does this ADPE element take effect?
♦ What support can be expected from the management, the PEG, and the

customer?

The PEG should be careful not to overwhelm people with the briefing. The
briefing should address these questions and paint a picture that the audience
can relate to. If audience members are overwhelmed with information and a
confusing picture, they will become intimidated by the ADPE element rather
than excited about it.

If the organization can afford it or the customer is willing to pay for it, the
briefings should be scheduled during the regular working day, and the peo-
ple’s time should be paid for by the organization. However, because of in-
creased competition, decreased resources, etc., it is often necessary to hold
such briefings during lunch hour or after the normal business day. Atten-
dance under such circumstances should not go unnoticed by management.
People who are willing to help implement and evolve the culture should not
go unrewarded. Each organization has its own way of showing its apprecia-
tion. Some organizations give more formal training, tuition reimbursement,
and allowances for seminars for those who go the extra mile.

Another ADPE training approach is to set up annual refresher training on all
the ADPE elements. In such a setting, a series of briefings, examples, and
short training exercises are presented over a two- or three-day period. At the
end of the training, the program manager presents certificates of accomplish-
ment. Again, the training should not be overwhelming, but at the same time,
the training cannot be a waste of everyone’s time. People at all levels in the
organization should participate in setting up the curriculum. The training
should be viewed as valuable. If it is possible, the customer should partici-
pate. Joint customer/seller training is an effective ingredient for implement-
ing cultural change.

We also suggest that the briefings can be given by people who are not mem-
bers of the PEG. The briefers need to be respected in the organization. Ideally,
the briefers have participated in the ADPE element development process.
Many times, the first set of briefers are the organization’s early adapters who
embrace new ideas and technology.

Are there special issues when the seller organization is made up of several
corporations? In general, the prime contractor should treat the subcontractor
personnel as if they are employees of the prime. If the subcontractors are part
of an integrated team, then they should be afforded the same training as the
prime. Nondisclosure agreements can be signed to protect prime contractor
proprietary information.

Who pays for the subcontractor personnel’s training time? The answer to this
question depends, in part, on what time of the day the training takes place. If
the training occurs during “off hours,” then the prime contractor could pro-

Chapter 7 • Cultural Change

533

ptg

vide the training materials (in addition to providing the instructor) as a way
of recognizing the subcontractor’s going the extra mile. Of course, costs can
be shared. The point is that the contractor team needs to come together with a
mutually agreeable solution so that there is a consistent engineering ap-
proach across company lines.

Another subcontractor issue that needs to be addressed is the level of author-
ity that subcontractor personnel can assume. Generally, the prime contractor
is held responsible for all contracted technical work. Often the prime’s per-
sonnel hold the management positions one layer below the program man-
ager, the PEG manager position, and the independent product assurance
manager position. Most other positions are open to the subcontractors. If the
organization is deep enough, management positions can be open to the sub-
contractors. If the subcontractors can offer only project participants, their peo-
ple have limited growth opportunities. The prime wants the subcontractor’s
best personnel. However, by limiting the subcontractor’s participation, the
prime could actually foster personnel turnover.

How are subcontractor personnel selected for open positions? This issue,
along with the others just discussed, is part of the larger issue of what the
image (and hopefully reality) the contractor team presents to the customer.
The answer depends, in part, on the way in which the seller development or-
ganization wants to present itself to the customer. We are not going to discuss
all the possible situations. However, if it is possible, an integrated team ap-
proach can be effective. In this case, the prime selects personnel who are the
most capable to do the work, regardless of company affiliation. This is a
win-win situation for the customer, prime, and subcontractor.

Up to this point in the book, we have primarily presented ADPE implementa-
tion from the seller’s viewpoint. However, it is important to recognize that
the customer community may have its own ADPE implementation program.
Customer organizations, like seller organizations, can have a broad spectrum
of success implementing an ADPE. This spectrum can be defined by the
following three categories:

♦ No ADPE Program. In this category, the organization does not have any
documented practices in place. Many times, such organizations are suc-
cessful through the individual heroics of Sam, Pam, and Ham. We are not
saying that such organizations produce “poor” quality products. However,
we are saying that, in such organizations, consistent software systems
development success may be chancy.

♦ Immature ADPE Program. In this category, the organization has some
documented practices in place and some of the people use them. Such an
organization has a PEG in place, as well as an ADPE implementation plan.
Success in such organizations is due to a combination of following their
documented practices and from the individual heroics of Sam, Pam, and
Ham. An ADPE training program is usually in place to help with the
ADPE implementation.

Chapter 7 • Cultural Change

534

ptg

♦ Mature ADPE Program. In this category, the organization has documented
practices in place, and most people use them. Such an organization has a
PEG in place, an ADPE implementation plan, an ADPE training program,
as well as mentoring and/or coaching programs in which people consis-
tently help one another. In such organizations, the watchword is “team-
work.” People think in terms of organizational success, as well as personal
success. People actively contribute to the refinement and implementation
of ADPE practices. The well-honed ADPE helps to stabilize the organiza-
tion by providing consistent and well-understood practices for successful
software systems development. At the same time, people increase their
professional mobility because they are not captive to a narrow range of job
options.

At one end of the spectrum, customers with no ADPE programs may want to
hire seller organizations that also have no ADPE programs. However, such
customers may also be willing to do business with seller organizations with
immature or mature ADPE programs. Customers may be looking for help in
implementing their programs, and so they may contract only with sellers
who have experience dealing with cultural change issues while implementing
a mature ADPE culture. At the other end of the spectrum, customers with
mature ADPE programs may refuse to do business with seller organizations
with no ADPE programs.

There are a number of customer/seller ADPE combinations. In the following
two sections, we consider some of these combinations. In particular, the fol-
lowing two sections highlight some of the ADPE implementation issues from
the viewpoints of the buyer/user project management (Section 7.5) and
buyer/user senior management (Section 7.6).

7.5 Buyer/User Project Management

This section discusses ADPE implementation from the perspective of the
buyer/user project management. Here, “buyer/user project management” is
used to label those individuals on the customer side who give technical direc-
tion to seller project managers for accomplishing project work.

Figure 7–14 shows a customer organization’s ADPE implementation status
versus a seller organization’s ADPE implementation status. Implementation
status values are “No ADPE,” “Immature ADPE,” and “Mature ADPE.” As
shown in the figure, at some of the intersections of a seller organization
ADPE implementation status and a customer status, we have entered a pos-
sible customer reaction to the seller’s status. For example, for the case in
which the seller organization implementation status is “No ADPE” and the
customer’s status is “No ADPE,” the customer reaction may be as follows:
“Customer project management supervises seller’s staff.” This value may

Chapter 7 • Cultural Change

535

ptg

indicate that the customer perceives the seller’s staff (i.e., seller project partici-
pants) as an extension of the customer’s staff. The customer provides day-to-
day supervision of and direction to the seller’s staff. From the customer’s
point of view, this arrangement may be seen as an effective way to develop
software. In fact, this arrangement may be the case. Potential issues to con-
sider are the following:

♦ Who is in charge? Seller management or customer management?
♦ Who is responsible if a software product does not work?
♦ To whom do the seller staff report?
♦ Are such staff augmentation contracts legal? If not, why not? What is al-

lowable?
♦ What restrictions do government employees have concerning the supervi-

sion of private contractors?
♦ What is the customer’s organizational policy concerning the supervision of

private contractors?

For the case in which the seller organization implementation status is “No
ADPE” and the customer’s status is “Mature ADPE,” the customer’s reaction
may be as follows: “Customer project management will not work with the

Chapter 7 • Cultural Change

536

Customer project
management is unhappy
with seller’s ADPE
processes

Customer project
management supervises
seller’s staff

Customer project
management will not
work with seller

Customer project
management wants to
participate in evolving
seller’s ADPE

No ADPE Mature ADPEImmature ADPE

Customer Organization

Immature
ADPE

Mature
ADPE

No ADPE

S
e

ll
e

r
O

rg
a

n
iz

a
ti

o
n

Figure 7–14 ADPE implementation issues depend, in part, on how far along the customer and seller
organizations are in their respective ADPE implementations. This figure indicates a few potential
customer project manager reactions to seller ADPE implementation.

ptg

seller.” In this case, the customer may not want to spend time working with a
seller organization that does not have in place a documented way of doing
business. The customer recognizes that seller personnel come and go. The
customer may not want to get into a situation where the project is tied to one
or more key seller individuals. Of course, people are key. However, if the
seller has some documented processes in place, the customer management
may view the potential down time due to seller personnel turnover as
reduced.

For the case in which the seller organization implementation status is “Ma-
ture ADPE” and the customer’s status is “No ADPE,” the customer reaction
may be as follows: “Customer project management is unhappy with seller’s
ADPE processes.” In this case, the customer project management may view
the seller’s ADPE processes as a burden. If the customer project management
is used to supervising the seller’s staff, the customer management may expe-
rience some of the real and perceived losses that people experience during a
transition to a new or different way of doing things. This situation may be a
frustrating experience for both the seller and the customer.

For the case in which the seller organization implementation status is “Ma-
ture ADPE” and the customer’s status is “Mature ADPE,” the customer reac-
tion may be as follows: “Customer project management wants to participate
in evolving seller’s ADPE.” In this case, the customer project management
may view the seller’s ADPE processes as a major plus. Given that both orga-
nizations have their own ADPE implementation programs, the customer
project management may want to share lessons learned with the seller and
get involved with fine-tuning seller (and maybe customer) processes. Collab-
oration may be a good idea, but remember to keep the customer/seller
interaction on a businesslike basis.

What can happen when the seller organization implementation status is “Im-
mature ADPE” or the customer’s status is “Immature ADPE”? Things may
get a little more complicated. In this case, some of the seller and customer
staff are on board with the program, and some are not. This situation can
cause lots of confusion and can contribute to inconsistent software systems
development efforts. For example, suppose Sally on the seller’s side is on
board, and so is her customer counterpart. Suppose further that over time,
Sally moves on to another project where the customer is not on board. Now
Sally is faced with the situation in which the customer project management is
going to be unhappy with Sally’s use of the seller’s ADPE processes. Both
Sally and the customer may be unhappy. This case could be a lose-lose situa-
tion. Conversely, consider what may happen if Sally is not on board and
moves to a project where the customer is on board. This case may result with
Sally’s getting on board or the customer’s asking Sally to be removed from
the project.

Now let’s take a look at the same types of situations at the next higher levels
in the seller and customer organizations.

Chapter 7 • Cultural Change

537

ptg

7.6 Buyer/User Senior Management

This section addresses ADPE implementation from the perspective of the
buyer/user senior management. Here, “buyer/user senior management” is
used to label those individuals on the customer side who (1) manage the
buyer/user project management, (2) are paying the seller to set up an ADPE,
and (3) manage the managers in (1) and (2).

In general, these customer senior managers, coming as they do from different
parts of an organization, have different agendas. This situation is particularly
so if the customer is a large government organization or a large corporation.
Consequently, aspects of ADPE implementation that may please one of these
senior management organizations may antagonize another. For example, one
customer senior manager may be pleased with the visibility that manager
may have into the seller’s way of doing business brought about by ADPE im-
plementation. On the other hand, another customer manager may be against
anything the seller does simply because that manager was forced to take the
business to that seller because of a more senior customer manager or because
of contractual agreements.

Figure 7–15 shows a customer organization’s ADPE implementation status
versus a seller organization’s ADPE implementation status. We use the same

Chapter 7 • Cultural Change

538

Customer senior
management will not
pay for some of the
seller’s ADPE processes

Customer senior
management just wants
the products

Customer senior
management will not
contract with seller

Customer senior
management contracts
only with seller

No ADPE Mature ADPEImmature ADPE

Customer Organization

Immature
ADPE

Mature
ADPE

No ADPE

S
e

ll
e

r
O

rg
a

n
iz

a
ti

o
n

Figure 7–15 This figure indicates a few potential customer senior management reactions to seller
ADPE implementation.

ptg

layout for Figure 7–15 as we used in Figure 7–14. Implementation status val-
ues are “No ADPE,” “Immature ADPE,” and “Mature ADPE.” As shown in
the figure, at some of the intersections of a seller organization ADPE imple-
mentation status and a customer status we have entered a possible customer
reaction to the seller’s status.

For example, for the case in which the seller organization implementation sta-
tus is “No ADPE” and the customer’s status is “No ADPE,” the customer re-
action may be as follows: “Customer senior management just wants the
products.” In this case, the customer senior management just wants the seller
to deliver the products. The customer may not be really interested in how the
seller develops products. The customer just wants the products.

For the case in which the seller organization implementation status is “No
ADPE” and the customer’s status is “Mature ADPE,” the customer’s reaction
may be as follows: “Customer senior management will not contract with
seller.” In this case, the customer senior management may not want to spend
any resources with a seller organization that is perceived as not having a ma-
ture ADPE implementation program in place. Perhaps the seller organization
is perceived as not keeping pace with evolving software development prac-
tices. With competition as tough as it is, many customer organizations use
such criteria as “No ADPE” to filter out seller organizations. Again, the issue
is not that key individuals do not do a great job and produce a great product.
Many times key individuals do make the difference between a failure and a
success. However, customer organizations may want sellers to embody those
“key individuals’” contributions in processes so that successes can be
consistently repeated, even if key individuals leave the seller organization.

For the case in which the seller organization implementation status is “Ma-
ture ADPE” and the customer’s status is “No ADPE,” the customer reaction
may be as follows: “Customer senior management will not pay for some of
the seller’s ADPE processes.” In this case, the stakes may go up. Customer se-
nior management may be accustomed to more successes than failures, and
that’s one of the reasons the manager has risen in the ranks. However, one
visible failure may end a career. If this situation is the case, then things can
get stressful in a hurry if schedules start to slip. Schedule slippage may be
due to the seller’s inability to come to closure with the customer on require-
ments. For example, the seller follows a product development process that re-
quires the customer to sign off on requirements. If the customer is used to
dealing with “No ADPE” sellers, then enough time may not have been
planned for coming to closure. The customer may not have planned for such
time in the past and may not have known to adjust his or her thinking. The
seller was chosen because of a reputation for excellent work, but the customer
did not fully understand how things were going to work. Perhaps, in haste to
get the work, the seller did not fully communicate how business was to be
conducted. On the other hand, maybe the seller did communicate what was
required, but the customer did not fully appreciate the seller’s proposed
schedule. In the past, the customer said do it, and somehow it got done. Re-

Chapter 7 • Cultural Change

539

ptg

gardless, the project falls unacceptably behind schedule, and the customer se-
nior management pays the price. The seller may also pay the price, but either
way, it looks like another possible lose-lose situation.

For the case in which the seller organization implementation status is “Ma-
ture ADPE” and the customer’s status is “Mature ADPE,” the customer reac-
tion may be as follows: “Customer senior management contracts only with
seller.” In this case, the customer senior management may have put in place
ADPE-like processes. The customer expects that the seller has similar
processes. In this case, the customer expects the seller to speak the same kind
of ADPE language. Without such ADPE processes, the seller need not apply.
There are sellers who have or who are putting in place the requisite qualifica-
tions. Seller organizations are aware that more and more customer organiza-
tions are getting educated about ADPE-like practices. A final thought—once
a seller organization has the status of “Mature ADPE,” the seller must main-
tain and continue to improve on the processes to keep pace with (or take the
lead from) the competition.

What can happen when the seller organization implementation status is “Im-
mature ADPE” or the customer’s status is “Immature ADPE”? This case is
similar to the corresponding case considered in Figure 7–14 where the cus-
tomer project management was in the same situation. Since some of the seller
and customer staff are on board with the program and some are not, things
may get a little more complicated. Confusion and inconsistency can become
organizational watchwords. This situation can benefit from education and in-
formation about ADPE implementation. The more that is communicated, the
more that there is a possibility for understanding and improvement. One of
the most effective tools any organization has is communication.

Now let’s take a look at the same types of situations at an equivalent level in
seller organizations.

7.7 Seller Senior Management

This section addresses ADPE implementation from the perspective of the
seller senior management. Here, “seller senior management” is used to label
those individuals on the seller side who supervise seller project managers or
managers of seller project managers.

Figure 7–16 shows a customer organization’s ADPE implementation status
versus a seller organization’s ADPE implementation status. This figure is laid
out the same as Figures 7–14 and 7–15. The major difference is that Figure
7–16 is from the seller’s point of view about the customer’s ADPE status. Im-
plementation status values are the same as before. However, at some of the
intersections of a seller organization ADPE implementation status and a cus-
tomer status we have entered a possible seller reaction to the customer’s status.

Chapter 7 • Cultural Change

540

ptg

For example, for the case in which the seller organization implementation sta-
tus is “No ADPE” and the customer’s status is “No ADPE,” the seller reaction
may be as follows: “Seller senior management decides to pursue No-ADPE-
like work.” This value may indicate that seller senior management has de-
cided that there is a certain class of contract work (i.e., ADPE-like work) that
they are not going to pursue, at least in the near term. The seller senior man-
agement may recognize the cost of “retooling” its processes and “training” its
people. The business decision may be to pursue only those organizations that
have “No ADPE”-like environments.

For the case in which the seller organization implementation status is “No
ADPE” and the customer’s status is “Mature ADPE,” the seller’s reaction
may be as follows: “Seller senior management recognizes the need for
change.” This customer/seller combination can arise when the seller decides
to expand the organization’s horizons. In this case, the seller may want to
spend the necessary resources to open up the marketplace and work for a
customer organization that expects a consistent way or ADPE-like way of
doing business. The seller recognizes the fact that seller personnel come and
go. Seller senior management recognizes this fact and decides to commit re-
sources to transition the organization. Seller senior management recognizes
that people are key. However, the seller also realizes that in order for the or-
ganization to survive in the long haul, change must take place. Plans are
made to get some documented processes in place.

Chapter 7 • Cultural Change

541

Seller senior
management recognizes
the challenge

Seller senior
management decides to
pursue No-ADPE-like
work

Seller senior
management
recognizes the need
for change

Seller senior
management positions
organization for all
opportunities

No ADPE Mature ADPEImmature ADPE

Customer Organization

Immature
ADPE

Mature
ADPE

No ADPE

S
e

ll
e

r
O

rg
a

n
iz

a
ti

o
n

Figure 7–16 This figure indicates a few potential seller senior management reactions to customer
ADPE status.

ptg

For the case in which the seller organization implementation status is “Ma-
ture ADPE” and the customer’s status is “No ADPE,” the seller reaction may
be as follows: “Seller senior management recognizes the challenge.” In this
case, the seller recognizes that it will take time to help the customer transition
to ADPE-like processes. If the customer wants to transition to a mature ADPE
program, the seller’s job is made easier. Seller senior management commit-
ment is critical. Without customer willingness and seller commitment, this
case may be a frustrating experience for everyone.

For the case in which the seller organization implementation status is “Ma-
ture ADPE” and the customer’s status is “Mature ADPE,” the seller senior
management reaction may be as follows: “Seller senior management posi-
tions organization for all opportunities.” In this case, the seller senior man-
agement may view the customer’s ADPE processes as a major plus. Given
that both organizations have their own programs, the seller senior manage-
ment may want to share lessons learned with the customer and get involved
with fine-tuning customer (and maybe seller) processes. Collaboration may
be a good idea, but remember to keep the seller/customer interaction on a
businesslike basis.

What can happen when the seller organization implementation status is “Im-
mature ADPE” or the customer’s status is “Immature ADPE”? As we have just
discussed, things may get more complicated. Confusion can abound. This situ-
ation is where the seller senior management can demonstrate its commitment
to help the seller’s personnel and the customer to effect a cultural change. This
case then becomes a win-win situation for both the seller and the customer.

We want to make one last point before we move on to the summary section.
Simply stated, implementing change for the sake of change is not useful.
Changing the way an organization does business is complicated and com-
plex. People are critical to an organization’s success, as are effective and use-
ful processes. People who have been successful have valuable lessons learned
that should be carefully examined and considered for incorporation into an
organizational process. At the same time, while lessons learned are valuable,
so are small changes and innovations to existing processes. Small changes to
proven processes and innovative approaches help to stretch the organization
beyond its current capabilities and help it to grow. Each adaptation and inno-
vation must be carefully weighed. Therefore, it is important that all levels in
the organization participate in the cultural change journey and that they care-
fully select a path that makes sense for the people and the organization.

7.8 Cultural Change Summary

Table 7–1 summarizes the key points developed in the chapter. It offers cul-
tural change guidance associated with each of the perspectives considered in
the preceding sections.

Chapter 7 • Cultural Change

542

ptg

Table 7–1 Perspectives and Cultural Change Guidance.

Perspective Guidance

Process Engineering Group Involve project-level staff in ADPE development by soliciting their inputs
during and subsequent to ADPE element development. This approach
helps to achieve buy-in from the individuals who must live with ADPE
elements. The result is unforced cultural change. Avoid producing
recipelike ADPE elements.

Seller Project Participants Recognize that the PEG’s job is to help you and those to whom you report
to do your job and their jobs better. The more experienced you are, the
more inclined you may be to resist ADPE practices that may differ from
your way of doing things. Remember that the organization is the ADPE
focus. The ADPE establishes the organization’s business practices—and
thus its culture. Work with the PEG to refine these practices. Remember,
while everybody should be heard, it is simply not possible to establish
practices that let everybody do his or her own thing—that is anarchy. Do
not take personally the nonincorporation of your suggestions into ADPE
elements. A true measure of experience (and professional maturity) is
willingness to adapt personal practices to organizational practices.

Seller Project Manager Set the example for your staff by promoting buy-in to the organizational
practices set forth in the ADPE. Why make your already harried job more
tumultuous by resisting ADPE implementation? When the PEG sends out
ADPE elements for review and comment, exploit the opportunity to make
your needs known. But remember, the ADPE is put there to define
consistent business practices for the organization—not to accommodate
your personal preferences.

Buyer/User Project Management You are paying the seller to give you what you asked for. Recognize that
both you and the seller will mutually progress in understanding what
needs to be done. A competent seller sets up an ADPE to facilitate this
mutual progression of understanding. It is simply counterproductive to
resist getting acclimated to ADPE business practices. Remember, you have
the opportunity when hiring the seller to make your business practice
requirements known. Remember, too, that you have hired the seller
because you were looking for someone to develop software systems for
you. While the “old way of doing business” may be all right in certain
circumstances, work with the seller to see what makes sense to do now.

We have completed our discussion of bringing about cultural change through
SEE implementation. The next chapter, Chapter 8, which concludes the book,
talks about SEE implementation planning. We provide guidance on how to
write an SEE implementation plan to establish the framework for doing the
things discussed in the preceding chapters. We have chosen to end the book
by discussing what should normally be done first in bringing about software
process improvement through an SEE—namely, planning. It is simply easier
to discuss the planning process once you understand the key factors bearing
upon SEE implementation. The final chapter leads you through a series of is-
sues that helps you pull together the concepts from the preceding chapters to
help you construct an SEE implementation plan for your organization.

Chapter 7 • Cultural Change

543

(continued)

ptg

Chapter 7 • Cultural Change

544

Table 7–1 Perspectives and Cultural Change Guidance. (Continued)

Perspective Guidance

Buyer/User Senior Management When you hire a seller, offer incentives for setting up an ADPE. Two
notable ways to provide these incentives are (1) pay for the PEG (and
adequately staff it) and (2) tie the seller’s fee to performance. Take care to
get a balanced view of how well the ADPE is working by querying seller
management as well as your own project managers. Do not undermine fee
determination by attributing your project managers’ shortcomings to the
seller’s project managers. Remember, your project managers will tend to
resist the seller’s ADPE practices because they will naturally be more
comfortable with the old way of doing business. Actively promote the
new way by, for example, encouraging your project managers to
participate in seller-led training activities aimed at explaining the new
way and its benefits. Remember that when the buyer/user and seller enter
into a contract to do business the ADPE way, then both parties should be
accountable for the way they conduct the business of software systems
development. Insist that your project managers support the CCB process
to bring about buyer/user and seller accountability.

Seller Senior Management Walk the talk. Set the example for your project managers and staff by
showing that you are committed to doing business the ADPE way. Among
other things, this commitment means working with the customer to obtain
his or her buy-in to the ADPE way. Without senior seller management
commitment to the ADPE way, the organization will fracture into
competing subcultures. This dissention will not be lost on the customer,
who may question the seller’s commitment to the buyer/user—with a loss
of (follow-on) business.

ptg

chapter 8chapter 8

Make no little plans; they have no magic to stir men’s blood and probably themselves will not be
realized. Make big plans; aim high in hope and work, remembering that a noble, logical diagram
once recorded will never die, but long after we are gone will be a living thing, asserting itself
with ever-growing insistency. Remember that our sons and grandsons are going to do things
that would stagger us. Let your watchword be order and your beacon beauty.

—Attributed to Daniel H. Burnham [(1846–1912), American archi-
tect and city planner.] While Burnham expressed these thoughts in a
paper he read before the Town Planning Conference, London, 1910,
the exact words were reconstructed by Willis Polk, Burnham’s San
Francisco partner. Polk used the paragraph on Christmas cards in
1912 after Burnham’s death in June of that year. —Henry H.
Saylor, “Make No Little Plans,” Journal of the American Institute
of Architects, March 1957, pp. 95–99.1

8.1 Introduction

The purpose of this chapter is to give you guidance for writing an SEE imple-
mentation plan. Armed with this guidance, you can establish the framework
for applying to your organization the things discussed in the preceding chap-
ters. Our approach is to present and discuss key SEE implementation issues.

545

Process
Improvement
Planning

1Suzy Platt, ed. Respectfully Quoted: A Dictionary of Quotations from the Library of Congress (Washington,
DC: Congressional Quarterly Inc., 1992), p. 256.

ptg

The aim of this discussion is to provide you with insight into how to lay out
an SEE implementation approach that makes sense for your organization. For
example, we discuss the rate at which ADPE elements should be developed
and implemented. We describe some of the key factors bearing upon this rate
(e.g., the software and system engineering experience level of your organiza-
tion’s management and staff). These factors should help you plan an ADPE
development and implementation rate appropriate for your organization.

Before we address process improvement planning issues, we set context. Fig-
ure 8–1 reminds us that, as we repeatedly stressed in the preceding chapters,
consistent successful software systems development requires sustained effec-
tive communication between the software seller and the software customer.
Reduced to the simplest terms, the concepts and principles examined in these
chapters have their roots in this premise. We now recall some of these con-
cepts and principles through an overview of the preceding chapters. To aid
you in this recall, Figure 8–2 highlights the theme of each of these chapters.

♦ Chapter 1 (Business Case) explored why it makes good business sense for
an organization to take the time to alter its way of doing software develop-
ment to achieve consistency. This chapter also introduced key concepts to
establish a working vocabulary for the rest of the book (e.g., software, soft-
ware process, product and process “goodness,” culture). We emphasized
that customer/seller faulty communication underlies a majority of soft-
ware systems development problems. We stressed that software process
improvement is first and foremost a cultural change exercise. We intro-
duced the requisite software systems development disciplines—manage-
ment, development, and product assurance. We introduced the change
control board (CCB) as a mechanism for sustaining effective communica-
tion among these disciplines throughout a software systems development
project. We introduced the notion of “prescriptive application” of an orga-
nization’s documented software systems development process. We ex-

Chapter 8 • Process Improvement Planning

546

Figure 8–1 At the most fundamental level, the avenue to consistent successful software systems
development is sustained effective communication between the wizard (i.e., software seller) and the
king (i.e., software customer). (The Wizard of Id, September 30, 1983. Reprinted by permission of
Johnny Hart and Creators Syndicate, Inc.)

ptg

Organizational Software
Systems Development Process

PROCESS

¶

The SEE approach to making successful software
development happen segments the process improvement
challenge into smaller, more manageable pieces. The
environment consists of a process component (ADPE) and a
technology component (ADTE). This book focuses on the
ADPE, which consists of an interlocking set of policies,
guidelines, procedures, and standards.

A risk-based project planning process that integrates the life
cycle concept with the interaction among management,
development, and product assurance disciplines yields a
project plan that enhances the chances for project success.

SEE implementation is an organizational cultural change
exercise generally requiring behavior modification for
consistent successful software systems development.

A successful software systems development process
establishes a climate whereby the customer and seller can
transact business in an accountable, repeatable manner.
Individual projects within the organization prescriptively apply
the process—i.e., they apply it in a manner that makes sense
considering the project’s budget, schedule, and other key
factors.

The change control board (CCB) is the pivotal element in a
successful software systems development process. It is the
forum for transacting software business among the seller
and/or the customer management, development, and product
assurance disciplines.

A successful software systems development process
incorporates product and process reviews involving different
parties (including peer reviews, product assurance reviews,
technical editing, and management reviews).

If the software systems development process does not
consistently produce “good” products, it needs to be changed
until it does. Measuring product and process “goodness” in
terms meaningful to your organization can guide process
improvement efforts. One way to quantify “goodness” is via a
multidimensional entity called “integrity.”

Chapter 1

Business
Case

Chapter 2

Project
Planning
Process

Chapter 3

Software
Systems

Development
Process

Chapter 4

Change
Control
Process

Chapter 5

Product and
Process
Reviews

Chapter 6

Measurement

Chapter 7

Cultural
Change

ADPE ADTE
S E E

Policies
Guidelines
Procedures
Standards

Product Metric

SOFTWARE

Process Metric

PROCESS

“G
o

o
d

n
es

s”

“G
o

o
d

n
es

s”

Behavior
Modification

INDIVIDUALLOSS

INDIVIDUALLOSS ORGANIZATIONAL

GAIN

Management

Development

Product Assurance

CCB

Product
Assurance

Development

Management

Figure 8–2 The preceding chapters capture the essence of things that you need to consider in planning for implementing a
systems engineering environment (SEE) in your organization. SEE implementation is a structured way of institutionalizing con-
sistent successful software systems development. This chapter integrates the ideas from the preceding chapters to guide your
SEE implementation planning activity.

ptg

plained why prescriptive application is one of the keys to institutionalizing
the process. We introduced the concept of “systems engineering environ-
ment.” We explained that this book’s approach to cultivating consistent
successful software systems development has its roots in the SEE concept.
The SEE also provides the means for effecting improvement to the soft-
ware development process. Consistent successful software systems devel-
opment and software process improvement are thus intertwined in the
SEE concept.

♦ Chapter 2 (Project Planning Process) provided you with guidance for effec-
tively planning software systems development work. We referred to the
document containing planning information as the “project plan.” We indi-
cated that the project plan is a gauge used, in part, to think through what
needs to be done, to estimate how much the effort may cost, and to deter-
mine whether software systems development work is unfolding as it was
envisioned. We stressed that project planning is an ongoing negotiation be-
tween the customer (king) and the seller (wizard). We showed you how to
plug the CCB apparatus into your project plan so that the wizard and king
could effectively interact throughout the project. We showed you how the
life cycle concept can be used to drive out specific tasks to be performed.
We illustrated this fundamental point with three example life cycles—
(1) six-stage classical development, (2) prototype development, and
(3) (data-centered) information engineering. We showed you how to de-
sign a simple risk assessment approach for allocating resources to the three
sets of requisite software systems development disciplines—management,
development, and product assurance—thereby showing how you can ex-
plicitly incorporate risk reduction into your project budget. Most impor-
tantly, we showed you how to plan for change. We organized this project
planning guidance into an easy-to-use package by showing you how to de-
velop an ADPE element defining your organization’s project planning
process.

♦ Chapter 3 (Software Systems Development Process) established the focus
for the remainder of the book. We defined principles for defining a soft-
ware systems development process. We explained that a process con-
structed by applying these principles is likely to yield consistently “good”
products—i.e., products that your customer wants and that are delivered
on time and within budget. To help you apply these principles, we illus-
trated them by defining a top-level process that you can use as a starting
point to formulate a process for your own organization. We again stressed
the critical importance of maintaining the wizard and king dialogue by
making the CCB a key element of the top-level process. We emphasized
that, in general, the process cannot be reduced to a rigidly defined proce-
dure with a definite order to the steps to be followed. Rather, we stressed
that prescriptive application of the process was key to achieving consistent
software systems development. That is, the process should specify what is
to be done; individuals should be empowered to figure out how to do the
what. We showed you how to plug a specific life cycle into the top-level

Chapter 8 • Process Improvement Planning

548

ptg

process to explain how a project unfolds during process application. We
showed you how to design a form to help you track a product as it wends
its way through your software systems development process. We ex-
plained that the process does not stop once the product goes out the
seller’s door. Rather, we discussed the customer and seller responsibilities
after the seller has delivered the product to the customer. We folded the
chapter’s process definition ideas into an easy-to-use package—namely, an
annotated outline for an ADPE element defining your organization’s soft-
ware systems development process. We explained why this element is a
good place to begin setting up your ADPE.

♦ Chapter 4 (Change Control Process) focused on the change control board
(CCB) as a forum for sustaining effective communication between the wiz-
ard and king as well as among the wizard’s staff. We provided you with
guidance for setting up CCBs for your software systems development
process. We also provided guidance for managing unplanned, as well as
planned, change. We thereby closed the loop introduced in Chapter 2
where we emphasized that you need to account for the unknown in your
project plan as well as accounting for the known. Chapter 4 also closed the
loop introduced in Chapter 3, which stressed that, by integrating the cus-
tomer/seller CCB into your software systems development process, you
make product acceptance by the customer almost a foregone conclusion.
We showed you how to do this integration by stepping through change
control mechanics for both planned and unplanned changes. We explained
the CCB role in traversing a project life cycle. We introduced the following
three scenarios, each regulated by a CCB, that we asserted govern all of
change control:
♦ Do we want something new or different?
♦ Is something wrong?
♦ Should we baseline the product?
We showed you what to record at CCB meetings and gave examples of
CBB minutes. We offered you guidance for choosing a CCB chairperson
and a CCB voting mechanism. We offered you guidance for determining
when CCB hierarchies are appropriate and how to set them up. We gave
you detailed guidance for constructing change control forms to support the
preceding change control scenarios. We also gave example forms to help
you get started in applying this guidance. We organized the CCB concepts
and guidance into an easy-to-use package by showing you how to develop
an ADPE element defining your organization’s change control boards.

♦ Chapter 5 (Product and Process Reviews) focused on the product and
process reviews needed to give visibility into what is happening on a soft-
ware project. To establish context for the chapter, we asserted the following:
♦ Each software project should be approached with the candid realization

that it is a voyage through iceberg-infested waters (or worse!).
♦ If this attitude is adopted, then common sense and the natural instinct

for self-preservation can lead to only one conclusion—that some way

Chapter 8 • Process Improvement Planning

549

ptg

must be found to steer clear of the icebergs to the extent prudently
possible.

♦ Product and process reviews are techniques for steering clear of the
icebergs.

We defined a two-dimensional review taxonomy that consists of the fol-
lowing product and process reviews:
♦ Management Reviews

♦ Product and Process Programmatic Tracking
♦ Product and Process Technical Oversight

♦ Development Reviews
♦ Product and Process Peer Reviews
♦ Technical Editing of Software and Software-Related Documents

♦ Product Assurance Reviews
♦ Product Quality Asurance, Verification and Validation, Test and

Evaluation, and Self-Comparison
♦ Process Quality Assurance at the Product Level and at the Project

Level
The product reviews identified were, for the most part, those called out in
Chapter 3 when we defined a top-level software systems development
process. The process reviews identified were extensions to the product re-
views. For example, for management, we called out two types of reviews—
programmatic tracking and technical oversight—for both a specific
product and the software systems development process.
We organized the chapter along the lines of the systems disciplines. Be-
cause we believe that application of the product assurance disciplines of-
fers the greatest potential for reducing risk on a software project, the
chapter devoted considerable attention to the product assurance product
reviews. In particular, the chapter stepped through the mechanics of prod-
uct assurance document reviews and acceptance testing. In this book, ac-
ceptance testing constitutes that activity in the software systems
development process where the wizard formally demonstrates to the king
that the software system and supporting databases do what they are sup-
posed to do. Acceptance testing is therefore the bottom line of the software
systems development process. For this reason, the chapter includes a de-
tailed discussion of requirements testability with a worked out example.
For reviews not addressed (e.g., unit and integration testing), the chapter
offered suggestions for extending the taxonomy to include such reviews.
To help you apply the review guidance presented in the chapter, we
showed you how to develop an ADPE element for product assurance re-
views. We showed you how to integrate other product and process re-
views into this element. Because peer reviews are generally recognized as
adding significant value to the software systems development process, we
showed you how to develop a peer review ADPE element.

Chapter 8 • Process Improvement Planning

550

ptg

♦ Chapter 6 (Measurement) provided you with guidance for measuring
product and process “goodness.” Borrowing from the mathematical disci-
pline of vector analysis, we quantified “goodness” as the length of a vector
in a space that we labelled “integrity.” The dimensions in this space are the
product or process attributes that we are interested in measuring. For ex-
ample, for a product we might want to measure the extent to which cus-
tomer requirements are satisfied and/or whether delivery was on time
and/or delivery was within budget. For a process, we might want to mea-
sure, for example, whether peer reviews were conducted and/or whether
product assurance reviews were performed and/or whether risk assess-
ment was performed during project planning. We illustrated how to set up
value scales for the attributes and gave you guidance for establishing value
scales that make sense for your organization. We illustrated how to mea-
sure the integrity of a requirements specification, a user’s manual, com-
puter code, and a project plan. We illustrated how to measure the integrity
of the process introduced in Chapter 3. To help you apply the chapter’s in-
tegrity measurement approach, we reduce it to a small number of easy-to-
follow steps. These steps also show you how to relate process integrity and
product integrity measurements to one another to help you focus your
process improvement efforts.
The product/process integrity measurement approach presented is actu-
ally a very general approach to quantifying almost any object. We thus call
this approach “object measurement,” or OM®. To hint at its general
applicability, we applied OM to the Software Engineering Institute’s Capa-
bility Maturity Model for Software (CMM® for Software) to show how the
model’s key process areas (KPAs) could be quantified. We also showed
how OM can be used to quantify abstract entities such as strategic informa-
tion management.
In addition to product integrity and process integrity measurements, we
showed how to establish other process-related measurements tied to one
or more components of the software systems development process. The
approach was based on taking simple averages involving the number of
times a particular activity or set of activities was performed on various
projects within an organization. For example, we defined the following
measurements that might be useful for an organization to collect for the
purpose of assessing process effectiveness:
♦ Average number of peer reviews required to produce deliverables that

are accepted by the customer (i.e., the customer returns the Acceptance
of Deliverable form indicating “the product is accepted as delivered”).

♦ Percentage of deliverables delivered on time to the customer during a
specific period for certain projects, where “on time” is according to
delivery dates specified in project plans or CCB minutes.

♦ Average number of drafts required to produce a project plan resulting
in a project.

♦ Customer perception of the seller organization.

Chapter 8 • Process Improvement Planning

551

ptg

We organized the chapter’s measurement guidance into an easy-to-use
package by showing you how to develop an ADPE element defining your
organization’s product and process metrics and your organization’s ap-
proach to applying them to improve your software(-related) products and
software development process.

♦ Chapter 7 (Cultural Change) focused on the human, as opposed to engi-
neering, issues bearing on successful software systems development.
The chapter proceeds from the following premise, which is grounded in
experience:

Getting a process on paper is a challenge, but getting the people in the
organization to commit to the change is the challenge. People commit to
change for their own reasons, not for someone else’s reasons. Therefore,
when people are asked to commit to change, their first concern may be
their perceived losses.

We stressed that SEE implementation is first and foremost a cultural
change exercise—an exercise in behavior modification. As we explain in
the current chapter, this consideration bears heavily on developing a real-
istic SEE implementation plan. Successful software implementation is pre-
dominantly a people management exercise and not an engineering
management exercise. Most of us do what we do (whether it is developing
software systems or brushing our teeth) because we feel most comfortable
doing things our way. It should therefore not be a surprise that persuading
people in the software systems development world to do things someone
else’s way (i.e., the organization’s way) can be a daunting challenge—
fraught with surprises.
We examined the role in bringing about cultural change of the organiza-
tion responsible for writing the ADPE elements (i.e., the process engineer-
ing group [PEG]) and seeing to it that they are implemented and
continually improved. We alerted you to considerations bearing upon PEG
member qualifications (e.g., hands-on experience developing software
systems).
We discussed how to deal with ADPE implementation challenges arising
from the wizard’s project-level individuals who will have to adapt to prac-
tices set forth in the ADPE elements that govern their work. On the cus-
tomer side, we discussed how to deal with ADPE implementation
challenges arising from those kings who give technical direction to wizard
project managers. In this vein, we discussed how to get the customer to be
part of ADPE implementation. We also discussed the pros and cons of get-
ting the customer to be accountable for ADPE implementation, as well as
the seller.
We examined the key role that seller senior management plays in effecting
software systems development cultural change through ADPE implemen-
tation. On the other side, we examined the impact on customer senior
management that ADPE implementation brings about.

Chapter 8 • Process Improvement Planning

552

ptg

We provided you with guidance for extracting key ideas from ADPE ele-
ments and packaging them for distribution to your organization as a
means for effecting cultural change (e.g., the use of prominently displayed
foam boards showing key process concepts such as requirements based
acceptance testing).
We discussed the role of training in effecting cultural change. In particular,
we stressed the key role that ADPE element briefings to wizard and king
staff plays in getting the organization to assimilate desired engineering be-
havior. Allied with the role of training in bringing about cultural change,
we examined the role of mentoring and coaching. We discussed how to sell
ADPE implementation as a career growth opportunity.
We looked at organizational factors bearing upon how long it takes to
bring about cultural change.
We examined why an ADPE element defining the ADPE element develop-
ment and improvement process is intimately tied to organizational cultural
change.
We concluded the chapter by giving you an annotated outline for an ADPE
element defining the ADPE element development and improvement
process. This element provides the framework for evolving the ADPE in a
self-consistent manner.

Where do you go from here? How do you put together the concepts and
guidance from the preceding chapters to lay out an approach for consistent
successful software systems development or to improve what you already
have? As Figure 8–3 indicates, this chapter is aimed at helping you plan an
SEE implementation approach.

We stress at the outset that this chapter is intended for both wizards and
kings. If you are a wizard, this chapter will help you respond to a king’s re-
quest for a wizard whose skill lies not in hand-waving but lies in setting up
and following processes that consistently yield products with integrity (ide-
ally, you should not have to wait for a king to ask you for a repeatable way of
doing business). If you are a king, this chapter will help you (1) construct an
SEE implementation approach to include in a request for proposal (RFP) that
you want a wizard that you intend to hire to follow or (2) give guidance in an
RFP to a wizard that you want to hire to construct an SEE implementation ap-
proach to include in the wizard’s proposal or (3) give guidance to a wizard
that you have already hired to construct an SEE implementation approach.

As Figure 8–3 indicates, “implementation plan” as used in this chapter spans
a broad spectrum. It could be something as informal as notes scribbled on the
back of an envelope highlighting the handful of things that need to be accom-
plished to set up and operate within an SEE. At the other end of the docu-
mentation spectrum, “implementation plan” could be a multivolume tome
(for, say, a large systems development effort with major software content, or
for a large organization handling fifty to several hundred or more concurrent
software systems development efforts). Or “implementation plan” could be

Chapter 8 • Process Improvement Planning

553

ptg

554

P
L
A

N

VOL 1

VOL 2

VOL 3

VOL 4

Plan

1. Set up process

2. Get buy-in

3. Apply process

4. Get feedback

5. Change process

Implementation
Plan

Chapter 1

Business

Case

Chapter 2

Project
Planning
Process

Chapter 3

Software
SystemsDevelopmentProcess

Chapter 4

Change
Control
Process

Chapter 5

Product
and

Process
Reviews

Chapter 6

Measurement

Chapter 7

Cultural
Change

Chapter 8

Process
Improvement

Planning

Task 1

Task 2

Task 3
Task 4Define process

Measure process

Improve process

Figure 8–3 This chapter offers planning guidance to wizards and kings for setting up a software process improvement ap-
proach via SEE implementation. The chapter helps you select concepts from the preceding chapters to construct this ap-
proach. The concept of implementation plan as used in this chapter means “anything from notes scratched on the back of an
envelope to a multivolume formal and highly detailed document—whatever makes sense for your organization.” Reduced to
simplest terms, plan in this chapter means “think and coordinate before doing.”

ptg

something in between these two documentation extremes. No matter where
in the spectrum it lies, the purpose of the plan is to bring involved parties
within an organization into the same frame of reference for setting up a
consistent way of doing software systems development business.

This chapter serves as a guide to help you work your way back into previ-
ously introduced ideas to integrate them into an SEE implementation ap-
proach that makes sense for your organization. Since we do not know the
details of your organization, this chapter bounds your thinking by giving you
factors to consider when laying out an implementation approach. For exam-
ple, we give you things to consider bearing upon how frequently ADPE ele-
ments should be updated so that you can include in your implementation
plan an element update schedule.

The plan for the remainder of this chapter is the following:

♦ In Section 8.2—SEE Implementation Planning Key Ideas—we present the
key ideas that you can expect to extract from this chapter.

♦ In Section 8.3—Key SEE Implementation Planning Issues—we present
and discuss nineteen issues that you can draw upon to decide what may be
important for your organization regarding SEE implementation.

♦ In Section 8.4—Making Successful Software Development Happen—we
offer some closing remarks about the book.

8.2 SEE Implementation Planning Key Ideas

Figure 8–4 lists the key ideas that you can expect to extract from this chapter.
To introduce you to this chapter, we briefly explain these key ideas. Their full
intent will become apparent as you go through the chapter.

1. Plan your process improvement with business practices defined in ADPE el-
ements. Your SEE implementation plan should propose an element phase-in
strategy, with your first element defining your software systems develop-
ment process.
As we showed in Chapter 3, this element establishes the context for
most or all other ADPE elements. The software systems development
process element is itself thus a plan for subsequent ADPE develop-
ment. Any SEE should include at least this element.

2. The primary objective of SEE implementation is to establish organization-
wide business practices that do not depend on particular individuals for
their successful accomplishment.
This objective should not be misunderstood. Removing dependence on
particular individuals for successful software systems development
does not mean that SEE implementation is designed to put people out

Chapter 8 • Process Improvement Planning

555

ptg

Process Improvement Planning Key Ideas

1. Plan your process improvement with business practices defined in ADPE el-
ements. Your SEE implementation plan should propose an element phase-in
strategy, with your first element defining your software systems develop-
ment process.

2. The primary objective of SEE implementation is to establish organization-
wide business practices that do not depend on particular individuals for
their successful accomplishment.

3. Package your engineering environment in a binder containing your ADPE
elements and material pertinent to your technology environment. Give a
binder copy to each member of your organization.

4. Make the CCB your process focal point for customer/seller interaction.

5. In a small organization (say, up to ten people), plan for packaging the
ADPE into a single element, with each section addressing what in a larger
organization would be a separate element.

6. Include in your plan a strategy for winning people over to the ADPE way
(e.g., mentoring, bonuses).

7. Make requirements management a training priority.

Chapter 8 • Process Improvement Planning

556

Figure 8–4 Here are some key process improvement planning concepts explained in this chapter. These key ideas are your
guide to plan SEE implementation realistically. A realistic SEE implementation plan helps to focus your efforts toward consis-
tent successful software systems development. To plan realistically in this chapter means “laying out an approach that moti-
vates people to (1) overcome their resistance to change and (2) implement SEE business practices.”

of work. Good people are certainly needed to achieve successful soft-
ware systems development. The intent of establishing organization-
wide business practices is to plug all these people into a consistent way
of doing things, so that on any given day good work will be done no
matter who is doing the work. These business practices leverage the
goodness of people across the organization and help provide them
with professional mobility. For example, Chapter 4 showed how to set
up an ADPE element governing an organization’s CCB meetings.
Specifically, we explained how this element can be used to specify or-
ganizationwide practices for setting up, conducting, and documenting
CCB meetings. These practices allow CCB meetings to be conducted
and documented on any given day in the same way that they are con-
ducted and documented on any other day—no matter who is conduct-
ing and documenting them. Good people are, of course, needed to
make these meetings worthwhile—that is, to help carry through on
software project work.

ptg

3. Package your engineering environment in a binder containing your ADPE
elements and material pertinent to your technology environment. Give a
binder copy to each member of your organization.
SEE implementation cannot begin to happen unless the SEE gets into
the hands of your organization’s people. One standard way to promul-
gate ADPE elements and the associated technology environment is to
place this material in a binder (hard copy or electronic) and give each
member of your organization a copy when that person joins your orga-
nization. The binder should also contain an explanation of the SEE con-
cept and the relationship of this concept to your organization’s
business objectives. It should also contain instructions for adapting its
contents to the specific project work to be accomplished by the binder
recipient. For example, each binder should have space for project-spe-
cific material such as a copy of the customer’s statement of work
(SOW) and the project plan governing that recipient’s work. Your orga-
nization should set up a process for sending SEE updates to binder
recipients.
Of course, packaging the SEE in a binder and giving binder copies to
each member of your organization does not make the business prac-
tices in the binder happen. Among other things, your organization
should establish a policy delineating that each individual is responsible
for (1) reading its contents, (2) following the practices documented
therein, and (3) promoting these practices with your organization’s
customers. To make this policy happen, you will need to offer training
and incentives. The training should be aimed at explaining such things
as the engineering principles underlying ADPE elements and the value
added of following the practices; the training should also stress that
following the practices offers the individual career growth opportuni-
ties because the individual is not a captive of a particular project func-
tion (e.g., with a documented configuration management process,
individuals currently handling configuration management functions
can move on to other things because these documented functions can
be performed by other individuals). But documenting your business
practices (through ADPE elements or by other means) itself will gener-
ally not make SEE implementation happen. People will need to be of-
fered incentives to adapt themselves to these business practices (e.g.,
salary raises tied to the degree to which an individual can demonstrate
that he or she has followed the SEE way on project work).

4. Make the CCB your process focal point for customer/seller interaction.
At the outset of this chapter, we reiterated that the avenue to consistent
successful software systems development is the sustained effective
communication between the wizard (i.e., software seller) and the king
(i.e., software customer). Chapter 4 detailed how the CCB is a mecha-
nism for sustaining this communication. Chapter 3 explained how the
CCB serves to focus project activity. A CCB mechanism should be put

Chapter 8 • Process Improvement Planning

557

ptg

in place even before you document your organization’s software sys-
tems development process. Customer/seller interaction should be for-
malized (via a CCB mechanism) at project outset—even without a CCB
ADPE element. CCB rules can be stipulated in the project plan. Lessons
learned from iterating on such rules during the early stages of setting
up an SEE can be folded into such an element (to be promulgated after
a software systems development process ADPE element has been
promulgated).

5. In a small organization (say, up to ten people), plan for packaging the
ADPE into a single element, with each section addressing what in a larger
organization would be a separate element.
A consistent way of doing software systems development business is
independent of organization size. Thus, documented business prac-
tices have a place in small as well as in large organizations. Because the
number of communications paths among individuals is much less in
small organizations than it is in large organizations, the amount of doc-
umentation needed to specify these practices is generally much less in
small organizations than it is in large organizations. This principle
should be applied when planning SEE implementation for a small or-
ganization. However, as with most software engineering principles,
this principle is not inviolate. In some cases, it may be necessary to
have voluminous ADPE elements even in a small organization. Such
would be the case if, for example, a small organization were responsi-
ble for developing software systems whose failure might result in peo-
ple getting killed, suffering injury, or sustaining large financial loss.
Such would also be the case if a small organization were developing
software systems under a fixed-price contractual vehicle. In this case,
the seller might sustain large financial loss if the way of doing business
were not clearly spelled out (particularly if the seller becomes involved
in litigation). A small organization might also need voluminous ADPE
elements if it were responsible for developing warranted software sys-
tems (for example, the seller would be responsible for repairing or re-
placing computer code, databases, and/or documentation for, say, up
to one year after purchase—at no cost to the buyer).

6. Include in your plan a strategy for winning people over to the ADPE way
(e.g., mentoring, bonuses).
We detailed in Chapter 7 how ADPE implementation is a cultural
change exercise. A realistic SEE implementation plan needs to include
a strategy for winning people over to the ADPE way by (1) accounting
for people’s natural resistance to change, (2) building upon business
practices that may already exist, and (3) encouraging people to
contribute to the development of new business practices.

7. Make requirements management a training priority.
This key idea is a corollary to the message in the wizard-and-king
comic strip. Requirements management is the number one challenge

Chapter 8 • Process Improvement Planning

558

ptg

industrywide to successful software systems development. If it does
nothing else, your requirements management training should provide
guidance on how to institute effective oral and written communication
between the wizard and king.

8.3 Key SEE Implementation Planning Issues

This section discusses the planning issues listed in Figure 8–5. This section is
intended to help you overcome the blank-page syndrome as you approach
the SEE implementation planning task. You should first read through the is-
sues. Then, cull out from this reading those issues that you think are impor-
tant for your organization. The discussion of these issues included in this
section should help you put together your SEE implementation approach. We
give you an annotated outline for an SEE implementation plan to help you or-
ganize this material. Also, you should add to the issues addressed in this sec-
tion any other issues that may come to mind as you go through the issues
included in this section.

Each issue listed is discussed separately. The purpose of this discussion is to
give you insight into factors bearing on the issue. With this insight, you can
determine (1) whether the issue is pertinent to your organization and, if so,
(2) how to address the issue in your implementation plan. Even if your imple-
mentation plan is only laid out on the back of an envelope, you will need to
deal with some of these issues. The issues shown may also stimulate you to
formulate other issues that are important for your organization.

The focus in this chapter is on the ADPE side of the SEE. However, we do
provide you some top-level guidance regarding the ADTE. Because this book
focuses on process, we do not give technology-specific guidance.

To help you see the factors bearing on the issue, we include at least one figure
for each issue addressed. You may want to adapt one or more of these figures
to your environment and include them in your SEE implementation plan
and/or your ADPE elements.

We now begin the discussion of each of the nineteen issues listed in Fig-
ure 8–5.

Chapter 8 • Process Improvement Planning

559

1. What are timeline considerations for SEE implementation tasks
and their phasing?

A key element of any planning activity is scheduling. To help you plan SEE
implementation, we show in Figure 8–6 a representative timeline of tasks and
their phasing. For completeness, we also include in the timeline the task for
writing the SEE implementation plan itself. Before examining this figure in

ptg

detail, we note that buyers may want to use this timeline as a starting point
for specifying an SEE implementation approach to include in an RFP. The
buyer may want candidate sellers to specify in their proposals how they
would pursue such an approach.

We now consider some of the key planning factors associated with the Figure
8–6 timeline. The task durations shown in Figure 8–6 will generally vary
across a broad range. They depend on factors such as the following:

Chapter 8 • Process Improvement Planning

560

What are timeline considerations for SEE implementation tasks and their phasing?
How should ADPE elements be phased in?
What ADPE elements should be included in your SEE?
How should the ADPE be constituted—(1) from a small number of elements (i.e., approximately ten), each
consisting of tens of pages or more, or (2) from a large number of elements (i.e., tens or more), each consisting of
a couple of pages, or (3) some combination of (1) and (2)?
How frequently should an ADPE element be updated?
What amount of detail should be included in individual ADPE elements?
How can you define a plan for an application development technology environment (ADTE) for your organization?
How do you package ADPE elements and related items?
How should ADPE implementation be handled if your organization is small? (Here, small organization means “an
organization having only a few projects, each involving only a small number of people [say, up to ten] so that all
involved parties frequently come in contact with one another.”)
What is an austere SEE implementation approach?
How can mentoring and coaching be leveraged to facilitate implementation of ADPE practices?
What strategies can be adopted to meet the cultural change challenges posed by SEE implementation?
How do you deal with the business reality of the almighty dollar in bringing about ADPE implementation?
How do you account for the reality that people within an organization span a broad spectrum of willingness to
adapt to the engineering environment?
Who should develop the SEE in your organization?
How do you frame an SEE implementation policy?
How do you plan ADPE implementation improvement at the project level?
How can process and product measurement be integrated with your organizational process?
How should you structure an SEE implementation plan?

1.
2.
3.
4.

5.
6.
7.
8.
9.

10.
11.
12.
13.
14.

15.
16.
17.
18.
19.

Key SEE Implementation Planning Issues

P
L
A

N

VOL 1

VOL 2

VOL 3

VOL 4

Plan

1. Set up process

2. Get buy-in

3. Apply process

4. Get feedback

5. Change process

Implementation
Plan Task 1

Task 2

Task 3
Task 4Define process

Measure process

Improve process

Figure 8–5 Here are the key SEE implementation planning issues addressed in this chapter. These issues are things that you
should consider when planning an SEE implementation approach for your organization.

ptg

Chapter 8 • Process Improvement Planning

561

SEE

Implementation

Write Implementation
Plan

Prepare and Use Trial
ADPE Elements

Prepare Software
Systems Development
Process ADPE
Element

Promulgate Software
Systems Development
Process ADPE
Element

Prepare CCB ADPE
Element

Promulgate CCB
ADPE Element

Prepare ADPE
Element Development
Process ADPE
Element

Promulgate ADPE
Element Development
Process ADPE
Element

Measure ADPE
Processes

Develop and
Promulgate
Additional ADPE
Elements

Revise Promulgated
ADPE Elements

Planned
Finish

Mar 27, 2000

Oct 10, 2000

Dec 29, 2000

Jan 2, 2001

Mar 13, 2001

Mar 15, 2001

May 24, 2001

May 28, 2001

Feb 17, 2003

Feb 17, 2003

Sep 24, 2003

Planned
Start

 Duration in
Work Days

(5 Days/Week)

Jan 2, 2000 60

Feb 1, 2000 180

Sep 30, 2000 64

Jan 2, 2001 0

Jan 2, 2001 50

Mar 15, 2001 0

Mar 15, 2001 50

May 28, 2001 0

Jan 2, 2001 554

May 28, 2001 450

Jan 2, 2002 450

Q4Q3Q2Q1
2003

Q4Q3Q2Q1
2002

Q4Q3Q2Q1
2001

Q4Q3Q2Q1
2000

Figure 8–6 To help you plan SEE implementation, here is a representative timeline of tasks and their phasing. For complete-
ness, we show the task for writing the SEE implementation plan itself. Time for training people on the ADPE is not shown. This
training activity should be coupled to the preparation and promulgation of individual ADPE elements.

♦ Size of your organization
♦ Number of organizational elements that you want to involve in the review

of ADPE elements
♦ Funding cycles for your work
♦ Software engineering savvy of the people in your organization

In general, the larger your organization, the more varied may be the back-
grounds of the people. Assessing the audience for the ADPE elements may be
more challenging, and hence more protracted, in larger organizations. More
iterations of drafts of a given element may be required before the element can
be promulgated.

ptg

Another factor bearing on task duration is the number of organizational ele-
ments that you want to involve in the review of ADPE elements. In large or-
ganizations, particularly those with many layers, sending ADPE drafts up
and down the chain of command can take a lot of time. It is generally a good
idea to let everyone in your organization have a crack at reviewing an ADPE
element draft at least once. This approach fosters buy-in to the ADPE way—
but can add considerable time to the ADPE element development cycle. In
addition, as we discussed in preceding chapters, we recommend that the cus-
tomer be made part of the ADPE review process, an action which tends to
draw out the ADPE element development cycle even more.

One way to accommodate lengthy review cycles and still move ahead with
getting some business practices in place is, as Figure 8–6 indicates, to prepare
and use trial ADPE elements. Some of these trial elements may be included in
the SEE implementation plan. The idea is to get something in place, as rough
as it may be. Experience gained from using these trial elements can be fed
into the development into more polished ADPE elements.

Funding cycles for your organization can play an important role in the pace
of SEE implementation. If, for example, your organization is funded on a
yearly basis and funding for the next year is contingent upon doing good
work in the current year, you may need to have several clearly defined mile-
stones every twelve months to make manifest SEE implementation progress
to increase the likelihood of funding for the next year. You may therefore
have to turn out a number of ADPE elements in a relatively short period of
time. This constraint has to be traded off with the factor just discussed re-
garding the number of organizational elements that you want to involve in
the review of ADPE elements. Of course, if you have only one year (or less) to
set up and follow ADPE practices, then the duration of the tasks shown in
Figure 8–6 will be weeks or even days. The point is, no matter what your
funding cycles may be, it is feasible (and we hope you now believe it is desir-
able) to set up a consistent way of doing software systems development via
an SEE.

Another key factor bearing on the rate of ADPE element development and
implementation is the software engineering savvy of the people in your orga-
nization. By software engineering savvy we mean “understanding that it is
indeed preferable to apply engineering discipline to software systems devel-
opment rather than approach it as a stream-of-consciousness exercise in artis-
tic expression.” In general, the less experienced your people are in this
regard, the more time will be required to develop ADPE elements and get
them to catch on. With a less experienced organization, it will generally be
necessary to include more tutorial information in ADPE elements. This task is
not easy. The tutorial material will need to be located where it does not obfus-
cate the description of the business practices the organization is to follow.
One way to perform this separation is to place tutorial material in appen-
dices. Regarding the pace of ADPE implementation, it is more difficult to
generalize as to whether more experienced organizations will adopt the

Chapter 8 • Process Improvement Planning

562

ptg

ADPE way more rapidly than will less experienced organizations. Some-
times, more experienced people are so set in their ways that they are highly
resistant to changing their way of doing things. On the other hand, less expe-
rienced people may resist carrying out the ADPE way because they are un-
sure of why it may be more beneficial to follow than their former way of
doing things. For example, the concept of independent product assurance can
take a lot of getting used to by people whose prior experience with checking
work was limited to their own checking (this attitude may be present in both
software veterans and software novices). One final comment regarding
“software engineering savvy” is in order:

There may not be a direct correlation between the number of years a per-
son has worked in the software industry and the amount of software engineer-
ing savvy that person has. It is not uncommon to see people with ten or more
years of experience in the software industry who hold the belief that you should
“code first and ask questions later.”

Figure 8–6 does suggest an order for the first couple of ADPE elements
that should be promulgated—(1) Software Systems Development Process,
(2) CCB, and (3) ADPE Element Development Process. In preceding chapters,
we explored at length the rationale for this order. By way of a reminder, the
Software Systems Development Process ADPE element sets the context for
most other elements; the CCB ADPE element serves to standardize and give
visibility to decision making, particularly with respect to customer/seller in-
teraction; the ADPE Element Development Process element is to the ADPE
what the Software Systems Development Process element is to software
(-related) products. This third element thus defines a consistent way that the
ADPE is developed (and improved). The experience gained developing the
first two elements can be fed into the development of this third element to
provide insight for streamlining the ADPE element development process.

Another consideration heavily influencing the timeline in Figure 8–6 is that,
once promulgated, an ADPE element should be given time to take hold be-
fore making any substantial changes to it. If, for example, your organization
is involved in a multiyear process improvement program, then we suggest
that no element should be changed less than twelve to eighteen months after
it has been promulgated. If your program is of shorter duration, then your
cycle times for promulgating and revising elements should be in terms of
weeks.

Another factor bearing on the timeline in Figure 8–6 is the rate at which orga-
nizational cultural change can be expected to take place. As we stressed in
Chapter 7, SEE implementation is essentially a cultural change program.
Thus, SEE implementation planning must account for the resistance inherent
in any cultural change activity. Later in this section we address specific issues
that provide insight into how to encourage cultural change. For now, we offer

Chapter 8 • Process Improvement Planning

563

ptg

the following factors that you should consider when timelining your SEE
implementation approach:

♦ People need to see the net benefit of, in the case of SEE implementation,
following the ADPE way. Your SEE implementation plan should therefore
point out some of these benefits. Example benefits include the following:
♦ A defined way of doing things helps people understand what is ex-

pected of them.
♦ Individuals can receive rewards for contributing to and following the

ADPE way.
♦ Individuals are not restricted by inflexible organizational practices. The

ADPE way should not be inflexible. We repeatedly stressed the need for
setting up an ADPE based on prescriptive application of its practices.
Prescriptive application is itself an incentive, since it demands of the in-
dividual to think about what makes sense in a particular situation
regarding ADPE application.

♦ A necessary (but not sufficient) condition for encouraging cultural change
is getting senior management buy-in to the ADPE way. This buy-in can be
enormously difficult to achieve. Since, by definition, senior management is
“in charge” at various levels within the organization, getting this buy-in is
tantamount to asking them to give up some of their sovereignty. Using the
argument “it is the right thing to do” will probably not work. What gener-
ally works is appealing to the argument of competition. If your competi-
tors are adopting or already have successfully adopted a consistent way of
building good software systems, senior management will probably be
more inclined toward supporting the ADPE way—particularly if you ex-
plain how the ADPE way can reduce software systems development risk
(as, indeed, we argue throughout the preceding chapters). We stress that, if
senior management does not buy into the ADPE way, the SEE implementa-
tion approach you propose is doomed to failure. Your organization will
likely fractionate into competing fiefdoms—and the ADPE way will be the
subject of implicit, if not explicit, derision.

♦ If senior management buy-in is not an issue, to accelerate cultural change
you may want to consider making employee commitment to the ADPE
way a condition of employment. That is, you may want to include in an
employee’s hiring agreement the stipulation that the employee agrees to
follow the ADPE way as a condition of employment. To put some teeth
into this approach, you may want to include in the agreement that the per-
son will undergo a trial period of, say, ninety days during which time the
person must complete mutually agreed-upon tasks demonstrating that he
or she understands and practices the ADPE way. If the person falls short in
this regard, then the person is not hired. To work, this approach must be
supported by a ADPE training program.

The preceding discussion suggests an order for the first couple of ADPE ele-
ments that should be promulgated. We now expand upon this discussion and
look at the issue of ADPE element phasing.

Chapter 8 • Process Improvement Planning

564

ptg

Let us now consider in more detail ADPE element linkages. This look may
help you gain more insight into the factors governing ADPE element phasing.
Figure 8–7 shows the following sequence of ADPE elements that might be
one way to start your ADPE (we indicate in parentheses where you can find
an annotated outline for the element):

1. Software Systems Development Process Policy (Chapter 3)
2. Change Control Board Guideline (Chapter 4)
3. Independent Product Assurance Policy (Chapter 5)
4. Configuration Management Guideline (Figure 8–8)
5. Acceptance Testing Cycle Procedure (Chapter 5)

Before examining Figures 8–7 and 8–8, we explain why the ADPE element
governing the development of ADPE elements, which appears in Figure 8–6,
does not appear in the preceding list. This element sits above all other ADPE
elements and can be developed and promulgated at any time convenient for
your organization. In discussing Figure 8–6, we indicated why it may be a
good idea to promulgate it after the first two items listed in Figure 8–6 are put
in place. However, if, for example, your organization can afford to keep
doing business in its old way while it is setting up an ADPE, then it may
make sense to put in place the process for developing ADPE elements before
any other elements are developed. Such an approach may work if your orga-
nization is not anticipating a major shift in the type of software systems de-
velopment work that it will do during, say, the next six to twelve months.
Under such circumstances, the heroics of individual staff members may still
get your work done on time and within budget (provided you do not experi-
ence major staff turnover).

Figure 8–7 shows how each element in the sequence plugs into its predeces-
sor. In general, a set of ADPE elements will plug into each other in more than
pairwise fashion. Figure 8–7 highlights the pairwise relationships tied to the
implementation chronology to suggest why the sequence shown makes
sense. Of course, for your organization, other sequences (with possibly other
elements) may make better sense, depending on which element features may
be of importance to your organization. For example, if configuration manage-
ment is a priority for your organization, it may make sense to promulgate the
CM element before the CCB element. The CM element would, of course, ad-
dress CCB issues in anticipation of a CCB element. Alternatively, the CCB
and CM elements could be merged into a single element—depending on the
prominence that you want to give to the CCB in your overall software
systems development process.

We explain in the following list how the sequence in Figure 8–7 is con-
structed. Using similar arguments, you can construct an element sequence

Chapter 8 • Process Improvement Planning

565

2. How should ADPE elements be phased in?

ptg

Chapter 8 • Process Improvement Planning

566

[Your Organization’s Name and Logo] Document #
January 2, 2001

[Your Organization’s Name] Policy

Software Systems Development Process

[Your Organization’s Name and Logo] Document #
March 15, 2001

[Your Organization’s Name] Guideline

Change Control Board

[Your Organization’s Name and Logo] Document #
June 29, 2001

[Your Organization’s Name] Policy

Independent Product Assurance

[Your Organization’s Name and Logo] Document #
October 1, 2001

[Your Organization’s Name] Guideline

Configuration Management

[Your Organization’s Name and Logo] Document #
December 21, 2001

[Your Organization’s Name] Procedure

Acceptance Testing Cycle

Management of
acceptance testing
cycle (Turnover CCB
and Test Incident
CCB)
TIR CM form
integrated into
procedure
TIRs may precipitate
IRs or CRs (CM forms)

Prepared by:

[Your Organization’s Name and Address]

Seller Program Manager Approval:

Buyer/User Program Manager Concurrence:

Big Kahuna’s Counterpart 12/28/2001

Big Kahuna 12/21/2001

●

●

●

[Top-level] CM mechanics
Change control flow
Change control form
information requirements or
forms themselves (e.g., TIR,
IR, CR, IA, SCN)

●

●

●

CM part of independent
product assurance
Organizational definition
of CM

●

●

CCB role in project management
[Top-level] CCB mechanics
CCB minutes information
requirements

●

●

●

Organization’s software systems
development process elements
and their relationships
CCB one key element
CM part of product assurance

●

●

●

Figure 8–7 A key element of SEE implementation planning is ADPE element phasing. To get you started addressing this plan-
ning issue for your organization, the figure shows some elements, their relationships, and an order for their development. Your
SEE implementation plan should propose a strategy for ADPE element development. It is desirable to start with an element that
defines your overall software systems development process. This element provides the context for most subsequent elements.
In particular, it shows how they are to plug into one another.

ptg

567

Document #

Date1.0 PURPOSE

This section states the purpose of the element. This purpose is the following:
● Define your organization’s method for tracking, controlling, and accounting for changes to

(software) product parts and changes to (software) part relationships.
● Set forth generic configuration management (CM) practices and guidance for implementing these

practices on each project within your organization. [If your organization has only similar projects,
then the practices can be defined in specific, “how-to-do-it” terms and be made applicable to all
your projects.]

● Delineate the guideline implementation responsibilities of organizational elements and/or
individuals and, if desired, your customer(s).
If CM is an aspect of your organization’s product assurance activity, then this element should
explicitly link to your organization’s product assurance ADPE element. Alternatively, the
information in this CM guideline could be incorporated into the product assurance ADPE element
(e.g., as an appendix).

2.0 BACKGROUND

This section gives an overview of your organization, your business, your customers, and the types
of contractual vehicles you use to conduct business (e.g., fixed price, memorandum of
understanding, time and materials). It should also explain the classes of products your organization
develops (e.g., documents, computer code, databases) that will be the focus of CM activity.

3.0 ORGANIZATIONAL CONFIGURATION MANAGEMENT REQUIREMENTS

This section presents requirements for setting up CM practices on your organization’s projects.
Example requirements include the following:

● Part Labeling—establish a configuration item (CI) labeling scheme for identifying product parts to
be controlled.

● Labeling Depth—decide on the depth of the CI hierarchy. This depth may change throughout the
product lifetime. The greater the depth, the greater the visibility into product changes, and the
greater the effort required to track changes.

● Forms—define forms for documenting and tracking (candidate) product changes.
● Forms and CCB Support—use forms in conjunction with a project CCB to give visibility to

proposed and implemented changes.
● Forms Library and Product Assurance—use the product assurance organization to (1) keep forms

library up-to-date, (2) make this information available at CCB meetings and other project meetings,
(3) maintain the forms project archive.

● Change Confirmation—use the product assurance organization to confirm that approved changes
have been incorporated. Confirmation should be a matter of record either at CCB meetings or
other project meetings.

● Forms Automation—automate form data entry and archiving to the extent practical considering (1)
project budget, (2) schedule, and (3) value of change control data beyond the termination of the
project.

[Your Organization’s Name and Logo] Document #

Date

[Your Organization’s Name] Guideline

Configuration Management

4.0 CONFIGURATION MANAGEMENT CONCEPTS

This section gives background for implementing the requirements given in the preceding section
(e.g., definitions of “configuration,” “baseline,” “change control board [CCB],” and “CM
functions”). Appendices can provide additional details that augment this background information.

Figure 8–8 An annotated outline for getting you started defining a (software) configuration manage-
ment guideline for your organization.

Chapter 8 • Process Improvement Planning

ptg

568

Document #

Date

5.0 CONFIGURATION MANAGEMENT IMPLEMENTATION RESPONSIBILITIES

This section delineates the responsibilities of each agent within your organization (e.g., project
manager, manager of project managers, manager of the process engineering group, product
assurance manager, product assurance analysts) for implementing the guidance set forth in the
remainder of the guideline. With customer approval, it may also be desirable to delineate the
responsibilities of customer agents (e.g., customer project manager) for guideline implementation
(e.g., CCB participation).

Appendices can contain details for carrying through the guidance set forth in the body of the
guideline. For example, appendices might include such things as (1) change control scenarios and
supporting forms (see Chapter 4), (2) detailed guidance for preparing a project-specific CM plan
(e.g., specific suggestions for accomplishing each of the four CM functions, how to decide whether
a project should use change control forms, how to set up a library for controlling products during
development and subsequent to delivery), (3) change control form information requirements, (4)
example change control forms, and (5) instructions for filling out change control forms (including
worked-out examples).

APPENDICES

[Your Organization’s Name and Logo] Document #

Date

[Your Organization’s Name] Guideline

Configuration Management

Figure 8–8 Continued

Chapter 8 • Process Improvement Planning

ptg

that makes sense for your organization. You can use this sequence to con-
struct a timeline like the one shown in Figure 8–6 to include in your SEE
implementation plan.

1. The Software Systems Development Process Policy is constructed first be-
cause it provides the context for most subsequent elements. It defines the
organization’s way of building software(-related) products. It includes
the CCB as one key element of the process. It also includes the product
assurance activity which, in turn, includes configuration management.

2. The Change Control Board Guideline is constructed next. It elaborates on
the CCB role in project management set forth in the Software Systems De-
velopment Process Policy. The guideline also specifies top-level CCB me-
chanics such as how to run a CCB meeting, who should take minutes,
and who should be the chairperson. The guideline also specifies informa-
tion requirements for CCB minutes and a template for packaging these
information requirements.

3. The Independent Product Assurance Policy is constructed next. It stipu-
lates that configuration management is one of the product assurance
processes. It gives an organizational definition of configuration manage-
ment. That is, it specifies whether the product assurance organization is to
perform configuration management or to monitor those who do. The pol-
icy may also stipulate the CCB role in the product assurance T&E process.

4. The Configuration Management Guideline is constructed next. As indi-
cated in Figure 8–8, the guideline specifies configuration management re-
quirements for software projects (e.g., parts labeling, change control
forms, change confirmation). It specifies configuration management me-
chanics, such as the generic change control steps (including the role of the
CCB). It specifies information requirements for change control forms and,
possibly, example forms. As indicated in Figure 8–8, appendices in the
guideline can contain details for implementing the requirements set forth
in the body of the guideline. For example, an appendix may contain de-
tailed guidance for preparing a project-specific configuration manage-
ment plan. Another appendix may contain instructions for filling out
change control forms given either in the body of the guideline or in the
appendix.

5. The Acceptance Test Cycle Procedure specifies the management of the ac-
ceptance testing cycle, including the roles of the Turnover CCB and Test
Incident CCB as discussed in Chapter 5. The procedure explains how the
change control Test Incident Report (TIR) form called out in the Configu-
ration Management Guideline is integrated into the acceptance testing
cycle. The procedure also explains how TIRs may precipitate other
change control forms such as Incident Reports (IRs) or Change Requests
(CR) called out in the configuration management guideline.

We note that, for small organizations, the five elements shown in Figure 8–7
may be collapsed into a single element. In this consolidated element, each

Chapter 8 • Process Improvement Planning

569

ptg

chapter may address what in Figure 8–7 is a separate element. This approach
might also be used in an organization where SEE implementation needs to
take place over a relatively short time frame.

Other alternatives to the sequence in Figure 8–7 include the following:

♦ The Acceptance Testing Cycle Procedure is incorporated into the Indepen-
dent Product Assurance Policy as an appendix.

♦ The CCB Guideline is incorporated into the Configuration Management
Guideline as an appendix, with this latter guideline being produced after
the Software Systems Development Process Policy.

♦ The Configuration Management Guideline and the Acceptance Testing
Cycle Procedure are incorporated into the Independent Product Assurance
Policy as appendices.

Now that we have looked at SEE timeline and ADPE element phase-in fac-
tors, we look at factors bearing on the overall make-up of the ADPE.

Chapter 8 • Process Improvement Planning

570

3. What ADPE elements should be included in your SEE?

When planning an engineering environment to define your software systems
development business practices, the specific elements to include in the ADPE
is a key consideration. It is difficult to provide guidance regarding the spe-
cific elements to include for reasons such as the following:

♦ The enterprise in which your organization is embedded may already have
certain policies and directives that govern all work and/or software-spe-
cific work. In such cases, it would generally be counterproductive to create
elements that duplicate existing business practices. For example, your en-
terprise may be a software business that has a set of life cycles that govern
the different types of work that it does (e.g., a prototype development life
cycle, an information engineering life cycle, a “maintenance” life cycle).
These life cycles may be set forth in a document or documents that define
the specific activities to be followed in developing software(-related) prod-
ucts. In this case, it would probably be redundant to develop an ADPE ele-
ment that corresponds to the Software Systems Development Process
Policy that we discussed in Chapter 3. ADPE elements may still need to be
developed because enterprise policies and directives are silent with respect
to needed practices. To provide connectivity with existing policies and di-
rectives, needed ADPE elements would reference these enterprise publica-
tions and/or incorporate pertinent material from them. For example, an
enterprise directive or policy may call for configuration management to be
instituted on all software systems development projects and may further
stipulate that the projects are responsible for setting up configuration man-
agement practices. In this case, an ADPE element addressing the “how-to-

ptg

do-it” of configuration management would be useful to develop. To pro-
vide context, the element would cite the enterprise configuration manage-
ment directive or policy.

♦ A government enterprise may have hired your organization to develop
software systems according to practices set forth in government standards
(this situation is common on military programs). In such cases, these stan-
dards would constitute at least part of your ADPE. ADPE elements may
still have to be developed to address practices only alluded to in the gov-
ernment-provided standards. For example, one standard may be the ana-
log to the Software Systems Development Process Policy discussed in
Chapter 3. This standard may call for peer reviews but may give no addi-
tional guidance on how peer reviews are to be conducted. In this case, it
would probably be helpful to develop an ADPE element to address peer
review procedures to augment the government-provided standards.

♦ Your organization may have been hired to do software systems develop-
ment work over a relatively short period of time (say a year or less). Fur-
thermore, the buyer who hired you expects you to have defined software
business practices. In anticipation of such work, you may want to have a
small number of ADPE element templates that can be (quickly) adapted to
your client’s specific needs—either during the first couple of weeks of the
work or during your response to the client’s RFP. The ADPE make-up in
such circumstances will generally be much different from what it would be
for circumstances in which a client has hired you for several years, and the
first year, say, is to be used in part to plan and begin developing an SEE.

♦ Your organization may be caught up in a rapidly expanding business base.
For example, because of a ballooning customer base, your organization
may have to develop information management systems that must (1) oper-
ate within tightly constrained cycles (because of, for instance, customer
billing cycles) and (2) be modified rapidly in response to rapidly changing
requirements (for instance, to service more customers in a shorter amount
of time because of competitive pressures). Such circumstances are not un-
common in the commercial business world and present special challenges
regarding software systems development. On the one hand, the organiza-
tion cannot stop developing its software systems to put in place or upgrade
its engineering environment. On the other hand, the organization must
take action to discipline its software systems development practices to
head off software failures and facilitate system upgrades and replace-
ments—otherwise, the bottom line is impacted, and the business will be
crushed by its own success. The rapid pace of business growth may thus
limit the ADPE elements to a small number that address only the most es-
sential practices—leaving the remaining practices to the know-how of the
individuals. For example, in the extreme, it may be feasible only to put in
place an element like the Software Systems Development Process Policy
discussed in Chapter 3—and nothing else. Such an element would capture
in the large all the things that need to be done—the details (e.g., how to
conduct peer reviews or perform independent product assurance) would

Chapter 8 • Process Improvement Planning

571

ptg

be left to the know-how of the individuals to put in place on individual
projects.

Given the preceding caveats, we now offer suggestions for planning what to
include in your ADPE. Of course, as we stress throughout this book, plans
will change. So, you should keep in mind that the following discussion is to
help you overcome the blank-page syndrome when it comes to planning your
ADPE makeup. You will find that as you put ADPE elements in place, your
specific ADPE needs will undoubtedly evolve. In fact, as we discuss later, one
of the elements to include in your ADPE is one describing the process for
developing and evolving the other ADPE elements.

Figure 8–9 shows twelve candidate ADPE elements. Eight of these are ad-
dressed in previous chapters, where, among other things, we provide an an-
notated outline for each. An annotated outline for another element was
presented earlier in this chapter (Figure 8–8). Annotated outlines for the re-
maining three are provided in figures after Figure 8–9. For ease of reference,
we list here the twelve elements and the chapter or figure where you can find
an annotated outline for each. Figure 8–9 does not imply an implementation
order.

1. Software Systems Development Process Policy (Chapter 3)
2. Change Control Board Guideline (Chapter 4)
3. ADPE Elements Standard (Chapter 7)
4. Independent Product Assurance Policy (Chapter 5)
5. Document Templates Standard (Figure 8–10)
6. Project Plan Development Process Procedure (Chapter 2)
7. Measurement Guideline (Chapter 6)
8. Acceptance Testing Cycle Procedure (Chapter 5)
9. Project Tracking Guideline (Figure 8–11)

10. Configuration Management Guideline (Figure 8–8)
11. Peer Reviews Guideline (Chapter 5)
12. Software Development Life Cycle Definition Guideline (Figure 8–12)

To help you decide the breadth and depth of an ADPE for your organization,
Table 8–1 summarizes the purpose and features of the twelve elements
shown in Figure 8–9. This table can help you organize your ADPE planning
approach. The column labelled “Purpose” reminds you of this book’s ap-
proach to defining the focus of the ADPE elements included in the table. For
your organization, you may want a different focus for a given element, or you
may want to consolidate the focus with one or more other elements. In this
case, simply redefine the purpose (and possibly rename the element). For ex-
ample, the table indicates that the Project Plan Development Process element
focuses on the organization’s project planning process and the steps involved

Chapter 8 • Process Improvement Planning

572

ptg

Chapter 8 • Process Improvement Planning

573

[Your Organization’s Name and Logo] Document #
Date

[Your Organization’s Name] Guideline

Change Control Board

[Your Organization’s Name and Logo] Document #
Date

[Your Organization’s Name] Guideline

Software Development Life Cycle Definition

[Your Organization’s Name and Logo] Document #
Date

[Your Organization’s Name] Procedure

Project Plan Development Process

[Your Organization’s Name and Logo] Document #
Date

[Your Organization’s Name] Procedure

Acceptance Testing Cycle

[Your Organization’s Name and Logo] Document #
Date

[Your Organization’s Name] Standard

ADPE Elements

[Your Organization’s Name and Logo] Document #
Date

[Your Organization’s Name] Standard

Document Templates

Prepared by:

[Your Organization’s Name and Address]

Seller Program Manager Approval:

Buyer/User Program Manager Concurrence:

[Your Organization’s Name and Logo] Document #
Date

[Your Organization’s Name and Logo] Document #
Date

[Your Organization’s Name and Logo] Document #
Date

[Your Organization’s Name and Logo] Document #
Date

[Your Organization’s Name] Guideline

Measurement

[Your Organization’s Name and Logo] Document #
Date

[Your Organization’s Name] Guideline

Project Tracking

[Your Organization’s Name and Logo] Document #
Date

[Your Organization’s Name] Guideline

Peer Reviews

Prepared by:

[Your Organization’s Name and Address]

Seller Program Manager Approval:

Buyer/User Program Manager Concurrence:

Big Kahuna’s Counterpart Date

Big Kahuna Date

Big Kahuna’s Counterpart Date

Big Kahuna Date

[Your Organization’s Name] Policy

Software Systems Development Process

[Your Organization’s Name] Policy

Independent Product Assurance

[Your Organization’s Name] Guideline

Configuration Management

Figure 8–9 It is difficult to provide guidance regarding the specific ADPE elements to include in an SEE. The figure shows a set
of elements to start your thinking for addressing your global SEE needs. We label the specific elements using the designation
“policy,” “guideline,” “procedure,” or “standard.” As we discussed in preceding chapters, you may want to establish a differ-
ent taxonomy for your elements. Even if you use our taxonomy, what we show as, for example, a “procedure” you may want to
cast as a “guideline.”

ptg

Table 8–1 Purpose and Features of Candidate ADPE Elements for Your ADPE.

Element Title Purpose Comments

Software Systems • Identify the generic activities • Mandatory element
Development performed by your organizational • Establishes the context for other elements
Process elements in developing a software for other elements

product (i.e., documentation, com- • Each project adapts the generic activities
puter code, database) for delivery to the character of the work to be performed
to your customer (e.g., all projects perform peer reviews; dif-

• Describe the roles of customer ference projects may conduct peer reviews
organizational elements and your differently)
organizational elements in
performing these generic activities

• Delineate implementation respon-
sibilities

Independent Product • Define your organization’s state- • Independent product assurance as we
Assurance ment of principles governing inde- define it is not the only way to set up a

pendent product assurance checking and balancing mechanism on a
activities software project

• Define product assurance processes • One alternative way is to have a so-called
and explain how they reduce “Quality Assurance Organization” check
software systems development the activities of all parties involved in a
risks project (including the activities of the party

• Delineate the implementation that we call the “product assurance
responsibilities of organizational organization”)
elements and/or individuals and, • Decide on your checking and balancing
if desired, your customer(s) approach and develop an ADPE element to

define the activities associated with this
approach

Configuration • Define your organization’s method • If CM is an aspect of your organization’s
Management for tracking, controlling, and product assurance activity, then this element

accounting for changes to (soft- should explicitly link to your
ware) product parts and changes organization’s product assurance ADPE
to (software) part relationships element

• Set forth generic configuration man- • Alternatively, the information in this CM
agement (CM) practices and guid- element could be incorporated into the
ance for implementing these prac- product assurance ADPE element
tices on each project within your (e.g., as an appendix)
organization [if your organization • Another alternative is to replace this element
has only similar projects, then the with one or more books or other CM
practices can be defined in specific, publications—possibly with some
“how-to-do-it” terms and be made instructions for adapting material to your
applicable to all your projects] organization’s way of doing business

• Delineate the implementation re- • CM scope should extend to all development
sponsibilities of organizational products called out in the Software
elements and/or individuals Systems Development Process element
and, if desired, your customer(s)

Measurement • Identify the measurements to be • Element should be put in place generally
performed to (1) quantify where only after other elements have been in place
your organization is productwise for some time
and processwise, (2) quantify • Avoid measurement for measurement’s
differences from this baseline sake—use measurement to answer questions
assessment, (3) establish quantitative your organization needs answered
process and product goals, and quantitatively

(continued)

574

ptg

575

(continued)

Table 8–1 Purpose and Features of Candidate ADPE Elements for Your ADPE. (Continued)

Element Title Purpose Comments

Measurement (4) quantify progress toward
(continued) achieving these goals

• Define the approach for incorpor-
ating process and product improve-
ments based on the measurement
activity

• Delineate implementation respon-
sibilities

Project Tracking • Define your organization’s method • Element may be unnecessary if your
for tracking and reviewing software organization has standard project tracking
systems development project accom- practices
plishments and results against • CCB minutes and deliverable tracking form
documented estimates, commit- described in Chapter 3 should be exploited
ments, and plans for tracking purposes

• Define your organization’s method
for adjusting planned project activi-
ties based on actual accomplish-
ments and results

• Delineate the implementation re-
sponsibilities of organizational and/
or individuals and, if desired,
your customer(s)

Peer Reviews • Define your organization’s approach • This element should stress that peer reviews
[and, possibly, procedures] for pre- (1) provide a controlled mechanism for
paring and conducting product re- refining products, (2) provide technical
views primarily involving product feedback to the lead developer, and (3) are
developer and product assurance not a measure of the lead developer’s
peers performance

• Delineate responsibilities for pre- • This review balances the product developer’s
paring for and conducting peer approach with the insights of others having
reviews applicable and comparable experience

• Provide checklists and forms to fa- • Information in this element could be
cilitate and standardize peer review incorporated into the Software Systems
preparation and accomplishment Development element

• Provide instructions for completing
checklists and forms provided

• Delineate implementation responsi-
bilities

Change Control • Provide guidance for establishing • Mandatory element
Board CCBs • Have trial-use element ready to use as

• Define the role of CCBs in project soon as possible
efforts • CCB should be the primary vehicle for

• Provide guidance for conducting holding management accountable for their
CCB meetings decisions

• Delineate implementation responsi-
bilities

Software Develop- • Establish guidance for defining a life • This element should stress that the life cycle
ment Life Cycle cycle or life cycles for a software concept is a useful way of breaking a soft-
Definition systems development effort within ware systems develoment effort into smaller,

your organization more manageable pieces
• Provide guidance for using life cycle • The element should stress that rarely does a

stages for project planning and project project proceed sequentially from one life
accomplishment purposes cycle stage to the next. Rather, one or more

ptg

Table 8–1 Purpose and Features of Candidate ADPE Elements for Your ADPE. (Continued)

Element Title Purpose Comments

Software Develop- • Delineate implementation responsi- stages are generally revisited one or more
ment Life Cycle bilities times
Definition • The element should stress that the life cycle
(continued) stages are a way of (1) organizing work to

be performed on a project and (2) identi-
fying products to be developed

Project Plan • Delineate your organization’s • Have trial-use element early in your SEE
Development project planning development program
Process • Delineate implementation responsi- • Refine trial-use element by exploiting lessons

bilities learned from actual project planning
activities

• Key project planning organizational issue:
Who should develop project plans—(1) one
organization, or (2) each project, or (3) some
combination of (1) and (2)?

Acceptance Testing • Define the process for determining • Scope may be expanded to encompass other
Cycle when a software system and support- forms of testing (e.g., unit and integration)

ing databases are ready for customer • As an option, element material may be
delivery folded into Independent Product Assurance

• Delineate implementation responsi- element or Configuration Management
element as appendix

ADPE Elements • Define ADPE element taxonomy • Can be developed after the Software Systems
(e.g., policy, guideline, procedure, and Development Process element and the CCB
standard) element or at any other time

• Define the process for developing and • Try to involve most of the organization in
improving ADPE elements reviews of ADPE element drafts

• Delineate implementation responsibil- • It is generally desirable to have the customer
ities participate in the review process and to concur

formally with the element content

Document Templates • Present a list of candidate document • Element is more than just document templates
types for consideration when • In support of project planning, defines
planning or replanning a software process for deciding what documents to use
systems development project when

• Provide templates for these docu- • Provides document review guidance
ment types to serve as a starting • If your organization uses separately published
point for constructing each documentation standards, then this element
document ` can simply reference these standards

• Provide guidance for identifying doc-
ument sets appropriate to projects
of different classes within your
organization

• Allow the seller and customer to
define expectations about a
document

576

ptg

with producing a project plan. You may want to expand the scope of this ele-
ment to encompass all forms of planning involved with software systems de-
velopment. In this case, the element might be retitled, for instance, “Planning
Process.” This retitled element would define the various processes involved
with producing different types of software-related plans (e.g., product as-
surance plans, test plans, configuration management plans, reliability and
maintainability plans).

The column labelled “Comments” offers additional insight into the role and
orientation of the elements listed. Among other things, this column offers
suggestions for consolidating two or more elements (e.g., folding the Accep-
tance Testing Cycle element material into an appendix in the Independent
Product Assurance element or the Configuration Management element).

We remind you that the elements listed in Table 8–1 are those discussed in
preceding chapters or introduced and discussed in this chapter. With the pos-
sible exception of the “Software Systems Development Process” and “Change
Control Board” elements, no element listed is mandatory. The number and
type of elements that you choose to construct for your ADPE will probably be
quite different from those listed in the table. The table is intended to start
your thinking for planning your global ADPE needs.

We also remind you that the ADPE taxonomy we use in this book (i.e., “pol-
icy,” “guideline,” “procedure,” and “standard”) is just one way to categorize
ADPE elements (for this reason, we have omitted these labels from the first
column in Table 8–1). Furthermore, within this taxonomy, these labels may
sometimes be used interchangeably for various reasons. For example, as indi-
cated in Figure 8–9, the Software Systems Development Process element is la-
belled “Policy.” From its statement of purpose and the definition of ADPE
element “procedure” given earlier in this book, it might have made more
sense to label this element “Procedure.” However, because in some organiza-
tions the label “policy” carries more of an authoritative ring than does
“procedure,” this label may be more appropriate.

Before closing the discussion of the issue “What ADPE elements should be in-
cluded in your SEE,” we return briefly to Figures 8–10, 8–11, and 8–12.

Figure 8–10 (Document Templates Standard) stresses that the real value of in-
cluding documentation standards in your ADPE extends beyond the docu-
ment outlines. The Document Templates element should plug into the rest of
the ADPE by addressing such key considerations as (1) a process for deciding
what documents to use on which types of projects and (2) document review
guidance (e.g., important things to look for in a document of a given type—
for instance, does a software test plan contain a discussion of the system to be
tested?).

Regarding Figure 8–11 (Project Tracking Guideline), project tracking tech-
niques addressed should also incorporate items included in other ADPE ele-
ments. For example, as discussed in Chapter 4, CCB minutes should include,
among other things, an action item list with due dates. These lists provide a

Chapter 8 • Process Improvement Planning

577

ptg

Document #

Date

Rest of
ADPE

1.0 PURPOSE

This section states the purpose of the element. This purpose is the following:
● Present a list of candidate document types for consideration when planning or replanning a

software systems development project.
● Provide templates for these document types to serve as a starting point for constructing each

document.
● Provide guidance for identifying document sets appropriate to projects of different classes within

the organization.
● Allow the seller and customer to define expectations about a document.

2.0 BACKGROUND

This section gives an overview of the organization and its projects. This section should also
briefly discuss the concepts of SEE, ADPE, and ADTE or their counterparts in your organization,
and the relationship of this ADPE element to these counterparts.

3.0 DOCUMENT TEMPLATES DESCRIPTION AND USE

This section describes the generic format of the templates (e.g., Title, Identification Number,
Description/Purpose, Relationship to Other ADPE Elements, Preparation Instructions,
Format/Content Requirements). This section should also indicate whether electronic versions of
the templates are available and, if so, where they can be found (e.g., in the organization’s local
area network). The templates themselves may be placed in an appendix for ease of reference.

[Your Organization’s Name and Logo] Document #

Date

[Your Organization’s Name] Standard

Document Templates

5.0 DOCUMENT SELECTION AND PACKAGING GUIDANCE

This section provides a starting point for deciding which (1) document types are appropriate for a
given project and (2) document types may be consolidated into a single document. The approach
here is to group projects by categories and give guidance on documents by category. You may
wish to categorize projects by size (e.g., “small,” “medium,” or “large”), contract type (e.g., fixed
price, cost plus fixed fee, time and materials), risk (“high,” “medium,” or “low”), etc. You may
wish to indicate mandatory and optional document types for each project category.

6.0 DOCUMENT REVIEW GUIDELINES

This section, which should be tied to your software systems development process ADPE element,
contains document review guidance in terms of such things as review type (e.g., peer,
grammar/format, management), review agent (e.g., technical editor, product developer), and
review focus (e.g., for a product assurance review, conformity to ensure document conforms to
SOW, traceability to ensure document content links with predecessor documents, etc.).

4.0 DOCUMENT CATEGORIES

This section defines document categories, and groups the templates by these categories as a
project planning aid (e.g., one categorization might be Planning, Product Specification, Product
Design and Development, Product Installation, Use, and Operation, and Product Evaluation and
Tracking).

APPENDIX

It is useful to have at least one appendix containing the templates. The templates to include will
generally change over time as your organization matures.

Figure 8–10 An annotated outline for getting you started defining a standard for software and software-related documents.
The key point to keep in mind is that this ADPE element is not just a collection of document templates—rather, it defines a
process for deciding what documents to use when, and provides document review guidance. Thus, you should keep in mind
that, to give this element substantive value for your organization, you should ensure that it plugs into the rest of your ADPE, par-
ticularly your software systems development process. The outline shows you a way to bring about this plug-in for your software
systems development process ADPE element.

ptg

579

Document #

Date1.0 PURPOSE

This section states the purpose of the element. This purpose is the following:
● Define your organization’s method for tracking and reviewing software systems development

project accomplishments and results against documented estimates, commitments, and plans.
● Define your organization’s method for adjusting planned project activities based on actual

accomplishments and results.
● Delineate the guideline implementation responsibilities of organizational elements and/or

individuals and, if desired, your customer(s).

2.0 BACKGROUND

This section gives an overview of your organization, your business, your customers, and the types
of contractual vehicles you use to conduct business (e.g., fixed price, memorandum of
understanding, time and materials). It should also explain corporate practices for project tracking
that may be applicable to software systems development projects.

3.0 ORGANIZATIONAL PROJECT TRACKING REQUIREMENTS

This section presents requirements for setting up project tracking practices on your organization’s
projects. Example requirements include the following:
● Schedule Tracking—establish a means for tracking planned completion of project activities,

milestones, and commitments against (1) the project plan, (2) updates to this plan, and (3) plan
changes recorded in CCB minutes or other project correspondence .

● Resource Tracking—establish a means for tracking planned resource expenditures against (1)
the project plan, (2) updates to this plan, and (3) plan changes recorded in CCB minutes or other
project correspondence.

● Risk Tracking—establish a means for tracking risks associated with schedule, resource, and
technical aspects of the project. (Risk tracking should be coupled with product assurance
activity.)

● Software Engineering Activities Tracking—establish a means for tracking technical activities.
(This tracking should be coupled with the use of the seller deliverable tracking form.)

● Corrective Action—establish procedures for taking corrective action in response to schedule,
resource, risk, and software engineering activity tracking. These procedures should include the
CCB.

[Your Organization’s Name and Logo] Document #

Date

[Your Organization’s Name] Guideline

Project Tracking

4.0 PROJECT TRACKING CONCEPTS

This section gives background for implementing the requirements given in the preceding section
(e.g., definitions of risk, milestone, commitment, tracking, and earned value). This section should
explain, illustrate, and contrast various ways of preparing and presenting project tracking
information (e.g., timelines, bar graphs, pie charts).

APPENDICES

Appendices can contain details for carrying through the guidance set forth in the body of the
guideline. For example, appendices might include such things as (1) example graphs showing
planned versus actual resource expenditures, (2) detailed guidance for preparing a project-specific
risk management plan, (3) example spreadsheets for software engineering activity tracking, and
(4) example corrective action reports.

Figure 8–11 An annotated outline for getting you started defining a project tracking guideline for
your organization. This element should be coordinated with the Change Control Board Guideline dis-
cussed in Chapter 4, particularly with respect to the use of CCB minutes for project tracking purposes.
This element should also be coordinated with the Software Systems Development Process Policy dis-
cussed in Chapter 3 with respect to the seller deliverable tracking form.

ptg

Document #

Date

How

Use

BuildWhat

Product
Assurance

Manage-
ment

1.0 PURPOSE

This section states the purpose of the element. This purpose is the following:
● Establish guidance for defining a life cycle or life cycles for a software systems development

effort within your organization.
● Provide guidance for using life cycle stages for project planning and project accomplishment

purposes.

2.0 BACKGROUND

This section gives an overview of your organization, your business, your customers, and the types
of contractual vehicles you use to conduct business (e.g., fixed price, memorandum of
understanding, time and materials). This section should relate your organization’s business to the
types of software systems development efforts that your organization typically performs (e.g.,
information management systems for a customer’s banking activity, command and control
systems for a customer’s military support activity, prototype systems for a customer’s research
and development activity).

3.0 GUIDING PRINCIPLES

This section establishes principles for defining a life cycle for a particular software systems
development effort. Example principles include the following:
● A stage is a set of activities whose purpose is to yield a set of software(-related) products and/or

perform one or more services.
● Reduced to its simplest terms, there are four stages of software maturation: WHAT, HOW, BUILD,

and USE. These generic stages enable a software systems development team to (1) specify what
the software and supporting databases are to do, (2) specify how the software and supporting
databases are to do the what, (3) build the computer code and supporting databases that
implement the how, and (4) use the computer code and supporting databases to perform the
what.

● For a particular software systems development effort, each generic stage unfolds into one or
more stages defining the particular work to be accomplished on the effort expressed in terms the
customer and seller can mutually understand. This unfolding, or instantiation, gives visibility to
that particular effort, thereby helping the customer and seller mutually progress in their
understanding of the remaining work to be accomplished.

● As shown in the figure below, the four generic stages are wrapped around an area wherein the
seller’s output from each stage is reviewed by product assurance activities so that management
can decide what to do next. Product assurance serves as a checking and balancing mechanism
on the product development activities performed in each stage. Management, in concert with
product developers and product assurers, uses product assurance results to decide what life
cycle stage to visit next (some stages may have to be revisited one or more times).

[Your Organization’s Name and Logo] Document #

Date

[Your Organization’s Name] Guideline

Software Development Life Cycle Definition

Figure 8–12 An annotated outline for getting you started preparing a life cycle guideline for your or-
ganization. This element should be coordinated with the Project Plan Development Process Proce-
dure discussed in Chapter 2. This element should also be coordinated with the Software Systems
Development Process Policy discussed in Chapter 3, particularly with respect to offering guidance
on plugging a life cycle into the development process.

ptg

581

Document #

Date3.0 GUIDING PRINCIPLES (Continued)
● Software systems development proceeds iteratively through the life cycle via synergistic

interaction among (1) product developers, (2) product assurers, and (3) management.
● The number and definition of the stages for a particular software systems development effort

are fundamentally determined by the amount of visibility desired for the effort. At a second
level, the number and definition of stages depend on the following factors:

 a. The estimated budget and schedule for accomplishing the entire project
 b. The degree of uncertainty regarding what is wanted
 c. The consequences of software failure (e.g., if failure would result in death or injury, the need

would exist for greater visibility into the software systems development process and, thus,
the need would exist for more life cycle stages)

 d. The technological challenge posed by what is wanted
 e. The benefits of software success (e.g., if each software development dollar invested had the

potential for returning ten dollars in savings to the customer after the software system
becomes operational by automating currently manual operation, then the need would exist
for greater visibility into the software systems development process to realize these potential
savings)

 f. The degree of “comfort” that the customer has with the software systems development team
(e.g., if the customer is somewhat uncertain at project outset about the development team’s
understanding of the customer’s requirements, then the need would exist for greater
visibility into the software systems development process, and thus, the need would exist for
more life cycle stages)

4.0 EXAMPLE LIFE CYCLE MODELS

This section shows how to apply the Section 3 principles to the generic four-stage life cycle to
construct different life cycles based on project characteristics. For example, if the what on a
project is uncertain (i.e., requirements are uncertain), it may be desirable to define a Preliminary
Requirements Specification Stage and a Detailed Requirements Specification Stage. This
approach enhances the visibility of the requirements definition process, thereby reducing the
uncertainty associated with the what. As another example, if the what poses a technological
challenge, it may be desirable to define a Preliminary Design Specification Stage and a Detailed
Design Specification Stage as an instantiation of the HOW Stage. As a third example, if the
project schedule does not allow for separate what and how activities, it may be desirable to have
the WHAT Stage and the HOW Stage instantiated as a Detailed Requirements Definition Stage,
which is then coupled to an instantiation of the BUILD Stage called Prototyping Stage. This latter
stage would involve coding, which would be used to flesh out (iteratively) a design from the
requirements developed in the Detailed Requirements Definition Stage. [Note: For information
engineering projects, the generic four-stage life cycle is replaced with a six-stage life cycle whose
stages are the following (four of the stages correspond to the generic four-stage life cycle): (1)
PLANNING (to account for enterprisewide requirements), (2) ANALYSIS (WHAT), (3) DESIGN
(HOW), (4) DEVELOPMENT (BUILD), (5) IMPLEMENTATION (USE), and (6) RETIREMENT (to
account for phasing out of one or more systems within an enterprise).]

APPENDICES

Appendices can contain details for carrying through the guidance set forth in the body of the
guideline. For example, appendices might include such things as (1) example management,
development, and product assurance project tasks for one or more of the life cycles discussed in
Section 4 and (2) a detailed list of candidate activities associated with each of the four generic life
cycle stages (e.g., for the WHAT Stage, some candidate activities might be requirements
discovery, requirements modeling, requirements verification, and requirements updating).

[Your Organization’s Name and Logo] Document #

Date

[Your Organization’s Name] Guideline

Software Development Life Cycle Definition

Figure 8–12 Continued

ptg

Chapter 8 • Process Improvement Planning

582

project tracking technique that should be explicitly called out in the Project
Tracking element. Also, as described in Chapter 3, the seller deliverable track-
ing form is used to track a product as it wends its way through the organiza-
tion’s software systems development process. For this reason, this form
should be addressed in the Project Tracking element as a project tracking aid.

Figure 8–12 (Software Development Life Cycle Definition Guideline) pro-
vides guidance for constructing a life cycle or life cycles pertinent to a given
software project. As such, this guideline is a project planning aid. For this rea-
son, some organizations may find it helpful to fold the material in this guide-
line into a appendix to the Project Plan Development Process element
discussed in Chapter 2, rather than placing the material in a stand-alone ele-
ment. The heart of the material is the guiding principles, examples of which
are shown under Section 3 in Figure 8–12. These principles are tied to the
generic four-stage life cycle (i.e., WHAT, HOW, BUILD, and USE) introduced
in Chapter 1, which is shown in the figure. They explain how to unfold the
generic stages into stages that account for project particulars (e.g., schedule
constraints, technology considerations, requirements uncertainty). Section 4
of the guideline indicates that example life cycle models should be included
to illustrate the application of the guiding principles. Figure 8–12 also sug-
gests that appendices can be used to illustrate how the life cycle constructed
can be used to drive out management, development, and product assurance
tasks. This process is explained and illustrated in Chapter 2.

We now discuss an SEE implementation issue pertaining to ADPE element
structure. To this point, we have implicitly assumed that ADPE elements are
generally documents of more than a couple of pages. Also, as suggested in
Figure 8–9, we have implicitly assumed that an ADPE should be constituted
with ten or so elements. The issue that we now consider examines these
assumptions.

4. How should the ADPE be constituted—(1) from a small number
of elements (i.e., approximately ten), each consisting of tens of pages
or more, or (2) from a large number of elements (i.e., tens or more),
each consisting of a couple of pages, or (3) some combination of (1)
and (2)?

An important SEE implementation planning issue is how to structure the
ADPE. Figure 8–13 highlights key factors bearing upon this issue. One alter-
native is to produce ten or so elements, with each element consisting of tens
of pages or more. A second alternative is to produce tens or more elements,
with each consisting of a couple of pages. A third alternative is some combi-
nation of the first and second. In the following sections we discuss SEE plan-
ning considerations regarding each alternative.

ptg

ADPE

Element
ADPE

Element

ADPE

Element
ADPE

Element

ADPE

Element
ADPE

Element

ADPE

Element
ADPE

Element

ADPE

Element
ADPE

Element

ADPE

Element
ADPE

Element

ADPE

Element
ADPE

Element

ADPE

Element
ADPE

Element

ADPE Alternative (1) ADPE Alternative (2)

● Element development time months or longer

● Element can integrate and detail a number of
concepts

● Element has room for both instructional (i.e.,
tutorial) material as well as business practices

● Element update time weeks or longer

● Small number facilitates task of keeping
elements mutually consistent

● Dedicated PEG staff generally needed

● Element development time days or weeks

● Element focus narrow

● Element must get right to the business practice
points

● Element update time days

● Large number makes task of keeping elements
mutually consistent difficult

● May only require a PEG consisting of a small
number of dedicated staff for element
integration, training, and maintenance and a
number of part-timers to write individual
elements

ADPE

Element
ADPE

Element

ADPE

Element

ADPE

Element

ADPE

Element

ADPE

Element

ADPE

Element

ADPE

Element

ADPE

Element

ADPE

Element

ADPE

Element

ADPE

Element

ADPE

Element

ADPE

Element

Figure 8–13 An important SEE implementation planning issue is the following: How should the ADPE be constituted—
(1) from a small number of elements (i.e., approximately ten), each consisting of tens of pages or more, or (2) from a large
number of elements (i.e., tens or more), each consisting of a couple of pages, or (3) some combination of (1) and (2)? Here are
some considerations to help you address this issue in your SEE implementation plan.

ptg

ADPE Constitution Alternative (1)—Ten
or So Elements, Each Consisting of Tens
of Pages or More

♦ Element development time may take months or longer. One reason for this
protracted development time is deciding how much tutorial information to
include, how much guidance and “how-to-do-it” to include, and how to
organize these two classes of material. For example, in the CCB guideline,
things such as the following may be useful to include in an element
consisting of tens of pages:
♦ It may be useful to incorporate tutorial information explaining, for ex-

ample, a key engineering principle that management, development, and
product assurance disciplines are needed to maintain effective commu-
nication between the wizard and king—and why. Through such ex-
planatory material, people will have a better understanding of how to
set up and run CCB meetings on their particular projects. Absent such
information, people may struggle with, for example, getting closure at
CCB meetings on things that need to be done to move a project ahead.
Tutorial material is particularly important in an organization predomi-
nated by inexperienced staff (i.e., a staff with only several years’
software industry experience on average).

♦ It may be useful to incorporate guidance on CCB minutes. Here, there is
a broad spectrum of possibilities. Some experienced members of your
organization may say that all they need in the way of guidance in this
regard is a simple statement such as, “Take minutes at each CCB meet-
ing.” Other members may say that they want what to record in minutes
(i.e., CCB minutes information requirements). Still other members may
say they want a specific format for CCB minutes. Because of such a
broad spectrum of possibilities, it may take considerable time to strike
some sort of happy medium in the CCB element regarding CCB
minutes guidance detail.

♦ It may be useful to incorporate examples illustrating the range of activi-
ties that can be folded into CCB operation. For instance, it may be useful
to show how the CCB can be used to do software systems development.
As a specific illustration, the CCB element may explain how to use one
or more CCB meetings between the seller and customer to thrash out
what “user friendly” may mean in terms of specific functions that can
be tested.

♦ Elements consisting of tens of pages or more allow for integrating and de-
tailing of a number of concepts. For example, in Chapter 2, we discussed
how risk assessment should be a key part of the project planning process.
We explained how to integrate risk assessment with other parts of project
planning, such as using a life cycle to drive out specific project tasks to be
accomplished. As another example, earlier in the current chapter we ex-
plained how to integrate within a Document Templates element the con-
cepts of (1) document sets appropriate for different types of projects within
an organization and (2) document review guidance.

Chapter 8 • Process Improvement Planning

584

ptg

♦ As mentioned earlier, elements consisting of tens of pages or more have
room for both instructional (i.e., tutorial) material as well as business prac-
tices. Integrating these two types of material generally permits the material
to be more easily assimilated (particularly if examples are included). In ad-
dition, by including explanations of underlying engineering principles, ele-
ments can generally be more easily adapted to different situations. For
example, a principle underlying the CM function of “control” is to give vis-
ibility to candidate and approved changes. Generally, this visibility is
achieved through “paperwork” (here, “paperwork” also includes elec-
tronic as well as hard copy). That is, some paperwork is needed on each
project to follow product evolution—but how much? We assert that the
minimum paperwork requirement is CCB minutes capturing decisions
made regarding product evolution. If it is anticipated that many changes
may be made to products, then more extensive paperwork will be needed.
This more extensive paperwork includes change control forms (such as
those discussed in Chapter 4). Carrying this paperwork example a little
further, it may be useful to include in your organization’s CM element a
rule of thumb for gauging when a project needs to augment paperwork
support for change control beyond CCB minutes to include forms. The
following is an example of such a rule of thumb:

If it is anticipated that throughout the current fiscal year of the project
at least one deliverable may require consideration of at least ten changes,
then change control forms should be used to track product changes.

♦ Elements consisting of tens of pages or more may require weeks or longer
to update. The update time may be particularly protracted if the element
contains complex flow diagrams and extensive supporting text. Update
time also depends on the process you set up for constructing, reviewing
and revising ADPE elements, as discussed in Chapter 7. The greater the
number of reviewers, the more protracted will be the update time.

♦ An ADPE consisting of a relatively small number of elements facilitates the
task of keeping the elements mutually consistent. Mutual consistency is
particularly important regarding definitions of terms (e.g., two different
definitions of “high-risk project”) and different words to refer to the same
concept (e.g., “change control board” and “configuration control board”).

♦ A process engineering group (PEG) may generally need to be dedicated to
developing and maintaining a set of ten or so elements, each consisting of
tens of pages or more. A group of dedicated staff facilitates the task of
weaving a consistent approach into the ADPE. For example, it can take
considerable time to hammer out the organizational software systems de-
velopment process element. As we pointed out in Chapter 3, the heart of
this element is the organizational process flow diagram. Generally, just a
couple of dedicated people should try to get the flow down on paper—and
then solicit feedback from the rest of the organization. It is generally easier
for a small group of dedicated staff to establish a consistent approach to

Chapter 8 • Process Improvement Planning

585

ptg

Chapter 8 • Process Improvement Planning

586

documenting ADPE elements. It is generally helpful for an ADPE to pre-
sent a consistent face to the rest of the organization. Furthermore, a dedi-
cated group is more likely to take ownership of its ADPE products—and
be more forceful in campaigning for their adoption.

ADPE Constitution Alternative (2)—Tens
of Elements, Each Consisting of a Couple
of Pages

♦ For elements of this type, the development time will be days or, at the out-
side, weeks (depending, again, on the process you set up for constructing,
reviewing, and revising ADPE elements). Such relatively rapid develop-
ment time can allow for more experimentation with element orientations
to accommodate perceived organization process needs. Of course, as we
discuss in a subsequent issue, no matter what size the element, time is still
needed for people to get acclimated before the element is changed. How-
ever, with smaller elements, the impact of element changes on staff should
be easier to perceive and to adjust to.

♦ Because the element consists of only a couple of pages, it cannot be ency-
clopedic. Its focus must therefore be narrow—and, thus, generally easier to
assimilate than a larger and more comprehensive element. Also, staff are
more likely to read through an element with a couple of pages than one
consisting of ten times that number of pages. Although reading elements
does not guarantee ADPE implementation success, not reading them will
almost certainly undermine successful implementation.

♦ Again, because of its small size, the element must get right to the business
practice points. This characteristic is particularly beneficial when staff
needs to locate quickly a key business process point.

♦ For elements each consisting of a couple of pages, the update time should
generally be days. This characteristic can be particularly beneficial to re-
lieve organizational tensions arising from existing practices that many may
feel need to be changed.

♦ A large number of elements makes the task of keeping them mutually con-
sistent generally more difficult than keeping a smaller set consistent. Some-
times this factor may work at cross-purposes with the preceding factor.
Although, as we just argued, a couple-page element may be updatable
within days, changes thus introduced may cause unanticipated inconsis-
tencies in a number of other elements. Part of the update time for a given
element must thus include the analysis of impacts on a potentially large
number of other elements.

♦ To produce a large number of small elements may only require a PEG con-
sisting of a small number of dedicated staff for element integration, train-
ing, and maintenance. This dedicated staff would be augmented by a
number of part-timers to write individual elements. Presumably, these

ptg

part-timers would be subject-matter experts who could cogently and
compactly produce the element text.

Before proceeding to ADPE Constitution Alternative (3), we illustrate some of
the preceding Alternative (2) factors. For this purpose, we provide the sample
two-page ADPE element shown in Figure 8–14. The figure shows a CM
Guideline derived from the CM Guideline outline given in Figure 8–8.

The thrust of the element is to give the essential requirements for setting up
CM on a project. The element empowers the project to implement the require-
ments in a way that makes sense for the project. This empowerment approach
should be particularly effective in an organization with solid software engi-
neering experience (which should not be confused with “software experi-
ence,” which may be markedly different from the former). Among other
things, such an organization, with its know-how, should be able to apply this
software engineering experience to the CM Guideline requirements to pro-
duce a CM plan and procedures consistent with project needs. If an organiza-
tion is short on such know-how, the Figure 8–14 guideline can still benefit the
organization if it is supplied with some references that can offer this know-
how. Such references would include CM textbooks (with material such as
that found in our Chapter 4), government and/or industry standards (e.g.,
U.S. Department of Defense, Institute for Electrical and Electronics Engineers,
Electronic Industries Association, International Organization for Standards,
and enterprisewide CM publications. References on automated CM tool sup-
port can also help fill a know-how gap. However, a word of caution is in
order regarding CM tools in particular and automated tools in general. Tools
should be viewed as just that—namely, aids for accomplishing business prac-
tices more efficiently, generally through automation. By understanding engi-
neering principles underlying ADPE elements, it is then generally easier to
decide which parts, if any, of business practices that it makes sense to accom-
plish with tools. The notion that it is adequate to define a business practice
simply in terms of some tool is generally short-sighted, if not a recipe for
trouble. For example, using a tape-recorder to capture what goes on at a CCB
meeting is helpful only when it is understood (1) what are the meeting events
that should be captured, (2) whether a hard copy of some of this recording
should be prepared, and (3) what part of this recording should be committed
to hard copy.

It is important to stress that using a two-page ADPE element such as that
shown in Figure 8–14 and that may be short on “how-to” is not an oxymoron
for establishing consistent business practices. That different projects using the
same guideline as that shown in Figure 8–14 may set up vastly different CM
implementations, does not stand in opposition to the element’s purpose of es-
tablishing an organizationwide consistent CM business practice. The view
adopted here is that all such projects are implementing the same set of CM re-
quirements in different ways—and, therefore, are practicing CM in a consis-
tent way. For example, one project may use forms to track changes, while
another project may simply use CCB minutes for this tracking purpose.

Chapter 8 • Process Improvement Planning

587

ptg

Document #

Date1.0 PURPOSE

This guideline defines [your organization’s name] configuration management (CM) requirements and responsibilities. Each project is to
apply these requirements to establish a CM approach via either a CM plan and/or CM procedures.
Configuration management is defined as the integrated application of the four component functions of identification, control, auditing,
and status accounting, where these functions are defined as follows:
Configuration identification entails determining the constituent parts of a product and the relationship among these parts, and labeling
the parts thus determined.
Configuration control provides the mechanism for precipitating, preparing, evaluating, approving/disapproving, and implementing all
changes to products throughout a project. A key element of this function is the change control board (CCB), which is discussed below.
Configuration auditing consists of two primary functions: (1) configuration verification and (2) configuration validation. Configuration
verification checks that whatever is intended for each component of a product configuration as specified in one baseline is actually
achieved in the succeeding baseline. Configuration validation ascertains that the product configuration is congruent with the
requirements for that product, i.e., that the product requirements are fulfilled.
Configuration status accounting records the activity associated with the other three configuration management activities. It provides
answers to the questions “What happened?” and “When did it happen?” thereby giving visibility into the product development process
and the resultant products. Recording of CCB minutes and maintaining an archive of change control forms are examples of status
accounting activities.

[Your organization’s name] develops [your organization’s product types] that will be the focus of CM activity.
2.0 BACKGROUND

The purpose of this section is to give background for implementing the requirements given in the preceding section. CM supports
product development by providing management and product developers a “parts view” of products under development. The term
“configuration” is used to refer to this parts view. More specifically, configuration is defined as “a relative arrangement of parts.”
Configuration management keeps track of these parts arrangements, which typically manifest themselves in two forms: (1) an exploded
parts diagram showing each product part and the relationship of parts to one another and (2) a list of the parts and their identifiers.
Almost any object can be described in these terms. The fundamental value of expressing an object in terms of its configuration is that
this view gives insight into (1) how the object is put together, (2) how it can be taken apart, (3) how it can be fixed, and (4) how parts may
be added, combined, and/or eliminated.
The fundamental CM concept, baseline, is defined as “a line establishing a formal base for defining subsequent change.” That is, a
product baseline establishes the context for defining a change to that product. [Here you can add other CM concepts or replace those
above, depending on your organization’s needs.]

4.0 CONFIGURATION MANAGEMENT CONCEPTS

This section delineates the responsibilities of each agent within [your organization’s name] for implementing the guidance set forth in
the remainder of the guideline.
[Here you list each pertinent element of your organization—e.g., project manager, manager of project managers, manager of the process
engineering group, product assurance manager, product assurance analysts—and their CM responsibilities. Example organizational
elements and their responsibilities are given below.]

5.0 CONFIGURATION MANAGEMENT IMPLEMENTATION RESPONSIBILITIES

This section presents requirements for setting up CM practices on [your organization’s name] projects. These requirements include the
following:
● Part Labeling—establish a configuration item (CI) labeling scheme for identifying product parts to be controlled.
● Labeling Depth—decide on the depth of the CI hierarchy. This depth may change throughout the product lifetime. The greater the

depth, the greater the visibility into product changes, and the greater the effort required to track changes.
● Forms—define forms for documenting and tracking (candidate) product changes. For small projects or projects that process only a

small number of changes, forms may be replaced by entries in CCB minutes.
● Forms and CCB Support—use forms in conjunction with a project CCB to give visibility to proposed and implemented changes.
● Forms Library and Product Assurance—use the product assurance organization to (1) keep forms library up-to-date, (2) make this

information available at CCB meetings and other project meetings, (3) maintain the forms project archive.
● Change Confirmation—use the product assurance organization to confirm that approved changes have been incorporated.

Confirmation should be a matter of record either at CCB meetings or other project meetings.
● Forms Automation—automate form data entry and archiving to the extent practical considering (1) project budget, (2) schedule, and (3)

value of change control data beyond the termination of the project.

3.0 ORGANIZATIONAL CONFIGURATION MANAGEMENT REQUIREMENTS

[Your Organization’s Name and Logo] Document #

Date

[Your Organization’s Name] Guideline

Configuration Management

Figure 8–14 Here is an example of a two-page CM ADPE element adapted from the Figure 8–8 annotated CM ADPE element
outline. The slant of this element is to empower members in the organization to develop their CM approaches from the element
either via a CM plan or for, say, small projects, via CM procedures. Page 2 of the element contains a CM plan outline.

ptg

589

Document #

Date
● Project Manager—actively supports the CM practices set forth in this guideline by (1) ensuring that its contents are assimilated by all

projects within the scope of the project manager’s responsibility and (2) promoting its practices with [your organization’s name]
customers. Provides required direction and guidance to the project team to support implementation of the CM practices set forth in
this guideline. Interacts directly with designated product assurance analysts responsible for CM throughout the development effort as
defined by the project plan and the project’s product assurance plan.

● Product Assurance (PA) Manager—is the [your organization’s name] person responsible for providing CM support to every [your
organization’s name] project. In accordance with the project plan and product assurance plan, the PA Manager provides support to
each project by assigning PA analysts with the appropriate CM skills.

● Product Assurance Analysts—assist with and coordinate the development of CM requirements that are tailored to a specific project.
Assistance includes developing a project-specific product assurance plan for each project. Regarding CM, this plan either (1) specifies
the project CM approach or (2) calls for the development of a CM plan specifying this approach. Implement CM practices on [your
organization’s name] projects in accordance with this guideline. Coordinate the implementation of CM requirements with the project
manager (and, with the project manager’s knowledge, coordinate with product development personnel). Serve as the liaison to [your
organization’s name] product assurance management for project CM activities.

This section contains a high-level description of the project and the software system(s) being developed or supported.
1.0 INTRODUCTION

This section lists the government, industry, and local documents, standards, specifications, plans, regulations, manuals, and other
documents that apply to the development and content of the plan.

2.0 REFERENCES

This section specifies the project organization, the configuration management organizational setup, and the associated
responsibilities.

3.0 CONFIGURATION MANAGEMENT ORGANIZATION

This section specifies the project configuration identification approach and procedures.
4.0 CONFIGURATION IDENTIFICATION

This section specifies the project configuration control approach and procedures.
5.0 CONFIGURATION CONTROL

This section specifies how the status of items will be collected, verified, stored, processed, and reported.
6.0 CONFIGURATION STATUS ACCOUNTING

This section specifies the project configuration auditing approach and procedures.
7.0 CONFIGURATION AUDITING

This section specifies the date and time estimates for project events such as reviews and audits.
8.0 SCHEDULE

This section specifies the project items to be configuration managed.
10.0 CONFIGURATION MANAGEMENT INVENTORY TYPES

This optional material can contain such things as the details of the product identification scheme to be used to label product parts,
change control form templates, examples of filled-out change control forms, detailed library management procedures, emergency
change control procedures, and relevant terms and abbreviations.

APPENDICES

This section specifies the methods, tools and facilities used by the project team, the product assurance organization, the CCB, and
other support groups for carrying out the project configuration management activities.

9.0 CONFIGURATION MANAGEMENT IMPLEMENTATION

[Your Organization’s Name and Logo] Document #

Date

[Your Organization’s Name] Guideline

Configuration Management

5.0 CONFIGURATION MANAGEMENT IMPLEMENTATION RESPONSIBILITIES (Continued)

CM Plan Topic Outline

Figure 8–14 Continued

ptg

Chapter 8 • Process Improvement Planning

590

However, both are tracking changes in a visible, traceable way. This argu-
ment is not meant to imply that an organization cannot set up a detailed
(many-paged) CM guideline that prescribes that all projects within the orga-
nization implement CM in the same, almost carbon-copy way (e.g., same
change control forms, same CCB-minutes format, same parts identification
scheme). In some organizations, this approach may be the commonsense
thing to do. The key point here is that “consistent business practice” can
span a broad range of interpretation—and the interpretation appropriate to
your organization should be clearly articulated in your ADPE elements.

ADPE Constitution Alternative (3)—
Combination of Some Elements,
Each Consisting of a Couple of Pages
with Some Elements Each Consisting
of Tens of Pages or More

This alternative aims at taking the best of the preceding two alternatives. One
approach here is to make the Software Systems Development Process element
tens of pages or more, with a sufficiently detailed process diagram containing
all the components that should be elaborated on in other elements (e.g., pro-
ject planning, peer reviews, product assurance, CCB). With the possible ex-
ception of the CCB element, these other elements can be more along the lines
of the couple-of-page variety, as in Figure 8–14. So, for example, several dif-
ferent couple-of-page elements each on a peer review procedure for a differ-
ent type of peer review (e.g., document section peer review, code
walkthrough). Such elements would fill in the details of the peer review
component called out in the Software Systems Development Process element.

To conclude our discussion of this issue of ADPE constitution, we offer the
following approach for planning a set of ADPE elements:

1. Step through the preceding discussion of the first two alternatives and at-
tempt to decide whether the advantages in a given alternative far
outweigh the disadvantages.

2. If they do, select that alternative.
3. If not, select Alternative (3). For this alternative, develop a strategy for

deciding which elements should be of the Alternative (1) flavor and
which should be of the Alternative (2) flavor. In your plan, remember to
allow for crossovers—that is, elements that may start out from one alter-
native and evolve to the other. Also, allow for the number and type of el-
ements you will need to change (for this purpose, you may need to
publish an SEE plan update).

We now turn our attention to the following SEE planning issue, which we
have already touched on:

ptg

Chapter 8 • Process Improvement Planning

591

Figure 8–15 shows one key factor governing this issue—organization size. Or-
ganizational process improvement means, among other things, changing
ADPE business practices. The trick is to figure out when a change is truly
needed versus changing practices as a knee-jerk reaction to complaints from
the ranks. Initial reactions to change brought about by implementation of an
ADPE element may be resistance, plaintive cries for returning to the old way,
and/or outright rebellion. Thus, some settling-in time is needed to observe
whether the resistance, cries, and rebellion dissipate as people get acclimated
to the new way of doing business. After this settling-in period, it is then help-
ful to examine what is not working in the “new” way and should be changed.

5. How frequently should an ADPE element be updated?

[Your Organization’s Name and Logo] Document #
Date

[Your Organization’s Name]

[ADPE Element Type {Standard, Policy,

Procedure, Guideline}]

Element Title

Seller Program Manager Approval:

Buyer/User Program Manager Concurrence:

Big Kahuna’s Counterpart Date

Big Kahuna Date

[Your Organization’s Name and Logo] Document #
Date

[Your Organization’s Name]

[ADPE Element Type {Standard, Policy,

Procedure, Guideline}]

Element Title

Prepared by:

Seller Program Manager Approval:

Buyer/User Program Manager Concurrence:

Big Kahuna’s Counterpart Date

Big Kahuna Date

Months
small projects/
organizations

(tens of people
or less)

Year+

large projects/
organizations

(hundreds of people
or more)

ABC Company
777 Lucky Drive

Arlington, VA 22202

Prepared by:

ABC Company
777 Lucky Drive

Arlington, VA 22202

UPDATE

Figure 8–15 A key SEE implementation planning issue is the following: How frequently should an ADPE element be updated?
The tradeoff here is getting people acclimated to a set of practices versus acclimating the practices to the people so that the
practices (and thus the people) are useful. One factor governing ADPE element update frequency is the size of an organization.
In general, the larger an organization, the longer the interval between element updates. The primary reason for this relationship
is that the larger the organization, the longer it takes for a way of doing business to settle in—because it generally takes longer
for a larger body of people to get in step than it does for a smaller body.

ptg

Chapter 8 • Process Improvement Planning

592

The question then is, how long should the settling-in period be? As Figure
8–15 indicates, the period should be months for small projects/organizations
(say, tens of people or less) and a year or longer for large projects/organiza-
tions (say, hundreds of people or more). The rationale underlying this rule of
thumb is simply that it generally takes longer for a larger body of people to
get in step than it does for a smaller body. For anyone with marching-band or
chorus-line dancing experience, this observation should be self-evident.2

A corollary to the preceding comments is that as an element stabilizes, the in-
tervals between updates can generally be shorter because, presumably, the
changes during each subsequent update should be more localized. As a re-
sult, the time needed for the organization to get acclimated to the changes
should be correspondingly reduced.

What should be done for large organizations whose project work extends
only for a year or so? Should elements be updated more frequently than a
year, or should the organization just try to use the practices as they are be-
cause the work that they will be applied to is going to disappear soon any-
way? One way to handle this situation is to try to limit the scope of the
changes so that the changes are easy to identify and relatively easy to get ac-
climated to. If a major overhaul of an element or elements is needed, then in-
tensive training should be provided to staff in anticipation of the revised
elements. This training should particularly stress the changes made to the
“old” way.

In issue 4, we addressed factors bearing upon ADPE constitution. We now
take a look at factors bearing on a related issue—namely, ADPE element
constitution.

The issue is the following:

2Of course, outright errors need to be corrected immediately—for example, spelling errors on a deliv-
erable tracking form. If the organization is slow to correct errors, people may think that the organiza-
tion is not serious about the element.

6. What amount of detail should be included in individual ADPE
elements?

Constructing ADPE elements is generally an arduous task. Getting a feel for
this “amount-of-detail” issue will help you plan ADPE element development
pace.

Figure 8–16 depicts five “graphs” intended to show semiquantitative rela-
tionships among several variables bearing on ADPE element constitution. We
explain each of these “graphs” in the paragraphs that follow. Each “graph”
contains two “points” represented by ADPE element icons of two different
thicknesses. Document thickness is intended to symbolize “amount of detail

ptg

ADPE

Element

ADPE

ElementMuch

Little

ManyFew

Element
Detail

Element
Detail

Element
Detail

Element
Detail

Number of
Elements

1

Much

Little

LowHigh

2

Much

Little

GreatLittle

Need for
Supplementary
Material

3

Much

Little

BroadNarrow

Frequency
of Element
Updating

Work
Spectrum

4

ADPE

Element

ADPE

Element
High

Low

LongShort

Frequency
of Element
Updating

Time to
Institutionalize

5

ADPE

Element

ADPE

Element

ADPE

Element

ADPE

Element

ADPE

Element

ADPE

Element

Figure 8–16 A key SEE implementation planning issue is the amount of detail to include in individual ADPE elements. Variables
to be considered include the following: (1) number of elements, (2) frequency of element updating, (3) need for supplementary
material, and (4) work spectrum. In addition, the variables generally depend upon other variables. For example, as shown in
graph 5, the frequency of element updating depends upon the time to institutionalize the business practices contained in the el-
ement. For your organization, there may be other variables that you may need to consider regarding ADPE element detail.

ptg

Chapter 8 • Process Improvement Planning

594

included in the ADPE element.” This symbol should not be taken too literally.
For example, by reducing the scope of a document, it is certainly possible to
include a lot of detail in a small number of pages (as an extreme specific in-
stance, you might have a single ADPE element that lists the specific steps for
filling out a single change control form; such an element may consist of only a
page or two). The point here is that the two document icons shown in each
“graph” are intended to suggest the range of ADPE element size. In one orga-
nization, a five-page ADPE element on any topic may be a tome because, for
example, everybody in the organization has so much software systems devel-
opment experience that only the barest list of guidance statements is all that is
needed to achieve consistent practice within the organization. In another or-
ganization, by contrast, five-page ADPE elements may raise more questions
than they answer because, for example, the organization is new and has been
put together with people from different environments who have achieved
successful software systems development consistency in radically different
ways.

With these above caveats, the five “graphs” shown in Figure 8–16 are in-
tended to help you (1) visualize the tradeoffs among the variables and
(2) identify other variables and associated tradeoffs that may be important for
your organization. This visualization is, in turn, intended to help you figure
out what may make sense for your organization regarding the amount of
detail to include in your ADPE elements. We stress that the relationships de-
picted in the “graphs” are generalizations. For this reason, we put the word
graph in quotes so that the relationships shown are not interpreted as rigorous
mathematical dependencies. As with most generalizations, there are excep-
tions. The objective here is to help you with SEE implementation planning
factors.

♦ “Graph” 1 (Element Detail Versus Number of Elements). The fewer the
number of elements, the more detail an individual element needs. We dis-
cussed this relationship before when we addressed the issue of ADPE con-
stitution. Here our perspective is that of the individual element. A
real-world consideration regarding document thickness is that people are
more likely to read a document consisting of just a few pages than one that
has many more. This almost self-evident consideration should not be over-
looked. A necessary (but not sufficient) condition for ADPE implementa-
tion is that the ADPE elements must be read—and, of course, understood.
On the other hand, if an ADPE element consists of only a few pages but
raises more questions than it answers, then subsequently produced few-
page elements are likely to go unread. The name of the game here is to cre-
ate elements that people will want to read because (1) the reading task is
not onerous and (2) the elements will help them do their jobs.

♦ “Graph” 2 (Element Detail Versus Frequency of Element Updating). The
more detail in an element, the more frequently it will have to be updated.
In our discussion of issue 5, we addressed element update frequency from
the point of view of organization size. Here, our focus is on element con-

ptg

Chapter 8 • Process Improvement Planning

595

tent. The dependency between element detail and element update fre-
quency is a particular challenge when constructing ADPE elements that
are procedures. Procedures are intended to provide specific instructions
for accomplishing something. However, there reaches a point where the
more specificity that is included, the shorter is the lifetime of the specific
information included. For example, a procedure may contain a template
for a cover letter to accompany a deliverable. If the template contained the
specific name of the addressee and/or the name of the person signing the
letter, then whenever the addressee and/or the person signing the letter
changes, the element would need to be changed.

♦ “Graph” 3 (Element Detail Versus Need for Supplementary Material).
The more detail in an element, the less need for supplementary material.
The overall consideration here is how self-contained the ADPE should be.
On the one hand, it is desirable to include in ADPE elements what the or-
ganization needs to achieve consistent software systems development suc-
cess without burdening it with seeking out additional information. On the
other hand, it is not practical to reproduce in the ADPE elements encyclo-
pedic software engineering material. Balance is needed. One way to fill in
details without expanding ADPE elements is to give short presentations on
each ADPE element (say, one hour to a couple of hours for each element).
These presentations will allow staff to relate the ADPE material to their
own frame of reference, and clear up questions they may have about the
material. Through such interaction, they may, for instance, annotate their
ADPE elements, thereby tailoring them to their perspectives. For example,
suppose your organization has an element that offers guidance on CCBs,
and suppose that the element offers broad guidance on what should be
documented at CCB meetings. In particular, suppose that the element
contains the following CCB meeting documentation guidance:

This documentation provides a visible trace of project activities that
serves the threefold purpose of allowing (1) management intelligently to
proceed with project accomplishment, (2) external auditors to verify the
extent to which work was accomplished in accordance with contractual
commitments, and (3) the organization to exploit lessons learned from
work that has been accomplished to better perform work to be accom-
plished. This threefold purpose thus has a tactical component specific to
project accomplishment, an after-the-fact component, and a strategic
component aimed at improving overall organization operation.

Documenting these meetings is simply good business practice. Experi-
ence overwhelmingly shows that memory is an unreliable source for decid-
ing what to do next on a project and for deciding what may be applicable
to another or a new project. It is particularly important to keep in mind
the above stated threefold purpose of this documentation when deciding
what makes sense to document. For the sake of expediency, it is often con-
venient to focus on the tactical component at the expense of the other two
components. On the other hand, it is counterproductive to generate

ptg

Chapter 8 • Process Improvement Planning

596

prodigious amounts of documentation to satisfy in particular the strategic
component. It is thus necessary to strike a balance between these two
extremes when deciding what to make a matter of record.

When the preceding guidance is briefed, attendees may have specific ques-
tions regarding what makes sense to document on their particular projects.
For example, a particular project may involve the development of a soft-
ware system whose failure may cause people to get injured or suffer large
financial loss. When these project characteristics are brought up during the
CCB element briefing, this guidance may be translated into the following
requirement for that project (and for projects where the stakes are similar):

The CCB minutes shall be a transcript of the entire meeting, with all
conversation being made a matter of record.

Similarly, more extensive training, such as multiple-day seminars, can be
used to supplement ADPE element content. For example, your organiza-
tion may have an ADPE element on acceptance testing. To provide addi-
tional insight into acceptance testing mechanics and management (say,
along the lines described in Chapter 5), your organization may want to
offer a multiple-day seminar on these topics to ensure that the business
practices in the testing element are consistently implemented. Other exam-
ples of supplementary source material include software engineering text-
books (e.g., on configuration management, peer reviews, project tracking)
and industry standards (e.g., IEEE standard on software requirements
specification). There are no hard-and-fast rules for deciding what to in-
clude in ADPE elements and what to point the reader to for additional in-
sight. However, there is one overriding consideration—if an element
appears too bulky and/or the information included is not easy to
assimilate, the element will likely be ignored.

♦ “Graph” 4 (Element Detail Versus Work Spectrum). There is an inverse
correlation between the scope of an organization’s work spectrum and the
amount of detail incorporated into (some) ADPE elements. By “work spec-
trum scope” we mean the range of software systems development work
that an organization performs. Examples of narrow-work-spectrum scope
are the following:
♦ Projects use information engineering (IE) in conjunction with a specific

CASE tool. In this situation, ADPE elements can be IE specific and spe-
cific to the CASE tool used. For example, some CCB meetings may be
labeled Joint Requirements Planning (JRP) sessions, and minutes-taking
may be aided by the CASE tool. If it is desired to make the ADPE
elements reasonably self-contained, then the elements can go into con-
siderable detail regarding how IE is to be practiced within the
organization. For example, a CCB element can include detailed
procedures for conducting JRP sessions.

♦ Projects use the same life cycle, and all products developed use the
same suite of standards. In this situation, ADPE elements can be tied

ptg

Chapter 8 • Process Improvement Planning

597

specifically to the life cycle and standards used, providing detailed
guidance regarding product accomplishment during each life cycle
stage. For example, suppose the life cycle contains a stage called “Re-
quirements Definition” wherein a requirements specification is devel-
oped according to the organization’s requirements specification
standard. Then an ADPE element addressing software systems devel-
opment practices can lay out steps for developing the requirements
specification according to the standard—possibly going so far as to in-
clude (1) a complete requirements specification and (2) an explanation
of how it is constructed.

♦ Projects develop all products according to the object-oriented paradigm.
In this situation, ADPE elements can use object-oriented terminology
(e.g., object, class, subclass, superclass, descendant, message, attribute,
abstract data type, inheritance) and object-oriented product examples
(e.g., object-oriented requirements and design specifications, where re-
quirements and design are expressed in terms of real-world objects).
Again, if it is desired to make the ADPE elements reasonably self-con-
tained, then the elements can go into considerable detail regarding how
object-oriented techniques are to be practiced within the organization
(e.g., C++ coding standards).

By contrast, an example of broad-work-spectrum scope is the following:
♦ Projects that (1) do not necessarily include software systems develop-

ment (e.g., a project that analyzes different ways to frame an informa-
tion security policy), (2) use different life cycles, and (3) use different
development approaches. In this situation, ADPE elements cannot de-
tail specific life cycles. In Chapter 3, we described how to define a soft-
ware systems development process into which can be plugged different
life cycles. There we also described how the process could accommo-
date different development approaches (such as traditional software
systems development and information engineering). We indicated that
the process should contain activities such as peer reviews, independent
product assurance, and technical editing. However, in an organization
with a broad-work-spectrum scope, it may be counterproductive to,
say, detail a specific procedure for conducting peer reviews. Rather, it
may be necessary to include in an ADPE element several alternative
peer review approaches along with some guidelines for selecting an ap-
proach to be applied to a project with certain characteristics. For exam-
ple, the element might indicate that for projects with no more than, say,
five people, undocumented peer reviews may be sufficient; on the other
hand, the element might indicate that for projects involving the devel-
opment of software-driven medical devices, all peer reviews must be
documented in detail. It should be noted here that although the peer re-
view element may not be detailed in terms of specifying the individual
steps in conducting a peer review (because too many variations are pos-
sible as a result of the organization’s broad work spectrum), the number
of pages in the element may still be more than a few because the ele-
ment has to address a number of different peer review approaches to
accommodate different project needs. That is, because of the organiza-
tion’s broad-work-spectrum scope, ADPE elements have to replace
“how-to-do-it” detail with a more broadly worded discussion of alter-
native applicable practices.

ptg

Chapter 8 • Process Improvement Planning

598

♦ “Graph” 5 (Frequency of Element Updating Versus Time to Institution-
alize). This “graph” illustrates how the variables in the other “graphs”
may themselves depend on other variables bearing on SEE implementa-
tion. “Graph” 5 has the interpretation that the lower the update frequency
of an ADPE element, the shorter the time needed to institutionalize its
practices. Conversely, the higher the update frequency of an ADPE ele-
ment, the longer the time needed to institutionalize its practices. “Graph” 5
is intended to suggest how this correlation comes about—namely, as ex-
plained earlier, the less detailed an element, the less frequently it needs to
be updated, and the shorter the time needed to institutionalize it (and
conversely).

In concluding the discussion of this issue, we stress that the variables shown
in Figure 8–16 may not be the only ones that you may need to consider re-
garding ADPE element detail. The preceding discussion is intended to illus-
trate in some detail (no pun intended) how to bring such variables into your
SEE implementation planning picture.

We stated at the outset of this chapter that its focus is on the ADPE side of
SEE implementation planning. We now briefly turn our attention to the
ADTE. Again, as with all the issues discussed in this chapter, our purpose is
to get you started planning your SEE.

7. How can you define a plan for an application development tech-
nology environment (ADTE) for your organization?

Figure 8–17 contains an annotated outline for defining a plan for establishing
and evolving an ADTE. This plan could be made a part of the SEE implemen-
tation plan (e.g., as volume II, where volume I would address the ADPE).

The outline contains examples of entries that should appear in each of the five
sections shown. The first three sections (Introduction, Objectives, Scope) are
straightforward and are not discussed further. Regarding the next two sec-
tions (Policy, ADTE Components), the following comments are in order:

♦ The section on ADTE policy provides the plan’s teeth. It establishes who
within your organization and outsiders who support your organization are
bound by the technology included in this plan. The policy is established to
leverage employee skills within and across projects—and prevent depen-
dency on gurus who may be part of a small community familiar with a
particular technology. For example, if your organization’s primary busi-
ness is to develop management information systems for large corporations,
the ADTE may limit the technology suite (i.e., hardware and software) to a
set number of CASE tools running on a specified set of hardware

ptg

599

Document #

Date1.0 INTRODUCTION

This section states the purpose of the plan, which is to establish a technology environment for
your organization consisting of hardware (including communications components) and software
development tools, and associated procedures for their use, required to develop applications.
These tools include, depending on the business of your organization, such things as CASE tools,
programming language compilers, local area network (LAN) application development tools, PC
application development tools, database management systems, configuration management tools,
and project management tools. This plan is intended for use by all your organization’s staff
members who are involved with developing applications.

2.0 OBJECTIVES

This section states the objectives of the plan. An example of such objectives would be the
following:
● Define and describe the standard hardware, software, tools, and communications components

that support application development in your organization.
● Establish standard components and identify procedures for their use where your customer does

not have such standard components and procedures, and stipulate conformance to such
standard components and procedures where your customer does have such standard
components and procedures.

3.0 SCOPE

This section states the plan scope. An example scope statement might be the following:
The components discussed in this plan include the standard hardware and software for the
mainframe, minicomputer, Local Area Network (LAN), telecommunications, and personal
computer (PC) environments used for development of applications within your organization.

[Your Organization’s Name and Logo] Document #

Date
Plan for the [Your Organization’s Name]

Application Development

Technology Environment (ADTE)

4.0 POLICY

This section delineates the personnel associated with application development within your
organization to which this plan applies (e.g., employees of your organization, contractors,
subcontractors, consultants). This section should also address the policy concerning such things
as customer-provided equipment and equipment acquired by a contractor that may not be part of
your organization’s equipment.

5.0 ADTE COMPONENTS

This section defines the hardware, software, communications components and associated
procedures for their use that make up your organization’s ADTE. For example, this section should
specify LAN resources (e.g., file server hardware configuration, file server software configuration,
network backup server, network monitoring and analysis tool, LAN printers, etc.).

APPENDICES

Appendices may be used to augment Section 5. For example, Section 5 might simply be a top-
level discussion of the ADTE components. Then, appendices might contain the details. For
example, if Section 5 states that the ADTE consists of a mainframe development environment and
a LAN development environment, then separate appendices might detail the components of each
of these environments.

Figure 8–17 An annotated outline for getting you started defining a plan for an application develop-
ment technology environment (ADTE) for your organization.

ptg

Chapter 8 • Process Improvement Planning

600

platforms. As a result, your organization would have a large number of
people who are trained on these tools and platforms, thereby avoiding
dependence on a small community of “experts.”

♦ The section on ADTE policy also delineates technology ground rules for
the organization’s customers. Technology ground rules need to be negoti-
ated between the seller and customer. By defining such things as standard
computer hardware/communications development suites, the plan limits
the technology that a customer may want to bring to bear on work to be ac-
complished. To provide flexibility in this regard, your organization may
want to include in this section a procedure for obtaining a waiver or devia-
tion from the policy. In general, such waivers or deviations may require
additional costs to be levied on the work to be performed—even if the cus-
tomer provides the “nonstandard” technology. One source for these addi-
tional costs even under these circumstances is the need to train staff in the
technology or to hire (higher-priced) consultants skilled in the technology.

♦ If there are no plan appendices, the section on ADTE components should
contain itemized lists of hardware and software components (including ac-
ceptable version numbers). It should also show diagrams depicting stan-
dard hardware/communications configurations (including such things as
memory sizes, mass storage capacities, and communications line transmis-
sion rates). If your organization intends to keep pace with upgrades to the
technology components that make up your ADTE, you may want to rele-
gate the technology component details to appendices (as indicated in Fig-
ure 8–17), particularly if these upgrades occur frequently. Then, when you
are ready to upgrade your technology components, you may need only to
update the appendices in the plan at regular intervals—for example, yearly
for multiyear contracts or programs, and quarterly or semiannually for
shorter arrangements.

Having discussed SEE implementation planning issues pertaining to SEE
structure and substructure, we consider the following related issue before
proceeding to other classes of issues:

8. How do you package ADPE elements and related items?

Many of us keep notebooks that contain information that we frequently need
to access, such as phone numbers, addresses, and appointment dates and
times. If the ADPE is to be similarly accessible, it should be packaged to facili-
tate access and use. We stress that, although good ADPE packaging will not
guarantee ADPE element use, lack of good packaging will almost surely
guarantee ADPE element nonuse.

ptg

Chapter 8 • Process Improvement Planning

601

Figure 8–18 illustrates one way to package ADPE elements and related items.
It shows the contents of a three-ring binder,3 a copy of which should be dis-
tributed to each member of your organization, with the following tabs to help
organize the binder contents and facilitate information retrieval:

R
e

la
te

d
 M

a
te

ria
l

A
D

T
E

S
ta

n
d

a
rd

s

P
ro

ce
d

u
re

s

G
u

id
e

lin
e

s

P
o

licie
s

A
D

P
E

In
tro

d
u

ctio
n

[Your Organization’s Name and Logo]

SEESystems Engineering Environment

Application

Development

Process

Environment

ADPE ADTE
Application

Development

Technology

Environment

[Your Organization’s Address]

Figure 8–18 A good way to package your engineering environment is a binder containing your ADPE
elements and material pertinent to your technology environment.

3Our use of the term “three-ring binder” in the subsequent discussion extends to electronic versions.

ptg

Chapter 8 • Process Improvement Planning

602

♦ Introduction. Behind this tab goes material that explains such things as
your organization’s mission and work spectrum, the purpose of the SEE,
and the organization of the binder contents.

♦ ADPE. This tab begins the ADPE portion of the binder. The ADPE portion
of the binder is organized according to the ADPE element taxonomy that
you establish for your organization. In this book, we use the four-compo-
nent taxonomy of “policy,” “guideline,” “procedure,” and “standard.” The
ADPE tabs in Figure 8–18 reflect this taxonomy. If your organization
chooses to establish a different ADPE taxonomy, then the number and
names of ADPE tabs would correspondingly change.

♦ Policies. Behind this tab go your organization’s ADPE policies. Other ma-
terial pertaining to these policies can also be placed here, such as hard copy
of briefings on ADPE policies.

♦ Guidelines. Behind this tab go your organization’s ADPE guidelines.
Other material pertaining to these guidelines can also be placed here, such
as hard copy of briefings on ADPE guidelines.

♦ Procedures. Behind this tab go your organization’s ADPE procedures.
Other material pertaining to these procedures can also be placed here, such
as hard copy of briefings on ADPE procedures.

♦ Standards. Behind this tab go your organization’s ADPE standards. Other
material pertaining to these standards can also be placed here, such as hard
copy of briefings on ADPE standards.

♦ ADTE. This tab begins the ADTE portion of the binder. It can contain such
things as your organization’s ADTE plan, ADTE procedures that explain
how to use various ADTE components such as workstations and CASE
tools, and briefings on ADTE components.

♦ Related Material. This tab begins the portion of the binder that contains
material that the binder recipient feels is pertinent to that person’s work.
Examples of such material are the SOWs and corresponding project plans
that the person is working on. Other examples include articles from profes-
sional journals addressing topics bearing on the person’s work (for in-
stance, an article explaining how acceptance testing procedures can be
constructed from requirements and design specifications developed using
an object-oriented paradigm).

Your process engineering group (PEG) should provide every member of your
organization with a copy of the binder. The PEG should be responsible for
distributing updates to the binder contents. If you are a seller, you may want
to provide binders to your customer.

One advantage of packaging ADPE elements and material pertinent to your
technology environment in a three-ring binder is that it facilitates keeping
this material current. For organizations of even modest size, where at least
tens of copies of the binder need to be distributed and kept current, your
SEE implementation plan should include a mechanism for distributing the

ptg

Chapter 8 • Process Improvement Planning

603

binders and keeping its contents current. The plan should also include a task
to cover binder preparation and the associated labor and material costs. In
addition, the plan should address whether your organization wants to in-
clude your customers on the binder distribution and training list. Providing
customers with the binders helps to achieve customer SEE buy-in (but does
not guarantee it). In some cases, the customer may want to fund the binders.
In these cases, the customer may want to place the customer organization’s
logo on the binder in addition to or instead of the seller organization’s logo.

There are, of course, other ways to package the ADPE and related material.
The packaging does not have to be hard copy. If, for example, your organiza-
tion has personal computers that are networked, it may be desirable to place
the material on the network for electronic access (and subsequent printing, if
desired). In addition to, or instead of, providing copies of the material to each
individual in your organization, you could mount the material on large
poster boards or similar presentation devices and display them prominently
in your organization’s facilities. Whatever your packaging approach, your
SEE implementation plan should address it and provide resources to make it
happen.

In previous chapters, we did not say much about SEE implementation and or-
ganization size, preferring to address things that would be beneficial for or-
ganizations of any size to consider. We now turn our attention to the
following SEE implementation planning issue regarding the ADPE and
organization size:

9. How should ADPE implementation be handled if your organiza-
tion is small? (Here, small organization means “an organization having
only a few projects, each involving only a small number of people [say,
ten at most] so that all involved parties frequently come into contact
with one another.”)

Figure 8–19 shows one compact way to address this issue. The ADPE is pack-
aged into a single element. The figure gives an idea of how the element might
be structured and what it might address. It thus gives specific suggestions for
planning an SEE implementation approach built on a single ADPE element.
The figure also offers a starting point for constructing such an element. The
element begins with a section that states the purpose of the element and gives
background on the organization’s business. Each subsequent section ad-
dresses a topic that in larger organizations would be folded into a single ele-
ment. The figure shows four such sections respectively addressing the
following topics:

♦ Section 2—Project Planning
♦ Section 3—Software Systems Development Process

ptg

604

Document #

Date1.0 PURPOSE AND BACKGROUND

This section states the purpose of the policy. This purpose is to define the application
development process environment (ADPE) for your organization. This section should give
background regarding your organization’s software systems development challenges, including
your customers’ sensitivity to the need for engineering discipline. This section should also stress
how the smallness of your organization has led to the approach of packaging the ADPE into a
single element.

2.0 PROJECT PLANNING

This section establishes your organization’s project planning policy. Use the Chapter 2 key ideas
to help you write this section. We suggest that you consider the following at a minimum: (1) the
project organizational structure of management, development, and product assurance, (2) SOW
risk assessment tied to this structure to allocate resources to the project, (3) a change control
board (CCB) to focus project activity, and (4) a life cycle to provide the context for the work to be
accomplished.

3.0 SOFTWARE SYSTEMS DEVELOPMENT PROCESS

This section establishes your organization’s policy regarding software product development. Use
the Chapter 3 key ideas to help you write this section. We suggest that you include at least a top-
level process diagram showing the major activities in the process (e.g., peer review, independent
product assurance [document audits, acceptance testing], CCB).

[Your Organization’s Name and Logo] Document #

Date
[Your Organization’s Name] Policy

Application Development

Process Environment (ADPE)

4.0 CHANGE CONTROL BOARD (CCB)

This section establishes your organization’s policy regarding CCBs. Use the Chapter 4 key ideas to
help you write this section.

5.0 PRODUCT DEVELOPMENT PROCESS MEASUREMENT

This section establishes your organization’s policy regarding what is to be measured during
product development. Use the Chapter 6 key ideas to help you write this section. We suggest that
you focus on just a handful of quantities that will aid both seller and customer management in
determining whether the development process is yielding products with integrity.

APPENDIX

You may wish to include in an appendix your organizational responsibilities regarding the
development, review, approval, promulgation, and improvement of this document. For this
purpose, you may want to use the general approach for developing and improving ADPE elements
discussed in Chapter 7.

Figure 8–19 In a small organization, it may not be necessary (or practical) to detail the software sys-
tems development process via a set of ADPE elements. Under such circumstances, it may be prefer-
able to package the ADPE into a single element. The figure offers a starting point for this approach.

Chapter 8 • Process Improvement Planning

ptg

Chapter 8 • Process Improvement Planning

605

♦ Section 4—Change Control Board (CCB)
♦ Section 5—Product Development Process Measurement

These topics were selected on the basis of some of the considerations exam-
ined in previously discussed issues. For your organization, the list may need
to be augmented, reduced, or otherwise modified. The figure also suggests
that an appendix to the element can be used to define an approach to updat-
ing the document for purposes of improving the organization’s business
practices.

Figure 8–19 shows the element cast as a policy. This approach would be ap-
propriate for a small organization whose members have strong software engi-
neering backgrounds. In this situation, high-level statements regarding the
organization’s way of doing business may be sufficient. These statements
would provide the basis for consistency; the staff experience would carry
these statements through to the “how-to-do-it.” For example, Section 4 (CCB)
might simply state the following regarding the policy for CCB minutes:

At a minimum, the following information shall be recorded:
1. Decisions (affecting project deliverables, schedule, or resources) made
2. Action items assigned
3. Issues discussed

The CCB minutes format is left to the discretion of each project.

On the other hand, in a less experienced organization, it may be appropriate
to cast the element as a guideline. The guideline would contain more specifics
than policy-level statements such as the example given for CCB minutes. For
example, in a guideline, the policy statement regarding CCB minutes might
be replaced by guidance such as the following:

All CCB meetings will be documented. Figure 2 shows the information to
be recorded and the format for recording this information.

In this example, Figure 2 would be a template for CCB minutes (structured,
for instance, along the lines of the CCB minutes examples given in Chapter 4).

Earlier we discussed ADPE element phasing. This notion can also be applied
to the single-element ADPE. In this case, one section would be written and
promulgated, with the other sections being shown as TBD (to be determined).
For example, for the structure shown in Figure 8–19, Section 3 (Software Sys-
tems Development Process), might be promulgated first (along with Section 1
[Purpose and Background]). After a settling-in period, Section 2 (Project Plan-
ning) or Section 4 (CCB) might be promulgated next. With this promulgation
order, Section 3 would have top-level information regarding the entire
process (including project planning and the CCB). Project planning and CCB
experience gained from the promulgated Section 3 would then be fed into the

ptg

Chapter 8 • Process Improvement Planning

606

subsequently developed Section 2 (Project Planning) and Section 4 (CCB)—
along with possible updates to Section 3.

The approach shown in Figure 8–19 also allows for the ADPE to grow
straightforwardly as the organization grows. The single-element ADPE
shown in the figure is rooted in the assumption that, in small organizations,
all the organization’s individuals frequently come in contact with one an-
other. Consequently, there is less need to detail business practices in writing.
These details (e.g., lessons learned) can be communicated orally through the
frequent contact of the organization’s individuals. As the organization grows,
it will be more difficult for everybody to maintain frequent contact with one
another. It will then become necessary to commit more and more of the
lessons learned to writing to keep everybody in the loop. It may then become
necessary to break the individual sections in Figure 8–19 into separate ele-
ments as the size of each section grows to incorporate these lessons learned.
Thus, the single-element ADPE can be viewed as establishing the structure
for a multiple-element ADPE.

By slightly modifying the preceding argument, a case can be made for using a
single-element ADPE as a starting point for an ADPE in organizations of any
size. Giving the organization a version of the “entire” ADPE early, may facili-
tate process institutionalization. The single-element ADPE will generally lack
considerable detail when it is first promulgated. In large organizations, this
lack of detail may at first lead to divergent practices. However, exposing the
organization to the “entire” ADPE early may expedite getting a better fix on
which lessons learned to incorporate either across the board or in separate
sections. To illustrate this point, consider the following example:

Suppose Section 3 in Figure 8–19 mandates peer reviews as part of the
software systems development process, but offers no guidance on how peer re-
views are to be conducted. Suppose further that the element in Figure 8–19 had
a section called Peer Reviews that was marked as TBD when the element was
first promulgated. Then, the organization would understand (or could be told
in writing) that, initially, projects were free to conduct peer reviews however
they saw fit. Then, after six months, for instance, the lessons learned from the
various ways peer reviews were conducted could then be consolidated and
folded into the section on peer reviews. Eventually, as lessons learned are accu-
mulated across all the sections in the element, it may become desirable to break
the sections into separate elements.

To summarize the preceding discussion, Figure 8–19 shows a way to plan for
developing an ADPE for a small organization. The figure can also be viewed
as phase 1 of a multiphased plan for evolving an ADPE towards separate ele-
ments for organizations of any size.

We now turn our attention to an issue arising when an organization’s
resources are stretched to their limits. Specifically, what can be done when
an organization (1) desires to move toward greater software systems

ptg

Chapter 8 • Process Improvement Planning

607

development consistency but (2) has extremely limited resources to set up
standard business practices through an SEE? To address this question, we
consider the following issue:

10. What is an austere SEE implementation approach?

Figure 8–20 shows a combination of six candidate ADPE elements and prac-
tices for such an approach. The six items are arranged in the order that we
suggest they be implemented. We stress that this order is worthwhile consid-
ering for any SEE implementation approach. In addition, we remark that the
order shown offers a strategy for deciding what to do if you cannot imple-
ment even these six items. The strategy is to remove the higher numbered
items first. That is, if your constraints are such that you cannot do all six, then
do not do item number 6 (i.e., the project planning ADPE element); if your
constraints are such that you cannot do the remaining five, then do not do
item number 5 (i.e., the Independent Product Assurance ADPE element); and
so forth.

1. Project Planning Practice. Project planning should be the first practice in-
stituted—even before an ADPE element for this activity is formally devel-
oped. The project plan and a process for developing the plan are needed
so that project members will have a documented, risk-reduced approach
for starting project work. You can institute a project planning practice by
using the ideas in Chapter 2. In particular, you can use the project plan
outline given there as a starting point for writing project plans. You can
perform risk analysis based on the ideas in that chapter to allocate re-
sources to the management, development, and product assurance disci-
plines. You can plug a CCB into the project plan to focus project activity.
You can transmit project planning and CCB practices to project staff via a
briefing put together from ideas introduced in Chapter 2 and Chapter 4.

2. CCB Practice. This practice goes hand-in-hand with the first practice. The
project plan can be used to define how the project CCB is to be conducted
and what should be captured in CCB minutes. Figure 8–20 symbolizes
these CCB practices by showing the CCB triangle icon embedded in the
project plan section called “Project CCB.” Experience gained from these
project CCBs can be folded into the subsequently developed CCB ADPE
element (shown as item 4 in Figure 8–20).

3. Software Systems Development Process ADPE Element. This element
should be the first element developed. In Figure 8–20, the element is la-
belled “procedure”; in Chapter 3, we labelled the element “policy.” As
with other elements, the label used can have political and content over-
tones. “Policy” in some organizations may carry a more authoritative
ring than “procedure” (or “guideline” or “standard”). In an austere SEE
implementation approach, it may be desirable to label the element

ptg

Chapter 8 • Process Improvement Planning

608

[Your Organization’s Name and Logo] Document #
Date

[Your Organization’s Name] Procedure

Project Plan Development Process

Prepared by:

[Your Organization’s Name and Address]

Seller Program Manager Approval:

Buyer/User Program Manager Concurrence:

Big Kahuna’s Counterpart Date

Big Kahuna Date

[Your Organization’s Name and Logo] Document #
Date

[Your Organization’s Name] Procedure

Software Systems Development Process

Prepared by:

[Your Organization’s Name and Address]

Seller Program Manager Approval:

Buyer/User Program Manager Concurrence:

Big Kahuna’s Counterpart Date

Big Kahuna Date

Project Plan

[Your Organization’s Name and Logo] Document #
Date

[Your Organization’s Name] Policy

Independent Product Assurance

Prepared by:

[Your Organization’s Name and Address]

Seller Program Manager Approval:

Buyer/User Program Manager Concurrence:

Big Kahuna’s Counterpart Date

Big Kahuna Date

[Your Organization’s Name and Logo] Document #
Date

[Your Organization’s Name] Guideline

Change Control Board

Prepared by:

[Your Organization’s Name and Address]

Seller Program Manager Approval:

Buyer/User Program Manager Concurrence:

Big Kahuna’s Counterpart Date

Big Kahuna Date

3.0 Project CCB

Management

Development
Product

Assurance

CCB

Management

Development
Product

Assurance

CCB

1 3

2

4
5

6

Figure 8–20 What is an austere SEE implementation approach? The figure shows a combination of ADPE elements and prac-
tices to consider for such an approach.

ptg

Chapter 8 • Process Improvement Planning

609

“procedure” and include details for each process component. By defini-
tion, an austere SEE implementation approach has only a small number
of ADPE elements. It may therefore be necessary to make the few ele-
ments included more detailed than would be the case in an SEE with
more elements. The earlier discussion of the issue on element detail
should be revisited to help you determine how much detail to plan to
include.

4. Change Control Board (CCB) ADPE Element. This element should be
the second one developed. At a minimum, this element should spell out
(1) who should attend CCB meetings, (2) what should be recorded at CCB
meetings, (3) who should chair CCB meetings, and (4) what should be the
CCB voting mechanism.

5. Independent Product Assurance ADPE Element. Throughout this book,
we have explained the risk-reduction purpose and role of the inde-
pendent product assurance disciplines. However, in an austere SEE
implementation approach, independent product assurance may have
to be limited to the role of process quality assurance (in which case,
the element should be retitled to reflect this scope). In this capacity,
independent product assurance would check that products are being
developed in accordance with the organization’s process as documented
in the element shown as item 3 in Figure 8–20. Other activities that
we have associated with an independent product assurance organiza-
tion (i.e., product quality assurance, verification & validation, acceptance
testing, and configuration management) would need to be performed by
the product developers. If resources permit, it would be desirable to ad-
dress in the ADPE element all product assurance activities—not just the
ones performed by a group independent from the product developers.
Chapter 5 provides a starting point for determining the scope of the
element.

6. Project Plan Development Process ADPE Element. This element would
commit to writing the lessons learned from carrying out the practice
shown as item 1 in Figure 8–20. We recommend, as a minimum, that a
project plan template be constructed to provide specific planning
guidance.

To this point, we considered SEE implementation planning issues primarily
bearing upon ADPE format and content. We now turn our attention to SEE
implementation planning issues bearing upon applying the ADPE element
business practices. The first such issue we consider deals with leveraging staff
experience to bring about ADPE element institutionalization. The issue is the
following:

11. How can mentoring and coaching be leveraged to facilitate im-
plementation of ADPE practices?

ptg

Chapter 8 • Process Improvement Planning

610

Figure 8–21 states the purpose of “mentoring” and “coaching.” These pur-
pose statements are taken from the Software Engineering Institute’s People
Capability Maturity Model® (P-CMM®). The following discussion of this issue
is adapted in part from this reference (the figure gives the complete refer-
ence—the following paragaphs give the page citations to this reference).

Before examining this issue, it is helpful to set context by stating the strategic
objectives of the P-CMM, which are the following (p. xx):

♦ Improve the capability of software organizations by increasing the capabil-
ity of their workforce.

♦ Ensure that software development capability is an attribute of the organi-
zation rather than of a few individuals.

♦ Align the motivation of individuals with that of the organization.
♦ Retain human assets (i.e., people with critical knowledge and skills) within

the organization.

Earlier we stated that reading ADPE elements is a necessary but not sufficient
condition for institutionalizing ADPE practices. How, in fact, do these prac-
tices catch on and become ingrained in the organization’s way of doing busi-
ness? The answers to this question are complex. However, one thing is clear
from everyday experience. People mature by learning from the experience of
others (sometimes negatively and sometimes positively). Mentoring and
coaching are two primary means by which people learn from the experience
of others. We now examine the purpose statements in Figure 8–21 to gain in-
sight into how mentoring and coaching can be leveraged to facilitate imple-
mentation of ADPE practices. This insight is intended to help you incorporate
a mentoring and coaching program into your SEE implementation plan. Since
the aim here is to leverage mentoring and coaching, these activities should be
planned—as opposed to being conducted primarily in ad hoc fashion.

One dictionary definition of mentor is “a trusted counselor or guide.”4 The un-
derlying notion here is that of a personal relationship between the more expe-
rienced individual and the less experienced individual. The P-CMM extends
this notion of personal relationship to groups—that is, the experienced indi-
vidual can establish a personal relationship with a group. Following the
words of Figure 8–21, possible outcomes of this personal relationship are skill
and knowledge development, improved performance, and ability to handle
difficult situations. Throughout this book, we talked about “prescriptive ap-
plication” of ADPE practices—that is, applying these practices in a manner
that makes sense within the context of a given project. Mentoring is a key
way of passing know-how down the organizational chain to make prescrip-
tive application happen. For example, a new project manager tasked with im-
plementing a project plan can greatly benefit from mentoring by the

4Merriam-Webster’s Collegiate Dictionary, Tenth Edition (Springfield, MA: Merriam-Webster, Inc., 2000).

ptg

611

C

Experienced
Individual

Expert

Purpose: Use the experience of
individuals within the organization
to provide personal support and

guidance to other individuals or
groups. This guidance can
involve developing knowledge
skills, improving performance,
handling difficult situations, and
making career decisions.

Purpose: Provide expert

assistance to enhance the
performance of individuals or
teams. Coaches engage in
close relationships with
individuals or teams to guide
development of skills that
improve performance.

Mentoring Coaching

A D P E

Application Development Process Environment

(ADPE)

GUIDELINEPOLICY PROCEDURE STANDARD

ADPE Implementation

Figure 8–21 SEE implementation planning needs to account for mentoring and coaching. Through mentoring and coaching,
how to implement ADPE practices can be transmitted from more experienced staff to less experienced staff. The key point here
is that, to leverage their organizational impact, this mentoring and coaching should be planned. Source: Definitions of mentor-
ing and coaching in above figure are from B. Curtis, W. E. Hefley, and S. Miller, “People Capability Maturity ModelSM,” Software
Engineering Institute and Carnegie Mellon University Technical Report CMU/SEI-95-MM-02 (September 1995).

ptg

Chapter 8 • Process Improvement Planning

612

manager’s supervisor. The supervisor can work with the project manager to
help the manager anticipate such things as schedule conflicts and resource
shortfalls. For instance, the supervisor can advise the project manager to get
early visibility into document development by calling first for an outline,
then an annotated outline, and then a draft of the document.

How do you incorporate a mentoring program into your SEE implementation
plan? Here are some ideas taken from the P-CMM to get your thinking
started in this area (p. L4-1):

Mentoring involves setting objectives for a mentoring program, designing
mentoring activities to achieve these objectives, selecting and training appro-
priate mentors, assigning mentors to individuals or groups, establishing
mentoring relationships, and evaluating the effectiveness of the program.

The organization develops one or more sets of objectives for the mentoring
program. Appropriate types of mentoring relationships are designed for differ-
ing mentoring objectives within the program. Criteria are developed for select-
ing mentors and those chosen are trained for their assignments. Individuals or
groups being mentored are provided orientation on how they can best take ad-
vantage of a mentoring relationship. Criteria are developed for assigning men-
tors to individuals or groups. The mentor and the individual or group being
mentored establish agreements on how their relationship will be conducted.
Mentors meet periodically and occasionally evaluate whether they are achiev-
ing their objectives. Advice is available to improve the effectiveness of the men-
toring relationship. The mentoring program is evaluated against its objectives
to identify needed improvements.

In terms of ADPE implementation and institutionalization, these ideas trans-
late into pairing experienced individuals with other individuals and groups
organizationwide to propagate the skills for carrying through on ADPE
practices.

Regarding coaching, the P-CMM views it as a more focused and quantitative
form of counseling than mentoring.5 As Figure 8–21 indicates, the purpose of
coaching is to provide expert assistance to enhance the performance of indi-
viduals or teams. We italicized “expert” and “teams” to stress this difference
between mentoring and coaching in the P-CMM. The mentor is characterized
as merely being “experienced”; the coach, on the other hand, is termed an
“expert.” The mentor works with individuals or groups; the coach works
with individuals or teams. Here, the notion of “team,” as distinct from
“group,” suggests that the coach is applying expertise to make the talent of
the team greater than the sum of the talents of the individuals on the team.
Coaches work with teams to improve their team-based competencies and per-
formance. This synergy is achieved through the use of quantitative data. Just
as a baseball batting coach analyzes quantitative data on pitchers who play

5Some dictionaries, such as the one previously cited, list “coach” as a synonym for “mentor.”

ptg

Chapter 8 • Process Improvement Planning

613

for opposing teams to prepare the hitters to hit better against the competition,
so too does the software coach analyze quantitative data on team perfor-
mance to analyze skills to help the team set measurable goals for improving
these skills.6 In the P-CMM, mentoring can be thought of as a less refined
form of coaching because the use of quantitative data is not mandated.

How do you incorporate a coaching program into your SEE implementation
plan? Just as we did previously for mentoring, we appeal to the P-CMM for
the following ideas to get your thinking started in this area (p. L5-13):

Coaching involves selecting appropriate coaches, analyzing data on per-
sonal or team performance, providing guidance on methods for improving per-
formance, and evaluating progress towards goals for improving performance.

Coaching opportunities are pursued where coaching can provide a justifi-
able improvement to individual or team performance. Criteria are developed
for selecting coaches. Coaches are trained in coaching skills and are assigned to
an individual or team according to their expertise. Individuals or teams are
provided orientation on how to best use a coach to improve performance.
Coaches use data on individual or team performance to analyze skills, and
they help individuals or teams set measurable goals for improving skills and
performance. Coaches also track performance continuously and provide specific
guidance on improving skills and performance. Individuals or teams practice
the skills they are working on with the coach. Coaches provide or make inputs
to appropriate rewards for improvement. Coaching activities are evaluated
and improvements are made.

In terms of ADPE implementation and institutionalization, these ideas trans-
late into pairing experts with individuals and teams organizationwide to
propagate and leverage the skills for carrying though on ADPE practices. For
example, a coach can work with project peer review teams to cut down on the
average length of time to conduct a peer review. A coach can help realize this
team performance improvement by analyzing statistics compiled on how
long it takes to get through various parts of a peer review. It may turn out, for
instance, that the coach uncovers through this analysis that peer review teams
are spending time on trying to find solutions to discrepancies uncovered. The
coach can then offer guidance to peer review teams on how to stay out of the
problem-solving mode and how to stick to the classical peer review objective
of giving visibility to discrepancies.

In Chapter 7, we addressed human issues bearing on bringing about organi-
zational cultural change through SEE implementation. For purposes of plan-
ning strategies for bringing about this cultural change, we can think of SEE
implementation to be like the challenges facing a mountain climber planning

6Example quantitative measures are delineated in Chapter 6 in Table 6–1. For example, to improve a
team’s peer review skills, the coach might look at the average number of peer reviews needed by a
team to produce deliverables that are accepted by the customer.

ptg

Chapter 8 • Process Improvement Planning

614

a way to the mountaintop. If the mountain is new to the climber, the way up
will be uncertain. This uncertainty translates into potential obstacles to reach-
ing the top. A good plan, however, can help reduce this uncertainty, thereby
increasing the likelihood of reaching the top.

Figure 8–22 elaborates on this mountain-climbing analogy. The SEE imple-
mentation planning issue here is the following:

12. What strategies can be adopted to meet the cultural change
challenges posed by SEE implementation?

The figure shows four such challenges and one or more strategies for meeting
each challenge. The strategies shown are intended to help you build a frame-
work for carrying through on SEE implementation. Preceding chapters offer
you “how-to-do-it” guidance for constructing these strategies. The list of
challenges and strategies in Figure 8–22 is not comprehensive—but these
items should be considered as part of any list that you construct. To give you
ideas for constructing such a list, we discuss in detail the challenges and
strategies shown in the figure.

Some of these challenges may not apply to your organization, and your orga-
nization may have challenges not listed. The key point here is that your im-
plementation plan should include such challenges and propose strategies for
meeting the challenges. The perspective shown is the seller’s. However, a cus-
tomer organization should be prepared to support the seller in meeting these
challenges so that SEE implementation becomes a win-win situation for both
the seller and the customer.

CHALLENGE: The customer does not want independent product assurance—
how can this attitude be turned around?

In environments where the notion of independent product assurance is new,
the customer may view this activity as an unnecessary added cost to doing
business. Even in environments where the notion is not new, the customer
may be reluctant because of prior negative experience (e.g., receiving a sys-
tem that had been tested—at considerable cost—but that did not work in ac-
cordance with expectations).

STRATEGY 1 TO MEET CHALLENGE: Show how each of the product assurance
functions (QA, V&V, T&E, CM, and/or however you choose to define product
assurance functions) reduces project risk, thereby adding value to the cus-
tomer’s product and to the product development process.

It is really not possible to prove the efficacy of product assurance. To do so
would require doing the same software systems development project twice—

ptg

SEE Implementation Challenge Strategy to Meet Challenge

The customer does not want independent product
assurance—how can this attitude be turned around?

Show how each of the product assurance functions
(QA, V&V, T&E, and CM) reduces project risk thereby
adding value to the customer’s product and to the
product development process.

The seller staff will find ways to work around the ADPE
way—how can this attitude be turned around or, where
appropriate, be used to incorporate improvements into
the ADPE way?

Show how documented business practices that are
followed remove dependence on the individual, thereby
affording the individual the opportunity to grow within
the organization. Reward staff who follow the ADPE
way and suggest improvements to it. Make the rewards
part of a ceremony attended by the entire organization.

The customer will try to circumvent the seller
management chain to “expedite” the incorporation of
product changes—how can this attitude be turned
around?

Make the CCB the focal point for customer/seller
interaction. Train seller staff in the need to document
interactions with the customer bearing on project work
and to inform seller management of such interactions.

The seller staff and/or the customer do/does not want to
follow the ADPE business way—how can this attitude
be turned around?

Show how documented business practices that are
followed remove dependence on the individual, thereby
(1) reducing schedule risk and (2) affording the
individual opportunity to grow within the organization.
[Soft Sell]

Make ADPE compliance part of each employee’s
performance review and reward compliance. [Hard Sell]

Get all managers on board with the ADPE way by some
combination of the preceding two strategies or by some
other means, such as corporate directives and/or hiring
policies. [This strategy is mandatory.]

Give periodic briefings to the seller staff on ADPE
element content before and after promulgation. After
promulgation, try to make customer attendance a
requirement.

Establish a training program that offers the staff the
opportunity to learn or augment their understanding of
the engineering principles underlying the ADPE.

Figure 8–22 We can think of SEE implementation to be like the challenges facing a mountain climber planning a way to the
mountaintop. The figure lists some of these challenges and suggests a strategy or strategies to meet each challenge.

ptg

once with and once without product assurance—in such a way that the only
difference between the two projects is the application of product assurance.
However, one way to argue is to show the value added of applying product
assurance to products.

How do you show value added? One way is to measure cost savings by esti-
mating the cost of not doing rework of a product after it is delivered. This es-
timate can be based on estimating the cost of doing postdelivery rework of a
product as defined by discrepancies that product assurance discovers prior to
delivery. It is generally acknowledged that it is less costly to fix discrepancies
while a product is under development than it is after delivery. An applicable
analogy here is that it is easier, and thus less costly, to fix problems in a house
while it is under construction than after it has been built. Admittedly, it may
take longer to finish the house under such circumstances. However, the in-
convenience to the homeowner and the added cost of fixing the problems
after the homeowner has moved in are generally worthwhile avoiding.

A powerful argument that can be constructed to show the value added of
product assurance is to compile statistics on the percentage of products that
are accepted as delivered (i.e., that do not require rework). If most delivered
products fall into this category and if product assurance is part of your prod-
uct development process, then product assurance must add value (as well as
the other activities in the process).

Of all the product assurance functions discussed in this book, acceptance test-
ing is perhaps the easiest to show value added. As we explained in previous
chapters, the value added of applying this function begins long before the ac-
ceptance test procedures themselves are executed. Value is added beginning
with requirements analysis as part of requirements specification develop-
ment. During this analysis activity, product assurance adds value by raising
questions regarding the testability of requirements. If a requirement is not
testable, then it is not a requirement because its presence or absence in the
system being developed cannot be demonstrated.

Considerable value can be added during design specification development.
During this development activity, it is desirable for product assurance to be
developing test procedures. As we explained in Chapter 5, the heart of test
procedure development is the nailing down of expected results—that is,
being able to specify in a test procedure what a tester should see as a result of
performing a specific action. This information should come from design and
requirements specifications. If, while constructing test procedures, product
assurance is unable to find such information, by raising questions regarding
this information while the design specifications are under development, product
assurance adds value. The value added, as we just argued, is that it is easier,
and thus less costly, to incorporate such missing information into the design
specification while it is under development than it would be after the spe-
cification is delivered. Furthermore, uncovering such information during
design specification development, rather than after coding begins, can add
considerable value by heading off costly recoding activity.

Chapter 8 • Process Improvement Planning

616

ptg

The interaction between the product development organization and the product
assurance organization during requirements and design specification develop-
ment just described is often not visible to software customers. We characterize
this interaction (as well as the analogous interactions during coding and during
other product development activities) by saying that product assurance acts as a
forcing function on the software systems development process. This synergism,
when applied consistently, can be of inestimable value.

Regarding this synergism, we need to stress another point. The product as-
surance organization cannot be constituted as an afterthought. It must be
staffed with good people (that is, people well versed in the art of questioning
and adept at applying this art with a benevolent attitude). Otherwise, the
product assurance activity will not add value—and, in fact, may be
counterproductive.

To summarize the preceding arguments, we stress that the application of
product assurance does indeed cost time and money. First, it takes product
assurance time to review a product, and it costs money for product assurance
to perform this review. Second, addressing discrepancies that product assur-
ance uncovers during product development adds time to the product devel-
opment cycle, and it adds cost—namely, the labor to fix the discrepancies.
And, indeed, addressing these discrepancies is product rework. However—
and this “however” lies at the heart of the challenge under discussion—the
time and money spent doing this rework while the product is under develop-
ment is generally less than the time and money that would have to be spent at
some later point in the project. And that differential is the value added.

CHALLENGE: The seller staff and/or the customer do/does not want to follow
the ADPE business way—how can this attitude be turned around?

Adopting the ADPE business practices compels almost everybody in the or-
ganization to change the way they do their jobs. Many people naturally resist
change. It is therefore almost a certainty that you will encounter some resis-
tance when you move ahead with SEE implementation. Your SEE implemen-
tation plan must include strategies for softening this resistance and creating
win-win situations. We will discuss five strategies for softening resistance
and creating win-win situations. These strategies are intended to spark your
thinking for devising strategies appropriate to your organization. However,
we do stipulate that one strategy is mandatory. There is no significance to the
order of the strategies.

STRATEGY 1 TO MEET CHALLENGE: Show how documented business prac-
tices that are followed remove dependence on the individual, thereby
(1) reducing schedule risk and (2) affording the individual opportunity to
grow within the organization. [Soft Sell]

Let us first consider how documented business practices that are followed re-
move dependence on the individual, thereby reducing schedule risk. If

Chapter 8 • Process Improvement Planning

617

ptg

indeed documented business practices remove dependence on the individual,
then if an individual does not happen to be in the office for one or more days
(for whatever reasons), others in the organization can generally pick up the
slack. The net result is that the schedule should not be impacted. Of course,
we are not arguing here that the individual who is out is not needed. Clearly,
that individual cannot be out indefinitely because it is unreasonable to expect
that other individuals can continue to do their jobs as well as somebody
else’s job.

What we are saying is that tasks do not need to be put on hold—thereby pos-
sibly impacting other tasks—because a particular individual is not in the of-
fice. In fact, if it is not feasible to have multiple coverage for highly
specialized activities, truly robust business practices will have workarounds
or alternative paths so that delays in highly specialized activities occasioned
by the temporary absence of one or more individuals do not impact accom-
plishment of other activities. For example, if a code walk-through has to be
put on hold for a day or two because the coder is not in and if the code needs
to be integrated with other code modules that are already completed, it may
be possible still to integrate the incomplete code module with the other
modules.

Suppose the organizational software systems development process calls for
unit development folders, with each folder containing information on the de-
velopment status of a particular module. This information may make it pos-
sible for others in the organization to proceed with integration testing
because they would have insight into how the incomplete module might be-
have when integrated with the other modules. In the extreme, this informa-
tion could be used to replace the incomplete module with a stub that simply
acts as a pass-through for testing purposes. The key point here is that the
organizational process affords others in the organization visibility into the
missing individual’s work, so that project work can proceed to some extent.

We now examine item (2) in the strategy statement—i.e., “documented busi-
ness practices that are followed remove dependence on the individual,
thereby affording the individual opportunity to grow within the organiza-
tion.” This strategy involves some subtle arguments that we now explore. For
this purpose, we consider Figure 8–23.

The figure stresses that SEE implementation seeks to establish organization-
wide documented business practices that, when followed, do not hold individu-
als captive to particular positions. Successful software systems development
requires good people—but without documented business practices that are
followed, successful software systems development becomes problematic,
even with good people. That is, consistent success is uncertain even with good
people. Furthermore, these documented business practices provide an
environment that encourages career growth.

We now step through the three parts of Figure 8–23 to see how career growth
is a natural outcome of these documented business practices. Each part

Chapter 8 • Process Improvement Planning

618

ptg

Chapter 8 • Process Improvement Planning

619

3

Unless an organization has documented
practices and uses them (i.e., a mature
organizational process), the way the
organization does business will depend on the
specific know-how of individuals. When those
individuals are not in the office, doing
business often becomes an exercise in
improvisation. When those individuals
permanently leave the organization, the
replacement individuals will generally have
difficulty getting acclimated to the
idiosyncrasies of their coworkers. A key to
successful SEE implementation of people-
independent practices is to demonstrate that
such practices foster professional mobility.

Perception—A stable organization provides me professional mobility.

2

Some people view an
organization’s attempts to
establish a documented
process as a means to
manipulate them and
make them less valuable
to the organization.

Perception—A restrictive organization manipulates me.

1

The reality is that in many
organizations people follow some
(generally undocumented) process
that they and their associates
have become accustomed to as
they work together.

Perception—A cowboy organization provides me job security.

Mature Organizational Process

ADPE
Practices

Perception

Perception

Sam

Pam

Ham

CCB

CCB

ADPE ADTE
S E E

Policies
Procedures
Standards
Guidelines

Organization’s Process

Implementation

Sam’s
Process

Pam’s
Process

Ham’s
Process

Figure 8–23 A key objective of SEE implementation is to establish organizationwide business practices that do not strongly
depend on particular individuals for their successful accomplishment. Good people are certainly needed to achieve successful
software systems development. Initially, people may have concerns and apprehensions about implementing refined or new
business practices. Part of SEE implementation involves evolving an individual’s perception of what this implementation means.
The figure shows how an individual’s perception may evolve as an organization matures.

ptg

Chapter 8 • Process Improvement Planning

620

represents how an individual perceives an organization’s impact upon his or
her job. Remember, perception and reality may be two totally different
things. For example, an individual may perceive that the organization’s way of
doing business reduces his or her flexibility of performing day-to-day
activities. The reality may be that the organization’s way of doing business
fosters flexibility by empowering the individual to apply prescriptively the
organization’s business practices.

The following discussion is also intended to bring to the fore some of the con-
cerns and apprehensions that people may have when faced with SEE
implementation—so that you can plan to diminish these concerns and
apprehensions.

1. Perception: A cowboy organization (i.e., where everybody does his or her
own thing) provides me job security.
People follow some (generally undocumented) process that they and
their associates have become accustomed to as they work together. Sam,
Pam, and Ham each has his or her own way of doing things. Amalga-
mated processes emerge as these and other individuals become accli-
mated to one another. That is, Sam and Ham develop a way of working
together, Sam and Pam develop a way of working together (which, for
the same type of work, may differ from the way Sam and Ham work to-
gether), etc. The processes emerge as a result of many factors including
the following:

♦ The prior experience of the individuals working in that corporate envi-
ronment or in some other corporate environment (e.g., people who
come from a corporate environment where engineering discipline was
not even an afterthought will interact differently from people who come
from a corporate environment where testing that used documented test
procedures was necessary before a system could be released to a
customer).

♦ The personalities of the individuals (e.g., competitive individuals will
interact differently from passive individuals).

♦ The reward system (e.g., a corporate environment that rewards on-time
product delivery over everything else will generally give rise to a
process different from one that is used in a corporate environment that
rewards error-free computer code over everything else).

Factors such as these may foster an individual’s perception that he or she
has job security because he or she is the only one who knows how to per-
form certain tasks. This perception generally gives rise to resistance to
implementing another way of doing business—such as the ADPE
business way.

2. Perception: A restrictive organization (i.e., where the organization tells
me how to do my job) manipulates me.
Resistance to the ADPE business way arises for another reason. Some
people view an organization’s attempt to establish a documented process

ptg

that all must conform to as a means to (1) manipulate them and (2) make
them less valuable to the organization. This view apparently has its roots
in the perception that if the organization specifies how individuals are to
do their jobs, then the individual is easily replaced. It is natural for people
to want to distinguish themselves from others. What is often misunder-
stood is that being a distinguishable member of an organization is not
incompatible with following the organization’s business way. The com-
patibility arises from the fact that each individual is responsible for ap-
plying the business way in a manner that makes sense for the situation at
hand. In previous chapters, we labeled this mode of application as “pre-
scriptive application.” Applying the ADPE way is not a rote exercise of
moving down a list of steps to be performed.

3. Perception: A stable organization (i.e., where the organization does not
hold me captive to my job) provides me professional mobility.
The bottom line of the preceding arguments is that, unless an organiza-
tion has well-understood and documented practices and uses them, the way
that the organization does business will depend on the specific know-
how of individuals. As we intimated, when those individuals are not in
the office, doing business becomes an improvisation exercise. Further-
more, when those individuals permanently leave the organization, the re-
placement individuals will generally have difficulty getting acclimated to
the idiosyncracies of their coworkers (i.e., Sam’s, Pam’s, and Ham’s way).
The name of the game, then, is to have Sam, Pam, Ham, and others con-
tribute to and adapt to the ADPE practices. That is, they help to create
and plug themselves into the organization’s way of doing business. If this
is done with an open mind, people will find that they will have a better
understanding of what to expect from one another. These clarified expec-
tations lead to the perception that people want to work together, thereby
synergizing the efforts of individuals. Over time, people shed “me-first”
attitudes and replace them with teamwork attitudes. The net result is that
individuals become empowered to do more (because a common purpose
dominates teamwork thinking), thereby escaping the threat of being held
captive to a particular position. Consequently, people increase their pro-
fessional mobility, while contributing to the long-term stability of the or-
ganization.

We now consider the second strategy listed in Figure 8–22 for meeting the
second challenge listed in that figure.

STRATEGY 2 TO MEET CHALLENGE: Make ADPE compliance part of each em-
ployee’s performance review and reward compliance. [Hard Sell]

In many enterprises, an employee’s performance is assessed periodically (e.g.,
quarterly, semiannually, yearly) for purposes such as setting goals, adjusting
salary, and assessing promotion opportunities. Figure 8–24 shows a partial out-
line of a form that might be used as part of an employee’s performance review.
Included on the form is a section (labeled “N.0”) containing questions and

Chapter 8 • Process Improvement Planning

621

ptg

Chapter 8 • Process Improvement Planning

622

1.0 CURRENT ASSIGNMENT
●

●

●

●

●

●

N.0 ADPE COMPLIANCE

Have you read each promulgated ADPE element?

Have you reviewed and commented on drafts of ADPE elements submitted to you?

Have you attended the presentations explaining the content of each promulgated ADPE element?

How have you encouraged customer buy-in to the ADPE way?

How have you improved the way the organization develops products using the ADPE way?

List at least three suggestions for changing the ADPE way to make it better.

Provide at least five artifacts that demonstrate how you have supported the ADPE way.

Employee Performance

Review and Planning Form

EMPLOYEE NAME EMPLOYEE NO. DATE OF HIRE

EMPLOYEE POSITION TITLE
●

●

●

EMPLOYEE DIVISION

Figure 8–24 An aggressive strategy for pursuing SEE implementation is to make ADPE compliance
part of each employee’s performance review. In more mature organizations, this approach should be
acceptable to most employees since, by definition, disciplined engineering practices are part of the
culture. The figure offers performance review ideas for addressing ADPE compliance.

ptg

Chapter 8 • Process Improvement Planning

623

information requests aimed at assessing the employee’s ADPE compliance.
Such questions and information requests can be used to motivate people to
acclimate to the ADPE way, particularly if they are rewarded for doing so.
It should be noted that one question (i.e., How have you improved the way
the organization develops products using the ADPE way?) invites suggestions
for improving the ADPE way. This type of question is a concrete way of
offering each employee the opportunity to participate in molding the organiza-
tion’s business practices. In fact, manifestly incorporating such suggestions
into the ADPE way greatly increases the likelihood of employee buy-in to the
ADPE way.

In more mature organizations, this strategy should be acceptable to most em-
ployees, since, by definition, disciplined engineering practices are part of the
culture. However, using this strategy is not without risk. For example, em-
ployees not rewarded for what they feel is a demonstrated track record of
ADPE compliance may become highly resistant to the ADPE business prac-
tices—and encourage others to do the same. The lesson here is that a mod-
icum of consistency is needed in rewarding ADPE compliance. The questions
and information requests in Figure 8–24 are aimed at pulling out evidence of
ADPE compliance so that this modicum of consistency can be realized. For
instance, one request is for at least five artifacts demonstrating how the em-
ployee has supported the ADPE. Example artifacts might be the following:

♦ One or more sets of CCB minutes signed by the customer
♦ A memorandum documenting a peer review
♦ Test incident reports (TIRs) written during an acceptance testing activity7

Of course, some criteria may need to be established regarding such things as
(1) “do all artifacts count equally?” and (2) what counts as the minimum set
of responses to the questions and the information requests before the
employee is entitled to an ADPE-compliance bonus.

The strategy can be reinforced by incorporating ADPE compliance into the
ADPE elements themselves as part of each employee’s responsibilities. Figure
8–25 shows one way to embed employee responsibility for ADPE compliance
into an ADPE element. The figure shows a section of an element—labelled
“N.0,” with subsections (two are shown, “N.2” and “N.4”)—dealing with
ADPE element implementation responsibilities. Part of these responsibilities
includes words on ADPE compliance similar to those shown in Figure 8–24.

An alternative to the reinforcing approach shown in Figure 8–25 is to remove
the words appearing in Section N and instead place something like them in a

7TIRs might be appropriate for a member of a product assurance organization or for a project man-
ager. In the case of the project manager, the TIRs can be particularly convincing evidence if they bear
the project manager’s signature, showing explicitly the project manager’s involvement in the accep-
tance testing process.

ptg

Chapter 8 • Process Improvement Planning

624

Document #

Date

Employee
Performance

Review

1.0 PURPOSE

●

●

●

N.0 [ADPE ELEMENT NAME] IMPLEMENTATION RESPONSIBILITIES

The [your organization’s name] agents listed below share the responsibility for implementing the
[policy, guideline, procedures, standards] set forth in this document:
● Customer Project Manager
● Seller Project Manager
● Seller Product Assurance Manager
● Seller Product Development Staff
● Seller Product Assurance Staff

●
●
●

N.2 SELLER PROJECT MANAGER

The Seller Project Manager is responsible for performing the following actions regarding this
[policy, guideline, procedure, standard]:
● Actively support the practices set forth in this document by (1) assuring that its contents are

assimilated by all project personnel and (2) promoting its practices with the customer.
● Provide required direction and guidance to the project staff to support implementation of the

practices set forth in this document.
● During the annual performance review, demonstrate through artifacts and other means support

for the practices set forth in this document.
 ●

 ●

 ●

N.4 SELLER PRODUCT DEVELOPMENT STAFF

The Seller Product Development Staff is responsible for performing the following actions
regarding this [policy, guideline, procedure, standard]:
● Actively support the practices set forth in this document including recommending improvements

to these practices.
● During the annual performance review, demonstrate through artifacts and other means support

for the practices set forth in this document.
● ● ●

[Your Organization’s Name and Logo] Document #

Date

[Your Organization’s Name]

[ADPE Element Type {Policy, Guideline, Procedure, Standard}]

Element Title

Figure 8–25 Here is a way to reinforce the strategy of making ADPE compliance part of each employee’s performance review.
The figure illustrates how to address ADPE compliance in the responsibilities section of an ADPE element.

ptg

Chapter 8 • Process Improvement Planning

625

memorandum that promulgates the ADPE element. This approach gives
greater visibility to the responsibility for ADPE compliance. Figure 8–26
provides you with a starting point for a memorandum promulgating an
ADPE element. The memorandum includes (in bold) the following ADPE-
compliance words:

You are expected to implement the practices set forth in this element. Your
performance review will be based in part on your demonstrated application of
these practices in your project work.

It should be noted that the wording in the memorandum in Figure 8–26 re-
garding the ADPE is based on the four-component ADPE taxonomy used in
this book—namely, policy, guideline, procedure, and standard. If your orga-
nization uses some other taxonomy, the wording in your adaptation of the
Figure 8–26 memorandum should reflect this taxonomy.

We now turn our attention to a third strategy, which may be linked to the
preceding two strategies, for overcoming opposition to the ADPE way.

STRATEGY 3 TO MEET CHALLENGE: Get all managers on board with the ADPE
way by some combination of the preceding two strategies or by some other
means, such as corporate directives and/or hiring policies. [This strategy is
mandatory.]

There are few instances in this book in which we say that something must be
done. Invoking this strategy is one of those instances. If managers are not on
board with the ADPE way, the people who work for them will not be on
board.

Earlier we examined how mentoring and coaching can facilitate implementa-
tion of ADPE practices. Within most organizations, a prime source for this
mentoring and coaching is management. Thus, if management is not on
board with the ADPE way, not only will implementation of ADPE practices
be blunted or curtailed, but also countercultures will emerge in the organiza-
tion. Individual managers will set up their own fiefdoms with a set of prac-
tices peculiar to the fiefdom. That is, the Sam/Pam/Ham scenario discussed
previously will be replicated at various levels within the organization. In the
extreme, the organization can be torn apart as the fiefdoms increasingly work
at cross-purposes. Furthermore, the organization will present a bewildering
picture to its client community. Products developed will take on the character
of the producing fiefdom. For example, one client may receive a user’s man-
ual with a delivered system, while another client may not. If customers com-
municate with one another, such inconsistency can drive customers away
from the organization.

There are a number of ways to get managers on board with the ADPE way,
including some combination of the following strategies:

ptg

626

Per reference (a), [Put your organization’s name here.] provides a development environment—the Systems Engineering
Environment—where coordinated and consistent development of software systems can be accomplished. The SEE consists of two
complementary components—an Application Development Process Environment (ADPE) and an Application Development
Technology Environment (ADTE). The ADPE is the set of those policies, guidelines, procedures, and standards defining the
engineering processes for developing software systems within [Put your organization’s name here.]. The ADPE is a framework for
consistent software product evolution and software systems development process accomplishment. The ADTE consists of the
technology as embodied in hardware and software development tools, and associated procedures for their use, required to develop
applications.

[Place additional background information here, such as a list of previously promulgated ADPE elements, when they were
promulgated, and their relationship to the element being promulgated.]

Enclosed is an ADPE element entitled “[Place the element title here.]” This element defines [Place the overall purpose of the element
here.] The specific purposes of this element are the following:

[List the specific purposes of the element here. For example, if the element being promulgated is a guideline on the CCB, specific
purposes might be items such as the following:
● To define the CCB concept for {Put your organization’s name here.} .
● To define the CCB participants.
● To present a generalized concept of change control that defines the scope of {Put your organization’s name here.} CCB activities.
● To define methods for documenting CCB meetings and {Put your organization’s name here.} project meetings impacting CCB

meetings.
● To present guidance for developing a CCB charter defining the way that the CCB functions.
● To present guidance for conducting CCB meetings.]

As of today, the enclosed element is to be used by you to guide your work on existing projects and to plan work for your new
projects. You are expected to implement the practices set forth in this element. Your performance review will be based in part on
your demonstrated application of these practices to your project work.

Additional ADPE elements further defining [Put your organization’s name here.] way of doing business will be promulgated. If you
have questions concerning this element, please contact [Place organization points of contact here, preferably those individuals who
wrote the element or those who managed the individuals who wrote the element.].

Enclosure: “[Place the title of the ADPE element here.],” dated [Place the date appearing on the element here.]

cc: [List here the individuals who are not part of your organization’s management and staff who are to receive this memorandum
 and the enclosed ADPE element.]

[Your Organization’s Name and Logo] Memo ID: [Put ID here.]

Memorandum

To:

From:

Date:

Subject:

Reference:

[Put your organization’s name here.] Management and Staff

[Put your organization’s name here.] Program Manager

[Enter the memorandum’s date here.]

Promulgation of [Put your organization’s name here.] [Select one of the following: Policy, Guideline, Procedure,
Standard.] on [Put topic or title of ADPE element here.]

(a) [Enter the name of your organization’s SEE implementation plan here.]
[List other references bearing on the ADPE element here—for example, corporate directives.]

Figure 8–26 Here is a starting point for a memorandum promulgating an ADPE element to your organization. This example
memorandum is designed explicitly to encourage ADPE compliance. The bolded paragraph illustrates how to stipulate this
encouragement.

ptg

Chapter 8 • Process Improvement Planning

627

♦ The process engineering group (PEG) should work with managers to pro-
vide them with suggestions for coaching/mentoring subordinates on how
documented business practices that are followed afford individuals the op-
portunity to grow within the organization. For example, the PEG can help
managers formulate employee career growth programs by showing how
documented business practices offer employees a starting point for learn-
ing new things. The PEG should also work with managers to show how
documented business practices that are followed can reduce schedule risk.

♦ Making ADPE compliance part of each manager’s performance review is,
as discussed earlier, an aggressive way to get managers (and the rest of the
organization) on board with the ADPE way. This strategy has a natural
leveraging effect on the organization. For managers to be rewarded for
ADPE compliance, they must get subordinates to comply with ADPE
business practices.

♦ A strategy even more aggressive than the preceding one is to require
ADPE compliance as a condition for employment. That is, ADPE compli-
ance is made part of the manager’s employment contract. An example of
an ADPE-compliance contractual stipulation might be the following:

If the manager is unable to demonstrate that those working for the man-
ager are complying with ADPE business practices, the manager is subject to
termination.

Another approach to this strategy is to require the prospective manager to
go through an ADPE training program and a trial period prior to being
hired. During this trial period (of, say, several months), the prospective
manager would be expected to motivate subordinates to assimilate and
carry through ADPE practices. Hiring of the prospective manager would
be contingent upon demonstrating the ability to provide such motivation
and demonstrate other management qualities that the organization deems
important. Of course, once hired, the manager would be expected to con-
tinue promoting the ADPE way (e.g., by presenting ADPE briefings).

The preceding strategies are some key ways that management buy-in to the
ADPE way can be achieved. They have also been presented to start your thinking
for developing strategies that might be particularly suited to your organization.

The bottom line of the preceding discussion is the following:

Management buy-in to the ADPE way must be achieved, or SEE imple-
mentation will fail. Your SEE implementation plan must therefore explicitly
address how this buy-in is to be achieved.

STRATEGY 4 TO MEET CHALLENGE: Give periodic briefings to the seller staff
on ADPE element content before and after promulgation. After promulga-
tion, try to make customer attendance a requirement.

ptg

Chapter 8 • Process Improvement Planning

628

Earlier we stressed that promulgated ADPE elements should be required
reading. However, reading alone will not result in ADPE implementation.
The plain fact is that, particularly in an organization where people may be on
the verge of being overwhelmed with work, reading ADPE elements will not
be near the top of each staff member’s list of things to do—even if the em-
ployee is interested in following the ADPE practices. To encourage reading of
the ADPE elements and eventual adoption of ADPE practices, periodic brief-
ings to the seller staff on ADPE content should be given—before and after
ADPE element promulgation. Attendance at these briefings should be made
mandatory—particularly in organizations where management buy-in to the
ADPE may be uncertain.

Giving such briefings before element promulgation encourages buy-in to the
ADPE way. Such briefings should encourage suggestions from the staff. If
these suggestions are folded into the element, staff will be more inclined to-
ward adopting the practices. Of course, it will generally not be possible to in-
corporate all suggestions. Some will conflict with one another, particularly in
the area regarding the amount of detail to include.

After ADPE element promulgation, it is strongly suggested that customer at-
tendance at such briefings be made a requirement—at least for the element
that lays out the organization’s way of doing business (i.e., the element con-
structed from the principles presented in Chapter 3). Since, as we discussed
in Chapter 3, the customer should be made part of the organization’s soft-
ware systems development process, the customer needs to be made aware of
what this process is if the process is to work. These briefings are part of the
same thinking that encourages the customer and seller to sign each ADPE ele-
ment. The briefings and signatures are important steps toward achieving
ADPE buy-in. The briefings also allow the customer to raise questions spe-
cific to that customer’s work with the seller to clarify how the ADPE practices
apply to that work. Such questions can also help the seller improve ADPE el-
ement content. For example, during a briefing of the seller’s CCB element, the
customer may question why product assurance may need to attend CCB
meetings. If the element simply asserts that product assurance is required to
attend, the customer’s question on this issue may lead to an update to the
CCB element that explains the value added of product assurance attendance
at CCB meetings. For instance, product assurance can raise questions about
the testability of requirements being discussed at a CCB meeting; if such
questions are raised before design and/or coding activities are underway,
considerable time and money can be saved by heading off costly redesign
and/or recoding activities. As a specific example, suppose a response time
“requirement” is articulated as follows:

The system response time to a user query shall be three seconds.

Regarding this statement, product assurance can raise testability-related
questions such as the following:

ptg

Chapter 8 • Process Improvement Planning

629

♦ How is the interval defining system response time to be measured? That is,
what is the starting point for the interval, and what is the ending point?

♦ What types of queries are included? All, including such things as end-to-
end database searches? Or, are only certain types of queries included be-
cause other queries would take much longer for the system to respond?
For these other queries, what value is to be assigned to the response time
interval?

STRATEGY 5 TO MEET CHALLENGE: Establish a training program that offers
the staff the opportunity to learn or augment their understanding of the en-
gineering principles underlying the ADPE.

Earlier we discussed in connection with Figure 8–16 tradeoffs associated with
how much detail to include in ADPE elements. We indicated that it is neither
practical nor useful to turn the set of ADPE elements into a software engi-
neering treatise. It is often a challenge to get people to read ADPE elements,
even if they consist of only a few pages. Yet, it is generally necessary to con-
vey engineering principles to the staff if the ADPE business practices are to be
applied prescriptively. More to the point of the discussion of this strategy, an
often unspoken source of resistance to ADPE practices is the unwillingness of
staff to make known that they may not be well versed in engineering princi-
ples. It is human nature for people not to be forthcoming regarding things
they may not know.

Engineering principles provide the context for the business practice guidance,
policy, and/or “how-to-do-it” that should be the heart of each ADPE ele-
ment. In fact, the general structure of most of the chapters in this book is first
to introduce engineering principles and then to illustrate the application of
these principles to develop practical guidance for setting up practices whose
application aim at consistently producing good software systems. For
example, Chapter 2 of this book introduces engineering principles such as the
following:

♦ It is necessary to plan for as yet unknown change.
♦ Independent product assurance serves to reduce project risk. Conse-

quently, the amount of independent product assurance to be applied to a
project should be correlated with the assessed risk of the project.

We applied the first principle listed to make the CCB the centerpiece of pro-
ject change control. In Chapter 4, we detailed how to bring about this change
control.

Regarding the preceding independent product assurance principle, many
would argue that independent product assurance as we espouse it in this
book can be replaced by putting the testing function under the development
organization and having an independent quality assurance (QA) organiza-
tion check that all parts of the process are being accomplished (including

ptg

testing). Such a QA organization may also perform document reviews, or
these document reviews may be performed by members of the development
staff who did not develop the document in question—so that an independent
product assurance organization that performs such reviews is not needed.
Furthermore, configuration management, which we place under independent
product assurance, others place under the development organization. The
point here is that such redistribution of functions that we put under the prod-
uct assurance umbrella represents an alternative way to reduce project risk
by applying the following more general engineering principle:

To reduce software systems development project risk, it is necessary to set
up checks and balances during the product development cycle. The heart of
these checks and balances is to schedule and perform product reviews, using
people who were not involved with the development of the product undergoing
review.

As we have stated many times throughout this book, there is no one way to
achieve consistent successful software systems development. We just pre-
sented arguments that attack some of the basic premises of our book to illus-
trate this point. Of course, we did not go through these arguments to send
you the message that you wasted your time getting this far in the book.
Rather, we want to drive home the point that an organization should incorpo-
rate into its ADPE implementation approach the commitment to convey to
staff the engineering principles underlying ADPE elements.

So how can such principles be conveyed—given that adding to the bulk of
ADPE elements by including material on engineering principles may further
turn off staff to reading the elements? One approach is to establish a training
program that offers staff the opportunity to learn or augment their under-
standing of the engineering principles underlying the ADPE. The discussion
of Strategy 4 (periodic briefings on ADPE element content) offers one aspect
of such a training program. These briefings could expand upon any material
on engineering principles that may appear in the element. Another aspect of
such a training program could be multiple-day seminars on certain topics
pertaining to the ADPE—for example, requirements management, peer re-
views, and acceptance testing. Such seminars could be built from widely ac-
cepted texts on the topics, and such texts could be included as part of seminar
handouts. You could also construct seminars from the principles and exam-
ples set forth in this book, particularly in those areas where the book goes
into considerable detail. For example, Chapter 5 sets forth engineering princi-
ples regarding various types of product and process reviews. The chapter
goes into considerable detail regarding some of these reviews—in particular,
product assurance document reviews and acceptance testing. We do not,
however, go into the same level of detail regarding peer reviews because of
the plethora of literature on this subject.

If your training budget is tightly constrained so that you can only offer staff a
very limited number of classes, there is one engineering area that we would

Chapter 8 • Process Improvement Planning

630

ptg

Chapter 8 • Process Improvement Planning

631

put at the top of any training list—requirements management. At the begin-
ning of this chapter, we replayed in Figure 8–1 the wizard-and-king comic
strip that we introduced in Chapter 4. The Figure 8–1 caption reads as
follows:

At the most fundamental level, the avenue to consistent successful soft-
ware systems development is sustained effective communication between the
wizard (i.e., software seller) and the king (i.e., software customer).

For years, we have run a three-day seminar on requirements management
based on the wizard-and-king comic strip. The seminar attendees have con-
sistently told us that this seminar is particularly effective when the attendees
include both software sellers and software customers. Throughout the semi-
nar, there is considerable interaction between the sellers and customers, pri-
marily through exercises that the attendees work in class and then
subsequently discuss. What typically emerges from these discussions is that
sellers and customers each have their own way of communicating things.
Thus, to achieve sustained effective communication between sellers and cus-
tomers, principles of effective communication must be presented and illus-
trated. Probably the most important principle examined in the seminar is that
of requirements testability. In fact, the section on testability appearing in
Chapter 5 is used in the seminar. The capstone of the seminar is when all at-
tendees are called upon to write test procedures from requirements and de-
sign specifications introduced in the seminar. In fact, the material used in
Chapter 5 to illustrate how to write test procedures is the material used in the
seminar. This classroom exercise drives home to all attendees the role of re-
quirements in providing the basis for the seller to demonstrate formally to the
customer that what the customer asked for is indeed being delivered in the
software system. Sellers become sensitized to customer concerns (such as
having a system that produces error diagnostics in plain English), and cus-
tomers become sensitized to (1) how labor-intensive test procedure develop-
ment can be and (2) how important it is to express requirements in terms that
both the customer and seller understand.

We have found that this requirements management seminar effectively ad-
dresses a number of concepts examined in this book, including the following:
(1) CCB, (2) acceptance testing, and (3) requirements testability. In addition,
the seminar explores at length requirements topics not addressed in this
book, including the following: (1) requirements “goodness,” (2) requirements
modeling (where different modeling techniques are introduced, such as deci-
sion tables and state transition diagrams), and (3) requirements psychology
(where such issues as how the differing perspectives of management, devel-
opment, and product assurance serve to individually and collectively shape
requirements).

We have also found that the requirements management seminar has a good
carry-over effect into the work environment. After attending the seminar,
sellers pay more attention to requirements testability issues and take greater

ptg

Chapter 8 • Process Improvement Planning

632

pains to develop tests based on requirements; customers pay more attention
to how they express their requirements and become more tolerant of the labor
needed to develop acceptance test procedures.

Part of your SEE implementation plan should include a section on training as
a means for encouraging seller staff and the customer to implement the
ADPE way. The starting point for this section can be the discussion in the
preceding paragraphs of this fifth strategy.

Your organization will undoubtedly have its own set of training priorities.
Your SEE implementation plan should address these priorities. For example,
software industry experience shows that peer reviews offer a significant re-
turn on the investment in such reviews (e.g., fewer requirements discrepan-
cies in delivered computer code). Your SEE implementation plan training
section may therefore want to stress training in the mechanics of peer re-
views. To build your case for emphasizing peer review training, you may
want to cite industry publications touting the value added of peer reviews to
the software systems development process.

We have concluded our discussion of the second SEE implementation chal-
lenge listed in Figure 8–22. This discussion focused on strategies to head off
outright resistance to the ADPE way. However, outright resistance is only
one form of resistance that must be dealt with if SEE implementation is to be
successful. Subtler forms of resistance can present themselves. These subtler
forms are the focus of the third SEE implementation challenge listed in Figure
8–22. This challenge is the following:

CHALLENGE: The seller staff will find ways to work around the ADPE way—
how can this attitude be turned around or, where appropriate, be used to in-
corporate improvements into the ADPE way?

We repeatedly stress that SEE implementation is a cultural change exercise.
People naturally resist the loss associated with change or the transition asso-
ciated with change. One form of resistance is to find ways to work around the
ADPE way. This form of resistance, in part, can arise for one of the following
reasons:

♦ The ADPE way is awkward or just does not make good business sense
♦ People have not bought into the ADPE way even though it makes good

business sense

The first reason can be the source of ADPE improvements, and your SEE im-
plementation plan should address this potential process improvement source.
For example, an ADPE element may specify that only the most senior manager
in the organization can sign out deliverables. If the volume of deliverables is
such that this senior manager proves to be a bottleneck that causes deliverables
to be late, subordinate managers may choose to sign out deliverables and be

ptg

Chapter 8 • Process Improvement Planning

633

prepared to defend their position to the senior manager should the senior man-
ager call them on the matter. Ultimately, it may be decided to revise the ADPE
element that specifies the deliverable sign-out procedure. The revision may be
the inclusion in each project plan a table that indicates, for each deliverable, the
manager who has sign-out authority. Approval by the senior manager of the
project plan containing such a table is tantamount to delegating deliverable re-
lease authority to subordinate managers.

The second reason just cited—people have not bought into the ADPE way
even though it makes good business sense—is another matter and is the focus
of the next strategy.

STRATEGY TO MEET CHALLENGE: Show how documented business practices
that are followed remove dependence on the individual, thereby affording
the individual opportunity to grow within the organization. Reward staff
who follow the ADPE way and suggest improvements to it. Make the re-
wards part of a ceremony attended by the entire organization.

The first part of this strategy we examined when we discussed the preceding
challenge. The arguments presented in conjunction with Figure 8–23 apply to
the challenge currently under discussion. The bottom line of those arguments
was the following:

Unless an organization has well-understood and documented practices
and uses them, the way that the organization does business will depend on
the specific know-how of individuals. As we stated, when those individuals are
not in the office, doing business becomes an improvisation exercise. Further-
more, when those individuals permanently leave the organization, the replace-
ment individuals will generally have difficulty getting acclimated to the
idiosyncracies of their coworkers (i.e., Sam’s, Pam’s, and Ham’s way). The
name of the game, then, is to have Sam, Pam, Ham, and others blend their
ways with the ADPE practices. That is, they contribute and plug themselves
into the organization’s way of doing business. If this is done with an open
mind, people will find that they will have a better understanding of what to ex-
pect from one another. These clarified expectations lead to the perception that
people want to work together, thereby synergizing the efforts of individuals.
Over time, people shed “me-first” attitudes and replace them with teamwork
attitudes. The net result is that individuals become empowered to do more (be-
cause a common purpose dominates teamwork thinking), thereby escaping the
threat of being held captive to a particular position.

These arguments appeal to reason. Sometimes, however, such appeals fall on
deaf ears. Some creative people, in particular, consider any set of practices a
challenge to their inventive nature. This challenge manifests itself as ways to
game the system of practices, sometimes at the expense of compromising the
organization’s good name. For example, people who do not believe in the
value that independent product assurance can add to a product may choose

ptg

Chapter 8 • Process Improvement Planning

634

to release a software system to a customer without first conducting
acceptance testing. As we have previously discussed, without such testing,
the risk of software failure increases.

It is therefore generally a good idea to augment appeals to reason with some-
thing more tangible. Figure 8–27 shows a number of inducements that can be
offered to complement appeals to reason. These inducements include such
things as the following:

♦ Cash bonuses. Monetary rewards, particularly if they are presented at a
ceremony attended by the organization, serve to take some of the pain out
of the changes that people are asked to make in acclimating themselves to
the ADPE way.

♦ Articles of clothing such as hats and T-shirts. These items can be tagged
with identifiers and/or slogans that promote the idea of SEE buy-in (e.g.,
“I’m plugged into the SEE”).

♦ Food-related articles such as coffee mugs and lunch. Food-related articles
can be tagged with identifiers such as “SEE” that serve as reminders of the
business cultural shift associated with SEE implementation. Food can be
provided at lunch-time briefings on ADPE elements.

One word of caution is in order regarding using inducements to bring about
ADPE buy-in. The inducements must be offered consistently—particularly
cash bonuses. It is therefore a good idea to establish criteria that clarify what
an individual or group needs to do regarding ADPE implementation to be re-
warded. The inducement strategy can be undermined if staff perceives in-
equities in the way people are rewarded. For example, it can be
counterproductive to give one staff member a $500 bonus solely for making
sure that project CCB minutes are signed by the customer while giving an-
other staff member a $50 bonus for building a traceability matrix showing the
explicit linkages between requirements and design specifications and test
procedures.

We now turn our attention to the final SEE implementation challenge shown
in Figure 8–22, which is the following:

CHALLENGE: The customer will try to circumvent the seller management
chain to “expedite” the incorporation of product changes—how can this at-
titude be turned around?

SEE implementation can be a cultural change for customers as well as sellers.
This situation will generally exist even in those instances in which a customer
asks the seller (e.g., via an RFP) to set up an SEE. It should therefore come as
no surprise that, in general, a customer, like the seller staff, may resist adopt-
ing the ADPE way—and continue interacting with the seller via the pre-
ADPE way. One particular manifestation of the pre-ADPE way occurs when
the customer goes around the seller management chain to interact directly

ptg

1

1

1

1
Doll

ar

1

THE U
NIT

ED STATES O
F A

M
ERIC

A

1

1

1

1
Doll

ar

1

THE U
NIT

ED STATES O
F A

M
ERIC

A

1

1

1

1
Doll

ar

1

THE U
NIT

ED STATES O
F A

M
ERIC

A

1

1

1

1
Doll

ar

1

THE U
NIT

ED STATES O
F A

M
ERIC

A

ADPE

S E E

Application
Development

Process
Environment

ADTE
Application

Development
Technology
Environment

I’m

plugged

in

SEE

SEE

SEE Compliance

Cash Bonus

Figure 8–27 An ongoing SEE implementation challenge is to head off the tendency for the
seller staff to find ways to work around the ADPE way. One strategy for meeting this challenge
is the offering of inducements such as those shown—cash bonuses, coffee mugs, food, and
articles of clothing (hats, T-shirts). Senior management and/or the organization’s PEG can help
achieve employee buy-in and build esprit de corps through such inducements. Inducements
help reduce organizational resistance to the cultural change that SEE implementation brings.
In the extreme, this resistance can manifest itself in battle cries proclaiming outright opposi-
tion such as, “I’m not going to do it!” or, “I’m going to do what I have to do [to get a product
out the door]!”

ptg

Chapter 8 • Process Improvement Planning

636

with product developers to “expedite” the incorporation of product changes.
For example, the customer may pick up the phone and call a computer pro-
grammer (whose name for the purposes of this discussion is Guru) on the
seller product development staff and make a request such as the following:

“Say, Guru, when you get the time in the next day or so, please produce a
new report that takes all the population data in the database and arranges the
data by age and distance from Topeka, Kansas. Display the arrangement as a
series of bar graphs, where a given bar graph shows the number of people
within an age range of ten years, starting with 0 and ending with 100, living
within a distance range of 50 miles from Topeka, starting with 0 and ending
with 500. Thus, for example, one bar graph will show the number of people in
the age range 0–10 years, 11–20 years, . . ., 91–100 years living between 51
miles and 100 miles from the courthouse building on Main Street in Topeka.
Please generate a sample bar graph for me by the end of the week. Thank you
for your support!”

From the customer’s perspective, such interaction cuts through an organiza-
tion’s bureaucracy—and, on the surface, appears to be an expeditious way to
transact business. From the seller project manager’s perspective, however, such
interaction undermines, for instance, the manager’s ability to manage the pro-
ject’s cost and schedule. In this case, Guru should take the customer request to
his supervisor so that the supervisor can decide what needs to be done.

The following strategy is one way to turn this customer attitude away from
such practices and toward the ADPE way:

STRATEGY TO MEET CHALLENGE: Make the CCB the focal point for customer/
seller interaction. Train seller staff in the need to document interactions
with the customer bearing on project work and to inform seller manage-
ment of such interactions.

We stress throughout this book that the ADPE practices are a way to elevate
software systems development to a businesslike proposition. Through the
CCB, seller and customer decisions are made a matter of record. In this way,
the seller and customer become accountable for their actions.

It is simply good business to run software systems development like a busi-
ness, with written records and products developed in accordance with a mu-
tually agreed-to plan. Relying solely on the spoken word is a recipe for
trouble. In particular, seller staff who take verbal direction from a customer
put a project at risk. Seller staff therefore need to be trained to document in-
teractions with the customer bearing on project work and to inform seller
management of such interactions.

We want to emphasize that we are not advocating reducing software systems
development to a coldly formal, paper-pushing bureaucracy. Certainly, the
customer can interact with seller staff, but the customer needs to keep in

ptg

Chapter 8 • Process Improvement Planning

637

mind that the customer has hired the seller to (1) build software(-related)
products and (2) manage the development of these products. The customer’s
primary role is to give direction to seller management so that this management
can appropriately focus the efforts of the seller staff.

Your SEE implementation plan should therefore stress that the ADPE will be
set up such that the CCB is the focal point for customer/seller interaction.
Each project plan should reflect this notion by including a statement such as
the following:

Project decision making will be accomplished and documented at the CCB
throughout the project. Decisions made outside of the CCB will be documented
and appended to the minutes of the next-occurring CCB meeting.

We also want to stress that our preceding remarks about how customer/
seller relationships may eventually sour are not intended to imply that both
the customer and seller should enter into a contract mistrusting each other.
Rather these remarks are intended to remind both parties that they should be
accountable for their decisions—from the beginning of a project until its
conclusion.

We have finished our examination of the four SEE implementation challenges
and associated strategies for meeting the challenges shown in Figure 8–22.
We have stressed in this examination that, because SEE implementation is a
cultural change exercise, it will generally be met with resistance. The strate-
gies discussed proceed from the proposition that if the ADPE way can be
shown to be a win-win situation for both the individual and the organization,
resistance to the ADPE way will subside.

We recommend that your SEE implementation plan address the challenges to
SEE implementation facing your organization. The preceding extensive dis-
cussion of the challenges and the strategies for meeting the challenges shown
in Figure 8–22 offers you a starting point for defining the challenges facing
your organization and laying out strategies for meeting the challenges.

In the business world, the profit motive is a factor that cannot be ignored in
setting up an SEE. Even not-for-profit organizations have budgets limiting
what they can do. In the discussion that follows, we use the label “almighty
dollar” to capture the ideas of the profit motive and budget limitations. The
following SEE implementation planning issue that we now consider focuses
on the business reality of the almighty dollar setting organizational priorities:

13. How do you deal with the business reality of the almighty dollar
in bringing about ADPE implementation?

Figure 8–28 indicates some of the key factors bearing on this issue. To help
you fold these factors into your SEE implementation planning approach, we

ptg

Chapter 8 • Process Improvement Planning

638

elaborate on this figure. The almighty dollar generally creates the following
two pushes within a seller organization:

♦ Setting organizational priorities. As shown in the figure, the top two or-
ganizational priorities are generally (1) make a profit and (2) get and keep
good people. A vicious cycle is set up whereby meeting the near-term ob-
jective of constantly getting working products out the door (to maintain

Application Development

Process Environment

(ADPE)

Organizational Priorities

Product with Integrity

Organizational

Business Practices

1. Make a profit.
2. Get and keep good and smart people.
●

●

●

N.

Policy

Guideline

Procedure

Standard

Seller
Approval

Customer
Concurrence

STD

SOFTWARE
PROCESS

Figure 8–28 Business reality (the almighty dollar) often compels senior managers to walk a
tightrope. They are constantly trying to balance keeping customers happy while making a profit and
making sure sound engineering practices are in place and followed. In some cases, making a profit
forces engineering shortcuts.

ptg

Chapter 8 • Process Improvement Planning

639

the organization’s profitability) locks the organization into never having
time to put in place a software systems development process that does not
depend on particular individuals. This cycle is difficult to break because
personnel turnover forces the organization into a catch-up mode as the
new personnel attempt to figure out how they fit into the way the veterans
do their jobs. In short, the constant drive to maintain an organization’s
profitability makes the SEE implementation exercise a tough job. Even if
the organization is firmly committed to putting in place documented busi-
ness practices, and even if the client community it serves is pressing for
such business practices (which sometimes is not the case), the day-to-day
pressure of “getting the job done” often forces such commitments to be put
on hold. The organization thus mortgages its future because people
generally want to move on and do not want to be held captive to an
organization.

♦ Establishing organizational business practices. The absence of docu-
mented business practices forces people to do whatever it takes to get a
product out the door. We would not argue that, even with well-under-
stood and documented business practices, there are times when individu-
als within the organization must perform heroically. Things like power
outages, floods, sickness, and mail that gets lost will happen and force
people to take shortcuts.

When heroic action becomes the normal mode of operation for an organiza-
tion, that organization will generally decline over the long haul. Figure 8–28
sheds light as to why this decline must ultimately happen. As the figure
shows, one of the top organizational priorities is “get and keep good and
smart people.” But good and smart people soon tire of being asked to work
another weekend or through another night. Furthermore, good people soon
recognize that their heroics force them into highly specialized roles, thus lim-
iting career growth. Often, they will look elsewhere for a job.

So, how can an organization avoid the road to decline just described? The
strategies shown in Figure 8–22 and discussed at length in the preceding
pages offer some specific ideas for avoiding such decline. If you are a new or-
ganization, you have the opportunity to get off on the right foot by incorpo-
rating such strategies into an SEE implementation plan and making a serious
attempt at implementing the plan.

But what if your organization is already caught in the downward spiral just
described? Can you put well-understood and documented business prac-
tices in place to stop the downward spiral? Or what if your organization is
making tons of money and expanding rapidly—and beginning to burn out its
people? Can you put such business practices in place in such a dynamic
environment? In both cases, we believe you can put such business practices
in place. The following are some ideas to get you started (they are listed
chronologically):

ptg

Chapter 8 • Process Improvement Planning

640

1. Get senior management to support SEE implementation efforts. Such
support includes (1) getting the senior management to allocate resources
to a group (or individual) to start an SEE implementation effort and
(2) encouraging the group (or individual) to solicit participation from
others in the organization.

2. Have senior management inform the organization about the efforts, ei-
ther via memorandum or a presentation.

3. You must still develop some kind of SEE implementation plan—at least
along the lines of the back-of-the-envelope or spiral notebook variety
shown at the top of Figure 8–5. Without some kind of plan, your efforts to
bring some order to your organization will be hard to focus.

4. We suggest that you start with the austere SEE implementation approach
discussed earlier in connection with Figure 8–20. That approach laid
out priorities for setting up an SEE. You can decide how far down the
list of priorities cited there make sense for your organization. You may
even want to reorder the priorities in that list. The items listed next as-
sume the priorities cited in Figure 8–20. If you decide to reorder these pri-
orities, you should modify the items listed below to match your
reordering.

5. While you are developing your SEE implementation plan, start doing project
planning by creating some kind of template (you can use the ideas in
Chapter 2 as a starting point to create the template).

6. While you are developing your SEE implementation plan, start using CCBs.
Use the ideas in Chapters 2, 3, and 4 to establish roles for your CCBs.

7. While you are developing your SEE implementation plan, start developing a
process diagram for your organization using the ideas in Chapter 3. Do
this development by soliciting ideas from the organization’s management
and staff.

8. While the foregoing activity is going on, your organization should be
briefed as to what is going on in the SEE arena.

9. Publish your SEE implementation plan and brief the organization on its
contents.

10. Start putting the process in your process diagram in place. Eventually,
publish an ADPE element containing the process diagram.

11. Continue with the priorities shown in Figure 8–20 and/or apply other
ideas given in this book.

As a final comment on this SEE implementation planning issue, we offer the
following:

If your organization is caught in the downward spiral of losing people
through unrelenting demands for heroics or if your organization is drowning

ptg

Chapter 8 • Process Improvement Planning

641

in its success, consider the alternative of not doing something like all or part of
the eleven steps listed above.

People within an organization are not monolithic in terms of wanting to
change the way that they do things. We now turn our attention to the follow-
ing SEE implementation planning issue that addresses this fact of organiza-
tional life:

14. How do you account for the reality that people within an organi-
zation span a broad spectrum of willingness to adapt to the engineer-
ing environment?

One way to look at this issue is to think of a person’s willingness to adapt to
the ADPE way in terms of a personality spectrum in an organization. Figure
8–29 shows five typical points on such a personality spectrum. This spectrum
is a continuum so that, in general, a particular individual may fall somewhere
between the points indicated.

To clarify the SEE implementation planning issue associated with this spec-
trum, we discuss each of the five spectrum points shown in Figure 8–29.

1. What’s a process? People at this end of the spectrum are in over their
heads when it comes to understanding business processes. They may
have some combination of the following backgrounds:
a. An individual may have had no prior experience working on projects

with more than several people so that the Sam/Pam/Ham process
approach may have been that individual’s sole exposure to an organi-
zational way of doing things.

b. An individual may be a recent college graduate with little or no expe-
rience working on a software project with a prescribed way of doing
things.

c. An individual may have had little or no exposure to engineering
principles and concepts and their relationships (such as “life cycle,”
“acceptance testing,” “requirements testability,” “visibility,” “trace-
ability”). As a result, the individual has trouble assimilating ADPE
concepts and applying them to project work. Moreover, such individ-
uals, fearing embarrassment, may be reluctant to ask questions about
these concepts and how they relate to the organization’s project work.

Training programs are generally needed to bring individuals at this end
of the spectrum into the middle of the spectrum. This training should
focus on (1) engineering principles, (2) their relationships (e.g., explana-
tion of how test procedures give visibility to the task of demonstrating to
the customer that the computer code to be delivered indeed has the func-
tionality the customer asked for), and (3) worked out examples (e.g., of
test procedures derived from requirements and design specifications).

ptg

Chapter 8 • Process Improvement Planning

642

Application Development

Process Environment

(ADPE)

What’s a
process?

Tell me the
steps to
follow.

This
guidance
makes my
job easier.

Just give me
the “what” and

I’ll come up
with the “how.”

I’m not
going to do

it!

Personality Spectrum in an Organization

Policy

Guideline

Procedure

Standard

Seller
Approval

Customer
Concurrence

Figure 8–29 SEE implementation planning needs to account for the reality that people within an organization span a broad
spectrum of willingness to adapt to the engineering environment. The orientation of ADPE elements should address the middle
of the spectrum. All people should be given the opportunity to contribute to ADPE development.

ptg

Chapter 8 • Process Improvement Planning

643

2. Tell me the steps to follow. People in this region of the spectrum prefer
detailed procedures, worked out examples, forms to fill out, and check-
lists to complete. They may have some combination of the following
attitudes:
a. An individual may have had some experience working on projects

with documented processes but may be weak in understanding un-
derlying engineering principles. Thus, the greater is the specificity of
the ADPE way, the smaller is the need to try to figure out which engi-
neering principles may need to be brought to bear to accomplish a
project task. For example, an individual responsible for writing a re-
quirements specification who is unsure of what a testable require-
ment is, would generally like to have detailed examples of testable
requirements.

b. An individual may be a steady performer who likes to put in a
“good” eight hours and then go home to other activities.

c. An individual may view time on the job as something to get over
with. Consequently, such an individual may prefer to glide through
the day without doing too much creative thinking.

Like the individuals at the left-hand part of the spectrum, individuals in
this part of the spectrum need training programs. This training should
focus on (1) explaining how, in general, there are many ways to accom-
plish software engineering tasks and (2) highlighting considerations that
should be brought to bear to determine preferred ways to perform these
tasks. Such training can give the individuals in this region of the spec-
trum the insight they need to apply prescriptively the ADPE way. For ex-
ample, by explaining the purpose and value added of different types of
process checks and balances, such individuals can determine which types
of deliverables may require technical editing (e.g., a requirements specifi-
cation) and which may not (e.g., a trip report that will not be distributed
to anyone but the customer).

3. This guidance makes my job easier. People in this region of the spec-
trum are synchronized with the ADPE way. For them, the ADPE ele-
ments contain just the right amount of detail. They have sufficient
understanding of the engineering principles underlying the ADPE so that
they are able to apply prescriptively its practices. Lessons learned from
applying the ADPE practices are used to apply them more effectively on
subsequent work. For example, they may learn that peer review sessions
should not extend beyond ninety minutes. Beyond that time, people tend
to lose focus so that there is little value added.

4. Just give me the “what” and I’ll come up with the “how.” People in this
region of spectrum tend to want few details. For example, they prefer to
be told simply that they have to record minutes at CCB minutes. They do
not want guidance on what to record or how much detail to include.
They may have some combination of the following backgrounds:

ptg

Chapter 8 • Process Improvement Planning

644

a. An individual may have a strong background in engineering princi-
ples and thus knows how to apply prescriptively the top-level
guidance included in the ADPE elements.

b. An individual may have a strong background in engineering princi-
ples and no desire to follow the ADPE way. By insisting that the
ADPE be limited to broadly worded guidance, the individual can
give the appearance of buying into the ADPE way while, in fact,
pursuing the Sam/Pam/Ham process approach.

5. I’m not going to do it! People at the end of the spectrum tend to be in
outright rebellion against the ADPE way. They may have some combina-
tion of the following attitudes:
a. An individual who has been in the software industry for a long time

(twenty years or more) may feel that he or she has seen it all. This at-
titude drives the individual to the conclusion that his or her way
makes more sense than the ADPE way. That is, to an individual at
this end of the spectrum, the experience folded into the ADPE way
simply competes with that person’s vast experience.

b. An individual may want to be in charge of the organization or in charge
of the organizational element responsible for developing the ADPE.

As we discussed earlier, by making SEE buy-in a prerequisite to joining
an organization, resistance to the ADPE can be sharply curtailed. In any
event, an SEE implementation plan should account for the possibility of
political power plays. One way to keep rebellious attitudes in check is to
get SEE buy-in from the individual who heads the organization. Without
this buy-in, the organization will almost assuredly fractionate into Sam,
Pam, and Ham fiefdoms.

Figure 8–29 also offers planning guidance regarding the intended audience
for ADPE elements—namely, the middle of the spectrum, which is enclosed
in a rectangle in the figure. In general, the elements should not try to address
the vast educational needs of the people at the far left end of the spectrum,
who are in over their heads processwise. Nor, in general, should the elements
try to address comments submitted by people at the far right end of the spec-
trum. Such comments must at least be viewed with skepticism.8 For example,
if such individuals propose that the process be amended to expedite product
delivery by doing away with a cover letter, this proposal must generally be
viewed as a way to circumvent process checks and balances. If there is no
cover letter, organizational visibility into when the product was delivered
will be diminished—and eventually other shortcuts will generally creep in.

To this point, we have examined at length a number of SEE implementation
planning issues having to do with (1) the form and content of the ADPE and

8As stated earlier, all people in the spectrum should be allowed to contribute comments for evolving
the ADPE. Even people at the far right of the spectrum (i.e., “I’m not going to do it!”) should be al-
lowed to contribute, but with one caveat—they need to use and implement ADPE elements once the
organization has decided to promulgate the elements.

ptg

Chapter 8 • Process Improvement Planning

645

(2) ADPE institutionalization. We now shift our focus and consider the fol-
lowing key SEE implementation planning issue having to do with SEE
development:

15. Who should develop the SEE in your organization?

Figure 8–30 shows four alternatives and associated advantages and disadvan-
tages. Throughout this book we use the label “process engineering group
(PEG)” for the organizational entity that develops and maintains the SEE.
This label can be applied to any one of the alternatives shown in Figure 8–30.

It should also be noted that, by combining two or more of the alternatives
shown in Figure 8–30, additional alternatives can be constructed. Combina-
tions can be used to exploit the advantages of the individual alternatives and
soften their disadvantages. Consider, for example, the following two
combinations:

1. Alternative 1 (Full-time staff) and Alternative 2 (Part-timers). Here the
idea is to have a small core of full-time staff and additional part-timers.
This combination exploits the advantages of each alternative and softens
their disadvantages as follows:
♦ The cost of this combination would generally be less than the cost of

Alternative 1 because the number of full-time staff would be less than
the number of full-time staff in Alternative 1. Presumably, the labor of
the part-timers in the combination would be less than the labor of the
additional full-timers in Alternative 1. The part-timers would be called
in by the full-timers when needed—for example, to develop a special-
ized ADPE element or a specialized part of an ADPE element, such as
a section in a peer review guideline on object-oriented peer review
checklists.

♦ The first disadvantage of Alternative 2 (SEE implementation may be
subordinated to other priorities) is softened by the small core of full-
time PEG staff whose responsibility is SEE implementation. Similar ar-
guments apply to the second and third disadvantages listed for
Alternative 2—again, because the PEG also includes full-time staff.

2. Alternative 2 (Part-timers) and Alternative 4 (Part of each manager’s
job). Here the idea is to constitute a PEG with people who have responsi-
bilities in addition to SEE implementation. By including management in
the part-timers, some of the disadvantages associated with each alterna-
tive are softened. For example, the first disadvantage of Alternative 2
(SEE implementation may be subordinated to other priorities) can be
softened because management is in a position to set priorities and to
work with other managers to keep SEE implementation high on the list of
organizational priorities. As another example, the fourth disadvantage of
Alternative 4 (difficult for customer and outsiders to understand organi-
zation’s business practices) can be softened by having some part-timers

ptg

Chapter 8 • Process Improvement Planning

646

ADPE ADTE
S E EWho?

Policies
Guidelines
Procedures
Standards

1. Full-time staff

2. Part-timers

3. Outside agent (consultant)

4. Part of each Manager’s job

● Dedicated to task
● Visible to rest of organization
● Visible to customer
● Consistent approach likely

● Part of those who use SEE

● May be less costly than Alternative 1

● Organizational buy-in more likely
than in Alternative 1

● Objective approach likely
● May be a true expert

● Buy-in facilitated

● Little added cost

● Added cost to organization

● SEE implementation may be
subordinated to other priorities

● SEE may be politicized by individual’s
other responsibilities

● Consistent approach less likely than
in Alternative 1

● Objective approach may be difficult
to implement because of outsider’s
insensitivity to turf issues

● May be expensive, both to develop
and update because of need to retain
outsider

● Difficult to achieve consistency across
organization

● Documenting each manager’s
processes may be put on back burner

● Difficult to maintain
● Difficult for customer and outsiders to

understand organization’s business
practices

Alternative Advantages Disadvantages

Figure 8–30 Who should develop the SEE in your organization? Here are some alternatives to consider when doing SEE imple-
mentation planning. We list some associated advantages and disadvantages for each alternative.

ptg

Chapter 8 • Process Improvement Planning

647

who are not managers. Managers have a tendency to focus on cost and
schedule considerations; business practices that give the customer and
outsiders insight into the way the seller does business may be viewed by
some managers as a threat to the seller’s competitive advantage. PEG
part-timers who are not managers but who are process experts may be
able to soften some of these management views by showing how giving
customers visibility into the seller’s business practices serves to build
trust, thereby increasing the likelihood of follow-on business. For exam-
ple, having the customer participate in Test Incident CCB meetings as de-
scribed in Chapter 5 and letting the customer see all TIRs generated,
serves to convey to the customer that the seller has nothing to hide (of
course, it also runs the risk of conveying to the customer that, if a lot of
TIRs are generated, the seller’s process is suspect).

The alternatives shown in Figure 8–30 are not a comprehensive list. Together
with the preceding discussion of combination alternatives, Figure 8–30 is in-
tended to get your thinking started on how to constitute a PEG for your
organization. Your SEE implementation plan needs to describe your organi-
zation’s approach to constituting a PEG and the rationale for the approach.

Earlier in connection with Figure 8–26 we discussed how to promulgate an
ADPE element to your organization. The approach was to use a memoran-
dum that summarized the element content and explicitly encouraged ADPE
compliance. We now address the corresponding issue at the level of the SEE,
namely the following:

16. How do you frame an SEE implementation policy?

Figure 8–31 shows one approach for addressing this issue. This approach is
the SEE-level analogue to the ADPE-element-level approach shown in Fig-
ure 8–26.

Earlier we addressed the issue of how to package ADPE elements and related
items. In Figure 8–18, we showed a tabbed three-ring binder to illustrate a
way to perform this packaging. We indicated that a copy of this three-ring
binder should be given to each member of the organization. The simplest way
to accomplish this binder distribution is to hand a copy to each member of
the organization on the day the member joins the organization. A more force-
ful way to handle this distribution is via a memorandum such as the one
shown in Figure 8–31. The following discussion highlights key points in this
memorandum:

1. In the figure, the memorandum is signed by the program manager (i.e.,
the manager of a number of projects or a large systems development ef-
fort). More generally, the memorandum should be signed by a senior

ptg

This memorandum establishes business practice policy for [your organization’s name]. [Your organization’s name] is in the
business of [briefly describe here the nature of your organization’s work, mentioning such things as the types of products and
services developed, the types of customers served, the contractual vehicle(s) governing your work]. This policy extends to [indicate
the scope of the policy here—e.g., all projects within your organization, only certain types of projects, only certain customers].

[The paragraph below is an example of how you can plug the SEE concept into the policy. The wording can be used as a starting
point for describing the relationship between the SEE and the business practices in your organization.]

At [your organization’s name], product development is coordinated and standardized via a Systems Engineering Environment (SEE).
The SEE consists of two complementary components—an Application Development Process Environment (ADPE) and an Application
Development Technology Environment (ADTE). The ADPE is the set of those policies, guidelines, procedures, and standards defining
the engineering processes for developing products and services. The ADTE consists of the technology as embodied in hardware and
software development tools, and associated procedures for their use, required to develop applications and other products. The
context for the policy set forth in this memorandum is the SEE—in particular, the ADPE elements defining [your organization’s name]
product development practices.

Each ADPE element is signed by the [your organization’s name] Program Manager and the [customer’s organization name] Program
Manager. Consequently, the ADPE is a joint [your organization’s name]/customer commitment that [your organization’s name]
systems development business will be conducted in accordance with the ADPE.

[The list of elements given below is the heart of the policy. They are examples of items that you may want to include in your
organization’s policy. Your organization’s list will generally be different. The list contains items tied to your organization’s business
culture and cultural changes that management wishes to impose. For example, your organization’s existing culture may have
approached software systems development as an informal exercise in artistic expression; to remain competitive, your organization’s
senior management may now wish to impose discipline on software systems development through an ADPE; to effect this cultural
change, this management may mandate through the policy that each member of your organization be able to demonstrate that he or
she has followed the ADPE practices.]

The elements of this policy are the following:

1. The ADPE defines [your organization’s name] way of engineering products and services.

2. Each employee receives a binder containing the ADPE elements and material pertaining to the ADTE. Each employee is
responsible for keeping this binder current per the instructions included in the binder.

3. Each employee is responsible for reading each ADPE element so that the employee can assimilate and apply the practices set forth
therein to project work.

4. Each employee is responsible for attending briefings given periodically on the ADPE elements.

5. Each employee is responsible for promoting with [your organization’s name] customers the [your organization’s name] business
way as documented in the ADPE elements.

6. Each employee’s performance appraisal will be based in part on the employee’s demonstrated compliance with this policy.

This policy is binding on all [your organization’s name] work. It applies to all [your organization’s name] employees.

cc: [Customer Project/Program Manager]

[Your Organization’s Name and Logo] Memo ID: [Put ID here.]

Memorandum

To:

From:

Date:

Subject:

Reference:

[Put your organization’s name here.] Management and Staff

[Put your organization’s name here.] Program Manager

[Enter the memorandum’s date here.]

[Put your organization’s name here.] Systems Engineering Environment (SEE) Policy

(a) [Enter the name of your organization’s SEE implementation plan here.]
[List other references bearing on the policy here—for example, corporate directives.]

Figure 8–31 Here is a starting point for framing an SEE implementation policy. The figure shows how to tie the policy to your
SEE implementation plan. The policy helps to encourage ADPE compliance, particularly in organizations where engineering dis-
cipline has been in short supply.

ptg

manager who has the organizational stature to make decisions for the
organization.

2. The memorandum explicitly references the organization’s SEE imple-
mentation plan. To make more explicit the role that this plan has in estab-
lishing an approach to organizational consistency on software projects,
the memorandum can include some remarks regarding this point (e.g.,
“reference [a] sets forth the organization’s approach for establishing an
engineering environment for achieving software systems development
consistency”).

3. The figure indicates that it may be appropriate to list other references in
the memorandum bearing upon the policy, such as corporate directives.
Such directives may address such enterprisewide policies (not necessarily
having to do with software) as customer satisfaction, good products at
competitive costs, and on-time delivery of products and services.

4. The memorandum defines the SEE concept (second paragraph). This in-
formation is particularly helpful for people just joining the organization.
The information compactly introduces the binder recipient to its contents.

5. The third paragraph informs the recipient that each ADPE element is
signed by both the program manager and the customer. The ADPE busi-
ness practices are thus a joint seller/customer commitment that both
parties will conduct software systems development the ADPE way.

6. The heart of the policy is the list of elements appearing at the end of the
memorandum. This list should include the things that your organization
considers important regarding engineering behavior. For example, the
first policy element in Figure 8–31 stipulates that the ADPE way is to
govern engineering behavior; the fifth policy element stipulates that “cor-
rect engineering behavior” includes promoting the ADPE way with cus-
tomers. The sixth policy element picks up on an issue discussed
earlier—namely, coupling each employee’s performance appraisal to the
employee’s demonstrated compliance with the ADPE way. Your organi-
zation may want to stress items such as these to a greater or lesser degree,
or stress other items all together. For instance, your organization may
want to take a softer line regarding performance appraisals and ADPE
compliance by rewarding compliance but not penalizing noncompliance.

7. The memorandum closes by indicating the SEE scope with respect to the
organization’s work and employees. The wording in Figure 8–31 indi-
cates that the SEE business practices apply to all of the organization’s
work and all of the organization’s employees. In some organizations,
such as those whose work is not restricted to software systems develop-
ment, the SEE scope may be limited to the software systems development
work.

8. The memorandum indicates that the customer receives a copy. Copying
the customer is particularly important if one of your policy elements in-
cludes something like the fifth one in Figure 8–31—namely, promoting
the ADPE way with your customers.

Chapter 8 • Process Improvement Planning

649

ptg

Chapter 8 • Process Improvement Planning

650

The bottom line of the preceding discussion of Figure 8–31 is that simply
handing each employee an SEE binder and expecting that its contents will be
institutionalized may be overly optimistic for all but the most mature organi-
zations. In general, it may be necessary to give SEE implementation or-
ganizational prominence through a policy along the lines of Figure 8–31. Of
course, as we discussed earlier in connection with Figure 8–22, unless senior
management actively supports such a policy, SEE implementation will not
happen. In particular, even if the most senior manager in the organization
signs such a policy, that manager (and all other managers in the organization)
must still promote the ADPE way. Therefore, your SEE implementation plan,
if it is to have a chance at succeeding, must address the issue of an SEE
implementation policy (and management support for the policy).

So far we talked about process improvement primarily at the organizational
level. Furthermore, Chapter 7 presented an ADPE element that addressed the
process of developing and improving ADPE elements. What can be said
about process improvement at the project level? To offer some insight into
this key question, we now consider the following issue:

17. How do you plan ADPE implementation improvement at the
project level?

Figure 8–32 illustrates one way to address this issue. The figure shows an an-
notated outline for a project (Project X) software process improvement plan.

The purpose of the software process improvement plan is to lay out the ap-
proach that Project X intends to follow to elevate its process maturity. The
context for this approach is the ADPE. That is, the plan is to specify how the
project intends to take the policies, guidelines, procedures, and standards set
forth in the ADPE and adapt them to the Project X work. For example, sup-
pose the organization in which Project X operates has an ADPE guideline for
project CCBs. Suppose further that the guideline gives general guidance for
CCB minutes—namely that minutes are to be taken by someone, and the min-
utes must, at a minimum, record decisions made, actions assigned, and a
summary of what was discussed. With this broad guidance, Project X may
specify as part of its process improvement plan the following activities:

♦ Minutes will be published within three days of the meeting and sent to
attendees to review while events are still fresh in their minds

♦ A record will be kept as to how often this stipulation was not met and
why—a measure of process improvement in this area will be a decrease in
the entries in this record as the project proceeds (for example, if the CCB
meets every two weeks, if the project lasts a year, and if the measurement
period is monthly, then if the first six measurements are 2, 2, 1, 2, 1, 0, this
sequence would be considered process improvement because the trend for

ptg

651

Document #

Date

[Project Logo] Document #

Date

Software Process Improvement Plan for

Project Name X

Project X

1.0 INTRODUCTION

1.1 Purpose
This section explains why, in general terms, this plan is being written. Plans are to be
between [n1 to n2] pages in length. The purpose is to provide the software process
improvement plan for Project X in a manner that is consistent with the organization’s
processes as set forth in its ADPE elements. The project will use this plan to raise its process
maturity.

1.2 Project Overview
This section explains the project purpose, the products to be developed, and the perceived
willingness of the customer to want to improve the way the project does business.

2.0 PROJECT PROCESS IMPROVEMENT OBJECTIVES

2.1 Goals
This section contains a high-level description of the project’s goals for process maturity. It is
desirable to express goals for both the near term (e.g., next twelve months) and long term
(say, next five years). Some words about commitment should be included—e.g., this plan is
viewed as a contract of commitment between the project and senior management within the
organization.

2.2 Overall Process Improvement Status
This section is used to (1) summarize the results of recent project evaluations aimed at
assessing the project’s process maturity and (2) describe the areas needing particular attention
(e.g., product assurance).

3.0 TECHNICAL APPROACH

This section contains the project’s approach for process improvement. Define the specific
activities to be accomplished. Address staff training needs for managers, product developers, and
product assurance personnel. Indicate how the project intends to prepare for assessments aimed
at assessing the project’s updated process improvement status.

4.0 SCHEDULE OF ACTIVITIES

This section shows a milestone chart or timeline indicating the actions to be taken to achieve the
activities described in the plan (e.g., train staff in the configuration management process to be
instituted; the purpose of this training is to explain the mechanics of the project’s change
management process and project personnel responsibilities for supporting this process). Provide
a narrative that walks the reader through the chart or timeline.

5.0 COST

This section contains the anticipated costs for accomplishing the project process improvement
effort. A table with supporting narrative may be useful for this purpose.

Figure 8–32 Here is an annotated outline for getting you started defining a plan for improving ADPE
implementation on a particular project. It is a good idea to include in the SEE implementation plan the
idea that each project in the organization should lay out its approach for process improvement within
the organization’s ADPE context.

Chapter 8 • Process Improvement Planning

ptg

the last three months shows convergence toward getting the minutes to re-
viewers within three days of each meeting).

Section 2 of the process improvement plan stipulates process improvement
goals. These goals can be expressed in a number of ways—some of which are
illustrated in Figure 8–32. For example, if the organization’s software systems
development process stipulates that peer reviews are to be conducted on each
product, a process improvement goal may be the following:

Ninety percent of all peer reviews are to be documented, where “docu-
mented” means that the following information was recorded:

♦ Attendees
♦ Product name and lead developer
♦ Summary of what was discussed
♦ Decisions made
♦ Actions assigned (including someone being responsible for reporting at the

next project CCB that the peer review was held)
♦ Due dates for assigned actions
♦ Whether a follow-up peer review is needed—if so, whether it was sched-

uled as part of the current peer review

Section 2 also addresses process improvement status as determined from pro-
ject evaluations conducted by agents either external or internal to the organi-
zation. These evaluations serve to baseline where the project stands process
maturitywise. In particular, such evaluations serve to identify areas needing
process improvement attention. Of course, this part of Section 2 would be ap-
plicable only for ongoing projects—that is, projects that (1) have been under
way for some time (say, at least a year) and have undergone some kind of as-
sessment (including self-assessment) and (2) are planned to continue for
some time into the future.

Section 3 addresses the approach for accomplishing the goals specified in Sec-
tion 2. A key element of any such approach should be staff and management
training. This training should be coupled to organizational training require-
ments—for example, attendance at ADPE element briefings. It should also in-
clude lectures/courses/seminars on software engineering principles and
their application (e.g., how to write “good” requirements specifications), as
well as courses/seminars on technologies that are to be applied on the project
(e.g., how to use a particular CASE tool to be used to develop one or more
products on the project).

Several comments regarding training are in order. Training often presents
some Catch-22 situations—from both the seller’s perspective and the cus-
tomer’s perspective. We first consider the seller’s perspective. On the one
hand, it may be acknowledged by both project management and staff that

Chapter 8 • Process Improvement Planning

652

ptg

Chapter 8 • Process Improvement Planning

653

training is needed in certain areas critical to the project; on the other hand,
management and staff may balk at taking time away from project work to at-
tend training sessions (because, for example, project schedules are tight). This
argument is typically broached for training sessions that span several days. In
these circumstances, management may turn to the training organization and
pose a question such as the following:

Can’t the three-day requirements seminar be condensed to one day?

Sometimes it may be possible to respond affirmatively to such a question. In
such cases, training can be worked into a project with a tight schedule. In
other cases, it simply may not be possible to squeeze a longer training activity
down to a shorter one because in so doing its training value has been emascu-
lated and the activity is reduced to little more than an information briefing
whose retention half-life is less than one day after the “training” session.

So how can this seller Catch-22 training conundrum be avoided? One way is
to consider training as project work and include it as a stand-alone task in the
project plan. In this way, the tight-schedule issue that is typically raised re-
garding training is avoided because the training is factored into the project
schedule.

This latter suggestion of factoring training into the project plan provides a
segue to the customer Catch-22 regarding seller training. By definition, a cus-
tomer hires a seller because the seller presumably is skilled in software sys-
tems development activities and supporting technologies. If so, many
customers argue, “Why should I have to pay for seller training?” To a point,
this argument has validity. However, when it comes to process improvement
in particular, it is a rare seller organization (and customer organization) that
cannot benefit from training aimed at process improvement. And coupled
with this training is the expense associated with evaluations aimed at assess-
ing the seller’s process maturity so that areas needing improvement can be
identified. To try to avoid this situation, some customers include such evalua-
tions in the process that customers use to select sellers. But even in these situ-
ations, the argument just presented still applies—namely, it is a rare seller
organization that cannot benefit from training aimed at process improve-
ment. Also, customers should recognize that such training, even if it is on
their nickel, can return dividends many times the cost of the training. These
dividends particularly manifest themselves as reduced rework—that is,
increased likelihood of developing products right the first time.

There is another consideration that customers should factor into their per-
spective of paying for seller process improvement training. It is often difficult
for sellers to find (and keep) people well schooled in engineering principles
and required technologies. Thus, training in these areas is needed to bring ex-
isting staff and new-hires up to speed. Furthermore, as we stress throughout
this book, there is no one way to define ADPE elements. Thus, even people
who may have good familiarity with engineering principles will still need to

ptg

Chapter 8 • Process Improvement Planning

654

be trained in the way these principles are applied in the ADPE elements
defining the organization’s business way. Otherwise, this business way will
wind up on the shelf of good intentions and be replaced by the
Sam/Pam/Ham business way(s).

Returning to Figure 8–32, Section 4 in the project process improvement plan
addresses the specific activities that the project intends to follow in imple-
menting the approach set forth in Section 3. It should contain a milestone
chart or timeline, and supporting narrative indicating the timing of actions
leading to the accomplishment of the goals stipulated in Section 2. Examples
of such actions are the following:

♦ Conduct configuration management training.
♦ Measure process and product integrity for each project deliverable, and

measure trends.
♦ Have process maturity assessment conducted by external agent to deter-

mine process improvement.

Section 5 lays out the cost for accomplishing the process improvement stipu-
lated in the preceding sections. Cost is often an issue for management and
can particularly be an issue if a customer is being asked to foot at least part of
the process improvement bill—for the reasons just presented. The bottom line
(no pun intended) here is that money spent on process improvement can re-
turn dividends many times the money that was spent. The dividend, as stated
earlier, is the rework that is not done.

A final comment is in order regarding the cost associated with process im-
provement activities. Sometimes the dividends that accrue from process im-
provement activities cannot and should not be measured in terms of the cost
of not doing rework. In fact, there are times when process improvement ac-
tivities can be very expensive—and maintaining a certain level of process ma-
turity can also be expensive. But if the software processes that are the focus of
these activities produce software systems whose failure would kill or injure
people (e.g., medical support systems), then the measures used to determine
the return on investment in process improvement cannot, we contend, be
expressed simply as monetary dividends.

This final comment on measurement provides a segue to the next SEE imple-
mentation planning issue that we consider, which is the following:

18. How can process and product measurement be integrated with
your organizational process?

Figure 8–33 shows an approach for addressing this issue by coupling the
seller deliverable tracking form introduced in Chapter 3 to the measurement
techniques described in Chapter 6. The figure shows the deliverable tracking

ptg

[Form Issue Date][Form Number] Front

SELLER DELIVERABLE TRACKING FORM

PROJECT FILE ESTABLISHMENT at Deliverable Support Center (DSC)

Product Title:

TECHNICAL REVIEW OF PRODUCT

Peer Reviewer or Moderator Technical Editor (documents only)

FINAL COORDINATION with DSC

Deliverable Support Center Manager

MANAGEMENT REVIEW and APPROVAL

CUSTOMER RECEIPT and APPROVAL

Project Manager concur signature date

COMMENTS/ISSUES

Lead Developer

Product Assurance Reviewer or Manager Project-level Technical Oversite Management

PRODUCT FILE MANAGEMENT
Hardcopy filed at

Lead Developer
Electronic copy filed at

Lead Developer(s):

Contributor(s):

Product Control Number: Charge Number:

Contract Number/Name:

Date and Time Product Is Due to Customer:

nonconcur

Process Engineering Group Representative concur signature datenonconcur

Business Manager (costing) concur signature datenonconcur

Program Manager

Received Customer Receipt
of Deliverable Form

Received Customer
Acceptance of Deliverable Form

Received written notification that deliverable requires

additional work and notified Project Manager upon receipt

approved
for release signature dateother action

Delivery and Distribution Representative signature date

Figure 8–33 Here is an example of how to augment the seller deliverable tracking form introduced in Chapter 3 to include or-
ganizational product and process measurements. The measurement information is placed on the back of the form. The process
measurements focus on the process activities called out on the front of the form. The product measurements are tied to the
product integrity attributes that your organization considers important. Two product integrity attributes are called out in the fig-
ure—on-time delivery and customer acceptance.

ptg

[Form Issue Date][Form Number]

SELLER DELIVERABLE TRACKING FORM

For each box below, the responsible person (i.e., Seller Manager, Seller Lead Developer, Seller Product Assurance

Manager, Seller Technical Editor, Seller Management, DSC Personnel, and Delivery and Distribution

Representative) simply circles the number that indicates what action was completed. The boxes represent
organizational measurements. Boxes xt 21 through xt 26 will be used to calculate process metrics. Boxes at 1 and at 2
will be used to calculate product metrics.

(at
2
)—Delivery and Distribution

Representative records whether
product meets delivery expectation

1.0

0.0

Product delivered by product due date on
front of this form

(at 2 = 1.0)

Product not delivered by product due date
on front of this form

(at 2 = 0.0)

(at
1
)—DSC Personnel record

whether product fulfills specified
customer needs

1.0

0.5

0.0

Product accepted as delivered
(at 1 = 1.0)

Product accepted with minor changes
(at 1 = 0.5)

Product needs changes to be negotiated
(at 1 = 0.0)

(xt
25

)—Seller Technical Editor
performs technical editing

1.0

0.5

0.0

Seller Technical Editor followed
organizational editing standards as planned

(xt 25 = 1.0)

Seller Technical Editor followed
organizational editing standards as
planned, but did not edit entire deliverable

(xt 25 = 0.5)

Seller Technical Editor did not follow
organizational editing standards as planned

(xt 25 = 0.0)

(xt
24

)—Seller Product Assurance
Manager provides product assurance

support
1.0

0.5

0.0

Seller Product Assurance Manager tracked
product assurance support (planned versus
actual) on a periodic basis

(xt 24 = 1.0)

Seller Product Assurance Manager tracked
product assurance support (planned versus
actual) on an ad hoc basis

(xt 24 = 0.5)

Seller Product Assurance Manager did not
track product assurance support (planned
versus actual)

(xt 24 = 0.0)

(xt
23

)—Seller Lead Developer
conducts peer reviews

1.0

0.75

0.25

0.0

Seller Lead Developer conducted only
documented peer reviews

(xt 23 = 1.0)

Seller Lead Developer conducted some
documented peer reviews

(xt 23 = 0.75)

Seller Lead Developer did not conduct peer
reviews

(xt 23 = 0.0)

Seller Lead Developer conducted
undocumented peer reviews

(xt 23 = 0.25)

(xt
22

)—Seller Lead Developer
establishes project files

1.0

0.25

0.0

Seller Lead Developer established project
files according to schedule

(xt 22 = 1.0)

Seller Lead Developer did not establish
project files

(xt 22 = 0.0)

Seller Lead Developer established project
files, but not according to schedule

(xt 22 = 0.25)

(xt
21

)—Seller Project Manager
evolves software products

1.0

0.5

0.0

Seller Project Manager tracked cost and
schedule (planned versus actual) on
periodic basis

(xt 21 = 1.0)

Seller Project Manager did not track cost or
schedule (planned versus actual)

(xt 21 = 0.0)

Seller Project Manager tracked cost and
schedule (planned versus actual) on an ad
hoc basis

(xt 21 = 0.5)

(xt
26

)—Seller Management
 performs project-level technical

oversight
1.0

0.5

0.0

Seller Management mentored and trained
Project Manager with respect to ADPE
requirements

(xt 26 = 1.0)

Seller Management did not mentor Project
Manager with respect to ADPE
requirements

(xt 26 = 0.5)

Seller Management did not mentor Project
Manager or provide training with respect to
ADPE requirements

(xt 26 = 0.0)

Front

Figure 8–33 Continued

656

ptg

form augmented by placing product and process measurements on the back
of the form.

In Chapter 3, we suggested that the seller deliverable tracking form be used
to track each deliverable as it progresses through the organization’s software
systems development process. Therefore, by tying process measurements to
the activities called out on the tracking form, a set of organizationwide mea-
surements is obtained. These process integrity measurements, coupled with
the product integrity measurements, can then be used to determine whether
there is a correlation between the integrity of the products being produced
and the integrity of the process used to develop these products. With this
insight, the organization can identify potential areas needing attention.

The following points should be noted regarding the measurement approach
in Figure 8–33:

♦ It is a way of doing measurement in near-real-time in the sense that the
back of the form can be filled out as the product goes through the various
process wickets identified on the front side of the form. Measurement sim-
ply involves having the individual who is indicated on the form circle the
appropriate value. For example, for process activity xt25 “performs techni-
cal editing,” if the seller technical editor followed the organizational edit-
ing standards but did not edit the entire deliverable, the technical editor
would circle the value 0.5. This near-real-time measurement approach of
course has some obvious drawbacks—the most glaring one being that peo-
ple who perform an activity are generally not objective in assessing the ex-
tent to which that activity may have been accomplished. An alternative to
this self-evaluation approach is to have individuals not involved with the
activity subsequently assess the activity. This evaluation can be accom-
plished through some combination of an audit of the project files and inter-
views with the people who performed the activities. If the files do not
contain the information (e.g., for the technical editing activity, the files did
not contain the draft of the deliverable showing the technical editor’s
markups), then the people who performed the activities would be inter-
viewed. Of course, people’s memories fade over time, and people also tend
to report their work in the most optimistic light. Interviews thus contain
the same element of bias as that found in the self-evaluation approach.
Whatever approach you decide to use, you should clearly indicate in any
measurements that you publish or otherwise present the potential sources
of bias. Such caveats will allow the recipients of the measurement results to
interpret them appropriately.

♦ After a value has been circled on each of the eight scales, the product and
process integrity indexes can be calculated, and Kiviat diagrams can be
generated. These calculation and graphing activities can be performed, for
example, by somebody in the Deliverable Support Center. Spreadsheets
with graphing capabilities can be used to facilitate accomplishment of
these activities. The calculations can also be rolled up in various ways to

Chapter 8 • Process Improvement Planning

657

ptg

get a sense of where the organization is headed. For example, the average
product integrity index can be computed on, say, a monthly basis to see
whether the integrity of products delivered is increasing, decreasing,
staying the same, or random.

♦ The approach shown in Figure 8–33 does not address all the process activi-
ties called out in Chapter 3. For example, it does not address the CCB com-
ponent of the process, but there is no reason why it could not. As your
organization matures over time, there may be different parts of your orga-
nizational software systems development process that you may want to
measure. The approach shown here is general and allows you to adjust
your organizational-level measurement activity for this purpose. Similar
comments apply to the product integrity attributes shown on the form.

♦ We stress that the approach shown is for organizational-level measure-
ments because it is tied to an organizational-level tracking form. That is,
the product and process attributes measured are the same for products
streaming through the organizational process. By using this common set of
attributes, quantitative insight into the organization’s process can be
gained—because we are comparing apples with apples across the organi-
zation. We noted in Chapter 6 that measurements at the project level will
often involve different attributes. For example, a particular project may be
using a certain technology (e.g., information engineering) and may want to
measure, for instance, how many JAD (joint application design) sessions
are needed to get closure on the customer’s enterprisewide requirements.
In this case, the project may want to set up a project-level tracking form to
collect a common set of measurements. Remember—measurement for
measurement’s sake is a waste of time and money. As we have stressed,
first decide on the questions you want answered with your measurements
and then structure your measurements to get answers to these questions.

These considerations need to be factored into your SEE implementation plan
if you want to include a product and process measurement program in your
SEE implementation approach. However, unless your organization has some
experience working with documented processes, it is not generally a good
idea to embark upon a measurement program on day one. It is preferable first
to fully understand and document your organization’s business practices—at
least at the level discussed in Chapter 3—and get your people acclimated to
following the practices. Then, with this process foundation in place, you can
introduce a measurement program. Our observation is that people unaccus-
tomed to working in an environment with some documented practices tend
to measure things for the sake of measurement. They have trouble sorting out
how to use the measurements for improving the way that they accomplish
software systems development.

We now consider two questions related to the measurement issue just dis-
cussed. In addition to presenting measurement approaches tied to process
and product integrity, Chapter 6 discussed other types of process-related
organizational-level measurements that may be useful to collect (e.g., the

Chapter 8 • Process Improvement Planning

658

ptg

Chapter 8 • Process Improvement Planning

659

average number of drafts required to produce a project plan resulting in a
project). We return to this topic to address the following two measurement
questions:

♦ How can you make product and process measurements easy to interpret?
♦ How do you sell product and process measurement as a useful activity?

Regarding the first question, it takes time for people to feel comfortable with
quantifying products and processes. For example, our approach to these mea-
surement challenges relies on the concepts of vector and vector length. These
concepts are not in people’s everyday vocabulary. Kiviat diagrams also take
some getting used to. So, when getting started on a measurement program,
you may want to try something more conventional. We illustrate this idea by
using some measurement data adapted from some of our experience. This il-
lustration will also address the second question. We show how measuring a
particular process before, during, and subsequent to the documentation of
the process can dramatically show the improvement of that process. This il-
lustration should give you ideas for writing into your SEE implementation
plan your approach for addressing these two measurement-related questions.

There is a tendency when compiling measurement data to perform various
kinds of statistical analyses. A potential problem with such analyses is that
many decision makers, in particular, have difficulty interpreting what the
analysis results mean. While it is true that for statisticians and others familiar
with mathematics, concepts such as “mean,” “standard deviation,” and “me-
dian” may be meaningful, for the general population these concepts may
cause eyes to glaze over. Thus, it is important, particularly when starting a
measurement program, to present results in a manner that does not assume
that the intended audience speaks mathematics fluently. We now consider an
example based on actual data to illustrates these points.

Figure 8–34 shows a plot of data intended to answer the following measure-
ment question:

How effective is the organization’s project planning process?

The measurement used to assess this effectiveness is whether or not the pro-
ject plan was delivered on time. Each point on the plot represents a project
plan (x-axis) and its actual delivery date in days relative to its planned delivery
date (y-axis). More specifically, the chart shows the difference in (work) days
between the actual delivery date and the planned delivery date of a series of
project plans produced in an organization over a period of almost four years.
If this difference is zero, the plan was delivered on time; if this difference was
positive, the plan was delivered late; if this difference was negative, the plan
was delivered early. The data are arranged by year. Within a year, the order
of the points has no significance. That is, data point 3 in planning year 1 does
not necessarily mean that the plan associated with that point was

ptg

Chapter 8 • Process Improvement Planning

660

produced/delivered before the plan associated with data point 4. However,
all plans in year N were delivered before all plans in year N + 1.

The plot is annotated to show the following significant events that took place
regarding the organization:

♦ Initially (i.e., during year 1), the organization was of relatively small size
(less than fifty people) with just a handful of projects. Project plans were
written against an evolving template. There was no documented project
planning process. Project plans were generally delivered late.

♦ During the organization’s second year, the organization experienced ex-
plosive growth with the number of projects increasing tenfold. The varia-
tions in the plan delivery times resulted from the learning curve associated
with new people coming on board and getting acclimated to the way that
the organization did project planning through the project plan template.
Most project plans were delivered late—varying from five to fifteen days
for most plans, with two delivered almost a month late. A few plans were
delivered early. The frenzy of planning activity consumed the organization
for a number of months.

1 2 3 4

D
a

y
s

5

0

10

15

20

25

30

–5

–10

–20

–25

–15

–30

Planning Year

• • •
• • •

• •

•
••

•

•

•

•

•

•

•

•
•

•
•
•
•

•
•
•
•

•

••••
•
•
•

•
•

•
•

•
•••

•••••

•

••
••••••

•

•

•

•

•
••

•
•
•

•
• •••••

••••

•

••••••••••••

•

Project Planning Time—Actual Minus Planned

•

Explosive growth
in people and
number of plans

Relatively small
organization
(< 50 people)

Draft project
planning process
briefed to planners

ADPE project planning
procedure in place at
start of year

Allowed project planning
time reduced from 18
days to 12 days

Figure 8–34 The figure shows a simple, yet insightful, way to show the effectiveness of part of an organization’s process—in
this case, project planning. The plot, adapted from actual data, shows whether or not project plans were delivered late, on time,
or early over a period of several years. Each point is a project plan (x-axis) and its delivery date in days relative to its planned
delivery date (y-axis). If the y-value is positive, the plan was delivered late; if this value is zero, the plan was delivered on time; if
this value is negative, the plan was delivered early.

ptg

Chapter 8 • Process Improvement Planning

661

♦ During the organization’s third year, a draft project planning process was
briefed to the seller and customer organizations. This draft process was
based on lessons learned during the previous year’s frenzied planning
cycle. As the plot shows, the process briefed served to stabilize things.
With one exception, almost all plans were delivered within a few days of
planned dates or were delivered early. The one exception was a plan that
was delivered three weeks late. The reason for the delay was a combina-
tion of customer uncertainty on what needed to be done and seller misun-
derstanding of what needed to be done.

♦ During the organization’s fourth year, an ADPE procedure documenting
the organization’s project planning process was put in place. The ADPE
procedure folded in many of the lessons learned from the preceding years.
As Figure 8–34 shows, putting this documented process in place during
that year prior to the beginning of the brunt of the project planning activity
served to converge the project plan delivery dates to the desired goal of
“consistently on time.” This convergence to consistent on-time delivery
was particularly noteworthy because, at the start of that year, the time
to produce a project plan was cut from approximately eighteen days to
twelve days (for reasons that are not important for this discussion except to
note that such things happen in the real world).

We summarize what the plot in Figure 8–34 has to say about making mea-
surement easy to interpret and useful. In so doing, we come back to the no-
tion of product integrity. The plot in Figure 8–34 offers the following:

♦ It is easy to interpret. The distribution of points and the balloons contain-
ing amplifying information tell a good process improvement story
compactly.

♦ It shows the power of simple measurements displayed so that the numbers
almost speak for themselves. The convergence to zero of the data points
dramatically shows that putting a documented process in place embody-
ing lessons learned can lead to consistency—at least for the integrity at-
tribute of on-time delivery. Plots for other integrity attributes such as cost
of producing a plan and customer satisfaction would give further insight
into project planning process integrity. For example, suppose that cus-
tomer satisfaction was measured in terms of what the customer indicated
on the Acceptance of Deliverable form introduced in Chapter 3. Suppose
further that the three choices on this form were assigned the following
values:
♦ Accepted as Delivered = 2.
♦ Accept with Minor Changes = 1.
♦ Changes to Be Negotiated = 0.

Finally, suppose that a plot of these values for all the plans given in Figure
8–34 shows in year 4, with just a couple of exceptions, a straight line that in-

ptg

Chapter 8 • Process Improvement Planning

662

tersects the y-axis at y = 2 (i.e., Accepted as Delivered). Then, together with
the plot in Figure 8–34, the organization could conclude the following:

The organization’s project planning process consistently produces project
plans that are on time and are accepted as delivered. In other words, the or-
ganization consistently produced project plans with integrity.

We now conclude this section on the key SEE implementation planning is-
sues listed in Figure 8–5 by considering the final issue listed there. This issue
concerns the packaging of the SEE implementation plan and is the following:

19. How should you structure an SEE implementation plan?

Figure 8–35 is an annotated outline for helping you prepare a plan for imple-
menting an SEE for your organization. The outline contains five sections and
calls out appendices for optional material. The following comments on these
sections and the appendices are from the seller’s perspective, since, in gen-
eral, the seller will be responsible for setting up an SEE. However, a
buyer/user organization can also use the outline to specify for a seller how
the buyer/user wants the seller to plan SEE implementation.

The following discussion walks through the annotated outline in Figure 8–35:

♦ Section 1 (“Background and Systems Development Mission”) sets the stage
for the SEE implementation approach set forth in Section 2. In Section 1,
the seller describes the software systems development challenge facing the
customer. For example, the customer may need to upgrade and integrate a
number of existing systems (e.g., some systems may have no documenta-
tion, other systems may have outdated documentation, and still other sys-
tems may have outmoded hardware that needs to be replaced). To meet
this challenge, the customer wants to establish a software systems develop-
ment process that will guide the upgrading and integration of these sys-
tems, including bringing documentation up-to-date. The customer wants
to abandon the old way of upgrading these systems because personnel
turnover within the organization makes it increasingly difficult to use
these systems and change them to meet evolving needs. This section
should define key terms (e.g., SEE, ADPE, ADTE, independent product as-
surance). This section should explain that the ADPE practices serve to es-
tablish norms of software systems development behavior that help the
seller and customer interact harmoniously. The section should also explain
that SEE implementation is a cultural change exercise—for both the cus-
tomer and the seller.

♦ Section 2 (“Implementation Approach”) lays out the approach for estab-
lishing and maintaining an ADPE within the seller’s organization. This sec-

ptg

Chapter 8 • Process Improvement Planning

663

Document #

Date1.0 BACKGROUND AND SYSTEMS DEVELOPMENT MISSION

This section gives insight into the software systems development challenge facing the
organization. The section describes the role of the systems engineering environment (SEE) in
helping the organization meet this challenge. If the document is to focus on the application
development process environment (ADPE), this section addresses the rationale for this scoping.
The remainder of this outline assumes this focus. This section should contain definitions of terms
needed to understand the document (e.g., SEE, ADPE, life cycle, product assurance). The issue of
ADPE implementation and cultural change should be addressed.

2.0 IMPLEMENTATION APPROACH

This section specifies the approach for establishing and maintaining an ADPE within your
organization. It should address how ADPE implementation will elevate the maturity of the
organization’s software systems development process. It should discuss the factors that influence
the implementation approach (e.g., the number of elements to be developed—e.g., small number
of thick documents). It should describe the ADPE implementation process and offer an ADPE
architecture. It should specify ADPE implementation milestones. If SEE implementation has not
been stipulated by the customer as part of a procurement package, this section should address the
cost of the approach.

3.0 IMPLEMENTATION ISSUES

This section presents and discusses major issues bearing on the implementation approach laid
out in Section 2. The purpose of presenting these issues is to set realistic expectations regarding
the implementation approach. Figure 8–5 lists issues that can be used as a starting point for
issues to consider. The extensive discussion of each of the Figure 8–5 issues that we give is
intended to help you (1) develop issues pertinent to your organization and (2) write this section.

[Your Organization’s Name and Logo] Document #

Date

Plan for Implementing a Systems Engineering

Environment for [Your Organization’s Name]

4.0 ADPE IMPLEMENTATION MANAGEMENT AND STAFFING

This section delineates the responsibilities for managing the ADPE implementation approach in
Section 2. The section also specifies the staffing (i.e., people) required to support the
implementation approach.

5.0 REFERENCES

This section lists the references cited in the rest of the plan. It may also list references used to
prepare the plan. For completeness, it may be useful to include a brief description of each
reference.

APPENDICES

This optional material can contain such things as sample (draft) ADPE elements, organizational
policies and/or contractual strictures constraining SEE implementation (e.g., tool suites,
accreditation requirements such as ISO 9000 or SEI capability maturity, personnel educational
requirements, life cycle models), customer organization, and implementation options considered
but not adopted.

Figure 8–35 Here is an annotated outline for getting you started defining a plan for implementing a
systems engineering environment (SEE) for your organization. Because our book focuses on process,
the outline assumes that the plan focuses on the ADPE component of the SEE.

ptg

Chapter 8 • Process Improvement Planning

664

tion is the heart of the plan and can be oriented in a number of different
ways, depending on where an organization is with respect to setting up a
documented engineering environment. For an organization starting out in
this arena, this section should be oriented along the lines of a strategy with
associated milestones—as opposed to a detailed implementation plan with
specific deliverables and a corresponding week-by-week or month-by-
month schedule. An example milestone might be the following:

For an ADPE taxonomy consisting of policies, guidelines, procedures,
and standards, develop and implement one element of each type within
one year of the publication of this plan. One of these elements is to define
the organization’s software systems development process.

In subsequent years, the plan can be updated to incorporate lessons
learned and to call out specific ADPE elements that are to be developed or
updated and to delineate a corresponding schedule.
We note that, as with most planning documents, an SEE implementation
plan can be viewed as a living document to be updated periodically. Fre-
quent updates to a plan may, in fact, be necessary if it contains a lot of detail
and if the actual implementation takes a different course. However, if
process definition resources are tight or if your organization tends to down-
play planning and favor just getting on with SEE implementation, then it
may be preferable to write Section 2 at the strategy level with little planning
detail. Orienting the section along these broad lines makes it unnecessary to
update the plan. That is, the plan can be read by new employees and still re-
flect the general direction of the organization’s evolving ADPE.
This section should describe, at least in general terms, how ADPE imple-
mentation will elevate the process maturity of the organization. For exam-
ple, your organization may want to plug into certain widely recognized
approaches to elevating process maturity—such as the SEI Capability Ma-
turity Model for Software or ISO 9000. These approaches can provide guid-
ance for identifying the kinds of ADPE elements to develop. As discussed
in Chapter 6, the SEI approach is built upon things called key process areas
(KPAs). KPAs are major building blocks in establishing an organization’s
process capability. One KPA is Project Planning. Thus, for an organization
that wants to tie its ADPE implementation approach to the SEI’s approach
to elevating process maturity, this particular KPA suggests that the organi-
zation’s ADPE should contain an element that addresses project planning,
or have an element that contains a part that addresses project planning.
This section should describe how the ADPE is to be constituted. The dis-
cussion earlier in this chapter of Figure 8–16 regarding the amount of detail
to include in an ADPE element addresses aspects of ADPE constitution.
More generally, Section 2 should contain an ADPE architecture to describe
ADPE constitution. The architecture sets forth the ADPE element taxon-
omy (e.g., in this book, the taxonomy is “policy,” “guideline,” “proce-
dure,” and “standard”). It should indicate a structure for the elements. For

ptg

Chapter 8 • Process Improvement Planning

665

example, at the topmost level, this structure may consist of the following
two categories of elements:
♦ Elements specific to the organization (e.g., an element defining the orga-

nization’s overall process)
♦ Elements available from existing sources (e.g., IEEE standards, ISO 9000

standards, process-oriented textbooks such as this book)
At the second level, elements may be further categorized. For example, it
may be desirable to include in the architecture the following three cate-
gories for the ADPE elements specific to the organization. These categories
highlight three major aspects of any engineering endeavor—namely,
(1) thinking before doing, (2) doing, and (3) getting organized to perform
the thinking and doing. Example titles of candidate ADPE elements for
each of these categories are shown to give you additional insight into our
concept of ADPE architecture.
♦ Planning

♦ Project Planning Procedure
♦ Configuration Management Planning Guideline
♦ Test Planning Guideline
♦ Data Integration Planning Guideline

♦ Process
♦ Software Systems Development Process Policy
♦ Change Control Board Guideline
♦ Document Templates Standard
♦ Peer Review Procedure

♦ Organization
♦ Project Manager Responsibilities Guideline
♦ Process Engineering Group Policy
♦ Data Administrator Guideline.

Annotated outlines for some of these items are given in this book (e.g., pro-
ject planning procedure). Regarding the Organization category, we note
that the approach in this book is to fold organizational considerations into
ADPE elements that fall into the other two categories. That is, this book
does not give examples of ADPE elements that are limited to organiza-
tional considerations. We show this structure to give you a starting point
for handling such considerations via stand-alone elements. You could, for
example, take all the sections dealing with responsibilities in the elements
that we discuss in this book, remove them from these elements, and place
them in stand-alone responsibilities elements. For example, you could cre-
ate an element that specifies project manager responsibilities for (1) project
planning, (2) managing product development within the context of the or-
ganization’s software systems development process, (3) participating in
CCBs, (4) giving visibility to peer reviews, etc.
Section 2 can also describe in greater detail one or more ADPE elements to
give additional insight into the ADPE implementation approach. If it is

ptg

Chapter 8 • Process Improvement Planning

666

desired to illustrate fully the ADPE element concept, Section 2 (or appen-
dices) could contain sample ADPE elements. If an organization is actually
doing software systems development while the SEE implementation plan
is being developed, such elements may, in fact, be based on lessons learned
from this development activity or draft elements prepared to support this
development activity.
If SEE implementation has not been stipulated by the customer as part of a
procurement package, Section 2 should address the cost of the approach. It
may be necessary to present and to cost alternative approaches (e.g., low-
cost approach, preferred approach, expensive approach). The benefits of
each alternative should also be described. The pacing items for SEE
implementation cost include the following:
♦ PEG staff. The number of people needed to staff the PEG is a func-

tion of what the PEG is to do. If the PEG is to write the SEE imple-
mentation plan, develop and maintain SEE elements, and prepare
and give briefings on ADPE elements, then a full-time staff of three
to five people can support an organization of several hundred. If
PEG responsibilities extend to labor-intensive endeavors such as
(1) preparing and presenting multiday seminars and (2) investi-
gating and testing new technologies, then staffing needs can increase by
a multiple of what is needed to prepare, update, and brief ADPE
elements.

♦ ADTE staff. Although we have not examined ADTE issues (except for
writing an ADTE plan), staffing needs can be considerable depending
on the organization’s needs for maintaining such technology items as
networks, programming language tools, CASE tools, and database
management tools. In some organizations, this staff can be incorporated
into a facilities management staff. In this case, ADTE staffing needs to
become part of a budget not linked to the SEE. If such is not the case,
then for an organization of several hundred people, ADTE staff can be
several percent of the organization’s total.

♦ Staff training time. For an organization of several hundred people, this
cost can quickly mount to hundreds of thousands of dollars or more per
year. For example, if the organization’s average loaded labor cost is
$50/hour, the labor cost to train just thirty people for three days is 24 ×
30 × $50 = $36,000. This cost does not include instructor time and the
labor required to prepare a three-day course. The labor required to pre-
pare and test a several-day course can itself amount to hundreds of
thousands of dollars.

♦ Section 3 (“Implementation Issues”) discusses major issues bearing on the
implementation approach set forth in Section 2. The current section in this
chapter is intended to help you write this section. Your starting point is
Figure 8–5. From the issues listed there and the supporting discussion you
can (1) determine which issues are pertinent to your organization and/or
(2) uncover other issues pertinent to your organization.

♦ Section 4 (“ADPE Implementation Management and Staffing”) delineates
the responsibilities for managing the ADPE implementation approach set
forth in Section 2. These responsibilities should not be limited to the seller
organization. The customer also has responsibilities in this arena. Through-

ptg

Chapter 8 • Process Improvement Planning

667

out this book, we stressed that each ADPE element should be signed by a
responsible customer agent as well as a responsible seller agent. This sign-
off should not be just a ceremonial act. It should signify customer
commitment to abiding by the ADPE practices in dealing with the seller.
This book uses the label “process engineering group (PEG)” for the organi-
zation responsible for developing and implementing the SEE. Earlier in
this section, we discussed various ways the PEG could be constituted. That
discussion can be used as a starting point for addressing how ADPE
implementation is to be managed and staffed.

♦ Section 5 (“References”) should list all references cited in the plan. Particu-
larly helpful are customer policies, directives, and plans that serve as the
“biblical” basis for tasking a seller to develop and implement an SEE. For
example, a customer may have a strategic plan that calls for getting more
bang from the bucks invested information management systems and sup-
porting databases. The strategic plan may further stipulate that such cost
savings are to be realized through documented software systems develop-
ment practices aimed at reducing rework and duplication. Such stipula-
tions provide a natural segue for introducing the SEE concept as a
consistent way to engineer software systems that do what they are
supposed to do and are delivered on time and within budget.
For completeness, it may be useful to include a brief description of each
reference cited in this section. Such descriptions can give the seller early in-
sight into the customer’s commitment to following documented software
systems development practices, as well as having the seller do the same.

♦ Appendices can be used to provide amplifying insight into the SEE imple-
mentation approach set forth in the body of the plan. This amplifying in-
sight can be provided through such items as (1) the complete text of
sample or trial ADPE elements and (2) explanation and illustration of soft-
ware engineering and other engineering principles and concepts. Exam-
ples of such principles and concepts are life cycle models, checks and
balances, process maturity, and requirements testability.

In closing this discussion of the annotated outline in Figure 8–35, we note that
it may be useful to include an executive summary at the front of the SEE im-
plementation plan. An executive summary is particularly helpful if (1) the
plan is lengthy (say one hundred pages or more) and (2) senior management
support is needed to make the plan happen. The executive summary should
capture the plan’s salient points.

We have now completed our detailed treatment of the nineteen key SEE
implementation planning issues listed in Figure 8–5. This treatment has
been aimed at pulling together the ideas, concepts, and principles from the
preceding seven chapters to help you organize an SEE implementation ap-
proach for your organization. By integrating the thoughts from the preceding
chapters, we are helping you revisit the preceding chapters in a structured
manner.

The next section offers some closing remarks about the book.

ptg

Chapter 8 • Process Improvement Planning

668

8.4 Making Successful Software Development Happen

Figure 8–36 (an adaptation of Figure 1–1) captures this book’s approach and
bottom line. In one sentence, this book does the following:

It offers “how-to-do-it” guidance for making successful software develop-
ment happen through institutionalization of a systems engineering environ-
ment (SEE).

TRANSITION—HOW?

Ill-Defined Business Way

Where you may be now

Where you may want to be later

Well-Defined Business Way

Organizational
Process

ADPE

S E E

Application
Development

Process
Environment

ADTE

Making Successful Software Development Happen

Business Case

Project Planning Process

Software Systems Development Process

Change Control Process

Product and Process Reviews

Measurement

Cultural Change

Process Improvement Planning

Application
Development
Technology
Environment

Sam’s
Process

Pam’s
Process

Ham’s
Process

Figure 8–36 Reduced to simplest terms, this book offers “how-to-do-it” guidance for making successful software develop-
ment happen through institutionalization of a systems engineering environment (SEE). The SEE helps an organization transition
from an ill-defined business way to a well-defined business way. By ill-defined business way we mean “a business way gov-
erned by the heroics of individuals who have their own way of getting the job done.” By well-defined business way we mean “a
business way governed by a set of well-understood organizationwide practices, documented in an SEE or by some other
means, that individuals within the organization prescriptively apply to the situation at hand.” To facilitate the book’s use, each
chapter contains a list of the key ideas elaborated on in that chapter.

ptg

As we have explained and illustrated, the SEE helps an organization transi-
tion from an ill-defined business way to a well-defined business way. We ex-
plained how helping Sam, Pam, and Ham transform their individual outlook
on how software systems development should be done into an organizational
outlook benefits them, the organization, and the customer. The SEE sets
down organizationwide guidance for conducting business that Sam, Pam,
Ham, and others in the organization can prescriptively apply to the situation
at hand.

This book stresses that software systems development is first and foremost a
communications exercise between the customer and the seller. To be success-
ful, the customer and seller must communicate effectively. Because what the
seller ultimately produces (i.e., software code) is hard to see, precise
communication is particularly important.

This book describes an approach for raising the visibility of the software sys-
tems development process and resultant products as a means for aiding pre-
cise communication between the customer and seller. The approach is to
establish a systems engineering environment (SEE) wherein what the cus-
tomer and seller are to do is laid down (i.e., documented) and agreed to by
both parties. This environment consists of two complementary components—
an application development process environment (ADPE) and an application
development technology environment (ADTE). The ADPE is the set of busi-
ness practices that the wizard and king commit to following. The ADTE is the
set of technologies that the seller uses to develop software systems for the
customer. This book focused on the ADPE because, without good under-
standing of software systems development processes, technology has little
value.

This book stresses that both the customer and the seller progress in their un-
derstanding of what needs to be done as a software project proceeds. This
progression in understanding translates into changes to what needs to be
done. This book spends a lot of time discussing the specifics of managing this
change. Because, as we said earlier, the seller’s handiwork is hard to see,
managing this change is particularly challenging. We therefore explore at
length processes and techniques for raising the visibility of this handiwork
and the processes used to perform this handiwork.

Overlaid on this complication (i.e., product change), there is another type of
change going on: business process change. Business process change has to do
with the way the seller does what the customer wants the seller to do and the
way that the customer interacts with the seller. This book offers suggestions
for (1) overcoming resistance associated with this business process change,
and (2) institutionalizing the changed processes via the ADPE. Institutional-
ization means “the customer and seller settle into the ADPE way of doing
things, and thereby, hopefully, the seller is able to produce consistently
‘good’ products for the customer.” We say “hopefully” because, as the book
points out, getting the ADPE practices “right” the first time is easier said than
done. Thus, this book shows how to (1) influence the customer’s and seller’s

Chapter 8 • Process Improvement Planning

669

ptg

Chapter 8 • Process Improvement Planning

670

mind-changing, and (2) ease the customer and seller into a consistent way of
doing business with each other.

Aimed at practitioners, this book facilitates information retrieval by distilling
the essence of each chapter into a set of key ideas, as suggested in Figure 8–36
by the key inside the box containing the chapter names. These key ideas offer
a convenient starting point for working your way into the chapters of interest
to you, to draw out the details that you want to apply to your organization.
For example, one Chapter 2 key idea is the following:

Planning needs to assess risk to determine the appropriate mix of manage-
ment, development, and product assurance resources.

This key idea is intended to prompt you to go into the chapter and draw out
the details presented there for doing risk assessment in support of project
planning.

We have tried to provide you with some thoughts on how to make successful
software development happen. We hope that this book has sparked some
ideas on how you might improve the way you conduct software systems
development business.

If this book at least caused you to think about doing software systems devel-
opment in a more disciplined way than in the past, then we communicated
our message. If, in addition, this book persuaded you to try some of its ideas,
then we achieved our goals—(1) helping the customer consistently receive
“good” software products, and (2) helping the seller consistently produce
“good” software products.

ptg

At the outset of Chapter 6, we indicated that Object Measurement® (or
OM®) could be used to quantify almost any object. We also mentioned that
we would indicate how OM can be used to quantify strategic information
management and why quantification of this object is of interest. The purpose
of this appendix is to address these two points.

An ancillary purpose of this appendix is to give you a starting point for using
OM for other measurement activities that may be of interest to you. The ex-
ample that we present is sufficiently rich so that, together with the discussion
of OM given earlier in Chapter 6, you should be able to see how to set up
value scales for such activities and then perform your desired measurements.
Whatever you choose to measure, we stress once again that the starting point
for any measurement activity should be the following:

671

appendix Aappendix A
How to Measure
Strategic Information
Management (SIM)

Decide on the questions that you want and/or need to address and
then use these questions to focus your measurement activity.

A.1 Strategic Information Management

To set context for our measurement discussion, we begin by asking, “What is
strategic information management (SIM)?” In May 1994, the Government

ptg

Accounting Office (GAO),1 issued a report (GAO/AIMD-94-115) titled, Exec-
utive Guide: Improving Mission Performance Through Strategic Information Man-
agement and Technology. Page 9 of this report gives the following definition for
strategic information management:

Managing information and information technology to maximize improve-
ments in mission performance.

To better appreciate what this concept means, we provide some historical
context that explains why SIM is of interest to the U.S. government. As a
segue to that discussion, we make the following—admittedly simplified—
comments regarding the notion of information management:

♦ Paul Strassmann, information technology guru since the 1950s, makes the
following comment in a book that he wrote that appeared in 1999 and that
we cited in Chapter 1:2

The U.S. has achieved its current economic pre-eminence by leading in
the transformation from the reliance on the productivity of land, labor and
capital to an economy based on information as its most important resource.
The U.S. workplace now finds 55% of employees devoted to information
creation, information distribution and information consumption.

♦ Loosely speaking, what Strassmann refers to as “information creation, infor-
mation distribution and information consumption” are activities associated
with information management. For example, when we create information,
we need to worry about how we can store it for subsequent retrieval and use.
Managing this storage is an aspect of information management.

♦ When we build computer systems to issue reports (e.g., a report showing
the status of a software project over the past month), managing the infor-
mation that goes into that report and its subsequent printing are examples
of tactical information management. That is, we are sorting through infor-
mation and packaging it to meet near-term needs within an organization.

♦ When we examine how a company, a government agency, or some other
organizational entity having aspirations of existing for the long haul (i.e.,
years or more) manages information, we are talking about strategic infor-
mation management. That is, we are looking at what needs to be done to
the way such an entity manages information to sustain and improve its
overall operation.

Appendix A • How to Measure Strategic Information Management (SIM)

672

1The General Accounting Office is the investigative arm of the U.S. Congress. GAO’s mission is to
help the Congress oversee federal programs and operations to assure accountability to the American
people. GAO’s evaluators, auditors, lawyers, economists, public policy analysts, information technol-
ogy specialists, and other multidisciplinary professionals seek to enhance the economy, efficiency, ef-
fectiveness, and credibility of the federal government both in fact and in the eyes of the American
people. GAO accomplishes its mission through a variety of activities including financial audits, pro-
gram reviews, investigations, legal support, and policy/program analyses. [These words are adapted
from the GAO’s Web site, www.gao.gov.]
2P. A. Strassmann, Information Productivity: Assessing the Information Management Costs of US Industrial
Corporations (New Canaan, CT: The Information Economics Press, 1999), p. ix.

www.gao.gov

ptg

With the preceding comments as background regarding the notion of strategic
information management, we now provide historical context for why SIM is of
interest to the U.S. government. For this purpose, we return to the May 1994
GAO report cited earlier. This report opens by defining the federal informa-
tion management problem as follows:

Within the past decade [1985–1994], the public has grown accustomed
to the benefits of using information technology to improve the cost, quality,
and timeliness of product and service delivery. Americans now expect to solve
a problem with one telephone call, obtain customer service 24 hours a day,
withdraw cash from automated teller machines around the country, and get
products delivered almost anywhere overnight. Consequently, at a time when
almost anyone can get eyeglasses in almost an hour, veterans cannot fathom
why they must wait 6 weeks to obtain them. Similarly, the general public can-
not understand why it takes weeks, instead of days, to process an income tax
refund or months to determine eligibility for social security disability benefits.

Federal agencies spent at least $25 billion on information systems3 in
1993, and more than $200 billion over the last 12 years. Despite this huge ex-
penditure, it is unclear what the public has received for its money. At the same
time, critical information assets are frequently inaccurate, inaccessible, or
nonexistent. Efforts across the government to improve mission performance
and reduce costs are still often limited by the lack of information or the poor
use of information technology.

. . . few federal agencies have learned how to manage information and in-
formation technology to achieve consistent results. Our transition reports in
1988 and 1992 underscored how agencies lack critical information needed to
analyze programmatic issues, control costs, and measure results.4 In our re-
ports to Congress in the last 10 years, we have documented numerous exam-
ples of federal systems failures such as

♦ the outlay of millions of dollars of unauthorized student loans because of poor
information tracking,

♦ over $1 billion of mistaken Medicare payments,
♦ the release of highly sensitive computer data on informants for federal law en-

forcement agencies through mismanagement of security, and
♦ inadequate financial data on agencies’ basic operations that makes responsible

financial management and auditing using accepted accounting standards ex-
tremely difficult.5

Appendix A • How to Measure Strategic Information Management (SIM)

673

3Information systems are a discrete set of information resources and processes, automated or manual,
organized for the collection, processing, maintenance, use, sharing, or dissemination of information.
4Information Management and technology Issues (GAO/OCG-93—STR, December 1992), Information Tech-
nology Issues (GAO/OCG-89-6TR, November 1988).
5Executive Guide: Improving Mission Performance Through Strategic Information Management and Technol-
ogy (GAO/AIMD-94-115, May 1994), pp. 8–9.

ptg

The report then goes on to discuss why business as usual is not enough for
the U.S. government to succeed. In making the case for this assertion, the re-
port cites the following two items that had appeared the year before that re-
flected the push to reform the way the government needed to do business:

1. “Report of the National Performance Review,” Office of the Vice Presi-
dent, Washington, D.C., September 1993. This report indicated that the
federal government was in dire need of reengineering. It concluded that
investments in information technology will make it possible to reduce
waste, increase efficiency (i.e., give the taxpayer more bang for his/her
tax buck), improve customer (i.e., public) satisfaction, and lower costs.

2. Government Performance and Results Act (GPRA) of 1993. This legisla-
tion requires strategic planning and performance measurement in the ex-
ecutive branches of the government.6 The purposes of GPRA are to
improve federal management, congressional decision-making, service
delivery, program effectiveness, public accountability, and public
confidence in government.

The following excerpt from page 9 of the May 1994 GAO report links these
two items to strategic information management and the need to reform the
way the U.S. government does business:

Given both the risks of the status quo and the potential for improvement,
business as usual is simply no longer a tenable option for federal executives.
The administration’s dramatic goals, ranging from setting customer service
standards for all federal agencies to making targeted improvements in major
areas, cannot be achieved without successful information management. For ex-
ample, improvements from reengineering with the aid of information technol-
ogy account for over 40 percent of the estimated savings projected by the
National Performance Review over the next 5 years.

Strategic information management (i.e., managing information and infor-
mation technology to maximize improvements to mission performance) will
also be a crucial initiative for all federal agencies as they move to implement
the Government Performance and Results Act, which is focused on results-
oriented management. With it, improved management information and re-
structured work processes can gradually reduce costs and increase service
levels. Without it, many agencies will find their efforts to move to results-
oriented management hindered by their inability to develop vital data and use-
ful information systems that support performance measurement and substan-
tive mission improvements.

Without action by federal executives, the gap between public expectations
and agency performance will continue to expand. Program risks will continue

Appendix A • How to Measure Strategic Information Management (SIM)

674

6The requirement for “performance measurement” should be particularly noted here. This require-
ment proved to be troublesome for federal agencies and, in part, motivated us to demonstrate to GAO
one way to measure strategic information management.

ptg

and unique opportunities for improvement will remain unexploited. Many
low-value, high-risk information systems projects will continue to be developed
and undermanaged as leaders blindly respond to crises by purchasing more
technology. Most federal managers will continue to operate without the finan-
cial and management information they need to truly improve mission perfor-
mance. Moreover, many federal employees will struggle unsuccessfully, under
increasing workloads, to do their jobs better as they are hampered with infor-
mation systems that simply add on another automated layer of bureaucracy.
Given these risks, sustained Congressional attention is vital to reinforce the
link between accountability for returns on information-related investments and
the satisfaction of real public needs.

Recalling our discussion from Chapter 1, we see that the GAO is making the
business case for why the U.S. government needs to strategically manage in-
formation through a results-oriented management approach. Government
agencies are addressing such questions as the following:

♦ To what extent is information management important to the agency mission?
♦ To what extent has the agency integrated planning, budgeting, and

evaluation?
♦ To what extent does the agency measure key mission delivery processes?
♦ To what extent is the agency focusing on process improvement in the con-

text of an information technology (IT) architecture?
♦ To what extent is the agency managing IT projects as investments?
♦ To what extent is the agency building organizationwide information re-

sources management (IRM) capabilities to address mission needs?

GPRA mandates that, among other things, information systems and technol-
ogy, in general, must only be acquired after an agency can demonstrate to
Congress that the systems and technology support the agency mission. The
government has decided that the above questions, among others, need to be
addressed. One key to making this demonstration is quantifying strategic in-
formation management.

Before proceeding to the details of showing how Object Measurement can be
used to quantify strategic information management, we need to briefly discuss
another piece of government legislation—the Clinger-Cohen Act of 1996.7

Appendix A • How to Measure Strategic Information Management (SIM)

675

7The subsequent discussion of the Clinger-Cohen Act (which is also known by the shorter name
“Cohen Act”) is based, in part, on the article by S. T. Johnson, “The Cohen Act of 1996: The Promise
and the Challenge,” CrossTalk, The Journal of Defense Software, vol. 10, no. 9 (September 1997), pp. 3–9.
This article provides some additional historical insight into the origins of this legislation. It also
touches on how the implementation of the Clinger-Cohen Act may help Congress and federal agen-
cies quantify the return on information technology investments. How to determine ROI as it pertains
to IT-related investments is far from being a settled issue. It is beyond the scope of our discussion of
the SIM measurement to analyze whether or not GPRA and the Clinger-Cohen Act have helped the
federal government better manage its IT investments, thereby giving the taxpayer more bang for its
tax buck.

ptg

The Clinger-Cohen Act specifies how the U.S. government is to plan, manage,
and acquire information technology. This legislation focuses on carrying
through the information technology aspects of GPRA. In particular, a major
provision of the Clinger-Cohen Act mandates that U.S. government agencies
are to establish strategic performance goals for any information technology8

that supports the agency. Agencies are to quantitatively assess performance
improvement progress against comparable private or public sector best prac-
tice benchmarks. These assessments are to include cost, schedule, productiv-
ity, and quality of results. Organizations must analyze their progress toward
meeting strategic goals, and must adjust mission-related processes as appro-
priate before making significant IT investments to support these processes.
The Clinger-Cohen Act further mandates that each year, agencies are to
achieve at least a five percent decrease in the costs incurred to operate and
maintain IT systems, and a five percent increase in agency operational
efficiency as a result of IT investments.

The Clinger-Cohen Act also mandates that each federal agency is to have a
chief information officer (CIO). The CIO is to help foster better technology in-
vestment, accountability, and decision making within the agency. The CIO is
to implement capital planning and investment controls for IT acquisition and
management, where performance outcomes are measured, analyzed, and
reported (per GPRA).

A.2 Quantifying Strategic Information Management

Now that we have explained why quantification of strategic information
management is of interest to the U.S. government (and probably to U.S. tax-
payers too), we now describe how Object Measurement can be used to
quantify SIM. Our approach starts from the GAO document Strategic Informa-
tion Management (SIM) Self-Assessment Toolkit issued October 28, 1994. This
document is an exposure draft. GAO distributed this document to govern-
ment agencies for use and comment. The document indicated that GAO in-
tended to revise the document based on the results of GAO use as well as
ideas from other government agencies for improvement. To our knowledge,
the draft has not yet been revised (the Y2K problem put a lot of things on the
back burner within the U.S. government). This document stops short of defin-
ing a method for actually measuring strategic information management

Appendix A • How to Measure Strategic Information Management (SIM)

676

8The Clinger-Cohen Act defines information technology as follows:
[A]ny equipment, or interconnected system or subsystem of equipment, that is used in the au-
tomatic acquisition, storage, manipulation, management, movement, control, display, switch-
ing, interchange, transmission, or reception of data or information by the executive agency. [It]
includes computers, ancillary equipment, software, firmware and similar procedures, services
(including support services) and related resources. (It does not include any equipment that is
acquired by a Federal contractor incidental to a Federal contract.)

Clinger-Cohen Act, PL (104–106), Div. E, Sec. 5002(3) (A), (B), and (C).

ptg

within an organization. The approach that we describe below provides such a
method. Before we proceed with this discussion, we need to make the follow-
ing two points:

♦ Just as we have repeatedly stated that there is no one “way” to develop
software systems, so, too, there is no one way to measure strategic infor-
mation management. The discussion below illustrates one such way.

♦ The approach presented illustrates a key measurement idea that we
stressed in Chapter 6. That idea is the following:

Measurement needs to be expressed in everyday terms that are familiar to
the organization; otherwise, they may, at best, be of little value.

The language that we use in setting up the value scales is taken directly from
the GAO document. Thus, the value scales are expressed in terms that at least
are familiar to the GAO—and presumably to the document’s intended audi-
ence, namely, federal agencies.

The following extract from the preface to the GAO exposure draft sets the
context for understanding the approach for measuring strategic information
management shown in Figure A–1:

In May 1994, GAO issued a study of how leading private and public
sector organizations were improving their mission performance through strate-
gic information management and technology.9 GAO found that senior man-
agers in these organizations used a consistent set of practices that helped them
to achieve successful performance outcomes. These practices worked because,
over time, they institutionalized better ways of doing business that are

Appendix A • How to Measure Strategic Information Management (SIM)

677

9GAO Report GAO/AIMD-94-115, Executive Guide: Improving Mission Performance Through Strategic In-
formation Management and Technology, May 1994.

Strategic Information Management Measurement Approach

1. Use GAO reports as the basis for defining a strategic information management measurement
framework using the OM® methodology.

2. Define a Strategic Information Management Index (SIMIndex) in terms of GAO diagnostic
areas.

3. Review the GAO criteria associated with each diagnostic area to define value scales.

4. Establish criteria value scales for one diagnostic area to illustrate the measurement
approach.

5. Calculate an example SIMIndex.

Figure A–1 Our approach measures strategic information management using the language of GAO
reports that stipulate requirements for performance measurement in response to GPRA.

ptg

necessary to capture the value of information and information technology.
They require no new laws to implement them, since they are consistent with
current federal regulations. The practices are supported by the Senate Commit-
tee on Governmental Affairs and the heads of over 20 federal agencies. OMB
[Office of Management and Budget] has incorporated them in its revision of A-
130 [“Management of Federal Information Resources”],10 and GSA [General
Services Administration] has included them in their draft IRM [information
resources management] guide.

This Strategic Information Management (SIM) Self-Assessment Toolkit is
designed to help agencies put these practices to work for themselves. The practices
address enterprise-wide information management issues and do not prescribe
how to design, build, test, and acquire information systems. Rather, the focus of
a SIM self-assessment is on achieving measurable improvements in outcome-
oriented performance that matters to the public, rather than just on complying
with rules and regulations. Agency assessment teams can use this guide to bench-
mark the agency’s current strategic information management practices against a
defined set of practices used by leading private and public sector organizations.
Based on these results, senior agency management can develop and recommend
specific actions to pursue in order to improve the implementation of these prac-
tices over time and achieve measurable improvements.

We now return to the six questions bearing on the strategic management of in-
formation within the U.S. government that we listed in Section A.1. Given these
questions, the next step in the OM methodology is to select the object(s) to be
measured to help answer these questions. For this purpose, we choose to calcu-
late an overall Strategic Information Management Index (SIMIndex) (i.e., the
overall measurement object) of a hypothetical government agency. As ex-
plained below, this index is defined in terms of GAO diagnostic areas, GAO di-
agnostic criteria, and GAO interim milestones. We first explain the concept of
diagnostic areas and the related concept of diagnostic criteria; in the subsequent
discussion of the application of OM methodology to SIM measurement, we il-
lustrate the concept of interim milestones. We note here the key point that there
is one diagnostic area for each of the six questions cited in Section A.1.

A.3 Diagnostic Areas and Diagnostic Criteria

We return to the first paragraph cited above from the preface in the GAO ex-
posure draft Strategic Information Management (SIM) Self-Assessment Toolkit.
This paragraph includes the following statements:

Appendix A • How to Measure Strategic Information Management (SIM)

678

10This OMB publication establishes policy for the management of information resources within the
U.S. federal government. OMB assists the President of the United States in the development and exe-
cution of the President’s policies and programs. OMB has a hand in the development and resolution
of all budget, policy, legislative, regulatory, procurement, and management issues on behalf of the
President. [These words are adapted from OMB’s web site, www.whitehouse.gov/OMB.]

www.whitehouse.gov/OMB

ptg

GAO found that senior managers in these [leading private and public sec-
tor] organizations used a consistent set of practices that helped them to achieve
successful performance outcomes. These practices worked because, over time,
they institutionalized better ways of doing business that are necessary to cap-
ture the value of information and information technology.

The practices referred to in the above citation, eleven in all, are the following:

1. Recognize and communicate the urgency to change information manage-
ment practices.

2. Get line management involved and create ownership.
3. Take action and maintain momentum.
4. Anchor strategic planning in customer needs and mission goals.
5. Measure the performance of key mission delivery processes.
6. Focus on process improvement in the context of an architecture.
7. Manage information systems projects as investments.
8. Integrate the planning, budgeting, and evaluation processes.
9. Establish customer/supplier relationships between line and information

management professionals.
10. Position a Chief Information Officer as a senior management partner.
11. Upgrade skills and knowledge of line and information management

professionals.

One element of the toolkit is identifying the practices critical to the agency’s
success that seem to be most at risk. This identification is referred to as “diag-
nosis.” To facilitate this diagnosis, the toolkit combines the above eleven prac-
tices into the following six higher-level groupings called “diagnostic areas”:

♦ Diagnostic Area 1 (da1)—The importance of information management to
the agency mission.

♦ Diagnostic Area 2 (da2)—Strategic planning, budget, and evaluation
integration.

♦ Diagnostic Area 3 (da3)—Measure the performance of key mission delivery
processes.

♦ Diagnostic Area 4 (da4)—Focus on process improvement in the context of
an architecture.

♦ Diagnostic Area 5 (da5)—Manage IT projects as investments.
♦ Diagnostic Area 6 (da6)—Build organizationwide IRM capabilities to ad-

dress mission needs.

In preparation for applying the OM methodology, we have assigned a vari-
able name to each diagnostic area (namely, dai, i = 1,2,3,4,5,6).

Appendix A • How to Measure Strategic Information Management (SIM)

679

ptg

Associated with each of the above diagnostic areas are two or more diagnostic
criteria that embody what leading organizations do in the diagnostic area. It is
these criteria that we use as the basis for measuring strategic information man-
agement. Figure A–2 lists these criteria. As the figure shows, we label each di-
agnostic criterion with a variable name based on the variable names that we
assigned above to the diagnostic areas. The generic variable name is daij, where
the subscript i refers to the diagnostic area and the subscript j refers to a diag-
nostic criterion. For example, as shown in Figure A–2, Diagnostic Area 4 (i.e.,
i = 4) has three diagnostic criteria (so j runs from 1 to 3 for i = 4), and these three
criteria are labeled respectively da41, da42, and da43. We note that this fourth di-
agnostic area is highlighted in Figure A–2 because we are going to illustrate in
detail how to apply the OM methodology to this diagnostic area.

Appendix A • How to Measure Strategic Information Management (SIM)

680

(da
1
)—The importance of information management to the agency mission.

(da
11

)—Regularly assess agency mission performance and identify potential IRM contributions.
(da

12
)—Hold line managers accountable for achieving program results through the use of IRM.

(da
13

)—Balance short-term and long-term approaches to improving IRM performance.

(da
2
)—Integration of strategic planning, budgeting, and evaluation.

(da
21

)—Identify and periodically reassess needs and priorities of customer groups; incorporate needs into plans and goals; and
 match products and services to customer groups.
(da

22
)—Fully integrate strategic planning, budgeting, and evaluation processes and use the integration to make key program

 improvement and IT investment decisions.

(da
3
)—Measure the performance of key mission delivery processes.

(da
31

)—Consistently use a mix of outcome and efficiency performance measures to assess the impact of information
 management activities on mission delivery and productivity.
(da

32
)—Use performance data in key management processes. Use baselines and benchmarks as tools for developing improvement

 goals.

(da
5
)—Manage IT projects as investments.

(da
51

)—Use an investment review board (IRB) led by executive managers to make key investment decisions.
(da

52
)—Use a disciplined process to select and review projects.

(da
53

)—Manage the proportions of expenditure on maintenance and strategic investments.

(da
6
)—Build organizationwide IRM capabilities to address mission needs.

(da
61

)—Have line managers identify information needs, while IRM professionals supply information products and services.
(da

62
)—Position a Chief Information Officer as an executive management partner.

(da
63

)—Have a professional development program for line and information resource managers.

GAO Diagnostic Criteria for GAO Diagnostic Areas

(da
4
)—Focus on process improvement in the context of an architecture.

(da
41

)—Engage in process improvement efforts to create order-of-magnitude improvements.
(da

42
)—Focus on core business processes with improvement projects that are customer-oriented.

(da
43

)—Use information and IT architectures to support the agency’s process improvement.

Figure A–2 This figure lists the GAO diagnostic criteria associated with the six GAO diagnostic areas.

ptg

Now that we have (1) explained the concepts of “diagnostic areas” and “diag-
nostic criteria” and (2) labeled these quantities, we are ready to continue our
explanation of how the OM methodology can be used to measure SIM.

As we stated earlier, the object that we want to measure is SIM. The charac-
teristics of this object that we want to measure are the diagnostic areas. Since
each diagnostic area is subdivided into two or more diagnostic criteria (i.e.,
each characteristic is subdivided into two or more subcharacteristics), we
choose to stop our object decomposition at this level and directly measure the
diagnostic criteria. Thus, we are going to measure diagnostic criteria, fold
these measurements into a subindex that measures a diagnostic area, and fold
these subindexes into an index that measures the SIM object.

The next step in the OM methodology is to define a value scale for each GAO di-
agnostic criterion (i.e., subcharacteristic) in terms of a set of numbers (i.e., a
minimum value, a maximum value, and, possibly, an intermediate value[s]).
We will do this assignment explicitly for the three diagnostic criteria for Diag-
nostic Area 4 (da4)—Focus on process improvement in the context of an architecture.

As shown in Figure A–2, the fourth diagnostic area is defined by the follow-
ing three GAO diagnostic criteria:

♦ Diagnostic Criterion 1 (da41)—Engage in process improvement efforts to
create order-of-magnitude improvements.

♦ Diagnostic Criterion 2 (da42)—Focus on core business processes with im-
provement projects that are customer-oriented.

♦ Diagnostic Criterion 3 (da43)—Use information and IT architectures to sup-
port the agency’s process improvement.

Figure A–3 shows the three value scales that we have set up for the above
three diagnostic criteria. Each value scale has a set of numbers. Furthermore,
observable events (i.e., measurement triggers) are associated with each num-
ber. The measurement triggers use language adapted from the GAO bench-
mark scales associated with each diagnostic area. These benchmark scales
represent levels of maturity in applying information management practices.
The measurement triggers also indicate interim milestones for achieving the
objective of each diagnostic criterion (the objective to be achieved is the top of
the value scale). For example, the value scale for Diagnostic Criterion 1—En-
gage in process improvement efforts to create order-of-magnitude improvements—
has the following GAO interim milestones:11

Appendix A • How to Measure Strategic Information Management (SIM)

681

11The authors assigned the number values for each measurement trigger. In practice, such numbers
might be derived in a number of different ways. If, for example, GAO were interested in setting up
value scales that could be applied governmentwide (and thus provide GAO and others such as the
U.S. Congress a means for comparing SIM index values across agencies), GAO might submit a ques-
tionnaire to these agencies asking for their recommended values. From these inputs, GAO could then
develop “consensus values” to set up the scales. It is outside the scope of the current discussion to ex-
plore the political issues associated with such a value-scale-construction approach (or any other con-
struction approach).

ptg

♦ da41 = 0.00—No agencywide process improvement program
♦ da41 = 0.25—Agencywide improvement program being established
♦ da41 = 0.75—Established process improvement program is in place
♦ da41 = 1.00—Agency engages in BPR or other process improvement efforts.

The maximum value (i.e., da41 = 1.00) expresses the situation that an agency is
engaging in process improvement. If the agency is not engaged in process im-
provement activities or is not planning to engage in such activities, then the
likelihood of achieving process improvements of any magnitude is, at best,
uncertain. We also need to keep in mind that the measurements that we are
talking about here are aimed at helping senior-level decision makers deter-
mine the extent to which an organization is moving in a desired direction. In
the context of Diagnostic Area 4, desired direction means that, among other
things, “the agency is planning for and implementing information manage-
ment systems within the context of an architecture in a way that these

Appendix A • How to Measure Strategic Information Management (SIM)

682

0.00

0.25

0.75

1.00 1.00

0.75

0.25

0.00

1.00

0.80

0.60

0.40

0.20

0.00

Diagnostic Criterion 3

Use information and IT architectures to
support the agency’s process improvement.

Improvement projects are stovepipe
efforts
 (da

43
= 0.00)

Process improvement projects are not
always strongly linked to
customer needs
 (da

43
= 0.20)

Improvement priorities and project
selection methods are established
 (da

43
= 0.40)

Implementation plans have well-defined
performance indicators
 (da

43
= 0.60)

Comprehensive architectural standards
have been established
 (da

43
= 0.80)

Agency consistently follows
comprehensive architectural standards
 (da

43
= 1.00)

Projects are customer-oriented and
focused on core business processes
 (da

42
= 1.00)

Agency engages in BPR or other process
improvement efforts
 (da

41
= 1.00)

Established process improvement
program is in place
 (da

41
= 0.75)

Agencywide improvement program
being established
 (da

41
= 0.25)

No agencywide process improvement
program
 (da

41
= 0.00)

Senior executives set priorities for
improvement activities
 (da

42
= 0.75)

Core business processes have been
defined
 (da

42
= 0.25)

Improvement techniques are not selected
to match problems
 (da

42
= 0.00)

Diagnostic Criterion 1

Engage in process improvement efforts
to create order-of-magnitude improvements.

Diagnostic Criterion 2

Focus on core business processes with
improvement projects that are

customer-oriented.

Figure A–3 This figure shows example value scales for the three diagnostic criteria associated with Diagnostic Area 4 (da4)—
Focus on process improvement in the context of an architecture.

ptg

systems will help the agency dramatically improve the way it accomplishes its
mission.” The architecture sets the context for what systems are needed
where; the process improvement effort provides the focus for deciding which
of the multitude of system options and system combinations offer the most
bang (i.e., process improvement) for the investment buck.

The next step in the OM methodology is to measure the diagnostic criterion
by recording the observed measurement trigger. As indicated in Figure A–4,
the values corresponding to the observed measurement triggers are circled.12

For this example, the following values are recorded:

♦ da41 = 0.75—Established process improvement program is in place
♦ da42 = 0.25—Core business processes have been defined
♦ da43 = 0.20—Process improvement projects are not always strongly linked

to customer needs

The next step in our measurement methodology is to substitute the observed
measurement trigger values into a form of the OM equation to calculate a
subindex representing the measured value for Diagnostic Area 4. As shown
in Figure A–5, the resulting measurement indicates that the agency is about
half way (0.47) towards where it wants to be in focusing its process improve-
ment activities in the context of an architecture. One possible interpretation of
this measurement result is that the agency is engaged in some process
improvement activities that are not directed toward more effective use of
information and/or information technology.

A.4 OM Measurement Map and Measurement Trends

We have shown how to calculate the performance measurement index for
one of the six GAO diagnostic areas. Using the same approach, we would
then calculate the corresponding indexes for the other GAO diagnostic areas.
Figure A–6 shows an OM Measurement Map detailing all of the observed
measurements. This map consists of a Kiviat-like diagram for each of the di-
agnostic areas based on hypothetical measurements of the diagnostic criteria
in each area. Note that there are sixteen diagnostic criteria in all so that six-
teen measurements go into the determination of the agency’s strategic
information management index. In the center of the collection of these Kiviat-
like diagrams, Figure A–6 shows a Kiviat-like diagram portraying the
contribution of each diagnostic area to the agency’s SIMIndex.

For this example, the SIMIndex value of 0.48 can be explained in terms of the
following GAO diagnostic areas measurement observations and resulting
calculations:

Appendix A • How to Measure Strategic Information Management (SIM)

683

12The three underlined words on the da43 value scale are our adaptations of the GAO language.

ptg

Appendix A • How to Measure Strategic Information Management (SIM)

684

Diagnostic Area 4
Focus on process improvement in the context of an architecture.

1.00

0.80

0.60

0.40

0.20

0.00
Improvement projects are stovepipe

efforts
 (da

43
= 0.00)

Process improvement projects are not
always strongly linked to customer needs

 (da
43

= 0.20)

Improvement priorities and project
selection methods are established
 (da

43
= 0.40)

Implementation plans have well-defined
performance indicators

 (da
43

= 0.60)

Comprehensive architectural standards
have been established

 (da
43

= 0.80)

Agency consistently follows
comprehensive architectural standards

 (da
43

= 1.00)

0.0
0

0.2
5

0.7
5

1.0
0

Age
nc

y e
ng

ag
es

 in
 B

PR
 or

 ot
he

r p
ro

ce
ss

im
pr

ov
em

en
t e

ffo
rts

 (d

a 41
= 1

.00
)

Es
tab

lis
he

d p
ro

ce
ss

 im
pr

ov
em

en
t p

ro
gr

am

is
in

pla
ce

 (d

a 41
= 0

.75
)

Age
nc

yw
ide

 im
pr

ov
em

en
t p

ro
gr

am

be
ing

 es
tab

lis
he

d

 (d

a 41
= 0

.25
)

No a
ge

nc
yw

ide
 pr

oc
es

s i
m

pr
ov

em
en

t

pr
og

ra
m

 (d

a 41
= 0

.00
)

1.00

0.75

0.25

0.00

Projects are custom
er-oriented and

focused on core business processes

 (da 42 = 1.00)

Senior executives set priorities for

im
provem

ent activities

 (da 42 = 0.75)

Core business processes have been

defined

 (da 42 = 0.25)

Im
provem

ent techniques are not selected

to m
atch problem

s

 (da 42 = 0.00)

Diagnostic

Area

4

Figure A–4 The figure illustrates the three value scales and recorded measurement triggers for Diagnostic Area 4.

ptg

♦ Diagnostic Area 1 (da1)—The information management practices are
starting to change or da1 = 0.48.

♦ Diagnostic Area 2 (da2)—The integration of planning, budgeting, and
evaluating is underway or da2 = 0.25.

♦ Diagnostic Area 3 (da3)—The measurement processes are being defined
or da3 = 0.25.

♦ Diagnostic Area 4 (da4)—The process improvement program is in place,
core business processes are defined, but projects are not linked to the cus-
tomer or da4 = 0.47.

♦ Diagnostic Area 5 (da5)—The investment review board (IRB) established
a process for selecting and reviewing projects or da5 = 0.68.

♦ Diagnostic Area 6 (da6)—Training is needed for line management or da6
= 0.60.

Appendix A • How to Measure Strategic Information Management (SIM)

685

Diagnostic Area 4
Performance Measurement Index

Diagnostic Area 4 Performance
Measurement Index =

1.00

0.75

0.25

0.00

0.20

0.40

0.60

0.80

1.00

0.25 0.75 1.00

da
4
 = 0.47

da 41

da 42

da 43

0.752 + 0.252 + 0.202

3
= 0.47

Figure A–5 The figure illustrates the performance measurement index for Diagnostic Area 4.

ptg

Appendix A • How to Measure Strategic Information Management (SIM)

686

1.0
0

0.7
5

0.2
5

0.0
0

1.000.750.250.00

0.00

1.00

1.00 0.60 1.00

1.00 1.00

1.00

0.00

0.68 0.47

0.25

0.25

0.48

1.00 1.00

Diagnostic
Area

6

1.0
0

0.7
5

0.0
0

1.000.750.250.00

0.00

0.25

0.75

1.00

Diagnostic
Area

1

1.0
0

0.7
5

0.2
5

0.0
0

1.00

0.250.00

Diagnostic
Area

2

1.0
0

0.2
5

0.0
0

1.000.750.250.00

Diagnostic
Area

3

1.0
0

0.7
5

0.2
5

0.0
0

1.000.750.250.00

0.00

0.50

1.00

Diagnostic
Area

5

1.0
0

0.7
5

0.2
5

0.0
0

1.000.750.250.00

0.00
0.20
0.40
0.60
0.80
1.00

Diagnostic
Area

4

Strategic
Information

Management
Index
= 0.48

Training is needed for
line management.
 da 6 = 0.60

Investment review
board (IRB) established
a process for selecting
and reviewing projects.
 da 5 = 0.68

Measurement
processes are
being defined.
 da 3 = 0.25

Process improvement
program is in place,
core business processes
are defined, but projects
are not linked to
customer.
 da 4 = 0.47

Integration of
planning,
budgeting, and
evaluating is
underway.
 da 2 = 0.25

Information management
practices are starting to
change.
 da 1 = 0.48

√ Practices
 starting to
 change

√ Process
 integration
 underway

√ Measurement
 being defined

√ Projects are
 not linked to
 customer

√ IRB established

√ Training is
 needed

Strategic

Information

Management

Index

= 0.48

0.48

Figure A–6 This figure shows an OM Measurement Map of the SIMIndex (Strategic Information Management Index) for a hy-
pothetical agency.

ptg

These observations and calculations are then used to help guide subsequent
strategic information management activities. For example, Figure A–7 shows
the evolution of the SIMIndex over seven reporting periods.

As shown in Figure A–7, the SIMIndex score for reporting period 1 reflects the
discussion above. For this particular agency, it did not have the budget to ad-
dress improvement in all six diagnostic areas for the next reporting period.
However, it did focus its attention in one particular area, and it anticipated a
modest, but steady improvement in its SIMIndex score. Given the agency’s
second period improvement, senior agency management decided to allocate
more resources for the third and fourth reporting periods. As indicated by the
SIMIndex scores for those periods, there was significant progress. The story
continues, but the point is that (1) management attention can be focused on
those areas designated as needing attention and (2) expectations can be man-
aged with respect to progress, given budgetary constraints.

Appendix A • How to Measure Strategic Information Management (SIM)

687

Strategic Information Management Index (SIMIndex) Evolution

S
IM

In
d

e
x

1.0

0.00.0
Reporting
Period 1

Reporting
Period 2

Reporting
Period 3

Reporting
Period 4

Reporting
Period 5

Reporting
Period 6

Reporting
Period 7

Score due to:
● Practices starting to change
● Process integration underway
● Measurement being defined
● Projects are not linked to customer
● IRB established
● Training is needed

Increase due to:

●

●

Decrease due to:

●

●

Increase due to:

●

●

Increase due to:

●

●

Increase due to:
 Implementation of
 corrective action
 plan that
 addressed . . .

Figure A–7 This figure shows the trend of SIMIndex over time.

ptg

A.5 Summary

As shown in Figure A–8, for this Object Measurement example, the strate-
gic information management index is defined in the following terms:

♦ GAO diagnostic areas
♦ GAO diagnostic criteria for each diagnostic area
♦ Value scales with GAO interim milestones for each diagnostic criterion.

At the outset of Chapter 6, we indicated that Object Measurement could be
used to quantify almost any object. In this appendix, we have illustrated how
to apply this measurement methodology to quantify the object “strategic in-
formation management,” or SIM. As defined by the U.S. government, SIM is
“managing information and information technology to maximize improve-
ments in mission performance.” We explained that the U.S. government is in-
terested in quantifying SIM. In particular, the U.S. Congress is interested in
determining the extent to which government agency investments in informa-
tion management are helping the agency accomplish its mission. In more pro-
saic terms, Congress wants to know the extent to which the U.S. government
is wisely spending U.S. citizens’ tax dollars on information technology.

Appendix A • How to Measure Strategic Information Management (SIM)

688

ptg

Appendix A • How to Measure Strategic Information Management (SIM)

689

Diagnostic Areas

Mission performance consists of a number of
diagnostic areas

Strategic

Information

Management Index

(SIMIndex)

Diagnostic Criteria

Diagnostic areas consist of a number of
diagnostic criteria

Value Scales for Diagnostic Criteria

Criterion da
63

Value Scale

1.0

0.0

Maximum
Value

Minimum
Value

Criterion da
61

Value Scale

Criterion da
13

Value Scale

1.0

0.0

Maximum
Value

Minimum
Value

Criterion da
11

Value Scale

Diag. Area da
6

Diag. Area da
1

1.0

0.0

Maximum
Value

Minimum
Value

SIMIndex

GPRA

Figure A–8 Under the umbrella of the Government Performance and Re-
sults Act (GPRA), the example SIMIndex is defined in terms of GAO diag-
nostic areas, diagnostic criteria, and value scales.

ptg

This page intentionally left blank

ptg

Preface

Figure P–1 This eight-chapter book, organized as shown, gives you practical and proven guidance for answering
the question, “How can you make successful software systems development happen?”

Chapter 1—Business Case

Figure 1–1 This book offers ideas on how to transition to well-defined software systems development practices to
make successful software development happen.

Figure 1–2 Here are key ideas explained in this chapter. These ideas set the context for many of the concepts ad-
dressed in the succeeding chapters.

Figure 1–3 Our concept of software consists of three characteristics that distinguish software from other types of
information.

Figure 1–4 Our definition of software encompasses both specification documentation and computer code. Com-
puter languages and database languages are merging. Consequently, our notion of computer code in-
cludes these blended languages.

Figure 1–5 Software-related products augment and complement our definition of software.
Figure 1–6 A definition of “culture.”
Figure 1–7 The requisite software systems development disciplines for attaining and maintaining software product

integrity are development, product assurance, and management.
Figure 1–8 Product assurance is the integrated application of the three comparison processes of QA, V&V, T&E,

and the CM process that formally controls changes.
Figure 1–9 Our four-stage generic life cycle blends the requisite software systems development disciplines of de-

velopment, product assurance, and management.
Figure 1–10 The three archetypical organizations that interact on most software projects may or may not have the

requisite software systems development disciplines for attaining and maintaining software product
integrity.

Figure 1–11 Cultivating successful software systems development extends far beyond (1) management edicts,
(2) assembling a team of experienced and good people, and (3) a five-minute conversation with a cus-
tomer and a three-week coding frenzy.

Figure 1–12 Customer/developer misunderstandings arising during software systems development—such as the
meaning of “user-friendly system”—can adversely affect customer expectations.

Figure 1–13 “My schedule simply doesn’t permit me or my coworkers to document before we code. Anyway, the
documentation is too difficult to keep up to date because the code keeps changing.”

Figure 1–14 An impediment to software process improvement—the Not-Invented-Here (NIH) syndrome.
Figure 1–15 Alternative approaches to software process improvement—(1) management edict, (2) organizational

policy, and (3) systems engineering environment (SEE). This book focuses on the SEE approach.

691

appendix Bappendix B
List of Figures

xvi

4

9

27

28
30
32

36

38

42

45

46

49

50
51

53

ptg

Figure 1–16 A systems engineering environment (SEE) provides a means for effecting consistent software systems devel-
opment—whether systems are developed sequentially or in parallel. For parallel systems development, the
SEE also provides a means for coordinating these development activities, thereby potentially leveraging re-
sources and adding value to individual projects.

Figure 1–17 This figure provides an overview of this book.

Chapter 2—Project Planning Process

Figure 2–1 Successful software systems development requires good planning. Here are key project planning concepts
explained in this chapter. These key ideas are your guide to planning for software systems development
success.

Figure 2–2 Software systems development projects transition manual or automated legacy systems to new/improved sys-
tems. A development life cycle brings to the fore the disciplines and tasks needed to (1) effect a successful
transition and (2) respond to postdeployment needs.

Figure 2–3 The generic software systems development life cycle provides a starting point for identifying management,
development, and product assurance tasks to be accomplished on your project.

Figure 2–4 Consistent project planning records management, development, and product assurance responses to what
needs to be done. These responses are tasks that the different disciplines are to accomplish. These tasks
make up the heart of the project plan. In addition, no matter how well planning is done, unknown, but ex-
pected, changes will arise. The change control board (CCB) is a forum for systematically accounting for such
changes. The project plan needs to incorporate CCB activities to account for responding to these deviations.

Figure 2–5 Using your experience to tailor the generic life cycle, you define the specific management, development, and
product assurance tasks to be accomplished, and associated estimated resources, milestones, and schedule.

Figure 2–6 This six-stage life cycle gives added visibility to the design activity by dividing the HOW into two separate
stages—PRELIMINARY DESIGN and DETAILED DESIGN. Such added visibility is desirable when the HOW is
assessed to be particularly risky. The example activities shown above need to be addressed in the project
plan for each life cycle stage. The plan should account for multiple iterations of the activities shown in corre-
spondence with the risk assessed for these activities.

Figure 2–7 This prototyping life cycle gives added visibility to the (1) evolving customer requirements, (2) most difficult
requirements to be implemented, and (3) transition from the development environment to the operational
environment.

Figure 2–8 This information engineering life cycle gives added visibility to enterprisewide (1) information needed to sup-
port development of business systems, (2) data, (3) activities needed to process the data, and (4) activity/data
interaction.

Figure 2–9 Although the shortest distance between two points is a straight line, project planning needs to account for the
hazards that typically arise in the real world of software systems development. Successful software systems
development involves planning for the hazards and establishing a means—the CCB—for managing the haz-
ards that can jeopardize project completion.

Figure 2–10 Project planning involves assessing the risk of accomplishing the customer’s statement of work. Product as-
surance serves to mitigate the project risk and should therefore be commensurate with the assessed risk.

Figure 2–11 Assessing project risk during project planning is key to allocating dollar resources for risk-reduced project
plan accomplishment. The risk criteria shown are examples illustrating the approach. They are a starting point
for constructing your own criteria tailored to the needs of your environment.

Figure 2–12 This logic illustrates how risk criteria can be applied to determine whether a project is high, medium, or low
risk. This logic offers you insight into developing your own risk assessment approach on the basis of your own
risk criteria. The assessed project risk is used to allocate resources among the management, product assur-
ance, and development disciplines. The dollars allocated to product assurance serve to reduce project risk.

Figure 2–13 The software project planning process is risk-based and development driven. The planning process involves
(1) assessing risks associated with meeting customer requirements, (2) defining resource percentages for de-
velopment, product assurance, and management based on this assessment, (3) developing corresponding ap-
proaches and task-derived resource estimates, (4) reconciling task-derived and risk-derived resource
estimates, and (5) integrating the approaches. The end result is a risk-reduced project plan with increased
likelihood for successful accomplishment.

Figure 2–14 The project plan is a living contract between the CUSTOMER and SELLER that sets forth the work that the
seller’s management, development, and product assurance disciplines accomplish and the customer man-
agement approves. This figure shows suggested project plan topics and a suggested order for these topics.

Appendix B • List of Figures

692

ptg

Figure 2–15 The project plan defines the seller’s development, management, and product assurance tasks that respond to
a customer’s statement of work (SOW). These tasks emerge by considering the intersection of each life cycle
stage with each system discipline.

Figure 2–16 This illustration shows an annotated outline for getting you started defining an ADPE procedure for your proj-
ect planning procedure.

Chapter 3—Software Systems Development Process

Figure 3–1 People use a software process to develop and maintain software and associated products.
Figure 3–2 This figure shows five example software organizations based on software project groupings.
Figure 3–3 Successful software systems development is repeatable if an organization has a well-understood and docu-

mented product development process that it follows. Without such a process, the organization must rely on
the heroics of individuals. Here are key process concepts explained in this chapter.

Figure 3–4 Our example organizational software systems development process is a closed-looped process that starts
and ends with the customer.

Figure 3–5 The software systems development process is independent of product development life cycle and specific
product development technologies. The figure shows where you would introduce your life cycle(s) to adapt
the process to your organization.

Figure 3–6 The SOW (Statement of Work) is the customer’s statement of what the customer wants the seller to do. The
figure gives tips to help buyers/users write an SOW.

Figure 3–7 The customer’s SOW, the organizational software systems development process, and the life cycle set the
context for planning the project-specific work.

Figure 3–8 The customer project manager and the seller project manager constantly communicate with each other. Such
communication includes technical guidance, day-to-day coordination on project activities, items for the
record, and issues for customer concurrence. This type of manager-to-manager communication helps to in-
crease the likelihood that the evolving products will embody what the customer wants.

Figure 3–9 Evolves software product(s) means “applying the process activities that take a product from a vaguely defined
concept to a completely filled-in product that embodies customer’s requirements.”

Figure 3–10 Services, like the products, are planned in accordance with the organizational software systems development
process.

Figure 3–11 The seller development team prescriptively applies the project’s development process to the negotiated
agreement that embodies the seller’s project plan. The results of this prescriptive application are the follow-
ing: (1) products (and associated services) and (2) project-level development procedures that are consistent
with the resource expenditures, completed work schedules, and work accomplished.

Figure 3–12 The lead developer of a product is responsible for establishing the necessary project files and tracking the
product through the development process. The tracking form, as its name implies, is used, in part, to track a
product as it progresses through the software systems development process.

Figure 3–13 Here is an example of a seller deliverable tracking form that can be used with our organizational software sys-
tems development process.

Figure 3–14 Here is an example of a customer receipt of deliverable form that can be used with our organizational soft-
ware systems development process. The return address is on the reverse side.

Figure 3–15 Here is an example of a customer acceptance of deliverable form that can be used with our organizational
software systems development process.

Figure 3–16 This figure shows our example seller Deliverable Support Center functions.
Figure 3–17 The peer review balances the product developer’s approach with the insights of other people having applica-

ble and comparable experience.
Figure 3–18 Independent product assurance is a key element of successful software systems development processes.
Figure 3–19 Technical editing is an important, but often overlooked, activity in the software systems development effort.
Figure 3–20 Project-level technical oversight helps the seller development team avoid potential problems by infusing the

experience of others into the technical management of the project (i.e., the “I’ve been there” factor).
Figure 3–21 The CCB is a key element of successful software systems development processes.
Figure 3–22 Seller senior management ensures, in part, that the seller development teams implement the organizational

software systems development process.
Figure 3–23 This figure indicates that the level of detail and organizational scope are two major considerations in defining

a software systems development process in an application development process Environment (ADPE)
element.

Appendix B • List of Figures

693

ptg

Figure 3–21 The CCB is a key element of successful software systems development processes.
Figure 3–22 Seller senior management ensures, in part, that the seller development teams implement the organiza-

tional software systems development process.
Figure 3–23 This figure indicates that the level of detail and organizational scope are two major considerations in

defining a software systems development process in an application development process environment
(ADPE) element.

Figure 3–24 The software systems development process can plug into a systems development process via change
control board meetings.

Figure 3–25 It is useful to define the organizational software systems development process first.
Figure 3–26 An annotated outline for getting you started in defining a software systems development process for

your organization. This ADPE element outline can also be used to define a process that you already (in-
formally) have in place and that you want to improve.

Chapter 4—Change Control Process

Figure 4–1 It is easy to miscommunicate. (The Wizard of Id, May 16, 1994. Reproduced by permission of Johnny
Hart and Creators Syndicate, Inc.)

Figure 4–2 Sometimes the customer believes that he effectively communicates his requirements, and the devel-
oper believes he understands what the customer communicated. Subsequent to developer implemen-
tation of the “requirements,” the customer and developer may have vastly different perspectives
regarding requirements satisfaction. (The Wizard of Id, October 11, 1984. Reprinted by permission of
Johnny Hart and Creators Syndicate, Inc.)

Figure 4–3 A customer and a developer refine their understandings of what needs to be done to build a software
system satisfying customer requirements. This mutual refinement of understanding continues through-
out the development life cycle. The change control board (CCB) provides the wizard and king with a
business forum to achieve this mutual refinement. The end result is successful software systems devel-
opment. (The Wizard of Id, September 30, 1983. Reproduced by permission of Johnny Hart and Creators
Syndicate, Inc.)

Figure 4–4 Here are key change control concepts explained in this chapter.
Figure 4–5 Software systems development projects involve planned growth in greater levels of detail, and un-

planned transitions within a life cycle stage or between stages.
Figure 4–6 The change control board (CCB) is the forum for the control activity for the change process conducted

during the review of changes.
Figure 4–7 CCB control can be likened to the process of redirecting a train by switches.
Figure 4–8 Change control of a planned (i.e., evolutionary) change—submission of a draft detailed design

specification.
Figure 4–9 Change control of an unplanned (i.e., revolutionary) change—a proposed amendment to requirements.
Figure 4–10 Change control of an unplanned (i.e., revolutionary) change—a user-submitted incident report.
Figure 4–11 CCBs provide forums for units of each organization within the user/buyer/seller triumvirate—or for

pairs of these organizations, or for all three organizations—to interact continually and effectively on a
software development project for the purpose of managing change.

Figure 4–12 A CCB hierarchy generally derives from the hierarchy of issues associated with system development
and their perceived significance.

Figure 4–13 Sample (software) CCB hierarchy organized along management/technical and user/buyer/seller lines il-
lustrating how management and technical CCB guidance effects and affects software change.

Figure 4–14 Sample (software) CCB hierarchy for medium-sized or small-sized projects.
Figure 4–15 The decisions that the CCB can make relative to a change control form.
Figure 4–16 Forms, in conjunction with the CCB, give visibility and traceability to the change control process.
Figure 4–17 Example of an incident report (IR) form and associated events that it documents.
Figure 4–18 Example of a software change notice (SCN) form.
Figure 4–19 Example of a change request (CR) form and associated events that it documents.
Figure 4–20 Example of an impact assessment (IA) form.
Figure 4–21 Scenarios showing the use of the change control forms.
Figure 4–22 Example of a completed change request (CR) form, showing the use of the form in answering the ques-

tion “Do we want something new or different?”
Figure 4–23 Example of a completed impact assessment (IA) form for the change request (CR) 98-0019.

Appendix B • List of Figures

694

162

163

166

168
169

171

174

175

176
179

183

190
192

199
202
205

209

211

213
214
216
225
231
234
235
236
238

239
240

ptg

Chapter 5—Product and Process Reviews

Figure 5–1 Reviews give visibility into processes and resultant software products. With this visibility, management, devel-
opment, and product assurance personnel can make intelligent, informed decisions regarding what to do next
on a software project.

Figure 5–2 The heart of product and process reviews is ground truth.
Figure 5–3 Product and process reviews help the seller develop products that conform to the customer’s requirements.

These key ideas are your guide to keeping your software systems development process and resultant prod-
ucts on track.

Figure 5–4 This chapter’s discussion focuses on key software product and software systems development process re-
views. The seller development team performs these reviews at the project level.

Figure 5–5 This chapter describes key management, development, and product assurance reviews at the project level.
The reviews fall into two major categories—product and process.

Figure 5–6 Software product reviews address programmatic, technical, editorial, and conformance questions.
Figure 5–7 Project software systems development process reviews address programmatic, technical, and conformance

questions.
Figure 5–8 Product programmatic tracking helps provide insight into planned versus actual schedule and resource prod-

uct development issues.
Figure 5–9 Process programmatic tracking helps to provide insight into planned versus actual schedule and resource is-

sues involved with the overall project.
Figure 5–10 Here are some example remarks that a senior manager might pass along to a project manager or to a project

team member on the context or orientation of a software(-related) product.
Figure 5–11 Here are some example remarks that a senior manager might pass along to a project manager or to a project

team member regarding the project-level software systems development process.
Figure 5–12 Here are examples of product peer review comments for a software document, software-related document,

computer code, and data.
Figure 5–13 Here are examples of process peer review comments for the development of a requirements specification,

computer code, and a database.
Figure 5–14 Here are examples of technical edits for two types of software(-related) documents.
Figure 5–15 This figure presents a starting point for constructing a set of technical editing tips for documents.
Figure 5–16 Here are examples of product quality assurance (QA) discrepancies that might be uncovered during the com-

parison of a product under development against one or more standards governing the development of that
product.

Figure 5–17 Here are examples of product verification and validation (V&V) discrepancies that might be uncovered during
the comparison of a product under development against a predecessor product and the requirements for that
product.

Figure 5–18 Here are examples of product test and evaluation (T&E) discrepancies that might be uncovered during the
testing of computer code.

Figure 5–19 Here are examples of product self-comparison discrepancies that might be uncovered during the comparison
of a product under development against itself.

Figure 5–20 Here are examples of process quality assurance (QA) discrepancies that might be uncovered (or reported)
during the comparison of a product under development (or that has finished development) against the project-
specific software systems development process.

Figure 5–21 Here are examples of process quality assurance (QA) discrepancies that might be uncovered (or reported)
during the comparison of a project against the project-specific software systems development process.

Figure 5–22 This figure shows an overview of the auditing process for software and software-related products.
Figure 5–23 Here is a suggested format for a software product audit report.
Figure 5–24 Software product auditing establishes the extent to which the two products are congruent.
Figure 5–25 This figure shows the operational concept for the Automated Doughnut-Making System (ADMS).
Figure 5–26 Here is a simplified functional requirements specification for the Programmable Subsystem of the Automated

Doughnut-Making System. This specification is the ground truth for the audit of the design specification for
this system.

Figure 5–27 Here is a partial design specification for the Programmable Subsystem of the Automated Doughnut-Making
System.

Appendix B • List of Figures

695

ptg

Figure 5–28 This figure illustrates the results of doing a two-way comparison of the ADMS requirements and design speci-
fications. As shown, each comparison yields a disconnect (i.e., ?????).

Figure 5–29 Here is a simplified functional requirements specification for System PREDICT. This specification is the ground
truth for the audit of the preliminary design specification for this system.

Figure 5–30 Here is a draft of the preliminary design specification for System PREDICT.
Figure 5–31 Findings of an audit of the System PREDICT Preliminary Design Specification against the System PREDICT Re-

quirements Specification.
Figure 5–32 T&E assesses the extent to which computer code embodies the design and requirements.
Figure 5–33 Here is a suggested format for a software test plan.
Figure 5–34 Here is a test procedure format that builds in traceability back to predecessor product development documen-

tation such as requirements and design specifications, and test plans.
Figure 5–35 Here is a portion of the SHAPES requirements specification that is one input to SHAPES test procedure

construction.
Figure 5–36 Here is the circle-drawing portion of the design specification for System SHAPES.
Figure 5–37 Here is an extract from a test plan for System SHAPES showing circle-drawing tests based on the SHAPES

design specification.
Figure 5–38 Here is a portion of a System SHAPES test procedure derived from the System SHAPES Test Plan extract (i.e.,

Test CD.1).
Figure 5–39 To demonstrate formally that a software system to be delivered does what the customer and seller agreed to,

acceptance test procedures should be explicitly linked to the system development activities that yielded prod-
ucts reflecting this agreement.

Figure 5–40 This figure presents an overview of the acceptance testing process.
Figure 5–41 The interaction of the Software Turnover CCB and the Test Incident CCB during the acceptance testing cycle

raises the software system’s visibility and infuses it with traceability. The cycle continues until the customer
and seller mutually agree that the software system is ready to be released (i.e., “accepted by the customer”).

Figure 5–42 Example of a test incident report (TIR) form and associated events that it documents.
Figure 5–43 Example of a completed test incident report (TIR) showing an incident resolved by changing code. The first

retest of the code demonstrated that the recommended code changes were correct.
Figure 5–44 This requirements specification provides the backdrop for illustrating the concept of requirements testability.
Figure 5–45 This figure shows how to convert positions on the earth’s surface expressed as latitude/longitude pairs to

lengths and areas on that surface. The formulas shown are for a spherical earth model.
Figure 5–46 This figure shows calculations for two spherical earth models—one for a model whose radius is 3440 nautical

miles and one for a model whose radius is used to define the nautical mile.
Figure 5–47 A summary of the testability of LOOKOUT software requirements.
Figure 5–48 This figure shows an overview of the auditing process for software systems development processes.
Figure 5–49 Here is a suggested format for a software process audit report.
Figure 5–50 Software process auditing establishes the extent to which project processes are congruent with organiza-

tional processes documented in the ADPE.
Figure 5–51 Here is an example qualitative software process audit form that can be used with our organizational software

systems development process.
Figure 5–52 An annotated outline for getting you started defining an independent product assurance policy for your

organization.
Figure 5–53 An annotated outline for getting you started defining a guideline explaining how to prepare for and conduct

peer reviews as part of your organization’s software systems development process.
Figure 5–54 An annotated outline for getting you started defining an acceptance testing cycle procedure for your

organization.

Chapter 6—Measurement

Figure 6–1 Measurements need to be expressed in everyday terms that are familiar to the organization; otherwise, they
may be of little value.

Figure 6–2 This figure shows our conceptual framework for product and process measurement. Product measurement
involves identifying product attributes (ati) and corresponding value scales of interest to the organization.
Process measurement involves an additional layer of decomposition. Processes are decomposed into compo-
nents (xti) and component activities (xtij). Value scales are defined for each activity in terms that are meaning-
ful to the organization.

Appendix B • List of Figures

696

ptg

Figure 6–3 In this chapter, we offer you guidance on how to measure product “goodness” and process “goodness” using
a general measurement technique called Object Measurement. (The Object Measurement logo
shown in this figure is a registered trademark owned by Scott E. Donaldson and Stanley G. Siegel.)

Figure 6–4 Software systems development process improvement is tied to the state of your overall business process.
Figure 6–5 The term “metric” is used in a variety of ways in the software engineering literature. We use metric to mean

“(1) a standard or unit of measurement, or formula used to quantify something and/or (2) the values that the
standard or formula may assume.”

Figure 6–6 To be meaningful, measurements must have benchmarks. Benchmarks need to be established for software
products and software development process measurements, and the relationship between the product and
process measurements.

Figure 6–7 What to measure should derive from questions that are important to the organization. Questions bring to the
fore (1) quantities to be measured and (2) value scales pertinent to these quantities. Measurements can be
used to help improve software development processes and the resultant products.

Figure 6–8 Successful software systems development is a continual improvement exercise. Measurement is a means for
effecting this improvement. Here are key measurement concepts that are explained in this chapter.

Figure 6–9 Here is an example of a way to define product integrity in terms of attributes that are often of interest to both
management and product developers.

Figure 6–10 The idea for a product integrity index derives from the concept of the length of a line in space. The figure
shows how the length of a line can be portrayed in spaces of various dimensions as the magnitude of a vector
representing a displacement. The tail of the vector represents the starting point, and the head of the vector
represents the destination point. The length of the vector represents the distance between the starting point
and the destination point. Similarly, the product integrity index is simply the length of a line in product at-
tribute space.

Figure 6–11 Product integrity is a multidimensional concept associating a number of attributes with a product. A vector is
one way simply to represent a multidimensional concept. The figure shows a three-dimensional product at-
tribute space made up of three members from the example set of five attributes introduced earlier. A vector in
this space is the product integrity vector. Its length is what we will use to measure product “goodness.” Our
approach to measuring product “goodness” is thus an exercise in measuring the length of the product in-
tegrity vector.

Figure 6–12 This figure illustrates three ways in which the general formula for the product integrity index, PIindex, can be
used.

Figure 6–13 This figure illustrates value scales for each of the five example product integrity attributes (ati) discussed. You
will want to set up attributes and value scales that make sense for your organization.

Figure 6–14 This figure illustrates one way to display the results of quantifying the integrity of a software product (e.g., a
requirements specification). For the attribute values shown, PIindex = 0.72.

Figure 6–15 This figure illustrates PIindex for four software products. PIindex was calculated after the customer received
each product and returned the acceptance of deliverable form.

Figure 6–16 The product integrity index, PIindex, can be used to quantify a product’s integrity during its development, as
well as after its delivery to the customer.

Figure 6–17 This figure illustrates how the product integrity index concept can be used to track the integrity of a product
as it evolves from the start of its development to the time it is delivered to the customer.

Figure 6–18 This high-level procedure helps you through the product measurement steps based on the concepts and ex-
amples introduced so far in this chapter.

Figure 6–19 PIindex can be used indirectly to measure improvements in the organizational software development process.
Figure 6–20 This figure presents the general formula for the process integrity index, ProcIindex, that is normalized to one.
Figure 6–21 The software systems development process can be measured by assessing specific process components. In

this example, four process components are shown.
Figure 6–22 The left-hand side of this figure represents our process measurement framework that is used to decompose a

process into its components and activities. Activity value scales are defined in terms meaningful to the organi-
zation. The right-hand side of this figure represents how our example organizational software systems devel-
opment process maps to our framework.

Figure 6–23 This figure illustrates how the process integrity index, ProcIindex, is calculated by using four process compo-
nents—(xt1) Seller Project Planning (which includes risk assessment), (xt2) Seller Development Team (which
includes peer reviews), (xt3) Customer/Seller Development Team (which includes CCB activity), and (xt4) Seller
Senior Management (which includes review and approval activities).

Figure 6–24 Example activities for our organizational software systems development process.

Appendix B • List of Figures

697

ptg

Figure 6–25 To compute ProcIindex, each process component is decomposed into specific activities.
Figure 6–26 Example activity value scales for the Seller Project Planning component of the organizational process.
Figure 6–27 Example activity value scales for the Seller Development Team component of our organizational process.
Figure 6–28 Example activity value scales for the Customer/Seller Development Team and Seller Senior Management

components of our organizational process.
Figure 6–29 ProcIindex is defined and calculated in terms of process components, component activities, and activity value

scales.
Figure 6–30 This figure illustrates one way to display the results of quantifying a software development process. On the

basis of the example measures, the process integrity index, ProcIindex, equals 0.59.
Figure 6–31 This high-level procedure helps you through the process measurement steps based on the concepts and ex-

amples introduced in this chapter.
Figure 6–32 The Software Engineering Institute’s Capability Maturity Model for Software is a five-level road map for im-

proving an organization’s software systems development process. Each maturity level is a well-defined evolu-
tionary plateau on the path toward becoming a “mature” software organization.

Figure 6–33 Each maturity level consists of “key process areas (KPAs).” Each KPA is characterized, in part, by “goals” and
“key practices.”

Figure 6–34 A repeatable software process that has integrity is one that has the following six process components shown
above—(xt1), (xt2), (xt3), (xt4), (xt5), and (xt6).

Figure 6–35 The Requirements Management process component (i.e., key process area) can be measured using the three
activities labeled RM.AC.1, RM.AC.2, and RM.AC.3.

Figure 6–36 Example activity value scales for the three activities making up the Requirements Management key process
area.

Figure 6–37 The Level 2 process “goodness” scale ranges from a minimum value of 0.0 (i.e., activities not being performed
in any KPA) to a maximum value of 1.0 (i.e., all activities being performed in each KPA).

Figure 6–38 The process integrity index for CMM Level 2 can be defined using the activities for each of the six Key
Process Areas. For example, there are three activities for Requirements Management (i.e., xt1), fifteen activi-
ties for Software Project Planning (i.e., xt2), etc.

Figure 6–39 Measurements can be used to help improve software systems development processes and the resultant
products.

Figure 6–40 The product integrity index or process integrity index can be implemented for organization and project
perspectives.

Figure 6–41 What is the relationship between your product and process integrity indexes? This figure suggests some pos-
sible interpretations.

Figure 6–42 Applying metrics to the software systems development process should be part of the process itself.
Figure 6–43 This high-level procedure is to help you through the product and process measurement steps based on the

concepts and examples introduced in this chapter.
Figure 6–44 An annotated outline for getting you started in defining a product and process measurement approach for

your organization. This ADPE element can also be used to refine a measurement approach you already (infor-
mally) have in place.

Chapter 7—Cultural Change

Figure 7–1 Losses, doubts, and fears contribute to a person’s unwillingness to make a transition (change) to a new way of
doing things. Often people view transition as a painful experience.

Figure 7–2 Changing a software systems development environment starts with establishing an understanding of the orga-
nization’s overall existing culture.

Figure 7–3 This figure summarizes four types of organizational cultures. It is important for you to understand what your
culture is and what you want your culture to be before you begin planning a transformation.

Figure 7–4 The vision of the software systems development culture helps to set the organization’s strategic focus for
process improvement.

Figure 7–5 ADPE implementation strikes at the core of organizational and personal practice. Altering these practices is
thus tantamount to effecting cultural change at the organizational and personal level. Here are key cultural
change concepts explained in this chapter. These key ideas are your guide to bringing about cultural change
within your organization through ADPE implementation.

Appendix B • List of Figures

698

ptg

Figure 7–6 Cultivating software systems development success involves cultural change that, in part, is tied to ADPE im-
plementation. The ADPE can be viewed as a code of software systems development practices defining the
“right engineering thing to do.”

Figure 7–7 Individuals within the seller organization (e.g., Sam, Pam, and Ham) should be given an opportunity to con-
tribute to the practices defined in the ADPE.

Figure 7–8 This figure presents several different organizational arrangements involving the process engineering group
(PEG). Your organization may fit into one of these arrangements or some combination of them. Some ADPE
cultural change issues are independent of the organizational arrangement—and some are not.

Figure 7–9 Although ADPE elements define seller software systems development business practices, buyer/user buy-in is
recommended for successful ADPE implementation. Part of this buy-in should include ADPE element sign-off
by a buyer/user representative who is the organizational counterpart to the seller manager who has ADPE el-
ement sign-off authority. This bipartisan sign-off formalizes the commitment of both parties to conform to the
culture embodied in the element.

Figure 7–10 The development and improvement of ADPE elements involves customer personnel, seller management, and
seller staff. The figure depicts a top-level ADPE element development and improvement process involving
these participants.

Figure 7–11 An ADPE that cultivates cultural change is one that establishes a business practice framework. The frame-
work should stay away from recipelike practices and allow for prescriptive application.

Figure 7–12 An annotated outline for getting you started defining a process to govern ADPE element development and
improvement.

Figure 7–13 Individuals must perceive individual and/or organizational gains for ADPE implementation to take hold.
Figure 7–14 ADPE implementation issues depend, in part, on how far along the customer and seller organizations are in

their respective ADPE implementations. This figure indicates a few potential customer project manager reac-
tions to seller ADPE implementation.

Figure 7–15 This figure indicates a few potential customer senior management reactions to seller ADPE implementation.
Figure 7–16 This figure indicates a few potential seller senior management reactions to customer ADPE status.

Chapter 8—Process Improvement Planning

Figure 8–1 At the most fundamental level, the avenue to consistent successful software systems development is sus-
tained effective communication between the wizard (i.e., software seller) and the king (i.e., software cus-
tomer). (The Wizard of Id, September 30, 1983. Reprinted by permission of Johnny Hart and Creators
Syndicate, Inc.)

Figure 8–2 The preceding chapters capture the essence of things that you need to consider in planning for implementing
a systems engineering environment (SEE) in your organization. SEE implementation is a structured way of in-
stitutionalizing consistent successful software systems development. This chapter integrates the ideas from
the preceding chapters to guide your SEE implementation planning activity.

Figure 8–3 This chapter offers planning guidance to wizards and kings for setting up a software process improvement ap-
proach via SEE implementation. The chapter helps you select concepts from the preceding chapters to con-
struct this approach. The concept of implementation plan as used in this chapter means “anything from notes
scratched on the back of an envelope to a multivolume formal and highly detailed document—whatever
makes sense for your organization.” Reduced to simplest terms, plan in this chapter means “think and coordi-
nate before doing.”

Figure 8–4 Here are some key process improvement planning concepts explained in this chapter. These key ideas are
your guide to plan SEE implementation realistically. A realistic SEE implementation plan helps to focus your ef-
forts toward consistent successful software systems development. To plan realistically in this chapter means
“laying out an approach that motivates people to (1) overcome their resistance to change and (2) implement
SEE business practices.”

Figure 8–5 Here are the key SEE implementation planning issues addressed in this chapter. These issues are things that
you should consider when planning an SEE implementation approach for your organization.

Figure 8–6 To help you plan SEE implementation, here is a representative timeline of tasks and their phasing. For com-
pleteness, we show the task for writing the SEE implementation plan itself. Time for training people on the
ADPE is not shown. This training activity should be coupled to the preparation and promulgation of individual
ADPE elements.

Figure 8–7 A key element of SEE implementation planning is ADPE element phasing. To get you started addressing this
planning issue for your organization, the figure shows some elements, their relationships, and an order for

Appendix B • List of Figures

699

ptg

their development. Your SEE implementation plan should propose a strategy for ADPE element development. It
is desirable to start with an element that defines your overall software systems development process. This el-
ement provides the context for most subsequent elements. In particular, it shows how they are to plug into
one another.

Figure 8–8 An annotated outline for getting you started defining a (software) configuration management guideline for
your organization.

Figure 8–9 It is difficult to provide guidance regarding the specific ADPE elements to include in an SEE. The figure shows
a set of elements to start your thinking for addressing your global SEE needs. We label the specific elements
using the designation “policy,” “guideline,” “procedure,” or “standard.” As we discussed in preceding chap-
ters, you may want to establish a different taxonomy for your elements. Even if you use our taxonomy, what we
show as, e.g., a “procedure” you may want to cast as a “guideline.”

Figure 8–10 An annotated outline for getting you started defining a standard for software and software-related documents.
The key point to keep in mind is that this ADPE element is not just a collection of document templates—rather,
it defines a process for deciding what documents to use when and provides document review guidance. Thus,
you should keep in mind that, to give this element substantive value for your organization, you should ensure
that it plugs into the rest of your ADPE, particularly your software systems development process. The outline
shows you a way to bring about this plug-in for your software systems development process ADPE element.

Figure 8–11 An annotated outline for getting you started defining a project tracking guideline for your organization. This el-
ement should be coordinated with the Change Control Board Guideline discussed in Chapter 4, particularly
with respect to the use of CCB minutes for project tracking purposes. This element should also be coordinated
with the Software Systems Development Process Policy discussed in Chapter 3 with respect to the seller de-
liverable tracking form.

Figure 8–12 An annotated outline for getting you started preparing a life cycle guideline for your organization. This element
should be coordinated with the Project Plan Development Process Procedure discussed in Chapter 2. This el-
ement should also be coordinated with the Software Systems Development Process Policy discussed in Chap-
ter 3, particularly with respect to offering guidance on plugging a life cycle into the development process.

Figure 8–13 An important SEE implementation planning issue is the following: How should the ADPE be constituted—
(1) from a small number of elements (i.e., approximately ten), each consisting of tens of pages or more, or
(2) from a large number of elements (i.e., tens or more), each consisting of a couple of pages, or (3) some com-
bination of (1) and (2)? Here are some considerations to help you address this issue in your SEE implementa-
tion plan.

Figure 8–14 Here is an example of a two-page CM ADPE element adapted from the Figure 8–8 annotated CM ADPE ele-
ment outline. The slant of this element is to empower members in the organization to develop their CM ap-
proaches from the element either via a CM plan or for, say, small projects, via CM procedures. Page 2 of the
element contains a CM plan outline.

Figure 8–15 A key SEE implementation planning issue is the following: How frequently should an ADPE element be up-
dated? The tradeoff here is getting people acclimated to a set of practices versus acclimating the practices to
the people so that the practices (and thus the people) are useful. One factor governing ADPE element update
frequency is the size of an organization. In general, the larger an organization, the longer the interval between
element updates. The primary reason for this relationship is that the larger the organization, the longer it takes
for a way of doing business to settle in—because it generally takes longer for a larger body of people to get in
step than it does for a smaller body.

Figure 8–16 A key SEE implementation planning issue is the amount of detail to include in individual ADPE elements. Vari-
ables to be considered include the following: (1) number of elements, (2) frequency of element updating,
(3) need for supplementary material, and (4) work spectrum. In addition, the variables generally depend upon
other variables. For example, as shown in graph 5, the frequency of element updating depends upon the time
to institutionalize the business practices contained in the element. For your organization, there may be other
variables that you may need to consider regarding ADPE element detail.

Figure 8–17 An annotated outline for getting you started defining a plan for an application development technology envi-
ronment (ADTE) for your organization.

Figure 8–18 A good way to package your engineering environment is a binder containing your ADPE elements and mate-
rial pertinent to your technology environment.

Figure 8–19 In a small organization, it may not be necessary (or practical) to detail the software systems development
process via a set of ADPE elements. Under such circumstances, it may be preferable to package the ADPE
into a single element. The figure offers a starting point for this approach.

Figure 8–20 What is an austere SEE implementation approach? The figure shows a combination of ADPE elements and
practices to consider for such an approach.

Appendix B • List of Figures

700

ptg

Figure 8–21 SEE implementation planning needs to account for mentoring and coaching. Through mentoring and coaching,
how to implement ADPE practices can be transmitted from more experienced staff to less experienced staff.
The key point here is that, to leverage their organizational impact, this mentoring and coaching should be
planned. Source: Definitions of mentoring and coaching in above figure are from B. Curtis, W. E. Hefley, and S.
Miller, “People Capability Maturity ModelSM,” Software Engineering Institute and Carnegie Mellon University
Technical Report CMU/SEI-95-MM-02 (September 1995).

Figure 8–22 We can think of SEE implementation to be like the challenges facing a mountain climber planning a way to the
mountaintop. The figure lists some of these challenges and suggests a strategy or strategies to meet each
challenge.

Figure 8–23 A key objective of SEE implementation is to establish organizationwide business practices that do not strongly
depend on particular individuals for their successful accomplishment. Good people are certainly needed to
achieve successful software systems development. Initially, people may have concerns and apprehensions
about implementing refined or new business practices. Part of SEE implementation involves evolving an indi-
vidual’s perception of what this implementation means. The figure shows how an individual’s perception may
evolve as an organization matures.

Figure 8–24 An aggressive strategy for pursuing SEE implementation is to make ADPE compliance part of each employee’s
performance review. In more mature organizations, this approach should be acceptable to most employees
since, by definition, disciplined engineering practices are part of the culture. The figure offers performance
review ideas for addressing ADPE compliance.

Figure 8–25 Here is a way to reinforce the strategy of making ADPE compliance part of each employee’s performance re-
view. The figure illustrates how to address ADPE compliance in the responsibilities section of an ADPE
element.

Figure 8–26 Here is a starting point for a memorandum promulgating an ADPE element to your organization. This example
memorandum is designed explicitly to encourage ADPE compliance. The bolded paragraph illustrates how to
stipulate this encouragement.

Figure 8–27 An ongoing SEE implementation challenge is to head off the tendency for the seller staff to find ways to work
around the ADPE way. One strategy for meeting this challenge is the offering of inducements such as those
shown—cash bonuses, coffee mugs, food, and articles of clothing (hats, T-shirts). Senior management and/or
the organization’s PEG can help achieve employee buy-in and build esprit de corps through such induce-
ments. Inducements help reduce organizational resistance to the cultural change that SEE implementation
brings. In theextreme, this resistance can manifest itself in battle cries proclaiming outright opposition such
as, “I’m not going to do it!” or, “I’m going to do what I have to do [to get a product out the door]!”

Figure 8–28 Business reality (the almighty dollar) often compels senior managers to walk a tightrope. They are constantly
trying to balance keeping customers happy while making a profit and making sure sound engineering prac-
tices are in place and followed. In some cases, making a profit forces engineering shortcuts.

Figure 8–29 SEE implementation planning needs to account for the reality that people within an organization span a
broad spectrum of willingness to adapt to the engineering environment. The orientation of ADPE elements
should address the middle of the spectrum. All people should be given the opportunity to contribute to ADPE
development.

Figure 8–30 Who should develop the SEE in your organization? Here are some alternatives to consider when doing SEE im-
plementation planning. We list some associated advantages and disadvantages for each alternative.

Figure 8–31 Here is a starting point for framing an SEE implementation policy. The figure shows how to tie the policy to
your SEE implementation plan. The policy helps to encourage ADPE compliance, particularly in organizations
where engineering discipline has been in short supply.

Figure 8–32 Here is an annotated outline for getting you started defining a plan for improving ADPE implementation on a
particular project. It is a good idea to include in the SEE implementation plan the idea that each project in the
organization should lay out its approach for process improvement within the organization’s ADPE context.

Figure 8–33 Here is an example of how to augment the seller deliverable tracking form introduced in Chapter 3 to include
organizational product and process measurements. The measurement information is placed on the back of the
form. The process measurements focus on the process activities called out on the front of the form. The prod-
uct measurements are tied to the product integrity attributes that your organization considers important. Two
product integrity attributes are called out in the figure—on-time delivery and customer acceptance.

Figure 8–34 The figure shows a simple, yet insightful, way to show the effectiveness of part of an organization’s process—
in this case, project planning. The plot, adapted from actual data, shows whether or not project plans were
delivered late, on time, or early over a period of several years. Each point is a project plan (x-axis) and its de-
livery date in days relative to its planned delivery date (y-axis). If the y-value is positive, the plan was delivered
late; if this value is zero, the plan was delivered on time; if this value is negative, the plan was delivered early.

Appendix B • List of Figures

701

ptg

Figure 8–35 Here is an annotated outline for getting you started defining a plan for implementing a systems engineering
environment (SEE) for your organization. Because our book focuses on process, the outline assumes that the
plan focuses on the ADPE component of the SEE.

Figure 8–36 Reduced to simplest terms, this book offers “how-to-do-it” guidance for making successful software develop-
ment happen through institutionalization of a systems engineering environment (SEE). The SEE helps an orga-
nization transition from an ill-defined business way to a well-defined business way. By ill-defined business
way we mean “a business way governed by the heroics of individuals who have their own way of getting the
job done.” By well-defined business way we mean “a business way governed by a set of well-understood or-
ganizationwide practices, documented in an SEE or by some other means, that individuals within the organiza-
tion prescriptively apply to the situation at hand.” To facilitate the book’s use, each chapter contains a list of
the key ideas elaborated on in that chapter.

Appendix A—How to Measure Strategic Information Management (SIM)

Figure A–1 Our approach measures strategic information management using the language of GAO reports that stipulate
requirements for performance measurement in response to GPRA.

Figure A–2 This figure lists the GAO diagnostic criteria associated with the six GAO diagnostic areas.
Figure A–3 This figure shows example value scales for the three diagnostic criteria associated with Diagnostic Area 4

(da4)—Focus on process improvement in the context of an architecture.
Figure A–4 The figure illustrates the three value scales and recorded measurement triggers for Diagnostic Area 4.
Figure A–5 The figure illustrates the performance measurement index for Diagnostic Area 4.
Figure A–6 This figure shows an OM Measurement Map of the SIMIndex (Strategic information management index) for a

hypothetical agency.
Figure A–7 This figure shows the trend of SIMIndex over time.
Figure A–8 Under the umbrella of the Government Performance and Results Act (GPRA), the example SIMIndex is defined

in terms of GAO diagnostic areas, diagnostic criteria, and value scales.

Appendix B • List of Figures

702

ptgTable P–1 Chapter Highlights.

Table 4–1 Advantages and Disadvantages of Candidates for CCB Chairperson.

Table 4–2 For each event in the change control process, information must be recorded to provide visibility and
traceability to the process.

Table 4–3 A Set of Forms to Support the Change Control Process.

Table 4–4 Generic Content of a Change Control Form.

Table 6–1 Summary of Organization Process Improvement Metrics.

Table 7–1 Perspectives and Cultural Change Guidance.

Table 8–1 Purpose and Features of Candidate ADPE Elements for Your ADPE.

703

appendix Cappendix C
List of Tables

219

227

227

229

460

543

574

xviii

ptg

This page intentionally left blank

ptgThe documents listed in this bibliography are a selected compilation of software engi-
neering references. We also include some references from other disciplines, such as man-
agement science and organizational change engineering. The documents listed present
supporting or contrasting views presented in this book. In some cases, they present a
detailed discussion of topics not treated in depth, or only touched on in this book (e.g.,
peer reviews).

Many of the documents listed contain additional references pertaining to software engi-
neering in general and software process improvement in particular. This bibliography is
thus intended to help you network your way through extant software engineering liter-
ature, with an emphasis on software process improvement.

This bibliography is not exhaustive. Most of the entries are references that the authors at
least looked at during preparation of this book.

For convenience, the bibliographical entries are partitioned into the following sections:
1. Government Publications

The entries in this section are three Software Engineering Institute publications on
the Capability Maturity Model® for Software (CMM®) and the People Capability
Maturity Model®.

2. Magazine/Journal Articles
The entries in this section are articles that appeared primarily in magazines or jour-
nals that deal in whole or part with software. For the most part, we selected arti-
cles published since 1990.

705

Bibliography

ptg

3. Books
This section contains a list of books, most of which were published since 1990, on
aspects of software engineering and other disciplines such as management science
bearing on topics addressed in our book.

Software engineering literature is growing at a rapid rate. It is not feasible to keep on top
of the subset of software engineering publications that focuses on process improvement.
Before we provide you with specific references, and to help you in finding things that
may be of interest to you in this area, we offer you some general information. This gen-
eral information is divided into the following two categories:

♦ Journals that often contain one or more articles bearing on software process
improvement.

♦ Organizations you can contact that will either help you get started in this area
or help you expand your search on a process improvement topic of interest to
you.

Journals Containing Articles Bearing
on Software Process Improvement

The IEEE Computer Society publishes two journals—IEEE Software and Computer—that
contain articles that typically appeal to a broad audience, ranging from software novices
to experts. For the novice, these journals can help ease you into the world of software
technology. For the expert, these journals can help update your expertise and point you
to additional readings to enrich that expertise.

The following annually published item is a good source of software engineering material:

COMPSAC XX Proceedings

Each fall since 1977, the IEEE Computer Society has held a Computer Software &
Applications Conference (COMPSAC). The purpose of these conferences is to bring
together software practitioners and theoreticians to exchange the latest ideas, prac-
tices, and breakthroughs in an area of software engineering covered by no other inter-
national conference—namely, applications. The papers presented at these conferences
are published in the proceedings for that year. Thus, for example, the papers present-
ed at the 1988 conference were published in the COMPSAC 88 Proceedings. The
COMPSAC XX Proceedings are a good source for maintaining awareness of advances
in software engineering. An interesting exercise is to note how papers in this area
have evolved since 1977. These papers are also a good source of additional (and, for
the most part, current) references in this area.

The IEEE also publishes software engineering standards. The IEEE Software Engineering
Standards Collection is perhaps the most convenient to use. This collection is published
annually.

IEEE standards are developed through the Technical Committees of the IEEE Societies
and the Standards Coordinating Committees of the IEEE Standards Board. Members of

bibliography

706

ptg

the committees serve voluntarily and without compensation (and they may not even be
IEEE members). The collection contains a couple of dozen items, with new ones added
each year as well as updates to existing standards. This publication provides a useful start-
ing point for creating an ADPE element for document templates.

Organizations That Can Help You in the Software Process
Improvement Area

The Internet facilitates the task of keeping abreast of what is going on in the software engi-
neering domain (as well as in other domains). Professional societies (with interests in the
software engineering domain or in other domains) usually publish periodicals and other
literature. These societies typically offer to their members online access to these publica-
tions. When joining a society or renewing membership, the member can order various pub-
lications in paper form, electronic form, or some combination of the two. A society
typically sets up a digital library that contains its publications going back a number of
years. If a member includes in his/her dues payment for access to this library, the member
is able to do such things as (1) view an article on his/her computer terminal, (2) print the ar-
ticle, or (3) do keyword searches across various parts of this library.

For purposes of pursuing topics that we address in our book, or for looking at alternative
viewpoints on ideas addressed in our book, the digital libraries offered by the IEEE Com-
puter Society and the Association for Computing Machinery (ACM) are good resources.
For example, much has been written in the software engineering literature about mea-
surement. By doing a search on keywords such as “measurement” and “software mea-
surement” in either or both of these digital libraries, you will be able to (1) gain additional
insight into the measurement issues that we address in Chapter 6, (2) examine alternative
viewpoints regarding these issues, and (3) read about measurement issues that we do not
address (e.g., software defect measurement).

The Web site addresses for the IEEE Computer Society and ACM are respectively
www.computer.org and www.acm.org.

The Software Engineering Institute, based at Carnegie Mellon University in Pittsburgh,
is a focal point within the United States for software process improvement technology.
Founded in 1984, it is managed and partly funded by the United States government. Its
mission is to provide leadership in advancing the state of the practice of software engi-
neering to improve the quality of systems that depend on software. The Institute’s strat-
egy for accomplishing this mission is:
♦ Improve the state of the practice of software engineering.
♦ Mature the profession by maturing the skills of practitioners, managers, and educa-

tors using the following approach:
♦ Maturing the organizational and managerial processes through which software is

acquired, developed, and maintained.
♦ Maturing the technology used to develop and maintain software.

The Software Engineering Institute publishes a plethora of documents aimed at helping
others mature their processes and technology bearing on their software work. Each year

bibliography

707

www.computer.org
www.acm.org

ptg

it conducts a symposium that affords the international software community the oppor-
tunity to keep abreast of the Institute’s activities and to interact with one another to share
software process improvement experiences.

The Software Engineering Institute also has an extensive digital library. Access to this
library is free, because the SEI is funded in part by tax dollars. The SEI Web site address
is www.sei.cmu.edu.

In 1987, the U.S. Air Force selected Ogden Air Logistics Center (OO-ALC), Hill Air Force
Base, Utah, to establish and operate its Software Technology Support Center (STSC).
The STSC was chartered to be the command focus for proactive application of software
technology in weapon, command and control, intelligence and mission-critical systems.
The mission of the STSC is to provide hands-on assistance in adopting effective tech-
nologies for software-intensive systems. The STSC helps organizations identify, evalu-
ate, and adopt technologies that, among other things, can help improve software prod-
uct quality. The STSC uses the term technology in its broadest sense to include processes,
methods, techniques, and tools that enhance human capability. The STSC focuses on
field-proven technologies that will benefit the U.S. Department of Defense mission.
Among other things, the STSC publishes a journal called CrossTalk that deals with soft-
ware engineering topics. Copies of CrossTalk articles can be accessed at no charge from
the Web site www.stsc.hill.af.mil/crosstalk/crostalk.asp.

1. Government Publications

Curtis, B., W. E. Hefley, and S. Miller. “People Capability Maturity ModelSM,” Software
Engineering Institute and Carnegie Mellon University Technical Report CMU/SEI-95-
MM-02, September 1995.

In Chapter 1, we discussed how, during the 1990s, the SEI played a major part in intro-
ducing benchmarks into the software community for assessing the capability of an or-
ganization to produce “good” software systems consistently. These benchmarks took
the form of a collection of models, each given the primary designator of Capability Ma-
turity Model®, or CMM® for short.1 The most prominent among these models is the
CMM for Software, which is cited elsewhere in this bibliography and is discussed in
Chapter 6. Another member of this model collection is the People Capability Maturity
Model (P-CMM). This model grew out of a recognition by the SEI and others that there
was more to improving software systems development than processes and technology.
In fact, the executive overview of the P-CMM begins as follows (pp. xix–xx):

In order to improve their performance, organizations must focus on three inter-
related components—people, process, and technology. . . . With the help of the

bibliography

708

1CMM, Capability Maturity Model, and Capability Maturity Modeling are registered in the U.S. Patent and
Trademark Office. The superscript “SM” that appears in the title of the “People Capability Maturity ModelSM”
report cited here denotes “service mark.” Subsequent to the publication of this report the service mark was
changed to a registered trademark. The interested reader conducting research on the evolution of the capability
maturity models needs to understand that as the models evolved so too did their registration status with the
Patent and Trademark office.

www.sei.cmu.edu
www.stsc.hill.af.mil/crosstalk/crostalk.asp

ptg

Capability Maturity ModelSM for Software (CMMSM) [Paulk95], many software
organizations have made cost-effective, lasting improvements in their software
processes and practices. . . . Yet many of these organizations have discovered
that their continued improvement requires significant changes in the way that
they manage, develop, and use their people for developing and maintaining
software information systems—changes that are not fully accounted for in the
CMM [for Software]. To date, improvement programs for software organiza-
tions have often emphasized process or technology, not people.

To provide guidance to organizations that want to improve the way they ad-
dress these people-related issues, the SEI has developed the People Capability
Maturity ModelSM (P-CMMSM). The P-CMM is a maturity framework, patterned
after the structure of the CMM [for Software], that focuses on continuously im-
proving the management and development of the human assets of a software or
information systems organization. The P-CMM provides guidance on how to
continuously improve the ability of software organizations to attract, develop,
motivate, organize, and retain the talent needed to steadily improve their soft-
ware development capability. The strategic objectives of the P-CMM are to

♦ improve the capability of software organizations by increasing the capa-
bility of their workforce

♦ ensure that software development capability is an attribute of the orga-
nization rather than of a few individuals

♦ align the motivation of individuals with that of the organization
♦ retain human assets (i.e., people with critical knowledge and skills) with-

in the organization

The discussion of mentoring and coaching in Chapter 8 is based on some ideas in the
P-CMM.

Paulk, M. C., B. Curtis, M. B. Chrissis, and C. V. Weber. “Capability Maturity Model for
Software, Version 1.1,” Software Engineering Institute and Carnegie Mellon University
Technical Report CMU/SEI-93-TR-24, February 1993.

The development of what has become known as the Capability Maturity Model for
Software began in 1986. The Software Engineering Institute, with assistance from the
Mitre Corporation, set about developing a software process maturity framework for
the purpose of helping organizations improve their software process. The motivation
for this activity stemmed from the federal government, which wanted a method for
assessing the maturity of the capability of its software contractors (hence, the label
“capability maturity”). In short, the federal government was looking for a way to
reduce the likelihood of software disasters that had become the trademark of the
industry up to that time. Version 1.0 of the CMM was released in 1991. Version 1.1
was released in early 1993. Version 2.0 was to be released later in the 1990s. However,
as we indicated in Chapter 1, in the beginning of the 21st century, the SEI built on its
CMM efforts by integrating the various CMMs to achieve consistency across the sev-
eral models. The project, known as CMM IntegrationSM (CMMISM), is a collaborative
effort with government and industry.2

bibliography

709

2CMM Integration and CMMI are service marks of Carnegie Mellon University.

ptg

The purpose of CMU/SEI-93-TR-24 is stated on page viii of the document as follows:

This paper provides a technical overview of the Capability Maturity Model for
Software and reflects Version 1.1. Specifically, this paper describes the process
maturity framework of five maturity levels, the structural components that
comprise the CMM, how the CMM is used in practice, and future directions of
the CMM. This paper serves as one of the best sources for understanding the
CMM, and it should clear up some of the misconceptions associated with soft-
ware process maturity as advocated by the SEI.

Paulk, M. C., C. V. Weber, S. M. Garcia, M. B. Chrissis, and M. Bush. “Key Practices of
the Capability Maturity Model, Version 1.1,” Software Engineering Institute and
Carnegie Mellon University Technical Report CMU/SEI-93-TR-25, February 1993.

This document is a companion to CMU/SEI-93-TR-24 and describes the key practices
for each level of the CMM. These key practices are an elaboration of what is meant by
maturity at each level of the CMM. They are expressed in terms of what is expected
to be the normal practices of organizations that work on large, government contracts.
As the document points out on page O-3, “the CMM must be appropriately inter-
preted when the business environment of the organization differs significantly from
that of a large contracting organization.” The approach in our book is cast in a similar
vein. We present software processes and offer you guidance as to how you can adapt
the processes to your environment. One principle that we stress throughout our book
is that of “prescriptive application of the process”—that is, application consistent with
the available time and money under which a software systems development effort
must operate. An echo of this idea appears on page O-3 of CMU/SEI-93-TR-25 when
the document states, “the role of professional judgement in making informed use of
the CMM must be recognized.”

2. Magazine/Journal Articles

Boehm, Barry. “The Art of Expectations Management,” Computer, vol. 33, no. 1 (January
2000), pp. 122–124.

An underlying message throughout our book is the importance of managing expecta-
tions—from both the customer and seller perspectives. Through mechanisms such as
the CCB we have explained how the customer and the seller converge in their under-
standing of what needs to be done on a software systems development project.
Among other things, this convergence is tantamount to both parties settling on mutu-
al expectations of what needs to be done.

Boehm’s short article echoes some of the ideas in our book regarding the relationship
between expectation management and techniques such as effective communication
and project planning. For example, on page 12, Boehm asserts: “Clear communication,
careful estimation, and precise planning can help you shape and meet realistic expec-
tations.” Again, echoing some of our ideas about software systems development
being an ongoing exercise in customer/seller negotiation (through mechanisms such
as the CCB), Boehm states the following on page 124: “Express your needs as nego-
tiable ‘win conditions’ rather than non-negotiable ‘requirements.’”

bibliography

710

ptg

It should be noted that the article’s author is an internationally recognized software
engineering expert.

Brodman, J., and D. Johnson. “Return on Investment (ROI) from Software Process
Improvement as Measured by US Industry,” Software Process—Improvement and Practice,
Pilot Issue (August 1995), pp. 35–47.

Section 1.3 in Chapter 1 discussed whether investing in software process improve-
ment makes good business sense. This article, cited in Section 1.3, reports on research
that investigated published ROI claims for software process improvement programs
based on the CMM for Software. The article also sought evidence of previously
unpublished ROI data in organizations that had been pursuing software process
improvement over several years preceding the article’s publication. The United States
Air Force sponsored the research. A key finding of the research was that new ROI data
were found—but typically not in the classical form of the dollar amount returned for
the dollar amount invested. Rather, ROI data were expressed in terms of benefits such
as increased productivity, reduced schedule time, and improved quality. The article
seeks to define what ROI means to government and industry. At the time of its pub-
lication, the article noted that only two Department of Defense contractors and one
government organization had publicly released data documenting ROI for software
process improvement. The article notes that one of the contractors had “reported as
high as a 7.7 savings in program dollars for each dollar invested in process improve-
ment” (p. 36). In the public domain, the research used two methods to gather data
from industry—the questionnaire and the interview. Thirty-three companies were
surveyed—some with one of the two methods and some with both. The interviews
were used to define ROI and to identify the ROI data that could be collected from
industry. The questionnaires were used, among other things, to identify metrics used
to collect ROI data. Because ROI data per se were not abundant, the research also con-
ducted a literature search to ferret out information on metrics collection, costing soft-
ware projects, and conducting inspections. This information could be used to derive
ROI conclusions. The research found that there was a lack of consensus on ROI defi-
nition since, for example, “return” was defined differently in different organizations
as was “investment.” The research also found that the government and industry each
defined and perceived ROI differently. For example, for the government, process
improvement is viewed as a cost saving. “The dollars saved through reduced sched-
ule time, higher quality, and increased productivity among its [the government’s]
contracting software organizations are dollars that are returned to the government,
not the contractor” (p. 46). By contrast, from the contractor’s perspective, ROI from
process improvement in, say, increased productivity, “can mean a more competitive
edge in bidding for scarce government contracts and can increase the company’s
capacity to do work and thus perform more work within a given period of time for
greater profits” (p. 46).

Hantos, P., and M. Gisbert. “Identifying Software Productivity Improvement
Approaches and Risks: Construction Industry Case Study,” IEEE Software, vol. 17, no. 1
(January/February 2000), pp. 48-56.

This article “identifies ways to overcome cultural, institutional, and implementation
barriers to software process improvement” (p. 48). As such, it complements some of

bibliography

711

ptg

the discussion in Chapter 7. Of particular note about this article is that one of the
authors is a project manager in the construction industry. The basis for the ideas in
the article is a training video from the construction industy called The 4 Hours House.
The construction industry uses this video “as a staff development and process
improvement tool” (p. 50). The Building Industry Association of San Diego,
California, designed the video “as a training and motivational tool for teamwork and
an inspiration to work ‘smarter’” (p. 50).

The article explains how construction industry experiences provide some useful
insights into how to increase software productivity. The authors label their approach
cross pollination, which the article defines as “learning from practitioners of other dis-
ciplines” (p. 48) and which the authors acknowledge is not a new idea. The following
paragraph from the article explains the orientation of the article and how the authors’
cross-pollination approach is based upon the video:

In The 4 Hour House, a construction team competition is staged; the goal is to build
a house from foundation to completion in less than four hours. The houses had
nine rooms, including three bedrooms and two baths in 1,500 square feet, and
were fully landscaped. This type of home normally takes at least 90 days to com-
plete. In fact, the winning team completed the project in two hours and 45 min-
utes. We can infer that this case study includes processes that deviate from the
construction industry’s usual business practices. Therefore, some of the construc-
tion domain expert’s observations reflect the contrast between everyday reality
and the video. Nevertheless, the extreme steps we took to challenge assumptions
about “what does it really have to take to build a house” provides software pro-
fessionals with an opportunity to reflect on another discipline’s productivity con-
straints and the limits and possibilities of new paradigms (p. 50).

The construction domain expert referred to in the above paragraph is a licensed archi-
tect and building site manager. The expert’s role is to provide “the voice of experi-
ence, including cautions about the methods the video’s competitors used to build the
houses” (p. 51). The article also explains a software domain expert’s observations of
the video.

Mohamed, F. E., W. Tsai, and M. L. Fulghum. “Transition to Object-Oriented Software
Development.” Communications of the ACM, vol. 39, no. 2 (February 1996), pp. 108–121.

Object-oriented technology models software development based upon the way hu-
mans think. Ironically, traditional software development follows a model based upon
the way that computers think. Thus, to wean people away from the traditional way to-
ward the object-oriented way requires people to change their way of thinking. The au-
thors stress that this weaning process is a cultural change of demanding proportions.
On page 110, they assert that “it would be easier to convince people that the world is flat
than to convince them to use OOSE [object-oriented software engineering].”

This article offers guidance to software development managers on how to transition
to object-oriented software engineering. As such, this article provides a stepping-off
point for those interested in tailoring the techniques described in our book to projects
using object-oriented technology. For example, the article discusses the factors that
should be considered in selecting an object-oriented technique (e.g., CASE tool sup-
port, target computer language).

bibliography

712

ptg

Shaw, M. “Prospects for an Engineering Discipline of Software,” IEEE Software, vol. 7,
no. 6 (November 1990), pp. 15–24.

Our book is about disciplining software systems development. This article is a 1990
look at the “discipline” of software engineering. The first page of the article is embla-
zoned with the following sidebar that offers insight into the article’s orientation:

Software engineering is not yet a true engineering discipline, but it has the
potential to become one. Older engineering fields suggest the character soft-
ware engineering might have (p. 15).

The article provides grassroots insight into the concept of engineering. Our book pro-
ceeds from the assumption that people participating in software systems develop-
ment (buyers/users as well as sellers) need to define—in the spirit of “good engi-
neering practice”—processes to achieve consistency in what they do. Shaw’s article
starts farther up the concept chain and examines notions that must be brought to bear
to be able to define, among other things, workable processes (e.g., “understand the
nature of proficiency,” that is, what members of the development disciplines need to
know to have proficiency; “encourage routine practice,” that is, what are the factors
bearing on, for example, routine design practice [the answer given, in part, is the engi-
neer’s command of factual knowledge and design skills, quality of available reference
materials, and incentives and values associated with innovation]). This article makes
useful reading for those of you interested in gaining an understanding of the funda-
mental “whys” underlying many of the concepts in our book. In particular, if you are
a buyer/user, this article can help you determine what to look for in a seller. The arti-
cle’s author, a professor of computer science at Carnegie Mellon University, was chief
scientist at the Software Engineering Institute during its first three years (1984–1987).

Zawrotny, S. “Demystifying the Black Art of Project Estimating,” Application
Development Trends, vol. 2, no. 7 (July 1995), pp. 36–44.

As the title intimates, this article offers practical tips for estimating the effort, dura-
tion, schedule, and costs of doing software development of information systems. As
such, it is a useful supplement to the project planning concepts presented in Chapter
2. Although the article uses data and statistics tied to information systems develop-
ment, many of the ideas presented can be applied to any software systems develop-
ment effort. The author distinguishes between such critical estimating factors as
“effort” (namely, the number of resource hours or days needed to accomplish an
activity or task) and “duration” (namely, the allocation of effort across business or
work days based on the rate at which effort hours will be expended). The author dis-
cusses how to account for things such as meetings, gossip, coffee breaks, and admin-
istrative tasks. The author has spent approximately thirty years in the information
systems industry working for such companies as General Electric Information
Services and Coca-Cola Enterprises, among others.

3. Books

Adams, S. The Dilbert™ Principle: A cubicle’s-Eye View of Bosses, Meetings, Management
Fads & Other Workplace Afflictions. New York: HarperBusiness, a Division of
HarperCollins Publishers, 1996.

bibliography

713

ptg

Scott Adams produces the widely circulated comic strip Dilbert. This book is a collec-
tion of these comic strips with elaborating text to drive home points. Dilbert pokes fun
at the workplace, sometimes bitingly so. Many of the comic strips lampoon the soft-
ware industry. The author worked for Pacific Bell for nine years where he evidently
acquired the experience underlying his comic strips. The book offers some good com-
plementary insights into much of what we say in our book regarding the disciplines
of management (in particular), development, and product assurance. Some of his
humor also touches on cultural change issues. For example, Chapter 24 (“Team-
Building Exercises”) begins with the following statement:

If the employees in your company are a bunch of independent, antisocial psy-
chopaths, you might need some team-building exercises (p. 280).

Through such extreme and humorous statements, Adams provokes the reader to
think through organizational issues (in this case, team building), thereby coming to a
better understanding of how organizations really work.

Berger, L. A., and M. J. Sikora with D. R. Berger, eds. The Change Management Handbook:
A Road Map to Corporate Transformation. Burr Ridge, IL: Irwin Professional Publishing,
1994.

This 489-page book is a compendium of articles written by over thirty change man-
agement experts on how to manage organizational change. Intended as a desktop
resource, the book is designed to help managers anticipate and respond to change—
both unexpected and foreseeable. The authors are executives, professors, and consul-
tants. The book says almost nothing about the software industry (some companies in
the software industry are mentioned, such as IBM and Microsoft). However, the book
offers insight into corporate change management critical factors that help to fill in
things that we only touch upon in Chapter 7 and elsewhere when we address cultur-
al change. One section of the book (over 100 pages) is devoted to cultural change
issues (e.g., critical elements of organizational culture change, cultural change and
corporate strategy, and making culture change happen).

Bridges, W. Managing Transitions: Making the Most of Change. Reading, MA: Addison-
Wesley Publishing Company, 1991 (6th printing, 1993).

We stress throughout our book the notion that software process improvement is a cul-
tural change exercise. The Bridges book is designed to help an organization under-
stand change better and thereby develop improved change strategies. This book has
nothing to do with software engineering but has everything to do with helping an
organization bring about improved engineering practice. The book can help you bet-
ter understand the ideas put forth in our Chapter 7.

Brooks, F. P., Jr. The Mythical Man-Month: Essays on Software Engineering. 20th
Anniversary ed. Reading, MA: Addison-Wesley Publishing Company, 1995.

This book first appeared in 1975. The author was the project manager for the devel-
opment of IBM’s Operating System/360 project from 1964 to 1965. The book is a high-
ly readable and often amusing case study of this project and includes related stories
drawn from other projects. As the author indicates in the preface to the first edition,

bibliography

714

ptg

it was written to answer “Tom Watson’s [IBM president] probing questions as to why
programming is hard to manage” (p. viii). In the preface to the 1995 edition, the
author explains the rationale for the edition as follows:

To my surprise and delight, The Mythical Man-Month continues to be popular
after 20 years. Over 250,000 copies are in print. People often ask which of the
opinions and recommendations set forth in 1975 I still hold, and which have
changed, and how. Whereas I have from time to time addressed the question in
lectures, I have long wanted to essay it in writing (p. vii).

Accordingly, the 1995 edition contains four new chapters (16–19). The remainder of
the book is a reprint of the first edition. In the September 1995 issue of IEEE Software,
the author elaborates on why he put out a twentieth anniversary edition (pp. 57–60).

The book is filled with stories that highlight the idiosyncracies of software develop-
ment and maintenance (as distinct from development and maintenance of nonsoft-
ware entities). For example, in discussing software maintenance, the author describes
how a software defect will often manifest itself as a local failure, when in fact it is
indicative of a far more global ill. This nonlocality characteristic of many software
bugs, the author points out, presents a significant maintenance challenge. Any pur-
ported fix to such a bug must be tested not only “in the vicinity” of the code change
precipitated by the bug fix, but ideally far away from this change to the outer reach-
es of the rest of the code. This need for global testing is one of the reasons that our
book stresses the need for independent product assurance. Unlike the code develop-
ers who are generally too close to the code perhaps to sense some of these nonlocali-
ty issues, “outsiders” may be better able to give visibility to what otherwise might be
hidden problems because their thinking may not be truncated.

Bryan, W., and S. Siegel. Software Product Assurance: Techniques for Reducing Software Risk.
Englewood Cliffs, NJ: Prentice Hall PTR, 1988.

This book provides the basis for some of the items included in our book. In particu-
lar, our Chapter 4 is an update to the Bryan and Siegel Chapter 4; our Chapter 5
extends the ideas in the Bryan and Siegel Chapter 5. The seed for the product integri-
ty index comes from Exercise 2.6 on p. 89 of this book. As noted therein, the exercise
is an adaptation from an unpublished partial manuscript by E. H. Bersoff, V. D.
Henderson, and S. G. Siegel.

Cortada, J. W. Best Practices in Information Technology: How Corporations Get the Most Value
from Exploiting Their Digital Investments. Upper Saddle River, NJ: Prentice Hall PTR, 1998.

The following paragraph from the preface of this 250-page book summarizes its pur-
pose and thrust:

This book is about best practices in I/T [information technology]. It will not
give you the answer, but I will show you how to arrive at it because the answer
will keep changing and I would to have you not lose sleep at night because of
that fact. Constantly applying best practices makes it possible for you to dis-
cover and then achieve the ways to get the most value out of your investment
in computing. That is the long and short of why I wrote this book (p. xvii).

bibliography

715

ptg

On page 2, the author defines best practices as “processes which are recognized as
being best by function or within an industry.” He then illustrates this definition by
asserting that the best billing system in the world is that belonging to American
Express. He justifies this assertion by listing a number of things about the billing sys-
tem that people generally recognize as good things for billing systems to do. Two of
these things are the following:
♦ American Express rarely bills you inaccurately.
♦ The billing system gives you more information than probably any other firm on

what you charged on your card.

So impressed with the billing system is the author that he states the following:

If I wanted to set up a credit card business or improve my billing process to cus-
tomers, my first phone call would be to American Express. I would want to
know how they bill, what it costs, how they manage the process, what they do
with the data, and what are the economic benefits of the enormous investment
they have made in the process (p. 2).

Our book is about practices that we consider to be “good” because their application
serves to reduce customer/seller miscommunication and risk. Since we cannot claim
that these practices, to use Cortada’s words, “are generally recognized as being best
by function or [best] within [the software] industry,” we cannot claim that they are
“best practices.” However, we do believe that Cortada’s book can give you addition-
al insight into why we have selected certain practices as being key to successful soft-
ware development (e.g., the CCB as being the hub of the change control process).

To motivate his ideas, Cortada gives five examples of “bad practices” on pages 4–6.
One of these bad practices is what he labels “copy ‘as is.’” This practice is reproduc-
ing within your organization how somebody else does a process. We have argued in
our book that there is no one “way” to develop software systems. Our book shows
you how to take certain principles and a process framework and use them to construct
a “way” of doing business that makes sense for your environment. We thus show you
how to avoid the cited Cortada “bad practice.”

Davis, A. M. Software Requirements: Objects, Functions, and States. Englewood Cliffs, NJ:
Prentice Hall PTR, 1993.

We stress the importance of requirements engineering in software process improve-
ment. This 500-page book is good for both beginners and experts wanting to know the
ins and outs of how to do requirements engineering. In additon, the book contains an
exhaustive annotated bibliography (more than 100 pages). It is an update to the
author’s book that appeared in 1990. The update was motivated by advances in
requirements engineering technology, particularly in the object-oriented arena.

Davis, S., and C. Meyer. BLUR: The Speed of Change in the Connected Economy. New York:
Warner Books, Inc., 1999.

This 265-page soft-cover book discusses how technology thrusts such as the Internet
have altered the rules regarding how things are done—particularly in the business
world. The following excerpt from pages 6 and 7 explains the book’s thesis and its
title:

bibliography

716

ptg

Almost instantaneous communication and computation . . . are shrinking time
and focusing us on Speed. Connectivity is putting everybody and everything
online in one way or another and has lead to . . . a shrinking of space. Intangible
value of all kinds, like service and information, is growing explosively, reduc-
ing the importance of tangible mass.

Connectivity, Speed, and Intangibles . . . are blurring the rules and redefining
our businesses and our lives. They are destroying solutions, such as mass pro-
duction, segmented pricing, and standardized jobs, that worked for the rela-
tively slow, unconnected industrial world. The fact is, something enormous is
happening all around you, enough to make you feel as if you’re losing your
balance and seeing double. So relax. You are experiencing things as they really
are, a BLUR. Ignore these forces and BLUR will make you miserable and your
business hopeless. Harness and leverage them, and you can enter the world of
BLUR, move to its cadence and once again see the world clearly (pp. 6–7).

Among other things, the book stresses that the line between customers and sellers has
been blurred. The book’s third chapter—titled “The Exchange” and subtitled “Every
Buyer a Seller, Every Seller a Buyer”—explores this notion using some striking exam-
ples from the business world (e.g., Harley-Davidson, Citibank, and Amazon.com).
The chapter proceeds from the hypothesis that “The difference between buyers and
sellers blurs to the point where both are in a web of economic, information, and emo-
tional exchange” (p. 51).

Throughout our book, we have stressed that successful software systems develop-
ment rests on a partnership between the customer and the seller. We have repeatedly
emphasized that the customer and seller mutually progress in their understanding of
what needs to be done to produce a software system that, among other things, does
what it is supposed to do, is delivered on time, and is delivered within budget. In the
language of BLUR, this mutual progression of understanding is nothing more than an
ongoing exchange between these two parties throughout a software systems devel-
opment project.

DeMarco, T., and T. Lister. Peopleware: Productive Projects and Teams. New York: Dorset
House Publishing Co., Inc., 1987.

This 188-page book is an easy-to-read but content-rich collection of short essays, “each
one about a particular garden path that managers are led down” (p. ix). The book is
not specific to software, although many of its stories have to do with software proj-
ects. The book’s focus is on the people element in the [software] project game. As
such, it probes in more detail some of the people issues (i.e., cultural change) that we
touch upon in Chapter 1, elaborate on in Chapter 7, and briefly address in other chap-
ters. The 26 essays that make up the book are divided into the following five parts:

Part I: Managing the Human Resource
Part II: The Office Environment
Part III: The Right People
Part IV: Growing Productive Teams
Part V: It’s Supposed to Be Fun to Work Here

bibliography

717

ptg

Many of the essays have catchy titles and are indicative of the book’s tone. The fol-
lowing are some examples:

Somewhere Today, a Project Is Failing

Make a Cheeseburger, Sell a Cheeseburger

Quality—If Time Permits

Brain Time Versus Body Time

Teamicide

Open Kimono

Chaos and Order

Regarding the second essay in the list (“Make a Cheeseburger, Sell a Cheeseburger”),
the authors provide some interesting food for thought (no pun intended) regarding
why [software] systems development is inherently different from [software] produc-
tion—so that managing [software] development like [software] production is not a
good idea. One efficient production measure that the authors cite is the following
(p. 7):

Standardize procedure. Do everything by the book.

This measure does not, in fact, fly in the face of the emphasis on process in our book.
However, it is the reason that we spend a lot of time emphasizing the need for what we
call “prescriptive application” of whatever processes are defined for a software systems
development organization to follow. DeMarco and Lister essentially argue that you
cannot expect to turn people in a development environment into automatons if you
want them to do what they are supposed to do. In the language of our book, you need
to provide the people with a way of doing business and then empower them to apply
this business way in a manner that makes sense on their particular project (i.e., consis-
tent with available time and money and the specifics of the job to be accomplished).

Down, A., M. Coleman, and P. Absolon. Risk Management for Software Projects. London:
McGraw-Hill Book Company Europe, 1994.

The preface states this book’s purpose as follows: “The book focuses on the reasons
for poor risk management within software development and covers a number of prac-
tical methods for resolving the problems encountered” (p. xiii). The authors’ approach
centers around a concept they call “optimum risk environment (ORE).” The ORE is
one in which the parties involved in software systems development feel most com-
fortable with the perceived risks and rewards. The book explains how to (1) create the
ORE, (2) manage the ORE, and (3) learn from the ORE. They call these three items the
key elements in the optimum risk management process and give them respectively
the names CORE, MORE, and LORE. Our Chapter 2 discusses ways to factor risk
assessment into the project planning process and suggests ways for applying this
assessment throughout a software project as a way of managing risk. The
Down/Coleman/Absolon book examines a number of risk management issues that

bibliography

718

ptg

we only touch upon. For example, Chapter 4 (“Anticipating Risk”) is a 17-page treat-
ment of the topics of (1) identifying risks and (2) assessing risks; Chapter 5 (“Planning
How to Manage the Risks”), is a 12-page treatment of the topics of (1) risk planning
principles and (2) the risk management plan.

El Emam, K., and N. H. Madhavji, eds. Elements of Software Process Assessment and
Improvement. Los Alamitos, CA: IEEE Computer Society Press, 1999.

This 384-page book is a collection of seventeen articles (each article is a chapter) on the
current (as of the mid-1990s) state of practice and experience in software process
assessment and software process improvement. The articles offer complementary and
contrasting viewpoints to many of the topics that we address in our book. The editors
state in their two-page preface that these articles “are intended to serve the needs of
individuals actively involved in improving the software processes of their organiza-
tions, or actively involved in basic and applied research in the software process field”
(p. xi). The preface also summarizes the book’s organization and indicates that the
book is divided into the following four parts:

♦ Part 1, which consists of seven chapters, contains descriptions of contemporary
(i.e., late 1980s through mid-1990s) models used to evaluate and improve an orga-
nization’s processes and capabilities.

♦ Part 2, which consists of three chapters, deals with the business case for assessment
and improvement. As such, these chapters offer complementary insight into our
Chapter 1 discussion of the business case for software process improvement.

♦ Part 3, which consists of five chapters, offers some “how-to-do-it” guidance per-
taining to software process assessment and software process improvement.

♦ Part 4, which consists of two chapters, covers what the editors call “important and
exciting developments in the software process field that have the potential to
enhance our tools for process improvement, and also our understanding of orga-
nizational processes in practice” (p. xii).

Glass, R. L., Software Runaways: Lessons Learned from Massive Software Project Failures.
Upper Saddle River, NJ: Prentice Hall PTR, 1998.

The purpose of this 259-page book is to present lessons learned from massive soft-
ware failures (the book describes sixteen such failures). So that the intent of his book
will not be misunderstood, Glass states on page 6 that “I do not believe in the exis-
tence of a software crisis.” The essence of his book is that software disasters do
occur—and we can, and should, learn from them. But Glass’s position is that such dis-
asters should not be viewed as typical of the software industry. Glass defines a software
runaway as “a project that goes out of control primarily because of the difficulty of
building the software needed by the system” (p. 3). He explains that out of control
means that “the project became unmanageable” (p. 3). Echoing one of our book’s mes-
sages that effective communication is key to bringing the customer and seller togeth-
er on what needs to be done, Glass states on page 21 of his book that “there is little
doubt that project requirements are the single biggest cause of trouble on the software
project front.” One of the most common sources of requirements problems is the
following:

bibliography

719

ptg

They are ambiguous. It is not possible to determine what the requirements real-
ly mean (p. 21).

It should be noted that Glass started in the software industry in the 1950s. His many
publications in software engineering and related fields date back to the 1970s.

Grady, G. B. Practical Software Metrics for Project Management and Process Improvement.
Englewood Cliffs, NJ: Prentice Hall PTR, 1992.

This 260-page book is an extension to the 1987 book by Grady and Caswell entitled
Software Metrics: Establishing a Company-Wide Program, which described Hewlett-
Packard’s approach to software systems development process metrics. The book is
intended for project managers. Its purpose is stated on page 1 as follows:

This book is about practical applications of software metrics. This means that
the emphasis is on proven practices and results.

The opening words of the book define the author’s concept of software metrics as
follows:

Software metrics are used to measure specific attributes of a software product
or software development process.

Appendix C gives a summary of definitions of most of the metrics addressed in the
book (examples include “defect,” “design weight,” “Flesch-Kincaid readability,” “hot
status,” “LOC [lines of code],” “patch,” “stability,” and “strength”). Appendix D
includes a list of 396 software metrics references. Our Chapter 6 complements some
of the ideas in the Grady book.

Jacobs, R. W. Real Time Strategic Change: How to Involve an Entire Organization in Fast and
Far-Reaching Change. San Francisco, CA: Berrett-Koehler Publishers, 1994.

This 335-page book addresses the quick way to bring about organizational change.
The book’s thesis is that the successful organizations of the future will be those that
will be able to effect fundamental, lasting, and systemwide changes—quickly. The
author is a partner in a consulting firm with extensive experience working with orga-
nizations around the world to do what the book talks about. The book does not talk
about the software industry. However, it addresses topics at length that we only touch
upon in Chapters 7 and 8 in our discussions of ADPE implementation and organiza-
tional change. The book uses “strategic change” in the sense of uncovering new ways
of doing business that push an organization forward to success now and in the future.
“Real time” is used in the sense of simultaneously planning and implementing indi-
vidual, group, and organizationwide changes.

Jenner, M. G. Software Quality Management and ISO 9001: How to Make Them Work for You.
New York: John Wiley & Sons, Inc., 1995.

As the author states in his first chapter, “this book addresses the issues of managing
a modern organization within the framework of the ISO 9001 requirements” (p. 3). To
motivate the reader, and to inject pizzazz into a subject that, on the surface, may be
hard to get excited about, the author asserts the following:

bibliography

720

ptg

Quality is a state of mind and can be delivered better by people who are hav-
ing fun than by people who live dull, regulated lives surrounded by slogans
and exhortations (p. 3).

ISO 9000 is the name that describes the International Organization for Standards’
(ISO) 9000 series of management system standards. The centerpiece of the series is
ISO 9001. It is titled “Quality Systems—Model for Quality Assurance in
Design/Development, Production, Installation, and Servicing.” Auditors outside an
organization use this standard as a basis for certifying that an organization can
design, develop, produce, etc. products and services (such as software) with quality.
Quality in the context of this standard means “the totality of features and characteris-
tics of a product or service that bear on its ability to satisfy stated or implied [cus-
tomer] needs” (p. 220). The book, which is a step-by-step walkthrough (for the prac-
titioner) of ISO 9001, deals with quality issues in a much broader context than our
book in that Jenner’s work is not restricted to software products. The book reinforces
many of the ideas that we address, such as the critical importance of project planning
(see, e.g., p. 37) and customer satisfaction (see, e.g., p. 39). Software is specifically
addressed in several different places (see the book’s index).

Jones, C. Applied Software Measurement: Assuring Productivity and Quality. New York:
McGraw-Hill, Inc., 1991.

The thesis of this 493-page book is that software can be accurately measured and that
the resultant measurements have practical value. The preface includes an interesting
thumbnail sketch of the history of the software industry and provides insight into
how software measurement got started and evolved. Included in this sketch is how
the popular software metric of “lines of code” came into being. The intent of the book
is to explain how to start a full corporate software measurement program encom-
passing productivity, quality, and human factors. The book consists of five chapters
and four appendices. Chapter 2, consisting of approximately 80 pages, gives the his-
tory and evolution of functional metrics (e.g., lines of code, function points, feature
points). Chapter 3 addresses the subject of United States averages for software pro-
ductivity and quality. The purpose of this chapter is to set context for the mechanics
of measurement dealt with in Chapter 4. Chapter 5 addresses the subject of measur-
ing software quality and user satisfaction. This chapter offers a multiplicity of alter-
natives to our quantitative treatment in Chapter 6 of software quality and customer
satisfaction in terms of the product integrity concept.

Kan, S. H. Metrics and Models in Software Quality Engineering. Reading, MA: Addison-
Wesley Publishing Company, 1995.

The thesis of this book is that measurement plays a critical role in successful software
systems development. To set context, the first chapter deals with the issue of what is
software quality. The author argues that quality is best defined as “conformance to
customer requirements” (p. 10). The discussion of process and product quality in this
chapter offers some alternative thinking to that which we present in Chapter 6. For
example, generalizing the notion of customer satisfaction to internal customers (e.g.,
life cycle stages), Kan suggests that process quality can be thought of in the following
terms:

bibliography

721

ptg

If each stage of the development process meets the requirements of its inter-
mediate user (the next stage), the end product thus developed and produced
will meet the specified requirements (p. 7).

Note how this point of view is also another way of looking at the relationship between
product and process quality. Chapter 2, like our Chapter 3, talks about software sys-
tems development process models. Chapter 3 provides measurement theory funda-
mentals, including a discussion of reliability, validity, and measurement errors.
Chapter 4 is devoted to software quality metrics (e.g., function points, customer satis-
faction metrics), Chapter 8 deals with the exponential distribution and reliability
growth models (surprisingly without a lot of mathematics), and Chapter 11 is devot-
ed to measuring and analyzing customer satisfaction. Section 11.4 is perhaps the most
intriguing part of this latter chapter in that it addresses the issue of how much cus-
tomer satisfaction is good enough.

LaMarsh, J. Changing the Way We Change: Gaining Control of Major Operational Change.
Reading, MA: Addison-Wesley Publishing Company, 1995.

This book is one in a series aimed at engineering practitioners called the Engineering
Process Improvement Series. The objective of the series is to provide the reader practical
information for improving processes and products. The book’s scope deals with engi-
neering in general; that is, it is not limited to software engineering. The book is about
how to manage change and is organized as follows (p. xiii):
♦ The process of change
♦ The people in the process
♦ The systems that support change
♦ The planning to make change happen

Our book stresses that software systems development process improvement is a cul-
tural change exercise. Our Chapter 7 probes how to bring about that cultural change.
The LaMarsh book provides additional insight into this issue from a perspective
broader than software engineering. Its ideas complement and reinforce some of the
notions addressed in the Bridges book cited elsewhere in this bibliography.

Messnarz, R., and C. Tully, eds. Better Software Practice for Business Benefit: Principles and
Experience. Los Alamitos, CA: IEEE Computer Society Press, 1999.

This 393-page book is a collection of eighteen articles (each article is a chapter) on soft-
ware process improvement from a European perspective. The opening paragraph of
the book’s preface summarizes the book’s scope and reads as follows:

Better Software Practice for Business Benefit: Principles and Experience was written by
30 authors from 11 different European Union (EU) countries with contributions
from leading European companies. This book combines theory with industrial
experience and provides a comprehensive overview of different improvement
methodologies. The experience part of the book was written by authors from
both large and small companies (p. iii).

The book’s closing chapter (“Summary and Outlook”) offers some interesting con-
trasts between the European community and the United States. The chapter begins

bibliography

722

ptg

with a several-paragraph discussion of what makes Europe different from the United
States. The first part of the opening paragraph of this discussion reads as follows and
indicates how the multi-cultured European environment poses some special chal-
lenges that reach down into the software process improvement domain:

What makes Europe distinctive from the United States is that Europe is still di-
vided into many different nationalities and borders with many cultures and dif-
ferent approaches to work and life. Even if the European Union (EU) establishes
a joint currency and common policy on the market it is to be expected that all dif-
ferent nationalities will preserve their cultural differences as much as they can.
This has a direct influence on work politics, social rights, and how software
process improvement and market competition are approached (p. 389).

Chapter 7 of our book did not explore cultural change from a multinational perspec-
tive. Thus, we did not examine special challenges posed by a company with offices in
multiple countries. We also did not explore in Chapter 7 how regional differences
within the United States (or in other countries) may impact process improvement
activities in a company with countrywide offices. The collection of articles cited here
offers some insights into how to account for multinational differences (and, by exten-
sion, to multiregional differences) in software process improvement activities.

Möller, K. H., and D. J. Paulish. Software Metrics: A Practitioner’s Guide to Improved Product
Development. London: Chapman & Hall, 1993. (Also published by IEEE Press, USA and
Canada only.)

The book’s purpose and orientation are stated as follows: “This book aims to docu-
ment some of the best practices of software metrics that are currently used in indus-
try” (p. 11). Möller and Paulish define the term metrics to mean “quantitative meth-
ods” (p. 4). The book’s approach to metrics complements our discussion in Chapter 6.
Measurements that we fold into our product and process integrity indices Möller and
Paulish treat as separate entities. Chapter 7 focuses on example metrics that the
authors say may be useful for establishing a metrics program. Some of the metrics
defined and discussed there are the following:

♦ Lines of Code
♦ Customer Change Requests
♦ Schedule (difference between planned versus actual)
♦ Requirements Specification Change Requests
♦ Design Faults
♦ Customer Complaint Rate (“number of customer identified faults per time period

from the time of first field use of the product through its lifetime”) (p. 81)

Chapter 2 provides historical perspective by summarizing the origins of software
metrics (software measurement started in the 1970s).

Oliver, R. W. The Shape of Things to Come: Seven Imperatives for Winning in the New World
of Business. New York: McGraw-Hill (BusinessWeek Books), 1999.

This book is, in a sense, a companion to the BLUR book cited earlier. The book’s pur-
pose is stated in the excerpt below from page 1. This excerpt suggests the relationship
between the two books.

bibliography

723

ptg

Rapid globalization and technological change have affected the lives of every
person involved in business for at least the last half of this century. Very sim-
ply, this book is about the aftermath, the chaos, left in the wake of the enor-
mous confluence of globalization and technology, particularly information
technology. Neither force alone, globalization nor technology, could have cre-
ated this new world of business, but together they have revolutionized the
environment for every individual, business, and organization around the
world. I refer to this new world of business as a “global village.” In addition to
portraying the chaos inherent in the global village, I’ll describe means by which
individuals can survive and succeed (p. 1).

One of Oliver’s seven imperatives for winning in the new world of business is
REPLACE RULES WITH ROLES. The short form of what this imperative means is
given on page 149 of Oliver’s book as follows:

In such a chaotic and complex environment, where changes and crises occur
so rapidly, how can any organization hope to create a specific set of rules
governing employee behavior? Most everyone agrees that flexibility is the key to
successful modern organizations and that those companies which maintain the old
structures, rigid rules, and inflexible internal processes are doomed to failure [empha-
sis added]. Thus, most innovative organizations are rapidly replacing rules
with roles, creating a strong sense of purpose and clear understanding of goals
and mission and leaving employees to their own devices, absent rigidity
(p. 149).

What Oliver labels as “flexibility” and “leaving employees to their own devices” we
label “prescriptive application.” Although Oliver is talking about business in general
(i.e., not just the business of software systems development), the way we have chosen
to describe this business would appear to be consistent with the Oliver imperative of
REPLACE RULES WITH ROLES. The discussion in Chapter 3 lays out an organiza-
tional software systems development framework and identifies specific roles for
performing software systems development consistently across the organization. The
chapter illustrates how, within this framework, software project participants are
empowered to carry out their assigned roles in a manner that makes sense for a par-
ticular project (i.e., they are empowered to prescriptively apply the organizational
process framework to their project by accounting for such factors as budget and
schedule constraints).

Oliver is a professor at the Owen Graduate School of Management at Vanderbilt
University. Prior to his academic career, he was a Vice President of Marketing at
Nortel and a marketing executive at DuPont. He consults to organizations around the
world.

Paulk, M. C., and others. The Capability Maturity Model: Guidelines for Improving the
Software Process. Reading, MA: Addison-Wesley Publishing Company, 1995.

This 400-page book pulls together various concepts pertaining to the Capability Matu-
rity Model (CMM) for software appearing in earlier SEI publications such as the one by
Paulk and others cited elsewhere in this bibliography. It is a guide to applying the
CMM for software for purposes of improving an organization’s software systems de-
velopment process. Ideas in this book complement many of the ideas in our book. Per-

bibliography

724

ptg

haps the biggest difference between the CMM approach and our approach to process
improvement is our stress on the CCB as the heart of any successful software systems
development process. The SEI appears to treat the role of the CCB in its classical con-
figuration management sense. Chapter 1 gives an informative historical overview of
how the CMM for software came to be. Chapter 6 describes the Space Shuttle Onboard
Software project at IBM-Houston to illustrate what a mature organization does in pro-
ducing software products with integrity. This chapter also explains how IBM-Houston
evolved into a mature software systems development organization.

Pressman, R. S. Software Engineering: A Practitioner’s Approach. 3rd ed. New York:
McGraw-Hill, 1992.

The organization of this 793-page book is intended for both students and practition-
ers. As its title suggests, the book contains “how-to-do-it” software engineering tech-
niques. The book is divided into five parts—(1) Software—The Process and
Management, (2) System and Software Requirements Analysis, (3) The Design and
Implementation of Software, (4) Ensuring, Verifying, and Maintaining Software
Integrity, and (5) The Role of Automation.

Radice, R. A. ISO 9001: Interpreted for Software Organizations. Andover, MA: Paradoxicon
Publishing, 1995.

This book is intended for the practitioner wanting to understand ISO 9001 (“Quality
Systems—Model for Quality Assurance in Design, Development, Production,
Installation, and Servicing”) and/or who may be involved with implementing an ISO
9001 compliant program in a software organization. ISO stands for the International
Organization for Standardization. The ISO mission is to provide international stan-
dardization to facilitate worldwide commerce (i.e., exchange of goods and services).
ISO 9000 is a series of generic standards (thus they are open to broad interpretation)
“for building, operating, and documenting a quality system” (p. 16). The series, orig-
inally published in 1987, consists of five major parts, one of which is
ISO 9001. “ISO 9001 is a standard and model for quality assurance in design/devel-
opment, production, installation, and servicing” (p. 17). In the words of the standard,
a quality system is “the organizational structure, responsibilities, procedures, process-
es and resources for implementing quality management necessary to achieve the qual-
ity objectives stated in the quality policy.” Another major ISO 9000 part is ISO 9000-3,
which is a guideline for applying ISO 9001 to software.

The author analyzes each of the twenty ISO 9001 Section 4 clauses that constitute the
heart of the standard (examples of the clause headings are “management responsibil-
ity,” “document control,” “process control,” “inspection and testing,” “training,” and
“statistical techniques”). This analysis includes the relationship of the clause to ISO
9000-3, including where 9000-3 adds interpretation beyond what is stated or implied
in 9001. The analysis also includes a statement about the risks of not meeting the
requirements embodied in the clause. If the risk materializes, then the risk becomes a
problem.

The analysis of the twenty clauses spans pages 65 to 307 in Radice’s 352-page book.
Given that the standard itself is only five pages and that ISO 9000-3 is only eleven
pages, the book bears testimony to the fact that 9001 is not self-evident to apply.

bibliography

725

ptg

Using the concepts in our book, you can construct a set of ADPE elements compliant
with the twenty ISO 9001 Section 4 clauses. For example, clause 13 is entitled “Review
and Disposition of Nonconforming Product.” This clause reads in part as follows:

The responsibility for review and authority for the disposition of nonconform-
ing product shall be defined.

Nonconforming product shall be reviewed in accordance with documented
procedures. It may be

a) reworked to meet the specified requirements,

b) accepted with or without repair by concession,

c) regraded for alternative applications, or

d) rejected or scrapped.

As we discussed in Chapters 2, 3, and 5, software product review responsibilities and
disposition authority are addressed in ADPE elements for project planning, the soft-
ware systems development process, and independent product assurance.

The ISO 9000 series is intended for almost any manufacturing domain (e.g., banks,
legal firms, health service providers, and educational institutions).

Schulmeyer, G. G., and J. I. McManus, eds. Handbook of Software Quality Assurance. 3rd
ed. Upper Saddle River, NJ: Prentice Hall PTR, 1999.

This 712-page book is a collection of articles by various authors on topics that in our
book we put under the umbrella of product assurance. Its content is practitioner
oriented. As the editors state in the book’s preface, “this handbook brings to the
reader . . . a collection of experiences and expectations of some of the most notable
experts in the field of software quality assurance” (p. xix). The first edition appeared
in 1987. The third edition contains updates to the second edition, which appeared in
1992. These updates reflect, among other things, (1) advances in software quality
assurance techniques and (2) how organizations such as the Software Engineering
Institute have reshaped thinking regarding the importance of software quality
assurance.

Senge, P. The Fifth Discipline: The Art and Practice of the Learning Organization. New York:
Doubleday, 1990.

A learning organization is one that enables individuals to work in teams. These teams
learn and develop innovative ways of doing business. In this book, Senge introduces
a widely accepted framework for defining and achieving a learning organization
through the practice of five disciplines—personal mastery, challenging mental mod-
els, shared vision, team learning, and systems thinking. This book, which has nothing
to do with software, offers some worthwhile insights into how to make organizations
work more effectively. It is particularly useful for understanding some of the mecha-
nisms underlying our discussion of cultural change in Chapter 7 and associated issues
in Chapter 8. For example, Chapter 7 describes how SEE implementation is a cultural
change exercise. If this exercise is viewed as evolving an organization towards a learn-
ing organization, then SEE implementation can be tied to the five learning organiza-
tion disciplines. The learning organization has a strong sense of shared vision that

bibliography

726

ptg

focuses action. It enables employees to develop a high level of proficiency in their
field so that they become like master craftspeople in other disciplines. It links people
through teams that can work synergistically to achieve tasks that individuals cannot.
The organization encourages people to question its assumptions. Such questioning
can be made part of the process of developing and maintaining ADPE elements that
is discussed in Chapter 7.

Sommerville, I. Software Engineering. 4th ed. New York: Addison-Wesley Publishing
Company, 1992.

This 650-page book, first published in 1982, “is aimed at students in undergraduate
and graduate courses and at software engineers in commerce and industry” (p. vii).
The author is a Professor of Software Engineering at the University of Lancaster in the
United Kingdom. The following extract from the book’s preface perhaps explains why
the book has enjoyed longstanding popularity:

This book is an introduction to software engineering which takes a broad view of
the subject. As in previous editions, my intention is to introduce the reader to a
spectrum of state-of-the-art software engineering techniques which can be
applied in practical software projects. The book has a pragmatic bias but intro-
duces theory when it is appropriate to do so.

Whitten, N. Managing Software Development Projects: Formula for Success. 2nd ed. New
York: John Wiley & Sons, Inc., 1995.

The following statement from this book’s preface succinctly states its thrust:

This book is a how-to, real-world, no-nonsense, practical guide to identifying and
resolving the most common, major problems in software projects (p. v).

The book’s intended audience is project managers, project leaders, and project mem-
bers. The book consists of fourteen chapters whose titles are listed following this para-
graph. As explained in the book’s opening chapter, each chapter is laid out the same
way—a problem encountered in software development (e.g., lack of discipline), war
stories illustrating how the problem can appear within a project, and steps to follow
to recognize and to avoid or recover from the problem.

Chapter 1 Defining a Software Development Process
Chapter 2 Discipline: The Glue That Holds It All Together
Chapter 3 Communicating in Harmony
Chapter 4 Project Schedule Planning: Getting in Control
Chapter 5 Project Tracking: Staying in Control
Chapter 6 Planning for Quality
Chapter 7 Managing Priorities Effectively
Chapter 8 Product Requirements: Understanding the Customer’s Problem to Solve
Chapter 9 Product Objectives: Providing Direction for the Solution
Chapter 10 Product Specifications: Defining the Final Product
Chapter 11 Product Ease of Use

bibliography

727

ptg

Chapter 12 Development Testing: Strengthening the Weak Link
Chapter 13 Vendor Relationships
Chapter 14 Postproject Review: Understanding the Past to Improve the Future

The book complements many of the ideas appearing in our book. For example,
Whitten’s first chapter addresses life cycle and software development process con-
cepts, which we address in Chapters 2 and 3. He offers an eight-step approach for
defining a software development process. The life cycle models he considers are the
following:

Code-and-fix [“code first and ask questions later”]
Waterfall
Incremental
Iterative

He chooses these models because, as he asserts, “most models are derived, at least in
part, from one or more of these basic models” (p. 19).

The book is easy to read and convenient to use.

bibliography

728

ptgNote: f = figure, n = number, t = table

A
Acceptance of deliverable form:

deliverable status, 130, 153
and Deliverable Support Center (DSC), 151,

154–55, 154f
example, 153f

Acceptance Test Cycle Procedure, 569–70
Acceptance testing, 318–47

product and process reviews:
annotated outline, 378f
sections, 375–79
System SHAPES, 325–47

Acceptance testing cycle, 337–46, 338f
Activities, processes, 383
Activity analysis, 90
ADMS, See Automated Doughnut-Making System
ADPE, See Application development process

environment (ADPE)
ADPE Element Development Process ADPE

element, 563
ADTE, See Application development technology

environment (ADTE)
Ambiguities, 293
Annual refresher training, 533
Application development process environment

(ADPE), 54–55, 121, 266, 363, 607–9

briefings, 627
compliance, 623–25, 624f
elements, 572, 576

ADPE Element Development Process ADPE
element, 563

amount of detail to include in, 592–98
annotated outline, 528f
buyer/user buy-in, 508f
CCB Practice, 607
Change Control Board (CCB) ADPE element,

563, 609
constitution of, 582–90, 583f
and cultural change, 526f
development/improvement of, 512f
guidance for inclusion in, 573f
independent product assurance ADPE

element, 609
memorandum promulgating ADPE elements

to your organization, 626f
order for, 563
phase-in of, 565–70, 566f
Project Plan Development Process ADPE

element, 609
Project Planning Practice, 607
Software Systems Development Process

ADPE element, 563, 607–9
updating/revising, 585

implementation, in small organizations, 603–7,
604f

729

Index

ptg

Application development process environment
(ADPE) (cont.)

implementation improvement, planning at
project level, 650–54

and individual contributions to practices in
ADPE, 498

individuals’ perception of, 531f
organizational cultural questions, 55
packaging, 600–603, 601f
policy, annotated outline of, 168, 170f
single-element ADPE, 606

Application development technology
environment (ADTE), 54, 363

annotated outline for defining a plan, 599f
Approved deliverable, 130
Assumptions/constraints, project plan, 112
Attributes, products, 383
Audit, 299f

defined, 297
Austere SEE implementation approach:

defined, 607–9
CCB practice, 607
change control board (CCB) ADPE element,

609
independent product assurance ADPE

element, 609
project plan development process ADPE

element, 609
project planning practice, 607
software systems development process

ADPE element, 607–9
Automated doughnut-making system (ADMS),

306–12
antecedent comparison, 307, 310f, 311
design specification, 309f
design specification for the programmable

subsystem of, 309f
functional requirements specification for the

programmable subsystem of, 308f
subsequent comparison, 310f, 311

B
Background, project plan, 112
Balanced Scorecard, 23–24

customer perspective, 24
defined, 23
financial perspective, 23
internal perspective, 24
learning and growth perspectives, 24

Bank of New York computer system
failure, 15n

Baseline, 40, 40n
Baseline update, 40n
BLUR: The Speed of Change in the Connected

Economy (Davis/Meyer), 25–26

Bridges, William, 48–49
Budgetary independence, 157
BUILD development stage, 42–44, 42f, 67,

182–84, 582
and off-the-shelf software, 70–71
software maintenance example, 72–78

Business, defined, 12
Business Area Analysis Stage, 90–92
Business case, 1–61, 546–47

good business sense:
Balanced Scorecard, 23–24
consistency, 13, 14–17
defined, 12–26
Information Productivity, 21–22
Management Value-added, 22–23
rapid pace of business, 25–26
Return on Investment (ROI), 17–20

key ideas, 8–11, 9f
product “goodness”/process “goodness,”

32–36
software process improvement, alternative

approaches to, 52–57
software systems development cultures,

obstacles to improving, 46–52
software systems development disciplines,

36–41
software systems development life cycle,

41–44
transition to well-defined software systems

development practices, 4, 6, 8
Business Systems Design Stage, 92
Business Value of Computers, The: An Executive’s

Guide (Strassman), 22
Buyer, 11
Buyer organization, 11, 44–45, 45f
Buyer/seller CCB, 208
Buyer/user project management, 535–37,

543
Buyer/user senior management, 538–40, 544

C
Calibration data, 339–40
Candidate ADPE elements, purpose and features

of, 574–76t
Capability, software process, 31
Capability Maturity Model (CMM) for Software,

16, 61, 436–46, 520, 664
defined, 436–37
five-level road map of, 436, 438f
key process areas (KPAs), 439

example of, 440f
goals, 439
Level 2 process “goodness” scale, 445f

Level 2 process integrity index, 446f
process measurement steps, 441–44

index

730

ptg

calculating process component value based
on activity values, 442

combining process component values into
process integrity index value, 444–45

deciding on questions to address, 441
defining a value scale, 442
identifying process component activities to

measure, 441–42
observing activity accomplishment, 442
selecting process components to measure,

441
Requirements Management process

component, 443f
Capability Maturity Model Integration (CMMI),

16
Carnegie Mellon University, Software

Engineering Institute (SEI), 15
CASE tools/technology, See Computer aided

software engineering (CASE) tools
Cash bonuses, 634–35
Cashier register operations, review of, 193
CCB, See Change control board (CCB)
Chairperson, See Change control board (CCB)
Challenger disaster, 14–15
Change:

defined, 181
evolutionary, 182
inevitability of, 188–89
preventing all changes, 189
revolutionary, See Unplanned change

Change control, See Change control process
Change control board (CCB), 47, 66, 72–74, 78,

94, 123, 136, 161f, 162, 173–74, 189, 546,
549, 575

ADPE element, 609
as a business forum, 162
buyer/seller CCB, 208
candidates for CCB chairperson,

advantages/disadvantages of, 219t
CCB Practice, 607
chairperson, 220

advantages/disadvantages of candidates
for, 219t

charter, 219–22
activities, 220–21
chairperson, 220
meeting documentation, 221
membership, 220
purpose, 220

composition of, 207–10
decision forums, 94
decisions, 215–17
defined, 162
discrepancies, 215–16
events, 225–26, 227t
examination of, 207–23

function of, 195
guideline, 258–61, 569–70

annotated outline of, 260f
appendices, 261
background section, 259
CCB implementation considerations section,

261
CCB overview section, 259–60
purpose section, 259

hierarchies, 210–15
hierarchy, 180
large projects software CCB hierarchy, 213f

modification of, 214
leadership, 218–19
mandating seller to establish, 180
medium/small projects software CCB

hierarchy, 214f
meetings, 167, 167f, 179, 180–81

and communication, 162
conduct at, 222–23
frequency of, 180
minutes, 179, 181, 197

operations, 217–18
paperwork support of, 224–58

forms needed, 224–28, 225f, 227f, 228
planning for, 212
possible CCB organizational combinations,

209f
primary purpose of, 177
and product assurance, 179, 207
rules of engagement, establishing, 180
Software Change Request CCB, 210
Software Incident Report CCB, 210
user/buyer CCB, 208
user/buyer/seller CCB, 208
user/seller CCB, 208
voting mechanisms for, 217–18

Change control process, 60, 172–261, 549
actions:

analyzing the review initiator, 195–98
auditing the review initiator, 194–95
change control for draft detailed design

specification, 198–201
change control for incident report, 204–6
change control for proposed amendment to

requirements, 201–4
freezing the review initiator, 192–94

change control board (CCB), 173–74
examination of, 207–23
paperwork support of, 224–58

inevitability of change, 188
key ideas, 178–81, 179f
minutes of a CCB meeting, 245–58

format for, 249f
planned/unplanned change, 181–87

examples of, 184–85

index

731

ptg

Change control process (cont.)
process summary, 258–61
processing of changes, 187–206
scenarios, 243–45

Change control process forms:
change request (CR) form, 235–37, 239f
designing, 228–29
generic content of, 229t
impact assessment (IA) form, 236–38, 240f
incident report form, designing, 230–33, 241f
scenarios showing use of, 238f
software change notice (SCN), 233–34, 242f

Change notice, software, See Software change
notice (SCN)

Change processing, See Change control process
Change request (CR) form, 235–37

example, 237f, 239f
Change requests (CRs), 569
Chief information officer (CIO), 676
Clinger-Cohen Act, 675, 676n
CMM, See Capability Maturity Model (CMM) for

Software
Coaching, and implementation of ADPE

practices, 609–14
Coding Life Cycle Stage, 200
Coding Stage, 84–85, 185, 197, 200

development tasks, 85
management tasks, 84
product assurance tasks, 85

Communications issues, 57
Completeness, 293
Components, processes, 383
Computer aided software engineering (CASE)

tools, 6, 29, 49–50, 78, 85, 596, 598, 652
defined, 6

Computer code, 9, 26, 28–29, 49
executing on hardware, 29

Computer languages, 29
Computer object code, 29
Computer source code, 28–29
Configuration management (CM), 37, 43, 90, 157,

574
guideline, 570

annotated outline for defining, 567–68f
two-page CM ADPE element, 588–89f

Consistency, 4, 9, 13, 14–17, 26, 32, 109
and organizational “way” of doing business,

119
and transition, 4, 8

Consistent success, 618
Contingencies, and “way” of doing business, 5
Continuous change, 482
Corporate process improvement policy, 53
Cowboy organization, perception of, 619f, 620
CR, See Change request (CR) form
Cultural change, 57, 61, 477–544, 552–53

ADPE element content, 524
analysis of existing culture, 484, 486–88
annual refresher training, 533
briefings to explain ADPE elements, 532–33
buyer/user project management, 535–37
buyer/user senior management, 538–40
communication paths and associated

information, 513–23
construction and application of ADPE

elements, 523
continuous change, 482
cultural evolution process, 485f
customer’s responsibilities and associated

process activities, 513
discontinuous change, 482
evolution toward vision of the culture,

489–90
evolution of a vision of the culture, 484, 488
high-performance culture, 487

organizational behaviors with “Change
Mode” characteristic, 487

organizational behaviors with “Leadership”
characteristic, 488

key ideas, 490–93, 492f
and Not-Invented-Here (NIH) syndrome, 50
perspectives and cultural change guidance,

543–44t
proactive culture, 487

organizational behaviors with “Change
Mode” characteristic, 487

organizational behaviors with “Leadership”
characteristic, 488

process engineering group (PEG), 493–529
achieving buyer/user buy-in to seller PEG

activity, 507–11
ADPE responsibilities, 493
avoiding impediments to successful ADPE

implementation, 502–3
establishing credibility, 495–96
funding considerations, 506–7
incorporating into an organization, 500–502
and resistance to change, 496–97
staffing, 494–95
top-level process walkthrough, 511–35

rate of, 563–64
reactive culture, 487

organizational behaviors with “Change
Mode” characteristic, 487

organizational behaviors with “Leadership”
characteristic, 487

and resistance, 478, 479f, 632–34
responsive culture, 487

organizational behaviors with “Change
Mode” characteristic, 487

organizational behaviors with “Leadership”
characteristic, 488

index

732

ptg

seller agents and associated process activities,
513

and seller management, 484, 488, 489–90
and seller process engineering group (PEG)

manager, 484, 489
and seller program manager, 484, 486–88
seller project participants and project

managers, 529–35
seller senior management, 540–42
stakeholders, 482
subcontractor personnel, paying for training

time, 533–34
summary, 542–44
systems engineering environment (SEE),

planning/involving/improvement,
489

Cultural change challenges of SEE
implementation, 614–37

adoption of ADPE business practices,
617–32

customer’s attempt to expedite incorporation
of product changes, 634–37

seller staff’s resistance to change, 632–34
unwanted independent product assurance,

614–17
Cultural evolution process, 485f,

489–90
Culture, 31–32

defined, 32f, 477
high-performance, 487
proactive, 487
reactive, 487
responsive, 487

Cursory product review, 267
Curtis, Bill, 16–17
Customer, 123, 127, 132–36

clarifications, 103
and project manager, 532
of software systems, 2
SOWs, 132–33, 138f, 430

types of, 132
Customer acceptance of deliverable form, See

Acceptance of deliverable form
Customer/developer misunderstandings

(“user-friendly” system), 48
Customer feedback, 152
Customer project manager, 123, 129, 130, 139–41,

140f, 536f
activities of, 139–41
communication tasks, 140–41

Customer Receipt and Approval, 164
Customer receipt of deliverable form, See

Receipt of deliverable form
Customer/seller communications, 141
Customer/seller partnership, 2, 6, 10, 13
Customer senior management, 538f

D
Data analysis, 90
Database languages, 29
Davis, S., 25
Decision event, 232
Decision forum, 94
Definition cycle, 86
Deliverable support center (DSC), 149, 151, 154f,

657
final coordination with, 151
seller DSC functions, 154–55

Deliverable tracking form, 149, 150f
Denning, Peter J., 54–55, 54n
Design, 28
Design specification, 29

automated doughnut-making system (ADMS),
309f

System PREDICT, 314f
System SHAPES, 327–28f

Detailed Design Baseline, 200
Detailed Design Life Cycle Stage, 200
Detailed Design Stage, 83–84, 200

development tasks, 83–84
level of detail in, 84
management tasks, 83
product assurance tasks, 84

Detailed Requirements Definition Stage, 105
Development, and CCB, 207
Development baseline, 40
Development disciplines, 36–41, 36f

defined, 37
Development reviews, 280–85

process peer views, 282–84
product peer reviews, 281–82
technical editing, 284–85

tips, 286f
Development stages, 10–11
Development tasks, 85
Discontinuous change, 482
Discrepancies, 277

and change control board (CCB), 215–16
during product development, 617
process quality assurance (QA), 294f, 295f
product self-comparison, 292f
product test and evaluation (T&E), 291f
reporting, 304
in software product audits, 303–4
for System PREDICT, 315–16f

Document templates, 61, 576
annotated outline for defining a software/

software-related document standard, 578f
standard, 577, 578f

Documentation, 10
Documented organizational processes,

application of, 2

index

733

ptg

Draft detailed design specification:
change control for, 198–201
freezing in place, 198

E
Electronic Industries Association, 587
Embedded software, 520
Employee Performance Review and Planning

Form, 622f
Engineering life cycle, 78
Entity hierarchical diagram (EHD), 91
Entity relationship diagram (ERD), 91, 92
Evolutionary change, 182

See also Planned change
“Evolves software product(s),” use of term, 143f
Executive Guide: Improving Mission Performance

Through Strategic Information Management
and Technology, 672

Expected results, 325

F
Fear of change, 11
Figure list, 691–703
Five-column format, See Test procedure
Foam-board displays, 511
Food-related articles, as bonuses, 634–35
Formulate, use of term, 121
Freezing:

draft detailed design specification, 198
process, and identification function, 194
review initiator, 192–94

G
GAO Diagnostic Criteria for GAO Diagnostic

Areas, 680f
General Accounting Office, 672n
General process-related metric, 448
Generic four-stage software systems

development life cycle, 41–44, 42f, 73f
Generic product development activities,

141–42
Generic product tracking form, 147–51, 148f,

150f
example, 150f
sections, 149

Good business sense:
Balanced Scorecard, 23–24
consistency, 13, 14–17
defined, 12–26
Information Productivity, 21–22
Management Value-added, 22–23
rapid pace of business, 25–26
Return on Investment (ROI), 17–20

Goodness:
as a concept, 9, 10
defined, 9, 123

Good people, 47–48, 619f
“Good” products, 32–36, 120–21
Government Performance and Results Act

(GPRA), 674, 689f
Ground truth, 265–66, 265f

process, 266
product, 265–66

H
Hats, as bonuses, 634–35
High-performance culture:

defined, 487
empowering behavior, 488
programmed behavior, 487

HOW development stage, 42–44, 42f, 67, 81f,
182, 582

and off-the-shelf software, 70–71
software maintenance example, 72–78

I
IA, See Impact assessment (IA) form
Ideal view of work accomplishment, 93–94, 93f

real and realistic views vs., 94
Identified risks, project plan, 112
Ill-defined business way, 3, 668f
Impact assessment (IA) form, 236–38

example, 237f, 240f
Implementation plan, 553–55

concept of, 554f
Incident report (IR), 217

change control for, 204–6
reanalyzing, 206

Incident report (IR) form:
designing, 230–33

analysis event, 232
background/problem, 230
decision event, 232
freezing event, 232
initiation event, 230–32
solution approach, 230–33

example, 231f, 241f
Independent product assurance, 156–57, 158f,

574
ADPE element, 609
defined, 157
policy, 569
and seller development team, 156–57

Information cost, 21
Information engineering (IE), 596
Information engineering (IE) life cycle, 78,

88–92, 89f

index

734

ptg

development tasks, 90
Activity Analysis task, 90, 91
Data Analysis task, 90, 91
Information Gathering task, 90, 91
Interaction Analysis task, 90, 91–92

example, 88–93
management tasks, 88–90

Management Review task, 90, 91
Work Planning task, 88, 90–91

product assurance tasks, 90
Configuration Management task, 90, 92
Quality Assurance task, 90, 92
Test and Evaluation task, 90, 92
Verification and Validation (V&V) task,

90, 92
six stages of life cycle, 88

Information engineering (IE) projects:
development activities, 113
management activities, 113
product assurance activities, 114

Information gathering, 90
Information management, 672–73
Information Productivity: Assessing the

Information Management Costs of US
Industrial Corporations (Strassman), 21

Information Productivity, 17n, 21–22
and economic-value added (EVA), 23–24

Information Strategy Planning Stage, 90–92
Instantiation, 44
Institute of Electrical and Electronics Engineers

(IEEE), 30, 82, 587, 596
Institutionalization, 669
Integration testing, 339n
Integrity, 33–34, 33n

attaining/maintaining, 10
Integrity attributes, 34–35

fulfilling customer needs, 34
meeting cost and delivery expectations

Process “goodness,” 32–36
meeting specified performance criteria,

34–35
traceability, 34

Interaction analysis, 90
Internal inconsistencies, 291–93
International Organization for Standards,

587
IR, See Incident report (IR); Incident report (IR)

form
ISO 9000, 664

certification, 16, 16n

J

Joint application design (JAD), 91
Joint requirements planning (JRP), 91, 596

K
Kaplan, Robert, 23
Key process areas, 57, 664

L
Large projects software CCB hierarchy, 213f
Lead developer, 129, 283–84

and peer reviews, 155–56
and tracking form, 148f

Leveraging mentoring/coaching, 610
Life cycle, 65, 135, 138f, 139

concept, history of, 42
development discipline, 42–43
development stages/review area, 42f
management discipline, 42–44
product assurance discipline, 42–43
role of, 74–75
software systems development, 41–44
stages, number of, 69

Life cycle review area, 199f, 202f, 205f
Life Cycle Stage N, 204
Livelihood, defined, 12–13
Logic constructs, 29
LOOKOUT (requirements testability example),

347–62
calculations for spherical earth modules, 356f
Spherical Rectangle Mathematical

Relationships, 354f
Subsystem Requirements Specification for

Earth Surface Areas, 349–50f
summary of software requirements, 360f

Lottery analogy, 11, 15

M
Major communication pads, 101
Major project planning process activities, 101
Management, and CCB, 207
Management disciplines, 40–41
Management edicts, 46–47, 46f, 53
Management oversight/reviews, project plan,

112–13
Management reviews, 90, 272–80

process programmatic tracking, 276–78
process technical oversight, 279–80
product programmatic tracking, 275–76
product technical oversight, 278–79
programmatic tracking and technical oversight

of project’s software systems development
process, 275

programmatic tracking/technical oversight for
software products, 272–75

Management Value-added, 22–23
Mass-producing software code, 85n, 182

index

735

ptg

Maturity, defined, 31
Measure, defined, 388
Measurement, 3, 61, 381–476, 551–52, 574

Capability Maturity Model (CMM) for
Software, 436–46

defined, 388
key ideas, 393–96, 394f
Object Measurement (OM), 383–84, 385f
process integrity, 419–36

defined, 419
organizational software systems

development process, 421f
process integrity index, 420f
process integrity measurement steps, 423–36
process measurement framework, 422f
ProcIindex, 419–36

process-related measurements, 447–61
product integrity, 396–418

example product integrity attributes value
scales, 404f

example set of attributes, 397–98
as multidimensional concept, 398
PIindex, 402–18
product integrity index, 399f
product integrity measurement steps, 416f
quantified product integrity attributes, 407f
quantified product integrity attributes for

interim products, 412f
requirements specification evolution, 413f
summary, 462–76
three-dimensional product integrity vector,

400f
vector-related ideas for quantifying concept

of, 399–401
what to measure, 392f

Measurement triggers, 430
Medium/small projects software CCB hierarchy,

214f
Meetings:

CCB, 167, 167f, 179, 180–81
and communication, 162
conduct at, 222–23
frequency of, 180
minutes, 179, 181, 197

Mentoring/coaching, and implementation of
ADPE practices, 609–14

Metric, 388–89
defined, 388

Meyer, C., 25
Minutes of a CCB meeting, 179, 181, 197,

245–58
attendees/organizational affiliation, list of,

250
examples:

software CCB meeting considering a
planned change, 251–52

software CCB meeting considering
unplanned changes, 253–54

software turnover CCB meeting, 257
test incident CCB meeting, 255

format for, 249f
identifier and date, 248
organizations not represented at the meeting,

list of, 250
recipients of minute copies, list of, 250
status of minutes of preceding meeting, 250
time/place of next meeting, 250

Misspellings, 267
Multiple revisions, SOWs, 136

N
Negotiated agreement, 129–30
NIH syndrome, 50
“Nonessential” software modules, 88
Norton, David, 23
Not-Invented-Here (NIH) syndrome, 50

O
Object Measurement (OM), 383–84, 385f, 551,

671, 675, 676, 683–87, 688
Off-the-shelf software example, project

planning, 70–71
Oliver, Richard, 25
One-on-one peer reviews, 155
Operational Use Stage, 85–86, 185, 206

development tasks, 85–86
management tasks, 85
product assurance tasks, 86

Organization, defined, 121
Organizational business practices, establishing,

639
Organizational consistency, achieving, 2
Organizational cultures:

reshaping, 2, 9
types of, 486f

Organizational independence, 157
Organizational priorities, setting, 638–39
Organizational process, 165

documented, application of, 2
Organizational scope, level of detail vs., 166f
Organizational software systems development

process, 128f, 131f, 138f, 270f, 421f
communication path information, transfer of,

128f, 129
decomposing process components into specific

activities, 426f
defining, 168
example, responsible agents/associated

process activities, 127–29, 128f
example activities, 425f

index

736

ptg

life cycles, introduction of, 131f
statement of work (SOW), preparation of, 129

Organizational software systems process,
example, elements in, 127, 128f

Organizational way of doing business, 3–5, 8, 9,
11, 18, 24

and contingencies, 5–6
Organizationwide communication mechanisms,

3, 8
Overview of books/chapters, 58–61, 58–59f

P
Paperwork, 585

support, of change control board (CCB),
224–58

“Pay now versus pay much more later”
principle, 41

Peer reviews, 155–57, 156f, 168, 269, 575
and lead developer, 155–56
one-on-one peer reviews, 155
product peer reviews, 281
project process peer reviews, 281
scheduled peer reviews, 155–56
types of, 155, 280–81

People Capability Maturity Model (P-CMM),
610–13, 611f

Performance, software process, 31
“Performance measurement,” requirement for,

674
Perspectives and cultural change guidance,

543–44t
Pie charts, rationale underlying percentages in,

96–98
PIindex, 402–18

calculation:
for a new project plan, 409–11
for a new release of a legacy software

system, 408
for a requirements specification, 406–8
for an updated user’s manual, 409

defined, 402
indirect organizational level process

measurement, 418f
plotting interim PIindexes, 411, 413f

Planned change, 181–87
and audit report, 196
change control process example of, 198–201,

199f
controlling, 186
defined, 183f
examples of, 184–85
time constraints on, 187
and unplanned change, distinction between,

186–87
Policy, defined, 54

Poor grammar, 267
Preceding Stages, 201
Preliminary design specification (PDS), 290
Preliminary Design Stage, 82–83, 189

development tasks, 83
management tasks, 82–83
product assurance tasks, 83

Preliminary Requirements Definition Stage, 105
Prescriptive, use of term, 5n
Prescriptive application, 55, 57, 60, 137, 165, 524,

546, 621
of the documented way of doing business, 5, 8

Proactive culture:
defined, 487
planned behavior, 487
purposing behavior, 488

Procedure, defined, 54
Process, defined, 30, 54, 641
Process areas, 57
Process engineering group (PEG), 493–529, 543,

552–53, 585, 627
achieving buyer/user buy-in to seller PEG

activity, 507–11
ADPE responsibilities, 493
avoiding impediments to successful ADPE

implementation, 502–3
establishing credibility, 495–96
funding considerations, 506–7
incorporating into an organization, 500–502
organizational arrangements involving, 501f
and resistance to change, 496–97
staff, 494–95, 514, 517–18

Process ground truth, 266
Process improvement planning, 61, 545–670

ADPE constitution, 582–90
combination of elements consisting of a

couple of pages, 590
large number of elements consisting of a

couple of pages, 586–90
small number of elements consisting of tens

of pages or more, 584–86
ADPE elements:

detail to include in, 592–98
frequency of updates, 591–92
packaging related items and, 600–603
phasing in, 565–69
purpose and features of, 574–76t
which to include in SEE, 570–72, 573f,

574–82
ADPE implementation, and business reality of

the almighty dollar, 637–41
ADPE implementation improvement, planning

at project level, 650–54
ADTE, defining a plan for, 598–600
austere SEE implementation approach,

defined, 607–9

index

737

ptg

Process improvement planning (cont.)
cultural change challenges of SEE

implementation, 614–37
integrating process and product measurement

with organizational process, 654–62
mentoring/coaching, and implementation of

ADPE practices, 609–14
organizational personality spectrum, 641–45
SEE implementation planning:

key ideas, 555–59, 556f
key issues, 559–667

SEE implementation plan, structuring, 662–67
SEE implementation policy, framing, 647–50
SEE implementation tasks/phasing, timeline

considerations, 559–64
small-organization ADPE implementation,

603–7
Process integrity, 35, 383, 419–36

defined, 419
organizational software systems development

process, 421f
process integrity index, 420f
process integrity measurement steps, 423–36
process measurement framework, 422f
ProcIindex, 419–36

Process integrity measurement steps, 423–46
combining process component values into

process integrity index, 431–34
deciding on questions to address, 423
defining connectivity values scales for each

process activity, 425–31
identifying process component activities to

measure, 423–25
observing activity accomplishment/choosing

corresponding scale value, 431
procedure, 435f
selecting process components to measure,

423
using formulas to calculate process component

value based on activity values, 431
Process peer views, 282–84

example comments, 283f
Process programmatic tracking, 276–78

defined, 276f
example, 277f

Process quality assurance (QA):
examples of possible discrepancies, 294f, 295f
at product level, 293–95
at project level, 295–96, 295f

Process technical oversight, 279–80
example, 278f

ProcIindex, 419–36
calculation of, 424f
defining and calculating in terms of process

components/component activities/
activity values scales, 432f

Product assurance, 158f, 178
and CCB, 179, 207
independent, 156–57
and life cycle products, comparison of, 69

Product assurance disciplines, 37–40, 38f, 69
as devil’s advocate, 39
and state of the software, 39

Product assurance manager, 129
Product assurance reviews, 285–96

defined, 285–87
process quality assurance, at product level,

293–95
product quality assurance, 287–88

examples of possible discrepancies, 288f
product self-comparison, 290–93

examples of possible discrepancies, 292f
product test and evaluation (T&E), 290

examples of possible discrepancies, 291f
product verification and validation, 287–90
software audits, combining reviews for,

296–379
software process audits, 297–98
software product audits, 297, 298–318

antecedent/predecessor part matches,
304–6

automated doughnut-making system
example, 306–12

coupling with CCB, 298f
discrepancies, 303–4
software product audit report, 300–302
System PREDICT example, 312–18

software systems acceptance testing audits,
318–79

Product development independence, 157
Product “goodness,” as multidimensional

concept, 33
Product ground truth, 265–66
Product integrity, 33–34, 383, 396–418

example product integrity attributes value
scales, 404f

example set of attributes, 397–98
as multidimensional concept, 398
PIindex, 402–18
product integrity index, 399f
product integrity measurement steps, 416f
quantified product integrity attributes, 407f

for interim products, 412f
requirements specification evolution, 413f
three-dimensional product integrity vector,

400f
vector-related ideas for quantifying concept

of, 399–401
Product peer reviews, 281–82

example comments, 282f
Product and process reviews, 60–61, 263–380,

549–51

index

738

ptg

acceptance testing:
annotated outline, 378f
sections, 375–79

annotated outline of an ADPE policy, 372–73f
sections of, 374–75

categorization of, 269
development reviews, 280–85

process peer views, 282–84
product peer reviews, 281–82
technical editing of software/software-

related documents, 284–85
ground truth, 265–66

process ground truth, 266
product ground truth, 265–66

key ideas, 267–69, 268f
management reviews, 272–80

process programmatic tracking, 276–78
process technical oversight, 279–80
product programmatic tracking, 275–76
product technical oversight, 278–79
programmatic tracking/oversight of

software systems development process,
275

programmatic tracking/technical oversight
for software products, 272–75

organizational software systems development
process, 270f

peer reviews, 269
annotated outline, 376–77f
sections of, 375

product assurance reviews, 285–96
defined, 285–87
process quality assurance at product level,

293–95
process quality assurance at project level,

295–96
product quality assurance, 27
product self-comparison, 290–93
product test and evaluation, 290
product verification and validation, 287–90

review, defined, 264–65
self reviews, 269
software audits, combining reviews for,

296–379
software process audits, 297–98
software product audits, 297, 298–318
software systems acceptance testing audits,

318–79
summary, 371–79
taxonomy of, 269–96
technical edit, 269, 271

Product programmatic tracking, 275–76, 276f
example, 276f

Product quality assurance, 287–88
examples of possible discrepancies, 288f

Product self-comparison, 290–93

ambiguities, 293
completeness, 293
examples of possible discrepancies, 292f
internal inconsistencies, 291–93
spelling errors, 293
To Be Determined (TBD), 293

Product technical oversight, 278–79
example, 278f

Product test and evaluation, 290
examples of possible discrepancies, 291f

Product tracking form, 123, 147–50
Product verification and validation, 287–90
Production/Deployment Stage, 85, 185, 206

development tasks, 85
management tasks, 85
product assurance tasks, 85

Program, defined, 121
Project file establishment, 147–50
Project goals, project plan, 112
Project-level technical oversight, 151, 159–61, 160f
Project management, 40–41
Project manager:

and customer, 532
and senior management, 47
technical oversight by, 275
tracking of project software systems, 275

Project meetings, lack of visibility of, 246–47
Project plan, 65–67, 76–77f, 92, 115f, 548

contents, 110–15
development approach, 113
management approach, 112–13
product assurance approach, 113–14
project overview, 111–12
project resource requirements, 114
project risk and risk mitigation, 112
project work schedule, 114
statement of purpose, 111

defined, 63
as living contract, 111f
risk-reduced, 110

Project plan development process, 576
ADPE element, 609

Project planning, 35, 63–118, 660f, 664
appendices, 118
background section, 116
change control board (CCB), 66, 72–74, 76f, 78
and customer/seller, 65–66, 75–77
decisions, factors influencing, 136f
ideal/real/realistic, 67–95
information engineering (IE) life cycle, 78

example, 88–93
key ideas, 65–67, 65f
key principal of, 72
life cycle, role in, 67–78
major communication pads, 101
major project planning process activities, 101

index

739

ptg

Project planning (cont.)
and need for change, 66
process, 59–60, 100–110, 102f

customer provides SOW containing work
requirements to seller, 103

perform risk assessment/determine risk-
derived resource allocation, 103–4

reconciliation of task-derived estimates with
risk-derived estimates, 109–10

review SOW/communicate with
customer/assembled project planning
team, 103

seller business manager calculates risk-
derived dollar estimates, 108–9

seller business manager calculates task-
derived dollar estimates, 107

seller development manager defines
development approach, 105

seller product assurance manager defined
product assurance approach, 106

seller project manager defines management
approach, 106

seller project planning staff activities, 104–5
project plan development process, 116–18

annotated outline, 117f
project plan development process overview,

116
prototyping, 78

example, 86–88
purpose section, 116
records management/development/product

insurance responses to customer needs,
76–77

responsible agents, 101
risk-reduced project plan, 110
and risk assessment, 65–66, 95–100, 95f
roles and responsibilities section, 118
and software systems development life cycle,

65
summary, 116–18
traditional systems engineering life cycle, 78

example, 80–86
transition, 68–72

off-the-shelf software example, 70–71
software maintenance example, 71–72

views, 92, 93f, 94–95
ideal view of work accomplishment, 94
real view of work accomplishment, 94
realistic planning view of work

accomplishment, 94
Project Planning Practice, 607
Project planning process, 548

as risk-based and development-driven, 102f
Project planning team, assembling, 103, 137
Project process peer reviews, 282–83

examples of, 283f

Project product peer reviews, 281–82
examples of, 282f

Project resource requirements, 114
Project scope, project plan, 112
Project software systems development process

reviews, 274f
Project-specific management, development, and

product assurance task planning, 137–39
Project-specific planning outputs, 139
Project-specific process planning, 137
Project team members, generic software systems

development tasks, 70
Project team organization, and project plan,

112
Project tracking, 575

annotated outline for defining project tracking
guideline, 579f

guideline, 577, 579f
Project work schedule, 114
Proposed amendment to requirements, change

control for, 201–4
Prototyping life cycle, 78, 87f

application cycle, 86
definition cycle, 86
example, 86–88
transition cycle, 86–88

Prototyping projects:
development activities, 113
management activities, 113
product assurance activities, 114

Q
Qualitative comparison, 367, 368f
Qualitative software process audit form, 369f
Quality assurance (QA), 37, 43, 90, 157
Quantitative comparison, 367, 368f, 370

R
Reactive culture:

defined, 487
enforcing behavior, 487
punitive behavior, 487

Real view of work accomplishment, 93–94, 93f
Realistic planning view of work

accomplishment, 93–94, 93f
Receipt of deliverable form, 152f
“Report on the National Performance Review,”

674
Request for proposal (RFP), 13, 124, 125, 553, 571
Requirements Definition Stage, 80–82, 184, 203–4

development tasks, 82
management tasks, 80–82
product assurance tasks, 82
and quantitative performance criteria, 83n

index

740

ptg

Requirements Management process component,
443f

Requirements management seminar, 631, 653
Requirements specification (RS), 28, 29, 290
Resource estimating, 96
Responsible agents, 101
Responsive culture:

adaptive behavior, 487
coaching behavior, 488
defined, 487

Restrictive organization, perception of, 619f,
620–21

Return on Investment (ROI), 17–20
Return-on-Management (R-O-M), 22
Review Areas, 182, 189–91
Review initiator:

analyzing, 195–98
auditing, 194–95
freezing, 192–94

Reviews, 264f, 271f
defined, 264–65

Risk-assessed SOW, 103
Risk assessment, 96–100, 97f, 103–4, 136

and project planning, 65, 95–100
Risk criteria, 96–99, 97f
Risk-derived dollar estimates, 107–8
Risk mitigation, project plan, 112
Risk-reduced project plan, 110
Risk reduction, 3, 96

S
Scheduled peer reviews, 155–56
SEI rating, 16
Self reviews, 269
Seller, 11
Seller Deliverable Tracking Form, 149, 150f,

655–56f, 657
Seller development team, 141–62, 146f

change control board (CCB), 162
comments/issues section, 151
communication with customer project

management, 142
customer receipt and approval section, 152–55
deliverable support center (DSC) section, 151,

154f
final coordination with, 151

evolution of software product(s), 143f
generic product tracking form, 147–50
independent product assurance, 156–57
management review and approval section,

151–52
peer reviews, 155–57
project file establishment, 147–50

at deliverable support center (DSC) section,
151

project file management section, 151
project-level technical oversight, 159–61
seller project manager, and evolution of

software product(s), 142–47
technical editing, 157–59
technical review of product section, 151

Seller development team activities, 123
Seller management, 129

as technical director, 160
Seller organization, 11, 45, 45f, 48
Seller process engineering group (PEG), 123,

129–30, 136–39
project planning team, assembly of, 137
project-specific management, development,

and product assurance task planning,
137–39

project-specific planning outputs, 139
project-specific process planning, 137

Seller program manager, responsibilities of,
160–61, 164

Seller project manager, 129–30, 130n, 140f,
529–35, 543

project software systems development process
applied to negotiated agreement, 144

Seller project participants, 529–35, 543
Seller project plan, 129
Seller senior management, 123, 162–64, 163f,

540–42, 541f, 544
responsibilities of, 163f

Senior management, 40–41
buy-in, 564
and project manager, 47

Services associated with software products, 145f
Shape of Things to Come, The: Seven Imperatives

for Winning in the New World of Business
(Oliver), 25

SIMIndex, 676, 683–87, 686f, 689
evolution, 687f
OM measurement map of, 686f
score, 687

Software:
characteristics, 27f
conceptual definition of, 10
defined, 26–29
examples of, 29
personality of, 67

Software audits, combining reviews for, 296–379
Software CCB, 210, 212–14

meeting minutes:
meeting considering a planned change,

251–52f
meeting considering unplanned changes,

253–54f
Software change control scenarios, 238f
Software change notice (SCN), 233–34

example of, 234f, 242f

index

741

ptg

Software Change Request CCB, 210
Software development, as customer/seller

partnership, 2, 4–5
Software development life cycle definition,

575–76
annotated outline for preparing a life cycle

guideline, 580–81f
guideline, 582

Software development methods, need for
changes in, 1–2

Software development plan, 63
Software documents, ground truth for, 298–300
Software Engineering Division of the Ogden

(Utah) Air Logistics Center, 18–20
Software Engineering Institute (SEI), 15–16, 483

Carnegie Mellon University, 15
Software engineering savvy, 563

defined, 562
Software Incident Report CCB, 210
Software maintenance example, project

planning, 71–78
Software organizations, examples of, based on

software project grouping, 122f
Software process, 31

defined, 120–21
and development/maintenance of software

and associated products, 120f
Software process audits, 297–98, 363–71

auditing process overview, 363f
qualitative comparison, 367, 368f
qualitative software process audit form, 369f
quantitative comparison, 367, 368f, 370
software process audit report, 366f

Software process capability, 31
Software process improvement:

alternative approaches to, 52–57
investing in, 24

Software process improvement plan, annotated
outline, 651f

Software process maturity, 31
Software process performance, 31
Software product, with integrity, defined, 33
Software product audit report, 301f
Software product audits, 297, 298–318, 305f

antecedent/predecessor part matches, 304–6
antecedent comparison, 304–5
subsequent comparison, 306

automated doughnut-making system (ADMS)
example, 306–12

antecedent comparison, 307, 310f, 311
design specification for the programmable

subsystem of, 309f
functional requirements specification for the

programmable subsystem of, 308f
subsequent comparison, 310f, 311

coupling with CCB, 298f

discrepancies, 303–4
software product audit report:

sections, 300
suggested format for, 301f

software systems acceptance testing audits,
318–79

System PREDICT example, 312–18
discrepancies uncovered from audit of

preliminary design specification, 315–16f
preliminary design specification for, 314f
requirements specification for, 313f

Software product integrity,
attaining/maintaining, 9

Software project, defined, 121
Software project planning process, as risk-based

and development-driven, 102f
Software-related products, 29

and software, 30f
Software systems, building, 5, 8, 9
Software systems acceptance testing audits,

318–79
LOOKOUT (requirements testability example),

347–62
calculations for spherical earth modules,

356f
Spherical Rectangle Mathematical

Relationships, 354f
Subsystem Requirements Specification for

Earth Surface Areas, 349–50f
summary of software requirements, 360f

SHAPES system example, 325–47
acceptance testing cycle, 337–39
acceptance testing process, 336f
design specification for, 327–28f
requirements specification for, 326f
test plan for, 330f
test procedure for, 331f, 335f

software process audits, 363–71
auditing process overview, 363f
qualitative comparison, 367
qualitative software process audit form, 369f
quantitative comparison, 367
software process audit report, 366f

summary, 371–79
test and evaluation (T&E), 318–20

purpose of, 319f
Test Plan Title, 321–22f
test procedure format, 323f, 324–25

comments, 325
expected results, 325
header, 324
operator action, 324
purpose, 325
step, 324

Software systems development, 36–41
building software systems, 5

index

742

ptg

concepts, 26–32
cultivating, 9
development disciplines, 36f, 37
fundamental principle underlying, 9
management disciplines, 40–41
and process/”way of doing business,” 127
product assurance disciplines, 37–40, 38f
user/buyer/seller organizations involved in,

44–45
Software systems development ADPE element,

124
Software systems development cultural change:

cultivating, 46–52
casual conversations with the customer,

48–52
management edicts, 46–47
team of experienced/good people, 47–48

Software systems development effort,
partitioning into stages, 69

Software systems development environment,
changing, 485f

Software systems development life cycle, 41–44
Software systems development process, 60,

119–71, 548–49, 574
activities, 129

approved deliverable, 129
deliverable status, 130
evolving products, 130
items to be resolved, 129
negotiated agreement, 129–30
seller project plan, 129
statement of work (SOW), 129
technical guidance, 130

ADPE element, 607–9
customer, 127, 132–36
customer project manager, 129–30
customer/seller development team, 139–62

customer project manager, 139–41
seller development team, 141–62

developing a process that involves buyer/user
through CCB-like mechanism, 178–79

example organizational process, 127, 128f
key ideas, 124–26, 125f
lead developer, 129
lead developer or moderator, 129
and need for specificity, 174
overview, 123, 126–32
process components, 419–20
product assurance manager, 129
seller management, 129
seller process engineering group (PEG),

129–30, 136–39
seller project manager, 129–30
seller senior management, 162–64
summary, 124, 164–71
technical editor, 129

Software systems development process
improvement, and business process, 387

Software systems development process policy,
569–72

sections of, 168–71
Software systems development projects,

development life cycle, 68f
Software Turnover CCB, 337
Software turnover CCB meeting:

minutes, 257f
turnover list, 339–40

build instructions, 339
calibration data, 339–40
code modules list, 340
known problems, 339
resolved/unresolved test incident reports

(TIRs), 340
source code, 339
unit and integration test results, 339

Source code, 29
Spelling errors, 293
Spherical Rectangle Mathematical Relationships,

354f
Stable organization, perception of, 619f, 621
Statement of purpose, project plan, 111
Statements of work (SOWs), 79, 100, 106, 123,

129, 557
background, 133
change control board (CCB), 136
defined, 64
as double check on developer’s approach, 106
due dates, 135
existing seller practices, 135–36
life cycle, 135
points of contact, 133
preparation of, 129
risk-assessed SOW, 103
risk assessment, 136
SOW revisions, 136
SOW value, 135
SOW writers, 133
task deliverables, 133–35
task specification, 133
tips, 133–36, 134f
types of, 132

Strassman, Paul, 21, 22, 24
Strategic information management (SIM):

approach, 677
defined, 671–72
diagnostic areas and diagnostic criteria,

678–83
GAO diagnostic criteria for GAO diagnostic

areas, 680f
measuring, 671–89
OM measurement map/measurement trends,

683–87

index

743

ptg

Strategic information management (SIM) (cont.)
OM measurement map of, 686f
OM methodology, using to measure SIM,

680–81
quantifying, 676–78
score, 687
SIMIndex, 683–87

evolution, 687f
Strategic Information Management (SIM)

Self-Assessment Toolkit, 678
summary, 688
U.S. government interest in, 672–75

Strategic Information Management (SIM)
Self-Assessment Toolkit, 676

Subsystem Requirements Specification for Earth
Surface Areas, 349–50f

Successful software development, 618, 668f
as balance among business factors, 2–3
cultivating, 11
defined, 2, 8, 9
fundamental principle underlying, 9
lottery analogy, 11, 15

Syntax rules, 29
System CCB, 210
System concept documentation, defined, 30
Systems engineering environment (SEE), 10, 31,

53–54, 56f, 121, 137, 162, 363, 547f, 553
ADPE elements to include in, 570–82
Application development process environment

(ADPE), 54–55, 61, 121, 552–53
Application development technology

environment (ADTE), 54
development of, responsibility for, 646f
implementation:

annotated outline, 663f
austere implementation approach, 607–9
cost of, 666
cultural change challenges posed by, 614–37,

615f
funding cycles and, 562
key planning issues, 560f
pace of, 562–63
and personality spectrum in an

organization, 642f
planning, 561f
representative timeline of tasks/phasing,

561f
software engineering savvy and, 562

implementation plan, structuring, 662–69
implementation planning, and

mentoring/coaching, 611f
implementation policy, framing, 647–50,

648f
organizational entity that develops, 645–47

Systems engineering projects:
development activities, 113

management activities, 113
product assurance activities, 114

System SHAPES, 266, 325–47
acceptance testing cycle, 337–39

example of, 336f
acceptance testing process, 336f
design specification for, 327–28f
requirements specification for, 326f
test plan for, 330f
test procedure for, 331f

constructing, 334

T
Tailored generic life cycle, 79f
Task-derived dollar estimates, 107

reconciling differences between risk-derived
dollar estimates and, 109–10

risk-derived dollar estimates vs., 108–9
Team of experienced/good people, 47–48
Technical edit, 157–59, 269, 271, 280–81,

284–85
defined, 159f
examples of, 284f
tips, 286f

Technical editors, 129, 159
Technical review of product section, 151
Testable requirements, 347–48
Test documentation, defined, 30
Test and evaluation, 90
Test and evaluation (T&E), 37, 43, 157
Test Incident CCB, 337, 346–47
Test Incident CCB meeting, 343

minutes of, 255f
Test incident reports (TIRs), 86, 257n, 340–47,

569, 623
example of, 342f, 344f

Test procedure:
format, 323f, 324–25

comments, 325
expected results, 325
header, 324
operator action, 324
purpose, 325
step, 324

for System SHAPES, 331f
constructing, 334

Three-dimensional product integrity vector,
400f

Time tracking, 155
Tips:

statements of work (SOWs), 133–36, 134f
technical edit, 286f

Titanic disaster, 263–64
To Be Determined (TBD), 293
Traceability, 37, 54

index

744

ptg

Tracking form, 123, 147–51, 148f
example, 150f
and project/senior management, 147–49
purpose of, 147
sections, 149–54, 164

comments/issues section, 151
customer receipt and approval section,

152–54
final coordination with DSC section, 151
management review and approval section,

151–52
project file establishment at Deliverable

Support Center (DSC) section, 151
project file management section, 151
technical review of product section, 151

Traditional systems engineering life cycle, 78
Coding Stage, 84–85

development tasks, 85
management tasks, 84
product assurance tasks, 85

Detailed Design Stage, 83–84
development tasks, 83–84
management tasks, 83
product assurance tasks, 84

example, 80–86
Operational Use Stage, 85–86

development tasks, 85–86
management tasks, 85
product assurance tasks, 86

Preliminary Design Stage, 82–83
development tasks, 83
management tasks, 82–83
product assurance tasks, 83

Production/Deployment Stage, 85
development tasks, 85
management tasks, 85
product assurance tasks, 85

Requirements Definition Stage, 80–82
development tasks, 82
management tasks, 80–82
product assurance tasks, 82

Traditional systems engineering projects:
development activities, 113
management activities, 113
product assurance activities, 114

Training:
budget, 630–31
staff training time, 666

Transition, 4f, 68–72
and consistency, 8
of project planning details to individual

project teams, 137n

to well-defined software systems development
practices, 3–6, 8, 56–57

and contingencies, 5–6
and organizational commitment, 6, 8

T-shirts, as bonuses, 634–35

U
Unit testing, 339n
Unplanned change, 181–87

change control process example of, 201–6,
202f, 205f

defined, 183f
examples of, 184–85
path of, 182–84
and planned change, distinction between,

186–87
and revisits to previous stages, 188, 196–97
and software complexity, 188
time constraints on, 187

U.S. Department of Defense, 503, 587
USE development stage, 42–44, 42f, 67, 182, 582

and off-the-shelf software, 70–71
software maintenance example, 72–78

User/buyer CCB, 208
User/buyer/seller CCB, 208
User feedback, analyzing, 85
“User friendly systems,” 48
User organization, 11, 44–45, 45f
User/seller CCB, 208
User’s manuals, defined, 30

V
Validation discrepancies, 289f
Vectors, 398
Verification discrepancies, 289f
Verification and validation (V&V), 37, 43, 90, 157

W
Well-defined business way, 3–5, 668f
Well-defined software systems development

practices, transition to, 3–6, 8, 56–57
and contingencies, 5–6
and organizational commitment, 6, 8

WHAT development stage, 42–44, 42f, 67, 69,
182–83, 582

and off-the-shelf software, 70–71
software maintenance example, 72–78

Work planning, 88, 90–91

index

745

	Home Page
	Contents
	Preface
	Authors’ Biographies
	Science Applications International Corporation
	Acknowledgments
	Chapter 1 Business Case
	1.1 Introduction
	1.2 Business Case Key Ideas
	1.3 What Makes Good Business Sense?
	1.4 Software Systems Development Concepts
	1.5 Product “Goodness” and Process “Goodness”
	1.6 Requisite Software Systems Development Disciplines
	1.7 Generic Four-Stage Software Systems Development Life Cycle
	1.8 User, Buyer, and Seller Organizations Involved in Software Systems Development
	1.9 Obstacles to Improving Software Systems Development Cultures
	1.10 Alternative Approaches to Software Process Improvement
	1.11 Preview of the Rest of Book

	Chapter 2 Project Planning Process
	2.1 Introduction
	2.2 Project Planning Key Ideas
	2.3 Life Cycle Role in Project Planning
	2.4 Ideal, Real, and Realistic Project Planning
	2.5 Risk Assessment and Project Planning
	2.6 Project Planning Process
	2.7 Project Plan Contents
	2.8 Project Planning Summary

	Chapter 3 Software Systems Development Process
	3.1 Introduction
	3.2 Software Systems Development Process Key Ideas
	3.3 Software Systems Development Process Overview
	3.4 Customer
	3.5 Seller Process Engineering Group
	3.6 Customer/Seller Development Team and Change Control Board (CCB)
	3.7 Seller Senior Management
	3.8 Software Systems Development Process Summary

	Chapter 4 Change Control Process
	4.1 Introduction
	4.2 Change Control Process Key Ideas
	4.3 Planned and Unplanned Change
	4.4 The Processing of Changes
	4.5 Examination of the Change Control Board
	4.6 Paperwork Support of the Change Control Board
	4.7 Change Control Process Summary

	Chapter 5 Product and Process Reviews
	5.1 Introduction
	5.2 Product and Process Reviews Key Ideas
	5.3 A Taxonomy of Product and Process Reviews
	5.4 Combining Reviews for Software Audits
	5.5 Product and Process Reviews Summary

	Chapter 6 Measurement
	6.1 Introduction
	6.2 Measurement Key Ideas
	6.3 Product Integrity
	6.4 Process Integrity
	6.5 Capability Maturity Model (CMM) for Software
	6.6 Other Process-Related Measurements
	6.7 Measurement Summary

	Chapter 7 Cultural Change
	7.1 Introduction
	7.2 Cultural Change Key Ideas
	7.3 Process Engineering Group (PEG)
	7.4 Seller Project Participants and Project Managers
	7.5 Buyer/User Project Management
	7.6 Buyer/User Senior Management
	7.7 Seller Senior Management
	7.8 Cultural Change Summary

	Chapter 8 Process Improvement Planning
	8.1 Introduction
	8.2 SEE Implementation Planning Key Ideas
	8.3 Key SEE Implementation Planning Issues
	8.4 Making Successful Software Development Happen

	Appendix A: How to Measure Strategic Information Management (SIM)
	A.1 Strategic Information Management
	A.2 Quantifying Strategic Information Management
	A.3 Diagnostic Areas and Diagnostic Criteria
	A.4 OM Measurement Map and Measurement Trends
	A.5 Summary

	Appendix B: List of Figures
	Appendix C: List of Tables
	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

