

ptg

The Data Access
Handbook

Achieving Optimal Database
Application Performance and

Scalability

John Goodson and Robert A. Steward

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

ptg

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was aware
of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability
is assumed for incidental or consequential damages in connection with or arising out of the use of
the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include electronic versions and/or custom covers and content particular
to your business, training goals, marketing focus, and branding interests. For more information,
please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Library of Congress Cataloging-in-Publication Data
Goodson, John, 1964-
The data access handbook : achieving optimal database application performance and scalability /

John Goodson and Robert A. Steward. — 1st ed.
p. cm.

ISBN 978-0-13-714393-1 (pbk. : alk. paper) 1. Database design—Handbooks, manuals, etc. 2.
Application software—Development—Handbooks, manuals, etc. 3. Computer networks—
Handbooks, manuals, etc. 4. Middleware—Handbooks, manuals, etc. I. Steward, Robert A.
(Robert Allan) II. Title.
QA76.9.D26G665 2009
005.3—dc22

2008054864

Copyright © 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116
Fax: (617) 848-7047

ISBN-13: 978-0-137-14393-1
ISBN-10: 0-137-14393-1
Text printed in the United States on recycled paper at RR Donnelley, Crawfordsville, Indiana.
First printing March 2009

ptg

Associate Publisher
Mark Taub

Acquisitions Editor
Bernard Goodwin

Managing Editor
Patrick Kanouse

Senior Project Editor
Tonya Simpson

Copy Editor
Karen A. Gill

Indexer
Ken Johnson

Proofreader
Sheri Cain

Technical Reviewers
Phil Gunning
Howard Fosdick
Mike Pizzo

Publishing Coordinator
Michelle Housley

Book Designer
Louisa Adair

Composition
Bronkella Publishing, LLC

ptg

This page intentionally left blank

ptg

Contents

Preface xv
Acknowledgments xix

About the Authors xxi

CHAPTER 1 P E R F O R M A N C E I S N ’ T W H AT I T
U S E D T O B E 1

Where Are We Today? 4
The Network 5
The Database Driver 5
The Environment 6
Your Database Application 7

Our Goal for This Book 8

CHAPTER 2 D E S I G N I N G F O R P E R F O R M A N C E : W H AT ’ S
Y O U R S T R AT E G Y ? 9

Your Applications 10
Database Connections 10
Transaction Management 21
SQL Statements 27
Data Retrieval 30
Extended Security 37

Static SQL Versus Dynamic SQL 43
The Network 44
The Database Driver 46
Know Your Database System 47
Using Object-Relational Mapping Tools 48
Summary 49

vii

ptg

CHAPTER 3 D ATA B A S E M I D D L E W A R E : W H Y I T ’ S
I M P O R TA N T 51

What Is Database Middleware? 52
How Database Middleware Affects Application Performance 52
Database Drivers 53

What Does a Database Driver Do? 54
Database Driver Architecture 55
Runtime Performance Tuning Options 62
Configuring Database Drivers/Data Providers 63

Summary 74

CHAPTER 4 T H E E N V I R O N M E N T : T U N I N G F O R
P E R F O R M A N C E 7 5

Runtime Environment (Java and .NET) 77
JVM 77
.NET CLR 82

Operating System 83
Network 86

Database Protocol Packets 86
Network Packets 89
Configuring Packet Size 92
Analyzing the Network Path 94
Reducing Network Hops and Contention 96
Avoiding Network Packet Fragmentation 98
Increasing Network Bandwidth 106

Hardware 106
Memory 107
Disk 110
CPU (Processor) 112
Network Adapter 116
Virtualization 119

Summary 121

viii Contents

ptg

CHAPTER 5 O D B C A P P L I C AT I O N S : W R I T I N G G O O D
C O D E 12 3

Managing Connections 124
Connecting Efficiently 124
Using Connection Pooling 124
Establishing Connections One at a Time 125
Using One Connection for Multiple Statements 125
Obtaining Database and Driver Information Efficiently 126

Managing Transactions 127
Managing Commits in Transactions 127
Choosing the Right Transaction Model 135

Executing SQL Statements 136
Using Stored Procedures 136
Using Statements Versus Prepared Statements 138
Using Arrays of Parameters 139
Using the Cursor Library 141

Retrieving Data 142
Retrieving Long Data 142
Limiting the Amount of Data Retrieved 144
Using Bound Columns 145
Using SQLExtendedFetch Instead of SQLFetch 147
Determining the Number of Rows in a Result Set 148
Choosing the Right Data Type 149

Updating Data 149
Using SQLSpecialColumns to Optimize Updates and Deletes 149

Using Catalog Functions 151
Minimizing the Use of Catalog Functions 151
Avoiding Search Patterns 152
Using a Dummy Query to Determine Table Characteristics 153

Summary 155

CHAPTER 6 J D B C A P P L I C AT I O N S : W R I T I N G G O O D
C O D E 15 7

Managing Connections 158
Connecting Efficiently 158
Using Connection Pooling 158

Contents ix

ptg

Establishing Connections One at a Time 159
Using One Connection for Multiple Statements 159
Disconnecting Efficiently 160
Obtaining Database and Driver Information Efficiently 162

Managing Transactions 163
Managing Commits in Transactions 163
Choosing the Right Transaction Model 169

Executing SQL Statements 170
Using Stored Procedures 170
Using Statements Versus Prepared Statements 172
Using Batches Versus Prepared Statements 173
Using getXXX Methods to Fetch Data from a Result Set 175
Retrieving Auto-Generated Keys 176

Retrieving Data 177
Retrieving Long Data 177
Limiting the Amount of Data Retrieved 179
Determining the Number of Rows in a Result Set 181
Choosing the Right Data Type 182
Choosing the Right Cursor 182

Updating Data 186
Using Positioned Updates, Inserts, and Deletes (updateXXX Methods) 186
Using getBestRowIdentifier() to Optimize Updates and Deletes 186

Using Database Metadata Methods 188
Minimizing the Use of Database Metadata Methods 188
Avoiding Search Patterns 188
Using a Dummy Query to Determine Table Characteristics 189

Summary 191

CHAPTER 7 . N E T A P P L I C AT I O N S : W R I T I N G G O O D
C O D E 19 3

Managing Connections 194
Connecting Efficiently 194
Using Connection Pooling 194
Establishing Connections One at a Time 195
Disconnecting Efficiently 196
Obtaining Database and Data Provider Information Efficiently 198

x Contents

ptg

Managing Transactions 198
Managing Commits in Transactions 198
Choosing the Right Transaction Model 205

Executing SQL Statements 206
Executing SQL Statements that Retrieve Little or No Data 206
Using the Command.Prepare Method 208
Using Arrays of Parameters/Batches Versus Prepared Statements 209
Using Bulk Load 212
Using Pure Managed Providers 212

Selecting .NET Objects and Methods 213
Avoiding the CommandBuilder Object 213
Choosing Between a DataReader and DataSet Object 214
Using GetXXX Methods to Fetch Data from a DataReader 215

Retrieving Data 216
Retrieving Long Data 216
Limiting the Amount of Data Retrieved 218
Choosing the Right Data Type 219

Updating Data 220
Summary 221

CHAPTER 8 C O N N E C T I O N P O O L I N G A N D S TAT E M E N T
P O O L I N G 2 2 3

Connection Pool Model for JDBC 223
Configuring Connection Pools 225
Guidelines 226

Connection Pool Model for ODBC 228
Connection Pooling as Defined in the ODBC Specification 228
Configuring Connection Pools 229
Guidelines 230

Connection Pool Model for ADO.NET 230
Configuring Connection Pools 231
Guidelines 231

Using Reauthentication with Connection Pooling 232
Configuring Connection Pooling with Reauthentication in a JDBC Environment

235

Contents xi

ptg

Using Statement Pooling 236
Using Statement Pooling with Connection Pooling 238
Guidelines 239

Summary: The Big Picture 240

CHAPTER 9 D E V E L O P I N G G O O D B E N C H M A R K S 2 4 3

Developing the Benchmark 244
Define Benchmark Goals 244
Reproduce the Production Environment 246
Isolate the Test Environment 251
Reproduce the Workload 252
Measure the Right Tasks 252
Measure over a Sufficient Duration of Time 254
Prepare the Database 257
Make Changes One at a Time 257
Assess Other Factors 258

Benchmark Example 258
Summary 264

CHAPTER 10 T R O U B L E S H O O T I N G P E R F O R M A N C E
I S S U E S 2 6 5

Where to Start 266
Changes in Your Database Application Deployment 268
The Database Application 269
The Database Driver 270

Runtime Performance Tuning Options 271
Architecture 271

The Environment 272
Runtime Environment (Java and .NET) 273
Operating System 273
Network 273
Hardware 274

Case Studies 277
Case Study 1 277
Case Study 2 281

xii Contents

ptg

Case Study 3 282
Case Study 4 285
Case Study 5 287
Case Study 6 291
Case Study 7 293
Case Study 8 295

Summary 297

CHAPTER 11 D ATA A C C E S S I N S E R V I C E - O R I E N T E D
A R C H I T E C T U R E (S O A) E N V I R O N M E N T S
2 9 9

What Is Service-Oriented Architecture (SOA)? 300
Data Access Guidelines for SOA Environments 302

Involve Data Experts in Addition to SOA Experts 302
Decouple Data Access from Business Logic 303
Design and Tune for Performance 305
Consider Data Integration 305

Summary 307

CHAPTER 11 G L O S S A R Y 3 0 9

CHAPTER 11 I N D E X 319

Contents xiii

ptg

This page intentionally left blank

ptg

Preface

The world is flat. For thousands of years, all the mathemati-

cians, explorers, and philosophers of the world knew this to

be true. In the sixth century, several Greek philosophers pre-

sented evidence that the world was round. Yet, the experts

shunned their ideas for hundreds of years more.

All database application performance and scalability

problems can be solved by tuning the database. Ask the data-

base experts—they’ll tell you this. They’ll even convince you

to spend thousands to millions of dollars a year to tune the

database software to solve performance issues. When tuning

doesn’t resolve the problem, they’ll tell you that the database

software or hardware, or both, is simply at capacity. But, if

only 5% to 25% of the time it takes to process a database

request is actually spent in well-tuned database software,

does it make sense that performance bottlenecks occur

because of these “at capacity” systems? If a business analyst

waits 10 seconds for a query to process and only half a sec-

ond of this time is spent in the database, does it make sense

to spend time and money figuring out how to improve that

half second? Or, does it make more sense to try to figure out

how to improve the other 9.5 seconds? Hundreds of books,

consultants, and Web sites are dedicated to solving database

tuning problems, but relatively no information is available

on how to design data-centric applications, tune data access

application code, select and tune database drivers, and

understand and tune the flow of data to and from database

applications and, eventually, the database. We wrote this

book to provide information that will help you focus on

reducing those 9.5 seconds of time and show that all data-

base application performance and scalability problems can-

not be solved by simply tuning the database.

xv

ptg

The journey of writing this book started in different ways for John and Rob

but ended up in the same place.

John Goodson: Several years ago, I was at an IBM conference making a pre-

sentation on how to improve the performance of JDBC applications. After my

presentation, an IT director approached me and said, “Where do I get more

information on this? This type of information is impossible to find.” I thought

about it for a moment, and I told him there really was no one place you can

obtain this type of information—it was stuck in the heads of a few people scat-

tered throughout the world. This incident was followed by many others involving

IT director after IT director telling me, “I never knew a database driver could

make such a big difference” or, “I always thought that database application per-

formance was a database problem.” Every technical paper we wrote on the subject

was in great demand, and every presentation we gave on the subject was to a full

audience. We wrote this book because it was time to dispel the myths about per-

formance and scalability being exclusively a database problem. The guidelines,

tips, and techniques for improving performance that are presented in this book

should be available to everyone.

Rob Steward: Writing a book is something I thought I would never do. I

once asked an author friend of mine who writes software books whether it was

really worth it to write one. He told me emphatically that there is only one reason

that I should ever write a book about software. He said “Only write a book if

there is something you strongly feel compelled to say.” Having been in the data-

base middleware business for 15 years now, I have seen a lot of badly written data

access code, and consequently, a lot of applications that ran way too slowly and

had to be fixed. I have literally spent years of my life helping people fix the prob-

lems they have created due to their lack of knowledge about what really happens

on the client side when they make a call to the database. John and I have talked

on the subject at many conferences and written a number of articles and white

papers in an effort to help as many developers as possible understand the intrica-

cies of data access code. When John approached me about coauthoring this

book, I immediately agreed. I instantly felt compelled to share on a much

broader scale that knowledge that we have been sharing in bits and pieces in vari-

ous forums over the years. It’s my hope that every reader will find something in

this book that makes the difference between “too slow” and “blazing fast” in all

their future applications.

The authors hope that this book will be used by software architects, IT

staff, DBAs, and developers in their daily work to predict, diagnose, and solve

xvi Preface

ptg

performance issues in their database applications. Tuning the database is essen-

tial to good performance and scalability. We know that to be true. However, in an

environment with a well-tuned database system, most performance problems are

caused by the following:

• Poorly designed data access architecture

• Poorly optimized data access source code

• Inefficient or poorly tuned database drivers

• Lack of understanding about the environment in which database applica-

tions are deployed

This book addresses all these issues—the world is round.

This book contains the following chapters:

Chapter 1, “Performance Isn’t What It Used to Be,” describes the evolution of

database middleware and identifies where performance bottlenecks can appear.

Chapter 2, “Designing for Performance: What’s Your Strategy?,” provides

guidelines for designing your database application and tuning the database mid-

dleware that connects your application to the database server for optimal perfor-

mance.

Chapter 3, “Database Middleware: Why It’s Important,” explains what data-

base middleware is, what it does, and how it affects performance. It also describes

what you should look for in a database driver, one of the most important compo-

nents of database middleware.

Chapter 4, “The Environment: Tuning for Performance,” describes the dif-

ferent environment layers that data requests and responses flow through,

explains how they affect performance, and provides guidelines for making sure

the environment does not become a performance bottleneck.

Chapter 5, “ODBC Applications: Writing Good Code,” describes some good

coding practices that can provide optimal performance for your ODBC applica-

tions.

Chapter 6, “JDBC Applications: Writing Good Code,” describes some good

coding practices that can provide optimal performance for your JDBC applica-

tions.

Chapter 7, “.NET Applications: Writing Good Code,” describes some good

coding practices that can provide optimal performance for .NET applications.

Chapter 8, “Connection Pooling and Statement Pooling,” provides details

about different connection pool models, describes how reauthentication works

Preface xvii

ptg

with connection pooling, and tells how using statement pooling with connection

pooling might consume more memory on the database server than you realize.

Chapter 9, “Developing Good Benchmarks,” provides some basic guidelines

for writing benchmarks that many developers don’t follow but absolutely should.

Chapter 10, “Troubleshooting Performance Issues,” walks you through how

to troubleshoot performance issues and provides case studies to help you think

through some varied performance issues and figure out how to resolve them.

Chapter 11, “Data Access in Service-Oriented Architecture (SOA)

Environments,” provides some general guidelines to make sure that your data-

base applications perform well in SOA environments.

The Glossary defines terms used in this book.

xviii Preface

ptg

Acknowledgments

This book has been a two-year project based on the contri-

butions, knowledge, and support of many people. John

Goodson and Rob Steward have lived, breathed, and

dreamed about database middleware since graduating from

college. Cheryl Conrad and Susan King did a wonderful job

of materializing our thoughts into words. Progress Software

Corporation allowed us the opportunity to write this book.

Many people supplied extremely detailed information

that we have used throughout the book and, for this, we are

very grateful. In particular, special thanks go to Scott

Bradley, John Hobson, Jeff Leinbach, Connie Childrey, Steve

Veum, Mike Spinak, Matt Domencic, Jesse Davis, and Marc

Van Cappellen for very time-consuming contributions. No

book would be complete without extremely thorough

reviewers and other contributors. These include Lance

Anderson, Ed Long, Howard Fosdick, Allen Dooley, Terry

Mason, Mark Biamonte, Mike Johnson, Charles Gold, Royce

Willmschen, April Harned, John Thompson, Charlie Leagra,

Sue Purkis, Katherine Spinak, Dipak Patel, John De Longa,

Greg Stasko, Phil Prudich, Jayakhanna Pasimuthu, Brian

Henning, Sven Cuypers, Filip Filliaert, Hans De Smet, Gregg

Willhoit, Bill Fahey, Chris Walker, Betsy Kent, and Ed

Crabtree.

We also would like to provide special thanks to our fam-

ily members and friends who supported us through this

adventure.

We would be grateful to readers who want to alert

us to errors or comments by sending e-mail to

Performance-book@datadirect.com.

xix

ptg

This page intentionally left blank

ptg

About the Authors

John Goodson: As the executive leader of DataDirect

Technologies, John is responsible for daily operations, busi-

ness development, product direction, and long-term corpo-

rate strategy.

John was a principal engineer at Data General for seven

years, working on their relational database product,

DG/SQL. Since joining DataDirect Technologies in 1992, he

has held positions of increasing responsibility in research

and development, technical support, and marketing. John is

a well-known and respected industry luminary and data

connectivity expert. For more than 15 years, he has worked

closely with Sun Microsystems and Microsoft on the devel-

opment and evolution of database connectivity standards

including J2EE, JDBC, .NET, ODBC, and ADO. John has

been involved with the ANSI NCITS H2 Committee, which

is responsible for building the SQL standard, and the

X/Open (Open Group) SQL Access Group, which is respon-

sible for building call-level interfaces into relational data-

bases. He is actively involved in Java standards committees,

including the JDBC Expert Group. In addition, John has

published numerous articles and spoken publicly on topics

related to data management. John is also a patent holder in

the area of distributed transactions for Microsoft SQL Server

Java middleware.

John holds a Bachelor of Science in computer science

from Virginia Polytechnic Institute and State University in

Blacksburg, Virginia.

xxi

ptg

Rob Steward: As vice president of research and development for DataDirect

Technologies, Rob is responsible for the development, strategy, and oversight of

the company’s data connectivity products, including the Shadow mainframe

integration suite client software and the industry-leading DataDirect Connect

family of database drivers and data providers: Connect for ODBC, Connect for

JDBC, and Connect for ADO.NET. Additional product development responsibil-

ities include DataDirect Sequelink and DataDirect XQuery, as well as the man-

agement of DataDirect’s Custom Engineering Development group.

Rob has spent more than 15 years developing database access middleware,

including .NET data providers, ODBC drivers, JDBC drivers, and OLE DB data

providers. He has held a number of management and technical positions at

DataDirect Technologies and serves on various standards committees. Earlier in

his career, he worked as lead software engineer at Marconi Commerce Systems

Inc.

Rob holds a Bachelor of Science in computer science from North Carolina

State University, Raleigh.

xxii About the Authors

ptg

Performance Isn’t What It
Used to Be

1

Odds are very good that one or more of your com-

pany’s database applications is suffering from per-

formance issues. This should hardly come as a surprise to

those who deal with application design, development, or

deployment. What may be surprising is that the root

cause of many of these issues is the database middle-

ware, the software that connects applications to data-

bases.

When we say performance issues, we mean your appli-

cation is suffering from unacceptable response time,

throughput, or scalability. Response time is the elapsed time

between a data request and when the data is returned. From

users’ points of view, it is the time between when they ask for

some data and when they receive it. Throughput is the

amount of data that is transferred from sender to receiver

over a period of time. Scalability is the ability of an applica-

tion to maintain acceptable response time and throughput

when the number of simultaneous users increases.

Before we get into why database middleware is so

important to the optimal performance of your database

applications, let’s look at how the performance landscape

has changed over the past decade.

C H A P T E R O N E

ptg

Ten to 15 years ago, if you were having performance issues with your data-

base application, 95% of the time the issues were caused by your database man-

agement software. At that time, tuning the database was considered magic to

everyone except for a select group of engineers and database experts, who most

likely worked for the database vendors. They kept details about their databases a

secret; it was proprietary.

The performance landscape started to change when these experts began

sharing their knowledge by writing books about database tuning and giving sem-

inars for the public. Today, because of the volumes of database tuning informa-

tion available through any bookstore or the Internet, years of experience, and

vastly improved database monitoring tools, the task of tuning databases has

become less painful.

Other changes were taking place during these years, such as hardware costs

decreasing and computing power increasing. Along with faster and less expensive

hardware came the move from monolithic to networked environments and

client/server computing (two- and three-tier environments). Today, most data-

base applications communicate with databases over a network instead of com-

municating directly through interprocess communication on a single computer,

as shown in Figure 1-1.

2 Performance Isn’t What It Used to Be

Monolithic Environment

Networked Environment

Figure 1-1 Database environment

With the shift to networked environments, software was needed to provide

connectivity between the application and database that now were located on dif-

ferent computers. The database vendors were the first to provide this software as

ptg

proprietary database middleware components for their databases, which added a

new factor to the performance puzzle.

Database middleware consists of all components that handle the applica-

tion’s data request until that request is handed to the database management soft-

ware, as shown in Figure 1-2.

Performance Isn’t What It Used to Be 3

Data Request

Database MiddlewareApplication

Figure 1-2 Database middleware

With the introduction of the networked environment, the database middle-

ware layer included components such as these:

• The network

• Database client software such as Oracle Net8

• Libraries loaded into the application’s address space when it connects to a

database such as SSL libraries for data encryption across the network

Soon, the industry began to see a need for database connectivity standards,

which would provide a common application programming interface (API) to

access multiple databases. Without a common API, the industry was faced with

multiple database connectivity solutions; each database vendor provided its own

proprietary API. For example, to develop an application that could access

Microsoft SQL Server, Oracle, and IBM DB2, a developer would have to know

three very different database APIs: Microsoft Database Library (DBLIB), Oracle

Call Interface (OCI), and IBM Client Application Enabler (CAE), as shown in

Figure 1-3. The advent of database connectivity standards, such as ODBC, solved

this problem.

With the introduction of database connectivity standards, database drivers

were added to the database middleware layer. Among many other things, a data-

base driver processes the standards-based API function calls, submits SQL

requests to the database, and returns results to the application. Read Chapter 3,

“Database Middleware: Why It’s Important,” for detailed information about

what database drivers do and how your choice of drivers can affect the perfor-

mance of your database applications.

ptg

Figure 1-3 Emergence of database connectivity standards

Where Are We Today?

Today, even when the database is tuned well, we know that database applications

don’t always perform as well as we would like. Where does that leave us? Where

do we find the performance issues today? For the majority of database applica-

tions, the performance issues are now found in the database middleware. For

most applications, 75% to 95% of the time it takes to process a data request is

spent in the database middleware compared to 10 to 15 years ago, when the

majority of the time was spent in the database management software.

In most cases, performance issues seen in database applications are caused

by the following:

• The network

• Database drivers

4 Performance Isn’t What It Used to Be

Before Database Connectivity Standards

Application

API 1 API 2 API 3

Application

API 1 API 2 API 3

After Database Connectivity Standards

Application

Standard API

ptg

• The environment

• Poorly coded database applications

This book goes into detail about database middleware and database applica-

tion performance issues. For now, let’s look at a few examples.

The Network

One of the most common performance issues of the network is the number of

round trips required to complete an operation. The size of network packets con-

tributes to how many round trips are needed. Network packets carry an applica-

tion’s messages via the database middleware to the database and vice versa. The

size of the packets makes a difference in the performance of your database appli-

cation. The main concept to remember is that fewer packets sent between the

application and the database equates to better performance; fewer packets mean

fewer trips to and from the database.

Think of it this way: Jim’s manager asks him to move five cases of diet soda

from a second-floor office to the first-floor kitchen. If Jim’s packet size is a 6-pack

rather than a case, he has to make 20 trips to the kitchen instead of five, which

means he is taking longer to move the soda to the kitchen.
We discuss more about networks, how they affect performance, and what

you can do to optimize the performance of a network in Chapter 4, “The
Environment: Tuning for Performance.”

The Database Driver

All database drivers are not created equal. The choice of which driver to use in

database application deployments can largely impact performance. The follow-

ing real-world scenario explains how one company solved its performance issues

by changing only the database driver.

DataBank serves the informational needs of both large and small companies

through the retrieval, storage, and delivery of data. DataBank’s reputation and

financial security depend on response time and system availability. It has con-

tracts with its customers that require specific response times and system avail-

ability. If these requirements are not met, DataBank must pay its customers a

fine.

After a mandated upgrade to a new version of its database system and its

accompanying middleware, DataBank began having serious performance issues.

It was routinely paying more than $250,000 a month in fines due to missed con-

tractual obligations.

Where Are We Today? 5

ptg

The situation was unacceptable; the company had to find the performance

issues in its database application deployment. DataBank started by making sure

that its database was optimally tuned. Even with the database performing well,

the company was still missing its contractual service-level requirements.

The system architect made a phone call to a database consultant, and the

consultant asked, “Have you considered trying a different database driver?” The

architect responded, “I didn’t even know that was an option.” The consultant rec-

ommended a database driver that he had used with success.

Losing no time, the architect had the recommended database driver installed

in a test environment. Within two days, the QA department reported a threefold

improvement in average response time between the new and the currently

deployed database drivers, as well as the elimination of stability problems.

Based on the results of its performance testing, DataBank moved forward to

purchase the new database driver. After the new database driver had been

deployed for a couple of months, DataBank analyzed the revenue it was saving.

DataBank was paying $250,000 in fines in September and reduced that to

$25,000 by November. That is a savings of 90% in two months by simply chang-

ing the database driver. The new driver handled connection pooling and mem-

ory management more effectively than the old driver.

DataBank solved several issues by deploying a new database driver: loss of

revenue, dissatisfied customers, and overworked IT personnel, to name a few.

Chapter 3 details the many ways that database drivers can affect perfor-

mance and what you can do about it.

The Environment

To learn how the environment can affect performance, see Figure 1-4 for an

example of how different Java Virtual Machines (JVMs) can cause varied perfor-

mance results for a JDBC-enabled database application. In this example, the

same benchmark application was run three times using the same JDBC driver,

database server, hardware, and operating system. The only variable was the JVM.

The JVMs tested were from different vendors but were the same version and had

comparable configurations. The benchmark measured the throughput and scala-

bility of a database application.

6 Performance Isn’t What It Used to Be

ptg

Figure 1-4 Comparing Different JVMs

As you can see in Figure 1-4, the throughput and scalability of the applica-

tion using the JVM represented by the bottom line is dramatically less than the

other two JVMs.

In Chapter 4, we discuss how your environment, both software and hard-

ware (such as the operating system, memory, and CPU), can affect performance.

Your Database Application

Another important performance-related component is your database applica-

tion. If your application is not coded efficiently, data requests that your applica-

tion passes along to the database middleware can negatively affect performance.

One common example is transaction management. With most standards-based

applications, the default transaction mode requires the database driver to process

expensive Commit operations after every API request. This default auto-commit

mode can impose severe performance constraints on applications.

Consider the following real-world example. ASoft Corporation coded a

standards-based database application and experienced poor performance in test-

ing. Its performance analysis showed that the problem resided in the bulk five

million Insert statements sent to the database. With auto-commit mode on, this

Where Are We Today? 7

Threads

R
ow

s/
S

ec
on

d

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7 8 9 10

Select 10K rows of 3100 bytes

ptg

meant an additional five million Commit statements were being issued across the

network, and every inserted row was written to disk immediately following the

execution of the insert. When auto-commit mode was turned off in the applica-

tion, the number of statements issued by the driver and executed on the database

server was reduced from ten million (five million Inserts + five million

Commits) to five million and one (five million Inserts + one Commit). As a con-

sequence, application processing was reduced from eight hours to ten minutes.

Why such a dramatic difference in time? Significantly less disk input/output

(I/O) was required by the database server, and 50% fewer network round trips

were needed.

In general, your database application should be written to do the following:

• Reduce network traffic

• Limit disk I/O

• Optimize application-to-driver interaction

• Simplify queries

See the following chapters to learn about some general guidelines for good

coding practices that improve database application performance:

• For ODBC users, see Chapter 5, “ODBC Applications: Writing Good Code.”

• For JDBC users, see Chapter 6, “JDBC Applications: Writing Good Code.”

• For ADO.NET users, see Chapter 7, “.NET Applications: Writing Good

Code.”

Our Goal for This Book

The goal of this book is to equip you, as software architects and developers, with

techniques and knowledge to predict, diagnose, and solve performance issues in

your database applications. Specifically, this book provides information that will

help you achieve the following tasks:

• Understand the different components of database middleware that can cause

performance issues.

• Design for optimal performance.

• Write good application code.

• Develop good benchmarks, tests that measure the performance of a database

application on a well-defined task or set of tasks.

• Troubleshoot performance issues.

• Set realistic performance expectations.

8 Performance Isn’t What It Used to Be

ptg

Designing for
Performance: What’s Your

Strategy?

9

Designing your database application and the configu-

ration of the database middleware that connects

your application to the database server for optimal per-

formance isn’t easy. We refer to all these components as

your database application deployment. There is no one-

size-fits-all design. You must think about every compo-

nent to get the best performance possible.

Often you are not in control of every component that

affects performance. For example, your company may dic-

tate that all applications run on an application server. Also,

your database administrator most likely controls the data-

base server machine’s configuration. In these cases, you need

to consider the configurations that are dictated when design-

ing your database application deployment. For example, if

you know that the applications will reside on an application

server, you probably want to spend ample time planning for

connection and statement pooling, which are both discussed

in this chapter.

C H A P T E R T W O

ptg

Your Applications

Many software architects and developers don’t think that the design of their

database applications impacts the performance of those applications. This is not

true; application design is a key factor. An application is often coded to establish

a new connection to gather information about the database, such as supported

data types or database version. Avoid establishing additional connections for this

purpose because connections are performance-expensive, as we explain in this

chapter.

This section explores several key functional areas of applications that you

need to consider to achieve maximum performance:

• Database connections

• Transactions

• SQL statements

• Data retrieval

Some functional areas of applications, such as data encryption, affect perfor-

mance, but you can do little about the performance impact. We discuss these

areas and provide information about the performance impact you can expect.

When you make good application design decisions, you can improve perfor-

mance by doing the following:

• Reducing network traffic

• Limiting disk I/O

• Optimizing application-to-driver interaction

• Simplifying queries

For API-specific code examples and discussions, you should also read the

chapter for the standards-based API that you work with:

• For ODBC users, see Chapter 5, “ODBC Applications: Writing Good Code.”

• For JDBC users, see Chapter 6, “JDBC Applications: Writing Good Code.”

• For ADO.NET users, see Chapter 7, “.NET Applications: Writing Good

Code.”

Database Connections

The way you implement database connections may be the most important design

decision you make for your application.

10 Designing for Performance: What’s Your Strategy?

ptg

Your choices for implementing connections are as follows:

• Obtain a connection from a connection pool. Read the section, “Using

Connection Pooling,” page 12.

• Create a new connection one at a time as needed. Read the section, “Creating

a New Connection One at a Time as Needed,” page 16.

The right choice mainly depends on the CPU and memory conditions on the

database server, as we explain throughout this section.

Facts About Connections

Before we discuss how to make this decision, here are some important facts about

connections:

• Creating a connection is performance-expensive compared to all other tasks

a database application can perform.

• Open connections use a substantial amount of memory on both the data-

base server and database client machines.

• Establishing a connection takes multiple network round trips to and from

the database server.

• Opening numerous connections can contribute to out-of-memory condi-

tions, which might cause paging of memory to disk and, thus, overall perfor-

mance degradation.

• In today’s architectures, many applications are deployed in connection

pooled environments, which are intended to improve performance.

However, many times poorly tuned connection pooling can result in perfor-

mance degradation. Connection pools can be difficult to design, tune, and

monitor.

Why Connections Are Performance-Expensive

Developers often assume that establishing a connection is a simple request that

results in the driver making a single network round trip to the database server to

initialize a user. In reality, a connection typically involves many network round

trips between the driver and the database server. For example, when a driver con-

nects to Oracle or Sybase, that connection may take anywhere from seven to ten

network round trips to perform the following actions:

• Validate the user’s credentials.

• Negotiate code page settings between what the database driver expects and

what the database has available, if necessary.

Your Applications 11

ptg

• Get database version information.

• Establish the optimal database protocol packet size to be used for communi-

cation.

• Set session settings.

In addition, the database management system establishes resources on behalf

of the connection, which involves performance-expensive disk I/O and memory

allocation.

You might be thinking that you can eliminate network round trips if you

place your applications on the same machine as the database system. This is, in

most cases, not realistic because of the complexity of real-world enterprises—

many, many applications accessing many database systems with applications

running on several application servers. In addition, the server on which the data-

base system runs must be well tuned for the database system, not for many differ-

ent applications. Even if one machine would fit the bill, would you really want a

single point of failure?

Using Connection Pooling

A connection pool is a cache of physical database connections that one or more

applications can reuse. Connection pooling can provide significant performance

gains because reusing a connection reduces the overhead associated with estab-

lishing a physical connection. The caveat here is that your database server must

have enough memory to manage all the connections in the pool.

In this book, we discuss client-side connection pooling (connection pooling

provided by database drivers and application servers), not database-side connec-

tion pooling (connection pooling provided by database management systems).

Some database management systems provide connection pooling, and those

implementations work in conjunction with client-side connection pooling.

Although specific characteristics of database-side connection pooling vary, the

overall goal is to eliminate the overhead on the database server of establishing

and removing connections. Unlike client-side connection pooling, database-side

connection pooling does not optimize network round trips to the application. As

we stated previously, connecting to a database is performance-expensive because

of the resource allocation in the database driver (network round trips between

the driver and the database), and the resource allocation on the database server.

Client-side connection pooling helps solve the issue of expensive resource alloca-

tion for both the database driver and database server. Database-side connection

pooling only helps solve the issue on the database server.

12 Designing for Performance: What’s Your Strategy?

ptg

How Connection Pooling Works

In a pooled environment, once the initial physical connection is established, it

will likely not be closed for the life of the environment. That is, when an applica-

tion disconnects, the physical connection is not closed; instead, it is placed in the

pool for reuse. Therefore, re-establishing the connection becomes one of the

fastest operations instead of one of the slowest.

Here is a basic overview of how connection pooling works (as shown in

Figure 2-1):

1. When the application or application server is started, the connection

pool is typically populated with connections.

2. An application makes a connection request.

3. Either the driver or the Connection Pool Manager (depending on your

architecture) assigns one of the pooled connections to the application

instead of requesting that a new connection be established. This means

that no network round trips occur between the driver and the database

server for connection requests because a connection is available in the

pool. The result: Your connection request is fast.

4. The application is connected to the database.

5. When the connection is closed, it is placed back into the pool.

Your Applications 13

Application Server
1. Application server started;
 connection pool is populated.

2. Application makes a
 connection request.

3. A pooled connection is
 given to the application.

4. Application is connected
 to the database.

5. When the connection is
 closed, it is placed back
 into the pool.

Application Server

Application

Application Server

Application

Figure 2-1 Connection pooling

ptg

Guidelines for Connection Pooling

Here are some general guidelines for using connection pooling. For details about

different connection pooling models, see Chapter 8, “Connection Pooling and

Statement Pooling.”

• A perfect scenario for using connection pooling is when your applications

reside on an application server, which implies multiple users using the appli-

cations.

• Consider using connection pooling if your application has multiple users

and your database server has enough memory to manage the maximum

number of connections that will be in the pool at any given time. In most

connection pooling models, it is easy to calculate the maximum number of

connections that will be in a pool because the connection pool implementa-

tion allows you to configure the maximum. If the implementation you are

using does not support configuring the maximum number of connections in

a pool, you must calculate how many connections will be in the pool during

peak times to determine if your database server can handle the load.

• Determine whether the number of database licenses you have accommo-

dates a connection pool. If you have limited licenses, answer the following

questions to determine if you have enough licenses to support a connection

pool:

a. Will other applications use database licenses? If yes, take this into

account when calculating how many licenses you need for your con-

nection pool.

b. Are you using a database that uses a streaming protocol, such as

Sybase, Microsoft SQL Server, or MySQL? If yes, you may be using

more database connections than you think. In streaming protocol

databases, only one request can be processed at a time over a single

connection; the other requests on the same connection must wait for

the preceding request to complete before a subsequent request can be

processed. Therefore, some database driver implementations duplicate

connections (establish another connection) when multiple requests

are sent over a single connection so that all requests can be processed

in a timely manner.

• When you develop your application to use connection pooling, open con-

nections just before the application needs them. Opening them earlier than

14 Designing for Performance: What’s Your Strategy?

ptg

necessary decreases the number of connections available to other users and

can increase the demand for resources. Don’t forget to close them when the

database work is complete so that the connection can return to the pool for

reuse.

When Not to Use Connection Pooling

Some applications are not good candidates for using connection pooling. If your

applications have any of the following characteristics, you probably don’t want to

use connection pooling. In fact, for these types of applications, connection pool-

ing may degrade performance.

• Applications that restart numerous times daily—This typically applies

only to architectures that are not using an application server. Depending on

the configuration of the connection pool, it may be populated with connec-

tions each time the application is started, which causes a performance

penalty up front.

• Single-user applications, such as report writers—If your application only

needs to establish a connection for a single user who runs reports two to

three times daily, the memory usage on the database server associated with a

connection pool degrades performance more than establishing the connec-

tion two or three times daily.

• Applications that run single-user batch jobs, such as end-of-
day/week/month reporting—Connection pooling provides no advantage

for batch jobs that access only one database server, which typically equates to

only one connection. Furthermore, batch jobs are usually run during off

hours when performance is not as much of a concern.

Your Applications 15

Performance Tip

When your application does not use connection pooling, avoid connect-

ing and disconnecting multiple times throughout your application to exe-

cute SQL statements, because each connection might use five to ten

times as many network requests as the SQL statement.

ptg

Creating a New Connection One at a Time as Needed

When you create a new connection one at a time as needed, you can design your

application to create either of the following:

• One connection for each statement to be executed

• One connection for multiple statements, which is often referred to as using

multiple threads

Figure 2-2 compares these two connection models.

16 Designing for Performance: What’s Your Strategy?

S1

S2

S3

S4

S5

S1 C1

C1
S2 C2

S3 C3

S4 C4

S5 C5

One Connection for Multiple Statements One Connection for Each Statement

Connection C1
Statements S1,S2,S3,S4,S5
all share connection C1.

Connections C1,C2,C3,C4,C5
Statements S1,S2,S3,S4,S5
all have their own connection.

Figure 2-2 Comparing two connection models

The advantage of using one connection for each statement is that each state-

ment can access the database at the same time. The disadvantage is the overhead

of establishing multiple connections.

The advantages and disadvantages of using one connection for multiple

statements are explained later in this section.

One Connection for Multiple Statements

Before we can explain the details of one connection for multiple statements, we

need to define statement. Some people equate “statement” to “SQL statement.”

We like the definition of “statement” that is found in the Microsoft ODBC 3.0

Programmer’s Reference:

ptg

A statement is most easily thought of as an SQL statement, such as SELECT *

FROM Employee. However, a statement is more than just an SQL statement—

it consists of all of the information associated with that SQL statement, such as

any result sets created by the statement and parameters used in the execution

of the statement. A statement does not even need to have an application-

defined SQL statement. For example, when a catalog function such as

SQLTables is executed on a statement, it executes a predefined SQL statement

that returns a list of table names.1

To summarize, a statement is not only the request sent to the database but

the result of the request.

How One Connection for Multiple Statements Works

Your Applications 17

Note

Because of the architecture of the ADO.NET API, this connection model

typically does not apply.

When you develop your application to use one connection for multiple

statements, an application may have to wait for a connection. To understand

why, you must understand how one connection for multiple statements works;

this depends on the protocol of the database system you are using: streaming or

cursor based. Sybase, Microsoft SQL Server, and MySQL are examples of stream-

ing protocol databases. Oracle and DB2 are examples of cursor-based protocol

databases.

Streaming protocol database systems process the query and send results

until there are no more results to send; the database is uninterruptable.

Therefore, the network connection is “busy” until all results are returned

(fetched) to the application.

Cursor-based protocol database systems assign a database server-side

“name” (cursor) to a SQL statement. The server operates on that cursor in incre-

mental time segments. The driver tells the database server when to work and

how much information to return. Several cursors can use the network connec-

tion, each working in small slices of time.

1 Microsoft ODBC 3.0 Programmer’s Reference and SDK Guide, Volume I. Redmond: Microsoft Press,
1997

ptg

18 Designing for Performance: What’s Your Strategy?

Example A: Streaming Protocol Result Sets

Let’s look at the case where your SQL statement creates result sets and

your application is accessing a streaming protocol database. In this

case, the connection is unavailable to process another SQL statement

until the first statement is executed and all results are returned to the

application. The time this takes depends on the size of the result set.

Figure 2-3 shows an example.

Figure 2-3 Streaming protocol result sets

Streaming Protocol
Database

Statement requesting
result sets is sent.

Result sets returned: All packets must be
received before connection is available.

Driver CONNECTION

Example B: Streaming Protocol Updates

Let’s look at the case where the SQL statement updates the database

and your application is accessing a streaming protocol database, as

shown in Figure 2-4. The connection is available as soon as the state-

ment is executed and the row count is returned to the application.

Figure 2-4 Streaming protocol updates

Streaming Protocol
Database

Update statement is sent.

Row count is returned;
then connection is available.

Driver CONNECTION

ptg

Figure 2-5 Cursor-based protocol/result sets

Your Applications 19

Example C: Cursor-Based Protocol/Result Sets

Last, let’s look at the case where your SQL statement creates result sets

and your application is accessing a cursor-based protocol database.

Unlike Example A, which is a streaming protocol example, the connec-

tion is available before all the results are returned to the application.

When using cursor-based protocol databases, the result sets are

returned as the driver asks for them. Figure 2-5 shows an example.

Time0

Cursor-Based
Protocol Database

SQL Select statement 1 is executed.

Driver CONNECTION

SQL Select statement 2 is waiting to
be executed until the fetched rows for
statement 1 are returned.

Driver CONNECTION

Time1

Application fetches rows from results
of statement 1.

Connection is available when fetched
rows are returned.

Driver CONNECTION

ptg

Advantages and Disadvantages

The advantage of using one connection for multiple statements is that it reduces

the overhead of establishing multiple connections, while allowing multiple state-

ments to access the database. The overhead is reduced on both the database

server and client machines.

The disadvantage of using this method of connection management is that

the application may have to wait to execute a statement until the single connec-

tion is available. We explained why in “How One Connection for Multiple

Statements Works,” page 17.

Guidelines for One Connection for Multiple Statements

Here are some guidelines for when to use one connection for multiple state-

ments:

• Consider using this connection model when your database server has hard-

ware constraints such as limited memory and one or more of the following

conditions are true:

a. You are using a cursor-based protocol database.

b. The statements in your application return small result sets or no result

sets.

c. Waiting for a connection is acceptable. The amount of time that is

acceptable for the connection to be unavailable depends on the require-

ments of your application. For example, 5 seconds may be acceptable for

an internal application that logs an employee’s time but may not be

acceptable for an online transaction processing (OLTP) application such

as an ATM application. What is an acceptable response time for your

application?

• This connection model should not be used when your application uses

transactions.

Case Study: Designing Connections

Let’s look at one case study to help you understand how to design database con-

nections. The environment details are as follows:

• The environment includes a middle tier that must support 20 to 100 concur-

rent database users, and performance is key.

20 Designing for Performance: What’s Your Strategy?

ptg

• CPU and memory are plentiful on both the middle tier and database server.

• The database is Oracle, Microsoft SQL Server, Sybase, or DB2.

• The API that the application uses is ODBC, JDBC, or ADO.NET.

• There are 25 licenses for connections to the database server.

Here are some possible solutions:

• Solution 1: Use a connection pool with a maximum of 20 connections, each

with a single statement.

• Solution 2: Use a connection pool with a maximum of 5 connections, each

with 5 statements.

• Solution 3: Use a single connection with 5 to 25 statements.

The key information in this case study is the ample CPU and memory on

both the middle tier and database server and the ample number of licenses to the

database server. The other information is really irrelevant to the design of the

database connections.

Solution 1 is the best solution because it performs better than the other two

solutions. Why? Processing one statement per connection provides faster results

for users because all the statements can access the database at the same time.

The architecture for Solutions 2 and 3 is one connection for multiple state-

ments. In these solutions, the single connection can become a bottleneck, which

means slower results for users. Therefore, these solutions do not meet the

requirement of “performance is key.”

Transaction Management

A transaction is one or more SQL statements that make up a unit of work per-

formed against the database, and either all the statements in a transaction are

committed as a unit or all the statements are rolled back as a unit. This unit of

work typically satisfies a user request and ensures data integrity. For example,

when you use a computer to transfer money from one bank account to another,

the request involves a transaction: updating values stored in the database for

both accounts. For a transaction to be completed and database changes to be

made permanent, a transaction must be completed in its entirety.

What is the correct transaction commit mode to use in your application?

What is the right transaction model for your database application: local or dis-

tributed? Use the guidelines in this section to help you manage transactions more

efficiently.

Your Applications 21

ptg

You should also read the chapter for the standards-based API that you work

with; these chapters provide specific examples for each API:

• For ODBC users, see Chapter 5.

• For JDBC users, see Chapter 6.

• For ADO.NET users, see Chapter 7.

Managing Commits in Transactions

Committing (and rolling back) transactions is slow because of the disk I/O and

potentially the number of network round trips required. What does a commit

actually involve? The database must write to disk every modification made by a

transaction to the database. This is usually a sequential write to a journal file (or

log); nevertheless, it involves expensive disk I/O.

In most standards-based APIs, the default transaction commit mode is auto-

commit. In auto-commit mode, a commit is performed for every SQL statement

that requires a request to the database, such as Insert, Update, Delete, and

Select statements. When auto-commit mode is used, the application does not

control when database work is committed. In fact, commits commonly occur

when there’s actually no real work to commit.

Some database systems, such as DB2, do not support auto-commit mode.

For these databases, the database driver, by default, sends a commit request to the

database after every successful operation (SQL statement). This request equates

to a network round trip between the driver and the database. The round trip to

the database occurs even though the application did not request the commit and

even if the operation made no changes to the database. For example, the driver

makes a network round trip even when a Select statement is executed.

Because of the significant amount of disk I/O required to commit every

operation on the database server and because of the extra network round trips

that occur between the driver and the database, in most cases you will want to

turn off auto-commit mode in your application. By doing this, your application

can control when the database work is committed, which provides dramatically

better performance.

Consider the following real-world example. ASoft Corporation coded a

standards-based database application and experienced poor performance in test-

ing. Its performance analysis showed that the problem resided in the bulk five

million Insert statements sent to the database. With auto-commit mode on, this

meant an additional five million Commit statements were being issued across the

22 Designing for Performance: What’s Your Strategy?

ptg

network and that every inserted row was written to disk immediately following

the execution of the Insert. When auto-commit mode was turned off in the

application, the number of statements issued by the driver and executed on the

database server was reduced from ten million (five million Inserts + five mil-

lion Commits) to five million and one (five million Inserts + one Commit). As a

consequence, application processing was reduced from eight hours to ten min-

utes. Why such a dramatic difference in time? There was significantly less disk

I/O required by the database server, and there were 50% fewer network round

trips.

Your Applications 23

Performance Tip

Although turning off auto-commit mode can help application perfor-

mance, do not take this tip too far. Leaving transactions active can

reduce throughput by holding locks on rows for longer than necessary,

preventing other users from accessing the rows. Typically, committing

transactions in intervals provides the best performance as well as accept-

able concurrency.

If you have turned off auto-commit mode and are using manual commits,

when does it make sense to commit work? It depends on the following factors:

• The type of transactions your application performs. For example, does your

application perform transactions that modify or read data? If your applica-

tion modifies data, does it update large amounts of data?

• How often your application performs transactions.

For most applications, it’s best to commit a transaction after every logical

unit of work. For example, consider a banking application that allows users to

transfer money from one account to another. To protect the data integrity of that

work, it makes sense to commit the transaction after both accounts are updated

with the new amounts.

However, what if an application allows users to generate reports of account

balances for each day over a period of months? The unit of work is a series of

Select statements, one executed after the other to return a column of balances.

In most cases, for every Select statement executed against the database, a lock is

placed on rows to prevent another user from updating that data. By holding

ptg

locks on rows for longer than necessary, active transactions can prevent other

users from updating data, which ultimately can reduce throughput and cause

concurrency issues. In this case, you may want to commit the Select statements

in intervals (after every five Select statements, for example) so that locks are

released in a timely manner.

In addition, be aware that leaving transactions active consumes database

memory. Remember that the database must write every modification made by a

transaction to a log that is stored in database memory. Committing a transaction

flushes the contents of the log and releases database memory. If your application

uses transactions that update large amounts of data (1,000 rows, for example)

without committing modifications, the application can consume a substantial

amount of database memory. In this case, you may want to commit after every

statement that updates a large amount of data.

How often your application performs transactions also determines when

you should commit them. For example, if your application performs only three

transactions over the course of a day, commit after every transaction. In contrast,

if your application constantly performs transactions that are composed of

Select statements, you may want to commit after every five Select statements.

Isolation Levels

We will not go into the details of isolation levels in this book, but architects

should know the default transaction isolation level of the database system they

are using. A transaction isolation level represents a particular locking strategy

used in the database system to improve data integrity.

Most database systems support several isolation levels, and the standards-

based APIs provide ways for you to set isolation levels. However, if the database

driver you are using does not support the isolation level you set in your applica-

tion, the setting has no effect. Make sure you choose a driver that gives you the

level of data integrity that you need.

Local Transactions Versus Distributed Transactions

A local transaction is a transaction that accesses and updates data on only one

database. Local transactions are significantly faster than distributed transactions

because local transactions do not require communication between multiple

databases, which means less logging and fewer network round trips are required

to perform local transactions.

24 Designing for Performance: What’s Your Strategy?

ptg

Use local transactions when your application does not have to access or

update data on multiple networked databases.

A distributed transaction is a transaction that accesses and updates data on

multiple networked databases or systems and must be coordinated among those

databases or systems. These databases may be of several types located on a single

server, such as Oracle, Microsoft SQL Server, and Sybase; or they may include

several instances of a single type of database residing on numerous servers.

The main reason to use distributed transactions is when you need to make

sure that databases stay consistent with one another. For example, suppose a cat-

alog company has a central database that stores inventory for all its distribution

centers. In addition, the company has a database for its east coast distribution

center and one for the west coast. When a catalog order is placed, an application

updates the central database and updates either the east or west coast database.

The application performs both operations in one distributed transaction to

ensure that the information in the central database remains consistent with the

information in the appropriate distribution center’s database. If the network

connection fails before the application updates both databases, the entire trans-

action is rolled back; neither database is updated.

Distributed transactions are substantially slower than local transactions

because of the logging and network round trips needed to communicate between

all the components involved in the distributed transaction.

For example, Figure 2-6 shows what happens during a local transaction.

Your Applications 25

Application

Driver

3 1

2

Figure 2-6 Local transaction

ptg

The following occurs when the application requests a transaction:

1. The driver issues a commit request.

2. If the database can commit the transaction, it does, and writes an entry

to its log. If it cannot, it rolls back the transaction.

3. The database replies with a status to the driver indicating if the commit

succeeded or failed.

Figure 2-7 shows what happens during a distributed transaction, in which all

databases involved in the transaction must either commit or roll back the trans-

action.

26 Designing for Performance: What’s Your Strategy?

Application

Driver

Transaction Coordinator

4 1

3c 2a 2c 3a 3c 2a 2c 3a

2b
3b

2b
3b

Figure 2-7 Distributed transaction

The following occurs when the application requests a transaction:

1. The driver issues a commit request.

2. The transaction coordinator sends a precommit request to all databases

involved in the transaction.

ptg

a. The transaction coordinator sends a commit request command to all

databases.

b. Each database executes the transaction up to the point where the data-

base is asked to commit, and each writes recovery information to its

logs.

c. Each database replies with a status message to the transaction coordina-

tor indicating whether the transaction up to this point succeeded or

failed.

3. The transaction coordinator waits until it has received a status message from

each database. If the transaction coordinator received a status message from

all databases indicating success, the following occurs:

a. The transaction coordinator sends a commit message to all the data-

bases.

b. Each database completes the commit operation and releases all the locks

and resources held during the transaction.

c. Each database replies with a status to the transaction coordinator indi-

cating whether the operation succeeded or failed.

4. The transaction coordinator completes the transaction when all acknowl-

edgments have been received and replies with a status to the driver indicat-

ing if the commit succeeded or failed.

Your Applications 27

Note for Java Users

The default transaction behavior of many Java application servers uses

distributed transactions, so changing that default transaction behavior to

local transactions, if distributed transactions are not required, can

improve performance.

SQL Statements

Will your application have a defined set of SQL statements that are executed

multiple times? If your answer is yes, you will most likely want to use prepared

statements and statement pooling if your environment supports it.

ptg

Using Statements Versus Prepared Statements

A prepared statement is a SQL statement that has been compiled, or prepared,

into an access or query plan for efficiency. A prepared statement is available for

reuse by the application without the overhead in the database of re-creating the

query plan. A prepared statement is associated with one connection and is avail-

able until it is explicitly closed or the owning connection is closed.

Most applications have a set of SQL statements that are executed multiple

times and a few SQL statements that are executed only once or twice during the

life of an application. Although the overhead for the initial execution of a pre-

pared statement is high, the advantage is realized with subsequent executions of

the SQL statement. To understand why, let’s examine how a database processes a

SQL statement.

The following occurs when a database receives a SQL statement:

1. The database parses the statement and looks for syntax errors.

2. The database validates the user to make sure the user has privileges to

execute the statement.

3. The database validates the semantics of the statement.

4. The database figures out the most efficient way to execute the statement

and prepares a query plan. Once the query plan is created, the database

can execute the statement.

When a prepared query is sent to the database, the database saves the query

plan until the driver closes it. This allows the query to be executed time and time

again without repeating the steps described previously. For example, if you send

the following SQL statement to the database as a prepared statement, the data-

base saves the query plan:

SELECT * FROM Employees WHERE SSID = ?

Note that this SQL statement uses a parameter marker, which allows the

value in the WHERE clause to change for each execution of the statement. Do not

use a literal in a prepared statement unless the statement will be executed with

the same value(s) every time. This scenario would be rare.

Using a prepared statement typically results in at least two network round

trips to the database server:

• One network round trip to parse and optimize the query

• One or more network round trips to execute the query and retrieve the

results

28 Designing for Performance: What’s Your Strategy?

ptg

Note that not all database systems support prepared statements; Oracle,

DB2, and MySQL do, and Sybase and Microsoft SQL Server do not. If your appli-

cation sends prepared statements to either Sybase or Microsoft SQL Server, these

database systems create stored procedures. Therefore, the performance of using

prepared statements with these two database systems is slower.

Some database systems, such as Oracle and DB2, let you perform a prepare

and execute together. This functionality provides two benefits. First, it eliminates

a round trip to the database server. Second, when designing your application, you

don’t need to know whether you plan to execute the statement again, which

allows you to optimize the next execution of the statement automatically.

Read the next section about statement pooling to see how prepared state-

ments and statement pooling go hand in hand.

Statement Pooling

If you have an application that repeatedly executes the same SQL statements,

statement pooling can improve performance because it prevents the overhead of

repeatedly parsing and creating cursors (server-side resource to manage the SQL

request) for the same statement, along with the associated network round trips.

A statement pool is a group of prepared statements that an application can

reuse. Statement pooling is not a feature of a database system; it is a feature of

database drivers and application servers. A statement pool is owned by a physical

connection, and prepared statements are placed in the pool after their initial exe-

cution. For details about statement pooling, see Chapter 8, “Connection Pooling

and Statement Pooling.”

Your Applications 29

Performance Tip

If your application makes a request only once during its life span, it is

better to use a statement than a prepared statement because it results in

only a single network round trip. Remember, reducing network commu-

nication typically provides the most performance gain. For example, if

you have an application that runs an end-of-day sales report, the query

that generates the data for that report should be sent to the database

server as a statement, not as a prepared statement.

ptg

How does using statement pooling affect whether you use a statement or a

prepared statement?

• If you are using statement pooling and a SQL statement will only be exe-

cuted once, use a statement, which is not placed in the statement pool. This

avoids the overhead associated with finding that statement in the pool.

• If a SQL statement will be executed infrequently but may be executed multi-

ple times during the life of a statement pool, use a prepared statement.

Under similar circumstances without statement pooling, use a statement.

For example, if you have some statements that are executed every 30 minutes

or so (infrequently), the statement pool is configured for a maximum of 200

statements, and the pool never gets full, use a prepared statement.

Data Retrieval

To retrieve data efficiently, do the following:

• Return only the data you need. Read “Retrieving Long Data,” page 31.

• Choose the most efficient way to return the data. Read “Limiting the

Amount of Data Returned,” page 34, and “Choosing the Right Data Type,”

page 34.

• Avoid scrolling through the data. Read “Using Scrollable Cursors,” page 36.

• Tune your database middleware to reduce the amount of information that is

communicated between the database driver and the database. Read “The

Network,” page 44.

For specific API code examples, read the chapter for the standards-based API

that you work with:

• For ODBC users, see Chapter 5.

• For JDBC users, see Chapter 6.

• For ADO.NET users, see Chapter 7.

Understanding When the Driver Retrieves Data

You might think that if your application executes a query and then fetches one

row of the results, the database driver only retrieves that one row. However, in

most cases, that is not true; the driver retrieves many rows of data (a block of

data) but returns only one row to the application. This is why the first fetch your

30 Designing for Performance: What’s Your Strategy?

ptg

application performs may take longer than subsequent fetches. Subsequent

fetches are faster because they do not require network round trips; the rows of

data are already in memory on the client.

Some database drivers allow you to configure connection options that spec-

ify how much data to retrieve at a time. Retrieving more data at one time

increases throughput by reducing the number of times the driver fetches data

across the network when retrieving multiple rows. Retrieving less data at one

time increases response time, because there is less of a delay waiting for the server

to transmit data. For example, if your application normally fetches 200 rows, it is

more efficient for the driver to fetch 200 rows at one time over the network than

to fetch 50 rows at a time during four round trips over the network.

Retrieving Long Data

Retrieving long data—such as large XML data, long varchar/text, long varbinary,

Clobs, and Blobs—across a network is slow and resource intensive. Do your

application users really need to have the long data available to them? If yes, care-

fully think about the most optimal design. For example, consider the user inter-

face of an employee directory application that allows the user to look up an

employee’s phone extension and department, and optionally, view an employee’s

photograph by clicking the name of the employee.

Employee Phone Dept

Harding X4568 Manager

Hoover X4324 Sales

Lincoln X4329 Tech

Taft X4569 Sales

Returning each employee’s photograph would slow performance unneces-

sarily just to look up the phone extension. If users do want to see the photograph,

they can click on the employee’s name and the application can query the data-

base again, specifying only the long columns in the Select list. This method

allows users to return result sets without having to pay a high performance

penalty for network traffic.

Having said this, many applications are designed to send a query such as

SELECT * FROM employees and then request only the three columns they want

Your Applications 31

ptg

to see. In this case, the driver must still retrieve all the data across the network,

including the employee photographs, even though the application never requests

the photograph data.

Some database systems have optimized the expensive interaction between

the database middleware and the database server when retrieving long data by

providing an optimized database data type called LOBs (CLOB, BLOB, and so

on). If your database system supports these data types and long data is created

using those types, then the processing of queries such as SELECT * FROM

employees is less expensive. Here’s why. When a result row is retrieved, the driver

retrieves only a placeholder for the long data (LOB) value. That placeholder is

usually the size of an integer—very small. The actual long data (picture, docu-

ment, scanned image, and so on) is retrieved only when the application specifi-

cally retrieves the value of the result column.

For example, if an employees table was created with the columns FirstName,

LastName, EmpId, Picture, OfficeLocation, and PhoneNumber, and the Picture

column is a long varbinary type, the following interaction would occur between

the application, the driver, and the database server:

1. Execute a statement—The application sends a SQL statement (for

example, SELECT * FROM table WHERE ...) to the database server via

the driver.

2. Fetch rows—The driver retrieves all the values of all the result columns

from the database server because the driver doesn’t know which values

the application will request. All values must be available when needed,

which means that the entire image of the employee must be retrieved

from the database server regardless of whether the application eventu-

ally processes it.

3. Retrieve result values into the application—When the application

requests data, it is moved from the driver into the application buffers on

a column-by-column basis. Even if result columns were prebound by the

application, the application can still request result columns ad hoc.

Now suppose the employees table is created with the same columns except

that the Picture field is a BLOB type. Now the following interaction would occur

between the application, the driver, and the database server:

32 Designing for Performance: What’s Your Strategy?

ptg

1. Execute a statement—The application sends a SQL statement (for

example, SELECT * FROM table WHERE ...) to the database server via

the driver.

2. Fetch rows—The driver retrieves all the values of all the result columns

from the database server, as it did in the previous example. However, in

this case, the entire employee image is not retrieved from the database

server; instead, a placeholder integer value is retrieved.

3. Retrieve result values into the application—When the application

requests data, it is moved from the driver into the application buffers on

a column-by-column basis. If the application requests the contents of

the Picture column, the driver initiates a request to the database server

to retrieve the image of the employee that is identified by the place-

holder value it retrieved. In this scenario, the performance hit associated

with retrieving the image is deferred until the application actually

requests that data.

In general, LOB data types are useful and preferred because they allow effi-

cient use of long data on an as-needed basis. When the intent is to process large

amounts of long data, using LOBs results in extra round trips between the driver

and the database server. For example, in the previous example, the driver had to

initiate an extra request to retrieve the LOB value when it was requested. These

extra round trips usually are somewhat insignificant in the overall performance

of the application because the number of overall round trips needed between the

driver and the database server to return the entire contents of the long data is the

expensive part of the execution.

Although you might prefer to use LOB types, doing so is not always possible

because much of the data used in an enterprise today was not created yesterday.

The majority of data you process was created long before LOB types existed, so

the schema of the tables you use may not include LOB types even if they are sup-

ported by the version of the database system you are using. The coding tech-

niques presented in this section are preferred regardless of the data types defined

in the schema of your tables.

Your Applications 33

Performance Tip

Design your application to exclude long data from the Select list.

ptg

Limiting the Amount of Data Returned

One of the easiest ways to improve performance is to limit the amount of net-

work traffic between the database driver and the database server—one way is to

write SQL queries that instruct the driver to retrieve from the database and

return to the application only the data that the application requires. However,

some applications need to use SQL queries that generate a lot of traffic. For

example, consider an application that needs to display information from support

case histories, which each contain a 10MB log file. But, does the user really need

to see the entire contents of the file? If not, performance would improve if the

application displayed only the first 1MB of the log file.

34 Designing for Performance: What’s Your Strategy?

Performance Tip

When you cannot avoid returning data that generates a lot of network

traffic, control the amount of data being sent from the database to the

driver by doing the following:

• Limiting the number of rows sent across the network

• Reducing the size of each row sent across the network

You can do this by using the methods or functions of the API you work

with. For example, in JDBC, use setMaxRows() to limit the number of

rows a query returns. In ODBC, call SQLSetStmtAttr() with the

SQL_ATTR_MAX_LENGTH option to limit the number of bytes of data

returned for a column value.

Choosing the Right Data Type

Advances in processor technology have brought significant improvements to the

way that operations, such as floating-point math, are handled. However, when

the active portion of your application does not fit into on-chip cache, retrieving

and returning certain data types is expensive. When you are working with data

on a large scale, select the data type that can be processed most efficiently.

Retrieving and returning certain data types across the network can increase or

decrease network traffic. Table 2-1 lists the fastest to the slowest data types to

process and explains why.

ptg

Table 2-1 Fastest to Slowest Processing of Data Types
Data Type Processing

binary Transfer of raw bytes from database to application buffers.

int, smallint, float Transfer of fixed formats from database to application buffers.

decimal Transfer of proprietary data from database to database driver. Driver
must decode, which uses CPU, and then typically has to convert to a
string. (Note: All Oracle numeric types are actually decimals.)

timestamp Transfer of proprietary data from database to database driver. Driver
must decode, which uses CPU, and then typically has to convert to a
multipart structure or to a string. The difference between timestamp
processing and decimal is that this conversion requires conversion
into multiple parts (year, month, day, second, and so on).

char Typically, transfer of larger amounts of data that must be converted
from one code page to another, which is CPU intensive, not because
of the difficulty, but because of the amount of data that must be con-
verted.

Figure 2-8 shows a comparison of how many rows per second are returned

when a column is defined as a 64-bit integer data type versus a decimal(20) data

type. The same values are returned in each case. As you can see in this figure,

many more rows per second are returned when the data is returned as an integer.

Your Applications 35

Threads

R
ow

s/
S

ec
on

d

0

50000

100000

150000

200000

250000

300000

350000

400000

1 2 3 4 5 6 7 8 9 10

Decimal(20)
64-bit Integer

Figure 2-8 Comparison of different data types

ptg

Using Scrollable Cursors

Scrollable cursors allow an application to go both forward and backward

through a result set. However, because of limited support for server-side scrol-

lable cursors in many database systems, drivers often emulate scrollable cursors,

storing rows from a scrollable result set in a cache on the machine where the dri-

ver resides (client or application server). Table 2-2 lists five major database sys-

tems and explains their support of server-side scrollable cursors.

Table 2-2 Database Systems Support of Server-Side Scrollable
Cursors

Database System Explanation

Oracle No native support of database server-side scrollable cursors.
Drivers expose scrollable cursors to applications by emulating the
functionality on the client.

MySQL No native support of database server-side scrollable cursors.
Drivers expose scrollable cursors to applications by emulating the
functionality on the client.

Microsoft SQL Server-side scrollable cursors are supported through stored
Server procedures. Most drivers expose server-side cursors to applications.

DB2 Native support of some server-side scrollable cursor models. Some
drivers support server-side scrollable cursors for the most recent
DB2 versions. However, most drivers expose scrollable cursors to
applications by emulating the functionality on the client.

Sybase ASE Native support for server-side scrollable cursors was introduced in
Sybase ASE 15. Versions prior to 15 do not natively support server-
side scrollable cursors. Drivers expose scrollable cursors to applica-
tions by emulating the functionality on the client.

36 Designing for Performance: What’s Your Strategy?

Performance Tip

For multiuser, multivolume applications, it’s possible that billions, or

even trillions, of network packets move between the driver and the data-

base server over the course of a day. Choosing data types that are

processed efficiently can incrementally boost performance.

ptg

One application design flaw that we have seen many times is that an applica-

tion uses a scrollable cursor to determine how many rows a result set contains

even if server-side scrollable cursors are not supported in the database system.

Here is an ODBC example; the same concept holds true for JDBC. Unless you are

certain that the database natively supports using a scrollable result set, do not call

SQLExtendedFetch() to find out how many rows the result set contains. For dri-

vers that emulate scrollable cursors, calling SQLExtendedFetch() results in the

driver returning all results across the network to reach the last row.

This emulated model of scrollable cursors provides flexibility for the devel-

oper but comes with a performance penalty until the client cache of rows is fully

populated. Instead of using a scrollable cursor to determine the number of rows,

count the rows by iterating through the result set or get the number of rows by

submitting a Select statement with the Count function. For example:

SELECT COUNT(*) FROM employees WHERE ...

Extended Security

It is no secret that performance penalties are a side effect of extended security. If

you’ve ever developed an application that required security, we’re sure that

you’ve discovered this hard truth. We include this section in the book simply to

point out the penalties that go along with security and to provide suggestions for

limiting these penalties if possible.

In this section, we discuss two types of security: network authentication and

data encryption across the network (as opposed to data encrypted in the data-

base).

If your database driver of choice does not support network authentication or

data encryption, you cannot use this functionality in your database application.

Network Authentication

On most computer systems, an encrypted password is used to prove a user’s

identity. If the system is a distributed network system, this password is transmit-

ted over the network and can possibly be intercepted and decrypted by malicious

hackers. Because this password is the one secret piece of information that identi-

fies a user, anyone knowing a user’s password can effectively be that user.

In your enterprise, the use of passwords may not be secure enough. You

might need network authentication.

Your Applications 37

ptg

Kerberos, a network authentication protocol, provides a way to identify

users. Any time users request a network service, such as a database connection,

they must prove their identity.

Kerberos was originally developed at MIT as a solution to the security issues

of open network computing environments. Kerberos is a trusted third-party

authentication service that verifies users’ identities.

Kerberos keeps a database (the Kerberos server) of its clients and their pri-

vate keys. The private key is a complex formula-driven value known only to

Kerberos and the client to which it belongs. If the client is a user, the private key is

an encrypted password.

Both network services that require authentication and clients who want to

use these services must register with Kerberos. Because Kerberos knows the pri-

vate keys of all clients, it creates messages that validate the client to the server and

vice versa.

In a nutshell, here is how Kerberos works:

1. The user obtains credentials that are used to request access to network
services. These credentials are obtained from the Kerberos server and

are in the form of a Ticket-Granting Ticket (TGT). This TGT authorizes

the Kerberos server to grant the user a service ticket, which authorizes

his access to network services.

2. The user requests authentication for a specific network service. The

Kerberos server verifies the user’s credentials and sends a service ticket

to him.

3. The user presents the service ticket to the end server. If the end server

validates the user, the service is granted.

Figure 2-9 shows an example of requesting a database connection (a network

service) when using Kerberos.

An application user requests a database connection after a TGT has been

obtained:

1. The application sends a request for a database connection to the

Kerberos server.

2. The Kerberos server sends back a service ticket.

3. The application sends the service ticket to the database server.

4. The database server validates the client and grants the connection.

38 Designing for Performance: What’s Your Strategy?

ptg

Figure 2-9 Kerberos

Even when you don’t use Kerberos, database connections are performance-

expensive; they can require seven to ten network round trips (see the section,

“Why Connections Are Performance-Expensive,” page 11, for more details).

Using Kerberos comes with the price of adding more network round trips to

establish a database connection.

Your Applications 39

Application Kerberos
Server

1

2

3

4

Performance Tip

To get the best performance possible when using Kerberos, place the

Kerberos server on a dedicated machine, reduce the networking services

run on this machine to the absolute minimum, and make sure you have

a fast, reliable network connection to the machine.

Data Encryption Across the Network

If your database connection is not configured to use data encryption, data is sent

across the network in a “native” format; for example, a 4-byte integer is sent

across the network as a 4-byte integer. The native format is defined by either of

the following:

• The database vendor

• The database driver vendor in the case of a driver with an independent pro-

tocol architecture such as a Type 3 JDBC driver

The native format is designed for fast transmission and can be decoded by

interceptors given some time and effort.

ptg

Because a native format does not provide complete protection from inter-

ceptors, you may want to use data encryption to provide a more secure transmis-

sion of data. For example, you may want to use data encryption in the following

scenarios:

• You have offices that share confidential information over an intranet.

• You send sensitive data, such as credit card numbers, over a database connec-

tion.

• You need to comply with government or industry privacy and security

requirements.

Data encryption is achieved by using a protocol for managing the security of

message transmission, such as Secure Sockets Layer (SSL). Some database sys-

tems, such as DB2 for z/OS, implement their own data encryption protocol. The

way the database-specific protocols work and the performance penalties associ-

ated with them are similar to SSL.

In the world of database applications, SSL is an industry-standard protocol

for sending encrypted data over database connections. SSL secures the integrity

of your data by encrypting information and providing client/server authentica-

tion.

From a performance perspective, SSL introduces an additional processing

layer, as shown in Figure 2-10.

40 Designing for Performance: What’s Your Strategy?

Application Layers

SSL

TCP/IP

Figure 2-10 SSL: an additional processing layer

The SSL layer includes two CPU-intensive phases: SSL handshake and

encryption.

When encrypting data using SSL, the database connection process includes

extra steps between the database driver and the database to negotiate and agree

ptg

upon the encryption/decryption information that will be used. This is called the

SSL handshake. An SSL handshake results in multiple network round trips as

well as additional CPU to process the information needed for every SSL connec-

tion made to the database.

During an SSL handshake, the following steps take place, as shown in Fig-

ure 2-11:

1. The application via a database driver sends a connection request to the

database server.

2. The database server returns its certificate and a list of supported encryp-

tion methods (cipher suites).

3. A secure, encrypted session is established when both the database driver

and the server have agreed on an encryption method.

Your Applications 41

Application

1

2

3

Figure 2-11 SSL handshake

Encryption is performed on each byte of data transferred; therefore, the

more data being encrypted, the more processing cycles occur, which means

slower network throughput.

SSL supports symmetric encryption methods such as DES, RC2, and Triple

DES. Some of these symmetric methods cause a larger performance penalty than

others, for example, Triple DES is slower than DES because larger keys must be

used to encrypt/decrypt the data. Larger keys mean more memory must be refer-

enced, copied, and processed. You cannot always control which encryption

method your database server uses, but it is good to know which one is used so

that you can set realistic performance goals.

Figure 2-12 shows an example of how an SSL connection can affect through-

put. In this example, the same benchmark was run twice using the same applica-

tion, JDBC driver, database server, hardware, and operating system. The only

variable was whether an SSL connection was used.

ptg

Figure 2-12 Rows per second: SSL versus non-SSL

Figure 2-13 shows the CPU associated with the throughput of this example.

As you can see, CPU use increases when using an SSL connection.

42 Designing for Performance: What’s Your Strategy?

Threads

R
ow

s/
S

ec
on

d

0

100000

200000

300000

400000

500000

600000

700000

1 2 3 4 5 6 7 8 9 10

SSL
Non-SSL

Select 1 row of 3100 bytes.

Threads

C
P

U
 U

til
iz

at
io

n

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 3 4 5 6 7 8 9 10

SSL

Non-SSL

Select 1 row of 3100 bytes.

Figure 2-13 CPU utilization: SSL versus non-SSL

ptg

Static SQL Versus Dynamic SQL

At the inception of relational database systems and into the 1980s, the only

portable interface for applications was embedded SQL. At that time, there was no

common function API such as a standards-based database API, for example,

ODBC. Embedded SQL is SQL statements written within an application pro-

gramming language such as C. These statements are preprocessed by a SQL pre-

processor, which is database dependent, before the application is compiled. In

the preprocessing stage, the database creates the access plan for each SQL state-

ment. During this time, the SQL was embedded and, typically, always static.

In the 1990s, the first portable database API for SQL was defined by the SQL

Access Group. Following this specification came the ODBC specification from

Microsoft. The ODBC specification was widely adopted, and it quickly became

the de facto standard for SQL APIs. Using ODBC, SQL did not have to be embed-

ded into the application programming language, and precompilation was no

longer required, which allowed database independence. Using SQL APIs, the SQL

is not embedded; it is dynamic.

What is static SQL and dynamic SQL? Static SQL is SQL statements in an

application that do not change at runtime and, therefore, can be hard-coded into

the application. Dynamic SQL is SQL statements that are constructed at run-

time; for example, the application may allow users to enter their own queries.

Thus, the SQL statements cannot be hard-coded into the application.

Static SQL provides performance advantages over dynamic SQL because sta-

tic SQL is preprocessed, which means the statements are parsed, validated, and

optimized only once.

Static SQL Versus Dynamic SQL 43

Performance Tip

To limit the performance penalty associated with data encryption, con-

sider establishing a connection that uses encryption for accessing sensi-

tive data such as an individual’s tax ID number, and another connection

that does not use encryption for accessing data that is less sensitive,

such as an individual’s department and title. There is one caveat here:

Not all database systems allow this. Oracle and Microsoft SQL Server are

examples of database systems that do. Sybase is an example of either all

connections to the database use encryption or none of them do.

ptg

If you are using a standards-based API, such as ODBC, to develop your

application, static SQL is probably not an option for you. However, you can

achieve a similar level of performance by using either statement pooling or

stored procedures. See “Statement Pooling,” page 29, for a discussion about how

statement pooling can improve performance.

A stored procedure is a set of SQL statements (a subroutine) available to

applications accessing a relational database system. Stored procedures are physi-

cally stored in the database. The SQL statements you define in a stored procedure

are parsed, validated, and optimized only once, as with static SQL.

Stored procedures are database dependent because each relational database

system implements stored procedures in a proprietary way. Therefore, if you

want your application to be database independent, think twice before using

stored procedures.

44 Designing for Performance: What’s Your Strategy?

Note

Today, a few tools are appearing on the market that convert dynamic

SQL in a standards-based database application into static SQL. Using sta-

tic SQL, applications achieve better performance and decreased CPU

costs. The CPU normally used to prepare a dynamic SQL statement is

eliminated.

The Network

The network, which is a component of the database middleware, has many fac-

tors that affect performance: database protocol packets, network packets, net-

work hops, network contention, and packet fragmentation. See “Network,” in

Chapter 4 (page 86) for details on how to understand the performance implica-

tions of the network and guidelines for dealing with them.

In this section, let’s look at one important fact about performance and the

network: database application performance improves when communication

between the database driver and the database is optimized.

With this in mind, you should always ask yourself: How can I reduce

the information that is communicated between the driver and the database? One

important factor in this optimization is the size of database protocol packets.

ptg

The size of database protocol packets sent by the database driver to the data-

base server must be equal to or less than the maximum database protocol packet

size allowed by the database server. If the database server accepts a maximum

packet size of 64KB, the database driver must send packets of 64KB or less.

Typically, the larger the packet size, the better the performance, because fewer

packets are needed to communicate between the driver and the database. Fewer

packets means fewer network round trips to and from the database.

For example, if the database driver uses a packet size of 32KB and the data-

base server’s packet size is configured for 64KB, the database server must limit its

packet size to the smaller 32KB packet size used by the driver—increasing the

number of packets sent over the network to return the same amount of data to

the client (as shown in Figure 2-14).

The Network 45

Using 64KB Packets

Driver

Using 32KB Packets

Driver

Figure 2-14 Using different packet sizes

This increase in the number of packets also means an increase in packet

overhead. High packet overhead reduces throughput, or the amount of data that

is transferred from sender to receiver over a period of time.

ptg

You might be thinking, “But how can I do anything about the size of data-

base protocol packets?”You can use a database driver that allows you to configure

their size. See “Runtime Performance Tuning Options,” page 62, for more infor-

mation about which performance tuning options to look for in a database driver.

The Database Driver

The database driver, which is a component of the database middleware, can

degrade the performance of your database application because of the following

reasons:

• The architecture of the driver is not optimal.

• The driver is not tunable. It does not have runtime performance tuning

options that allow you to configure the driver for optimal performance.

See Chapter 3, “Database Middleware: Why It’s Important,” for a detailed

description of how a database driver can improve the performance of your data-

base application.

In this section, let’s look at one important fact about performance and a

database driver: The architecture of your database driver matters. Typically, the

most optimal architecture is database wire protocol.

Database wire protocol drivers communicate with the database directly,

eliminating the need for the database’s client software, as shown in Figure 2-15.

46 Designing for Performance: What’s Your Strategy?

Application

Database
Driver

Database Wire Protocol

Standards-Based Calls

Figure 2-15 Database wire protocol architecture

ptg

Using a wire protocol database driver improves the performance of your

database application because it does the following:

• Decreases latency by eliminating the processing required in the client soft-

ware and the extra network traffic caused by the client software.

• Reduces network bandwidth requirements from extra transmissions. That is,

database wire protocol drivers optimize network traffic because they can

control interaction with TCP.

We go into more detail about the benefits of using a database wire protocol

driver in “Database Driver Architecture,” page 55.

Know Your Database System

You may think your database system supports all the functionality that is speci-

fied in the standards-based APIs (such as ODBC, JDBC, and ADO.NET). That is

likely not true. Yet, the driver you use may provide the functionality, which is

often a benefit to you. For example, if your application performs bulk inserts or

updates, you can improve performance by using arrays of parameters. Yet, not all

database systems support arrays of parameters. In any case, if you use a database

driver that supports them, you can use this functionality even if the database sys-

tem does not support it, which 1) results in performance improvements for bulk

inserts or updates, and 2) eliminates the need for you to implement the function-

ality yourself.

The trade-off of using functionality that is not natively supported by your

database system is that emulated functionality can increase CPU use. You must

weigh this trade-off against the benefit of having the functionality in your appli-

cation.

The protocol of your database system is another important implementation

detail that you should understand. Throughout this chapter, we discussed design

decisions that are affected by the protocol used by your database system of

choice: cursor-based or streaming. Explanations of these two protocols can be

found in “One Connection for Multiple Statements” on page 16.

Table 2-3 lists some common functionality and whether it is natively sup-

ported by five major database systems.

Know Your Database System 47

ptg

Table 2-3 Database System Native Support
Microsoft

Functionality DB2 SQL Server MySQL Oracle Sybase ASE

Cursor-based Supported Supported Not Supported Not
protocol supported supported

Streaming Not Not Supported Not Supported
protocol supported supported supported

Prepared Native Native Native Native Not
statements supported

Arrays of Depends Depends Not Native Not
parameters on version on version supported supported

Scrollable Supported Supported Not Not Depends
cursors1 supported supported on version

Auto-commit Not Not Native Native Native
mode supported supported

LOB locators Native Native Not Native Not
supported supported

1 See Table 2-2, page 36, for more information about how these database systems support
scrollable cursors.

Using Object-Relational Mapping Tools

Most business applications access data in relational databases. However, the rela-

tional model is designed for efficiently storing and retrieving data, not for the

object-oriented model often used for business applications.

As a result, new object-relational mapping (ORM) tools are becoming popu-

lar with many business application developers. Hibernate and Java Persistence

API (JPA) are such tools for the Java environment, and NHibernate and

ADO.NET Entity Framework are such tools for the .NET environment.

Object-relational mapping tools map object-oriented programming objects

to the tables of relational databases. When using relational databases with

objects, typically, an ORM tool can reduce development costs because the tool

does the object-to-table and table-to-object conversions needed. Otherwise,

these conversions must be written in addition to the application development.

ORM tools allow developers to focus on the business application.

48 Designing for Performance: What’s Your Strategy?

ptg

From a design point of view, you need to know that when you use object-

relational mapping tools you lose much of the ability to tune your database

application code. For example, you are not writing the SQL statements that are

sent to the database; the ORM tool is creating them. This can mean that the SQL

statements could be more complex than ones you would write, which can result

in performance issues. Also, you don’t get to choose the API calls used to return

data, for example, SQLGetData versus SQLBindCol for ODBC.

To optimize application performance when using an ORM tool, we recom-

mend that you tune your database driver appropriately for use with the database

your application is accessing. For example, you can use a tool to log the packets

sent between the driver and the database and configure the driver to send a

packet size that is equal to the packet size of that configured on the database. See

Chapter 4, “The Environment: Tuning for Performance,” for more information.

Summary

Many factors affect performance. Some are beyond your control, but thoughtful

design of your application and the configuration of the database middleware that

connects your application to the database server can result in optimal perfor-

mance.

If you are going to design only one aspect of your application, let it be data-

base connections, which are performance-expensive. Establishing a connection

can take up to ten network round trips. You should assess whether connection

pooling or one connection at a time is more appropriate for your situation.

When designing your database application, here are some important ques-

tions to ask: Are you retrieving only the minimum amount of data that you need?

Are you retrieving the most efficient data type? Would a prepared statement save

you some overhead? Could you use a local transaction instead of a more perfor-

mance-expensive distributed transaction?

Lastly, make sure that you are using the best database driver for your applica-

tion. Does your database driver support all the functionality that you want to use

in your application? For example, does your driver support statement pooling?

Does the driver have runtime performance tuning options that you can config-

ure to improve performance? For example, can you configure the driver to

reduce network activity?

Summary 49

ptg

This page intentionally left blank

ptg

Database Middleware:
Why It’s Important

51

Database middleware is important to performance

because it plays a significant role in how your data-

base applications perform. Whether your database appli-

cation services a doctor viewing X-rays, a person getting

money from an ATM, a customer waiting for a credit card

transaction to process at a department store, or a handy-

man waiting for a paint color to match at a building sup-

ply store, the performance of your application depends

on your database middleware and how efficiently the

data is moved at high speeds with high user counts.

In fact, as we stated in Chapter 1, “Performance Isn’t

What It Used to Be,” in a well-tuned environment, 75% to

95% of the time necessary to process a data request is spent

in the database middleware, so if the database middleware is

not optimally tuned, performance suffers.

In this chapter, we define database middleware, discuss

how it can affect performance, and focus on one important

component of database middleware: database drivers.

C H A P T E R T H R E E

ptg

What Is Database Middleware?

Database middleware is all the components that handle the communication

between an application and the database management software. Database mid-

dleware handles the application’s data request until that request is handed to the

database, and in the other direction, it handles the database’s response until it is

handed to the application.

The components of database middleware might include the following:

• Database client software such as Oracle Net8 or DB2 Connect

• JDBC or ODBC database drivers

• Driver Manager for ODBC or JDBC

• ADO.NET data providers

• Java Virtual Machine (JVM) in a JDBC-enabled database application

• TCP/IP network or other libraries loaded into the application’s address space

when it connects to a database such as SSL libraries for data encryption

Figure 3-1 shows an example of a deployed ODBC-enabled database appli-

cation and the middleware it uses.

52 Database Middleware: Why It’s Important

ODBC
Application

Driver
Manager

TCP/IP Network

Database
Driver

Figure 3-1 Database middleware example

How Database Middleware Affects Application Performance

Database applications typically fall into four basic categories:

• Applications that return a small result and a single row, such as an ATM

transaction—often referred to as online transaction processing (OLTP)

applications. For example, this might be a Select statement that retrieves

one row with two columns.

ptg

• Applications that return a large result and a single row, such as purchase

order applications. For example, this might be a Select statement that

retrieves one row with 30 columns.

• Applications that return a small result and many rows, such as a report with

a list of part numbers—often referred to as drill-down applications. For

example, this might be a Select statement that retrieves 100 rows with one

column.

• Applications that return a large result and many rows, such as reporting

applications—often referred to as business intelligence applications. For

example, this might be a Select statement that retrieves 10,000 rows with 30

columns.

The performance issues you might see in an application can depend on the

amount of data your application requests. The more data an application

requests, the more data the database driver must retrieve from the database and

return to the application. More data can equate to a longer response time. The

first three types of applications in the preceding list may have many of the same

performance issues. The performance issues are likely caused by poorly tuned

database middleware because in these types of applications, most of the response

time is spent in the database middleware.

For business intelligence applications (applications that report, analyze, and

present data), you will see different performance issues depending on whether

the application is generating a report or doing expensive online analytical pro-

cessing (OLAP) analysis. In the case of a report, most of the response time is

spent in the database middleware. For OLAP, most of the response time is spent

in the database, not the middleware.

In this chapter, we focus on database drivers—what they are, what they do,

and how they affect performance. See Chapter 4, “The Environment: Tuning for

Performance,” for information about how your runtime environment, network,

operating system, and hardware can affect performance.

Database Drivers

A database driver is a software component that an application uses on demand

to gain access to a database using a standards-defined method.

Database drivers are a key component of your database application deploy-

ment, and they can affect the performance of your database application. You

might be thinking that a driver is a driver is a driver. But that isn’t true.

Database Drivers 53

ptg

Here are two major reasons a database driver can degrade the performance

of your database application:

• The architecture of the driver is not optimal.

• The driver is not tunable. It does not have runtime performance tuning

options that allow you to configure the driver for optimal performance. The

type of options that we are talking about are ones that you can adjust to

match your application and environment. For example, if your application

retrieves large objects, look for a driver option that allows you to configure

how much active memory the driver uses to cache a large object.

What Does a Database Driver Do?

The standards-based API specifications define the required functionality that a

database driver must implement to be compliant. All drivers are not created

equal; some drivers on the market are implemented with only the required func-

tionality, and some are implemented with much, much more. You may be sur-

prised at how many tasks database drivers perform. The following list provides a

brief description of the tasks. Remember that not all drivers implement all this

functionality:

• Translate a standards-based API (such as ODBC or JDBC) into a low-level

set of database API requests (such as to a proprietary database wire protocol)

• Provide thread safety to the application when making database API requests

• Provide a full state machine regarding environment context for making

database connections and statements for executing SQL queries

• Handle all data conversion from a proprietary database format of data into

native language data types

• Buffer database query results from the network into the application’s buffers

• Manage the TCP/IP connection from the client to the database server

• Provide load balancing to various database servers

• Provide failover to backup database servers if fatal errors occur

• Map errors from database-specific codes into standard errors

• Provide data translation from client code pages to and from database-spe-

cific code pages

• Take cross-database SQL and translate it to database-specific SQL

54 Database Middleware: Why It’s Important

ptg

• Optimize database stored procedure requests from character-based SQL to

database-specific RPC calls

• Optimize data access to ensure scalability

• Control the state of the network port to the database to ensure only one

active statement is being processed

• Emulate functionality not present in the database (for example, scrollable

cursors, arrays of parameters, prepared statements)

• Batch queries in chunks to get maximum throughput

• Expose database options as configuration options

• Manage database transaction states, including coordinating with distributed

transaction coordinators

• Provide connection pooling for the application

• Provide network authentication and data encryption across the network

The way all this functionality is implemented in a database driver is key to

how well the driver performs. Even when two database drivers implement all the

same functionality, the performance of the database drivers may be quite differ-

ent when used with your database applications. If you are experiencing less than

optimal performance with the database driver you are using, consider evaluating

another database driver. See Chapter 9, “Developing Good Benchmarks,” for

information about how to test database drivers in your environment.

When selecting a driver for your database application, make sure that the

driver’s functionality meets the requirements of your application. For example, if

you are implementing a Unicode application, make sure the database driver you

choose supports Unicode. Unicode is a standard encoding that is used to support

multilingual character sets.

Database Driver Architecture

Four distinct architectures exist for database drivers: bridge, client-based, data-

base wire protocol, and independent protocol. Choose a database driver that is

implemented with an architecture that provides the best performance for your

application.

Bridge Architecture

A bridge is a database driver that bridges between an existing database connec-

tivity standard and a new one, as shown in Figure 3-2. For example, when Sun

Microsystems, Inc. released the JDBC specification, Sun wanted to encourage

Database Drivers 55

ptg

developers to use JDBC, but not many JDBC drivers were on the market at the

time. However, hundreds of ODBC drivers to almost every data source were

available, so Sun Microsystems, Inc. released a single JDBC/ODBC bridge that

gave Java developers access to all the data sources that the ODBC drivers sup-

ported.

56 Database Middleware: Why It’s Important

Bridge

Database
Driver

Database Wire Protocol

Alternate Standards-Based
Calls such as ODBC

Application

New Standards-Based Calls
such as JDBC

Figure 3-2 Database driver bridge architecture

Many JDBC/ODBC bridges are available on the market; these are called

Type 1 JDBC drivers. The book JDBC API Tutorial and Reference states that

Type 1 drivers are “generally less desirable solutions.”1 Unless no other solution

meets the requirements of your database application, you should consider using

a database driver with a more optimal architecture.

Following are the disadvantages of using bridges:

• Often they cannot fully implement a new standard because they are con-

strained by the definition of the alternate standard.

• They can pose security risks.

• Many implementations struggle to function optimally under high user

counts.

1 Fisher, Maydene, Jon Ellis, and Jonathan Bruce. JDBC API Tutorial and Reference, Third Edition.
Addison-Wesley, 2003.

ptg

Database Client-Based Architecture

Client-based database drivers communicate with the database through the data-

base’s client software, as shown in Figure 3-3. This software is the database ven-

dor’s proprietary software, such as Oracle Net8 or OpenClient for Sybase. Many

ODBC drivers and ADO.NET data providers on the market use this architecture.

In the JDBC world, only a few drivers, known as Type 2 drivers, use this architec-

ture. JDBC API Tutorial and Reference states that Type 2 drivers are “generally less

desirable solutions.”

Database Drivers 57

Database
Driver

Client
Software

Database Wire Protocol

Client-Based Protocol

Application

Standards-Based Calls

Figure 3-3 Database client-based architecture

Following are the disadvantages of using client-based drivers:

• You must install, configure, and maintain database client software on every

computer that needs database connectivity.

• You may have to install and support a different version of the client software

for each version of the database system you are using.

• The database driver must be developed with the restrictions of the client

software, which may be either functional or quality restrictions. For exam-

ple, if your application is designed to run on a 64-bit Linux operating

ptg

system, but the database vendor does not offer its database client software on

that operating system, the database driver vendor cannot develop a 64-bit

Linux driver.

• In the case of Java and ADO.NET, the database driver/provider must make

calls to the client software, which is Java native libraries or ADO.NET

unmanaged code. See the following section, “Database Wire Protocol

Architecture,” for details.

Database Wire Protocol Architecture

Database wire protocol drivers communicate with the database directly, elimi-

nating the need for the database’s client software, as shown in Figure 3-4.

58 Database Middleware: Why It’s Important

Application

Database
Driver

Database Wire Protocol

Standards-Based Calls

Figure 3-4 Database wire protocol architecture

Today, few ODBC drivers and ADO.NET data providers on the market use

this architecture. Many JDBC drivers, known as Type 4 drivers, use this architec-

ture.

Databases have a proprietary API that allows other software components to

communicate with them. In a client-based architecture, the client software

makes the wire protocol calls to the database. In a database wire protocol archi-

tecture, the database drivers generate the required wire protocol calls, thereby

communicating directly with the database.

The benefits of choosing a database driver that has a database wire protocol

architecture are many. First, the database driver can be installed with your database

application and can immediately connect to the database without configuring

ptg

other software. Second, you do not have to install, configure, and maintain data-

base client software. Third, performance is improved because a database wire pro-

tocol driver does both of the following:

• Decreases latency by eliminating the processing required in the client soft-

ware and the extra network traffic caused by the client software.

• Reduces network bandwidth requirements from extra transmissions. That is,

database wire protocol drivers can optimize network traffic because they can

control interaction with TCP.

Regarding Java and ADO.NET, another important advantage exists when

you use a database wire protocol driver/provider: The driver/provider does not

have to make calls to the client software. What does this mean?

• For Java, this means the driver can use Pure Java code and not make calls to

the native libraries. The Pure Java standard is a set of programs, rules, and

certifications used in the design process to ensure that Java executables live

up to the WORA (write once, run always) principles. A Pure Java program

relies only on the Java Language specifications. Using native methods in a

Java program means that you lose the benefits of the Java runtime, such as

security, platform independence, garbage collection, and easy class loading.

Specific external functionality is provided by the Java core APIs, such as

JDBC.

• For ADO.NET, this means the provider can use 100% managed code. The

benefit of 100% managed code is that it runs in the Common Language

Runtime (CLR), which provides services such as automatic memory man-

agement and lifetime control of objects, platform neutrality, and cross-lan-

guage integration. Managed code also provides improved versioning

facilities as well as easier deployment. In contrast, unmanaged code, which

includes all code written before the .NET Framework was introduced, does

not run inside the .NET environment and cannot use .NET managed facili-

ties. Performance is decreased because the CLR must perform additional

security checks.

Performance Examples

Figure 3-5 compares the performance of a wire protocol database driver to a

client-based driver. In these examples, each benchmark was run twice using the

same database server, hardware, and operating system. The only variable was the

database driver. The drivers tested were from different vendors. The benchmarks

measured the throughput and scalability of a database application.

Database Drivers 59

ptg

60 Database Middleware: Why It’s Important

Threads

R
ow

s/
S

ec
on

d

0

200000

100000

300000

400000

500000

1 2 3 4 5 6 7 8 9 10

Select 10K rows, 10 Integer columns.

Client-Based Driver
Database Wire Protocol Driver

Threads

R
ow

s/
S

ec
on

d

0

50000

150000

100000

200000

250000

300000

350000

400000

450000

1 2 3 4 5 6 7 8 9 10
Client-Based Driver
Database Wire Protocol Driver

Select 10K rows, 10 Char(20) columns.

Threads

R
ow

s/
S

ec
on

d

0

2000

6000

4000

8000

10000

12000

14000

16000

18000

1 2 3 4 5 6 7 8 9 10
Client-Based Driver
Database Wire Protocol Driver

Select 1 row, 100 bytes.

Figure 3-5 Comparing the performance of a wire protocol driver to a
client-based driver

ptg

As you can see in these graphs, in most cases, the throughput and scalability

of the database wire protocol driver is greater than that of the client-based driver.

Independent Protocol Architecture

Independent protocol database drivers translate the standards-based API calls

into a database-independent protocol, which is then translated to the database

wire protocol by a server. This architecture has both a database driver client and

server component, as shown in Figure 3-6.

A few ODBC and JDBC drivers, and ADO.NET data providers on the market

use this architecture. In the JDBC world, these drivers are known as Type 3 dri-

vers.

Database Drivers 61

Database
Driver Client

Database
Driver Server

Database Wire Protocol

Independent Protocol

Application

Standards-Based Calls

Figure 3-6 Independent protocol architecture

Typically, this type of architecture provides advanced security features such

as the latest SSL encryption, access to a more varied set of data sources such as

SQL to VSAM files, and centralized management and monitoring.

Independent protocol database drivers have many of the same benefits as

database wire protocol drivers. The server-side component of the independent

protocol drivers offers extra value that goes beyond the scope of this book.

ptg

One main disadvantage exists for this type of driver: a client and server com-

ponent must be installed, configured, and maintained, unlike the database wire

protocol drivers. However, you may be willing to pay this price if you cannot find

a database wire protocol driver to access the data source of your choice.

Runtime Performance Tuning Options

Database drivers that offer runtime performance tuning options are ideal to use

in your database application deployment because they provide options that you

can configure to increase response time, throughput, and scalability. Some

important options to look for are ones that allow you to optimize the driver for

the following:

• Retrieving large objects

• Reducing network activity

• Performing bulk operations

Retrieving Large Objects

If your application retrieves large objects, such as pictures, XML, or long text,

you would benefit from using a database driver that you can tune to optimize for

this use. Access to the data types that store large objects often results in perfor-

mance issues with your database application, typically caused by memory bottle-

necks. If memory issues occur and your database driver does not provide

appropriate performance-tuning options, your application is stuck with nonop-

timal performance. See the section, “Memory,” page 107, for information about

memory bottlenecks.

Ideally, architects of applications that access large objects will deploy a data-

base driver with their application that allows for configuration of how much

active memory the driver uses to cache a large object, how long the object is

cached, and when the object becomes available to the client. With these types of

configuration options, you can control memory usage—how much and for how

long data is in memory and when and whether the data is sent to disk.

Reducing Network Activity

To achieve maximum performance and the least amount of activity on the net-

work, the database protocol packet size used by the database driver should be con-

figurable so that it can be set to match the packet size set on the database. If the

database driver uses a packet size smaller than the database’s, the database has to

62 Database Middleware: Why It’s Important

ptg

limit its packet size to the smaller size used by that driver. This results in an

increase in the number of packets sent over the network to return data to the

client. An increase in the number of packets equates to an increase in packet over-

head, and high packet overhead reduces throughput. See the section “Network,”

page 86.

Performing Bulk Operations

In data warehouse applications, loading bulk data into tables is common. To

accomplish this task, you can use the database vendor’s proprietary tools or write

your own tool. But what if you are loading data into Oracle, DB2, and MySQL?

You probably have to use three different ways (or tools) to load the data. In addi-

tion, if you want to operate within a standards-based API to accomplish the task,

you might be out of luck unless you choose database drivers that implement this

functionality in a standard way.

Today, we are seeing some database drivers that have bulk load functionality

implemented as defined in the standards-based APIs. This is good news because

you can write your bulk load applications using the standards-based API bulk

interfaces and then just plug in the database drivers to do the work for you. This

solution provides a simple, consistent, nonproprietary way to load data.

Configuring Database Drivers/Data Providers

The method for configuring a database driver for use with database applications

depends on the driver you are using. In this section, we give examples of how to

configure ODBC drivers, JDBC drivers, and ADO.NET data providers from

DataDirect Technologies. You configure other vendors’ drivers in a similar way.

Refer to your driver’s technical documentation for details.

ODBC Drivers

After you install the driver, you need to configure a data source or use a connec-

tion string to connect to the database. If you want to use a data source but need

to change some of its values, you can either modify the data source or override its

values through a connection string.

Configuring a Data Source on Windows

On Windows, data sources are stored in the Windows Registry. You can configure

and modify data sources through the ODBC Administrator using a driver Setup

dialog box. Figure 3-7 shows an example of an Oracle Setup dialog box.

Database Drivers 63

ptgFigure 3-7 Example of Setup dialog box on Windows

Configuring a Data Source on UNIX/Linux

On UNIX and Linux, data sources are stored in the system information file (by

default, odbc.ini). You can configure and modify data sources directly by edit-

ing the system information file and storing default connection values there. The

system information file is divided into two sections.

At the beginning of the file is a section named [ODBC Data Sources] con-

taining data_source_name=installed-driver pairs. For example:

Oracle Wire Protocol=DataDirect 5.3 Oracle Wire Protocol

The driver uses this section to match a data source to the appropriate

installed driver.

The [ODBC Data Sources] section also includes data source definitions.

The default odbc.ini contains a data source definition for each driver. Each data

source definition begins with a data source name in square brackets, such as

[Oracle Wire Protocol]. The data source definitions contain connection

string attribute=value pairs with default values. You can modify these values

as appropriate for your system.

64 Database Middleware: Why It’s Important

ptg

The second section of the file is named [ODBC] and includes several key-

words:

[ODBC]

IANAAppCodePage=4

InstallDir=ODBCHOME

UseCursorLib=0

Trace=0

TraceFile=odbctrace.out

TraceDll=ODBCHOME/lib/odbctrac.so

The InstallDir keyword must be included in this section. The value of this

keyword is the path to the installation directory under which the /lib and /mes-

sages directories are contained. The installation process automatically writes

your installation directory to the default odbc.ini.

For example, if you choose an installation location of /opt/odbc, the follow-

ing line is written to the [ODBC] section of the default odbc.ini:

InstallDir=/opt/odbc

Here is an example of a default Oracle Wire Protocol driver system informa-

tion file:

[ODBC Data Sources]

Oracle Wire Protocol=DataDirect 5.3 Oracle Wire Protocol

[Oracle Wire Protocol]

Driver=ODBCHOME/lib/ivora23.so

Description=DataDirect 5.3 Oracle Wire Protocol

AlternateServers=

ApplicationUsingThreads=1

ArraySize=60000

AuthenticationMethod=1

CachedCursorLimit=32

CachedDescLimit=0

CatalogIncludesSynonyms=1

CatalogOptions=0

ConnectionRetryCount=0

ConnectionRetryDelay=3

DefaultLongDataBuffLen=1024

Database Drivers 65

ptg

DescribeAtPrepare=0

EnableDescribeParam=0

EnableNcharSupport=0

EnableScrollableCursors=1

EnableStaticCursorsForLongData=0

EnableTimestampWithTimeZone=0

EncryptionMethod=0

GSSClient=native

HostName=<Oracle_server>

HostNameInCertificate=

KeyPassword=

KeyStore=

KeyStorePassword

LoadBalancing=0

LocalTimeZoneOffset=

LockTimeOut=-1

LogonID=

Password=

PortNumber=<Oracle_server_port>

ProcedureRetResults=0

ReportCodePageConversionErrors=0

ReportRecycleBin=0

ServerName=<server_name in tnsnames.ora>

ServerType=0

ServiceName=

SID=<Oracle_System_Identifier>

TimestampeEscapeMapping=0

TNSNamesFile=<tnsnames.ora_filename>

TrustStore=

TrustStorePassword=

UseCurrentSchema=1

ValidateServerCertificate=1

WireProtocolMode=1

[ODBC]

IANAAppCodePage=4

InstallDir=ODBCHOME

66 Database Middleware: Why It’s Important

ptg

UseCursorLib=0

Trace=0

TraceFile=odbctrace.out

TraceDll=ODBCHOME/lib/odbctrac.so

Connecting to a Database Using a Connection String

If you want to use a connection string to connect to a database, or if your appli-

cation requires it, you must specify either a DSN (data source name), a File DSN,

or a DSN-less connection in the string. The difference is whether you use the

DSN=, FILEDSN=, or DRIVER= keyword in the connection string, as described in

the ODBC specification. A DSN or FILEDSN connection string tells the driver

where to find the default connection information. Optionally, you may specify

attribute=value pairs in the connection string to override the default values

stored in the data source. These attribute=value pairs are the specifics of the

connection, such as which database server to connect to and whether the driver

uses connection failover and Kerberos. You can find the connection options sup-

ported by the database driver in the driver’s technical documentation.

The DSN connection string has the following form:

DSN=data_source_name[;attribute=value[;attribute=value]...]

The FILEDSN connection string has this form:

FILEDSN=filename.dsn[;attribute=value[;attribute=value]...]

The DSN-less connection string specifies a driver instead of a data source.

You must enter all connection information in the connection string because

there is no data source storing the information.

The DSN-less connection string has the following form:

DRIVER=[{]driver_name[}][;attribute=value[;attribute=value]

...]

JDBC Drivers

After you install the driver, you can connect to the database in one of the follow-

ing ways: with a connection URL through the JDBC Driver Manager or with a

Java Naming Directory Interface (JNDI) data source. The examples we use in this

section are for a DataDirect Technologies JDBC driver.

Database Drivers 67

ptg

Using the JDBC Driver Manager

One way to connect to a database is through the JDBC Driver Manager by using

the DriverManager.getConnection method. This method uses a string con-

taining a connection URL. The following code fragment shows an example of

using the JDBC Driver Manager to connect to Microsoft SQL Server:

Connection conn = DriverManager.getConnection

("jdbc:datadirect:sqlserver://server1:1433;User=test;

Password=secret");

REGISTERING THE JDBC DRIVER Registering the DataDirect JDBC drivers with

the JDBC Driver Manager allows the JDBC Driver Manager to load them. To

register a JDBC driver with the JDBC Driver Manager, you must specify the

name of the driver. Note that if you are using Java SE 6, you do not need to regis-

ter the drivers. Java SE 6 automatically registers the drivers with the JDBC

Driver Manager.

You can register the DataDirect JDBC drivers with the JDBC Driver Manager

using any of the following methods:

• Method 1—Set the Java system property jdbc.drivers using the Java -D

option. The jdbc.drivers property is defined as a colon-separated list of

driver class names. For example:

java -Djdbc.drivers=com.ddtek.jdbc.db2.DB2Driver:

com.ddtek.jdbc.sqlserver.SQLServerDriver

registers the DataDirect JDBC DB2 driver and the DataDirect JDBC

Microsoft SQL Server driver.

• Method 2—Set the Java property jdbc.drivers from within your Java

application or applet. To do this, include the following code fragment in

your Java application or applet, and call DriverManager.

getConnection:

Properties p = System.getProperties();

p.put ("jdbc.drivers",

"com.ddtek.jdbc.sqlserver.SQLServerDriver");

System.setProperties (p);

• Method 3—Explicitly load the driver class using the standard Class.

forName method. To do this, include the following code fragment in your

application or applet and call DriverManager.getConnection:

Class.forName("com.ddtek.jdbc.sqlserver.SQLServerDriver");

68 Database Middleware: Why It’s Important

ptg

SPECIFYING CONNECTION URLS The connection URL format used with the Driver

Manager is as follows:

jdbc:datadirect:drivername:

//hostname:port[;property=value[;...]]

where:

• drivername is the name of the driver, such as sqlserver.

• hostname is the IP address or TCP/IP host name of the server to which you

are connecting.

• port is the number of the TCP/IP port.

• property=value specifies connection properties. The connection properties

supported by the database driver can be found in the driver’s technical docu-

mentation.

Using a JDBC Data Source

A JDBC data source is a Java object—specifically a DataSource object—that

defines connection information needed for a JDBC driver to connect to the data-

base. Each JDBC driver vendor provides its own data source implementation for

this purpose.

The main advantage of using a data source is that it works with the JNDI

naming service, and it is created and managed apart from applications that use it.

Because the connection information is defined outside the application, it requires

minimal effort to reconfigure your infrastructure when a change is made. For

example, if the database is moved to another database server and uses another

port number, the administrator needs only to change the relevant properties of

the data source (DataSource object). The applications using the database do not

need to change because they only refer to the logical name of the data source.

DataDirect Technologies ships a data source class for each of its JDBC drivers.

Each DataDirect data source class implements the following JDBC interfaces:

• javax.sql.DataSource

• javax.sql.ConnectionPoolDataSource, which allows your applications to

use connection pooling

Database Drivers 69

ptg

• javax.sql.XADataSource, which allows your applications to use distrib-

uted transactions through the Java Transaction API (JTA)

Applications can call a DataDirect JDBC data source using a logical name to

retrieve the javax.sql.DataSource object. This object loads the specified driver

and can establish a connection to the database.

Once the data source has been registered with JNDI, your JDBC application

can use it, as shown in the following example:

Context ctx = new InitialContext();

DataSource ds = (DataSource)ctx.lookup("EmployeeDB");

Connection conn = ds.getConnection("scott", "tiger");

In this example, the JNDI environment is initialized first. Next, the initial

naming context is used to find the logical name of the data source (EmployeeDB).

The Context.lookup() method returns a reference to a Java object, which is

narrowed to a javax.sql.DataSource object. Finally, the DataSource.

getConnection() method is called to establish a connection with the database.

ADO.NET Data Providers

After you install the data provider, you can connect from your application to

your database with a connection string. You can configure the connection string

either by using the common programming model or by using the provider-

specific objects.

Each DataDirect Technologies data provider uses a connection string to pro-

vide information needed to connect to a specific database. The connection infor-

mation is defined by connection string options.

The connection options have the following form:

option=value

Each connection string option value pair is separated by a semicolon. For

example:

Host=Accounting1;Port=50000;User ID=johng;Password=test01;

Database=Test

70 Database Middleware: Why It’s Important

ptg

You can find the connection options supported by the data provider in

the provider’s technical documentation.

Using the Common Programming Model

The following example illustrates connecting to a DB2 database from an applica-

tion developed in Visual Studio 2008 using C# and the common programming

model:

1. Check the beginning of your application. Ensure that the ADO.NET

namespaces are present.

// Access DB2 using factory

using System.Data;

using System.Data.Common;

2. Add the connection information of your server and exception handling

code, and close the connection.

DbProviderFactory factory=DbProviderFactories("DDTek.DB2");

DbConnection Conn = factory.createConnection();

Conn.CommandText = "Host=Accounting1;Port=50000;User ID=johng;

Password=test01;Database=test";

try

{

Conn.Open();

Console.WriteLine("Connection successful!");

}

catch (Exception ex)

{

// Connection failed

Console.WriteLine(ex.Message);

}

// Close the connection

Conn.Close();

Database Drivers 71

ptg

Using the Provider-Specific Objects

The following example uses the provider-specific objects to connect to a database

using the DB2 data provider from an application developed in Visual Studio

2008 using C#:

1. In the Solution Explorer, right-click References, and then select Add
Reference.

72 Database Middleware: Why It’s Important

2. Select the DB2 data provider in the component list of the Add Reference

dialog box.

ptg

3. Click OK. The Solution Explorer now includes DDTek.DB2, the assem-

bly name of the DB2 data provider.

Database Drivers 73

4. Add the data provider’s namespace to the beginning of your applica-

tion, as shown in the following C# code fragment:

// Access DB2

using System.Data;

using DDTek.DB2;

5. Add the connection information for your server and exception handling

code, and close the connection, as shown in the following C# code frag-

ment:

DB2Connection DBConn = new

DB2Connection("Host=Accounting1;Port=50000;User ID=johng;

Password=test01;Database=Test01");

try

{

DBConn.Open();

Console.WriteLine ("Connection successful!");

}

// Display any exceptions

catch (DB2Exception ex)

ptg

{

// Connection failed

Console.WriteLine(ex.Message);

return;

}

6. Close the connection.

// Close the connection

Conn.Close();

Summary

In a well-tuned environment, 75% to 95% of the time it takes to process a data

request is spent in the database middleware; this includes all the components

that handle the communication between an application and the database man-

agement software. Perhaps the most important component of middleware is the

database driver.

Your database driver can degrade performance if it does not include config-

urable options to tune performance or if its architecture is not optimal. The most

optimal architecture for a driver is database wire protocol, which provides the

following advantages:

• Elimination of the need for client software installation, configuration, and

maintenance on each computer needing database connectivity

• Elimination of restrictions of the client software, whether functional or

quality

• Decrease in latency by eliminating the processing and network traffic

required by the client software

• Reduction of network bandwidth requirements from extra transmissions

because the driver can control interaction with TCP

Additionally, database drivers that offer runtime performance tuning

options are ideal to use in your database application deployment. Some impor-

tant options to look for are ones that allow you to optimize the driver for the fol-

lowing:

• Retrieving large objects

• Reducing network activity

• Performing bulk operations

74 Database Middleware: Why It’s Important

ptg

The Environment:
Tuning for Performance

75

The performance of your database application,

whether that is measured by response time,

throughput, or scalability, is affected by many things,

each of which can be a limiting factor to overall perfor-

mance. In Chapter 3, “Database Middleware: Why It’s

Important,” we explained that the database driver is only

one component of your database middleware and that

multiple environment layers also work with the data-

base driver to handle the communication between a

database application and the database management

software. This chapter describes how those environment

layers, shown in Figure 4-1, can influence performance

and how to optimize performance for data requests and

responses that flow through these layers. In addition,

this chapter provides details about how your database

driver and specific application design and coding tech-

niques can optimize your hardware resources and relieve

performance bottlenecks.

C H A P T E R F O U R

ptg

Figure 4-1 Environment layers

The influence of the environment can be significant, as shown by the follow-

ing real-world example. A major business software company thoroughly tested a

new database application on a local area network (LAN), and performance was

acceptable according to all the benchmarks that were run. Surprisingly, when the

database application was deployed in the production environment, which

involved network travel over a wide area network (WAN), overall response time

dropped by half. Puzzled about the performance, developers placed the actual

machines used in the testing environment into the production environment;

performance was still compromised. After troubleshooting the database applica-

tion in the production environment, the developers discovered that the network

traffic over the WAN passed through multiple network nodes with lower MTUs,

which caused network packet fragmentation. See the section, “Avoiding Network

Packet Fragmentation,” page 98, for more information about packet fragmenta-

tion.

76 The Environment: Tuning for Performance

Application/
Application Framework

Client/Application Server

Database Driver/
Provider

Runtime
Environment

Operating System

Network
Software

Hardware

Database

Database Server

Environment
Layers

Operating System

Network
Software

Hardware

Java and
.NET only

Network

ptg

In this chapter, we’ll talk about how the following environment layers affect

performance and what you can do about it:

• Runtime environment (Java and .NET)

• Operating system

• Network

• Hardware

Runtime Environment (Java and .NET)

What do a Java Virtual Machine (JVM) and the .NET Common Language

Runtime (CLR) have in common? They’re both runtime environments for appli-

cations. Whereas a JVM is a runtime environment for the Java language, the

.NET CLR, as part of the .NET Framework, operates as a runtime environment

for multiple languages on Windows platforms. They also significantly impact the

performance of your database applications.

JVM

IBM, Sun Microsystems, Oracle (BEA), and others manufacture their own JVMs.

However, all JVMs are not created equal. Although vendors who produce JVMs

using the “Java” trademark must adhere to the JVM specification published by

Sun Microsystems, Inc., there are differences in the way those JVMs are imple-

mented—differences that affect performance.

For example, Figure 4-2 shows the results of a benchmark that measures the

throughput and scalability of a database application with different JVMs. The

benchmark was run multiple times using the same JDBC driver, database server,

hardware, and operating system. The only variable in this scenario is the choice

of JVM. The JVMs tested were manufactured by different vendors, but were the

same version of JVM and had comparable configurations. As you can see in

Figure 4-2, where each line represents a benchmark run with a different JVM, the

throughput and scalability of JVMs can vary significantly.

Not only does your choice of JVM matter for performance, but how that

JVM is configured matters. Each JVM has tuning options that can impact your

application’s performance. For example, Figure 4-3 shows the results of a bench-

mark that used the same JDBC driver, database server, hardware, operating sys-

tem, and JVM. The benchmark compares the throughput and scalability of a

database application. However, the JVM was first configured to run in client

mode and then configured to run in server mode. (See the section, “Client Versus

Server Mode,” page 82, for more information.) As you can see, the throughput

Runtime Environment (Java and .NET) 77

ptg

78 The Environment: Tuning for Performance

Threads

R
ow

s/
S

ec
on

d

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7 8 9 10

Select 10K rows of 3100 bytes.

Threads

R
ow

s/
S

ec
on

d

0

100000

200000

300000

400000

500000

1 2 3 4 5 6 7 8 9 10

Client Mode
Server Mode

Select 100 rows of 100 bytes.

Figure 4-3 Comparing JVM configurations

and scalability of the JVM running in server mode dramatically outperformed

the JVM running in client mode.

Figure 4-2 Comparing different JVMs

ptg

You can tune the performance of your database application by setting the

following common JVM options:

• Garbage collection

• Client versus server mode

Runtime Environment (Java and .NET) 79

Performance Tip

Choose a JVM that gives your database application the best perfor-

mance. In addition, tuning options, such as those for garbage collection

and client versus server mode, can improve performance.

Garbage Collection

While C++ requires direct control over when memory is allocated and freed,

Java makes this process more automatic. As a Java application runs, it creates Java

objects that it uses for varying lengths of time. When the Java application is fin-

ished with an object, it stops referencing it. The JVM allocates memory for Java

objects from a reserved pool of memory known as the Java heap. This means

that at any one time, the heap may have allocated memory for the following:

• Live objects that are being used by the application

• Dead objects that are no longer used (no longer referenced) by the applica-

tion

Because the heap maintains memory for both types of objects and new

objects are created constantly, eventually the heap runs low on memory. When

this occurs, the JVM runs a routine known as a garbage collector to clean up

dead objects and reclaim memory so that the heap has enough memory to allo-

cate to new objects.

Why does garbage collection matter to performance? Different JVMs use

different garbage collection algorithms, but most garbage collectors halt the allo-

cation of objects while the garbage collector performs its collection routine,

effectively “freezing” any application work running at the same time. Depending

on the garbage collection algorithm used, this pause in work may persist as long

as several seconds. When the garbage collector is finished with its collection, it

lets the allocation of objects resume. For most database applications, lengthy col-

lection pauses can negatively affect performance and scalability.

ptg

The most important options that control garbage collection are these:

• Heap size

• Generation heap size

• Garbage collection algorithm used by the JVM

The heap size controls how much memory is allocated to the overall Java

heap. The heap size also controls how often the JVM performs garbage collection.

Finding the ideal heap size is a balancing act. When the heap size is set to a

large value, garbage collection occurs less frequently, but collection pauses are

longer because there’s more heap to scan. In contrast, small heap sizes cause

garbage collection to occur more frequently, but result in shorter pauses.

If garbage collection occurs too frequently, performance can be severely

impacted. For example, suppose that your application uses a heap size that is too

small to handle every live object being used by your application plus new ones

that need to be created. Once the maximum heap size is reached, your applica-

tion attempts to allocate a new object and fails. This failure triggers the garbage

collector, which frees up memory. Your application tries again to allocate a new

object. If the garbage collector failed to recover enough memory the first time,

the second attempt fails, triggering the garbage collector to run again. Even if the

garbage collector reclaims enough memory to satisfy the immediate request, the

wait won’t be long before another allocation failure occurs, triggering yet another

garbage collection cycle. As a result, instead of servicing your application, the

JVM constantly scavenges the heap for memory.

80 The Environment: Tuning for Performance

Performance Tip

As a general rule, try increasing the heap size so that garbage collection

is not triggered as frequently, keeping in mind that you don’t want to run

out of physical memory (RAM). See the section, “Memory,” page 107, for

information about how running out of RAM affects performance. If

garbage collection pauses seem unnecessarily long, try decreasing the

heap size.

Older JVMs often treat the heap as one big repository, requiring the garbage

collector to inspect each object in the heap to determine whether it is a dead

object and can be cleaned up. Newer JVMs use generational garbage collection
to separate objects into different memory pools within the heap based on the

object’s lifetime.

ptg

Some Java objects are short lived, such as local variables; others are long-

lived, such as connections. Generational garbage collection divides the heap into

Young and Old generations, as shown in Figure 4-4. New objects are allocated

from the Young generation and, if they live long enough, eventually migrate to

the Old generation. Figure 4-4 also shows another generation called the

Permanent generation, which holds the JVM’s class and method objects.

Runtime Environment (Java and .NET) 81

Perm Old

Memory for Objects Created by Your Application

Total Heap Size

Young

Figure 4-4 Heap generations

When the Young generation becomes full, the garbage collector looks for

surviving objects while cleaning up short-lived objects. It moves surviving

objects into a reserved area of the Young generation called a survivor space. If

that survivor is still being used by the next collection, it’s considered tenured. In

this case, the collector moves the object into the Old generation. When the Old

generation becomes full, the garbage collector cleans up any unused objects.

Because the Young generation typically occupies a smaller heap space than the

Old generation, garbage collection occurs more frequently in the Young genera-

tion, but collection pauses are shorter.

Similar to the way that the overall heap size affects garbage collection, the

heap sizes of the generations affect garbage collection.

Performance Tip

As a general rule, set the size of the Young generation to be one-fourth

that of the Old generation. You may want to increase the size of the

Young generation if your application generates large numbers of short-

lived objects.

Different JVMs use different garbage collection algorithms. A few let you tune

which algorithm is used. Each algorithm has its own performance implications.

ptg

For example, an Incremental garbage collection algorithm performs its collection

work a little at a time instead of trying to work its way through the entire heap,

which results in shorter garbage collection pauses but reduces throughput.

Client Versus Server Mode

As a way to improve performance, many JVMs use Just-in-Time (JIT) compilers

to compile and optimize code as it executes. The compiler that the JVM uses

depends on the mode in which the JVM runs:

• Client mode uses a JIT compiler that is optimized for applications that are

short running, need fast startup times, and require minimum memory, such

as GUI applications. Many JVMs use this mode as the default.

• Server mode uses a JIT compiler that instructs the JVM to perform more

extensive run-time optimization for applications that are long running and

use substantial memory, such as database applications. Therefore, after

startup, the JVM executes slowly until it has had enough time to optimize

the code. After that, performance is considerably faster.

82 The Environment: Tuning for Performance

Performance Tip

Tune your JVM to use server mode. For database applications that run

for weeks or months at a time, slower execution during the first few

hours is a small price to pay for better performance later on.

.NET CLR

The CLR provides automatic garbage collection in much the same way as a JVM.

When your application creates a new object, the CLR allocates memory to it

from a pool of memory known as the CLR heap. The CLR also uses generational

garbage collection. The CLR has three generations: generation 0, generation 1,

and generation 2. When the garbage collector performs a collection in any of its

generations, it cleans up objects that are no longer used and reclaims the mem-

ory allocated to them. Objects that survive a collection are progressively pro-

moted to the next generation. For example, objects that survive a collection in

generation 1 are moved to generation 2 during the next collection.

Unlike a JVM, the CLR doesn’t provide tuning options that allow you to

tune garbage collection. The CLR doesn’t let you set a maximum limit on the

heap size. Instead, the CLR heap size depends on how much memory can be

allocated from the operating system. In addition, the CLR automatically adjusts

the sizes of the generations according to its own optimization criteria.

ptg

If you can’t tune garbage collection in the CLR, how can you ensure that

garbage collection works in favor of your application’s performance? The way

your application code is designed and coded largely affects how efficiently

garbage collection is performed.

Operating System 83

Performance Tip

To optimize garbage collection in the CLR, make sure that your applica-

tion closes connections as soon as the user is finished with them, and

correctly and consistently use the Dispose method to free an object’s

resources. See the section, “Disconnecting Efficiently,” page 196, for more

information.

Operating System

Another factor in the environment that affects performance is the operating sys-

tem. This is not to claim that one operating system is better than another—just

that you need to be aware that any operating system change, no matter how

minor, can increase or decrease performance, sometimes dramatically. For

example, when testing an application that applied a recommended Windows

update, we saw performance plummet when the database driver made

CharUpper calls. In our benchmark, 660 queries per second throughput

dropped to a mere 11 queries per second—an astounding 98% decrease.

Often, we see performance differences when running the same benchmark

on different operating systems. For example, on UNIX/Linux, a database driver

may use mblen(), a standard C library function, to determine the length in bytes

of a multibyte character; on Windows, it may use the equivalent function,

IsDBCSLeadByte(). Our benchmarks have shown that when an application used

mblen() on Linux, the processing of mblen() appropriated 30% to 35% of the

total CPU time. When run on Windows, IsDBCSLeadByte() used only 3% to 5%

of the total CPU time.

It’s also helpful to know which byte order, or endianness1, is used by the

operating system on the database client to store multibyte data in memory, such

as long integers, floating point numbers, and UTF-16 characters. The endianness

1 The term endianness was adopted from the novel Gulliver’s Travels by Jonathan Swift, first published in
1726. In the novel, a shipwrecked castaway, Gulliver, tangled with a sovereign state of diminutive
Lilliputians who were split into two intractable factions: Big-Endians who opened their soft-boiled eggs
at the larger end, and Little-Endians who broke their eggs at the smaller end.

ptg

of the operating system is determined by the processor that the operating system

runs on. Processors use either of the following byte-order conventions:

• Big endian machines store data in memory “big-end” first. The first byte is

the biggest (most significant).

• Little endian machines store data in memory “little-end” first. The first byte

is the smallest (least significant).

For example, let’s consider the integer 56789652, which is 0x03628a94 in

hexadecimal. On a big endian machine, the 4 bytes in memory at address

0x18000 start with the leftmost hexadecimal digit. In contrast, on a little endian

machine, the 4 bytes start with the rightmost hexadecimal digit.

Big Endian

18000 18001 18002 18003

0x03 0x62 0x8a 0x94

Little Endian

18000 18001 18002 18003

0x94 0x8a 0x62 0x03

Intel’s 80x86 processors and their clones are little endian. Sun Microsystem’s

SPARC, Motorola’s 68K, and the PowerPC families are big endian. Java Virtual

Machines (JVMs) are big endian as well. Some processors even have a bit in the

register that allows you to select which endianness you want the processor to use.

84 The Environment: Tuning for Performance

Performance Tip

If possible, match the endianness of the operating system on the data-

base client to that of the database server. If they match, the database dri-

ver doesn’t need to perform extra work to convert the byte order of

multibyte data.

For example, suppose you have an accounting application that allows you to

prepare financial statements such as balance sheets, income statements, cash

flows, and general ledger accounts. The application runs on Windows XP and

retrieves data from a Microsoft SQL Server database running on Windows NT.

The database driver doesn’t need to convert the byte order of long integers

ptg

because the exchange between the machines is a match: little endian to little

endian. What if you installed the application on a UNIX operating system run-

ning on a Solaris machine? You would see a drop in performance because the

database driver must convert long integers retrieved from the database server

from little endian to big endian, as shown in Figure 4-5. Similarly, if your applica-

tion runs on a Windows machine and the database server switched to a UNIX

operating system running on a Solaris machine, the database driver would need

to perform byte-order conversion for long integers because of the mismatch. In

many cases, you can’t do anything about a mismatch, but it’s helpful to know

that, when all other things are equal, an endianness mismatch impacts perfor-

mance.

Operating System 85

Solaris
Client

Byte-Order Conversion Is Required
(Big Endian and Little Endian)

Windows
Server

Windows
Client

Byte-Order Conversion Is Not Required
(Little Endian and Little Endian)

Windows
Server

Figure 4-5 Endianness of processor determines whether byte-order
conversion is required

To complicate matters, the database system doesn’t always send data in the

endianness of the operating system of the database server machine. Some data-

base systems always send data either in big endian or little endian. Others send

data using the same endianness of the database server machine. Still others send

data using the same endianness of the database client machine. Table 4-1 lists the

endianness that some common database systems use to send data.

ptg

Table 4-1 Endianness Database Systems Use to Send Data
Database Systems Endianness

DB2 Endianness of database server machine

MySQL Little endian

Oracle Big endian

Microsoft SQL Server Little endian

Sybase ASE Endianness of database client machine

For example, suppose your application connects to an Oracle database that

runs on a Windows machine. Oracle, which typically sends data big endian, must

accommodate the little endian operating system it runs on and convert the byte

order of multibyte data. Once again, you may not be able to change the endian-

ness of your database client, database server, and database system to align, but it’s

helpful to know how endianness impacts performance if you have a choice.

Network

If your database application communicates to the database system over the net-

work, which is part of the database middleware, you need to understand the per-

formance implications of the network. In this section, we describe those

performance implications and provide guidelines for dealing with them.

Database Protocol Packets

To request and retrieve information, database drivers and database servers trans-

fer database protocol packets over a network (typically, TCP/IP).2 Each database

vendor defines a protocol for communication with the database system, a format

that only that database system understands. For example, Microsoft SQL Server

uses communication encoded with the Tabular Data Stream (TDS) protocol, and

IBM DB2 uses communication encoded with the Distributed Relational

Database Architecture (DRDA) protocol.

The way database drivers communicate to the database depends on their

architecture. Some database drivers communicate to the database server directly

using a database-specific protocol. Other drivers communicate using a driver-

specific protocol that is translated into a database-specific protocol by a server

component. Still other drivers require database vendor client libraries to com-

86 The Environment: Tuning for Performance

2 If an application is running on the same machine as the database, the database driver uses the network
in a loop-back mode or does not use the network at all and communicates directly with the database
using shared memory.

ptg

municate with the database server. See the section, “Database Driver

Architecture,” page 55, for more information about database driver architecture.

When an application makes a standards-based API request, such as execut-

ing a Select statement to retrieve data, the database driver transforms that API

request into zero, one, or multiple requests to the database server. The database

driver3 packages the requests into database protocol packets and sends them to

the database server, as shown in Figure 4-6. The database server also uses data-

base protocol packets to transfer the requested data to the driver.

Network 87

Packets Sent from the Driver

Packets Sent from the Database Server

Driver

Figure 4-6 Database protocol packets

One important principle to understand: The relationship between applica-

tion API requests and the number of database protocol packets sent to the data-

base is not one to one. For example, if an ODBC application fetches result set rows

one at a time using the SQLFetch function, not every execution of SQLFetch

results in database protocol packets being sent to or from the database. Most dri-

vers optimize retrieving results from the database by prefetching multiple rows at

a time. If the requested result set row already exists in a driver result set cache

because the driver retrieved it as an optimization on a previous SQLFetch execu-

tion, a network round trip to the database server would be unnecessary.

This book repeatedly demonstrates that database application performance

improves when communication between the database driver and the database is

optimized. With this in mind, one question you should always ask is this: How

can I reduce the amount of information that is communicated between the data-

base driver and the database? One important factor for this optimization is the

size of database protocol packets.

The size of database protocol packets sent by the database driver to the data-

base server must be equal to or less than the maximum database protocol packet

size allowed by the database server. For example, if the database server accepts a

3 Generally, we state that the database driver sends the database protocol packets to the database server.
However, for drivers that have a client-based architecture, this task is performed by the database client
(Net8 for Oracle, for example).

ptg

maximum packet size of 64KB, the database driver must send packets of 64KB or

less. Typically, the larger the packet size, the better the performance, because

fewer packets are needed to communicate between the driver and the database.

Fewer packets means fewer network round trips to and from the database.

88 The Environment: Tuning for Performance

Note

Although most database applications experience better performance

when sending and receiving fewer packets, this is not always the case,

as explained in the section, “Configuring Packet Size,” page 92.

For example, if the database driver uses a packet size of 32KB and the data-

base server’s packet size is configured for 64KB, the database server must limit its

packet size to the smaller 32KB packet size used by the driver. As shown in Fig-

ure 4-7, this increases the number of packets sent over the network to retrieve the

same amount of data to the client.

Using 64KB Packets

Driver

Using 32KB Packets

Driver

Figure 4-7 Packet size affects the number of database protocol packets
required

ptg

The increase in the number of packets also means an increase in packet over-

head. High packet overhead reduces throughput, or the amount of data that is

transferred from sender to receiver over a period of time.

Why does packet overhead reduce throughput? Each packet stores extra

bytes of information in the packet header, which limits the amount of data that

can be transported in each packet. The smaller the packet size, the more packets

are required to transport data. For example, a 64KB packet with a packet header

of 30 bytes equals a total of three 32KB packets, each with 30-byte packet head-

ers, as shown in Figure 4-8. The extra CPU required to disassemble packets for

transport and reassemble them when they reach their destination reduces the

overall transmission speed of the raw data. Fewer packets require less disassem-

bly and reassembly, and ultimately, use less CPU.

Network 89

Database Server:
Packet Size = 64KB

Database Driver:
Packet Size = 32KB

Header (30 Bytes)

Data (63.971KB)

Header (30 Bytes)

Data (31.971KB)

Header (30 Bytes)

Data (31.971KB)

Header (30 Bytes)

Data (.029KB)

Figure 4-8 64KB database protocol packets compared to 32KB packets

Network Packets

Once database protocol packets are created, the database driver hands over the

packets to TCP/IP for transfer to the database server. TCP/IP transfers the data in

network packets. If the size of the database protocol packet is larger than the

defined size of the network packet, TCP/IP breaks up the communication into

even smaller network packets for transmission over the network and reassembles

them at their destination.

Think of it like this: The database protocol packet is like a case of diet soda,

which can be too difficult to carry over a long distance. TCP/IP breaks up that

case into four 6 packs, or network packets, that can be easily carried over the

network. When all four 6 packs reach their destination, they are reassembled

into a case.

ptg

Similar to database protocol packets, the fewer the network packets, the bet-

ter the performance. In contrast to database protocol packets, you can’t configure

the size of network packets.

Each network node (any machine connected to the network such as a client,

server, router, and so on) has at least one network adapter for each network it

connects to. The network packet size is determined by a maximum transmission
unit (MTU) setting4 for the network adapter in the operating system of the send-

ing network node. The MTU is the maximum packet size that can be sent across

a particular network link and is a characteristic of the network type. By default,

the MTU setting is set to the MTU of the network type. You can set the MTU set-

ting to another value, but that value cannot exceed the MTU of the network type.

For example, if the network packet size is 1500 bytes (MTU for Ethernet

networks), TCP/IP breaks up the database protocol packet into as many 1500-

byte network packets as needed to transfer the data across the network, as shown

in Figure 4-9.

90 The Environment: Tuning for Performance

Data (31.971KB)

Header (30 Bytes)

Data (31.971KB)

Header (30 Bytes)

Data (.029KB)

Header (30 Bytes)Database
Protocol
Packets 32KB

Database protocol
packet fits into one
1500-byte network
packet.

Network
Packets

Figure 4-9 Database protocol packets divided into network packets

See the section, “Understanding Maximum Transmission Unit (MTU),”

page 99, for details about how MTU affects network packets.

Database drivers and database servers only deal with database protocol

packets, not network packets. Once network packets reach their destination, such

as a database server, the operating system of the database server reassembles

them into database protocol packets that deliver the communication to the data-

base. To understand how this happens, let’s take a closer look at network packets

and how a network such as TCP/IP works.

Like a busy highway with a limited number of lanes, a network has a limited

amount of bandwidth to handle network traffic between computers. By breaking

up communication into network packets, TCP/IP can control the flow of traffic.

4 The name of this setting depends on the operating system. Refer to your operating system documenta-
tion for details.

ptg

Like cars merging onto a highway, network packets can merge into traffic along

with packets sent from other computers instead of hogging the road, so to speak.

The header of each network packet contains information about the follow-

ing:

• Where the network packet comes from

• Where the network packet is going

• How the network packet will be reassembled with other network packets

into a database protocol packet

• How to check the network packet content for errors

Because each network packet essentially contains its own shipping instruc-

tions, not all network packets associated with a single message may travel the

same path. As traffic conditions change, network packets may be dynamically

routed through different paths in the network. For example, if Path A is over-

loaded with traffic, network packets may be routed through Path B, reducing the

congestion bottleneck as shown in Figure 4-10.

Network 91

A A

B B

Figure 4-10 Network packets may travel different paths as a result of
dynamic routing

Network packets can even arrive at their destination out of sequence. For

example, network packets traveling Path B may arrive at their destination before

those traveling on Path A. When all packets reach their destination, the operating

system of the receiving computer reassembles the network packets into a data-

base protocol packet.

ptg

Configuring Packet Size

Remember that larger packet sizes typically provide the best performance

because fewer packets are needed to retrieve data, and fewer packets means fewer

network round trips to and from the database. Therefore, it’s important to use a

database driver that allows you to configure the packet size of database protocol

packets. See the section, “Runtime Performance Tuning Options,” page 62, for

more information about performance tuning options to look for in a database

driver. In addition, many database servers can be configured to use packet sizes

that are larger than the default.

If network packets are really the way that data is transported over the net-

work and the MTU of the network controls the size of network packets, why does

a larger database protocol packet size improve performance? Let’s compare the

following examples. In both examples, a database driver sends 25KB of data to

the database server, but Example B uses a larger database protocol packet size

than Example A. Because a larger database protocol packet size is used, the num-

ber of network round trips is reduced. More importantly, actual network traffic

is reduced.

92 The Environment: Tuning for Performance

Example A: Database Protocol Packet Size = 4KB

Using a 4KB database protocol packet, as shown in Figure 4-11, the

database driver creates seven 4KB database protocol packets (assuming

a 30-byte packet header) to send 25KB of data to the database server (6

packets transporting 3.971KB of data and 1 packet transporting

0.199KB of data).

Figure 4-11 4KB database protocol packet size

If the MTU of the network path is 1500 bytes, as shown in Figure 4-12,

the database protocol packets are divided into network packets for

transport across the network (total of 19 network packets). The first 6

database protocol packets are each divided into three 1500-byte net-

work packets. The data contained in the last database protocol packet

fits within one 1500-byte network packet.

+ + + + + + + 25KB (7 Database
Protocol Packets)

ptg

Figure 4-12 4KB database protocol packets divided into
1500-byte network packets

Now let’s look at Example B, which uses a larger database protocol packet

size.

Network 93

Example B: Database Protocol Packet Size = 32KB

Using a 32KB database protocol packet, the database driver only needs

to create a single 32KB database protocol packet to send 25KB of data

to the database server (assuming a 30-byte packet header), as shown in

Figure 4-13.

Figure 4-13 32KB database protocol packet size

If the MTU of the network path is 1500 bytes, as shown in Figure 4-14,

the single database protocol packet is divided into 17 network packets

for transport across the network, a reduction of 10% when compared to

Example A.

Figure 4-14 32KB database protocol packets divided into
1500-byte network packets

= 25KB (1 Database Protocol Packet)

+ + + + + + +

+ + + + + + +

+

+

= 25KB (17 Network Packets)

+ + + + + + +

+ + + + + + +

+

+

+ + = 25KB (19 Network Packets)

ptg

Although a larger packet size is typically the best choice for performance,

this isn’t always the case. If your application sends queries that only retrieve small

result sets, a small packet size can work well. For example, an ATM banking

application typically sends and receives many packets that contain a small

amount of data, such as a withdrawal amount, a deposit amount, and a new bal-

ance. A result set that contains only one or two rows of data may not completely

fill a larger packet. In this case, using larger packets wouldn’t improve perfor-

mance. In contrast, a reporting application that retrieves large result sets with

thousands of rows performs best when using larger packets.

94 The Environment: Tuning for Performance

Performance Tip

If your application sends queries that retrieve large amounts of data, tune

your database server packet size to the maximum size, and tune your

database driver to match the maximum size used by the database server.

Analyzing the Network Path

Often, we talk about database access as if the client is always local to the database

server, perhaps in the same building connected by a LAN. However, in today’s

distributed computing environment, the reality is that a user working from a

client desktop in New York may retrieve data stored in a database that is located

in California, or Europe, for that matter.

For example, a database application may send a data request that travels

across a LAN, often through one or multiple routers, across a WAN, and through

more routers to reach the target database. Because the world’s most popular

WAN is the Internet, an application may also need to communicate through one

or multiple Internet service provider (ISP) routers. Then the data that is

retrieved from the database must travel back along a similar path before users

even see it on their desktops.

Whether your database application accesses a database server locally on a

LAN or your data requests follow a more complicated path, how do you deter-

mine if network packets associated with your database application are using the

most efficient path?

You can use the tracert command (Windows) and the traceroute com-

mand (UNIX/Linux) to find out which network nodes the network packets

travel through on their way to a destination. In addition, by default, these

commands display a sampling of the latency, the time delay it takes to make a

network round trip to each node along the traced path.

ptg

Network 95

Example A: Using the tracert Command on Windows

This example traces the path that network packets take from a data-

base client in North America to a database server in Europe. Let’s exe-

cute the tracert command:

tracert belgserver-01

Notice that the trace report shows that network packets make three net-

work hops. (The fourth network node in the list is the destination.)

Tracing route to belgserver-01 (10.145.11.263)

over a maximum of 30 hops:

1 <1 ms <1 ms <1 ms 10.40.11.215

2 1 ms 3 ms 3 ms 10.40.11.291

3 113 ms 113 ms 113 ms 10.98.15.222

4 120 ms 117 ms 119 ms 10.145.16.263

Example B: Using the traceroute Command on UNIX/Linux

This example traces the path that network packets take on the return

trip. Let’s execute the traceroute command:5

traceroute nc-sking

Similar to the trace report shown in Example A, this trace report shows

that network packets make three network hops.

Traceroute to nc-sking (10.40.4.263), 30 hops max,

40 byte packets

1 10.139.11.215 <1 ms <1 ms <1 ms

2 10.139.11.291 2 ms 1 ms 1 ms

3 10.40.11.254 182 ms 190 ms 194 ms

4 10.40.4.263 119 ms 112 ms 120 ms

5 The traceroute command supports different options depending on your operating system. Refer to
the command reference of your operating system documentation for command options.

ptg

After you have traced the paths going to and from the database server, let’s

look at what the trace report can tell you.

• Is the path taken by network packets from the client to the database server

comparable to that taken on the return trip? The physical path through the

network may be different in each direction, but is one path significantly

slower than the other? For example, if a particular router is a bottleneck

because of network congestion, you may want to change your network

topology so that network packets can take a different path.

• On either path, how many network hops separate the client and database

server? Can any of these network hops be eliminated? For example, if the

client is assigned to a different network subnet than the database server, can

the machines be reassigned to the same subnet? See the following section for

details about reducing network hops.

• On either path, does packet fragmentation occur? See “Avoiding Network

Packet Fragmentation,” page 98, for details about detecting packet fragmen-

tation and strategies for avoiding it.

Reducing Network Hops and Contention

There’s a saying that goes something like this: “The road to success is not

straight.” However, when referring to data access, this adage does not necessarily

apply. Shorter network paths with fewer network hops typically provide better

performance than longer paths with many network hops because each interme-

diate network node must process each network packet that passes through that

node on its way to its destination.

This processing involves checking the packet header for destination infor-

mation and looking up the destination in its routing tables to determine the best

path to take. In addition, each intermediate network node checks the size of the

packet to determine whether the packet needs to be fragmented. On longer

paths, for example, from LAN to WAN, a data request is more likely to encounter

varying MTU sizes that cause packet fragmentation (see “Avoiding Network

Packet Fragmentation,” page 98).

A database application typically shares the network with other types of net-

work traffic. At any one time, different users may request files and Internet con-

tent, send e-mail, use streaming video/voice, perform backups, and so on. When

the traffic load is light, the network operates at top form and performance may

be great. However, when large numbers of users request connections and make

96 The Environment: Tuning for Performance

ptg

other network requests at the same time, the network can become overloaded

with too many network packets. If network packets sent by your database appli-

cation pass through an intermediate network node that is overloaded with net-

work traffic, application performance can be negatively affected.

Sometimes network congestion from normal business traffic is made worse

by poorly planned network topology or bandwidth changes. For example, if net-

work packets are forced to pass through a single gateway router to reach their

destination, packets must wait in the router’s queue for processing, causing a

packet backup at the gateway. In this case, is it possible to change your network

topology by adding additional router access to the destination network?

Similarly, differences in bandwidth from LAN to WAN can cause a communica-

tion slowdown, much like a 4-lane highway merging into a 2-lane highway.

One way to reduce network hops and network contention is to create a dedi-

cated path for your database application using a private data network, which can

be implemented using a network switch to a dedicated network adapter, a leased

T1 connection, or some other type of dedicated connection. For example, as

shown in Figure 4-15, clients have full public access to the corporate network,

including e-mail and the Internet, while enjoying private direct access to the

database server.

Network 97

Corporate Network

Server

Server ServerClientClientClient

Private Data Network

Internet

Database
Server

Server

Figure 4-15 Private data network

Even when the client and database server are in proximity to one another,

don’t assume that network packets take a direct point-to-point path. For exam-

ple, consider the case of a real-world company whose business depended on crit-

ical bulk updates that executed periodically during the course of the day.

Performance was poor despite the fact that the client and database server

machines were installed side by side in the same room.

ptg

The network path analysis revealed that when the application requested

data, network packets associated with requests typically made as many as 17 net-

work hops before reaching the database server. Although the client and database

server machines resided in the same location, they were assigned to different cor-

porate network subnets. In this case, reassigning the machines to the same net-

work subnet reduced the number of network hops from 17 to 1, and the average

response time for bulk updates decreased from 30 seconds to 5 seconds, an

amazing performance gain of 500%.

98 The Environment: Tuning for Performance

Note

A virtual private network (VPN) emulates a private data network for

applications that transfer data over the Internet. It doesn’t eliminate net-

work hops but provides a secure extension of a private network and

reduces network contention.

Avoiding Network Packet Fragmentation

Before we go forward, let’s recap some of what we’ve already learned about how

database drivers and database servers use the network to request and send data:

• Database drivers and database servers communicate by sending database

protocol packets.

• If the size of the database protocol packet is larger than the defined size of

the network packet, TCP/IP divides the database protocol packets into as

many network packets as needed for transmission over the network.

• The MTU is the maximum network packet size that can be sent across a par-

ticular network link and is a characteristic of the network type.

• Packet size is important for both types of packets because the fewer the

packets, the better the performance.

Packet fragmentation occurs when a network packet is too large to traverse

a network link as determined by the network link’s MTU. For example, if a net-

work link’s MTU is 1500 bytes, it cannot transport a 1700-byte packet. An over-

sized packet must be divided into smaller packets that are able to traverse the

link, or the communication must be re-sent using smaller packets.

ptg

In most modern systems, packet fragmentation is not automatic but occurs

as a result of a process known as path MTU discovery, a technique for determin-

ing the path MTU, which is the lowest MTU of any network node along a partic-

ular network route. Because packet fragmentation requires additional

communication between network nodes to negotiate the correct packet size and

significant CPU processing to divide communication into smaller packets and

reassemble them, it degrades performance. The following sections explain why

packet fragmentation has a negative impact on performance and provide guide-

lines for detecting and resolving packet fragmentation.

Understanding Maximum Transmission Unit (MTU)

MTU is the maximum packet size that can be sent across a particular network

link as determined by the network type. See Table 4-2 for the MTU values of

some common network types.

Table 4-2 MTU Values of Common Network Types
Network MTU

16 MB/second Token Ring 17914

4 MB/second Token Ring 4464

FDDI 4352

Ethernet 1500

IEEE 802.3/802.2 1492

PPPoE (WAN miniport) 1480

X.25 576

Each network node has one or multiple network adapters installed, one for

each network it connects to. The operating system on each node provides an

MTU setting for each network adapter. The MTU setting determines the size of

network packets sent from that node. By default, this MTU setting is set to the

MTU of the network type and can be set to another value, but that value cannot

exceed the MTU of the network type. For example, if a network node is con-

nected to an Ethernet network, the MTU setting for that machine’s network

adapter must be set to a value of 1500 (MTU for Ethernet networks) or less.

How does MTU affect network packets? Let’s consider a simple example

where only two network nodes, a client and database server, send and receive net-

work packets as shown Figure 4-16. In this case, Node A has an MTU setting of

1500, meaning that it sends 1500-byte packets across the network to Node B.

Network 99

ptg

Similarly, Node B has an MTU setting of 1500 and sends 1500-byte packets on

the return trip to Node A.

100 The Environment: Tuning for Performance

Driver

Node A

MTU = 1500

Node B

MTU = 1500

Figure 4-16 Simple example of MTU

Now let’s look at a more complex example where network packets are routed

by an intermediate network node to the database server, as shown in Figure 4-17.

In this case, Node A has an MTU setting of 1500, Node B has an MTU setting of

1492, and Node C has an MTU setting of 1500.

Driver

Node A

MTU = 1500

Node B

MTU = 1492

Node C

MTU = 1500

Figure 4-17 Complex example of MTU

The maximum packet size that can be sent across the network depends on

the network link, or the part of the network, that the packet is being sent across,

as shown in Table 4-3.

Table 4-3 Maximum Packet Size
Network Link Maximum Packet Size

Node A to Node B 1500 bytes

Node B to Node C 1492 bytes

Node C to Node B 1500 bytes

Node B to Node A 1492 bytes

ptg

If a network node receives an oversized network packet, the network node

discards that packet and sends a message to the sending network node with

information about a packet size that will fit. The sending network node resends

the original communication, dividing it into smaller packets. The communica-

tion required to notify the sending network node that fragmentation must occur

and the resending of the communication in smaller packets increases traffic

along that network route. In addition, significant CPU processing is required to

divide the communication into smaller packets for transport and reassemble

them when they reach their destination.

To understand how this process works, let’s step through the example shown

in Figure 4-18.

Network 101

Driver

Node A

MTU = 1500

1500-Byte
Packets

1492-Byte
Packets

Node B

MTU = 1492

Node C

MTU = 1500

Packet
Fragmentation

Figure 4-18 Packet fragmentation example

1. As the result of a data request, Node A sends multiple 1500-byte packets

to Node C.

2. Each time Node B receives a 1500-byte packet, it discards the packet and

sends a message to Node A, telling Node A that it cannot pass along a

packet larger than 1492 bytes.

3. Node A resends each communication, breaking it into as many 1492-

byte packets as needed.

4. When Node B receives each 1492-byte packet, it passes the packets to

Node C.

ptg

VPNs Magnify Packet Fragmentation

Configuring the MTU setting to the path MTU doesn’t always avoid packet frag-

mentation. For example, when VPN tunneling is used, the problem of packet

fragmentation is magnified because of additional packet overhead.

VPNs are routinely used to connect remote machines over the Internet to

corporate LANs, creating a secure path between two endpoints. Communication

within the VPN path is encrypted so that other users of the Internet cannot inter-

cept and inspect or modify communications. The security protocol that per-

forms the encryption, typically Internet Protocol Security Protocol (IPSec),

encapsulates, or wraps, each network packet in a new, larger packet while adding

its own IPSec headers to the new packet. Often, the larger packet size caused by

this encapsulation results in packet fragmentation.

For example, suppose the MTU of a VPN network link is 1500 bytes and the

MTU setting of the VPN client is set to the path MTU, a value of 1500. Although

this configuration is ideal for LAN access, it presents a problem for VPN users.

IPSec cannot encapsulate a 1500-byte packet because the packet is already as

large as the VPN network link will accept. In this case, the original communica-

tion is re-sent using smaller packets that IPSec can encapsulate. Changing the

MTU setting on the client to a value of 1420 or less gives adequate leeway for

IPSec encapsulation and avoids packet fragmentation.

102 The Environment: Tuning for Performance

Performance Tip

In most cases, you can avoid packet fragmentation by configuring the

MTU setting of the client and the database server to be the same as the

path MTU, the lowest MTU of any network node along the path. For

example, using the scenario in Figure 4-18, if you configure the MTU set-

ting of the client and database server to be a value of 1492, packet frag-

mentation would not occur.

Performance Tip

A one-size-fits-all MTU doesn’t exist. If most of your users are VPN users,

change the MTU setting along the network path to accommodate your

VPN users. However, remember that reducing the MTU for your LAN

users will cause their application performance to suffer.

ptg

LAN versus WAN

Because communication across a WAN typically requires more network hops

than communication across a LAN, your application is more likely to encounter

varying MTU sizes, resulting in packet fragmentation. In addition, if data has to

travel over VPN within a WAN, packet fragmentation further reduces the MTU

size. If you are unable to avoid packet fragmentation by setting the client and the

database server to the path MTU (see “Understanding Maximum Transmission

Unit (MTU),” page 99), it becomes even more important to reduce the number

of network round trips between the client and server to preserve performance.

Detecting and Resolving Network Packet Fragmentation

If you don’t have privy knowledge of the MTUs of every network node along the

network path, how can you tell if packet fragmentation occurs? Operating system

commands, such as the ping command (Windows) and the traceroute com-

mand (UNIX/Linux), can help you determine if packets are being fragmented

along a particular network path. In addition, with a little persistence and detec-

tive work, you can determine the optimal packet size for the network path, a size

that doesn’t require packet fragmentation.

For example, suppose your client is a Windows XP machine, and data

requests are made from this machine to a UNIX database server located in

London. You know from the following trace report that three network hops are

involved to reach the server:

Tracing route to UK-server-03 [10.131.15.289]

over a maximum of 30 hops:

1 <1 ms <1 ms <1 ms 10.30.4.241

2 <1 ms <1 ms <1 ms 10.30.4.245

3 112 ms 111 ms 111 ms 10.168.73.37

4 113 ms 112 ms 116 ms 10.131.15.289

Therefore, the network path looks similar to the configuration shown in

Figure 4-19. If the MTU of the client is set to a value of 1500, the client sends

1500-byte packets across the network. The MTU of the other network nodes is

unknown.

Network 103

ptg

Figure 4-19 Network analysis of MTU

In the following examples, we use the ping (Windows) and traceroute

(UNIX/Linux) commands to determine if packet fragmentation occurs along

this network path for a 1500-byte packet, and we find the optimal packet size for

the network path.

104 The Environment: Tuning for Performance

Driver

MTU = 1500 MTU = ?

Router Router

MTU = ? MTU = ? MTU = ?

Router

Example A: Detecting Packet Fragmentation on Windows

1. At a command prompt, enter the ping command to test the connec-

tion between the client and database server. The -f flag turns on a

“do not fragment” (DF) field in the header of the packet, forcing the

ping command to fail if the packet needs to be fragmented at any

network node along the path. The -l flag sets the packet size. For

example:

ping UK-server-03 -f -l 1500

If packet fragmentation is needed, the ping command fails with the

following message, which indicates that the packet was not frag-

mented because the DF field was set:

Packet needs to be fragmented but DF set

2. Reissue the ping command repeatedly, each time lowering the size

of the packet in logical increments (for example, 1500, 1475, 1450,

1425, 1400, and so on) until a message is returned indicating that

the command was successful.

ptg

Network 105

For example, the following code shows that the ping command was

successful when executed with a packet size of 1370 bytes:

Pinging UK-server-03 [10.131.15.289] with 1370 bytes of

data

Reply from 10.131.15.289: bytes=1370 time=128ms TTL=1

Reply from 10.131.15.289: bytes=1370 time=128ms TTL=1

Reply from 10.131.15.289: bytes=1370 time=128ms TTL=1

Reply from 10.131.15.289: bytes=1370 time=128ms TTL=1

Ping statistics for 10.131.15.289:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss)

Approximate round trip times in milli-seconds:

Minimum = 128ms, Maximum = 128ms, Average = 128ms

3. Once you have a packet size that works for the entire path, configure the

MTU setting of the client and database server to that value (if possible).

Example B: Detecting Packet Fragmentation on UNIX/Linux

1. At a prompt, enter the traceroute command.6 The -F flag forces

the command to fail if packet fragmentation occurs. The integer

sets the packet size.

traceroute UK-server-03 -F 1500

If packet fragmentation occurs, the command fails with the follow-

ing message:

!F

2. Reissue the traceroute command repeatedly, each time lowering

the size of the packet in logical increments (for example, 1500,

1475, 1450, 1425, 1400, and so on) until a message is returned indi-

cating that the traceroute command was successful.

6 The traceroute command supports different options depending on your operating system. Refer to
the command reference of your operating system documentation for command options.

ptg

Increasing Network Bandwidth

Bandwidth is the capacity of a network connection to transport network pack-

ets. The greater the capacity, the more likely that good performance will result,

although overall performance also depends on factors such as latency. Increasing

bandwidth is similar to widening a congested 2-lane highway into a 4- or 6-lane

highway. The highway can handle more traffic, relieving bottlenecks.

Upgrading to a large-capacity network adapter is one of the easiest and

cheapest investments you can make to improve the performance of your net-

work. While bandwidth capacity has dramatically increased over the years, the

costs associated with the hardware that provide it have dramatically fallen. Today,

you can easily purchase a 1GB network adapter for less than $40. Assuming there

are no other network constraints, upgrading from a 100Mbps network adapter to

a 1GB network adapter can result in as much as a 7% to 10% performance gain.

For the price and ease of effort, that’s a great return on investment.

Hardware

Clearly, how your database is configured can conserve or consume hardware

resources, but our focus in this section is on how database driver and specific

application design and coding techniques can optimize your hardware resources

and relieve performance bottlenecks in the following hardware resources:

• Memory

• Disk

• CPU (processor)

• Network adapter

106 The Environment: Tuning for Performance

The following example shows that the traceroute command was

successful when executed with a packet size of 1370 bytes:

Traceroute to UK-server-03 (10.131.15.289), 4 hops max,

1370 byte packets

1 10.139.11.215 <1 ms <1 ms <1 ms

2 10.139.11.291 2 ms 1 ms 1 ms

3 10.40.11.254 182 ms 190 ms 194 ms

4 10.40.4.263 119 ms 112 ms 120 ms

ptg

In addition, we’ll talk about how a hot new trend in database computing

known as virtualization can magnify hardware-related performance problems.

Memory

A computer has a finite amount of Random Access Memory (RAM) or physical

memory, and, as a general rule, more RAM is better. As the computer runs its

processes, it stores code and data for quick access in blocks of RAM known as

pages. The amount of data that can be stored on a single page depends on the

processor platform.

When a computer runs out of RAM, it takes advantage of virtual memory to

ensure that work processes smoothly. Virtual memory allows the operating sys-

tem to free up space in RAM by copying pages stored in RAM that have not been

used recently into a file that resides on disk. This file is called a page file (swap
file), and the process of writing to the file is known as paging. If an application

needs that page again for any reason, the operating system swaps it back out of

the page file into RAM.

When RAM is being used to capacity, paging occurs more frequently.

Because disk I/O is much slower than RAM, excessive paging causes a drastic per-

formance slowdown. Excessive paging also can interfere with other processes that

require the same disk, causing disk contention (see the section, “Disk,” page 110,

for more information). In fact, memory bottlenecks often masquerade as disk

issues. If you suspect that the disk is being read from or written to excessively, the

first thing you should do is rule out a memory bottleneck.

A memory leak can also result in excessive paging, steadily using up RAM,

and then virtual memory, until the page file size reaches its maximum.

Depending on how critical a memory leak is, virtual memory can be used up

within a period of weeks, days, or hours. Memory leaks often are created when

applications use resources, but they don’t release the resources when they are no

longer required.

Table 4-4 lists some common causes for memory bottlenecks and their rec-

ommended solutions.

Table 4-4 Causes and Solutions of Memory Bottlenecks
Cause Solution

Insufficient physical memory (RAM) Add more RAM.

Poorly optimized application code Analyze and tune your application or database
or database driver causing excessive driver to minimize memory use. See “Tuning
memory use Your Application and Database Driver to

Minimize Memory Use,” page 109, for more
information.

Hardware 107

ptg

Detecting Memory Bottlenecks

The primary symptom of a memory bottleneck is a sustained, high rate of page

faults. A page fault occurs when an application requests a page, but the system

can’t find the page at the requested location in RAM.

Two types of page faults can occur:

• Soft page faults can occur when the requested page is located elsewhere in

RAM. A soft page fault’s effect on performance is negligible because disk I/O

is not required to find the page.

• Hard page faults occur when the requested page is located in virtual mem-

ory. The operating system must swap the page out of virtual memory and

place it back into RAM. Because of the disk I/O involved, hard page faults

slow performance if they occur frequently.

To detect a memory bottleneck, gather information about your system to

answer the following questions:

• How often are requested pages triggering a page fault? This information

gives you an idea of the number of total page faults, both soft and hard page

faults, that occur over a period of time.

• How many pages are retrieved from disk to satisfy page faults? Compare

this information to the preceding information to determine how many hard

page faults occur out of the total number of page faults.

• Does the memory use of any individual application or process climb
steadily and never level off? If so, that application or process is probably

leaking memory. In pooled environments, detecting memory leaks is more

difficult because pooled connections and prepared statements hold onto

memory and can make it appear as if your application is leaking memory

even when it isn’t. If you run into memory issues when using connection

pooling, try tuning the connection pool to reduce the number of connec-

tions in the pool. Similarly, try tuning the statement pool to reduce the num-

ber of prepared statements in the pool.

For information about tools that can help you troubleshoot memory use, see

“The Environment,” page 272.

108 The Environment: Tuning for Performance

ptg

Tuning Your Application and Database Driver to Minimize Memory Use

Here are some general guidelines to minimize memory use:

• Reduce the number of open connections and prepared statements—Open

connections use memory on the client and on the database server. Make sure

that your application closes connections immediately after it’s finished with

them. If your application uses connection pooling and the database server

(or application server) starts to experience memory problems, try tuning the

connection pool to reduce the number of connections in the pool.

Alternatively, if your database system and database driver supports reau-

thentication, you may be able to use it to minimize the number of connec-

tions required to service your application.

Using statement pooling with connection pooling complicates the memory

situation exponentially. On the database client, client resources that correlate

to each pooled statement are stored in memory. On the database server, each

pooled connection has a statement pool associated with it that’s also main-

tained in memory. For example, if your application uses 5 pooled connec-

tions along with 20 prepared statements, each statement pool associated

with those 5 connections may potentially contain all 20 prepared state-

ments. That’s 5 connections × 20 prepared statements = 100 prepared state-

ments, all maintained in memory on the database server. If you use

statement pooling and the client or database server starts to experience

memory problems, try tuning the statement pool to reduce the number of

prepared statements in the pool. See “Using Statement Pooling with

Connection Pooling,” page 238, for more information.

• Do not leave transactions active for too long—The database must write

every modification made by a transaction to a log that is stored in memory

on the database server. If your application uses transactions that update large

amounts of data without committing modifications at regular intervals, the

application can consume a substantial amount of database memory.

Committing a transaction flushes the contents of the log and releases mem-

ory used by the database server. See “Managing Commits in Transactions,”

page 22, for guidelines on committing active transactions.

• Avoid retrieving large amounts of data from the database server—When

the database driver retrieves data from the database server, it typically stores

that data in a result set that is maintained in memory on the client. If your

application executes queries that retrieve millions of rows, memory can be

used up quickly. Always formulate your SQL queries to retrieve only the data

you need.

Hardware 109

ptg

Similarly, retrieving long data—such as large XML data, long varchar/text,

long varbinary, Clobs, and Blobs—can be problematic for memory. Suppose

your application executes a query that retrieves hundreds of rows, and those

rows happen to contain a Blob. If the database system does not support true

LOBs, the database driver will probably emulate this functionality and

retrieve the entire Blob across the network and place it in memory on the

client. See “Data Retrieval,” page 30, for more information.

• Avoid scrollable cursors unless you know your database system fully sup-
ports them—Scrollable cursors let you go both forward and backward

through a result set. Because of limited support for server-side scrollable

cursors in many database systems, database drivers often emulate scrollable

cursors, storing rows from a scrollable result set in memory on the client or

application server. Large scrollable result sets can easily consume memory.

See “Using Scrollable Cursors,” page 36, for more information.

• If memory is a limiting factor on your database server, application server,
or client, tune your database driver to compensate for that limiting
factor—Some database drivers provide tuning options that allow you to

choose how and where some memory-intensive operations are performed.

For example, if your client excessively pages to disk because of large result

sets, you may want to decrease the size of the fetch buffer, the amount of

memory used by the driver to store results retrieved from the database

server. Decreasing the fetch buffer size reduces memory consumption, but it

means more network round trips, so you need to be aware of the trade-off.

Disk

When an operation reads or writes to disk, performance suffers because disk

access is extremely slow. The easiest way to avoid accessing the disk (or disk con-

troller in the case of multiple disks) is to use memory. For example, consider the

case of an application that retrieves large result sets. If your client or application

server has ample memory and your database driver supports this tuning option,

you could increase the size of the fetch buffer on the client to avoid the result set

being written to disk. However, remember that if you routinely stretch memory

to its limit, paging to disk occurs more frequently. In addition to slowing perfor-

mance, excessive paging can interfere with other processes that require the same

disk, causing disk contention.

110 The Environment: Tuning for Performance

ptg

Disk contention occurs when multiple processes or threads try to access the

same disk simultaneously. The disk limits how many processes/threads can access

it and how much data it can transfer. When these limits are reached, processes

may have to wait to access the disk. Often, CPU activity is suspended until disk

access completes.

If you suspect that disk access occurs more often than it should, the first

thing you should do is rule out a memory bottleneck. Once you’ve ruled out a

memory bottleneck, make sure your application avoids unnecessary disk reads

and writes so that disk contention rarely happens.

Hardware 111

Performance Tip

As a general rule, your application should only access the disk in the fol-

lowing cases: to retrieve database metadata into memory and to write

changes to disk, such as in the case of committing transactions.

Table 4-5 lists some common causes for disk bottlenecks and their recom-

mended solutions.

Table 4-5 Causes and Solutions of Disk Bottlenecks
Cause Solution

Excessive paging caused by a Detect and resolve the memory bottleneck. See
memory bottleneck “Memory,” page 107, for more information.

Excessive reads or writes to disk, Analyze and tune your application to avoid
possibly causing disk contention unnecessary disk reads or writes. See “Tuning Your

Application to Avoid Unnecessary Disk
Reads/Writes,” page 112, for more information.

Detecting Disk Bottlenecks

To detect a disk bottleneck, gather information about your system to answer the

following questions:

• Is excessive paging occurring? A memory bottleneck can resemble a disk

bottleneck so it’s important to rule out a memory problem before you make

any disk improvements. See “Detecting Memory Bottlenecks,” page 108, for

information about detecting memory bottlenecks.

ptg

• How often is the disk busy? If your disk has a sustained rate of disk activity

of 85% or more for a sustained period of time and a persistent disk queue,

you may have a disk bottleneck.

Tuning Your Application to Avoid Unnecessary Disk Reads/Writes

Here are some general guidelines to help your application avoid unnecessary disk

reads and writes:

• Avoid stretching memory to its limit—Once memory is used up, paging to

disk occurs. See “Memory,” page 107, for information about detecting and

avoiding a memory bottleneck.

• Avoid using auto-commit mode for transactions—When using transac-

tions, the database writes every modification made by a transaction to a log

that is stored in database memory. A commit tells the database to make those

changes permanent. In response, the database writes the changes to disk and

flushes the log. In auto-commit mode, transactions are committed automat-

ically by the database, or if the database doesn’t support auto-commit mode,

by the database driver. You can minimize disk access by using manual com-

mits. See “Managing Commits in Transactions,” page 22, for more informa-

tion.

CPU (Processor)

The CPU is the brain of your database server (or application server), performing

most of the calculations and logic required to retrieve data or modify database

tables. When the CPU is overly busy, it processes work slowly and may even have

jobs waiting in its run queue. When the CPU is too busy to respond to work

requests, performance of the database server or application server rapidly hits a

ceiling. For example, Figure 4-20 shows benchmark runs of the same driver on

different machines with different CPU capacity. As you can see, when run on the

machine that is not CPU-bound, performance steadily climbed. On a machine

that is CPU bound, performance is capped by the CPU.

Table 4-6 lists some common causes for CPU bottlenecks and their recom-

mended solutions.

112 The Environment: Tuning for Performance

ptg

Hardware 113

Threads

R
ow

s/
S

ec
on

d

0

5000

10000

15000

20000

1 2 3 4 5 6 7 8 9 10
CPU-Bound
Not CPU-Bound

Update 40 Char(20) cols, 40 params,
commit every 128.

Figure 4-20 CPU-bound versus non-CPU-bound

Table 4-6 Causes and Solutions of CPU Bottlenecks
Cause Solution

Insufficient CPU capacity Add multiple processors or upgrade to a more powerful
processor.

Inefficient database driver See “Database Drivers,” page 53, for information on why
it’s important to choose a good database driver.

Poorly optimized application Analyze and tune your application and database
code or database driver driver to minimize CPU use. See “Tuning Your Appli-

cation or Database Driver to Minimize CPU Use,” page
114, for more information.

Detecting CPU Bottlenecks

To detect a CPU bottleneck, gather information about your system to answer the

following questions:

• How much time does the CPU spend executing work? If the processor is busy

80% or higher for sustained periods, it can be a source of trouble. If you detect

ptg

high CPU use, drill down to individual processes to determine if any one

application is using more than its fair share of CPU cycles. If so, look more

closely at how that application is designed and coded as described in “Tuning

Your Application or Database Driver to Minimize CPU Use,” page 114.

• How many processes or threads are waiting to be serviced in the CPU’s
run queue? A single queue is used for CPU requests, even on computers with

multiple processors. If all processors are busy, threads must wait until CPU

cycles are free to perform work. Processes waiting in the queue for sustained

periods indicate a CPU bottleneck.

• What is the rate that processes or threads are switched by the operating
system to perform work for other waiting threads? A context switch is the

process of storing and restoring the state (context) of a CPU so that multiple

processes can share a single CPU resource. Each time the CPU stops running

one process and starts running another, a context switch occurs. For exam-

ple, if your application is waiting for a row lock to release so that it can

update data, the operating system may switch the context so that the CPU

can perform work on behalf of another application while your application is

waiting for the lock to release. Context switching requires significant proces-

sor time, so excessive context switches and high CPU use tend to go hand in

hand.

For information about tools that can help you troubleshoot CPU use, see

Chapter 10, “Troubleshooting Performance Issues.”

Tuning Your Application or Database Driver to Minimize CPU Use

Here are some general guidelines to help your application or database driver to

minimize CPU use:

• Maximize query plan reuse—When a new SQL statement is sent to the

database, the database compiles a query plan for that statement and stores it

for future reference. Each time a SQL statement is submitted to the database,

the database looks for a matching SQL statement and query plan. If a query

plan isn’t found, the database creates a new query plan for the statement.

Each time the database creates a new query plan, it uses CPU cycles. To max-

imize query plan reuse, consider using statement pooling. For more infor-

mation about statement pooling, see “Using Statement Pooling,” page 236.

• Ensure connection pools and statement pools are tuned correctly—

Pooling can conserve CPU if tuned correctly, but if not, your pooling envi-

114 The Environment: Tuning for Performance

ptg

ronment may use more CPU than expected. As a general rule, when the data-

base has to create a new connection or prepared statement, CPU processing

becomes expensive. See Chapter 8, “Connection Pooling and Statement

Pooling,” for information about configuring your pooling environment.

• Avoid context switching by reducing network round trips—Each data

request that results in a network round trip triggers a context switch.

Context switching requires significant processor time, so excessive context

switches and high CPU use tend to go hand in hand. Reducing the number

of network round trips also reduces the number of context switches.

Application design and coding practices that reduce network round trips

include connection pooling, statement pooling, avoiding auto-commit

mode in favor of manual commits, using local transactions instead of dis-

tributed transactions where appropriate, and using batches or arrays of

parameters for bulk inserts.

• Minimize data conversions—Choose database drivers that convert data

efficiently. For example, some database drivers don’t support Unicode, a

standard encoding that is used for multilingual character sets. If your data-

base driver doesn’t support Unicode, more data conversion is required to

work with Unicode data, resulting in higher CPU use.

In addition, choose data types that process efficiently. When you are working

with data on a large scale, select the data type that can be processed most

efficiently. Retrieving and returning certain data types across the network

can increase or decrease network traffic. See “Choosing the Right Data

Type,” page 34, for details on which data types process more efficiently than

others.

• Be aware that emulated functionality can increase CPU use—Database dri-

vers sometimes emulate functionality if the database system doesn’t support

it. While this provides the benefit of interoperability, you should remember

that emulated behavior typically uses more CPU because the database driver

or the database must perform extra steps to satisfy the behavior. For example,

if your application uses scrollable cursors against Oracle, which doesn’t sup-

port scrollable cursors, CPU use on both the client/application server and

database server will be higher than against a database system that does sup-

port scrollable cursors, such as DB2. For more information about the type

Hardware 115

ptg

of functionality that drivers emulate, see “Know Your Database System,” page

47.

• Use data encryption with caution—Data encryption methods, such as SSL,

are CPU-intensive because they require extra steps between the database

driver and the database system, to negotiate and agree upon the encryp-

tion/decryption information to be used in addition to the process of

encrypting the data. To limit the performance penalty associated with data

encryption, consider establishing separate connections for encrypted and

nonencrypted data. For example, one connection can use encryption for

accessing sensitive data such as an individual’s tax ID number, while the

other connection can forgo encryption for data that is less sensitive, such as

an individual’s department and title. However, not all database systems allow

this. With some database systems, such as Sybase ASE, either all connections

to the database use encryption or none of them do. See “Data Encryption

across the Network,” page 39, for more information.

• If CPU is a limiting factor on your database server, application server, or
client, tune your database driver to compensate for that limiting factor—

Some database drivers provide tuning options that allow you to choose how

and where some CPU-intensive operations are performed. For example,

Sybase ASE creates stored procedures for prepared statements, a CPU-inten-

sive operation to create the stored procedure, but not to execute it. If your

application executes a prepared statement only once, not multiple times, the

database server uses more CPU than necessary. Choosing a driver that allows

you to tune whether Sybase ASE creates a stored procedure for a prepared

statement could improve performance significantly by conserving CPU.

Network Adapter

Computers that are connected to a network have at least one network adapter

that sends and receives network packets across the network. Network adapters

are designed for a specific network type, such as Ethernet, token-ring, and so on.

Differences in the speed of network adapters at either end of the network can

cause performance issues. For example, a 64-bit network adapter sends data

faster than a 32-bit network adapter can process it.

116 The Environment: Tuning for Performance

ptg

A sluggish network can indicate that you need more bandwidth, the capacity

to send and receive network packets. Increasing bandwidth is similar to widening

a congested 2-lane highway into a 4- or 6-lane highway. The highway can handle

more traffic, relieving bottlenecks.

Table 4-7 lists some common causes for network bottlenecks and their rec-

ommended solutions.

Table 4-7 Causes and Solutions of Network Bottlenecks
Cause Solution

Insufficient bandwidth Add more network adapters or upgrade your network
adapter. See “Increasing Network Bandwidth,” page 106,
for more information about upgrading your network
adapter.

Distribute client connections across multiple network
adapters.

Reduce network traffic by configuring the database dri-
ver to use the maximum database protocol packet size
allowed by the database server. See “Configuring Packet
Size,” page 92, for more information.

Inefficient database driver See “Database Drivers,” page 53, for information on
why it’s important to choose a good database driver.

Poorly optimized application Analyze and tune your application and database
code or database driver driver to use the network efficiently. See “Tuning Your

Application or Database Driver to Use the Network
Efficiently,” page 118, for more information.

Detecting a Network Bottleneck

What is the rate at which network packets are sent and received using the net-
work adapter? Comparing this rate to the total bandwidth of your network

adapter can tell you if the network traffic load is too much for your network

adapter. To allow room for spikes in traffic, you should use no more than 50% of

capacity.

For information about tools that can help you troubleshoot network use, see

“The Environment,” page 272.

Hardware 117

ptg

Tuning Your Application or Database Driver to Use the Network Efficiently

Here are some general guidelines to help your application and database driver

use the network efficiently:

• Reduce the number of network round trips—Reducing network round

trips reduces your application’s reliance on the network, which improves

performance. Application design and coding practices that reduce network

round trips include connection pooling, statement pooling, avoiding auto-

commit mode in favor of manual commits, using local transactions instead

of distributed transactions where appropriate, and using batches or arrays of

parameters for bulk inserts.

• Tune your database driver to optimize communication across the net-
work—Some database drivers provide tuning options that allow you to opti-

mize network traffic. For example, if your database driver supports it, you

can increase the size of database protocol packets, which ultimately improves

performance because it results in fewer network packets being sent across

the network. See “Configuring Packet Size,” page 92, for more information.

• Avoid retrieving large amounts of data from the database server—The

more data that must be transferred across the network, the more network

packets are required to transfer the data. For example, data such as XML

files, Blobs, and Clobs can be very large. Just as retrieving thousands of rows

of character data can be a drain on performance, retrieving long data across

the network is slow and resource intensive because of the size of the data.

Avoid retrieving it unless you have a compelling reason to do so. See “Data

Retrieval,” page 30, for more information.

If you can’t avoid retrieving data that generates large amounts of network

traffic, your application can still control the amount of data being sent from

the database by limiting the number of rows sent across the network and

reducing the size of each row sent across the network. See “Limiting the

Amount of Data Returned,” page 34, for more information.

• Be aware that large result sets can delay your application’s response time if
you are using a streaming protocol database—Sybase ASE, Microsoft SQL

Server, and MySQL are examples of streaming protocol databases. These

database systems process the query and send results until there are no more

118 The Environment: Tuning for Performance

ptg

results to send; the database is uninterruptable. Therefore, the network con-

nection is “busy” until all results are returned (fetched) to the application.

Large result sets can suspend the availability of the network for longer times

than small result sets. If you’re using a streaming protocol database, it’s even

more important to reduce the amount of data retrieved from the database

server. See “How One Connection for Multiple Statements Works,” page 17,

for more information about streaming protocol databases versus cursor-

based protocol databases.

• Avoid scrollable cursors unless you know your database system fully sup-
ports them—Scrollable cursors provide the ability to go both forward and

backward through a result set. Because of limited support for server-side

scrollable cursors in many database systems, database drivers often emulate

scrollable cursors, storing rows from a scrollable result set in memory on the

client or application server. A large result set can result in large amounts of

data being transferred over the network. See “Using Scrollable Cursors,” page

36, for more information.

Virtualization

You may have heard talk about a recent trend in database computing known as

virtualization. Virtualization allows companies to consolidate server resources

by allowing multiple operating system instances to run at the same time on a sin-

gle physical computer. A single server can run 4, 8, 16, or even more virtual oper-

ating systems. In 2007, the number of companies offering virtualization

management solutions increased from 6 to 50, a staggering 866% increase. It’s

not hard to figure out why.

Over the past 10 years, hardware has become less expensive and more power-

ful. To keep pace with computing demands, companies have acquired large num-

bers of server machines, but they often find themselves low on the space, power,

and air conditioning required to store and maintain them. It’s estimated that in

an unvirtualized environment, only 8% to 10% of the capacity of a server is used.

Using virtualization, companies can get more work out of fewer machines, easing

and sometimes eliminating the costs associated with housing multiple servers.

For example, imagine an IT’s data center that maintains 50 servers stored in a

crowded, subleased server space. By creating 5 virtual servers on only 10 servers,

Hardware 119

ptg

that data center can move to a smaller space and get rid of an expensive sublease

without sacrificing business capability.

What does virtualization mean to the performance of database applications?

First, it’s important to choose a database driver that supports virtualization tech-

nologies. Next, you need to be aware that it becomes easier to stretch hardware

resources such as network, memory, CPU, and disk use to their limits; the proba-

bility that your database application will be affected by performance issues

caused by hardware constraints is amplified.

Finally, it’s important to understand that virtualized environments make it

harder to detect where performance bottlenecks actually originate because of the

increased complexity of the environment. In addition, there’s no overarching

tool that is operating system-agnostic to analyze resource use in virtualized envi-

ronments (although companies are rushing to develop virtualization manage-

ment tools that allow you to monitor activity and resource use). For example,

Figure 4-21 shows a virtualized machine that runs four operating systems and

hosts four applications. If Application A and Application C routinely generate a

spike in network traffic at the same time every day, the network adapter of the

virtualized machine may not be able to handle the increase in network requests.

The increase can affect the performance of not only Application A and C, but

also the performance of Application B and D.

120 The Environment: Tuning for Performance

Windows XP

Application A

Windows
Server 2003

Application B

Linux

Network

Virtualized Machine

Application C

Solaris x86

Application D

Figure 4-21 Virtualized machine running multiple operating systems and
database applications

ptg

The soundest advice we can give is to invest in the best hardware you can

afford. Software tools to help you troubleshoot performance issues in virtualized

environments demand a steep learning curve and, ultimately, will cost more than

the best hardware. In the example shown in Figure 4-21, if we provide each virtu-

alized machine with its own dedicated network adapter, our performance bottle-

neck is resolved.

In a few cases, it may not be feasible to add or upgrade hardware resources to

expand those that are being overworked. For example, each computer has a phys-

ical limit on the amount of memory it can address. When hardware becomes the

limiting factor for performance, using an efficient database driver becomes even

more important. See “Database Drivers,” page 53, for more information about

choosing an efficient database driver.

Summary

The environment in which your database application runs affects its perfor-

mance. In the Java environment, performance can vary between JVMs from dif-

ferent manufacturers, so it’s important to choose a JVM that gives your

application the best performance. You can further improve performance by tun-

ing JVM settings for heap size and garbage collection. In contrast, the .NET CLR

doesn’t provide the same tuning ability for garbage collection, and efficient

garbage collection largely depends on your application code.

Any operating system change, even a minor one, can affect performance

more than you would think. One often overlooked factor is the endianness of the

operating system, as determined by the computer’s processor. If possible, try to

align the endianness of the operating system on the database client with that of

the operating system on the database server.

Database clients and database servers communicate over a network, typically

TCP/IP. How efficiently your database application uses that network affects per-

formance. Following are key techniques for ensuring the best performance over

the network:

• Reducing network round trips

• Tuning the size of database protocol packets

• Reducing the number of network hops between network destinations

• Avoiding network packet fragmentation

Summary 121

ptg

Hardware resources such as memory, disk I/O, CPU, and the network

adapter can be a limiting factor for performance. To conserve hardware

resources, you often can tune the database driver or use specific application

design and coding techniques. In virtualized environments, it’s easier to stretch

hardware resources to their limits and harder to detect where bottlenecks origi-

nate. Investing in the best hardware that you can afford will save you in the long

run.

122 The Environment: Tuning for Performance

ptg

ODBC Applications:
Writing Good Code

123

Developing performance-optimized ODBC applica-

tions is not easy. Microsoft’s ODBC Programmer’s

Reference does not provide information about perfor-

mance. In addition, ODBC drivers and the ODBC Driver

Manager don’t return warnings when applications run

inefficiently. This chapter describes some general guide-

lines for coding practices that improve ODBC application

performance. These guidelines have been compiled by

examining the ODBC implementations of numerous

shipping ODBC applications. In general, the guidelines

described in this chapter improve performance because

they accomplish one or more of the following goals:

• Reduce network traffic

• Limit disk I/O

• Optimize application-to-driver interaction

• Simplify queries

If you’ve read the other coding chapters (Chapters 6 and

7), you’ll notice that some of the information here resembles

those chapters. While there are some similarities, this chap-

ter focuses on specific information about coding for ODBC.

C H A P T E R F I V E

ptg

Managing Connections

Typically, creating a connection is one of the most performance-expensive oper-

ations that an application performs. Developers often assume that establishing a

connection is a simple request that results in the driver making a single network

round trip to the database server to validate a user’s credentials. In reality, a con-

nection involves many network round trips between the driver and the database

server. For example, when a driver connects to Oracle or Sybase ASE, that con-

nection may require seven to ten network round trips. In addition, the database

establishes resources on behalf of the connection, which involves performance-

expensive disk I/O and memory allocation.

Your time will be well spent if you sit down and design how to handle con-

nections before implementing them in your application. Use the guidelines in

this section to manage your connections more efficiently.

Connecting Efficiently

Database applications use either of the following methods to manage connec-

tions:

• Obtain a connection from a connection pool.

• Create a new connection one at a time as needed.

When choosing a method to manage connections, remember the following

facts about connections and performance:

• Creating a connection is performance expensive.

• Open connections use a substantial amount of memory on both the data-

base server and the database client.

• Opening numerous connections can contribute to an out-of-memory con-

dition, which causes paging of memory to disk and, thus, overall perfor-

mance degradation.

Using Connection Pooling

If your application has multiple users and your database server provides suffi-

cient database resources, using connection pooling can provide significant per-

formance gains. Reusing a connection reduces the number of network round

trips needed to establish a physical connection between the driver and the data-

base. The performance penalty is paid up front at the time the connection pool is

populated with connections. As the connections in the pool are actually used by

124 ODBC Applications: Writing Good Code

ptg

the application, performance improves significantly. Obtaining a connection

becomes one of the fastest operations an application performs instead of one of

the slowest.

Although obtaining connections from a pool is efficient, when your applica-

tion opens and closes connections impacts the scalability of your application.

Open connections just before the user needs them, not sooner, to minimize the

time that the user owns the physical connection. Similarly, close connections as

soon as the user no longer needs them.

To minimize the number of connections required in a connection pool to

service users, you can switch a user associated with a connection to another user

if your database driver supports a feature known as reauthentication.

Minimizing the number of connections conserves memory and can improve

performance. See “Using Reauthentication with Connection Pooling,” page 232.

See Chapter 8, “Connection Pooling and Statement Pooling,” for details about

connection pooling.

Establishing Connections One at a Time

Some applications are not good candidates for using connection pooling, partic-

ularly if connection reuse is limited. See “When Not to Use Connection Pooling,”

page 15, for examples.

Managing Connections 125

Performance Tip

If your application does not use connection pooling, avoid connecting

and disconnecting multiple times throughout your application to execute

SQL statements because of the performance hit your application pays for

opening connections. You don’t need to open a new connection for each

SQL statement your application executes.

Using One Connection for Multiple Statements

When you’re using a single connection for multiple statements, your application

may have to wait for a connection if it connects to a streaming protocol database.

In streaming protocol databases, only one request can be processed at a time over

ptg

a single connection; other requests on the same connection must wait for the

preceding request to complete. Sybase ASE, Microsoft SQL Server, and MySQL

are examples of streaming protocol databases.

In contrast, when connecting to cursor-based protocol databases, the driver

tells the database server when to work and how much data to retrieve. Several

cursors can use the network, each working in small slices of time. Oracle and

DB2 are examples of cursor-based protocol databases. For a more detailed expla-

nation of streaming versus cursor-based protocol databases, see “One

Connection for Multiple Statements,” page 16.

The advantage of using one connection for multiple statements is that it

reduces the overhead of establishing multiple connections, while allowing multi-

ple statements to access the database. The overhead is reduced on both the data-

base server and client machines. The disadvantage is that the application may

have to wait to execute a statement until the single connection is available. See

“One Connection for Multiple Statements,” page 16, for guidelines on using this

model of connection management.

Obtaining Database and Driver Information Efficiently

Remember that creating a connection is one of the most performance-expensive

operations that an application performs.

126 ODBC Applications: Writing Good Code

Performance Tip

Because of the performance hit your application pays for opening con-

nections, once your application is connected, you should avoid establish-

ing additional connections to gather information about the driver and

the database, such as supported data types or database versions, using

SQLGetInfo and SQLGetTypeInfo. For example, some applications estab-

lish a connection and then call a routine in a separate DLL or shared

library that reconnects and gathers information about the driver and the

database.

How often do databases change their supported data types or database ver-

sion between connections? Because this type of information typically doesn’t

change between connections and isn’t a large amount of information to store,

you may want to retrieve and cache the information so the application can access

it later.

ptg

Managing Transactions

To ensure data integrity, all statements in a transaction are committed or rolled

back as a unit. For example, when you use a computer to transfer money from

one bank account to another, the request involves a transaction—updating val-

ues stored in the database for both accounts. If all parts of that unit of work suc-

ceed, the transaction is committed. If any part of that unit of work fails, the

transaction is rolled back.

Use the guidelines in this section to help you manage transactions more effi-

ciently.

Managing Commits in Transactions

Committing (and rolling back) transactions is slow because of the disk I/O and,

potentially, the number of network round trips required. What does a commit

actually involve? The database must write to disk every modification made by a

transaction to the database. This is usually a sequential write to a journal file (or

log); nevertheless, it involves expensive disk I/O.

In ODBC, the default transaction commit mode is auto-commit. In auto-

commit mode, a commit is performed for every SQL statement that requires a

request to the database (Insert, Update, Delete, and Select statements). When

auto-commit mode is used, your application doesn’t control when database work

is committed. In fact, commits commonly occur when there’s actually no real

work to commit.

Some databases, such as DB2, don’t support auto-commit mode. For these

databases, the database driver, by default, sends a commit request to the database

after every successful operation (SQL statement). The commit request equates to

a network round trip between the driver and the database. The round trip to the

database occurs even though the application didn’t request the commit and even

if the operation made no changes to the database. For example, the driver makes

a network round trip even when a Select statement is executed.

Let’s look at the following ODBC code, which doesn’t turn off auto-commit

mode. Comments in the code show when commits occur if the driver or the

database performs commits automatically:

/* For conciseness, this code omits error checking */

/* Allocate a statement handle */

rc = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);

Managing Transactions 127

ptg

/* Prepare an INSERT statement for multiple executions */

strcpy (sqlStatement, "INSERT INTO employees " +

"VALUES (?, ?, ?)");

rc = SQLPrepare((SQLHSTMT)hstmt, sqlStatement, SQL_NTS);

/* Bind parameters */

rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT,

SQL_C_SLONG, SQL_INTEGER, 10, 0,

&id, sizeof(id), NULL);

rc = SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT,

SQL_C_CHAR, SQL_CHAR, 20, 0,

name, sizeof(name), NULL);

rc = SQLBindParameter(hstmt, 3, SQL_PARAM_INPUT,

SQL_C_SLONG, SQL_INTEGER, 10, 0,

&salary, sizeof(salary), NULL);

/* Set parameter values before execution */

id = 20;

strcpy(name, "Employee20");

salary = 100000;

rc = SQLExecute(hstmt);

/* A commit occurs because auto-commit is on */

/* Change parameter values for the next execution */

id = 21;

strcpy(name, "Employee21");

salary = 150000;

rc = SQLExecute(hstmt);

/* A commit occurs because auto-commit is on */

/* Reset parameter bindings */

rc = SQLFreeStmt((SQLHSTMT)hstmt, SQL_RESET_PARAMS);

strcpy(sqlStatement, “SELECT id, name, salary “ +

“FROM employees”);

128 ODBC Applications: Writing Good Code

ptg

/* Execute a SELECT statement. A prepare is unnecessary

because it's executed only once. */

rc = SQLExecDirect((SQLHSTMT)hstmt, sqlStatement, SQL_NTS);

/* Fetch the first row */

rc = SQLFetch(hstmt);

while (rc != SQL_NO_DATA_FOUND) {

/* All rows are returned when fetch

returns SQL_NO_DATA_FOUND */

/* Get the data for each column in the result set row */

rc = SQLGetData (hstmt, 1, SQL_INTEGER, &id,

sizeof(id), NULL);

rc = SQLGetData (hstmt, 2, SQL_VARCHAR, &name,

sizeof(name), NULL);

rc = SQLGetData (hstmt, 3, SQL_INTEGER, &salary,

sizeof(salary), NULL);

printf("\nID: %d Name: %s Salary: %d", id, name, salary);

/* Fetch the next row of data */

rc = SQLFetch(hstmt);

}

/* Close the cursor */

rc = SQLFreeStmt ((SQLHSTMT)hstmt, SQL_CLOSE);

/* Whether a commit occurs after a SELECT statement

because auto-commit is on depends on the driver.

It's safest to assume a commit occurs here. */

/* Prepare the UPDATE statement for multiple executions */

strcpy (sqlStatement,

"UPDATE employees SET salary = salary * 1.05" +

"WHERE id = ?");

Managing Transactions 129

ptg

rc = SQLPrepare ((SQLHSTMT)hstmt, sqlStatement, SQL_NTS);

/* Bind parameter */

rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT,

SQL_C_LONG, SQL_INTEGER, 10, 0,

&index, sizeof(index), NULL);

for (index = 0; index < 10; index++) {

/* Execute the UPDATE statement for each

value of index between 0 and 9 */

rc = SQLExecute (hstmt);

/* Because auto-commit is on, a commit occurs each time

through loop for a total of 10 commits */

}

/* Reset parameter bindings */

rc = SQLFreeStmt ((SQLHSTMT)hstmt, SQL_RESET_PARAMS);

/* Execute a SELECT statement. A prepare is unnecessary

because it's only executed once. */

strcpy(sqlStatement, "SELECT id, name, salary" +

"FROM employees");

rc = SQLExecDirect ((SQLHSTMT)hstmt, sqlStatement, SQL_NTS);

/* Fetch the first row */

rc = SQLFetch(hstmt);

while (rc != SQL_NO_DATA_FOUND) {

/* All rows are returned when fetch

returns SQL_NO_DATA_FOUND */

130 ODBC Applications: Writing Good Code

ptg

/* Get the data for each column in the result set row */

rc = SQLGetData (hstmt, 1, SQL_INTEGER, &id,

sizeof(id), NULL);

rc = SQLGetData (hstmt, 2, SQL_VARCHAR, &name,

sizeof(name), NULL);

rc = SQLGetData (hstmt,3,SQL_INTEGER,&salary,

sizeof(salary), NULL);

printf("\nID: %d Name: %s Salary: %d", id, name, salary);

/* Fetch the next row of data */

rc = SQLFetch(hstmt);

}

/* Close the cursor */

rc = SQLFreeStmt ((SQLHSTMT)hstmt, SQL_CLOSE);

/* Whether a commit occurs after a SELECT statement

because auto-commit is on depends on the driver.

It's safest to assume a commit occurs here. */

Managing Transactions 131

Performance Tip

Because of the significant amount of disk I/O on the database server

required to commit every operation and the extra network round trips

that occur between the driver and the database server, it’s a good idea to

turn off auto-commit mode in your application and use manual commits

instead. Using manual commits allows your application to control when

database work is committed, which provides dramatically better perfor-

mance. To turn off auto-commit mode, use the SQLSetConnectAttr func-

tion, for example, SQLSetConnectAttr(hstmt, SQL_ATTR_AUTOCOMMIT,

SQL_AUTOCOMMIT_OFF).

ptg

For example, let’s look at the following ODBC code. It’s identical to the pre-

vious ODBC code except that it turns off auto-commit mode and uses manual

commits:

/* For conciseness, this code omits error checking */

/* Allocate a statement handle */

rc = SQLAllocStmt((SQLHDBC)hdbc, (SQLHSTMT *)&hstmt);

/* Turn auto-commit off */

rc = SQLSetConnectAttr (hdbc, SQL_AUTOCOMMIT,

SQL_AUTOCOMMIT_OFF);

/* Prepare an INSERT statement for multiple executions */

strcpy (sqlStatement, "INSERT INTO employees" +

"VALUES (?, ?, ?)");

rc = SQLPrepare((SQLHSTMT)hstmt, sqlStatement, SQL_NTS);

/* Bind parameters */

rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT,

SQL_C_SLONG, SQL_INTEGER, 10, 0,

&id, sizeof(id), NULL);

rc = SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT,

SQL_C_CHAR, SQL_CHAR, 20, 0,

name, sizeof(name), NULL);

rc = SQLBindParameter(hstmt, 3, SQL_PARAM_INPUT,

SQL_C_SLONG, SQL_INTEGER, 10, 0,

&salary, sizeof(salary), NULL);

/* Set parameter values before execution */

id = 20;

strcpy(name,"Employee20");

salary = 100000;

rc = SQLExecute(hstmt);

/* Change parameter values for the next execution */

id = 21;

strcpy(name,"Employee21");

132 ODBC Applications: Writing Good Code

ptg

salary = 150000;

rc = SQLExecute(hstmt);

/* Reset parameter bindings */

rc = SQLFreeStmt(hstmt, SQL_RESET_PARAMS);

/* Manual commit */

rc = SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_COMMIT);

/* Execute a SELECT statement. A prepare is unnecessary

because it's only executed once. */

strcpy(sqlStatement, "SELECT id, name, salary" +

"FROM employees");

rc = SQLExecDirect((SQLHSTMT)hstmt, sqlStatement, SQL_NTS);

/* Fetch the first row */

rc = SQLFetch(hstmt);

while (rc != SQL_NO_DATA_FOUND) {

/* All rows are returned when fetch

returns SQL_NO_DATA_FOUND */

/* Get the data for each column in the result set row */

rc = SQLGetData (hstmt, 1, SQL_INTEGER, &id,

sizeof(id), NULL);

rc = SQLGetData (hstmt, 2, SQL_VARCHAR, &name,

sizeof(name), NULL);

rc = SQLGetData (hstmt, 3, SQL_INTEGER, &salary,

sizeof(salary), NULL);

printf("\nID: %d Name: %s Salary: %d", id, name, salary);

/* Fetch the next row of data */

rc = SQLFetch(hstmt);

}

Managing Transactions 133

ptg

/* Close the cursor */

rc = SQLFreeStmt ((SQLHSTMT)hstmt, SQL_CLOSE);

strcpy (sqlStatement,

"UPDATE employees SET salary = salary * 1.05" +

"WHERE id = ?");

/* Prepare the UPDATE statement for multiple executions */

rc = SQLPrepare ((SQLHSTMT)hstmt, sqlStatement, SQL_NTS);

/* Bind parameter */

rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT,

SQL_C_SLONG, SQL_INTEGER, 10, 0,

&index, sizeof(index), NULL);

for (index = 0; index < 10; index++) {

/* Execute the UPDATE statement for each

value of index between 0 and 9 */

rc = SQLExecute (hstmt);

}

/* Manual commit */

rc = SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_COMMIT);

/* Reset parameter bindings */

rc = SQLFreeStmt ((SQLHSTMT)hstmt, SQL_RESET_PARAMS);

/* Execute a SELECT statement. A prepare is unnecessary

because it's only executed once. */

strcpy(sqlStatement, "SELECT id, name, salary" +

"FROM employees");

rc = SQLExecDirect ((SQLHSTMT)hstmt, sqlStatement, SQL_NTS);

134 ODBC Applications: Writing Good Code

ptg

/* Fetch the first row */

rc = SQLFetch(hstmt);

while (rc != SQL_NO_DATA_FOUND) {

/* All rows are returned when fetch

returns SQL_NO_DATA_FOUND */

/* Get the data for each column in the result set row */

rc = SQLGetData (hstmt, 1, SQL_INTEGER, &id,

sizeof(id), NULL);

rc = SQLGetData (hstmt, 2, SQL_VARCHAR, &name,

sizeof(name), NULL);

rc = SQLGetData (hstmt,3,SQL_INTEGER,&salary,

sizeof(salary), NULL);

printf("\nID: %d Name: %s Salary: %d", id, name, salary);

/* Fetch the next row of data */

rc = SQLFetch(hstmt);

}

/* Close the cursor */

rc = SQLFreeStmt ((SQLHSTMT)hstmt, SQL_CLOSE);

/* Manual commit */

rc = SQLEndTran (SQL_HANDLE_DBC, hdbc, SQL_COMMIT);

See “Managing Commits in Transactions,” page 22, for information on when

to commit work if you’ve turned off auto-commit mode.

Choosing the Right Transaction Model

Which type of transaction should you use: local or distributed? A local transac-

tion accesses and updates data on a single database. A distributed transaction

accesses and updates data on multiple databases; therefore, it must be coordi-

nated among those databases.

Managing Transactions 135

ptg

Be aware that the default transaction behavior of many COM+ components

uses distributed transactions, so changing that default transaction behavior to

local transactions as shown can improve performance.

// Disable MTS Transactions.

XACTOPT options[1] = {XACTSTAT_NONE,"NOT SUPPORTED"};

hr = Itxoptions->SetOptions(options);

See “Transaction Management,” page 21, for more information about per-

formance and transactions.

Executing SQL Statements

Use the guidelines in this section to help you select which ODBC functions will

give you the best performance when executing SQL statements.

Using Stored Procedures

Database drivers can call stored procedures on the database using either of the

following methods:

• Execute the procedure the same way as any other SQL statement. The data-

base parses the SQL statement, validates argument types, and converts argu-

ments into the correct data types.

• Invoke a Remote Procedure Call (RPC) directly in the database. The data-

base skips the parsing and optimization that executing a SQL statement

requires.

136 ODBC Applications: Writing Good Code

Performance Tip

Distributed transactions, as defined by ODBC and the Microsoft

Distributed Transaction Coordinator (DTC), are substantially slower than

local transactions because of the logging and network round trips

needed to communicate between all the components involved in the dis-

tributed transaction. Unless distributed transactions are required, you

should use local transactions.

ptg

Remember that SQL is always sent to the database as a character string. For

example, consider the following stored procedure call, which passes a literal

argument to the stored procedure:

{call getCustName (12345)}

Although the argument to getCustName() is an integer, the argument is

passed inside a character string to the database, namely {call getCustName

(12345)}. The database parses the SQL statement, isolates the single argument

value of 12345, and converts the string 12345 into an integer value before execut-

ing the procedure as a SQL language event. Using an RPC on the database, your

application can pass the parameters to the RPC. The driver sends a database pro-

tocol packet that contains the parameters in their native data type formats, skip-

ping the parsing and optimization required to execute the stored procedure as a

SQL statement. Compare the following examples.

Executing SQL Statements 137

Performance Tip

Call stored procedures by invoking an RPC with parameter markers for

arguments instead of using literal arguments. Because the database skips

the parsing and optimization required in executing the stored procedure

as a SQL statement, performance is significantly improved.

Example A: Not Using a Server-Side RPC

The stored procedure getCustName is not optimized to use a server-side

RPC. The database treats the SQL stored procedure execution request as

a normal SQL language event, which includes parsing the statement,

validating argument types, and converting arguments into the correct

data types before executing the procedure.

strcpy (sqlStatement,"{call getCustName (12345)}");

rc = SQLPrepare((SQLHSTMT)hstmt, sqlStatement, SQL_NTS);

rc = SQLExecute(hstmt);

ptgWhy doesn’t the driver parse and automatically change the SQL stored pro-

cedure call when it encounters a literal argument so that it can execute the stored

procedure using an RPC? Consider this example:

{call getCustname (12345)}

The driver doesn’t know if the value 12345 represents an integer, a decimal, a

smallint, a bigint, or another numeric data type. To determine the correct data

type for packaging the RPC request, the driver must make an expensive network

round trip to the database server. The overhead needed to determine the true

data type of the literal argument far outweighs the benefit of trying to execute the

request as an RPC.

Using Statements Versus Prepared Statements

Most applications have a certain set of SQL statements that are executed multiple

times and a few SQL statements that are executed only once or twice during the

life of the application. Choose the SQLExecDirect function or the

SQLPrepare/SQLExecute functions depending on how frequently you plan to

execute the SQL statement.

138 ODBC Applications: Writing Good Code

Example B: Using a Server-Side RPC

The stored procedure getCustName is optimized to use a server-side

RPC. Because the application avoids literal arguments and calls the pro-

cedure by specifying arguments as parameters, the driver optimizes the

execution by invoking the stored procedure directly on the database as

an RPC. The SQL language processing by the database is avoided, and

execution time is faster.

strcpy (sqlStatement,"{call getCustName (?)}");

rc = SQLPrepare((SQLHSTMT)hstmt, sqlStatement, SQL_NTS);

rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT,

SQL_C_LONG, SQL_INTEGER, 10, 0,

&id, sizeof(id), NULL);

id = 12345;

rc = SQLExecute(hstmt);

ptg

The SQLExecDirect function is optimized for a SQL statement that is only

executed once. In contrast, the SQLPrepare/SQLExecute functions are optimized

for SQL statements that use parameter markers and are executed multiple times.

Although the overhead for the initial execution of a prepared statement is high,

the advantage is realized with subsequent executions of the SQL statement.

Using the SQLPrepare/SQLExecute functions typically results in at least two

network round trips to the database server:

• One network round trip to parse and optimize the statement

• One or more network round trips to execute the statement and retrieve

results

Executing SQL Statements 139

Performance Tip

If your application makes a request only once during its life span, using

the SQLExecDirect function is a better choice than using the

SQLPrepare/SQLExecute function because SQLExecDirect results in only

a single network round trip. Remember, reducing network communica-

tion typically provides the most performance gain. For example, if you

have an application that runs an end-of-day sales report, send the query

that generates the data for that report to the database using the

SQLExecDirect function, not the SQLPrepare/SQLExecute function.

See “SQL Statements,” page 27, for more information about statements ver-

sus prepared statements.

Using Arrays of Parameters

Updating large amounts of data typically is done by preparing an Insert state-

ment and executing that statement multiple times, resulting in many network

round trips.

ptg

With ODBC 3.x, calls to SQLSetStmtAttr with the SQL_ATTR_

PARAMSET_SIZE, SQL_ATTR_PARAMS_PROCESSED_PTR, and SQL_ATTR_PARAM_

STATUS_PTR arguments supersede the ODBC 2.x call to SQLParamOptions.

Before executing the statement, the application sets the value of each data

element in the bound array. When the statement is executed, the driver tries to

process the entire array contents using one network round trip. For example, let’s

compare the following examples.

140 ODBC Applications: Writing Good Code

Performance Tip

To reduce the number of network round trips when updating large

amounts of data, you can send multiple Insert statements to the data-

base at a time using the SQLSetStmtAttr function with the following

arguments: SQL_ATTR_PARAMSET_SIZE sets the array size of the parame-

ter, SQL_ATTR_PARAMS_PROCESSED_PTR assigns a variable filled by

SQLExecute (containing the number of rows that are inserted), and

SQL_ATTR_PARAM_STATUS_PTR points to an array in which status informa-

tion for each row of parameter values is retrieved.

Example A: Executing a Prepared Statement Multiple Times

A prepared statement is used to execute an Insert statement multiple

times, requiring 101 network round trips to perform 100 Insert opera-

tions: 1 round trip to prepare the statement and 100 additional round

trips to execute its iterations.

rc = SQLPrepare (hstmt, "INSERT INTO DailyLedger (...)" +

"VALUES (?,?,...)", SQL_NTS);

// bind parameters

...

do {

// read ledger values into bound parameter buffers

...

rc = SQLExecute (hstmt);

// insert row

} while ! (eof);

ptg

Using the Cursor Library

The ODBC cursor library is a component of Microsoft Data Access Components

(MDAC) and is used to implement static cursors (one type of scrollable cursor)

for drivers that normally don’t support them.

Executing SQL Statements 141

Example B: Arrays of Parameters

When arrays of parameters are used to consolidate 100 Insert opera-

tions, only two network round trips are required: one to prepare the

statement and another to execute the array. Although arrays of parame-

ters use more CPU cycles, performance is gained by reducing the num-

ber of network round trips.

SQLPrepare (hstmt, "INSERT INTO DailyLedger (...)" +

"VALUES (?,?,...)", SQL_NTS);

SQLSetStmtAttr (hstmt, SQL_ATTR_PARAMSET_SIZE, (UDWORD)100,

SQL_IS_UINTEGER);

SQLSetStmtAttr (hstmt, SQL_ATTR_PARAMS_PROCESSED_PTR,

&rows_processed, SQL_IS_POINTER);

// Specify an array in which to retrieve the status of

// each set of parameters.

SQLSetStmtAttr(hstmt, SQL_ATTR_PARAM_STATUS_PTR,

ParamStatusArray, SQL_IS_POINTER);

// pass 100 parameters per execute

// bind parameters

...

do {

// read up to 100 ledger values into

// bound parameter buffers.

...

rc = SQLExecute (hstmt);

// insert a group of 100 rows

} while ! (eof);

ptg

What if you don’t know whether your driver supports scrollable cursors?

Using the following code ensures that the ODBC cursor library is only used when

the driver doesn’t support scrollable cursors:

rc = SQLSetConnectAttr (hstmt, SQL_ATTR_ODBC_CURSORS,

SQL_CUR_USE_IF_NEEDED, SQL_IS_INTEGER);

Retrieving Data

Retrieve only the data you need, and choose the most efficient method to retrieve

that data. Use the guidelines in this section to optimize your performance when

retrieving data.

Retrieving Long Data

Retrieving long data—such as large XML data, long varchar/text, long varbinary,

Clobs, and Blobs—across a network is slow and resource intensive. Most users

really don’t want to see long data. For example, consider the user interface of an

employee directory application that allows the user to look up an employee’s

phone extension and department, and optionally, view an employee’s photo-

graph by clicking the name of the employee.

Employee Phone Dept

Harding X4568 Manager

Hoover X4324 Sales

Taft X4569 Sales

Lincoln X4329 Tech

142 ODBC Applications: Writing Good Code

Performance Tip

If your ODBC driver supports scrollable cursors, don’t code your applica-

tion to load the ODBC cursor library. Although the cursor library provides

support for static cursors, the cursor library also creates temporary log

files on the user’s local disk drive. Because of the disk I/O required to

create these temporary log files, using the ODBC cursor library slows per-

formance.

ptg

Retrieving each employee’s photograph would slow performance unneces-

sarily. If the user does want to see the photograph, he can click the employee

name and the application can query the database again, specifying only the long

columns in the Select list. This method allows users to retrieve result sets with-

out paying a high performance penalty for network traffic.

Although excluding long data from the Select list is the best approach,

some applications do not formulate the Select list before sending the query to

the driver (that is, some applications use SELECT * FROM table ...). If the

Select list contains long data, the driver is forced to retrieve that long data, even

if the application never requests the long data from the result set. When possible,

use a method that does not retrieve all columns of the table. For example, con-

sider the following code:

rc = SQLExecDirect (hstmt, "SELECT * FROM employees" +

"WHERE SSID = '999-99-2222'", SQL_NTS);

rc = SQLFetch (hstmt);

When a query is executed, the driver has no way to determine which result

columns the application will use; an application may fetch any result column that

is retrieved. When the driver processes a SQLFetch or SQLExtendedFetch

request, it retrieves at least one, and often multiple, result rows from the database

across the network. A result row contains all the column values for each row.

What if one of the columns includes long data such as an employee photograph?

Performance would slow considerably.

Retrieving Data 143

Performance Tip

Because retrieving long data across the network negatively affects per-

formance, design your application to exclude long data from the Select

list.

Limiting the Select list to contain only the name column results in a faster

performing query at runtime. For example:

rc = SQLExecDirect (hstmt, "SELECT name FROM employees" +

"WHERE SSID = '999-99-2222'", SQL_NTS);

rc = SQLFetch(hstmt);

rc = SQLGetData(hstmt, 1, ...);

ptg

Limiting the Amount of Data Retrieved

If your application executes a query that retrieves five rows when it needs only

two, application performance suffers, especially if the unnecessary rows include

long data.

144 ODBC Applications: Writing Good Code

Performance Tip

One of the easiest ways to improve performance is to limit the amount of

network traffic between the driver and the database server—optimally by

writing SQL queries that instruct the driver to retrieve from the database

only the data that the application requires.

Make sure that your Select statements use a Where clause to limit the

amount of data that is retrieved. Even when using a Where clause, a Select state-

ment that does not adequately restrict its request could retrieve hundreds of

rows of data. For example, if you want data from the employees table for each

manager hired in recent years, your application could execute the following

statement, and subsequently, filter out the rows of employees who are not man-

agers:

SELECT * FROM employees

WHERE hiredate > 2000

However, suppose the employees table contains a column that stores pho-

tographs of each employee. In this case, retrieving extra rows is extremely expen-

sive to your application performance. Let the database filter the request for you

and avoid sending extra data that you don’t need across the network. The follow-

ing query uses a better approach, limiting the data retrieved and improving per-

formance:

SELECT * FROM employees

WHERE hiredate > 2003 AND job_title='Manager'

Sometimes applications need to use SQL queries that generate a large

amount of network traffic. For example, consider an application that displays

information from support case histories, which each contains a 10MB log file.

Does the user really need to see the entire contents of the log file? If not, perfor-

mance would improve if the application displayed only the first 1MB of the log

file.

ptg

Suppose you have a GUI-based application, and each screen can display no

more than 20 rows of data. It’s easy to construct a query that may retrieve a mil-

lion rows, such as SELECT * FROM employees, but it’s hard to imagine a scenario

where a query that retrieves a million rows would be useful. When designing

applications, it’s good practice to call the SQLSetStmtAttr function with the

SQL_ATTR_MAX_ROWS option as a fail-safe to limit the number of rows that a

query can retrieve. For example, if an application calls SQLSetStmt(SQL_

ATTR_MAX_ROWS, 10000, 0), no query will retrieve more than 10,000 rows.

In addition, calling the SQLSetStmtAttr function with the SQL_ATTR_

MAX_LENGTH option limits the bytes of data that can be retrieved for a column

value with the following data types:

• Binary

• Varbinary

• Longvarbinary

• Char

• Varchar

• Longvarchar

For example, consider an application that allows users to select from a repos-

itory of technical articles. Rather than retrieve and display the entire article, the

application can call SQLSetStmtAttr(SQL_ATTR_MAX_LENGTH, 153600, 0) to

retrieve only the first 150KB of text to the application—enough to give users a

reasonable preview of the article.

Using Bound Columns

Data can be retrieved from the database using either the SQLBindCol function or

the SQLGetData function. When SQLBindCol is called, it associates, or binds,

a variable to a column in the result set. Nothing is sent to the database.

Retrieving Data 145

Performance Tip

When you cannot avoid retrieving data that generates a large amount of

network traffic, your application can still control the amount of data

being sent from the database to the driver by limiting the number of

rows sent across the network and reducing the size of each row sent

across the network.

ptg

SQLBindCol tells the driver to remember the addresses of the variables, which the

driver will use to store the data when it is actually retrieved. When SQLFetch is

executed, the driver places the data into the addresses of the variables specified by

SQLBindCol. In contrast, SQLGetData returns data directly into variables. It’s

commonly called to retrieve long data, which often exceeds the length of a single

buffer and must be retrieved in parts.

146 ODBC Applications: Writing Good Code

Performance Tip

Retrieving data using the SQLBindCol function instead of using the

SQLGetData function reduces the number of ODBC calls, and ultimately

the number of network round trips, improving performance.

The following code uses the SQLGetData function to retrieve data:

rc = SQLExecDirect (hstmt, "SELECT <20 columns>" +

"FROM employees" +

"WHERE HireDate >= ?", SQL_NTS);

do {

rc = SQLFetch (hstmt);

// call SQLGetData 20 times

} while ((rc == SQL_SUCCESS) || (rc == SQL_SUCCESS_WITH_INFO));

If the query retrieves 90 result rows, 1,891 ODBC calls are made (20 calls to

SQLGetData × 90 result rows + 91 calls to SQLFetch).

The following code uses the SQLBindCol function instead of SQLGetData:

rc = SQLExecDirect (hstmt, "SELECT <20 columns>" +

"FROM employees" +

"WHERE HireDate >= ?", SQL_NTS);

// call SQLBindCol 20 times

do {

rc = SQLFetch (hstmt);

} while ((rc == SQL_SUCCESS) || (rc == SQL_SUCCESS_WITH_INFO));

ptg

The number of ODBC calls is reduced from 1,891 to 111 (20 calls to

SQLBindCol + 91 calls to SQLFetch). In addition to reducing the number of calls

required, many drivers optimize how SQLBindCol is used by binding result infor-

mation directly from the database into the user’s buffer. That is, instead of the

driver retrieving information into a container and then copying that information

to the user’s buffer, the driver requests that the information from the database be

placed directly into the user’s buffer.

Using SQLExtendedFetch Instead of SQLFetch

Most ODBC drivers now support SQLExtendedFetch for forward-only cursors.

Yet, most ODBC applications continue to use SQLFetch to fetch data.

Retrieving Data 147

Performance Tip

Using the SQLExtendedFetch function instead of SQLFetch to fetch data

reduces the number of ODBC calls, and ultimately the number of net-

work round trips, and simplifies coding. Using SQLExtendedFetch results

in better performance and more maintainable code.

Again, consider the same example we used in the section, “Using Bound

Columns,” page 145, but using SQLExtendedFetch instead of SQLFetch:

rc = SQLSetStmtOption (hstmt, SQL_ROWSET_SIZE, 100);

// use arrays of 100 elements

rc = SQLExecDirect (hstmt, "SELECT <20 columns>" +

"FROM employees" +

"WHERE HireDate >= ?", SQL_NTS);

// call SQLBindCol 1 time specifying row-wise binding

do {

rc = SQLExtendedFetch (hstmt, SQL_FETCH_NEXT, 0,

&RowsFetched, RowStatus);

} while ((rc == SQL_SUCCESS) || (rc == SQL_SUCCESS_WITH_INFO));

The number of ODBC calls made by the application has been reduced from

1,891 to 4 (1 SQLSetStmtOption + 1 SQLExecDirect + 1 SQLBindCol + 1

SQLExtendedFetch). Besides reducing the ODBC call load, some ODBC drivers

ptg

can retrieve data from the server in arrays, further improving the performance by

reducing network traffic.

For ODBC drivers that do not support SQLExtendedFetch, your application

can enable forward-only cursors using the ODBC cursor library by calling

SQLSetConnectAttr. Using the cursor library won’t improve performance, but it

also won’t decrease application response time when using forward-only cursors

because no logging is required. For scrollable cursors, it’s a different story (see

“Using the Cursor Library,” page 141). In addition, using the cursor library when

SQLExtendedFetch is not supported natively by the driver simplifies code

because the application can always depend on SQLExtendedFetch being avail-

able. The application doesn’t require two algorithms (one using

SQLExtendedFetch and one using SQLFetch).

Determining the Number of Rows in a Result Set

ODBC defines two types of cursors:

• Forward-only

• Scrollable (static, keyset-driven, dynamic, and mixed)

Scrollable cursors let you go both forward and backward through a result set.

However, because of limited support for server-side scrollable cursors in many

database systems, ODBC drivers often emulate scrollable cursors, storing rows

from a scrollable result set in a cache on the machine where the driver resides

(client or application server).

Unless you are certain that the database natively supports using a scrollable

result set, do not call the SQLExtendedFetch function to find out how many rows

the result set contains. For drivers that emulate scrollable cursors, calling

SQLExtendedFetch causes the driver to retrieve all results across the network to

reach the last row. This emulated model of scrollable cursors provides flexibility

for the developer but comes with a performance penalty until the client cache of

rows is fully populated. Instead of calling SQLExtendedFetch to determine the

number of rows, count the rows by iterating through the result set or obtain the

number of rows by submitting a Select statement with the Count function. For

example:

SELECT COUNT(*) FROM employees

Unfortunately, there’s no easy way to tell if a database driver uses native

server-side scrollable cursors or emulates this functionality. For Oracle or

148 ODBC Applications: Writing Good Code

ptg

MySQL, you know the driver emulates scrollable cursors, but for other databases,

it’s more complicated. See “Using Scrollable Cursors,” page 36, for details about

which common databases support server-side scrollable cursors and how data-

base drivers emulate scrollable cursors.

Updating Data 149

Performance Tip

In general, do not write code that relies on the number of result rows

from a query because drivers often must retrieve all rows in a result set

to determine how many rows the query will return.

Choosing the Right Data Type

When designing your database schema, it’s obvious that you need to think about

the impact of storage requirements on the database server. Less obvious, but just

as important, you need to think about the network traffic required to move data

in its native format to and from the ODBC driver. Retrieving and sending certain

data types across the network can increase or decrease network traffic.

Performance Tip

For multiuser, multivolume applications, billions, or even trillions, of net-

work packets can move between the driver and the database server over

the course of a day. Choosing data types that are processed efficiently

can incrementally provide a measurable gain in performance.

See “Choosing the Right Data Type,” page 34, for information about which

data types are processed faster than others.

Updating Data

Use the guidelines in this section to manage your updates more efficiently.

Using SQLSpecialColumns to Optimize Updates and Deletes

Many databases have hidden columns, named pseudo-columns, that represent a

unique key associated with every row in a table. Typically, pseudo-columns in a

ptg

SQL statement provide the fastest way to access a row because they usually point

to the exact location of the physical record.

150 ODBC Applications: Writing Good Code

Performance Tip

Use SQLSpecialColumns to identify the most optimal columns, typically

pseudo-columns, to use in the Where clause for updating data.

Some applications, such as an application that forms a Where clause consisting

of a subset of the column values retrieved in the result set, cannot be designed to

take advantage of positioned updates and deletes. Some applications may formulate

the Where clause by using searchable result columns or by calling SQLStatistics to

find columns that may be part of a unique index. These methods usually work but

can result in fairly complex queries. For example:

rc = SQLExecDirect (hstmt, "SELECT first_name, last_name," +

"ssn, address, city, state, zip" +

"FROM employees", SQL_NTS);

// fetch data using complex query

...

rc = SQLExecDirect (hstmt, "UPDATE employees SET address = ?" +

"WHERE first_name = ? AND last_name = ?" +

"AND ssn = ? AND address = ? AND city = ? AND" +

"state = ? AND zip = ?", SQL_NTS);

Many databases support pseudo-columns that are not explicitly defined in the

table definition but are hidden columns of every table (for example, ROWID for

Oracle). Because pseudo-columns are not part of the explicit table definition,

they’re not retrieved when SQLColumns is called. To determine if pseudo-columns

exist, your application must call SQLSpecialColumns. For example:

...

rc = SQLSpecialColumns (hstmt, SQL_BEST_ROWID, ...);

...

ptg

rc = SQLExecDirect (hstmt, "SELECT first_name, last_name," +

"ssn, address, city, state, zip," +

"ROWID FROM employees", SQL_NTS);

// fetch data and probably "hide" ROWID from the user

...

rc = SQLExecDirect (hstmt, "UPDATE employees SET address = ?" +

"WHERE ROWID = ?", SQL_NTS);

// fastest access to the data!

If your data source doesn’t contain pseudo-columns, the result set of

SQLSpecialColumns consists of the columns of the most optimal unique index

on the specified table (if a unique index exists). Therefore, your application

doesn’t need to call SQLStatistics to find the smallest unique index.

Using Catalog Functions

Catalog functions retrieve information about a result set, such as the number and

type of columns. Because catalog functions are slow compared to other ODBC

functions, using them frequently can impair performance. Use the guidelines in

this section to optimize performance when selecting and using catalog functions.

Minimizing the Use of Catalog Functions

Compared to other ODBC functions, catalog functions that generate result sets

are slow. To retrieve all result column information mandated by the ODBC spec-

ification, an ODBC driver often must perform multiple or complex queries to

retrieve the result set for a single call to a catalog function.

Using Catalog Functions 151

Performance Tip

Although it’s almost impossible to write an ODBC application without

using a catalog function, you can improve performance by minimizing

their use.

ptg

In addition to avoid executing catalog functions multiple times, you should

cache information retrieved from result sets generated by catalog functions. For

example, call SQLGetTypeInfo once, and cache the elements of the result set that

your application depends on. It’s unlikely that any application will use all ele-

ments of the result set generated by a catalog function, so the cache of informa-

tion shouldn’t be difficult to maintain.

Avoiding Search Patterns

Catalog functions support arguments that can limit the amount of data

retrieved. Using null values or search patterns, such as %A%, for these arguments

often generates time-consuming queries. In addition, network traffic can

increase because of unnecessary results.

152 ODBC Applications: Writing Good Code

Performance Tip

Always supply as many non-null arguments as possible to result sets that

generate catalog functions.

In the following example, an application uses the SQLTables function to

determine whether the table named WSTable exists and provides null values for

most of the arguments:

rc = SQLTables(hstmt, null, 0, null, 0, "WSTable",

SQL_NTS, null, 0);

The driver interprets the request as follows: Retrieve all tables, views, system

tables, synonyms, temporary tables, and aliases named WSTable that exist in any

database schema in the database catalog.

In contrast, the following request provides non-null values for all argu-

ments, allowing the driver to process the request more efficiently:

rc = SQLTables(hstmt, "cat1", SQL_NTS, "johng", SQL_NTS,

"WSTable", SQL_NTS, "Table", SQL_NTS);

The driver interprets the request as follows: Retrieve all tables in catalog

"cat1" that are named "WSTable" and owned by "johng." No synonyms,

views, system tables, aliases, or temporary tables are retrieved.

ptg

Sometimes little is known about the object that you are requesting informa-

tion for. Any information that the application can provide the driver when call-

ing catalog functions can result in improved performance and reliability.

Using a Dummy Query to Determine Table Characteristics

Sometimes you need information about columns in the database table, such as

column names, column data types, and column precision and scale. For example,

an application that allows users to choose which columns to select may need to

request the names of each column in the database table.

Using Catalog Functions 153

Performance Tip

To determine characteristics about a database table, avoid using the

SQLColumns function. Instead, use a dummy query inside a prepared

statement that executes the SQLDescribeCol function. Only use the

SQLColumns function when you cannot obtain the requested information

from result set metadata (for example, using the table column default

values).

The following examples show the benefit of using the SQLDescribeCol

function over the SQLColumns function.

Example A: SQLColumns Function

A potentially complex query is prepared and executed, the result

description information is formulated, the driver retrieves the result

rows, and the application fetches the result. This method results in

increased CPU use and network communication.

rc = SQLColumns (... "UnknownTable" ...);

// This call to SQLColumns will generate a query to the

// system catalogs... possibly a join which must be

// prepared, executed, and produce a result set.

ptg

154 ODBC Applications: Writing Good Code

rc = SQLBindCol (...);

rc = SQLExtendedFetch (...);

// user must retrieve N rows from the server

// N = # result columns of UnknownTable

// result column information has now been obtained

Example B: SQLDescribeCol Function

A simple query that retrieves result set information is prepared, but the

query is not executed and result rows are not retrieved by the driver.

Only information about the result set is retrieved (the same information

retrieved by SQLColumns in Example A).

// prepare dummy query

rc = SQLPrepare (... "SELECT * FROM UnknownTable" +

"WHERE 1 = 0" ...);

// query is never executed on the server - only prepared

rc = SQLNumResultCols (...);

for (irow = 1; irow <= NumColumns; irow++) {

rc = SQLDescribeCol (...)

// + optional calls to SQLColAttributes

}

// result column information has now been obtained

// Note we also know the column ordering within the table!

// This information cannot be

// assumed from the SQLColumns example.

What if the database server, such as a Microsoft SQL Server server does

not support prepared statements by default? The performance of

Example A wouldn’t change, but the performance of Example B would

decrease slightly because the dummy query is evaluated in addition to

being prepared. Because the Where clause of the query always evaluates

to FALSE, the query generates no result rows and executes the state-

ment without retrieving result rows. So, even with a slight decrease in

performance, Example B still outperforms Example A.

ptg

Summary

The performance of ODBC applications can suffer if they fail to reduce network

traffic, limit disk I/O, simplify queries, and optimize the interaction between the

application and driver. Reducing network communication probably is the most

important technique for improving performance. For example, when you need

to update large amounts of data, using arrays of parameters rather than execut-

ing an Insert statement multiple times reduces the number of network round

trips required to complete the operation.

Typically, creating a connection is the most performance-expensive task

your application performs. Connection pooling can help you manage your con-

nections efficiently, particularly if your application has numerous users.

Regardless of whether your application uses connection pooling, make sure that

your application closes connections immediately after the user is finished with

them.

Making smart choices about how to handle transactions can also improve

performance. For example, using manual commits instead of auto-commit mode

provides better control over when work is committed. Similarly, if you don’t need

the protection of distributed transactions, using local transactions can improve

performance.

Inefficient SQL queries slow the performance of ODBC applications. Some

SQL queries don’t filter data, causing the driver to retrieve unnecessary data.

Your application pays a huge penalty in performance when that unnecessary data

is long data, such as data stored as a Blob or Clob. Even well-formed SQL queries

can be more or less effective depending on how they are executed. For example,

using SQLExtendedFetch instead of SQLFetch and using SQLBindCol instead of

SQLGetData reduces ODBC calls and improves performance.

Summary 155

ptg

This page intentionally left blank

ptg

JDBC Applications:
Writing Good Code

157

Developing performance-optimized JDBC applica-

tions is not easy. Database drivers don’t throw

exceptions to tell you when code is running slow. This

chapter describes some general guidelines for coding

practices that improve JDBC application performance.

These guidelines have been compiled by examining the

implementations of numerous shipping JDBC applica-

tions. In general, the guidelines described in this chapter

improve performance because they accomplish one or

more of the following goals:

• Reduce network traffic

• Limit disk I/O

• Optimize application-to-driver interaction

• Simplify queries

If you’ve read the other coding chapters (Chapters 5 and

7), you’ll notice that some of the information here resembles

those chapters. While there are some similarities, this chap-

ter focuses on specific information about coding for JDBC.

C H A P T E R S I X

ptg

Managing Connections

Typically, creating a connection is one of the most performance-expensive oper-

ations that an application performs. Developers often assume that establishing a

connection is a simple request that results in the driver making a single network

round trip to the database server to validate a user’s credentials. In reality, a con-

nection involves many network round trips between the driver and the database

server. For example, when a driver connects to Oracle or Sybase ASE, that con-

nection may require seven to ten network round trips. In addition, the database

establishes resources on behalf of the connection, which involves performance-

expensive disk I/O and memory allocation.

Your time will be well spent if you sit down and design how to handle con-

nections before implementing them in your application. Use the guidelines in

this section to manage your connections more efficiently.

Connecting Efficiently

Database applications use either of the following methods to manage connec-

tions:

• Obtain a connection from a connection pool.

• Create a new connection one at a time as needed.

When choosing a method to manage connections, remember the following

facts about connections and performance:

• Creating a connection is performance expensive.

• Open connections use a substantial amount of memory on both the data-

base server and the database client.

• Opening numerous connections can contribute to an out-of-memory con-

dition, which causes paging of memory to disk and, thus, overall perfor-

mance degradation.

Using Connection Pooling

If your application has multiple users and your database server provides suffi-

cient database resources, such as memory and CPU, using connection pooling

can provide significant performance gains. Reusing a connection reduces the

number of network round trips needed to establish a physical connection

between the driver and the database. The performance penalty is paid up front at

the time the connection pool is populated with connections. As the connections

158 JDBC Applications: Writing Good Code

ptg

in the pool are actually used by the application, performance improves signifi-

cantly. Obtaining a connection becomes one of the fastest operations an applica-

tion performs instead of one of the slowest.

Although obtaining connections from a pool is efficient, when your applica-

tion opens and closes connections impacts the scalability of your application.

Open connections just before the user needs them, not sooner, to minimize the

time that the user owns the physical connection. Similarly, close connections as

soon as the user no longer needs them.

To minimize the number of connections required in a connection pool to

service users, you can switch a user associated with a connection to another user

if your database driver supports a feature known as reauthentication.

Minimizing the number of connections conserves memory and can improve

performance. See “Using Reauthentication with Connection Pooling,” page 232.

See Chapter 8, “Connection Pooling and Statement Pooling,” for details

about connection pooling.

Establishing Connections One at a Time

Some applications are not good candidates for connection pooling, particularly

if connection reuse is limited. See “When Not to Use Connection Pooling,” page

15, for examples.

Managing Connections 159

Performance Tip

If your application does not use connection pooling, avoid connecting

and disconnecting multiple times throughout your application to execute

SQL statements because of the performance hit your application pays for

opening connections. You don’t need to open a new connection for each

SQL statement your application executes.

Using One Connection for Multiple Statements

When you’re using a single connection for multiple statements, your application

may have to wait for a connection if it connects to a streaming protocol database.

ptg

In streaming protocol databases, only one request can be processed at a time over

a single connection; other requests on the same connection must wait for the

preceding request to complete. Sybase ASE, Microsoft SQL Server, and MySQL

are examples of streaming protocol databases.

In contrast, when connecting to cursor-based protocol databases, the driver

tells the database server when to work and how much data to retrieve. Several

cursors can use the network, each working in small slices of time. Oracle and

DB2 are examples of cursor-based protocol databases. For a more detailed expla-

nation of streaming versus cursor-based protocol databases, see “One

Connection for Multiple Statements,” page 16.

The advantage of using one connection for multiple statements is that it

reduces the overhead of establishing multiple connections, while allowing multi-

ple statements to access the database. The overhead is reduced on both the data-

base server and client machines. The disadvantage is that the application may

have to wait to execute a statement until the single connection is available. See

“One Connection for Multiple Statements,” page 16, for guidelines on using this

model of connection management.

Disconnecting Efficiently

Each physical connection to the database consumes a substantial amount of

memory on both the client and database server.

160 JDBC Applications: Writing Good Code

Performance Tip

Remember to close connections immediately after your application is fin-

ished with them—don’t wait for the garbage collector to close them for

you. This is particularly important if your application uses connection

pooling so that connections are returned to the connection pool immedi-

ately for other users to use.

For Java applications, the JVM uses garbage collection to automatically

identify and reclaim memory allocated to objects that are no longer in use. If you

wait for the garbage collector to clean up connections no longer in use, memory

is tied up longer than necessary. Regardless of whether you use connection pool-

ing, always remember to explicitly close connections as soon as the user no

longer needs them so that connections will release the memory allocated for

them.

ptg

As a fail-safe for closing open connections, not as a substitute, you can close

connections inside a finally block, as shown in the following example. Code in

the finally block always runs, regardless of whether an exception occurs. This

code guarantees that any connections you may not have explicitly closed are

closed without waiting for the garbage collector.

// Open a connection

Connection conn = null;

Statement st = null;

ResultSet rs = null;

try {

...

conn = DriverManager.getConnection(connStr, uid, pwd);

...

st = conn.prepareStatement(sqlString);

...

rs = st.executeQuery();

...

}

catch (SQLException e){

// exception handling code here

}

finally {

try {

if (rs != null)

rs.close();

if (st != null)

st.close();

if (conn != null)

conn.close();

}

catch (SQLException e) {

// exception handling code here

}

}

Managing Connections 161

ptg

Some drivers include the Java finalize() method in their implementation

of the Connection object; others don’t. In any case, do not rely on a Java final-

ize() method to close connections because the application must wait on the

garbage collector to run the finalize() method. Again, connections that you

are no longer using are not closed until the garbage collector detects them, which

can tie up memory. In addition, the garbage collector must perform extra steps

each time it runs a collection, which slows the collection process and can further

delay the time it takes for a connection to close. For more information about how

garbage collection works in the JVM, see “Garbage Collection,” page 79.

Obtaining Database and Driver Information Efficiently

Remember that creating a connection is one of the most performance-expensive

operations that an application performs.

162 JDBC Applications: Writing Good Code

Performance Tip

Because of the performance hit your application pays for opening con-

nections, once your application is connected, avoid establishing addi-

tional connections to gather information about the driver and the

database, such as supported data types or database version. For exam-

ple, some applications establish a connection and then call a method in

a separate component that reconnects and gathers information about

the driver and the database. Applications designed as separate compo-

nents, such as J2EE shared libraries or Web Services, can share metadata

by passing the information as an argument to a routine instead of estab-

lishing an additional connection to request that information.

How often do databases change their supported data types or database ver-

sion between connections? Because this type of information typically doesn’t

change between connections and isn’t a large amount of information to store,

you may want to retrieve and cache the information so the application can access

it later.

ptg

Managing Transactions

To ensure data integrity, all statements in a transaction are committed or rolled

back as a unit. For example, when you use a computer to transfer money from

one bank account to another, the request involves a transaction—updating val-

ues stored in the database for both accounts. If all parts of that unit of work suc-

ceed, the transaction is committed. If any part of that unit of work fails, the

transaction is rolled back.

Use the guidelines in this section to manage transactions more efficiently.

Managing Commits in Transactions

Committing (and rolling back) transactions is slow because of the disk I/O and,

potentially, the number of network round trips required. What does a commit

actually involve? The database must write to disk every modification made by a

transaction to the database. This is usually a sequential write to a journal file (or

log); nevertheless, it involves expensive disk I/O.

In JDBC, the default transaction commit mode is auto-commit. In auto-

commit mode, a commit is performed for every SQL statement that requires a

request to the database (Insert, Update, Delete, and Select statements). When

auto-commit mode is used, your application doesn’t control when database work

is committed. In fact, commits commonly occur when there’s actually no real

work to commit.

Some databases, such as DB2, don’t support auto-commit mode. For these

databases, the database driver, by default, sends a commit request to the database

after every successful operation (SQL statement). The commit request equates to

a network round trip between the driver and the database. The round trip to the

database occurs even though the application didn’t request the commit and even

if the operation made no changes to the database. For example, the driver makes

a network round trip even when a Select statement is executed.

Let’s look at the following Java code, which doesn’t turn off auto-commit

mode. Comments in the code show when commits occur if the driver or the

database performs commits automatically.

// For conciseness, this code omits error checking

// Create a Statement object

stmt = con.createStatement();

Managing Transactions 163

ptg

// Prepare an INSERT statement for multiple executions

sql = "INSERT INTO employees VALUES (?, ?, ?)";

prepStmt = con.prepareStatement(sql);

// Set parameter values before execution

prepStmt.setInt(1, 20);

prepStmt.setString(2, "Employee20");

prepStmt.setInt(3, 100000);

prepStmt.executeUpdate();

// A commit occurs because auto-commit is on

// Change parameter values for the next execution

prepStmt.setInt(1, 21);

prepStmt.setString(2, "Employee21");

prepStmt.setInt(3, 150000);

prepStmt.executeUpdate();

// A commit occurs because auto-commit is on

prepStmt.close();

// Execute a SELECT statement. A prepare is unnecessary

// because it's executed only once.

sql = "SELECT id, name, salary FROM employees";

// Fetch the data

resultSet = stmt.executeQuery(sql);

while (resultSet.next()) {

System.out.println("Id: " + resultSet.getInt(1) +

"Name: " + resultSet.getString(2) +

"Salary: " + resultSet.getInt(3));

}

System.out.println();

164 JDBC Applications: Writing Good Code

ptg

resultSet.close();

// Whether a commit occurs after a SELECT statement

// because auto-commit is on depends on the driver.

// It's safest to assume a commit occurs here.

// Prepare the UPDATE statement for multiple executions

sql = "UPDATE employees SET salary = salary * 1.05" +

"WHERE id = ?";

prepStmt = con.prepareStatement(sql);

// Because auto-commit is on,

// a commit occurs each time through loop

// for total of 10 commits

for (int index = 0; index < 10; index++) {

prepStmt.setInt(1, index);

prepStmt.executeUpdate();

}

// Execute a SELECT statement. A prepare is unnecessary

// because it's only executed once.

sql = "SELECT id, name, salary FROM employees";

// Fetch the data

resultSet = stmt.executeQuery(sql);

while (resultSet.next()) {

System.out.println("Id: " + resultSet.getInt(1) +

"Name: " + resultSet.getString(2) +

"Salary: " + resultSet.getInt(3));

}

System.out.println();

// Close the result set

resultSet.close();

Managing Transactions 165

ptg

// Whether a commit occurs after a SELECT statement

// because auto-commit is on depends on the driver.

// It's safest to assume a commit occurs here.

}

finally {

closeResultSet(resultSet);

closeStatement(stmt);

closeStatement(prepStmt);

}

}

166 JDBC Applications: Writing Good Code

Performance Tip

Because of the significant amount of disk I/O on the database server

required to commit every operation and the extra network round trips

that are required between the driver and the database server, it’s a good

idea to turn off auto-commit mode in your application and use manual

commits instead. Using manual commits allows your application to con-

trol when database work is committed, which provides dramatically bet-

ter performance. To turn off auto-commit mode, use the Connection

method setAutoCommit(false).

For example, let’s look at the following Java code. It’s identical to the previ-

ous Java code except that it turns off auto-commit mode and uses manual com-

mits.

// For conciseness, this code omits error checking

// Turn auto-commit off

con.setAutoCommit(false);

// Create a Statement object

stmt = con.createStatement();

ptg

// Prepare an INSERT statement for multiple executions

sql = "INSERT INTO employees VALUES (?, ?, ?)";

prepStmt = con.prepareStatement(sql);

// Set parameter values before execution

prepStmt.setInt(1, 20);

prepStmt.setString(2, "Employee20");

prepStmt.setInt(3, 100000);

prepStmt.executeUpdate();

// Change parameter values for the next execution

prepStmt.setInt(1, 21);

prepStmt.setString(2, "Employee21");

prepStmt.setInt(3, 150000);

prepStmt.executeUpdate();

prepStmt.close();

// Manual commit

con.commit();

// Execute a SELECT statement. A prepare is unnecessary

// because it's executed only once.

sql = "SELECT id, name, salary FROM employees";

// Fetch the data

resultSet = stmt.executeQuery(sql);

while (resultSet.next()) {

System.out.println("Id: " + resultSet.getInt(1) +

"Name: " + resultSet.getString(2) +

"Salary: " + resultSet.getInt(3));

}

System.out.println();

resultSet.close();

Managing Transactions 167

ptg

// Prepare the UPDATE statement for multiple executions

sql = "UPDATE employees SET salary = salary * 1.05" +

"WHERE id = ?";

prepStmt = con.prepareStatement(sql);

// Execute the UPDATE statement for each

// value of index between 0 and 9

for (int index = 0; index < 10; index++) {

prepStmt.setInt(1, index);

prepStmt.executeUpdate();

}

// Manual commit

con.commit();

// Execute a SELECT statement. A prepare is unnecessary

// because it's only executed once.

sql = "SELECT id, name, salary FROM employees";

// Fetch the data

resultSet = stmt.executeQuery(sql);

while (resultSet.next()) {

System.out.println("Id: " + resultSet.getInt(1) +

"Name: " + resultSet.getString(2) +

"Salary: " + resultSet.getInt(3));

}

System.out.println();

// Close the result set

resultSet.close();

}

finally {

168 JDBC Applications: Writing Good Code

ptg

closeResultSet(resultSet);

closeStatement(stmt);

closeStatement(prepStmt);

}

}

See “Managing Commits in Transactions,” page 22, for information on when

to commit work if you’ve turned off auto-commit mode.

Choosing the Right Transaction Model

Which type of transaction should you use: local or distributed? A local transac-

tion accesses and updates data on a single database. A distributed transaction

accesses and updates data on multiple databases; therefore, it must be coordi-

nated among those databases.

Managing Transactions 169

Performance Tip

Distributed transactions, as specified by the Java Transaction API (JTA),

are substantially slower than local transactions because of the logging

and network round trips needed to communicate between all the compo-

nents involved in the distributed transaction. Unless distributed transac-

tions are required, use local transactions.

If your application will be deployed on an application server, you also need

to be aware that the default transactional behavior of many Java application

servers is to use distributed transactions. Often, administrators, not developers,

are responsible for deploying the application on the application server and may

choose the default transaction behavior because they don’t fully understand the

performance impact of using distributed transactions.

For example, suppose you develop an application that leverages the use of

two different jar files. Each jar file connects to a different database to perform

work that is completely unrelated. One jar file connects to a database and incre-

ments the number of problem tickets in the system. The other jar file connects to

another database to update a customer address. When your application is

deployed, the application server may ask a tuning question similar to, “Is this

component transactional?” The administrator thinks it over and decides that the

ptg

safest answer is “yes.” The administrator just cost your application a significant

performance optimization.

What that question really means is, “Does this component access multiple

data sources in a logical unit of work?” Obviously, some applications require dis-

tributed transactions, but many applications don’t need the protection that dis-

tributed transactions provide or the overhead associated with them. Be sure to

communicate with your application server administrator if you don’t want your

application to use the default transactional behavior of the application server.

See “Transaction Management,” page 21, for more information about per-

formance and transactions.

Executing SQL Statements

Use the guidelines in this section to help you select which JDBC objects and

methods will give you the best performance when executing SQL statements.

Using Stored Procedures

Database drivers can call stored procedures on the database using either of the

following methods:

• Execute the procedure the same way as any other SQL statement. The data-

base parses the SQL statement, validates argument types, and converts argu-

ments into the correct data types.

• Invoke a Remote Procedure Call (RPC) directly in the database. The data-

base skips the parsing and optimization that executing a SQL statement

requires.

170 JDBC Applications: Writing Good Code

Performance Tip

Call stored procedures by invoking an RPC with parameter markers for

arguments instead of using literal arguments. Because the database skips

the parsing and optimization required in executing the stored procedure

as a SQL statement, performance is significantly improved.

Remember that SQL is always sent to the database as a character string. For

example, consider the following stored procedure call, which passes a literal

argument to the stored procedure:

{call getCustName (12345)}

ptg

Although the argument to getCustName() is an integer, the argument is

passed inside a character string to the database, namely {call getCustName

(12345)}. The database parses the SQL statement, isolates the single argument

value of 12345, and converts the string 12345 into an integer value before execut-

ing the procedure as a SQL language event. Using an RPC on the database, your

application can pass the parameters to the RPC. The driver sends a database pro-

tocol packet that contains the parameters in their native data type formats, skip-

ping the parsing and optimization required to execute the stored procedure as a

SQL statement. Compare the following examples.

Executing SQL Statements 171

Example A: Not Using a Server-Side RPC

The stored procedure getCustName isn’t optimized to use a server-side

RPC. The database treats the SQL stored procedure execution request as

a normal SQL language event, which includes parsing the statement,

validating the argument types, and converting the arguments into the

correct data types before executing the procedure.

CallableStatement cstmt =

conn.prepareCall ("{call getCustName (12345)}");

ResultSet rs = cstmt.executeQuery ();

Example B: Using a Server-Side RPC

The stored procedure getCustName is optimized to use a server-side

RPC. Because the application avoids literal arguments and calls the pro-

cedure by specifying arguments as parameters, the driver optimizes the

execution by invoking the stored procedure directly on the database as

an RPC. The SQL language processing by the database is avoided, and

execution time is faster.

CallableStatement cstmt =

conn.prepareCall ("{call getCustName (?)}");

cstmt.setLong (1, 12345);

ResultSet rs = cstmt.executeQuery();

ptg

Why doesn’t the driver parse and automatically change the SQL stored pro-

cedure call when it encounters a literal argument so that it can execute the stored

procedure using an RPC? Consider this example:

{call getCustname (12345)}

The driver doesn’t know if the value 12345 represents an integer, a decimal, a

smallint, a bigint, or another numeric data type. To determine the correct data

type for packaging the RPC request, the driver must make an expensive network

round trip to the database server. The overhead needed to determine the true

data type of the literal argument far outweighs the benefit of trying to execute the

request as an RPC.

Using Statements Versus Prepared Statements

Most applications have a set of SQL statements that are executed multiple times

and a few SQL statements that are executed only once or twice during the life of

an application. Choose the Statement object or PreparedStatement object

depending on how frequently you plan to execute the SQL statement.

The Statement object is optimized for a SQL statement that is executed

only once. In contrast, the PreparedStatement object is optimized for SQL

statements that are executed multiple times. Although the overhead for the initial

execution of a prepared statement is high, the advantage is realized with subse-

quent executions of the SQL statement.

Using a PreparedStatement object typically results in at least two network

round trips to the database server:

• One network round trip to parse and optimize the statement

• One or more network round trips to execute the statement and retrieve

results

172 JDBC Applications: Writing Good Code

Performance Tip

If your application makes a request only once during its life span, using a

Statement object is a better choice than using a PreparedStatement

object because the Statement object results in only a single network

round trip. Remember, reducing network communication typically pro-

vides the most performance gain. For example, if you have an applica-

tion that runs an end-of-day sales report, send the query that generates

the data for that report to the database as a Statement object, not a

PreparedStatement object.

ptg

Often, database applications use connection pooling, statement pooling, or a

combination of both to obtain better performance. How do these features affect

whether you should use a Statement or PreparedStatement object?

If you’re using JDBC 3.0 and earlier, use the following guidelines:

• If you’re using statement pooling and a SQL statement will be executed only

once, use a Statement object, which is not placed in the statement pool. This

avoids the overhead associated with finding that statement in the pool.

• If a SQL statement will be executed infrequently but may be executed multi-

ple times during the life of a statement pool inside a connection pool, use a

PreparedStatement object. Under similar circumstances without statement

pooling, use a Statement object.

JDBC 4.0 provides a more granular level of statement pooling. Statement

pooling implementations give no weight to a PreparedStatement object that’s

executed 100 times versus one that’s executed only twice. JDBC 4.0 allows appli-

cations to hint to the pool manager about whether a prepared statement should

be pooled or nonpooled. Prepared statements that are executed multiple times

can be pooled to provide optimal performance. Those that are used infrequently

can be nonpooled and, consequently, do not affect the pool.

See “SQL Statements,“ page 27, for more information about using state-

ments versus prepared statements. See “Using Statement Pooling with

Connection Pooling,” page 238, for information about performance and using

statement pooling with connection pooling.

Using Batches Versus Prepared Statements

Updating large amounts of data typically is done by preparing an Insert state-

ment and executing that statement multiple times, resulting in many network

round trips to the database server.

Executing SQL Statements 173

Performance Tip

To reduce the number of network round trips when updating large

amounts of data, you can send multiple Insert statements to the

database at a time using the addBatch() method of the

PreparedStatement interface.

ptg

For example, let’s compare the following examples.

174 JDBC Applications: Writing Good Code

Example A: Executing a Prepared Statement Multiple Times

A prepared statement is used to execute an Insert statement multiple

times, requiring 101 network round trips to perform 100 Insert opera-

tions: 1 round trip to prepare the statement and 100 additional round

trips to execute its iterations.

PreparedStatement ps = conn.prepareStatement(

"INSERT INTO employees VALUES (?, ?, ?)");

for (n = 0; n < 100; n++) {

ps.setString(name[n]);

ps.setLong(id[n]);

ps.setInt(salary[n]);

ps.executeUpdate();

}

Example B: Using a Batch

When the addBatch() method is used to consolidate 100 Insert opera-

tions, only two network round trips are required: one to prepare the

statement and another to execute the batch. Although batches use

more CPU cycles, performance is gained by reducing the number of net-

work round trips.

PreparedStatement ps = conn.prepareStatement(

"INSERT INTO employees VALUES (?, ?, ?)");

for (n = 0; n < 100; n++) {

ps.setString(name[n]);

ps.setLong(id[n]);

ps.setInt(salary[n]);

ps.addBatch();

}

ps.executeBatch();

ptg

Using getXXX Methods to Fetch Data from a Result Set

The JDBC API provides the following methods of fetching data from a result set:

• Generic data type method, such as getObject()

• Specific data type method, such as getInt(), getLong(), and getString()

Because the getObject() method is generic, it provides poor performance

when nondefault data type mappings are specified. The driver must perform

extra processing to determine the data type of the value being fetched and gener-

ate the appropriate mapping. This process is called boxing. When boxing occurs,

memory is allocated from the Java heap on the database client to create an object,

which can force a garbage collection to occur. See “Garbage Collection,” page 79,

for more information about the impact garbage collection has on performance.

Executing SQL Statements 175

Performance Tip

Use a specific method of fetching data for the data type instead of a

generic method. For example, use the getInt() method to fetch an

Integer value instead of the getObject() method.

You can also improve performance if you provide the column number of the

result column being fetched instead of the column name, such as getString(1),

getLong(2), and getInt(3). If column names are specified, the number of net-

work round trips doesn’t increase, but costly lookups do. For example, suppose

that you specify the following:

getString("foo")...

If the column name is uppercase in the database, the driver must convert

foo to uppercase (FOO) and then compare FOO to all the columns in the column

list. That’s a costly operation, especially if the result set contains many columns.

If the driver can go directly to result column 23, a significant amount of process-

ing is saved.

For example, suppose you have a result set that has 15 columns and 100

rows. You want to retrieve data from only three columns: employee_name

(string), employee_number (bigint), and salary (integer). If you specify

getString("Employee_Name"), getLong("Employee_Number"), and

ptg

getInt("Salary"), the driver must convert each column name to the appropri-

ate case of the columns in the database metadata, causing a considerable increase

in lookups. In contrast, performance improves significantly if you specify

getString(1), getLong(2), and getInt(15).

Retrieving Auto-Generated Keys

Many databases have hidden columns named pseudo-columns that store a

unique key associated with each row in a table. Typically, using a pseudo-column

in a SQL statement is the fastest way to access a row because the pseudo-column

usually points to the exact location of the physical record.

Prior to JDBC 3.0, an application could only retrieve the value of a pseudo-

column by executing a Select statement immediately after inserting the data.

For example, let’s look at the following code that retrieves a value from an Oracle

ROWID:

// insert row

int rowcount = stmt.executeUpdate (

"INSERT INTO LocalGeniusList (name) VALUES ('Karen')");

// now get the disk address - rowid -

// for the newly inserted row

ResultSet rs = stmt.executeQuery (

"SELECT rowid FROM LocalGeniusList

WHERE name = 'Karen'");

Retrieving pseudo-columns using this method has two major flaws:

• An additional query is sent over the network and executed on the database

server, resulting in increased network communication.

• If the database table doesn’t have a primary key, the search condition of the

query can’t uniquely identify the row. Multiple pseudo-column values could

be retrieved, and the application could be unable to determine which value is

actually the value for the most recently inserted row.

With JDBC 3.0 and later, you can retrieve auto-generated key information

for a row at the same time that the row is inserted into a table. The auto-gener-

ated key uniquely identifies the row, even when a primary key doesn’t exist on the

table. For example:

176 JDBC Applications: Writing Good Code

ptg

// insert row AND retrieve key

int rowcount = stmt.executeUpdate (

"INSERT INTO LocalGeniusList (name) VALUES ('Karen')",

Statement.RETURN_GENERATED_KEYS);

ResultSet rs = stmt.getGeneratedKeys();

// key is available for future queries

The application now has a value that it can use in the search condition of any

subsequent queries to provide the fastest access to the row.

Retrieving Data

Retrieve only the data you need, and choose the most efficient method to retrieve

that data. Use the guidelines in this section to help optimize your performance

when retrieving data.

Retrieving Long Data

Retrieving long data—such as large XML files, long varchar/text, long varbinary,

Clobs, and Blobs—across a network is slow and resource intensive. Most users

really don’t want to see long data. For example, imagine the user interface of an

employee directory application that allows the user to look up an employee’s

phone extension and department, and optionally, view an employee’s photo-

graph by clicking the name of the employee.

Employee Phone Dept

Harding X4568 Manager

Hoover X4324 Sales

Lincoln X4329 Tech

Taft X4569 Sales

Retrieving each employee’s photograph would slow performance unneces-

sarily. If the user does want to see the photograph, he can click the employee

name and the application can query the database again, specifying only the long

columns in the Select list. This method allows users to retrieve result sets with-

out paying a high performance penalty for network traffic.

Although excluding long data from the Select list is the best approach,

some applications do not formulate the Select list before sending the query to

Retrieving Data 177

ptg

the driver (that is, some applications use SELECT * FROM table ...). If the

Select list contains long data, the driver is forced to retrieve that long data, even

if the application never requests the long data from the result set. For example,

consider the following code:

ResultSet rs = stmt.executeQuery (

"SELECT * FROM employees WHERE SSID = '999-99-2222'");

rs.next();

string name = rs.getString(1);

When a query is executed, the driver has no way to determine which result

columns the application will use; an application may fetch any result column that

is retrieved. When the driver processes a ResultSet.next() request, it retrieves

at least one, and often multiple, result rows from the database across the network.

A result row contains all the column values for each row. What if one of the

columns includes long data such as an employee photograph? Performance

would slow considerably.

178 JDBC Applications: Writing Good Code

Performance Tip

Because retrieving long data across the network negatively affects per-

formance, design your application to exclude long data from the Select

list.

Limiting the Select list to contain only the name column results in a faster

performing query at runtime. For example:

ResultSet rs = stmt.executeQuery (

"SELECT name FROM employees" +

"WHERE SSID = '999-99-2222'");

rs.next();

string name = rs.getString(1);

Although the methods of the Blob and Clob interfaces allow an application

to control how long data is retrieved, it’s important to understand that drivers

often emulate the getBlob() and getClob() methods because many databases

do not support true Large Object (LOB) locators or because of the complexity of

mapping LOBs to the JDBC model. For example, an application may execute

ptg

Blob.getBytes(1,1000) to retrieve only the first 1000 bytes of a 3MB Blob

value. You may assume that only 1000 bytes are retrieved from the database. If

the driver emulates this functionality, the reality is that the entire 3MB Blob value

is retrieved across the network and cached, which slows performance.

Limiting the Amount of Data Retrieved

If your application executes a query that retrieves five rows when it needs only

two, application performance suffers, especially if the unnecessary rows include

long data.

Retrieving Data 179

Performance Tip

One of the easiest ways to improve performance is to limit the amount of

network traffic between the driver and the database server—optimally by

writing SQL queries that instruct the driver to retrieve from the database

only the data that the application requires.

Make sure that your Select statements use a Where clause to limit the

amount of data that is retrieved. Even when using a Where clause, a Select state-

ment that does not adequately restrict its request could retrieve hundreds of

rows of data. For example, if you want data from the employees table for each

manager hired in recent years, your application could execute the following

statement, and subsequently, filter out the rows of employees who are not man-

agers:

SELECT * FROM employees

WHERE hiredate > 2000

However, suppose the employees table contains a column that stores pho-

tographs of each employee. In this case, retrieving extra rows is extremely expen-

sive to your application performance. Let the database filter the request for you

and avoid sending extra data that you don’t need across the network. The follow-

ing query uses a better approach, limiting the data retrieved and improving per-

formance:

SELECT * FROM employees

WHERE hiredate > 2003 and job_title='Manager'

ptg

Sometimes applications need to use SQL queries that generate a large amount

of network traffic. For example, consider an application that displays information

from support case histories, which each contain a 10MB log file. Does the user

really need to see the entire contents of the log file? If not, performance would

improve if the application displayed only the first 1MB of the log file.

180 JDBC Applications: Writing Good Code

Performance Tip

When you cannot avoid retrieving data that generates a large amount of

network traffic, your application can still control the amount of data

being sent from the database to the driver by limiting the number of

rows sent across the network and reducing the size of each row sent

across the network.

Suppose you have a GUI-based application, and each screen can display no

more than 20 rows of data. It’s easy to construct a query that may retrieve a mil-

lion rows, such as SELECT * FROM employees, but it’s hard to imagine a scenario

where a query that retrieves a million rows would be useful. When designing

applications, it’s a good practice to call the setMaxRows() method of the

ResultSet interface as a fail-safe to limit the number of rows that a query can

retrieve. For example, if an application calls rs.setMaxRows(10000), no query

will retrieve more than 10,000 rows.

In addition, calling the setMaxFieldSize() method of the ResultSet

interface limits the number of bytes of data that can be retrieved for a column

value with the following data types:

• Binary

• Varbinary

• Longvarbinary

• Char

• Varchar

• Longvarchar

For example, consider an application that allows users to select from a

repository of technical articles. Rather than retrieve and display the entire article,

the application can call rs.setMaxFieldSize(153600) to retrieve only the first

150KB of text—enough to give users a reasonable preview of the article.

ptg

Determining the Number of Rows in a Result Set

Scrollable cursors let you go both forward and backward through a result set.

However, because of limited support for server-side scrollable cursors in many

database systems, JDBC drivers often emulate scrollable cursors, storing rows

from a scrollable result set in a cache on the machine where the driver resides

(client or application server).

Unless you are certain that the database natively supports using a scrollable

result set, such as rs, do not call the rs.last() and rs.getRow() methods to

find out how many rows the result set contains. For drivers that emulate scrol-

lable cursors, calling rs.last() results in the driver retrieving all results across

the network to reach the last row. This emulated model of scrollable cursors pro-

vides flexibility for the developer but comes with a performance penalty until the

client cache of rows is fully populated. Instead of calling rs.last() to determine

the number of rows, count the rows by iterating through the result set or obtain

the number of rows by submitting a Select statement with the Count function.

For example:

SELECT COUNT(*) FROM employees

Unfortunately, there’s no easy way to tell if a database driver uses native

server-side scrollable cursors or emulates this functionality. For Oracle or

MySQL, you know the driver emulates scrollable cursors, but for other databases,

it’s more complicated. See “Using Scrollable Cursors,” page 36, for details about

which common databases support server-side scrollable cursors and how data-

base drivers emulate scrollable cursors.

Retrieving Data 181

Performance Tip

In general, do not write code that relies on the number of result rows

from a query because database drivers often must retrieve all rows in a

result set to determine how many rows the query will return.

Choosing the Right Data Type

When designing your database schema, it’s obvious that you need to think about

the impact of storage requirements on the database server. Less obvious, but just

as important, you need to think about the network traffic required to move data

ptg

in its native format to and from the JDBC driver. Retrieving and sending certain

data types across the network can increase or decrease network traffic.

182 JDBC Applications: Writing Good Code

Performance Tip

For multiuser, multivolume applications, billions, or even trillions, of net-

work packets can move between the driver and the database server over

the course of a day. Choosing data types that are processed efficiently

can incrementally provide a measurable gain in performance.

See “Choosing the Right Data Type,” page 34, for information about which

data types are processed faster than others.

Choosing the Right Cursor

JDBC defines three cursor types:

• Forward-only

• Insensitive

• Sensitive

This section explains how to choose a cursor type for the best performance.

Forward-Only

A forward-only (or nonscrollable) cursor provides excellent performance for

sequential reads of rows in a result set retrieved by a query. Using a forward-only

cursor is the fastest method for retrieving table data in a result set. Because this

cursor type is nonscrollable, you can’t use it when the application needs to

process rows in a nonsequential manner. For example, you can’t use a forward-

only cursor if you need to process the eighth row in a result set, followed by the

first row, followed by the fourth row, and so on.

Insensitive

An insensitive cursor is ideal for applications that require high levels of concur-

rency on the database server and require the ability to scroll forward and back-

ward through result sets. Most database systems do not support a native

scrollable cursor type. However, most JDBC drivers support insensitive cursors

by emulating this functionality in either of two ways:

ptg

• Method 1—At the first request of a row for an insensitive cursor, the driver

retrieves all the result rows from the database and caches the entire contents

of the result set on the driver machine in memory, on disk, or a combination

of both. A severe performance hit occurs on the first request because the dri-

ver not only positions the cursor to the requested row, but also moves all the

result rows across the network. Subsequent requests to position to the

requested row do not affect performance because all the data has been

cached locally; the driver simply positions the cursor to the row in the result

set.

• Method 2—At the first request of a row for an insensitive cursor, the driver

retrieves only as many result rows as necessary in as many network round

trips to the database server as necessary and caches the result set on the dri-

ver machine. For example, suppose an application sends a Select statement

that retrieves 10,000 rows and requests an insensitive cursor to position to

row 40. If only 20 rows can be retrieved in one network round trip, the driver

makes 2 network round trips to retrieve 40 rows on the first request. If the

next request for a row is not in the cached result set, the driver makes the

necessary number of round trips to retrieve more rows.

This method is known as lazy fetching and typically provides better perfor-

mance for applications driven by a user interface.

For example, consider a GUI application that can’t display more than 20

rows of data on a single screen. What happens when the application requests an

insensitive scrollable cursor for a Select statement that retrieves 20,000 rows? If

the application uses a driver that emulates insensitive cursors using Method 1,

the user would experience a long wait for the first screen to display because the

driver retrieves all 20,000 rows on the first request.

However, if the driver emulates insensitive cursors using Method 2, he can

retrieve at least one screen of data using one network round trip on the first

request. Users don’t have to wait long for the first screen to display because the

driver retrieves only 20 rows.

Suppose the user wants to see the last screen of data, and the application’s

first request is to position to row 20,000. In this case, the performance penalty is

the same regardless of which method of emulation is used because all result rows

have to be retrieved and cached to satisfy the request.

You also need to be aware of the amount of memory that the driver con-

sumes when emulating insensitive cursors, especially when long data may be

retrieved. For example, using either emulation method, what if our application

retrieved 20,000 rows on the first request and each result row contained a 10MB

Retrieving Data 183

ptg

Clob value? All result rows, including the long data, would be retrieved and

cached. This operation could quickly consume available memory on the driver

machine. In this case, it’s best to use a forward-only or sensitive cursor.

Sensitive

A sensitive cursor picks up data modifications in the database that affect the

result set and is useful for applications that have the following characteristics:

• Provide forward and backward access to data

• Access data that changes frequently

• Retrieve a large number of rows and can’t afford to pay the performance

penalty associated with emulated insensitive cursors

Sometimes known as keyset-driven cursors, sensitive cursors, similar to

insensitive cursors, often are emulated by JDBC drivers because they’re not sup-

ported natively by the database.

Because sensitive cursors provide access to up-to-date data, the JDBC driver

can’t retrieve result rows and cache them on the driver machine because the val-

ues of the data stored in the database may change after they are cached. Instead,

most drivers emulate sensitive cursors by modifying the query before it’s sent to

the database to include a key or a pseudo-column that serves as a key. When a

sensitive cursor is requested, the driver retrieves the keys for every result row and

caches those keys on the driver machine. When the application positions to a

row, the driver looks up the value of the key associated with the requested row

and executes a SQL statement using the key in the Where clause to ensure that

only one result row, the one requested by the application, is retrieved.

For example, an Oracle JDBC driver may emulate a sensitive scrollable cur-

sor in the following way:

Application Request Driver Actions

executeQuery ("SELECT 1. The driver sends the following statement to the Oracle
name, addr, picture database:
FROM employees WHERE SELECT rowid FROM employees WHERE location =

location = 'Raleigh'") 'Raleigh'

2. The driver retrieves all result ROWIDs and caches them
locally.

3. The driver prepares the following statement to the Oracle
database for future use:

SELECT name, addr, picture FROM employees

WHERE ROWID = ?

184 JDBC Applications: Writing Good Code

ptg

Application Request Driver Actions

next() // position 1. The driver looks up the ROWID for row 1 in the cache.
to row 1 2. The driver executes the prepared statement, sending as a

parameter the ROWID value from the lookup process:

SELECT name, addr, picture FROM employees

WHERE ROWID = ?

3. The driver retrieves row 1 from the database and then
returns success to the application indicating that the row
is now positioned to row 1.

next() 1. The driver looks up the ROWID for row 2 in the cache.

2. The driver executes the prepared statement, sending as a
parameter the ROWID value from the lookup process:

SELECT name, addr, picture FROM employees

WHERE ROWID = ?

3. The driver retrieves row 2 from the database and then
returns success to the application indicating that the row
is now positioned to row 2.

last() 1. The driver looks up the ROWID for the last row in the
cache.

2. The driver executes the prepared statement, sending as a
parameter the ROWID value from the lookup process:

SELECT name, addr, picture FROM employees

WHERE ROWID = ?

3. The driver retrieves the last row from the database and
then returns success to the application indicating that the
row is now positioned to the last row in the result set.

Unfortunately, this emulation technique isn’t foolproof. If the SQL state-

ment performs an outer join of multiple tables or uses a Group By clause, the

emulation fails because a single key can’t be used to obtain a result row. Typically,

the cursor is automatically downgraded to an insensitive scrollable cursor.

Retrieving Data 185

ptg

Updating Data

Use the guidelines in this section to manage your updates more efficiently.

Using Positioned Updates, Inserts, and Deletes (updateXXX Methods)

Positioned Updates, Inserts, and Deletes, which are implemented using the

updateXXX methods of the ResultSet object, are useful for GUI applications

that allow application users to scroll through a result set, updating and deleting

rows as they go. The application simply supplies the column in the result set to be

updated and the data to be changed. Then, before moving the cursor from the

row in the result set, the updateRow() method is called to update the database.

For example, in the following code, the value of the Age column of the

ResultSet object rs is fetched using the getInt() method, and the

updateInt() method is used to update the column with an int value of 25. The

updateRow() method is called to update the row in the database with the modi-

fied value.

int n = rs.getInt("Age");

// n contains value of Age column in the resultset rs

...

rs.updateInt("Age", 25);

rs.updateRow();

Positioned updates typically are faster than updates using SQL commands

because the cursor is already positioned on the row for the Select statement in

process. If the row must be located, the database usually can use a key (for exam-

ple, a ROWID for Oracle) that serves as an internal pointer to the row. In addition,

positioned updates reduce the need to write complex SQL statements to update

data, making the application easier to maintain.

Using getBestRowIdentifier() to Optimize Updates and Deletes

Some applications cannot be designed to take advantage of positioned Updates

and Deletes. These applications typically formulate the Where clause by calling

getPrimaryKeys() to use all searchable result columns or by calling

getIndexInfo() to find columns that may be part of a unique index. These

methods usually work but can result in fairly complex queries. For example:

ResultSet WSrs = WSs.executeQuery

("SELECT first_name, last_name, ssn, address, city,

state, zip FROM employees");

186 JDBC Applications: Writing Good Code

ptg

// fetch data using complex query

...

WSs.executeQuery ("UPDATE employees SET address = ?

WHERE first_name = ? and last_name = ? and ssn = ?

and address = ? and city = ? and state = ?

and zip = ?");

Many databases support pseudo-columns that are not explicitly defined by

the user in the table definition but are hidden columns in every table (for exam-

ple, ROWID for Oracle). Pseudo-columns often provide the fastest access to the

data. Because pseudo-columns aren’t part of the explicit table definition, they’re

not retrieved when getColumns() is called.

Updating Data 187

Performance Tip

Use the getBestRowIdentifier() method to determine the optimal set

of columns that uniquely identify a row to use in the WHERE clause for

updating data.

For example, to determine whether pseudo columns exist, use the following

code:

...

ResultSet WSrowid = WSdbmd.getBestRowIdentifier()

(... "employees", ...);

...

WSs.executeUpdate ("UPDATE employees SET ADDRESS = ?

WHERE ROWID = ?";

// fastest access to the data!

If your database doesn’t contain pseudo-columns, the result set of

getBestRowIdentifier() consists of columns of the optimal unique index on

the specified table (if a unique index exists). Therefore, your application doesn’t

need to call getIndexInfo() to find the smallest unique index.

ptg

Using Database Metadata Methods

Database metadata methods retrieve information about a result set, such as the

number and type of columns. Because database metadata methods that generate

ResultSet objects are slow compared to other JDBC methods, using them fre-

quently can impair performance. Use the guidelines in this section to optimize

performance when selecting and using database metadata.

Minimizing the Use of Database Metadata Methods

Compared to other JDBC methods, database metadata methods that generate

result sets are slow. To retrieve all result column information mandated by the

JDBC specification, a JDBC driver often must perform multiple or complex

queries to retrieve the result set for a single call to a database metadata method.

188 JDBC Applications: Writing Good Code

Performance Tip

Although it’s almost impossible to write a JDBC application without using

a database metadata method, you can improve performance by minimiz-

ing their use.

In addition, to avoid executing database metadata methods multiple times,

you should cache information retrieved from result sets generated by database

metadata methods. For example, call getTypeInfo() once, and cache the ele-

ments of the result set that your application depends on. It’s unlikely that any

application will use all elements of the result set generated by a database meta-

data method, so the cache of information shouldn’t be difficult to maintain.

Avoiding Search Patterns

Database metadata methods support arguments that can limit the amount of

data retrieved. Using null values or search patterns, such as %A%, for these argu-

ments often generates time-consuming queries. In addition, network traffic can

increase because of unnecessary results.

Performance Tip

Always supply as many non-null arguments as possible to result sets that

generate database metadata methods.

ptg

In the following example, an application uses the getTables() method to

determine if the table named WSTable exists and provides null values for most of

the arguments:

ResultSet WSrs = WSdbmd.getTables(null, null, "WSTable",

null);

The driver interprets the request as follows: Retrieve all tables, views, system

tables, synonyms, temporary tables, and aliases named WSTable that exist in any

database schema in the database catalog.

In contrast, the following request provides non-null values for all arguments,

allowing the driver to process the request more efficiently:

String[] tableTypes = {"TABLE"}; WSdbmd.getTables ("cat1",

"johng", "WSTable", tableTypes);

The driver interprets the request as follows. Retrieve all tables in catalog

"cat1" that are named "WSTable" and owned by "johng". No synonyms, views,

system tables, aliases, or temporary tables are retrieved.

Sometimes little is known about the object that you are requesting informa-

tion for. Any information that the application can provide the driver when call-

ing database metadata methods can result in improved performance and

reliability.

Using a Dummy Query to Determine Table Characteristics

Sometimes you need information about columns in the database table, such as

column names, column data types, and column precision and scale. For example,

an application that allows users to choose which columns to select may need to

request the names of each column in the database table.

Using Database Metadata Methods 189

Performance Tip

To determine characteristics about a database table, avoid using the

getColumns() method. Instead, use a dummy query inside a prepared

statement that executes the getMetadata() method. Only use the

getColumns() method when you can’t obtain the requested information

from result set metadata (for example, using the table column default

values).

ptg

The following examples show the benefit of using the getMetadata()

method over using the getColumns() method.

190 JDBC Applications: Writing Good Code

Example A: Using the getColumns() Method

A potentially complex query is prepared and executed, result descrip-

tion information is formulated, the driver retrieves the result rows, and

the application fetches the result. This method results in increased CPU

use and network communication.

ResultSet WSrc = WSc.getColumns (... "UnknownTable" ...);

// getColumns() will generate a query to

// the system catalogs and possibly a join

// that must be prepared, executed, and produce

// a result set

...

WSrc.next();

string Cname = getString(4);

...

// user must retrieve N rows from the database

// N = # result columns of UnknownTable

// result column information has now been obtained

Example B: Using the getMetadata() Method

A simple query that retrieves result set information is prepared, but the

query is not executed and the driver does not retrieve result rows. Only

information about the result set is retrieved (the same information

retrieved by getColumns() in Example A).

// prepare dummy query

PreparedStatement WSps = WSc.prepareStatement

("SELECT * FROM UnknownTable WHERE 1 = 0");

// query is not executed on the database - only prepared

ResultSetMetaData WSsmd=WSps.getMetaData();

ptg
Summary

The performance of JDBC applications can suffer if they fail to reduce network

traffic, limit disk I/O, simplify queries, and optimize the interaction between the

application and driver. Reducing network communication probably is the most

important technique for improving performance. For example, when you need

to update large amounts of data, using batches rather than executing an Insert

statement multiple times reduces the number of network round trips required by

the driver to complete the operation.

Typically, creating a connection is the most performance-expensive task

your application performs. Connection pooling can help you manage connec-

tions efficiently, particularly if your application has numerous users. Regardless

of whether your application uses connection pooling, make sure that you close

connections immediately after your application is finished with them.

Making smart choices about how to handle transactions can also improve

performance. For example, using manual commits instead of auto-commit mode

provides better control over when work is committed. Similarly, if you don’t need

the protection of distributed transactions, using local transactions can improve

performance.

Summary 191

int numcols = WSrsmd.getColumnCount();

...

int ctype = WSrsmd.getColumnType(n)

...

// Result column information has now been obtained

// Note we also know the column ordering within the

// table!

What if the database system, such as Microsoft SQL Server, doesn’t sup-

port prepared statements by default? The performance of Example A

wouldn’t change, but the performance of Example B would decrease

slightly because the dummy query is evaluated in addition to being pre-

pared. Because the Where clause of the query always evaluates to

FALSE, the statement executes without retrieving result rows. So, even

with a slight decrease in performance, Example B still outperforms

Example A.

ptg

Inefficient SQL queries slow the performance of JDBC applications. Some

SQL queries don’t filter data, causing the driver to retrieve unnecessary data.

Your application pays a huge penalty in performance when that unnecessary data

is long data such as data stored as a Blob or Clob. Other queries can be overly

complex, causing additional processing at runtime.

192 JDBC Applications: Writing Good Code

ptg

.NET Applications:
Writing Good Code

193

Developing performance-optimized ADO.NET appli-

cations is not easy. Data providers don’t throw

exceptions to tell you when your code is running slow.

Because programming concepts vary between different

data providers, coding a .NET application can be more

complex than coding an ODBC or JDBC application. In

addition, designing a .NET application requires more

knowledge about the database your application

accesses.

This chapter describes some general guidelines for cod-

ing practices that improve ADO.NET application perfor-

mance. These guidelines have been compiled by examining

the ADO.NET implementations of numerous shipping

ADO.NET applications. In general, the guidelines described

in this chapter improve performance because they accom-

plish one or more of the following goals:

• Reduce network traffic

• Limit disk I/O

• Optimize application-to-data provider interaction

• Simplify queries

If you’ve read the other coding chapters (Chapters 5 and

6), you’ll notice that some of the information here resembles

those chapters. While there are some similarities, this chap-

ter focuses on specific information about coding for

ADO.NET.

C H A P T E R S E V E N

ptg

Managing Connections

Typically, creating a connection is one of the most performance-expensive oper-

ations that an application performs. Developers often assume that establishing a

connection is a simple request that results in the data provider making a single

network round trip to the database server to validate the user’s credentials. In

reality, a connection involves many network round trips between the data

provider and the database server. For example, when a data provider connects to

Oracle or Sybase ASE, that connection may require seven to ten network round

trips. In addition, the database establishes resources on behalf of the connection,

which involves performance-expensive disk I/O and memory allocation.

Your time will be well spent if you sit down and design how to handle con-

nections before implementing them in your application. Use the guidelines in

this section to manage your connections more efficiently.

Connecting Efficiently

Database applications use either of the following methods to manage connec-

tions:

• Obtain a connection from a connection pool.

• Create a new connection one at a time as needed.

When choosing a method to manage connections, keep in mind the follow-

ing facts about connections and performance:

• Creating a connection is performance-expensive.

• Open connections use a substantial amount of memory on both the data-

base server and the database client.

• Opening numerous connections can contribute to an out-of-memory con-

dition, which causes paging of memory to disk and, thus, overall perfor-

mance degradation.

Using Connection Pooling

If your application has multiple users and your database server provides suffi-

cient database resources, such as memory and CPU, using connection pooling

can provide significant performance gains. Reusing a connection reduces the

number of network round trips needed to establish a physical connection

between the provider and the database. The performance penalty is paid up front

194 .NET Applications: Writing Good Code

ptg

at the time the connection pool is populated with connections. Because the con-

nections in the pool are actually used by the application, performance improves

significantly. Obtaining a connection becomes one of the fastest operations an

application performs instead of one of the slowest.

Connection pooling for ADO.NET is not part of the .NET Framework. To

use connection pooling, the data provider or your application must implement

it. As of the publishing date of this book, most commercial ADO.NET data

providers provide connection pooling. Check your own data provider to verify

that it provides this functionality. For all commercial ADO.NET providers that

offer connection pooling, connections are pooled by default.

Although obtaining connections from a pool is efficient, when your applica-

tion opens and closes connections impacts the scalability of your application.

When opened, connections are marked as “in use” by the pool manager. When

closed, connections are marked as “not in use” and are made available for other

users. Open connections just before the user needs them, not sooner, to mini-

mize the time that the physical connection is marked “in use.” Similarly, close

connections as soon as the user no longer needs them so that they are available

for other users.

For ADO.NET, each unique connection string creates a connection pool

(except in the case of reauthentication). Once created, connection pools are not

closed until the data provider is unloaded. Typically, more memory is required to

manage multiple connection pools. However, it’s important to understand that

it’s the number of connections, not the number of connection pools, that con-

sumes significant memory. In a well-designed connection pooling implementa-

tion, the maintenance of inactive or empty connection pools involves minimal

system overhead.

To minimize the number of connections required in a connection pool to

service users, you can switch a user associated with a connection to another user

if your data provider supports a feature known as reauthentication. Minimizing

the number of connections conserves memory and can improve performance.

See “Using Reauthentication with Connection Pooling,” page 232.

See Chapter 8, “Connection Pooling and Statement Pooling,” for details

about connection pooling.

Establishing Connections One at a Time

Some applications are not good candidates for using connection pooling. See

“When Not to Use Connection Pooling,” page 15, for examples.

Managing Connections 195

ptg

196 .NET Applications: Writing Good Code

Performance Tip

If your application does not use connection pooling, avoid connecting

and disconnecting multiple times throughout your application to execute

SQL statements because of the performance hit your application pays for

opening connections. You don’t need to open a new connection for each

SQL statement your application executes.

Disconnecting Efficiently

Each physical connection to the database consumes a substantial amount of

memory on both the client and database server.

Performance Tip

Remember to close connections immediately after your application is fin-

ished with them—don’t wait for the garbage collector to close them for

you. This is particularly important if your application uses connection

pooling so that connections are returned to the connection pool immedi-

ately for other users to use. However, remember that closing a connec-

tion automatically closes all DataReader objects associated with the

connection and the ability to fetch results using those objects.

For ADO.NET applications, the .NET Common Language Runtime (CLR)
uses garbage collection to automatically identify and reclaim memory allocated

to objects that are no longer in use. If you wait for the garbage collector to clean

up connections that are no longer being used, memory is tied up for longer than

necessary. The garbage collector in the CLR typically runs only when there are

sufficient CPU resources to accommodate it. If your application runs on a busy

computer, the garbage collector may run infrequently, leaving connections that

are no longer being used in an open or “in use” state for extended periods of

time.

ptg

Even when connection pooling is used, relying on the garbage collector to

clean up connections that are no longer being used impairs performance. When a

user requests a connection and one is unavailable, the data provider waits for a

specified period for a connection to be marked “not in use.” Therefore, connec-

tions waiting for the garbage collector can cause significant delays to other users.

Instead, always remember to explicitly close connections as soon as the user no

longer needs them.

As a fail-safe for closing open connections, not as a substitute, you can close

connections inside a finally block, as shown in the following example. Code in

the finally block always runs, even if an exception occurs. This code guarantees

that any connections you may not have explicitly closed are closed without wait-

ing for the garbage collector.

try

{

DBConn.Open();

// Do some other interesting work

}

catch (Exception ex)

{

// Handle exceptions

}

finally

{

// Close the connection

if (DBConn != null)

DBConn.Close();

}

Another way you can guarantee that your connections are explicitly closed is

to use a using block, as shown in the following example:

Using DBConn As New DDTek.Oracle.OracleConnection

DBConn.Open();

MsgBox("Connected.")

End Using

Managing Connections 197

ptg

For more information about how garbage collection works in the Common

Language Runtime (CLR), see “.NET CLR,” page 82.

Obtaining Database and Data Provider Information Efficiently

Remember that creating a connection is one of the most performance-expensive

operations that an application performs.

198 .NET Applications: Writing Good Code

Performance Tip

Because of the performance hit your application pays for opening con-

nections, avoid establishing additional connections to gather information

about the data provider and the database, such as supported data types

or database versions. For example, some applications establish a connec-

tion and then call a method in a separate component that reconnects and

gathers information about the data provider and the database. Use the

DbMetaDataCollectionNames.DataSourceInformation field of the

GetSchema method to share metadata.

How often do databases change their supported data types or database ver-

sions between connections? Because this type of information typically doesn’t

change between connections and isn’t a large amount of information to store,

you may want to retrieve and cache the information so the application can access

it later.

Managing Transactions

To ensure data integrity, all statements in a transaction are committed or rolled

back as a unit. For example, when you use a computer to transfer money from

one bank account to another, the request involves a transaction—updating val-

ues stored in the database for both accounts. If all parts of that unit of work suc-

ceed, the transaction is committed. If any part of that unit of work fails, the

transaction is rolled back.

Use the guidelines in this section to manage transactions more efficiently.

Managing Commits in Transactions

Committing (and rolling back) transactions is slow because of the disk I/O and,

potentially, the number of network round trips required. What does a commit

ptg

actually involve? The database must write to disk every modification made by a

transaction to the database. This is usually a sequential write to a journal file (or

log); nevertheless, it involves expensive disk I/O.

In ADO.NET, the default transaction commit mode is auto-commit. In

auto-commit mode, a commit is performed for every SQL statement that

requires a request to the database (Insert, Update, Delete, and Select state-

ments). When auto-commit mode is used, your application doesn’t control when

database work is committed. In fact, commits commonly occur when there’s

actually no real work to commit.

Some databases, such as DB2, don’t support auto-commit mode. For these

databases, the data provider sends a commit request after every successful opera-

tion (SQL statement). The commit request equates to a network round trip

between the provider and the database. The round trip to the database occurs

even though the application didn’t request the commit and even if the operation

made no changes to the database. For example, the data provider makes a net-

work round trip even when a Select statement is executed.

Let’s look at the following code, which doesn’t turn off auto-commit mode.

Comments in the code show when commits occur if the data provider or the

database performs commits automatically.

// For conciseness, this code omits error checking

// Allocate a Command object

cmd = conn.CreateCommand();

// Bind parameters

cmd.Parameters.Add("id", DB2DbType.Integer);

cmd.Parameters.Add("name", DB2DbType.VarChar);

cmd.Parameters.Add("name", DB2DbType.Integer);

// Prepare an INSERT statement for multiple executions

sql = "INSERT INTO employees VALUES(?, ?, ?)";

cmd.CommandText = sql;

cmd.Prepare();

// Set parameter values before execution

cmd.Parameters[0].Value=20;

cmd.Parameters[1].Value="Employee20";

cmd.Parameters[2].Value=100000;

Managing Transactions 199

ptg

cmd.ExecuteNonQuery();

// A commit occurs because auto-commit is on

// Change parameter values for the next execution

cmd.Parameters[0].Value = 21;

cmd.Parameters[1].Value = "Employee21";

cmd.Parameters[2].Value = 150000;

cmd.ExecuteNonQuery();

// A commit occurs because auto-commit is on

// Execute a SELECT statement. A prepare is unnecessary

// because it's executed only once.

sql = "SELECT id, name, salary FROM employees";

cmd.CommandText = sql;

// Fetch the data

dataReader = cmd.ExecuteReader();

while (dataReader.Read()) {

System.Console.WriteLine("Id: " + dataReader.GetInt32(0) +

" Name: " + dataReader.GetString(1) +

" Salary: " + dataReader.GetInt32(2));

}

// Close the DataReader

System.Console.WriteLine();

dataReader.Close();

// Whether a commit occurs after a SELECT statement

// because auto-commit is on depends on the provider.

// It's safest to assume a commit occurs here.

200 .NET Applications: Writing Good Code

ptg

// Prepare the UPDATE statement for multiple executions

sql="UPDATE employees SET salary = salary * 1.05 WHERE id=?";

cmd.CommandText = sql;

cmd.Prepare();

// Execute the UPDATE statement for each

// value of index between 0 and 9

for (int index = 0; index < 10; index++) {

cmd.Parameters[0].Value = index;

cmd.ExecuteNonQuery();

// Because auto-commit is on, a commit occurs each time

// through loop for total of 10 commits.

}

// Execute a SELECT statement. A prepare is unnecessary

// because it's only executed once.

sql = "SELECT id, name, salary FROM employees";

cmd.CommandText = sql;

// Fetch the data

dataReader = cmd.ExecuteReader();

while (dataReader.Read()) {

System.Console.WriteLine("Id: " + dataReader.GetInt32(0) +

" Name: " + dataReader.GetString(1) +

" Salary: " + dataReader.GetInt32(2));

}

System.Console.WriteLine();

// Whether a commit occurs after a SELECT statement

// because auto-commit is on depends on the provider.

// It's safest to assume a commit occurs here.

Managing Transactions 201

ptg

// Close the DataReader

dataReader.Close();

}

finally {

dataReader.Close();

cmd.Dispose();

}

202 .NET Applications: Writing Good Code

Performance Tip

Because of the significant amount of disk I/O on the database server

required to commit every operation and the extra network round trips

that occur between the data provider and the database server, it’s a

good idea to turn off auto-commit mode in your application and use

manual commits instead. Using manual commits allows your application

to control when database work is committed, which provides dramati-

cally better performance. Auto-commit mode is automatically turned off

when a transaction is explicitly requested.

For example, let’s look at the following code. It’s identical to the previous

code except that it turns off auto-commit mode by starting a transaction and

uses manual commits.

// For conciseness, this code omits error checking

// Start the transaction. This turns auto-commit off.

transaction = conn.BeginTransaction();

// Allocate a Command object

cmd = conn.CreateCommand();

cmd.Transaction = transaction;

// Bind parameters

cmd.Parameters.Add("id", DB2DbType.Integer);

ptg

cmd.Parameters.Add("name", DB2DbType.VarChar);

cmd.Parameters.Add("name", DB2DbType.Integer);

// Prepare an INSERT statement for multiple executions

sql = "INSERT INTO employees VALUES(?, ?, ?)";

cmd.CommandText = sql;

cmd.Prepare();

// Set parameter values before execution

cmd.Parameters[0].Value = 20;

cmd.Parameters[1].Value = "Employee20";

cmd.Parameters[2].Value = 100000;

cmd.ExecuteNonQuery();

// Change parameter values for the next execution

cmd.Parameters[0].Value = 21;

cmd.Parameters[1].Value = "Employee21";

cmd.Parameters[2].Value = 150000;

cmd.ExecuteNonQuery();

// Manual commit

transaction.Commit();

// Execute a SELECT statement. A prepare is unnecessary

// because it's only executed once.

sql = "SELECT id, name, salary FROM employees";

cmd.CommandText = sql;

// Fetch the data

dataReader = cmd.ExecuteReader();

while (dataReader.Read()) {

System.Console.WriteLine("Id: " + dataReader.GetInt32(0) +

" Name: " + dataReader.GetString(1) +

Managing Transactions 203

ptg

" Salary: " + dataReader.GetInt32(2));

}

System.Console.WriteLine();

// Close the DataReader

dataReader.Close();

// Prepare the UPDATE statement for multiple executions

transaction = conn.BeginTransaction();

sql = "UPDATE employees SET salary = salary * 1.05" +

"WHERE id=?";

cmd.CommandText = sql;

cmd.Prepare();

// Execute the UPDATE statement for each

// value of index between 0 and 9

for (int index = 0; index < 10; index++) {

cmd.Parameters[0].Value = index;

cmd.ExecuteNonQuery();

}

// Manual commit

transaction.Commit();

// Execute a SELECT statement. A prepare is unnecessary

// because it's only executed once.

sql = "SELECT id, name, salary FROM employees";

cmd.CommandText = sql;

// Fetch the data

dataReader = cmd.ExecuteReader();

while (dataReader.Read()) {

System.Console.WriteLine("Id: " + dataReader.GetInt32(0) +

" Name: " + dataReader.GetString(1) +

204 .NET Applications: Writing Good Code

ptg

" Salary: " + dataReader.GetInt32(2));

}

System.Console.WriteLine();

// Close the DataReader

dataReader.Close();

}

finally {

dataReader.Close();

cmd.Dispose();

}

See “Managing Commits in Transactions,” page 22, for information on when

to commit work if you’ve turned off auto-commit mode.

Choosing the Right Transaction Model

Which type of transaction should you use: local or distributed? A local transac-

tion accesses and updates data on a single database. A distributed transaction

accesses and updates data on multiple databases; therefore, it must be coordi-

nated among those databases.

Managing Transactions 205

Performance Tip

Distributed transactions are substantially slower than local transactions

because of the logging and network round trips needed to communicate

between all the components involved in the distributed transaction.

Unless distributed transactions are required, you should use local trans-

actions.

In .NET Framework 2.0, the System.Transactions namespace manages

transactions. The best way to determine if your application is using distributed

transactions is to look for the following line of code and examine the code that

follows:

using System.Transactions;

ptg

See “Transaction Management,” page 21, for more information about per-

formance and transactions.

Executing SQL Statements

Use the guidelines in this section to help you select which ADO.NET objects and

methods will give you the best performance when executing SQL statements.

Executing SQL Statements that Retrieve Little or No Data

In .NET applications, you can execute SQL statements using the following meth-

ods of the Command object:

• The ExecuteNonQuery method returns the number of rows affected, but

does not return actual rows.

• The ExecuteReader method returns a DataReader object containing one or

multiple rows of data.

• The ExecuteScalar method returns the first column of the first row of the

result set.

206 .NET Applications: Writing Good Code

Performance Tip

Execute SQL statements that don’t retrieve data, such as Update, Insert,

and Delete statements, using the ExecuteNonQuery method of the

Command object. Although you can execute these statements using the

ExecuteReader method, using ExecuteNonQuery improves performance

because it allows the data provider to optimize the statement in the fol-

lowing ways: It reduces the number of network round trips to the data-

base server because it doesn’t request a description of the result set and

it eliminates the need to allocate and deallocate buffers to hold the result

set description on the client or application server.

The following example shows how to insert a row into the employees table

using ExecuteNonQuery:

DBConn.Open();

DBTxn = DBConn.BeginTransaction();

ptg

// Set the Connection property of the Command object

DBCmd.Connection = DBConn;

// Set the text of the Command to the INSERT statement

DBCmd.CommandText = "INSERT into employees" +

"VALUES (15, 'HAYES', 'ADMIN', 6, " +

"'17-APR-2002', 18000, NULL, 4)";

// Set the transaction property of the Command object

DBCmd.Transaction = DBTxn;

// Execute using ExecuteNonQuery because we do not

// retrieve a result set

DBCmd.ExecuteNonQuery();

// Commit the transaction

DBTxn.Commit();

// Close the connection

DBConn.Close();

Executing SQL Statements 207

Performance Tip

If your SQL statement retrieves a single value, such as a sum or count,

execute that statement using the ExecuteScalar method of the Command

object. Again, you can use the ExecuteReader method to execute state-

ments that retrieve a single value, but using the ExecuteScalar method

allows the data provider to optimize for a result set that consists of a sin-

gle row and column. The data provider improves performance by avoid-

ing much of the same overhead described previously for ExecuteReader

versus ExecuteNonQuery.

The following example shows how to retrieve the count of all employees

with a yearly salary of more than $50,000 from the employees table using

ExecuteScalar:

// Open a connection to the database

SybaseConnection Conn;

ptg

Conn = new SybaseConnection(

"host=server1;port=4100;User ID=test;Password=test;

Database Name=Accounting");

Conn.Open();

// Open a command object

SybaseCommand salCmd = new SybaseCommand(

"SELECT count(sal) FROM employees" +

"WHERE sal>'50000'", Conn);

try

{

int count = (int)salCmd.ExecuteScalar();

}

catch (Exception ex)

{

// Display exceptions in a message box

MessageBox.Show (ex.Message);

}

// Close the connection

Conn.Close();

Using the Command.Prepare Method

Most applications have a certain set of SQL statements that are executed multiple

times and a few SQL statements that are executed only once or twice during the

life of the application. You may want to use a prepared Command object depending

on how frequently you plan to execute a SQL statement.

Some data providers don’t perform an operation with the database when an

application calls Command.Prepare(). These data providers still optimize objects

associated with the Command object on the database client.

A nonprepared Command object is optimized for a SQL statement that is only

executed once. In contrast, a prepared Command object is optimized for SQL

statements that are executed multiple times. Although the overhead for the initial

execution of a prepared Command object is high, the advantage is realized with

subsequent executions of the prepared Command object.

208 .NET Applications: Writing Good Code

ptg

Using a prepared Command object typically results in at least two network

round trips to the database server:

• One network round trip to parse and optimize the statement

• One or more network round trips to execute the statement and retrieve

results

Executing SQL Statements 209

Performance Tip

If the application makes a request only once during its life span, using a

nonprepared Command object instead of a prepared Command object is a

better choice because it results in only a single network round trip.

Remember, reducing network communication typically provides the most

performance gain.

See “SQL Statements,” page 27, for more information about using state-

ments versus prepared statements. See “Using Statement Pooling with

Connection Pooling,” page 238, for information about performance and using

statement pooling with connection pooling.

Using Arrays of Parameters/Batches Versus Prepared Statements

Updating large amounts of data typically is done by preparing an Insert state-

ment and executing that statement multiple times, resulting in numerous net-

work round trips.

Performance Tip

To reduce the number of network round trips when updating large

amounts of data, you can use arrays of parameters or batches of SQL

statements.

Let’s compare the following examples.

ptg

210 .NET Applications: Writing Good Code

Example A: Executing a Prepared Command Object Multiple
Times

A prepared Command object is used to execute an Insert statement mul-

tiple times. In this case, 101 network round trips are required to perform

100 Insert operations: 1 round trip to prepare the statement and 100

additional round trips to execute its iterations.

sql = "INSERT INTO employees VALUES (?, ?, ?)";

cmd.CommandText = sql;

cmd.Prepare();

for (n = 0; n < 100; n++) {

cmd.Parameters[0].Value = id[n];

cmd.Parameters[1].Value = name[n];

cmd.Parameters[2].Value = salary[n];

cmd.ExecuteNonQuery();

}

Example B: Using Arrays of Parameters and Batches

Command.CommandText is set to a string containing a single Insert state-

ment and an array of parameters. Only two network round trips are

required: one to prepare the statement and another to execute the

array. Although arrays use more CPU cycles, performance is gained by

reducing the number of network round trips.

sql = "INSERT INTO employees VALUES (?, ?, ?)";

cmd.CommandText = sql;

cmd.ArrayBindCount = 10;

cmd.Prepare();

cmd.Parameters[0].Value = idArray;

cmd.Parameters[1].Value = nameArray;

cmd.Parameters[2].Value = salaryArray;

cmd.ExecuteNonQuery();

ptg

Executing SQL Statements 211

Some data providers don’t support arrays of parameters but do support

batches of SQL. In this case, you can set Command.CommandText to a

string that contains 100 Insert statements and execute those state-

ments as a batch.

sql = "INSERT INTO employees VALUES (?, ?, ?)" +

";INSERT INTO employees VALUES (?, ?, ?)" +

...

";INSERT INTO employees VALUES (?, ?, ?)";

cmd.CommandText = sql;

cmd.Prepare();

cmd.Parameters[0].Value = id[0];

cmd.Parameters[1].Value = name[0];

cmd.Parameters[2].Value = salary[0];

...

cmd.Parameters[27].Value = id[9];

cmd.Parameters[28].Value = name[9];

cmd.Parameters[29].Value = salary[9];

cmd.ExecuteNonQuery();

If your application updates disconnected DataSets and your data

provider supports batch processing, you can improve performance by

setting the UpdateBatchSize property of the DataAdapter object.

Setting this property improves performance by specifying the number of

network round trips that are made to the database server. For example,

the following code tells the data provider to group five commands and

send them to the database in a single network round trip.

SqlDataAdapter adpt = new SqlDataAdapter();

adpt.InsertCommand = command;

// Specify the number of rows

adpt.UpdateBatchSize = 5;

ptg

Using Bulk Load

If you have a large amount of data to insert into a database table and your data

provider supports bulk load, also known as bulk copy, using bulk load can be

even faster than using arrays of parameters. You use bulk load functionality

through the xxxBulkCopy class (for example, SqlBulkCopy or

OracleBulkCopy), which many data providers support.

Using bulk load, rows are sent from the database client to the database in a

continuous stream, without making extra network round trips. In addition,

when a bulk load operation is performed, the database can optimize the way

rows are inserted.

However, you should be aware that using bulk load can have negative side

effects. For example, data inserted with bulk load may ignore referential integrity,

causing consistency problems with data in the database.

Using Pure Managed Providers

Using 100% managed code allows your .NET assemblies to run inside the CLR.

When the data provider bridges into unmanaged code, or code that is outside

the .NET CLR, it adversely affects performance. The overhead associated with

each call made outside the CLR is a subject that is highly debated, with various

sources claiming that performance can degrade anywhere from 5% to 100%

when compared to calls into managed code. In general, the performance hit is

greater if the machine running the application is busy.

Be wary when choosing a data provider that advertises itself as a 100% or a

pure managed code data provider. Many ADO.NET data providers make this

claim yet use an architecture that bridges into native Windows code, as shown in

Figure 7-1. For example, these data providers may call into the DB2 Call Level

Interface (CLI) or Oracle SQL*Net.

212 .NET Applications: Writing Good Code

Performance Tip

Using unmanaged code can significantly impact performance depending

on how busy the machine running your application is. The bottom line is

this: If a “managed” data provider requires unmanaged database clients

or other unmanaged pieces, it’s not a true managed data provider. Only

a few vendors produce true managed data providers that work as a

100% managed component.

ptg
Figure 7-1 100% managed data provider versus “managed” data provider

Selecting .NET Objects and Methods

The guidelines in this section will help you to optimize system performance

when selecting and using ADO.NET objects and methods.

Avoiding the CommandBuilder Object

Because of concurrency restrictions, the CommandBuilder often generates ineffi-

cient SQL statements. In most cases, you can code statements yourself that are

more efficient than those the CommandBuilder generates. In addition, the

CommandBuilder object generates statements at runtime. Each time the

DataAdapter.Update method is called, the CommandBuilder analyzes the con-

tents of the result set and generates Insert/Update/Delete statements for the

DataAdapter. When you explicitly specify Insert/Update/Delete statements,

this extra processing step is eliminated.

Selecting .NET Objects and Methods 213

.NET CLR

100% Managed
ADO.NET Provider

.NET Managed
Client

100% Managed
.NET Provider

“Managed”
ADO.NET Provider

.NET CLR

.NET Managed
Client

Database Vendor
Client Libraries

Unmanaged Code

“Managed”
.NET Provider

ptg

Suppose you have an 8-column database table named employees that con-

tains employee records. A CommandBuilder object would generate the following

Update statement:

"UPDATE employees SET empno = ?, ename = ?,

job = ?, mgr = ?, hiredate = ?, sal = ?, comm = ?,

dept = ?

WHERE (

(empno = ?) AND (ename = ?) AND

(job = ?) AND ((mgr IS NULL and ? IS NULL) OR (mgr = ?))

AND (hiredate = ?) AND (sal = ?) AND (

(comm IS NULL AND

? IS NULL) OR (comm = ?)) AND (dept = ?))

If you know the underlying database schema and know that the empno col-

umn of the employees table is the primary key for the table, you can code the fol-

lowing Update statement, which is more efficient than the previous Update

statement generated by the CommandBuilder:

UPDATE employees SET empno = ?, ename = ?, job = ?,

mgr = ?, hiredate = ?, sal = ?, comm = ?, dept = ?

WHERE empno = ?

In this example, although we’ve lost some concurrency control, we’ve

improved performance. Notice that in the first example, the Where clause com-

pares every column value, which ensures the value hasn’t changed since the data

was retrieved. In the second example, the Update statement compares only the

value of the empno column. So before you implement this performance tip, you

must decide how tolerant your database is to a lower level of concurrency.

Choosing Between a DataReader and DataSet Object

Which ADO.NET object should you use to retrieve the results of a SQL state-

ment?

214 .NET Applications: Writing Good Code

Performance Tip

Although using a CommandBuilder object to generate SQL statements is

tempting because it can save you time when coding an application that

uses DataSets, this shortcut can impair performance.

ptg

• The DataReader object is optimized for retrieving large amounts of data at a

fast speed. Data is read-only and can only be fetched in a forward-only order.

Memory usage is minimal.

• The DataSet object is a cache of data that represents the complete set of data

results, including related tables, constraints, and relationships among the

tables. It is, in effect, a locally cached database. You can modify the data in

the DataSet and fetch data in any order. Because the DataSet is discon-

nected from the database, any changes you make to the data in the DataSet

must be explicitly synchronized with the data in the database. You also can

create a DataSet from an XML stream or document, or you can serialize a

DataSet to XML. Memory usage is high.

Selecting .NET Objects and Methods 215

Performance Tip

If you need to retrieve large amounts of read-only data, a DataReader

object always provides the best performance. Only use a DataSet object

if you need to insert, update, or delete data, fetch data in any order, or

work with XML. Although the flexibility of a DataSet can benefit your

application, it comes with the high cost in memory consumption.

Using GetXXX Methods to Fetch Data from a DataReader

The .NET API provides the following methods of fetching data from a

DataReader:

• Generic data type methods, such as GetValue() and GetValues()

• Specific data type methods, such as GetDateTime(), GetDecimal(), and

GetInt32()

When using a generic method such as GetValue() to fetch data from the

DataReader, extra processing is required to convert the value data type to a ref-

erence data type, essentially wrapping the value data type with an object. This

process is called boxing. When boxing occurs, memory is allocated from the

managed heap on the database client to create an object for the reference data

type, which can force a garbage collection to occur. See “.NET CLR,” page 82, for

more information about the impact garbage collection has on performance.

ptg

Retrieving Data

Retrieve only the data you need, and choose the most efficient method to retrieve

that data. Use the guidelines in this section to optimize your performance when

retrieving data.

Retrieving Long Data

Retrieving long data—such as large XML data, long varchar/text, long varbinary,

Clobs, and Blobs—across a network is slow and resource intensive. Most users

really don’t want to see long data. For example, consider the user interface of an

employee directory application that allows the user to look up an employee’s

phone extension and department, and optionally, view an employee’s photo-

graph by clicking the name of the employee.

Employee Phone Dept

Harding X4568 Manager

Hoover X4324 Sales

Taft X4569 Sales

Lincoln X4329 Tech

In this case, retrieving each employee’s photograph would slow performance

unnecessarily. If the user does want to see the photograph, he can click the

employee name and the application can query the database again, specifying only

the long columns in the Select list. This method allows users to retrieve result

sets without paying a high performance penalty for network traffic.

Although excluding long data from the Select list is the best approach,

some applications do not formulate the Select list before sending the query to

the data provider (that is, some applications use SELECT * FROM table ...). If

the Select list contains long data, the data provider is forced to retrieve that long

data, even if the application never requests the long data from the result set. For

example, consider the following code:

216 .NET Applications: Writing Good Code

Performance Tip

To avoid boxing, use a specific method of fetching data for the data type

instead of a generic method. For example, use the GetInt32() method to

fetch a 32-bit signed Integer value instead of the GetValue() method.

ptg

sql = "SELECT * FROM employees

WHERE SSID = '999-99-2222'";

cmd.CommandText = sql;

dataReader = cmd.ExecuteReader();

dataReader.Read();

string name = dataReader.GetString(0);

When a query is executed, the data provider has no way to determine which

result columns the application will use; an application may fetch any of the result

columns that are retrieved. When the data provider processes the fetch request, it

retrieves at least one, and often multiple, result rows from the database across the

network. In this case, a result row contains all the column values for each row. If

one of the columns includes long data such as an employee photograph, perfor-

mance slows considerably.

Retrieving Data 217

Performance Tip

Because retrieving long data across the network negatively affects per-

formance, design your application to exclude long data from the Select

list.

Limiting the Select list to contain only the name column results in a faster

performing query at runtime. For example:

sql = "SELECT name FROM employees" +

"WHERE SSID = '999-99-2222'";

cmd.CommandText = sql;

dataReader = cmd.ExecuteReader();

dataReader.Read();

string name = dataReader.GetString(0);

Limiting the Amount of Data Retrieved

If your application executes a query that retrieves five rows when it needs only

two, application performance suffers, especially if the unnecessary rows include

long data.

ptg

Particularly when using a DataSet, make sure that your Select statements

limit the data that is retrieved by using a Where clause. Even when using a Where

clause, a Select statement that does not adequately restrict its request could

retrieve hundreds of rows of data. For example, if you want data from the

employees table for each manager hired in recent years, your application could

execute the following statement, and subsequently, filter out the rows of employ-

ees who are not managers:

SELECT * FROM employees

WHERE hiredate > 2000

However, suppose the employees table contains a column that stores pho-

tographs of each employee. In this case, retrieving extra rows is extremely expen-

sive to your application performance. Let the database filter the request for you

and avoid sending extra data that you don’t need across the network. The follow-

ing query uses a better approach, limiting the data retrieved and improving per-

formance:

SELECT * FROM employees

WHERE hiredate > 2003 and job_title='Manager'

Sometimes applications need to use SQL queries that generate a large

amount of network traffic. For example, consider an application that needs to

display information from support case histories, which each contain a 10MB log

file. Does the user really need to see the entire contents of the file? If not, perfor-

mance would improve if the application displayed only the first 1MB of the log

file.

218 .NET Applications: Writing Good Code

Performance Tip

One of the easiest ways to improve performance is to limit the amount

of network traffic between the data provider and the database server—

optimally by writing SQL queries that instruct the data provider to

retrieve from the database only the data that the application requires.

ptg

Suppose that you have a GUI-based application, and each screen can display

only 20 rows of data. It’s easy to construct a query that may retrieve a million

rows, such as SELECT * FROM employees, but it’s hard to imagine a scenario

where a query that retrieves a million rows would be useful. Some data providers

allow you to use a MaxRows property on the Command object. For example, if an

application calls the following command, no query to the Oracle database will

retrieve more than 10,000 rows to the application:

OracleCommand.MaxRows=10000;

Some data providers allow you to limit the bytes of data a connection uses to

retrieve multiple rows. Similarly, some data providers allow you to limit the bytes

of data that can be retrieved from TEXT or IMAGE columns. For example, with

Microsoft SQL Server and Sybase ASE, you can execute Set TEXTSIZE n on any

connection, where n is the maximum number of bytes that will be retrieved from

any TEXT or IMAGE column.

Choosing the Right Data Type

Advances in processor technology have brought significant improvements to the

way that operations such as floating-point math are handled. However, when the

active portion of your application will not fit into the on-chip cache, sending and

retrieving certain data types is still expensive. When you are working with data

on a large scale, it’s important to select the data type that can be processed most

efficiently. Sending and retrieving certain data types across the network can

increase or decrease network traffic.

Retrieving Data 219

Performance Tip

When you cannot avoid retrieving data that generates a large amount of

network traffic, your application can still control the amount of data

being sent from the database to the data provider by limiting the number

of rows sent across the network and reducing the size of each row sent

across the network.

ptg

See “Choosing the Right Data Type,” page 34, for information about which

data types are processed faster than others.

Updating Data

Because data in a DataSet is disconnected from the database, you must explicitly

synchronize any changes you make to the data in the DataSet with the data

stored in the database.

220 .NET Applications: Writing Good Code

Performance Tip

For multiuser, multivolume applications, billions, or even trillions, of net-

work packets can move between the provider and the database server

over the course of a day. Choosing data types that are processed effi-

ciently can incrementally create a measurable gain in performance.

Performance Tip

When you’re updating data in the database from a DataSet, make sure

to uniquely identify rows to be changed using a Where clause so that

updates are processed faster. For example, you can use a column with a

unique index or a primary key, or a pseudo-column. A pseudo-column is

a hidden column that represents a unique key associated with every row

in a table. Typically, using pseudo-columns in a SQL statement is the

fastest way to access a row because they usually point to the exact loca-

tion of the physical record.

The following example shows the application flow for updating the database

with a DataSet using the Oracle ROWID pseudo-column as a search condition:

// Create the DataAdapter and DataSets

OracleCommand DbCmd = new OracleCommand (

"SELECT rowid, deptid, deptname FROM department", DBConn);

myDataAdapter = new OracleDataAdapter();

myDataAdapter.SelectCommand = DBCmd;

myDataAdapter.Fill(myDataSet, "Departments");

ptg

// Build the Update rules

// Specify how to update data in the data set

myDataAdapter.UpdateCommand = new

OracleCommand(

"UPDATE department SET deptname = ? ", deptid = ? " +

"WHERE rowid =?", DBConn);

// Bind parameters

myDataAdapter.UpdateCommand.Parameters.Add(

"param1", OracleDbType.VarChar, 100, "deptname");

myDataAdapter.UpdateCommand.Parameters.Add(

"param2", OracleDbType.Number, 4, "deptid";

myDataAdapter.UpdateCommand.Parameters.Add(

"param3", OracleDbType.Number, 4, "rowid");

Summary

The performance of .NET applications can suffer if they fail to reduce network

traffic, limit disk I/O, simplify queries, and optimize the interaction between the

application and data provider. Reducing network communication probably is the

most important technique for improving performance. For example, when you

need to update large amounts of data, using arrays of parameters rather than

executing an Insert statement multiple times reduces the number of network

round trips required by the data provider to complete the operation. In addition,

using a 100% managed data provider, which eliminates calls outside the CLR to

client libraries or code written before the .NET Framework was developed, can

improve performance, especially when the application is running on a busy

machine.

Typically, creating a connection is the most performance-expensive task

your application performs. Connection pooling can help you manage connec-

tions efficiently, particularly if your application has numerous users. Regardless

of whether your application uses connection pooling, make sure that you close

connections immediately after your application is finished with them.

Making smart choices about how to handle transactions can also improve

performance. For example, using manual commits instead of auto-commit mode

provides better control over when work is committed. Similarly, if you don’t need

Summary 221

ptg

the protection of distributed transactions, using local transactions can improve

performance.

Inefficient SQL queries slow the performance of .NET applications. Some

SQL queries don’t filter data, causing the provider to retrieve unnecessary data.

Your application pays a huge penalty in performance when that unnecessary data

is long data, such as data stored as a Blob or Clob. Other queries, such as those

the CommandBuilder object generates, can be overly complex, causing additional

processing at runtime. Even well-formed SQL queries can be more or less effec-

tive depending on how they are executed. For example, using the

ExecuteNonQuery() method of the Command object for queries that don’t

retrieve data reduces the number of network round trips to the database server

and improves performance.

222 .NET Applications: Writing Good Code

ptg

Connection Pooling and
Statement Pooling

223

In Chapter 2, “Designing for Performance: What’s Your

Strategy?,” we defined connection pooling and state-

ment pooling and discussed the performance implica-

tions of using these features. But we didn’t go into

specifics, such as the different connection pool models,

how reauthentication works with connection pooling,

and how using statement pooling with connection pool-

ing might consume more memory on the database

server than you realize. If you are interested in these

details and more, read this chapter. If you haven’t

already read the section about these features in Chap-

ter 2, you may want to do that first.

Connection Pool Model for JDBC

A JDBC application can use connection pooling through a

Connection Pool Manager provided by an application server

vendor or a database driver vendor. A Connection Pool
Manager is the utility that manages the connections in the

pool and defines the attributes of the connection pool, such

as the initial number of connections placed in the pool,

when an application server is started. We discuss the attrib-

utes of connection pools in a JDBC environment later in this

section.

C H A P T E R E I G H T

ptg

Connection pooling doesn’t affect application code. If you turn on connec-

tion pooling and use a DataSource object (an object implementing the

DataSource interface) to obtain a connection instead of using the

DriverManager class, when the connection is closed, it is placed in the connec-

tion pool for reuse instead of being physically closed.

The number of connection pools that an application uses depends on the

number of data sources used in the application. Typically, the number is only

one. There is a one-to-one relationship between a pool and a data source.

Therefore, the number of connection pools on an application server depends on

the number of data sources configured to use connection pooling. If multiple

applications are configured to use the same data source, those applications share

the same connection pool, as shown in Figure 8-1.

224 Connection Pooling and Statement Pooling

JDBC Connection Pool
Requesting Connection
to Data Source 1

Application 1

Requesting Connection
to Data Source 1

Application 2

Figure 8-1 JDBC connection pool

But let’s not stop there. An application can have one data source and allow

multiple users, each with his own set of login credentials, to get a connection

from the same pool. This is unlike some ADO.NET and ODBC implementa-

tions, where a connection pool is associated with a specific connection string,

which means connections for only one set of user login credentials are in the

pool. In the JDBC case, the connection pool contains connections for all unique

users using the same data source, as shown in Figure 8-2.

This information is important because it affects the way you configure the

attributes of your connection pool, as we discuss next.

ptg

Figure 8-2 JDBC connection pool: one pool for multiple unique users

Configuring Connection Pools

Typically, you can define the following attributes of a connection pool, which

enables you to configure a pool for optimal performance:

• Minimum pool size is the minimum number of connections that will be

kept in the pool for each user. Depending on the implementation, the mini-

mum number means either the total number of both active and idle connec-

tions or the total number of idle connections only. Because this is an

important difference, check your implementation so that you can tune your

pool correctly. Active connections are the connections that are currently in

use by the application, and idle connections are the connections that are

available for use in the pool.

• Maximum pool size is the maximum number of connections in the pool for

each user. Depending on the implementation, the maximum number means

either the total number of both active and idle connections or the total num-

ber of idle connections only. Again, because this is an important difference,

check your implementation so that you can tune your pool correctly.

• Initial pool size is the number of connections created for each user when the

connection pool is initialized. For most application servers, connections are

created when the application server is initialized.

• Maximum idle time is the amount of time a pooled connection remains idle

before it is removed from the connection pool.

Connection Pool Model for JDBC 225

JDBC Connection Pool

Connections
for User A

Connections
for User B

Requesting Connection
to Data Source 1

Application 1/User A

Requesting Connection
to Data Source 1

Application 1/User B

ptg

Guidelines

Here are some guidelines for setting connection pool attributes:

• To determine the optimal setting for the maximum number of connections

for a pool, plan for the typical number of concurrent connections that your

application or applications uses, not the number at the busiest time of day or

the number at the slowest time of day. For example, suppose you have two

applications that use the same data source and the same user login creden-

tials and these applications consistently have about 16 users combined. In

this case, you would want to set the maximum number of connections for

the pool to 16 so that the pool is not maintaining more connections than are

needed for typical application usage. Remember, more connections means

more database memory and CPU use.

Let’s contrast this to two applications that use the same data source but dif-

ferent user login credentials. Also, the applications consistently have about

16 users combined. If each application has about the same number of

users—about 8—you would want to set the maximum number of connec-

tions for the pool to 8. With this configuration, the pool would have 8 con-

nections for each application, or a maximum of 16 connections in the pool

at any one time.

226 Connection Pooling and Statement Pooling

Performance Tip

The goal is to maintain a reasonable connection pool size while ensuring

that each user who needs a connection has one available within an

acceptable response time. To achieve this goal, you can configure the

minimum and maximum number of connections that are in the pool at

any given time and how long idle connections stay in the pool, as we dis-

cuss next.

Note

The maximum number of connections is calculated differently if you are

using reauthentication with connection pooling. See the section, “Using

Reauthentication with Connection Pooling,” page 232.

ptg

Also, you can use the maximum pool size attribute to limit the number of

database server licenses in use by your applications.

• To determine the optimal setting for the minimum number of connections

for a pool, calculate the number of concurrent connections used by your

application or applications at the slowest time of day. Use this number for

the minimum number of connections for your pool. Just like configuring the

maximum number, the way you set the minimum number of connections

depends on whether your applications are configured to allow use of multi-

ple sets of user login credentials for a single data source.

Connection Pool Model for JDBC 227

Note

The minimum number of connections is calculated differently if you are

using reauthentication with connection pooling. See the section, “Using

Reauthentication with Connection Pooling,” page 232.

• To determine the optimal setting for the initial pool size, think about the

usage of your application server or application, if it doesn’t reside on an

application server. If the application server that contains your application(s)

starts at the beginning of the business day, which typically is the slowest time

of day, you may want to consider initializing your pool with the minimum

number of connections allowed in your pool. If, on the other hand, the

application server runs 24 hours a day and is only restarted when absolutely

necessary, you may want to consider initializing your pool with the typical

number of concurrent connections used by your application(s).

Note

The initial pool size is calculated differently if you are using reauthenti-

cation with connection pooling. See the section, “Using Reauthentication

with Connection Pooling,” page 232.

ptg

• To determine the optimal setting for the maximum idle time, think about

the slowest time of day for your applications and set this option accordingly.

For example, if in the evening you know that only one or two users are log-

ging into applications every hour or so, you would want to configure this set-

ting to at least 60 minutes. That way, a connection will be waiting in the pool

for your users; a connection will not have to be reestablished, which we know

is performance expensive.

Connection Pool Model for ODBC

Connection pooling in ODBC is provided by the Microsoft ODBC Driver

Manager on Windows platforms, application providers, some database driver

vendors, or not at all. At the time of the publishing of this book, we know of only

one UNIX implementation of connection pooling for ODBC, and its implemen-

tation is similar to the ADO.NET connection pool model (see “Connection Pool

Model for ADO.NET,” page 230). Also, the implementations of connection pool-

ing available on Windows platforms differ. Some are similar to the ADO.NET

connection pool model.

In this section, we discuss only the model as defined in the ODBC specifica-

tion.

Connection Pooling as Defined in the ODBC Specification

We want to start by saying that the connection pool model in ODBC was defined

before application servers were widely adopted. Application servers allow multi-

ple applications to run in the same process, which makes sharing connection

pools across applications possible. However, the scenario of an application server

for ODBC applications (C/C++ applications) is unlikely.

As stated in the ODBC specification, “The connection pooling architecture

enables an environment and its associated connection to be used by multiple

components in a single process.”1 An environment is a global context that is used

to access data from an application. In association with connection pooling, an

environment “owns” the connections inside an application. Typically, there is

only one environment within an application, which means that there is usually

one connection pool for one application.

228 Connection Pooling and Statement Pooling

1 Microsoft ODBC 3.0 Programmer’s Reference and SDK Guide, Volume I. Redmond: Microsoft Press,
1997.

ptg

Here are some facts about the ODBC connection pool model as defined in

the ODBC specification:

• The Driver Manager maintains the connection pool.

• Connection pooling is enabled by calling SQLSetEnvAttr to set the

SQL_ATTR_CONNECTION_POOLING environment attribute. This environment

attribute can be set to associate a single pool either with each driver used by

an application or with each environment configured for an application

(which is typically only one).

• When the application calls either SQLConnect or SQLDriverConnect, a con-

nection is used from the pool if a connection with the arguments passed by

the ODBC call can be matched with a connection in the pool. If not, a new

connection is established and placed in the pool when physically closed.

• When the application calls SQLDisconnect, the connection is returned to

the pool.

• The pool grows dynamically as applications use it; it is limited only by mem-

ory constraints and licensing limits on the server.

• If a connection is inactive for a specified period, it is removed from the pool.

Configuring Connection Pools

You can define the following attributes of a connection pool, which helps you

configure a pool for optimal performance:

• Connection pooling timeout, which is set in the ODBC Administrator, is the

amount of time that connections remain in the pool before being removed.

• Connection pool one per driver, which is set in your application. If your

application works with many drivers and few environments, using this con-

figuration may be optimal because fewer comparisons may be required to

find the correct connection. For example, the application creates one envi-

ronment handle (henv). On henv, the application connects to a Sybase driver

and to an Oracle driver. With this configuration, a pool will exist for connec-

tions to the Sybase driver, and a second pool will exist for connections to the

Oracle driver.

• Connection pool one per environment, which is set in your application. If

your application works with many environments and a few drivers, using

this configuration may be optimal because fewer comparisons may be

required. For example, the application creates two environment handles

(henv1 and henv2). On henv1, the application connects to a Sybase driver

and a Microsoft SQL Server driver. On henv2, it connects to an Oracle driver

and a DB2 driver. With this configuration, a pool will exist for henv1 that has

Connection Pool Model for ODBC 229

ptg

connections to Sybase and Microsoft SQL Server, and a pool will exist for

henv2 that has connections to Oracle and DB2.

We have included this configuration option here for completeness; however,

it would be unusual to configure your application to use many environ-

ments.

Guidelines

In the ODBC model as defined in the ODBC specification, you can’t define a

minimum and a maximum pool size, which can cause resource issues because

the connections, even when not in use, hold onto resources. Holding these

resources can affect performance by limiting their availability to other threads or

processes. The size of the pool is limited only by memory or licensing constraints

on the server.

Even with this limitation in the ODBC connection pool model, you will

want to use connection pooling when you have the following:

• A middle-tier application that connects over a network

• An application that repeatedly connects and disconnects, such as an Internet

application

Connection Pool Model for ADO.NET

Connection pooling in ADO.NET isn’t provided by the core components of the

.NET Framework. If present, it must be implemented in the ADO.NET data

provider. The most popular and widely used implementation is discussed in this

section.

In ADO.NET, a connection pool is associated with a specific connection

string. A connection pool is created for each connection request that uses a

unique connection string. For example, if an application requests two connec-

tions over its lifetime using the following two connection strings, two connection

pools are created, one for each connection string:

Host=Accounting;Port=1521;User ID=scott;Password=tiger;

Service Name=ORCL;

Host=Accounting;Port=1521;User ID=sam;Password=lion21;

Service Name=ORCL;

230 Connection Pooling and Statement Pooling

ptg

The number of connection pools that an application uses depends on the

number of unique connection strings that application uses. The more pools that

an application maintains, the more memory usage on both the client machine

and the database server.

Configuring Connection Pools

You can define the following attributes of a connection pool, which help you

configure a pool for optimal performance:

• Maximum pool size is the maximum number of connections allowed in a

pool, both active and idle. Active connections are the connections that are

currently in use by the application, and idle connections are the connections

that are available for use in the pool.

• Minimum pool size is the number of connections created when a connec-

tion pool is initialized and the minimum number of active and idle connec-

tions that will be kept in the pool. A connection pool is created when the first

connection with a unique connection string connects to the database. The

connection pool retains this number of connections, even when some con-

nections exceed their load balance timeout value.

• Load balance timeout is the amount of time idle connections remain in the

pool before being destroyed.

Connection Pool Model for ADO.NET 231

Performance Tip

The goal is to maintain a reasonable connection pool size while ensuring

that each user who needs a connection has one available within an

acceptable response time. To achieve this goal, you can configure the

minimum and maximum number of connections that are in the pool at

any given time and how long idle connections stay in the pool, as we dis-

cuss next.

Guidelines

Here are some guidelines for setting connection pool attributes:

• To determine the optimal setting for the maximum number of connections

for a pool, plan for the typical number of concurrent connections used by

ptg

your application, not the number at the busiest time of day or the number at

the slowest time of day. For example, suppose you have an application that

consistently has about 15 users. You would want to set the maximum num-

ber of connections for the pool to 15 so that the pool isn’t maintaining more

connections than are needed for typical application usage. Remember, more

connections means more database memory and CPU usage.

Also, you can use the maximum pool size attribute to limit the number of

database server licenses that your applications use.

• To determine the optimal setting for the minimum number of connections

for a pool, calculate the number of concurrent connections used by your

application at the slowest time of day. Use this number for the minimum

number of connections for your pool. In ADO.NET, the minimum pool size

is also the initial pool size, so you should consider the following information

about initial pool size when making your decision about this setting.

• To determine the optimal setting for the initial pool size, think about the

usage of your application. If your application starts at the beginning of the

business day, which is the slowest time of day, you may want to consider ini-

tializing your pool with the minimum number of connections allowed in

your pool. If, on the other hand, your application runs 24 hours a day and is

only restarted when absolutely necessary, you may want to consider initializ-

ing your pool with the typical number of concurrent connections that your

application uses.

• To determine the optimal setting for the maximum idle time (load balance

timeout), think about the slowest time of day for your applications and set

this option accordingly. For example, if in the evening you know that only

one or two users are logging into applications every hour or so, you would

want to configure this setting to at least 60 minutes. That way, a connection

will be waiting in the pool for your users; a connection will not have to be

reestablished, which we know is performance expensive.

Using Reauthentication with Connection Pooling

To minimize the number of connections required in a connection pool, the user

associated with a connection can be switched to another user, a process known as

reauthentication.2 For example, suppose using the same set of login credentials

232 Connection Pooling and Statement Pooling

2 Different databases refer to this functionality using different terminology. For example, Oracle uses
proxy authentication and Microsoft SQL Server uses impersonation.

ptg

for all users isn’t an option for security reasons; therefore, you are using Kerberos

authentication to authenticate users using their operating system user name and

password. To reduce the number of connections that must be created and man-

aged, you can use reauthentication to switch the user associated with a connec-

tion to multiple users. For example, suppose your connection pool contains a

connection, Conn, which was established using the user ALLUSERS. You can

have that connection service multiple users—User A, B, C, and so on—by

switching the user associated with the connection Conn to User A, B, C, and so

on. Minimizing the number of connections conserves memory, which improves

performance.

Not all database drivers support reauthentication. For those drivers that do,

the user performing the switch must be granted specific database permissions.

In JDBC, reauthentication is implemented in both the driver and the

Connection Pool Manager. In ODBC and ADO.NET (if reauthentication is

implemented), it is implemented in the driver/provider.

Without reauthentication, the Connection Pool Manager or the driver/

provider maintains a different set of connections for each user logged on the

database with different user credentials because the resulting connection strings

are different. For example, depending on the implementation, one set of connec-

tions is maintained for User A and another set for User B, and still another set for

User C, and so on, in the same connection pool or in different pools. For the pur-

poses of this discussion, let’s assume an ADO.NET implementation where the

provider maintains connections for each user in different pools. If each connec-

tion pool has a minimum pool size set to a value of 10, the provider needs to

maintain 10 connections for User A, another 10 connections for User B, and

another 10 connections for User C, as shown in Figure 8-3.

What if User B and User C don’t require as many connections as User A on a

regular basis? You could reduce the minimum pool size of the connection pools

that User B and User C use to five connections, but the provider still has to main-

tain different sets of connections. What if you could minimize the number of

connections required and simplify your entire connection pooling environment?

Using reauthentication, any available connection in the pool can be assigned

to a user if the user has the appropriate database permissions—the user associ-

ated with the connection is switched to the new user. For example, if the connec-

tion pool has a minimum pool size set to 15, the pool manager or driver/provider

could maintain 15 connections that User A, User B, or User C can use, as shown

in Figure 8-4. The pool manager or driver/provider only has to maintain one

connection pool for all users, which reduces the number of total connections.

Using Reauthentication with Connection Pooling 233

ptg

Figure 8-3 Connection pools without reauthentication

234 Connection Pooling and Statement Pooling

User A

User B

User C

Connection Pools Without Reauthentication

Connections
for User A

Connections
for User B

Connections
for User C

User A

User B

User C

Connection Pool with Reauthentication

Connections
for User A,
User B, and
User C

Figure 8-4 Connection pool with reauthentication

Depending on the driver, switching the user associated with a connection to

a new user takes one or two network round trips to the server and a small

amount of processing time on the server. The resources used for reauthentica-

tion are minimal compared to the resources used to establish and maintain the

extra connections needed in the pool if reauthentication isn’t used. Remember

that establishing a connection can take from 7 to 10 network round trips, and

pooled connections use memory and licenses on the server.

ptg

Configuring Connection Pooling with Reauthentication in a JDBC Environment

As we stated in “Connection Pool Model for JDBC,” page 223, the way you con-

figure the maximum and minimum number of connections in a connection

pool, and the initial size of a connection pool is different when you are using

reauthentication. Here’s how.

Using Reauthentication with Connection Pooling 235

Example A: JDBC Connection Pool Without Reauthentication

This example shows a connection pool that is configured to work with-

out reauthentication. As you can see in Figure 8-5, two users share con-

nections from the connection pool, but the connections are functionally

separated into one group of connections for User A and another group

of connections for User B. When User A requests a connection, the

Connection Pool Manager assigns an available connection associated

with User A. Similarly, if User B requests a connection, the Connection

Pool Manager assigns an available connection associated with User B. If

a connection is unavailable for a particular user, the Connection Pool

Manager creates a new connection for that user, up to a maximum of 10

connections for each user. In this case, the maximum number of con-

nections in the pool is 20 (10 connections for each user).

The Connection Pool Manager implements the minimum pool size and

initial pool size in a similar way. It initially populates five connections

for User A and five connections for User B and ensures that, at a mini-

mum, five connections are maintained in the pool for each user.

Figure 8-5 Configuring a JDBC connection pool without
reauthentication

User A

User B

Connection Pool

Connections
for User A
and User B

Maximum
Pool Size = 10

Minimum
Pool Size = 5

Initial
Pool Size = 5

ptg

Using Statement Pooling

A statement pool is a group of prepared statements that an application can

reuse. Statement pooling is not a feature of database systems; it is a feature of

database drivers and application servers. A prepared statement is a SQL state-

ment that has been compiled; the SQL processor parses and analyzes the state-

ment and creates an execution plan for it. In a .NET environment, you may see

this functionality referred to as statement caching.

If you have an application that repeatedly executes the same SQL statements,

statement pooling can improve performance because it prevents the overhead of

236 Connection Pooling and Statement Pooling

Example B: JDBC Connection Pool with Reauthentication

In contrast, this example shows a connection pool that is configured to

work with reauthentication. As shown in Figure 8-6, the Connection Pool

Manager treats all connections as one group of connections. When User

A requests a connection, the pool manager assigns an available connec-

tion associated with User A. Similarly, when User B requests a connec-

tion, the Connection Pool Manager assigns an available connection

associated with User B. If a connection is unavailable for a particular

user, it assigns any available connection to that user, switching the user

associated with the connection to the new user. In this case, the maxi-

mum number of connections in the pool is 10, regardless of how many

users are using the connection pool.

The Connection Pool Manager initially populates the pool with five con-

nections and ensures that, at a minimum, five connections are main-

tained in the pool for all users.

Figure 8-6 Configuring a JDBC connection pool with reauthentication

User A

User B

Connection Pool

Connections
for User A
and User B

Maximum
Pool Size = 10

Minimum
Pool Size = 5

Initial
Pool Size = 5

ptg

repeatedly parsing and creating cursors (server-side resource to manage the SQL

request) for the same statement, along with the associated network round trips.

A statement pool is owned by a physical connection, and prepared state-

ments are placed in the pool after their initial execution. Statements remain in

the pool until the physical connection is closed or the maximum size is reached.

Statement pooling typically doesn’t affect application code. If you use pre-

pared statements and turn on statement pooling, when the prepared statement is

closed, it is placed in the statement pool for reuse instead of actually being closed.

All implementations of statement pooling that we have seen have at least one

attribute you can configure: maximum pool size, which defines the maximum

number of prepared statements that can be associated with a connection. We

provide guidelines for setting this attribute later in this section.

Some implementations of statement pooling have additional features that

allow you to do the following:

• Import statements into a pool to preload the pool, which means the startup

time for the statement pool is paid when the application or application

server is started, not when the application is running.

• Clear the pool. This feature is mainly used for maintenance purposes. For

example, if a change is made to an index on the database server and this

index is part of an execution plan for a pooled statement, the statement will

fail upon execution. In this case, you need a way to clear the pool so that a

new execution plan can be created for the statement.

Using Statement Pooling 237

Note

JDBC 4.0 provides a more granular level of statement pooling by allow-

ing applications to hint to the pool manager about whether or not a pre-

pared statement should be pooled.

Performance Tip

Use parameters in your SQL statements to take full advantage of state-

ment pooling. The parsed information from statements using parameters

can be reused even if the parameter values change in subsequent execu-

tions. In contrast, if you use literals and the literal values change, the

application cannot reuse the parsed information.

ptg

Using Statement Pooling with Connection Pooling

Statement pooling is often used with connection pooling. In fact, some imple-

mentations of statement pooling require that you also use connection pooling.

Using statement pooling with connection pooling might consume more memory

on the database server than you realize. Let’s look at why.

All connections in a connection pool are maintained in the database’s mem-

ory. If you implement statement pooling with connection pooling, each pooled

connection has its own statement pool associated with it. On the database client,

client resources that correlate to each pooled statement are stored in memory. On

the database server, each pooled connection has a statement associated with it

that’s also maintained in memory. For example, if you have 5 pooled connections

and 20 prepared statements, each statement pool associated with a connection

may have all 20 prepared statements in it, which means that a total of 100 pre-

pared statements could be maintained in the database’s memory. All these con-

nections and statements stay in memory even if no active users are on the system.

Here is how this can happen.

The application connects, prepares statement1, closes statement1, and

closes the connection. Then the application repeats this operation.

The first time the operation is executed, the application user receives con-

nection1 and at that time statement1 (S1) is associated with connection1, as

shown in Figure 8-7.

238 Connection Pooling and Statement Pooling

Connection Pool

connection1

S1

connection2 connection3

Figure 8-7 Part 1: Pooled statements associated with connections in the
connection pool

The next time the operation is executed, connection1 is not available. The

application user receives connection3, and statement1 (S1) is associated with

connection3, as shown in Figure 8-8.

ptg

Figure 8-8 Part 2: Pooled statements associated with connections in the
connection pool

Statement1 (S1) is now in two statement pools: the statement pool associ-

ated with connection1, and the one associated with connection3.

Even though the statements are the same, a statement cannot be shared

across connections. Throughout the lifetime of the connection pool, each pre-

pared statement may be associated with each pooled connection. This can equate

to memory issues on the database server.

Guidelines

Here are some general guidelines for using statement pooling:

• Because all prepared statements go into the pool, do not use statement pool-

ing unless at least 90% of your statements are executed multiple times.

Using Statement Pooling 239

Connection Pool

connection1

S1

connection2 connection3

S1

Note

JDBC 4.0 provides a more granular level of statement pooling by allow-

ing applications to hint to the pool manager about whether or not a pre-

pared statement should be pooled.

• Most database servers impose a limit on the number of statements that can

be active on a connection. Therefore, do not configure the maximum num-

ber of statements for a statement pool to be greater than the server’s maxi-

mum limit. For example, if the maximum number of active statements per

connection for the database server is 100, configure the maximum number

ptg

of statements for a pool to be 100 or fewer. In this example, when statement

101 is executed, the database server will generate an error.

• Configure the maximum number of statements for a statement pool to be

equal to or greater than the number of different SQL statements in your

application. For example, suppose the maximum number of statements for

the pool is 50 and the number of static SQL statements in your application is

55. When the application executes statement 51, the statement pool must

close an existing pooled statement to add statement 51 because the pool can-

not exceed 50 statements. In this scenario, the pool manager may have to

switch statements in and out of the pool. This isn’t an efficient way to config-

ure statement pooling because the overhead of closing and opening state-

ments causes unnecessary network round trips.

240 Connection Pooling and Statement Pooling

Note

Not all drivers/providers on the market support statement pooling. To

use this feature, make sure you deploy a driver/provider with your data-

base application that does.

Summary: The Big Picture

We discussed the performance benefits of connection pooling and statement

pooling, and we talked about how multiple applications can use the same con-

nection pool. As we previously explained, all connections in a connection pool

are maintained in the database’s memory. If you implement statement pooling

with connection pooling, each pooled connection has its own statement pool

associated with it. Each of these statement pools may contain the prepared state-

ments that the application uses. All these pooled prepared statements are also

maintained in the database’s memory.

That isn’t the whole picture. A typical application server environment has

numerous connection pools and statement pools that use memory on the data-

base server. Also, other application servers will likely be accessing that same data-

base server, as shown in Figure 8-9. What this means is that your database server

can potentially be a big bottleneck. You need to think about the big picture when

you design your applications to use connection pooling and statement pooling.

ptg
Figure 8-9 Connection pools and statement pools: the big picture

Summary: The Big Picture 241

Application Server 1

Application Server 2

Application Server 3

= Connection Pool

= Connection Pool with Statement Pool

ptg

This page intentionally left blank

ptg

Developing Good
Benchmarks

243

Benchmarks measure the performance of an applica-

tion or system on a well-defined task or set of tasks

and are often designed to accomplish one or more of the

following goals:

• Predict the performance of a new application or system

component

• Diagnose and pinpoint performance bottlenecks

• Plan for a system’s future capacity

• Determine the impact of a change to an application,

such as a change to application code or a change in a

hardware or software component

• Ensure a minimum level of performance

• Compare components, such as different database drivers

Performance is typically measured by throughput, scala-

bility, response time, or a combination.

In our line of work, we see a significant number of

benchmarks. Because most of those we encounter don’t do

what they were intended to do, we felt compelled to include a

chapter about developing good benchmarks.

C H A P T E R N I N E

ptg

Benchmarks can be a powerful tool to measure and predict performance, but

there are some basic guidelines for writing benchmarks that many developers

don’t follow. As stated previously in this book, some factors that affect perfor-

mance may be outside your realm of control to change. Therefore, we’ll focus on

those factors that typically are within your control, such as how efficiently your

application is coded to access data and how efficiently your database middleware

operates.

Developing the Benchmark

Standardized benchmarks are available for measuring the performance of data-

bases (TPC, for example) and application servers (SPECjAppServer, for exam-

ple), but standard industry benchmarks for measuring data access code and

database middleware don’t exist. To help you develop benchmarks that measure

these important factors, follow these guidelines:

• Define benchmark goals.

• Reproduce the production environment.

• Isolate the test environment.

• Reproduce the workload.

• Measure the right tasks.

• Measure over a sufficient duration.

• Prepare the database.

• Make changes one at a time.

• Assess other factors.

Define Benchmark Goals

Before you design your benchmark, put some thought into defining what it is

that you want the benchmark to measure and define what you consider good

performance. Benchmark goals typically are driven by business needs. For exam-

ple, here are some typical benchmark goals:

• The application must complete at least 10 transactions per second.

• The application must have a response time of no longer than 500ms when

not executing transactions.

244 Developing Good Benchmarks

ptg

• The application must retrieve at least 100,000 rows in less than 10 seconds.

• The application must insert at least a million rows in less than 2 hours.

In addition to measuring throughput, such as how many rows are retrieved,

updated, or inserted over a period of time, measuring CPU and memory use on

the machine running your application can provide information about the scala-

bility of that application or system. However, be careful to measure CPU and

memory use in a way that provides useful results.

For example, suppose your benchmark executes the same set of SQL state-

ments in a loop over a period of 100 seconds. Let’s take a look at two different

high-level approaches to measuring CPU use. We arrive at the total CPU time

used by taking snapshots of the CPU time using standard operating system calls.

The difference between those snapshots allows us to calculate the total time spent

by process on the CPU.

Developing the Benchmark 245

Example A: Measuring Individual Operations

In this example, we take a CPU time snapshot within the loop, essen-

tially measuring the elapsed CPU for each operation. To get the total

CPU time, add each CPU time measurement. The problem with this

approach is that the duration of the time that is measured for each oper-

ation is short. Benchmarks run over short durations provide results that

often do not scale to real-world performance or results that may be

inaccurate. See “Measure over a Sufficient Duration of Time,” page 254,

for an explanation.

1. Start the loop.

2. Save the CPU time.

3. Execute the SQL statements.

4. Save the CPU time.

5. End the loop.

6. Determine the difference between each CPU time snapshot, and

add those times to arrive at the sum of CPU time.

ptg

Reproduce the Production Environment

It can be difficult and costly to reproduce your production environment, but to

provide useful and reliable benchmark results, your test environment should

resemble your production environment as closely as possible.

Design Your Test Environment

Before you design your test environment, you need to gather information about

the essential characteristics of your production environment so that you can

duplicate them in your test environment. See Table 9-1 for a list of important

questions you should ask before defining your test environment.

Table 9-1 Questions to Ask Before Defining Your Test Environment
Question Explanation

What is the version of your Database vendors can make changes between
database? releases of database versions that cause SQL state-

ments to be evaluated differently. Similarly, data-
base drivers may act differently when accessing
different database versions.

246 Developing Good Benchmarks

Example B: Measuring the Overall Operation

In contrast, this example takes a better approach because it samples the

CPU time at the start and end of the loop so the duration of the bench-

mark is measured over an entire period of 100 seconds—a sufficient

duration.

1. Save the CPU time.

2. Start the loop.

3. Execute the SQL statements.

4. End the loop.

5. Save the CPU time.

6. Determine the difference between the CPU time snapshots to arrive

at the CPU time.

ptg

Table 9-1 Continued
Question Explanation

Is the database installed on the When an application runs on the same machine
same machine running the as the database, the database driver uses the
application, or is it installed on network in a loop-back mode, or it doesn’t use
a different machine? the network at all and communicates directly with

the database using shared memory. If your applica-
tion makes data requests over the network in your
production environment, you need to gauge what
effect the network will have on performance in
your test environment. See “Network,” page 86, for
more information.

What are the model, speed, cache, The processing speed and capacity of the CPU
and number of CPUs and cores on the database server or application server
of the processor hardware on your affect performance. See “CPU (Processor),” page
database server and application 112, for more information.
server?

How much physical memory The memory on your client, application server,
(RAM) is available on your and database server affects performance. For
database server and clients? example, large result sets can cause paging to disk if

memory is insufficient, dramatically slowing per-
formance. See “Memory,” page 107, for more infor-
mation.

What is the size and bus interface The capacity and bus interface type of the hard
type of the hard disk on your disk on your database server and application
database server and application server affect performance. For example, SCSI is
server? generally faster than Serial ATA (SATA). See “Disk,”

page 110, for more information.

What is the speed of the network The speed of the network adapter controls the
adapter on your database server amount of bandwidth a network link provides,
and clients? which in turn affects performance. If the band-

width constraints of the network in your test envi-
ronment are significantly different from those of
your production environment, your benchmark
results may not be a reliable predictor of perfor-
mance. See “Network Adapter,” page 116, for more
information.

Developing the Benchmark 247

ptg

Table 9-1 Continued
Question Explanation

What is the version of the Seemingly minor operating system changes can
operating system on both the affect performance. See “Operating System,”
client and database server? page 83, for more information.

If your application uses a JVM, Your JVM choice and how the JVM is configured
which JVM is it, and how is that affect performance. See “JVM,” page 77, for
JVM configured? more information.

What compiler/loader options Some compiler options for creating application
were used to build your executables affect performance. Use the same
application executable? options in your test environment that you use in

your production environment.

Does your application run on an All application servers are not the same. For
application server? example, if you run your benchmark against a

JBoss application server and deploy your applica-
tion on a WebSphere application server, the perfor-
mance may vary.

At peak times, how many users Performance can vary dramatically with 100
run your application? users versus 10 users. If your application accom-

modates multiple users, duplicate the same work-
load in your test environment. See “Reproduce the
Workload,” page 252, for more information.

Do network requests travel over Because communication across a WAN typically
a LAN or a WAN? Do network requires more network hops than communi-
requests travel over a VPN? cation across a LAN, your application is more likely

to encounter varying MTU sizes, resulting in
packet fragmentation. If the network characteris-
tics in your test environment are significantly dif-
ferent from those used in your production
environment, your benchmark results may not be a
reliable predictor of performance. See “LAN versus
WAN,” page 103, and “VPNs Magnify Packet
Fragmentation,” page 102, for more information.

248 Developing Good Benchmarks

ptg

Table 9-1 Continued
Question Explanation

What tuning options are set for Many database drivers allow you to tune certain
your database driver? options that affect performance. Just as you tune

your database for the best performance, you should
tune your database driver. If your production envi-
ronment is tuned for performance and your test
environment is not, your benchmark results may
not be a reliable predictor of performance.

Make Your Test Data Realistic

Using a copy of your production data is a good idea, but that may not be possible

in all cases. At a minimum, model your test data after real data, as shown in the

following examples.

Developing the Benchmark 249

Example A: Design Test Data to Match Production Data

If your application retrieves data from a database table with 40

columns and 1,000 rows, design the test database table to have 40

columns with 1,000 rows.

Example B: Retrieve the Same Type of Data That Your
Application Retrieves in Production—Long Data

If your application retrieves long data, such as Blobs and Clobs, in addi-

tion to numeric and character data, make sure your benchmark

retrieves long data. Many database drivers emulate retrieving LOBs. You

need to gauge how efficient the database driver is at retrieving long

data.

ptg

250 Developing Good Benchmarks

Example C: Retrieve the Same Type of Data That Your
Application Retrieves in Production—Unicode

If your application retrieves Unicode data, make sure that your bench-

mark retrieves Unicode data. Unicode is a standard encoding that is

used to support multilingual character sets. If your application, database

driver, and database do not fully support Unicode, more data conver-

sion is required, which affects performance. You need to gauge how effi-

ciently Unicode data can be retrieved.

Example D: Avoid Using Duplicate Values in Your Test Data

As a shortcut to creating test data, some benchmark developers popu-

late test tables with duplicate values. For example, the following table

contains a high percentage of duplicate values.

first_name last_name SSN

Grover Cleveland 246-82-9856

Grover Cleveland 246-82-9856

Abraham Lincoln 684-12-0325

Grover Cleveland 246-82-9856

Grover Cleveland 246-82-9856

Grover Cleveland 246-82-9856

Grover Cleveland 246-82-9856

Abraham Lincoln 684-12-0325

Abraham Lincoln 684-12-0325

Ulysses Grant 772-13-1127

...

Some database vendors have figured out that benchmark developers

often take the easy way out. As a way to gain an advantage over other

databases and database drivers in benchmark tests, they intentionally

design their database clients and databases to perform an optimization

when duplicate values in rows are encountered. Instead of returning

all values in each row, the database only returns values that aren’t

ptg

Developing the Benchmark 251

duplicates of the values in the previous row. Each value that’s deemed a

duplicate returns a several-byte marker to represent that value in the

row instead of the actual values.

For example, if we query the preceding table and request all rows in the

table, the result set would look something like this. (The @ symbol rep-

resents a 4-byte marker.)

first_name last_name SSN

Grover Cleveland 246-82-9856

@ @ @

@ @ @

Abraham Lincoln 684-12-0325

Grover Cleveland 246-82-9856

@ @ @

@ @ @

@ @ @

Abraham Lincoln 684-12-0325

@ @ @

Ulysses Grant 772-13-1127

...

This type of optimization results in better performance because there

are fewer bytes of data to transmit. However, real-world data is seldom

as uniform as the examples shown here, and the benchmark results in

this case can’t be trusted to predict performance.

Isolate the Test Environment

Because you must be able to reproduce consistent results to know whether

changes have a positive or negative effect, it’s important to isolate the test envi-

ronment from influences that can skew benchmarking results. For example, if

your benchmark is influenced by the ebb and flow of corporate network traffic,

how can you trust the benchmark results? Isolate the network traffic generated

by your benchmark runs from corporate network traffic by connecting your test

machines through a single router, which can then connect to the corporate net-

work. In this way, all the network traffic of your test environment goes through

the router and is not influenced by the rest of the corporate network.

ptg

For the same reason, make sure that your test machines are “clean.” Only run

software that your application requires. Other applications running at the same

time or in the background can profoundly influence test results. For example, if a

virus-checking routine kicks off during a benchmarking run, it can slow perfor-

mance significantly.

Reproduce the Workload

To design a good benchmark, you must have a solid understanding of the work-

load your application will deal with in the production environment. Ask yourself

the following questions:

• What tasks does my application commonly perform? Which tasks are signif-

icant enough to measure?

• How many users does my application accommodate during peak traffic

times?

Duplicating your real-world workload to an exact degree can be impractical

or impossible, but it’s important to emulate the essential characteristics of your

workload and represent them accurately. For example, if you have a customer

service application that typically performs the following actions, your test appli-

cation should perform the same type of actions using the same data characteris-

tics:

• Retrieves the customer record (one large row) from a table

• Retrieves invoices (multiple small rows) from another table

• Updates an invoice (one small row) as part of a transaction

Emulate the peak traffic that your application encounters in the production

environment. For example, suppose that you have an intranet application that

has 500 users, many working in an office on the West Coast of the United States.

At 8:00 a.m. PST on a typical workday, as few as 20 users are active, whereas at

3:00 p.m. PST, approximately 400 users are active. In this case, design the

benchmark to emulate 400 (or more) users. Commercial load test tools such as

HP’s LoadRunner allow you to easily emulate many concurrent users.

Measure the Right Tasks

Not all tasks that a database application performs are equally important. For

example, a mail-order company that accepts orders over the phone may require a

quick response time when referencing inventory availability to minimize the wait

for the customer on the phone. That same company may not care as much about

252 Developing Good Benchmarks

ptg

the response time required for the actual order to be processed. Ask your user

liaisons what tasks are most important to them, and make testing of those tasks a

priority.

Make sure the benchmark application makes the same API calls your data-

base application makes. For example, we often see benchmarks that execute a

query and retrieve a result set but do nothing with the data. Of course, this would

never happen in a real-world application. For example, suppose you are tasked to

design a benchmark that measures the time it takes for a JDBC application to

process 50,000 rows. Let’s take a look at the following simple benchmark:

Statement stmt = con.createStatement();

\\ Get start time

resultSet = stmt.executeQuery(

"SELECT acct.bal FROM table");

while (resultSet.next())

{}

\\ Get finish time

Notice that the statement is opened and executed but is never closed, so

resources are not released. Also, notice that the application positions a cursor on

a row in the result set, but it subsequently ignores the data in that row. Different

database drivers optimize retrieving data from network buffers and convert data

at different times. For example, some drivers retrieve all requested data when a

query is executed; others don’t. Other drivers leave some data in the network

buffer on the database server until the application actually requests that data. If

you don’t realize that this type of optimization occurs, you wouldn’t know that

results generated by the previous benchmark code would be greatly influenced by

which driver you use.

Although these lapses in real-world modeling may not seem like a big deal,

they can add up to make a big difference in performance. For most applications,

75% to 95% of the time it takes to process data is spent in the database driver and

on the network. The difference between 75% and 95% can represent a big dispar-

ity in your application’s performance.

So, let’s rewrite the benchmark to reflect how the application would work in

the real world:

Statement stmt = con.createStatement();

\\ Get start time

resultSet = stmt.executeQuery(

"SELECT acct.bal FROM table");

while (resultSet.next()) {

Developing the Benchmark 253

ptg

int id = resultSet.getInt(1);

}

resultSet.close();

\\Get finish time

Also, exclude writing output from your benchmark timings. For example,

suppose that your benchmark writes data to a console so that you can verify the

results of each Select statement. For example, what if your benchmark includes

the following line of code:

System.Console.WriteLine("Value of Column 2: " +

dataReader.GetInt32(2));

If done once, it may add only a second or two to your benchmark results, but

if done repeatedly, that time can add up, skewing your true results. Make sure

that the console output occurs outside your timing loop.

Measure over a Sufficient Duration of Time

Design benchmarks so that they measure tasks over a sufficient duration.

Benchmarks that are run over short durations make it difficult to reproduce

meaningful and reliable results for the following reasons:

• They produce results that often do not scale. In most cases, you cannot

extrapolate the results from a short duration and apply them to the larger

context of your application.

• Computer system clocks, used to time benchmark runs, are notoriously

imprecise because of design limitations, temperature changes, and dimin-

ished battery voltage over time. In fact, time kept by computer system clocks

can fluctuate from the real time as much as several minutes a day. If a bench-

mark is run over a short duration, perhaps 10 seconds or less, the drift

caused by a system clock can produce inconsistent results.

• Factors such as Java class loaders and the .NET Just-in-Time (JIT) compiler

cause application start-up performance costs that skew performance results

over short durations.

For example, suppose you want to measure the throughput of an application

that retrieves 1,000-byte rows from a database table containing a million rows.

First, the benchmark is run over 5 seconds, resulting in a throughput of 5 rows

per second. What if another short-term process running in the background

caused a “blip” in the system during that 5 seconds? You could run the same

benchmark a second time for 5 seconds, and the outcome may result in a com-

pletely different metric—for example, 10 rows per second, which is a huge vari-

ance on this scale.

254 Developing Good Benchmarks

ptg

However, if you run the same benchmark again for 100 seconds, the

throughput result is a more useful and reliable metric—for example, 30,000 rows

per second—because any blips caused by another service running are averaged

over a longer period.

Similarly, a system clock used to measure a benchmark can experience blips

in its timekeeping that cause the clock to drift suddenly. For example, suppose

that you run a benchmark over 5 seconds and a blip occurs causing the system

clock to drift by 500ms. That’s a significant difference that you may not even real-

ize occurred. Running the benchmark for a sufficient duration—100 seconds, for

example—ensures that any system clock blips are averaged over a longer period.

Other factors, such as Java class loaders and the .NET Just-in-Time (JIT)

compiler, can skew results on short-running benchmarks. In Java, classes are

loaded into the Java environment by class loaders when they are referenced by

name, often at the start of an application. Similarly, in ADO.NET environments,

the JIT compiler is invoked when a method is called the first time during an appli-

cation’s execution. These factors front-load some performance costs. For example,

suppose we run a benchmark for only 10 seconds, as shown in Figure 9-1.

Developing the Benchmark 255

Seconds

R
ow

s/
S

ec
on

d

0

20000

60000

70000

10000

30000

40000

50000

1 2 3 4 5 6 7 8 9 10

Figure 9-1 Benchmark run for 10 seconds

Now, let’s look at different results of the same benchmark that is run over a

longer duration—100 seconds—as shown in Figure 9-2. Notice how the perfor-

mance impact is not as significant over time.

ptg

256 Developing Good Benchmarks

Seconds

R
ow

s/
S

ec
on

d

0

20000

60000

70000

10000

30000

40000

50000

10 20 30 40 50 60 70 80 90 100

Figure 9-2 Benchmark run for 100 seconds

We can even take this improvement one step further, as shown in Figure 9-3,

and run the benchmark twice without unloading the application, discarding the

first run’s results and the startup performance impact results.

Seconds

R
ow

s/
S

ec
on

d

0

20000

60000

70000

10000

30000

40000

50000

10 20 30 40 50 60 70 80 90 100

Figure 9-3 Benchmark run twice without unloading the application

ptg

Prepare the Database

Because disk I/O is much slower than memory I/O, any time the database

retrieves data from or stores data to the disk on the database server, performance

degrades significantly. The first time the application accesses a table row in a

database, the database places a copy of the row on disk into a fixed-length block

of memory known as a page. If the database can find the requested data on a

page in memory when subsequent data requests are processed, the database opti-

mizes its operation by avoiding disk I/O.

When the database fills up a page with data, it creates a new page. The pages

in memory are ordered from MRU (Most Recently Used) to LRU (Least Recently

Used). If the allocated memory buffer becomes full, the database makes room for

a new page by discarding the LRU page. This method of memory management

counts on the fact that the LRU page will probably not be needed any time soon.

When your application retrieves, inserts, or updates data in the real world,

typically, the database has been running for some time, allowing your application

to access data in memory. Running the benchmark at least once without timing it

allows the database to place some, or possibly all, the data you will be working

with in memory where it can be accessed on subsequent runs of the benchmark.

This also helps model how your application will run in your production environ-

ment because applications typically access the same tables over and over.

Make Changes One at a Time

The most important guideline to remember when running a benchmark is that a

seemingly insignificant change can have a dramatic effect on performance. It’s

crucial that you can demonstrate whether any change has a positive or negative

impact; otherwise, your benchmark efforts are useless. With this in mind, make

sure that you only change one variable at a time when you run the benchmark.

For example, suppose you want to explore the effect of setting two different

connection options in your database driver. Instead of making both changes at

once, make the changes one at a time and rerun the benchmark after each

change. If you make both changes at once, how do you know if either change

made a difference? Suppose one change has a positive effect on performance and

a second change has a negative effect, cancelling any performance gain caused by

the first change. How would you know if either change was good or bad?

Developing the Benchmark 257

ptg

Assess Other Factors

If your application does not perform in the real world as your benchmark pre-

dicted, what then? Look at external influences such as corporate traffic slowing

down the network or excessive CPU and memory use on the client or database

server.

In addition, be aware that some tasks such as stored procedures or application-

side caching of a large amount of data can mask the performance of the network,

database middleware, or application code. For example, if the execution of a stored

procedure takes 50 times longer than retrieving the data, changing the application

code or database driver so that it’s 100% faster at data retrieval would not show a

noticeable difference in the benchmark results because most of the time processing

the data requests is spent on the database server. Using tools such as code profilers

and network sniffers to create a log that times each operation can tell you where

processing time is being spent and help you make educated guesses about where

your efforts can improve performance.

Benchmark Example

The following example shows a benchmark that measures the response time of a

typical reporting application to retrieve data. Although we don’t show all the

code involved, such as connecting to the database, we show the core parts of the

benchmark that incorporate many of the principles discussed in this chapter,

including these.

• Your test environment should resemble your production environment as

closely as possible. Your test data should be realistic, and your benchmark

should perform the types of tasks it will perform in the real world. Notice

that the following benchmark retrieves different types of data, including

long data.

• Your benchmark should measure the right tasks. Notice that the following

benchmark records the CPU time at the start and end of a timing loop. In

addition, it retrieves data from the result set, and it closes statements after

they are executed to release resources.

• Your benchmark should measure over a sufficient duration. Notice that the

following benchmark measures over a period of 100 seconds.

258 Developing Good Benchmarks

ptg

Creating the Test Data

First, let’s create the test data. Notice the variety of data types, including BLOB

and CLOB data types.

CREATE TABLE RetailTable (

Name VARCHAR(128) Not null,

ProductCategory VARCHAR(128) Not null,

Manufacturer VARCHAR(64) Not null,

MSRP Decimal(10,2) Not null,

OurPrice Decimal(10,2) Not null,

SalePrice Decimal(10,2),

SaleStart Timestamp,

SaleEnd Timestamp,

SKU BigInt Not null,

UPC Decimal(12) Not null,

Quantity Integer Not null,

Description VARCHAR(512) Not null,

LongDescription Clob,

ThumbnailPicture Blob Not null,

Picture Blob,

OtherOffers VARCHAR(4000),

RebateInfo VARCHAR(1024),

UserRating Decimal(4,1) Not null

)

CREATE INDEX Retail_Idx ON RetailTable (SKU)

Benchmark

Now let’s create the benchmark. After initializing all the variables and the SQL

we’ll be using, we start the timer thread and sample the start time and the current

CPU time. Next, we execute the query repeatedly until the specified time has

elapsed. We stop the timer and again sample the elapsed time and the current

CPU time. Finally, we close all open resources and report the benchmark’s find-

ings.

Benchmark Example 259

ptg

public void run () {

// Initialize variables

ThreadInfo.numExecutes = 0;

ThreadInfo.numRows = 0;

ThreadInfo.actualTime = 0.;

Connection conn = ThreadInfo.conn;

int threadNumber = ThreadInfo.threadNumber;

int totalExecutes = 0;

int totalRows = 0;

long start=0;

long end=0;

long cpuStart=0;

long cpuEnd=0;

PreparedStatement stmt = null;

ResultSet rs = null;

// Initialize fetch string

String sqlStr = "SELECT Name, ProductCategory, " +

"Manufacturer, MSRP, OurPrice, " +

"SalePrice, SaleStart, SaleEnd, " +

"SKU, UPC, Quantity, Description, " +

"LongDescription, ThumbnailPicture, " +

"Picture, OtherOffers, RebateInfo, " +

"UserRating FROM RetailTable";

// Start the timer

start = System.currentTimeMillis();

ThreadInfo.ready = true;

while (Wait) {

// Make an OS call.

// This is to avoid a "tight" loop that may prevent

// the timer thread from running.

try {

Thread.sleep(100);

}

catch (InterruptedException e) {

260 Developing Good Benchmarks

ptg

System.out.println (e);

}

// Record the start time

start = System.currentTimeMillis ();

}

// Record the current CPU time

ThreadMXBean tb = ManagementFactory.getThreadMXBean();

cpuStart = tb.getCurrentThreadCpuTime();

// All work below is timed:

// 1. Prepare the statement

// 2. Execute the query

// 3. Fetch data from all rows

// 4. Repeat until time is up

try {

stmt = conn.prepareStatement (sqlStr);

while (! Stop)

{

rs = stmt.executeQuery();

totalExecutes++;

while ((! Stop) && rs.next ())

{

totalRows++;

String name = rs.getString(1);

String productCategory = rs.getString(2);

String manufacturer = rs.getString(3);

BigDecimal msrp = rs.getBigDecimal(4);

BigDecimal ourPrice = rs.getBigDecimal(5);

BigDecimal salePrice = rs.getBigDecimal(6);

Timestamp saleStart = rs.getTimestamp(7);

Timestamp saleEnd = rs.getTimestamp(8);

Long sku = rs.getLong(9);

Benchmark Example 261

ptg

BigDecimal upc = rs.getBigDecimal(10);

int quantity = rs.getInt(11);

String description = rs.getString(12);

Clob longDescription = rs.getClob(13);

Blob thumbnailPicture = rs.getBlob(14);

Blob picture = rs.getBlob(15);

String otherOffers = rs.getString(16);

String rebateInfo = rs.getString(17);

BigDecimal userRating = rs.getBigDecimal(18);

}

rs.close ();

rs = null;

}

try

{

stmt.close ();

}

finally

{

stmt = null;

}

// Stop the timer and calculate/record the

// actual time elapsed and current CPU time

end = System.currentTimeMillis();

cpuEnd = tb.getCurrentThreadCpuTime();

ThreadInfo.actualTime = (end - start) / 1000.;

}

catch (SQLException e)

{

e.printStackTrace();

System.out.println ("Thread " + threadNumber +

" failed with " + e);

}

262 Developing Good Benchmarks

ptg

finally

{

// Clean everything up

if (rs != null) {

try

{

rs.close ();

}

catch (SQLException e)

{

System.out.println (e);

}

}

if (stmt != null) {

try

{

stmt.close ();

}

catch (SQLException e)

{

System.out.println (e);

}

}

}

// Finish calculating and storing values for this thread

ThreadInfo.cpuTime = (cpuEnd - cpuStart);

ThreadInfo.numExecutes = totalExecutes;

ThreadInfo.numRows = totalRows;

ThreadInfo.done = true;

}

Benchmark Example 263

ptg

Summary

Benchmarks are an essential tool to measure and predict performance. Some fac-

tors that affect performance are outside of your control. In this chapter, we

focused on factors that you can influence, such as how efficiently your applica-

tion is coded to access data and how efficiently your database middleware oper-

ates. When developing any benchmark, consider the following guidelines:

• Define benchmark goals to align with your business needs.

• Measuring CPU and memory use can be a good predictor of scalability, but

make sure that you do it appropriately so your results are useful.

• Reproduce the essential characteristics of both your production environ-

ment and your production workload.

• Isolate your test environment from outside environmental influences.

• Measure the right tasks over a sufficient duration of time.

• Prepare your database before measuring by running the benchmark at least

once, and introduce only one change at a time into the benchmark.

264 Developing Good Benchmarks

ptg

Troubleshooting
Performance Issues

265

Perhaps you didn’t get the opportunity to design the

database applications that are in production; you

just get the “opportunity” to maintain them and make

sure that the performance is acceptable. And you just

found out that the performance is unacceptable.

Or perhaps you did design the application, but after

benchmarking it, you aren’t satisfied with the performance.

Whatever the scenario, this chapter walks you through how

to troubleshoot your performance issues and provides some

case studies that are similar to scenarios that we have

encountered in our years of helping people troubleshoot

their performance issues.

We recommend that you never deploy a critical applica-

tion without first running benchmarks to determine

whether performance is acceptable. Read Chapter 9,

“Developing Good Benchmarks.”

In this chapter, we assume that your database is not the

issue, that it is tuned properly.

C H A P T E R T E N

ptg

Where to Start

Before you begin troubleshooting, you must define the performance issue. Is the

issue related to unacceptable response time, throughput, scalability, or a combi-

nation?

After defining the issue, think about what can cause the performance effects

you are seeing. Table 10-1 lists some possible causes.

Table 10-1 Performance Issues and Possible Causes
Issues Possible Causes

Response time Database application causes:

• Nonoptimal coding techniques, such as unnecessary data retrieved
for the application

• Large result sets returned from a streaming protocol database

• Use of scrollable cursors

• Excessive data conversion

• Memory leak

Database driver causes:

• Poorly configured database driver

• Memory leak

Environment causes:

• Network packet fragmentation

• Excessive number of network hops

• Insufficient bandwidth

• Insufficient physical memory

• Insufficient CPU capacity

• Virtualization

• Poorly configured connection pools

• Poorly configured statement pools

Throughput Database application causes:

• Use of data encryption

• Too many active transactions

• Unnecessary data retrieved for the application

• Memory leak

266 Troubleshooting Performance Issues

ptg

Table 10-1 Continued

Issues Possible Causes

Throughput Database driver causes:
(continued) • Nonoptimal database driver architecture

• Memory leak

Environment causes:

• High packet overhead

• Runtime environment

• Insufficient bandwidth

• Insufficient physical memory

• Insufficient CPU capacity

• Virtualization

Scalability Database application causes:

• Use of data encryption

• Memory leak

Database driver causes:

• Nonoptimal database driver architecture

• Memory leak

Environment causes:

• Runtime environment

• Insufficient bandwidth

• Insufficient physical memory

• Insufficient CPU capacity

• Poorly configured connection pools

• Poorly configured statement pools

To narrow the possible causes, you might find it helpful to troubleshoot in

the following order:

1. Look at the complete picture and ask yourself the following important

question: Has anything changed in any of the components of the data-

base application deployment? If the answer is yes, start by looking

at what changed. See “Changes in Your Database Application Deploy-

ment,” page 268.

Where to Start 267

ptg

2. If nothing has changed, look at the database application. See “The

Database Application,” page 269.

3. If your database application does not seem to be the issue, look at your

database driver. Are the runtime performance tuning options config-

ured to match your application and environment? Is it time to bench-

mark another driver? See “The Database Driver,” page 270.

4. If you are not satisfied with the performance after looking at the appli-

cation and the database driver, look at the environment where your

application is deployed. See “The Environment,” page 272.

One important fact to note is that if the database server machine is resource

bound, no amount of tuning of your applications or the database middleware

results in acceptable performance.

Changes in Your Database Application Deployment

If you see a performance issue after something in the application or environment

has changed, start by looking at that change. Here are some examples of the types

of changes that could cause a performance issue:

• The database application has changed, for example, it now fetches more

columns in a result set.

• The network has been reconfigured so that more network hops separate the

client and database server.

• The client or database server has been moved to a different operating system.

• The number of users accessing the application has increased.

• Patches have been applied to one or more components in your environment,

such as the database system, application server, operating system, or data-

base driver.

• The database system has changed to a different version.

• New applications have been installed on the application server.

• Database tuning parameters have changed.

If an application’s environment must change, the best advice we can give is to

make sure that changes are made one at a time. That way, you can more easily

determine the change that made the difference in performance.

268 Troubleshooting Performance Issues

ptg

The Database Application

Earlier in this book, we presented good coding practices that improve database

application performance. Let’s recap some of the general guidelines for good

coding practices:

• Reduce network round trips, which increases response time—Coding

practices that reduce network round trips include using connection pools

and statements pools, avoiding auto-commit mode in favor of manual com-

mits, using local transactions instead of distributed transactions where

appropriate, and using batches or arrays of parameters for bulk inserts.

• Don’t keep more connections and prepared statements open than needed,
which increases response time and scalability—Make sure that your appli-

cation closes connections immediately after it’s finished with them. Make

sure that connection pools and statement pools are configured correctly.

• Don’t leave transactions active too long, which increases throughput—If

your application uses transactions that update large amounts of data with-

out committing modifications at regular intervals, a substantial amount of

memory can be consumed on the database server.

• Avoid using auto-commit mode for transactions, which increases
throughput—You can minimize disk I/O by using manual commits.

• Avoid returning large amounts of data from the database server, which
increases response time—Always write your SQL queries to return only the

data you need. If your application executes queries that return millions of

rows, memory can be used up quickly. Returning long data can also consume

a substantial amount of memory.

• Avoid using scrollable cursors unless the database fully supports them,
which increases response time—Large scrollable result sets can quickly

consume memory.

• Maximize query plan reuse, which increases response time—Each time the

database creates a new query plan, it uses CPU cycles. To maximize query

plan reuse, consider using statement pooling.

• Minimize data conversions, which increases response time—Choose data

types that process efficiently.

These coding practices can affect one or more of your hardware resources.

Table 10-2 lists good coding practices and the resources that they can impact. Not

following these coding practices can contribute to hardware bottlenecks.

The Database Application 269

ptg

Typically, you notice a negative impact in the scalability of your application when

a bottleneck is present. If only one or two users access an application, you may

not see a negative effect on throughput and response time.

Table 10-2 Good Coding Practices and the Hardware Resources
They Impact

Good Coding Practice Memory/Disk CPU Network Adapter

Reduce network round trips ✓ ✓ ✓

Don’t keep more connections and ✓

prepared statements open than needed

Don’t leave transactions active too long ✓

Avoid using auto-commit mode for
transactions ✓

Avoid returning large amounts of data ✓ ✓

from the database server

Avoid using scrollable cursors unless the ✓ ✓

database fully supports them

Maximize query plan reuse ✓

Minimize data conversions ✓

The Database Driver

Earlier in this book, we provided detailed information about database drivers

and how they can impact performance. To recap, a database driver can degrade

the performance of your database application for the following two reasons:

• The driver is not tunable. It does not have runtime performance tuning

options that allow you to configure the driver for optimal performance.

• The architecture of the driver is not optimal.

In general, even when two database drivers implement all the same function-

ality, their performance may be quite different when used with your database

applications. If you are experiencing less than optimal performance with the

database driver you are using, consider evaluating another database driver.

270 Troubleshooting Performance Issues

ptg

Runtime Performance Tuning Options

Make sure you have configured your driver to work optimally with your applica-

tion and environment. Here are some examples of runtime performance tuning

options that can help performance:

• If memory is a limiting factor on your database server, application server, or

client, use a database driver that allows you to choose how and where some

memory-intensive operations are performed. For example, if your client

excessively pages to disk because of a large result set, you may want to

decrease the size of the fetch buffer (the amount of memory used by the dri-

ver to store results returned from the database server). Decreasing the size of

the fetch buffer reduces memory consumption but results in more network

round trips. You need to be aware of the trade-off.

• If CPU is a limiting factor on your database server, application server, or

client, use a database driver that allows you to choose how and where some

CPU-intensive operations are performed. For example, Sybase creates stored

procedures for prepared statements (a CPU-intensive operation to create the

stored procedure, but not to execute it). Choosing a driver that allows you to

tune whether Sybase creates stored procedures for a prepared statement

could improve performance significantly by conserving CPU.

• To reduce network round trips, which increases response time, use a data-

base driver that allows you to change the size of database protocol packets.

Architecture

In general, make sure that the driver’s architecture meets the requirements of

your application. Here are some examples of good driver architecture:

• To minimize data conversions, use a database driver that converts data effi-

ciently. For example, some database drivers don’t support Unicode. If your

database driver doesn’t support Unicode, more data conversion is required

to work with Unicode data, resulting in higher CPU use.

• To decrease latency by eliminating the processing required in the client soft-

ware and from the extra network traffic caused by the client software, use a

database driver that is implemented with a database wire protocol architec-

ture.

The Database Driver 271

ptg

• To optimize network traffic by reducing network bandwidth requirements

from extra transmissions, use a database driver that is implemented with a

database wire protocol architecture. Database wire protocol drivers can opti-

mize network traffic by controlling interaction with TCP.

The Environment

We provided detailed information about the environment and how it can impact

performance earlier in this book. In this section, we recap some of the most com-

mon environmental causes of poor performance of your database application.

Chapter 4, “The Environment: Tuning for Performance,” provides more detail.

Table 10-3 lists some tools that can help you troubleshoot poor system per-

formance. Because these tools use system resources, you may want to use them

only when necessary to troubleshoot or measure system performance.

Table 10-3 Performance Tools
Operating System
and Category Tool Description

CPU and Memory Usage

All UNIX/Linux vmstat, time, ps Provides data about CPU and memory
AIX only topas and tprof utilization.

HP-UX only monitor and glance
Solaris only prstat

Windows Microsoft Provides data about CPU and memory
Performance utilization. PerfMon also has other
Monitor (PerfMon) counters you can set to monitor such func-

tionality as connection pooling.

Network Activity

UNIX/Linux/ netstat Handles TCP/IP traffic.
Windows

AIX only netpmon Reports low-level network statistics, includ-
ing TCP/IP and SNA statistics such as the
number of network packets or frames
received per second.

Using tools such as the ones listed in Table 10-3 can tell you where process-

ing time is being spent and help you make educated guesses about where your

efforts can improve performance.

272 Troubleshooting Performance Issues

ptg

Runtime Environment (Java and .NET)

Runtime environments can significantly impact the performance of your data-

base applications. For Java applications, the runtime environment is a Java

Virtual Machine (JVM). For ADO.NET applications, the runtime environment is

the .NET Common Language Runtime (CLR).

JVMs

For Java, you have JVM choices. IBM, Sun Microsystems, and BEA (Oracle)

develop JVMs. Differences exist in the way these JVMs are implemented, which

can affect performance. The configuration of your JVM can also affect perfor-

mance. See “Runtime Environment (Java and .NET),” page 77, for examples of

how JVMs affect performance.

If you are running a Java application and you have exhausted other options

for improving performance, consider benchmarking your application with a dif-

ferent JVM.

.NET CLR

Unlike JVMs, you do not have a choice when it comes to the vendor for the .NET

CLR. Microsoft is the sole vendor. For important tips when running an

ADO.NET application, see “Runtime Environment (Java and .NET),” page 77.

Operating System

If you are seeing a decrease in performance after changing either the client or

server to a different operating system, you may have to live with it. We are not

saying that one operating system is better than another; we are saying that you

need to be aware that any operating system change can increase or decrease per-

formance. See “Operating System,” page 83, for a discussion of why.

Network

We have said many times that database application performance improves when

communication between the database driver and the database is optimized. Here

are key techniques for ensuring the best performance over the network:

• Reducing network round trips, which increases response time

• Tuning the size of database protocol packets, which increases response time

and throughput

The Environment 273

ptg

• Reducing the number of network hops between network destinations, which

increases response time

• Avoiding network packet fragmentation, which increases response time

See “Network,” page 86, for detailed information about the network.

Here are some causes of and associated solutions for network bottlenecks.

• Insufficient bandwidth—Look at these possible solutions.

• Add more network adapters or upgrade your network adapter.

• Distribute client connections across multiple network adapters.

• Poorly optimized application code—Develop or tune your application to

reduce network round trips. See, “The Database Application,” page 269.

• Poorly configured database drivers—Understand the runtime perfor-

mance tuning options for the database driver you are using, and configure

the driver to use the appropriate options to optimize network traffic (to

reduce network round trips). See, “The Database Driver,” page 270.

To detect a network bottleneck, gather information about your system to

answer the following question:

• What is the rate at which network packets are sent and received using the
network adapter? Comparing this rate to the total bandwidth of your net-

work adapter can tell you if the network traffic load is too much for your

network adapter. To allow room for spikes in traffic, you should use no more

than 50% of capacity.

Hardware

Hardware constraints can cause poor performance. In this section, we discuss the

symptoms and causes of bottlenecks caused by memory, disk, CPU, and network

adapter.

Memory

The primary symptom of a memory bottleneck is a sustained, high rate of page

faults. A page fault occurs when an application requests a page but the system

can’t find the page at the requested location in RAM. For detailed information

about memory, see “Memory,” page 107.

274 Troubleshooting Performance Issues

ptg

Here are some causes of and associated solutions for memory bottlenecks:

• Memory leaks—Memory leaks are often created when applications use

resources and don’t release them when they are no longer required. Database

drivers have also been known to have memory leaks.

• Insufficient physical memory (RAM)—Install more RAM to your system.

• Poorly optimized application code—Develop or tune your application to

minimize memory use. See “The Database Application,” page 269.

• Poorly configured database drivers—Understand the runtime perfor-

mance tuning options for the database driver you are using and configure

the driver to use the appropriate options to minimize memory use. See “The

Database Driver,” page 270.

To detect a memory bottleneck, gather information about your system to answer

the following questions:

• How often are requested pages triggering a page fault? This information

gives you an idea of the number of total page faults, both soft and hard page

faults, that occur over a period.

• How many pages are retrieved from disk to satisfy page faults? Compare

this information to the preceding information to determine how many hard

page faults occur out of the total number of page faults.

• Does the memory use of any individual application or process climb
steadily and never level off? If so, that application or process is probably

leaking memory. In pooled environments, detecting memory leaks is more

difficult because pooled connections and prepared statements hold onto

memory and can make it appear as if your application is leaking memory

even when it isn’t. If you run into memory issues when using connection

pooling, try tuning the connection pool to reduce the number of connec-

tions in the pool. Similarly, try tuning the statement pool to reduce the num-

ber of prepared statements in the pool.

Disk

When an operation reads or writes to disk, performance suffers because disk

access is extremely slow. If you suspect that disk access occurs more often than it

should, first rule out a memory bottleneck. For detailed information about disk,

see “Disk,” page 110.

The Environment 275

ptg

Here are some causes of and associated solutions for disk bottlenecks:

• Stretching memory to its limit—When memory is low, paging to disk

occurs more frequently. Resolve the memory issue.

• Poorly optimized application code—Develop or tune your application to

avoid unnecessary disk reads or writes. See “The Database Application,”

page 269.

To detect a disk bottleneck, gather information about your system to answer

the following questions:

• Is excessive paging occurring? A memory bottleneck can resemble a disk

bottleneck, so it’s important to rule out a memory problem before you make

disk improvements. See “Memory,” page 107.

• How often is the disk busy? If your disk has a sustained rate of disk activity

of 85% or more for a sustained period and a persistent disk queue, you may

have a disk bottleneck.

CPU

The primary symptom of a CPU bottleneck is that the application is slow when

multiple users are using it. A CPU bottleneck negatively affects scalability. For

detailed information about CPU, see “CPU (Processor),” page 112.

Here are some causes of and associated solutions for CPU bottlenecks:

• Insufficient CPU capacity—Install additional processors or upgrade to a

more powerful processor.

• Poorly optimized application code—Develop or tune your application to

minimize CPU use. See “The Database Application,” page 269.

• Poorly configured database drivers—Understand the runtime perfor-

mance tuning options for the database driver you are using, and configure

the driver to use the appropriate options to minimize CPU use. See “The

Database Driver,” page 270.

To detect a CPU bottleneck, gather information about your system to answer

the following questions:

• How much time does the CPU spend executing work? If the processor is

busy 80% or higher for sustained periods, the CPU can be a source of trou-

ble. If you detect high CPU use, drill down to individual processes to deter-

276 Troubleshooting Performance Issues

ptg

mine if any one application is using more than its fair share of CPU cycles. If

so, look more closely at how that application is designed and coded, as

described in “The Database Application,” page 269.

• How many processes or threads are waiting to be serviced in the CPU’s
run queue? A single queue is used for CPU requests, even on computers with

multiple processors. If all processors are busy, threads must wait until CPU

cycles are free to perform work. Processes waiting in the queue for sustained

periods indicate a CPU bottleneck.

• What is the rate that the operating system switches processes or threads to
perform work for other waiting threads? A context switch is the process of

storing and restoring the state (context) of a CPU so that multiple processes

can share a single CPU resource. Every time the CPU stops running one

process and starts running another, a context switch occurs. For example, if

your application is waiting for a row lock to release so that it can update data,

the operating system may switch the context so that the CPU can perform

work on behalf of another application while your application is waiting for

the lock to release. Context switching requires significant processor time, so

excessive context switches and high CPU use tend to go hand in hand.

Network Adapter

Computers that are connected to a network have at least one network adapter

that is used to send and receive network packets across the network. See

“Network,” page 86, for more information.

Case Studies

This section provides several troubleshooting case studies to help you think

through some varied performance issues and how to resolve them. All the infor-

mation that you need to solve these issues has been presented in this book.

Case Study 1

The database application in this case study supports the FBI. The application is

GUI based and displays one record at a time. The application allows FBI agents

from around the country to retrieve information about at-large criminals by

state. Each record contains first name, last name, crimes, previous convictions,

last known address, and a photo of the person. Each query can return as many as

Case Studies 277

ptg

50,000 records. The JDBC application executes the SQL Select statement in the

following code:

PreparedStatement pstmt = con.prepareStatement(

"SELECT fname, lname, crimes, convictions, laddress, photo " +

"FROM FBI_most_wanted WHERE state=?");

pstmt.setString(1, "NC");

ResultSet rs = pstmt.executeQuery ();

// Display all rows

while (rs.next()) {

// Retrieve information and display the contents

}

rs.close();

Environment Details

The environment details are as follows:

• The application is JDBC and is running on an application server.

• The database is Microsoft SQL Server running on Windows XP.

• The client machines are running a variety of Windows operating systems,

such as Windows XP and Windows Vista.

• The application is deployed in a distributed WAN environment.

• The application server is running J2SE 5.

• The application is using a connection pool for connection management.

The Issue

Occasionally when a user exits the application, it closes very slowly (almost

appears to hang). What could be the cause?

Here are some questions to ask:

• Why does this happen only upon closing the application, and why only occa-

sionally?

• Which components in the environment affect the closing of the application?

• What tasks must be performed when the application is closed?

• What type of data is being returned?

278 Troubleshooting Performance Issues

ptg

• Are there any connection option settings in the driver that could be changed

to improve performance?

Thinking Through the Issue

Let’s think about what we know:

• The photo is long data, and long data can slow performance. However, the

issue is not about the performance of displaying the records.

• A connection pool is being used. It might affect the opening of the applica-

tion, but not the closing.

• CPU and memory are plentiful, so that isn’t the issue.

• Microsoft SQL Server is a streaming protocol database.

What could be causing the issue?

• The driver is not configured for optimal performance. For example, the dri-

ver’s packet size is configured smaller than the server’s packet size, which

results in more network round trips.

• The application is accessing a streaming protocol database. When a query is

executed on a streaming protocol database, all records are returned. This

means that even if the user doesn’t look at all the records when he closes the

application, all the records must be processed off the network before the

application actually closes.

• The application design is not optimal, especially when accessing a streaming

protocol database. The application is written to return long data with each

record.

The Resolution

The performance issue revolves around the fact that the application is accessing a

streaming protocol database and that long data is retrieved for each record. Do

you know why this issue happens only occasionally? Let’s say a user queries on

the state of North Carolina and 15,000 records are returned. The user finds what

he is looking for after displaying 21 records and closes the application. Before the

application can close, all the other 14,979 records must be processed off the net-

work. In this case, the application could take a few seconds to close. On the other

hand, if the user displayed 10,000 records before closing the application, fewer

records would need to be processed before the application closed, which would

make the application close more quickly.

Case Studies 279

ptg

Let’s assume that using a different database is not an option. We know that

the SQL Select statement retrieves a photo for each criminal record. Can that be

changed? Yes, the application can be changed to execute a query that retrieves all

the data except for the photo and then execute another query to retrieve the

photo. In this case, the photo can be retrieved only if the user actually displays

the associated criminal record. Here is the application rewrite:

PreparedStatement getPhotoStmt = con.prepareStatement(

"SELECT photo FROM FBI_most_wanted " +

"WHERE state=? AND fname=? AND lname=? AND crimes=? " +

"AND convictions=? AND laddress=?");

PreparedStatement pstmt = con.prepareStatement(

"SELECT fname, lname, crimes, convictions, laddress " +

"FROM FBI_most_wanted WHERE state=?");

pstmt.setString(1, "NC");

ResultSet rs = pstmt.executeQuery ();

// Display all rows

while (rs.next()) {

String fname = rs.getString(1);

String lname = rs.getString(2);

String crimes = rs.getString(3);

String convictions = rs.getString(4);

String laddress = rs.getString(5);

if (isPersonOfInterest(fname, lname, crimes, convictions,

laddress)) {

getPhotoStmt.setString(1, "NC");

getPhotoStmt.setString(2, fname);

getPhotoStmt.setString(3, lname);

getPhotoStmt.setString(4, crimes);

getPhotoStmt.setString(5, convictions);

getPhotoStmt.setString(6, laddress);

ResultSet rs2 = getPhotoStmt.executeQuery();

280 Troubleshooting Performance Issues

ptg

if (rs2.next()) {

Object photo = rs2.getObject(1);

displayPhoto(photo);

}

rs2.close();

}

}

rs.close();

With this application rewrite, less data must be processed off the network

when the user closes the application, which results in the application closing

more quickly.

Case Study 2

The application in this case study allows users to refill their drug prescriptions

over the Web and check the status of their orders. It is an interactive Web-server

application.

Environment Details

The environment details are as follows:

• Active Server Pages (ASP) is used to create the application.

• The application makes ADO calls.

• The database is Oracle running on Windows.

• The database driver is an OLE/DB to ODBC bridge.

• The client machines are running a variety of Windows operating systems,

such as Windows XP and Windows Vista.

• The application is using connection pooling of Microsoft’s Driver Manager

for connection management.

The Issue

The server is running out of memory, which causes poor overall performance.

What consumes memory on the server? The most likely culprits are defects in the

database driver, LOB data, scrollable cursors, statement pools, and connection

pools.

Case Studies 281

ptg

Thinking Through the Issue

Let’s think about what we know:

• The application does not retrieve or update LOB data.

• Statement pooling is not being used.

• Let’s assume that the database driver is not causing the problem.

• The application does not retrieve large amounts of data, so scrollable cursors

are not being used.

• We know the application is using connection pooling. Let’s look into this

more closely.

As discussed earlier in this book, ODBC connection pooling as implemented

in Microsoft’s Driver Manager does not provide a way to define a maximum pool

size. Therefore, the pool size grows dynamically as the application uses the pool

to get a connection. This can result in memory issues because the connection,

even when not in use, holds on to resources. How can you determine if this is the

issue?

One tool on Windows that you can use to monitor the pool is Performance

Monitor (PerfMon). The following URL contains a Microsoft document1 that

explains how to use PerfMon to monitor connection pools:

http://msdn.microsoft.com/en-us/library/ms810829.aspx

Let’s assume that after monitoring the ODBC connection pool, we did not

see an issue with it. What next? We also know that we are using ADO. With ADO,

resource pooling is turned on by default. Is the application using both ODBC

connection pooling and resource pooling? Yes.

Using two implementations of pooling would definitely use more memory

on the database server.

The Resolution

To limit the memory use on the database server associated with connections, turn

off ODBC connection pooling. Microsoft’s documentation recommends that you

do not use these two types of pooling together—that you choose which imple-

mentation you want to use and use it exclusively within a given application.1

Case Study 3

The database application in this case study serves a large insurance company

with many users. The company has many applications. This particular applica-

282 Troubleshooting Performance Issues

1 Ahlbeck, Leland, Don Willits, and Acey J. Bunch. “Pooling in the Microsoft Data Access Components.”
May 1999 (updated August 2004). Microsoft Corporation. 2 February 2009 <http://msdn.microsoft.
com/en-us/library/ms810829.aspx>.

http://msdn.microsoft.com/en-us/library/ms810829.aspx
http://msdn.microsoft.com/en-us/library/ms810829.aspx
http://msdn.microsoft.com/en-us/library/ms810829.aspx

ptg

tion allows customer service representatives to update the personal information

of clients, including bank account information if the client pays his monthly bill

with automatic draft. All the applications within the company must adhere to

strict privacy and security requirements.

Environment Details

The environment details are as follows:

• The application is ODBC.

• The database server is Sybase Adaptive Server Enterprise 11.5 running on

Windows.

• The client machines are running on HP-UX PA-RISC.

• The application is deployed in a WAN environment.

• The application is using distributed transactions to make sure that different

databases stay consistent with one another.

• CPU and memory are plentiful on the database server.

Following is the connection string for the DataDirect Technologies ODBC

driver in the production environment:

DataSourceName=MySybaseTables;NetworkAddress=123.456.78.90,

5000;DataBase=SYBACCT;LogonID=JOHN;Password=XYZ3Y;

ApplicationUsingThreads=1;EncryptionMethod=1;

HostNameInCertificate=#SERVERNAME#;TrustStorePassword=xxx2Z;

TrustStore=C:\trustfile.pfx;ValidateServerCertificate=1;

SelectMethod=0

Before deploying the application, the IT department ran performance

benchmarks on the application. The performance met the requirements, and the

application was deployed.

The Issue

After deploying the application, performance degraded by twofold. Why?

Here are some questions to ask:

• Are there any differences between the test environment and the production

environment? For example, was the data in the test environment modeled

Case Studies 283

ptg

after the data in the production environment? Did the benchmark test the

same number of users as is seen in the production environment? Was the

same version of the database driver used in both environments? Were the

drivers configured the same in both environments? Did the test environment

use all the same operating systems for clients and database servers as the pro-

duction environment?

• Are there any connection option settings in the driver that could be changed

to improve performance?

Thinking Through the Issue

Let’s think about what we know:

• The application was benchmarked in a test environment before being

deployed, and performance was acceptable.

• The application is using distributed transactions, which can slow down per-

formance because of the logging and network round trips needed to com-

municate between all the components involved in the distributed

transaction.

• The connection string used in the benchmark does not show that the appli-

cation is using data encryption, which is a requirement for all of this com-

pany’s applications.

To solve this issue, we need to look at the test and production environments

and see if there are any differences. The main question in this case study is why

the test environment shows better performance. The performance issue is caused

by data encryption. We discussed the effect that data encryption has on perfor-

mance in Chapter 2, “Designing for Performance: What’s Your Strategy.” To sum-

marize, encryption is performed on each byte of data being transferred, which

means slower network throughput.

Another issue to point out in this case study is that the benchmark did not

duplicate the production environment. See “Reproduce the Production

Environment,” page 246, to read about how important it is to do this when

benchmarking.

The Resolution

As we discussed in “Data Encryption across the Network,” page 86, performance

penalties go along with using data encryption, and often there is little you can do

about it. If your database system allows one connection that uses data encryption

284 Troubleshooting Performance Issues

ptg

and another that does not, you may be able to decrease the performance penalty.

For example, you could establish a connection that uses encryption for accessing

sensitive data such as an individual’s tax ID number, and another connection

that does not use encryption for accessing data that is less sensitive, such as an

individual’s department and title. Oracle and Microsoft SQL Server are examples

of database systems that allow this. Sybase is an example where either all connec-

tions to the database use encryption or none of them do.

Case Study 4

The small company in this case study was concerned about “machine creep”; too

many machines resided in its lab, and some of the machines were outdated. The

company decided to consolidate five of the machines into one 8-CPU virtualized

machine. Each of the existing machines hosts at least one database application.

The company’s IT department started deploying the machine’s images on the

one virtualized machine. After deploying two of the images on the virtualized

machine, IT ran performance checks. Performance was great. IT continued

deploying machine images one at a time and testing the performance after each

addition.

Environment Details

The environment details are as follows:

• The database applications on the virtualized machine vary greatly. Some are

used only by one user a few times a week. Others are used by many users sev-

eral times each day.

• Machine 1 has two applications that are used by the Accounting department.

Only two employees use these applications, and the applications are used a

few times a week.

• Machine 2 has a timesheet application that is used by all employees once a

month.

• Machine 3 has an HR application that is used by one or two employees

throughout the day.

• Machine 4 has one application that is used by the Sales department. Four or

five people use this application many times a day.

• Machine 5 has one application that supports the Technical Support depart-

ment. This application is used by seven or eight employees who are creating

and updating support cases throughout the day.

Case Studies 285

ptg

• The virtualized machine is running a Linux operating system, Red Hat Linux

Enterprise 5.0.

• The virtualized machine has four network ports/network adapters, eight

CPUs, and plenty of memory.

• The operating systems running on the virtualized machine are Windows XP,

Windows Server 2003, and Solaris x86.

• The database drivers used for all applications support virtualized environ-

ments.

• The virtualization software built into the Red Hat Linux operating system

was used to virtualize the machine.

The Issue

After the final machine image was deployed to the virtualized machine, perfor-

mance of applications on machine 4 slowed to an unacceptable response time.

Why?

Here are some questions to ask:

• What applications are on machine 5 (the last machine image deployed)? Are

the applications on machine 5 the cause of the performance degradation of

the application on machine 4?

• Was the virtualized machine configured correctly for these five machine

images?

• Does the virtualized machine still have ample CPU and memory?

Thinking Through the Issue

Let’s think about what we know:

• The machines on the virtualized machine have different operating systems.

This is probably not the cause.

• The virtualized machine has eight CPUs, which is adequate for the load asso-

ciated with the five machine images on the virtualized machine. Therefore,

that shouldn’t be the issue.

• There are five machine images and only four network ports/network

adapters. Which machine images share a network port and which applica-

tions are on those machines? Machines 4 and 5 are the ones that share a port.

That means that the two machines that run the most-used applications share

a port.

286 Troubleshooting Performance Issues

ptg

The Resolution

The performance issue revolves around the fact that machines 4 and 5 share a

network port. When machine 5 was added to the virtualized machine, perfor-

mance degraded because of more network activity. In this case study, machines 4

and 5 need a dedicated network port. The virtualized machine needs to be recon-

figured. For example, a better configuration is to have machines 1 and 2 share a

network port because the applications on those machines are used less fre-

quently. Alternatively, an additional network adapter could be added to the virtu-

alized machine so that each machine could have its own network adapter. In this

case, that solution may be overkill.

Case Study 5

The database application in this case study is a bulk load application. The com-

pany uses this application to synchronize changes made to a DB2 for AS/400

database to an Oracle database at the end of each day. The ODBC application

does the bulk load using parameter arrays, 1,000 rows at a time. The data is 120

numeric columns about geological maps. The code that does this operation is as

follows:

// Assume at this point that a SELECT * FROM tabletoinsert

// WHERE 0 = 1 has been prepared to get information to do

// bindings

for (counter = 1; counter <= NumColumns; counter++) {

rc = SQLColAttributes (hstmt, counter, SQL_COLUMN_TYPE,

NULL, 0, &rgblen, &ptype);

rc = SQLColAttributes (hstmt, counter, SQL_COLUMN_PRECISION,

NULL, 0, &rgblen2, &prec);

rc = SQLColAttributes (hstmt, counter, SQL_COLUMN_SCALE,

NULL, 0, &rgblen3, &scale);

switch(counter){

case 1: rc = SQLBindParameter (hstmt, counter,

SQL_PARAM_INPUT, SQL_C_CHAR, (SWORD) ptype,

(UDWORD) prec, (SWORD) scale,

pa_col1, sizeof(pa_col1[0]), cbValue);

Case Studies 287

ptg

// pa_col1 is an array of character strings

break;

case 2: rc = SQLBindParameter (hstmt, counter,

SQL_PARAM_INPUT, SQL_C_CHAR, (SWORD) ptype,

(UDWORD) prec, (SWORD) scale,

pa_col2, sizeof(pa_col2[0]), cbValue2);

// pa_col2 is an array of character strings

break;

case 3: rc = SQLBindParameter (hstmt, counter,

SQL_PARAM_INPUT, SQL_C_CHAR, (SWORD) ptype,

(UDWORD) prec, (SWORD) scale,

pa_col3, sizeof(pa_col3[0]), cbValue3);

// pa_col3 is an array of character strings

break;

...

default: break;

}

Environment Details

The environment details are as follows:

• Order management is done using a legacy AS/400 application. Every night, a

batch job exports the AS/400 data into an XML document that is then trans-

ferred to a Linux machine using FTP. As part of a nightly consolidation

process, an ODBC application reads in the contents of the XML document

and bulk loads the data into an Oracle database.

• Auto-commit is turned off in the application.

• The application is reading the data in as character strings and binding the

data on the server as the appropriate numeric type, such as int or floating

point.

• The bulk load application is on a Linux machine.

• The Oracle database is on a Windows machine.

The Issue

The performance (response time) of the bulk load operation is too slow. Is there

any way to speed up the bulk load operation?

288 Troubleshooting Performance Issues

ptg

Here are some questions to ask:

• Is the driver configured with optimal database protocol packet sizes? This is

key when transferring this much data.

• Is the application optimized for bulk load? Does the application use an array

of parameters? Does the application use prepared statements?

Thinking Through the Issue

Let’s think about what we know:

• Auto-commit is turned off in the application, which is the correct configura-

tion for this case. Because of the significant amount of disk I/O required to

commit every operation on the database server and because of the extra net-

work round trips that occur between the driver and the database, in most

cases you will want to turn off auto-commit mode in your application. By

doing this, your application can control when the database work is commit-

ted, which provides dramatically better response time.

• The application uses an array of parameters, which is optimal. When using

an array of parameters, it’s a good idea to experiment with the size of the

arrays to find the maximum value that provides the best performance. In

this case, the parameter array value of 1,000 rows per execute gets the best

performance.

• The application efficiently uses prepared statements.

• The data being loaded is numeric, and the application is reading all the data

into memory as character strings.

• A poorly configured database driver could cause performance issues. For

example, the packet’s size could be configured to a small value such as 16KB.

For this case, let’s assume the database driver is configured correctly.

The Resolution

The performance issue revolves around the fact that the application reads in the

numeric data as character strings. Depending on the implementation of the

database driver, either the driver must convert the character data to the appropri-

ate format to be inserted into the database, or the driver must send the character

data to the database and the database system must do the conversions. Either

Case Studies 289

ptg

way, this involves a fairly expensive process of determining the appropriate types,

converting the data to the right format, and then sending the correct information

to the database.

When examining the application code, you should think, “What does my

database driver have to do to make this bulk load work?” In this particular case,

the driver/database must perform data conversions, which translates to CPU

cycles. For every execution, 120,000 pieces of data must be translated (120

columns × 1,000 rows). Although the conversion is not the most time-consum-

ing operation during the insert of the data, it does become significant for large

executions.

In this case, the application can easily be rewritten to optimize the reading of

the XML file to process the data as ints, floats, and so on. This application change

ultimately saves CPU cycles, which improves performance. Here is the rewritten

code:

// We know the columns being loaded are numeric in nature—

// bind them using the correct native types

// Assume at this point a SELECT * FROM tabletoinsert

// WHERE 0 = 1 has been prepared to get information

// to do bindings

for (counter = 1; counter <= NumColumns; counter++) {

rc = SQLColAttributes (hstmt, counter, SQL_COLUMN_TYPE,

NULL, 0, &rgblen, &ptype);

rc = SQLColAttributes (hstmt, counter, SQL_COLUMN_PRECISION,

NULL, 0, &rgblen2, &prec);

rc = SQLColAttributes (hstmt, counter, SQL_COLUMN_SCALE,

NULL, 0, &rgblen3, &scale);

switch(counter){

case 1: rc = SQLBindParameter (hstmt, counter,

SQL_PARAM_INPUT, SQL_C_LONG, (SWORD) ptype,

(UDWORD) prec, (SWORD) scale,

pa_col1, sizeof(pa_col1[0]), cbValue);

// pa_col1 is an array of integers

break;

290 Troubleshooting Performance Issues

ptg

case 2: rc = SQLBindParameter (hstmt, counter,

SQL_PARAM_INPUT, SQL_C_LONG, (SWORD) ptype,

(UDWORD) prec, (SWORD) scale,

pa_col2, sizeof(pa_col2[0]), cbValue2);

// pa_col2 is an array of integers

break;

case 3: rc = SQLBindParameter (hstmt, counter,

SQL_PARAM_INPUT, SQL_C_BIGINT, (SWORD) ptype,

(UDWORD) prec, (SWORD) scale,

pa_col3, sizeof(pa_col3[0]), cbValue3);

// pa_col3 is an array of 64 bit integers

break;

...

default: break;

}

Case Study 6

The application in this case study is an executive dashboard, which allows the

company’s executive team to have a view into the sales system. The IT team

responsible for deploying the application developed an extensive set of perfor-

mance tests designed to measure response time while the system was under load.

Environment Details

The environment details are as follows:

• The dashboard is a browser-based application that connects to both systems

inside and outside of the corporate firewall using JDBC.

• The application accesses data in Microsoft SQL Server and three DB2 data-

bases.

• Outside the firewall, the application also accesses data from

www.salesforce.com.

• During the performance testing of the application, the IT department used a

third-party tool to emulate five to ten concurrent users on the system.

• The application is deployed in an IBM WebSphere environment.

Case Studies 291

www.salesforce.com

ptg

The Issue

The IT team did not get consistent performance results from the benchmark. The

process for running the benchmark was to fresh-start the application server, the

database server, and the load test server before every run. The test environment

was on an isolated network, so that ruled out interference from other applica-

tions as the cause of the inconsistent results.

The IT team ran the benchmark the first time, and the response time was

unacceptable for many of the tests in the benchmark suite. When they manually

reran the tests that had the performance issues, response time seemed acceptable.

What is causing these inconsistent results?

Thinking Through the Issue

Let’s think through what we know:

• Because manual testing indicated acceptable performance, was there a prob-

lem with the test environment? Was the third-party tool used to emulate

concurrent users configured accurately? In this case, there was no issue with

the tool.

• Perhaps the benchmark was not run long enough or measured short

response times. Benchmarks that are run over short durations make it diffi-

cult to reproduce meaningful and reliable results. See “Measure over a

Sufficient Duration of Time,” page 254, for details. In this case, this was not

the issue.

• Was the application coded correctly? Was the database driver tuned cor-

rectly? In both cases, IT checked, and the answer was yes.

• Does connection pooling or statement pooling come into play? Yes, both

should be used; however, neither was the culprit.

• The database was not prepared. The first time the application accesses a table

row in a database, the database places a copy of the row onto a page on disk.

If the database can find the requested data on a page in memory when subse-

quent data requests are processed, the database optimizes its operation by

avoiding disk I/O. See “Prepare the Database,” page 257.

The Resolution

After carefully examining the benchmark results, the IT team saw that the worst

performance occurred when each of the database systems was accessing data that

had not been accessed previously. In a database system, the most recently

292 Troubleshooting Performance Issues

ptg

accessed data is always kept in memory so that subsequent accesses are fast (no

disk access is required to return the data). In this performance test scenario, the

systems were all restarted to measure a “fresh” system.

The benchmark should have included some time to prepare the database sys-

tems by running the benchmarks once without measuring performance. Once

the highly accessed data is in memory, it remains there for the most efficient

access during runtime.

Case Study 7

The database application in this case study supports a distributed sales team. The

application is GUI based and has multiple options with regard to the type of sales

information that can be queried, such as sales leads by territory, sales leads by

product, existing customers by product purchased, and revenue by territory. The

application will be used by a maximum of ten concurrent users.

Environment Details

The environment details are as follows:

• The application is ADO.NET and is running on an application server.

• The database server is an Oracle 11g shared server running on AIX 5.3.

• The client machines are running the .NET Framework 2.x and a variety of

Windows operating systems, such as Windows XP and Windows Vista.

• The application is deployed in a WAN environment.

• The application is using connection pooling and statement caching.

• CPU and memory are plentiful on both the middle tier and database server.

• The database provider is DataDirect Technologies ADO.NET data provider

for Oracle. Here’s the connection string:

"Host=Accounting;Port=1433;User ID=Scott;Password=Tiger;

Server Type=Shared;Load Balance Timeout=0;Wire Protocol Mode=2;

Enlist=False;Batch Update Behavior=ArrayBindOnlyInserts;

Pooling=True;Cursor Description Cache=True;Max Pool Size=10;

Connection Reset=False;Fetch Array Size=128000;

Session Data Unit=8192"

Case Studies 293

ptg

Before deploying the application, the IT department benchmarked the appli-

cation with ten concurrent users in a LAN environment. The performance was

great, and the application was deployed in the Chicago, San Francisco, and

Atlanta offices.

The Issue

After deploying the application, performance dropped by 50%. Why?

Here are some questions to ask:

• Does it hold true that a maximum of ten concurrent users are using the

application?

• Is there anything different about the environment in which the benchmark

was run versus the actual deployed environment?

• Are there any connection option settings in the driver that could be changed

to improve performance?

Thinking Through the Issue

Let’s think about what we know:

• Let’s assume that it does hold true that a maximum of ten concurrent users

are using the application.

• The benchmark was run in a LAN environment, and the application was

deployed in a WAN environment.

• The same connection string was used in the benchmark environment as in

the deployed environment. Are there connection options that would provide

better performance in a WAN environment?

The Resolution

The performance issue revolves around the setting for the Session Data Unit con-

nection option. An Oracle Session Data Unit (SDU) is a buffer that the

DataDirect Connect for ADO.NET Oracle provider uses to place data before

transmitting it across the network.

Here is some information about SDUs from Oracle’s documentation.2

294 Troubleshooting Performance Issues

2 “Oracle® Database Net Services Administrator’s Guide,” 10g Release 1 (10.1), Part Number B10775-01.
January, 2004.

ptg

The SDU size can range from 512 bytes to 32767 bytes; the default size is 8192

bytes for a dedicated server and 32767 bytes for a shared server. The actual

SDU size used is negotiated between the client (provider) and the server at

connect time and will be the smaller of the client and server values. As such,

configuring an SDU size different from the default requires configuring the

SDU on both the client and server computers, unless you are using shared

servers, in which case only the client needs to be changed because the shared

server defaults to the maximum value.

For example, if the majority of the messages sent and received by the applica-

tion are smaller than 8K in size, taking into account about 70 bytes for over-

head, setting the SDU to 8K will likely produce good results. If sufficient

memory is available, using the maximum value for the SDU will minimize the

number of system calls and overhead.

After reading this description of SDUs, we know that the default value for

SDU size for a shared server is 32767 and the application is accessing a shared

server. However, the setting for the SDU size in the provider is 8192. Therefore, to

improve performance, the value for the Session Data Unit connection option

should be increased to 32767.

Case Study 8

The database application in this case study executes OLTP-type transactions

(returns small result sets). The application is Web based and allows users to

query on the current trading value of financial stocks. Quick response time is key

for this application.

Environment Details

The environment details are as follows:

• The application is JDBC and is running on an application server.

• The database server is Sybase ASE 15 running on HP-UX PA-RISC 11i

Version 2.0.

• The application is deployed in a WAN environment.

• The client machines are running a Linux operating system.

Case Studies 295

ptg

The Issue

Response time has become unacceptable. Why?

Here are some questions to ask:

• Has the volume of users increased?

• Has the network configuration changed?

• Has anything changed on the database server, such as another database sys-

tem was installed on the server?

• Is the configuration of the driver correct for this type of application?

• Is the application using connection pooling and statement pooling?

• Is the application returning only the data it needs, and is it returning the data

in the most efficient way?

Thinking Through the Issue

Let’s think about what we know:

• Many environment issues can cause slow response time, such as insufficient

bandwidth, physical memory, or CPU. For this scenario, let’s assume that

more memory or CPU cannot be added.

• Many, many users access the application, but the application is not config-

ured to use connection pooling.

• The use of large database protocol packets is not a good idea in this type of

application. Check the database protocol packet’s size configured in the dri-

ver. Often the default size is not the size that you should use for OLTP-type

applications.

• One of the easiest ways to improve performance is to limit the amount of

network traffic between the database driver and the database server—one

way is to write SQL queries that instruct the driver to retrieve from the data-

base and return to the application only the data that the application requires.

Let’s assume that the application is coded with optimal SQL queries.

The Resolution

Because more memory cannot be added to the database server, this issue must be

resolved in the application and the database driver. The solution is twofold:

• You can optimize the application to use connection pooling. As we have

stated several times throughout this book, connection pooling can provide

significant performance gains because reusing a connection reduces the

296 Troubleshooting Performance Issues

ptg

overhead associated with establishing a physical connection. In JDBC, the

application must use a DataSource object (an object implementing the

DataSource interface) to obtain a connection to use connection pooling. So,

the application needs to be changed to use a DataSource object. See

“Connection Pool Model for JDBC,” page 223, for details.

• The driver was using a 32KB database protocol packet size. In this case, a

smaller size would provide a better response time because small result sets

are being returned to the application. In this case, a 32KB packet size has too

much capacity for the amount of data being returned, which causes more

memory use than when using a smaller packet size.

Summary

When the performance of a database application is unacceptable, the first step is

to define the issue. Is the issue related to throughput, response time, scalability, or

a combination? The second step is to think through the possible causes. For

example, if response time is the issue, does your application have a memory leak

or does it perform excessive data conversions? The third step is to narrow down

the possible causes of the performance issue. You might find it helpful to trou-

bleshoot in the following order:

1. Look at the complete picture and ask yourself the following important

question: Has anything changed in any of the components of the data-

base application deployment? If the answer is yes, start by looking at

what changed.

2. If nothing has changed, look at the database application.

3. If your database application does not seem to be the issue, look at your

database driver.

4. If you are not satisfied with the performance after looking at the appli-

cation and the database driver, look at the environment where your

application is deployed.

One important fact to note is that if the database server machine is resource

bound, no amount of tuning of your applications or the database middleware

results in acceptable performance.

Summary 297

ptg

This page intentionally left blank

ptg

Data Access in Service-
Oriented Architecture
(SOA) Environments

299

In today’s business environment, your application

infrastructure must keep pace with shifting business

requirements and be able to absorb new business part-

ners and products. Over the years, companies have

adopted different computing architectures designed to

allow for distributed processing, programming lan-

guages designed to run on any platform, and a range of

products designed to provide better and faster integra-

tion of applications. In many cases, these steps are no

longer enough to provide businesses with the agility

they require.

In response, companies are adopting Service-Oriented
Architecture (SOA), a design methodology for software that

promises agility to quickly adapt their applications to the

changing needs of the business through reusable services.

SOA has been around for a long time, but it has been used in

production only in the past two to three years. Today, nearly

every sizable organization has either implemented some

form of SOA or has plans to in the near future.

C H A P T E R E L E V E N

ptg

Although SOA is different from traditional architectures, applications in

SOA environments still need to access and use data. In our experience, it’s often

SOA experts, and not data experts, that design these applications. As a result, per-

formance issues often appear when applications are deployed. Although the

guidelines discussed in previous chapters of this book also apply to SOA in one

way or another, some differences specific to data access in SOA environments are

worth a separate discussion. In this chapter, we’ll share the main ways you can

ensure that your data applications perform well in SOA environments.

What Is Service-Oriented Architecture (SOA)?

Before we discuss guidelines for data access in SOA environments, let’s define

what we mean by SOA. First, let’s clear up some common misconceptions about

SOA:

• SOA isn’t a product that you can purchase. It’s a design methodology that

defines how applications should be built.

• SOA isn’t the same as Web Services (although 90% of the time, companies

implement SOA using Web Services).

SOA is a way of building software applications that allows you to design

loosely coupled software components called services. What loosely coupled
means depends on who you talk to, but generally, the term implies the following:

• Services are designed modularly based on business logic.

• Built-in knowledge of other services is minimized so that changes to one ser-

vice don’t ripple to others.

Services communicate using messages. When you create a service, you define

what messages it can receive and send. A service can be used by any consumer

(application or another service) as long as the consumer offers the service the

information it expects and, if a response is generated, the response is useful to the

consumer. For example, suppose you need to design a simple banking applica-

tion that performs two common tasks: making a withdrawal and making a

deposit. As shown in Figure 11-1, services are designed based on the task they

perform in the business workflow. The Deposit service can be used by both the

Teller application and the Wire Transfer application because the applications

interact with the service using standard messages.

300 Data Access in Service-Oriented Architecture (SOA) Environments

ptg

Figure 11-1 SOA environment

Services can be simple or complex. They can call other services, acting like

building blocks to form composite services. For example, the Deposit service

shown in Figure 11-1 calls the Add to Account service.

How do developers know what services are available for reuse? Typically, ser-

vices publish details about themselves in a SOA registry/repository. For example,

a service may publish the following characteristics:

• Operations the service performs

• Other services it uses

• Policies that must be followed when using the service, such as security

methods

• Communication protocols the service supports

Which language the service was written in and which operating system the

service runs on is irrelevant. As long as the consumer and service both support

the same communication protocol, they can interact, regardless of their imple-

mentation.

SOA is commonly implemented using Web Services, which defines how ser-

vices interact using the following standards: Extensible Markup Language

(XML), Simple Object Access Protocol (SOAP), Web Services Description

What Is Service-Oriented Architecture (SOA)? 301

Subtract from
Account Service

Add to
Account Service

Withdrawal
Service

Teller Application

Deposit
Service

Wire Transfer
Application

ptg

Language (WSDL), and Universal Description, Discovery and Integration

(UDDI). For example, if the scenario shown in Figure 11-1 was implemented

using Web Services, the Teller application would request the Withdrawal or

Deposit service using a SOAP message, and data passed between services would

be exchanged in XML. Each service in this scenario would publish its details in a

SOA registry using WSDL/UDDI.

Data Access Guidelines for SOA Environments

Do the following to ensure your database applications perform well in SOA envi-

ronments:

• Involve data experts in addition to SOA experts.

• Decouple data access from business logic.

• Design and tune for performance.

• Consider data integration.

Involve Data Experts in Addition to SOA Experts

SOA guidelines are defined by SOA architects, who do a good job of creating and

managing reusable services that represent business logic. But SOA architects

aren’t experts at databases or data access. As explained earlier, SOA is about busi-

ness agility. SOA helps achieve agility by allowing you to build services that mul-

tiple applications can reuse.

For example, suppose you design a service to be used in an application that

typically has no more than 50 users. When the application is deployed, the per-

formance of the service remains good until other applications are deployed that

start to use that same service. Quickly, there are 500% more users than the service

was designed for, and performance takes a nosedive.

This is a problem we’ve seen over and over in real-world SOA service

design—the performance of a service that performed well when it was first

deployed breaks down as other applications begin to use that service. Designing a

service that performs well for 500 users is different than designing one that per-

forms well for 50 users. The performance guidelines discussed in previous chap-

ters of this book will help you reach your scalability goals.

302 Data Access in Service-Oriented Architecture (SOA) Environments

Performance Tip

To achieve the full promise of SOA, you need data access experts, not

just SOA experts, involved in the design of services that access data.

ptg

Decouple Data Access from Business Logic

In both traditional architectures (such as object-oriented architectures) and SOA

architectures, applications depend on technologies such as ODBC, JDBC, and

ADO.NET for access to data stored in databases. In traditional architectures, data

access code is contained within the application. Even when using an object-rela-

tional mapping tool such as Hibernate to abstract the data layer, data access code

remains within the application. This tightly coupled method works because the

applications aren’t designed to share components with other applications

(although code is routinely copied and propagated to other applications). When

changes occur that affect data access, the code must be updated everywhere it

appears.

In SOA environments, services are designed to be reusable, but we often find

that data access has been implemented in the same way it always has, using the

familiar, tightly coupled method shown in Figure 11-2. Data access code is built

into each service that requires access to the database.

Data Access Guidelines for SOA Environments 303

Invoice
Service

ODBC

Shipping
Service

JDBC

Contracts
Service

ADO.NET

Figure 11-2 Tightly coupled: data access built into SOA services

Building data access dependencies into services produces the following bad

side effects:

• It forces your business logic experts to become data access experts.

• It results in complicated deployment scenarios that are hard to maintain.

• It reduces scalability and performance.

Suppose that, as you read this book, you discover a tip that will speed up the

performance of a service you’ve been developing. The next day, you go into work

ptg

and implement that change in your service. With careful testing, you realize that

the change has improved the response time of your service by 100% and allowed

it to scale to many more users. This is a great benefit for your service, but can you

implement the same tip in the thousands of other services that are deployed in

your company? Achieving business agility, the real value of SOA, becomes more

difficult when you have to modify many services to achieve the same goal across

the board.

304 Data Access in Service-Oriented Architecture (SOA) Environments

Performance Tip

The best way to provide data access in SOA environments is to follow the

same principle that SOA advocates: Provide a loosely coupled Data

Services Layer (DSL) that centralizes data access code as a service.

Figure 11-3 shows a DSL that can be called by any service that requires data

access. Database drivers only need to be installed on the machine local to the

DSL. Involve your data expert in designing this layer; his expertise will help you

build best practices for data access into all your services. Any changes that affect

data access code aren’t made in the services but are centralized in the DSL.

ODBC JDBC

Data Access Service

ADO.NET

Invoice
Service

Shipping
Service

Contracts
Service

Figure 11-3 Loosely coupled: Data Services Layer (DSL)

ptg

One of the tenants of SOA is capturing best practices. If someone figures out

the best way to implement a shipping service, all applications can use that “best

in class” shipping service. Without SOA, that same code would have to be propa-

gated to all the applications that need to perform the shipping function. Building

a DSL allows you to capture best practices for data access within a data access ser-

vice so everyone in your company can benefit from it.

Design and Tune for Performance

Although many of the tips provided in this book also apply to your data access

code in SOA environments, here are a few that are particularly important for this

type of architecture:

• Reusable services imply multiple users making many connections— the per-

fect scenario for connection pooling. Any service with many users that is

called often will fail to perform adequately without connection pooling. See

“Using Connection Pooling,” page 12, for more information.

• Reusable services imply that the same statements are executed multiple

times—the perfect scenario for using statement pooling. See “Statement

Pooling,” page 29, for more information.

• Be aware that each service that accesses the DSL may have different require-

ments. For example, one service may retrieve large objects and require tun-

ing for this use, whereas another may load bulk data into tables and require a

different tuning approach. Therefore, it’s important for your database driver

to be tunable. See “Runtime Performance Tuning Options,” page 62, for

more information about what runtime performance tuning options to look

for in a database driver.

Consider Data Integration

Most companies start implementing SOA slowly, designing simple services that

do simple things. For example, the scope of a first effort may be to design a ser-

vice that looks up an order using an order ID. As developers become more com-

fortable with SOA, they design services that are more complex. For example, a

Data Access Guidelines for SOA Environments 305

ptg

service that handles the following workflow requires access to different data

sources:

1. Retrieves an incoming Electronic Data Interchange (EDI) order

2. Validates client information stored in an Oracle database

3. Retrieves the customer number from the Oracle database

4. Submits an order to a DB2 database using the customer number

5. Sends a receipt to the client using EDI

Sequentially processing all the data involved in these steps can involve

tremendous overhead. Comparisons of or conversions between data in different

formats requires code to marshal the data from one format to another. Typically,

this code changes the data from the XML data model to the relational data model

and vice versa. Eventually, all data used by the service is marshaled to the XML

format to create an XML response to a Web Service call. Retrieving all this data

from disparate sources can require many network round trips and multiple

transformation layers to marshal the data.

Let’s think about this differently. Most SOA architectures use XML-based

requests and responses. XQuery is a query language for XML. Some XQuery

products allow you to query data from XML documents or any data source that

can be viewed as XML such as relational databases. With this type of solution,

you can query almost any data source as though it were XML, regardless of how

the data is physically stored.

Just as SQL is a relational query language and Java is an object-oriented pro-

gramming language, XQuery is often thought of as a native XML programming

language. At the time of this writing, XQuery 1.0 is a recommended specification

of the W3C that you can find at www.w3.org/TR/xquery/.1

The XQuery API for Java (XQJ) is designed to support the XQuery language,

just as the ODBC, JDBC, and ADO.NET APIs support the SQL query language.

The XQJ standard (JSR 225) is being developed under the Java Community

Process that you can find at www.jcp.org/en/jsr/detail?id=225.2

Some databases, such as Oracle 11g, have already incorporated support for

XQuery. There are also products on the market that provide an XQuery proces-

sor to optimize your access to both relational and XML data sources, as shown in

Figure 11-4.

306 Data Access in Service-Oriented Architecture (SOA) Environments

1 “XQuery 1.0: An XML Query Language.” W3C. 02/02/2009 (http://www.w3.org/TR/xquery/).

2 “JSR 225: XQuery API for JavaTM (XQJ).” Java Community Process. 02/02/2009 (http://www.jcp.org/
en/jsr/detail?id=225).

http://www.w3.org/TR/xquery/
www.w3.org/TR/xquery/
www.jcp.org/en/jsr/detail?id=225
http://www.jcp.org/en/jsr/detail?id=225
http://www.jcp.org/en/jsr/detail?id=225

ptg

Figure 11-4 XQuery processor

XQuery simplifies data integration in the following ways:

• It provides native support for XML and for the operations most frequently

needed when working with XML. Today, XML is at the heart of most data

integration; this is certainly true for SOA environments where SOAP mes-

sages are expressed in XML. The XML produced by an XQuery query can be

used directly in SOA applications. For example, a query result might be the

payload of a SOAP message.

• It eliminates the need to work with different APIs and data models for each

data source. The XQuery language is defined in terms of XML structures.

Because most data can be mapped into an XML structure, you can use

XQuery to query virtually any data source.

• It eliminates the need to write the code required to marshal data into differ-

ent formats. With XQuery, the query result is XML.

We’ve seen a single XQuery query replace 100 lines of code because it can

encapsulate all the business logic and integration logic into a single step. Because

your service only has to execute a single XQuery query, network round trips are

kept to a minimum.

Summary

Many companies are now adopting a SOA architecture to keep pace with shifting

business requirements. SOA allows developers to design loosely coupled services

that are reusable by other applications.

Summary 307

XQuery Processor
Web

Services

Relational
Sources

XML
Sources

ptg

For the best performance in SOA environments, remember the following

four guidelines when designing database applications for SOA environments:

• Involve data experts in addition to SOA experts to ensure that your services

are designed for scalability and performance. Designing a service for 500

users is different than designing a service for 50 users.

• Decouple data access from business logic. Building data access dependencies

into services can result in complicated deployment scenarios and reduce

scalability and performance. A better approach is to build a loosely coupled

data access service that can be called by other services to provide data access.

• Design and tune for performance. Because reusable services typically have

many users and execute the same statements repeatedly, SOA services need

to take advantage of connection pooling and statement pooling. In addition,

some runtime performance tuning options offered by your database driver

can improve performance.

• Consider data integration. Because most SOA architectures use XML-based

requests and responses, the XQuery language is a good choice for data inte-

gration. XQuery allows you to query any data source that you can view as

XML, including relational databases. It also provides query results as XML,

which eliminates code that would be required to transform other data for-

mats into XML.

308 Data Access in Service-Oriented Architecture (SOA) Environments

ptg

309

A
active connections
In the context of connection pooling, connections that are
currently in use by the application. See also idle connections

B
bandwidth
The amount of data that can be transferred from one point
on the network to another in a specified period. Bandwidth
is usually expressed in bits (of data) per second (bps).

benchmark
A test that measures the performance of an application or
system on a well-defined task or set of tasks.

big endian
A byte order method used to store multibyte data, such as
long integers, in memory. Big endian machines store data in
memory big-end first. The first byte is the biggest. See also
endianness and little endian.

boxing
A process that occurs in Java and .NET when a data type is
wrapped in an object. When boxing occurs, memory is allo-
cated from the heap on the database client to create the
object, which can force a garbage collection to occur.

G L O S S A R Y

ptg

bridge
A database driver that bridges capabilities between an existing database connectivity
standard and a new one. For example, for Java applications, a JDBC/ODBC bridge can
provide access to all the data sources that the ODBC drivers support.

bytecode
A compiled format for Java application code. Once Java code is compiled into bytecode,
the code can run through a JVM instead of the computer’s processor. Using bytecode
allows Java code to run on any platform.

C
CLR heap
A reserved pool of memory that the .NET Common Language Runtime (CLR) allocates
memory from for new objects.

commit
An operation that causes all updates performed during a transaction to be written to the
database.

connection pool
A cache of physical database connections that one or more applications can reuse.

Connection Pool Manager
In JDBC, a utility that manages the connections in the pool and defines attributes of the
connection pool, such as the initial number of connections placed in the pool when an
application server is started.

context switch
The process of storing and restoring the state (context) of a CPU so that multiple
processes can share a single CPU resource. A context switch occurs when the CPU stops
running one process and starts running another. For example, if your application is wait-
ing for a row lock to release so that it can update data, the operating system may switch
the context so that the CPU can perform work on behalf of another application while
your application is waiting for the lock to release.

cursor-based protocol database system
A database system that assigns a database server-side “name” (cursor) to a SQL state-
ment. The server operates on that cursor incrementally. The database driver tells the
database server when to work and how much information to return. The network con-
nection can be used by several cursors, each working in small slices of time. Oracle and
DB2 are examples of cursor-based protocol databases.

310 Glossary

ptg

D
data provider
A software component that an application uses on demand to gain access to a database
using one of the following standards-defined APIs: ADO.NET, ADO, or OLE DB. Among
many other things, a data provider processes the API function calls, submits SQL
requests to the database, and returns results to the application.

Data Services Layer (DSL)
In a Service-Oriented Architecture (SOA) environment, data access logic and code
designed as a loosely coupled SOA service.

database driver
A software component that an application uses on demand to gain access to a database
using one of the following standards-defined APIs: ODBC or JDBC. Among many other
things, a database driver processes API function calls, submits SQL requests to the data-
base, and returns results to the application.

database protocol packets
A package that database drivers and database servers use to request and return informa-
tion. Each packet uses a protocol for communication with the database defined by the
database vendor. For example, Microsoft SQL Server uses communication encoded with
the Tabular Data Stream (TDS) protocol, and IBM DB2 uses communication encoded
with the Distributed Relational Database Architecture (DRDA) protocol.

disk contention
A situation that occurs when multiple processes or threads try to access the same disk
simultaneously. The disk has a limit on how many processes/threads can access it and the
amount of data that it can transfer. When these limits are reached, processes/threads
must wait to access the disk.

distributed transaction
A transaction that accesses and updates data on two or more networked databases and
therefore, must be coordinated among those databases. See also local transaction.

dynamic SQL
SQL statements that are constructed at runtime; for example, the application may allow
users to enter their own queries. These types of SQL statements are not hard-coded into
the application. See also static SQL.

Glossary 311

ptg

E
embedded SQL
SQL statements written within an application programming language such as C. These
statements are preprocessed by a SQL processor, which is database dependent, before the
application is compiled.

endianness
The byte order used by an operating system as determined by the processor of the com-
puter to store multibyte data, such as long integers, in memory. See also big endian and
little endian.

environment
In the context of the Microsoft ODBC Driver Manager connection pooling model, a
global context in which a database driver accesses data from an application. An environ-
ment owns the connections inside an application. Typically, there is only one environ-
ment within an application, which means that there is usually one connection pool for
one application.

F–G
forward-only cursor
A type of cursor that database drivers use for sequential, nonscrollable access to rows in a
result set.

garbage collector
A routine that a JVM runs to clean up dead Java objects and reclaim memory. See also
generational garbage collection.

generational garbage collection
A method of garbage collection used by most later JVMs that separates objects into dif-
ferent memory pools within the Java heap based on the object’s lifetime. See also garbage
collector.

H–I
hard page fault
A type of page fault that is generated when an application requests a page in memory at
its original address space, but the requested page is located in virtual memory. The oper-
ating system must swap the page out of virtual memory and place it back into RAM. See
also soft page fault.

heap size
The overall size of the Java heap. See also Java heap.

312 Glossary

ptg

idle connections
In the context of connection pooling, connections that are available for use in the con-
nection pool. See also active connections.

insensitive cursor
A type of scrollable cursor that ignores any data modifications that could impact the
result set of the cursor.

J–K
Java heap
A reserved pool of memory from which a JVM allocates memory for new Java objects.
See also heap size.

Just-in-Time (JIT) compiler
A code generator provided by some JVMs and the .NET Common Language Runtime
(CLR) that converts bytecode into native machine language instructions at runtime.
Code compiled with a JIT compiler typically runs faster than code that hasn’t been com-
piled.

Kerberos
A network authentication protocol that was originally developed at MIT as a solution to
the security issues of open network computing environments. Kerberos is a trusted third-
party authentication service that verifies users’ identities.

L
latency
The time delay it takes for a network packet to travel from one destination to another.

lazy fetching
A method of returning data used by some database drivers. The database driver returns
only as many result rows as necessary in as many network round trips to the database
server as necessary and caches the result set on the driver machine. If the next request for
a row is not in the cached result set, the driver makes the necessary number of round
trips to return more rows.

little endian
A byte order method used to store multibyte data, such as long integers, in memory.
Little endian machines store data in memory little-end first. The first byte is the smallest.
See also endianness and big endian.

Glossary 313

ptg

local transaction
A transaction that accesses and updates data on one database. See also distributed trans-
action.

loosely coupled
A resilient relationship between two or more systems with some kind of exchange rela-
tionship. In the context of a Service-Oriented Architecture (SOA) service, it means that
services are designed modularly based on business logic, and built-in knowledge of other
services is minimized so that changes to one service don’t ripple to others. Contrast with
tightly coupled.

M
managed code
In .NET, code that is executed by the Common Language Runtime (CLR). See also
unmanaged code.

Maximum Transmission Unit (MTU)
The maximum packet size that can be sent across a network link. The MTU is a charac-
teristic of the network type. For example, the MTU for Ethernet networks is 1500 bytes.

memory leak
Gradual and unintentional memory consumption that is caused when an application
fails to release memory when it’s no longer needed. The term can be confusing because
memory is not physically lost from the computer. Rather, available memory, RAM, and
then virtual memory is steadily used up.

N–O
network packet
A package that is used to transport communication across a network, such as TCP/IP.
Database protocol packets are transformed into network packets for delivery over the
network. Once the network packets reach their destination, they are reassembled with
other network packets into a database protocol packet.

P–Q
packet fragmentation
The process of breaking up an oversized network packet into smaller sized packets to
accommodate the MTU of a network link.

314 Glossary

ptg

page
A fixed-length block of memory in RAM.

page fault
An error that the hardware generates when an application tries to access a page of mem-
ory that can no longer be found in RAM at its previous address space. See also hard page
fault and soft page fault.

page file
A reserved part of the hard disk that is used to store pages of RAM in virtual memory.

paging
The process of transferring pages out of RAM into virtual memory.

path MTU
The lowest MTU of any network node along a particular network path.

path MTU discovery
A technique for determining the lowest MTU of any network node along a particular
network path.

prepared statement
A SQL statement that has been compiled, or prepared, into an access or query plan for
efficiency. A prepared statement can be reused by an application without the overhead in
the database of re-creating the query plan.

private data network
A communications network that only one organization or group uses. A private data net-
work may be implemented using a network switch to a dedicated network adapter, a
leased T1 connection, or some other type of dedicated connection.

pseudo-column
A hidden column that represents a unique key associated with each row in a table.
Typically, using pseudo-columns in a SQL statement is the fastest way to access a row
because they usually point to the exact location of the physical record.

R
Random Access Memory (RAM)
The physical memory where code and data in current use are kept so that the computer’s
processor can quickly reach them.

Glossary 315

ptg

reauthentication
A process that allows a database driver to switch the user associated with a connection to
another user. Reauthentication can be used to minimize the number of connections
required in a connection pool. Different databases refer to this functionality using differ-
ent terminology. For example, Oracle refers to it as proxy authentication and Microsoft
SQL Server refers to as impersonation.

response time
The elapsed time between a data request and when the data is returned. From users’
points of view, it is the time between when they ask for data and when they receive it.

rollback
An operation that returns the database to a previous state. The transaction can be rolled
back completely, canceling a pending transaction, or to a specified point. Rollbacks allow
the database to be restored to a valid state if invalid operations are performed or after the
database server fails.

S
scalability
The ability of an application to maintain acceptable response time and throughput when
the number of simultaneous users increases.

scrollable cursor
A type of cursor that database drivers use to allow the driver to go both forward and
backward through rows in a result set. See also insensitive cursor and sensitive cursor.

Secure Sockets Layer (SSL)
An industry-standard protocol for sending encrypted data over database connections.
SSL secures the integrity of your data by encrypting information and providing
client/server authentication.

sensitive cursor
A type of scrollable cursor that picks up any data modifications that could impact the
result set of the cursor.

service
In a Service-Oriented Architecture (SOA) environment, a loosely coupled software com-
ponent designed to perform a unit of work on behalf of an application or another ser-
vice. Services are designed modularly based on business logic, and built-in knowledge of
other services is minimized so that changes to one service don’t ripple to others.

316 Glossary

ptg

Service-Oriented Architecture (SOA)
A way of designing software applications for reusability and flexibility. It involves design-
ing loosely coupled software components called services. See also service.

soft page fault
A type of page fault that is generated when an application requests a page in memory at
its original address space but is eventually located elsewhere in RAM. See also hard page
fault.

statement
A request sent to the database (including the result of the request).

statement pool
A set of prepared statements that an application can reuse.

static SQL
SQL statements in an application that do not change at runtime and, therefore, can be
hard-coded into the application. See also dynamic SQL.

stored procedure
A set of SQL statements (subroutine) available to applications accessing a relational data-
base system. Stored procedures are physically stored in the database.

streaming protocol database system
A database system that processes a query and sends results until there are no more results
to send; the database is uninterruptable. Sybase, Microsoft SQL Server, and MySQL are
examples of streaming protocol databases.

T
throughput
The amount of data that is transferred from sender to receiver over time.

tightly coupled
A dependent relationship between two or more systems or organizations with some kind
of exchange relationship. In the context of Service-Oriented Architecture (SOA) services,
data access is often inadvisably designed to be tightly coupled, or built into the service.
See also loosely coupled.

transaction
One or more SQL statements that make up a unit of work performed against the data-
base. Either all the statements in a transaction are committed as a unit or all the state-
ments are rolled back as a unit.

Glossary 317

ptg

U
Unicode
A standard encoding that is used to support multilingual character sets.

unmanaged code
In .NET, code that is not executed by the Common Language Runtime (CLR). See also
managed code.

V
virtual memory
The capability to transfer data that is not immediately needed from RAM to a page file
on the hard disk. This process known as paging typically occurs when RAM is used up. If
the transferred data is needed again, it’s copied back into RAM.

virtual private network (VPN)
A network that uses a public telecommunication infrastructure, such as the Internet, to
provide remote offices or individual users with secure access to their organization’s net-
work.

virtualization
The process of partitioning a computer so that multiple operating system instances can
run at the same time on a single physical computer.

W–Z
Web Services
As defined by the W3C, a Web service is a software system designed to support interoper-
able machine-to-machine interaction over a network. Web services are frequently just
Web APIs that can be accessed over a network, such as the Internet, and executed on a
remote system hosting the requested services. Service-Oriented Architecture (SOA) is
most often implemented using Web services, which defines how SOA services interact
using the following standards: Extensible Markup Language (XML), Simple Object
Access Protocol (SOAP), Web Services Description Language (WSDL), and Universal
Description, Discovery and Integration (UDDI).

XQuery
A query language for XML. XQuery allows you to query data from XML documents or
any data source that can be viewed as XML, such as relational databases. With XQuery,
you can query almost any data source as though it were XML, regardless of how the data
is physically stored.

318 Glossary

ptg

Index

319

A
active connections, ADO.NET

connection pools, 231
ADO.NET

connection management
connection pools, 194
database applications, 194
disconnecting efficiently,

196-197
establishing connections, 195
obtaining driver information,

198
connection pools

active connections, 231
attribute guidelines, 231
connection management, 194
idle connections, 231
load balance timeouts, 231
reauthentication in, 233

data providers, configuring,
70-73

data retrieval
data type selection, 219
limiting amount of retrieved

data, 217-219
long data, 216-217

data updates, 220-221

.NET object and method selec-
tion in, 213
avoiding CommandBuilder

object, 213
DataReader objects, 214
DataSet objects, 214-215

SQL statement execution
bulk loads, 212
Command.Prepare method,

208-209
managed data providers, 212
parameter arrays, 209-211
prepared statements, 209-211
statements that retrieve little

or no data, 206-207
transaction management

choosing transaction models,
205

commits, 198-205
distributed transactions, 205
local transactions, 205

applications
CPU usage, miniziming,

114-115
data retrieval

choosing data types, 34-36
database drivers and, 30
limiting amount of returned

data, 34
long data, 31-32
scrollable cursors, 36-37

ptg

database connections, 10
case study of, 20
connection pools, 11-15
creating, 11
creating one connection at a time, 16
creating one connection for multiple

statements, 16-20
cursor-based protocol databases, 17,

20
memory usage, 11
performance costs, 11
streaming protocol databases, 17-18

database driver effects on performance,
53-54

database middleware’s effects on perfor-
mance, 52-54

deploying, troubleshooting performance
issues, 268

good coding practices, troubleshooting
performance issues, 269-270

memory, minimizing use of, 109-110
network performance, tuning, 118
performance, 7, 49
security

data encryption, 39-43
network authentication, 37-39

SQL statements
dynamic SQL, 43
embedded SQL, 43
parameter markers, 28
prepared statements, 28-29
statement pools, 29-30
static SQL, 43
stored procedures, 44

transactions
committing, 22
defining, 21
distributed transactions, 25-27
isolation levels, 24
local transactions, 24-26
memory and, 24
rolling back, 22

320 Index

unnecessary disk reads/writes, tuning to
avoid, 112

arrays (parameters), SQL statement execu-
tion in
ADO.NET, 209-211
ODBC, 139-141

authentication
networks, 37-39
reauthentication, connection pools,

232-235
auto-commit mode (transactions), 23, 112
auto-generated keys, retrieving in JDBC,

176

B
bandwidth, increasing in networks, 106
batches versus prepared statements in

ADO.NET, 209-211
JDBC, 173

benchmarks (performance)
defining, 243
developing

assessing other factors, 258
database preparation, 257
defining goals of, 244-246
making changes one at a time, 257
measuring over sufficient timespans,

254-255
measuring tasks, 252-253
realistic test data models, 249-250
reproducing production environ-

ments, 246-251
reproducing workloads, 252

examples of, 258-259, 262-263
big endian machines, 84
bottlenecks

CPU
causes and solutions of, 112
detecting, 113-114

hard disks, 111

ptg

memory
causes and solutions of, 107-108
detecting, 108

network adapters, 117
bound columns, ODBC data retrieval,

145-147
boxing, 215
bridge architectures, database drivers, 55

C
catalog functions, ODBC

avoiding search patterns, 152-153
dummy queries in, 153-154
minimizing catalog functions in, 151

Client mode (JVM) versus Server mode,
82

CLR (Common Language Runtime), 82,
196

coding
ADO.NET

connection management, 194-198
data retrieval, 216-219
data updates, 220-221
.NET object and method selection in,

213-215
SQL statement execution, 206-212
transaction management, 198-205

good coding practices, troubleshooting
performance issues, 269-270

JDBC
connection management, 158-162
data retrieval, 177-185
data updates, 186-187
database metadata, 188-189
SQL statement execution, 170-176
transaction management, 163-169

ODBC
catalog functions, 151-154
connection management, 124-126
data retrieval, 142-149
data updates, 149

Index 321

SQL statement execution, 136-141
transaction management, 127-130,

133-135
columns

bound columns, ODBC data retrieval,
145-147

pseudo-columns, retrieving auto-
generated keys, 176

Command.Prepare method, SQL state-
ment execution in ADO.NET, 208-209

CommandBuilder object, avoiding in
ADO.NET, 213

committing
auto-commit mode, 23
transactions, 22

ADO.NET transaction management,
198-205

JDBC transaction management,
163-169

ODBC transaction management,
127-130, 133-135

comparing
data types, 35-36
JVM, 77

configuring
ADO.NET data providers, 70-73
connection pools

JDBC pools, 225-228
ODBC pools, 229

database protocol packet size, 92-93
JDBC device drivers, 67-70
ODBC device drivers, 63-67

connection pools, 11-12
ADO.NET pools

active connections, 231
attribute guidelines, 231
connection management, 194
idle connections, 231
load balance timeouts, 231
reauthentication in, 233

Connection Pool Manager, 223, 236
guidelines for, 14

ptg

JDBC pools, 223
attribute guidelines, 226-228
configuring, 225
connection management, 158
initial pool size, 225
maximum idle time, 225
maximum pool size, 225
minimum pool size, 225
performance, 226
reauthentication in, 233-235

ODBC pools, 228
attribute guidelines, 230
configuring, 229
connection management, 124
performance, 125
reauthentication in, 233

overview of, 13
statement pools and, 238
tuning, 114
when not to use, 15

connections (database), 10
connection pools, 11-12

guidelines for, 14
overview of, 13
when not to use, 15

creating, 11
case study of, 20
one connection at a time, 16
one connection for multiple state-

ments, 16-20
cursor-based protocol databases, 17, 20
memory usage, 11
performance costs, 11
streaming protocol databases, 17-18

connectivity, database connectivity stan-
dards, 3

contention (networks), reducing, 96-97
context switching, 115
converting data, minimizing, 115

322 Index

CPU (processors)
bottlenecks

causes and solutions of, 112
detecting, 113-114

data encryption, 116
database drivers and, 116
emulated functionality in, 115
minimizing usage of, 114-115
performance

bottlenecks, 112-114
minimizing CPU usage, 114-115
troubleshooting, 272, 276

cursors
cursor library (ODBC), 141
cursor-based protocol databases, 17, 20
scrollable cursors, 36-37, 119

JDBC and, 181
ODBC and, 148

D
data access, SOA guidelines, 302

data integration, 305-307
decoupling data access from business

logic, 303-305
DSL, 304
performance, 304-305

data conversions, minimizing, 115
data encryption, 39

CPU (processors) and, 116
SSL, 40-43

data integration, SOA data access, 305-307
data providers

ADO.NET data providers, configuring,
70-73

SQL statement execution in ADO.NET,
212

data retrieval, 30
ADO.NET

data type selection, 219

ptg

limiting amount of retrieved data,
217-219

long data in, 216-217
data types, choosing, 34-36
database drivers and, 30
JDBC

cursor selection, 182-185
data type selection, 181
determining how many rows result

sets contain, 181
limiting amount of retrieved data in,

179-180
long data in, 177

large amounts of data from databaser
server, 118

limiting amount of returned data, 34
long data, 31-32
ODBC

bound columns, 145-147
data type selection, 149
determining how many rows result

sets contain, 148
limiting amount of retrieved data in,

144-145
long data in, 142-143
SQLExtendedFetch function, 147

scrollable cursors, 36-37
data storage, big/little endian machines, 84
data types

comparing, 35-36
data retrieval, selecting for, 34-36

JDBC data retrieval, 181
ODBC data retrieval, 149

data updates
ADO.NET, 220-221
JDBC

optimized updates and deletes via
getBestRowIdentifier() method,
186-187

positioned updates, inserts and
deletes, 186

Index 323

database applications
connection management

ADO.NET, 194
JDBC, 158
ODBC, 124

deploying, troubleshooting performance
issues, 268

good coding practices, troubleshooting
performance issues, 269-270

performance, 7
database drivers

bridge architectures, 55
configuring

JDBC drivers, 67-70
ODBC drivers, 63-67

CPU limitations, tuning to compensate
for, 116

CPU usage, minimizing, 114-115
data retrieval, 30
database client-based architectures, 57
database wire protocol architectures,

58-59
effects on application performance,

53-54
functions of, 54
independent protocol architectures, 61
memory, minimizing use of, 109-110
network communications, optimizing,

118
network performance, tuning, 118
performance, 5-6, 46
runtime performance tuning, 62-63
stored procedures, calling, 136-138,

170-172
troubleshooting performance issues,

270-271
wire protocol drivers, 46

database servers, data retrieval, 118
database wire protocol

architectures, 58-59
drivers, 46

ptg

databases
client-based architectures, database dri-

vers, 57
connections, 10

connection pools, 11-15
connectivity standards, 3
creating, 11, 16-20
cursor-based protocol databases, 17,

20
memory usage, 11
performance costs, 11
streaming protocol databases, 17-18

metadata, JDBC, 188-189
middleware

components of, 3, 52
data providers, 70-73
database drivers, 52-70
defining, 52
effects on application performance,

52-54
example of, 52

native support, 47-48
ORM, 48-49
performance benchmarks, preparing for,

257
protocol packets

configuring size of, 92-93
network performance, 86-88, 92-93

DataReader objects, ADO.NET, 214-215
DataSet objects, ADO.NET, 214-215
deleting data

JDBC, optimized updates via
getBestRowIdentifier() method,
186-187

SQLSpecialColumns function, 149
deploying database applications, trou-

bleshooting performance issues, 268
disk contention, 111
distributed transactions, 25-27

ADO.NET, 205
JDBC, 169
ODBC, 135

324 Index

DSL (Data Services Layer), SOA data
access, 304

dummy queries
JDBC, 189
ODBC, 153-154

dynamic SQL, 43

E
embedded SQL, 43
emulated functionality in CPU (proces-

sors), 115
encrypting data, 39-43
environments

defining, 228
hardware performance

CPU, 112-115
hard disks, 111-112
memory, 107-110
network adapters, 116-118
virtualization, 119-121

network performance
contention reduction, 96-97
database protocol packets, 86-88,

92-93
hop reduction, 96-97
increasing bandwidth, 106
network packets, 89-90
packet fragmentation, 98-105
path analysis, 94-96

OS performance, 83-86
performance, 6
Runtime Environment performance

JVM, 77-82
.NET CLR, 82

troubleshooting performance issues,
272-274

ptg

F - G - H
forward-only (nonscrollable) cursors,

JDBC and, 182
fragmentation of network packets, avoid-

ing, 98-99
detecting fragmentation, 103
example of, 101
LAN, 103
resolving fragmentation, 104-105
VPN, 102
WAN, 103

garbage collection (JVM), 79-81, 160
getBestRowIdentifier() method, update

and delete optimization, 186-187
getXXX() methods, fetching

DataReader object data, 215
result set data, 175

handshakes (SSL), 41
hard disk performance

application disk reads/writes, 112
auto-commit mode, 112
bottlenecks, 111
disk contention, 111
troubleshooting, 275

hard page faults, 108
hardware performance

CPU, 112-115
hard disks, 111-112
memory, 107-110
network adapters, 116-118
troubleshooting, 274-276
virtualization, 119-121

heaps (Java), 79-81
hops (networks), reducing, 96-97

Index 325

I - J
idle connections, ADO.NET connection

pools, 231
independent protocol architectures, data-

base drivers, 61
insensitive cursors, JDBC and, 182-183
isolation levels (transactions), 24

Java
JVM (Java Virtual Machines), 77

Client mode versus Server mode, 82
comparing, 77
garbage collection, 79-81
heaps, 79-81
JIT compilers, 82
Server mode versus Client mode, 82

JDBC (Java Database Connectivity)
connection management

connection pools, 158
database applications, 158
disconnecting efficiently, 160-162
establishing connections, 159
obtaining driver information, 162
single connections for multiple state-

ments, 159
connection pools, 158, 223

attribute guidelines, 226-228
configuring, 225
connection management, 158
initial pool size, 225
maximum idle time, 225
maximum pool size, 225
minimum pool size, 225
performance, 226
reauthentication in, 233-235

data retrieval
determining how many rows result

sets contain, 181
limiting amount of retrieved data,

179-180
long data, 177

ptg

device drivers, configuring, 67-70
forward-only (nonscrollable) cursors

and, 182
insensitive cursors and, 182-183
optimized updates via

getBestRowIdentifier() method,
186-187

positioned updates, inserts and deletes,
186

scrollable cursors and, 181
sensitive cursors and, 184-185
SQL statement execution

fetching result set data via getXXX()
methods, 175

prepared statements, 172-173
retrieving auto-generated keys, 176
stored procedures, 170-172

transaction management
choosing transaction models, 169
commits, 163-169
distributed transactions, 169
local transactions, 169

updateXXX methods and, 186
JIT (Just-In-Time) compilers, JVM, 82
JVM (Java Virtual Machines)

Client mode versus Server mode, 82
comparing, 77
garbage collection, 79-81, 160
JIT compilers, 82
performance, 6
Server mode versus Client mode, 82
troubleshooting performance, 273

K - L
Kerberos network authentication protocol,

38-39

LAN (local area networks), packet frag-
mentation, 103

lazy fetching, 183
leaks in memory, 107

326 Index

little endian machines, 84
load balance timeouts, ADO.NET connec-

tion pools, 231
local transactions, 24-26

ADO.NET, 205
JDBC, 169
ODBC, 135

long data, retrieving, 31-32
loose coupling, defining, 300

M
managed data providers, SQL statement

execution in ADO.NET, 212
memory

applications, minimizing use in, 109-110
big endian machines, 84
bottlenecks

causes and solutions of, 107-108
detecting, 108

database connections, 11
database drivers, minimizing use in,

109-110
garbage collection, JVM, 79-81
Java heaps, 79-81
leaks in, 107
little endian machines, 84
performance

bottlenecks, 107-108
leaks in, 107
minimizing memory usage, 109-110
RAM, 107
virtual memory, 107

RAM, 107
reclaiming via CLR, 196
transactions, 24
troubleshooting performance, 272-275
virtual memory, 107

messages, defining, 300

ptg

metadata, JDBC
avoiding search patterns, 188
dummy queries in, 189
minimizing use in, 188

middleware (database)
components of, 3, 52
data providers, configuring ADO.NET

data providers, 70-73
database drivers

bridge architectures, 55
configuring JDBC drivers, 67-70
configuring ODBC drivers, 63-67
database client-based architectures, 57
database wire protocol architectures,

58-59
effects on application performance,

53-54
functions of, 54
independent protocol architectures,

61
runtime performance tuning, 62-63

defining, 52
effects on application performance,

52-54
example of, 52

MTU (maximum transmission units)
analysis of, 104
example of, 100
network packets, 90
path MTU, 99

N
.NET CLR (Common Language Runtime),

82, 273
.NET objects, selecting in ADO.NET, 213
network adapters

bottlenecks, 117
performance, 116-117, 277
troubleshooting, 277

Index 327

network packets
MTU, 90

analysis of, 104
example of, 100
path MTU, 99

network performance, 89-90
networks

activity, troubleshooting performance,
272

authentication, 37-39
data encryption, 39-43
detecting, 103
LAN, packet fragmentation, 103
performance, 5, 44-45

contention reduction, 96-97
database protocol packets, 86-88,

92-93
hop reduction, 96-97
increasing bandwidth, 106
network packets, 89-90
packet fragmentation, 98-101

resolving, 104-105
VPN, 102
WAN, 94-96, 103
private data networks, 97
round trips, reducing, 115, 118
troubleshooting performance, 273-274
VPN, 98, 102
WAN, packet fragmentation, 103

nonscrollable (forward-only) cursors,
JDBC and, 182

O
ODBC (Open Database Connectivity)

catalog functions
avoiding search patterns, 152-153
dummy queries in, 153-154
minimizing, 151

connection management
connection pools, 124
database applications, 124

ptg

establishing connections, 125
obtaining driver information, 126
single connections for multiple state-

ments, 125
connection pools, 228

attribute guidelines, 230
configuring, 229
connection management, 124
performance, 125
reauthentication in, 233

cursor library, 141
data retrieval

bound columns, 145-147
determining how many rows result

sets contain, 148
limiting amount of retrieved data,

144-145
long data, 142-143
SQLExtendedFetch function, 147

data updates, SQLSpecialColumns func-
tion, 149

device drivers, configuring, 63-67
scrollable cursors and, 148
SQL statement execution

cursor library, 141
data retrieval, 142
parameter arrays, 139-141
prepared statements, 138
stored procedures, 136-138

transaction management
choosing transaction models, 135
commits, 127-130, 133-135
distributed transactions, 135
local transactions, 135

ORM (object-relational mapping), 48-49
OS (operating systems), performance,

83-86, 273

328 Index

P
packet fragmentation, 98-99

detecting, 103
example of, 101
LAN, 103
resolving, 104-105
VPN, 102
WAN, 103

page files (swap files), RAM, 107
pages (RAM), 107-108
parameter arrays, SQL statement execution

ADO.NET, 209-211
ODBC, 139-141

parameter markers, SQL statements, 28
path MTU (maximum transmission

units), 99
performance

applications
database driver’s effects on perfor-

mance, 53-54
database middleware’s effects on per-

formance, 52-54
ORM, 49

benchmarks
defining, 243
developing, 244-258
examples, 258-259, 262-263

connection pools, JDBC pools, 226
CPU (processors) bottlenecks, 112
data retrieval

choosing data types, 34-36
database drivers and, 30
limiting amount of returned data, 34
long data, 31-32
scrollable cursors, 36-37

database applications, 7
database connections

case study of, 20
connection pools, 11-15
costs of, 11

ptg

creating one connection at a time, 16
creating one connection for multiple

statements, 16-20
memory usage, 11

database drivers, 5-6, 46
development of, 1-3
environment, 6

CPU, 112-115
hard disks, 111-112
hardware, 107-110
network, 86-106
network adapters, 116-118
OS, 83-86
Runtime Environment, 77-82
virtualization, 119-121

hard disks
application disk reads/writes, 112
auto-commit mode, 112
bottlenecks, 111
disk contention, 111

JVM, 6
memory

bottlenecks, 107-108
database connections and, 11
leaks in, 107
minimizing usage of, 109-110
RAM, 107
virtual memory, 107

network adapters, 116-118
networks, 5, 44-45
ODBC connection pools, 125
processors (CPU)

bottlenecks, 112-114
minimizing processor usage, 114-115

runtime performance tuning options,
database drivers, 271

security
data encryption, 39-43
network authentication, 37-39

SOA, data access, 302-305

Index 329

SQL statements
dynamic SQL, 43
embedded SQL, 43
parameter markers, 28
prepared statements, 28-29
statement pools, 29-30
static SQL, 43
stored procedures, 44

transactions
committing, 22
defining, 21
distributed transactions, 25-27
isolation levels, 24
local transactions, 24-26
memory and, 24
rolling back, 22

troubleshooting
case studies, 277-297
changes in database application

deployment, 268
CPU, 272, 276
database drivers, 270-271
determining issues and possible

causes, 266-267
environment, 272-274
good coding practices, 269-270
hard disks, 275
hardware, 274-276
JVM, 273
memory, 274-275
memory usage, 272
.NET CLR, 273
network activity, 272
network adapters, 277
networks, 273-274
OS, 273
response time, 266
runtime environment, 273
scalability, 267
throughput, 266

virtualization, 119-121

ptg

positioned deletes, JDBC and, 186
positioned inserts, JDBC and, 186
positioned updates, JDBC and, 186
prepared statements

batches versus prepared statements
ADO.NET, 209-211
JDBC, 173

defining, 236
SQL statement execution

JDBC, 172-173
ODBC, 138

prepared statements (SQL), 28-29
private data networks, 97
processors (CPU)

bottlenecks
causes and solutions of, 112
detecting, 113-114

data encryption, 116
database drivers and, 116
emulated functionality in, 115
minimizing usage of, 114-115
performance, 112

bottlenecks, 112-114
minimizing processor usage, 114-115

production environments (performance
benchmarks), reproducing
realistic test data models, 249-250
test environments

designing, 246-249
isolating, 251

pseudo-columns, retrieving auto-
generated keys, 176

Q - R
queries

dummy queries in
JDBC, 189
ODBC, 153-154

plans, reusing, 114

330 Index

RAM (Random Access Memory)
faults in, 108
page files (swap files), 107
pages, 107

reauthentication, connection pools,
232-235

response time
defining, 1
performance issues, troubleshooting,

266
result sets

determining how many rows contained
in
JDBC, 181
ODBC, 148

fetching data via getXXX() methods, 175
retrieving data, 30

ADO.NET
data type selection, 219
limiting amount of retrieved data,

217-219
long data in, 216-217

choosing data types, 34-36
database drivers and, 30
JDBC

cursor selection, 182-185
data type selection, 181
determining how main rows results

contain, 181
limiting amount of retrieved data in,

179-180
long data in, 177

large amounts of data from database
server, 118

limiting amount of returned data, 34
long data, 31-32
ODBC

bound columns, 145-147
data type selection, 149
determining how main rows results

contain, 148

ptg

limiting amount of retrieved data in,
144-145

long data in, 142-143
SQLExtendedFetch function, 147

scrollable cursors, 36-37
reusing services, 303, 305
rolling back transactions, 22

ADO.NET transaction management,
198-205

JDBC transaction management, 163-169
ODBC transaction management,

127-130, 133-135
Runtime Environment

JVM
Client mode versus Server mode, 82
comparing, 77
garbage collection, 79-81
JIT compilers, 82
Server mode versus Client mode, 82

.NET CLR, 82
troubleshooting performance, 273

runtime performance tuning options,
database drivers, 271

S
scalability

defining, 1
performance issues, troubleshooting,

267
scrollable cursors, 36-37, 119

JDBC and, 181
ODBC and, 148

search patterns, avoiding in
JDBC, 188
ODBC, 152-153

security
data encryption, 39-43
network authentication, 37-39

sensitive cursors, JDBC and, 184-185

Index 331

Server mode (JVM) versus Client mode,
82

services
creating, 300
defining, 300
messages, defining, 300
SOA, reusing in, 303-305
Web Services, SOA implementation, 301

SOA (Service-Oriented Architectures), 299
data access guidelines, 302

data integration, 305-307
decoupling data access from business

logic, 303-305
DSL, 304
performance, 304-305

defining, 300
performance, data access, 302-305
services, reusing, 303-305
Web Services, 301

soft page faults, 108
SQL statements

ADO.NET
connection management, 198
executing in, 206-212
prepared statements, 209-211

database connections, creating one con-
nection for multiple statements, 16-20

dynamic SQL, 43
embedded SQL, 43
JDBC

executing in, 170-172
fetching result set data via getXXX()

methods, 175
prepared statements, 172-173
retrieving auto-generated keys, 176

ODBC
connection management, 125-126
executing in, 136-141
prepared statements, 138

parameter markers, 28
prepared statements, 28-29, 236
statement pools, 29-30

ptg

static SQL, 43
stored procedures, 44
transactions

committing, 22
defining, 21
distributed transactions, 25-27
isolation levels, 24
local transactions, 24-26
memory and, 24
rolling back, 22

SQLExtendedFetch function, ODBC data
retrieval, 147

SQLSpecialColumns function,
update/delete optimization, 149

SSL (Secure Sockets Layer)
data encryption, 40-43
handshakes, 41

statement caching, 236
statement pools, 29-30

clearing, 237
connection pools and, 238
defining, 236
guidelines for, 239-240
importing statements into, 237
tuning, 114

statements (SQL)
database connections, creating one con-

nection for multiple statements, 16-20
dynamic SQL, 43
embedded SQL, 43
parameter markers, 28
prepared statements, 28-29
statement pools, 29-30
static SQL, 43
stored procedures, 44
transactions

committing, 22
defining, 21
distributed transactions, 25-27
isolation levels, 24
local transactions, 24-26

332 Index

memory and, 24
rolling back, 22

static SQL, 43
stored procedures, 44, 136-138, 170-172
storing data, big/little endian machines, 84
streaming protocol databases, 17-18
swap files (page files), RAM, 107
switching context, 115

T
test environments (performance bench-

marks)
designing, 246-249
isolating, 251

throughput
defining, 1
performance issues, troubleshooting,

266
traceroute command, network path analy-

sis, 94
tracert command, network path analysis,

94
transactions

committing, 22
defining, 21
distributed transactions, 25-27
isolation levels, 24
local transactions, 24-26
memory and, 24
rolling back, 22

troubleshooting performance
case studies, 277-297
changes in database application deploy-

ment, 268
CPU, 272, 276
database drivers, 270-271
determining issues and possible causes,

266-267
environment, 272-274
good coding practices, 269-270
hard disks, 275

ptg

hardware, 274-276
JVM, 273
memory, 274-275
memory usage, 272
.NET CLR, 273
network activity, 272
network adapters, 277
networks, 273-274
OS, 273
response time, 266
runtime environment, 273
scalability, 267
throughput, 266

U - V
updateXXX methods, JDBC and, 186
updating data

ADO.NET, 220-221
JDBC

optimized updates via
getBestRowIdentifier() method,
186-187

positioned updates, inserts and
deletes, 186

ODBC, 149
SQLSpecialColumns function, 149

virtual memory, 107
virtualization, performance, 119-121
VPN (virtual private networks), 98, 102

W - X - Y - Z
WAN (wide area networks), packet frag-

mentation, 103
Web Services, SOA implementation, 301
wire protocol database drivers, 46
workload replication (performance bench-

mark development), 252

Index 333

XML (Extensible Markup Language), SOA
data integration, 306-307

XQuery, SOA data integration, 306-307

ptg

This page intentionally left blank

ptg

www.informIT.com/learn

ptg

Try Safari Books Online FREE
Get online access to 5,000+ Books and Videos

Find trusted answers, fast
Only Safari lets you search across thousands of best-selling books from the top
technology publishers, including Addison-Wesley Professional, Cisco Press,
O’Reilly, Prentice Hall, Que, and Sams.

Master the latest tools and techniques
In addition to gaining access to an incredible inventory of technical books,
Safari’s extensive collection of video tutorials lets you learn from the leading
video training experts.

WAIT, THERE’S MORE!

Keep your competitive edge
With Rough Cuts, get access to the developing manuscript and be among the fi rst
to learn the newest technologies.

Stay current with emerging technologies
Short Cuts and Quick Reference Sheets are short, concise, focused content
created to get you up-to-speed quickly on new and cutting-edge technologies.

FREE TRIAL—GET STARTED TODAY!

www.informit.com/safaritrial

www.informit.com/safaritrial

ptg

Your purchase of The Data Access Handbook includes access to a free online edition
for 45 days through the Safari Books Online subscription service. Nearly every Prentice
Hall book is available online through Safari Books Online, along with more than 5,000
other technical books and videos from publishers such as Addison-Wesley Professional,
Cisco Press, Exam Cram, IBM Press, O’Reilly, Que, and Sams.

SAFARI BOOKS ONLINE allows you to search for a specifi c answer, cut and paste
code, download chapters, and stay current with emerging technologies.

Activate your FREE Online Edition at

www.informit.com/safarifree

STEP 1: Enter the coupon code: QPSFZCB.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have diffi culty registering on Safari or accessing the online edition,
please e-mail customer-service@safaribooksonline.com

FREE Online
Edition

www.informit.com/safarifree

	Home Page
	Contents
	Preface
	Acknowledgments
	About the Authors
	CHAPTER 1 PERFORMANCE ISN’T WHAT IT USED TO BE
	Where Are We Today?
	The Network
	The Database Driver
	The Environment
	Your Database Application

	Our Goal for This Book

	CHAPTER 2 DESIGNING FOR PERFORMANCE: WHAT’S YOUR STRATEGY?
	Your Applications
	Database Connections
	Transaction Management
	SQL Statements
	Data Retrieval
	Extended Security

	Static SQL Versus Dynamic SQL
	The Network
	The Database Driver
	Know Your Database System
	Using Object-Relational Mapping Tools
	Summary

	CHAPTER 3 DATABASE MIDDLEWARE: WHY IT’S IMPORTANT
	What Is Database Middleware?
	How Database Middleware Affects Application Performance
	Database Drivers
	What Does a Database Driver Do?
	Database Driver Architecture
	Runtime Performance Tuning Options
	Configuring Database Drivers/Data Providers

	Summary

	CHAPTER 4 THE ENVIRONMENT: TUNING FOR PERFORMANCE
	Runtime Environment (Java and .NET)
	JVM
	.NET CLR

	Operating System
	Network
	Database Protocol Packets
	Network Packets
	Configuring Packet Size
	Analyzing the Network Path
	Reducing Network Hops and Contention
	Avoiding Network Packet Fragmentation
	Increasing Network Bandwidth

	Hardware
	Memory
	Disk
	CPU (Processor)
	Network Adapter
	Virtualization

	Summary

	CHAPTER 5 ODBC APPLICATIONS: WRITING GOOD CODE
	Managing Connections
	Connecting Efficiently
	Using Connection Pooling
	Establishing Connections One at a Time
	Using One Connection for Multiple Statements
	Obtaining Database and Driver Information Efficiently

	Managing Transactions
	Managing Commits in Transactions
	Choosing the Right Transaction Model

	Executing SQL Statements
	Using Stored Procedures
	Using Statements Versus Prepared Statements
	Using Arrays of Parameters
	Using the Cursor Library

	Retrieving Data
	Retrieving Long Data
	Limiting the Amount of Data Retrieved
	Using Bound Columns
	Using SQLExtendedFetch Instead of SQLFetch
	Determining the Number of Rows in a Result Set
	Choosing the Right Data Type

	Updating Data
	Using SQLSpecialColumns to Optimize Updates and Deletes

	Using Catalog Functions
	Minimizing the Use of Catalog Functions
	Avoiding Search Patterns
	Using a Dummy Query to Determine Table Characteristics

	Summary

	CHAPTER 6 JDBC APPLICATIONS: WRITING GOOD CODE
	Managing Connections
	Connecting Efficiently
	Using Connection Pooling
	Establishing Connections One at a Time
	Using One Connection for Multiple Statements
	Disconnecting Efficiently
	Obtaining Database and Driver Information Efficiently

	Managing Transactions
	Managing Commits in Transactions
	Choosing the Right Transaction Model

	Executing SQL Statements
	Using Stored Procedures
	Using Statements Versus Prepared Statements
	Using Batches Versus Prepared Statements
	Using getXXX Methods to Fetch Data from a Result Set
	Retrieving Auto-Generated Keys

	Retrieving Data
	Retrieving Long Data
	Limiting the Amount of Data Retrieved
	Determining the Number of Rows in a Result Set
	Choosing the Right Data Type
	Choosing the Right Cursor

	Updating Data
	Using Positioned Updates, Inserts, and Deletes (updateXXX Methods)
	Using getBestRowIdentifier() to Optimize Updates and Deletes

	Using Database Metadata Methods
	Minimizing the Use of Database Metadata Methods
	Avoiding Search Patterns
	Using a Dummy Query to Determine Table Characteristics

	Summary

	CHAPTER 7 .NET APPLICATIONS: WRITING GOOD CODE
	Managing Connections
	Connecting Efficiently
	Using Connection Pooling
	Establishing Connections One at a Time
	Disconnecting Efficiently
	Obtaining Database and Data Provider Information Efficiently

	Managing Transactions
	Managing Commits in Transactions
	Choosing the Right Transaction Model

	Executing SQL Statements
	Executing SQL Statements that Retrieve Little or No Data
	Using the Command.Prepare Method
	Using Arrays of Parameters/Batches Versus Prepared Statements
	Using Bulk Load
	Using Pure Managed Providers

	Selecting .NET Objects and Methods
	Avoiding the CommandBuilder Object
	Choosing Between a DataReader and DataSet Object
	Using GetXXX Methods to Fetch Data from a DataReader

	Retrieving Data
	Retrieving Long Data
	Limiting the Amount of Data Retrieved
	Choosing the Right Data Type

	Updating Data
	Summary

	CHAPTER 8 CONNECTION POOLING AND STATEMENT POOLING
	Connection Pool Model for JDBC
	Configuring Connection Pools
	Guidelines

	Connection Pool Model for ODBC
	Connection Pooling as Defined in the ODBC Specification
	Configuring Connection Pools
	Guidelines

	Connection Pool Model for ADO.NET
	Configuring Connection Pools
	Guidelines

	Using Reauthentication with Connection Pooling
	Configuring Connection Pooling with Reauthentication in a JDBC Environment

	Using Statement Pooling
	Using Statement Pooling with Connection Pooling
	Guidelines

	Summary: The Big Picture

	CHAPTER 9 DEVELOPING GOOD BENCHMARKS
	Developing the Benchmark
	Define Benchmark Goals
	Reproduce the Production Environment
	Isolate the Test Environment
	Reproduce the Workload
	Measure the Right Tasks
	Measure over a Sufficient Duration of Time
	Prepare the Database
	Make Changes One at a Time
	Assess Other Factors

	Benchmark Example
	Summary

	CHAPTER 10 TROUBLESHOOTING PERFORMANCE ISSUES
	Where to Start
	Changes in Your Database Application Deployment
	The Database Application
	The Database Driver
	Runtime Performance Tuning Options
	Architecture

	The Environment
	Runtime Environment (Java and .NET)
	Operating System
	Network
	Hardware

	Case Studies
	Case Study 1
	Case Study 2
	Case Study 3
	Case Study 4
	Case Study 5
	Case Study 6
	Case Study 7
	Case Study 8

	Summary

	CHAPTER 11 DATA ACCESS IN SERVICE-ORIENTED ARCHITECTURE (SOA) ENVIRONMENTS
	What Is Service-Oriented Architecture (SOA)?
	Data Access Guidelines for SOA Environments
	Involve Data Experts in Addition to SOA Experts
	Decouple Data Access from Business Logic
	Design and Tune for Performance
	Consider Data Integration

	Summary

	GLOSSARY
	A
	B
	C
	D
	E
	F–G
	H–I
	J–K
	L
	M
	N–O
	P–Q
	R
	S
	T
	U
	V
	W–Z

	INDEX
	A
	B
	C
	D
	E
	F - G - H
	I - J
	K - L
	M
	N
	O
	P
	Q - R
	S
	T
	U - V
	W - X - Y - Z

